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Introduction to Analysis of Variance
Procedures
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Overview: Analysis of Variance Procedures
The statistical term “analysis of variance” is used in a variety of circumstances in statistical theory and
applications. In the narrowest sense, and the original sense of the phrase, it signifies a decomposition of a
variance into contributing components. This was the sense used by R. A. Fisher when he defined the term to
mean the expression of genetic variance as a sum of variance components due to environment, heredity, and
so forth:
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In this sense of the term, the SAS/STAT procedures that fit variance component models, such as the
GLIMMIX, HPMIXED, MIXED, NESTED, and VARCOMP procedures, are “true” analysis of variance
procedures.

Analysis of variance methodology in a slightly broader sense—and the sense most frequently understood
today—applies the idea of an additive decomposition of variance to an additive decomposition of sums of



100 F Chapter 5: Introduction to Analysis of Variance Procedures

squares, whose expected values are functionally related to components of variation. A collection of sums
of squares that measure and can be used for inference about meaningful features of a model is called a
sum of squares analysis of variance, whether or not such a collection is an additive decomposition. In a
linear model, the decomposition of sums of squares can be expressed in terms of projections onto orthogonal
subspaces spanned by the columns of the design matrix X. This is the general approach followed in the
section “Analysis of Variance” on page 47 in Chapter 3, “Introduction to Statistical Modeling with SAS/STAT
Software.” Depending on the statistical question at hand, the projections can be formulated based on estimable
functions, with different types of estimable functions giving rise to different types of sums of squares. Note
that not all sum of squares analyses necessarily correspond to additive decompositions. For example, the Type
III sums of squares often test hypotheses about the model that are more meaningful than those corresponding
to the Type I sums of squares. But while the Type I sums of squares additively decompose the sum of squares
due to all model contributions, the Type III sums of squares do not necessarily add up to any useful quantity.
The four types of estimable functions in SAS/STAT software, their interpretation, and their construction
are discussed in Chapter 15, “The Four Types of Estimable Functions.” The application of sum of squares
analyses is not necessarily limited to models with classification effects (factors). The methodology also
applies to linear regression models that contain only continuous regressor variables.

An even broader sense of the term “analysis of variance” pertains to statistical models that contain classifi-
cation effects (factors), and in particular, to models that contain only classification effects. Any statistical
approach that measures features of such a model and can be used for inference is called a general analysis
of variance. Thus the procedures for general analysis of variance in SAS/STAT are considered to be those
that can fit statistical models containing factors, whether the data are experimental or observational. Some
procedures for general analysis of variance have a statistical estimation principle that gives rise to a sum
of squares analysis as discussed previously; others express a factor’s contribution to the model fit in some
other form. Note that this view of analysis of variance includes, for example, maximum likelihood estimation
in generalized linear models with the GENMOD procedure, restricted maximum likelihood estimation in
linear mixed models with the MIXED procedure, the estimation of variance components with the VARCOMP
procedure, the comparison of means of groups with the TTEST procedure, and the nonparametric analysis of
rank scores with the NPAR1WAY procedure, and so on.

In summary, analysis of variance in the contemporary sense of statistical modeling and analysis is more aptly
described as analysis of variation, the study of the influences on the variation of a phenomenon. This can
take, for example, the following forms:

� an analysis of variance table based on sums of squares followed by more specific inquiries into the
relationship among factors and their levels

� a deviance decomposition in a generalized linear model

� a series of Type III tests followed by comparisons of least squares means in a mixed model
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Procedures That Perform Sum of Squares Analysis of Variance
The flagship procedure in SAS/STAT software for linear modeling with sum of squares analysis techniques is
the GLM procedure. It handles most standard analysis of variance problems. The following list provides
descriptions of PROC GLM and other procedures that are used for more specialized situations:

ANOVA performs analysis of variance, multivariate analysis of variance, and repeated measures
analysis of variance for balanced designs. PROC ANOVA also performs multiple com-
parison tests on arithmetic means.

GLM performs analysis of variance, regression, analysis of covariance, repeated measures
analysis, and multivariate analysis of variance. PROC GLM produces several diagnostic
measures, performs tests for random effects, provides contrasts and estimates for cus-
tomized hypothesis tests, provides tests for means adjusted for covariates, and performs
multiple-comparison tests on both arithmetic and adjusted means.

LATTICE computes the analysis of variance and analysis of simple covariance for data from an
experiment with a lattice design. PROC LATTICE analyzes balanced square lattices,
partially balanced square lattices, and some rectangular lattices.

