
SAS® 9.4 Graph Template
Language: User’s Guide,
Fifth Edition

SAS® Documentation
January 11, 2024

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS® 9.4 Graph Template Language: User’s Guide,
Fifth Edition. Cary, NC: SAS Institute Inc.

SAS® 9.4 Graph Template Language: User’s Guide, Fifth Edition

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-62960-809-9 (PDF)

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you
acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those
set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

January 2024

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P9:grstatug

Contents

About This Book . ix

PART 1 Getting Started 1

Chapter 1 / Get Started Using the Graph Template Language . 3
Introduction to the Graph Template Language . 3
What You Need to Know to Get Started Using GTL . 6
Learning By Example: Create Your First Bar Chart Using GTL 9
Where to Go from Here . 13

Chapter 2 / A Quick Look at Additional Features of GTL . 15
Appearance Options . 15
Attribute Maps . 16
Custom Plot Markers . 16
Annotations . 16
Insets . 17
Specialized Legends . 18
Axis Tables . 18
Run-Time Programming Features . 19

Chapter 3 / Common Tasks Associated with Creating GTL Templates . 21
About the GTL Tasks . 21
Output Environment Tasks . 21
Graph Creation Tasks . 22
Graph Enhancement Tasks . 23

Chapter 4 / Additional Resources to Help You Develop Your GTL Templates 25
Resources on the Web . 25
Books . 26

PART 2 GTL Statements and Features 27

Chapter 5 / A Quick Look at GTL Statement Syntax . 29
Statement Syntax . 29
Statement-Block Syntax . 30

Chapter 6 / Overview of the GTL Statements . 31
GTL Statement Categories . 31
Plot Statements . 31
Legend Statements . 32

Text Statements . 33
Layout Statements . 34

Chapter 7 / Common Features Supported by GTL Statements . 39
Features Supported by Many Plot Statements . 39
Features Supported by Layout, Legend, and Text Statements 46

PART 3 Selecting GTL Plot Statements 49

Chapter 8 / How the GTL Plot Statements Are Categorized . 51
Plot Types . 51
Plot Categories . 53
Additional Plot Category: the Primary Plot . 54

Chapter 9 / Plot Statements Listed by Category . 55
Standalone, 2-D, Computed Plots . 55
Standalone, 2-D, Parameterized Plots . 57
Standalone, 3-D, Parameterized Plots . 59
Dependent Plots . 60

Chapter 10 / Gallery of the GTL Plots . 61
A Quick Look at the Gallery . 62
Gallery of Basic Single-Cell Plots . 62
Gallery of Additional Plot Features . 87
Gallery of Multicell Graphs . 89

PART 4 Creating Graphs Using GTL 95

Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout . 97
The LAYOUT OVERLAY Statement . 98
Statements You Can Use in an OVERLAY Block . 99
Restrictions on Allowed Statements . 99
Restrictions on Statement Combinations . 100
Statement Order . 102
Managing Axes in OVERLAY Layouts . 103
Avoiding Plot Data Conflicts . 165
Overlay Examples . 166

Chapter 12 / Creating Overlay Graphs with Equated Axes Using the
OVERLAYEQUATED Layout . 177

The LAYOUT OVERLAYEQUATED Statement . 177
Managing Axes in OVERLAYEQUATED Layouts . 180
Equated Overlay Layout Examples . 183

Chapter 13 / Creating Overlay 3-D Graphs Using the OVERLAY3D Layout 187
The LAYOUT OVERLAY3D Statement . 187
Data Requirements for 3-D Plots . 188
Managing Axes in OVERLAY3D Layouts . 201
Display Features of the OVERLAY3D Layout . 202

iv Contents

Chapter 14 / Creating Gridded Graphs Using the GRIDDED Layout . 207
The LAYOUT GRIDDED Statement . 207
Defining a Basic Grid . 208
Building a Table of Text . 213
Sizing Issues . 215

Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout . 221
The LAYOUT LATTICE Statement . 221
Defining a Basic Lattice . 225
Managing Axes in LATTICE Layouts . 231
Adjusting the Sizes of Rows and Columns . 238
Adjusting the Graph Size . 239
Examples: Lattice Layout . 241

Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts 255
About Classification Panels . 256
The LAYOUT DATALATTICE Statement . 256
The LAYOUT DATAPANEL Statement . 257
The LAYOUT PROTOTYPE Statement . 258
Distinction between DATAPANEL and DATALATTICE . 259
Organizing Panel Contents . 260
Managing Axes in DATALATTICE and DATAPANEL Layouts 268
Controlling the Classification Headers . 272
Using Sidebars . 276
Controlling the Interactions of Classifiers . 277
Using Non-computed Plots in Classification Panels . 290
Adding an Inset to Each Cell . 292
Using PROC SGPANEL to Create Classification Panels . 292
Examples: Data Lattice Layout and Data Panel Layout . 295

Chapter 17 / Creating Graphs with No Axis Using the REGION Layout . 303
The LAYOUT REGION Statement . 303
Examples: Region Layout . 304

Chapter 18 / Plotting a SAS Cloud Analytic Services (CAS) In-Memory Table 309
Accessing In-Memory Tables . 309
About In-Memory Tables and Data Order . 310
GTL Features That Do Not Support In-Memory Tables . 310
Example: Preprocessing Data in CAS and Plotting the Results Using GTL 311

PART 5 Adding Text, Legends, and Insets 315

Chapter 19 / Adding Titles, Footnotes, and Text Entries to Your Graph . 317
Text Strings in Graphs . 317
Text Properties and Syntax Conventions . 319
Text Statement Basics . 321
Managing the String on Text Statements . 324
Using Options on Text Statements . 328
ENTRY Statements: Additional Control . 332

Chapter 20 / Adding Legends to Your Graph . 337
Introduction to Legend Management . 338

Contents v

General Legend Features . 344
Adding a Discrete Legend . 353
Adding a Continuous Legend . 374

Chapter 21 / Adding Insets to Your Graph . 383
Uses for Insets in a Graph . 383
Creating a Simple Inset with an ENTRY Statement . 384
Creating an Inset as a Table of Text . 385
Positioning an Inset . 388
Creating an Inset with Values That Are Computed in the Template 391
Creating an Inset from Values That Are Passed to the Template 393
Adding Insets to a SCATTERPLOTMATRIX Graph . 398
Adding Insets to Classification Panels . 401
Creating Axis-Aligned Insets . 409

PART 6 Adding Custom Graphical Elements 423

Chapter 22 / Adding Code-Driven Graphics Elements to Your Graph . 425
Overview: Adding Non-Data-Driven Graphics Elements to a Graph 425
Selecting the Drawing Space and Units . 426
How the Graphics Elements Are Anchored . 428
Adding Graphics Elements to Your Graph . 429

Chapter 23 / Adding Data-Driven Annotations to Your Graph . 439
Overview: Adding Data-Driven Annotations to a Graph . 439
Creating an SG Annotation Data Set . 440
Using the SG Annotation Macros to Create Your SG Annotation Data Set 451
Rendering a Graph with Annotations . 452
Subsetting Annotations . 452
Examples . 453

PART 7 Creating Interactive Graphs 471

Chapter 24 / Adding Data Tips to Your Graph . 473
Creating a Graph with Data Tips in an HTML Page . 473
Creating a Graph with Custom Data Tips in an HTML Page 474

Chapter 25 / Adding Drill-Down Links to Your Graph . 477
About Drill-Down Graphs . 477
Create a Drill-Down Graph . 479

Chapter 26 / Creating Animated Graphs . 483
About ODS Graphics Animation Support . 483
Create an Animated Graph . 484

vi Contents

PART 8 Graphical Output 489

Chapter 27 / Managing Your Graph’s Appearance . 491
Default Appearance Features in Graphs . 492
Methods for Changing the Appearance of Your Plots . 494
Using ODS Styles to Control Graph Appearance . 495
Using Options to Override Style Attributes . 506
Controlling the Appearance of Non-grouped Data . 511
Controlling the Appearance of Grouped Data . 514
Using Attribute Maps . 536
Attribute Rotation Patterns . 545
Using Transparency . 552
Using Data Skins . 554
Using Anti-Aliasing . 559
Using Subpixel Rendering . 562
Recommendations . 565

Chapter 28 / Managing Your Graphics Output . 567
Introduction to ODS Graphics Output . 567
SAS Registry Settings for ODS Graphics . 568
ODS Destination Statement Options That Affect ODS Graphics 569
ODS GRAPHICS Statement Options . 571
Controlling the Image Name and Image Format . 574
Controlling the Location of the Image Output . 579
Controlling Graph Size . 581
Scaling Graphs . 582
Controlling Image Resolution . 586
Creating a Graph That Can Be Edited . 588
Creating a Graph That You Can Import into Microsoft Office Applications 590

PART 9 Graph Templates 593

Chapter 29 / Executing Graph Templates . 595
Techniques for Executing Templates . 595
Minimal Required Syntax . 596
Managing the Input Data . 597
Initializing Template Dynamic Variables and Macro Variables 598
Managing the Output Data Object . 600

Chapter 30 / Using Dynamic Variables and Macro Variables in Your Templates 605
Introduction to Dynamic Variables and Macro Variables . 605
Declaring Dynamic Variables and Macro Variables . 606
Referencing Dynamic Variables and Macro Variables . 607
Initializing Dynamic Variables and Macro Variables . 609
Special Dynamic Variables . 614

Chapter 31 / Using Conditional Logic and Expressions in Your Templates 619
Constructs Available for Run-Time Programming . 619
Expressions . 619
Conditional Logic . 621

Contents vii

Chapter 32 / Using Functions in Your Templates . 627
Overview . 627
SAS Functions . 628
Functions Defined Only in GTL . 631
GTL Summary Statistic Functions . 634

Chapter 33 / Sharing Your Custom Templates . 639
Creating Shared Templates . 639

Chapter 34 / Modifying Predefined Templates . 641
Predefined Templates for SAS Analytical Procedures . 641
Modify a Predefined Template . 643

PART 10 Appendixes 645

Appendix 1 / Reserved Keywords and Unicode Values . 647
Reserved Keywords and Unicode Values . 647

Appendix 2 / Graph Style Elements Used by ODS Graphics . 651
About the Graphical Style Elements . 651
General Graph Appearance Style Elements . 652
Graphical Data Representation Style Elements (Non-Grouped Data) 654
Graphical Data Representation Style Elements (Grouped Data) 658
Display Style Elements . 659

Appendix 3 / Display Attributes . 663
General Syntax for Attribute Options . 663
Attributes Available for the Attribute Options . 664
Available Line Patterns . 670
Color-Naming Schemes . 673

Appendix 4 / Predefined Colors . 685
Predefined Colors . 685

Appendix 5 / Tick Value Fit Policy Applicability . 699
Tick Value Fit Policy Applicability Matrix . 699

Appendix 6 / SAS Formats Not Supported . 703
Assigning Formats . 703
Using Locale-Sensitive Decimal Separators with Numeric Formats 704
SAS Formats That Are Not Supported . 704
User-Defined Formats That Are Not Supported . 706

Appendix 7 / Memory Management for ODS Graphics . 709
SAS Options Affecting Memory . 709
Managing a Java Out of Memory Error . 710

Appendix 8 / Understanding Hexadecimal Values . 713
Understanding Hexadecimal Values . 713

Appendix 9 / ODS Graphics and SAS/GRAPH . 717
ODS Graphics and SAS/GRAPH . 717

viii Contents

About This Book

Using This Book

Prerequisites
This document is written for users who are experienced in using SAS. You should
understand the concepts of programming in the SAS language. The following table
summarizes the SAS tasks that you need to understand in order to use the Graph
Template Language (GTL).

Task Documentation

Invoke SAS at your site Instructions provided by the on-site SAS
support personnel

Use Base SAS software

Use the DATA step to create and
manipulate SAS data sets

Use the SAS windowing environment or
SAS Enterprise Guide to enter, edit, and
submit program code

Base documentation library:

n SAS Programmer’s Guide: Essentials

n SAS Data Set Options: Reference

n SAS Formats and Informats:
Reference

n SAS Functions and CALL Routines:
Reference

n SAS DATA Step Statements:
Reference

n SAS System Options: Reference

n Base SAS Utilities: Reference

Allocate SAS libraries and assign librefs

Create external files and assign filerefs

Documentation for using SAS in your
operating environment:

n SAS Companion for Windows

n SAS Companion for UNIX
Environments

n SAS Companion for z/OS

ix

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lebaseutilref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Task Documentation

Manipulate SAS data sets by using SAS
procedures

Base SAS Procedures Guide

About the Examples in This Book
The example programs that are shown in this document often provide all of the code
that you need to generate the graphs that are shown in the figures. You can copy
and paste the example code into your SAS session and generate the graphs
yourself. You can run the example code in the SAS windowing environment and in
SAS Studio. Unless otherwise noted, the examples use the default ODS destination
for generating results. In the SAS windowing environment, the default ODS
destination is ODS HTML. For information about results in SAS Studio, see SAS
Studio: User’s Guide for your version of SAS Studio. You can find the
documentation for all versions of SAS Studio on the SAS Studio documentation
page on support.sas.com.

Some of the examples in this book require a custom ODS output environment. In
those examples, you close the default ODS destination or destinations, and then
you use ODS statements to create the custom output environment. The code for
these examples is written to work in both the SAS windowing environment and in
SAS Studio.

If you generate the example graphs using an HTML destination, they are typically
rendered as 640 pixel by 480 pixel images using the HTMLBlue style. Some of the
examples show you how to change the graph size and style. The graphs shown for
those examples are rendered in the specified size and style.

Because of size limitations, the graphs in this document are not shown in their
default size of 640 pixels by 480 pixels. They are scaled down to meet the size
requirements of our documentation production system. When graphs that are
produced with ODS Graphics are reduced in size, several automatic processes take
place to optimize the appearance of the output. Among the differences between
default size graphs and smaller graphs are that the smaller graphs have scaled
down font sizes. Also, their numeric axes might display a reduced number of ticks
and tick values. Thus, the graphs that you generate from the example programs are
not always identical to the graphs that are shown in the figures. However, both
graphs accurately represent the data.

When you produce your own graphical output, you can change the graph size and
attributes, if needed. Chapter 27, “Managing Your Graph’s Appearance,” on page
491 and Chapter 28, “Managing Your Graphics Output,” on page 567 explain how to
set fonts, DPI, anti-aliasing, and other features that contribute to producing
professional-looking graphics of any size in any output format.

x About This Book

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://support.sas.com/documentation/onlinedoc/sasstudio/index.html

Syntax Conventions for the SAS Language

Overview of Syntax Conventions for the
SAS Language
SAS uses standard conventions in the documentation of syntax for SAS language
elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

n syntax components

n style conventions

n special characters

n references to SAS libraries and external files

Syntax Components
The components of the syntax for most language elements include a keyword and
arguments. For some language elements, only a keyword is necessary. For other
language elements, the keyword is followed by an equal sign (=). The syntax for
arguments has multiple forms in order to demonstrate the syntax of multiple
arguments, with and without punctuation.

keyword
specifies the name of the SAS language element that you use when you write
your program. Keyword is a literal that is usually the first word in the syntax. In a
CALL routine, the first two words are keywords.

In these examples of SAS syntax, the keywords are bold:

CHAR (string, position)
CALL RANBIN (seed, n, p, x);
ALTER (alter-password)
BEST w.
REMOVE <data-set-name>

In this example, the first two words of the CALL routine are the keywords:

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without
arguments:

DO;
... SAS code ...
END;

Using This Book xi

Some system options require that one of two keyword values be specified:

DUPLEX | NODUPLEX

Some procedure statements have multiple keywords throughout the statement
syntax:

CREATE <UNIQUE> INDEX index-name ON table-name (column-1 <,
column-2, …>)

argument
specifies a numeric or character constant, variable, or expression. Arguments
follow the keyword or an equal sign after the keyword. The arguments are used
by SAS to process the language element. Arguments can be required or
optional. In the syntax, optional arguments are enclosed in angle brackets (<
>).

In this example, string and position follow the keyword CHAR. These arguments
are required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In this example of SAS code, the argument string
has a value of 'summer', and the argument position has a value of 4:

x=char('summer', 4);

In this example, string and substring are required arguments, whereas modifiers
and startpos are optional.

FIND(string, substring <, modifiers> <, startpos>

argument(s)
specifies that one argument is required and that multiple arguments are allowed.
Separate arguments with a space. Punctuation, such as a comma (,) is not
required between arguments.

The MISSING statement is an example of this form of multiple arguments:

MISSING character(s);

<LITERAL_ARGUMENT> argument-1 <<LITERAL_ARGUMENT> argument-2 ... >
specifies that one argument is required and that a literal argument can be
associated with the argument. You can specify multiple literals and argument
pairs. No punctuation is required between the literal and argument pairs. The
ellipsis (...) indicates that additional literals and arguments are allowed.

The BY statement is an example of this argument:

BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …>;

argument-1 <options> <argument-2 <options> ...>
specifies that one argument is required and that one or more options can be
associated with the argument. You can specify multiple arguments and
associated options. No punctuation is required between the argument and the
option. The ellipsis (...) indicates that additional arguments with an associated
option are allowed.

The FORMAT procedure PICTURE statement is an example of this form of
multiple arguments:

PICTURE name <(format-options)>
<value-range-set-1 <(picture-1-options)>
<value-range-set-2 <(picture-2-options)> …>>;

xii About This Book

argument-1=value-1 <argument-2=value-2 ...>
specifies that the argument must be assigned a value and that you can specify
multiple arguments. The ellipsis (...) indicates that additional arguments are
allowed. No punctuation is required between arguments.

The LABEL statement is an example of this form of multiple arguments:

LABEL variable-1=label-1 <variable-2=label-2 …>;

argument-1 <, argument-2, ...>
specifies that one argument is required and that you can specify multiple
arguments that are separated by a comma or other punctuation. The ellipsis (...)
indicates a continuation of the arguments, separated by a comma. Both forms
are used in the SAS documentation.

Here are examples of this form of multiple arguments:

AUTHPROVIDERDOMAIN (provider-1:domain-1 <, provider-2:domain-2, …>
INTO :macro-variable-specification-1 <, :macro-variable-specification-2, …>

Note: In most cases, example code in SAS documentation is written in lowercase
with a monospace font. You can use uppercase, lowercase, or mixed case in the
code that you write.

Style Conventions
The style conventions that are used in documenting SAS syntax include uppercase
bold, uppercase, and italic:

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In this
example, the keyword ERROR is written in uppercase bold:

ERROR <message>;

UPPERCASE
identifies arguments that are literals.

In this example of the CMPMODEL= system option, the literals include BOTH,
CATALOG, and XML:

CMPMODEL=BOTH | CATALOG | XML |

italic
identifies arguments or values that you supply. Items in italic represent user-
supplied values that are either one of the following:

n nonliteral arguments. In this example of the LINK statement, the argument
label is a user-supplied value and therefore appears in italic:

LINK label;

n nonliteral values that are assigned to an argument.

In this example of the FORMAT statement, the argument DEFAULT is
assigned the variable default-format:

FORMAT variable(s) <format > <DEFAULT = default-format>;

Using This Book xiii

Special Characters
The syntax of SAS language elements can contain the following special characters:

=
an equal sign identifies a value for a literal in some language elements such as
system options.

In this example of the MAPS system option, the equal sign sets the value of
MAPS:

MAPS=location-of-maps

< >
angle brackets identify optional arguments. A required argument is not enclosed
in angle brackets.

In this example of the CAT function, at least one item is required:

CAT (item-1 <, item-2, …>)

|
a vertical bar indicates that you can choose one value from a group of values.
Values that are separated by the vertical bar are mutually exclusive.

In this example of the CMPMODEL= system option, you can choose only one of
the arguments:

CMPMODEL=BOTH | CATALOG | XML

...
an ellipsis indicates that the argument can be repeated. If an argument and the
ellipsis are enclosed in angle brackets, then the argument is optional. The
repeated argument must contain punctuation if it appears before or after the
argument.

In this example of the CAT function, multiple item arguments are allowed, and
they must be separated by a comma:

CAT (item-1 <, item-2, …>)

'value' or "value"
indicates that an argument that is enclosed in single or double quotation marks
must have a value that is also enclosed in single or double quotation marks.

In this example of the FOOTNOTE statement, the argument text is enclosed in
quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | "text">;

;
a semicolon indicates the end of a statement or CALL routine.

In this example, each statement ends with a semicolon:

data namegame;
 length color name $8;
 color = 'black';
 name = 'jack';
 game = trim(color) || name;
run;

xiv About This Book

References to SAS Libraries and External
Files
Many SAS statements and other language elements refer to SAS libraries and
external files. You can choose whether to make the reference through a logical
name (a libref or fileref) or use the physical filename enclosed in quotation marks.

If you use a logical name, you typically have a choice of using a SAS statement
(LIBNAME or FILENAME) or the operating environment's control language to make
the reference. Several methods of referring to SAS libraries and external files are
available, and some of these methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized
phrase file-specification. In the examples that use SAS libraries, SAS
documentation uses the italicized phrase SAS-library enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

Value Type Notation Used for GTL Statement
Options

The value type notation that is used in the syntax descriptions and in some
examples in this document are as follows:

boolean
specifies a literal value that resolves to true or false. The following table lists
literal values that resolve to true or false.

Boolean Values

Values That Resolve To True Values That Resolve To False

ON OFF

ON _OFF_

TRUE FALSE

YES NO

YES _NO_

1 0

Using This Book xv

color
specifies a string that identifies a color. A color can be one of the following:

n any of the color names that are supported by SAS. See “Color-Naming
Schemes” on page 673.

n one of the colors that exists in the SAS session when the style template is
used, such as DMSBLACK or DMSCYAN. (Use these color specifications
only if you are running SAS in the windowing environment.)

n an English description of an Hue/Light/Saturation (HLS) value. Such
descriptions use a combination of words to describe the lightness, the
saturation, and the hue (in that order). You can use the Color Naming System
to form a color by doing one of the following:

o combining a chromatic hue with a lightness, a saturation, or both

o combining the achromatic hue gray with a lightness

o combining the achromatic hue black or white without qualifiers.

o combining words to form a wide variety of colors, such as light vivid
green, dark vivid orange, or light yellow.

n specify hues that are intermediate between two neighboring colors. To do so,
combine one of the following adjectives with one of its neighboring colors:
brownish, greenish, purplish, or yellowish (for example, bluish purple or
reddish orange).

column
specifies a column variable that contains either double-precision values or string
values, or a dynamic variable that refers to such a column.

See also: integer-column, numeric-column, and string-column.

dimension
specifies a nonnegative number. The number can be followed by one of the
following optional units of measure:

Units for Dimension

Unit Description

CM centimeters

IN inches

MM millimeters

PCT or % percentage

PT point size (72 points = 1 inch)

PX pixels

expression
specifies a selective, relational, or logical program structure that calculates
values when those values are not stored in the data. The expression must be

xvi About This Book

specified as an EVAL() argument. The following shows the structure of an
EVAL() argument:

x = EVAL(expression)

The expression returns a number and can be formed with consonants, data
columns, dynamic variables, functions, or other expressions. The following
example uses the data column Time and the SGE functions MEAN and ACF:

EVAL(MEAN(Time) + ACF(Time, NLags=10))

For more information about expressions, see “Expressions” in SAS Graph
Template Language: Reference.

fill-pattern
specifies a fill pattern as a two-character code that consists of a line-direction
prefix (R for right, L for left, or X for cross hatch) and a line identification number,
1–5. For more information about fill patterns, see “Fill Pattern Options” on page
665.

format
specifies a SAS format or a user-defined format.

integer, integer-column
specifies a member of the set of positive whole numbers, negative whole
numbers, and zero.

An integer column specifies a column that contains integer values, or a dynamic
variable that refers to such a column.

line-pattern-name, line-pattern-number
specifies a string value of a line pattern, a numeric value of a line pattern, a
dynamic variable that contains such a string or number, or a style reference to a
line pattern. Line patterns are chosen for discriminability. Because of different
densities, equal weighting is impossible for lines of the same thickness. Instead,
line patterns are ordered to provide a continuum of weights, which is useful when
displaying confidence bands.

For details about line attributes, see “Line Options” on page 666.

marker-name
specifies a string value of a maker symbol, a dynamic variable that contains a
marker symbol, or a style reference to a marker symbol.

For details about marker attributes, see “Marker Options” on page 668.

number, numeric-column
specifies a value, a dynamic variable that contains a double-precision value, an
expression that resolves to a double-precision value, or a style reference to a
double-precision value.

A numeric-column specifies a column that contains double-precision values, or a
dynamic variable that refers to such a column.

string, string-column
specifies a quoted character string.

A string-column specifies a column that contains string values, or a dynamic
variable that refers to such a column.

Using This Book xvii

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0t99o06nost5an1kqxwocgulhlt.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0t99o06nost5an1kqxwocgulhlt.htm&locale=en

Note: For quoted character string options in GTL, a space enclosed in quotation
marks (" " or ' ') and empty quotation marks ("" or '') are not equivalent. A space
enclosed in quotation marks specifies a blank space or a missing string value.
Empty quotation marks have the same effect as not setting the option. To specify
a blank space or missing value in a quoted string option, use a space enclosed
in quotation marks (" " or ' ').

style-reference
specifies a reference to an attribute that is defined in a style element.

In the ODS Graphics templates that SAS provides, options for plot features are
specified with a style reference in the form style-element-name:attribute-name,
rather than a specific value. For example, the symbol, color, and size of markers
for a basic scatter plot is specified in a SCATTERPLOT statement as follows:

scatterplot x=X y=Y /
 markersymbol=GraphDataDefault:markersymbol
 markercolor=GraphDataDefault:contrastcolor
 markersize=GraphDataDefault:markersize

The above style references guarantee a common appearance for markers used
in all basic scatter plots. For non-grouped data, the marker appearance is
controlled by the GraphDataDefault style element in the style template that you
specify.

In order to create your own style template, or to modify a style template to use
with ODS Graphics, you need to understand the relationship between style
elements and graph features. For more information, see the usage guide.

Recommended Reading
Here is the recommended reading list for this title:

n Statistical Graphics Procedures by Example

n Clinical Graphs Using SAS®

n SAS Graphics for Clinical Trials by Example

n The Little SAS® Book: A Primer

xviii About This Book

https://redshelf.com/app/ecom/book/1878748/statistical-graphics-procedures-by-example-1878748-9781607648871-sanjay-matange-dan-heath
https://redshelf.com/app/ecom/book/1878345/clinical-graphs-using-sas-1878345-9781629602059-sanjay-matange
https://redshelf.com/app/ecom/book/1878415/sas-graphics-for-clinical-trials-by-example-1878415-9781952365973-kriss-harris-richann-watson
https://redshelf.com/app/ecom/book/1830656/the-little-sas-book-1830656-9781642953435-lora-d-delwiche-susan-j-slaughter

PART 1

Getting Started

Chapter 1
Get Started Using the Graph Template Language . 3

Chapter 2
A Quick Look at Additional Features of GTL . 15

Chapter 3
Common Tasks Associated with Creating GTL Templates 21

Chapter 4
Additional Resources to Help You Develop Your GTL Templates 25

1

2

1
Get Started Using the Graph
Template Language

Introduction to the Graph Template Language . 3
What Is the Graph Template Language? . 3
When You Need to Use GTL . 4
What You Can Create Using GTL . 4

What You Need to Know to Get Started Using GTL . 6
How Graphs Are Creating Using GTL . 6
Graph Templates . 6
Graph Layouts . 8
Axis Management . 8
Plots . 9
Legends . 9
Titles, Footnotes, and Other Text . 9

Learning By Example: Create Your First Bar Chart Using GTL . 9
About the Scenario in This Topic . 9
Creating a Bar Chart Using GTL . 10

Where to Go from Here . 13

Introduction to the Graph Template
Language

What Is the Graph Template Language?
The Graph Template Language (GTL) is the heart of ODS Graphics. All of the
graphs that are created by the SAS analytical procedures and by the SAS statistical

3

graphics procedures are generated using GTL. Users who need to go beyond the
graphs created by these SAS procedures can use GTL directly to design their
graphs using the TEMPLATE and SGRENDER procedures. To successfully create
or modify GTL templates, you need the information in this guide, which helps you
understand important concepts and offers many complete code examples that
illustrate frequently used features. You also need SAS Graph Template Language:
Reference, which is the language dictionary for GTL.

When You Need to Use GTL
You might need to use GTL in the following cases:

n You need to modify graphs that are created by analytical procedures. The
graphs that are created by the analytical procedures use predefined GTL
templates. These templates are designed by SAS procedure writers and shipped
with SAS. For every graph created by these procedures, a corresponding
template is stored in the Sashelp.Tmplmst item store. To customize these
templates, you must have a basic understanding of GTL.

n You need graphs of data before you can start an analysis of the data. Or, you
need graphs to visualize the results of a complex analysis involving multiple
procedures or DATA steps. Although many of these tasks can be accomplished
using the SG Procedures, those procedures do not provide many of the
advanced layout capabilities of GTL. To create such custom graphs, you must
have a basic understanding of GTL.

What You Can Create Using GTL

Single-Cell Graphs
The following table lists the single-cell plots that you can create using GTL.

Category Plot

2-D plots Axis tables Ellipse plots Polygon plots

Band plots Fringe plots Regression plots

Bar charts Heat maps Scatter plots

Bar-Line charts High-Low plots Series plots

Block plots Histograms Spline plots

Box plots Line charts Step plots

4 Chapter 1 / Get Started Using the Graph Template Language

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Category Plot

Bubble plots Loess plots Point and Slope
plots

Contour plots Model Band plots Text plots

Dendrograms Mosaic plots Vector plots

Density plots Needle plots Waterfall charts

Dot plots Pie charts

3-D plots Bivariate histograms

Surface plots

Multicell Graphs
Here are the multicell graphs that you can create using GTL.

n grid graphs

n lattice graphs

n data-driven lattice graphs

n data-driven panel graphs

n scatter plot matrices

Interactive Graphs
GTL enables you to create graphs that display additional information when certain
user actions occur. You can add data tips to your graphs, which display information
when the mouse pointer is positioned on an element in your graph. The data tip can
display data or additional details. You can create drill-down graphs, which link
elements in your graph to resources such as other graphs, detailed descriptions,
and so on. When a linked element in your graph is clicked, the linked resource
opens in a new browser window. You can create multiple levels of drill-down graphs
to enable users to explore your data on their own. GTL also enables you to create
animated graphs, which display graphs in a slide-show fashion to show trends in
your data over time.

Introduction to the Graph Template Language 5

What You Need to Know to Get Started
Using GTL

How Graphs Are Creating Using GTL
Here are the basic steps for creating a graph using GTL:

1 Define the structure of the graph by using the GTL syntax in a DEFINE
STATGRAPH block in a TEMPLATE procedure step.

2 Run the TEMPLATE procedure to compile and save the template definition.

3 Run the SGRENDER procedure and specify the template and graph data set by
name to generate the graph.

Graph Templates

What Is a Graph Template?
In ODS Graphics, a graph template is an ODS template of type STATGRAPH, which
defines the content of a graph. A STATGRAPH template is created using the
TEMPLATE procedure. Using the TEMPLATE procedure to create a STATGRAPH
template is described in “TEMPLATE Procedure: Creating ODS Graphics” in SAS
Output Delivery System: Procedures Guide. The graph template contains GTL
statements that define the graph layout and content. GTL templates are rendered
using the SGRENDER procedure, which specifies a data source that contains
appropriate data values and the GTL template to use for rendering the graph. The
SGRENDER procedure is described in “SGRENDER Procedure” in SAS ODS
Graphics: Procedures Guide.

Structure of a Minimal Graph Template
GTL uses a structured building-block approach to defining a graph. The syntax
provides a set of layout statements, plot statements, and other statements that
define the graph. The following pseudo code shows a minimal GTL template.
Callouts identify the statements.

6 Chapter 1 / Get Started Using the Graph Template Language

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1d4169orimb64n1iqm2sqrxm0nl.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1d4169orimb64n1iqm2sqrxm0nl.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=n131vj4eka12zpn1iwbqufke8l4z.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=n131vj4eka12zpn1iwbqufke8l4z.htm&locale=en

Example Code 1.1 A Minimal Template Definition

proc template; 1

 define statgraph template-name; 2

 begingraph; 3

 layout layout-name; 4

 GTL-statements 5

 endlayout;
 endgraph;
 end;
run;

The statements are as follows:

1 The PROC TEMPLATE statement compiles and saves an ODS template.

2 The DEFINE statement starts the template definition block, and specifies the
template type STATGRAPH (a graph template) and the template name. The
END statement terminates the DEFINE block.

3 The BEGINGRAPH statement starts the graph statement block, and the
ENDGRAPH statement terminates the graph statement block. GTL statements
are placed inside the graph statement block.

4 The LAYOUT layout-name statement starts the outer graph layout block, and the
ENDLAYOUT statement terminates the outer layout block. GTL statements are
placed inside the layout block.

5 One or more GTL statements define the content of the graph.

All GTL templates must include these statements. You can add other GTL
statements as needed. GTL statements are described in Chapter 6, “Overview of
the GTL Statements,” on page 31. Templates are described in more detail later in
this guide.

Compiling and Saving the Template
Run the TEMPLATE procedure with your template code to compile and save your
GTL template. When the TEMPLATE procedure is executed, it compiles and stores
your template automatically. A note similar to the following is written to the SAS log,
indicating where the template was stored.

NOTE: STATGRAPH 'template-name' has been saved to: SASUSER.TEMPLAT

To list the templates that are stored in the Sasuser.Template store, use the following
TEMPLATE procedure step:

proc template;
 list / store=sasuser.templat;
run;

To write the code for a template that is stored in the Sasuser.Template store to the
SAS log, use the following TEMPLATE procedure step:

proc template;
 path sasuser.templat;
 source template-name;

What You Need to Know to Get Started Using GTL 7

run;

Creating a Graph from a Graph Template
Run the SGRENDER procedure to generate a graph from a graph template. Here is
an example.

proc sgrender data=data-source template=template-name;
run;

The TEMPLATE= option specifies the name of the template. The SGRENDER
statement searches for the template in the SAS template stores in a predefined
order. If the specified template is not in any of the template stores, an error results.
To see the current template stores and the template store search order, use the
following command:

ods path show;

Here is an example of the output.

Current ODS PATH list is:

1. SASUSER.TEMPLAT(UPDATE)
2. SASHELP.TMPLMST(READ)

For templates that are stored in the first path listed, which is Sasuser.Templat in this
example, you need to specify only the template name. The DATA= option specifies
the source data for the graph, such as Sashelp.Cars.

Template stores are described in SAS Output Delivery System: User’s Guide. The
SGRENDER procedure is described in SAS ODS Graphics: Procedures Guide.

Graph Layouts
A layout in GTL is a single-cell or multicell container for your graph content. A layout
is defined by a layout statement block, which contains GTL statements that create
the graph content. Your template code must define one top-level layout to contain
the content for your graph. The top-level template block can contain GTL statements
that generate plots, text, legends, and so on, as well as other layouts. GTL provides
several statements for single-cell and multicell layouts. The GTL layout statements
are described in “Layout Statements” on page 34.

Axis Management
The GTL layout statements provide options that enable you to control various
attributes of your graph axes such as the following:

n axis labels

n axis ranges

8 Chapter 1 / Get Started Using the Graph Template Language

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

n tick values and tick-value formats

n tick marks

n grid lines

The axis-management options in GTL layout statements are described in “Axis
Management in GTL Layouts” on page 37.

Plots
GTL supports a wide variety of 2-D and 3-D plots. A plot statement generates each
plot. Use one or more plot statements in your template code to create the primary
content for your graph. The GTL plot statements are described in “Plot Statements”
on page 31.

Legends
GTL provides two basic types of legends: discrete legends and continuous legends.
Merged legends are also supported, which enable you to consolidate legends for
two plots into one legend. You can also create custom items for your legends.The
statements for basic legends are described in “Legend Statements” on page 32.
The more advanced legend features are described in “Specialized Legends” on
page 18.

Titles, Footnotes, and Other Text
GTL provides text statements that enable you to add titles, footnotes, and other text
to your graphs. You can add multiple titles and footnotes outside the graph area,
and you can add text inside the graph area. The text statements are described in
Chapter 19, “Adding Titles, Footnotes, and Text Entries to Your Graph,” on page
317.

Learning By Example: Create Your First
Bar Chart Using GTL

About the Scenario in This Topic
This topic presents an example that demonstrates how to generate a simple bar
chart using GTL. When you have completed this example, you will know the basic

Learning By Example: Create Your First Bar Chart Using GTL 9

steps that are needed to create a plot using GTL. In this example, you will perform
the following tasks:

n Use the ODS GRAPHICS statement to set graphics options for your graph.

n Use ODS statements to specify an output document format and style for your
output.

n Use the TEMPLATE procedure to create your graph template.

n Use the SGRENDER procedure to render your graph from your graph template.

Creating a Bar Chart Using GTL
Here is a summary of the steps for this example.

1 Identify the plot data. In this example, data set Sashelp.Cars is used.

2 Sort the data in data set Sashelp.Cars by variable Type and store the result in
data set Work.Cars.

3 Specify the height and width of the graph.

4 Specify the output document format as HTML, the output style as Daisy, and the
output filename as mychart.html.

5 Use the TEMPLATE procedure to create statgraph template
MYGRAPHTEMPLATE. In the template code, do the following:

n Specify a title and footnote for the graph.

n Create an OVERLAY layout for the graph, and specify labels for the category
and response axes.

n Create a vertical bar chart.

n Create a legend for the bar chart.

6 Use the SGRENDER procedure to render the graph. Specify the input data set
and the name of the graph template.

Here is the SAS code.

ods _all_ close; /*
1 */
ods graphics / reset width=460px height=440px; /*
2 */
ods html style=Daisy path="." file="mychart.html"; . /*
3 */

proc sort data=sashelp.cars out=cars; /*
4 */
 by type;
run;

proc template; /*
5 */
 define statgraph mygraphtemplate;
 begingraph;

10 Chapter 1 / Get Started Using the Graph Template Language

 entrytitle "Models Produced By Vehicle Type and Origin"; /*
6 */
 entryfootnote "Data: SASHELP.CARS";
 layout overlay / /*
7 */
 xaxisopts=(label="Vehicle Type") /*
8 */
 yaxisopts=(label="Models Produced"
 griddisplay=on gridattrs=(color=gray pattern=dot));
 barchart category=type / name="bar" /*
9 */
 stat=freq barlabel=true
 group=origin;
 discretelegend "bar" / title="Origin"; /*
10 */
 endlayout; /*
11 */
 endgraph;
 end;
run;

proc sgrender data=cars template=mygraphtemplate; /*
12 */
run;

ods html close; /*
13 */
ods html; /*
14 */

1 The ODS _ALL_ CLOSE statement closes all currently open ODS destinations in
order to conserve resources.

2 The ODS GRAPHICS statement resets all of the ODS Graphics options to their
default values and then specifies the width and height of the graph.

3 The ODS HTML statement opens the HTML destination. Option STYLE=DAISY
specifies the style. Option PATH= specifies an output directory for the ODS
output, and option FILE= specifies filename Mychart.html as the name of the
output file.

Note: You must have Write access to the path that you specify in the PATH=
option.

4 The SORT procedure step sorts data set Sashelp.Cars by variable Type in
ascending order and stores the result in data set Work.Cars.

5 The TEMPLATE procedure statement begins the TEMPLATE procedure step.
The DEFINE STATGRAPH MYGRAPHTEMPLATE specifies a statgraph
template named MYGRAPHTEMPLATE. The BEGINGRAPH statement opens
the graph definition block.

6 The ENTRYTITLE and ENTRYFOOTNOTE statements specify a title and
footnote for the graph. By default, the title is centered at the top of the graph,
and the footnote is centered at the bottom.

7 The LAYOUT OVERLAY statement opens a LAYOUT OVERLAY statement
block.

Learning By Example: Create Your First Bar Chart Using GTL 11

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n0f5s1zezthhbrn1u0z71mh3wx64.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1d4169orimb64n1iqm2sqrxm0nl.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0zp1mg0ard2dan17sohm8jb773n.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1wobkwtxddh7gn1qs51yq2hhj1o.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0ra82ol659t4ln1ifal7w0nbydm.htm&locale=en

8 The XAXISOPTS option specifies a label for the category axis. The YAXISOPTS
option specifies a label for the response axis and grid lines at the major tick
marks.

9 The BARCHART statement generates a vertical bar chart. Option CATEGORY=
specifies variable Type as the category variable. Option NAME= specifies a
name that will be used to associate a legend with this bar chart. The STAT=
option requests frequency as the bar statistic, and GROUP= specifies variable
Origin as the group variable. Option BARLABEL= specifies that the frequency
statistic for each be displayed above each bar.

10 The DISCRETELEGEND statement creates a discrete legend for the bar chart
named BAR.

11 The ENDLAYOUT statement closes the LAYOUT OVERLAY statement block.

12 The SGRENDER procedure step renders the graph. Option DATA= specifies the
input data, and option TEMPLATE= specifies the name of the graph template.
When the procedure is executed, the graph is displayed in the Results window.

13 The ODS HTML CLOSE statement closes the HTML destination.

14 The ODS HTML statement opens the HTML destination for subsequent
procedure executions. This step is not required if you are using SAS Studio.

Here is the output for this example.

Figure 1.1 Example Program Output

Using what you have learned from this example, you can begin exploring how to
create other plots using GTL.

12 Chapter 1 / Get Started Using the Graph Template Language

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0nebkqa1obtgxn13ska62up7wwh.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=n131vj4eka12zpn1iwbqufke8l4z.htm&locale=en

Where to Go from Here
Now that you have a basic understanding of how to use GTL, review the remaining
topics in this book to expand on your knowledge of the language. The following
table provides suggestions for your next steps.

Table 1.1 Next Steps

Task Reference

See examples of the types of graphs that
you can create using GTL.

Chapter 10, “Gallery of the GTL Plots,” (p. 61)

Learn how to perform common tasks that
are associated with developing GTL
templates.

Chapter 3, “Common Tasks Associated with
Creating GTL Templates,” (p. 21)

Explore the other features of GTL. Chapter 2, “A Quick Look at Additional
Features of GTL,” (p. 15)

Identify resources that can help you
develop your GTL templates.

Chapter 4, “Additional Resources to Help You
Develop Your GTL Templates,” (p. 25)

Where to Go from Here 13

14 Chapter 1 / Get Started Using the Graph Template Language

2
A Quick Look at Additional
Features of GTL

Appearance Options . 15

Attribute Maps . 16

Custom Plot Markers . 16

Annotations . 16
Types of Annotations That Are Supported in GTL . 16
Drawing Statements . 16
ODS Graphics Annotate Facility . 17

Insets . 17

Specialized Legends . 18
Axis Legends . 18
Merged Legends . 18
Custom Legend Items . 18

Axis Tables . 18

Run-Time Programming Features . 19

Appearance Options
GTL provides a variety of ways in which you can customize the appearance of your
graphs. For the entire graph, you can specify a different ODS style when you
execute your template. For specific elements of your graph, you can use the
attribute override options, when available, in your GTL statements. The ways in
which you can customize graph appearance are described in “Methods for
Changing the Appearance of Your Plots” on page 494.

15

Attribute Maps
For better control over the visual attributes of your graph, you can use an attribute
map to apply one or more visual attributes to specific group values or ranges of
color-response values. An attribute map enables you to create graphs with
consistent visual properties over multiple data sets. Attribute maps map a discrete
value or range of color-response values to a set of one or more visual attribute
specifications. You can specify markers, colors, line styles, and so on. GTL supports
two types of attribute maps: discrete attribute maps and range attribute maps.

Attribute maps are described in “Key Concepts for Using Attribute Maps” in SAS
Graph Template Language: Reference.

Custom Plot Markers
GTL provides wide range of markers that you can use in your plots. You can also
create your own custom markers from a Unicode character or from an image. You
can use your custom markers in any plot that supports markers. Creating and using
custom plot markers is described in “Custom Marker Definition Statements” in SAS
Graph Template Language: Reference.

Annotations

Types of Annotations That Are Supported in GTL
You can add annotations to your graphs that call attention to specific aspects of your
data or provide additional information. Annotations can be text, lines, arrows,
various geometrical shapes, and images. There are two methods of creating
annotations in GTL: using drawing statements in your GTL code or using the ODS
Graphics annotate facility.

Drawing Statements
GTL provides several drawing statements that you can include in your graph
template code to draw annotations anywhere on your graph. The annotations can

16 Chapter 2 / A Quick Look at Additional Features of GTL

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nwfi81yxphp7n15on8f5rp4ahy.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nwfi81yxphp7n15on8f5rp4ahy.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0b87sn8r6utacn1sv7071ih86oz.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0b87sn8r6utacn1sv7071ih86oz.htm&locale=en

be used to describe aspects of your graphs, create custom graph features such as a
broken axis, or add a corporate logo to you graphs. The draw statements can be
independent of the graph data or data-dependent. The annotations are drawn by
statements in your template code. Therefore, to modify your annotations, you must
modify your template code, and then recompile and re-execute your template.

Using the draw statements to annotate your graph is described in Chapter 22,
“Adding Code-Driven Graphics Elements to Your Graph,” on page 425.

ODS Graphics Annotate Facility
The ODS Graphics annotate facility enables you to store annotate instructions in a
SAS data set, and then apply the annotate instructions to a graph at execution time.
Unlike the drawing statements, the annotate drawing instructions are independent of
the graph template code. To modify your annotations, you modify your annotate
data set, and then execute your template, or you execute your template using a
different annotate data set. To apply an annotate data set to your graph, you must
first add the ANNOTATE statement to your graph template code, and then specify
the SGANNO= option in your SGRENDER procedure statement.

Using the ODS Graphics annotate facility to annotate your graphs is described in
Chapter 23, “Adding Data-Driven Annotations to Your Graph,” on page 439.

Insets
You can add insets to your graphs to display supplemental information in the plot
area of your graph. The inset text can be a string or a table of text. Insets are
typically created using ENTRY statements in a LAYOUT GRIDDED block. Options
in the SCATTERPLOTMATRIX statement, and in the LAYOUT DATAPANEL and
LAYOUT DATALATTICE statements also enable you to create insets. Here is an
example of insets in a classification panel.

Insets are described in Chapter 21, “Adding Insets to Your Graph,” on page 383.

Insets 17

Specialized Legends

Axis Legends
An axis legend is a legend of axis tick values. It is used for discrete axes when the
tick values do not fit within the axis area. When used, the axis tick values are
replaced with consecutive integers. An axis legend is then created that associates
the tick integer values with the actual tick values. Axis legends are described in
“Extracting Discrete Axis Tick Values into a Legend” on page 144.

Merged Legends
You can merge two discrete legends from two grouped plots with line and marker
overlays into one legend. Each item in the merged legend combines the visual
attributes of the lines and markers from each plot. Merged legends are described in
“Merging Legend Items from Two Plots into One Legend” on page 368.

Custom Legend Items
You can add items to your discrete legend that do not appear in your plots. The
items can be a line, marker, marker and line, fill color swatch, or text. You can use
this feature to add information to your legend or to create a common legend that you
can use in multiple graphs. Creating and using custom legend items is described in
“Adding Items to a Discrete Legend” on page 364.

Axis Tables
You can add an axis-aligned table of values along an axis in your graph to display
additional information. You can place the table above or below your plot in the plot
area, or you can place it in an upper or lower margin. Axis tables are described in
“Creating an Axis-Aligned Inset with an Axis Table” on page 417.

18 Chapter 2 / A Quick Look at Additional Features of GTL

Run-Time Programming Features
GTL supports run-time features that enable you to create flexible graph templates.
The features include:

n Dynamic variables and macro variables, which enable you to pass information
into your templates at execution time. Dynamic variables are described in
“Dynamic Variables and Macro Variables” in SAS Graph Template Language:
Reference.

n Functions and expressions, which enable you to compute option values at
execution time. The functions and expressions that you can use in your graph
templates are described in “Functions” in SAS Graph Template Language:
Reference and “Expressions” in SAS Graph Template Language: Reference.

n Conditional logic, which enables you to execute statements conditionally at
execution time. Using conditional logic in your graph templates is described in
“Conditional Logic” in SAS Graph Template Language: Reference.

Run-Time Programming Features 19

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p06iuc7ilqlwwqn19ezydlogdgtt.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p06iuc7ilqlwwqn19ezydlogdgtt.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1bhr46aj89rsjn15y5odqx2zlrn.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1bhr46aj89rsjn15y5odqx2zlrn.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0t99o06nost5an1kqxwocgulhlt.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1l2i7i5olbol1n16jr7msq2wldp.htm&locale=en

20 Chapter 2 / A Quick Look at Additional Features of GTL

3
Common Tasks Associated with
Creating GTL Templates

About the GTL Tasks . 21

Output Environment Tasks . 21

Graph Creation Tasks . 22

Graph Enhancement Tasks . 23

About the GTL Tasks
This chapter lists common tasks that are associated with GTL. For each task, one or
more links are provided to information about how to complete the task. Because
there are many tasks associated with GTL, the tasks are categorized as follows:

n output environment

n graph creation

n graph enhancement

The task lists in this chapter can help you quickly locate information in this reference
that you need to create your graphs.

Output Environment Tasks
The following table lists tasks that are related to establishing the output environment
for GTL.

21

Task Reference

Select an ODS destination for your
output.

“Getting Started with the Output Delivery
System” in SAS Output Delivery System: User’s
Guide

Select an ODS style for your output. “Using ODS Styles to Control Graph
Appearance” (p. 495)

Specify an output directory or folder for
your image output.

“Controlling the Location of the Image Output”
(p. 579)

Change the name of your output image
file.

“Specifying and Resetting the Image Name” (p.
574)

Change the format of your image output. “Controlling the Image Name and Image Format”
(p. 574)

Change the size of your graph. “Controlling Graph Size” (p. 581)

Scale your graph. “Scaling Graphs” (p. 582)

Change the resolution of your graph. “Controlling Image Resolution” (p. 586)

Graph Creation Tasks
The following table lists tasks that are related to generating basic plots using GTL.

Task Reference

Identify the plot or plots that you want to use
in your graph.

Chapter 10, “Gallery of the GTL Plots,” (p.
61)

Select a layout for your graph. “Layout Statements” (p. 34)

Create your initial graph template. “Graph Templates” (p. 6)

Modify the axes in your graph, if necessary. “Axis Management in GTL Layouts” (p.
37)

Add titles, footnotes, and other text elements
to your graph.

Chapter 19, “Adding Titles, Footnotes, and
Text Entries to Your Graph,” (p. 317)

Add a legend to your graph. Chapter 20, “Adding Legends to Your
Graph,” (p. 337)

22 Chapter 3 / Common Tasks Associated with Creating GTL Templates

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n1ny8s19jhgxjqn1395wwagrpxss.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n1ny8s19jhgxjqn1395wwagrpxss.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n1ny8s19jhgxjqn1395wwagrpxss.htm&locale=en

Task Reference

Use dynamic variables and macro variables
to pass information into your template at
execution time.

Chapter 30, “Using Dynamic Variables and
Macro Variables in Your Templates,” (p.
605)

Use conditional logic in your template code
for greater flexibility.

“Conditional Logic” (p. 621)

Use expressions in your template code to
compute values at execution time.

“Expressions” (p. 619)

Use functions in your template code to
compute values at execution time.

Chapter 32, “Using Functions in Your
Templates,” (p. 627)

Compile your graph template. “Compiling and Saving the Template” (p. 7)

Execute your graph template. “Creating a Graph from a Graph Template”
(p. 8)

Graph Enhancement Tasks
The following table lists tasks that are related to adding enhancements to your
graph.

Task Reference

Add annotations to your graph. Chapter 22, “Adding Code-Driven Graphics
Elements to Your Graph,” on page 425

Chapter 23, “Adding Data-Driven Annotations to
Your Graph,” on page 439

Add data skins to your graph. “Using Data Skins” (p. 554)

Add one or more insets to your
graph.

Chapter 21, “Adding Insets to Your Graph,” (p. 383)

Add data tips to your graph. Chapter 24, “Adding Data Tips to Your Graph,” (p.
473)

Add drill-down links to your graph. Chapter 25, “Adding Drill-Down Links to Your Graph,”
(p. 477)

Create an attribute map for more
control over your graph's visual
attributes.

“Using Attribute Maps” (p. 536)

Graph Enhancement Tasks 23

Task Reference

Animate your graph. Chapter 26, “Creating Animated Graphs,” (p. 483)

Enhance a predefined template. Chapter 34, “Modifying Predefined Templates,” (p.
641)

24 Chapter 3 / Common Tasks Associated with Creating GTL Templates

4
Additional Resources to Help You
Develop Your GTL Templates

Resources on the Web . 25
Examples and Resources on the Web . 25

Books . 26

Resources on the Web

Examples and Resources on the Web
The SAS website contains a large number of examples that can help you visualize
and code your graphs. The examples cover a range of SAS technologies including
the ODS Graphics procedures.

n Graphically Speaking is a blog focused on using ODS Graphics for data
visualization in SAS. The blog covers topics related to the ODS Graphics
procedures, the SAS Graph Template Language, and the SAS ODS Graphics
Designer.

https://blogs.sas.com/content/graphicallyspeaking/

n The SAS Training Post is a blog that provides tutorials, tips, and practical
information about SAS. Dr. Robert Allison contributed a great deal of
SAS/GRAPH and ODS Graphics data visualization examples to this blog during
his tenure at SAS. His blog is no longer active, but it provides an extensive set of
very useful examples.

https://blogs.sas.com/content/sastraining/author/robertallison/

n The SAS Knowledge Base contains an abundance of searchable samples and
SAS Notes. You can browse by topic, search for a particular note or a particular
technology such as the name of a procedure, and conduct other searches.

25

https://blogs.sas.com/content/graphicallyspeaking/
https://blogs.sas.com/content/sastraining/
https://blogs.sas.com/content/sastraining/author/robertallison/

https://support.sas.com/en/knowledge-base.html

Note: The SAS Knowledge Base content is currently available only in English.

n The Graphics Samples Output Gallery in the SAS Knowledge Base is a
collection of graphs organized by SAS procedure. The graphs link to the source
code. The gallery is maintained by SAS Technical Support.

https://support.sas.com/en/knowledge-base/graph-samples-gallery.html

n The Focus Area Graphics site provides a simple interface to business and
analytical graphs. The site is maintained by the SAS Data Visualization team.

https://support.sas.com/rnd/datavisualization/index.htm

n You can share your questions, suggestions, and experiences related to graphics
on the Graphics Programming community site.

https://communities.sas.com/t5/Graphics-Programming/bd-p/sas_graph.

In addition, SAS offers instructor-led training and self-paced e-learning courses to
help you get started with platform graphics software. The SAS Training site provides
information about the courses that are available.

sas.com/training.

Books
The following books provide information about creating graphs using GTL.

n Getting Started with the Graph Template Language in SAS®: Examples, Tips,
and Techniques for Creating Custom Graphs

n Clinical Graphs Using SAS®

For a list of other books that might help you, see “Recommended Reading” on page
xviii.

26 Chapter 4 / Additional Resources to Help You Develop Your GTL Templates

https://support.sas.com/en/knowledge-base.html
https://support.sas.com/en/knowledge-base/graph-samples-gallery.html
https://support.sas.com/rnd/datavisualization/index.htm
https://communities.sas.com/t5/SAS-GRAPH-and-ODS-Graphics/bd-p/sas_graph
https://support.sas.com/training
http://www.sas.com/store/books/prodBK_66550_en.html
http://www.sas.com/store/books/prodBK_66550_en.html
https://www.sas.com/store/books/categories/examples/clinical-graphs-using-sas-/prodBK_68179_en.html

PART 2

GTL Statements and Features

Chapter 5
A Quick Look at GTL Statement Syntax . 29

Chapter 6
Overview of the GTL Statements . 31

Chapter 7
Common Features Supported by GTL Statements . 39

27

28

5
A Quick Look at GTL Statement
Syntax

Statement Syntax . 29

Statement-Block Syntax . 30

Statement Syntax
All GTL statements have the following syntax:

KEYWORD(s) required argument(s) < / options>

Here are some examples of GTL statements.

/* This statement uses two keywords, no required arguments,
 and no options */
LAYOUT OVERLAY;

/* This statement uses one keyword and two required arguments */
SCATTERPLOT X=height Y=weight;

/* This statement specifies a required argument.
 Required arguments do not have to be name-value pairs. */
HISTOGRAM weight;

/* This statement uses one option.
 Options are specified after a slash (/) and are usually
 name-value pairs. */
SCATTERPLOT X=height Y=weight / GROUP=age;

29

Statement-Block Syntax
A block is a pair of statements that indicate the beginning and end of a syntax unit.
Typically, other statements are nested within the block. GTL has many specialized
block constructs.

Here are some examples of GTL blocks.

/* This is a valid block. No nested statements are required. */
LAYOUT OVERLAY;
ENDLAYOUT;

/* This block has no restrictions on the number of nested statements. */
LAYOUT OVERLAY;
 SCATTERPLOT X=height Y=weight;
 REGRESSIONPLOT X=height Y=weight;
ENDLAYOUT;

/* This block allows only nested ROWAXIS statements. */
ROWAXES;
 ROWAXIS / LABEL="Row 1";
 ROWAXIS / LABEL="Row 2";
ENDROWAXES;

/* Blocks support nested blocks */
CELL;
 CELLHEADER;
 ENTRY "Cell 1";
 ENDCELLHEADER;
 LAYOUT OVERLAY;
 HISTOGRAM weight;
 DENSITYPLOT weight;
 ENDLAYOUT;
ENDCELL;

Whenever blocks are nested, there exists a "Parent - Child" relationship. In the
previous example, the CELL block is the parent of the CELLHEADER block and
LAYOUT OVERLAY block. This is important because most blocks have rules about
what statements they might contain, and they also have nesting restrictions. For
example, a CELLHEADER block, if used, must be the direct child of a CELL block.
Only one CELLHEADER block can be used per CELL block. To improve code
readability, nested blocks are indented in source programs.

30 Chapter 5 / A Quick Look at GTL Statement Syntax

6
Overview of the GTL Statements

GTL Statement Categories . 31

Plot Statements . 31

Legend Statements . 32

Text Statements . 33

Layout Statements . 34
Layouts in GTL . 34
Layout Types . 34
Single-Cell Layout Statements . 35
Multi-Cell, Non-Data-Driven Layout Statements . 36
Multi-Cell, Data-Driven Layout Statements . 36
Axis Management in GTL Layouts . 37

GTL Statement Categories
GTL statements generally fall into two main categories:

n plot, legend, and text statements that determine what items are drawn in the
graph

n layout statements that determine how or where the items in the graphs are
placed

Plot Statements
GTL provides numerous plot statements that generate plots of various types. Use
one or more plot statements in your template code to create the primary content for
your graph. There are several categories of plot statements in GTL. For information

31

about the categories of the GTL plot statements and a list of the plot statements by
category, see Chapter 8, “How the GTL Plot Statements Are Categorized,” on page
51 and Chapter 9, “Plot Statements Listed by Category,” on page 55. For a quick
look at the plot types that are available in GTL and information about the plot
statement that generates each, see Chapter 10, “Gallery of the GTL Plots,” on page
61.

Legend Statements
GTL supports two types of legends: a discrete legend that is used to identify
graphical features such as grouped markers, lines, or overlaid plots; and a
continuous legend that shows the range of numeric variation as a ramp of color
values. Legend statements are dependent on one or more plot statements and must
be associated with the plot(s) that they describe. The basic strategy for creating
legends is to "link" the plot statement(s) to a legend statement by assigning a
unique, case-sensitive name to the plot statement on its NAME= option and then
referencing that name on the legend statement.

Statement Required Arguments Comments

DISCRETELEGEND Name(s) of associated
plot(s)

Traditional legend with entries
for grouped markers or lines, or
overlaid plots.

CONTINUOUSLEGEN
D

Name of an associated
plot

Shows a numeric scale with a
color ramp. Used in conjunction
with contours, surfaces, and
scatter plots.

The following figure shows a graph with a discrete legend.

32 Chapter 6 / Overview of the GTL Statements

For more information, see Chapter 20, “Adding Legends to Your Graph,” on page
337.

Text Statements
GTL supports statements that add text to predefined locations of the graph. SAS
TITLE and FOOTNOTE global statements do not contribute to the graph. However,
there are comparable ENTRYTITLE and ENTRYFOOTNOTE statements. Like
TITLE and FOOTNOTE global statements, multiple instances of ENTRYTITLE and
ENTRYFOOTNOTE statements can be used to create multi-line text.

Statement Required Arguments Comments

ENTRYTITLE String Text to appear above graph.
Specify the ENTRYTITLE
statement inside the
BEGINGRAPH block as a child of
the BEGINGRAPH block. It must
not be embedded in any other GTL
statement block.

ENTRYFOOTNOTE String Text to appear below graph.
Specify the ENTRYFOOTNOTE
statement inside the
BEGINGRAPH block as a child of
the BEGINGRAPH block. It must
not be embedded in any other GTL
statement block.

ENTRY String Text to appear within graph.
Specify the ENTRY statement
inside a layout block.

The following figure shows a graph with a text entry.

Text Statements 33

For more information, see Chapter 19, “Adding Titles, Footnotes, and Text Entries to
Your Graph,” on page 317.

Layout Statements

Layouts in GTL
GTL enables you to create any arrangement of graphs by defining layouts in your
graph template. A layout is a container whose contents are arranged into cells. A
cell can contain output from GTL statements, such as plots, text, and so on, or it can
contain another layout. By using the layouts, you can arrange your graph as a
single-cell or a multi-cell graph. Here are some examples.

Layout Types
GTL provides three primary types of layouts:

34 Chapter 6 / Overview of the GTL Statements

single-cell layouts
consist of a one-cell container. The cell can contain a single plot, multiple
overlaid plots, text, a legend, or another layout container. See “Single-Cell
Layout Statements” on page 35.

multi-cell, non-data-driven layouts
consist of a simple grid or of a panel that contains multiple cells. You define the
contents of each cell individually. A cell can contain a single plot, text, a legend,
or another layout container. See “Multi-Cell, Non-Data-Driven Layout
Statements” on page 36.

multi-cell, data-driven layouts
consist of a panel that contains a grid of cells. Each cell contains one graph. You
define a graph prototype and identify one or more class variables. One graph
(one cell) is created for each combination of class variables. See “Multi-Cell,
Data-Driven Layout Statements” on page 36.

Single-Cell Layout Statements
GTL provides several statements that you can use to create single-cell layouts. The
following table lists these statements.

Statement Description

LAYOUT OVERLAY Enables you to combine 2-D plots, titles,
footnotes, legends, and text into a single cell. See
Chapter 11, “Creating Overlay Graphs Using the
OVERLAY Layout ,” on page 97.

LAYOUT OVERLAY3D Enables you to combine 3-D plots, titles,
footnotes, legends, and text into a single cell. The
BIHISTOGRAM3DPARM statement and the
SURFACEPLOTPARM statement generate 3-D
plots. See Chapter 13, “Creating Overlay 3-D
Graphs Using the OVERLAY3D Layout ,” on page
187.

LAYOUT OVERLAYEQUATED Enables you to combine 2-D plots into a single
graph with equated axes. That is, the units for the
X and Y axes are always of equal size. Equated
axes are necessary whenever distances between
data points, or angles between vectors from the
origin are meaningful. See Chapter 12, “Creating
Overlay Graphs with Equated Axes Using the
OVERLAYEQUATED Layout,” on page 177.

LAYOUT REGION enables you to combine 2-D plots with no axes,
titles, footnotes, legends, and text into a single
cell. The PIECHART statement and the
MOSAICPLOTPARM statement generate plots
that have no axes. See Chapter 17, “Creating

Layout Statements 35

Statement Description

Graphs with No Axis Using the REGION Layout,”
on page 303.

Multi-Cell, Non-Data-Driven Layout Statements
GTL provides two statements that you can use to create multi-cell, non-data-driven
layouts. The following table lists these statements.

Statement Description

LAYOUT GRIDDED Enables you to combine multiple 2-D and 3-D
graphs into a grid when you do not need to align
the graphs across cells or to scale the ranges of
the data across the axes. The cells in LAYOUT
GRIDDED are completely independent. You
specify the content of each cell independently. See
Chapter 14, “Creating Gridded Graphs Using the
GRIDDED Layout ,” on page 207.

LAYOUT LATTICE Enables you to create panel of 2-D and 3-D
graphs in which the data areas are automatically
aligned, the axis data ranges are automatically
scaled, and labels and headings are placed across
the columns and rows. LAYOUT LATTICE is useful
when you need to scale the data ranges across
the columns and rows or to extract axis
information from the cells to the outside of the grid.
See Chapter 15, “Creating Lattice Graphs Using
the LATTICE Layout,” on page 221.

Multi-Cell, Data-Driven Layout Statements
GTL provides two layout statements that create a grid of graphs based on a graph
prototype and one or more classification variables. A separate graph (cell) is created
for each combination (crossing) of the specified classification variables. The primary
differences between the two layout statements are the number of classification
variables that you can specify and the order in which the individual crossings are
added to the grid. The following table lists these layout statements.

36 Chapter 6 / Overview of the GTL Statements

Statement Description

LAYOUT DATAPANEL Enables you to specify one or more classification
variables from which a panel of 2-D graphs is
generated. You specify these variables in a list:
classvars=(var1, var2, var3, var4 ...)

classvars=(country, product)

The order in which the individual crossings are
added to the grid is based on the following criteria:

n the order in which you specify the classification
variables. The last variable that you specify is
the first variable to vary.

n whether you specify that cells should be
populated by row or by column.

n the order that variable values occur in your
data. You might want to sort the data by the
classification variable.

LAYOUT DATALATTICE Enables you to specify up to two classification
variables from which a lattice of 2-D graphs is
generated. You specify whether each variable is a
row classifier or a column classifier.
rowvar=country
columnvar=product

Variable values are always returned in the order of
occurrence in the data. If you want to control the
order in which individual graphs appear in the
rows and columns, you can sort the input data by
the classification variables.

See Chapter 16, “Creating Classification Panels Using the DATALATTICE and
DATAPANEL Layouts,” on page 255.

Axis Management in GTL Layouts
For the GTL layouts that support axes, you can use options in the layout statement
to manage the axes. The axes that you can manage depend on the layout type. The
following table lists the layouts that support axes and how the axes are managed for
each.

Layout Statement How the Axes Are Managed

LAYOUT OVERLAY

LAYOUT OVERLAY3D

LAYOUT OVERLAYEQUATED

In OVERLAY layouts, by default, the outermost
layout container automatically creates axes that
are appropriate for the plots that it contains. Each
layout statement provides options that you can
use to modify various attributes of one or both
axes.

Layout Statements 37

Layout Statement How the Axes Are Managed

For information, see:

n “Managing Axes in OVERLAY Layouts ” on
page 103

n “Managing Axes in OVERLAYEQUATED
Layouts” on page 180

n “Managing Axes in OVERLAY3D Layouts” on
page 201

LAYOUT LATTICE In LATTICE layouts, by default, the axes for each
cell are determined by the outermost layout
container that defines the content for each cell. To
manage each cell’s internal axes, you specify axis
options in the layout statement for that cell.

The LATTICE layout provides options that enable
you to replace each cell’s internal axes with
external axes that are shared by each cell. One
axis appears for each row (Y) and one axis
appears for each column (Y). The LATTICE layout
container automatically creates axes that are
appropriate for the plots in each cell for that row or
column. In many cases, the result is a cleaner
graph. The LAYOUT LATTICE statement provides
options that you can use to modify various
attributes of the row and column axes. For more
information, see “Managing Axes in LATTICE
Layouts” on page 231.

LAYOUT DATAPANEL

LAYOUT DATALATTICE

In DATAPANEL and DATALATTICE layouts, by
default, the layout container creates axes for each
row and column that are appropriate for the plots
that are specified in the prototype. Each layout
statement provides options that you can use to
modify various attributes of one or both axes. For
more information, see “Managing Axes in
DATALATTICE and DATAPANEL Layouts” on
page 268.

The REGION and GRIDDED layouts do not manage axes. The REGION layout
supports only plot statements that do not require axes, such as PIECHART and
MOSAICPLOTPARM. The GRIDDED layout does not support external axes. The
axes must be managed on a per-cell basis.

38 Chapter 6 / Overview of the GTL Statements

7
Common Features Supported by
GTL Statements

Features Supported by Many Plot Statements . 39
Plot Features to Be Displayed . 39
Plot Appearance . 40
Plot Transparency . 40
Plot Identification . 41
Labels for Plot Features . 41
Grouping . 44
Axis Assignment . 45
Data Tips . 45

Features Supported by Layout, Legend, and Text Statements 46
About Layout, Legend, and Text Statement Features . 46
Backgrounds . 46
Borders . 46
Padding . 47
Test Position . 47
Legend and Layout Positions . 47

Features Supported by Many Plot
Statements

Plot Features to Be Displayed
All plots have a standard set of features to display. Most plots can show a different
feature set. For example, a HISTOGRAM can display bars that are outlined , filled,

39

or both outlined and filled. A SERIESPLOT displays a line and, if requested, point
markers.

Option Description

DISPLAY=(feature …) Specifies the plot features to be displayed.
Features are plot specific.

Plot Appearance
Depending on the display features, there are options to control the appearance of
the features.

Option Description

MARKERATTRS=(marker-
options)

Specifies the symbol, size, color, and weight of
markers.

LINEATTRS= (line-options) Specifies the pattern, thickness, and color of lines.

TEXTATTRS= (text-options) Specifies the text color, font, font size, font weight,
and font style.

FILLATTRS= (fill-options) Specifies the fill color and transparency.

DATASKIN=(data-skin-name) Specifies a skin to be applied to filled areas of a
plot. See “Using Data Skins” on page 554.

Plot Transparency
Transparency can be applied to plots that display markers, lines, or filled areas.

Option Description

DATATRANSPARENCY=
number

Specifies the degree of transparency. Default is 0
(fully opaque). 1 is fully transparent.

For more information, see “Using Transparency” on page 552.

40 Chapter 7 / Common Features Supported by GTL Statements

Plot Identification
In GTL, legends require a reference (association) with a plot. The association is
established by naming the plot, and then referring to the plot name in the legend
statement.

Option Description

NAME= "string" Specifies a unique name for a plot in order to
associate it with another statement.

LEGENDLABEL= "string" Specifies a description of a plot to appear in a
legend.

For more information about legends, see Chapter 20, “Adding Legends to Your
Graph,” on page 337.

Another association exists between a model band plot and its dependent plot. In
that case, a confidence name is specified in the MODELBAND statement, and then
that confidence name is specified in a confidence option in the dependent plot
statement. For more information about the MODELBAND statement, see
“MODELBAND” in SAS Graph Template Language: Reference.

Labels for Plot Features
Most plots have one or more options that enable you to display descriptive labels or
data values for points, lines, bars, or bands.

Option Description

DATALABEL= column Specifies a column to label data points in a scatter
plot, series plot, needle plot, step plot, or vector
plot.

DATALABELATTRS= text-
properties

Specifies text properties for data labels.

DATALABELPOSITION=TOPRI
GHT | TOP | TOPLEFT | LEFT |
CENTER | RIGHT |
BOTTOMLEFT | BOTTOM |
BOTTOMRIGHT

Specifies the position of the data labels relative to
the data points.

CURVELABEL= "string" | column
| expression

Specifies a string, column, or expression to label
one or more lines in a REFERENCELINE,
DENSITYPLOT, LINEPARM, REGRESSIONPLOT,

Features Supported by Many Plot Statements 41

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1qkhyvgnqurs0n1lrz11awtnfzb.htm&locale=en

Option Description

LOESSPLOT, PBSPLINEPLOT, SERIESPLOT, or
STEPPLOT statement.