MIXED performs mixed model analysis of variance and repeated measures analysis of variance
via covariance structure modeling. When you choose one of the method-of-moment
estimation techniques, the MIXED procedure produces an analysis of variance table with
sums of squares, mean squares, and expected mean squares. PROC MIXED constructs
statistical tests and intervals, enables customized contrasts and estimates, and computes
empirical Bayes predictions.

NESTED performs analysis of variance and analysis of covariance for purely nested random models.

ORTHOREG performs regression by using the Gentleman-Givens computational method. For ill-
conditioned data, PROC ORTHOREG can produce more accurate parameter estimates
than other procedures, such as PROC GLM. See Chapter 90, “The ORTHOREG Proce-
dure,” for more information.

TRANSREG fits univariate and multivariate linear models, optionally with spline and other nonlinear
transformations. Models include ordinary regression and ANOVA, multiple and multi-
variate regression, metric and nonmetric conjoint analysis, metric and nonmetric vector
and ideal point preference mapping, redundancy analysis, canonical correlation, and
response surface regression. See Chapter 125, “The TRANSREG Procedure,” for more
information.

VARCOMP estimates variance components for random or mixed models. If you choose the
METHOD=TYPE1 or METHOD=GRR option, the VARCOMP procedure produces
an analysis of variance table with sums of squares that correspond to the random effects
in your models.
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Procedures That Perform General Analysis of Variance
Many procedures in SAS/STAT enable you to incorporate classification effects into your model and to perform
statistical inferences for experimental factors and their interactions. These procedures do not necessarily
rely on sums of squares decompositions to perform these inferences. Examples of such procedures are the
CATMOD, GENMOD, GLIMMIX, LOGISTIC, NPAR1WAY, and TTEST procedures. In fact, any one of
the more than two dozen SAS/STAT modeling procedures that include a CLASS statement can be said to
perform analysis of variance in this general sense. For more information about individual procedures, refer to
their corresponding chapters in this documentation.

The following section discusses procedures in SAS/STAT that compute analysis of variance in models with
classification factors in the narrow sense—that is, they produce analysis of variance tables and form F tests
based on sums of squares, mean squares, and expected mean squares.

The subsequent sections discuss procedures that perform statistical inference in models with classification
effects in the broader sense.

The following section also presents an overview of some of the fundamental features of analysis of variance.
Subsequent sections describe how this analysis is performed with procedures in SAS/STAT software. For
more detail, see the chapters for the individual procedures. Additional sources are described in the section
References.

Statistical Details for Analysis of Variance

From Sums of Squares to Linear Hypotheses
Analysis of variance (ANOVA) is a technique for analyzing data in which one or more response (or dependent
or simply Y) variables are measured under various conditions identified by one or more classification
variables. The combinations of levels for the classification variables form the cells of the design for the
data. This design can be the result of a controlled experiment or the result of an observational study in
which you observe factors and factor level combinations in an uncontrolled environment. For example, an
experiment might measure weight change (the dependent variable) for men and women who participated
in three different weight-loss programs. The six cells of the design are formed by the six combinations of
gender (men, women) and program (A, B, C).

In an analysis of variance, the variation in the response is separated into variation attributable to differences
between the classification variables and variation attributable to random error. An analysis of variance
constructs tests to determine the significance of the classification effects. A typical goal in such an analysis is
to compare means of the response variable for various combinations of the classification variables.

The least squares principle is central to computing sums of squares in analysis of variance models. Suppose
that you are fitting the linear model Y D Xˇ C � and that the error terms satisfy the usual assumptions
(uncorrelated, zero mean, homogeneous variance). Further, suppose that X is partitioned according to several
model effects, X D ŒX1 X2 � � � Xk�. If b̌ denotes the ordinary least squares solution for this model, then the
sum of squares attributable to the overall model can be written as

SSM D b̌0X0Y D Y0HY
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where H is the “hat” matrix H D X.X0X/�X0. (This model sum of squares is not yet corrected for the
presence of an explicit or implied intercept. This adjustment would consist of subtracting nY

2
from SSM.)