CURVELABELUPPER= "string" |
column

CURVELABELLOWER= "string"
| column

Specifies a string or a string-column to label one
or more lines in a BANDPLOT or MODELBAND
statement.

CURVELABELATTRS= text-
properties

Specifies text properties for curve label(s).

CURVELABELLOCATION=
INSIDE | OUTSIDE

Specifies whether the curve label(s) are located
inside or outside the plot area.

Note: The CURVELABELLOCATION=OUTSIDE
option is not supported in the LATTICE,
DATALATTICE, and DATAPANEL layouts.

CURVELABELPOSITION= Specifies positioning options for the curve label(s).

The following figure shows a graph with data labels and curve labels.

For more information, see Chapter 19, “Adding Titles, Footnotes, and Text Entries to
Your Graph,” on page 317.

For bar, curve, and data labels, many plots support options that enable you to split
long labels into multiple lines to avoid collisions. The following table lists these
options.

Option Description

BARLABELFITPOLICY=AUTO |
NONE

Specifies a policy for avoiding bar label collisions
in a vertical bar chart. When set to AUTO, the bar
labels are rotated when a collision occurs.

42 Chapter 7 / Common Features Supported by GTL Statements

Option Description

DATALABELSPLIT=TRUE |
FALSE

Specifies whether the data labels should be split
into multiple lines, if necessary, to fit the label in
the available space.

DATALABELSPLITCHAR="char
acter-list"

Specifies one or more characters on which the
data labels can be split.

DATALABELSPLITCHARDROP
=TRUE | FALSE

Specifies whether the split characters on which a
split occurs are removed from the displayed data
label.

DATALABELSPLITJUSTIFY="ju
stification"

Specifies how each line of the split data labels is
to be justified.

CURVELABELSPLIT=TRUE |
FALSE

Specifies whether the curve labels should be split
into multiple lines, if necessary, to fit the label in
the available space.

CURVELABELSPLITCHAR="ch
aracter-list"

Specifies one or more characters on which the
curve labels can be split.

CURVELABELSPLITCHARDRO
P=TRUE | FALSE

Specifies whether the split characters on which a
split occurs are removed from the displayed curve
label.

CURVELABELSPLITJUSTIFY="j
ustification"

Specifies how each line of the split curve labels is
to be justified.

VALUEFITPOLICY="fit-policy" Specifies how block plot text values are adjusted
to fit within the containing block.

VALUESPLITCHAR="character-
list"

Specifies one or more characters on which the
block labels can be split when value splitting is
used in a block plot.

VALUESPLITCHARDROP=TRU
E | FALSE

Specifies whether the split characters on which a
split occurs are removed from the displayed block
label when value splitting is used in a block plot.

For axis labels, options are available that enable you to split long labels into multiple
lines to avoid truncation. The following table lists these options.

Option Description

LABELFITPOLICY=AUTO |
SPLIT | SPLITALWAYS

Specifies a fit policy for the axis label. If the
original label is too long, AUTO specifies that the
short label is used instead (if specified), and
SPLIT specifies that the original label is split into
multiple lines as needed to make it fit the
available. SPLITALWAYS specifies that the original

Features Supported by Many Plot Statements 43

Option Description

label is always split into multiple lines regardless
of the available space.

LABELSPLITCHAR="character-
list"

Specifies one or more characters on which the
axis label can be split when the SPLIT or
SPLITALWAYS fit policy is used.

LABELSPLITCHARDROP=TRU
E | FALSE

Specifies whether the split characters on which a
split occurs are removed from the displayed axis
label when the SPLIT or SPLITALWAYS fit policy
is used.

LABELSPLITJUSTIFY="justificat
ion"

Specifies how each line of the split axis label is to
be justified when the SPLIT or SPLITALWAYS fit
policy is used.

Grouping
Many plots support a GROUP= option, which causes visually different markers,
lines, or bands to be displayed for each distinct data value of the specified column.
You can vary the appearance of group values with the INDEX= option. You can also
use the GROUPDISPLAY= option to change how groups are displayed.

Option Description

GROUP= column Specifies a group variable, always treated as
having discrete values. For an example use, see
the example for “Legend Statements” on page 32.

INDEX= positive-integer-column Specifies an integer column that associates each
distinct data value with a predefined graphical
style element GraphData1, GraphData2, …

GROUPDISPLAY=STACK |
CLUSTER | OVERLAY

Specifies whether group values for each category
are displayed as clusters of bars or as stacked
bars for bar charts, or as a cluster of markers or
an overlay of markers for other plot types.

For more information about using groups, see Chapter 27, “Managing Your Graph’s
Appearance,” on page 491.

44 Chapter 7 / Common Features Supported by GTL Statements

Axis Assignment
All 2-D plots have four potential axes: X, X2, Y, and Y2. You can choose the axes
that any plot uses. Axis options are typically specified in the LAYOUT statement that
contains the plot.

Option Description

XAXIS= X | X2 Specifies whether the plot's X= column is
displayed on the X or X2 axis.

YAXIS= Y | Y2 Specifies whether the plot's Y= column is
displayed on the Y or Y2 axis.

For more information, see “Axis Management in GTL Layouts” on page 37.

Data Tips
Data tips (or tooltips) are text balloons that appear in HTML pages when you move
your mouse pointer over a plot component such as a line, marker, or filled area of a
graph. To obtain default data tips, simply specify ODS GRAPHICS / IMAGEMAP; as
well as an ODS HTML destination. You can customize the data tip information.

Option Description

ROLENAME= (role=column …) Creates additional roles to customize data tips.

TIP= (role-names) Specifies which plot roles are used for data tips.

TIPFORMAT=(role=format …) Specifies a format to be applied to the data for a
plot role.

TIPLABEL=(role="string" …) Specifies a label to be applied to the column for a
plot role.

For more information and an example, see Chapter 24, “Adding Data Tips to Your
Graph,” on page 473.

Features Supported by Many Plot Statements 45

Features Supported by Layout, Legend,
and Text Statements

About Layout, Legend, and Text Statement
Features

All layout, legend, and text statements have a general set of features that include
those listed in the following tables. For more information about these and other
options, see the chapters specific to the layouts, text statements, and legends. Also
see the SAS Graph Template Language: Reference.

Backgrounds

Option Description

OPAQUE= FALSE | TRUE Specifies whether the background is transparent.
By default, OPAQUE=FALSE

BACKGROUNDCOLOR= color Specifies a color for the background when the
background is opaque.

Borders

Option Description

BORDER= FALSE | TRUE Specifies whether a border is displayed. By
default, BORDER=FALSE.

BORDERATTRS= (line-
options)

Specifies the properties of the border when a
border is displayed.

46 Chapter 7 / Common Features Supported by GTL Statements

Padding

Option Description

PAD= number

PAD=(<TOP=number>
<BOTTOM=number>
<LEFT=number>
<RIGHT=number>

Specifies whether extra space is added inside the
border. By default, layouts and legends have
PAD=0 while text statements have
PAD=(LEFT=3px RIGHT=3px) as the default.

OUTERPAD=AUTO | number

OUTERPAD=(<TOP=number>
<BOTTOM=number>
<LEFT=number>
<RIGHT=number>

Specifies whether extra space is added outside
the border of layouts, legends, titles, and
footnotes. The default is AUTO, which specifies
that the default outside padding for the component
is used.

Test Position

Option Description

HALIGN= LEFT | CENTER |
RIGHT

VALIGN= TOP | CENTER |
BOTTOM

Specifies the alignment for a text entry. For
ENTRY statements, a position can be specified
relative to the container. The vertical position of
the title and footnote text is fixed, but the
horizontal position can be adjusted.

Legend and Layout Positions

Option Description

HALIGN= LEFT | CENTER |
RIGHT | value

VALIGN= TOP | CENTER |
BOTTOM | value

Specifies the alignment for a legend or layout. For
legends, and for layouts that are nested within an
overlay type layout, a position can be specified
relative to the parent container. The values
CENTER, LEFT, RIGHT, TOP, and BOTTOM
position the legend or layout at fixed locations
horizontally or vertically. You can use value to
express the position as a percentage of the
available vertical or horizontal space using any

Features Supported by Layout, Legend, and Text Statements 47

Option Description

numeric value between 0 and 1 inclusive. In order
to use these options on a layout block, the layout
block must be embedded in an overlay-type
layout. Otherwise, the HALIGN= and VALIGN=
options are ignored. In that case, a note is written
to the SAS log. This restriction does not apply to
the legend statements.

Note the following equivalencies:

n VALIGN=TOP is equivalent to VALIGN=1

n VALIGN=BOTTOM is equivalent to VALIGN=0

n HALIGN=RIGHT is equivalent to HALIGN=1

n HALIGN=LEFT is equivalent to HALIGN=0

48 Chapter 7 / Common Features Supported by GTL Statements

PART 3

Selecting GTL Plot Statements

Chapter 8
How the GTL Plot Statements Are Categorized . 51

Chapter 9
Plot Statements Listed by Category . 55

Chapter 10
Gallery of the GTL Plots . 61

49

50

8
How the GTL Plot Statements
Are Categorized

Plot Types . 51
Overview of the Plot Types . 51
Computed Plots . 52
Parameterized Plots . 52
Standalone Plots . 52
Dependent Plots . 53
2-D Plots and 3-D Plots . 53

Plot Categories . 53

Additional Plot Category: the Primary Plot . 54

Plot Types

Overview of the Plot Types
In GTL, the following types are used to describe the plots:

n computed plot

n parameterized plot

n standalone plot

n dependent plot

n 2-D plot

n 3-D plot

The following sections describe these types.

51

Computed Plots
Computed plots internally perform computational transformations on the input data
and add new columns to a data object as needed in order to render the requested
plot. For example, a LOESSPLOT statement requires two numeric columns of raw
input data (X=column and Y=column). A loess fit line is computed for these input
point pairs, a new set of points on a fit line is generated, and a new column that
contains the computed points is added to the data object. A smoothed line is drawn
through the computed points. Several options are available for most computed plots
that enable you to control the computation that is performed.

Another form of computed plot is one with user-defined data transformations. For
example, you can use an EVAL() function to compute a new column, such as Y=
eval(log10(column)). This transforms column values into corresponding
logarithmic values. It is important to know whether a plot is computed because some
layouts such as PROTOTYPE currently do not allow computed plots to be included.

Parameterized Plots
Parameterized plots simply render the input data that they are given. They are
useful whenever you have input data that does not need to be preprocessed or that
has already been summarized (possibly an output data set from a procedure like
FREQ). For example, BARCHARTPARM draws one bar per input observation: the
X= column provides the bar tick value and the Y=column provides the bar length. So
a bar chart with five bars requires a data set with five observations and two
variables. A parameterized bar chart statement is useful when the computed
BARCHART statement does not perform the type of computation that you want, and
you have done the summarization yourself. A PARM suffix is added to the names of
many parameterized plots. A parameterized plot is also useful when you want to
draw a fit line and a confidence band from a set of data that already has the
appropriate set of (X,Y) point coordinates. For these situations, you would use a
SERIESPLOT statement for the fit line and a BANDPLOT statement for the
confidence band. It is important to know whether a plot is parameterized because
these plots ensure that no additional computation takes place on the input data.
Thus, input data that does not meet the special requirements on the parameterized
plot might result in bad output or a blank graph.

Standalone Plots
A standalone plot is one that can be drawn without any other accompanying plot. In
general, a plot is standalone if its input data defines a range of values for all axes
that are needed to display the plot. For example, the observations plotted in a
SCATTERPLOT normally span a certain data range in both X and Y axes. This
information is necessary to successfully draw the axes and the markers. It is
important to know which plots are standalone because most layouts need to know
the extents of the X and Y axis in order to draw the plot.

52 Chapter 8 / How the GTL Plot Statements Are Categorized

Dependent Plots
A dependent plot is one that, by itself, does not provide enough information for the
axes that are needed to successfully draw the plot. For example, the
REFERENCELINE statement draws a straight line perpendicular to one axis at a
given input point on the same axis. Because only one point is provided, there is not
enough information to determine the full range of data for this axis. Furthermore, no
information is provided for the data range of the second axis. Thus, a
REFERENCELINE statement does not provide enough information by itself to draw
the axes and the plot. Such a plot needs to work with another standalone plot, which
provides the necessary information to determine the data extents of the two axes.

2-D Plots and 3-D Plots
GTL supports both 2-D graphics and 3-D graphics. Currently there are only two 3-D
plot statements (SURFACEPLOTPARM and BIHISTOGRAM3DPARM). You must
use 3-D plot statements in an OVERLAY3D layout. You cannot use 3-D plot
statements in a 2-D layout. You cannot use 2-D plot statements in an OVERLAY3D
layout. For more information about layouts, see “Layout Statements” on page 34.

Plot Categories
The GTL plot statement categories are based on the plot types. More than one type
can apply to each category. The categories are as follows:

n 2-D standalone, computed plots

n 2-D standalone, parameterized plots

n 3-D standalone, parameterized plots

n dependent plots

Chapter 9, “Plot Statements Listed by Category,” on page 55 provides a list of the
plot statements that are included each of these categories.

Plot Categories 53

Additional Plot Category: the Primary
Plot

For standalone plots, the plot can also be categorized as the primary plot. When you
overlay two or more plots, the layout container determines the axes properties. The
axes properties include the axis type for each axis, the data range of each axis, and
the default format and label to use for each axis. By default, the first standalone plot
statement that is encountered in the template definition is used to determine the
axes properties. The axes are then shared with any remaining plots in the template.
Because this plot determines the axes properties for the entire graph, it is
categorized as the primary plot. Only a standalone plot can serve as the primary
plot.

In some cases, you might need a particular overlay stacking order, which requires
you to order your statements accordingly. In that case, the first standalone plot in
the template definition might not produce the axis properties that you want. You can
include the PRIMARY=TRUE option in any standalone plot statement in your
template definition to designate that plot as the primary plot. That plot is then
considered the primary plot regardless of statement order. Only one plot statement
should have the PRIMARY=TRUE option. If more than one standalone plot
statement has this option, the first statement encountered that has the
PRIMARY=TRUE option is considered the primary plot.

54 Chapter 8 / How the GTL Plot Statements Are Categorized

9
Plot Statements Listed by
Category

Standalone, 2-D, Computed Plots . 55

Standalone, 2-D, Parameterized Plots . 57

Standalone, 3-D, Parameterized Plots . 59

Dependent Plots . 60

Standalone, 2-D, Computed Plots
Table 9.1 Standalone, 2-D, Computed Plots

Statement Required Arguments Comments

BARCHART One column Horizontal or vertical. For details, see
“BARCHART” in SAS Graph Template
Language: Reference.

BOXPLOT One numeric-column Horizontal or vertical. For details, see
“BOXPLOT” in SAS Graph Template Language:
Reference.

CONTOURPLOTPARM Three numeric-columns Draws contour plot from pre-gridded data. Basic
"gridding" feature is provided using an option.
For details, see “CONTOURPLOTPARM” in SAS
Graph Template Language: Reference.

DENSITYPLOT One numeric-column Theoretical distribution curve (for example,
NORMAL or KDE). For details, see

55

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0vuh82v39fsasn1vqhzmhdl8y16.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0vuh82v39fsasn1vqhzmhdl8y16.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n08rjwb09dl44cn1nqbhg4bt4k6f.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n08rjwb09dl44cn1nqbhg4bt4k6f.htm&locale=en

Statement Required Arguments Comments

“DENSITYPLOT” in SAS Graph Template
Language: Reference.

ELLIPSE Two numeric-columns Confidence or prediction ellipse for a set of
points. For details, see “ELLIPSE” in SAS Graph
Template Language: Reference.

HEATMAP Two columns Draws a map of tiles that are placed at each X=
and Y= crossing and colored based on a third
variable.

Note: This statement is valid in SAS 9.4M3 and
later releases.

For details, see “HEATMAP” in SAS Graph
Template Language: Reference.

HISTOGRAM One numeric-column Horizontal or vertical. For details, see
“HISTOGRAM” in SAS Graph Template
Language: Reference.

LINECHART One column Draws a chart that shows the relationship of one
variable to another as trends. For details, see
“LINECHART” in SAS Graph Template
Language: Reference.

LOESSPLOT Two numeric-columns Fit plot using loess. For details, see
“LOESSPLOT” in SAS Graph Template
Language: Reference.

PBSPLINEPLOT Two numeric-columns Fit plot using Penalized B-spline. For details, see
“PBSPLINEPLOT” in SAS Graph Template
Language: Reference.

PIECHART One column Must be used within a LAYOUT REGION block.
For details, see “PIECHART” in SAS Graph
Template Language: Reference.

REGRESSIONPLOT Two numeric-columns Fit plot using linear, quadratic, or cubic
regression. For details, see
“REGRESSIONPLOT” in SAS Graph Template
Language: Reference.

SCATTERPLOTMATRIX Two or more numeric-
columns

Grid of scatter plots. Might include computed
ellipses, histograms, density curves. For details,
see “SCATTERPLOTMATRIX” in SAS Graph
Template Language: Reference.

WATERFALLCHART Two columns. Y must be
numeric

Waterfall chart consisting of bars that represent
an initial value of Y and a series of intermediate
bars that are identified by X and that lead to a
final value of Y. For details, see

56 Chapter 9 / Plot Statements Listed by Category

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nh9dhh759jrvn124sn8nn78fv5.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nh9dhh759jrvn124sn8nn78fv5.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n09bc2cfr7fk71n15k1szg4ybznw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n09bc2cfr7fk71n15k1szg4ybznw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1xic0aty2w6y6n1fmnrpizfc4yw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1xic0aty2w6y6n1fmnrpizfc4yw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p05m44lil3ubp3n1h73v30250own.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p05m44lil3ubp3n1h73v30250own.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0lqeoja8lrizmn1f9ixkzk87f4r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0lqeoja8lrizmn1f9ixkzk87f4r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1divky59xemdun1oj4g32usmsbu.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1divky59xemdun1oj4g32usmsbu.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n17h5vygws7508n1gyupx2bq6unr.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n17h5vygws7508n1gyupx2bq6unr.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n156iuqrtmfqk5n1f8yye5xkgkir.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n156iuqrtmfqk5n1f8yye5xkgkir.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0capvje7a9ntmn1gebwnjo1x89k.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0capvje7a9ntmn1gebwnjo1x89k.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0b7il0hl6pxben1jdkf3yy91kpb.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0b7il0hl6pxben1jdkf3yy91kpb.htm&locale=en

Statement Required Arguments Comments

“WATERFALLCHART” in SAS Graph Template
Language: Reference.

Standalone, 2-D, Parameterized Plots
Table 9.2 Standalone, 2-D, Parameterized Plots

Statement Required Arguments Comments

BANDPLOT Three columns, at least
two numeric limits

Area bounded by two straight or curved lines.
The input data must be sorted by the X or Y
variable. For details, see “BANDPLOT” in SAS
Graph Template Language: Reference.

BARCHARTPARM Two columns, Y must be
numeric

Horizontal or vertical. Summarized data provided
by user. For details, see “BARCHARTPARM” in
SAS Graph Template Language: Reference.

BLOCKPLOT Two columns Strip of X- axis aligned rectangular blocks
containing text. The X data must be sorted. For
details, see “BLOCKPLOT” in SAS Graph
Template Language: Reference.

BOXPLOTPARM One numeric-column and
one string-column

Horizontal or vertical. Needs special data format.
For details, see “BOXPLOTPARM” in SAS
Graph Template Language: Reference.

BUBBLEPLOT Three numeric-columns Plot of bubbles where a bubble is placed at each
X= and Y= crossing and sized according to a
response variable. By default, the bubbles
appear as outlined circles. For details, see
“BUBBLEPLOT” in SAS Graph Template
Language: Reference.

DENDROGRAM Three numeric-columns Tree diagram that represents the results of a
hierarchical clustering analysis. For details, see
“DENDROGRAM” in SAS Graph Template
Language: Reference.

ELLIPSEPARM Five numbers or
numeric-columns

Draws ellipse given center, slope, semi-major,
and semi-minor axis lengths. For details, see
“ELLIPSEPARM” in SAS Graph Template
Language: Reference.

Standalone, 2-D, Parameterized Plots 57

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0t8mzfhzxjzy3n1l2geygphpxnl.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0t8mzfhzxjzy3n1l2geygphpxnl.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0eqjd3p63v7vun1bo9iibtqt3zp.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0eqjd3p63v7vun1bo9iibtqt3zp.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n07s2oezv7f654n1xkbrqlrianbf.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n07s2oezv7f654n1xkbrqlrianbf.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0ifwefyk3jw1fn1rjcdz5jfakiw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0ifwefyk3jw1fn1rjcdz5jfakiw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1db7ll5bzyo4nn1pv31g04etput.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1db7ll5bzyo4nn1pv31g04etput.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p09jv39aa18zb6n11q79a0j6ww3o.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p09jv39aa18zb6n11q79a0j6ww3o.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0qku8rz53jyv8n1jwiv7cx4sj8h.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0qku8rz53jyv8n1jwiv7cx4sj8h.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0ofcl9dx7lzh1n116ov51vocewg.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0ofcl9dx7lzh1n116ov51vocewg.htm&locale=en

Statement Required Arguments Comments

FRINGEPLOT One numeric-column Draws a short line segment of equal length along
the X or X2 axis for each observation's X value.
For details, see “FRINGEPLOT” in SAS Graph
Template Language: Reference.

HEATMAPPARM Two columns |
expressions and one
numeric-column |
expression

Draws a map of tiles that are placed at each X=
and Y= crossing and colored based on a
response variable. For details, see
“HEATMAPPARM” in SAS Graph Template
Language: Reference.

HIGHLOWPLOT Three columns. HIGH,
and LOW must be
numeric

Draws a high-low bar or line plot. For details, see
“HIGHLOWPLOT” in SAS Graph Template
Language: Reference.

HISTOGRAMPARM Two numeric-columns Horizontal or vertical. The Y data must be
nonnegative. For details, see
“HISTOGRAMPARM” in SAS Graph Template
Language: Reference.

MOSAICPLOTPARM List of categorical
columns enclosed in
parenthesis and a
numeric-column.

Creates a mosaic plot from pre-summarized
categorical data. The numeric column must
contain only positive values. For details, see
“MOSAICPLOTPARM” in SAS Graph Template
Language: Reference.

NEEDLEPLOT Two columns, Y must be
numeric

Draws parallel, vertical line segments connecting
data points to a baseline. For details, see
“NEEDLEPLOT” in SAS Graph Template
Language: Reference.

POLYGONPLOT Three columns Draws one or more polygons from data that is
stored in a data set.

Note: This statement is valid in SAS 9.4M1 and
later releases.

For details, see “POLYGONPLOT” in SAS Graph
Template Language: Reference.

SCATTERPLOT Two columns Draws markers at data point locations. The
markers can be sized according to the response
variable by using one or more options. For
details, see “SCATTERPLOT” in SAS Graph
Template Language: Reference.

SERIESPLOT Two columns Draws line segments to connect a set of data
points. For details, see “SERIESPLOT” in SAS
Graph Template Language: Reference.

58 Chapter 9 / Plot Statements Listed by Category

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0t1z3qno9fv00n1wphqslpq3o6k.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0t1z3qno9fv00n1wphqslpq3o6k.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1tk3ztr6tkrkvn1p00zo7erklty.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1tk3ztr6tkrkvn1p00zo7erklty.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1g9mj2kf03fqxn18n4wekss5ky3.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1g9mj2kf03fqxn18n4wekss5ky3.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1annoywcvho57n1icmu2fjmyerb.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1annoywcvho57n1icmu2fjmyerb.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0v875tvdhv032n13en1gv9mcqxf.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0v875tvdhv032n13en1gv9mcqxf.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n00zj2enqq5bemn1nssxsfse0eav.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n00zj2enqq5bemn1nssxsfse0eav.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p17alv43g4tx1an13y14tsrnqrwr.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p17alv43g4tx1an13y14tsrnqrwr.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p08qhdljvzthmnn1vkbule00ad6r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p08qhdljvzthmnn1vkbule00ad6r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0828kpaepwjmrn1u5xko4cjlqln.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0828kpaepwjmrn1u5xko4cjlqln.htm&locale=en

Statement Required Arguments Comments

STEPPLOT Two columns, Y must be
numeric

Draws stepped line segments to connect a set of
data points. For details, see “STEPPLOT” in
SAS Graph Template Language: Reference.

TEXTPLOT Three columns Draws text markers at data point locations.

Note: This statement is valid in SAS 9.4M2 and
later releases.

The marker text is provided by a column in the
plot data. For details, see “TEXTPLOT” in SAS
Graph Template Language: Reference.

VECTORPLOT Four numeric-columns, X
and Y origins can be
numeric constants.

Creates directed line segment(s) based on pairs
of data points. For details, see “VECTORPLOT”
in SAS Graph Template Language: Reference.

Standalone, 3-D, Parameterized Plots
Table 9.3 Standalone, 3-D, Parameterized Plots

Statement Required Arguments Comments

BIHISTOGRAM3DPARM Three numeric-columns Bivariate histogram. The Z data must be
nonnegative. For details, see
“BIHISTOGRAM3DPARM” in SAS Graph
Template Language: Reference.

SURFACEPLOTPARM Three numeric-columns Smooth surface. For details, see
“SURFACEPLOTPARM” in SAS Graph Template
Language: Reference.

Standalone, 3-D, Parameterized Plots 59

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0f1a80wa5575dn1qp2sye0fri94.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0f1a80wa5575dn1qp2sye0fri94.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nkiqzk2cqi1cn15phrkiop1j6t.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nkiqzk2cqi1cn15phrkiop1j6t.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0kbxb6xovwq2bn1rl0hqpi2qcf9.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0kbxb6xovwq2bn1rl0hqpi2qcf9.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0yegmba4k5b80n16pzc7667ih88.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0yegmba4k5b80n16pzc7667ih88.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n188jssh4n7v6hn1jx9mfdqu2cuw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n188jssh4n7v6hn1jx9mfdqu2cuw.htm&locale=en

Dependent Plots
Table 9.4 Dependent Plots

Statement Required Arguments Comments

DROPLINE (X,Y) point location, two
columns, or one value
and one column

Draws a perpendicular line from a data point to a
specified axis. For details, see “DROPLINE” in
SAS Graph Template Language: Reference.

LINEPARM (X,Y) point location and
slope. The three values
can be provided in any
combination of number
and numeric-column

Draws line(s) given a data point and the slope of
the line. For details, see “LINEPARM” in SAS
Graph Template Language: Reference.

MODELBAND CLM or CLI name of
associated fit plot

Confidence bands. Used only in conjunction with
a fit plot. For details, see “MODELBAND” in SAS
Graph Template Language: Reference.

REFERENCELINE X or Y location, column Draws line(s) perpendicular to an axis. For
details, see “REFERENCELINE” in SAS Graph
Template Language: Reference.

60 Chapter 9 / Plot Statements Listed by Category

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0jzauu6sjn7hwn1o1kmx6qdnerh.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0jzauu6sjn7hwn1o1kmx6qdnerh.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0nnhv6s19a20dn1od3kjfb2yhgw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0nnhv6s19a20dn1od3kjfb2yhgw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1qkhyvgnqurs0n1lrz11awtnfzb.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1qkhyvgnqurs0n1lrz11awtnfzb.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p03jtr6n56wu4ln1k77szqw1fjkc.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p03jtr6n56wu4ln1k77szqw1fjkc.htm&locale=en

10
Gallery of the GTL Plots

A Quick Look at the Gallery . 62

Gallery of Basic Single-Cell Plots . 62
Band Plots . 62
Bar Charts . 63
Bar-Line Charts . 64
Block Plots . 65
Box Plots . 65
Bubble Plots . 66
Contour Plots . 67
Dendrograms . 68
Density Plots . 68
Dot Plots . 69
Ellipse Plots . 70
Fringe Plots . 71
Heat Maps . 71
High-Low Plots . 72
Histograms (Univariate) . 73
Histograms (Bivariate) . 74
Line Charts . 74
Loess Plots . 75
Model Band Plots . 76
Mosaic Plots . 76
Needle Plots . 77
Penalized B-Spline Plots . 78
Pie Charts . 78
Polygon Plots . 79
Regression Plots . 80
Scatter Plots . 80
Series Plots . 81
Spline Plots (Quadratic Bézier Curves) . 82
Step Plots . 82
Straight-Line Plot (Point and Slope) . 83
Surface Plots . 84
Text Plots . 84
Vector Plots . 85
Waterfall Charts . 86

61

Gallery of Additional Plot Features . 87
Axis-Aligned Tables . 87
Drop Lines . 88
Reference Lines . 88

Gallery of Multicell Graphs . 89
Grid Graphs . 89
Scatter Plot Matrices . 90
Lattice Graphs . 91
Data-Driven Lattice Graphs . 91
Data-Driven Panel Graphs . 92

A Quick Look at the Gallery
GTL provides a wide variety of plots. This section lists the basic plots that are
available with GTL and provides a sample of each. The statement that generates
each plot or chart is also listed. For additional information, see “Plot Statements” on
page 31.

This gallery contains a sample of each of the following chart and plot types:

Band Plots Heat Maps Regression Plots
Bar Charts High-Low Plots Scatter Plots
Bar-Line Charts Histograms (Univariate) Series Plots
Block Plots Histograms (Bivariate) Spline Plots
Box Plots Line Charts Step Plots
Bubble Plots Loess Plots Straight-Line Plot
Contour Plots Model Band Plots Surface Plots
Dendrograms Mosaic Plots Text Plots
Density Plots Needle Plots Vector Plots
Dot Plots Penalized B-Spline Plots Waterfall Charts
Ellipse Plots Pie Charts
Fringe Plots Polygon Plots

Gallery of Basic Single-Cell Plots

Band Plots
A band plot is typically used to display confidence or prediction limits as a band
along the X or Y axis. The plot data provides the X or Y values and the high and low
values that are required to draw the band. Here is a sample.

62 Chapter 10 / Gallery of the GTL Plots

Use the BANDPLOT statement in GTL to generate a band plot. The BANDPLOT
statement syntax is described in “BANDPLOT” in SAS Graph Template Language:
Reference. For an example, see “BANDPLOT Statement” in SAS Graph Template
Language: Reference.

Bar Charts
Bar charts use vertical or horizontal bars to represent statistics based on the values
of a category variable. You can also provide a response variable. Here is a sample.

Use the BARCHART statement or the BARCHARTPARM statement in GTL to
generate a bar chart. The BARCHART statement draws a bar chart from raw data. It
computes all of the values that are required to draw the chart. The BARCHART
statement syntax is described in “BARCHART” in SAS Graph Template Language:
Reference.

Gallery of Basic Single-Cell Plots 63

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0eqjd3p63v7vun1bo9iibtqt3zp.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0eqjd3p63v7vun1bo9iibtqt3zp.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0eqjd3p63v7vun1bo9iibtqt3zp.htm&docsetTargetAnchor=p0zxur1uf9nri0n13glnft1eoptn&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0eqjd3p63v7vun1bo9iibtqt3zp.htm&docsetTargetAnchor=p0zxur1uf9nri0n13glnft1eoptn&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&locale=en

For examples, see the following:

n “Horizontal Bar Chart” in SAS Graph Template Language: Reference

n “Grouped Vertical Bar Chart” in SAS Graph Template Language: Reference

n “Interval Bar Chart” in SAS Graph Template Language: Reference

n “Bar Chart with Bar Colors Controlled by a Statistic” in SAS Graph Template
Language: Reference

The BARCHARTPARM statement draws a bar chart from pre-summarized data. It
provides no data transformation. The BARCHARTPARM statement syntax is
described in “BARCHARTPARM” in SAS Graph Template Language: Reference.
For an example, see “BARCHARTPARM Statement” in SAS Graph Template
Language: Reference.

Bar-Line Charts
A bar-line chart is a vertical bar chart with one or more plot overlays. This chart
graphically represents the value of a statistic calculated for one or more variables in
an input SAS data set. Here is a sample.

Use the BARCHART and LINECHART statements in GTL to generate a vertical bar-
line chart or a horizontal bar-line chart. Place the LINECHART statement after the
BARCHART statement in your template code. The BARCHART statement syntax is
described in “BARCHART” in SAS Graph Template Language: Reference, and the
LINECHART statement syntax is described in “LINECHART” in SAS Graph
Template Language: Reference. For an example, see “Bar-Line Chart” in SAS
Graph Template Language: Reference.

64 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&docsetTargetAnchor=n1w07f2kw1qh4tn1ss7au56rg0gl&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&docsetTargetAnchor=n1oca2m0hov8sxn10tuvzzv1vuud&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&docsetTargetAnchor=p1uteznfzary7wn0zweylak90vdx&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&docsetTargetAnchor=n0npaovpv71m2en1lvsvnbhgtjir&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&docsetTargetAnchor=n0npaovpv71m2en1lvsvnbhgtjir&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n07s2oezv7f654n1xkbrqlrianbf.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n07s2oezv7f654n1xkbrqlrianbf.htm&docsetTargetAnchor=n15uvxkgfzjstjn1sst1yscqan45&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n07s2oezv7f654n1xkbrqlrianbf.htm&docsetTargetAnchor=n15uvxkgfzjstjn1sst1yscqan45&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0lqeoja8lrizmn1f9ixkzk87f4r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0lqeoja8lrizmn1f9ixkzk87f4r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&docsetTargetAnchor=n14fbwxbx3cc8fn107wsijfvc7e7&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&docsetTargetAnchor=n14fbwxbx3cc8fn107wsijfvc7e7&locale=en

Block Plots
A block plot consists of rectangular strips at specific intervals along the X axis. The
intervals are provided in the plot data. Each block can display the X-axis boundary
value for that block. The block can also display an alternate text value for that X-axis
value that is also provided in the plot data. Here is a sample.

Use the BLOCKPLOT statement in GTL to generate a block plot.The BLOCKPLOT
statement syntax is described in “BLOCKPLOT” in SAS Graph Template Language:
Reference. For examples, see the following:

n “BlockPlot Overlaid with SeriesPlot” in SAS Graph Template Language:
Reference

n “Standalone BlockPlot in Lattice Layout” in SAS Graph Template Language:
Reference

Box Plots
A box plot summarizes the data and indicates the median, upper and lower
quartiles, and minimum and maximum values. The plot provides a quick visual
summary that easily shows center, spread, range, and any outliers. Here is a
sample.

Gallery of Basic Single-Cell Plots 65

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0ifwefyk3jw1fn1rjcdz5jfakiw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0ifwefyk3jw1fn1rjcdz5jfakiw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0ifwefyk3jw1fn1rjcdz5jfakiw.htm&docsetTargetAnchor=p0t8oxtrqtd90pn190j9jo1q3mqh&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0ifwefyk3jw1fn1rjcdz5jfakiw.htm&docsetTargetAnchor=p0t8oxtrqtd90pn190j9jo1q3mqh&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0ifwefyk3jw1fn1rjcdz5jfakiw.htm&docsetTargetAnchor=n1fywihvsiy2izn1brucykegxdl3&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0ifwefyk3jw1fn1rjcdz5jfakiw.htm&docsetTargetAnchor=n1fywihvsiy2izn1brucykegxdl3&locale=en

Use the BOXPLOT or BOXPLOTPARM statement to generate a box plot in GTL.
These statements can draw a vertical or horizontal schematic (Tukey) or skeletal
box plot representation. Labeled outliers can also be drawn. The BOXPLOT
statement draws a box plot from raw input data. It computes all of the values
needed to draw the plot. The BOXPLOT statement syntax is described in
“BOXPLOT” in SAS Graph Template Language: Reference. For examples, see the
following:

n “BOXPLOT” in SAS Graph Template Language: Reference

n “Box Plot of City MPG and Vehicle Type Grouped by Origin” in SAS Graph
Template Language: Reference

The BOXPLOTPARM statement draws a box plot from pre-computed data. It
provides no data transformation. The BOXPLOTPARM statement syntax is
described in “BOXPLOTPARM” in SAS Graph Template Language: Reference. For
an example, see “BOXPLOTPARM Statement” in SAS Graph Template Language:
Reference.

Bubble Plots
A bubble plot consists of X and Y values, which specify the location of the center of
each bubble, and the value of a third variable that determines the size of the bubble.
Here is a sample.

66 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0vuh82v39fsasn1vqhzmhdl8y16.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0vuh82v39fsasn1vqhzmhdl8y16.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0vuh82v39fsasn1vqhzmhdl8y16.htm&docsetTargetAnchor=p1hluzy2xmt2sxn19zzmzhvimlr5&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0vuh82v39fsasn1vqhzmhdl8y16.htm&docsetTargetAnchor=p1hluzy2xmt2sxn19zzmzhvimlr5&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1db7ll5bzyo4nn1pv31g04etput.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1db7ll5bzyo4nn1pv31g04etput.htm&docsetTargetAnchor=n0yr9vueuge5inn1skf383tgucp4&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1db7ll5bzyo4nn1pv31g04etput.htm&docsetTargetAnchor=n0yr9vueuge5inn1skf383tgucp4&locale=en

Use the BUBBLEPLOT statement to generate a bubble plot in GTL.The
BUBBLEPLOT statement syntax is described in “BUBBLEPLOT” in SAS Graph
Template Language: Reference. For an example, see “BUBBLEPLOT Statement” in
SAS Graph Template Language: Reference.

Contour Plots
A contour plot represents a three-dimensional surface by plotting Z values on a two-
dimensional format. The data provides the X, Y, and Z values. Here is a sample.

Use the CONTOURPLOTPARM statement to generate a contour plot in GTL. The
plot data provides the X, Y, and Z values. The CONTOURPLOTPARM statement
computes all of the values needed to draw the plot. You can choose from a variety
of contour types for your plot. This example shows the FILL contour type. The
CONTOURPLOTPARM statement syntax is described in “CONTOURPLOTPARM”

Gallery of Basic Single-Cell Plots 67

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p09jv39aa18zb6n11q79a0j6ww3o.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p09jv39aa18zb6n11q79a0j6ww3o.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p09jv39aa18zb6n11q79a0j6ww3o.htm&docsetTargetAnchor=n0dbdx0sfuye6zn1rch47267whc0&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p09jv39aa18zb6n11q79a0j6ww3o.htm&docsetTargetAnchor=n0dbdx0sfuye6zn1rch47267whc0&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n08rjwb09dl44cn1nqbhg4bt4k6f.htm&locale=en

in SAS Graph Template Language: Reference. For an example, see
“CONTOURPLOTPARM Statement” in SAS Graph Template Language: Reference.

Dendrograms
A dendrogram is a tree diagram that represents the results of a hierarchical
clustering analysis. Here is a sample.

Use the DENDROGRAM statement to generate a dendrogram in GTL. Typically, a
DENDROGRAM statement is used by itself in an OVERLAY layout. Reference lines
and band plots can be included in the layout with the DENDROGRAM statement.
However, including other plot statements in the layout can produce unexpected
results. The DENDROGRAM statement syntax is described in “DENDROGRAM” in
SAS Graph Template Language: Reference. For an example, see “DENDROGRAM
Statement” in SAS Graph Template Language: Reference.

Density Plots
A density plot creates a density curve that shows the distribution of values for a
numeric variable. The most common density plot uses the normal distribution, which
is defined by the mean and the standard deviation. Here is a sample.

68 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n08rjwb09dl44cn1nqbhg4bt4k6f.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n08rjwb09dl44cn1nqbhg4bt4k6f.htm&docsetTargetAnchor=n04v056hot0rpsn1r1lhu7jsgvjh&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0qku8rz53jyv8n1jwiv7cx4sj8h.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0qku8rz53jyv8n1jwiv7cx4sj8h.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0qku8rz53jyv8n1jwiv7cx4sj8h.htm&docsetTargetAnchor=n1ufqi2kavqsk4n1kk7vq13ue8k2&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0qku8rz53jyv8n1jwiv7cx4sj8h.htm&docsetTargetAnchor=n1ufqi2kavqsk4n1kk7vq13ue8k2&locale=en

Use the DENSITYPLOT statement to generate a univariate probability density curve
in GTL. You can specify a NORMAL or KERNEL distribution. The DENSITYPLOT
statement syntax is described in “DENSITYPLOT” in SAS Graph Template
Language: Reference. For examples, see the following:

n “Overlaid Density Plots” in SAS Graph Template Language: Reference

n “Density Plot and Histogram” in SAS Graph Template Language: Reference

Dot Plots
A dot plot displays horizontally the values of a category variable, which is typically a
statistic such as frequency or mean. Each category value is represented by a dot.
The plot can also display statistical limits for each value. Here is a sample.

Use the SUMMARY procedure to compute the desired statistic for your data. Use
the SCATTERPLOT statement with the MARKERATTRS= option to create the dot
plot. If you want to display statistical limits, add the XUPPERLIMIT= and

Gallery of Basic Single-Cell Plots 69

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nh9dhh759jrvn124sn8nn78fv5.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nh9dhh759jrvn124sn8nn78fv5.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nh9dhh759jrvn124sn8nn78fv5.htm&docsetTargetAnchor=n1tmhrcxpog6uhn1cpfi08mrwto0&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nh9dhh759jrvn124sn8nn78fv5.htm&docsetTargetAnchor=p0r960etowu592n1kyrejiag4ah1&locale=en

XLOWERLIMIT= options to your SCATTERPLOT statement. The SUMMARY
procedure syntax is described in “SUMMARY Procedure” in Base SAS Procedures
Guide. The SCATTERPLOT statement syntax is described in “SCATTERPLOT” in
SAS Graph Template Language: Reference. For an example, see “Dot Plot” in SAS
Graph Template Language: Reference.

Ellipse Plots
An ellipse plot creates a confidence or prediction elliptical curve computed from
input data. In order to produce useful output, the ellipse should be used with another
plot statement that uses numeric axes. Here is a sample.

Use the ELLIPSE or ELLIPSEPARM statement to generate an ellipse plot in GTL.
The ELLIPSE statement draws the ellipses from the plot data. It computes all of the
values needed to draw the ellipses. The ELLIPSE statement syntax is described in
“ELLIPSE” in SAS Graph Template Language: Reference. For examples, see the
following:

n “Prediction Ellipses” in SAS Graph Template Language: Reference

n “95% Confidence Ellipses by Plant Species” in SAS Graph Template Language:
Reference

The ELLIPSEPARM statement draws confidence ellipses from data that is
computed by another plot. A confidence ellipse must be overlaid with a plot that is
derived from the same data. Typically, it is overlaid with a scatter plot. The
ELLIPSEPARM statement syntax is described in “ELLIPSEPARM” in SAS Graph
Template Language: Reference. For an example, see “ELLIPSEPARM Statement”
in SAS Graph Template Language: Reference.

70 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0aq3hsvflztfzn1xa2wt6s35oy6.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0aq3hsvflztfzn1xa2wt6s35oy6.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p08qhdljvzthmnn1vkbule00ad6r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p08qhdljvzthmnn1vkbule00ad6r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p08qhdljvzthmnn1vkbule00ad6r.htm&docsetTargetAnchor=p19vk8h3terbl1n1c42ypw3hurtl&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p08qhdljvzthmnn1vkbule00ad6r.htm&docsetTargetAnchor=p19vk8h3terbl1n1c42ypw3hurtl&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n09bc2cfr7fk71n15k1szg4ybznw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n09bc2cfr7fk71n15k1szg4ybznw.htm&docsetTargetAnchor=n0wbwav9lw5c5gn1nxub6eij3353&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n09bc2cfr7fk71n15k1szg4ybznw.htm&docsetTargetAnchor=n0gwpi848tfkjyn1cvur0ra40rk7&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n09bc2cfr7fk71n15k1szg4ybznw.htm&docsetTargetAnchor=n0gwpi848tfkjyn1cvur0ra40rk7&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0ofcl9dx7lzh1n116ov51vocewg.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0ofcl9dx7lzh1n116ov51vocewg.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0ofcl9dx7lzh1n116ov51vocewg.htm&docsetTargetAnchor=n04z70mryfzkgcn1qlrj1q0gtuh6&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0ofcl9dx7lzh1n116ov51vocewg.htm&docsetTargetAnchor=n04z70mryfzkgcn1qlrj1q0gtuh6&locale=en

Fringe Plots
A fringe plot displays data values as a fringe on the X or X2 axis of the plot and
often is used to display each observation in the data. All of the fringe lines are of
equal length. Here is a sample.

Use the FRINGEPLOT statement to generate a fringe plot in GTL.The
FRINGEPLOT statement syntax is described in “FRINGEPLOT” in SAS Graph
Template Language: Reference. For an example, see “FRINGEPLOT Statement” in
SAS Graph Template Language: Reference.

Heat Maps
A heat map is a grid of rectangles in which the location of each rectangle is
determined by two independent variables. You can specify a third variable to
determine the color of each rectangle. Here is a sample.

Gallery of Basic Single-Cell Plots 71

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0t1z3qno9fv00n1wphqslpq3o6k.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0t1z3qno9fv00n1wphqslpq3o6k.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0t1z3qno9fv00n1wphqslpq3o6k.htm&docsetTargetAnchor=n1ak29te5uzv0nn1kjt6gb0iduc1&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0t1z3qno9fv00n1wphqslpq3o6k.htm&docsetTargetAnchor=n1ak29te5uzv0nn1kjt6gb0iduc1&locale=en

Use the HEATMAPPARM statement or, starting with SAS 9.4M3, the HEATMAP
statement to generate a heat map in GTL. The HEATMAP statement draws a heat
map from raw input data. It computes all of the values needed to draw the heat map.
The HEATMAP statement syntax is described in “HEATMAPPARM” in SAS Graph
Template Language: Reference. For an example, see “HEATMAP Statement” in
SAS Graph Template Language: Reference.

The HEATMAPPARM statement draws a heat map from pre-computed data. The
HEATMAPPARM statement syntax is described in “HEATMAP” in SAS Graph
Template Language: Reference. For an example, see “HEATMAPPARM Statement”
in SAS Graph Template Language: Reference.

High-Low Plots
A high-low plot creates a display of floating vertical or horizontal lines or bars that
represent high and low values for each value of a variable. Here is a sample.

72 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1tk3ztr6tkrkvn1p00zo7erklty.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1tk3ztr6tkrkvn1p00zo7erklty.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1xic0aty2w6y6n1fmnrpizfc4yw.htm&docsetTargetAnchor=p0qd3g7k0qxmhhn17q4sogodsnpk&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1xic0aty2w6y6n1fmnrpizfc4yw.htm&docsetTargetAnchor=p0qd3g7k0qxmhhn17q4sogodsnpk&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1xic0aty2w6y6n1fmnrpizfc4yw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1xic0aty2w6y6n1fmnrpizfc4yw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1tk3ztr6tkrkvn1p00zo7erklty.htm&docsetTargetAnchor=p0ja9v4gfhs2jqn1bwgiipny5rkr&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1tk3ztr6tkrkvn1p00zo7erklty.htm&docsetTargetAnchor=p0ja9v4gfhs2jqn1bwgiipny5rkr&locale=en

Use the HIGHLOWPLOT statement to generate a high-low plot in GTL. You can
choose lines or bars, and you can select from a variety of cap shapes for the ends
of the high and low lines or bars. You can also display labels and arrowheads for the
high and low values and tick marks for a specific variable value. The
HIGHLOWPLOT statement syntax is described in “HIGHLOWPLOT” in SAS Graph
Template Language: Reference. For examples, see the following:

n “Vertical High-low Chart” in SAS Graph Template Language: Reference

n “Horizontal High-low Chart” in SAS Graph Template Language: Reference

Histograms (Univariate)
A univariate histogram consists of a series of bins representing the frequency of a
variable over a discrete interval or class. You can also specify a group variable.
Here is a sample.

Use the HISTOGRAM or HISTOGRAMPARM statement to generate a histogram in
GTL. The HISTOGRAM statement draws a histogram from raw input data. It
computes all of the values needed to draw the histogram. The HISTOGRAM
statement syntax is described in “HISTOGRAM” in SAS Graph Template Language:
Reference. For examples, see the following:

n “Histogram of Vehicle Weight” in SAS Graph Template Language: Reference

n “Histogram of Highway Mileage Grouped by Origin” in SAS Graph Template
Language: Reference

The HISTOGRAMPARM statement draws a histogram from pre-computed data. It
provides no data transformation. The HISTOGRAMPARM statement syntax is
described in “HISTOGRAMPARM” in SAS Graph Template Language: Reference.
For an example, see “HISTOGRAMPARM Statement” in SAS Graph Template
Language: Reference.

Gallery of Basic Single-Cell Plots 73

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1g9mj2kf03fqxn18n4wekss5ky3.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1g9mj2kf03fqxn18n4wekss5ky3.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1g9mj2kf03fqxn18n4wekss5ky3.htm&docsetTargetAnchor=p05fwu1ohcqqzen12rxpehh39fp6&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1g9mj2kf03fqxn18n4wekss5ky3.htm&docsetTargetAnchor=p0lprod6bwzsutn1eeongeflrmuw&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p05m44lil3ubp3n1h73v30250own.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p05m44lil3ubp3n1h73v30250own.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p05m44lil3ubp3n1h73v30250own.htm&docsetTargetAnchor=n1btqvdum92js5n1qkrzdbk9c8d8&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p05m44lil3ubp3n1h73v30250own.htm&docsetTargetAnchor=p1nr4e2ty64r3hn1bb5w3g4j5g1x&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p05m44lil3ubp3n1h73v30250own.htm&docsetTargetAnchor=p1nr4e2ty64r3hn1bb5w3g4j5g1x&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1annoywcvho57n1icmu2fjmyerb.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1annoywcvho57n1icmu2fjmyerb.htm&docsetTargetAnchor=n1cw70yt50fq9rn18cnskllcvpp5&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1annoywcvho57n1icmu2fjmyerb.htm&docsetTargetAnchor=n1cw70yt50fq9rn18cnskllcvpp5&locale=en

Histograms (Bivariate)
A 3-D histogram is a three-dimensional bivariate histogram of three variables X, Y,
and Z, where the values of X and Y have already been gridded. The Z variable
represents a response value for the frequency, percentage counts, or densities of
each bin combination. Here is a sample.

Use the BIHISTOGRAM3DPARM statement to generate a bivariate histogram in
GTL. The plot data must be binned by both X and Y, and the Z variable values must
not be negative. The BIHISTOGRAMPARM statement syntax is described in
“BIHISTOGRAM3DPARM” in SAS Graph Template Language: Reference. For an
example, see “BIHISTOGRAM3DPARM Statement” in SAS Graph Template
Language: Reference.

Line Charts
A line chart consists of straight-line segments that connect consecutive data points
along an axis. You can use the line chart with a bar chart to create a horizontal bar-
line chart. Line charts can be horizontal or vertical. The area below each line can be
filled. Here is a sample.

74 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0yegmba4k5b80n16pzc7667ih88.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0yegmba4k5b80n16pzc7667ih88.htm&docsetTargetAnchor=p18ln29ao9brqpn16uv22whhmist&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0yegmba4k5b80n16pzc7667ih88.htm&docsetTargetAnchor=p18ln29ao9brqpn16uv22whhmist&locale=en

Use the LINECHART statement to generate a line chart in GTL. The LINECHART
statement syntax is described in “LINECHART” in SAS Graph Template Language:
Reference. For examples, see

n “Grouped Line Chart with Custom Line and Fill Attributes” in SAS Graph
Template Language: Reference

n “Grouped Line Chart with Discrete Attribute Map” in SAS Graph Template
Language: Reference

Loess Plots
A loess plot is a nonlinear fit line that enables you to perform locally weighted
polynomial regression. You can include a scatter plot of two numeric variables, and
you can include confidence limits. Here is a sample.

Gallery of Basic Single-Cell Plots 75

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0lqeoja8lrizmn1f9ixkzk87f4r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0lqeoja8lrizmn1f9ixkzk87f4r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0lqeoja8lrizmn1f9ixkzk87f4r.htm&docsetTargetAnchor=p0sdlc229ic25jn18gjb9f5cb9nf&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0lqeoja8lrizmn1f9ixkzk87f4r.htm&docsetTargetAnchor=p0sdlc229ic25jn18gjb9f5cb9nf&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0lqeoja8lrizmn1f9ixkzk87f4r.htm&docsetTargetAnchor=n0y0w2khgnw740n1vg87azugwa02&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0lqeoja8lrizmn1f9ixkzk87f4r.htm&docsetTargetAnchor=n0y0w2khgnw740n1vg87azugwa02&locale=en

Use the LOESSPLOT statement to generate a loess plot in GTL. The LOESSPLOT
statement supports only models of one independent and one dependent variable.
The LOESSPLOT statement syntax is described “LOESSPLOT” in SAS Graph
Template Language: Reference. For an example, see “LOESSPLOT Statement” in
SAS Graph Template Language: Reference.

Model Band Plots
A model band shows the confidence limits for an associated smoother plot such as
a regression plot. The model band must be associated with a smoother statement
that specifies a fitted model and a type of confidence level to compute. Here is a
sample.

Use the MODELBAND statement to generate a model band plot in GTL. The
MODELBAND statement must be associated with a smoother statement that
specifies a fitted model and a type of confidence level to compute. The
MODELBAND statement syntax is described in “MODELBAND” in SAS Graph
Template Language: Reference. For an example, see “MODELBAND Statement” in
SAS Graph Template Language: Reference.

Mosaic Plots
A mosaic plot displays relative frequencies for the categorical variables. Each
crossing of the categorical values is represented by a tile. The area of each tile is
proportional to the frequency of that crossing. The tile colors can be mapped to a
numeric variable. Here is a sample.

76 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1divky59xemdun1oj4g32usmsbu.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1divky59xemdun1oj4g32usmsbu.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1divky59xemdun1oj4g32usmsbu.htm&docsetTargetAnchor=p1wf92o8ef65zqn13ttye9zshhmw&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1divky59xemdun1oj4g32usmsbu.htm&docsetTargetAnchor=p1wf92o8ef65zqn13ttye9zshhmw&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1qkhyvgnqurs0n1lrz11awtnfzb.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1qkhyvgnqurs0n1lrz11awtnfzb.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1qkhyvgnqurs0n1lrz11awtnfzb.htm&docsetTargetAnchor=n1bzk4nv80rxjtn1dsxgaslr970i&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1qkhyvgnqurs0n1lrz11awtnfzb.htm&docsetTargetAnchor=n1bzk4nv80rxjtn1dsxgaslr970i&locale=en

Use the MOSAICPLOTPARM statement from pre-computed categorical data to
generate a mosaic plot in GTL. The MOSAICPLOTPARM statement must be placed
in a REGION, GRIDDED, or LATTICE layout. The MOSAICPLOTPARM statement
syntax is described in “MOSAICPLOTPARM” in SAS Graph Template Language:
Reference. For an example, see “MOSAICPLOTPARM Statement” in SAS Graph
Template Language: Reference.

Needle Plots
A needle plot uses vertical line segments, or needles, to connect each data point to
a baseline. Here is a sample.

Use the NEEDLEPLOT statement to generate a needle plot in GTL. The
NEEDLEPLOT statement syntax is described in “NEEDLEPLOT” in SAS Graph

Gallery of Basic Single-Cell Plots 77

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0v875tvdhv032n13en1gv9mcqxf.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0v875tvdhv032n13en1gv9mcqxf.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0v875tvdhv032n13en1gv9mcqxf.htm&docsetTargetAnchor=p0oxedcxtsz5bhn16sejzbmdyhfr&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0v875tvdhv032n13en1gv9mcqxf.htm&docsetTargetAnchor=p0oxedcxtsz5bhn16sejzbmdyhfr&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n00zj2enqq5bemn1nssxsfse0eav.htm&locale=en

Template Language: Reference. For an example, see “NEEDLEPLOT Statement” in
SAS Graph Template Language: Reference.

Penalized B-Spline Plots
A penalized B-spline plot supports models of one independent and one dependent
variable. The plot can compute confidence levels for the fit line. Here is a sample.

Use the PBSPLINEPLOT statement to generate a penalized B-spline plot in GTL.
The PBSPLINEPLOT statement supports only models of one independent and one
dependent variable. In addition to the penalized B-spline plot, the PBSPLINEPLOT
statement can compute confidence levels for the fit line. The PBSPLINEPLOT
statement syntax is described in “PBSPLINEPLOT” in SAS Graph Template
Language: Reference. For an example, see “PBSPLINEPLOT Statement” in SAS
Graph Template Language: Reference.

Pie Charts
A pie chart represents input data as slices on the pie. Here is a sample.

78 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n00zj2enqq5bemn1nssxsfse0eav.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n00zj2enqq5bemn1nssxsfse0eav.htm&docsetTargetAnchor=p10rwnexcv0qxtn1qmpk88c5r4ak&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n00zj2enqq5bemn1nssxsfse0eav.htm&docsetTargetAnchor=p10rwnexcv0qxtn1qmpk88c5r4ak&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n17h5vygws7508n1gyupx2bq6unr.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n17h5vygws7508n1gyupx2bq6unr.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n17h5vygws7508n1gyupx2bq6unr.htm&docsetTargetAnchor=n02y6bt8u0m4dcn1skpugydhx24w&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n17h5vygws7508n1gyupx2bq6unr.htm&docsetTargetAnchor=n02y6bt8u0m4dcn1skpugydhx24w&locale=en

Use the PIECHART statement to generate a pie chart in GTL. The PIECHART
statement must be placed in a REGION, GRIDDED, or LATTICE layout. You can
select the information that you want to display in each pie slice. The PIECHART
statement syntax is described in “PIECHART” in SAS Graph Template Language:
Reference. For an example, see “PIECHART Statement” in SAS Graph Template
Language: Reference.

Polygon Plots
A polygon plot contains one or more polygons. The polygons can be filled, outlined,
or both. They can also be labeled. The polygon plot is useful for drawing shapes on
your graphs that highlight data, outline boundaries, and so on. Here is a sample that
draws an outline of Wake County in North Carolina.

Use the POLYGONPLOT statement to generate s polygon plot in GTL.

Gallery of Basic Single-Cell Plots 79

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n156iuqrtmfqk5n1f8yye5xkgkir.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n156iuqrtmfqk5n1f8yye5xkgkir.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n156iuqrtmfqk5n1f8yye5xkgkir.htm&docsetTargetAnchor=n09vo5i3wkuuncn19pl1klj77cya&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n156iuqrtmfqk5n1f8yye5xkgkir.htm&docsetTargetAnchor=n09vo5i3wkuuncn19pl1klj77cya&locale=en

Note: This feature applies to SAS 9.4M1 and to later releases.

The POLYGONPLOT statement syntax is described in “POLYGONPLOT” in SAS
Graph Template Language: Reference. For examples, see the following:

n “Drawing a Simple Polygon That Highlights Data” in SAS Graph Template
Language: Reference

n “Drawing a Geographical Boundary” in SAS Graph Template Language:
Reference

Regression Plots
A regression plot includes a scatter plot of two numeric variables along with an
overlaid linear or nonlinear fit line that enables you to perform a regression analysis.
Here is a sample.

Use the REGRESSIONPLOT statement to generate a regression plot in GTL. The
REGRESSIONPLOT statement supports only models of one independent and one
dependent variable. You can specify one of three types of regression equation:
linear, quadratic, or cubic. In addition to the regression line, the
REGRESSIONPLOT statement can compute confidence levels for the fitted line.
The REGRESSIONPLOT statement syntax is described in “REGRESSIONPLOT” in
SAS Graph Template Language: Reference. For an example, see
“REGRESSIONPLOT Statement” in SAS Graph Template Language: Reference.

Scatter Plots
A scatter plot generates a marker for each observation that has nonmissing X and Y
values. Markers can be symbols or character strings. Symbol markers can be
labeled. Here is a sample.

80 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p17alv43g4tx1an13y14tsrnqrwr.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p17alv43g4tx1an13y14tsrnqrwr.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p17alv43g4tx1an13y14tsrnqrwr.htm&docsetTargetAnchor=p1v2rscxw6gt74n1j04ljo32rqrh&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p17alv43g4tx1an13y14tsrnqrwr.htm&docsetTargetAnchor=p1v2rscxw6gt74n1j04ljo32rqrh&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p17alv43g4tx1an13y14tsrnqrwr.htm&docsetTargetAnchor=p1q7u7tbv8lpt8n139lbsosd0ktn&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p17alv43g4tx1an13y14tsrnqrwr.htm&docsetTargetAnchor=p1q7u7tbv8lpt8n139lbsosd0ktn&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0capvje7a9ntmn1gebwnjo1x89k.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0capvje7a9ntmn1gebwnjo1x89k.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0capvje7a9ntmn1gebwnjo1x89k.htm&docsetTargetAnchor=p0gfntfoyyf9din17ox4v06rpc6l&locale=en

Use the SCATTERPLOT statement to generate a scatter plot in GTL. The
SCATTERPLOT statement syntax is described in “SCATTERPLOT” in SAS Graph
Template Language: Reference. For examples, see

n “Grouped Scatter Plot” in SAS Graph Template Language: Reference

n “Discrete Scatter Plot” in SAS Graph Template Language: Reference

Series Plots
A series plot displays a series of line segments that connect observations of input
data. It is typically used to show time-dependent data. Here is a sample.

Use the SERIESPLOT statement to generate a series plot in GTL. The
SERIESPLOT statement description is described in “SERIESPLOT” in SAS Graph
Template Language: Reference. For examples, see the following:

Gallery of Basic Single-Cell Plots 81

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p08qhdljvzthmnn1vkbule00ad6r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p08qhdljvzthmnn1vkbule00ad6r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p08qhdljvzthmnn1vkbule00ad6r.htm&docsetTargetAnchor=n01otmgu5p5j5bn1jxmar11yu9ym&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p08qhdljvzthmnn1vkbule00ad6r.htm&docsetTargetAnchor=p1ssijb6e1hmibn1idg3elgf0aoc&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0828kpaepwjmrn1u5xko4cjlqln.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0828kpaepwjmrn1u5xko4cjlqln.htm&locale=en

n “Overlay Series Plot” in SAS Graph Template Language: Reference

n “Grouped Series Plot” in SAS Graph Template Language: Reference

n “Series Plot with Line-Thickness Response and Arrowheads” in SAS Graph
Template Language: Reference

Spline Plots (Quadratic Bézier Curves)
A quadratic Bézier spline plot is a series plot with a quadratic Bézier spline
interpolation that produces smooth curves. Here is a sample.

Use the SERIESPLOT statement with the SPLINETYPE=QUADRATICBEZIER
option to generate a spline plot in GTL.The SERIESPLOT statement syntax is
described in “SERIESPLOT” in SAS Graph Template Language: Reference. For an
example, see “Series Plot with Quadratic Bézier Spline Curves” in SAS Graph
Template Language: Reference.

Step Plots
A step plot displays a series of horizontal and vertical line segments that connect
observations of input data. The plots use a step function to connect the data points.
The vertical line can change at each step. Here is a sample.

82 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0828kpaepwjmrn1u5xko4cjlqln.htm&docsetTargetAnchor=p0anh5rewdl1yvn14i1vyl84lb2o&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0828kpaepwjmrn1u5xko4cjlqln.htm&docsetTargetAnchor=n1dx5u1ojzds5bn1v9fryl07qhap&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0828kpaepwjmrn1u5xko4cjlqln.htm&docsetTargetAnchor=n1dj4e3av8buxan1rtp1sgfh2lq2&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0828kpaepwjmrn1u5xko4cjlqln.htm&docsetTargetAnchor=n1dj4e3av8buxan1rtp1sgfh2lq2&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0828kpaepwjmrn1u5xko4cjlqln.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0828kpaepwjmrn1u5xko4cjlqln.htm&docsetTargetAnchor=n0y07r97o36qg4n1qy2p9dc9oqyd&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0828kpaepwjmrn1u5xko4cjlqln.htm&docsetTargetAnchor=n0y07r97o36qg4n1qy2p9dc9oqyd&locale=en

Use the STEPPLOT statement to generate a step plot in GTL. The STEPPLOT
statement syntax is described in “STEPPLOT” in SAS Graph Template Language:
Reference. For an example, see “STEPPLOT Statement” in SAS Graph Template
Language: Reference.

Straight-Line Plot (Point and Slope)
A straight-line plot is a straight line of a specified slope and intercept point. Here is a
sample.

Use the LINEPARM statement to generate a straight-line chart in GTL. The X= and
Y= arguments specify the coordinates for the intercept point, and the SLOPE=
argument specifies the line slope. You can specify a numeric value or expression as
the argument value, or you can specify a numeric column as the argument value.
You must use the LINEPARM statement with another plot statement that establishes

Gallery of Basic Single-Cell Plots 83

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0f1a80wa5575dn1qp2sye0fri94.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0f1a80wa5575dn1qp2sye0fri94.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0f1a80wa5575dn1qp2sye0fri94.htm&docsetTargetAnchor=n0b0ihzq9sz3udn1x3m1o4lanwum&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0f1a80wa5575dn1qp2sye0fri94.htm&docsetTargetAnchor=n0b0ihzq9sz3udn1x3m1o4lanwum&locale=en

the axes. The LINEPARM statement syntax is described in “LINEPARM” in SAS
Graph Template Language: Reference. For an example, see “LINEPARM
Statement” in SAS Graph Template Language: Reference.

Surface Plots
A 3-D surface plot forms an evenly spaced grid of horizontal values (X and Y) and
one or more vertical values (Z) for each combination. Here is a sample.

Use the SURFACEPLOTPARM statement to generate a 3-D surface plot in GTL.
The input data should form an evenly spaced grid of horizontal values (X and Y) and
one or more vertical values (Z) for each combination. You can use the G3GRID
procedure (which requires a SAS/GRAPH license) to interpolate the necessary
values. The input data must be sorted by Y and X in order to obtain the correct
lighting. The SURFACEPLOTPARM statement syntax is described in
“SURFACEPLOTPARM” in SAS Graph Template Language: Reference. For an
example, see “Surface Plot” in SAS Graph Template Language: Reference.

Text Plots
A text plot displays the associated text values at X and Y locations in the graph. It is
similar to a scatter plot. The text can be numbers or characters. Here is a sample.

84 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0nnhv6s19a20dn1od3kjfb2yhgw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0nnhv6s19a20dn1od3kjfb2yhgw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0nnhv6s19a20dn1od3kjfb2yhgw.htm&docsetTargetAnchor=n1kjetgb5kmto4n1dwaqlfrkl7pu&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0nnhv6s19a20dn1od3kjfb2yhgw.htm&docsetTargetAnchor=n1kjetgb5kmto4n1dwaqlfrkl7pu&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n188jssh4n7v6hn1jx9mfdqu2cuw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n188jssh4n7v6hn1jx9mfdqu2cuw.htm&docsetTargetAnchor=n1tmhs53e04oz3n160pv6q7xqkvm&locale=en

Use the TEXTPLOT statement to generate a text plot in GTL. The input data
provides the text strings and their X and Y locations. By default, the text plot shows
the text strings only. The bounding box for each text string can be outlined, filled, or
both.

Note: This feature applies to SAS 9.4M2 and to later releases.

The TEXTPLOT statement syntax is described in “TEXTPLOT” in SAS Graph
Template Language: Reference. For an example, see “TEXTPLOT Statement” in
SAS Graph Template Language: Reference.

Vector Plots
A vector plot draws arrows from a point of origin to each data point. Vectors are
directed line segments. A vector plot uses vectors to represent both direction and
magnitude at each point. Here is a sample.

Gallery of Basic Single-Cell Plots 85

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nkiqzk2cqi1cn15phrkiop1j6t.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nkiqzk2cqi1cn15phrkiop1j6t.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nkiqzk2cqi1cn15phrkiop1j6t.htm&docsetTargetAnchor=n0xpd6vb53zdh5n1slxzvo8rs7nh&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nkiqzk2cqi1cn15phrkiop1j6t.htm&docsetTargetAnchor=n0xpd6vb53zdh5n1slxzvo8rs7nh&locale=en

In a vector plot, each vector starts at 0, 0 in the data space and is terminated with
an open arrowhead. Zero-length vectors are represented by a dot at the starting
point. Use the VECTORPLOT statement to generate a vector plot in GTL. The
VECTORPLOT statement syntax is described in “VECTORPLOT” in SAS Graph
Template Language: Reference. For an example, see “VECTORPLOT Statement” in
SAS Graph Template Language: Reference.

Waterfall Charts
A waterfall chart shows how the value of a variable increases or decreases until it
reaches a final value. A waterfall chart is often used to show credit and debit
transactions or successive changes to a given state. Here is a sample.

In the chart, bars represent an initial value of Y and a series of intermediate values
identified by X leading to a final value of Y. The bars are calculated from data that

86 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0kbxb6xovwq2bn1rl0hqpi2qcf9.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0kbxb6xovwq2bn1rl0hqpi2qcf9.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0kbxb6xovwq2bn1rl0hqpi2qcf9.htm&docsetTargetAnchor=n0pb9vru9bu3mbn1jq4cwoicd8a2&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0kbxb6xovwq2bn1rl0hqpi2qcf9.htm&docsetTargetAnchor=n0pb9vru9bu3mbn1jq4cwoicd8a2&locale=en

are called transaction bars. The transaction bars represent the values of the
RESPONSE variable across a series of intermediate values for the specified
CATEGORY variable. Use the WATERFALLCHART statement to generate a
waterfall chart in GTL.The WATERFALLCHART statement syntax is described in
“WATERFALLCHART” in SAS Graph Template Language: Reference. For an
example, see “WATERFALLCHART Statement” in SAS Graph Template Language:
Reference.

Gallery of Additional Plot Features

Axis-Aligned Tables

An axis-aligned table is generated by the AXISTABLE statement. The AXISTABLE
statement enables you to place values along the X or Y axis that are aligned with
the axis tick values. It offers more flexibility than the BLOCKPLOT statement, which
is used to denote changes in block values along the axis. The AXISTABLE
statement syntax is described in “AXISTABLE” in SAS Graph Template Language:
Reference. For an example, see “AXISTABLE Statement” in SAS Graph Template
Language: Reference.

Gallery of Additional Plot Features 87

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0t8mzfhzxjzy3n1l2geygphpxnl.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0t8mzfhzxjzy3n1l2geygphpxnl.htm&docsetTargetAnchor=n040akq661k6uln117tfu5401fm6&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0t8mzfhzxjzy3n1l2geygphpxnl.htm&docsetTargetAnchor=n040akq661k6uln117tfu5401fm6&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0v5nj3waz75w4n1s2y70echq6im.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0v5nj3waz75w4n1s2y70echq6im.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0v5nj3waz75w4n1s2y70echq6im.htm&docsetTargetAnchor=p00g80mot24ui5n1fbtq83fhj6ex&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0v5nj3waz75w4n1s2y70echq6im.htm&docsetTargetAnchor=p00g80mot24ui5n1fbtq83fhj6ex&locale=en

Drop Lines

Drop lines are drawn by the DROPLINE statement. A drop line is drawn
perpendicular from a specified point to the X (bottom), X2 (top), Y (left), or Y2 (right)
axis. You must use the DROPLINE statement with another plot statement that
establishes the axes. The DROPLINE statement syntax is described in “DROPLINE”
in SAS Graph Template Language: Reference. For an example, see “DROPLINE
Statement” in SAS Graph Template Language: Reference.

Reference Lines

88 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0jzauu6sjn7hwn1o1kmx6qdnerh.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0jzauu6sjn7hwn1o1kmx6qdnerh.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0jzauu6sjn7hwn1o1kmx6qdnerh.htm&docsetTargetAnchor=p114ojlokysjczn1rdpdt5k093m1&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0jzauu6sjn7hwn1o1kmx6qdnerh.htm&docsetTargetAnchor=p114ojlokysjczn1rdpdt5k093m1&locale=en

A reference line is drawn by the REFERENCELINE statement. Specifying the X=
option creates a line perpendicular to the X axis at an X-intercept. Specifying the Y=
option creates a line perpendicular to the Y axis at a Y-intercept. You must use the
REFERENCELINE statement with another plot statement that establishes the axes.
The REFERENCELINE statement syntax is described in “REFERENCELINE” in
SAS Graph Template Language: Reference. For examples, see the following:

n “Specifying a Single Reference Line” in SAS Graph Template Language:
Reference

n “Specifying Reference Lines Using Data Columns” in SAS Graph Template
Language: Reference

n “Specifying Reference Lines Using the COLN and COLC Functions” in SAS
Graph Template Language: Reference

Gallery of Multicell Graphs

Grid Graphs
A grid graph is a simple grid of similar or different plots. The plots are placed in cells
arranged in rows and columns. Columns have the same width and rows have the
same height, which means that each cell is of the same size. The plots in each cell
are independent of the other graphs in the grid. Here is an example.

Gallery of Multicell Graphs 89

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p03jtr6n56wu4ln1k77szqw1fjkc.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p03jtr6n56wu4ln1k77szqw1fjkc.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p03jtr6n56wu4ln1k77szqw1fjkc.htm&docsetTargetAnchor=n0pbfooama3tjcn1etj7sxeudtya&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p03jtr6n56wu4ln1k77szqw1fjkc.htm&docsetTargetAnchor=n0pbfooama3tjcn1etj7sxeudtya&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p03jtr6n56wu4ln1k77szqw1fjkc.htm&docsetTargetAnchor=p1wj00wxh1aujxn1q8xowflwcxtm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p03jtr6n56wu4ln1k77szqw1fjkc.htm&docsetTargetAnchor=p1wj00wxh1aujxn1q8xowflwcxtm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p03jtr6n56wu4ln1k77szqw1fjkc.htm&docsetTargetAnchor=n0upbig30pxgi0n17c54w2rvrqid&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p03jtr6n56wu4ln1k77szqw1fjkc.htm&docsetTargetAnchor=n0upbig30pxgi0n17c54w2rvrqid&locale=en

The GRIDDED layout can also be used with ENTRY statements to add one or more
inset tables of values to a graph. Use the LAYOUT GRIDDED statement to create a
gridded graph in GTL. The LAYOUT GRIDDED statement syntax is described in
“LAYOUT GRIDDED” in SAS Graph Template Language: Reference. For examples,
see the following:

n “Creating a 2-By-2 Grid of Plots” in SAS Graph Template Language: Reference

n “Creating an Inset” in SAS Graph Template Language: Reference

Scatter Plot Matrices
A scatter plot matrix is a panel graph of scatter plots for multiple combinations of
variables. You can overlay fit plots and ellipses on your scatter plots. Here is a
sample.

A pairwise matrix, shown in the sample, produces a symmetric scatter plot matrix
from a list of at least two variables. Use the SCATTERPLOTMATRIX statement to
generate a pairwise matrix of scatter plots in GTL. By default, the
SCATTERPLOTMATRIX statement produces a symmetric scatter plot matrix from a
list of at least two variables. The columns of the matrix are in the same left-to-right
order as the column list. The rows of the matrix are in the same bottom-to-top order
as the column list. You can reverse the order. You must place the
SCATTERPLOTMATRIX statement in a GRIDDED layout block.

The SCATTERPLOTMATRIX statement syntax is described in
“SCATTERPLOTMATRIX” in SAS Graph Template Language: Reference. For an
example, see “SCATTERPLOTMATRIX Statement” in SAS Graph Template
Language: Reference.

90 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1h7wd5z8ihewzn1vy7htk5tu7nr.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1h7wd5z8ihewzn1vy7htk5tu7nr.htm&docsetTargetAnchor=n0i4e8zlkvabzsn11wy9kh254ejz&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1h7wd5z8ihewzn1vy7htk5tu7nr.htm&docsetTargetAnchor=n04rqc39s8kajjn191rnv3f3095w&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0b7il0hl6pxben1jdkf3yy91kpb.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0b7il0hl6pxben1jdkf3yy91kpb.htm&docsetTargetAnchor=n010a3kfwda0qhn1llswrrvzmoi5&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0b7il0hl6pxben1jdkf3yy91kpb.htm&docsetTargetAnchor=n010a3kfwda0qhn1llswrrvzmoi5&locale=en

Lattice Graphs
A lattice graph is a lattice of similar or different graphs. The graphs are placed in
cells arranged in rows and columns. By default, columns are of the same width and
rows are of the same height. However, you can alter the width of individual columns
and the height of individual rows to vary cell sizes. The graphs in each cell can be
independent or they can share common axes with the other graphs in the lattice.
Here is an example.

In this example, the graphs in the lattice share common row and column axes, and
the rows have different heights. Use the LAYOUT LATTICE statement to generate a
latticed graph in GTL. The LAYOUT LATTICE statement syntax is described in
“LAYOUT LATTICE” in SAS Graph Template Language: Reference. For examples,
see the following:

n “Lattice with Internal Axes” in SAS Graph Template Language: Reference

n “Lattice with Row and Column Axes” in SAS Graph Template Language:
Reference

n “Lattice with Sidebar” in SAS Graph Template Language: Reference

Data-Driven Lattice Graphs
A data-driven lattice graph is a lattice of similar graphs that is generated from a row
variable and a column variable. The graph in each cell is defined by a graph
prototype. The row and column variable values that intersect a cell are used to

Gallery of Multicell Graphs 91

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0n10xwfn3h4hnn10v5joeerd9m8.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0n10xwfn3h4hnn10v5joeerd9m8.htm&docsetTargetAnchor=p0z5nlcjy9hsnxn1ibiivnshllel&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0n10xwfn3h4hnn10v5joeerd9m8.htm&docsetTargetAnchor=p16u126we3dwzcn1nxil6fs9vtxi&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0n10xwfn3h4hnn10v5joeerd9m8.htm&docsetTargetAnchor=p16u126we3dwzcn1nxil6fs9vtxi&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0n10xwfn3h4hnn10v5joeerd9m8.htm&docsetTargetAnchor=n19chs9utmv74gn1o3ohneib5nqt&locale=en

generate the graph in that cell from the prototype. The graphs in the lattice share
common row and column axes. Here is an example.

Column and row headers indicate the values of the column and row variables for
each cell. Use the LAYOUT DATALATTICE statement to generate a data-driven
lattice graph in GTL. The LAYOUT DATALATTICE statement syntax is described in
“LAYOUT DATALATTICE” in SAS Graph Template Language: Reference. For an
example, see “LAYOUT DATALATTICE” in SAS Graph Template Language:
Reference.

Data-Driven Panel Graphs
A data-driven panel graph is a panel of similar graphs that is generated from one or
more classification variables. The graph in each cell is defined by a graph prototype.
The classification variable values for a cell are used to generate the graph in that
cell from the prototype. The graphs in the panel share common row and column
axes. Here is an example.

92 Chapter 10 / Gallery of the GTL Plots

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rp226kgxokujn128n7sc7jrp24.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rp226kgxokujn128n7sc7jrp24.htm&docsetTargetAnchor=p1g5rrnk8mk2shn1m5u5fnvcds4s&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rp226kgxokujn128n7sc7jrp24.htm&docsetTargetAnchor=p1g5rrnk8mk2shn1m5u5fnvcds4s&locale=en

A header for each cell indicates the values of the classification variables that were
used to generate the graph in that cell. Use the LAYOUT DATAPANEL statement to
generate a data-driven panel graph in GTL. The LAYOUT DATAPANEL statement
syntax is described in “LAYOUT DATAPANEL” in SAS Graph Template Language:
Reference. For an example, see “LAYOUTDATAPANEL Statement” in SAS Graph
Template Language: Reference.

Gallery of Multicell Graphs 93

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0xhh0203fgmhpn1527ditpuzlf1.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0xhh0203fgmhpn1527ditpuzlf1.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0xhh0203fgmhpn1527ditpuzlf1.htm&docsetTargetAnchor=n0dbvfxtldgwhxn1j36nwbxxx0nn&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0xhh0203fgmhpn1527ditpuzlf1.htm&docsetTargetAnchor=n0dbvfxtldgwhxn1j36nwbxxx0nn&locale=en

94 Chapter 10 / Gallery of the GTL Plots

PART 4

Creating Graphs Using GTL

Chapter 11
Creating Overlay Graphs Using the OVERLAY Layout 97

Chapter 12
Creating Overlay Graphs with Equated Axes Using the
OVERLAYEQUATED Layout . 177

Chapter 13
Creating Overlay 3-D Graphs Using the OVERLAY3D Layout 187

Chapter 14
Creating Gridded Graphs Using the GRIDDED Layout 207

Chapter 15
Creating Lattice Graphs Using the LATTICE Layout 221

Chapter 16
Creating Classification Panels Using the
DATALATTICE and DATAPANEL Layouts . 255

Chapter 17
Creating Graphs with No Axis Using the REGION Layout 303

Chapter 18
Plotting a SAS Cloud Analytic Services (CAS) In-Memory Table 309

95

96

11
Creating Overlay Graphs Using
the OVERLAY Layout

The LAYOUT OVERLAY Statement . 98

Statements You Can Use in an OVERLAY Block . 99

Restrictions on Allowed Statements . 99

Restrictions on Statement Combinations . 100

Statement Order . 102

Managing Axes in OVERLAY Layouts . 103
Overview . 103
Axis Terminology . 103
How Plot Statements Affect Axis Construction . 104
Avoiding Plot Axis Conflicts . 108
Axis Line versus Wall Outline . 109
Axis Appearance Features Controlled by the Current Style . 112
Specifying Axis Options . 113
Axis Type . 115
Axis Data Range . 117
Axis Labels . 117
Axis Tick Values . 125
Axis Thresholds . 125
Axis Offsets . 129
LINEAR Axes . 131
Discrete Axes . 140
TIME Axes . 151
LOG Axes . 158

Avoiding Plot Data Conflicts . 165

Overlay Examples . 166
Vertical and Horizontal Bar-Line Charts . 166
Plot with Multiple Axes . 169
Plot with Fit Line . 170
Plot with Fit Line with Confidence Bands . 171
Plot of Grouped Data . 173
Using Overlays to Graph Multiple Response Variables . 174

97

Plot with Insets . 175
Plot Appearance . 175

The LAYOUT OVERLAY Statement
The LAYOUT OVERLAY statement builds a 2-D, single-cell graph by overlaying the
results of the statements that are contained in the layout block. This layout is one of
several possible layout containers in GTL. Other chapters provide detailed
information about the other layout types. It is recommended that you learn about this
type of layout first, because most of the other layout chapters contrast their feature
sets with those of the OVERLAY layout.

The outermost layout block of any template defines the content of the graphical
area, which is represented in the following schematic:

The graph in this next figure was defined by an OVERLAY layout with its border
turned on. The layout contains a simple scatter plot. The boundaries of the layout
container are shown by a light gray border. Everything within this border is managed
by the layout.

The OVERLAY layout container controls the following:

n which statements (plot, legend, text) can be included in the layout block

n which statements can be combined in the plot area bounded by the axes

n various axis features such as the following:

98 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

o which axes are used (there are four available: X and Y, as well X2 and Y2)

o which axis types are used (axis types are LINEAR, DISCRETE, LOG, and
TIME)

o axis label, axis data range, ticks, and tick values

o other axis features such as offsets

n border, padding, and background properties

n positioning and alignment of all contained plots, text, legends, and nested
layouts

n default appearance of the generated plots (CYCLEATTRS= option)

n the aspect ratio of the rectangular area of the plot wall (ASPECTRATIO= option)

The layout container also queries the contained statements for options that might
change the default internal rules for combining plots.

Statements You Can Use in an
OVERLAY Block

If you were to randomly place GTL statements within a LAYOUT OVERLAY block,
you would often get compile errors. The following basic rules indicate which
statements can be used within the layout block:

n All 2-D plot statements except SCATTERPLOTMATRIX can be used.

n Statements such as ENTRY, DISCRETELEGEND, and CONTINUOUSLEGEND
can be used.

n GRIDDED, LATTICE, REGION, and overlay-type layout blocks can be nested.

Restrictions on Allowed Statements
Even among the statements that are valid within an OVERLAY layout, some
restrictions apply to their use. For example, some dependent statements must be
accompanied by at least one standalone plot statement, such as SCATTERPLOT or
SERIESPLOT, in order to produce a usable graph. See Chapter 6, “Overview of the
GTL Statements,” on page 31 for lists of standalone and dependent statements.

For example, if you execute the following template, it produces an empty graph.

proc template;
 define statgraph test;
 begingraph;
 layout overlay;
 referenceline x=10;
 endlayout;

Restrictions on Allowed Statements 99

 endgraph;
 end;
run;
proc sgrender data=sashelp.class template=test;
run;

The following message also appears in the SAS log:

WARNING: A blank graph is produced. For possible causes, see the graphics
 template language documentation.

A REFERENCELINE statement can be used only within 2-D overlay-type layouts
(OVERLAY, OVERLAYEQUATED, or PROTOTYPE) with a standalone plot
statement. (See “REFERENCELINE” in SAS Graph Template Language:
Reference.) The standalone plot statement must provide an axis data range that is
sufficient for determining the reference line axis extents. In this example, a
standalone plot is not provided in the REFERENCELINE statement’s layout. As a
result, the reference line position cannot be determined.

Restrictions on Statement Combinations
Certain combinations of contained statements produce unexpected results.
Consider the template in the following example.

Example Code 11.1 Statement Combination Example

proc template;
 define statgraph test;
 begingraph;
 layout overlay;
 linechart category=age response=weight;
 regressionplot x=age y=weight;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=test;
run;

When this template is executed, the following message is written to the SAS log:

WARNING: REGRESSIONPLOT statement cannot be placed under a layout OVERLAY with a
 discrete axis. The plot will not be drawn.

When multiple statements that potentially contribute to axis construction are placed
in the layout, the layout must verify that all data that is mapped to a particular axis is
of the same type (all numeric, or all character, or all time). In addition, the layout
must verify that each plot can use the requested axis types. In this example, the first
statement in the layout is LINECHART. The LINECHART statement treats the
CATEGORY=column as a categorical variable (regardless of data type) and builds a
DISCRETE (categorical) axis. Because LINECHART is the first statement in this
example layout, it determines the layout’s X-axis type, which is discrete in this case.

100 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p03jtr6n56wu4ln1k77szqw1fjkc.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p03jtr6n56wu4ln1k77szqw1fjkc.htm&locale=en

Subsequent plots must be compatible with a discrete X axis. The end result of this
example is a graph containing only the box plot output.

Many computed plots, such as REGRESSIONPLOT, LOESSPLOT, and ELLIPSE,
require both X and Y axes to be of LINEAR type, which is a standard numeric
interval axis type. If this example specified the SCATTERPLOT statement instead of
REGRESSIONPLOT, no warning would be issued because a scatter plot can be
displayed on either a discrete or linear X and Y axis.

In the following layout block, the REGRESSIONPLOT and LINECHART statements
have been switched.

layout overlay;
 regressionplot x=age y=weight;
 linechart category=age response=weight;
endlayout;

When the template in Example Code 11.1 on page 100 is executed with this layout
block, the following message is written to the SAS log:

WARNING: LINECHART statement has a conflict with the axis type. The plot will not be
drawn.

In this case, the REGRESSIONPLOT statement (first plot) has fixed the type of the
X axis to be linear. Now the LINECHART statement is blocked because it needs a
discrete X axis. The end result of this example is a graph containing only the
regression line.

Even though a SCATTERPLOT can be included on either LINEAR or DISCRETE
axes, the combination in the following layout block is not valid:

layout overlay;
 scatterplot x=age y=weight;
 linechart category=age response=weight;
endlayout;

When the template in Example Code 11.1 on page 100 is executed with this layout
block, the following message is written to the SAS log:

WARNING: LINECHART statement has a conflict with the axis type. The plot will not be
drawn.

In this case, the SCATTERPLOT statement sets the X- or Y-axis type to be linear if
the variable for that axis is numeric—even though the data might be categorical in
nature. However, if the variable is character, the SCATTERPLOT statement requires
a discrete axis. Therefore, the LINECHART is not displayed. If you switch the
statements, both plots are drawn because after the X axis is fixed to be discrete, the
scatter plot can display numeric values on a discrete axis.

When a character variable is used, the axis-type conflict often does not arise. The
combination in the following layout block works regardless of statement order.

layout overlay;
 scatterplot x=sex y=weight;
 linechart category=age response=weight;
endlayout;

In either case, the discrete X axis displays a combination of Age values with a line
above and Sex values with scatter points above.

Restrictions on Statement Combinations 101

Statement Order
The order in which you specify the plots within the LAYOUT OVERLAY block is
important. The first plot that you specify in the layout block is drawn first. The
second plot that you specify is then added on top of the first plot, and so on. It is
possible for one plot's data to obscure the data beneath it. This situation is most
likely when you are working with plots that produce filled areas, such as histograms
and band plots. For example, the following template specifies the MODELBAND
statement after the SCATTERPLOT and REGRESSIONPLOT statements.

proc template;
 define statgraph carsprofile;
 begingraph;
 entrytitle "Model Weight by Height";
 layout overlay;
 scatterplot x=height y=weight;
 regressionplot x=height y=weight /
 cli="cli";
 modelband "cli";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=carsprofile;
run;

Here is the output.

The filled model band plot is drawn after the scatter plot and regression plot, so the
band plot obscures the data beneath it. To avoid this problem, specify the model
band plot first. Another way to solve this problem is to make the model band plot
partially transparent. Then the scatter plot markers and the regression line show
through the band plot. However, as a best practice, specify any plot that creates
filled areas first in the template definition, before you specify other graph elements.

102 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Managing Axes in OVERLAY Layouts

Overview
When you write GTL programs, all axes are automatically managed for you. For
example, in a LAYOUT OVERLAY block, the overlay container decides the following
characteristics:

n which axes are displayed

n the axis type of each axis (linear, time, and so on)

n the data range of each axis

n the label of the axis

n other axis characteristics, some of which are derived from the current style

Usually, the internal techniques that are used to manage axes produce good default
axes. Occasionally, you might find some feature that you want to change. Layout
statements provide many axis options that change the default axis behavior. This
chapter shows how axes are managed by default and the programming options that
are available to you for changing that behavior.

Note: This chapter discusses axis features that are specific to an OVERLAY layout
when it is the outermost layout and not nested in another layout. Nesting layouts
sometimes causes interactions that affect the axis features. You should read this
chapter before reading about other layout types because this chapter provides the
basic principles of axis management. Be aware, though, that the other layout types
(for example, OVERLAYEQUATED, OVERLAY3D, LATTICE, DATAPANEL, and
DATALATTICE) also control axes. Many of these layouts have similar although not
identical options to the OVERLAY layout. See the chapters on these other layouts
for detailed discussions on how they manage axes.

Axis Terminology
The OVERLAY container has up to four independent axes (X, Y, X2, Y2) that can be
used in various combinations. Each axis has the following features, which can be
selectively displayed using the option or setting that is shown in parentheses:

n axis line (LINE)

n axis label (LABEL)

n tick marks (TICKS)

n tick values (TICKVALUES)

Managing Axes in OVERLAY Layouts 103

n grid lines drawn perpendicular to the axis at tick marks (GRIDDISPLAY=)

n gaps at the beginning and end of the axis (OFFSETMIN= and OFFSETMAX=)

The following figure identifies the axis features in a typical plot.

1 Y axis

2 Y-axis label

3 Tick mark

4 Tick value

5 X-axis minimum offset

6 X axis

7 Axis grid lines

8 X-axis maximum offset

9 Y2 axis

10 X2 axis

How Plot Statements Affect Axis Construction
Primary and Secondary Axes. The LAYOUT OVERLAY container supports two
horizontal (X and X2) and two vertical (Y and Y2) axes. The bottom axis (X) and the
left axis (Y) are the default axes, referred to as the primary axes. The top axis (X2)
and the right axis (Y2) are referred to as the secondary axes and are displayed only
if they are requested. Consider the following data:

104 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Example Code 11.2 Temperature Data

data temps;
 input City $1-11 Country :$9. Fahrenheit;
 Celsius= (fahrenheit-32)*(5/9);
 cards;
New York USA 52
Sydney Australia 53
Mexico City Mexico 64
Paris France 47
Tokyo Japan 43
;
run;

The following example plots the city and Fahrenheit temperature on the X and Y
axes.

proc template;
 define statgraph axesXY;
 begingraph;
 entrytitle "X and Y Axes";
 layout overlay;
 scatterplot x=City y=Fahrenheit;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=temps template=axesXY;
run;

Here is the output.

Explicitly, the layout block means the following:

layout overlay;
 scatterplot x=city y=fahrenheit / xaxis=x yaxis=y;
endlayout;

The defaults result in an XY plot having only two axes, X and Y. However, you can
request that either the X or Y columns be mapped to the X2 or Y2 axis. The XAXIS=
option can be set to X or X2. Similarly, the YAXIS= option can be set to Y or Y2. The
following layout block specifies the X2 and Y2 axes.

layout overlay;

Managing Axes in OVERLAY Layouts 105

 scatterplot x=city y=fahrenheit / xaxis=x2 yaxis=y2;
endlayout;

Here is example output.

A single plot statement can activate one horizontal and one vertical axis. It cannot
activate both horizontal or both vertical axes. Thus, to see both a Y and Y2 axis
based on the same Y column, you could specify an additional plot statement as
shown in the following layout block.

layout overlay;
 scatterplot x=city y=fahrenheit / xaxis=x yaxis=y;
 scatterplot x=city y=fahrenheit / xaxis=x yaxis=y2;
endlayout;

This layout block can be more compactly written as follows:

layout overlay;
 scatterplot x=city y=fahrenheit;
 scatterplot x=city y=fahrenheit / yaxis=y2;
endlayout;

Here is example output.

Note that this coding produces two overlaid scatter plots and that each plot has five
markers. Because the five (X,Y) value pairs and the five (X,Y2) value pairs are
identical, the Y and Y2 axes are identical and the markers are exactly
superimposed. However, it is not necessary to create a second plot when you want

106 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

the secondary axis to be a duplicate of the primary axis. A more direct way to
accomplish this is shown in “Specifying Axis Options” on page 113.

The next two examples show the independent nature of primary and secondary
axes. In each case, a different data column is mapped to the Y and Y2 axes. In the
following example layout block, even though the Y and Y2 columns are different, the
primary and secondary Y axes represent the same data range in different units.

layout overlay / yaxisopts=(griddisplay=on);
 scatterplot x=City y=Fahrenheit;
 scatterplot x=City y=Celsius / datatransparency=1 yaxis=y2;
endlayout;

Here is example output.

In such cases, the positioning of the tick values on each axis should be coordinated
so that the grid lines represent the same temperature on each axis. “Axis
Thresholds” on page 125 provides example code that shows how to coordinate the
tick value positions.

In the following example, the primary and secondary Y axes represent different data
ranges.

proc template;
 define statgraph overlayaxes.axesYY2;
 begingraph;
 entrytitle "Y and Y2 Axes Use Different Data";
 layout overlay / cycleattrs=true xaxisopts=(display=(tickvalues))
 y2axisopts=(offsetmin=0 label="Volume (millions of shares)");
 seriesplot x=date y=close / lineattrs=(pattern=solid
thickness=2);
 needleplot x=date y=eval(volume/10**6) /
 lineattrs=(pattern=solid thickness=2) yaxis=y2;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.stocks template=overlayaxes.axesYY2;
 where year(date)=2005 and Stock="IBM";
 format volume 3.;
 label close="Price";
run;

Managing Axes in OVERLAY Layouts 107

Here is the output.

The primary and secondary Y axes are independently scaled and there is not a
necessary connection between the units or data ranges of either axis.

Avoiding Plot Axis Conflicts
In GTL, it is important to know what types of axes a given plot requires or can
support. If you understand the basic ideas behind previous examples, you can use
the following additional GTL syntax to avoid some of the problems caused by the
first plot statement deciding the axis type:

n Use the PRIMARY=TRUE option in a plot statement to ensure that plot is used
to determine the axis type.

n Declare an axis type in the layout block.

Most non-dependent plot statements support the PRIMARY= option. By default,
PRIMARY=TRUE for the first plot and PRIMARY=FALSE for the rest of the plots in
the layout. On a per-axis basis, only one plot in an overlay can use
PRIMARY=TRUE. If multiple plots specify PRIMARY=TRUE for the same axis, the
last one encountered is considered primary. The plot that is designated as primary
by default defines the axis types for the axes that it uses, regardless of its order
within the layout block. This is useful when you want a certain stacking order for the
plots, but do not want the first plot to set the axis features, such as axis type and
default axis label.

In the following layout block, the BARCHART sets the X axis to be DISCRETE and
the Y axis to be LINEAR:

layout overlay;
 scatterplot x=age y=weight;
 barchart category=age response=weight / primary=true;
endlayout;

All layouts that manage axes provide options that enable you to control the axis
features. The following layout block shows how to declare an axis type for the X
axis.

layout overlay / xaxisopts=(type=discrete);
 scatterplot x=age y=weight;

108 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

 barchart category=age response=weight;
endlayout;

Any plot in the layout that cannot support a discrete axis will be dropped. Also note
that specifying an axis type overrides the default axis type that is derived from the
primary plot. Axis options are discussed in “Specifying Axis Options” on page 113.

Some plot combinations can never be used. A histogram and bar chart look similar,
but they have different data and axis requirements. The histogram must use a linear
X axis and the bar chart must use a discrete X axis. The two plot types can never be
overlaid as shown in the following layout block.

layout overlay;
 barchart category=age;
 histogram age;
endlayout;

When this template code is executed, the following message is written to the SAS
log:

WARNING: HISTOGRAM statement has a conflict with the axis type. The plot will not be
drawn.

Reversing the order of the plot statements as shown in the following layout block
also does not work.

layout overlay;
 histogram age;
 barchart category=age;
endlayout;

When this template code is executed, the following message is written to the SAS
log:

WARNING: BARCHART statement has a conflict with the axis type. The plot will not be
drawn.

Axis Line versus Wall Outline
The area bounded by the X, Y, X2, and Y2 axes is called the Wall Area or simply the
Wall. The wall consists of a filled area (FILL) and a boundary line (OUTLINE). The
display of the Wall is independent of the display of axes. When both are displayed,
the axes are placed on top of the wall outline. Most frequently, your plots use only
the X and Y axes, not X2 or Y2.

By default, you see lines that look like X2 and Y2 axis lines, but they are not axis
lines. They are the lines of the wall outline, which happens to be the same color and
thickness as the axis lines. This can be made apparent by assigning different visual
properties to the wall outline and the axis lines.

The GraphAxisLines style element controls the appearance of all axis lines, and the
GraphWalls style element controls the wall. The following example shows how you
can change the appearance of the axes and wall with a style template. In the
template code, the PROC TEMPLATE block defines a style named AXIS_WALL,
and then the ODS HTML statements sets the AXIS_WALL style as the active style
for output that is directed to the HTML destination:

Managing Axes in OVERLAY Layouts 109

/* Specify a path for the ODS output */
filename odsout "output-path";

proc template;
 define style Styles.axis_wall_style;
 parent=styles.htmlblue;
 style graphwalls from graphwalls /
 frameborder=on
 linestyle=1
 linethickness=2px
 backgroundcolor=GraphColors("gwalls")
 contrastcolor= orange;
 style graphaxislines from graphaxislines /
 linestyle=1
 linethickness=2px
 contrastcolor=blue;
 end;
run;

ods _all_ close;
ods html path=odsout file="AxisWallStyle.html" style=axis_wall_style;

If the following code is executed while the AXIS_WALL style is in effect, you would
be able to see that the axis lines are distinct from the wall outlines.

proc template;
 define statgraph axis_wall1;
 begingraph / border=true;
 entrytitle textattrs=(color=blue) "Axis Line "
 textattrs=(color=orange) "Wall Outline";
 layout overlay / walldisplay=(fill outline);
 scatterplot x=City y=Fahrenheit / datatransparency=.5;
 entry textattrs=(color=green) "(Wall Area)";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=temps template=axis_wall1;
run;
ods html close;
ods html; /* Not required in SAS Studio */

Note: See Example Code 11.2 on page 105.

Here is the output.

110 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Most styles set the axis lines and the wall outline to be the same color, line pattern,
and thickness, so it is impossible to see the difference. Sometimes you might not
want to see the wall outline, or you might want to change the wall color. These types
of changes can be set in a custom style or with the WALLDISPLAY= option on the
LAYOUT OVERLAY statement. For example, the GTL default for the wall is to
display the wall fill and outline. The following code fragment shows how to use the
style template to turn off the wall outline:

 style GraphWalls from GraphWalls /
 frameborder=off;

Unless the WALLDISPLAY= option is specified in the LAYOUT OVERLAY
statement, the FRAMEBORDER=OFF attribute in the style turns off the wall outline.
This next code fragment shows how to use the WALLDISPLAY= option on the
LAYOUT OVERLAY statement to turn off the wall outline:

layout overlay / walldisplay=(fill);

Here is an example.

The WALLDISPLAY= option overrides the FRAMEBORDER= attribute in the current
style.

Managing Axes in OVERLAY Layouts 111

Axis Appearance Features Controlled by the
Current Style

The appearance of graphs produced with GTL is always affected by the ODS style
that is in effect for the ODS destination. From an axis perspective, the default
appearance of the axis line, ticks, tick values, axis label, and grid lines are controlled
by predefined style elements.

Style Element Style Attributes Values Controls

GraphAxisLines TickDisplay "ACROSS" "INSIDE"
"OUTSIDE"

Tick mark location

LineStyle Integer: 1 to 49 Axis line pattern

LineThickness Dimension Axis line and tick
thickness

ContrastColor Color Axis line and tick color

GraphGridlines DisplayOpts "AUTO" "ON" "OFF" When to display grid
lines

LineStyle Integer: 1 to 49 Grid line pattern

LineThickness Dimension Grid line thickness

ContrastColor Color Grid line color

GraphLabelText Color Color Axis label text color

Font font-specification1 Axis label font

GraphValueText Color Color Axis tick value text color

Font font-specification1 Axis tick value font

1 A style font-specification includes attributes for FONTFAMILY, FONTWEIGHT, FONTSTYLE, and
FONTSIZE.

The following GTL axis options also control the appearance of axis features. When
you include these options, the corresponding information from the current style is
overridden.

Option Overrides ...

GRIDDISPLAY= DisplayOpts attribute of GraphGridLines

112 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Option Overrides ...

GRIDATTRS= GraphGridLines

LABELATTRS= GraphLabelText

TICKVALUEATTRS= GraphValueText

TICKSTYLE= TickDisplay attribute of GraphAxisLines

Here are some examples.

n The following example displays the label text in bold:

layout overlay / xaxisopts=(labelattrs=(weight=bold))
 yaxisopts=(labelattrs=(weight=bold));

n The following example displays grid lines:

layout overlay / xaxisopts=(griddisplay=on)
 yaxisopts=(griddisplay=on);

n The following example specifies a dot pattern for grid lines:

layout overlay / xaxisopts=(griddisplay=on gridattrs=(pattern=dot))
 yaxisopts=(griddisplay=on gridattrs=(pattern=dot));

n The following example makes the ticks cross the axes lines:

layout overlay / xaxisopts=(tickstyle=across)
 yaxisopts=(tickstyle=across);

For all of the preceding examples, you would add similar coding to the
X2AXISOPTS= and Y2AXISOPTS= options if the X2 or Y2 axes are used as
independent scales. For complete documentation on the axis options that are
available, see the SAS Graph Template Language: Reference.

Specifying Axis Options
To set axis options on the LAYOUT OVERLAY statement, you use the following
syntax:

layout overlay / xaxisopts =(options) yaxisopts =(options)
 x2axisopts=(options) y2axisopts=(options);

Notice that each axis has its own separate set of options, and that the option
specifications must be enclosed in parentheses. GTL frequently uses parentheses
to bundle options that modify a specific feature. These are called "option bundles." If
you specify the X2AXISOPTS= or Y2AXISOPTS= options but there is no data
mapped to these axes, the option bundles are ignored.

One of the basic options that you can set for any axis is DISPLAY= keyword |
(feature-list). Four features are available for the feature-list: LINE, TICKS,
TICKVALUES, and LABEL. The keywords STANDARD and ALL are equivalent to
specifying the full list: (LINE TICKS TICKVALUES LABEL). You can also use
DISPLAY=NONE to completely suppress all parts of the axis.

Managing Axes in OVERLAY Layouts 113

Example: Some plots do not need TICKS on all axes. The DISPLAY= axis option in
the following example eliminates the ticks on the X axis by omitting the TICKS value
in the feature-list.

proc template;
 define statgraph DisplayOpts;
 begingraph;
 entrytitle "Restrict Display of Axis Features";
 layout overlay / xaxisopts=(display=(label tickvalues line));
 barchartparm x=City y=Fahrenheit / orient=vertical;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=temps template=DisplayOpts;
run;

Note: See Example Code 11.2 on page 105.

Here is the output.

We now return to the common situation where you want a duplicated Y2 axis. The
following layout block shows the most efficient way to do it:

layout overlay / yaxisopts=(displaysecondary=standard);
 barchartparm category=city response=fahrenheit;
endlayout;

This specification creates the Y2 axis as a duplicate of the Y axis: all features are
displayed without having to map data to the Y2 axis. You can also restrict the
secondary axis features that are displayed by specifying a list of the features that
you want to be displayed. The values available for the DISPLAYSECONDARY=
option are the same as those of the DISPLAY= option. The following layout block
specifies that the secondary axis label is not to be displayed. It also requests that
grid lines be displayed on the Y axis.

layout overlay / xaxisopts=(display=(line label tickvalues))
 yaxisopts=(displaysecondary=(ticks tickvalues line)

114 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

 griddisplay=on);
 barchartparm category=city response=fahrenheit;
endlayout;

Here is example output.

Axis Type
To determine axis types, the OVERLAY container examines all of the standalone
plot statements that are specified. It also examines whether an axis type has been
specified with the TYPE= setting on an axis option (for example, on XAXISOPTS=).
If there is only one standalone plot, or a plot is designated as PRIMARY, the rules
are as follows:

n If the plot statement that is mapped to an axis treats data values as discrete
(such as the CATEGORY= column of the BARCHART or the X= column of the
BOXPLOT statement), the axis type is DISCRETE for that axis, regardless of
whether the data column that is mapped to the axis is character or numeric. A
DISCRETE axis has tick values for each unique value in a data column.

n If the plot statement that is mapped to an axis bases the axis type on the data
type of the assigned values, a DISCRETE axis is created when the column type
is character. Otherwise, a TIME or LINEAR axis is created.

n If the plot statement that is mapped to an axis specifies a numeric column and
the column has a date, time, or datetime format associated with it, the axis type
is TIME. See “TIME Axes” on page 151 for examples. Otherwise, the numeric
axis type is LINEAR, the general numeric axis type. See “LINEAR Axes” on page
131 for examples.

n A LOG axis is never automatically created. To obtain a LOG axis, you must
explicitly declare the axis type with the TYPE=LOG option. See “LOG Axes” on
page 158 for examples.

n If a TYPE= axis-type option is specified, that is the type used. Plots that cannot
support that axis type are not drawn.

Managing Axes in OVERLAY Layouts 115

When the overlay container has multiple plots that generate axes, GTL can
determine default axis features for the shared axes, or you can use the PRIMARY=
option on one of the plot statements to specify which plot you want GTL to use. Note
the following:

n If no plot is designated as primary, the data columns that are associated with the
first plot that generates an axis are considered primary on a per-axis basis.

n If PRIMARY=TRUE for a plot within an overlay-type layout, that plot's data
columns and type are used to determine the default axis features, regardless of
where this plot statement occurs within the layout block.

n Only one plot can be primary on a per-axis basis. If multiple plots specify
PRIMARY=TRUE for the same axis, the last one encountered is considered
primary.

Here are some examples:

n For the following layout block, the BARCHART is considered the primary plot
because it is the first standalone plot that is specified in the layout and no other
plot has been set as the primary plot.

layout overlay;
 barchart category=quarter response=actualSales;
 seriesplot x=quarter y=predictedSales;
endlayout;

A BARCHART requires a discrete X axis. You cannot change the axis type. It
does not matter whether Quarter is a numeric or character column. Because the
SERIESPLOT can use a discrete axis, the overlay is successful.

n For the following layout block, the first SERIESPLOT is considered primary.

layout overlay;
 seriesplot x=quarter y=predictedSales;
 seriesplot x=quarter y=actualSales;
endlayout;

If the Quarter column is numeric and has a date format, then the X-axis type is
TIME. If the column is numeric, but does not have a date format, then the axis
type is LINEAR. If the column is character, then the axis type is DISCRETE.

n For the following layout block, the X axis is DISCRETE because it was declared
to be DISCRETE and this does not contradict any internal decision about axis
type because both SERIESPLOT and BARCHART support a discrete axis.

layout overlay / xaxisopts=(type=discrete);
 seriesplot x=quarter y=predictedSales;
 barchart category=quarter response=actualSales;
endlayout;

It does not matter whether Quarter is a numeric or character column.

n For the following layout block, the SERIESPLOT is the primary plot.

layout overlay;
 seriesplot x=quarter y=predictedSales;
 barchart category=quarter response=actualSales;
endlayout;

If Quarter is a character column, a discrete axis is used and the overlay is
successful. However, if Quarter is a numeric column and either a TIME or
LINEAR axis is used, the BARCHART overlay fails, and the following message is
written to the log:

116 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

WARNING: BARCHART statement has a conflict with the axis type.
 The plot will not be drawn.

Axis Data Range
After the type of each axis is determined in the layout, the data ranges of all plot
statements that contribute to an axis are compared. For LINEAR, TIME, and LOG
axes, the minimum of all minimum values and the maximum of all maximum values
are derived as a "unioned" data range. For a DISCRETE axis, the data range is the
set of all unique values from the sets of all values. The VIEWMIN= and VIEWMAX=
options for LINEAR, TIME, and LOG axes can be used to change the displayed axis
range. For examples, see “LINEAR Axes” on page 131, “TIME Axes” on page 151,
and “LOG Axes” on page 158.

Axis Labels

Default Axis Labels
The default axis label is determined by the primary plot. If a label is associated with
the data column, the label is used. If no column label is assigned, the column name
is used for the axis label. Each set of axis options provides LABEL= and
SHORTLABEL= options that can be used to change the axis label. By default, the
font characteristics of the label are set by the current style, but the plot statement's
LABELATTRS= option can be used to change the font characteristics. See “Axis
Appearance Features Controlled by the Current Style” on page 112. The following
examples show how axis labels are determined and how to set an axis label.

Consider the following DATA step, which generates bacteria and virus growth test
data.

Example Code 11.3 Growth Data

data growth;
 do Hours=1 to 5 by .1;
 Growth = 10**hours;
 Bacteria = 1000*10**(sqrt(Hours));
 Virus = 1000*10**(log(hours));
 label bacteria = "Bacteria Growth" virus="Virus Growth";
 output;
 end;
run;

To plot the growth trend for both Bacteria and Virus in the same graph, you can use
a simple overlay of series plots. Whenever two or more columns are mapped to the
same axis, the primary plot determines the axis label. In the following example, the
first SERIESPLOT is primary by default, so its columns determine the axis labels. In
this case, the Y-axis label is determined by the Bacteria column.

proc template;
 define statgraph axislabeldefault1;

Managing Axes in OVERLAY Layouts 117

 begingraph;
 entrytitle "Default X and Y Linear Axes";
 layout overlay / cycleattrs=true;
 seriesplot x=Hours y=Bacteria/ curvelabel="Bacteria";
 seriesplot x=Hours y=Virus / curvelabel="Virus";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=growth template=axislabeldefault1;
run;

Here is the output.

If you designate another plot statement as "primary," its X= and Y= columns are
used to label the axes. The PRIMARY= option is useful when you desire a certain
stacking order of the overlays, but you want the axis characteristics to be
determined by a plot statement that is not the default primary plot statement. In the
following layout block, the second SERIESPLOT is set as the primary plot, so its
columns determine the axis labels. In this case, the Y-axis label is determined by the
Virus column.

layout overlay / cycleattrs=true;
 seriesplot x=Hours y=Bacteria/ curvelabel="Bacteria";
 seriesplot x=Hours y=Virus / curvelabel="Virus" primary=true;
endlayout;

Here is example output.

118 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Figure 11.1 Primary Plot Determines Default Axis Label

In the previous two examples, allowing the primary plot to determine the Y-axis label
did not result in an appropriate label because a more generic label is needed. To
achieve this, you must set the axis label yourself with the LABEL= option as shown
in the following layout block.

layout overlay / cycleattrs=true
 yaxisopts=(label="Growth of Virus and Bateria Cultures");
 seriesplot x=Hours y=Bacteria/ curvelabel="Bacteria";
 seriesplot x=Hours y=Virus / curvelabel="Virus";
endlayout;

For computed columns, an axis label is manufactured from the input column(s) and
the functional transformation that is applied to the input column(s). For example, you
can use an EVAL expression to compute the product of WEIGHT and HEIGHT as a
new column that can be used as a required argument as shown in the following
example.

proc template;
 define statgraph axislabeldefault3;
 begingraph;
 entrytitle "Default Axis Label for a Computed Column";
 layout overlay;
 histogram eval(weight*height);
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=axislabeldefault3;
run;

In this example, the manufactured label is BIN(WEIGHT*HEIGHT) as shown in the
following figure.

Managing Axes in OVERLAY Layouts 119

Overriding the Default Axis Label
You can use the axis option LABEL= to override the default label for an axis with
your own label. For example, for a computed column, you can replace the
manufactured label with a more appropriate label as shown in the following layout
block.

layout overlay / xaxisopts=(label="WEIGHT (*ESC*){unicode '00D7'x} HEIGHT");
 histogram eval(weight*height);
endlayout;

Here is the output.

In this example, the manufactured label BIN(WEIGHT*HEIGHT) is replaced with
WEIGHT x HEIGHT to denote the product of WEIGHT and HEIGHT.

Making Long Axis Labels Fit
If the data column's label is long or if you supply a long string for the label, the label
might be truncated if it does not fit in the allotted space. This might happen when

120 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

you create a small graph or when the font size for the axis label is large. The
following figure shows an example.

As a remedy for these situations, you can specify a shorter alternate label with the
SHORTLABEL= option, or you can split the label into multiple lines by setting the
LABELFITPOLICY= option to SPLIT or SPLITALWAYS.

A short label is displayed whenever the default label or the LABEL= string does not
fit and label splitting is not enabled. Here is an example.

Example Code 11.4 Short Axis Label Example

proc template;
 define statgraph shortaxislabel;
 begingraph;
 entrytitle "Short Label Substitution";
 layout overlay / cycleattrs=true
 yaxisopts=(label="Growth of Virus and Bacteria Cultures"
 shortlabel="Growth");
 seriesplot x=Hours y=Bacteria/ curvelabel="Bacteria";
 seriesplot x=Hours y=Virus / curvelabel="Virus";
 endlayout;
 endgraph;
 end;
run;

ods graphics / width=320px;
proc sgrender data=growth template=shortaxislabel;
run;
ods graphics / reset=width;

Note: See Example Code 11.3 on page 117.

Here is the output.

Managing Axes in OVERLAY Layouts 121

Because the specified label does not fit the allotted space, the short label is used
instead.

Instead of a short label, you can enable label splitting, which automatically splits the
axis label into multiple lines. To enable label splitting, set LABELFITPOLICY= to
SPLIT or SPLITALWAYS. The SPLIT policy splits the label into multiple lines as
needed to make it fit in the available space. The SPLITALWAYS policy always splits
the label into multiple lines regardless of the available space. By default, the label is
split on a blank space.

Note: The SHORTLABEL= option is ignored when LABELFITPOLICY= is set to
SPLIT or SPLITALWAYS.

When LABELFITPOLICY= is set to SPLIT, by default, the label is split on a blank
space only where a split is needed to make the label fit. When this option is set to
SPLITALWAYS, the label is split on every occurrence of a blank space in the label. If
you want to split the label on a character other than a blank space, use the
LABELSPLITCHAR= option to specify one or more characters on which to split the
label. The list must be specified as a quoted string with no space between the
characters. The characters are case sensitive, and order is not significant. For
example, to split a label on a blank space, a comma, or a semicolon, specify:

labelsplitchar=" ,;"

A split character on which a split occurs is removed from the displayed label by
default. A split character on which a split does not occur remains in the displayed
label. If you want all of the split characters to remain in the displayed label, use the
LABELSPLITCHARDROP=FALSE option.

Each line of a split label is centered in the allotted space by default. You can use the
LABELSPLITJUSTIFY= option to justify each line of the label left or right for the X
and X2 axes, or top or bottom for the Y and Y2 axes.

Here is the layout block in Example Code 11.4 on page 121 modified to use label
splitting instead of a short label for the Y-axis label.

layout overlay / cycleattrs=true
 yaxisopts=(label="Growth of Virus and Bacteria Cultures"
 labelfitpolicy=split);
 seriesplot x=Hours y=Bacteria/ curvelabel="Bacteria";
 seriesplot x=Hours y=Virus / curvelabel="Virus";
endlayout;

122 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Here is example output.

In this example, the SPLIT policy is used, which splits the label on a blank space
only where needed. In this case, only one split is needed after “and.” If the
SPLITALWAYS policy is used instead, the label is split on every occurrence of a
blank space as shown in the following figure.

Positioning the Axis Labels
By default, axis labels are centered in the axis area as shown in Figure 11.1 on
page 119. You can use the LABELPOSITION= option to change the position of the
axis labels for the OVERLAY, DATALATTICE, DATAPANEL, and LATTICE layouts.
For the OVERLAY, DATALATTICE, and DATAPANEL layouts, you can specify one of
the following values for LABELPOSITION=:

CENTER centers the axis label in the axis area (default).

DATACENTER for OVERLAY layouts, centers the axis label in the axis tick
display area. For DATALATTICE and DATAPANEL layouts,
this value repeats the axis label for each row or column and

Managing Axes in OVERLAY Layouts 123

centers each label in the axis tick display area of its row or
column.

TOP or BOTTOM orients the label horizontally at the top or bottom of the axis
area.

LEFT or RIGHT positions the label to the left or right of the axis area.

For the LATTICE layout, you can specify one of the following values for
LABELPOSITION=:

CENTER centers the axis label in the axis area (default).

DATACENTER centers each row or column axis label in its axis tick display
area.

In the following example, the Y-axis label is positioned at the top of the axis area,
and the X-axis label is positioned to the right of the axis area in an OVERLAY
layout.

proc template;
 define statgraph axislabeldefault2;
 begingraph;
 entrytitle "Y-Axis Label TOP, X-Axis Label RIGHT";
 layout overlay / cycleattrs=true
 xaxisopts=(labelposition=right)
 yaxisopts=(labelposition=top);
 seriesplot x=Hours y=Bacteria/ curvelabel="Bacteria";
 seriesplot x=Hours y=Virus / curvelabel="Virus"
primary=true;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=growth template=axislabeldefault2;
run;

Note: See Example Code 11.3 on page 117.

Here is the output.

124 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Using the LABELPOSITION= option can result in axis label collisions in some
cases. For example, in the previous example, if LABELPOSITION=BOTTOM is
used for the Y axis and LABELPOSITION=LEFT is used for the X axis, the axis
labels collide. When you select a position, make sure that it does not collide with
any other labels.

Axis Tick Values
The tick values for LINEAR and TIME axes are calculated according to an internal
algorithm that produces good tick values by default. This algorithm can be modified
or bypassed with axis options. For examples, see “LINEAR Axes” on page 131,
“Discrete Axes” on page 140, and “LOG Axes” on page 158.

By default, the font characteristics of the tick values are set by the current style, and
the tick mark values progress along the axis from the least value to the highest
value. You can set alternative font characteristics with the TICKVALUEATTRS=
option. For more information, see “Axis Appearance Features Controlled by the
Current Style” on page 112.

Note: For large tick values on a linear axis, you can specify a scale for the values to
save space. See “Scaling the Tick Values on a Linear Axis” on page 134.

Axis Thresholds
For LINEAR and LOG axes only, part of the default axis construction computes a
small number of "good" tick values for the axis. This list might include
"encompassing" tick values that go beyond the data range on both the lower or
upper side of the axis. The THRESHOLDMIN= and THRESHOLDMAX= options of
LINEAROPTS = () can be used to establish rules for when to add encompassing
tick marks. In the following example, the data range is 5 to 47. When the
THRESHOLDMIN=0 and THRESHOLDMAX=0, the lowest and highest tick marks
are always at or inside the data range. Notice that the lowest tick mark is 10 and the
highest tick mark is 40.

When the THRESHOLDMIN=1 and THRESHOLDMAX=1, the lowest and highest
tick marks are always at or outside the data range. Notice that the lowest tick mark
is 0 and the highest tick mark is 50.

Managing Axes in OVERLAY Layouts 125

When the thresholds are set to any value between 0 and 1, a computation is
performed to determine whether an encompassing tick is added. The default value
for both thresholds is .3. Notice that the highest tick mark is 50 and the lowest tick
mark is 10. In this case, an encompassing tick was added for the highest tick but not
for the lowest tick.

At the high end of the axis, there is a tick mark at 40. The THRESHOLDMAX=
option determines whether a tick mark should be displayed at 50. The threshold
distance is calculated by multiplying the THRESHOLDMAX= value (0.3) by the tick
interval value (10), which equals 3. Measuring the threshold distance 3 down from
50 yields 47, so if the highest data value is between 47 and 50, a tick mark is
displayed at 50. In this case, the highest data value is 47 and it is within the
threshold, so the tick mark at 50 is displayed.

At the low end of the axis, there is a tick mark at 10. The THRESHOLDMIN= option
determines whether a tick mark should be displayed at 0. The threshold distance is
calculated by multiplying the THRESHOLDMIN= value (0.3) by the tick interval
value (10), which equals 3. Measuring the threshold distance of 3 up from 0 yields 3,
so if the lowest data value is between 0 and 3, a tick mark is displayed at 0. In this
case, the lowest data value is 5 and it is not within this threshold, so the tick mark at
0 is not displayed.

Thresholds are important when you want the Y and Y2 (or X and X2) axes ticks
marks to be at the same locations on different scales. By preventing
"encompassing" ticks from being drawn, you can ensure that the axis ranges for the
two axes correctly align. The following example accepts the default minimum and
maximum data values for each axis.

proc template;
 define statgraph axisThreshold1;
 begingraph;
 entrytitle "Assuring Equivalent Ticks on Independent Axes";
 layout overlay /
 yaxisopts=(griddisplay=on linearopts=(integer=true

126 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

 thresholdmin=0 thresholdmax=0))
 y2axisopts=(linearopts=(integer=true
 thresholdmin=0 thresholdmax=0));
 scatterplot x=City y=Fahrenheit;
 scatterplot x=City y=Celsius / yaxis=y2;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=temps template=axisThreshold1;
run;

Note: See Example Code 11.2 on page 105.

Here is the output. Notice that the five scatter points for each plot are superimposed
exactly.

In the following layout block, the axes have different but equivalent ranges that are
established with the VIEWMIN= and VIEWMAX= options (32F <==> 0C and 86F
<==> 30C).

layout overlay /
 yaxisopts= (griddisplay=on
 linearopts=(integer=true thresholdmin=0 thresholdmax=0
 viewmin=32 viewmax=86))
 y2axisopts= (linearopts=(integer=true thresholdmin=0 thresholdmax=0
 viewmin=0 viewmax=30));
 scatterplot x=City y=Fahrenheit;
 scatterplot x=City y=Celsius / yaxis=y2;
endlayout;

Here is example output.

Managing Axes in OVERLAY Layouts 127

This next example creates equivalent ticks for a computed histogram to ensure that
the percentage and actual count correspond on the Y and Y2 axes.

proc template;
 define statgraph overlayaxes.axisthreshold3;
 begingraph;
 entrytitle "Assuring Equivalent Ticks on Independent Axes";
 layout overlay /
 yaxisopts=(linearopts=(thresholdmin=0 thresholdmax=0))
 y2axisopts=(linearopts=(thresholdmin=0 thresholdmax=0));
 histogram mrw / scale=percent;
 histogram mrw / yaxis=y2 scale=count;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.heart template=overlayaxes.axisthreshold3;
run;

Here is the output.

128 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Axis Offsets
In addition to axis thresholds, there are also axis offsets. Offsets are small gaps that
are potentially added to each end of an axis (before the start of the data range and
after the end of the data range). Offsets can be applied to any type of axis. For
example, axis offsets are automatically added to allow for markers to appear at the
first or last tick without clipping the marker.

For plots such as box plots, histograms, and bar charts, offset space is added to
ensure that the first and last box or bar is not clipped.

The OFFSETMIN= option on a layout statement controls the distance from the
beginning of the axis to the first tick mark (or to the first minimum data value). The

Managing Axes in OVERLAY Layouts 129

OFFSETMAX= option controls the distance between last tick (or maximum data
value) and the end of the axis. You can set both OFFSETMIN= and OFFSETMAX=
to AUTO, AUTOCOMPRESS, or a numeric range. The default offset is AUTO.
AUTO automatically provides enough offset to display markers and other graphical
features. AUTOCOMPRESS provides enough offset to keep the minimum and
maximum tick marks from extending beyond the axis length. The numeric range is
0–1. This range is used to calculate the offset as a percentage of the full axis length.

For some plots, the axis offsets are not desirable. To illustrate this, consider the
following contour plot example.

proc template;
 define statgraph overlayaxes.axisoffsets1;
 begingraph;
 entrytitle "Default Axis Offsets";
 layout overlay;
 contourplotparm x=height y=weight z=density;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.gridded template=overlayaxes.axisoffsets1;
run;

Here is the output.

Notice that the entire plot area between minimum and maximum data values is filled
with colors that correspond to a Z value. The narrow white bands around the top
and right edges of the filled area and the axis wall boundaries are due to the default
axis offsets. To eliminate the "extra gaps at the ends of the axes, set axis offsets
and thresholds to 0, as shown in the following layout block.

layout overlay /
 xaxisopts=(offsetmin=0 offsetmax=0
 linearopts=(thresholdmin=0 thresholdmax=0))
 yaxisopts=(offsetmin=0 offsetmax=0
 linearopts=(thresholdmin=0 thresholdmax=0));
 contourplotparm x=height y=weight z=density;
endlayout;

An offset is a value in the range 0–1 that represents a percentage of the length of
the axis. Here is example output.

130 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

LINEAR Axes

Setting the Data Range and Tick Values on
a Linear Axis
For a LINEAR axis, you can set the tick values in several ways. If you use
TICKVALUELIST= (values) or TICKVALUESEQUENCE=(start end increment)
syntax, the values that you specify are used as long as those values are within the
actual range of the data. To extend (or reduce) the axis data range, you can use the
VIEWMIN= and VIEWMAX= suboptions of the LINEAROPTS= option. You can also
use the TICKVALUEPRIORITY=TRUE option, which automatically extends the axis
range to accommodate the values specified by the TICKVALUELIST= or
TICKVALUESEQUENCE= option.

Here is an example that uses the TICKVALUELIST= option to specify the tick
values. It uses the VIEWMIN= and VIEWMAX= options to extend the axis range to
include the specified values.

Example Code 11.5 TICKVALUELIST Example

proc template;
 define statgraph heightchart;
 begingraph;
 entrytitle "Specifying Tick Values for Linear Axes";
 layout overlay /
 xaxisopts=(type=linear griddisplay=on
 gridattrs=(pattern=dot color=lightgray)
 linearopts=(minorticks=true))
 yaxisopts=(type=linear tickvaluehalign=left
 griddisplay=on gridattrs=(pattern=dot color=lightgray)
 linearopts=(viewmin=48 viewmax=78
 tickvaluelist=(48 54 60 66 72 78)
 minorticks=true));
 scatterplot x=weight y=height;

Managing Axes in OVERLAY Layouts 131

 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=heightchart;
run;

Here is the output.

With this method, if you change the values specified by the TICKVALUELIST=
option, you might have to change the VIEWMIN= and VIEWMAX= option values to
accommodate the new values. If you use the TICKVALUEPRIORITY=TRUE option
instead of the VIEWMIN= and VIEWMAX= options, the axis range is adjusted
automatically.

When you use the TICKVALUELIST= option, you can use the
TICKVALUEDISPLAYLIST= option to specify string values to display on the axis
instead of the specified tick values. You must specify the TICKVALUELIST= option
in order to use the TICKVALUEDISPLAYLIST= option. The string values specified
by the TICKVALUEDISPLAYLIST= option map one-to-one positionally to the values
specified by the TICKVALUELIST=. Thus, the number of string values that you
specify in the TICKVALUEDISPLAYLIST= option must exactly match the number of
values that you specify in the TICKVALUELIST= option. If you specify too many
display values, the excess values are ignored. If you specify too few, blank tick
values result on the axis.

Here is the Example Code 11.5 on page 131 modified to use the
TICKVALUEDISPLAYLIST= option to display the height values in feet on the Y axis.

proc template;
 define statgraph heightchart;
 begingraph;
 entrytitle "Specifying Tick Display Values for Linear Axes";
 layout overlay /
 xaxisopts=(type=linear griddisplay=on
 gridattrs=(pattern=dot color=lightgray)
 linearopts=(minorticks=true))
 yaxisopts=(type=linear tickvaluehalign=left
 griddisplay=on gridattrs=(pattern=dot color=lightgray)
 linearopts=(tickvaluepriority=true minorticks=true
 tickvaluelist=(48 54 60 66 72 78)
 tickdisplaylist=("4 ft" "4.5 ft" "5 ft" "5.5 ft"

132 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

 "6 ft" "6.5 ft")));
 scatterplot x=weight y=height;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=heightchart;
run;

Notice that the TICKVALUELIST= and TICKVALUEDISPLAYLIST= options specify
the same number of values. Notice also that the values map positionally.

Here is the output.

Formatting the Tick Values on a Linear
Axis
Linear axes use special techniques that provide the generation of "good" tick values
that are based on the data range. If a tick value format is not specified, the column
formats provide a "hint" on how to represent the tick values, but those formats do
not generally control the representation or precision of the tick values.

To force a given format to be used for a linear axis, you can use syntax similar to the
following, where you specify any SAS numeric format:

 linearopts=(tickvalueFormat= best6.)

Note: GTL currently honors most but not every SAS format. For a list of the formats
that are not supported, see Appendix 6, “SAS Formats Not Supported,” on page
703.

If you simply want the column format of the input data column to be directly used,
specify the following:

 linearopts=(tickvalueFormat=data)

Managing Axes in OVERLAY Layouts 133

There are special options to control tick values. INTEGER=TRUE calculates good
integers to use as tick values given the range of the data.

Here is an example that overrides the dollar format on column Close in
Sashelp.Stocks with a decimal format.

proc template;
 define statgraph barchart;
 begingraph;
 entrytitle "Monthly Stock Performance in 2001";
 layout overlay /
 xaxisopts=(griddisplay=on gridattrs=(pattern=dot)
 timeopts=(tickvalueformat=monname3. viewmax='01DEC2001'd))
 yaxisopts=(griddisplay=on gridattrs=(pattern=dot)
 label="Closing Value (U.S. Dollars)"
 linearopts=(tickvalueformat=5.0));
 seriesplot x=date y=close / name="scatter"
 display=all group=stock groupdisplay=cluster;
 discretelegend "scatter";
 endlayout;
 endgraph;
 end;

proc sgrender data=sashelp.stocks template=barchart;
 where year(date) = 2001;
run;

Here is the output.

Scaling the Tick Values on a Linear Axis
For large tick values on linear axes, you can specify a tick value scale in order to
save space. This feature applies to linear axes only. You can use a named scale
such as millions, billions, or trillions, or a scientific notation scale expressed as 10^n.
To extract a scale automatically from the tick values, include the

134 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

EXTRACTSCALE=TRUE option in the TICKVALUEFORMAT= option list. By default,
for tick values of 999 trillion or less, a named scale is used. For values over 999
trillion, a scientific notation scale is used. For large tick values, the scale factor is set
to ensure that the absolute value of the largest value is greater than 1. For small
fractional tick values, the scale factor is set to ensure that the absolute value of the
smallest value is greater than 1.

Note: The scale that is extracted by the EXTRACTSCALE= option is derived from
the English locale.

To specify a scientific notation scale for values less than 999 trillion, include the
EXTRACTSCALETYPE=SCIENTIFIC option in the TICKVALUEFORMAT= option
list. The scale that is used is appended to the axis label.

Here is an example that specifies the default scale for the growth example that is
shown in “Making Long Axis Labels Fit” on page 120 for 15 hours of growth data.

data growth15hr;
 do Hours=1 to 15 by .1;
 Growth = 10**hours;
 Bacteria = 1000*10**(sqrt(Hours));
 Virus = 1000*10**(log(hours));
 label bacteria = "Bacteria Growth" virus="Virus Growth";
 output;
 end;
run;

proc template;
 define statgraph axisdefaultscale;
 begingraph;
 entrytitle "Tick Value Default Scaling";
 layout overlay / cycleattrs=true
 yaxisopts=(label="Growth of Virus and Bacteria Cultures"
 shortlabel="Growth"
 linearopts=(tickvalueformat=(extractscale=true)));
 seriesplot x=Hours y=Bacteria/ curvelabel="Bacteria";
 seriesplot x=Hours y=Virus / curvelabel="Virus";
 endlayout;
 endgraph;
 end;
run;

ods graphics / width=320px;
proc sgrender data=growth15hr template=axisdefaultscale;
run;
ods graphics / reset=width;

Here is the output.

Managing Axes in OVERLAY Layouts 135

Notice that the tick value scale name is automatically appended to the axis label,
which is the short label in this case.

Fitting the Tick Values on a Linear Axis
When the tick value text becomes too crowded, the tick values that are displayed on
the axes are scaled automatically for fit. For example, the axis below comfortably
shows eleven tick values:

If the size of the graph decreases or the font size for the tick values increases, the
axis ticks and tick values are automatically "thinned" by removing alternating ticks
and tick values. LINEAROPTS = (TICKVALUEFITPOLICY=THIN) is the default
action for linear axes:

For the X and X2 axes only, you can set TICKVALUEFITPOLICY=ROTATE or
TICKVALUEFITPOLICY=ROTATEALWAYS, which angles the tick value text 45
degrees by default:

136 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Starting with SAS 9.4M5, you can set TICKVALUEROTATION=DIAGONAL2 to
angle the tick value text –45 degrees instead:

When you set TICKVALUEFITPOLICY=ROTATE or
TICKVALUEFITPOLICY=ROTATEALWAYS, you can set
TICKVALUEROTATION=VERTICAL to rotate the tick value text vertically instead of
diagonally:

Note: When the tick values are rotated vertically, they read from bottom up as
shown.

Note: The ROTATE and ROTATEALWAYS policies, and the
TICKVALUEROTATION= option apply to the X and X2 axes only.

You can set TICKVALUEFITPOLICY=STAGGER, which creates alternating tick
values on two rows.

For the X and X2 axes, you can set TICKVALUEFITPOLICY to a compound policy
ROTATETHIN, STAGGERTHIN, or STAGGERROTATE. The compound policies
attempt the second policy if the first policy does not work. For the Y and Y2 axes,
you can set TICKVALUEFITPOLICY to NONE or THIN. For information about the
tick value fit policies that can be used with a linear axis in each of the applicable
layouts, see “Tick Value Fit Policy Applicability Matrix” on page 699.

Creating a Broken Linear Axis
In some cases, you might want to remove portions of a plot where the data is sparse
or is of little interest. Starting with SAS 9.4M1, you can use the INCLUDERANGES=
option to specify ranges of data that you want to include on a linear axis. All data
and axis tick values that fall outside of the ranges that you specify are clipped from

Managing Axes in OVERLAY Layouts 137

the output. At each point where a gap in the axis exists, break lines are drawn
perpendicular to the axis to indicate the break. The axis tick value sequence also
reflects the gaps.

Here is an example of a weight and height plot in which the INCLUDERANGES=
option is used to remove the data for heights between 60 and 65 inches.

proc template;
 define statgraph scatterplot;
 begingraph;
 entrytitle "Plot of Weight and Height";
 entryfootnote "Data from Height 60 to 65 is not shown.";
 layout overlay / xaxisopts=(
 linearopts=(includeranges=(50-60 65-72)));
 scatterplot x=height y=weight / name="scatter" group=sex;
 discretelegend "scatter";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=scatterplot;
run;

The INCLUDERANGES= option specifies ranges as a space-separated list of start–
end value pairs. In this example, ranges 50–60 and 65–72 are specified, which
creates a break between 60 and 65. Here is the output.

Notice the break lines and the gap in the X-axis tick value sequence where the
break occurs. All data markers that fall between 60 and 65 are clipped from the
output.

The following restrictions apply to broken axes:

n A broken axis is valid for linear and time axes in an OVERLAY layout only.

n Only one axis can be broken.

n Each range specified must be nonzero. A zero range such as 12–12 is
considered invalid.

n When plots are associated with the X and X2 axes or with the Y and Y2 axes,
neither axis can be broken.

138 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

n When an axis is broken, data tips and selectable graphical elements are not
supported.

For more information about the INCLUDERANGES= option, see “Options for Linear
Axes Only” in SAS Graph Template Language: Reference.

Starting with SAS 9.4M3, you can change the default break indicator. Rather than
break lines that span the entire data display, you can specify a break symbol that
appears on the axis line only. The BEGINGRAPH statement AXISBREAKTYPE=
option enables you to specify the break type. Set it to FULL to specify full-display
break lines or set it to AXIS to specify a break symbol only on the axis line. The
following figure shows an example of each.

Figure 11.2 Axis Break Types FULL and AXIS

You can specify AXIS only when the axis line or the plot wall outline is displayed.
Otherwise, AXIS is ignored and FULL is used instead. If you specify AXIS when the
secondary axis line or the plot wall outline is displayed, the break symbol is
displayed on both the primary axis and the secondary axis. Otherwise, the break
symbol is displayed only on the primary axis as shown in Figure 11.2 on page 139.

By default, a pair of squiggle lines is used to indicate the breakpoint on the axis line.
You can use the BEGINGRAPH statement AXISBREAKSYMBOL= option to specify
one of the break symbols shown in the following figure.

For more information about the BEGINGRAPH statement AXISBREAKTYPE= and
AXISBREAKSYMBOL= options, see “BEGINGRAPH” in SAS Graph Template
Language: Reference.

Managing Axes in OVERLAY Layouts 139

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0fksz728ytyz2n1ws13vlnkudyn.htm&docsetTargetAnchor=n1s7ikodjh2w4cn1sfftoy2qug0j&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0fksz728ytyz2n1ws13vlnkudyn.htm&docsetTargetAnchor=n1s7ikodjh2w4cn1sfftoy2qug0j&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0j696v6yqkb79n12zed3am3omcx.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0j696v6yqkb79n12zed3am3omcx.htm&locale=en

Discrete Axes

Setting the Tick Values on a Discrete Axis
On a discrete axis, the data values that are represented in the graph are displayed
by default as tick values on the axis. If the graph data is a SAS data set, character
tick values are arranged along the axis in the order in which they are used in the
graph, and numeric values are arranged in ascending order. If the plot data is a
CAS in-memory table, both character and numeric tick values are arranged in
ascending order along the axis. In some cases, the resulting tick-value order might
not be desirable, especially if the graph consists of multiple plots or if the data
contains missing values. In that case, you can include the TICKVALUELIST=(value-
list) option in the DISCRETEOPTS= option to set the order of the axis tick values.
You can also use the TICKVALUELIST= option to subset the tick values or to add
values that are not included in the data. The values in value-list must correspond to
the formatted values of the data.

Here is an example of a template that uses the TICKVALUELIST= option to display
the first six months of annual failure data.

/* Create a test data set of annual failure data */
data failrate;
 do month=1 to 12 by 1;
 failures=2*ranuni(12345);
 label failures="Failure Rate (Percentage)"
 month="Month";
 output;
 end;
run;

/* Create a template to display the first six months of data */
proc template;
 define statgraph firsthalf;
 begingraph;
 entrytitle "Unit Failure Rate in First Half";
 layout overlay /
 xaxisopts=(
 discreteopts=(tickvaluelist=("1" "2" "3" "4" "5" "6")));
 barchart category=month response=failures;
 endlayout;
 endgraph;
 end;
run;

/* Plot the data */
proc sgrender data=failrate template=firsthalf;
run;

Here is the output.

140 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Note: This graph can also be accomplished by subsetting the data.

By default, the tick marks appear on the midpoints. You can include the
TICKTYPE=INBETWEEN option in the DISCRETEOPTS= option list to position the
tick marks between the midpoints instead of on the midpoints.

Formatting the Tick Values on a Discrete
Axis
Starting with SAS 9.4M3, you can use the TICKVALUEFORMAT= option to apply a
character format to the original tick values on a discrete axis. Numeric formats are
not supported. The original tick values can be a list of formatted values from the
data column or a list of tick values from the TICKVALUELIST= option. Also starting
with SAS 9.4M3, ODS Graphics supports Unicode values in user-defined character
and numeric formats.

You can use a user-defined character format to modify the tick values on a discrete
axis. For example, you can use abbreviations or special symbols to shorten long tick
values. You can also use a user-defined character format to duplicate tick values by
consolidating two or more tick values into one. Here is a simple example that uses a
character format to duplicate tick values Y and N on the category axis of a horizontal
bar chart of survey results. The survey measures support for a fictitious zoning
ordinance, ZOR327A. The results are broken out by age group. This example also
demonstrates how to use Unicode values in a user-defined format to help shorten
tick values. Here is the code for this example.

/* Create the survey data set */
data ZOR327A_survey;
 input category $1-17 result;
datalines;
Age 20 to 29: 0
Yes1 0.41
No1 0.59
Age 30 to 39: 0
Yes2 0.53
No2 0.47
Age 40 to 49: 0

Managing Axes in OVERLAY Layouts 141

Yes3 0.59
No3 0.41
Age 50 and Over: 0
Yes4 0.63
No4 0.37
;
run;

/* Create a format for the category tick values */
proc format;
 value $catTickValues
 "Yes1", "Yes2", "Yes3", "Yes4" = "Y"
 "No1", "No2", "No3", "No4" = "N"
 "Age 20 to 29:" = "20 (*ESC*){unicode '2264'x} 29:"
 "Age 30 to 39:" = "30 (*ESC*){unicode '2264'x} 39:"
 "Age 40 to 49:" = "40 (*ESC*){unicode '2264'x} 49:"
 "Age 50 and Over:" = "(*ESC*){unicode '2265'x} 50:";
run;

/* Define the template for the graph */
proc template;
 define statgraph barchart;
 begingraph;
 entrytitle "Ordinance ZOR327A Support By Age Group";
 layout overlay /
 xaxisopts=(label="Percentage of Group Respondents"
 griddisplay=on linearopts=(minorgrid=true minortickcount=3))
 yaxisopts=(display=(label tickvalues) reverse=true
 label="Age Group Response"
 discreteopts=(tickvalueformat=$catTickValues.));
 barchartparm category=category response=result /
 orient=horizontal;
 endlayout;
 endgraph;
 end;
run;

/* Render the graph */
proc sgrender data=ZOR327A_survey template=barchart;
 format result percent.;
run;

In the plot data, in order to plot the data properly, each age group must have a
unique category for the Yes and No statistics. Yesn and Non are used in this
example, where n is unique for each age group. The $catTickValues format is used
to display a Y and N tick value for each age group and to shorten the age group
values. To duplicate the Y and N tick values, format $catTickValues consolidates all
of the Yesn category values into tick value Y, and all of the Non category values into
tick value N. To help shorten the age-group tick values, format $catTickValues uses
the Unicode less-than-or-equal-to and greater-than-or-equal-to symbols. Notice that
(*ESC*) is used to escape each Unicode value. To specify a Unicode value in a
user-defined format, you must use the (*ESC*) escape sequence as shown in this
example. You cannot use a user-defined ODS escape character in this case.

Format $catTickValues is applied to the chart category axis tick values using the
TICKVALUEFORMAT= axis option.