Because of the properties of the hat matrix H, you can write X0 D X0H and HX D X. The (uncorrected)
model sum of squares thus can also be written as

SSM D b̌0.X0X/b̌
This step is significant, because it demonstrates that sums of squares can be identified with quadratic functions
in the least squares coefficients. The generalization of this idea is to do the following:

� consider hypotheses of interest in an analysis of variance model

� express the hypotheses in terms of linear estimable functions of the parameters

� compute the sums of squares associated with the estimable function

� construct statistical tests based on the sums of squares

Decomposing a model sum of squares into sequential, additive components, testing the significance of
experimental factors, comparing factor levels, and performing other statistical inferences fall within this
generalization. Suppose that Lˇ is an estimable function (see the section “Estimable Functions” on page 50
in Chapter 3, “Introduction to Statistical Modeling with SAS/STAT Software,” and Chapter 15, “The Four
Types of Estimable Functions,” for details). The sum of squares associated with the hypothesis H WLˇ D 0 is

SS.H/ D SS.Lˇ D 0/ D b̌0L0 �L.X0X/�L0
��1 Lb̌

One application would be to form sums of squares associated with the different components of X. For
example, you can form a matrix L2 matrix such that L2ˇ D 0 tests the effect of adding the columns for X2

to an empty model or to test the effect of adding X2 to a model that already contains X1.

These sums of squares can also be expressed as the difference between two residual sums of squares, since
Lˇ D 0 can be thought of as a (linear) restriction on the parameter estimates in the model:

SS.H/ D SSR.constrained model/ � SSR.full model/

If, in addition to the usual assumptions mentioned previously, the model errors are assumed to be normally
distributed, then SS.H/ follows a distribution that is proportional to a chi-square distribution. This fact, and
the independence of SS.H/ from the residual sum of squares, enables you to construct F tests based on sums
of squares in least squares models.

The extension of sum of squares analysis of variance to general analysis of variance for classification effects
depends on the fact that the distributional properties of quadratic forms in normal random variables are well
understood. It is not necessary to first formulate a sum of squares to arrive at an exact or even approximate F
test. The generalization of the expression for SS.H/ is to form test statistics based on quadratic forms

b̌0L0Var
h
Lb̌i�1

Lb̌
that follow a chi-square distribution if b̌ is normally distributed.
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Tests of Effects Based on Expected Mean Squares
Statistical tests in analysis of variance models can be constructed by comparing independent mean squares.
To test a particular null hypothesis, you compute the ratio of two mean squares that have the same expected
value under that hypothesis; if the ratio is much larger than 1, then that constitutes significant evidence
against the null. In particular, in an analysis of variance model with fixed effects only, the expected value of
each mean square has two components: quadratic functions of fixed parameters and random variation. For
example, for a fixed effect called A, the expected value of its mean square is

EŒMS.A/� D Q.ˇ/C �2

where �2 is the common variance of the �i .

Under the null hypothesis of no A effect, the fixed portion Q(ˇ) of the expected mean square is zero. This
mean square is then compared to another mean square—say, MS(E)—that is independent of the first and has
the expected value �2. The ratio of the two mean squares

F D
MS.A/
MS.E/

has an F distribution under the null hypothesis.

When the null hypothesis is false, the numerator term has a larger expected value, but the expected value
of the denominator remains the same. Thus, large F values lead to rejection of the null hypothesis. The
probability of getting an F value at least as large as the one observed given that the null hypothesis is true is
called the significance probability value (or the p-value). A p-value of less than 0.05, for example, indicates
that data with no A effect will yield F values as large as the one observed less than 5% of the time. This is
usually considered moderate evidence that there is a real A effect. Smaller p-values constitute even stronger
evidence. Larger p-values indicate that the effect of interest is less than random noise. In this case, you can
conclude either that there is no effect at all or that you do not have enough data to detect the differences being
tested.

The actual pattern in expected mean squares of terms related to fixed quantities (Q(ˇ)) and functions of
variance components depends on which terms in your model are fixed effects and which terms are random
effects. This has bearing on how F statistics can be constructed. In some instances, exact tests are not
available, such as when a linear combination of expected mean squares is necessary to form a proper
denominator for an F test and a Satterthwaite approximation is used to determine the degrees of freedom of
the approximation. The GLM and MIXED procedures can generate tables of expected mean squares and
compute degrees of freedom by Satterthwaite’s method. The MIXED and GLIMMIX procedures can apply
Satterthwaite approximations and other degrees-of-freedom computations more widely than in analysis of
variance models. See the section “Fixed, Random, and Mixed Models” on page 21 in Chapter 3, “Introduction
to Statistical Modeling with SAS/STAT Software,” for a discussion of fixed versus random effects in statistical
models.
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Analysis of Variance for Fixed-Effect Models

PROC GLM for General Linear Models
The GLM procedure is the flagship tool for classical analysis of variance in SAS/STAT software. It performs
analysis of variance by using least squares regression to fit general linear models. Among the statistical
methods available in PROC GLM are regression, analysis of variance, analysis of covariance, multivariate
analysis of variance, repeated measures analysis, and partial correlation analysis.