142 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Note: Applying a format that duplicates values to a character column might produce
unexpected results. To use such a format to duplicate axis tick values, specify the
format in the TICKVALUEFORMAT= option for the axis.

Here is the result.

Fitting Tick Values on a Discrete Axis
To avoid tick-value collisions, a discrete axis uses several of the fit policies that a
linear axis uses. These policies include THIN, ROTATE, ROTATEALWAYS,
STAGGER, ROTATETHIN, STAGGERTHIN, and STAGGERROTATE. For
information about these policies, see “Fitting the Tick Values on a Linear Axis” on
page 136. A discrete axis supports additional fit policies that enable you to do the
following:

n (starting with SAS 9.4M5) display the tick values vertically as stacked letters with
STACKALWAYS. See “Displaying the Discrete Axis Tick Values Vertically” on
page 144.

n extract the axis values into a legend with the EXTRACT or EXTRACTALWAYS fit
policy. See “Extracting Discrete Axis Tick Values into a Legend” on page 144.

n split the axis values into two or more lines with the SPLIT or SPLITALWAYS fit
policy. See “Splitting the Discrete Axis Tick Values” on page 146.

n truncate the axis values with the TRUNCATE fit policy. See “Truncating the
Discrete Axis Tick Values” on page 147.

A discrete axis also supports the following additional compound fit policies:

ROTATEALWAYSDROP SPLITTHIN TRUNCATESTAGGER
SPLITALWAYSTHIN STAGGERTRUNCATE TRUNCATETHIN
SPLITROTATE TRUNCATEROTATE

Starting with SAS 9.4M5, STACKEDALWAYSTHIN is also supported.

Managing Axes in OVERLAY Layouts 143

Displaying the Discrete Axis Tick Values
Vertically
Starting with SAS 9.4M5, you can set TICKVALUEFITPOLICY=STACKEDALWAYS
to display the tick values on the X or X2 axis vertically as stacked letters. You can
use this policy as an alternative to ROTATE with
TICKVALUEROTATION=VERTICAL, which rotates the tick values 90-degrees. The
following figure shows an example.

If you also require tick-value thinning, use STACKEDALWAYSTHIN instead.

Extracting Discrete Axis Tick Values into a
Legend
For a large number of tick values, you can set TICKVALUEFITPOLICY=EXTRACT
or TICKVALUEFITPOLICY=EXTRACTALWAYS to move the axis values to an
AXISLEGEND. In that case, on the axis, the values are replaced with consecutive
integers, and an AXISLEGEND is added that cross references the integer values on
the axis to the actual axis values.

Note: If the axis type is not DISCRETE, the TICKVALUEFITPOLICY=EXTRACT
and TICKVALUEFITPOLICY=EXTRACTALWAYS options are ignored.

When you set TICKVALUEFITPOLICY to EXTRACT or EXTRACTALWAYS, you
must also include the NAME= option in your axis option list and an AXISLEGEND
“name” statement in your layout block. In the AXISLEGEND statement, you must set
name to the value that you specified with the NAME= option in the axis options list.
Here is an example.

proc template;
 define statgraph discretefitpolicyextract;
 begingraph / border=false designwidth=450px designheight=400px;
 entrytitle "Average MPG City by Make: Trucks";
 Layout overlay /
 yaxisopts=(label="Average MPG")
 xaxisopts=(label="Make"
 name="axisvalues"

144 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

 tickvalueattrs=(size=9pt)
 discreteopts=(tickvaluefitpolicy=extract));
 barchart category=make response=mpg_city/orient=vertical
 stat=mean;
 axislegend "axisvalues" / pad=(top=5 bottom=5) title="Makes";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.cars template=discretefitpolicyextract;
 where type="Truck";
run;

Here is the output.

In this example, the name AXISVALUES is used to associate the AXISLEGEND
statement with the X axis. The graph size is set to 450 pixels wide by 400 pixels
high. Since there is not enough room on the X axis to fit the make names, the
names are extracted to an axis legend as shown.

In most cases, the EXTRACT policy moves the axis values to an axis legend only if
a collision occurs. If no collision occurs, the values are displayed on the axis in the
normal manner. In this example, if you increase the width of the graph to 640 pixels
and rerun the program, the legend disappears. In contrast, the EXTRACTALWAYS
policy moves the axis values to a legend regardless of whether a collision occurs.

Note: With the exception of TICKVALUEFITPOLICY=EXTRACTALWAYS, the
TICKVALUEFITPOLICY= is never applied unless a tick value collision situation is
present. That is, you cannot force tick values to be rotated, staggered, or moved to
an axis legend if there is no collision situation.

Managing Axes in OVERLAY Layouts 145

For information about the tick value fit policies that can be used with a discrete axis
in each of the applicable layouts, see “Tick Value Fit Policy Applicability Matrix” on
page 699.

Splitting the Discrete Axis Tick Values
For long tick values, you can set the TICKVALUEFITPOLICY= option to SPLIT. The
SPLIT option splits the tick values to make them fit the available space. You can set
this option to SPLITALWAYS to always split the tick values regardless of the
available space. For the X and X2 axes, the amount of available space is the width
allocated to each midpoint value. For the Y and Y2 axes, it is the width allocated to
the axis.

By default, the tick values are split at a blank space that occurs where a split is
needed. The value is split until the label is successfully fitted or no more blank
spaces exist in the value string. Each blank space on which a split occurs is
dropped from the displayed value. Blank spaces on which a split does not occur are
retained in the displayed value. Each line of the value is centered in the available
space.

If you want to split the values on a character other than a blank space or on more
than one character, you can use the TICKVALUESPLITCHAR= option to specify a
list of one or more split characters. You must specify the list as a quoted string with
no space between the characters. The characters are case sensitive, and order is
not significant. For example, to split a tick value on a blank space, a comma, or a
semicolon, specify:

tickvaluesplitchar=" ,;"

When you specify multiple characters, each character in the list is treated as a
separate split character unless they appear consecutively in the tick value. In that
case, all of the characters together are treated as a single split character.

If you want to change the justification of each split line from CENTER, you can use
the TICKVALUESPLITJUSTIFY= option to specify LEFT or RIGHT instead.

For example, consider the following axis values:

Davidson, Richard
Johnston, Miranda
McMillian, Joseph
Robertson, Mary Ann
Stenovich, Timothy

Notice that the last and first names are separated by a comma followed by a space.
This example will make the following changes:

n Split the last and first names into two lines.

n Left-justify both lines.

n Retain the comma between the last and first names.

n Discard the space that occurs after the comma.

You can use the TICKVALUEFITPOLICY=SPLIT option to split the values on the
space and discard the space by default. However, to left-justify the names, you must
specify the TICKVALUESPLITJUSTIFY=LEFT option. The following figure shows
the result.

146 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Notice that the value Robertson, Mary Ann splits only once even though there are
two occurrences of the split character in the value. By default, a split occurs on a
split character only if a split is needed at that character to fit the label. In this case,
because a split is not needed at the second blank character, it remains in the
displayed value. If you want to force a split at every occurrence of a split character,
use the TICKVALUEFITPOLICY=SPLITALWAYS option. In that case, the value
Robertson, Mary Ann, splits into three left-justified lines.

If you want to keep the split characters in the tick values, use the
TICKVALUESPLITCHARDROP=FALSE option. In that case, where each split
occurs, the split character remains as the last character in the current line, and the
characters that follow wrap to the new line.

The compound policies SPLITTHIN and SPLITALWAYSTHIN apply the split policy
first, and then apply the thin policy if the split policy does not work.

Truncating the Discrete Axis Tick Values
You can set TICKVALUEFITPOLICY=TRUNCATE to shorten the tick values. Axis
values that are greater than 12 characters in length are truncated to 12 characters.
Ellipses are added to the end of the truncated values to indicate that truncation has
occurred. When there is sufficient room on the axis to fit the full axis values, no
truncation occurs. For example, if you decide to truncate the values from the
previous example rather than split them. If you specify the
TICKVALUEFITPOLICY=TRUNCATE option and remove the
TICKVALUESPLITJUSTIFY=LEFT option, the values are truncated as shown in the
following figure.

The compound policies STAGGERTRUNCATE, TRUNCATEROTATE,
TRUNCATESTAGGER, and TRUNCATETHIN apply the first fit policy, and then
apply the second fit policy if the first policy does not work.

Setting Alternating Wall Color Bands for
Discrete Intervals
For a discrete axis, you can use the COLORBANDS= option in your
DISCRETEOPTS= option list to specify alternating wall color bands for each of the

Managing Axes in OVERLAY Layouts 147

discrete axis intervals. The alternating bands can help improve the readability of
complex plots. You can specify attributes for the odd or even bands. The odd bands
begin with the first axis interval. The even bands begin with the second interval.

Note: If you specify the COLORBANDS option for more than one axis, such as both
the X and Y axes, in an overlay, you might get unexpected results.

Include the COLORBANDSATTRS= option in your DISCRETEOPTS= option list to
specify the fill color and transparency of the bars. You can specify either a style
element or a list of fill options. If you specify fill options, you must enclose the
options in parenthesis.

TIP You can add a border around the color bands by including the
TICKTYPE=INBETWEEN option in the DISCRETEOPTS= option list and the
GRIDDISPLAY=ON and GRIDATTRS= options in the XAXISOPTIONS= or
YAXISOPTIONS= options list.

Here is an example that adds alternating light-gray color bands to the discrete Y
axis of a plot. The bands begin on the second (even) interval.

proc template;
 define statgraph colorbands;
 begingraph;
 entrytitle "MPG City - European Makes";
 layout overlay /
 xaxisopts=(griddisplay=on)
 yaxisopts=(type=discrete offsetmin=0.07 offsetmax=0.07
 discreteopts=(colorbands=EVEN
 colorbandsattrs=(transparency=0.6 color=lightgray)));
 scatterplot y=make x=mpg_city / name="sp"
 group=type groupdisplay=cluster;
 discretelegend "sp" / title="Vehicle Type";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.cars template=colorbands;
 where origin="Europe";
run;

Here is the output.

148 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Offsetting Graph Elements from the
Category Midpoint
When you overlay plots that support discrete data, you can use the
DISCRETEOFFSET= option to offset the graph elements from the midpoints on the
discrete axis. Plots that support discrete data on one axis include:

BARCHART BOXPLOTPARM SCATTERPLOT
BARCHARTPARM SERIESPLOT DROPLINE
BOXPLOT STEPPLOT

By default, the graph elements, such as bars or markers, are positioned on the
midpoint tick marks as shown in the following example. In this example, three bar
charts are drawn using transparency and varying bar widths so that you can see
how the bars are overlaid. The DATATRANSPARENCY= option is used to control
the transparency, and the BARWIDTH= option is used to control the bar widths.

Managing Axes in OVERLAY Layouts 149

Instead of overlaying the bars on each tick mark, you can use the
DISCRETEOFFSET= and BARWIDTH= options in the plot statement to move the
bars away from the midpoint and size them to form a cluster of side-by-side bars or
overlapped bars on each tick mark. The DISCRETEOFFSET= option can be set to a
value ranging from –0.5 to 0.5. The value specifies the offset as a percentage of the
distance between the midpoints on the axis. Here is the previous example modified
to use the DISCRETEOFFSET= and BARWIDTH= options to form a cluster of side-
by-side bars around each tick mark on the X axis.

Here is the code that generates this graph.

/* Extract the sales data for each country from SASHELP.PRDSALE. */
data sales;
 set sashelp.prdsale(keep=country actual product);
 if (country eq "CANADA") then canada=actual;
 else if (country eq "GERMANY") then germany=actual;
 else if (country eq "U.S.A.") then usa=actual;

150 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

run;

/* Create the graph template. */
proc template;
 define statgraph offset;
 begingraph;
 entrytitle "Product Sales by Country";
 layout overlay / cycleattrs=true
 xaxisopts=(display=(tickvalues)) yaxisopts=(label="Sales");
 barchart category=product response=canada / stat=sum
name="canada"
 legendlabel="Canada" dataskin=sheen datatransparency=0.1
 barwidth=0.25 discreteoffset=-0.25;
 barchart category=product response=germany / stat=sum
name="germany"
 legendlabel="Germany" dataskin=sheen datatransparency=0.1
 barwidth=0.25;
 barchart category=product response=usa / stat=sum name="usa"
 legendlabel="U.S.A." dataskin=sheen datatransparency=0.1
 barwidth=0.25 discreteoffset=0.25;
 discretelegend "canada" "germany" "usa" / title="Country:"
 location=outside;
 endlayout;
 endgraph;
 end;
run;

/* Generate the graph. */
proc sgrender data=sales template=offset;
run;

In this example, the DISCRETEOFFSET=–0.25 option in the first BARCHART
statement moves its bars to the left of each tick mark by 25% of the distance
between the tick marks. The second BARCHART statement uses the default offset
(0), which positions its bars on the tick marks. The DISCRETEOFFSET=0.25 option
on the third BARCHART statement positions its bars to the right of each tick mark
by 25% of the distance between the tick marks. The BARWIDTH=0.25 option in
each of the BARCHART statements sizes the bars to form a cluster with no space
between the bars as shown. You can adjust the DISCRETEOFFSET= and
BARWIDTH= option values to overlap the bars or add space between the bars in
each cluster as desired.

TIME Axes

Overview of TIME Axes
TIME axes are numeric axes that display SAS date or time values in an intelligent
way. Such axes are created whenever the primary plot has a SAS date, time, or
datetime format associated with a column that is mapped to an axis. In the following
example, a SAS date format is associated with the Date column. By default, the
TIME axis decides an appropriate tick value format and an interval to display. Notice

Managing Axes in OVERLAY Layouts 151

that, in the default case, when the X or X2 axis is a TIME axis, the space that is
used for the tick values is conserved by splitting the values at appropriate date or
time intervals and extracting larger intervals. In this example, the column format for
the Date column could be MMDDYY or any other date-type format. The actual
format serves only as a hint and is not used directly, unless requested.

proc template;
 define statgraph timeaxis1;
 begingraph;
 entrytitle "Default Time Axis";
 layout overlay;
 seriesplot x=date y=close;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.stocks template=timeaxis1;
where stock="IBM" and
 date between "1jan2004"d and "31dec2005"d;
run;

Here is the output.

Note: In this example, the data range for DATE was from 1Jan2004 to 1Dec2005.
The TIME axis chose the interval of MONTH to display tick values. If the data range
had been larger (for example, 1Jan1998 to 1Dec2005), the TIME axis would choose
a larger interval, YEAR, to display by default.

Setting the Tick Values on a Time Axis
You can use the INTERVAL= option to select different date or time intervals to
display. The default interval is AUTO, which chooses an appropriate interval, based
on the data and the column format.

152 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Value on
INTERVAL= Unit Tick Interval

Default Tick
Value Format

AUTO DATE, TIME, or
DATETIME

automatically
chosen

automatically
chosen

SECOND TIME or DATETIME second TIME8.

MINUTE TIME or DATETIME minute TIME8.

HOUR TIME or DATETIME hour TIME8.

DAY DATE or DATETIME day TIME9.

TENDAY DATE or DATETIME ten days TIME9.

WEEK DATE or DATETIME seven days TIME9.

SEMIMONTH DATE or DATETIME 1st and 16th of
each month

TIME9.

MONTH DATE or DATETIME month MONYY7.

QUARTER DATE or DATETIME three months YYQC6.

SEMIYEAR DATE or DATETIME six months MONYY7.

YEAR DATE or DATETIME year YEAR4.

The following layout block specifies that tick values should occur at quarter intervals:

layout overlay / xaxisopts=(timeopts=(interval=quarter));
 seriesplot x=date y=close;
endlayout;

Here is example output.

By default, the tick values are split to conserve space when possible. The following
table shows the rules for splitting tick value.

Managing Axes in OVERLAY Layouts 153

Original Form Split Form

DAY-MONTH-YEAR DAY-MONTH

YEAR

QUARTER-YEAR QUARTER

YEAR

MONTH-YEAR MONTH

YEAR

TIME-DATE TIME

DATE

TIME only original form

YEAR, QUARTER, MONTH, or DAY only original form

International format original form

You can turn off the splitting feature with the SPLITTICKVALUE=FALSE option as
shown in the following layout block.

layout overlay / xaxisopts=(timeopts=(interval=quarter
 splittickvalue=false));
 seriesplot x=date y=close;
endlayout;

Here is example output.

Notice that each tick value uses more space.

Formatting the Tick Values on a Time Axis
As with LINEAR axes, you can force a specific format for tick values with the
TICKVALUEFORMAT= option. If you specify TICKVALUEFORMAT=DATA, the

154 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

format is associated with the column that is used. Or you can specify a format as
shown in the following layout block.

layout overlay / xaxisopts=(timeopts=(interval=semiyear
 tickvalueformat=monyy.));
 seriesplot x=date y=close;
endlayout;

Here is example output.

Note: GTL currently honors most but not every SAS format. For a list of the formats
that are not supported, see Appendix 6, “SAS Formats Not Supported,” on page
703.

Fitting the Tick Values on a Time Axis
As with LINEAR axes, you can specify a tick value fitting policy for a TIME axis. The
following policies are available: THIN, ROTATE, ROTATEALWAYS, STAGGER,
ROTATETHIN, STAGGERTHIN, and STAGGERROTATE when tick values are not
split. The default policy is THIN. The following layout block specifies the ROTATE
policy and no label splitting.

layout overlay / xaxisopts=(timeopts=(interval=month
 splittickvalue=false tickvaluefitpolicy=rotate));
 seriesplot x=date y=close;
endlayout;

Here is example output.

Managing Axes in OVERLAY Layouts 155

For information about the tick value fit policies that can be used with a time axis in
each of the applicable layouts, see “Tick Value Fit Policy Applicability Matrix” on
page 699.

Setting the Data Range on a Time Axis
As with LINEAR axes, you can force specific tick values to be displayed with the
TICKVALUELIST= option. The VIEWMIN= and VIEWMAX= options control the data
range of the axis. If you specify TICKVALUEFORMAT=DATA, the format that is
associated with the column is used.

proc template;
 define statgraph timeaxis1;
 begingraph;
 entrytitle "TICKVALUELIST=(values), VIEWMIN=value,
VIEWMAX=value";
 layout overlay / xaxisopts=(timeopts=(tickvalueformat=data
 viewmin="31Dec2002"d viewmax="31Dec2004"d
 tickvaluelist=("31Dec2002"d "30Jun2003"d
 "31Dec2003"d "30Jun2004"d "31Dec2004"d)));
 seriesplot x=date y=close;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.stocks template=timeaxis1;
where stock="IBM" and date between "1dec2002"d and "31dec2005"d;
run;

Here is the output.

156 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Creating a Broken Time Axis
In some cases, you might want to remove portions of a plot where the data is sparse
or is of little interest. Starting with SAS 9.4M1, you can use the INCLUDERANGES=
option to specify ranges of data that you want to include on a time axis. All data and
axis tick values that fall outside of the ranges that you specify are clipped from the
output. At each point where a gap in the axis exists, break lines are drawn
perpendicular to the axis to indicate the break. The axis tick value sequence also
reflects the gaps.

Here is an example of a closing price and date plot in which the
INCLUDERANGES= option is used to remove the data between 1990 and 1995.

proc template;
 define statgraph stockplot;
 begingraph;
 entrytitle "Stock Trends";
 entryfootnote "Data from 1990 to 1995 is not shown.";
 layout overlay /
 xaxisopts=(timeopts=(includeranges=(
 '01jan1986'd-'31dec1989'd '01jan1996'd-'31dec2005'd)
 tickvalueformat=year4.));
 seriesplot x=date y=close / name="series" group=stock;
 discretelegend "series";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.stocks template=stockplot;
run;

The INCLUDERANGES= option specifies ranges as a space-separated list of start–
end value pairs. In this example, ranges '01jan1986'd–'31dec1989'd and
'01jan1996'd–'31dec2005'd are specified, which creates a break between 1989 and
1996. Here is the output.

Managing Axes in OVERLAY Layouts 157

Notice the break lines and the gap in the X-axis tick value sequence where the
break occurs.

The following restrictions apply to broken axes:

n A broken axis is valid for linear and time axes in an OVERLAY layout only.

n Only one axis can be broken.

n When plots are associated with the X and X2 axes or with the Y and Y2 axes,
neither axis can be broken.

n When an axis is broken, data tips and selectable graphical elements are not
supported.

For more information about the INCLUDERANGES= option, see “Options for Time
Axes Only” in SAS Graph Template Language: Reference.

Starting with SAS 9.4M3, you can change the default break indicator. Rather than
break lines that span the entire data display, you can specify a break symbol that
appears only on the axis line. For more information, see “Creating a Broken Linear
Axis” on page 137.

LOG Axes

Overview of LOG Axes
An axis displaying a logarithmic scale is very useful when your data values span
orders of magnitude. For example, when you plot your growth data with a linear
axis, you suspect that the growth rate is exponential.

proc template;
 define statgraph overlayaxes.logaxis1;
 begingraph;
 entrytitle "Linear Y-Axis";
 layout overlay;
 seriesplot x=Hours y=growth;

158 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0fksz728ytyz2n1ws13vlnkudyn.htm&docsetTargetAnchor=p033yhgh174i5on1vmnnjief2bvr&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0fksz728ytyz2n1ws13vlnkudyn.htm&docsetTargetAnchor=p033yhgh174i5on1vmnnjief2bvr&locale=en

 endlayout;
 endgraph;
 end;
run;

proc sgrender data=growth template=overlayaxes.logaxis1;
run;

Note: See Example Code 11.3 on page 117.

Here is the output.

To confirm this, you can request a log axis, which is never drawn by default. Instead,
you must request it with the TYPE=LOG axis option as shown in the following layout
block.

layout overlay / yaxisopts=(type=log);
 seriesplot x=Hours y=growth;
endlayout;

Any of the four axes can be a log axis. Here is example output.

The numeric data that is used for a log axis must be positive. If zero or negative
values are encountered, a linear axis is substituted and the following note is written
to the log:

Managing Axes in OVERLAY Layouts 159

NOTE: Log axis cannot support zero or negative values in the data range. The axis
type will
 be changed to LINEAR.

Setting the Base on a Log Axis
You can show a log axis with any of three bases: 10, 2 and E (natural log). The
default log base is 10. To set another base, use the BASE= suboption setting of the
LOGOPTS= option. The following layout block specifies base 2.

layout overlay / yaxisopts=(type=log logopts=(base=2));
 seriesplot x=Hours y=growth;
endlayout;

Here is example output.

The following layout block specifies base E.

layout overlay / yaxisopts=(type=log logopts=(base=e));
 seriesplot x=Hours y=growth;
endlayout;

Here is example output.

160 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

Setting the Tick Intervals on a Log Axis
Log axes support the TICKINTERVALSTYLE= option, which provides different
styles for displaying tick values:

AUTO
A LOGEXPAND, LOGEXPONENT, or LINEAR representation is chosen
automatically, based on the range of the data. When the data range is small
(within an order of magnitude), a LINEAR representation is typically used. Data
ranges that encompass several orders of magnitude typically use the
LOGEXPAND or LOGEXPONENT representation. AUTO is the default.

LOGEXPAND
Major ticks are placed at uniform intervals at integer powers of the base. By
default, a BEST6. format is applied to BASE=10 and BASE=2 tick values. This
means that, depending on the range of data values, you might see very large or
very small values written in exponential notation (10E6 instead of 1000000). The
preceding examples with a log axis show TICKINTERVALSYTLE=LOGEXPAND.

LOGEXPONENT
Major ticks are placed at uniform intervals at integer powers of the base. The tick
values are only the integer exponents for all bases.

LINEAR
Major tick marks are placed at non-uniform intervals, covering the range of the
data.

When using TICKINTERVALSTYLE=LOGEXPONENT, it might not be clear what
base is being used. You should consider adding information to the axis label to
clarify the situation as shown in the following layout block.

layout overlay / yaxisopts=(type=log label="Growth (Powers of 10)"
 logopts=(base=10 tickintervalstyle=logexponent));
 seriesplot x=Hours y=growth;
endlayout;

Here is example output.

When using TICKINTERVALSTYLE=LINEAR, it is visually helpful to turn on the grid
lines as shown in the following layout block.

Managing Axes in OVERLAY Layouts 161

layout overlay / yaxisopts=(type=log griddisplay=on
 logopts=(base=10 tickintervalstyle=linear));
 seriesplot x=Hours y=growth;
endlayout;

Here is example output.

When using BASE=10 and TICKINTERVALSTYLE=LOGEXPAND or
TICKINTERVALSTYLE=LOGEXPONENT, you can add minor ticks and minor grid
lines to emphasize the log scale as shown in the following layout block.

layout overlay / yaxisopts=(type=log griddisplay=on
 logopts=(base=10 tickintervalstyle=logexpand
 minorticks=true minorgrid=true));
 seriesplot x=Hours y=growth;
endlayout;

Here is example output.

The data range of a log axis can be set with the VIEWMIN= and VIEWMAX= log
options. It can also be set with the TICKVALUELIST= option when
TICKVALUEPRIORITY=TRUE. See “Setting the Tick Values on a Log Axis” on page
163.

If your input data has already been transformed into log values, always use a
LINEAR axis to display them as shown in the following layout block.

layout overlay;
 seriesplot x=Hours y=eval(log10(growth));

162 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

endlayout;

Do not use a LOG axis in this case. Here is example output.

Setting the Tick Values on a Log Axis
You can use the TICKVALUELIST=(values) option on a log axis to specify the
values that are to appear on the axis. By default, the values in the list that are within
the data range or the range specified by the VIEWMIN= and VIEWMAX= options
are displayed on the axis. All other values in the list are ignored. If you want the
values specified in the list to take precedence, you can specify the
TICKVALUEPRIORITY=TRUE. In that case, if the values are outside of the data
range, the axis range is extended to include all of the values in the list, and the
VIEWMIN= and VIEWMAX= options are ignored.

The following layout block specifies the values 1, 10, 100, 1000, 10000, and
100000.

layout overlay /
 yaxisopts=(griddisplay=on type=log
 logopts=(base=10 tickvaluepriority=true
 tickintervalstyle=logexpand
 tickvaluelist=(1 10 100 1000 10000 100000)
 minorticks=true));
 seriesplot x=Hours y=growth;
endlayout;

Because the data range is 10 to 100000, the TICKVALUEPRIORITY=TRUE option
is specified to extend the lower axis range down to 1. Here is example output.

Managing Axes in OVERLAY Layouts 163

You can use the VALUETYPES= option to specify the TICKVALUELIST= option
values in a scale and format other than that specified by the
TICKINVERVALSTYLE= option. You can also use the VALUETYPES= option to
specify VIEWMIN= and VIEWMAX= values. For example, in the previous example,
you can specify VALUESTYPE=EXPONENT, and then list the TICKVALUELIST=
option values as exponents of 10 rather than expanded values as shown in the
following layout block.

layout overlay /
 yaxisopts=(griddisplay=on type=log
 logopts=(base=10 tickvaluepriority=true
 tickintervalstyle=logexpand
 valuestype=exponent
 tickvaluelist=(0 1 2 3 4 5)
 minorticks=true));
 seriesplot x=Hours y=growth;
endlayout;

The resulting graph is the same. This is particularly useful for large axis values. For
more information about using the VALUESTYPE= option, see VALUESTYPE=.

Formatting the Tick Values on a Log Axis
Starting with SAS 9.4M3, you can force a specific format for tick values on a log axis
with the TICKVALUEFORMAT= option. The TICKVALUEFORMAT= option is
honored only when the tick-interval style is LOGEXPAND or LINEAR. It is ignored
when the tick-interval style is LOGEXPONENT. Use the TICKINTERVALSTYLE=
option to change the tick-interval style. To use the format that is associated with the
column, specify TICKVALUEFORMAT=DATA. To use a different format, specify
TICKVALUEFORMAT=format.

Note: GTL currently honors most but not all SAS formats. For a list of the formats
that are not supported, see Appendix 6, “SAS Formats Not Supported,” on page
703.

When TICKINTERVALSTYLE=LOGEXPAND, the specified format is honored for
base 2 and base 10 logarithmic scales. When TICKINTERVALSTYLE=LINEAR, the

164 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1qofxjozey314n10ejp8qm31rru.htm&docsetTargetAnchor=n1pz79kd4nuq5an1pzlvumlgwimua&locale=en

specified format is honored for base 10, base 2, and base E logarithmic scales.
Here is an example.

layout overlay /
 yaxisopts=(griddisplay=on type=log
 logopts=(base=10 tickintervalstyle=logexpand
 tickvalueformat=comma7.
 minorticks=true));
 seriesplot x=Hours y=growth;
endlayout;

Here is example output.

Avoiding Plot Data Conflicts
All plot statements have one or more required arguments that map input data
columns to one or more axes. Many plot statements have restrictions on the
variable type (numeric or character) that can be used for the required arguments.

For example, the HISTOGRAM statement accepts only a numeric variable for the
required argument. Consider the following example:

proc template;
 define statgraph test;
 begingraph;
 layout overlay;
 histogram sex;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=test;
run;

Avoiding Plot Data Conflicts 165

The template in this example will compile with no compilation errors or warnings
because no variables are checked at compile time. However, when the template is
executed, the following warnings are written to the SAS log:

WARNING: Invalid data passed to BIN. Variable must be numeric.
WARNING: The histogram statement will not be drawn because one or more of the
 required arguments were not supplied.
WARNING: A blank graph is produced. For possible causes, see the graphics
 template language documentation.

In general, GTL produces a graph whenever possible. Plots in the overlay that can
be drawn will be drawn. Plots are not drawn if they have incompatible data for the
required arguments or if they cannot support the existing axis type(s). Hence, you
might get a graph with some or none of the requested plot overlays.

The same strategy extends to plot options that have incompatible data. In the
following layout block, the wrong variable name was used for the GROUP= option.

layout overlay;
 barchart category=age / group=gender;
endlayout;

In the data, the column is named Sex, not Gender. This is not regarded as an error
condition—the bar chart is drawn without groups in this case.

Overlay Examples
After you become familiar with the plot statements GTL offers, you will see them as
basic components that can be stacked in many ways to form more complex plots.
This section shows you how to overlay statements and use other GTL features to
create more complex plots.

Vertical and Horizontal Bar-Line Charts

Bar-Line Charts
GTL does not provide a BARLINE statement that you can use to create a bar-line
chart. However, you can create this type of chart by overlaying a series plot on a bar
chart as shown in the following SAS code.

proc template;
 define statgraph barline;
 begingraph;
 entrytitle "Overlay of REFERENCELINE, BARCHARTPARM and
SERIESPLOT";
 layout overlay;
 referenceline y=25000000 / curvelabel="Target";
 barchartparm category=year response=retail / dataskin=matte
 fillattrs=(transparency=0.5)

166 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

 fillpatternattrs=(pattern=R1 color=lightgray);
 seriesplot x=year y=profit / name="series";
 discretelegend "series";
 endlayout;
 endgraph;
 end;
run;

/* compute sums for each product line */
proc summary data=sashelp.orsales nway;
 class year;
 var total_retail_price profit;
 output out=orsales sum=Retail Profit;
run;

/* generate the graph */
proc sgrender data=orsales template=barline;
 format retail profit comma12.;
run;

The output reflects the requested stacking order.

Horizontal Bar Charts
When creating a bar chart, it is sometimes desirable to rotate the chart from vertical
to horizontal. GTL does not provide separate statements for vertical and horizontal
charts—each is considered to be the same plot type with a different orientation. To
create the horizontal version of the bar-line chart, you need to specify
ORIENT=HORIZONTAL in the BARCHARTPARM statement as shown in the
following example.

proc template;
 define statgraph barline2;
 begingraph;

Overlay Examples 167

 entrytitle "Overlay of REFERENCELINE, BARCHARTPARM and
SERIESPLOT";
 layout overlay;
 referenceline x=25000000 / curvelabel="Target";
 barchartparm category=year response=retail / orient=horizontal
 dataskin=matte fillattrs=(transparency=0.5)
 fillpatternattrs=(pattern=R1 color=lightgray);
 seriesplot x=profit y=year / name="series"
 legendlabel="Profit in USD";
 discretelegend "series";
 endlayout;
 endgraph;
 end;
run;

/* compute sums for each product line */
proc summary data=sashelp.orsales nway;
 class year;
 var total_retail_price profit;
 output out=orsales sum=Retail Profit;
run;

/* generate the graph */
proc sgrender data=orsales template=barline2;
 format retail profit comma12.;
run;

Here, the Y axis becomes the category (DISCRETE) axis, and the X axis is used for
the response values. Both the REFERENCELINE and SERIESPLOT reflect this
directly by changing the variables that are mapped to the X and Y axes. The
variable mapping for BARCHARTPARM remains how it was, but the
ORIENT=HORIZONTAL option was added to swap the axis mappings. The data set
up and SGRENDER step are unchanged.

Here is the output.

168 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

This same strategy would be used to create a horizontal box plot or histogram. If
you wanted to reverse the ordering of the Y axis, you could add the
REVERSE=TRUE option to the Y-axis options as shown in the following statement.

layout overlay / yaxisopts=(reverse=true);

Plot with Multiple Axes
Sometimes you have equivalent data in different scales (currency, measurements,
and so on), or comparable data in the same scale that you want to display on
independent opposing axes. The OVERLAY layout supports up to four independent
axes where a Y2 axis opposes the Y axis to the right and an X2 axis opposes the X
axis at the top of the layout container. Here is an example provides a complete
program that generates this type of graph. In this example, Fahrenheit temperatures
are displayed on a separate Y2 axis while Celsius temperatures are displayed on
the Y axis as shown in the following figure.

For this particular example, it is not necessary to have input variables for both
temperatures because an EVAL function can be used to compute a new column of
data within the context of the template.

At this point, the most important concept to understand about template code is that
an independent axis can be created by mapping data to it. Here is the template
code for this example.

data temps;
 input City $1-11 Celsius;
datalines;
New York 11
Sydney 12
Mexico City 18
Paris 8
Tokyo 6
;

Overlay Examples 169

run;

proc template;
 define statgraph Y2axis;
 begingraph;
 entrytitle "Overlay of NEEDLEPLOT and SCATTERPLOT";
 entrytitle "SCATTERPLOT uses Y2 axis";
 layout overlay /
 xaxisopts=(display=(tickvalues))
 yaxisopts=(griddisplay=on offsetmin=0
 linearopts=(viewmin=0 viewmax=20
 thresholdmin=0 thresholdmax=0))
 y2axisopts=(label="Fahrenheit" offsetmin=0
 linearopts=(viewmin=32 viewmax=68
 thresholdmin=0 thresholdmax=0));
 needleplot x=City y=Celsius;
 scatterplot x=City y=eval(32+(9*Celsius/5)) / yaxis=y2
 markerattrs=(symbol=circlefilled);
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=temps template=y2axis;
run;

Notice that the SCATTERPLOT statement uses the YAXIS=Y2 option. This causes
the Y2 to axis to be displayed and scaled with the computed variable representing
Fahrenheit values. It is important to note that multiple plots in an overlay share the
same axis (such as the X-Axis). Hence, the options to control the axis attributes are
not found on the plot statements, but rather in the LAYOUT statement. Most of the Y
and Y2 axis options are included to force the tick marks for the two different axis
scales to exactly correspond.

Plot with Fit Line
To illustrate the use of the different types of plot statements, consider the following
template. In this template, named MODELFIT, a SCATTERPLOT is overlaid with a
REGRESSIONPLOT. The REGRESSIONPLOT is a computed plot because it takes
the input columns (Height and Weight) and transforms them into two new columns
that correspond to points on the requested fit line. By default, a linear regression
(DEGREE=1) is performed with other statistical defaults. The model in this case is
Weight=Height, which in the plot statement is specified with X=HEIGHT (independent
variable) and Y=WEIGHT (dependent variable). The number of observations
generated for the fit line is around 200 by default.

Note: Plot statements must be used with one or more layout statements. For
simplicity, the most basic layout statement is used in this discussion: LAYOUT
OVERLAY. This layout statement acts as a single container for all plot statements
placed within it. Every plot is drawn on top of the previous one in the order in which
the plot statements are specified, and the last one is drawn on top. Here is an
example.

170 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

proc template;
 define statgraph modelfit;
 begingraph;
 entrytitle "Regression Fit Plot";
 layout overlay;
 scatterplot x=height y=weight / primary=true;
 regressionplot x=height y=weight;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=modelfit;
run;

Here is the output.

Plot with Fit Line with Confidence Bands
In the example in “Plot with Fit Line” on page 170, the REGRESSIONPLOT
statement can also generate sets of points for the upper and lower confidence limits
of the mean (CLM), and for the upper and lower confidence limits of individual
predicted values (CLI) for each observation. The CLM="name" and CLI="name"
options cause the extra computation. However, the confidence limits are not
displayed by the regression plot. Instead, you must use the dependent plot
statement MODELBAND, and specify the unique name as its required argument as
shown in the following layout block.

layout overlay;
 modelband "myclm";
 scatterplot x=height y=weight /
 primary=true;
 regressionplot x=height y=weight /
 alpha=.01 clm="myclm";
endlayout;

Overlay Examples 171

Notice that the MODELBAND statement appears first in the template, ensuring that
the band appears behind the scatter points and fit line. A MODELBAND statement
must be used with a REGRESSIONPLOT, LOESSPLOT, or PBSPLINEPLOT
statement. Here is example output.

This is certainly the easiest way to construct this type of plot. However, you might
want to construct a similar plot from an analysis by a statistical procedure that has
many more options for controlling the fit. Most procedures create output data sets
that can be used directly to create the plot that you want. Here is an example of
using non-computed, standalone plots to build the fit plot. First, choose a procedure
to do the analysis. The following example uses the REG procedure.

proc reg data=sashelp.class noprint;
 model weight=height / alpha=.01;
 output out=predict predicted=p lclm=lclm uclm=uclm;
run;
quit;

The output data set, Predict, contains all the columns and observations in
Sashelp.Class plus, for each observation, the computed columns P, LCLM, and
UCLM. Here is a partial listing of the Predict data set.

Obs Name Sex Age Height Weight p lclm uclm

 1 Alfred M 14 69.0 112.5 126.006 113.554 138.458
 2 Alice F 13 56.5 84.0 77.268 65.782 88.755
 3 Barbara F 13 65.3 98.0 111.580 102.899 120.261
 4 Carol F 14 62.8 102.5 101.832 94.336 109.329
 5 Henry M 14 63.5 102.5 104.562 96.897 112.226
 6 James M 12 57.3 83.0 80.388 69.782 90.993
 7 Jane F 12 59.8 84.5 90.135 81.762 98.509
 …

Now the template can use simple, non-computed SERIESPLOT and BANDPLOT
statements for the presentation of fit line and confidence bands as shown in the
following example.

proc template;
 define statgraph fit;
 begingraph;
 entrytitle "Regression Fit Plot";

172 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

 layout overlay;
 bandplot x=height
 limitupper=uclm
 limitlower=lclm /
 connectorder=axis
 fillattrs=GraphConfidence;
 scatterplot x=height y=weight /
 primary=true;
 seriesplot x=height y=p /
 lineattrs=GraphFit;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=predict template=fit;
run;

Here is the output.

Plot of Grouped Data
Another common practice is to overlay series lines for comparisons. If your data
contains a classification variable in addition to X and Y variables, you could use one
SERIESPLOT statement with a GROUP= option as shown in the following example.

proc template;
 define statgraph seriesgroup;
 begingraph;
 entrytitle "Overlay of SERIESPLOTs with GROUP=";
 layout overlay;
 seriesplot x=date y=close / group=stock name="s";
 discretelegend "s";
 endlayout;
 endgraph;

Overlay Examples 173

 end;
run;

proc sgrender data=sashelp.stocks template=seriesgroup;
 where date between "1jan2002"d and "31dec2005"d;
run;

By default when you use a GROUP= option with a plot, the plot automatically cycles
through appearance features (colors, line styles, and marker symbols) to distinguish
group values in the plot. The default features that are assigned to each group value
are determined by the current style. For the following graph, the default colors and
line styles from the HTMLBlue style are used:

Using Overlays to Graph Multiple Response
Variables

If your data has multiple response variables, you could create a SERIESPLOT
overlay for each response. In such situations, you often need to adjust the Y-axis
label as shown in the following example.

proc template;
 define statgraph series;
 begingraph;
 entrytitle "Overlay of Multiple SERIESPLOTs";
 layout overlay / yaxisopts=(label="IBM Stock Price");
 seriesplot x=date y=high / curvelabel="High";
 seriesplot x=date y=low / curvelabel="Low";
 endlayout;
 endgraph;
 end;
run;

174 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

proc sgrender data=sashelp.stocks template=series;
 where date between "1jan2002"d and "31dec2005"d
 and stock="IBM";
run;

Here is the output.

Notice that, by default, each overlaid plot in this situation has the same appearance
properties.

Plot with Insets
In some cases, you might want to inset additional information in your graph to
further explain the plots or the plot data. Such information might include descriptive
text, a small table of additional statistics, or information about the plot values
displayed along a plot axis. GTL provides several ways in which can inset
supplemental information in your graphs. For more information, see Chapter 21,
“Adding Insets to Your Graph,” on page 383.

Plot Appearance
In cases when multiple plots have the same appearance, you can use plot options
to adjust the appearance of individual plots. For example, to adjust the series lines
and labels in the example in “Using Overlays to Graph Multiple Response Variables”
on page 174, you can use the LINEATTRS= and CURVELABELATTRS= options as
shown in the following layout block:

layout overlay / yaxisopts=(label="IBM Stock Price");
 seriesplot x=date y=high / curvelabel="High"
 lineattrs=GraphData1
 curvelabelattrs=GraphData1;

Overlay Examples 175

 seriesplot x=date y=low / curvelabel="Low"
 lineattrs=GraphData2
 curvelabelattrs=GraphData2;
endlayout;

You can also use the CYCLEATTRS= option, which is an option of the LAYOUT
OVERLAY statement that might cause each statement to acquire different
appearance features from the current style.

layout overlay / yaxisopts=(label="IBM Stock Price") cycleattrs=true;
 seriesplot x=date y=high / curvelabel="High";
 seriesplot x=date y=low / curvelabel="Low";
endlayout;

Either coding produces the following graph:

For additional information about how set the appearance features of plots, see
Chapter 27, “Managing Your Graph’s Appearance,” on page 491.

176 Chapter 11 / Creating Overlay Graphs Using the OVERLAY Layout

12
Creating Overlay Graphs with
Equated Axes Using the
OVERLAYEQUATED Layout

The LAYOUT OVERLAYEQUATED Statement . 177

Managing Axes in OVERLAYEQUATED Layouts . 180
Types of Equated Axes . 180
Defining Axes for Equated Layouts . 182

Equated Overlay Layout Examples . 183

The LAYOUT OVERLAYEQUATED
Statement

Several SAS procedures create plots where the X and Y axes are scaled in the
same units. Here are some samples of such plots taken from the Examples section
of the procedure documentation.

177

Figure 12.1 Sample Plot from PROC PRINQUAL

Figure 12.2 Sample Plot from PROC LOGISTIC

178 Chapter 12 / Creating Overlay Graphs with Equated Axes Using the OVERLAYEQUATED Layout

Figure 12.3 Sample Plot from PROC PLS

Whenever the same units of measure are used on both axes, it is desirable that the
distance displayed between the same data interval be the same on both axes. To
achieve this effect, you must use an OVERLAYEQUATED layout.

For specifying plot statements, the OVERLAYEQUATED layout is similar to the
OVERLAY layout: you can specify one or more 2-D plot statements within the layout
block. However, OVERLAYEQUATED imposes a restriction on the plot axes and
differs from OVERLAY in several ways. With OVERLAYEQUATED:

n Both X and Y axes are always numeric (TYPE=LINEAR). Thus, plot types that
have discrete or binned axes (BOXPLOT, BOXPLOTPARM, BARCHARTPARM,
HISTOGRAM, and HISTOGRAMPARM) cannot be used within this layout.

n For equal data intervals on both axes, the display distance is the same. For
example, an interval of 2 units on the X axis maps to the same display distance
as an interval of 2 units on the Y axis.

n The slope of a line in the display is the same as the slope in the data. In other
words, a 45° slope in data will be represented by a 45° slope in the display. The
EQUATETYPE= option offers different ways of presenting the data ranges while
preserving the 45° display slope. (See “Types of Equated Axes” on page 180.)

The following figure illustrates how a series plot might be displayed when it is
specified within an OVERLAYEQUATED layout rather than an OVERLAY layout:

The LAYOUT OVERLAYEQUATED Statement 179

Managing Axes in OVERLAYEQUATED
Layouts

Types of Equated Axes
The EQUATETYPE= option of the LAYOUT OVELAYEQUATED statement manages
the display of the axes. The following values are available:

FIT
X and Y axes have equal increments between tick values. The data ranges of
both axes are compared to establish a common increment size. The axes can be
of different lengths and have a different number of tick marks. Each axis
represents its own data range. One axis can be extended to use available space
in the plot area. This is the default.

180 Chapter 12 / Creating Overlay Graphs with Equated Axes Using the OVERLAYEQUATED Layout

EQUATE
Same as FIT except that neither axis is extended to use available space in the
plot area.

SQUARE
Both the X and Y axes have the same length and the same tick values. The axis
length and tick values are chosen so that the minimum and maximum of both X
and Y appear in the range of values appearing on both axes.

The following example template uses the EQUATETYPE= option:

proc template;
 define statgraph mpg;
 mvar TYPE;
 begingraph;
 entrytitle "Comparison of " TYPE " Vehicle Mileage by Origin";
 entryfootnote halign=right "SASHELP.CARS";
 layout overlayequated / equatetype=fit;
 scatterplot x=mpg_city y=mpg_highway / group=origin
 name="s" markerattrs=(size=7px);
 referenceline x=eval(mean(mpg_city)) /
 curvelabel=eval(put(mean(mpg_city),4.1));
 referenceline y=eval(mean(mpg_highway)) /
 curvelabel=eval(put(mean(mpg_highway),4.1));
 discretelegend "s";
 layout gridded / columns=1 halign=right valign=bottom;
 entry "Reference lines at";

Managing Axes in OVERLAYEQUATED Layouts 181

 entry "average overall city";
 entry "and highway mileages";
 endlayout;
 endlayout;
 endgraph;
 end;
 run;

 %let type=SUV;
 proc sgrender data=sashelp.cars template=mpg;
 where type="&type";
 run;

Here is the output.

Note: This program uses several features, such as run-time macro variable
resolution, EVAL expressions, and insets. All of these features are discussed in
detail in other chapters.

Defining Axes for Equated Layouts
Axes for the OVERLAYEQUATED layout are similar to axes for the OVERLAY
layout with the following exceptions:

n Both axes are always of TYPE=LINEAR.

n Some axis options that always apply to both axes are specified in a
COMMONAXISOPTS= option. Some of the supported options are INTEGER,
TICKVALUELIST, TICKVALUESEQUENCE, VIEWMAX, and VIEWMIN.

182 Chapter 12 / Creating Overlay Graphs with Equated Axes Using the OVERLAYEQUATED Layout

n XAXISOPTS= and YAXISOPTS= options are supported (with a different set of
suboptions from those of OVERLAY), but X2AXISOPTS= and Y2AXISOPTS=
options are not supported. Some of the supported options are DISPLAY, LABEL,
GRIDDISPLAY, DISPLAYSECONDARY, OFFSETMAX, OFFSETMIN,
THRESHOLDMAX, THRESHOLDMIN, and TICKVALUEFORMAT.

n No independent secondary (X2, Y2) axes are available, although secondary
axes that mirror the primary axes can be displayed. The XAXIS= and YAXIS=
options are ignored.

“Managing Axes in OVERLAY Layouts ” on page 103 discusses many of the axis
options that are available for managing graph axes.

Equated Overlay Layout Examples
To illustrate how to use the equated layout, a simplified version of the PPPLOT
template that is supplied with PROC UNIVARIATE is used, which is delivered with
Base SAS. The following code shows a SAS program that can be used to run
PROC UNIVARIATE:

ods graphics on;

proc univariate data=sashelp.heart;
 var weight;
 ppplot / normal square;
run;
quit;

When the code is run, it creates the following plot. The plot uses the PPPLOT
template, which is stored in the BASE.UNIVARIATE.GRAPHICS folder of the
Sashelp.Tmplmst item store:

In PROC UNIVARIATE, the PPPLOT statement creates a probability-probability plot
(also referred to as a P-P plot or percent plot), which compares the empirical

Equated Overlay Layout Examples 183

cumulative distribution function (ecdf) of a variable with a specified theoretical
cumulative distribution function such as the normal. If the two distributions match,
the points on the plot form a linear pattern that passes through the origin and has
unit slope. Thus, you can use a P-P plot to determine how well a theoretical
distribution models a set of measurements.

The supplied PPPLOT template uses several dynamic variables to pass in values
for options, but in essence, the following template is equivalent. The dynamic
variables for the title and axis labels have been converted into literals appropriate for
this set of data.

proc template;
 define statgraph pp_plot;
 begingraph;
 entrytitle "P-P Plot for Weight";
 entryfootnote halign=right "Derived from PPPLOT template";
 layout overlayequated / equatetype=square
 xaxisopts=(label="Normal(Mu=153.09 Sigma=28.915)"
 thresholdmin=1 thresholdmax=1)
 yaxisopts=(label="Cumulative Distribution of Weight"
 thresholdmin=1 thresholdmax=1)
 commonaxisopts=(viewmin=0.0 viewmax=1.0);
 scatterplot x=Theoretical y=Empirical;
 lineparm x=0 y=0 slope=1 / lineattrs=GraphFit;
 endlayout;
 endgraph;
 end;
run;

This simplified template produces a similar plot if it is rendered with the same data
as the UNIVARIATE plot. An ODS OUTPUT statement can convert the output object
from UNIVARIATE into a SAS data set:

ods graphics on;
ods select ppplot;
ods output ppplot=ppdata;
proc univariate data=sashelp.heart;
 var weight;
 ppplot / normal square;
run;
quit;
proc sgrender data=ppdata
 template=pp_plot;
run;

Here is the output.

184 Chapter 12 / Creating Overlay Graphs with Equated Axes Using the OVERLAYEQUATED Layout

The following OVERLAYEQUATED statement modifies the equated axes:

layout overlayequated / equatetype=square
 xaxisopts=(label="Normal(Mu=153.09 Sigma=28.915)"
 thresholdmin=1 thresholdmax=1
 tickvalueformat=3.2
 display=(label tickvalues)
 displaysecondary=(tickvalues)
 griddisplay=on)
 yaxisopts=(label="Cumulative Distribution of Weight"
 thresholdmin=1 thresholdmax=1
 tickvalueformat=3.2
 display=(label tickvalues)
 displaysecondary=(tickvalues)
 griddisplay=on)
 commonaxisopts=(viewmin=0.0 viewmax=1.0
 tickvaluesequence=(start=0 end=1 increment=.25));

Here is example output.

Equated Overlay Layout Examples 185

186 Chapter 12 / Creating Overlay Graphs with Equated Axes Using the OVERLAYEQUATED Layout

13
Creating Overlay 3-D Graphs
Using the OVERLAY3D Layout

The LAYOUT OVERLAY3D Statement . 187

Data Requirements for 3-D Plots . 188
Overview of the Data Requirements for 3-D Plots . 188
Producing Bivariate Histograms . 189
Producing Surface Plots . 196

Managing Axes in OVERLAY3D Layouts . 201

Display Features of the OVERLAY3D Layout . 202
Managing the Display of Cube Lines . 202
Displaying a Fill in the Graph Walls . 203
Defining a Viewpoint . 203

The LAYOUT OVERLAY3D Statement
GTL has one layout for 3-D graphics: the LAYOUT OVERLAY3D statement. Two 3-
D plot statements can be placed within this layout: BIHISTO3DPARM and
SURFACEPLOTPARM. No 2-D plot statements can be used in this layout, although
text statements such as ENTRY can be used.

Typical applications of OVERLAY3D layout are to create a 3-D representation of a
surface or a bi-variate histogram (possibly overlaid together). The 3-D layout has
features that 2-D layouts do not have. For example, it can do each of the following:

n generate axes for three independent variables (X, Y, and Z)

n set a viewpoint of the graph (TILT=, ROTATE=, and ZOOM= options)

n display lines that represent the intersection of axis walls (CUBE= option)

The following figure shows the basic anatomy of a 3-D plot:

187

1 Cube

2 Z axis

3 X axis

4 Y axis

5 Wall

Data Requirements for 3-D Plots

Overview of the Data Requirements for 3-D Plots
Both of the plot statements that can be used in the OVERLAY3D layout are
parameterized plots.(See “Overview of the Plot Types” on page 51). This means that
the input data must conform to certain prerequisites in order for the plot to be drawn.

Parameterized plots do not perform any internal data transformations or computing
for you. So, in most cases, you will need to perform some type of preliminary data
manipulation to set up the input data correctly before executing the template. The
types of data transformations that you need to perform are commonly known as
"binning" and "gridding."

188 Chapter 13 / Creating Overlay 3-D Graphs Using the OVERLAY3D Layout

Producing Bivariate Histograms
A bivariate histogram shows the distribution of data for two continuous numeric
variables. In the following graph, the X axis displays HEIGHT values and the Y axis
displays WEIGHT values. The Z axis represents the frequency count of
observations. The Z values could be some other measure (for example, percentage
of observations), but they can never be negative.

As with a standard histogram, the X and Y variables in the bivariate histogram have
been uniformly binned. That means that their data ranges have been divided into
equal sized intervals (bins), and that the observations are distributed into one of
these bin combinations.

The BIHISTOGRAM3DPARM statement, which produced this plot, does not perform
any binning computation on the input columns. Thus, you must pre-bin the data. In
the following example, the binning is done with PROC KDE (part of the SAS/STAT
product).

proc kde data=sashelp.heart;
 bivar height(ngrid=8) weight(ngrid=10) /
 out=kde(keep=value1 value2 count) noprint plots=none;
run;

In this program, the NGRID= option sets the number of bins to create for each
variable. The default for NGRID is 60. The binned values for Height are stored in
VALUE1, and the binned values for Weight are stored in VALUE2. This selection of
bins produces 1 observation for each of the 80 bin combinations. Frequency counts
for each bin combination are placed in a Count column in the output data set.

Here is a partial listing of the Kde data set.

Data Requirements for 3-D Plots 189

Obs value1 value2 count

 1 51.5000 67.000 1
 2 51.5000 92.889 0
 3 51.5000 118.778 0
 4 51.5000 144.667 0
 5 51.5000 170.556 0
 6 51.5000 196.444 0
 7 51.5000 222.333 0
 8 51.5000 248.222 0
 9 51.5000 274.111 0
 10 51.5000 300.000 0
 11 55.0714 67.000 1
 12 55.0714 92.889 8
 13 55.0714 118.778 16
 14 55.0714 144.667 11
 15 55.0714 170.556 1
 …

Notice that when you form the grid by choosing the number of bins, the bin widths
(about 3.5 for HEIGHT and about 26 for WEIGHT) are most often non-integer.

The following template definition displays this data.

Example Code 13.1 KDE Data Plot Template

proc template;
 define statgraph bihistogram1a;
 begingraph;
 entrytitle "Distribution of Height and Weight";
 entryfootnote halign=right "SASHELP.HEART";
 layout overlay3d / cube=false zaxisopts=(griddisplay=on)
 xaxisopts=(linearopts=(tickvalueformat=5.))
 yaxisopts=(linearopts=(tickvalueformat=5.));
 bihistogram3dparm x=value1 y=value2 z=count /
 display=all;
 endlayout;
 endgraph;
 end;
run;

By default, the BINAXIS=TRUE setting requests that X and Y axes show tick values
at bin boundaries. Also, by default, XVALUES=MIDPOINTS and
YVALUES=MIDPOINTS, which means that the X and Y columns represent midpoint
values rather than lower bin boundaries (LEFTPOINTS) or upper bin boundaries
(RIGHTPOINTS). Not all of the bins in this graph can be labeled without collision
because the graph is small. Thus, the ticks and tick values were thinned. The non-
integer bin values are converted to integers (TICKVALUEFORMAT=5.) to simplify
the axis tick values. DISPLAY=ALL means "show outlined, filled bins."

Executing this template generates the following output.

proc sgrender data= kde template=bihistogram1a;
 label value1="Height" value2="Weight";
run;

190 Chapter 13 / Creating Overlay 3-D Graphs Using the OVERLAY3D Layout

Eliminating Bins that Have No Data. Notice that the bins of 0 frequency (there are
several) are included in the plot. If you want to eliminate the bins where there is no
data, you can generate a subset of the data. The subset makes it a bit clearer where
there are bins with small frequency counts versus portions of the grid with no data.
To render the template in Example Code 13.1 on page 190 for only nonzero values:

proc sgrender data=kde template=bihistogram1a;
 where count > 0;
 label value1="Height" value2="Weight";
run;

Here is the output.

Displaying Percentages on Z Axis. To display the percentage of observations on
the Z axis instead of the actual count, you need to perform an additional data
transformation to convert the counts to percentages:

proc kde data=sashelp.heart;

Data Requirements for 3-D Plots 191

 bivar height(ngrid=8) weight(ngrid=10) /
 out=kde(keep=value1 value2 count) noprint plots=none;
run;

data kde;
 if _n_ = 1 then do i=1 to rows;
 set kde(keep=count) point=i nobs=rows;
 TotalObs+count;
 end;
 set kde;
 Count=100*(Count/TotalObs);
 label Count="Percent";
run;

To render the template in Example Code 13.1 on page 190 with the transformed
data:

proc sgrender data=kde template=bihistogram1a;
 label value1="Height" value2="Weight";
run;

Here is the output.

Setting Bin Width. Another technique for binning data is to set a bin width and
compute the number of observations in each bin. This technique ensures that the
bins are of a good size. In the following DATA step, 5 is the bin width for HEIGHT
and 25 for WEIGHT.

data heart;
 set sashelp.heart(keep=height weight);
 if height ne . and weight ne .;
 height=round(height,5);
 weight=round(weight,25);
run;

After rounding, HEIGHT and WEIGHT can be used as classifiers for a
summarization as shown in the following example.

proc summary data=heart nway completetypes;
 class height weight;

192 Chapter 13 / Creating Overlay 3-D Graphs Using the OVERLAY3D Layout

 var height;
 output out=stats(keep=height weight count) N=Count;
run;

Notice that the COMPLETETYPES option forces all possible combinations of the
two variables to be displayed, even if no data exists for a particular crossing. The
template can be simplified as shown in the following because the bin midpoints are
equally spaced integers.

proc template;
 define statgraph bihistogram2a;
 begingraph;
 entrytitle "Distribution of Height and Weight";
 entryfootnote halign=right "SASHELP.HEART";
 layout overlay3d / cube=false zaxisopts=(griddisplay=on);
 bihistogram3dparm x=height y=weight z=count /
 display=all;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=stats template=bihistogram2a;
run;

For this selection of bin widths, 6 bins were produced for HEIGHT and 10 for
WEIGHT. Here is the output.

If you prefer to see the axes labeled with the bin endpoints rather the bin midpoints,
you can use the ENDLABELS=TRUE setting on the BIHISTOGRAM3DPARM
statement. Note that the ENDLABELS= option is independent of the XVALUES=
and YVALUES= options.

In the following example, the bin widths are changed to even numbers (10 and 50)
to make the bin endpoints even numbers:

proc template;
 define statgraph bihistogram2a;
 begingraph;

Data Requirements for 3-D Plots 193

 entrytitle "Distribution of Height and Weight";
 entryfootnote halign=right "SASHELP.HEART";
 layout overlay3d / cube=false zaxisopts=(griddisplay=on);
 bihistogram3dparm x=height y=weight z=count /
 binaxis=true endlabels=true display=all;
 endlayout;
 endgraph;
 end;
run;
data heart;
 set sashelp.heart(keep=height weight);
 height=round(height,10);
 weight=round(weight,50);
run;
proc summary data=heart nway completetypes;
 class height weight;
 var height;
 output out=stats(keep=height weight count) N=Count;
run;

proc sgrender data=stats template=bihistogram2a;
run;

Here is the output.

If you choose bin widths that are too small, "gaps" might be displayed among axis
ticks values, which might cause the following message:

WARNING: The data for a HISTOGRAMPARM statement is not appropriate.
 HISTOGRAMPARM statement expects uniformly-binned data. The
 histogram might not be drawn correctly.

Because BIHISTOGRAM3DPARM is a parameterized plot, you can use it to show
the 3-D data summarization of a response variable Z, which must have nonnegative
values, by two numeric classification variables that are equally spaced (X and Y).
That is, even though the graphical representation is a bivariate histogram, the Z axis
does not have to display a frequency count or a percent. Here is an example.

194 Chapter 13 / Creating Overlay 3-D Graphs Using the OVERLAY3D Layout

data cars;
 set sashelp.cars(keep=weight horsepower mpg_highway);
 if horsepower ne . and weight ne .;
 horsepower=round(horsepower,75);
 weight=round(weight,1000);
run;

proc summary data=cars nway completetypes;
 class weight horsepower;
 var mpg_highway;
 output out=stats mean=Mean;
run;

proc template;
 define statgraph bihistogram2b;
 begingraph;
 entrytitle
 "Distribution of Gas Mileage by Vehicle Weight and Horsepower";
 entryfootnote halign=right "SASHELP.CARS";
 layout overlay3d / cube=false zaxisopts=(griddisplay=on)
rotate=130;
 bihistogram3dparm y=weight x=horsepower z=mean / binaxis=true
 display=all;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=stats template=bihistogram2b;
run;

Here is the output.

Data Requirements for 3-D Plots 195

Producing Surface Plots
A surface plot shows points that are defined by three continuous numeric variables
and connected with a polygon mesh. A polygon mesh is a collection of vertices,
edges, and faces that defines the shape of a polyhedral object, which simulates the
surface. In order for a surface to be drawn, the input data must be "gridded". That is,
the X and Y data ranges are split into uniform intervals (the grid), and the
corresponding Z values are computed for each X,Y pair. Smaller data grid intervals
produce a smoother surface because more smaller polygons are used but are more
resource intensive because of the large number of polygons that are generated.
Larger data grid intervals produce a coarser, faceted surface because the polygon
mesh has fewer faces and is less resource intensive.

The faces of the polygons can be filled, and lighting is applied to the polygon mesh
to create the 3-D effect. It is possible to superimpose a grid on the surface. The grid
display is a sampling of the data grid boundaries that intersect the surface. The grid
display can be thought of as a simpler see-through line version of the surface and
can be rendered with or without displaying the filled surface.

The default appearance of a surface is a filled polygon mesh with superimposed grid
lines as shown in the following example.

proc template;
 define statgraph surfaceplotparm;
 begingraph;
 entrytitle "Surface Plot of Lake Bed";
 layout overlay3d / cube=false;
 surfaceplotparm x=length y=width z=depth;
 endlayout;
 endgraph;
 end;
 run;

 ods graphics / antialiasmax=5700;
 proc sgrender data=sashelp.lake template=surfaceplotparm;
 run;

Here is the output.

196 Chapter 13 / Creating Overlay 3-D Graphs Using the OVERLAY3D Layout

The SURFACEPLOTPARM statement assumes that the response and Z values
have been provided for a uniform X-Y grid. Missing Z values will leave a "hole" in
the surface.

The observations in the input data set should form an evenly spaced grid of
horizontal (X and Y) values and one vertical (Z) value for each of these
combinations. The observations should be in sorted order of Y and X to obtain an
accurate graph. The sort direction for Y should be ascending. The sort direction of X
can be either ascending or descending.

In the following example, 315 observations in Sashelp.Lake are gridded into a 15 by
21 grid. The length of the grid is from 0 to 7 by .5, and the width of the grid is from 0
to 10 by .5 There are no missing Depth values. Here is a partial listing of the
Sashelp.Lake data set.

Obs Width Length Depth

 1 0 0.0 0.00000
 2 0 0.5 0.00000
 3 0 1.0 0.00000
 4 0 1.5 -0.00598
 5 0 2.0 0.00000
 6 0 2.5 0.00000
 7 0 3.0 0.00000
 8 0 3.5 -0.21287
 9 0 4.0 0.00000
 10 0 4.5 0.00000
 11 0 5.0 0.00000
 12 0 5.5 -0.00299
 13 0 6.0 0.00000
 14 0 6.5 0.00000
 15 0 7.0 0.00000
 …

Input data with non-gridded columns should be preprocessed with PROC G3GRID.
This procedure creates an output data set, and it allows specification of the grid size
and various methods for computed interpolated Z column(s). For further details, see
the documentation for PROC G3GRID in the SAS/GRAPH: Reference.

Data Requirements for 3-D Plots 197

Using PROC G3GRID, the following code performs a Spline interpolation and
generates a surface plot.

proc g3grid data=sashelp.lake out=spline;
 grid width*length = depth / naxis1=75 naxis2=75 spline;
run;

proc sgrender data=spline template=surfaceplotparm;
run;

By increasing the grid size and specifying a SPLINE interpolation, a smoother
surface is rendered. Here is the output.

The SURFACETYPE= option offers three different types of surface rendering:

FILLGRID a filled surface with grid outlines (the default)

FILL a filled surface without grid outlines

WIREFRAME an unfilled (see through) surface with grid outlines

198 Chapter 13 / Creating Overlay 3-D Graphs Using the OVERLAY3D Layout

Adding a Color Gradient. The surface can be colored with a gradient that is based
on a response variable by setting a column on the SURFACECOLORGRADIENT=
option. The following example uses the Depth column.

proc template;
 define statgraph surfaceplotparm;
 begingraph;
 entrytitle "SURFACECOLORGRADIENT=DEPTH";
 layout overlay3d / cube=false;
 surfaceplotparm x=length y=width z=depth /
 surfacetype=fill
 surfacecolorgradient=depth
 colormodel=twocolorramp
 reversecolormodel=true;
 endlayout;
 endgraph;
 end;
run;

/* create gridded data for surface */
proc g3grid data=sashelp.lake out=spline;
 grid width*length = depth / naxis1=75 naxis2=75 spline;
run;

proc sgrender data=spline template=surfaceplotparm;
run;

The COLORMODEL=TWOCOLORRAMP setting indicates a style element. Four
possible color ramps are supplied in every style. The
REVERSECOLORMODEL=TRUE setting exchanges (reverses) the start color and
end color that is defined by the color model. The colors were reversed so that the
darker color maps to the lower depths.

Using Color to Show an Additional Response Variable. The
SURFACECOLORGRADIENT= option does not have to use the Z= variable. In the
next example, another variable, TEMPERATURE is used.

ods escapechar="^"; /* Define an escape character */

Data Requirements for 3-D Plots 199

proc template;
 define statgraph surfaceplot;
 begingraph;
 entrytitle "SURFACECOLORGRADIENT=TEMPERATURE";
 layout overlay3d / cube=false;
 surfaceplotparm x=length y=width z=depth / name="surf"
 surfacetype=fill
 surfacecolorgradient=temperature
 reversecolormodel=true
 colormodel=twocoloraltramp;
 continuouslegend "surf" /
 title="Temperature (^{unicode '00B0'x}F)";
 endlayout;
 endgraph;
 end;
run;

data lake;
 set sashelp.lake;
 if depth = 0 then Temperature=46;
 else Temperature=46+depth;
run;

/* create gridded data for surface */
proc g3grid data=lake out=spline;
 grid width*length = depth temperature / naxis1=75 naxis2=75 spline;
run;

proc sgrender data=spline template=surfaceplot;
run;

Here is the output.

Notice that it is possible to display a continuous legend when you use the
SURFACECOLORGRADIENT= option. Several legend options can be used. Using

200 Chapter 13 / Creating Overlay 3-D Graphs Using the OVERLAY3D Layout

other color ramps and continuous legends are discussed in more detail in Chapter
20, “Adding Legends to Your Graph,” on page 337.

Managing Axes in OVERLAY3D Layouts
Axes for the OVERLAY3D layout are similar to axes for the OVERLAY layout,
although the following exceptions apply to OVERLAY3D layouts:

n An additional ZAXISOPTS=() option is available for managing the Z axis.

n All three axis types can be either LINEAR or TIME. A DISCRETE or LOG axis is
not supported on OVERLAY3D layouts.

n No secondary (X2, Y2, Z2) axes are available on OVERLAY3D layouts.

n Axis tick values are automatically thinned. No other fitting policy for OVERLAY3D
layout is available.

n For any axis, the location of the displayed axis features (line, ticks, tick values,
and label) might shift, based on the specified viewpoint.

The following layout block displays grid lines and a label for the Z axis:

layout overlay3d / cube=false
 zaxisopts=(griddisplay=on
 label="Kernel Density");
 surfaceplotparm x=height y=weight
 z=density;
endlayout;

Here is example output.

Managing Axes in OVERLAY3D Layouts 201

Display Features of the OVERLAY3D
Layout

Managing the Display of Cube Lines
You can control whether the additional nine lines representing the intersection of all
axis planes are displayed with the CUBE= option in the LAYOUT OVERLAY3D
statement. The default is CUBE=TRUE. The following example shows you how to
disable the lines.

proc template;
 define statgraph nocube;
 begingraph;
 entrytitle "3D Layout with CUBE=FALSE";
 layout overlay3d / cube=false;
 surfaceplotparm x=height y=weight z=density;
 endlayout;
 endgraph;
 end;
run;

ods graphics / antialiasmax=3600;
proc sgrender data=sashelp.gridded template=nocube;
run;

Here is the output.

202 Chapter 13 / Creating Overlay 3-D Graphs Using the OVERLAY3D Layout

Displaying a Fill in the Graph Walls
By default, only the outlines of the walls bounding the XY, XZ, and YZ axis planes
are shown. You can display filled walls by including the WALLDISPLAY=(FILL) or
WALLDISPLAY=(FILL OUTLINE) settings in the LAYOUT OVERLAY3D statement.
You can change the wall color (when filled) with the WALLCOLOR=option as shown
in the following layout block.

layout overlay3d / cube=false
 walldisplay=(fill);
 surfaceplotparm x=height y=weight
 z=density;
endlayout;

When filled, the wall lighting is adjusted to give a 3-D effect, based on the graph
viewpoint. Here is example output.

Defining a Viewpoint
Representing a 3-D graph statically in two dimensions often obscures details that
are better viewed from a different viewpoint. Three options on the LAYOUT
OVERLAY3D statement can be independently set to obtain a different viewpoint.

Option
Value
Range Default Description

ROTATE= -360 to 360 54 Specifies the angle of rotation. Rotation is
measured in a clockwise direction about a

Display Features of the OVERLAY3D Layout 203

Option
Value
Range Default Description

virtual axis, parallel to the Z axis (vertical)
and passing through the center of the
bounding cube. A counterclockwise rotation
can be specified with a negative value.

TILT= -360 to 360 20 Specifies the angle of tilt in degrees. Tilt is
measured in a clockwise direction about a
virtual axis parallel to the X axis (vertical) and
passing through the center of the bounding
cube. A counterclockwise tilt can be specified
with a negative value.

ZOOM= > 0 1 Specifies a zoom factor. Factors greater than
1 move closer to the bounding cube (zoom
in), less than 1 move farther away (zoom
out).

These options can be used in combination with each other to obtain a desired
perspective. The following figures show some examples. To generate the figures, a
LATTICE layout was used to "grid" a series of OVERLAY3D layouts of the same plot
with different viewpoints. The arrows on the X and Y axes indicate increasing X and
Y values.