While PROC GLM can handle most common analysis of variance problems, other procedures are more
efficient or have more features than PROC GLM for certain specialized analyses, or they can handle
specialized models that PROC GLM cannot. Much of the rest of this chapter is concerned with comparing
PROC GLM to other procedures.

PROC ANOVA for Balanced Designs
When you design an experiment, you choose how many experimental units to assign to each combination
of levels (or cells) in the classification. In order to achieve good statistical properties and simplify the
computations, you typically attempt to assign the same number of units to every cell in the design. Such
designs are called balanced designs.

In SAS/STAT software, you can use the ANOVA procedure to perform analysis of variance for balanced data.
The ANOVA procedure performs computations for analysis of variance that assume the balanced nature of
the data. These computations are simpler and more efficient than the corresponding general computations
performed by PROC GLM. Note that PROC ANOVA can be applied to certain designs that are not balanced
in the strict sense of equal numbers of observations for all cells. These additional designs include all one-way
models, regardless of how unbalanced the cell counts are, as well as Latin squares, which do not have data
in all cells. In general, however, the ANOVA procedure is recommended only for balanced data. If you
use ANOVA to analyze a design that is not balanced, you must assume responsibility for the validity
of the output. You are responsible for recognizing incorrect results, which might include negative values
reported for the sums of squares. If you are not certain that your data fit into a balanced design, then you
probably need the framework of general linear models in the GLM procedure.

Comparing Group Means
The F test for a classification factor that has more than two levels tells you whether the level effects are
significantly different from each other, but it does not tell you which levels differ from which other levels.

If the level comparisons are expressed through differences of the arithmetic cell means, you can use the
MEANS statement in the GLM and ANOVA procedures for comparison. If arithmetic means are not
appropriate for comparison, for example, because your data are unbalanced or means need to be adjusted
for other model effects, then you can use the LSMEANS statement in the GLIMMIX, GLM, and MIXED
procedures for level comparisons.
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If you have specific comparisons in mind, you can use the CONTRAST statement in these procedures to
make these comparisons. However, if you make many comparisons that use some given significance level
(0.05, for example), you are more likely to make a type 1 error (incorrectly rejecting a hypothesis that the
means are equal) simply because you have more chances to make the error.

Multiple-comparison methods give you more detailed information about the differences among the means
and enable you to control error rates for a multitude of comparisons. A variety of multiple-comparison
methods are available with the MEANS statement in both the ANOVA and GLM procedures, as well as the
LSMEANS statement in the GLIMMIX, GLM, and MIXED procedures. These are described in detail in the
section “Multiple Comparisons” on page 4107 in Chapter 52, “The GLM Procedure,” and in Chapter 51,
“The GLIMMIX Procedure,” and Chapter 83, “The MIXED Procedure.”

PROC TTEST for Comparing Two Groups
If you want to perform an analysis of variance and have only one classification variable with two levels, you
can use PROC TTEST. In this special case, the results generated by PROC TTEST are equivalent to the
results generated by PROC ANOVA or PROC GLM.

You can use PROC TTEST with balanced or unbalanced groups. In addition to the test assuming equal
variances, PROC TTEST also performs a Satterthwaite test assuming unequal variances.

The TTEST procedure also performs equivalence tests, computes confidence limits, and supports both normal
and lognormal data. If you have an AB/BA crossover design with no carryover effects, then you can use the
TTEST procedure to analyze the treatment and period effects.

The PROC NPAR1WAY procedure performs nonparametric analogues to t tests. See Chapter 16, “Introduction
to Nonparametric Analysis,” for an overview and Chapter 89, “The NPAR1WAY Procedure,” for details on
PROC NPAR1WAY.

Analysis of Variance for Categorical Data and Generalized
Linear Models
A categorical variable is defined as one that can assume only a limited number of values. For example, a
person’s gender is a categorical variable that can assume one of two values. Variables with levels that simply
name a group are said to be measured on a nominal scale. Categorical variables can also be measured using
an ordinal scale, which means that the levels of the variable are ordered in some way. For example, responses
to an opinion poll are usually measured on an ordinal scale, with levels ranging from “strongly disagree” to
“no opinion” to “strongly agree.”

For two categorical variables, one measured on an ordinal scale and one measured on a nominal scale, you
can assign scores to the levels of the ordinal variable and test whether the mean scores for the different levels
of the nominal variable are significantly different. This process is analogous to performing an analysis of
variance on continuous data, which can be performed by PROC CATMOD. If there are n nominal variables,
rather than 1, then PROC CATMOD can perform an n-way analysis of variance of the mean scores.

For two categorical variables measured on a nominal scale, you can test whether the distribution of the first
variable is significantly different for the levels of the second variable. This process is an analysis of variance
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of proportions, rather than means, and can be performed by PROC CATMOD. The corresponding n-way
analysis of variance can also be performed by PROC CATMOD.

See Chapter 8, “Introduction to Categorical Data Analysis Procedures,” and Chapter 35, “The CATMOD
Procedure,” for more information.

The GENMOD procedure uses maximum likelihood estimation to fit generalized linear models. This family
includes models for categorical data such as logistic, probit, and complementary log-log regression for
binomial data and Poisson regression for count data, as well as continuous models such as ordinary linear
regression, gamma, and inverse Gaussian regression models. PROC GENMOD performs analysis of variance
through likelihood ratio and Wald tests of fixed effects in generalized linear models, and provides contrasts
and estimates for customized hypothesis tests. It performs analysis of repeated measures data with generalized
estimating equation (GEE) methods.

See Chapter 8, “Introduction to Categorical Data Analysis Procedures,” and Chapter 50, “The GENMOD
Procedure,” for more information.

Nonparametric Analysis of Variance
Analysis of variance is sensitive to the distribution of the error term. If the error term is not normally
distributed, the statistics based on normality can be misleading. The traditional test statistics are called
parametric tests because they depend on the specification of a certain probability distribution except for a set
of free parameters. Parametric tests are said to depend on distributional assumptions. Nonparametric methods
perform the tests without making any strict distributional assumptions. Even if the data are distributed
normally, nonparametric methods are often almost as powerful as parametric methods.

Most nonparametric methods are based on taking the ranks of a variable and analyzing these ranks (or
transformations of them) instead of the original values. The NPAR1WAY procedure performs a nonparametric
one-way analysis of variance. Other nonparametric tests can be performed by taking ranks of the data (using
the RANK procedure) and using a regular parametric procedure (such as GLM or ANOVA) to perform the
analysis. Some of these techniques are outlined in the description of PROC RANK in SAS Programmers
Guide: Essentials and in Conover and Iman (1981).

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=v_001&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=v_001&docsetId=lepg&docsetTarget=titlepage.htm
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Constructing Analysis of Variance Designs
Analysis of variance is most often used for data from designed experiments. You can use the PLAN
procedure to construct designs for many experiments. For example, PROC PLAN constructs designs
for completely randomized experiments, randomized blocks, Latin squares, factorial experiments, certain
balanced incomplete block designs, and balanced crossover designs.

Randomization, or randomly assigning experimental units to cells in a design and to treatments within a cell,
is another important aspect of experimental design. For either a new or an existing design, you can use PROC
PLAN to randomize the experimental plan.

Additional features for design of experiments are available in SAS/QC software. The FACTEX and OPTEX
procedures can construct a wide variety of designs, including factorials, fractional factorials, and D-optimal
or A-optimal designs. These procedures, as well as the ADX Interface, provide features for randomizing and
replicating designs; saving the design in an output data set; and interactively changing the design by changing
its size, use of blocking, or the search strategies used. For more information, see the SAS/QC User’s Guide.

For More Information
Analysis of variance was pioneered by Fisher (1925). For a general introduction to analysis of variance, see
an intermediate statistical methods textbook such as Steel and Torrie (1980); Snedecor and Cochran (1980);
Milliken and Johnson (1984); Mendenhall (1968); John (1971); Ott (1977); Kirk (1968). A classic source is
Scheffé (1959). Freund, Littell, and Spector (1991) bring together a treatment of these statistical methods and
SAS/STAT software procedures. Schlotzhauer and Littell (1997) cover how to perform t tests and one-way
analysis of variance with SAS/STAT procedures. Texts on linear models include Searle (1971); Graybill
(1976); Hocking (1985). Kennedy and Gentle (1980) survey the computing aspects. Other references appear
in the reference section.
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