204 Chapter 13 / Creating Overlay 3-D Graphs Using the OVERLAY3D Layout

Display Features of the OVERLAY3D Layout 205

206 Chapter 13 / Creating Overlay 3-D Graphs Using the OVERLAY3D Layout

14
Creating Gridded Graphs Using
the GRIDDED Layout

The LAYOUT GRIDDED Statement . 207

Defining a Basic Grid . 208
Setting Grid Dimensions . 209
Setting Gutters . 210
Defining Cells . 211

Building a Table of Text . 213

Sizing Issues . 215
Row and Column Sizes . 215
Adjusting Graph Size . 218

The LAYOUT GRIDDED Statement
GTL provides several layout types to organize your graph into smaller regions
(cells). The GRIDDED and LATTICE layouts support a regular grid of cells with a
fixed number of rows and columns. The DATALATTICE and DATAPANEL layouts
generate classification panels, which are graphs where the number of cells and the
cell content are determined by the values of one or more classification variables.

The GRIDDED layout differs from the classification panel layouts in that the number
of cells must be predefined and that you must define of the content of each cell
separately. GRIDDED is superficially similar to a LATTICE layout because it can
create a grid of heterogeneous plots. However, the LATTICE layout can
automatically align plot areas across columns and rows and has much more
functionality. For more information about the LATTICE layout, see Chapter 15,
“Creating Lattice Graphs Using the LATTICE Layout,” on page 221.

Typical applications of GRIDDED layouts are to create:

n a table of text, such as an inset (discussed in detail in Chapter 21, “Adding Insets
to Your Graph,” on page 383)

207

n a simple grid of plots (discussed in this chapter)

In a GRIDDED layout, each cell is independent. Contents of the cell can be
specified by a standalone plot statement or a nested layout. The following example
shows a very simple GRIDDED layout:

proc template;
 define statgraph intro;
 begingraph;
 entrytitle "Two-Cell Gridded Layout";
 layout gridded;
 barchart category=age;
 scatterplot x=height y=weight;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=intro;
run;

Here is the output.

In this case, each plot statement is considered independent and is placed in a
separate cell. When no grid size is provided, the default layout creates a graph with
one column of cells, and it allots each cell the same amount of space. The number
of rows in the grid is determined by the number and arrangement of standalone plot
statements and nested layouts in the GRIDDED layout block.

Defining a Basic Grid
Although you can generate a nice looking graph in a default GRIDDED layout, in
most cases you will want more control over the grid, how it is populated, and the
complexity of the cell contents.

208 Chapter 14 / Creating Gridded Graphs Using the GRIDDED Layout

Setting Grid Dimensions
Assume you want a grid of five plots. Before starting to write code, you must first
decide what grid dimensions you want to set (how many columns and rows) and
whether you want to permit an empty cell in the grid. If do not want an empty cell,
you must limit the grid to five cells, which gives you two choices for the grid
dimensions: five columns by one row (5x1), or one column by five rows (1x5).

To specify the grid size, you use the COLUMNS= or ROWS= option in the LAYOUT
GRIDDED statement. To use ROWS=, you must also specify
ORDER=COLUMNMAJOR.

Two explicit specifications could be used to create the following grid, which contains
one row and five columns:

Grid Specification Code Description

layout gridded / columns=5;
 /* plot defintions */
endlayout;

When the number of columns is specified, you
place a limit on how many columns can be
displayed across a row. The COLUMNS=
option is honored only if
ORDER=ROWMAJOR (the default).

In the example code to the left, if you were to
include more than five plot definitions,
additional rows (with five columns) would be
added automatically to accommodate all of the
cells that are needed to display all specified
plot definitions.

layout gridded / order=columnmajor
 rows=1;
 /* plot definitions */
endlayout;

When the number of rows is specified, you
place a limit on how many rows can be
displayed down a column. The ROWS= option
is honored only if ORDER=COLUMNMAJOR.

In the example code to the left, if you were to
include more than five plot definitions,
additional columns would be added
automatically, but the grid would not wrap to a
second row because the ROWS= setting limits
the grid to a single row.

If you are willing to have an empty cell in the grid, you could use a 2x3 or a 3x2 grid:

layout gridded / columns=3;
endlayout;

Defining a Basic Grid 209

By default, the layout uses the ORDER=ROWMAJOR setting to populate grid cells.
This specification essentially means "fill in all cells in the top row (starting at the top
left) and then continue to the next row below." COLUMNS=1 by default when
ORDER=ROWMAJOR, so you must specify an alternative setting to increase the
number of columns in the grid:

layout gridded / columns=3;
 /* plot1 definition */
 /* plot2 definition */
 /* plot3 definition */
 /* plot4 definition */
 /* plot5 definition */
endlayout;

Alternatively, you can specify ORDER=COLUMNMAJOR, which means "fill in all
cells in the left column and then continue to the next column to the right." ROWS=1
by default when ORDER=COLUMNMAJOR, so you must specify an alternative
setting to increase the number of rows in the grid:

layout gridded / rows=2 order=columnmajor;
 /* plot1 definition */
 /* plot2 definition */
 /* plot3 definition */
 /* plot4 definition */
 /* plot5 definition */
endlayout;

Setting Gutters
To conserve space, the default GRIDDED layout does not include a gap between
cell boundaries. In some cases, this might cause the cell contents to appear too
congested. You can add a vertical gap between all cells with the
COLUMNGUTTER= option, and you can add a horizontal gap between all rows with
the ROWGUTTER= option. If no units are specified, pixels (PX) are assumed.

layout gridded / columns=3 columngutter=5 rowgutter=5;
 /* plot1 definition */

210 Chapter 14 / Creating Gridded Graphs Using the GRIDDED Layout

 /* plot2 definition */
 /* plot3 definition */
 /* plot4 definition */
 /* plot5 definition */
endlayout;

Note that by adding gutters, you do not increase the size of the graph. Instead, the
cells shrink to accommodate the gutters. Depending on the number of cells in the
grid and the size of the gutters, you will frequently want to adjust the size of the
graph to obtain optimal results, especially if the cells contain complex graphs. For
more information, see “Sizing Issues” on page 215.

Defining Cells
Two valid techniques are available for indicating the contents of a cell:

Technique Example Advantages Disadvantages

standalone plot
statement or text
statement

scatterplot x= y=; simplicity cannot have
overlays

cannot adjust axes,
borders, or
backgrounds (these
are layout options)

layout block layout overlay;
 scatterplot x= y=;
 seriesplot x= y=;
endlayout;

cell can contain a
complex plot

axes can be
adjusted

other layout types
can be used

more complexity

Here is a simple example.

proc template;
 define statgraph celldefine;
 begingraph;
 entrytitle "Simple 3x2 Grid with Five Cells Populated";
 layout gridded / columns=3 rows=2;
 /* standalone plot statements define cells 1-3 */
 boxplot x=sex y=age;
 boxplot x=sex y=height;
 boxplot x=sex y=weight;
 /* overlay blocks define cells 4-5 */
 layout overlay;

Defining a Basic Grid 211

 scatterplot y=weight x=height;
 pbsplineplot y=weight x=height;
 entry halign=right "Spline" / valign=bottom;
 endlayout;
 layout overlay;
 scatterplot y=weight x=height;
 loessplot y=weight x=height;
 entry halign=right "Loess " / valign=bottom;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=celldefine;
run;

Here is the output.

Notice that some Y-axis labels are too close to their neighboring plots. You can use
the COLUMNGUTTER= and ROWGUTTER= options to add gutters between all
columns and rows. The following layout statement defines a grid with 30-pixel
gutters:

layout gridded / columns=3 columngutter=30 rowgutter=30;

Here is example output.

212 Chapter 14 / Creating Gridded Graphs Using the GRIDDED Layout

Notice that adding gutters visually separates graphs, but it does not increase the
overall graph size. To compensate for the gutters, the cells become smaller. This
same behavior is observed by other multi-cell layouts, as well.

Building a Table of Text
One of the most common applications of the GRIDDED layout is to build a table of
text or statistics similar to the following using nested ENTRY statements.

When GRIDDED layouts are used to create tables of text, the tables often appear
within another layout. For example, the table might be used within the plot wall of an
OVERLAY layout, or within a SIDEBAR block of a LATTICE layout. When the table
is used within a LAYOUT OVERLAY, it is often necessary to position the table so
that it avoids collision with the plot. In the following example, the
AUTOALIGN=(position-list) option of the GRIDDED layout is used to dynamically
position the table in the TOPRIGHT or TOPLEFT position. TOPRIGHT is tried first,
but TOPLEFT is used if the TOPRIGHT position would cause the histogram to
collide with the table.

proc template;
define statgraph inset2;
 begingraph;

Building a Table of Text 213

 entrytitle "Auto-positioning the Inset Within the Plot Wall";
 layout overlay;
 histogram mrw;
 layout gridded / columns=1 border=true
 columngutter=5px
 autoalign=(topright topleft);
 entry halign=left "N" halign=right "5203";
 entry halign=left "Mean" halign=right "119.96";
 entry halign=left "Std Dev" halign=right "19.98";
 endlayout;
 endlayout;
 endgraph;
end;
run;

proc sgrender data=sashelp.heart template=inset2;
run;

Here is the output.

Tables like this can be organized many different ways. For more information about
these techniques, see Chapter 19, “Adding Titles, Footnotes, and Text Entries to
Your Graph,” on page 317 for details about ENTRY statements. In this example, the
values for the statistics in the table are hardcoded. Obviously, you would prefer that
the statistics values be calculated in the template. Chapter 21, “Adding Insets to
Your Graph,” on page 383 shows how these values can be computed in the
template or passed to the template using dynamic variables or macro variables.

214 Chapter 14 / Creating Gridded Graphs Using the GRIDDED Layout

Sizing Issues

Row and Column Sizes
Unlike the LATTICE layout, the GRIDDED layout offers no way to control column
sizes or row sizes. These sizes are determined by the contents of the cells. If only
plots are used in the cells, the grid is partitioned equally based on the graph size.
However, any individual cell in the grid might contain a legend or text. Consider the
next two examples, in which the sixth cell of the grid is populated with a legend.

proc template;
 define statgraph celldefine;
 begingraph;
 entrytitle "Simple 3x2 Grid";
 layout gridded / columns=3 rows=2 columngutter=10 rowgutter=10;
 /* standalone plot statements define cells 1-3 */
 boxplot x=sex y=age;
 boxplot x=sex y=height;
 boxplot x=sex y=weight;
 /* overlay blocks define cells 4-5 */
 layout overlay;
 scatterplot y=weight x=height / group=sex name="scatter";
 pbsplineplot y=weight x=height;
 entry halign=right "Spline" / valign=bottom;
 endlayout;
 layout overlay;
 scatterplot y=weight x=height / group=sex;
 loessplot y=weight x=height;
 entry halign=right "Loess " / valign=bottom;
 endlayout;
 discretelegend "scatter" / title="Sex";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=celldefine;
run;

Here is the output.

Sizing Issues 215

In this first case, the legend height and width are smaller than the default column
and rows sizes, so the legend fits nicely into the empty cell. However, the following
case demonstrates that if the legend is larger than the default column width or row
height, the legend size has precedence and the cell size is adjusted to fit the
legend.

The same thing might happen when ENTRY statements with lengthy strings are
used in cells. Because of this behavior, you should consider using a LATTICE layout
whenever you want to enforce uniform or user-defined column widths and row
heights for the grid, regardless of cell contents. If this layout were changed to a
LATTICE, the legend would be either omitted or clipped, depending on the setting of
the DISPLAYCLIPPED= option of the DISCRETELEGEND statement.

216 Chapter 14 / Creating Gridded Graphs Using the GRIDDED Layout

Even when the GRIDDED layout does not contain legend or text statements, the
plot-area size in a row or column in the grid might be changed by cell contents.
Consider the following three-cell GRIDDED layout example.

Example Code 14.1 Three-Cell Gridded Layout Example

proc template;
 define statgraph fitcompare;
 begingraph / designwidth=495 designheight=220;
 entrytitle "Comparison of Fit Lines";
 layout gridded / columngutter=5 columns=3 rows=1;
 /* Cell 1 */
 layout overlay;
 entry "Spline" / location=outside valign=top;
 scatterplot x=weight y=mpg_city /
 markerattrs=(size=3px symbol=circlefilled color=gray)
 datatransparency=.7;
 pbsplineplot x=weight y=mpg_city;
 endlayout;
 /* Cell 2 */
 layout overlay;
 entry "Loess" / location=outside valign=top;
 scatterplot x=weight y=mpg_city /
 markerattrs=(size=3px symbol=circlefilled color=gray)
 datatransparency=.7;
 loessplot x=weight Y=mpg_city;
 endlayout;
 /* Cell 3 */
 layout overlay;
 entry "Regression" / location=outside valign=top;
 scatterplot x=weight y=mpg_city /
 markerattrs=(size=3px symbol=circlefilled color=gray)
 datatransparency=.7;
 regressionplot x=weight y=mpg_city;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.cars template=fitcompare;
run;

Three OVERLAY layouts define the cell contents. Here is the output.

Sizing Issues 217

Because the Y axes are duplicated across cells, you might try to conserve space by
turning off the Y axes for the second and third cells. You can do this by adding the
YAXISOPTS=(DISPLAY=NONE) option to the LAYOUT OVERLAY statement for
the second and third cells. Here is the result.

Once again, the three cells have the same size, but the plot areas do not because
the cells that no longer display the Y axis have extended the plot areas into the
space that formerly displayed the axes. Rather than using the GRIDDED layout, you
can use the LATTICE layout to ensure that the three plot areas have the same size.
See Example Code 15.1 on page 239.

Adjusting Graph Size
When defining the grid size, you will generally have some idea of a good overall
aspect ratio for the graph. For example, if the graph in Example Code 14.1 on page
217 is rendered using the default size of 640 pixels by 480 pixels, the graph has an
aspect ratio of 4:3, which looks as follows:

218 Chapter 14 / Creating Gridded Graphs Using the GRIDDED Layout

The graph would look better if the graph height were smaller in relation to the width.
You can establish a good default graph size in the template definition by setting the
DESIGNWIDTH= and DESIGNHEIGHT= options in the BEGINGRAPH statement as
shown in Example Code 14.1 on page 217.After some experimentation, you might
decide that a 2:1 aspect ratio for this graph looks good. Here is the modified
BEGINGRAPH statement.

begingraph / designwidth=460px designheight=230px;

Here is the output.

The DESIGNWIDTH= and DESIGNHEIGHT= options set the graph size as part of
the template definition so that if you later want a larger or smaller version of this
graph, you can use the ODS GRAPHICS statement rather than resetting the design
size and recompiling the template. You need only specify either a WIDTH= or a
HEIGHT= option in the ODS GRAPHICS statement. The other dimension is
automatically computed for you, based on the aspect ratio that is specified in the
compiled template by the DESIGNWIDTH= and DESIGNHEIGHT= options.

Sizing Issues 219

ods graphics / reset width=430px;
proc sgrender data=sashelp.cars template=fitcompare;
run;

Here is the result.

If you provide both the HEIGHT= and WIDTH= options in the ODS GRAPHICS
statement, you completely override the design aspect ratio. If the WIDTH= or
HEIGHT= options are not specified, the design size is in effect.

Setting the DESIGNHEIGHT= and DESIGNWIDTH= options is highly recommended
for all multi-cell layouts that contain plots. This recommendation applies to the
GRIDDED, LATTICE, DATAPANEL, and DATALATTICE layouts.

220 Chapter 14 / Creating Gridded Graphs Using the GRIDDED Layout

15
Creating Lattice Graphs Using the
LATTICE Layout

The LAYOUT LATTICE Statement . 221

Defining a Basic Lattice . 225
Setting Grid Dimensions . 225
Setting Gutters . 227
Populating Cells . 227
Adding Cell Headers . 229

Managing Axes in LATTICE Layouts . 231
Internal Axes . 231
Uniform Axis Ranges . 232
Row and Column Axes . 233

Adjusting the Sizes of Rows and Columns . 238

Adjusting the Graph Size . 239

Examples: Lattice Layout . 241
Example 1: Basic Lattice with Internal Axes . 241
Example 2: Lattice with Side Bars . 246
Example 3: Lattice with Row and Column Axes . 247
Example 4: Lattice with Row Headers . 249
Example 5: Lattice with Custom Row Sizing . 251

The LAYOUT LATTICE Statement
The LAYOUT LATTICE statement defines a multi-cell grid of graphs that can
automatically align plot areas and tick display areas across grid cells to facilitate
data comparisons among plots. The LATTICE layout differs from the classification
panel layouts in that the number of cells must be predefined and that you must
define the content of each cell separately. LATTICE is superficially similar to a

221

GRIDDED layout because it can create a grid of heterogeneous plots. However, the
LATTICE has much more functionality and supports the following:

n adjustable column and row sizes

n axis equalization on a row or column basis to facilitate comparisons

n internal axes on a per-cell basis, or external axes for rows or columns of cells

n internal labeling of cell contents (cell header)

n external labeling of rows and columns (column and row headers)

n external sidebars that span all columns (top and bottom) or rows (left and right)

Figure 15.1 on page 222 shows a four-cell lattice (two rows and two columns). It
was produced with a LAYOUT LATTICE statement to illustrate the features of this
layout type. The figure contains definitions of four plots, which by default are treated
independently.

A mixture of plot types or nested layouts can be used in the cells of the lattice. By
default, each plot manages its own axes internal to the lattice boundaries. In the
figure, a light gray border has been added to each plot to show its boundaries within
the lattice. The shaded areas represent the optional features that you can add to the
lattice definition. By default, these shaded areas are not used in the lattice and
space is not reserved for them. Thus, in the default case, the plot areas would
expand to replace the shaded areas in the cells.

Figure 15.1 LATTICE Layout with Internal Axes

The shaded areas that are shown in the figure are typically used as follows:

222 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

n Cell Headers are commonly used to describe the contents of a cell. Notice that
the cell header, when present, has a separate space above the plot wall area.
The cell header can contain more than one line of text, but it is not restricted to
displaying text. For example, you could use this area to display a legend.

n Sidebars are often used to present text or a legend that pertains to all rows or all
columns in the grid. Again, the sidebar is not limited to text or a legend. You
could place another plot in a sidebar.

n Column Headers and Row Headers present text that pertains to individual
columns and rows. These header areas can also be used to display other
components, like legends and plots.

Figure 15.2 on page 224 shows how the lattice would look if you used additional
options to externalize the internal axes by consolidating them into common row and
column axes. The figure shows both row and column axes, but you could
externalize the axes only for the rows, or only for the columns. When axes are
external to the cells, the data ranges that are displayed for the plots are unified by
taking the minimum of all data minima and the maximum of all data maxima from
the affected plots.

The following variations are available for unifying the axes:

n The scale of the data ranges of all X-axes in a column can be unified on a per-
column basis or unified across all columns. (See "Column 1 Axis" and "Column 2
Axis" in Figure 15.2 on page 224.)

n The scale of the data ranges of all Y-axes in a row can be unified on a per-row
basis, or unified across all rows. (See "Row 1 Axis" and "Row 2 Axis" in Figure
15.2 on page 224.)

By default, row and column axes are displayed only on the primary axes (bottom
and left). They are not displayed on the secondary axes (top and right) unless
requested. Notice that row and column axes use less space and result in larger plot
areas than internal axes. (Compare Figure 15.2 on page 224 with Figure 15.1 on
page 222, which is the same size.)

The LAYOUT LATTICE Statement 223

Figure 15.2 LATTICE Layout with Row and Column Axes

The following example shows a very simple LATTICE layout:

proc template;
 define statgraph intro;
 begingraph;
 entrytitle "Two-Cell Lattice Layout";
 layout lattice;
 barchart category=age;
 scatterplot x=height y=weight;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=intro;
run;

Here is the output.

224 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

In a LATTICE layout, each plot statement is considered independent and is placed
in a separate cell. When no grid size is provided, the default layout creates a graph
with one column of cells, and it allots each cell the same amount of space. The
number of rows in the grid is determined by the number of standalone plot
statements in the LAYOUT LATTICE block.

Defining a Basic Lattice

Setting Grid Dimensions
Assume you want a grid of five plots. Your first step is to decide how many columns
and rows you want and whether you want to permit empty cells in the grid. If you do
not want empty cells, you must limit the grid to five cells, which gives you two
choices for the grid dimensions: five columns by one row (5x1), or one column by
five rows (1x5).

To specify grid size, use the ROWS= and COLUMNS= options in the LAYOUT
LATTICE statement. These options can be used in three ways to create the
following grid, which contains one row and five columns:

Lattice Specification Code Description

layout lattice / columns=5 rows=1;
 /* plot definitions */
endlayout;

Specify the number of columns and the
number of rows to explicitly set the grid size.

layout lattice / order=columnmajor
 rows=1;

Specify only one grid row and
ORDER=COLUMNMAJOR. In this case, there

Defining a Basic Lattice 225

Lattice Specification Code Description

 /* plot definitions */
endlayout;

are as many grid columns as there are plot
definitions. This is the recommended way to
create a row of plots.

layout lattice / columns=5;
 /* plot defintions */
endlayout;

Specify only the number of columns. This
places a limit on how many plots can appear in
one row. If you were to include more than five
plot definitions, additional rows (with five
columns) would be added automatically
because ORDER=ROWMAJOR by default.

If you are willing to have an empty cell in the grid, you could use a 2x3 or a 3x2 grid:

layout lattice / columns=3 rows=2;
endlayout;

Note: The LAYOUT LATTICE statement honors the full specification of columns
and rows, unlike the LAYOUT GRIDDED statement, which honors only COLUMNS=
or ROWS=, depending on the ORDER= setting.

By default, the LATTICE layout uses the ORDER=ROWMAJOR setting, which
populates the grid cells left to right starting at the top left cell and continuing to the
next row below:

layout lattice / columns=3 rows=2;
 /* plot1 definition */
 /* plot2 definition */
 /* plot3 definition */
 /* plot4 definition */
 /* plot5 definition */
endlayout;

Alternatively, you can specify ORDER=COLUMNMAJOR, which populates the grid
cells top to bottom starting at the top left cell and continuing to the top of the next
column to the right:

layout lattice / columns=3 rows=2 order=columnmajor;
 /* plot1 definition */
 /* plot2 definition */
 /* plot3 definition */
 /* plot4 definition */
 /* plot5 definition */
endlayout;

226 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

Setting Gutters
To conserve space, the default LATTICE layout does not include a gap between cell
boundaries. In some cases, this might cause the cell contents to appear too
congested. You can add a vertical gap between all cells with the
COLUMNGUTTER= option, and you can add a horizontal gap between all rows with
the ROWGUTTER= option. If no units are specified, pixels (PX) are assumed.

layout lattice / columns=3 rows=2 columngutter=5 rowgutter=5;
 /* plot1 definition */
 /* plot2 definition */
 /* plot3 definition */
 /* plot4 definition */
 /* plot5 definition */
endlayout;

Note that by adding gutters, you do not increase the size of the graph. Instead, the
cells shrink to accommodate the gutters. Depending on the number of cells in the
grid and the size of the gutters, you will frequently want to adjust the size of the
graph to obtain optimal results, especially if the cells contain complex graphs. For
more information, see “Adjusting the Graph Size” on page 239.

Populating Cells
The following table lists several techniques for populating cells.

Technique Example Advantages Disadvantages

standalone plot
statement

scatterplot x= y=; simplicity cannot adjust axes

cannot have
overlays

cannot have cell
headers

layout block layout overlay;
 scatterplot x= y=;
 seriesplot x= y=;

cell can contain a
complex plot

cannot have cell
headers

Defining a Basic Lattice 227

Technique Example Advantages Disadvantages

endlayout; axes can be
adjusted

other layout types
can be used

cell block cell;
 layout overlay;
 scatterplot x= y=;
 seriesplot x= y=;
 endlayout;
endcell;

makes it easy to see
cell boundary in
code

required if a cell
header is desired

adds to program
length when no cell
header is desired

Here is a simple example:

proc template;
 define statgraph lattice;
 begingraph;
 entrytitle "Simple 3x2 Lattice with Five Cells Populated";
 layout lattice / columns=3 rows=2 columngutter=10 rowgutter=10;
 /* standalone plot statements define cells 1-3 */
 boxplot x=sex y=age;
 boxplot x=sex y=height;
 boxplot x=sex y=weight;
 /* overlay blocks define cells 4-5 */
 layout overlay;
 scatterplot y=weight x=height;
 pbsplineplot y=weight x=height;
 entry halign=right "Spline" / valign=bottom;
 endlayout;
 layout overlay;
 scatterplot y=weight x=height;
 loessplot y=weight x=height;
 entry halign=right "Loess " / valign=bottom;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=lattice;
run;

Here is the output.

228 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

In the examples shown to this point, a LATTICE layout produces the same result as
a GRIDDED layout. We can now look at features that are not available with the
GRIDDED layout.

Adding Cell Headers
To add cell headers to the grid, you must specify a CELL block that contains a
nested CELLHEADER block. The CELLHEADER block can contain one or more
ENTRY statements, or it can contain other statements such as
DISCRETELEGEND. Here is an example.

proc template;
 define statgraph lattice2;
 begingraph / designwidth=495px designheight=230px;
 entrytitle "Simple 3x1 Lattice with Cell Headers";
 layout lattice / columns=3 rows=1 columngutter=5;
 /* cell blocks cells 1-3 */
 cell;
 cellheader;
 entry "Spline Fit";
 endcellheader;
 layout overlay;
 scatterplot y=weight x=height;
 pbsplineplot y=weight x=height;
 endlayout;
 endcell;
 cell;
 cellheader;
 entry "Loess Fit";
 endcellheader;
 layout overlay;
 scatterplot y=weight x=height;

Defining a Basic Lattice 229

 loessplot y=weight x=height;
 endlayout;
 endcell;
 cell;
 cellheader;
 entry "Regression Fit";
 endcellheader;
 layout overlay;
 scatterplot y=weight x=height;
 regressionplot y=weight x=height;
 endlayout;
 endcell;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=lattice2;
run;

Here is the output.

You can enhance any cell header in the following way:

n Nest a GRIDDED layout in the CELLHEADER block.

n Set BORDER=TRUE on the LAYOUT GRIDDED statement.

n Add the ENTRY statement(s) to the GRIDDED layout.

Because the GRIDDED layout fills the cell header space above the plot wall, its
border aligns nicely with the plot.

You can further enhance the cell header by making the GRIDDED layout's
background opaque and setting a background color for it. To ensure that the color
remains coordinated with the current style, you could choose any of several style
elements that define light background colors, such as GraphHeaderBackground,
GraphBlock, or GraphAltBlock. Note that several style elements set the
GraphHeaderBackground color to be the same as the GraphBackground color. For
styles such as LISTING and JOURNAL, the background is white.

As a final enhancement, you could coordinate the text color for the cell headers with
a visual attribute in the plot. For example, if you are displaying a fit plot in the cell,
you could set the text color to match the color of the fit line. The TEXTATTRS=
option in the ENTRY statement can be used to set the text properties. The default
settings for TEXTATTRS= are derived from the GraphValueText style element. For
more information about ENTRY statements, see Chapter 19, “Adding Titles,
Footnotes, and Text Entries to Your Graph,” on page 317.

230 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

The following code enhances the cell header block of the first cell. Similar code
would be used to enhance the header blocks of the other two cells:

cellheader;
 layout gridded / border=true opaque=true
 backgroundcolor=GraphAltBlock:color;
 entry "Spline Fit" / textattrs=(color=GraphFit:contrastColor);
 endlayout;
endcellheader;

Here is the result when this code is applied to all three cells.

If you have a lengthy text description to add to a cell header, you should use
multiple ENTRY statements to break the text into small segments. Otherwise, the
text might be truncated. Also, for a given row, if the number of lines of text in the cell
headers varies, a uniform cell height is maintained across the row by setting all the
row headers to the height needed by the largest cell header.

Managing Axes in LATTICE Layouts

Internal Axes
By default, the plots in the cells of the LATTICE layout manage their own axes, as
demonstrated by the following example:

proc template;
 define statgraph internalaxes;
 begingraph;
 entrytitle "Internal (cell-defined) Axes";
 layout lattice / columns=2 columngutter=5px;
 histogram mpg_city;
 histogram mpg_highway;
 endlayout;
 endgraph;
end;
run;

ods graphics / reset width=495px height=250px;
proc sgrender data=sashelp.cars template=internalaxes;

Managing Axes in LATTICE Layouts 231

run;

Here is the output.

In this example, notice that the X and Y axes have different data ranges for each
cell. In cases where you want to facilitate comparisons of the cell contents, you can
set uniform axis scales across the rows in the grid, or across the columns, or across
both.

Uniform Axis Ranges
To set a uniform scale on the X axis in each row of a lattice, use the
COLUMNDATARANGE= option on the LAYOUT LATTICE statement. Likewise, to
set a uniform scale on the Y axis in each row of the lattice, use the
ROWDATARANGE= option. These options accept one of the following values:

DATA
scales the axes independently for each cell. This value is the default.

UNION
finds the minimum of the data minima and the maximum of the data maxima, on
a per-row or per-column basis, and sets this range on the appropriate axis for
each cell in a row or column.

UNIONALL
finds the minimum of the data minima and the maximum of the data maxima
over all rows or all columns, and sets this range on the appropriate axis for each
cell.

The following LAYOUT LATTICE statement specifies UNIONALL for the X axis and
UNION for the Y axis.

layout lattice / columns=2 columngutter=5px
 columndatarange=unionall
 rowdatarange=union;
 histogram mpg_city;
 histogram mpg_highway;
endlayout;

Here is example output.

232 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

Note: The default X axis for a histogram shows ticks at bin midpoints or at bin start
and end points. If the histograms have the same bin width, it is possible to create
uniformly scaled X axes. However, when the bin widths are different, there might not
be any common midpoints. To handle this situation, the LATTICE layout
automatically switches to a linear axis so that the axis tick values can be uniform,
even though they might not be at the bin midpoints or boundaries for all histograms.

The following restrictions apply to the UNION and UNIONALL settings on any row or
column of the lattice:

n All plots must have the same axis type: LINEAR, LOG, TIME, or DISCRETE.

n If a cell contains a LAYOUT OVERLAY3D or LAYOUT OVERLAYEQUATED
statement, uniform axis ranges and external axes are not supported for that row
or column.

n If you create a multipanel lattice and specify ROWDATARANGE=UNION, the
axis range for each row might differ from panel to panel. The
ROWDATARANGE=UNION option does not extend across panels, which means
the axis range is computed on a per-row basis for each panel rather than across
all of the panels.

Row and Column Axes

Specifying Row and Column Axes
Whenever axis scales have been unified for a row or a column, you can replace the
internal cell axes in that row or column with a single common axis that is external to
the cells.

To create a column X axis, use the following syntax:

COLUMNAXES;
COLUMNAXIS / options;
<COLUMNAXIS / options;>

Managing Axes in LATTICE Layouts 233

ENDCOLUMNAXES;

To create a row Y axis, use the following syntax:

ROWAXES;
ROWAXIS / options;
<ROWAXIS / options;>

ENDROWAXES;

Within the axes blocks, specify as many COLUMNAXIS or ROWAXIS statements as
there are columns or rows in the grid. The options that are available to each
statement are similar to those that are available for the XAXISOPTS= and
YAXISOPTS= options of a LAYOUT OVERLAY statement. The options that you
specify can differ from statement to statement.

Note: When a row or column axis is used, all axis options in the layout statement
for each cell in that row or column are ignored.

The following layout block externalizes the Y axes and displays Y-axis grid lines:

layout lattice / columns=2 columngutter=5px
 columndatarange=unionall
 rowdatarange=union;
 histogram mpg_city;
 histogram mpg_highway;
 rowaxes;
 rowaxis / griddisplay=on;
 endrowaxes;
endlayout;

Here is example output.

234 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

Displaying Row and Column Secondary
Axes
The DISPLAYSECONDARY= option can be used in a ROWAXIS statement to
display a row axis at the right of the lattice. It can be used in a COLUMNAXIS
statement to display a column axis at the top of the lattice. These secondary axes
are duplicates of the primary axis and are not truly independent axes. However, you
can change the features that are displayed on the secondary axis. In the following
LAYOUT LATTICE statement block, the ticks and tick values are repeated on the
right side of the lattice, but the axis label is suppressed by not listing it among the
features that are requested in the DISPLAYSECONDARY= option.

layout lattice / columns=2 columngutter=5px
 columndatarange=unionall
 rowdatarange=union;
 histogram mpg_city;
 histogram mpg_highway;
 rowaxes;
 rowaxis / griddisplay=on displaysecondary=(ticks tickvalues);
 endrowaxes;
endlayout;

Here is example output.

External Axes and Empty Cells
If a LATTICE layout generates empty cells and there are row and column axes, a
row or column axis might be displayed near one or more of those empty cells. The
following example shows the default case:

proc template;
 define statgraph skipemptycells1;

Managing Axes in LATTICE Layouts 235

 begingraph;
 entrytitle "External Axes and Empty Cells";
 layout lattice / columns=2 rows=2
 rowgutter=5px columngutter=5px
 rowdatarange=unionall columndatarange=unionall;
 /* cell blocks cells 1-3 */
 layout overlay;
 entry "Spline Fit" / valign=top;
 scatterplot y=weight x=height;
 pbsplineplot y=weight x=height;
 endlayout;
 layout overlay;
 entry "Loess Fit" / valign=top;
 scatterplot y=weight x=height;
 loessplot y=weight x=height;
 endlayout;
 layout overlay;
 entry "Regression Fit" / valign=top;
 scatterplot y=weight x=height;
 regressionplot y=weight x=height;
 endlayout;
 rowaxes;
 rowaxis;
 rowaxis;
 endrowaxes;
 columnaxes;
 columnaxis;
 columnaxis;
 endcolumnaxes;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=skipemptycells1;
run;

Here is the output.

236 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

Adding the SKIPEMPTYCELLS=TRUE option to the LAYOUT LATTICE statement
as shown in the following example eliminates the space that is normally reserved for
the empty cells.

layout lattice / columns=2 rows=2
 rowgutter=5px columngutter=5px
 rowdatarange=unionall columndatarange=unionall
 skipemptycells=true;

In this case, a column X axis that might be displayed near an empty cell is removed.
Here is example output.

Managing Axes in LATTICE Layouts 237

Adjusting the Sizes of Rows and
Columns

By default, the rows and columns of the lattice are of the same height and width.
You can use the ROWWEIGHTS= and COLUMNWEIGHTS= options on the
LAYOUT LATTICE statement to designate different row heights or column widths or
both. Consider the following settings:

LAYOUT LATTICE / ROW=2 COLUMNS=2
 ROWWEIGHTS=(.6 .4) COLUMNWEIGHTS=(.45 .65);

The ROWWEIGHTS= setting specifies that the first row gets 60% of available row
space, and the second row gets 40%. The COLUMNWEIGHTS= setting specifies
that the first column gets 45% of available column space, and the second column
gets 65%. Potentially, the settings on these options affect the space that is allocated
to cell headers and to row and column headers. For example, in a traditional stock
plot, the area devoted to price information is larger than the area devoted to the
volume information. Here is an adjustment made to the row heights for the graph in
Figure 15.7 on page 251:

layout lattice / columns=2 rows=2 rowweights=(.6 .4)
 rowdatarange=union columndatarange=union
 rowgutter=3px columngutter=3px;

Figure 15.3 LATTICE with Adjusted Row Heights

238 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

For another example, see “Example 5: Lattice with Custom Row Sizing” on page
251.

Adjusting the Graph Size
When defining the lattice grid size, you generally have some idea of a good overall
aspect ratio for the graph. Consider the following example of a one row by three
column lattice.

Example Code 15.1 Three-Cell Lattice Layout Example

proc template;
 define statgraph graphsize2;
 begingraph;
 entrytitle "Comparison of Fit Lines";
 layout lattice / columns=3 rows=1 rowdatarange=union;
 /* Cell 1 */
 layout overlay;
 entry "Spline" / location=outside valign=top;
 scatterplot x=weight y=mpg_city /
 markerattrs=(size=3px symbol=circlefilled color=gray)
 datatransparency=.7;
 pbsplineplot x=weight y=mpg_city;
 endlayout;
 /* Cell 2 */
 layout overlay;
 entry "Loess" / location=outside valign=top;
 scatterplot x=weight y=mpg_city /
 markerattrs=(size=3px symbol=circlefilled color=gray)
 datatransparency=.7;
 loessplot x=weight Y=mpg_city;
 endlayout;
 /* Cell 3 */
 layout overlay;
 entry "Regression" / location=outside valign=top;
 scatterplot x=weight y=mpg_city /
 markerattrs=(size=3px symbol=circlefilled color=gray)
 datatransparency=.7;
 regressionplot x=weight y=mpg_city;
 endlayout;
 /* Externalize the row axis */
 rowaxes;
 rowaxis;
 endrowaxes;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.cars template=graphsize2;
run;

The graph has a default aspect ratio of 4:3 as shown in the following figure.

Adjusting the Graph Size 239

The graph would look better if the graph's height were smaller in relation to its width.
You can establish a good default graph size in the template definition by setting the
DESIGNWIDTH= and DESIGNHEIGHT= options in the BEGINGRAPH statement.
After some experimentation, you might decide that a 2:1 aspect ratio looks good:

begingraph / designwidth=460px designheight=230px;

Here is the result.

The DESIGNWIDTH= and DESIGNHEIGHT= options set the graph size as part of
the template definition so that if you later want a larger or smaller version of this
graph, you can use the ODS GRAPHICS statement rather than resetting the design
size and recompiling the template. You need only specify either a WIDTH= or a
HEIGHT= option in the ODS GRAPHICS statement. The other dimension is
automatically computed for you, based on the aspect ratio that is specified in the
compiled template by the DESIGNWIDTH= and DESIGNHEIGHT= options.

ods graphics / reset width=430px;

240 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

proc sgrender data=sashelp.cars template=fitcompare;
run;

Here is the result.

If you provide both the HEIGHT= and WIDTH= options in the ODS GRAPHICS
statement, you completely override the design aspect ratio. If the WIDTH= or
HEIGHT= options are not specified, the design size is in effect.

Setting the DESIGNHEIGHT= and DESIGNWIDTH= options is highly recommended
for all multi-cell layouts that contain plots. This recommendation applies to the
GRIDDED, LATTICE, DATAPANEL, and DATALATTICE layouts.

Examples: Lattice Layout

Example 1: Basic Lattice with Internal Axes

About This Example
This example demonstrates how to generate the basic lattice shown in Figure 15.4
on page 242. To generate the basic lattice, complete the following steps:

1 Transform the input data.

2 Create the basic lattice.

3 Customize the cell axes.

Here is the output.

Examples: Lattice Layout 241

Figure 15.4 Stock Plot

Transforming the Input Data
A common use for a lattice is to create a graph that shows different subsets of the
same input data. In some cases, those subsets are already defined in the input
data. However, you frequently have to transform the input data to make it suitable
for the graph that you are trying to create. You might need to perform any or all of
the following tasks:

n Summarizing the data.

n Transposing the data.

n Scale the data values.

n Create new variables that represent subsets of the data.

The graph that is shown in Figure 15.4 on page 242 is based on data from
Sashelp.Stocks, which contains several years of monthly stock information for three
companies. The data set contains columns labeled Stock, Date, Volume, and
AdjClose (Adjusted Closing Price). However, it does not contain the volume and
price information in the form that is needed for the graph. The LATTICE layout does
not support subsets of the input data on a per-cell basis. So, in order to make the
cell content different, unique variables must be created for each cell to provide the
appropriate date, volume, and price information. The following DATA step performs
the necessary input data transformations:

data stock;
 set sashelp.stocks;
 where stock eq "Microsoft" and year(date) in (2004 2005);

242 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

 format Date2004 Date2005 date.
 Price2004 Price2005 dollar6.;
 label Date2004="2004" Date2005="2005";
 if year(date) = 2004 then do;
 Date2004=date;
 Vol2004=volume*10**-6;
 Price2004=adjclose;
 end;
 else if year(date)=2005 then do;
 Date2005=date;
 Vol2005=volume*10**-6;
 Price2005=adjclose;
 end;
 keep Date2004 Date2005 Vol2004
 Vol2005 Price2004 Price2005;
run;

The data is filtered for Microsoft and for the years 2004 and 2005. Next, new
variables are created for each year, and for the Volume and Stock Price within each
year. Because the volumes are large, they are scaled to millions. This scaling is
noted in the graph. This coding results in a sparse data set, but it is the correct
organization for the lattice because observations with missing X or Y values are not
plotted.

Obs Date2004 Date2005 Price2004 Price2005 Vol2004 Vol2005

 1 . 01DEC05 . $26 . 62.8924
 2 . 01NOV05 . $27 . 71.4692
 3 . 03OCT05 . $25 . 72.1325
 4 . 01SEP05 . $25 . 66.9765
 5 . 01AUG05 . $27 . 65.5300
 6 . 01JUL05 . $25 . 69.0466
 7 . 01JUN05 . $25 . 62.9567
 8 . 02MAY05 . $25 . 62.6998
 9 . 01APR05 . $25 . 77.0902
 10 . 01MAR05 . $24 . 72.8997
 11 . 01FEB05 . $25 . 75.9923
 12 . 03JAN05 . $26 . 79.6428
 13 01DEC04 . $26 . 84.4881 .
 14 01NOV04 . $26 . 86.4461 .
 15 01OCT04 . $25 . 65.7429 .
 16 01SEP04 . $24 . 57.7253 .
 17 02AUG04 . $24 . 52.1046 .
 18 01JUL04 . $25 . 76.6667 .
 19 01JUN04 . $25 . 77.0683 .
 20 03MAY04 . $23 . 58.9425 .
 21 01APR04 . $23 . 77.3867 .
 22 01MAR04 . $22 . 77.1119 .
 23 02FEB04 . $23 . 57.3859 .
 24 02JAN04 . $24 . 63.6359 .

Every plot in every cell must use variables that contain just the information that is
appropriate for that cell. You cannot use WHERE clauses within the template
definition to form subsets of the data.

Creating the Basic Lattice
Here is the template code for the basic lattice:

Examples: Lattice Layout 243

proc template;
 define statgraph latticebasic;
 begingraph;
 entrytitle "Microsoft Stock Performance";
 layout lattice / columns=2 rows=2;
 /* define row 1 */
 seriesplot y=price2004 x=date2004 / lineattrs=GraphData1;
 seriesplot y=price2005 x=date2005 / lineattrs=GraphData1;

 /* define row 2 */
 needleplot y=vol2004 x=date2004 /
 lineattrs=GraphData2(thickness=2px pattern=solid);
 needleplot y=vol2005 x=date2005 /
 lineattrs= GraphData2(thickness=2px pattern=solid);
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=stock template=latticebasic;
run;

Here is the output.

Figure 15.5 Initial Lattice for the Graph

Because Date2004 and Date2005 have an associated SAS date format, a TIME
axis is used and the variable labels are used for X-axis labels.

244 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

Customizing the Cell Axes
In most cases, externalizing axes improves graph appearance and streamlines
coding. However, if some axis options do not apply uniformly to all axes in a column
or row, you need to use the standard axis options on a per-cell basis instead of
using common row and column axes.

For example, suppose you want X-axis grid lines to appear on the top row of plots
but not on the second row of plots. You cannot use column axes. Instead, you must
enclose the cell contents in an overlay-type layout block and add XAXISOPTS=
options on the layout statements, as shown in the following layout blocks:

proc template;
 define statgraph latticebasic;
 begingraph;
 entrytitle "Microsoft Stock Performance";
 layout lattice / columns=2 rows=2;
 /* define row 1 */
 /* overlay blocks define X-axis options for row 1 */
 layout overlay / xaxisopts=(display=none griddisplay=on);
 seriesplot x=date2004 y=price2004 / lineattrs=GraphData1;
 endlayout;
 layout overlay / xaxisopts=(display=none griddisplay=on);
 seriesplot x=date2005 y=price2005 / lineattrs=GraphData1;
 endlayout;

 /* define row 2 */
 /* overlay blocks define X-axis options for row 2 */
 layout overlay / xaxisopts=(display=(label tickvalues)
 timeopts=(tickvalueformat=monname1.));
 needleplot x=date2004 y=vol2004 /
 lineattrs=GraphData2(thickness=2px pattern=solid);
 endlayout;
 layout overlay / xaxisopts=(display=(label tickvalues)
 timeopts=(tickvalueformat=monname1.));
 needleplot x=date2005 y=vol2005 /
 lineattrs= GraphData2(thickness=2px pattern=solid);
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=stock template=latticebasic;
run;

Figure 15.4 on page 242 shows the output for the final basic lattice.

Examples: Lattice Layout 245

Example 2: Lattice with Side Bars
This example demonstrates how to use side bars to enhance the graph in Figure
15.6 on page 249. In the original graph, the ENTRYTITLE is centered on the entire
graph. It would look better if it was centered on the grid area. This can be
accomplished by removing the ENTRYTITLE statement and adding a side bar along
the top that contains the title text in an ENTRY statement. Note that the prices in the
first row represent an adjusted close value and that the axis scaling for the second
row is in millions of shares. Two strategies are available for providing this
information. One strategy is to create an external legend. For this strategy, you
define legend text on two of the plot statements, and then add a
DISCRETELEGEND statement to a side bar along the bottom. Here is the modified
template code.

proc template;
 define statgraph latticesidebar;
 begingraph;
 layout lattice / columns=2 rows=2
 rowdatarange=union columndatarange=union
 rowgutter=3px columngutter=3px;
 /* define row 1 */
 seriesplot x=date2004 y=price2004 / lineattrs=GraphData1
 name="series" legendlabel="Adjusted Close";
 seriesplot x=date2005 y=price2005 / lineattrs=GraphData1;
 /* define row 2 */
 needleplot x=date2004 y=vol2004 /
 lineattrs=GraphData2(thickness=2px pattern=solid)
 name="needle" legendlabel="Millions of Shares";
 needleplot x=date2005 y=vol2005 /
 lineattrs= GraphData2(thickness=2px pattern=solid);
 rowaxes;
 rowaxis / griddisplay=on display=(label tickvalues)
 label="Price" labelattrs=(weight=bold);
 rowaxis / griddisplay=on display=(label tickvalues)
 label="Volume" labelattrs=(weight=bold);
 endrowaxes;
 columnaxes;
 columnaxis / griddisplay=on display=(label tickvalues)
 labelattrs=(weight=bold)
timeopts=(tickvalueformat=monname1.);
 columnaxis / griddisplay=on display=(label tickvalues)
 labelattrs=(weight=bold)
timeopts=(tickvalueformat=monname1.);
 endcolumnaxes;
 /* Add top and bottom sidebars */
 sidebar / align=top;
 entry "Microsoft Stock Performance" /
 textattrs=GraphTitleText pad=(bottom=5px);
 endsidebar;
 sidebar / align=bottom;
 discretelegend "series" "needle" / border=off;
 endsidebar;
 endlayout;

246 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

 endgraph;
 end;
run;

proc sgrender data=stock template=latticesidebar;
run;

The following graph shows the modifications.

The other strategy is to add to the row information. At first glance, it would seem that
you could do this very simply by extending the axis label text as shown in the
following ROWAXES block.

rowaxes;
 rowaxis / griddisplay=on display=(tickvalues)
 label="Volume (Millions of Shares)";
 rowaxis / griddisplay=on display=(tickvalues)
 label="Price (Adjusted Close)";
endrowaxes;

The problem here is that the extra axis label text might not fit; depending on the text
size and the graph size. The text might be truncated. The axis option
SHORTLABEL="string" is available to handle truncation, but you might want more
text, not alternate text, and there is no way to wrap the axis label to two lines. The
solution is to use row headers instead of specifying axis labels.

Example 3: Lattice with Row and Column Axes
Figure 15.5 on page 244 would benefit from externalizing the X and Y axes because
row and column axes reduce the redundant X-axis information and unify the data
ranges in the Y axes. You might also want to add grid lines to all axes. To conserve

Examples: Lattice Layout 247

space along the X axes, the automatic formatting of each TIME axis is turned off in
the following template code. The TICKVALUEFORMAT=MONNAME1. option
demonstrates how to format the time axis tick values.

proc template;
 define statgraph latticeexternalaxes;
 begingraph / designwidth=495px designheight=370px;
 entrytitle "Microsoft Stock Performance";
 layout lattice / columns=2 rows=2
 rowdatarange=union columndatarange=union
 rowgutter=3px columngutter=3px;
 /* define row 1 */
 seriesplot x=date2004 y=price2004 / lineattrs=GraphData1;
 seriesplot x=date2005 y=price2005 / lineattrs=GraphData1;
 /* define row 2 */
 needleplot x=date2004 y=vol2004 /
 lineattrs=GraphData2(thickness=2px pattern=solid);
 needleplot x=date2005 y=vol2005 /
 lineattrs= GraphData2(thickness=2px pattern=solid);
 rowaxes;
 rowaxis / griddisplay=on display=(label tickvalues)
 label="Price" labelattrs=(weight=bold);
 rowaxis / griddisplay=on display=(label tickvalues)
 label="Volume" labelattrs=(weight=bold);
 endrowaxes;
 columnaxes;
 columnaxis / griddisplay=on display=(label tickvalues)
 labelattrs=(weight=bold)
 timeopts=(tickvalueformat=monname1.);
 columnaxis / griddisplay=on display=(label tickvalues)
 labelattrs=(weight=bold)
 timeopts=(tickvalueformat=monname1.);
 endcolumnaxes;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=stock template=latticeexternalaxes;
run;

Here is the output.

248 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

Figure 15.6 Lattice with Row and Column Axes

Example 4: Lattice with Row Headers
In “Example 2: Lattice with Side Bars” on page 246, a legend in a sidebar was used
to indicate that the first row values are adjusted close values and that the second
row values are millions of shares. Another way to display that information is to
remove the label information from the row axes and introduce a ROWHEADERS
block, as shown in the following code fragment.

rowaxes;
 rowaxis / griddisplay=on display=(tickvalues);
 rowaxis / griddisplay=on display=(tickvalues);
endrowaxes;

rowheaders;
 layout gridded / columns=1;
 entry "Price" / textattrs=GraphLabelText;
 entry "(Adjusted Close)" / textattrs=GraphValueText;
 endlayout;
 layout gridded / columns=1;
 entry "Volume" / textattrs=GraphLabelText;
 entry "(Millions of Shares)" / textattrs=GraphValueText;
 endlayout;
endrowheaders;

By nesting the ENTRY statements in the LAYOUT GRIDDED statement block, you
can have multiple lines of text split exactly where you want and in any text style that
you desire. Without the GRIDDED layouts, only one ENTRY statement could be
used per row. Here is the result.

Examples: Lattice Layout 249

To allow more space for the plots, you can rotate the row header text to make it
appear to be a row axis label as shown in the following modified ROWHEADERS
block:

rowheaders;
 layout gridded / columns=2;
 entry "Price" / textattrs=GraphLabelText rotate=90;
 entry "(Adjusted Close)" / textattrs=GraphValueText rotate=90;
 endlayout;
 layout gridded / columns=2;
 entry "Volume" / textattrs=GraphLabelText rotate=90;
 entry "(Millions of Shares)" / textattrs=GraphValueText rotate=90;
 endlayout;
endrowheaders;

Notice that you must specify COLUMNS=2 in the LAYOUT GRIDDED statements.
Here is the final graph.

250 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

Figure 15.7 Final Lattice

The clean look of the graph is achieved by removing redundant cell axis information
and moving it to external column and row locations. In this example, the use of row
headers provided the desired flexibility over row axis labels.

Example 5: Lattice with Custom Row Sizing
This example shows you how to use the ROWWEIGHTS= and
COLUMNWEIGHTS= options to size the rows. Figure 15.8 on page 252 shows a
two-row by one-column lattice that contains two-dimensional plots and a one-
dimensional plot. The first row is an overlay of a histogram, a density plot, a fringe
plot (the short vertical lines below the histogram) representing each observation,
and a legend. The second row contains a one-dimensional box plot. The X axes
have a uniform scale to ensure that the box plot aligns correctly with the histogram.
By default, each row is apportioned an equal share of the total height. However,
because the space that is required to show the second row (box plot) is so much
less than the space that is required for the first row, the option ROWEIGHTS= is
used to reapportion the row space. This example uses the
ROWHEIGHTS=PREFERRED option to set the rows to an appropriate height
automatically, as shown in the following figure.

Examples: Lattice Layout 251

Figure 15.8 Graph with ROWEIGHTS=PREFERRED

Here is the SAS code for this graph.

proc template;
 define statgraph distribution;
 begingraph;
 entrytitle "Distribution of Cholesterol";
 entryfootnote halign=left
 "From Framingham Heart Study (SASHELP.HEART)";
 layout lattice / rowweights=PREFERRED
 columndatarange=union rowgutter=2px;
 columnaxes;
 columnaxis / display=(ticks tickvalues);
 endcolumnaxes;
 layout overlay / yaxisopts=(offsetmin=.04 griddisplay=auto_on);
 discretelegend "Normal" / location=inside
 autoalign=(topright topleft) opaque=true;
 histogram Cholesterol / scale=percent binaxis=false;
 densityplot Cholesterol / normal() name="Normal";
 fringeplot Cholesterol / datatransparency=.7;
 endlayout;
 boxplot y=Cholesterol / orient=horizontal boxwidth=.9;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.heart template=distribution;
run;

Note: For a generic version of this template that you can use to show the
distribution for any continuous variable without redefining the template, see Chapter

252 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

30, “Using Dynamic Variables and Macro Variables in Your Templates,” on page
605.

The PREFERRED option is typically used to size rows and columns automatically
when a lattice contains a mix of two-dimensional and one-dimensional plots. In this
example, the system automatically sets the height of the second row to what is
necessary to properly display the box plot. It then sets the height of the first row to
the balance of the available height. You can also use numeric weights to manually
set the row heights. Using the ROWHEIGHTS=(0.9 0.1) option instead of the
ROWHEIGHTS=PREFERRED option in the previous example produces a similar
result. It apportions 90% of the available height to the first row and 10% to the
second row.

If a row contains a mix of one-dimensional and two-dimensional plots, the
PREFERRED option sets the row height to the maximum preferred height of the
one-dimensional plots in the row. For columns, it does the same for the column
width. This might produce undesirable results. For example, the following figure
shows a simple two-column by two-row lattice that uses the default row and column
sizing. The first column contains two-dimensional plots. The second column
contains a one-dimensional plot in the first row and two-dimensional plots in the
second row.

By default, the row height is set to the maximum available height as shown, which
easily accommodates all of the plots. If the row weight is set to PREFERRED, the
row height for the first row is set to the preferred height of the box plot in the second
column, which compresses the plots in the first column, first row, as shown in the
following figure.

Examples: Lattice Layout 253

Use the PREFERRED option for rows and columns that contain only one-
dimensional plots. For a row or column that contains a mix of one-dimensional and
two-dimensional plots, use UNIFORM or a list of numeric weights instead.

For more information about the ROWWEIGHTS=PREFERRED and
COLUMNWEIGHTS=PREFERRED options, see “LAYOUT LATTICE” in SAS Graph
Template Language: Reference.

254 Chapter 15 / Creating Lattice Graphs Using the LATTICE Layout

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0n10xwfn3h4hnn10v5joeerd9m8.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0n10xwfn3h4hnn10v5joeerd9m8.htm&locale=en

16
Creating Classification Panels
Using the DATALATTICE and
DATAPANEL Layouts

About Classification Panels . 256

The LAYOUT DATALATTICE Statement . 256

The LAYOUT DATAPANEL Statement . 257

The LAYOUT PROTOTYPE Statement . 258

Distinction between DATAPANEL and DATALATTICE . 259

Organizing Panel Contents . 260
Overview of What to Consider When Planning a Classification Panel 260
Grid Dimensions and Cell Population Order . 260
Gutters . 262
Graph Aspect Ratio . 263
Cell Size . 265
Prototype Orientation . 267

Managing Axes in DATALATTICE and DATAPANEL Layouts 268
Controlling Data Ranges of Rows or Columns . 268
Setting Axis Options . 270

Controlling the Classification Headers . 272

Using Sidebars . 276

Controlling the Interactions of Classifiers . 277
Appearance of the Last Panel . 277
User Control of Panel Generation . 281
Sparse Data . 285
Missing Class Values . 288

Using Non-computed Plots in Classification Panels . 290

Adding an Inset to Each Cell . 292

Using PROC SGPANEL to Create Classification Panels . 292

255

Examples: Data Lattice Layout and Data Panel Layout . 295
Example 1: A Basic Data Lattice . 295
Example 2: A Basic Data Panel . 296
Example 3: A Data Panel with Sidebars . 298
Example 4: A Data Panel with an Inset in Each Cell . 301

About Classification Panels
A classification panel is a graph with one or more cells in which each cell shows a
common graph (called a prototype). The prototypes that are displayed in the cells
result from dividing input data into subsets that are determined by the values of one
or more classification variables. GTL provides two layouts that can produce
classification panels:

LAYOUT DATAPANEL
supports a list of class variables. The number of rows and columns are
controlled by statement options. Each cell is labeled with the class variable
values in the cell header.

LAYOUT DATALATTICE
supports up to two class variables, one for a row variable and one for a column
variable. One row of cells is created for each value of the row class variable, and
one column is created for each value of the column class variable. The rows and
columns are labeled.

The LAYOUT DATALATTICE Statement
Figure 16.1 on page 257 shows the general organization of a graph that is produced
with a DATALATTICE layout. If the template code does not use the sidebar areas
that are shown in the schematic, that space is reclaimed in the graph. Notice that
the sidebar area is between the cells and the row and column headers.

256 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

Figure 16.1 Schematic of a DATALATTICE Layout

Use a LAYOUT DATALATTICE statement to open the layout block for your
DATALATTICE layout. In the LAYOUT DATALATTICE statement, specify the column
variable in the COLUMNVAR= option, and the row variable in the ROWVAR= option.
Several other options are available in the LAYOUT DATAPANEL statement that you
can use to control various aspects of the panel. Use a PROTOTYPE block to define
the contents for each cell. To add one or more side bars, use a SIDEBAR block to
define each side bar. For information about the LAYOUT DATALATTICE statement,
see “LAYOUT DATALATTICE” in SAS Graph Template Language: Reference.

The LAYOUT DATAPANEL Statement
The following schematic shows the general organization of a graph that is produced
with the DATAPANEL layout. If the template code does not use the sidebar areas
that are shown in the schematic, that space is reclaimed in the graph. Also, the
order in which you specify the classification variables affects the cell ordering. The
graph that is represented by the schematic could be produced with
CLASSVARS=(classvar1 classvar2).

The LAYOUT DATAPANEL Statement 257

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rp226kgxokujn128n7sc7jrp24.htm&locale=en

Figure 16.2 Schematic of a DATAPANEL Layout

Use a LAYOUT DATAPANEL statement to open the layout block for your
DATAPANEL layout. In the LAYOUT DATAPANEL statement, specify the
classification variables in the CLASSVARS= option. Several other options are
available in the LAYOUT DATAPANEL statement that you can use to control various
aspects of the panel. Use a PROTOTYPE block to define the contents for each cell.
To add one or more side bars, use a SIDEBAR block to define each side bar. For
information about the LAYOUT DATAPANEL statement, see “LAYOUT
DATAPANEL” in SAS Graph Template Language: Reference.

The LAYOUT PROTOTYPE Statement
In both the DATAPANEL and the DATALATTICE blocks, the nested PROTOTYPE
layout is similar to an OVERLAY layout, with the following major differences:

n Multiple plots can be overlaid, but BARCHART is the only computed plot that can
be included in the prototype. This means that you cannot use BOXPLOT,
DENSITYPLOT, ELLIPSE, HISTOGRAM, REGRESSIONPLOT, LOESSPLOT,
PBSPLINE, or MODELBAND statements in the PROTOTYPE layout. See “Using
Non-computed Plots in Classification Panels” on page 290 for examples of how
to work around this limitation.

258 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0xhh0203fgmhpn1527ditpuzlf1.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0xhh0203fgmhpn1527ditpuzlf1.htm&locale=en

n DISCRETELEGEND, CONTINUOUSLEGEND, and ENTRY statements cannot
be included in the PROTOTYPE layout, nor can nested layouts. For information
about adding a legend or other information outside of the cells, see “Example 3:
A Data Panel with Sidebars” on page 298.

n Axis options for classification panels are specified on the LAYOUT
DATALATTICE or LAYOUT DATAPANEL statement, not on the LAYOUT
PROTOTYPE statement. For information about setting axis options for the
layout, see “Managing Axes in DATALATTICE and DATAPANEL Layouts” on
page 268.

Distinction between DATAPANEL and
DATALATTICE

The DATAPANEL and DATALATTICE layouts differ in how their classification
variables are declared and in how they populate their cells. For the DATAPANEL
layout, the classification variables are declared as a list of variables in parentheses
in the CLASSVAR= option as shown in the following example.

layout datapanel classvars=(product division) / ...;

The number of class variables in the list is unlimited, though the effectiveness of the
graph decreases as the number of class variables exceeds three or four. In such a
case, it is better to use two class variables, and use the other class variables in the
BY statement of the SGRENDER procedure.

For the DATALATTICE layout, one classification variable is assigned for a row
dimension, and one classification variable is assigned for a column dimension. The
row variable is assigned in the ROWVAR= option, and the column variable is
assigned in the COLUMNVAR= option as shown in the following example.

layout datalattice rowvar=product columnvar=division / ...;

Another key difference between the DATAPANEL and the DATALATTICE layouts is
how they create their cells. The DATAPANEL layout creates a cell for each
classification-variable crossing that produces data. Any crossing that does not
produce data is not included in the panel. Conversely, the DATALATTICE layout
creates a cell for each crossing of its classification variables regardless of whether it
produces data. A crossing that produces no data appears as an empty cell in the
lattice. This difference is significant when analyzing data that is sparse. In that case,
the DATAPANEL layout produces a panel that contains only cells that display data
while the DATALATTICE layout produces a lattice that might contain a large number
of empty cells.

Distinction between DATAPANEL and DATALATTICE 259

Organizing Panel Contents

Overview of What to Consider When Planning a
Classification Panel

When planning a classification panel, the following factors influence the layout
specification:

n grid dimensions (number of rows and columns)

n cell population order as the layout is rendered

n gutters between the cells

n graph aspect ratio

n cell size within the panel

n prototype orientation

Grid Dimensions and Cell Population Order
Assume you want to create a DATAPANEL layout with one classification variable
that has five unique values. Before starting to write code, you must first decide what
grid dimensions you want to set (how many columns and rows) and whether you
want to permit empty cells in the grid. If do not want empty cells, you must limit the
grid to five cells, which gives you two choices for the grid dimensions: five columns
by one row (5x1), or one column by five rows (1x5). If you are willing to have empty
cells in the grid, you could have several grid sizes, such as a 2x3 or a 3x2 grid.

The easiest way to specify a grid dimension is to set both the COLUMNS= and
ROWS= options to the desired number of columns and rows. If one dimension is
set, the other dimension automatically grows to accommodate the number of
classification levels. By default, COLUMNS=1, and the ROWS= option is not set.

By default, the layout uses the ORDER=ROWMAJOR setting to populate grid cells.
This specification essentially means "fill in all cells in the top row (starting at the top
left) and then continue to the next row below." The following layout leaves the
default ORDER=ROWMAJOR setting in effect:

layout datapanel classvars=(var) / columns=3 rows=2;
 layout prototype;
 ... plot statements ...
 endlayout;
endlayout;

Here is the resulting grid layout.

260 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

Alternatively, you can specify ORDER=COLUMNMAJOR, which populates the grid
by filling in all cells in the left column (starting at the top), and then continuing with
the next column:

layout datapanel classvars=(var) / columns=3 rows=2 order=columnmajor;
 layout prototype;
 ... plot statements ...
 endlayout;
endlayout;

Here is the resulting grid layout.

One last variation is to specify START=BOTTOMLEFT which produces the following
grids, depending on the setting for the ORDER= option:

layout datapanel classvars=(var) / columns=3 rows=2 start=bottomleft;
 layout prototype;
 ... plot statements ...
 endlayout;
endlayout;

Here is the resulting grid layout.

layout datapanel classvars=(var) / columns=3 rows=2
 order=columnmajor start=bottomleft;
 layout prototype;
 ... plot statements ...
 endlayout;
endlayout;

Here is the resulting grid layout.

Organizing Panel Contents 261

Note: The ROWS=, COLUMNS=, and START= options are available on both the
DATAPANEL and DATALATTICE layouts. The ORDER= option is available only on
the DATAPANEL layout.

If the number of unique values of the classifiers exceeds the number of defined
cells, you automatically get as many separate panels as it takes to exhaust all the
classification levels (assuming that the PANELNUMBER= option is not used). So if
there are 17 classification levels and you define a 2x3 grid, three panels are created
(with different names), and the last panel will have one empty cell. The effect that
the classifier values have on the panel display is illustrated in “Controlling the
Interactions of Classifiers” on page 277.

When you specify multiple classification variables, the crossings are always
generated in a specific way: by cycling though the last classifier, and then the next-
to-last, until all classifiers are exhausted. The following illustration assumes that
classifier A has distinct values a1 and a2, and that classifier B has distinct values
b1, b2, and b3:

layout datapanel classvars=(A B) / columns=3 rows=2;

Here is the resulting grid layout.

Gutters
To conserve space in the graph, the default DATAPANEL and DATALATTICE
layouts do not include a gap between cell boundaries in the panel. In some cases,
this might cause the cell contents to appear too congested. You can add a vertical
gap between all cells with the COLUMNGUTTER= option, and you can add a

262 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

horizontal gap between all rows with the ROWGUTTER= option. If no units are
specified, pixels (PX) are assumed.

layout lattice classvars=(var) / columns=3 rows=2
 columngutter=5 rowgutter=5;
 layout prototype;
 ... plot statements ...
 endlayout;
endlayout;

Here is the resulting grid layout.

Note that by adding gutters, you do not increase the size of the graph. Instead, the
cells shrink to accommodate the gutters. Depending on the number of cells in the
grid and the size of the gutters, you will frequently want to adjust the size of the
graph to obtain optimal results, especially if the cells contain complex graphs. The
issues of graph size and cell size are discussed in the following sections.

Graph Aspect Ratio
The default graph size is 640 pixels in width and 480 pixels in height, which sets a
default aspect ratio of 4:3 (640:480). Depending on your grid size, you might want to
adjust the aspect ratio to improve the appearance of the panel. For example,
Example Code 16.1 on page 263 defines a three column by one row grid.

Example Code 16.1 3x1 Panel Template

proc template;
 define statgraph onerow;
 begingraph;
 entrytitle "Yearly Profit for Sports Products";
 layout datapanel classvars=(product_group) / rows=1;
 layout prototype;
 barchart category=year response=profit / stat=sum;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

Here is the output when this template is rendered with the default aspect ratio.

proc sgrender data=sashelp.orsales template=onerow;
 where product_group in ("Golf" "Tennis" "Soccer");
run;

Organizing Panel Contents 263

In this case, the height of the cells could be reduced to improve the appearance. To
adjust the size of the graph, use the DESIGNHEIGHT= and/or DESIGNWIDTH=
options in the BEGINGRAPH statement. For example, to render the panel in
Example Code 16.1 on page 263 with a 2:1 aspect ratio, modify the BEGINGRAPH
statement as follows:

begingraph / designwidth=640px designheight=320px;
 . . .
endgraph;

Here is the result.

IThe DESIGNWIDTH= and DESIGNHEIGHT= options set the graph size as part of
the template definition so that if you later want a larger or smaller version of this
graph, you do not have to reset the design size and recompiling the template.
Rather, you can specify either a WIDTH= or a HEIGHT= option in the ODS
GRAPHICS statement. The other dimension is automatically computed for you,
based on the aspect ratio that is specified in the compiled template by the

264 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

DESIGNWIDTH= and DESIGNHEIGHT= options. For example, to render the panel
in Example Code 16.1 on page 263 as a 5 inch by 2.5 inch graph (the 2:1 aspect
ratio is maintained):

ods graphics / reset width=5in;

proc sgrender data=sashelp.orsales template=onerow;
 where product_group in ("Golf" "Tennis" "Soccer");
run;

To render it as a 6 inch by 3-inch output (2:1 aspect ratio is maintained):

ods graphics / reset height=3in;
proc sgrender data=sashelp.orsales template=onerow;
 where product_group in ("Golf" "Tennis" "Soccer");
run;

Cell Size
You might think that the panel size can be varied to be as big or small as desired.
However, problems arise as the graph size shrinks. The following adjustments in the
graph enable small images to be produced:

n The font sizes are reduced.

n The axis tick values are thinned, rotated, or truncated.

n The labels in the cell headers are truncated. (The options that are available for
controlling the cell header content and size are discussed in “Controlling the
Classification Headers” on page 272.)

For example, to render the panel in Example Code 16.1 on page 263 as a 400-
pixel-wide graph:

ods graphics / reset width=400px;
proc sgrender data=sashelp.orsales template=onerow;
 where product_group in ("Golf" "Tennis" "Soccer");
run;

Here is the result.

Organizing Panel Contents 265

This panel is approaching the limits of how small it can be. Reducing the size even
more eventually produces log messages similar to the following:

Cell width 72 is smaller than the minimum cell width 100. All contents are
removed from the layout.

Although an image is produced, it is empty. GTL has an internal restriction on how
small a cell in the panel can be: 100 pixels by 100 pixels. Cell size is computed after
all titles, footnotes, and sidebar contents have been established. Thus, if the panel
design included additional titles, log messages similar to the one just shown would
be issued, even with a larger panel size.

The CELLWIDTHMIN= and CELLHEIGHTMIN= options on the LAYOUT
DATAPANEL or LAYOUT DATALATTICE statements can be used to specify cell
sizes of less than 100 pixels as shown in the following example.

proc template;
 define statgraph onerow;
 begingraph / designwidth=360px designheight=180px;
 entrytitle "Yearly Profit for Sports Products";
 layout datapanel classvars=(product_group) / rows=1
 headerlabeldisplay=value
 cellwidthmin=70 cellheightmin=70;
 layout prototype;
 barchart category=year response=profit / stat=sum;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.orsales template=onerow;
 where product_group in ("Golf" "Tennis" "Soccer");
run;

Here is the output.

266 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

For graph templates that are intended for repeated use (such as the ones that are
part of other SAS products), the effort has been made to set the CELLWIDTHMIN=
and CELLHEIGHTMIN= option to the smallest values that produce a reasonable
panel. Other strategies produce smaller cells without truncating text or resulting in
other unwanted side effects. For example, you can change the orientation of the
PROTOTYPE layout.

Prototype Orientation
Rather than generating a graph with the default row orientation, you can present the
same information in a column-oriented format. To do so, you should change the
design size and also consider changing the orientation of the prototype plot.
Prototype plots with discrete axes often benefit from a horizontal orientation
because the horizontal alignment can display discrete axis tick values without
rotation or truncation (although it might eventually thin or stagger the ticks). The
following example sets a horizontal orientation on a prototype graph.

proc template;
 define statgraph onecol;
 begingraph / designwidth=280px designheight=380px;
 entrytitle "Yearly Profit for Sports Products";
 layout datapanel classvars=(product_group) / columns=1
 headerlabeldisplay=value
 cellwidthmin=85 cellheightmin=85;
 layout prototype;
 barchart category=year response=profit / stat=sum
 orient=horizontal;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.orsales template=onecol;
 where product_group in ("Golf" "Tennis" "Soccer");
run;

Here is the output.

Organizing Panel Contents 267

Managing Axes in DATALATTICE and
DATAPANEL Layouts

The axes for classification panels are always external to the cells and displayed as
axes for the rows or columns.

Controlling Data Ranges of Rows or Columns
The strength of a classification panel presentation is that it makes it easy to visually
compare similar plots across data categories. Consider the following template:

Example Code 16.2 Classification Panel Template

proc template;
 define statgraph unionall;
 begingraph / designwidth=350px designheight=400px;
 entrytitle "Yearly Profit for Sports Products";
 layout datapanel classvars=(product_group) /
 rowdatarange=unionall;
 layout prototype;
 barchart category=year response=profit /
 stat=sum;
 endlayout;

268 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

 endlayout;
 endgraph;
 end;
run;

This template generates a classification panel that compares the profits for Darts,
Golf, and Baseball. Here is the output.

proc sgrender data=sashelp.orsales template=unionall;
 where product_group in
 ("Golf" "Darts" "Baseball");
run;

By default, the minimum and maximum data ranges over all rows in all panels are
used to establish identical data ranges across for axes that appear in the rows. The
same is true for columns. The options that set these defaults are
ROWDATARANGE=UNIONALL and COLUMNDATARANGE=UNIONALL. In most
cases, these settings simplify quick comparisons because the axis for each row is
scaled identically. Likewise, all columns share a common scale. So the graph just
shown does a good job of showing that Golf products in general provide more profits
than Darts or Baseball, but it does not do a very good job of showing the yearly
variation in Baseball profits because those profits are so small relative to Golf
profits.

To set independent axis scaling within each row, you can set
ROWDATARANGE=UNION. Similarly, to set independent axis scaling within each
column, you can set COLUMNDATARANGE=UNION. The following LAYOUT
DATAPANEL statement shows independent axes for each row. Now only the data
minimum and data maximum for the cells in each row are considered in deciding the
axis range.

layout datapanel classvars=(product_group) /

Managing Axes in DATALATTICE and DATAPANEL Layouts 269

 rowdatarange=union;

Here is example output.

In this graph, the relative yearly trends for all product groups are equally apparent,
but it is harder to judge which product group is most profitable because bar lengths
are comparable only within each row.

Setting Axis Options
Classification panels use the ROWAXISOPTS=(axis-opts) and
COLUMNAXISOPTS= (axis-opts) options to set axis features. Options are available
for all four axis types (LINEAR, DISCRETE, LOG, and TIME), and most of the
available axis options are a slightly restricted set of the axis options that are
available in an OVERLAY layout.

To demonstrate the use of axis options, the following example suppresses the row
axis label because the tick values are formatted with the DOLLAR format and the
axis label is therefore not needed. The column axis label is suppressed because the
panel's title indicates what the bars represent. Adding title information and
eliminating axis labels is a good way to make more space available to the panel's
grid. Axis ticks on a discrete axis (YEAR) are often not needed, so the example
suppresses them. It also turns on grid lines to make comparisons easier.

You have probably noticed in the examples with bar charts that the bars do not
touch the axis. This happens because a default minimum axis offset is applied to the
axis to avoid possible tick value collision with an adjacent cell. The following
LAYOUT DATAPANEL statement overrides the default offset by setting
OFFSETMIN=0, thus enabling the bars to touch the horizontal axis.

270 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

layout datapanel classvars=(product_group) /
 rowdatarange=union
 columnaxisopts=(display=(tickvalues))
 rowaxisopts=(display=(tickvalues)
 linearopts=(tickvalueformat=dollar12.)
 griddisplay=on offsetmin=0);

Here is example output.

Any DATAPANEL display that uses one or two classifiers can be converted to a
DATALATTICE display. When the ROWVAR= option is used on the LAYOUT
DATALATTICE statement, the cell headers automatically become row headers.
When the COLVAR= option is used, cell headers automatically become column
headers. In the following LAYOUT DATALATTICE statement, the ROWVAR= option
is used, and the values of the classifier are displayed as row headers.

layout datalattice rowvar=product_group /
 rowdatarange=union
 rowgutter=5px
 columnaxisopts=(display=(tickvalues))
 rowaxisopts=(display=(tickvalues)
 linearopts= (tickvalueformat=dollar12.)
 griddisplay=on offsetmin=0);

Here is example output.

Managing Axes in DATALATTICE and DATAPANEL Layouts 271

Controlling the Classification Headers
In many cases, it is not necessary to display the classification-variable name in the
classification headers. Often, just the classification value is sufficient. Both the
DATALATTICE and DATAPANEL layouts support the HEADERLABELDISPLAY=
option. By default, HEADERLABELDISPLAY=NAMEVALUE, which displays both the
variable name and the value. You can set HEADERLABELDISPLAY=VALUE to
display only the value, or you can set HEADERLABELDISPLAY=NONE to suppress
the headers.

Row and column headers are unique to the DATALATTICE layout. By default,
COLUMNHEADERS=TOP, but you can set COLUMNHEADERS=BOTTOM or
COLUMNHEADERS=BOTH. Likewise, ROWHEADERS=RIGHT is the default
setting, but you can set LEFT or BOTH on the ROWHEADERS= option. You can
change the location of the row or column axis information by using the
DISPLAYSECONDARY= axis option. In the following example, the row headers are
relocated to the left, and the axis information is relocated to the right. Note that
DISPLAY=NONE is also included in order to remove the default row axis information
from the left side.

proc template;
 define statgraph unionall;
 begingraph / designwidth=350px designheight=400px;
 entrytitle "Yearly Profit for Sports Products";
 layout datalattice rowvar=product_group /

272 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

 rowdatarange=union rowgutter=5px rowheaders=left
 headerlabeldisplay=value
 columnaxisopts=(display=(tickvalues))
 rowaxisopts= (display=none displaysecondary=(tickvalues)
 linearopts=(tickvalueformat=dollar12.)
 griddisplay=on offsetmin=0);
 layout prototype;
 barchart category=year response=profit / stat=sum;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.orsales template=unionall;
 where product_group in
 ("Golf" "Darts" "Baseball");
run;

Here is example output.

Both the DATAPANEL and DATALATTICE layouts support options that control the
background and text properties of the classification headers. By default, the
background of the cell headers is transparent (HEADEROPAQUE=FALSE).

Use the HEADERBACKGROUNDCOLOR= option to set the background fill color. In
the following example, the background color specification is a style reference. You
must also set HEADEROPAQUE=TRUE. Use the HEADERLABELATTRS= option
to set the text properties of the classification headers. For example, if the
classification values are long, you can reduce their font size with
HEADERLABELATTRS= (SIZE=6pt), or use the smallest font in the current style by

Controlling the Classification Headers 273

setting HEADERLABELATTRS=GraphDataText. In the following LAYOUT
DATALATTICE statement, the headers are set to be bold.

layout datalattice rowvar=product_group /
 rowdatarange=union
 rowgutter=5px
 rowheaders=left
 headerlabeldisplay=value
 headerlabelattrs=(weight=bold)
 headeropaque=true
 headerbackgroundcolor=GraphAltBlock:color
 columnaxisopts=(display=(tickvalues))
 rowaxisopts=(display=none displaysecondary=(tickvalues)
 linearopts=(tickvalueformat=dollar12.)
 griddisplay=on offsetmin=0);

Here is example output.

When HEADERLABELLOCATION=INSIDE and multiple classification variables are
displayed in the cell headers in a DATAPANEL or DATALATTICE layout, each
classification value occupies a separate cell in the header. Here is an example of a
DATAPANEL layout with three classification variables.

proc template;
 define statgraph layoutdatapanel;
 begingraph / drawspace=layoutpercent;
 layout datapanel classvars=(country prodtype product) /
 columns=4 rowdatarange=unionall
 headerlabeldisplay=value
 headerbackgroundcolor=GraphAltBlock:color;
 layout prototype;
 barchart x=year y=TotalActual;

274 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

 endlayout;
 endlayout;
 endgraph;
 end;
run;

/* Summarize the data in SASHELP.PRDSAL2 */
proc summary data=sashelp.prdsal2 nway;
 class country year product prodtype;
 var actual predict;
 output out=prdsal2 sum=TotalActual TotalPredict;
run;

/* Generate the panel using the summarized data */
proc sgrender data=prdsal2 template=layoutdatapanel;
 where country in ("Canada" "Mexico");
run;

Here is the output.

Starting with SAS 9.4M1, you can use the HEADERPACK=TRUE option to
consolidate the header values into a comma-separated list in order to save space. If
the width of the consolidated header exceeds the available width, the header is
truncated. In that case, use the HEADERSPLITCOUNT= option to specify the
number of values that are to be consolidated before the list is split into a separate
line. Here is the template from the previous example, modified to consolidate the
values in the column headers into two lines.

proc template;
 define statgraph layoutdatapanel;
 begingraph / drawspace=layoutpercent;
 layout datapanel classvars=(country prodtype product) /
 columns=4 rowdatarange=unionall

Controlling the Classification Headers 275

 headerlabeldisplay=value
 headerpack=true headersplitcount=2
 headerbackgroundcolor=GraphAltBlock:color;
 layout prototype;
 barchart x=year y=TotalActual;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=prdsal2 template=layoutdatapanel;
 where country in ("Canada" "Mexico");
run;

Here is the output.

By default, the items in the list are separated by a comma and a space. Use the
HEADERSEPARATOR= option to specify a different separator. For more information
about the HEADERSPLIT=, HEADERSPLITCOUNT=, and HEADERSEPARATOR=
options, see “LAYOUT DATALATTICE” in SAS Graph Template Language:
Reference or “LAYOUT DATAPANEL” in SAS Graph Template Language:
Reference.

Using Sidebars
A side bar is a reserved area along the left, right, top, or bottom of a DATAPANEL or
DATALATTICE layout in which you can put additional information. A side bar is
useful for adding information that applies to that row or column such as a legend or
explanatory text. You can add up to four side bars to a DATAPANEL or
DATALATTICE layout as shown in Figure 16.1 on page 257 and Figure 16.2 on

276 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rp226kgxokujn128n7sc7jrp24.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rp226kgxokujn128n7sc7jrp24.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0xhh0203fgmhpn1527ditpuzlf1.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0xhh0203fgmhpn1527ditpuzlf1.htm&locale=en

page 258. As shown, a left or right side bar spans all of the rows while a top or
bottom side bar spans all of the columns. You define the contents of a side bar in
SIDEBAR block in the LAYOUT DATAPANEL or LAYOUT DATALATTICE statement.
The position of the sidebar is controlled by the ALIGN= option in the SIDEBAR
statement. For information about using side bars with the DATAPANEL layout, see
“Sidebar Blocks” in SAS Graph Template Language: Reference. For information
about using side bars with the DATALATTICE layout, see “SIDEBAR Blocks” in SAS
Graph Template Language: Reference.

For an example, see “Example 3: A Data Panel with Sidebars” on page 298.

Controlling the Interactions of Classifiers
Whenever you have classifiers with a large number of unique levels, the potential
exists for generating a large number of cells in the panel. If you do not want to see
all classification levels, you can limit the crossings by using a WHERE expression
when creating the input data. Or, you can use a WHERE expression as part of the
PROC SGRENDER step that

Appearance of the Last Panel
If you set the ROWS= and COLUMNS= options to define a relatively small grid,
PROC SGRENDER automatically generates as many separate panels as it takes to
exhaust all the classification levels. Depending on the grid size and total number of
classification levels, one or more empty cells might be created on the last panel to
complete the grid. For example, if there are seven classification levels and you
define a 2x2 grid, two panels are created (with different names), and the last panel
contains one empty cell as shown in the following example.

proc template;
 define statgraph multipanel;
 begingraph / designwidth=340px designheight=340px;
 layout datapanel classvars=(product_category) /
 rows=2 columns=2
 headerlabeldisplay=value
 rowaxisopts=(griddisplay=on offsetmin=0
 display=(tickvalues) linearopts=(tickvalueformat=dollar12.));
 layout prototype;
 barchart x=year y=profit / fillattrs=GraphData1;
 endlayout;
 sidebar / align=top;
 entry "Profit for Selected Sports Items" /
 textattrs=GraphTitleText;
 endsidebar;
 endlayout;
 endgraph;
end;
run;

proc sgrender data=sashelp.orsales template=multipanel;

Controlling the Interactions of Classifiers 277

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0xhh0203fgmhpn1527ditpuzlf1.htm&docsetTargetAnchor=p175i4821qv51qn18k1ax15wr7zm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rp226kgxokujn128n7sc7jrp24.htm&docsetTargetAnchor=p1syfnfuje6lqen1ehzdmqrmlz6e&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rp226kgxokujn128n7sc7jrp24.htm&docsetTargetAnchor=p1syfnfuje6lqen1ehzdmqrmlz6e&locale=en

 where product_line in ("Sports") and
 product_category ne "Assorted Sports Articles";
run;

Here are the panels that are generated.

To eliminate empty cells on the last panel, you can specify
SKIPEMPTYCELLS=TRUE as shown in the following LAYOUT DATAPANEL
statement.

layout datapanel classvars=(product_category) /
 rows=2 columns=2
 skipemptycells=true

278 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

 headerlabeldisplay=value
 rowaxisopts=(griddisplay=on offsetmin=0
 display=(tickvalues) linearopts=(tickvalueformat=dollar12.));

Here is the result on the last panel.

The SKIPEMPTYCELLS= option also applies to a DATALATTICE layout. The
following output shows the last panel when Division has two levels and Product has
three levels, while ROWS=2 and COLUMNS=2. When SKIPEMPTYCELLS=FALSE,
the last panel will have a column of empty cells. Entire rows or columns of empty
cells can be removed by setting SKIPEMPTYCELLS=TRUE.

Controlling the Interactions of Classifiers 279

280 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

User Control of Panel Generation
It is possible to control the generation of panels. Consider the following output, in
which each panel displays in its upper right corner the current panel number and the
total number of panels:

Controlling the Interactions of Classifiers 281

282 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

Normally, when the number of cells to be created in a panel is greater than the
defined panel size in the template (rows * columns), then the SGRENDER
procedure automatically produces the number of panel graphs that are necessary to
draw all of the cells in the data. However, you can instruct the template to create
only one panel, which is specified by the PANELNUMBER= option. This feature can
be used to control the creation of the panels.

For example, the preceding panels were generated with the following template
code, which uses the NMVAR statement to declare macro variables that will resolve
as numbers.

proc template;
define statgraph panelgen;
 nmvar PANELNUM TOTPANELS ROWS COLS YEAR;
 begingraph;
 entrytitle halign=right "Panel " PANELNUM " of " TOTPANELS /
 textattrs=GraphFootnoteText;
 layout datapanel classvars=(product division) /
 rows=ROWS columns=COLS
 cellheightmin=50 cellwidthmin=50
 skipemptycells=true
 columnaxisopts=(type=time timeopts=(tickvalueformat=month.))
 rowaxisopts=(griddisplay=on)
 panelnumber=PANELNUM;
 layout prototype;
 seriesplot x=month y=actual / lineattrs=GraphData1;
 endlayout;
 sidebar / align=top;
 entry "Office Furniture Sales for " YEAR /
 textattrs=GraphTitleText;
 endsidebar;

Controlling the Interactions of Classifiers 283

 endlayout;
 endgraph;
end;
run;

The PANELNUMBER=PANELNUM setting is a directive indicating which panel to
produce. The ENTRYTITLE statement changes as the panel number changes. For
more information about how to pass information to a template at run time, see
Chapter 30, “Using Dynamic Variables and Macro Variables in Your Templates,” on
page 605.

Now that the template is defined, a macro is needed to compute the number of
panels that will be generated, execute PROC SGRENDER an appropriate number
of times, and initialize the macro variables that are referenced in the template. The
macro parameters ROWS and COLUMNS allow different grid sizes to be used. The
graph size changes based on the grid size. Here is the macro definition.

%macro panels(rows=1,cols=1,colwidth=200,year=1994,style=htmlblue);
 %local div_vals prod_vals panels totpanels panelnumber;

 /* find the number of unique values for the classifiers */
 proc sql noprint;
 select n(distinct division) into: div_vals from sashelp.prdsale;
 select n(distinct product) into: prod_vals from sashelp.prdsale;
 quit;

 /* compute the number of panels based on input rows and cols */
 %let panels=%sysevalf(&div_vals * &prod_vals / (&rows * &cols));
 %let totpanels=%sysfunc(ceil(&panels)); /* round up to next integer
*/

 /* generate the panels */
 ods graphics / reset;
 ods _all_ close;
 ods listing style=&style gpath="path-to-image-folder";
 %do panelnum=1 %to &totpanels;
 ods graphics / imagename="Panel&panelnum"
 width=%sysevalf(&colwidth*&cols)px
 height=%sysevalf(&colwidth*&rows)px;
 proc sgrender data=sashelp.prdsale template=panelgen;
 where country="U.S.A." and region="EAST" and year=&year;
 run;
 %end;

 ods listing close;
 ods html; /* Not necessary in SAS Studio */
%mend;

The three panels that are shown at the beginning of this section were produced with
the following macro call:

%panels(rows=2,cols=2)

If you invoke the macro with different grid dimensions, the number of panels is
recomputed and a new graph size is set. For example, if the following macro call is
issued, two panels are generated (only the last panel is shown here):

%panels(rows=2,cols=3)

284 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

Sparse Data
Multiple classifiers sometimes have a hierarchical relationship, which results in very
sparse data when the classifier values are crossed. For example, consider the
following LAYOUT DATAPANEL statement:

layout datapanel classvars=(state city) / rows=4 columns=5;

Assume that the data for the STATE and CITY classifiers contains information for 20
states and their capitals. How many panels would you expect to produce? One, or
twenty? Or 400?

The answer is one panel, which is the desired result. A single panel is produced
because even though the default DATAPANEL layout attempts to generate a
complete Cartesian product of the crossing values (400 STATE*CITY crossings in
this case), it does not create panel cells for crossings that have no data. The
SPARSE= option controls whether panel cells are created when you have no
observations for a crossing, and by default SPARSE=FALSE.

The DATALATTICE layout does not support a SPARSE= option. The DATALATTICE
creates a row / column for each unique value of the ROWVAR / COLUMNVAR. So a
cell is created for all crossings of the two variable values, thus creating 400 cells.

Sometimes there are unexpected gaps in the data when classification variables are
crossed. For example, suppose you are conducting a study where a number of
subjects each receives over time four treatments that might lower the subject's heart
rate after various amounts of physical activity. However, assume that Subject 101
did not get Treatment 3, and Subject 102 did not get Treatment 2. In this case, when
you create a DATAPANEL layout presenting four treatments for three subjects per
panel, the expected alignment of the columns does not work as shown in the
following figure.

Controlling the Interactions of Classifiers 285

In this situation, you can generate a placeholder cell whenever a subject misses a
treatment. To do so, specify SPARSE=TRUE for the layout panel as shown in the
following template:

proc template;
 define statgraph sparse;
 begingraph / designwidth=490px designheight=450px;
 entrytitle "Heart Rates for Subjects";
 layout datapanel classvars=(subject treatment) /
 columns=4 rows=3
 cellheightmin=50 cellwidthmin=50
 skipemptycells=true
 sparse=true
 columnaxisopts=(display=(tickvalues))
 rowaxisopts=(display=(label) offsetmin=0);
 layout prototype;
 barchart category=task response=heartrate / barlabel=true;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

Here is the result.

286 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

For the DATALATTICE layout, the SPARSE= option does not apply because they
are inherently sparse. When you specify two classifiers, the DATALATTICE layout
manages this situation automatically. Here is a template that uses the
DATALATTICE layout for this example.

proc template;
 define statgraph datalattice;
 begingraph / designwidth=490px designheight=400px;
 entrytitle "Heart Rates for Subjects";
 layout datalattice rowvar=subject columnvar=treatment /
 rows=3 rowgutter=5px
 cellheightmin=50 cellwidthmin=50
 rowheaders=left
 skipemptycells=true
 columnaxisopts=(display=(tickvalues))
 rowaxisopts=(display=none displaysecondary=(label) offsetmin=0);
 layout prototype;
 barchart category=task response=heartrate / barlabel=true;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

Here is the result.

Controlling the Interactions of Classifiers 287

Missing Class Values
By default, missing class values are included in the classification levels for the
panel. When the data contains missing classification values, cells are created in the
panel for the missing classes. The classification headers for the missing values are
either blank for missing string values or a dot for missing numeric values. The
following figure shows a data lattice in which both the row and column classification
variables contain missing values.

288 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

Figure 16.3 Data Lattice with Missing Class Values

In the top right cell, the header for the missing column classification values is blank
and the header for the missing row column classification values is a dot. If you want
to remove the missing values from the lattice, specify the
INCLUDEMISSINGCLASS=FALSE option in the LAYOUT DATALATTICE
statement. If you prefer to keep the missing values, you can create a format that
specifies a more meaningful header for the missing classes. The following code
defines a format for the missing class values in the previous example.

proc format;
 value missingrowclass
 . = "Missing Row";
 value $missingcolclass
 " " = "Missing Column";
run;

A single space enclosed in quotation marks specifies a missing character value, and
a dot specifies a missing numeric value. Using empty quotation marks ('' or "") to
specify a missing character value produces unexpected results. To specify a missing
character value, enclose a single space in single or double quotation marks (' ' or
" ").

The format is applied to the classification variables in the PROC SGRENDER
statement as shown in the following example. For the missing data, the labels
specified in the format statement are used as the headers for the missing classes.
The following clip shows the top right cell in Figure 16.3 on page 289 when these
formats are applied to the classification variables.

Controlling the Interactions of Classifiers 289

Note: In SAS 9.4M2 and in earlier releases, ODS Graphics does not support
Unicode values in user-defined formats. Starting with SAS 9.4M2, ODS Graphics
supports Unicode values in user-defined formats only if they are preceded by the
(*ESC*) escape sequence. For an example of how to use Unicode values in a user-
defined format, see “Formatting the Tick Values on a Discrete Axis” on page 141.

Using Non-computed Plots in
Classification Panels

So far the discussion has focused on how to set up the grid and axes of the panel
using simple prototype examples. However, complex prototype plots can also be
specified, although BARCHART is the only computed plot that can be used in the
prototype. The restriction of using only non-computed plots in the prototype is
mitigated by the fact that most computed plot types are available in a non-computed
(parameterized) version—BOXPLOTPARM, ELLIPSEPARM, and
HISTOGRAMPARM. Also, the fit line statements (REGRESSIONPLOT,
LOESSPLOT, or PBSPLINEPLOT) can be emulated with a SERIESPLOT, and the
MODELBAND statement can be emulated with a more general BANDPLOT
statement, provided the appropriate variables have been created in the input data.
Many SAS/STAT and SAS/ETS procedures can create output data sets with this
information.

The following example uses PROC GLM to create an output data set that is suitable
for showing a panel of scatter plots with overlaid fit lines and confidence bands.

290 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

proc template;
define statgraph dosepanel;
 begingraph / designwidth=490px designheight=350px;
 layout datapanel classvars=(dose) / rows=1;
 layout prototype;
 bandplot x=days limitupper=uclm limitlower=lclm / name="clm"
 display=(fill) fillattrs=GraphConfidence
 legendlabel="95% Confidence Limits";
 bandplot x=days limitupper=ucl limitlower=lcl / name="cli"
 display=(outline) outlineattrs=GraphPredictionLimits
 legendlabel="95% Prediction Limits";
 seriesplot x=days y=predicted / name="reg"
 lineattrs=graphFit legendlabel="Fit";
 scatterplot x=days y=response / primary=true
 markerattrs=(size=5px) datatransparency=.5;
 endlayout;
 sidebar / align=top;
 entry "Predicted Response to Dosage (mg) over Time" /
 textattrs=GraphTitleText pad=(bottom=10px);
 endsidebar;
 sidebar / align=bottom;
 discretelegend "reg" "clm" "cli" / across=3;
 endsidebar;
 endlayout;
 endgraph;
 end;
run;

The following procedure code creates the required input data set for the template. It
uses a BY statement with the procedure to request the same classification variable
that is used in the panel.

data trial;
 do Dose = 100 to 300 by 100;
 do Days=1 to 30;
 do Subject=1 to 10;
 Response=log(days)*(400-dose)* .01*ranuni(1) + 50;
 output;
 end;
 end;
end;
run;

proc glm data=trial alpha=.05 noprint;
 by dose;
 model response=days / p cli clm;
 output out=stats
 lclm=lclm uclm=uclm
 lcl=lcl ucl=ucl
 predicted=predicted;
run;
quit;

proc sgrender data=stats template=dosepanel;
run;

Using Non-computed Plots in Classification Panels 291

The advantage of using a procedure to generate the data is that the statistical
procedures provide many options for controlling the model. A robust model
enhances the output data set and therefore benefits the graph.

Adding an Inset to Each Cell
For both a DATAPANEL and DATALATTICE layout, you can use the INSET= option
in the layout statement to display information about one or more variables in an
inset in each cell. For each variable specified in the INSET= option, the inset
displays the variable label and value. You can use the INSETOPTS= option to
specify the alignment, background color, and border of the inset. Starting with SAS
9.4M1, you can also use the CONTENTDISPLAY= option to control the information
that is displayed in the inset. For more information, see SAS Graph Template
Language: Reference. For an example, see “Example 4: A Data Panel with an Inset
in Each Cell ” on page 301.

Using PROC SGPANEL to Create
Classification Panels

When creating a panel like the one shown in “Using Non-computed Plots in
Classification Panels” on page 290, you might find it easier to create the panel by
using PROC SGPANEL in SAS because the procedure does all the necessary data
computations for you. For example, the REGRESSIONPLOT, LOESSPLOT, and
PBSPLINEPLOT statements have been incorporated into the SGPANEL procedure
as REG, LOESS, and PBSPLINE statements. (SGPANEL can also generate other
plot types.) By default on PROC SGPANEL, the PANELBY statement creates a
DATAPANEL layout.

title "Predicted Response to Dosage (mg) over Time";
proc sgpanel data=trial;
 panelby dose / rows=1;
 reg x=days y=response / cli clm;
run;

Here is the output.

292 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Most, but not all, features of the DATALATTICE and DATAPANEL layouts are
provided in the SGPANEL procedure.

The SGPANEL procedure supports computed plot statements such as
HISTOGRAM, DENSITY, DOT, VBOX, and HBOX (vertical and horizontal box plots).
The PANELBY statement controls the layout, determining whether a DATAPANEL,
DATALATTICE, or other layout is used to produce the graph. ROWAXIS and
COLAXIS statements control the external axes, and the KEYLEGEND statement
creates legends, which are placed in sidebars for you.

The SGPANEL procedure does not have a PROTOTYPE block because all of the
plot statements after PANELBY are considered part of the prototype. The SGPANEL
procedure generates GTL template code behind the scenes and executes the
template to create its output. See SAS ODS Graphics: Procedures Guide for details.

The following example shows additional features of SGPANEL:

title "Cholesterol Distribution by Gender and Weight";
proc sgpanel data=sashelp.heart;
 panelby sex weight_status / layout=lattice onepanel novarname;
 histogram cholesterol;
 density cholesterol / name="density";
 refline 227 / axis=x name="ref" legendlabel="Overall Mean = 227";
 rowaxis offsetmin=0 offsetmax=.1 max=30;
 keylegend "density" "ref";
run;

Here is the output.

Using PROC SGPANEL to Create Classification Panels 293

294 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

Examples: Data Lattice Layout and Data
Panel Layout

Example 1: A Basic Data Lattice
This example uses the LAYOUT DATALATTICE statement to specify two
classification variables: DIVISION and PRODUCT. The following criteria apply to the
LAYOUT DATALATTICE statement:

n One of the ROWVAR= or COLUMNVAR= arguments is required. You can specify
both. Each argument specifies a single classification variable, enabling you to
specify either one or two classifiers for the graph.

n In the resulting graph, the data crossings are identified by row or column
headers.

n The default number of columns equals the number of unique values for the
COLUMNVAR classifier.

n The default number of rows equals the number of unique values for the
ROWVAR classifier.

Here is the code for this example.

proc template;
define statgraph datalattice_intro;
 begingraph;
 entrytitle "Office Furniture Sales";
 layout datalattice rowvar=product columnvar=division;
 layout prototype;
 seriesplot x=month y=actual;
 endlayout;
 endlayout;
 endgraph;
end;
run;

proc sgrender data=sashelp.prdsale template=datalattice_intro;
 where country="U.S.A." and region="EAST" and
 product in ("CHAIR" "DESK" "TABLE");
 format actual dollar.;
run;

Here is the output.

Examples: Data Lattice Layout and Data Panel Layout 295

Figure 16.4 Classification Panel Created with LAYOUT DATALATTICE

In this example, the grid dimensions are automatically determined by the number of
distinct values of the classifiers PRODUCT and DIVISION.

Example 2: A Basic Data Panel
This example uses the LAYOUT DATAPANEL statement to specify a list of two
classification variables: DIVISION (two distinct values) and PRODUCT (three
distinct values). Six combinations (crossings) of these unique values are possible,
which produces a panel with six cells.

The following criteria apply to the LAYOUT DATAPANEL statement:

n The CLASSVARS= option on the LAYOUT DATAPANEL statement can specify a
list of one or more classifiers.

n In the resulting graph, the data crossings are identified by the cell headers.

Here is the code for this example.

proc template;
 define statgraph datapanel_intro;

296 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

 begingraph;
 entrytitle "Office Furniture Sales";
 layout datapanel classvars=(product division) / columns=2;
 layout prototype;
 seriesplot x=month y=actual;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

In the template code, notice the LAYOUT PROTOTYPE block, which is inside the
LAYOUT DATAPANEL block. This nested block, which is a required part of the
DATAPANEL layout, defines the graphical content of all of the cells. The
COLUMNS=2 setting forces a DATAPANEL layout to display the cells in a two-
column organization. The actual number of rows that are generated depends on the
number of crossings that are in the data.

For some data, the number of data crossings can be quite large. When you render
the graph for a classification panel, you can use a WHERE expression to limit the
number of crossings:

proc sgrender data=sashelp.prdsale template=datapanel_intro;
 where country="U.S.A." and region="EAST" and
 product in ("CHAIR" "DESK" "TABLE");
 format actual dollar.;
run;

Here is the output.

Examples: Data Lattice Layout and Data Panel Layout 297

Figure 16.5 Classification Panel Created with LAYOUT DATAPANEL

Example 3: A Data Panel with Sidebars
Sidebars are useful for aligning information outside of the grid. In the following
example, a sidebar is used to display a graph title, rather than using an
ENTRYTITLE statement. The advantage of using sidebars for title and footnote
information is that a sidebar is always horizontally aligned on the grid itself, not on
the complete graph width. Of course, you have to specify the title text in an ENTRY
statement, and then set the appropriate text properties (TEXTATTRS= option),
alignment (HALIGN= option), and padding (PAD= option). Compare the default
centering of the "title" in this example with similar examples in this chapter that
specify a title with the ENTRYTITLE statement.

This example also uses a sidebar to display a legend. A legend can be placed in
any of the TOP, BOTTOM, RIGHT, or LEFT sidebars. The legend's alignment is
based on the grid size, not the graph size.

proc template;
 define statgraph sidebar;
 begingraph / designwidth=490px designheight=800px border=false;

298 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

 layout datapanel classvars=(product division) / columns=2
 columngutter=10 rowgutter=5
 headerlabelattrs=GraphLabelText(weight=bold)
 rowaxisopts=(display=(tickvalues))
 columnaxisopts=(display=(ticks tickvalues)
 offsetmin=0
 linearopts=(tickvalueformat=dollar6. viewmax=2000
 tickvaluelist=(500 1000 1500 2000)));
 sidebar / align=top;
 entry "Office Furniture Sales" /
 textattrs=GraphTitleText(size=14pt) pad=(bottom=5px);
 endsidebar;
 sidebar / align=bottom;
 discretelegend "actual" "predict";
 endsidebar;

 layout prototype;
 barchart category=month response=actual /
 orient=horizontal fillattrs=GraphData1
 barwidth=.6 name="actual";
 barchart category=month response=predict /
 orient=horizontal fillattrs=GraphData2
 barwidth=.3 name="predict";
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.prdsale template=sidebar;
 where country="U.S.A." and region="EAST" and
 product in ("CHAIR" "DESK" "TABLE");
run;

Here is the output.

Examples: Data Lattice Layout and Data Panel Layout 299

300 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

Example 4: A Data Panel with an Inset in Each Cell
You can define a unique inset for each cell of the classification panel with the
INSET= and INSETOPTS= options. The following graph builds on the last example
by adding insets:

Here is the template code.

proc template;
 define statgraph panelinset;
 begingraph / designwidth=495px designheight=350px;
 layout datapanel classvars=(dose) / rows=1
 inset=(F PROB)
 insetopts=(textattrs=(size=7pt) halign=right valign=bottom);
 layout prototype;
 bandplot x=days limitupper=uclm limitlower=lclm / name="clm"
 display=(fill) fillattrs=GraphConfidence
 legendlabel="95% Confidence Limits";
 bandplot x=days limitupper=ucl limitlower=lcl / name="cli"
 display=(outline) outlineattrs=GraphPredictionLimits
 legendlabel="95% Prediction Limits";
 seriesplot x=days y=predicted / name="reg"
 lineattrs=graphFit legendlabel="Fit";
 scatterplot x=days y=response / primary=true
 markerattrs=(size=5px) datatransparency=.5;
 endlayout;
 sidebar / align=top;
 entry "Predicted Response to Dosage (mg) over Time" /
 textattrs=GraphTitleText pad=(bottom=10px);
 endsidebar;
 sidebar / align=bottom;

Examples: Data Lattice Layout and Data Panel Layout 301

 discretelegend "reg" "clm" "cli" / across=3;
 endsidebar;
 endlayout;
 endgraph;
 end;
run;

data trial;
 do Dose = 100 to 300 by 100;
 do Days=1 to 30;
 do Subject=1 to 10;
 Response=log(days)*(400-dose)* .01*ranuni(1) + 50;
 output;
 end;
 end;
 end;
run;

proc glm data=trial alpha=.05 noprint outstat=outstat;
 by dose;
 model response=days / p cli clm;
 output out=stats
 lclm=lclm uclm=uclm lcl=lcl ucl=ucl predicted=predicted;
run;
quit;

data inset;
 set outstat (keep=F PROB _TYPE_ where=(_TYPE_="SS1"));
 label F="F Value " PROB="Pr > F ";
 format F best6. PROB pvalue6.4;
run;

data stats2;
 merge stats inset;
run;

proc sgrender data=stats2 template=panelinset;
run;

In this template definition, note the following:

n The INSET=(F PROB) option names two variables that contain the values for the
F statistic and its p-value. The INSETOPTS= option positions the inset and sets
its text properties.

n The OUTSTAT= option of PROC GLM creates a data set with several statistics
for each BY value.

n The Inset DATA step selects the appropriate three observations from the Outstat
data set. The F and PROB variables are assigned labels and formats.

n The Stats2 DATA step creates a new input data set by performing a non-match
merge on the Stats and Inset data sets. It is important to structure the input data
in this fashion.

“Adding Insets to Classification Panels” on page 401 discusses this topic in detail
and shows the coding for another example in which the inset information must align
correctly in a multi-row and multi-column classification panel.

302 Chapter 16 / Creating Classification Panels Using the DATALATTICE and DATAPANEL Layouts

17
Creating Graphs with No Axis
Using the REGION Layout

The LAYOUT REGION Statement . 303

Examples: Region Layout . 304
Example 1: Pie Chart . 304
Example 2: Bar Chart and Pie Chart . 305
Example 3: Mosaic Plot . 307

The LAYOUT REGION Statement
The LAYOUT REGION statement supports plots that have no axes, such as pie
charts. It also supports annotations such as text, lines, arrows, images, and
geometric shapes, that are generated with the draw statements. For information
about adding annotations, see Chapter 22, “Adding Code-Driven Graphics Elements
to Your Graph,” on page 425. The LAYOUT REGION statement allows only one plot
statement. If you include more than one, the additional plot statements are ignored.
You can include DISCRETELEGEND, CONTINUOUSLEGEND, and ENTRY
statements with your region plot statement. You can use a LAYOUT REGION
statement to define a top-level region container or to define a region container for a
single cell in a LAYOUT GRIDDED or LAYOUT LATTICE statement. You can also
nest a REGION layout in other layouts, such as GRIDDED, LATTICE, and overlay-
type layouts. However, the REGION layout cannot be nested in DATAPANEL and
DATALATTICE layouts.

Note: When you nest a REGION layout in an overlay-type layout, you must include
the HEIGHT=, WIDTH=, VALIGN=, and HALIGN= options in your LAYOUT REGION
statement to specify the size and alignment of the plot.

303

Examples: Region Layout

Example 1: Pie Chart
This example uses a LAYOUT REGION statement to create the pie chart that is
shown in the following figure.

Here is the SAS code that generates this chart.

/* Define the template for the chart */
proc template;
define statgraph region;
 begingraph;
 entrytitle "Sales By State";
 layout region;
 piechart category=state response=actual /
 dataskin=pressed datalabellocation=outside;
 endlayout;
 endgraph;
end;
run;

304 Chapter 17 / Creating Graphs with No Axis Using the REGION Layout

quit;

/* Set the antialias maximum to 15000 */
ods graphics on / reset antialiasmax=15000;

/* Render the chart */
proc sgrender data=sashelp.prdsal2 template=region;
 where country eq "U.S.A.";
 format actual dollar12.0;
run;
quit;

Example 2: Bar Chart and Pie Chart
This example nests a LAYOUT OVERLAY and a LAYOUT REGION statement in a
LAYOUT LATTICE block to create the charts shown in the following figure.

Here is the SAS code that generates these charts.

/* Get sales data in millions from SASHELP.PRDSAL2 */
data sales;
 set sashelp.prdsal2;
 actualmils=(actual / 1000000);
run;

/* Define the template for the graph */
proc template;
 define statgraph region;
 begingraph;
 entrytitle "Sales By State";

Examples: Region Layout 305

 layout gridded / columns=1 rows=2;
 layout lattice / columns=2 rows=1;
 cell;
 /* Generate a bar chart of sales in millions. */
 cellheader;
 entry "Sales in Millions";
 endcellheader;
 layout overlay / width=250px
 xaxisopts=(display=none)
 yaxisopts=(griddisplay=on display=(ticks tickvalues));
 barchart category=state response=actualmils /
 group=state
 orient=vertical
 dataskin=pressed barwidth=0.8;
 endlayout;
 endcell;

 cell;
 /* Generate a pie chart of percent of total sales. */
 cellheader;
 entry "Percent of Total Sales";
 endcellheader;
 layout region / pad=10;
 piechart category=state response=actualmils /
 name="salespct"
 dataskin=pressed
 datalabelcontent=(percent)
 datalabellocation=inside labelfitpolicy=drop;
 endlayout;
 endcell;
 endlayout;
 discretelegend "salespct" / title="State" across=4;
 endlayout;
 endgraph;
 end;
run;
quit;

/* Set the antialias maximum to 15000 */
ods graphics on / reset antialiasmax=15000;

/* Render the graph */
proc sgrender data=sales template=region;
 where country eq "U.S.A.";
 format actualmils dollar5.1;
run;
quit;

Notice that the LAYOUT OVERLAY statement defines the layout for the bar chart in
the first cell in the lattice. Also, the LAYOUT REGION statement defines the layout
for the pie chart in the second cell. You can use the LAYOUT REGION statement
with other layout statements to combine region plots and other types of plots in a
single LAYOUT GRIDDED or LAYOUT LATTICE statement.

306 Chapter 17 / Creating Graphs with No Axis Using the REGION Layout

Example 3: Mosaic Plot
This example uses a LAYOUT REGION statement to create the mosaic plot that is
shown in the following figure.

Here is the SAS code that generates this plot.

/* Summarize the SASHELP.HEART data for BP_STATUS and SMOKING_STATUS */
proc summary data=sashelp.heart nway;
 class bp_status smoking_status;
 var cholesterol;
 output out=heart mean=avgCholesterol N=count / noinherit;
run;

/* Define the template for the plot */
proc template;
 define statgraph mosaicplot;
 begingraph;
 entrytitle "Smoking Status, Blood Pressure, and Cholesterol";
 layout region;
 mosaicPlotParm category=(bp_status smoking_status) count=count /
 name="mosaic" colorresponse=avgCholesterol;
 continuouslegend "mosaic" / title="Average Cholesterol"
 pad=(left=5);
 endlayout;
 endgraph;
 end;
run;

Examples: Region Layout 307

/* Render the plot */
proc sgrender data=heart template=mosaicplot;
run;

308 Chapter 17 / Creating Graphs with No Axis Using the REGION Layout

18
Plotting a SAS Cloud Analytic
Services (CAS) In-Memory Table

Accessing In-Memory Tables . 309

About In-Memory Tables and Data Order . 310

GTL Features That Do Not Support In-Memory Tables . 310

Example: Preprocessing Data in CAS and Plotting the Results Using GTL 311

Accessing In-Memory Tables
Starting with SAS 9.4M5, the SGRENDER procedure can access an in-memory
table through a CAS engine libref. In that case, the data is downloaded from SAS
Cloud Analytic Services to the SAS client through the CAS engine libref, and then it
is processed on the SAS client by the SGRENDER procedure. The amount of data
that can be transferred from the CAS server to the SAS client is limited by the
following options:

n The ODS GRAPHICS statement option MAXOBS= limits the number of
observations that can be read from any in-memory table by only ODS Graphics
procedures.See “ODS GRAPHICS” in SAS Graph Template Language:
Reference.

n System option CASDATAMAX= limits the amount of data in bytes that can read
from any in-memory table in any caslib in the SAS client. See “CASDATALIMIT=
System Option” in SAS Cloud Analytic Services: User’s Guide.

n Option DATALIMIT= limits the amount of data, in bytes, that can be read from
any in-memory table in a specific caslib or from a specific in-memory table. See
the DATALIMIT= LIBNAME statement option and the DATALIMIT= data set
option.

If a data limit is exceeded, the SGRENDER procedure step terminates, and an error
message is written to the SAS log. Although you can use one of these options to
increase the maximum, processing a large amount of data locally might degrade

309

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=p0wxc12m9hqke7n1bfcfnznsbpgo.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=p0wxc12m9hqke7n1bfcfnznsbpgo.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=p019cb7e3vzgzmn1230k58xu9af6.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n00av4y570wwkxn1w8wafqc9xa6m.htm&locale=en

SAS performance. For a very large in-memory table, use a procedure that is
supported by the CAS server or use a CAS action to summarize or otherwise
reduce the data, and then use GTL to plot the results.

For information about SAS Cloud Analytic Services programming in SAS, see An
Introduction to SAS Viya Programming. For information about how to use a CAS
engine libref to access in-memory tables, see “CAS LIBNAME Statement” in SAS
Cloud Analytic Services: User’s Guide. For an example of how to use a CAS engine
libref with the SGRENDER procedure, see “Example: Preprocessing Data in CAS
and Plotting the Results Using GTL” on page 311.

About In-Memory Tables and Data Order
For GTL graphs, data order determines many attributes of the graph such as group
order, item order in discrete legends, and tick-value order on discrete axes. It also
determines the order in which many of the graphical elements are drawn. In many
cases, a change in data order can result in a change in the graph appearance. For
example, the assignment of GraphData1–GraphDataN style elements can change,
as can the order in which some graphical elements are overlaid. Data order for local
SAS data is static. Graphs rendered with local data remain consistent over multiple
renderings. In contrast, data order for in-memory tables can be unpredictable. The
data order might vary over multiple graph renderings when an in-memory table is
used.

To ensure consistent graphs when you are plotting an in-memory table, data
accessed through a CAS engine libref is sorted automatically by default in
ascending order before it is plotted. As a result, the default value for options that
control order such as GROUPORDER= for grouped plots, SORTORDER= for
columns and rows in a data lattice or data panel, and so on, might differ between
local SAS data and in-memory tables. The default value for some other options
might also differ between local SAS data and in-memory tables. For each of these
options, the default values for both cases are listed in SAS Graph Template
Language: Reference.

GTL Features That Do Not Support In-
Memory Tables

Some features in GTL require a specific data order. Because data order can be
unpredictable when you are using an in-memory table, you must store the data for
these features in a SAS data set. These features include the following:

n the POLYGONPLOT statement. The polygon is dropped if the plot data is an in-
memory table. See “POLYGONPLOT” in SAS Graph Template Language:
Reference.

310 Chapter 18 / Plotting a SAS Cloud Analytic Services (CAS) In-Memory Table

http://documentation.sas.com/?docsetId=pgmdiff&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=pgmdiff&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n14gqqdmdco6wzn17eb5v0o0p679.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n14gqqdmdco6wzn17eb5v0o0p679.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p17alv43g4tx1an13y14tsrnqrwr.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p17alv43g4tx1an13y14tsrnqrwr.htm&locale=en

n the annotation facility. The SGRENDER procedure option SGANNO= is ignored
if it specifies an in-memory table. See “About the GTL Annotation Facility” in
SAS Graph Template Language: Reference.

n discrete attribute maps. The SGRENDER procedure option DATTRMAP= is
ignored if it specifies an in-memory table. See “Key Concepts for Using Attribute
Maps” in SAS Graph Template Language: Reference.

Example: Preprocessing Data in CAS
and Plotting the Results Using GTL

Here is an example that shows how to summarize an in-memory table in CAS and
how to plot the result using GTL. For very large in-memory tables, it is
recommended that you preprocess the data in CAS to reduce the size of the data
before you plot it using GTL. This example uses the data in SAS data set
Sashelp.Cars as sample data. The MDSUMMARY procedure is used to summarize
the data before it is plotted. It is supported by the CAS server and can process a
very large in-memory table. For information about the MDSUMMARY procedure,
see “PROC MDSUMMARY Statement” in SAS Cloud Analytic Services: User’s
Guide.

Here is the SAS code for this example.

options cashost="cloud.example.com" casport=5570; / 1 */
cas casauto sessopts=(caslib=casuser); /* 2 */

libname mycas cas; /* 3 */

proc casutil; /* 4 */
 load data=sashelp.cars casout="cars";
quit;

proc mdsummary data=mycas.cars; /* 5 */
 var mpg_highway;
 groupby type origin;
 output out=mycas.cars_summary;
run;

proc print data=mycas.cars_summary; /* 6 */
 var origin type _mean_;
run;

proc template; /* 7 */
 define statgraph meanmpg;
 begingraph;
 entrytitle "Average Highway MPG and Vehicle Type";
 layout overlay /
 xaxisopts=(label="Vehicle Type")
 yaxisopts=(label="Average Highway MPG");
 barchartparm category=type response=_mean_ /
 name="barchart" group=origin;

Example: Preprocessing Data in CAS and Plotting the Results Using GTL 311

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rgjcddtqwpyin1ro3kvrksd6js.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rgjcddtqwpyin1ro3kvrksd6js.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nwfi81yxphp7n15on8f5rp4ahy.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nwfi81yxphp7n15on8f5rp4ahy.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=p1wk29toijz7hgn113ezzaalablo.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=p1wk29toijz7hgn113ezzaalablo.htm&locale=en

 discretelegend "barchart";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=mycas.cars_summary /* 8 */
 template=meanmpg;
run;

cas casauto terminate;

1 If necessary, set system options CASHOST= and CASPORT= to the host name
and port for your CAS server.

2 Connect to your CAS server. Specify caslib CASUSER as the active caslib.

3 Create a CAS engine libref to the active caslib, CASUSER.

4 Load the SAS data set Sashelp.Cars into the in-memory table Cars.

5 Use the MDSUMMARY procedure to summarize the variable Mpg_Highway, and
group the results by the variables Type and Origin. Store the results in the in-
memory table Cars_Summary in the caslib CASUSER.

6 Optional: Print columns Type, Origin, and _Mean_ in the table Cars_Summary.

7 Create the template for your graph. Use the parameterized plot statement
BARCHARTPARM to create a bar chart of variables _Mean_ and Type, grouped
by variable Origin in the summarized data.

8 Use the SGRENDER procedure to render the graph in the template MEANMPG
using the data Mycas.Cars_Summary.

The summarized data generated by the MDSUMMARY procedure contains only 15
observations, as shown in the following image.

312 Chapter 18 / Plotting a SAS Cloud Analytic Services (CAS) In-Memory Table

Here is the resulting bar chart.

Notice that the group values and the category axis tick values are arranged in
ascending order. As described in “About In-Memory Tables and Data Order” on
page 310, group values and discrete-axis tick values are automatically sorted in
ascending order by default when an in-memory table is used.

For more information about SAS Cloud Analytic Services programming in SAS, see
An Introduction to SAS Viya Programming.

Example: Preprocessing Data in CAS and Plotting the Results Using GTL 313

http://documentation.sas.com/?docsetId=pgmdiff&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en

314 Chapter 18 / Plotting a SAS Cloud Analytic Services (CAS) In-Memory Table

PART 5

Adding Text, Legends, and Insets

Chapter 19
Adding Titles, Footnotes, and Text Entries to Your Graph 317

Chapter 20
Adding Legends to Your Graph . 337

Chapter 21
Adding Insets to Your Graph . 383

315

316

19
Adding Titles, Footnotes, and Text
Entries to Your Graph

Text Strings in Graphs . 317

Text Properties and Syntax Conventions . 319

Text Statement Basics . 321
Using Titles and Footnotes . 322
Using Text Entries in the Graphical Area . 323

Managing the String on Text Statements . 324
Text Statement Syntax . 324
Using Rich Text . 324
Horizontally Aligning Text Items . 325
Generating Text Items with Dynamic Variables, Macro Variables,

and Expressions . 325
Adding Subscripts, Superscripts, and Unicode Rendering . 326
Using Unicode Values in Labels . 327

Using Options on Text Statements . 328
Options Available on All Text Statements . 328
Setting Text Background, Borders, and Padding . 329
Managing Long Text in Titles and Footnotes . 330

ENTRY Statements: Additional Control . 332
Features Available for ENTRY Text . 332
Positioning ENTRY Text . 332
Rotating ENTRY Text . 334

Text Strings in Graphs
Using GTL, you can add and control text that appears in your graph. The annotation
in the following diagram indicates some of the options and statements that are used
to set the text in a typical graph.

317

1 ENTRYTITLE statement

2 ENTRY statement

3 DATALABEL= option

4 Y-axis LABEL= option

5 X-axis LABEL= option

6 Legend statement TITLE= option

7 ENTRYFOOTNOTE statement

8 Plot statement CURVELABEL= option

9 Plot statement LEGENDLABEL= option

The following options, available on plot and legend statements, manage most of the
text that you can add to a graph:

Task Statement Option

label data points plot statements that
display markers

DATALABEL=column

label a curve or a
reference line

plot statements that
display lines

CURVELABEL="string" | column

describe a plot in a
legend

most plot statements LEGENDLABEL="string"

add title to a legend legend statements TITLE="string"

318 Chapter 19 / Adding Titles, Footnotes, and Text Entries to Your Graph

Task Statement Option

label an axis axis statement or
layout axis option

LABEL="string"

GTL also provides the following text statements that can be used to add custom
information about the graph analysis or the graph display. This text is independent
of the text that is managed by the options on plot and legend statements:

Option Description

ENTRYTITLE "string" Defines title text for the entire graph.

ENTRYFOOTNOTE "string" Defines footnote text for the entire graph.

ENTRY "string" Defines text that is displayed in the graphical area.

This chapter focuses primarily on how to set text properties for any text. Additional
information about text-related features for axes, legends, insets, and multi-cell
layouts is available in other chapters:

n For managing the text in axes, see “Managing Axes in OVERLAY Layouts ” on
page 103.

n For managing the text in legends, see Chapter 20, “Adding Legends to Your
Graph,” on page 337.

n For managing the text in insets, see Chapter 21, “Adding Insets to Your Graph,”
on page 383.

n For managing the text in multi-cell layouts, see Chapter 15, “Creating Lattice
Graphs Using the LATTICE Layout,” on page 221 and Chapter 16, “Creating
Classification Panels Using the DATALATTICE and DATAPANEL Layouts,” on
page 255.

Text Properties and Syntax Conventions
All options or statements that define text strings have supporting text options that
enable you to set the color and font properties of the text. The following table shows
some of the supporting text options that are available:

Statement Type Option Supporting Text Option

plot statements DATALABEL= DATALABELATTRS=

CURVELABEL= CURVELABELATTRS=

legend statements TITLE= TITLEATTRS=

Text Properties and Syntax Conventions 319

Statement Type Option Supporting Text Option

layout or axis
statements

LABEL= LABELATTRS=

text statements TEXTATTRS=

The supporting text options all have similar syntax:

supporting-text-option = style-element | style-element (text-options) | (text-
options)

All supporting-text-options use a style element to determine their default
characteristics. Thus, when a different ODS style is applied to a graph, you might
see different fonts, font sizes, font weights, and font styles used for various pieces of
text in the graph. See “Options That Override Attributes for Individual Plots” on page
506 for a full discussion of how style elements and override options work.

Any text that you add to the graph can have the following properties for the text-
options:

Text Option Value Examples

COLOR= color | style-reference (color=black)

(color=GraphLabelText:color)

FAMILY= " font-name " | style-reference (family="Arial Narrow")

(family=GraphLabelText:FontFamil
y)

SIZE= dimension | style-reference (size=10pt)

(size=GraphLabelText:FontSize)

WEIGHT= NORMAL | BOLD | style-
reference

(weight=bold)

(weight=GraphLabelText:FontWeig
ht)

STYLE= NORMAL | ITALIC | style-
reference

(style=italic)

(style=GraphLabelText:FontStyle)

For more information about text-options, see “Text Options” on page 670.

Several style elements affect text in different parts of a graph. Each style element
defines attributes for all of its available text options. The following table shows some
of the style elements that are available for setting text attributes:

Style Element Default Use

GraphTitleText Used for all titles of the graph. This text typically uses the
largest font size among fonts in the graph.

320 Chapter 19 / Adding Titles, Footnotes, and Text Entries to Your Graph

Style Element Default Use

GraphFootnoteText Used for all footnotes. This text typically uses a smaller font size
than the titles. Sometimes, footnotes are italicized.

GraphLabelText Used for axis labels and legend titles. This text generally uses a
smaller font size than titles.

GraphValueText Used for axis tick values and legend entries. This text generally
uses a smaller font size than labels.

GraphDataText Used for text where minimum size is necessary (such as point
labels).

GraphUnicodeText Used for adding special glyphs (for example, α , ±, €) to text in
the graph.

GraphAnnoText Default font for annotation text that is added with the Annotate
facility, the DRAWTEXT statement, and the ODS Graphics
Editor.

For example, to specify that axis labels should have the same text properties as axis
tick values, you could specify the following:

layout overlay / xaxisopts=(labelattrs=GraphValueText)
 yaxisopts=(labelattrs=GraphValueText);

Style elements can also be used to modify the display of grouped data. For
example, by default, the text color of the data labels for grouped markers in a scatter
plot changes to match the marker color for each group value. To specify that
grouped data labels should use the same color as non-grouped data labels, you
could specify the following:

scatterplot x=height y=weight / group=age datalabel=name
 datalabelattrs=(color=GraphDataText:Color);

To ensure that a footnote is displayed in bold italics, you could specify the following:

entryfootnote "Study conducted in 2007" /
 textattrs=(weight=bold style=italic);

Because the other font properties are not overridden in this example, they are
obtained from the GraphFootnoteText style element.

Text Statement Basics
The ENTRYTITLE, ENTRYFOOTNOTE, and ENTRY statements add text to
predefined areas of the graph. The text that they add cannot be specified by the
options that are available in plot, axis, legend, or layout statements.

Text Statement Basics 321

Using Titles and Footnotes
To add titles or footnotes to a graph, use one or more ENTRYTITLE or
ENTRYFOOTNOTE statements. You must place these statements inside the
BEGINGRAPH block as children of the BEGINGRAPH block. They cannot be
embedded in any other GTL statement block. The following example and output
show the typical placement of these statements:

proc template;
 define statgraph textstatements;
 begingraph;
 entrytitle "Title One";
 entrytitle "Title Two";
 layout overlay;
 scatterplot x=height y=weight;
 endlayout;
 entryfootnote "Footnote One";
 entryfootnote "Footnote Two";
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=textstatements;
run;

However, the statement placement in the following BEGINGRAPH block yields the
same result:

begingraph;
 entryfootnote "Footnote One";
 entrytitle "Title One";
 layout overlay;
 scatterplot x=height y=weight;
 endlayout;
 entryfootnote "Footnote Two";
 entrytitle "Title Two";
endgraph;

322 Chapter 19 / Adding Titles, Footnotes, and Text Entries to Your Graph

Unlike SAS TITLE and FOOTNOTE statements, the GTL statements are not
numbered. If you include multiple ENTRYTITLE or ENTRYFOOTNOTE statements,
the titles or footnotes will be stacked in the specified order —all ENTRYTITLE
statements are gathered and placed in the ENTRYTITLE area at the top of the
graph, and all ENTRYFOOTNOTE statements are gathered and placed in the
ENTRYFOOTNOTE area at the bottom of the graph.

You can add as many titles and footnotes as you want. However, the space that is
needed to accommodate the titles and footnotes always decreases the height of the
graphical area. For graphs with extensive titles or footnotes, you should consider
enlarging the graph size. For a discussion on sizing graphs, see “Controlling Graph
Size” on page 581.

Using Text Entries in the Graphical Area
An ENTRY statement defines text within the graphical area. Here is a simple
example that places text in the upper left corner of the plot wall area:

proc template;
 define statgraph textentry;
 begingraph;
 layout overlay;
 scatterplot x=height y=weight;
 entry halign=left "NOBS = 19" /
 valign=top border=true;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=textentry;
run;

Here is the output.

Text Statement Basics 323

You can use multiple ENTRY statements with GRIDDED layouts to create tables of
text and complex insets. See Chapter 19, “Adding Titles, Footnotes, and Text
Entries to Your Graph,” on page 317.

Managing the String on Text Statements

Text Statement Syntax
Options on the ENTRYTITLE, ENTRYFOOTNOTE, and ENTRY text statements
enable you to create simple or complex text constructs. The following syntax shows
the general form of these statements:

TEXT-STATEMENT text-item < … <text-item>> / <options>;

Any text-item is some combination of the following:

<prefix-option … <prefix-option>> "string" | dynamic | character-expression |
{text-command}

What this means is that the final text that is to be created can be specified in a
series of separate items that have individual prefix options. Statement options can
also affect the final text. These possibilities are explained by the examples in the
following sections.

Using Rich Text
"Rich text" describes text in which each character can have different text properties.
The following example creates rich text by separating the text into pieces and using
prefix options to set different text properties for each piece. Properties that are set
this way stay in effect for subsequent text items, unless changed by another
TEXTATTRS= prefix option.

entrytitle textattrs=(size=12pt color=red) "Hello "
 textattrs=(size=10pt color=blue style=italic) "World";

Here is the output.

324 Chapter 19 / Adding Titles, Footnotes, and Text Entries to Your Graph

For each horizontal alignment, the overall text for these statements is formed by the
concatenation of the text items. Notice that there is no concatenation operator and
that any spacing (such as word breaks) must be provided as needed within the
strings ("Hello " "World"). The space that separates the text-item specifications is
never included in the final text string.

Horizontally Aligning Text Items
Text items can have different horizontal alignments: LEFT, CENTER, or RIGHT. The
default alignment is CENTER. Text items with the same alignment are gathered and
concatenated.

entryfootnote halign=left textattrs=(weight=bold) "XYZ Corp."
 halign=right textattrs=(weight=normal) "30JUN08";

Here is the output.

Generating Text Items with Dynamic Variables,
Macro Variables, and Expressions

Text items are not limited to string literals. Text items can also be defined as
dynamic variables, macro variables, or expressions. In the following example,
SYSDATE is declared with an MVAR template statement. As a result, this automatic
macro variable is resolved to today's date at run time.

entryfootnote halign=left textattrs=(weight=bold) "XYZ Corp."
 halign=right textattrs=(weight=normal) SYSDATE;

Here is the output.

This next example shows how the GTL EVAL function causes an expression to be
evaluated at run time. In this case, the PUT function (same as the PUT function in
the DATA step) is used to convert a SAS date value into a string:

entryfootnote "Summary for " eval(put(today(),mmddyyd.));

Here is the output.

Managing the String on Text Statements 325

For more information about dynamic variables, macro variables, and EVAL
expressions in GTL, see Chapter 30, “Using Dynamic Variables and Macro
Variables in Your Templates,” on page 605 and Chapter 31, “Using Conditional
Logic and Expressions in Your Templates,” on page 619.

Adding Subscripts, Superscripts, and Unicode
Rendering

You can build strings with subscripts or superscripts using the {SUB "string" } or
{SUP "string" } text commands. You can also use dynamic variables or macro
variables for the string portion of the text command.

entryfootnote "R" {sup "2"} "=.457";
entryfootnote "for the H" {sub "2"} "O Regression";

Here is the output.

Another way to form text is to use the {UNICODE "hex-value"x } text command. For
fonts that support Unicode code points, you can use the following syntax to render
the glyph (character) corresponding to any Unicode value:

entryfootnote {unicode "03B1"x} "=.05";

In the code, the "03B1"x is the hexadecimal code point value for the lowercase
Greek letter alpha. Because Greek letters and some other statistical symbols are so
common in statistical graphics, keyword shortcuts to produce them have been
added to GTL syntax. So another way of indicating "03B1"x is

entryfootnote {unicode alpha} "=.05";

Here is the output.

For a complete list of keywords that can be used with the {unicode keyword}
notation, see “Reserved Keywords and Unicode Values” on page 647. For rules
regarding specifying Unicode and other special characters, see “Rules for Unicode
and Special Character Specifications” in SAS Graph Template Language:
Reference.

In addition, any Unicode glyph for currency, punctuation, arrows, fractions and
mathematical operators, symbols, and dingbats can be used. Fonts such as Arial
(comparable to SAS-supplied Albany AMT) have many, but not all, Unicode code
points available, and sometimes a more complete Unicode font such as Arial
Unicode MS (or SAS-supplied Monotype Sans WT J) needs to be specified. ODS
styles have a style element named GraphUnicodeText that can be safely used for
rendering any Unicode characters. The following example uses the
GraphUnicodeText style element for rendering a bar over the X:

entry "X"{unicode bar}"=6.78" / textattrs=GraphUnicodeText;

326 Chapter 19 / Adding Titles, Footnotes, and Text Entries to Your Graph

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1u3rxyi3n6ncfn18yobca3itqd6.htm&docsetTargetAnchor=n0geyqi0l105txn15ppnk0m1o7dx&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1u3rxyi3n6ncfn18yobca3itqd6.htm&docsetTargetAnchor=n0geyqi0l105txn15ppnk0m1o7dx&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1u3rxyi3n6ncfn18yobca3itqd6.htm&docsetTargetAnchor=n0geyqi0l105txn15ppnk0m1o7dx&locale=en

Here is the output.

Using Unicode Values in Labels
The {UNICODE}, {SUB}, and {SUP} text commands apply only to the ENTRY,
ENTRYTITLE, and ENTRYFOOTNOTE statements. However, strings that are
assigned to axis labels, curve labels, legend labels, and so on, can present Unicode
characters using what is called "in-line formatting." To use this special formatting,
you embed within the string an ODS escape sequence followed by a text command.
Specifically, whenever you use an ODS ESCAPECHAR= statement to define an
escape character, and then include that escape character in a quoted string, it
signals that the next token represents a text command. Currently, only the
{UNICODE} text command is recognized, not {SUB} or {SUP}. For rules regarding
specifying Unicode characters, see “Rules for Unicode and Special Character
Specifications” in SAS Graph Template Language: Reference.

In the following example, the alpha value for the upper and lower confidence limits is
displayed using the Greek letter alpha:

ods escapechar="^"; /* Define an escape character */

proc template;
 define statgraph fit;
 begingraph;
 entrytitle "Regression Fit Plot with CLM Band";
 layout overlay;
 modelband "clm" / display=(fill) name="band"
 legendlabel="^{unicode alpha}=.05";
 scatterplot x=height y=weight / primary=true;
 regressionplot x=height y=weight / alpha=.05 clm="clm"
 legendlabel="Linear Regression" name="fit";
 discretelegend "fit" "band";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=fit;
run;

Here is the output.

Managing the String on Text Statements 327

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1u3rxyi3n6ncfn18yobca3itqd6.htm&docsetTargetAnchor=n0geyqi0l105txn15ppnk0m1o7dx&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1u3rxyi3n6ncfn18yobca3itqd6.htm&docsetTargetAnchor=n0geyqi0l105txn15ppnk0m1o7dx&locale=en

Using Options on Text Statements

Options Available on All Text Statements
The ENTRYTITLE, ENTRYFOOTNOTE, and ENTRY text statements provide
options that apply to all of the text-items that form the text string (unlike the prefix
options, which can be applied to pieces of the text).

TEXT-STATEMENT text-item < … <text-item>> / <options>;

The following options are available on all of the text statements:

BACKGROUNDCOLOR= style-reference | color
Specifies the color of the text background.

BORDER= boolean
Specifies whether a border line is displayed around the text.

BORDERATTRS= style-element | style-element (line-options) | (line-options)
Specifies the properties of the border line. For information about line-options,
see “Line Options” on page 666.

OPAQUE= boolean
Specifies whether the entry background is opaque.

TEXTATTRS=style-element | style-element (text-options) | (text-options)
Specifies the font attributes of all text. For information about text-options, see
“Text Options” on page 670. If a TEXTATTRS= prefix option is also used, it takes
precedence over this statement option.

328 Chapter 19 / Adding Titles, Footnotes, and Text Entries to Your Graph

Setting Text Background, Borders, and Padding
By default, the background of all text is transparent. To specify a background color,
you must specify OPAQUE=TRUE to turn off transparency, which then enables you
to specify a background color. In the following example, the fill color of the band is
specified for the background of the entry text. A border is also added.

Note: Data points that are behind the entry text are obscured when
OPAQUE=TRUE.

proc template;
define statgraph tmpl1;
 begingraph;
 entrytitle "Regression Plot";
 layout overlay;
 modelband "clm";
 scatterplot x=height y=weight;
 regressionplot x=height y=weight / clm="clm" alpha=.05;
 entry {unicode alpha} " = .05" / autoalign=auto border=true
 opaque=true backgroundcolor=GraphConfidence:color;
 endlayout;
 endgraph;
end;

proc sgrender data=sashelp.class template=tmpl1;
run;

Here is the output.

Notice that extra space appears between the entry border and the text. This space
is called padding and can be set with the PAD= option. The default padding is

ENTRY "string" / PAD=(LEFT=3px RIGHT=3px TOP=0 BOTTOM=0) border=true;

Using Options on Text Statements 329

You can set the padding individually for the LEFT, RIGHT, TOP, and BOTTOM
directions, or you can set the same padding in all directions as follows:

ENTRY "string" / PAD=5px border=true;

Padding is especially useful when you want to add extra space between titles, or
add space between the last title (or first footnote) and the plot area in the graph.
Here is an example.

proc template;
 define statgraph padding;
 begingraph;
 entrytitle "Regression Plot" / pad=(bottom=10px);
 entryfootnote halign=right
 "Prepared with SAS" {unicode "00AE"x} " Software" /
 textattrs=(size=9pt) pad=(top=10px);
 layout overlay;
 modelband "clm";
 scatterplot x=height y=weight;
 regressionplot x=height y=weight / clm="clm" alpha=.05;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=padding;
run;

Here is the output.

Managing Long Text in Titles and Footnotes
When you change the size of a graph, the size of all fonts in the graph is scaled up
or down by default. However, when the graph size is reduced, even font scaling has

330 Chapter 19 / Adding Titles, Footnotes, and Text Entries to Your Graph

limits on what it can do with long text strings that are specified on ENTRYTITLE or
ENTRYFOOTNOTE statements. The following statement options are available to
deal with this situation:

TEXTFITPOLICY= WRAP | SHORT | TRUNCATE

SHORTTEXT= (text-items)

By default, TEXTFITPOLICY=WRAP, and no default is defined for the
SHORTTEXT= option.

The text fitting policies take effect when the length of the text and its font properties
cause the text line to exceed the space available for it. The font properties include
the font family, font size, and font weight (BOLD or NORMAL). Thus, adjusting the
length of the text and/or changing its font properties are adjustments that you can
make to fit text in the available space. You can also use the TEXTFITPOLICY=
and/or SHORTTEXT= options.

The following long title uses the default fit policy, which is to wrap text that does not
fit on a single line:

entrytitle "This is a lot of text to display on one line";

Here is the output.

Notice that the current horizontal alignment (CENTER in this case) is used when
text wraps. Text is wrapped only at word boundaries (a space).

Here is the output when the fit policy is set to TRUNCATE.

The ellipsis in the output text indicates where the truncation occurs. Rather than
truncating text, you can specify alternative "short" text to substitute whenever the
primary text does not fit without wrapping in the available space.

entrytitle "This is a lot of text to display on one line" /
 textfitpolicy=short shorttext=("Short alternative text");

Here is the output.

Using Options on Text Statements 331

ENTRY Statements: Additional Control

Features Available for ENTRY Text
ENTRY statements are more flexible than ENTRYTITLE or ENTRYFOOTNOTE
statements and support additional features for automatically positioning text,
aligning text vertically, and rotating text:

AUTOALIGN= NONE | AUTO | (location-list)
Specifies whether the entry is automatically aligned within its parent when
nested within an overlay-type layout.

ROTATE= 0 | 90 | 180 | 270
Specifies the angle of text rotation.

VALIGN= CENTER | TOP | BOTTOM
Specifies the vertical alignment of the text.

Positioning ENTRY Text
By default, any ENTRY statement that is defined within a 2-D overlay-type layout
and does not specify a location is placed in the center of the graph wall
(HALIGN=CENTER VALIGN=CENTER). If you know where you want to place the
text, one way to position it is to use the HALIGN= and VALIGN= options, as shown
in the following example:

proc template;
 define statgraph textentry;
 begingraph;
 layout overlay / pad=0;
 scatterplot x=height y=weight;
 entry halign=left "NOBS = 19" /
 valign=top border=true;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=textentry;
run;

Here is the output.

332 Chapter 19 / Adding Titles, Footnotes, and Text Entries to Your Graph

Whenever you add text within the graph wall, you have to consider the possibility
that the text might appear on top of or behind data markers and plot lines. For this
reason, you should consider using the AUTOALIGN= option rather than the
HALIGN= and VALIGN= options for positioning the text.

The AUTOALIGN= option enables you to set a priority list that restricts the entry
location to certain locations. The priority list can include any of the keywords
TOPLEFT, TOP, TOPRIGHT, LEFT, CENTER, RIGHT, BOTTOMLEFT, BOTTOM,
and BOTTOMRIGHT.

In the following histogram, the best location for an entry is either TOPLEFT or
TOPRIGHT, depending on the skewness of the data.

With the following layout block, if the data were skewed to the right so that the entry
text overlaps with the histogram, the text would automatically appear at TOPLEFT.

layout overlay;
 histogram weight;
 entry "NOBS = 19" /
 autoalign=(topright topleft)
 border=true;
endlayout;

When the parent layout contains only scatter plots, the ENTRY statement can use
the AUTOALIGN=AUTO setting to automatically position the text where it is the
farthest away from any scatter points. In all cases, even one like the following layout
block where many positions are available that might minimize data collision, the
AUTO specification selects the position for you and you have no further control over
the text position.

layout overlay;
 scatterplot x=height y=weight;
 entry halign=left "NOBS = 19" /

ENTRY Statements: Additional Control 333

 autoalign=auto border=true;
endlayout;

Here is example output.

Rotating ENTRY Text
For the ENTRY statement, the ROTATE= option can be used to rotate the entry text.
For example, ENTRY statements can be used to define the text that appears in a
CELLHEADER block in a LATTICE layout. You can also use ENTRY statements in
SIDEBAR, ROWHEADERS, and COLUMNHEADERS blocks. In the following code
fragment, the ROTATE= option in the ROWHEADERS block rotates the row
headers 90 degrees in a LATTICE layout.

rowheaders;
 layout gridded / columns=2;
 entry "Volume" / textattrs=GraphLabelText rotate=90;
 entry "(Millions of Shares)" / textattrs=GraphValueText rotate=90;
 endlayout;
 layout gridded / columns=2;
 entry "Price" / textattrs=GraphLabelText rotate=90;
 entry "(Adjusted Close)" / textattrs=GraphValueText rotate=90;
 endlayout;
endrowheaders;

Here is the result.

334 Chapter 19 / Adding Titles, Footnotes, and Text Entries to Your Graph

The complete code for this example is shown in “Example 4: Lattice with Row
Headers” on page 249.

ENTRY Statements: Additional Control 335

336 Chapter 19 / Adding Titles, Footnotes, and Text Entries to Your Graph

20
Adding Legends to Your Graph

Introduction to Legend Management . 338
Some of the Uses for a Legend . 338
Types of Legends in GTL . 338
General Syntax for Using Legends . 339
Example Legend Coding for Common Situations . 339

General Legend Features . 344
Positioning Options . 344
General Appearance Options . 349

Adding a Discrete Legend . 353
Placing the Legend . 353
Ordering the Legend Entries for a Grouped Plot . 354
Ordering the Legend Entries for Non-grouped Plots . 357
Arranging Legend Entries into Columns and Rows . 359
Controlling the Label and Item Size . 363
Adding Items to a Discrete Legend . 364
Removing Items from a Discrete Legend . 366
Merging Legend Items from Two Plots into One Legend . 368
Creating a Global Legend . 369
When Discrete Legends Get Too Large . 371

Adding a Continuous Legend . 374
Plots That Can Use Continuous Legends . 374
Positioning a Continuous Legend . 379
Using Color Gradients to Represent Response Values . 379
Scaling the Legend Values . 381

337

Introduction to Legend Management

Some of the Uses for a Legend
A graphical legend provides a key to the marker symbols, lines, and other data
elements that are displayed in a graph. Here are some of the situations where
legends are useful:

n when a plot contains grouped markers (scatter plots, for example)

n when a plot contains lines that differ by color, marker symbol, or line pattern
(series plots or step plots, for example)

n when a plot contains one or more lines or bands that require identification or
explanation

n when series plots with different data are overlaid in the graph, or fit lines are
displayed with confidence bands, or density plots with different distributions are
generated

n when markers vary in color to show the values of a response variable

n when contour or surface plots use gradient fill colors to show the values of a
response variable

GTL does not automatically generate legends for the above situations. However, the
mechanism for creating legends is simple and flexible.

Types of Legends in GTL
GTL supports two legend statements:

DISCRETELEGEND
legend that contains one or more legend entries. Each entry consists of a
graphical item (marker, line, ...) and corresponding text that explains the item. A
discrete legend would be used for the first two situations listed in “Some of the
Uses for a Legend” on page 338.

For details, see “General Legend Features” on page 344 and “Adding a Discrete
Legend” on page 353.

338 Chapter 20 / Adding Legends to Your Graph

CONTINUOUSLEGEND
legend that maps a color gradient to response values. A continuous legend
would be used for the last two situations listed in “Some of the Uses for a
Legend” on page 338.

For details, see “General Legend Features” on page 344 and “Adding a
Continuous Legend” on page 374.

General Syntax for Using Legends
Regardless of the situation, the basic strategy for creating legends is to "link" one or
more plot statements to a legend statement by assigning a unique, case-sensitive
name to the plot statement and then referencing that name on the legend
statement:

plot-statement . . . / name="id-string1";

plot-statement . . . / name="id-string2";

legend-statement "id-string1" "id-string2" < / options >;

One way of thinking about this syntax is that you can identify any plot with a NAME=
option, and you can then selectively include plot names on a legend statement. This
enables the legend to query the identified plots so that it can get the information that
it needs to build the legend entries.

Note: When the legend statement includes the name of a plot, it does not always
mean that the legend will include an entry for that plot. For example, a block plot
with FILLTYPE=ALTERNATE does not show up in a legend.

Example Legend Coding for Common Situations

Show Group Values in a Legend
The appearance of the markers is automatically determined by the current style.
The order of the legend entries is controlled by the data order as shown in the
following example.

proc template;
 define statgraph order;
 begingraph;
 layout overlay;

Introduction to Legend Management 339

 scatterplot x=height y=weight / group=sex name="scatter";
 discretelegend "scatter";
 endlayout;
 endgraph;
 end;
run;

proc sort data=sashelp.class out=class;
 by age;
run;
proc sgrender data=class template=order;
run;

Here is the output.

Identify Overlaid Plots in a Legend
This example illustrates that more than one plot can contribute to a legend.

proc template;
 define statgraph series;
 begingraph;
 layout overlay / cycleattrs=true;
 seriesplot X=date Y=close / name="sp1" ;
 seriesplot X=date Y=low / name="sp2" ;
 seriesplot X=date Y=high / name="sp3" ;
 discretelegend "sp3" "sp2" "sp1";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.stocks template=series;
 format high low close dollar.;
 where year(date)=2001 and stock="IBM";
run;

Here is the output.

340 Chapter 20 / Adding Legends to Your Graph

The CYCLEATTRS=TRUE option assigns different visual attributes to each plot. For
more information about the CYCLEATTRS= option, see “Ordering the Legend
Entries for Non-grouped Plots” on page 357. The order of the names in the
DISCRETELEGEND statement determines the order of the legend entries. No label
is assigned to the High, Low, and Close variables. In this case, by default, the
legend entry text is determined by the response variable name. You can use the
LEGENDLABEL= option in each SERIESPLOT statement to override the default
legend text for each plot.

Show Group Values and Identify Plots in a
Legend
A legend can show group values for multiple groups and identify one or more plots
as shown in the following example.

proc template;
 define statgraph compoundLegend;
 begingraph;
 layout overlay;
 scatterplot x=height y=weight / group=sex name="scatter";
 loessplot x=height y=weight / name="Loess";
 discretelegend "Loess" "scatter";
 endlayout;
 endgraph;
 end;
run;
proc sgrender data=sashelp.class template=compoundlegend;
run;

Here is the output.

Introduction to Legend Management 341

For a LOESSPLOT statement, the default legend text is the text specified by the
plot’s NAME= option, which is “Loess” in this example. You can use the
LEGENDLABEL="string" option in the LOESSPLOT statement to override the
NAME= text in the legend.

Show a Legend for a Continuous
Response Variable (Scatter Plot)
The following example shows how marker color in a scatter plot can represent the
values of a response variable (Weight in this case).

proc template;
 define statgraph order;
 begingraph;
 layout overlay;
 scatterplot x=age y=height / name="sc"
 markercolorgradient=weight
 markerattrs=(symbol=circlefilled);
 continuouslegend "sc" / title="Weight";
 endlayout;
 endgraph;
 end;
run;

proc sort data=sashelp.class out=class;
 by age;
run;
proc sgrender data=class template=order;
run;

Here is the output.

342 Chapter 20 / Adding Legends to Your Graph

Show a Legend for a Continuous
Response Variable (contour plot)
This example shows how a fill color gradient in a contour can represent values of a
response variable (Density in this case) .

proc template;
 define statgraph mygraphs.contour;
 begingraph;
 layout overlay;
 contourplotparm x=height y=weight z=density /
 contourtype=gradient name="con";
 continuouslegend "con" / title="Density";
 endlayout;
 endgraph;
 end;
run;

ods graphics / antialiasmax=3600;
proc sgrender data=sashelp.gridded template=mygraphs.contour;
 where height>=53 and weight<=225;
run;

Here is the output.

Introduction to Legend Management 343

General Legend Features
The following sections discuss several features that are common to both discrete
legends and continuous legends.

Positioning Options

Overview of the Legend Placement
Options
You can include a legend statement in most layout blocks. Most of the time you
would simply like to ensure that the legend appears where you want in relation to
the plot(s) of the graph. The issues differ, depending on whether you define a single-
cell graph or a multi-cell graph. This section discusses single-cell graphs. The
discussion of legend placement for multi-cell layouts such as GRIDDED, LATTICE,
DATALATTICE, and DATAPANEL appears in the appropriate layout chapter:

n Chapter 14, “Creating Gridded Graphs Using the GRIDDED Layout ,” on page
207 (GRIDDED)

n Chapter 15, “Creating Lattice Graphs Using the LATTICE Layout,” on page 221
(LATTICE)

n Chapter 16, “Creating Classification Panels Using the DATALATTICE and
DATAPANEL Layouts,” on page 255 (DATAPANEL, DATALATTICE,
PROTOTYPE)

The following positioning options control a legend's location within its parent layout.
They are available only when the legend is nested within an overlay-type layout:

344 Chapter 20 / Adding Legends to Your Graph

LOCATION= INSIDE | OUTSIDE
determines whether the legend is drawn inside the plot wall of the cell, or outside
the plot wall (and outside the axes). The default is OUTSIDE.

HALIGN = LEFT | CENTER | RIGHT
determines horizontal alignment. The default is CENTER.

VALIGN = TOP | CENTER | BOTTOM
determines vertical alignment. The default is BOTTOM.

Displaying Legends outside of the Plot
Wall
When you place a legend statement in a single-cell layout such as OVERLAY,
OVERLAYEQUATED, or OVERLAY3D, the default legend appears outside the plot
wall but inside the layout border as shown in the following example.

proc template;
 define statgraph location1;
 begingraph;
 entrytitle "Default Legend Position:";
 entrytitle "LOCATION=OUTSIDE";
 entrytitle "HALIGN=CENTER VALIGN=BOTTOM";
 layout overlay;
 scatterplot X=Height Y=Weight / name="sp" group=sex;
 discretelegend "sp" /
 location=outside halign=center valign=bottom;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=location1;
run;

Here is the output.

Using the HALIGN= and VALIGN= options, you can place a legend in eight positions
outside the plot wall. The only combination that is not supported is

General Legend Features 345

HALIGN=CENTER and VALIGN=CENTER. To accommodate the legend, the size of
the plot wall is adjusted so that the legend(s) can be displayed.

Note: Sometimes with large legends, this size adjustment causes problems. Sizing
issues are discussed in “Arranging Legend Entries into Columns and Rows” on
page 359 and “When Discrete Legends Get Too Large” on page 371.

The following layout block positions the legend in the outside center-right location.

layout overlay;
 scatterplot X=Height Y=Weight /
 name="sp" group=sex;
 discretelegend "sp" /
 halign=right valign=center;
endlayout;

Here is example output.

Displaying Legends inside the Plot Wall
A legend can be placed inside the plot wall (LOCATION=INSIDE) and positioned
with the HALIGN= and VALIGN= options. Nine inside positions are possible. The
defaults are HALIGN=CENTER and VALIGN=CENTER. The following layout block
positions the legend in the inside bottom right location.

layout overlay;
 scatterplot X=Height Y=Weight /
 name="sp" group=sex;
 discretelegend "sp" / location=inside
 halign=right valign=bottom;
endlayout;

Here is example output.

346 Chapter 20 / Adding Legends to Your Graph

One of the advantages of inside legends is that the plot wall does not shrink.

One of the disadvantages of inside legends with HALIGN= and VALIGN= positions
is that the legend might be placed on top of plot markers, lines, or filled areas
(legends, entries, and nested layouts are always stacked on top of plots, regardless
of the statement order in an overlay block).

Automatically Aligning an Inside Legend
When the plot statements are specified in a 2-D overlay-type layout, the
AUTOALIGN= option can be used to automatically position an inside legend.
AUTOALIGN= selects a position that avoids or minimizes collision with plot
components.

The AUTOALIGN= option enables you to specify an ordered list of potential
positions for the legend. The list contains one or more of the following keywords:
TOPLEFT, TOP, TOPRIGHT, LEFT, CENTER, RIGHT, BOTTOMLEFT, BOTTOM,
and BOTTOMRIGHT. In the following layout block, the best position for an inside
legend is TOPRIGHT or TOPLEFT.

layout overlay;
 histogram Weight / name="sp";
 densityplot Weight / kernel()
 legendlabel="Kernel Density"
 name="kde";
 discretelegend "kde" /
 location=inside
 autoalign=(topright topleft);
endlayout;

Here is example output.

General Legend Features 347

Because the AUTOALIGN= option specifies a list of preferred positions, the first of
the listed positions that does not involve data collision is used. If the histogram had
been skewed to the right, the TOPLEFT position would be used.

When the parent layout contains only scatter plots, you can fully automate the
selection of an internal position by specifying AUTOALIGN=AUTO as shown in the
following layout block.

layout overlay;
 scatterplot X=Height Y=Weight / name="sp" group=sex;
 discretelegend "sp" / location=inside autoalign=auto;
endlayout;

This is a "smart" option that automatically selects a position where there is no (or
minimal) collision with plot components. The AUTOALIGN=AUTO option selects a
position for you. Note that positions that are not possible with HALIGN= and
VALIGN= can be used.

Here is example output.

348 Chapter 20 / Adding Legends to Your Graph

General Appearance Options

Using Background Transparency and
Color
The following options control the appearance of the legend background:

OPAQUE = TRUE | FALSE
determines whether the legend background is 100% transparent or 0%
transparent.

BACKGROUNDCOLOR= style-reference | color
determines legend background color. OPAQUE=TRUE must be set for the
background color to be seen. The GraphLegendBackground:Color style
reference is the default.

By default, OPAQUE=FALSE when LOCATION=INSIDE. This minimizes the
potential for the legend to obscure the markers, lines, fills, and labels in the plot
area. when When LOCATION=OUTSIDE, OPAQUE=TRUE by default. This enables
the legend background color to appear. Typically, the default legend background
color is the same as the plot wall background color. The following graph illustrates
the default settings (the graph uses the DEFAULT style, which has a gray graph
background):

The next graph illustrates how the graph looks when the default opacity is reversed.
With reverse opacity, the default background color of an inside legend is the same
as the fill color of the plot wall that is behind it. For outside legends, the default
background color is 100% transparent, so the graph background color shows
through the legend.

General Legend Features 349

When the legend background is opaque, you can use the BACKGROUNDCOLOR=
option to set its color. In the following example,
BACKGROUNDCOLOR=GraphAltBlock:Color for both the inside and outside
opaque legends. Other style references that you can use include
GraphHeaderBackground:Color, GraphBlock:Color, or any other style element with
a COLOR= attribute. You can also specify a specific color, such as
BACKGROUNDCOLOR=white.

Using a Legend Title and Title Border
By default, legends do not have titles. To add a title, you can use the TITLE= option.
You can also add a dividing line between the legend title and the legend body with
the TITLEBORDER=TRUE setting. This is demonstrated in the following layout
block.

layout overlay;
 histogram Weight / name="sp";
 densityplot Weight / normal()
 legendlabel="Normal" name="norm"
 lineattrs=GraphData1;
 densityplot Weight / kernel()

350 Chapter 20 / Adding Legends to Your Graph

 legendlabel="Kernel" name="kde"
 lineattrs=GraphData2;
 discretelegend "norm" "kde" /
 location=inside across=1
 autoalign=(topright topleft)
 title="Theoretical Distributions"
 titleborder=true;
endlayout;

Here is example output.

Legend Border
By default, a border is displayed around a legend. You can remove the border by
specifying BORDER=FALSE (which also removes the title border). The line
properties of a legend border can be set by the BORDERATTRS= option. The
following layout block modifies the legend border so that it is thicker than the title
border:

layout overlay;
 histogram Weight / name="sp";
 densityplot Weight / normal()
 legendlabel="Normal" name="norm"
 lineattrs=GraphData1;
 densityplot Weight / kernel()
 legendlabel="Kernel" name="kde"
 lineattrs=GraphData2;
 discretelegend "norm" "kde" /
 location=inside across=1
 autoalign=(topright topleft)
 title="Theoretical Distributions"
 titleborder=true
 borderattrs=(thickness=2);
endlayout;

Here is example output.

General Legend Features 351

Legend Text Properties
The TITLEATTRS= and VALUEATTRS= options control the text properties of the
legend. By default, the text properties come from the current style. The legend title
uses TITLEATTRS = GraphLabelText, and legend entries use VALUEATTRS =
GraphValueText. For visual consistency in the graph, the GraphLabelText style
element is also used for axis labels, and the GraphValueText style element is also
used for axis tick values. In general, style elements are used as needed in a graph
to maintain visual consistency.

The following layout block sets all legend text to gray. The font for the legend title is
made the same as the default font for the legend values by setting
TITLEATTRS=GraphValueText.

layout overlay;
 histogram Weight / name="sp";
 densityplot Weight / normal()
 legendlabel="Normal" name="norm"
 lineattrs=GraphData1;
 densityplot Weight / kernel()
 legendlabel="Kernel" name="kde"
 lineattrs=GraphData2;
 discretelegend "norm" "kde" /
 location=inside across=1
 autoalign=(topright topleft)
 title="Theoretical Distributions"
 border=false valueattrs=(color=gray)
 titleattrs=GraphValueText(color=gray);
endlayout;

Here is example output.

352 Chapter 20 / Adding Legends to Your Graph

Adding a Discrete Legend

Placing the Legend
You can use the AUTOALIGN, LOCATION=, HALIGN=, and VALIGN= options to
place your legend. Note the following about legend placement:

n When a discrete legend is placed within the axis frame (LOCATION=INSIDE):

o It is always placed on top of plot lines and markers.

o Its background is fully transparent by default (OPAQUE=FALSE), meaning
that underlying lines, markers, and data labels will show through the legend.

o Its position is controlled with the AUTOALIGN= option.

n When a discrete legend is placed outside the axis frame
(LOCATION=OUTSIDE):

o Its background is fully opaque by default (OPAQUE=TRUE).

o Its position is controlled with the HALIGN= and VALIGN= options.

n When a discrete legend is placed within nested layouts, you might have to use
the ACROSS= and ORDER=ROWMAJOR options or the DOWN= and
ORDER=COLUMNMAJOR options to obtain the desired legend organization.

Adding a Discrete Legend 353

Ordering the Legend Entries for a Grouped Plot

Overview of the Group Value Default Order
When the GROUP=column option is used with a plot, the unique values of column
are presented in the legend in the order in which they occur in the data. Here is an
example.

proc template;
 define statgraph order;
 dynamic TITLE;
 begingraph;
 entrytitle TITLE;
 layout overlay;
 scatterplot x=height y=weight / name="sp"
 group=age;
 discretelegend "sp" / title="Age";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=order;
 dynamic title="Default Order of Legend Entries";
run;

Here is the output.

354 Chapter 20 / Adding Legends to Your Graph

Sorting the Legend Items
You use the SORTORDER= option in your DISCRETELEGEND statement to
perform a linguistic sort on the legend items in ascending or descending order. By
default, SORTORDER=AUTO, which displays the items in the order in which they
are provided by the contributing plots.

Note: The SORTORDER= option overrides the ordering that is established by the
GROUPORDER= option in the legend's constituent plot statements. The
SORTORDER=ASCENDINGFORMATTED or
SORTORDER=DESCENDINGFORMATTED options combine the entries from the
contributing plots and orders them as a single list.

The following layout block sorts the legend items in ascending order.

layout overlay;
 scatterplot x=height y=weight / name="sp" group=age;
 discretelegend "sp" / title="Age" sortorder=ascendingformatted;
endlayout;

Here is example output.

Alternatively, you can create a sorted data set, and then use the sorted data to
generate your graph. In that case, the legend values appear in the sorted order.

Formatting the Data
You can apply a format to a group variable to change the legend entry labels or the
number of classification levels. The ordering of the legend entries is based on the
order of the pre-formatted group values. In the following example, the data is sorted
in ascending order, so the legend entry order is "Pre-Teen" "Teen" "Adult." Because
there are no adults, "Adult" does not appear in the graph. If the data were sorted in
descending age order the legend entry order would be reversed. The template that

Adding a Discrete Legend 355

was created in “Overview of the Group Value Default Order” on page 354 is used to
generate the graph.

proc format;
 value teenfmt
 low-12 = "Pre-Teen"
 13-19 = "Teen"
 20-high = "Adult";
run;

proc sort data=sashelp.class out=class;
 by age;
run;

proc sgrender data=class template=order;
 format age teenfmt.;
 dynamic
 title="Formatted Order of Legend Entries";
run;

Here is the output.

In a GTL template, the plot statement, not the legend statement, defines the
association of grouped data values with colors, symbols, and line patterns. The
association is simply reflected in the legend entries. To change the mapping
between grouped data values and the associated style elements, use the
INDEX=column option on the plot statement. For a discussion of the INDEX= option,
see “Using the INDEX= Option to Achieve Data-Independent Appearance for
Grouped Plots” on page 535.

356 Chapter 20 / Adding Legends to Your Graph

Ordering the Legend Entries for Non-grouped Plots

Ordering Entries from Overlaid Plots
When plots are overlaid and you want to distinguish them in a legend, you must
assign each plot a name and then reference the name in the legend statement. The
order in which the plot names appear on the legend statement controls the ordering
of the legend entries for the plots.

Varying Visual Properties
In the following examples, the CYCLEATTRS=TRUE setting is used as a quick way
to change the visual properties of each plot without explicitly setting it. When
CYCLEATTRS=TRUE, any plots that derive their default visual properties from one
of the GraphData elements are cycled through those elements for deriving visual
properties. So, the first plot gets its visual properties from the GraphData1 style
element, the next plot gets its properties from the GraphData2 style element, and so
on. When plot lines represent entities such as fit lines or confidence bands, it is
recommended that you use options such as LINEATTRS= or OUTLINEATTRS= and
specify appropriate style elements. For example, you might specify
LINEATTRS=GraphFit or OUTLINEATTRS=GraphConfidence.

proc template;
 define statgraph series;
 begingraph;
 layout overlay / xaxisopts=(timeopts=(tickvalueformat=data))
 yaxisopts=(display=(ticks tickvalues)) cycleattrs=true;
 seriesplot x=month y=actual / name="a";
 seriesplot x=month y=predict / name="p";
 discretelegend "a" "p" / valign=bottom;
 discretelegend "p" "a" / valign=top;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.prdsale template=series;
 format month Monname3. actual predict dollar.;
 where year=1994 and product="DESK" and division="EDUCATION"
 and country="CANADA" and region="WEST";
run;

Here is the output.

Adding a Discrete Legend 357

Assigning Legend Entry Labels
Every GTL plot type (except box plot) has a default legend entry label. For example,
for some X-Y plots, the default entry legend label is the label of the Y= column (or
the column name if no label is assigned). To assign a legend entry label for a plot,
you can use a LABEL statement with PROC SGRENDER, or use the
LEGENDLABEL="string" option on the plot statement as shown in the following
layout block.

layout overlay / yaxisopts=(label="Sales") cycleattrs=true;
 seriesplot x=month y=actual / name="a"
 legendlabel="Actual";
 seriesplot x=month y=predict / name="p"
 legendlabel="Predicted";

 discretelegend "a" "p"/ valign=bottom;
endlayout;

Here is example output.

Note: Other techniques are available for labeling plots without using a legend.
Many plots that render one or more lines support a CURVELABEL= option that
places text inside or outside of the plot wall to label the line(s). These plots include

358 Chapter 20 / Adding Legends to Your Graph

SERIESPLOT, STEPPLOT, DENSITYPLOT, REGRESSIONPLOT, LOESSPLOT,
PBSPLINEPLOT, MODELBAND, BANDPLOT, LINEPARM, REFERENCELINE, and
DROPLINE. Additional options are available to control curve label location, position,
and text properties. For examples, see Chapter 27, “Managing Your Graph’s
Appearance,” on page 491 and Chapter 19, “Adding Titles, Footnotes, and Text
Entries to Your Graph,” on page 317.

Arranging Legend Entries into Columns and Rows

Default Legend Item Arrangement
The arrangement of the entries in a legend is affected by the number of entries in
the legend, the length of the entry labels, and the size of the graph. When the graph
is wide enough, all legend information can fit into one row as shown in the following
figure.

Note: When all the legend entries and the legend title fit in one row, the legend title
is drawn on the left as shown in the following graph. This is done to conserve the
vertical space that is used by the legend.

When the legend entries and the legend title cannot fit into one row, the legend title
and entries are wrapped into multiple rows in order to fit the allotted space. In the
following graph, the width of the graph is reduced to the point where it causes the
legend entries to wrap into an additional row. Because the legend needs this extra
row, the height of the plot wall must be reduced, leaving less room for the data
display. Also, because the legend entries and title do not fit in one row, the title is
now drawn above the legend entries.

Adding a Discrete Legend 359

Options to Control Legend Wrapping
You can explicitly control the organization of legend entries with the following
options on the legend statement:

ORDER = ROWMAJOR | COLUMMAJOR
determines whether legend entries are wrapped on a column or row basis.
Default is ROWMAJOR.

ACROSS = number
determines the number of columns. Used only with ORDER=ROWMAJOR.

DOWN = number
determines the number of rows. Use only with ORDER=COLUMNMAJOR.

DISPLAYCLIPPED = TRUE | FALSE
determines whether to show a legend when there are too many entries to fit in
the available space.

Organizing Legend Entries in a Fixed
Number of Columns
For legends with left or right horizontal alignment, a vertical orientation of legend
entries works best because it allows the most space for the plot area. In such cases,
you typically want to set a small fixed number of columns for the legend entries and
let the entries wrap to a new row whenever necessary. This entails setting
ORDER=ROWMAJOR and an ACROSS= value. In the following example,
ACROSS=1 means "place all entries in one column, and start as many new rows as
necessary."

proc template;
 define statgraph order;
 begingraph;
 entrytitle "ORDER=ROWMAJOR ACROSS=1";

360 Chapter 20 / Adding Legends to Your Graph

 layout overlay;
 scatterplot x=Height y=Weight / name="sp" group=age;
 discretelegend "sp" / title="Age"
 halign=right valign=center order=rowmajor across=1;
 endlayout;
 endgraph;
 end;
run;

proc sort data=sashelp.class out=class;
 by age;
run;

proc sgrender data=class template=order;
run;

Here is the output.

As you increase the number of columns, the plot area decreases. In the following
layout block, ACROSS=2 means "place all entries in two columns left to right, and
start as many new rows as necessary."

layout overlay;
 scatterplot x=Height y=Weight / name="sp"
 group=age;
 discretelegend "sp" / title="Age"
 halign=right valign=center
 order=rowmajor across=2;
endlayout;

Here is example output.

Adding a Discrete Legend 361

Organizing Legend Entries in a Fixed
Number of Rows
For legends with a top and bottom alignment, a horizontal orientation of legend
entries works best. In such cases, you typically want to set a small fixed number of
rows for the legend entries and let the entries wrap to a new column whenever
necessary. This entails setting ORDER=COLUMNMAJOR and a DOWN= value. In
the following layout block, DOWN=1 means "place all entries in one row, and start
as many new columns as necessary."

layout overlay;
 scatterplot x=Height y=Weight / name="sp"
 group=age;
 discretelegend "sp" / title="Age"
 order=columnmajor down=1;
endlayout;

Here is example output.

362 Chapter 20 / Adding Legends to Your Graph

As you increase the number of rows, the plot area decreases. In the following layout
block, DOWN=2 means "place all entries in two rows top to bottom, and start as
many new columns as necessary."

layout overlay;
 scatterplot x=Height y=Weight / name="sp"
 group=age;
 discretelegend "sp" / title="Age"
 order=columnmajor down=2;
endlayout;

Here is example output.

Controlling the Label and Item Size
To control the size of the labels in your legend, include the SIZE= option in the
VALUEATTRS= option list in the DISCRETELEGEND statement. By default, the
size of the items in the legend, such as markers, filled squares, and filled bubbles,
remain fixed regardless of the label font size. When you increase the label font size,
the labels can appear out of proportion with the items. You can include the
AUTOITEMSIZE=TRUE option in your DISCRETELEGEND statement to
automatically size markers, filled squares, and filled bubbles in proportion to the
label font size. The AUTOITEMSIZE= option does not affect line items. When
AUTOITEMSIZE=TRUE, if you change the label font size, any markers, filled
squares, and filled bubbles in the legend are automatically resized to maintain
proportion with the resized labels. The following layout block specifies a discrete
legend that has 12-point labels and markers that are sized proportionately to the
labels.

layout overlay;
 scatterplot x=Height y=Weight / name="sp2" group=age;
 discretelegend "sp2" / title="Age"
 valueattrs=(size=12pt) autoitemsize=true;
endlayout;

Adding a Discrete Legend 363

Adding Items to a Discrete Legend

Adding Items with the LEGENDITEM
Statement
You can use the LEGENDITEM statement to manually add items to your legend that
do not appear in your plot. This enables you to provide additional information about
your plot or to build a common legend that you can use with multiple plots. The
syntax of the LEGENDITEM statement is as follows:

LEGENDITEM TYPE=EntryType NAME="LegendName" </ options>

You must place the LEGENDITEM statement in the global definition area of the
template between the BEGINGRAPH statement and the first layout statement. Do
not embed the LEGENDITEM statement in any other GTL block. It must be a child
of the BEGINGRAPH statement. The TYPE=EntryType option specifies the type of
entry that you want to add to your legend. EntryType can be one of the following:

LINE
MARKER
MARKERLINE
TEXT

The NAME= option specifies a name by which this statement can be referenced in a
DISCRETELEGEND statement. Use options to set the desired appearance for the
entry, such as color, pattern, font, and so on. Note the following about the
LEGENDITEM statement:

n You can specify any supported set of attributes for a legend item regardless of its
type. However, sets of attributes that are not applicable to the legend item type
are ignored. For example, in the LEGENDITEM statement, if TYPE=FILL and the
MARKERATTRS=() option is specified, the MARKERATTRS=() option is
ignored.

n When TYPE=TEXT, if the TEXT= option is not specified in the LEGENDITEM
statement, a blank space is used by default.

For more information about the LEGENDITEM statement, see “LEGENDITEM” in
SAS Graph Template Language: Reference.

Here is an example of a LEGENDITEM statement that adds item 17 to the legend of
a height-to-weight chart that is grouped by age. The new item uses a red-filled star
as a marker.

proc template;
 define statgraph additem;
 dynamic legenditem;
 BeginGraph;
 entrytitle "Height vs. Weight By Age";
 legenditem type=marker name="newitem" / label="17"
 lineattrs=(color=red)
 markerattrs=(symbol=starfilled color=red);

364 Chapter 20 / Adding Legends to Your Graph

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0ltl3z1z97jldn14vccmjnrhg2n.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0ltl3z1z97jldn14vccmjnrhg2n.htm&locale=en

 layout overlay;
 scatterplot x=height y=weight / group=age
 name="heightweight";
 discretelegend "heightweight" "newitem";
 endlayout;
 EndGraph;
 end;
run;

proc sgrender data=sashelp.class template=additem;
run;

Notice that the DISCRETELEGEND statement specifies the name specified in the
NAME= option in each of the SCATTERPLOT and LEGENDITEM statements. This
combines the new legend item and the automatically generated plot legend into one
legend.

Here is the output.

The new item 17 and its red-filled star marker are appended to the existing items in
the legend even though 17 is not in the data. You can include multiple
LEGENDITEM statements to add multiple items to your legend.

Adding Text Items with the
LEGENDTEXTITEMS Statement
Starting with SAS 9.4M3, you can use the LEGENDTEXTITEMS statement to add to
legend text items that are stored in the plot data. As with the LEGENDITEM
statement, you can use the LEGENDTEXTITEMS statement to create a custom
legend for your graphs. However, with the LEGENDTEXTITEMS statement, the
items are data-driven as opposed to being hard coded in your graph template.

The syntax of the LEGENDTEXTITEMS statement is as follows:

LEGENDTEXTITEMS NAME="LegendName" TEXT=column </ options>

The NAME= option specifies a name by which this statement is referenced in a
DISCRETELEGEND statement. The TEXT= option specifies the column in the plot

Adding a Discrete Legend 365

data that contains the text items. You can use the LABEL= option to specify a
column that contains a label for each item. Other options are available that enable
you to control the appearance of the text and labels.

The following restrictions apply to the LEGENDTEXTITEMS statement:

n You must place the LEGENDTEXTITEMS statement in the global definition area
of the template between the BEGINGRAPH statement and the first layout
statement. Do not embed the LEGENDTEXTITEMS statement in any other GTL
block. It must be a child of the BEGINGRAPH statement.

n One item is added for each observation.

n The column should not contain any missing values.

n Grouping is not supported.

For more information about the LEGENDTEXTITEMS statement, including an
example, see “LEGENDTEXTITEMS” in SAS Graph Template Language:
Reference.

Removing Items from a Discrete Legend

Removing Items with the EXCLUDE=
Option
To remove one or more items from your legend, use the EXCLUDE= option on your
DISCRETELEGEND statement. The EXCLUDE= specifies the label of each item
that is to be removed as follows:

EXCLUDE=("item1Label"< "item2Label" ...>)

Each item label is enclosed in quotation marks and must match the formatted string
of the data value. For two or more items, each label is separated by a space. String
matching is case sensitive. Here is an example that removes age groups 13 and 15
from the legend.

proc template;
 define statgraph order;
 begingraph;
 layout overlay;
 scatterplot X=Height Y=Weight / name="sp" group=age
 datalabel=age;
 discretelegend "sp" / title="Age"
 sortorder=ascendingformatted
 exclude=("13" "15");
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=order;
run;

Here is the output.

366 Chapter 20 / Adding Legends to Your Graph

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0ool5r84i06i8n1gwfm3o5wr055.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0ool5r84i06i8n1gwfm3o5wr055.htm&locale=en

Groups 13 and 15 are removed from the legend even though they exist in the data.

Filtering Items from Multiple Plots with the
TYPE= Option
When multiple plot statements contribute to the legend, you can use the TYPE=
option in your DISCRETELEGEND statement to include only items of a specific
type. You can specify one of the following item types:

ALL LINE MARKER
FILL LINECOLOR MARKERCOLOR
FILLCOLOR LINEPATTERN MARKERSYMBOL

Note: If no entries match the type specified by the TYPE= option, a legend is not
drawn in the plot.

Here is an example that includes only marker entries in a legend for a series plot
that displays both the lines and markers.

proc template;
define statgraph plots;
begingraph;
 entrytitle "Closing Price and Volume for 2002";
 Layout overlay;
 seriesplot x=date y=close / group=stock name="plot1" display=all;
 discretelegend "plot1" / title="Stock" type=marker;
 endLayout;
endgraph;
end;
run;

proc sgrender data=sashelp.stocks template=plots;
 where date between '01JAN2002'd AND '31DEC2002'd;
run;

Adding a Discrete Legend 367

Merging Legend Items from Two Plots into One
Legend

You can use the MERGEDLEGEND statement to merge the legend items from two
grouped plots into one legend. The basic syntax is as follows:

MERGEDLEGEND "graph1" "graph2" / options;

The options used with the MERGEDLEGEND statement are similar to those that are
used with the DISCRETELEGEND statement. The following restrictions apply to the
MERGEDLEGEND statement:

n You must provide exactly two plot names.

n Each plot name must be enclosed in quotation marks.

n Only grouped plots are supported.

n Only plots with line and marker overlays are supported.

During the merge process, the group values from both plots are compared. The
legend symbols for duplicate group values are combined into one legend item,
which is then combined with the unique items into one legend. If the items cannot
be merged, the following warning message appears in the SAS log:

WARNING: MERGEDLEGEND statement does not reference two plots whose legend
items can be properly merged. The legend will not be displayed.

If you receive this message, verify that both of the contributing plots are grouped
plots that use line and marker overlays. Here is an example that overlays a series
plot and a scatter plot, and combines the plot symbols into one merged legend and
one discrete legend that are displayed side-by-side for comparison.

proc template;
define statgraph plots;
begingraph;
 entrytitle "Closing Price and Volume for 2002";
 Layout overlay /
 xaxisopts=(griddisplay=on gridattrs=(color=lightgray pattern=dot))
 yaxisopts=(griddisplay=on gridattrs=(color=lightgray
pattern=dot));
 seriesplot x=date y=close / group=stock name="plot1";
 scatterplot x=date y=volume / group=stock name="plot2" yaxis=y2;
 discretelegend "plot1" "plot2" / title="Discrete Legend"
 across=2 down=3 valign=bottom order=columnmajor halign=left;
 mergedlegend "plot1" "plot2" / title="Merged Legend"
 sortorder=ascendingformatted across=1 valign=bottom
halign=right;
 endLayout;
endgraph;
end;
run;

proc sgrender data=sashelp.stocks template=plots;
 where date between '01JAN2002'd AND '31DEC2002'd;
run;

368 Chapter 20 / Adding Legends to Your Graph

Here is the output.

In this example, the SERIESPLOT statement creates a series plot of the closing
stock prices grouped by stock. The SCATTERPLOT statement creates a scatter plot
of the trading volume grouped by stock. Notice that both plots are grouped, and
exactly two plot names are used in the MERGEDLEGEND statement. As shown in
this example, the discrete legend consists of two entries for each stock, one from
each of the plots. Because SORTORDER= defaults to AUTO in this case, the items
from each plot appear in the order in which they occur in the data. In contrast, the
merged legend consists of only one entry for each stock, which is a combination
(overlay) of the entries from both plots. You can use the SORTORDER= option in
the MERGEDLEGEND statement to sort the items in the merged legend. In this
case, because the data is already sorted,
SORTORDER=ASCENDINGFORMATTED and SORTORDER=AUTO have the
same effect.

Creating a Global Legend
When multiple discrete legends are used, you can use a LAYOUT
GLOBALLEGEND block to combine all of the discrete and merged legends into one
global legend. The following restrictions apply to global legends:

n Only one LAYOUT GLOBALLEGEND block is allowed for each template.

n You must include the LAYOUT GLOBALLEGEND block in the BEGINGRAPH/
ENDGRAPH block.

n Any DISCRETELEGEND or MERGEDLEGEND statements that appear outside
of the LAYOUT GLOBALLEGEND block are ignored.

n The individual legends in the global legend can be arranged in a single row or a
single column only.

Adding a Discrete Legend 369

n CONTINUOUSLEGEND statements are not supported.

To combine your legends into one global legend, include all of the
DISCRETELEGEND and MERGEDLEGEND statements in your LAYOUT
GLOBALLEGEND block. The resulting global legend is placed at the bottom of the
graph just above the footnotes. You can use the TITLE= option to add a title for the
global legend. You can also use the TITLE= option on each of the
DISCRETELEGEND or MERGEDLEGEND statements to add titles for the individual
legends. Use the LEGENDTITLEPOSITION = option to specify the position of the
individual legend titles.

The TYPE= option specifies whether the legends are arranged in a column or a row.
When you specify TYPE=ROW, you can use the WEIGHTS= option to specify the
amount of space that is available for each of the legends. The WEIGHTS= option
can be one of the following values:

UNIFORM
specifies that all of the nested legends are given an equal amount of space
(default).

PREFERRED
specifies that each nested legend is to be given its preferred amount of space.

weight-list
specifies a space-separated list of PREFERRED or number keywords where
each keyword corresponds to a nested legend.

PREFERRED
indicates that the corresponding legend is to get its preferred size.

number
specifies a proportional weight for the corresponding legend, which
determines the percentage of the available space that the legend gets. The
total of the values does not need to be 1. When PREFERRED and number
keywords are used together, the PREFERRED legends are given their
preferred space. The remaining space is divided among the number legends
based on their weighted values.

For more information, see SAS Graph Template Language: Reference.

Here is an example that creates a global legend for two plots.

proc template;
define statgraph foo;
begingraph;
 layout lattice;
 entrytitle "Asian Makes - MSRP Under $15,000";
 Layout overlay / xaxisopts=(display=(ticks tickvalues line))
 yaxisopts=(griddisplay=on gridattrs=(color=lightgray
 pattern=dot));
 barchart category=type response=mpg_city / group=make
name="bar"
 stat=mean groupdisplay=cluster barwidth=0.75;
 endLayout;
 Layout overlay / xaxisopts=(display=(ticks tickvalues line))
 yaxisopts=(griddisplay=on gridattrs=(color=lightgray
pattern=dot));
 scatterplot x=make y=msrp / group=type name="scatter";
 endLayout;
 endlayout;
 layout globallegend / type=row weights=preferred

370 Chapter 20 / Adding Legends to Your Graph

 legendtitleposition=top;
 discretelegend "bar" / across=3
 title="Make" titleattrs=(weight=bold);
 discretelegend "scatter" / sortorder=ascendingformatted
 title="Type" titleattrs=(weight=bold);
 endlayout;
endgraph;
end;
run;

proc sgrender data=sashelp.cars template=foo;
 where origin="Asia" && msrp <= 15000;
run;

Here is the output.

When Discrete Legends Get Too Large
As a discrete legend gets more entries or as the legend entry text is lengthy, the
legend grows and the plot wall shrinks to accommodate the legend's size. At some
point, the plot wall becomes so small that it is useless. For that reason, whenever all
the legends in a graph occupy more than 20% of the total area of the graph, the
larger legends are dropped as needed from the graph to keep the legend area at
20% or less of the graph area. For example, the following code generates only one
legend, but that legend would occupy more than 20% of the total area of the graph,
so the legend is dropped and the plot is rendered as if no legend were specified.

proc template;
 define statgraph legendsize;
 begingraph / designwidth=495px designheight=220px;

Adding a Discrete Legend 371

 entrytitle "Legend Drops out with GROUP=NAME";
 layout overlay;
 scatterplot x=Height y=Weight / name="sp" group=name;
 discretelegend "sp" / title="Name" across=2 halign=right;
 endlayout;
 endgraph;
 end;
run;

proc sort data=sashelp.class out=class; by name; run;

proc sgrender data=class template=legendsize;
run;

Here is the output.

When the legend is dropped from the graph, you see the following log note:

NOTE: Some graph legends have been dropped due to size constraints. Try adjusting
 the MAXLEGENDAREA=, WIDTH= and HEIGHT= options in the ODS GRAPHICS
 statement.

In such cases, you can use the WIDTH= and HEIGHT= options in the ODS
GRAPHICS statement to increase the graph area so that at some point the legend
is displayed.

Another alternative is to use the MAXLEGENDAREA= option to change the
threshold area for when legends drop out. The following specification allows all
legends to occupy up to 40% of the graph area:

ods graphics / maxlegendarea=40;
proc sgrender data=class template=legendsize;
run;

However, changing the total area that is allotted to legends might not resolve the
problem if the specified legend organization does not fit in the existing size. In these
cases, the legend might not be displayed and you would see the following log
message:

WARNING: DISCRETELEGEND statement with DISPLAYCLIPPED=FALSE is getting clipped.
 The legend will not be drawn.

372 Chapter 20 / Adding Legends to Your Graph

To investigate this problem, you can specify DISPLAYCLIPPED=TRUE in the
DISCRETELEGEND statement as shown in the following DISCRETELEGEND
statement.

discretelegend "sp" / title="Name" across=2 halign=right displayclipped=true;

This forces the legend to display so that you can visually inspect it. Here is example
output.

It is apparent that the height chosen for the output is not large enough to display the
title and all legend entries in two columns. The problem can be fixed in any of the
following ways:

n increasing the graph height (HEIGHT= in the ODS GRAPHICS statement or
DESIGNHEIGHT= in the BEGINGRAPH statement)

n relocating the legend and/or reorganizing it with the ACROSS= or DOWN=
options

n setting DISPLAYCLIPPED=TRUE if you are willing to see only a portion of the
legend

n reducing the font size for the legend entries (and possibly the title)

To change the font sizes of the legend entries, use the VALUEATTRS= option on the
legend statement. To change the font size of the legend title, use the TITLEATTRS=
option. Normally, the legend entries are displayed in 9pt font, and the legend title is
displayed in 10pt font. The following DISCRETELEGEND statement reduces the
size of legend text:

discretelegend "sp" / title="Name" across=2 halign=right autoitemsize=true
 valueattrs=(size=7pt) titleattrs=(size=8pt);

Here is example output.

Adding a Discrete Legend 373

The AUTOITEMSIZE=TRUE option sizes the symbols proportionally to the reduced
label font size.

Adding a Continuous Legend

Plots That Can Use Continuous Legends
A continuous legend maps the data range of a response variable to a range of
colors. Continuous legends can be used with the following plot statements when the
enabling plot option is also specified.

Plot Statement Enabling Plot Option Related Plot Options

BUBBLEPLOT COLORRESPONSE= COLORMODEL=

REVERSECOLORMODEL
=

CONTOURPLOTPARM CONTOURTYPE= COLORMODEL=

REVERSECOLORMODEL
=

NLEVELS=

NHINT=

HEATMAPPARM COLORRESPONSE= COLORMODEL=

SCATTERPLOT MARKERCOLORGRADIENT
=1

COLORMODEL=

REVERSECOLORMODEL
=

374 Chapter 20 / Adding Legends to Your Graph

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p09jv39aa18zb6n11q79a0j6ww3o.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n08rjwb09dl44cn1nqbhg4bt4k6f.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1tk3ztr6tkrkvn1p00zo7erklty.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p08qhdljvzthmnn1vkbule00ad6r.htm&locale=en

Plot Statement Enabling Plot Option Related Plot Options

SURFACEPLOTPARM SURFACECOLORGRADENT
=1

COLORMODEL=

REVERSECOLORMODEL
=

WATERFALLCHART COLORRESPONSE= COLORMODEL=

Starting with the third
maintained release for SAS
9.4, COLORSTAT=

1 In SAS 9.4M2, the MARKERCOLORGRADIENT= and SURFACECOLORGRADENT= options are
deprecated and replaced with the COLORRESPONSE= option. The MARKERCOLORGRADIENT=
and SURFACECOLORGRADENT= options are still honored, but SAS recommends that you use the
COLORRESPONSE= option instead.

Starting with SAS 9.4M3, continuous legends can be used with the following
additional plot statements when the enabling plot option is also specified.

Plot Statement Enabling Plot Option Related Plot Options

BARCHART COLORRESPONSE= COLORMODEL=

COLORBYFREQ= COLORSTAT=

COLORMODEL=

BARCHARTPARM COLORRESPONSE= COLORMODEL=

HEATMAP COLORRESPONSE= COLORMODEL=

COLORSTAT=

REVERSECOLORMODEL
=

HIGHLOWPLOT COLORRESPONSE= COLORMODEL=

LINECHART COLORRESPONSE= COLORMODEL=

SERIESPLOT COLORRESPONSE= COLORMODEL=

VECTORPLOT COLORRESPONSE= COLORMODEL=

A contour plot provides the CONTOURTYPE= option, which you can use to manage
the contour display. The following graph illustrates the values that are available for
the CONTOURTYPE= option.

Adding a Continuous Legend 375

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n188jssh4n7v6hn1jx9mfdqu2cuw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0t8mzfhzxjzy3n1l2geygphpxnl.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1dlakkx61v72in1k3ebm8rz18qd.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n07s2oezv7f654n1xkbrqlrianbf.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p1xic0aty2w6y6n1fmnrpizfc4yw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1g9mj2kf03fqxn18n4wekss5ky3.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0lqeoja8lrizmn1f9ixkzk87f4r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0828kpaepwjmrn1u5xko4cjlqln.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0kbxb6xovwq2bn1rl0hqpi2qcf9.htm&locale=en

All of the variations that support color, except for LINE and LABELEDLINE, can
have a legend that shows the value of the required Z= column. The following
example generates a contour plot with CONTOURTYPE=FILL.

proc template;
 define statgraph contour;
 begingraph;
 entrytitle "CONTOURTYPE=FILL";
 layout overlay / xaxisopts=(offsetmin=0 offsetmax=0)
 yaxisopts=(offsetmin=0 offsetmax=0);
 contourplotparm x=Height y=Weight z=Density / name="cont"
 contourtype=fill;
 continuouslegend "cont" / title="Density";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.gridded template=contour;
 where height>=53 and weight<=225;
run;

Here is the output.

Here is the output when CONTOURTYPE=GRADIENT.

376 Chapter 20 / Adding Legends to Your Graph

For a FILL contour, the Z variable is split into equal-sized value ranges, and each
range is assigned a different color. The continuous legend shows the value range
boundaries and the associated colors as a long strip of color swatches with an axis
on it. In the following CONTOURPLOTPARM statement, options NHINT= and
NLEVELS= are used to change the number of levels (ranges) of the contour.

contourplotparm x=Height y=Weight
 z=Density / name="cont"
 contourtype=fill nhint=10;
continuouslegend "cont" /
 title="Density";

NHINT=10 requests that a number near ten be used that results in "good" intervals
for displaying in the legend. NLEVELS=10 forces ten levels to be used. Here is
example output.

You can think of a GRADIENT contour as a FILL contour with a very large number
of levels. A color ramp is displayed with an axis that shows reference points that are
within the data range. The number of reference points is determined by default.

When a CONTINUOUS legend is used with a plot that uses gradient color, the
VALUESCOUNT= and VALUESCOUNTHINT= options can be used to manage the
legend's gradient axis. These options are similar to the NLEVELS= and NHINT= plot
options. Here is an example.

proc template;
 define statgraph contour;
 begingraph;

Adding a Continuous Legend 377

 entrytitle "CONTOURTYPE=GRADIENT";
 layout overlay / xaxisopts=(offsetmin=0 offsetmax=0)
 yaxisopts=(offsetmin=0 offsetmax=0);
 contourplotparm x=Height y=Weight z=Density / name="cont"
 contourtype=gradient;
 continuouslegend "cont" / title="Density" valuecounthint=5;
 endlayout;
 endgraph;
 end;
run;

ods graphics / antialiasmax=3600;
proc sgrender data=sashelp.gridded template=contour;
 where height>=53 and weight<=225;
run;

Here is the output.

Here is the output when VALUECOUNTHINT=10.

378 Chapter 20 / Adding Legends to Your Graph

Positioning a Continuous Legend
The ACROSS= , DOWN=, and ORDER= options are not supported by the
CONTINUOUSLEGEND statement. However, you can position a continuous legend
with the LOCATION=, HALIGN=, VALIGN=, and ORIENT= options. By default,
LOCATION=OUTSIDE and ORIENT=VERTICAL when HALIGN=RIGHT or
HALIGN=LEFT.

Using Color Gradients to Represent Response
Values

Contour plots, surface plots, and heat map plots support the use of color gradients
to represent response values. For example, the SURFACEPLOTPARM statement
provides the SURFACECOLORGRADIENT=numeric-column setting to map surface
colors to a continuous gradient and enable the use of a continuous legend. All
surface types (FILL, FILLGRID, and WIREFRAME) can be used. The
COLORMODEL= and REVERSECOLORMODEL= options also apply. Here is an
example.

ods escapechar="^"; /* Define an escape character */

proc template;
 define statgraph surfaceplot;
 begingraph;
 entrytitle "SURFACECOLORGRADIENT=TEMPERATURE";
 layout overlay3d / cube=false;
 surfaceplotparm x=length y=width z=depth / name="surf"
 surfacetype=fill
 surfacecolorgradient=temperature
 reversecolormodel=true
 colormodel=twocoloraltramp;
 continuouslegend "surf" /
 title="Temperature (^{unicode '00B0'x}F)"
 halign=right;
 endlayout;
 endgraph;
 end;
run;

data lake;
 set sashelp.lake;
 if depth = 0 then Temperature=46;
 else Temperature=46+depth;
run;

/* create smoothed interpolated spline data for surface */
proc g3grid data=lake out=spline;
 grid width*length = depth temperature / naxis1=75 naxis2=75 spline;
run;

Adding a Continuous Legend 379

proc sgrender data=spline template=surfaceplot;
run;

Notice the coding that is used to embed a degree symbol into the legend title. For
more information about using symbols in text, see “Managing the String on Text
Statements” on page 324.

Here is the output.

For more information about surface plots, see Chapter 13, “Creating Overlay 3-D
Graphs Using the OVERLAY3D Layout ,” on page 187.

When you use VALIGN=BOTTOM or VALIGN=TOP instead of the HALIGN= option,
the default orientation of the legend automatically becomes
ORIENT=HORIZONTAL. Here is the modified CONTINUOUSLEGEND statement:

continuouslegend "surf" /
 title="Temperature (^{unicode '00B0'x}F)"
 valign=bottom;

Here is the output.

380 Chapter 20 / Adding Legends to Your Graph

Scaling the Legend Values
The EXTRACTSCALE= option enables you to extract a scale from the legend
values in order to save space. By default, a named scale (millions, billions, and so
on) is used for values of 999 trillion or less. A scientific notation scale (10^n) is used
for values over 999 trillion. For large values, the scale factor is set to ensure that the
absolute value of the largest value is greater than 1. For small fractional values, the
scale factor is set to ensure that the absolute value of the smallest value is greater
than 1. The EXTRACTSCALETYPE= option enables you to specify a scientific
notation scale for values less than 999 trillion. The scale that is used is appended to
the legend title.

Note: You must specify a title for the legend in order to use this feature.

For example, consider the legend in the following figure.

Because of the fractional density values, the legend takes up a significant amount of
space in the graph. To reduce the footprint of the legend, you can specify
EXTRACTSCALE=TRUE to automatically scale the density values. You can also
use the EXTRACTSCALETYPE= option to select the scale type. The following
figure shows the result.

Adding a Continuous Legend 381

382 Chapter 20 / Adding Legends to Your Graph

21
Adding Insets to Your Graph

Uses for Insets in a Graph . 383

Creating a Simple Inset with an ENTRY Statement . 384

Creating an Inset as a Table of Text . 385

Positioning an Inset . 388

Creating an Inset with Values That Are Computed in the Template 391

Creating an Inset from Values That Are Passed to the Template 393
Overview of Importing Data into a Template . 393
Creating a Template That Uses Macro Variables . 394
Defining a Macro to Initialize the Variables and Generate the Graph 396
Executing the Macro . 398

Adding Insets to a SCATTERPLOTMATRIX Graph . 398

Adding Insets to Classification Panels . 401
About Cell Insets in Classification Panels . 401
Adding Insets By Using the Match-Merging Data Scheme . 402
Adding Insets By Using the One-To-One-Merging Data Scheme 405

Creating Axis-Aligned Insets . 409
Creating an Axis-Aligned Inset with a Block Plot . 409
Creating an Axis-Aligned Inset with an Axis Table . 417
Creating an Axis-Aligned Inset in a Classification Panel . 420
Creating an Axis-Aligned Inset with the GTL Annotation Facility 422

Uses for Insets in a Graph
Insets are commonly strings or tables of text that are displayed in the plot area to
communicate relevant statistics, parameters, or other information relating to a
graph. The information presented in an inset might come from

n text that appears in the template definition

n values that are computed with expressions within the template

383

n values that are passed externally to the inset by dynamic variables or macro
variables

n columns that are assigned to an INSET= option on statements that support the
option

Inset information is often specified in ENTRY statements. However, the
SCATTERPLOTMATRIX statement and the classification panel layouts
(DATALATTICE and DATAPANEL layouts) provide options (for example, INSET=)
that enable you to construct and locate insets in multi-cell layouts, without using
ENTRY statements.

This chapter shows several techniques for adding insets to a graph. It assumes that
you are familiar with the concepts and techniques presented in Chapter 19, “Adding
Titles, Footnotes, and Text Entries to Your Graph,” on page 317 and Chapter 14,
“Creating Gridded Graphs Using the GRIDDED Layout ,” on page 207.

Creating a Simple Inset with an ENTRY
Statement

You can use an ENTRY statement to create a simple inset within most layout
blocks.

If you create the insets within a 2-D overlay-type layout, you can use each ENTRY
statement's AUTOALIGN= option or HALIGN= and VALIGN= options to position the
text within the plot area. The HALIGN= and VALIGN= options position the text in an
absolute position (such as HALIGN=LEFT and VALIGN=TOP). The AUTOALIGN=
option is used for dynamic positioning that is based on placement of the graphical
components in the plot area.

For example, to add an inset to an overlay of a scatter plot and an ellipse, you would
like for the text to appear where it does not collide with markers or the ellipse, if at
all possible. The AUTOALIGN=AUTO setting places the text in an area with the
least congestion as shown in the following example.

proc template;
 define statgraph ginset;
 begingraph;
 entrytitle "Simple One Line Inset";
 layout overlay;
 ellipse x=height y=weight / alpha=.1 type=predicted
display=all;
 scatterplot x=height y=weight;
 entry "Prediction Ellipse (" {unicode alpha} "=.1)" /
 autoalign=auto;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=ginset;
run;

384 Chapter 21 / Adding Insets to Your Graph

Here is the output.

Note: The AUTO setting for the AUTOALIGN= option evaluates only the data points
of scatter plots to determine the ENTRY position. When other plot types are present,
their data representations are not evaluated and the ENTRY text might overlap a
graphics element in the plot area.

Creating an Inset as a Table of Text
Perhaps the most common use for an inset is to display a table of statistics within
the graph. This section shows how to construct that type of basic table. Later
examples show how to make the contents of the table more dynamic and how to
integrate the table into the graph.

The basic technique for constructing the table is to place several ENTRY statements
in a LAYOUT GRIDDED block. Each ENTRY statement becomes a cell of the grid.
ENTRY statement options and layout options are used to further organize the table.

Suppose you want to create the following table of text:

The simplest technique for creating the table is to construct a one-column, three-row
table. The following layout block uses three ENTRY statements: one for each row in

Creating an Inset as a Table of Text 385

the table. The statistic name is left-justified in each row, and the statistic value is
right-justified:

layout gridded / columns=1 border=true;
 entry halign=left "N" halign=right "5203";
 entry halign=left "Mean" halign=right "119.96";
 entry halign=left "Std Dev" halign=right "19.98";
endlayout;

Another technique is to create the table with two columns and three rows. This
approach places each statistic name and statistic value in its own cell. Although this
technique requires six ENTRY statements, it is a more flexible arrangement
because each column alignment can be set independently. The following layout
block left-justifies the text for each ENTRY statement:

layout gridded / columns=2 order=rowmajor border=true;
 /* row 1 */
 entry halign=left "N";
 entry halign=left "5203";
 /* row 2 */
 entry halign=left "Mean";
 entry halign=left "119.96";
 /* row 3 */
 entry halign=left "Std Dev";
 entry halign=left "19.98";
endlayout;

Here is the result.

ORDER=ROWMAJOR means that cells are populated horizontally, starting from
column 1, followed by column 2, and then advancing to the next row. You should
order the ENTRY statements as shown. To add additional rows in the table, just add
additional pairs of ENTRY statements.

Of course, the LAYOUT GRIDDED statement enables you to organize cells by
column, so you can achieve this same effect with ORDER=COLUMNMAJOR. The
following layout block populates the cells vertically down the columns by populating
the first cell in row 1, followed by the first cell in row 2, followed by the first cell in
row 3, and then advancing to the next column.

layout gridded / rows=3 order=columnmajor border=true;
 /* column 1 */
 entry halign=left "N";
 entry halign=left "Mean";
 entry halign=left "Std Dev";
 /* column 2 */
 entry halign=left "5203";
 entry halign=left "119.96";
 entry halign=left "19.98";
endlayout;

In both cases, an HALIGN=LEFT prefix option was added to each ENTRY
statement to left-justify its text (the default is HALIGN=CENTER). Note that the

386 Chapter 21 / Adding Insets to Your Graph

column widths in the table are determined by the longest text string in each column
on a per column basis.

The following layout block illustrates how to change the column justification and add
extra space between the columns with the COLUMNGUTTER= option.

layout gridded / rows=3 order=columnmajor
 columngutter=5px border=true;
 /* column 1 */
 entry halign=left "N" / border=true;
 entry halign=left "Mean" / border=true;
 entry halign=left "Std Dev" / border=true;
 /* column 2 */
 entry halign=right "5203" / border=true;
 entry halign=right "119.96" / border=true;
 entry halign=right "19.98" / border=true;
endlayout;

Borders are added to the ENTRY statements to show the text boundaries and
alignment. Although it is not used in this example, the LAYOUT GRIDDED
statement also provides a ROWGUTTER= option to add space between all rows.
Here is the result.

With the borders turned on in the layout, you should notice that there is spacing that
appears on the left and right of the ENTRY text. The space is called padding, and it
can be explicitly set with the PAD= option in the ENTRY statement. The default
padding (in pixels) for ENTRY statements is:

PAD=(TOP=0 BOTTOM=0 LEFT=3 RIGHT=3)

You can adjust that padding as desired.

To embellish the basic inset table with a spanning title, nest one GRIDDED layout
within another GRIDDED layout as shown in the following layout block.

layout gridded / columns=1;
 entry textattrs=(weight=bold) "Stat Table";
 layout gridded / rows=3 order=columnmajor border=true;
 /* column 1 */
 entry halign=left "N";
 entry halign=left "Mean";
 entry halign=left "Std Dev";
 /* column 2 */
 entry halign=left "5203";
 entry halign=left "119.96";
 entry halign=left "19.98";
 endlayout;
endlayout;

Notice that the outer GRIDDED layout has one column and two rows (the nested
GRIDDED layout is treated as one cell). Here is the result.

Creating an Inset as a Table of Text 387

Positioning an Inset
If a table of text is used as an inset within a 2-D overlay-type layout, you can
position the table within the parent layout with options on the LAYOUT GRIDDED
statement. You can use the AUTOALIGN= option to automatically position the inset
to avoid collision with scatter points, lines, bars, and other plot components.

Alternatively, you can use the HALIGN= and VALIGN= options to position the table
absolutely. The combined values provide nine possible fixed positions. The
disadvantage of using the HALIGN= and VALIGN= options is that they do not
attempt to avoid collision with other plot components.

The following example uses the AUTOALIGN= option to restrict the table position to
one of the upper corners of the plot wall.

proc template;
 define statgraph ginset3a;
 begingraph;
 entrytitle "Auto-positioning the Inset Within the Plot Wall";
 layout overlay;
 histogram mrw;
 layout gridded / columns=1 border=true
 autoalign=(topleft topright);
 entry halign=left "N" halign=right "5203";
 entry halign=left "Mean" halign=right "119.96";
 entry halign=left "Std Dev" halign=right "19.98";
 endlayout;
 endlayout;
 endgraph;
 end;
run;

ods graphics / reset width=400px;
proc sgrender data=sashelp.heart template=ginset3a;
run;
ods graphics / reset;

Here is the output.

388 Chapter 21 / Adding Insets to Your Graph

In this particular case there was not enough space to display the inset in the top left
position, so the next position was used because it has no collision. With a different
set of data, the inset might appear in the top left position. If both positions resulted
in a collision, the position with the least collision would be used. You can specify an
ordered list of up to nine positions for the AUTOALIGN list: TOPLEFT, TOP,
TOPRIGHT, LEFT, CENTER, RIGHT, BOTTOMLEFT, BOTTOM, and
BOTTOMRIGHT. For a scatter plot where "open" space is not predictable, you can
specify AUTOALIGN=AUTO, which selects a position that minimizes collision with
the scatter markers.

Note: The AUTO setting for the AUTOALIGN= option works best when the layout
contains only scatter plots. When other plot types are present, the ENTRY text
might overlap a graphics element in the plot area.

Outside Insets. An inset does not have to be placed inside the plot wall. This next
example positions an inset in the sidebar of a LATTICE layout.

proc template;
 define statgraph ginset3b;
 begingraph / pad=2px;
 entrytitle "Positioning the Inset Outside the Plot Wall";
 layout lattice;
 layout overlay;
 histogram mrw;
 endlayout;
 sidebar / align=right;
 layout overlay / pad=(left=2px);
 layout gridded / columns=1 border=true;
 entry halign=left "N" halign=right "5203";
 entry halign=left "Mean" halign=right "119.96";
 entry halign=left "Std Dev" halign=right "19.98";
 endlayout;
 endlayout;
 endsidebar;
 endlayout;
 endgraph;

Positioning an Inset 389

 end;
run;

ods graphics / reset width=400px;
proc sgrender data=sashelp.heart template=ginset3b;
run;
ods graphics / reset;

Here is the output.

By default, the background of a GRIDDED layout and the background of ENTRY
statements are transparent. So if the current style defines a background color and
the inset does not appear in the plot wall, the style's background color is seen
through the inset. You can make the background of the insert opaque and set its
background color to highlight the information, as shown in the following LAYOUT
GRIDDED statement.

layout gridded / columns=1 border=true
 opaque=true backgroundcolor=lightyellow border=true;

Here is example output.

390 Chapter 21 / Adding Insets to Your Graph

Creating an Inset with Values That Are
Computed in the Template

The examples presented so far have "hard coded" the statistic values in the
compiled template. Hardcoding the statistic values requires you to change and
recompile the template code whenever the column values change or you want to
use different columns for the analysis. A more flexible way to present a statistics
table is to compute its content as follows:

n Use GTL functions to calculate any required statistics.

n Use dynamic variables as placeholders for column names in the template.

n At run time, initialize the dynamic variables so that they resolve to the names of
columns in the data object that is used to provide data values for the graph.

GTL supplies several functions that you can use to calculate the statistics, including
functions that match the statistic keywords used by PROC SUMMARY. GTL
functions are always specified within an EVAL function. To declare dynamic
variables, you use the DYNAMIC statement.

The following example uses the DYNAMIC statement to declare a dynamic variable
named VAR, which is used in the functions N, MEAN, and STDDEV to calculate the
statistics that are displayed in the statistics table.

proc template;
 define statgraph ginset4a;
 dynamic VAR;
 begingraph;
 entrytitle "Two Column Inset with Computed Values";
 layout overlay;
 histogram VAR;

Creating an Inset with Values That Are Computed in the Template 391

 layout gridded / rows=3 order=columnmajor border=true
 autoalign=(topleft topright);
 /* column 1 */
 entry halign=left "N";
 entry halign=left "Mean";
 entry halign=left "Std Dev";
 /* column 2 */
 entry halign=left eval(strip(put(n(VAR),12.0)));
 entry halign=left eval(strip(put(mean(VAR),12.2)));
 entry halign=left eval(strip(put(stddev(VAR),12.2)));
 endlayout;
 endlayout;
 endgraph;
 end;
run;

ods graphics / reset width=400px;
proc sgrender data=sashelp.heart template=ginset4a;
 dynamic VAR="mrw";
run;

Note the following:

n Dynamic variable VAR is first referenced in the HISTOGRAM statement, where it
is used to represent the variable that provides numeric values for the histogram.

n Dynamic variable VAR is again referenced on each of the ENTRY statements
that specify the statistic values to use in the statistics table. Each of the ENTRY
statements uses an EVAL function to specify functions to calculate the statistic.

n On each of the ENTRY statements, the STRIP function strips leading and trailing
blanks from the returned values. The PUT function on the first ENTRY statement
returns the statistics value with format 12.0, and the next two PUT statements
return values with format 12.2. The N, MEAN, and STDDEV functions return the
number of observations, mean, and standard deviation of variable VAR.

n In the SGRENDER procedure, the DYNAMIC statement initializes dynamic
variable VAR so that it resolves at run time to column MRW from the
Sashelp.Heart data set. Because the dynamic variable resolves to a column
name, the value that is assigned to it is enclosed in quotation marks. (Values for
dynamic variables that resolve to column names or strings should be quoted.
Numeric values should not be quoted.)

Here is the output.

392 Chapter 21 / Adding Insets to Your Graph

See Chapter 31, “Using Conditional Logic and Expressions in Your Templates,” on
page 619 for more information about the functions that can be used in the EVAL
function. See Chapter 30, “Using Dynamic Variables and Macro Variables in Your
Templates,” on page 605 for more information about using dynamic variables and
macro variables in GTL templates.

Creating an Inset from Values That Are
Passed to the Template

Overview of Importing Data into a Template
When the statistic that you want to display in an inset cannot be computed within the
template, you can create an output data set from a procedure and then use dynamic
variables or macro variables to "import" the computed values at run time.

The following example explains how to create and call a macro that can pass a data
set name and variable name to a previously compiled GTL template. To follow this
example, you should understand the topics that are discussed in Chapter 30, “Using
Dynamic Variables and Macro Variables in Your Templates,” on page 605.

For this example, a macro named HISTOGRAM is created, which accepts two
arguments.

n The first argument, DSN, passes a data set name.

n The second argument, VAR, passes a variable name.

When invoked, the macro generates a histogram and model fit plot for the analysis
variable VAR. The graph also displays two insets that show the related statistics.
The following figure shows an example.

Creating an Inset from Values That Are Passed to the Template 393

Figure 21.1 Example Output from the %HISTOGRAM Macro

For more information about macros, see the SAS Macro Language: Reference.

Creating a Template That Uses Macro Variables
This section creates a GTL template that can generate the histogram and model fit
plot that is shown in Figure 21.1 on page 394. The template definition uses the
MVAR statement to define macro variables that provide run-time values and labels
for the graph insets. The MVAR statement also defines a macro variable named
VAR, which is used as the column argument for the histogram and overlaid normal
density plot.

For this example, the inset statistics are calculated in the macro body, and the value
for macro variable VAR is passed as a parameter on the macro call.

Here is the GTL code for a template that is named GINSET:

proc template;
define statgraph ginset;
 MVAR VAR NOBS MEAN STD TEST TESTLABEL STAT PTYPE PVALUE;
 begingraph;
 entrytitle "Histogram of " eval(colname(VAR));
 entrytitle "with Fitted Normal Distribution";
 layout overlay;
 histogram VAR;
 densityplot VAR / normal();

 /* inset for normality test */
 layout gridded / columns=1 opaque=true
 autoalign=(topright topleft);
 entry TEST / textattrs=(weight=bold);
 entry "Test for Normality " TESTLABEL /
 textattrs=(weight=bold);
 layout gridded / columns=2 border=true;

394 Chapter 21 / Adding Insets to Your Graph

 entry "Value"; entry PTYPE;
 entry STAT; entry PVALUE;
 endlayout;
 endlayout;

 /* inset for descriptive statistics */
 layout gridded / columns=2 border=true
 opaque=true autoalign=(right left);
 entry halign=left "Nobs"; entry halign=left NOBS;
 entry halign=left "Mean"; entry halign=left MEAN;
 entry halign=left "Std Dev"; entry halign=left STD;
 endlayout;
 endlayout;
 endgraph;
end;
run;

Note the following:

n The MVAR statement declares the macro variables that will be referenced in the
template.

n The ENTRYTITLE statement specifies macro variable VAR as the argument on
the COLNAME function, which returns the case-sensitive name of the column.
Thus, the variable name that you pass on the macro call will be displayed in the
graph title.

n The HISTOGRAM and DENSITYPLOT statements specify macro variable VAR
as their column arguments. Again, the variable name that you pass on the macro
call will determine that column name.

n The first LAYOUT GRIDDED block constructs a table to use as an inset. The
inset identifies the normality test that is used in the analysis, and it displays the
related probability statistic.

The first two ENTRY statements in the layout block specify a title for the inset.
Macro variable TEST, which will be initialized by the code in the macro body,
identifies the normality test that is applied to the data. As you will see later when
the macro is created, either of two normality tests will be used, depending on the
number of observations that are read from the data. Macro variable TESTLABEL
provides either of two test labels, depending on which test is used at run time.

The nested LAYOUT GRIDDED statement defines a two-column table for the
statistics table that is displayed in the first inset. Macro variable STAT in the first
column provides the normality value, and macro variables PTYPE and PVALUE
provide the probability statistics. These macro variables will be initialized by the
code in the macro body.

n The last LAYOUT GRIDDED statement constructs a two-column inset that
shows descriptive statistics for the analysis variable. Macro variables NOBS,
MEAN, and STD will be calculated by the code in the macro body and will
resolve to the number of observations in the data, the mean value, and the
standard deviation.

Creating an Inset from Values That Are Passed to the Template 395

Defining a Macro to Initialize the Variables and
Generate the Graph

In “Creating a Template That Uses Macro Variables” on page 394 template GINSET
was created, which declared the following macro variables:

Macro Variable Description

TEST Identifies the normality test that is applied to the data.

TESTLABEL Provides the label that is associated with the applied
normality test.

STAT Provides the normality statistic that is calculated by the
applied normality test.

PTYPE and PVALUE Provide the probability (type and value) for the applied
normality test.

NOBS, MEAN, and STD Provide the number of observations, mean, and standard
deviation for the analysis variable.

To initialize these macro variables, a macro must be created that calculates values
for them and invokes an SGRENDER procedure statement that specifies template
GINSET. The macro needs two parameters: one for passing a SAS data set name,
and a second for passing the name of a column in that data set.

The following macro code uses PROC UNIVARIATE to create two output data sets.
A DATA step then reads the output data sets, creates the required macro variables,
and assigns values to those macro variables in a local symbol table. When the
macro runs the SGRENDER procedure, the values of the macro variables are
imported into the GINSET template to produce a graph with insets, similar to the
graph shown in Figure 21.1 on page 394. As mentioned earlier, the normality test
that is performed on the analysis variable will be based on the number of
observations in that analysis variable.

Note: To make the following macro more robust, it could be designed to validate the
parameters.

%macro histogram(dsn,var);
 /* compute tests for normality */
 ods output TestsForNormality=norm;
 proc univariate data=&dsn normaltest;
 var &var;
 output out=stats n=n mean=mean std=std;
 run;

 %local nobs mean std test testlabel stat ptype pvalue;

396 Chapter 21 / Adding Insets to Your Graph

 data _null_;
 set stats(keep=n mean std);
 call symputx("nobs",n);
 call symput("mean",strip(put(mean,12.3)));
 call symput("std",strip(put(std,12.4)));
 if n > 2000 then /* use Shapiro-Wilk */
 set norm(where=(TestLab="D"));
 else /* use Kolmogorov-Smirnov */
 set norm(where=(TestLab="W"));
 call symput("testlabel","("||trim(testlab)||")");
 call symput("test",strip(test));
 call symput("ptype",strip(ptype));
 call symput("stat",strip(put(stat,best8.)));
 call symput("pvalue",psign||put(pvalue,pvalue6.4));
 run;

 ods graphics / reset width=400px;
 proc sgrender data=&dsn template=ginset;
 run;
%mend;

Note the following:

n The %MACRO statement declares a macro named HISTOGRAM that takes two
parameters: DSN (for the data set name) and VAR (for the column name).

n The ODS OUTPUT statement produces a SAS data set named Norm from the
TestsForNormality output object that will be generated by the UNIVARIATE
procedure (next statement). For more information about the ODS OUTPUT
statement, see the SAS Output Delivery System: User’s Guide.

n Deriving the input data set name from the DSN parameter and the analysis
variable name from the VAR parameter, the UNIVARIATE procedure calculates
the number of observations, mean, and standard deviation for the analysis
variable. It writes the values for these statistics to an output data set named
STATS, storing the values in variables named N, MEAN, and STD.

n The %LOCAL statement creates a set of local macro variables to add to the local
symbol table.

n The DATA step reads variables N, MEAN, and STD from the Stats data set.

n The first three CALL SYMPUT routines use the data input variables to assign
labels and values to the local macro variables N, MEAN, and STD. On each
CALL SYMPUT, the first argument identifies the macro variable to receive the
value, and the second argument identifies the data input variable that contains
the value to assign to the macro variable in the symbol.

n The IF/ELSE structure determines which normality test values to read from the
Norm data set that was created by the ODS OUTPUT statement. If there are
fewer than 2000 observations, the Shapiro-Wilk test values are used. Otherwise,
the Kolmogorov-Smirnov values are used.

n The remaining CALL SYMPUT routines assign values to the rest of the macro
variables, using the values from variables in the Norm data set.

Creating an Inset from Values That Are Passed to the Template 397

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Executing the Macro
To execute the HISTOGRAM macro, pass it a data set name and the name of a
numeric column in the data.

The following macro call passes the data set name Sashelp.Heart and the column
name MRW. Because column MRW has more than 2000 observations, the
Kolmogorov-Smirnov test is used in the analysis.

%histogram(sashelp.heart, mrw)

The output is shown in Figure 21.1 on page 394.

This next macro call passes the data set name Sashelp.Cars and the column name
Invoice. Because column Invoice has 2000 or fewer observations, the Shapiro-Wilk
test is used in the analysis.

%histogram(sashelp.cars,invoice)

Here is the output.

Adding Insets to a
SCATTERPLOTMATRIX Graph

The SCATTERPLOTMATRIX statement provides the following options for displaying
insets in the cells of the graph matrix. (See the documentation for the
SCATTERPLOTMATRIX statement in SAS Graph Template Language: Reference
for complete details about these options.)

398 Chapter 21 / Adding Insets to Your Graph

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Option Description

INSET= (info-
options)

Determines what information is displayed in an inset. Accepts
one, two, or all three of the following keywords:

NOBS
Number of observations

PEARSON
Pearson product-moment correlation

PEARSONPVAL
Probability value for the Pearson product-moment correlation

This option must be used to determine which inset information
is displayed in each cell. If this option is not used, the related
CORROPTS= and INSETOPTS= options are ignored.

CORROPTS=
(correlation-options)

Controls statistical options for computing correlations. These
options are similar to PROC CORR options. Accepts one or
more of the following keywords:

EXCLNPWGT=
specifies whether observations with non-positive weight values
are excluded from the analysis. Accepts TRUE (the default) or
FALSE.

NOMISS=
specifies whether observations with missing values are
excluded from the analysis that is displayed in the inset.
Accepts TRUE (the default) or FALSE. The NOMISS=TRUE
option does not exclude observations with missing values from
the plot.

WEIGHT=
specifies a weighting variable to use in the calculation of
Pearson weighted product-moment correlation. The
observations with missing weights are excluded from the
analysis. Accepts the name of a numeric column.

VARDEF=
specifies the variance divisor in the calculation of variances and
covariances. Accepts one of the keywords DF (Degrees of
Freedom, the default, N - 1), N (number of observations), WDF
(sum of weights minus 1), WEIGHT (sum of weights).

INSETOPTS=
(appearance-
options)

Controls the inset placement and other appearance features.

AUTOALIGN=
specifies whether the inset is automatically aligned within the
layout. Accepts keywords NONE (no auto-alignment, the
default), AUTO (available only with scatter plots, attempts to
center the inset in the area that is farthest from any surrounding
markers), or a location list in parentheses that contains one or
more keywords that identify the preferred alignment (TOPLEFT
TOP TOPRIGHT LEFT CENTER RIGHT BOTTOMLEFT
BOTTOM BOTTOMRIGHT).

BACKGROUNDCOLOR=
specifies the color of the inset background. Accepts a style
reference or a color specification.

Adding Insets to a SCATTERPLOTMATRIX Graph 399

Option Description

BORDER=
specifies whether a border is displayed around the inset.
Accepts TRUE or FALSE (the default).

HALIGN=
specifies the horizontal alignment of the inset. Accepts
keywords LEFT (the default), CENTER. or RIGHT.

OPAQUE=
specifies whether the inset background is opaque (TRUE) or
transparent (FALSE, the default).

TEXTATTRS=
specifies the text properties of the entire inset.

TITLE=
specifies a title for the inset.

TITLEATTRS=
specifies the text properties of the inset title.

VALIGN=
specifies the vertical alignment of the inset. Accepts keywords
TOP (the default), CENTER. or BOTTOM.

The following example uses all three of these options to display an inset in the cells
of a graph that is generated with the SCATTERPLOTMATRIX statement:

proc template;
 define statgraph spminset;
 begingraph;
 entrytitle "Scatter Plot Matrix with Insets Showing";
 entrytitle "Correlation Coefficients and P Values";
 layout gridded;
 scatterplotmatrix sepalwidth sepallength /
 rowvars=(petalwidth petallength)
 inset=(nobs pearson pearsonpval)
 insetopts=(autoalign=auto border=true opaque=true)
 corropts=(nomiss=true vardef=df)
 markerattrs=(size=5px);
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.iris template=spminset;
run;

Here is the output.

400 Chapter 21 / Adding Insets to Your Graph

Notice that the inset position might change from cell to cell in order to avoid
obscuring point markers.

Adding Insets to Classification Panels
This section requires familiarity with coding classification panels in the Graph
Template Language (GTL). If you are not familiar with classification panels, see
Chapter 16, “Creating Classification Panels Using the DATALATTICE and
DATAPANEL Layouts,” on page 255.

About Cell Insets in Classification Panels
The DATALATTICE and DATAPANEL layouts provide INSET= and INSETOPTS=
options for displaying insets in classification panels. The INSETOPTS= option
supports the same placement and appearance features as those documented for
the SCATTERPLOTMATRIX statement in “Adding Insets to a
SCATTERPLOTMATRIX Graph” on page 398. However, unlike the
SCATTERPLOTMATRIX statement, predefined information is not available for the
DATALATTICE and DATAPANEL layouts. Therefore, for the INSET= option, you
must create the columns for the information that you want to display in the inset and
merge that information with the input data before the graph is rendered. You can
merge the inset data and analysis data by using match-merging (BY statement) or
by using a one-to-one merging (no BY statement). The manner in which the data is
merged is referred to as the data scheme for classification panel inset data. Use the
DATASCHEME= option to specify the data scheme that was used to merge your
inset and analysis data.

Adding Insets to Classification Panels 401

After you have merged the inset and analysis data, use the following options in your
LAYOUT DATAPANEL or LAYOUT DATALATICE statement:

n Use the INSET= option to specify the name of one or more columns that contain
the information that you need for your insets.

n Use the DATASCHEME= option to specify the data scheme that you used to
merge your inset and analysis data. Specify LIST (one-to-one merging) or
MATCH (match-merging).

Note: The match-merging data scheme is the preferred data scheme for
merging the inset and analysis data.

Starting with SAS 9.4M1, you can also display an axis table or block plot in an inner
margin of the PROTOTYPE layout in order to inset a table of axis-aligned values
along a row or column axis. For information about creating axis-aligned insets, see
“Creating an Axis-Aligned Inset in a Classification Panel” on page 420. The following
sections describe how to add insets by using match-merged data and one-to-one-
merged data.

Adding Insets By Using the Match-Merging Data
Scheme

The match-merging data scheme merges the inset data and analysis data according
to variables listed in a BY statement. It is the recommended method of generating
data for your insets. By default, the LAYOUT DATAPANEL and LAYOUT
DATALATICE statements assume that one-to-one merging was used to merge the
data. To specify the match-merging data scheme, you must include the
DATASCHEME=MATCHMERGED option in your LAYOUT DATAPANEL or LAYOUT
DATALATICE statement. This example shows you how to use the match-merging
data scheme to merge your inset and analysis data, and how to add the insets to
your classification panel. This example uses the Sashelp.Cars data set as the data
source.

Here are the high-level steps that are performed in this example:

1 Generate the inset data from the Sashelp.Cars data set and write it to the
Mileage data set.

2 Sort the Sashelp.Cars data by Cylinders, Origin, and Type, and then write the
sorted data to the Cars data set.

3 Use match-merging to merge the Cars and Mileage data sets by Cylinders and
Origin, and then write the merged data to the AvgMileage data set.

4 Create the template for the classification panel.

5 Generate the graph by using the AvgMileage data.

Here is the SAS code that generates the inset data from the Sashelp.Cars data set,
and then writes it to the Mileage data set.

/* Generate the inset information and write it to data
 set MILEAGE.
*/

402 Chapter 21 / Adding Insets to Your Graph

proc summary data=sashelp.cars completetypes;
 where type in ("Sedan" "Truck" "SUV")
 and cylinders in (4 6 8);
 class cylinders origin;
 var mpg_city;
 output out=mileage MEAN=Mean N=Nobs / noinherit;
 TYPES CYLINDERS*ORIGIN;
run;

The SUMMARY procedure calculates the number of observations and the mean of
Mpg_City for each of the classification interactions listed in the TYPES statement.
Cylinder*Origin*Type is the crossing that each cell’s bar chart needs. The
COMPLETETYPES option creates summary observations even when the frequency
of the classification interactions is zero. In addition, the code creates subsets in the
input data to restrict the number of bars in each bar chart to at most three, and to
reduce the number cells in the classification panel. There are three values of Origin
(Asia, Europe, and USA) and three values of Cylinders (4, 6, and 8).

Here is the SAS code that sorts the data in Sashelp.Cars by Cylinders, Origin, and
Type, and then writes the sorted data to the Cars data set. This data order is
required for the match-merging that is completed in the next step.

/* Sort the analysis data by the variables that are
 used for the inset information: CYLINDERS, ORIGIN,
 and TYPE.
*/
proc sort data=sashelp.cars out=cars;
 by cylinders origin type;
run;

Here is the SAS code that performs the match-merging of Cars and Mileage data
sets by Cylinders and Origin, and then writes the merged data to the AvgMileage
data set.

/* Match-merge the analysis data with inset data by
 CYLINDERS and ORIGIN.
*/
data avgmileage;
 merge cars mileage;
 BY CYLINDERS ORIGIN;
 format mean mpg_city 4.1;
run;

The template code in this example defines a template named PANEL. This template
requires that the input data contain separate columns for the items listed in the
following table.

Required Columns Example

classification variables columnvar=origin rowvar=cylinders

inset information inset=(nobs mean)

bar chart data category=type response=mean

The INSET=(Nobs Mean) option in this template is used to reference input data
columns that are named Nobs and Mean. When the graph is rendered, the values
that are stored in these columns are displayed in the inset. In the inset display in this

Adding Insets to Classification Panels 403

example, one row is displayed for each column that is listed in the INSET= option,
and each row has two columns. The left column shows the column name (column
label, if it is defined in the data), and the right column contains the column value for
that particular cell of the panel. The number of values for these columns should
match the number of cells in the classification panel and the order of the values
should correspond with the sequence in which the cells are populated. The
DATASCHEME=MATCHED suboption in the INSETOPTS= option list specifies that
the match-merging data scheme was used to merge the inset and analytic data.

This template also adds a maximum row axis offset by using the OFFSETMAX=0.4
option to make room for the insets. In this case, OFFSETMAX=0.4 is sufficient, but
the setting will vary case-by-case. The first row of the classification panel with insets
appears as shown in the following figure.

Here is the SAS code that creates template PANEL.

/* Create the graph template for the classification panel. */
proc template;
 define statgraph panel;
 begingraph;
 entrytitle "Average City MPG for Vehicles";
 entrytitle "by Origin, Cylinders and VehicleType";
 layout datalattice columnvar=origin rowvar=cylinders /
 columndatarange=unionall rowdatarange=unionall
 headerlabeldisplay=value
 headerbackgroundcolor=GraphAltBlock:color
 inset=(nobs mean)
 insetopts=(border=true datascheme=matched
 opaque=true backgroundcolor=GraphAltBlock:color)
 rowaxisopts=(offsetmax=.4 offsetmin=.1
 display=(tickvalues))
 columnaxisopts=(display=(label tickvalues)
 linearopts=(tickvaluepriority=true
 tickvaluesequence=(start=5 end=30 increment=5))
 griddisplay=on offsetmin=0 offsetmax=.1);
 layout prototype;
 barchart x=type Y=MPG_CITY / orient=horizontal
 STAT=MEAN barwidth=.5 barlabel=true;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

Finally, here is the SAS code that renders the graph by using the data in the
AvgMileage data set.

/* Generate the graph using the AVGMILEAGE data. */

404 Chapter 21 / Adding Insets to Your Graph

ods graphics / reset;
proc sgrender data=avgmileage template=panel;
 where type in ("Sedan" "Truck" "SUV")
 and cylinders in (4 6 8);
run;

Here is the output.

Figure 21.2 Classification Panel with Cell Insets

Adding Insets By Using the One-To-One-Merging
Data Scheme

The one-to-one data scheme merges the inset data and the analysis data according
to the observations’ position in the data sets. No BY statement is used. By default,
the LAYOUT DATAPANEL and LAYOUT DATALATICE statements assume that one-
to-one merging was used to merge the inset data with the analysis data. In that
case, the inset for each cell is populated in data order. That is, the inset data in the
first observation is used for the cell 1 inset, the inset data for the second observation
is used for the cell 2 inset, and so on. This process requires that the inset data be

Adding Insets to Classification Panels 405

placed first in the data set and that it be ordered to correspond correctly with the
cells in the classification panel. Because of this requirement, the one-to-one
merging data scheme can be more complicated than the match-merging data
scheme.

Note: The match-merging data scheme is the preferred method of merging your
inset data and analysis data. See “Adding Insets By Using the Match-Merging Data
Scheme” on page 402.

This example shows you how to use the one-to-one merging data scheme to merge
your inset and analysis data, and how to add the insets to your classification panel.
The Sashelp.Cars data set is used as the data source.

Here are the high-level steps that are performed in this example:

1 Summarize the data in Sashelp.Cars for the cell insets (Cylinders*Origin) and
the cell bar charts (Cylinders*Origin*Type). Write the output to the Mileage data
set.

2 Extract the cell summary data (_TYPE_=6) from the Mileage data set, rename
the columns, and write the data to the Overall data set.

Note: The columns must be renamed in order to prevent overwriting any values
when the data is merged in the next step.

3 Use one-to-one merging to merge the Mileage and Overall data sets to the
AvgMileage data set.

4 Create the template for the classification panel.

5 Generate the graph by using the AvgMileage data.

Here is the SAS code that summarizes the Sashelp.Cars data for the cells and bar
charts.

/* Compute the BARCHART data and inset information */
proc summary data=sashelp.cars completetypes;
 where type in ("Sedan" "Truck" "SUV") and
 cylinders in (4 6 8);
 class cylinders origin type;
 var mpg_city;
 output out=mileage(drop=_freq_) mean=Mean n=Nobs / noinherit;
 types cylinders*origin cylinders*origin*type;
run;

The SUMMARY procedure calculates the number of observations and the mean of
Mpg_City for each of the classification interactions listed in the TYPES statement.
Cylinders*Origin is the crossing needed for the cell summaries, and
Cylinders*Origin*Type is the crossing needed for each cell's bar chart. The
COMPLETETYPES option creates summary observations even when the frequency
of the classification interactions is zero. In addition, the code creates subsets in the
input data to restrict the number of bars in each bar chart to at most three, and to
reduce the number cells in the classification panel. There are three values of Origin
(Asia, Europe, and USA) and three values of Cylinders (4, 6, and 8).

For the insets to display accurate data, you must ensure that the order of the
observations in the data corresponds to the column order for the CLASS statement
of the SUMMARY procedure. Because the panel cells are populated across one row

406 Chapter 21 / Adding Insets to Your Graph

before proceeding to the next row, the values of the panel's row variable (Cylinders)
determine the panel order. The values must be specified first in the SUMMARY
procedure's CLASS statement so that the values of Cylinders also determine the
order for the statistics calculations.

The following partial listing shows the order of the observations.

Output 21.1 Partial Listing of the Mileage Data Set

Obs Cylinders Origin Type _TYPE_ Mean Nobs

 1 4 Asia 6 25.8421 57
 2 4 Europe 6 23.4444 18
 3 4 USA 6 24.0000 34
 4 6 Asia 6 18.3000 60
 5 6 Europe 6 18.7632 38
 6 6 USA 6 18.4754 61
 7 8 Asia 6 15.2000 10
 8 8 Europe 6 16.1667 24
 9 8 USA 6 15.5143 35
 10 4 Asia SUV 7 21.4000 5
 11 4 Asia Sedan 7 26.5102 49
 12 4 Asia Truck 7 22.3333 3
 …

Notice that the first nine observations (where _TYPE_ equals 6) are the cell
summaries. The remaining 27 observations (where _TYPE_ equals 7) are for each
cell's bar chart.

To create separate columns for the inset, you need to store the _TYPE_= 6
observations in new columns. To do this, you must first extract the inset data into a
separate data set named Overall and rename the columns. You must rename the
columns in order to prevent overwriting any values when this data is merged with
the Mileage data. Here is the DATA step that writes the inset information to the
Overall data set.

/* Extract the inset information, rename the columns,
 and write it to data set Overall.
*/
data mileage (drop=_type_)
 overall(keep=origin cylinders mean nobs
 rename=(origin=cellOrigin cylinders=cellCyl mean=cellMean
 nobs=cellNobs));
 set mileage; by _type_;
 if _type_ eq 6 then output overall;
 else output mileage;
run;

Finally, you must merge the Mileage and Overall data sets into the Summary data
set by using one-to-one merging (no BY statement).

/* Merge MILEAGE and OVERALL and write to SUMMARY. */
data summary;
 merge mileage overall;
 label Mean="MPG (City)" CellNOBS="Nobs" CellMean="Mean";
 format mean cellMean 4.1;
run;

The following listing shows a sample of the merged data.

Adding Insets to Classification Panels 407

Output 21.2 Partial Listing of the Summary Data Set

Obs Cylinders Origin Type Mean Nobs Cyl Origin Mean Nobs

 1 4 Asia SUV 21.4 5 4 Asia 25.8 57
 2 4 Asia Sedan 26.5 49 4 Europe 23.4 18
 3 4 Asia Truck 22.3 3 4 USA 24.0 34
 4 4 Europe SUV . 0 6 Asia 18.3 60
 5 4 Europe Sedan 23.4 18 6 Europe 18.8 38
 6 4 Europe Truck . 0 6 USA 18.5 61
 7 4 USA SUV 20.5 2 8 Asia 15.2 10
 8 4 USA Sedan 24.7 29 8 Europe 16.2 24
 9 4 USA Truck 20.0 3 8 USA 15.5 35
 10 6 Asia SUV 17.2 15 . . .
 11 6 Asia Sedan 19.0 41 . . .
 12 6 Asia Truck 15.5 4 . . .
 …

The template code in this example defines a template named PANEL. This template
requires that the input data contain separate columns for the items listed in the
following table.

Required Columns Example

classification variables columnvar=origin rowvar=cylinders

inset information inset=(cellNobs cellMean)

bar chart data category=type response=mean

This template uses INSET=(CellNobs CellMean) to reference input data columns
that are named CellNobs and CellMean. When the graph is rendered, the values
that are stored in these columns are displayed in the inset. In the inset display in this
example, one row is displayed for each column that is listed on INSET=, and each
row has two columns. The left column shows the column name (column label, if it is
defined in the data), and the right column contains the column value for that
particular cell of the panel. The number of rows of data for these columns should
match the number of cells in the classification panel and the sequence in which the
cells are populated. This template also adds a maximum row axis offset using the
OFFSETMAX=0.4 option to make room for the insets.

Here is the code that creates the template in this example and that renders that
graph.

proc template;
 define statgraph panel;
 begingraph;
 entrytitle "Average City MPG for Vehicles";
 entrytitle "by Origin, Cylinders and VehicleType";
 layout datalattice columnvar=origin rowvar=cylinders /
 columndatarange=unionall rowdatarange=unionall
 headerlabeldisplay=value
 headerbackgroundcolor=GraphAltBlock:color
 inset=(cellNobs cellMean)
 insetopts=(border=true datascheme=list
 opaque=true backgroundcolor=GraphAltBlock:color)
 rowaxisopts=(offsetmax=.4 offsetmin=.1 display=(tickvalues))

408 Chapter 21 / Adding Insets to Your Graph

 columnaxisopts=(display=(label tickvalues)
 linearopts=(tickvaluepriority=true
 tickvaluesequence=(start=5 end=30 increment=5))
 griddisplay=on offsetmin=0 offsetmax=.1);
 layout prototype;
 barchart category=type response=mean / orient=horizontal
 barwidth=.5 barlabel=true;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=summary template=panel;
run;

The output is shown in Figure 21.2 on page 405.

Creating Axis-Aligned Insets
Sometimes you want an inset to provide information about values along an axis.
The information is aligned with values on the axis. You can use a block plot or an
axis table to display information that is aligned with axis values.

Creating an Axis-Aligned Inset with a Block Plot

Displaying Axis-Aligned Values with a
Block Plot
You can use a box plot to display axis-aligned values along an axis in a plot. Here is
an example that uses a box plot to display events along the X axis of a series plot.
The series plot shows the yearly adjusted closing price of Microsoft stock from 1986
to 2006. A box plot is used to show along the X axis when the major releases of
Microsoft Windows occurred during that period. The release dates and release
information are defined in the plot data. The block plot creates strips of outlined
rectangular blocks where the width of each block corresponds to the specified
release dates along the X axis. In each block, the release information that
corresponds to that block is displayed in the top left corner. Here is the output for
this example.

Creating Axis-Aligned Insets 409

Figure 21.3 Displaying Axis-Aligned Values Using a Block Plot

The input data for this example must contain data for both the series plot and the
block plot. The simplest way to construct the appropriate data is to match-merge the
Microsoft release data and the Microsoft stock data. The first step is to create data
set Msevents, which contains the Microsoft release dates. The next step is to sort
the Microsoft stock data by date, match-merge it with Msevents, and then write it to
data set Events. Here is the code that generates the data for this example.

Example Code 21.1 SAS Code That Generates the Events Data Set

/* Create a data set of the release dates. */
data MSevents;
 input Date date9. Release $7.;
datalines;
09dec1987 2.0
22may1990 3.0
01aug1993 NT 3.1
24aug1995 95
25jun1998 98
17feb2000 2000
25oct2001 XP
;
run;

/* Sort the Microsoft stock data by date. */
proc sort data=sashelp.stocks(keep=date stock adjclose)
 out=MSstock;
 where stock="Microsoft";
 by date;
run;

/* Match-merge the release data and the stock data. */
data events;
 merge MSstock MSevents;

410 Chapter 21 / Adding Insets to Your Graph

 by date;
run;

Output 21.3 Partial Listing of the Events Data Set

Obs Stock Date Close Release
 …
 15 Microsoft 01OCT87 $0.30
 16 Microsoft 02NOV87 $0.27
 17 Microsoft 01DEC87 $0.33
 18 09DEC87 . 2.0
 19 Microsoft 04JAN88 $0.34
 20 Microsoft 01FEB88 $0.36
 21 Microsoft 01MAR88 $0.34
 22 Microsoft 04APR88 $0.33
 23 Microsoft 02MAY88 $0.35
 24 Microsoft 01JUN88 $0.40
 …

As shown in the partial listing of the Events data set, the first release event occurs in
observation 18. In the observations for the release dates, the Stock and Close
column values are missing. In the Microsoft stock observations, the Release column
value is missing.

Here is the code that defines the template for this example and then renders the
graph.

/* Create the template for the graph. */
proc template;
 define statgraph blockplot1;
 begingraph;
 entrytitle "Microsoft Share Prices";
 entrytitle "and Significant OS Releases";
 layout overlay / yaxisopts=(offsetmax=0.075);
 blockplot x=date block=release /
 display=(outline values label)
 valuevalign=top valuehalign=left
 labelposition=top
 extendblockonmissing=true
 valueattrs=GraphDataText(weight=bold
 color=GraphData2:contrastcolor)
 labelattrs=GraphValueText(weight=bold
 color=GraphData2:contrastcolor)
 outlineattrs=(color=GraphGridLines:color);
 seriesplot x=date y=adjclose / lineattrs=GraphData1;
 endlayout;
 endgraph;
 end;
run;

/* Render the graph. */
proc sgrender data=events template=blockplot1;
 format date year4.;
run;

In the template code, the block plot is overlaid with a series plot to create an axis-
aligned inset. The OFFSETMAX= option is specified for the Y axis in order to
reserve space for the block plot values. Notice that the BLOCKPLOT statement
requires two input columns: one for the X= argument and another for the BLOCK=

Creating Axis-Aligned Insets 411

argument. The EXTENDBLOCKONMISSING=TRUE option extends the blocks
across the missing values of the Release column. The BLOCK= transition points
control the boundary of each block and the text that is displayed. In this case, a new
block begins at each nonmissing value of the Release column. The range of the X=
values between two block transition points determine the width of each block.

The BLOCKPLOT statement supports the following options for controlling the
content, position, and appearance of the blocks and text information:

DISPLAY= (<OUTLINE> <FILL> <VALUES> <LABEL>)
specifies the features to display

EXTENDBLOCKONMISSING=TRUE | FALSE
specifies whether the block continues with the previous nonmissing value or a
new block is started when a missing value is encountered in the Block column

VALUEVALIGN= TOP | CENTER | BOTTOM
specifies the vertical position of the text values within the blocks

VALUEHALIGN=LEFT | CENTER | RIGHT | START
specifies the horizontal position of the text values within the blocks

LABELPOSITION= LEFT | RIGHT | TOP | BOTTOM
specifies a position for the block label that applies to the block values

VALUEATTRS=style-element
specifies font properties for block the values

LABELATTRS=style-element
specifies font properties for the block label

For information about the BLOCKPLOT statement, see “BLOCKPLOT” in SAS
Graph Template Language: Reference.

Displaying Axis-Aligned Filled Segments
with a Block Plot
You can use a block plot to display axis-aligned filled segments along an axis in a
plot. It is useful in a series plot, for example, for highlighting periods of time along a
time axis. The following example demonstrates how to use filled segments as an
alternate method to that used in “Displaying Axis-Aligned Values with a Block Plot”
on page 409. To display the release information as segments along the X axis, the
outlines are removed and the blocks are filled with colors. The same data (Example
Code 21.1 on page 410) is used to generate the graph. Here is the output for this
example.

412 Chapter 21 / Adding Insets to Your Graph

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0ifwefyk3jw1fn1rjcdz5jfakiw.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0ifwefyk3jw1fn1rjcdz5jfakiw.htm&locale=en

Figure 21.4 Displaying Axis-Aligned Filled Segments Using a Block Plot

The example uses the following BLOCKPLOT options:

FILLTYPE= MULTICOLOR | ALTERNATE
specifies how the blocks are filled

DATATRANSPARENCY= number
specifies the degree of the transparency of the block fill and outline. The range
for number is from 0 (opaque) to 1 (entirely transparent).

Here is the code that defines the template for this example and then renders the
graph.

/* Create the template for the graph. */
proc template;
 define statgraph blockplot1a;
 begingraph;
 entrytitle "Microsoft Share Prices";
 entrytitle "and Significant OS Releases";
 layout overlay / yaxisopts=(offsetmax=0.075);
 blockplot x=date block=release / display=(fill values)
 valuevalign=top valuehalign=left
 labelposition=top
 extendblockonmissing=true
 valueattrs=GraphDataText(weight=bold)
 filltype=multicolor
 datatransparency=.5;
 seriesplot x=date y=adjClose / lineattrs=GraphData1;
 endlayout;
 endgraph;
 end;
run;

/* Render the graph. */
proc sgrender data=events template=blockplot1a;

Creating Axis-Aligned Insets 413

 format date year4.;
run;

In this template, the FILLATTRS=MULTICOLOR setting ensures that the colors will
be obtained from the GraphData1–GraphDataN style elements of the current style.
Transparency is added to fade the colors. The block label "Release" is suppressed,
and the horizontal alignment of the block values is left.

Creating an Axis-Aligned Table of Values
with a Block Plot
The BLOCKPLOT statement can also create a table of inset information where the
columns are centered on discrete values along the X axis and the rows represent
different statistics for each value of the X= variable. This technique for displaying
inset information is possible for plots with a discrete X axis, such as box plots and
bar charts. The BLOCKPLOT statement supports a CLASS=variable option that
creates a separate block plot for each unique value of the CLASS= variable. The
following example uses the BLOCKPLOT CLASS= option to create an axis-aligned
table of statistics at the top of a bar chart. Here is the output for this example.

Here is the output for this example.

Figure 21.5 Axis-Aligned Multi-row Table Created Using a Block Plot

To create this graph, some data set up is necessary. First, use PROC SUMMARY to
summarize the data in Sashelp.Cars and write it to data set Stats.

Example Code 21.2 SAS Code That Generates the Stats Data Set

/* Create summarized data with desired statistics */
proc summary data=sashelp.cars nway alpha=.05;
 class type;

414 Chapter 21 / Adding Insets to Your Graph

 var mpg_highway;
 output out=stats(drop=_FREQ_ _TYPE_)
 n=N mean=Mean uclm=UCLM lclm=LCLM / noinherit;
run;

Output 21.4 Listing of Stats Data Set

Obs Type N Mean UCLM LCLM

 1 Hybrid 3 56.0000 77.5133 34.4867
 2 SUV 60 20.5000 21.3620 19.6380
 3 Sedan 262 28.6298 29.1732 28.0863
 4 Sports 49 25.4898 26.3234 24.6562
 5 Truck 24 21.0000 22.6378 19.3622
 6 Wagon 30 27.9000 29.5478 26.2522

The Stats data set columns Type, Mean, UCLM, and LCLM will be used by a
BARCHARTPARM statement. However, the columns that are required for the
BLOCKPLOT statement are not the same as those for the BARCHARTPARM
statement. The information must first be transposed.

/* Transpose data for use with BLOCKPLOT */
proc transpose data=stats
 out=blockstats(rename=(type=type2 _name_=statname col1=stat));
 by type;
 attrib statname label=''; /* Remove the old label from statname */
 var n mean uclm lclm;
run;

The SAS log displays the following note when the procedure code is submitted:

Output 21.5 Partial Listing of the Blockstats Data Set

Obs type2 statname stat

 1 Hybrid N 3.000
 2 Hybrid Mean 56.000
 3 Hybrid UCLM 77.513
 4 Hybrid LCLM 34.487
 5 SUV N 60.000
 6 SUV Mean 20.500
 7 SUV UCLM 21.362
 8 SUV LCLM 19.638
 9 Sedan N 262.000
 10 Sedan Mean 28.630
 11 Sedan UCLM 29.173
 12 Sedan LCLM 28.086
 …

Finally, the data for the BARCHARTPARM and BLOCKPLOT statements must be
non-match merged into one input data set. Note that the Type and Type2 columns
must be distinct variables.

/* Combine summary data for BARCHARTPARM with tabular data for
BLOCKPLOT */
data all;
 merge stats blockstats;
run;

Creating Axis-Aligned Insets 415

Output 21.6 Partial Listing of the ALL Data Set

Obs Type N Mean UCLM LCLM type2 statname stat

 1 Hybrid 3 56.0000 77.5133 34.4867 Hybrid N 3.000
 2 SUV 60 20.5000 21.3620 19.6380 Hybrid Mean 56.000
 3 Sedan 262 28.6298 29.1732 28.0863 Hybrid UCLM 77.513
 4 Sports 49 25.4898 26.3234 24.6562 Hybrid LCLM 34.487
 5 Truck 24 21.0000 22.6378 19.3622 SUV N 60.000
 6 Wagon 30 27.9000 29.5478 26.2522 SUV Mean 20.500
 7 SUV UCLM 21.362
 8 SUV LCLM 19.638
 9 Sedan N 262.000
 10 Sedan Mean 28.630
 11 Sedan UCLM 29.173
 12 Sedan LCLM 28.086
 …

Here is the code that creates the template for this example and then renders the
graph.

/* Create the template for the graph. */
proc template;
 define statgraph blockplot2;
 begingraph;
 entrytitle "Highway Mileage for Vehicle Types";
 entryfootnote halign=left {unicode alpha} " = .05";
 layout overlay / xaxisopts=(label="Type");
 innermargin / align=top;
 blockplot x=type2 block=stat / class=statname
 includemissingclass=false
 display=(values label outline) valuehalign=center
 labelattrs=GraphDataText valueattrs=GraphDataText
 outlineattrs=(color=graphaxislines:color);
 endinnermargin;
 barchartparm x=type y=mean /
 errorlower=lclm errorupper=uclm;
 endlayout;
 endgraph;
 end;
run;

/* Render the graph. */
proc sgrender data=all template=blockplot2;
run;

The template for this graph uses a BLOCKPLOT statement in an INNERMARGIN
block to create the inset. The INNERMARGIN block reserves sufficient space along
the top of the graph (ALIGN=TOP) for the BLOCKPLOT statement output. The
BLOCKPLOT statement specifies X=TYPE2 and BLOCK=STAT. By default, if there
are adjacent repeated values for the BLOCK= column, a new block does not begin
until the BLOCK value changes. The CLASS=STATNAME setting creates a row
(block plot) for each value of the Type2 column. By default, the values of the
CLASS= variable appear as row labels external to the block plot.

In order to blend the block plot with the graph, the block plot label and value text
attributes are set to GraphDataText. The outline color is set to GraphAxisLines:Color
in order to match the axis line and graph wall outline color.

416 Chapter 21 / Adding Insets to Your Graph

Creating an Axis-Aligned Inset with an Axis Table

Displaying Axis-Aligned Values with an
Axis Table
You can use an axis table to display axis-aligned values along an axis. The following
example generates a graph similar to that shown in Figure 21.3 on page 410. In this
example, an axis table is used instead of a block plot. The same data (Example
Code 21.1 on page 410) is used to generate the plot.

Here is the output for this example.

Figure 21.6 An Axis-Aligned Inset Created Using an Axis Table

Here is the code that defines the template for this example and then renders the
graph.

/* Create the template for the graph. */
proc template;
 define statgraph axistable1;
 begingraph;
 entrytitle "Microsoft Share Prices";
 entrytitle "and Significant OS Releases";
 layout overlay;
 seriesplot x=date y=adjClose / lineattrs=GraphData1;
 referenceline x=eval(ifn(release ne " ",date,.)) /
 lineattrs=(color=lightgray);

Creating Axis-Aligned Insets 417

 innermargin / align=top opaque=true;
 axistable x=date value=release /
 display=(label)
 valueattrs=(color=GraphData2:contrastcolor weight=bold)
 labelattrs=(color=GraphData2:contrastcolor weight=bold);
 endinnermargin;
 endlayout;
 endgraph;
 end;
run;

/* Render the graph. */
proc sgrender data=events template=axistable1;
run;

The code defines a template named AXISTABLE1, which is used to create this
graph. In this template, an inner margin is placed at the top of the graph. The inner
margin block contains an AXISTABLE statement, which displays the release for
each event date. The inner margin automatically reserves space at the top of the
graph for the axis table. A REFERENCELINE statement draws a light-gray
reference line at each release date. The IFN function is used to draw a reference
line only at dates where the Release column value is a nonmissing value. Because
the OPAQUE=TRUE option is in the INNERMARGIN statement, the reference lines
do not pass through the axis table values. The SERIESPLOT statement draws the
plot. For information about the AXISTABLE statement, see “AXISTABLE” in SAS
Graph Template Language: Reference

Creating an Axis-Aligned Table of Values
with an Axis Table
You can use an axis table to display an axis-aligned table of values along an axis.
The following example generates a graph similar to that shown in Figure 21.5 on
page 414. The example uses an axis table instead of a block plot. The same data
(Example Code 21.2 on page 414) is used to generate the plot. Here is the output
for this example.

418 Chapter 21 / Adding Insets to Your Graph

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0v5nj3waz75w4n1s2y70echq6im.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0v5nj3waz75w4n1s2y70echq6im.htm&locale=en

Figure 21.7 Axis-Aligned Multi-row Table Created Using an Axis Table

For this example, you do not need to transpose the summarized data in the Stats
data set. You can use the STATS data set as generated. See Example Code 21.2
on page 414.

Here is the code that defines the template for this example and then renders the
graph.

/* Create the template for the graph. */
proc template;
 define statgraph axistable2;
 begingraph;
 entrytitle "Highway Mileage for Vehicle Types";
 layout overlay /
 xaxisopts=(discreteopts=(colorbands=even
 colorbandsattrs=(transparency=0.8)))
 yaxisopts=(offsetmax=0.25);
 barchartparm category=type response=mean /
 errorlower=lclm errorupper=uclm;
 axistable x=type value=n / position=0.95
 display=(label) labelattrs=GraphDataText;
 axistable x=type value=mean / position=0.90
 display=(label) labelattrs=GraphDataText;
 axistable x=type value=uclm / position=0.85
 display=(label) labelattrs=GraphDataText;
 axistable x=type value=lclm / position=0.80
 display=(label) labelattrs=GraphDataText;
 endlayout;
 endgraph;
 end;
run;

/* Render the graph. */
proc sgrender data=stats template=axistable2;

Creating Axis-Aligned Insets 419

run;

In this template, the AXISTABLE statements are not placed in an inner margin
block. The OFFSETMAX= option is used with the Y axis in order to reserve space at
the top of the graph for the axis table. One AXISTABLE statement displays a row of
statistical values in the table for each vehicle type. Four AXISTABLE statements are
required to build the table in this example. The POSITION= option is used in each
AXISTABLE statement to position each table row vertically. A simpler approach is to
place one AXISTABLE statement in an inner margin block and include the
CLASS=STATNAME option in the AXISTABLE statement. In that case, the
INNERMARGIN statement automatically reserves space for the table, and the
CLASS= option automatically generates one row for each statistic. However, the
POSITION= option enables greater control over the vertical spacing of the table
rows.

Note: The POSITION= option is ignored when the AXISTABLE statement is placed
in an INNERMARGIN block.

Creating an Axis-Aligned Inset in a Classification
Panel

Starting with SAS 9.4M1, you can include an AXISTABLE or BLOCKPLOT
statement in a LAYOUT PROTOTYPE INNERMARGIN block. Including one of these
statements enables you to inset axis-aligned information in each cell of a
classification panel. For example, consider Figure 21.2 on page 405. If you want to
show the number of observations for each category, you can add an axis table of
observation counts along the row axis in each cell, as shown in the following figure.

420 Chapter 21 / Adding Insets to Your Graph

The axis table is labeled N in order to identify the values as observations counts.

Here is the SAS code that generated this panel.

/* Generate the data for the panel */
proc summary data=sashelp.cars completetypes;
 where type in ("Sedan" "Truck" "SUV") and
 cylinders in (4 6 8);
 class cylinders origin type;
 var mpg_city;
 output out=mileage(drop=_freq_) mean=Mean n=N / noinherit;
 types cylinders*origin cylinders*origin*type;
run;

/* Define the template for the panel */
proc template;
define statgraph panel;
 begingraph;
 entrytitle "Average City MPG for Vehicles";
 entrytitle "by Origin, Cylinders and VehicleType";
 layout datalattice columnvar=origin rowvar=cylinders /
 columndatarange=unionall rowdatarange=unionall
 headerlabeldisplay=value
 headerbackgroundcolor=GraphAltBlock:color
 inset=(mean) insetopts=(autoalign=(top))
 insetopts=(border=true datascheme=matched
 opaque=true backgroundcolor=GraphAltBlock:color)

Creating Axis-Aligned Insets 421

 rowaxisopts=(offsetmax=0.35 offsetmin=0.1
 display=(tickvalues))
 columnaxisopts=(label="MPG (City)"
 display=(label tickvalues)
 griddisplay=on offsetmin=0 offsetmax=.15
 linearopts=(tickvaluepriority=true
 tickvaluesequence=(start=5 end=30 increment=5)));
 layout prototype;
 barchart x=type y=mean / name="bar" barwidth=.5
 barlabel=true orient=horizontal;
 innermargin / backgroundcolor=GraphAltBlock:color
 opaque=true align=left;
 axistable y=type value=N / display=(label)
 valueattrs=GraphDataDefault
 labelattrs=GraphDataDefault;
 endinnermargin;
 endlayout;
 endlayout;
 endgraph;
end;
run;

/* Generate the graph */
proc sgrender data=mileage template=panel;
 format Mean 4.1;
run;

The INNERMARGIN block in a PROTOTYPE layout can display an axis table in the
top, right, bottom, or left margin in each cell. It can display a block plot in the top or
bottom margin in each cell. The AXISTABLE statement creates a table of axis-
aligned values along a column or row axis. In this example, column N in the plot
data contains the observation count for each category. The AXISTABLE statement
displays the N-column values along the row axis and aligns each value with its
category midpoint. For a column axis, you can also use a BOXPLOT statement in
an INNERMARGIN block to display axis-aligned values along the column axis.

For more information about the INNTERMARGIN block, and the AXISTABLE and
BOXPLOT statements, see SAS Graph Template Language: Reference.

Creating an Axis-Aligned Inset with the GTL
Annotation Facility

You can use the GTL annotation facility to construct an axis-aligned inset. By using
the GTL annotation facility, you can position text and other graphics elements at
specific coordinates in the DATAVALUE drawing space along an axis. Although
more complex, the annotation facility provides a great deal of flexibility for creating
custom insets. For an example of using the GTL annotation facility to create axis-
aligned insets, see “Example 2: Displaying Subsets of Annotations in Axis-Aligned
Insets” on page 457. For information about the GTL annotation facility, see “About
the GTL Annotation Facility” in SAS Graph Template Language: Reference.

422 Chapter 21 / Adding Insets to Your Graph

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rgjcddtqwpyin1ro3kvrksd6js.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rgjcddtqwpyin1ro3kvrksd6js.htm&locale=en

PART 6

Adding Custom Graphical Elements

Chapter 22
Adding Code-Driven Graphics Elements to Your Graph 425

Chapter 23
Adding Data-Driven Annotations to Your Graph . 439

423

424

22
Adding Code-Driven Graphics
Elements to Your Graph

Overview: Adding Non-Data-Driven Graphics Elements to a Graph 425

Selecting the Drawing Space and Units . 426

How the Graphics Elements Are Anchored . 428

Adding Graphics Elements to Your Graph . 429
The Draw Statements . 429
Adding Text . 429
Adding Arrows and Lines . 430
Adding Geometric Shapes . 432
Adding Images . 437

Overview: Adding Non-Data-Driven
Graphics Elements to a Graph

The Graph Template Language (GTL) provides draw statements that enable you to
draw additional graphics elements on your graphs that are independent of the graph
data. The types of elements that you can draw include the following:

n text

n arrows and lines

n geometric shapes, such as ovals, rectangles, polylines, and polygons

n images

You can use the draw statements to add annotations that describe the non-data
aspects of your graph. You can also use them to create custom features on your
graph, such as a broken axis, that are difficult to create by other means. You can
draw the elements in one of the following drawing spaces on your graph: the data
area, the wall area, the layout area, or the graph area. For more information about

425

the drawing spaces, see “Selecting the Drawing Space and Units” on page 426. You
can specify the location of each element using Cartesian coordinates, and you can
specify the axis to which the coordinates are scaled. You can also specify other
attributes of the graphics element, such as line color and pattern, text font, and so
on.

In addition to the drawing space and attributes, you can also choose the layer on
which your graphics elements are drawn. Two layers are available that are relative
to the graph: front and back. The front layer appears in front of the graph. The back
layer appears behind the graph wall for graphs that have axes or behind the graph
for graphs that do not have axes. By default, the graphics elements are drawn on
the front layer. You can use the LAYER=BACK option on your draw statement to
draw the elements on the back layer.

For plots that have axes, if the graph wall area is filled (default), graphics elements
that are drawn on the back layer are obscured by the wall fill. To make the elements
visible in that case, include the WALLDISPLAY=NONE or
WALLDISPLAY=(OUTLINE) option in your layout statement. You can also use the
TRANSPARENCY= option in the plot statement to adjust the transparency of the
graph in order to allow the graphics elements underneath to show through.

For information about using the draw statements to add graphics elements to your
graph, see “Adding Graphics Elements to Your Graph” on page 429.

Selecting the Drawing Space and Units
When you draw graphics elements, you can specify the drawing space and the
drawing units in your draw statements. The drawing space is the area of the graph
in which the elements are drawn, which can be data, wall, layout, or graph. The
drawing areas are described in the following table.

Drawin
g Space Description Example

Data The area of the graph in which the
data is displayed. The data area is
indicated by the shaded area in the
figure on the right. The origin of the
drawing space X and Y
coordinates, (0,0), is in the lower
left corner as shown.

Note: The data area does not
apply to graphs that do not have
axes, such as pie charts, that must
be drawn in a REGION layout.

426 Chapter 22 / Adding Code-Driven Graphics Elements to Your Graph

Drawin
g Space Description Example

Wall The area of the graph that is bound
by the X and Y axes, including the
secondary axes, if it is used.

Note: The wall area does not
apply to graphs that do not have
axes, such as pie charts, that must
be drawn in a REGION layout.

Layout The entire area of the layout
container that is the immediate
parent container of the draw
statement. The figure on the right
shows the case where a LAYOUT
OVERLAY is the parent.

Graph The area in which the entire graph
is displayed.

Note: In a multi-cell layout such as
GRIDDED or LATTICE, the
GRAPHPERCENT and
GRAPHPIXEL units span the entire
graph, which includes all of the
cells in the layout.

The drawing space and units are specified in a single value that is in the following
format:

<DrawingSpace><Units>

DrawingSpace can be DATA, WALL, LAYOUT, or GRAPH. For the WALL, LAYOUT,
and GRAPH areas, Units can be PIXEL or PERCENT. For the DATA drawing space,
Units can be PIXEL, PERCENT, or VALUE. PIXEL indicates that the coordinates are
expressed in pixels in the drawing space. PERCENT indicates that the coordinates
are expressed as a percentage of the drawing space. For example, DATAPERCENT
indicates that the coordinates are expressed as a percentage of the DATA drawing
space.

For the DATA drawing space, VALUE indicates that the coordinates are expressed
as values along the axis. When you specify the DATA drawing space, you can use
the XAXIS=, YAXIS=, X1AXIS=, Y1AXIS=, X2AXIS=, and Y2AXIS= options in the
draw statement, as applicable, to specify the axis to which the coordinates are
scaled.

Selecting the Drawing Space and Units 427

Note: A draw statement is discarded if the XAXIS=, YAXIS=, X1AXIS=, Y1AXIS=,
X2AXIS=, and Y2AXIS= options specify an axis that does not exist in the plot. It is
also discarded if the DRAWSPACE=, XSPACE=, YSPACE=, X1SPACE=,
Y1SPACE=, X2SPACE=, and Y2SPACE= options specify a drawing space that is
not valid for the draw statement's layout container.

You can specify a common drawing space and units for all of the X and Y
coordinates. You can also specify a different drawing space and units for the
coordinates individually. To specify a common space and units, use the
DRAWSPACE= option on each draw statement or in the BEGINGRAPH statement.
When you use the DRAWSPACE= option on a draw statement, the space and units
that you specify are applied to the coordinates for that statement only. This includes
the X and Y coordinates or the X1, Y1, X2, and Y2 coordinates. When you use the
DRAWSPACE= option in the BEGINGRAPH statement, the space and units that
you specify are applied to all of the draw statements within the BEGINGRAPH/
ENDGRAPH block.

To specify the drawing space and units for the X and Y coordinates individually, use
the XSPACE=, YSPACE=, X1SPACE=, Y1SPACE=, X2SPACE=, and Y2SPACE=
options, as applicable, on each draw statement.

Note: The XSPACE=, YSPACE=, X1SPACE=, Y1SPACE=, X2SPACE, and
Y2SPACE= options override the DRAWSPACE= option.

How the Graphics Elements Are
Anchored

When you specify the X and Y coordinates for a graphics element, the element is
drawn from an anchor point that is placed in the drawing area at the X and Y
coordinates that you specify. For lines and arrows, the anchor point is the starting
point of the line or arrow, which is specified with the X1 and Y1 options on the draw
statement. For elements that have height and width, the anchor point can be one of
the points shown in the following figure.

By default, the anchor point is CENTER. You can use the ANCHOR= option on the
draw statements to change the anchor point of your graphics elements.

428 Chapter 22 / Adding Code-Driven Graphics Elements to Your Graph

Note: When you select the X and Y coordinates and the anchor point, make sure
that when the graphics element is drawn, it does not extend beyond the boundaries
of the drawing area. Any part of the element that is outside of the drawing area is
clipped.

Adding Graphics Elements to Your Graph

The Draw Statements
The following table lists the GTL draw statement or statement block that you can
use to draw each type of element.

To Draw this Type of Graphics Element Use this GTL Statement or Block

Text DRAWTEXT

An arrow DRAWARROW

A line DRAWLINE

An oval or circle DRAWOVAL

A square or rectangle DRAWRECTANGLE

A polyline DRAW statements within a
BEGINPOLYLINE block

A polygon DRAW statements within a
BEGINPOLYGON block

An image DRAWIMAGE

This guide provides an overview of how to use these statements. For detailed
information about these statements, see SAS Graph Template Language:
Reference.

Adding Text
Use a DRAWTEXT statement to add a text element to your graph. The basic syntax
is as follows:

Adding Graphics Elements to Your Graph 429

DRAWTEXT <TEXTATTRS=(text-options)> "text" / X=x Y=y <options>

In your DRAWTEXT statement, specify in “text” the text that you want to appear in
your text element. You must enclose the text in quotation marks. If you want to
change any attributes of the text such as the font family, font size, or font color,
include the necessary options in the TEXTATTRS= option in the DRAWTEXT
statement.

Note: The TEXTATTRS= option must be placed before “text” in the DRAWTEXT
statement.

Use the X= and Y= options in the DRAWTEXT statement to specify the coordinates
where you want to place the text. By default, the coordinate units are
GRAPHPERCENT, and the text element is anchored on its center point at the
specified coordinates. In options , you can include the DRAWSPACE= option or the
XSPACE= and YSPACE= options to specify different units, and the ANCHOR=
option to change the anchor point.

If you want text to wrap within a specified area, include the WIDTH= option in
options . The WIDTH= option specifies the maximum width of the text area in
PERCENT units by default. You can include the WIDTHUNIT= option in options to
specify PIXEL or DATA units instead. If you want to add a border around your text,
include the BORDER=TRUE and the BORDERATTRS= options in options .

Here is an example of a DRAWTEXT statement that adds a 120-pixel-wide block of
text with a gray border.

drawtext "A text string that contains more than one line of text" /
 x=100 y=70 drawspace=graphpixel
 width=120 widthunit=pixel
 anchor=left
 border=true borderattrs=(color=gray pattern=1);

The X= and Y= options specifies the coordinates of the anchor point as (100, 70) in
GRAPHPIXEL units. The ANCHOR= option specifies that the text is to be anchored
at the LEFT anchor point as shown in the following figure. The WIDTH= and
WIDTHUNIT= options specify the maximum width of the text block as 120 pixels.

Adding Arrows and Lines
Use a DRAWARROW or DRAWLINE statement to draw an arrow or line on your
graph. The basic syntax is as follows:

DRAWARROW X1=x1 Y1=y1 X2=x2 Y2=y2 / <options>

430 Chapter 22 / Adding Code-Driven Graphics Elements to Your Graph

The syntax for the DRAWLINE statement is similar.

The X1=, Y1=, X2=, and Y2= options on the DRAWARROW and DRAWLINE
statements specify the coordinates for each endpoint of the arrow or line. By default,
the coordinate units are GRAPHPERCENT. You can include the DRAWSPACE=
option, or the X1SPACE=, Y1SPACE=, X2SPACE=, and Y2SPACE= options in
options to specify different units. If you specify DATAVALUE as the units and you
want to scale your arrow or line to the secondary axis, you must also include the
X1AXIS=X2, Y1AXIS=Y2, X2AXIS=X2, and Y2AXIS=Y2 options.

For both arrows and lines, include the LINEATTRS= option in options to specify the
line pattern, thickness, and color. For arrows, open arrowheads that point in the
outward direction are the default. To change the arrowhead shape, include the
ARROWHEADSHAPE= option and specify CLOSED, FILLED, or BARBED. You can
also include the ARROWHEADSCALE= option to scale the arrowhead based on the
thickness of the arrow line. The scale factor is 1 by default. You can scale the
arrowhead from a minimum of 0.5 to a maximum of 2.

To change the arrowhead direction, include the ARROWHEADDIRECTION= option
in options and specify IN or BOTH. The IN direction positions the arrowhead on the
(X1, Y1) endpoint and points it inward toward the (X1, Y1) endpoint. The BOTH
direction includes both IN and OUT arrowheads forming a two-way arrow.

Here is an example of a DRAWARROW statement that adds a two-way dashed
arrow.

drawarrow x1=60 y1=70 x2=190 y2=70 / drawspace=graphpixel
 lineattrs=(color=black thickness=2px)
 arrowheadshape=barbed arrowheadscale=2 arrowheaddirection=both;

The arrow is drawn from endpoint (60, 70) to endpoint (190, 70) in GRAPHPIXEL
units as shown in the following figure.

The LINEATTRS= option specifies a black line that is two pixels wide. The
ARROWHEADSHAPE= option specifies a barbed arrowhead, and the
ARROWHEADSCALE= option specifies a scale factor of 2 (maximum size). The
ARROWHEADDIRECTION= option specifies a two-way arrow.

To draw a line, in your DRAWLINE statement, use the X1=, Y1=, X2=, and Y2=
options to specify the location of the endpoints. Include the LINEATTRS= option in
options to specify the line pattern, color, and thickness. Here is the previous
example modified to draw a dashed line instead of a dashed arrow at the same
coordinates.

drawline x1=60 y1=70 x2=190 y2=70 / drawspace=graphpixel
 lineattrs=(pattern=3 thickness=1px);

Adding Graphics Elements to Your Graph 431

Adding Geometric Shapes

Ovals
Use a DRAWOVAL statement to add ovals to your graph. The basic syntax is as
follows:

DRAWOVAL X=x Y=y WIDTH=width HEIGHT=height / <options>

The X= and Y= options in the DRAWOVAL statement specify the coordinates of the
oval anchor point. By default, the coordinate units are GRAPHPERCENT, and the
oval is anchored on its center point. You can include the DRAWSPACE= option, or
the XSPACE= and YSPACE= options in options to specify different units. If you
specify DATAVALUE as the coordinate units and you want to scale the oval to the
secondary axis, you must also include the XAXIS=X2 and YAXIS=Y2 options. You
can include the ANCHOR= option to change the anchor point.

The WIDTH= and HEIGHT= options in the DRAWOVAL statement specify the
dimensions of the oval in PERCENT units by default. You can include the
WIDTHUNIT= and HEIGHTUNIT= options in options to specify PIXEL or DATA units
instead.

You can change other attributes of the oval, such as the fill color, the outline color,
and the outline pattern. Include the FILLATTRS= option in options to change the fill
color, and include the OUTLINEATTRS= option to change the outline color and
pattern.

Here is an example of a DRAWOVAL statement that adds a 90 pixel wide by 110
pixel high oval at coordinates (115, 110) in GRAPHPIXEL units.

drawoval x=115 y=110 width=90 height=110 / drawspace=graphpixel
 widthunit=pixel heightunit=pixel
 anchor=center
 display=all
 fillattrs=(color=lightgray)
 outlineattrs=(color=black thickness=2px);

432 Chapter 22 / Adding Code-Driven Graphics Elements to Your Graph

The ANCHOR= option sets the oval anchor point to CENTER, which centers the
oval at coordinates (115, 110). The DISPLAY=ALL option displays the outline and
fill. The FILLATTRS= option specifies a light gray fill, and the OUTLINEATTRS=
option specifies a black outline that is two pixels wide.

Rectangles
Use a DRAWRECTANGLE statement to add rectangles to your graph. The basic
syntax is as follows:

DRAWRECTANGLE X=x Y=y WIDTH=width HEIGHT=height / <options>

The X= and Y= options in the DRAWRECTANGLE statement specify the
coordinates of the anchor point of the rectangle. By default, the coordinate units are
GRAPHPERCENT, and the rectangle is anchored on its center point. You can
include the DRAWSPACE= option, or the XSPACE= and YSPACE= options in
options to specify different units. If you specify DATAVALUE as the coordinate units
and you want to scale the rectangle to the secondary axis, you must also include the
XAXIS=X2 and YAXIS=Y2 options. You can include the ANCHOR= option to change
the anchor point.

The WIDTH= and HEIGHT= options in the DRAWRECTANGLE statement specify
the dimensions of the rectangle in PERCENT units by default. You can include the
WIDTHUNIT= and HEIGHTUNIT= options in options to specify PIXEL or DATA units
instead.

You can change other attributes of the rectangle, such as the fill color, the outline
color, and the outline pattern. Include the FILLATTRS= option in options to change
the fill color, and include the OUTLINEATTRS= option to change the outline color
and pattern.

Here is an example of a DRAWRECTANGLE statement that adds a 60% wide by
40% high rectangle. In this example, percent refers to the percentage of the drawing
area, at coordinates (80,80) in GRAPHPIXEL units.

drawrectangle x=80 y=80 width=60 height=40 / drawspace=graphpixel
 widthunit=percent heightunit=percent
 anchor=bottomleft
 display=all
 fillattrs=(color=lightgray)
 outlineattrs=(color=black thickness=2px);

Adding Graphics Elements to Your Graph 433

The ANCHOR= option specifies the rectangle anchor point as BOTTOMLEFT, which
positions the lower left corner at coordinates (80, 80). The DISPLAY=ALL option
displays the outline and fill. The FILLATTRS= option specifies a light gray fill, and
the OUTLINEATTRS= option specifies a black outline that is two pixels wide.

Polylines
Use a BEGINPOLYLINE block to add a polyline to your graph. The basic syntax is
as follows:

BEGINPOLYLINE X=origin-x Y=origin-y / <options>;
 DRAW X=x1 Y=y1;
 DRAW X=x2 Y=y2;
 ...more DRAW statements...
 DRAW X=Xn Y=Yn;
ENDPOLYLINE;

Use a BEGINPOLYLINE statement to open the block. In the BEGINPOLYLINE
statement, use the X= and Y= options to specify the coordinates of the beginning
point of the polyline. By default, the coordinate units are GRAPHPERCENT. You can
include the DRAWSPACE= option, or the XSPACE= and YSPACE= options in
options to specify different units. If you specify the units as DATAVALUE and you
want to scale the polygon to the secondary axis, you must also include the
XAXIS=X2 and YAXIS=Y2 options. To change the line color, pattern, or thickness,
include the LINEATTRS= option.

Following the BEGINPOLYLINE statement are the individual DRAW statements.
Each DRAW statement draws a straight line from the previous point to the endpoint
that is specified in the DRAW statement's X= and Y= options. For the first DRAW
statement, the previous point is the starting point that is specified in the
BEGINPOLYLINE statement. For subsequent DRAW statements, the previous point
is the endpoint that is specified in the previous DRAW statement. Add a DRAW
statement for each segment in your polyline. You can add as many segments as
you need. After the DRAW statements, add an ENDPOLYLINE statement to close
the block.

Here is an example that draws a five-segment polyline beginning at the coordinates
(30, 150). The coordinates are specified in GRAPHPIXEL units.

beginpolyline x=30 y=150 / xspace=graphpixel yspace=graphpixel
 lineattrs=(color=black thickness=2px);
 draw x=110 y=150; /* Draw S1 */
 draw x=145 y=250; /* Draw S2 */
 draw x=170 y=50; /* Draw S3 */
 draw x=205 y=150; /* Draw S4 */
 draw x=285 y=150; /* Draw S5 */
endpolyline;

The following figure shows how this polyline is drawn.

434 Chapter 22 / Adding Code-Driven Graphics Elements to Your Graph

The X= and Y= options in the BEGINPOLYLINE statement specify the starting point
of the polyline, (30, 150), in GRAPHPIXEL units. The LINEATTRS= option specifies
a black line that is two pixels wide. The first DRAW statement draws segment 1 (S1)
between the starting point (30, 150) and endpoint (110, 150). The second DRAW
statement draws S2 between the endpoint (110, 150) of the first DRAW statement to
endpoint (145, 250). This pattern continues for the remaining DRAW statements in
the block. The ENDPOLYLINE statement closes the block.

Polygons
Use a BEGINPOLYGON block to add a polygon to your graph. The basic syntax is
as follows:

BEGINPOLYGON X=origin-x Y=origin-y / <options>;
 DRAW X=x1 Y=y1;
 DRAW X=x2 Y=y2;
 ...more DRAW statements...
 DRAW X=origin-x Y=origin-y;
ENDPOLYGON;

Use a BEGINPOLYGON statement to open the block. In the BEGINPOLYGON
statement, use the X= and Y= options to specify the coordinates of the beginning
point of the polygon. By default, the coordinate units are GRAPHPERCENT. You
can include the DRAWSPACE= option, or the XSPACE= and YSPACE= options in
options to specify different units. If you specify the units as DATAVALUE and you
want to scale the polygon to the secondary axis, you must also include the
XAXIS=X2 and YAXIS=Y2 options. To change the line color, pattern, or thickness,
include the LINEATTRS= option.

Following the BEGINPOLYGON statement are the DRAW statements. Each DRAW
statement draws a straight line from the previous point to the endpoint that is
specified in the DRAW statement's X= and Y= options. For the first DRAW
statement, the previous point is the starting point that is specified in the
BEGINPOLYGON statement. For subsequent DRAW statements, the previous point
is the endpoint that is specified in the previous DRAW statement. Add a DRAW
statement for each side of your polygon. You can add as many sides as you need.

Adding Graphics Elements to Your Graph 435

The last DRAW statement typically ends at the starting point of the polygon in order
to close the polygon.

Note: If the last DRAW statement does not end at the starting point of the polygon,
a line is drawn automatically that connects the endpoint of the last DRAW statement
to the starting point in order to close the polygon.

After the DRAW statements, add an ENDPOLYGON statement to close the block.

Here is an example that draws a four-sided polygon that begins at the coordinates
(40, 100). All of the coordinates are specified in GRAPHPIXEL units.

beginpolygon x=40 y=100 / xspace=graphpixel yspace=graphpixel
 display=all fillattrs=(color=lightgray)
 outlineattrs=(thickness=2px color=black);
 draw x=30 y=220; /* Draw S1 */
 draw x=160 y=200; /* Draw S2 */
 draw x=180 y=80; /* Draw S3 */
 draw x=40 y=100; /* Draw S4 */
endpolygon;

The following figure shows how the polygon is drawn.

The BEGINPOLYGON statement X= and Y= options specify the starting point of the
polygon, (40, 100). The DISPLAY=ALL option displays the outline and fill. The
FILLATTRS= option specifies a light gray fill while the OUTLINEATTRS= option
specifies a black outline that is two pixels wide. The first DRAW statement draws
side 1 (S1) between the starting point (40, 100) and endpoint (30, 220). The second
DRAW statement draws S2 between endpoint (30, 220) of the first DRAW statement
to endpoint (160, 200). This pattern continues for the remaining DRAW statements.
The last DRAW statement connects endpoint (180, 80) to the starting point, (40,
100), which closes the polygon. The ENDPOLYGON statement closes the block.

TIP In this example, you can omit the DRAW statement for the last segment
(S4). In that case, the fourth segment is drawn automatically to close the
shape.

436 Chapter 22 / Adding Code-Driven Graphics Elements to Your Graph

Adding Images
Use a DRAWIMAGE statement to place a JPG or PNG image on your graph.

Note: The DRAWIMAGE statement supports the JPG and PNG image formats only.

The basic syntax is as follows:

DRAWIMAGE "image-file.ext" / X=x Y=x <options>

The image file is specified as image-file.ext, which is an absolute or relative path to
the image file on the file system. The path must be enclosed in quotation marks, and
it must include the image filename and file extension, such as image.jpg or
image.png.

Note: The image file must be accessible on the file system. URL access is not
supported.

The X= and Y= options in the DRAWIMAGE statement specify the coordinates of
the image anchor point. By default, the coordinate units are GRAPHPERCENT, and
the image is anchored on its center point. You can include the DRAWSPACE=
option, or the XSPACE= and YSPACE= options in options to specify different units.
If you specify DATAVALUE as the units and you want to scale the image to the
secondary axis, you must also include the XAXIS=X2 and YAXIS=Y2 options. You
can include the ANCHOR= option to change the anchor point.

You can use the HEIGHT= and WIDTH= options in the DRAWIMAGE statement to
create a bounding box in which the image is drawn. The default units for the height
and width are PERCENT. You can include the SIZEUNIT= option in options to
specify PIXEL or DATA units instead. You can also include the SCALE= option to
specify how the image is scaled within the bounding box. By default, the image is
scaled to fit the box. You can also fit the image by height or width, or you can tile the
image. If you want to draw a border around your image, you can include the
BORDER=Y and BORDERATTRS= options.

Here is an example that adds the SAS logo at coordinates (70, 60) in GRAPHPIXEL
units. The image is anchored at the bottom left corner, and a black border is drawn
around the image.

drawimage ".\images\saslogo.png" / x=70 y=60 drawspace=graphpixel
 anchor=bottomleft
 border=true borderattrs=(thickness=1px);

The following figure shows how the image is placed on the graph.

Adding Graphics Elements to Your Graph 437

438 Chapter 22 / Adding Code-Driven Graphics Elements to Your Graph

23
Adding Data-Driven Annotations
to Your Graph

Overview: Adding Data-Driven Annotations to a Graph . 439

Creating an SG Annotation Data Set . 440
Adding Observations for Text Annotations . 440
Adding Observations for Arrows and Lines . 442
Adding Observations for Polylines and Polygons . 444
Adding Observations for Ovals . 447
Adding Observations for Rectangles . 448
Adding Observations for Images . 449

Using the SG Annotation Macros to Create Your SG Annotation Data Set 451

Rendering a Graph with Annotations . 452

Subsetting Annotations . 452

Examples: . 453
Creating Custom Labels . 453
Displaying Subsets of Annotations in Axis-Aligned Insets . 457
Creating a Macro That Generates Annotation Data . 463

Overview: Adding Data-Driven
Annotations to a Graph

The Graph Template Language (GTL) provides an annotation facility that enables
you to add graphics elements to a graph by using ODS Statistical Graphics (SG)
annotation instructions that are stored in a SAS data set. It is similar to the
SAS/GRAPH Annotate facility. Unlike adding graphics elements using the GTL draw
statements, the annotation facility enables you to separate the annotation graphics
instructions from your template code. To modify your annotations, you can specify a
different annotation data set. You do not have to modify your template code.

439

Like the GTL draw statements, you can use the annotation facility to add the
following graphics elements to your graphs:

n text

n arrows and lines

n geometric shapes, such as ovals, rectangles, polylines, and polygons

n images

You can draw the annotations in one of the following drawing spaces on your graph:
the data area, the wall area, the layout area, or the graph area. For more
information about the drawing spaces, see “Selecting the Drawing Space and Units”
on page 426. You can specify the location of each annotation using Cartesian
coordinates, and you can specify the axis to which the coordinates are scaled. You
can also specify other attributes of the annotations, such as line color and pattern,
text font, and so on.

In addition to the drawing space and attributes, you can also choose the layer on
which your annotations are drawn. Two layers are available that are relative to the
graph: front and back. The front layer appears on top of the graph. The back layer
appears behind the graph, behind the background areas such as the layout or
legend background. By default, the annotations are drawn on the front layer. You
can specify the LAYER=BACK option for your annotations to draw them on the back
layer.

For plots that have axes, if the plot wall area is filled (default) or the layout
background is opaque (OPAQUE=TRUE), annotations that are drawn on the back
layer are obscured by the plot wall fill or by the layout background. To make the
annotations visible in either case, include the WALLDISPLAY=NONE or
WALLDISPLAY=(OUTLINE) option in your layout statement, or specify
OPAQUE=FALSE for the layout. You can also use the TRANSPARENCY= option in
the plot statement to adjust the transparency of the plot in order to allow the
graphics elements underneath to show through.

To use the GTL annotation facility, you must complete the following tasks:

n Create a SAS data set that contains your SG annotation instructions. You must
store the annotation instructions in a SAS data set. Annotation instructions
stored in a CAS in-memory table are not supported.

n Include at least one ANNOTATE statement in your graph template.

n Include the SGANNO= option in your SGRENDER statement to specify the SG
annotation data set by name.

For more information about these requirements, see “About the GTL Annotation
Facility” in SAS Graph Template Language: Reference.

Creating an SG Annotation Data Set

Adding Observations for Text Annotations

440 Chapter 23 / Adding Data-Driven Annotations to Your Graph

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rgjcddtqwpyin1ro3kvrksd6js.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0rgjcddtqwpyin1ro3kvrksd6js.htm&locale=en

To add a text annotation to your SG annotation data set:

1 Add a TEXT function observation that specifies the following:

n TEXT in the Function column

n the annotation text in the Label column

Note: You can use the ODS escape sequence to include superscripts,
subscripts, and Unicode characters in the Label column as you would in
quoted strings for a text command. For more information, see “Using Text
Commands” in SAS Graph Template Language: Reference.

n the coordinates of the text location if it is not the default location (center of the
graph area). Specify numeric coordinates in the X1 and Y1 columns or
character coordinates in the Xc1 and Yc1 columns.

n the text anchor point in the Anchor column if it is not the default (CENTER).

n the width of the text box in the Width column if it is not the default
(determined by the system).

n other columns that specify other text attributes such as font, size, color, and
so on. For more information, see “TEXT Function” in SAS ODS Graphics:
Procedures Guide.

2 If you want to continue the text using different text attributes, immediately follow
the TEXT function observation with one or more TEXTCONT function
observations that specify the following:

n TEXTCONT in the Function column

n the continuing text in the Label column

n other columns that specify the new text attributes. For more information, see
“TEXTCONT Function” in SAS ODS Graphics: Procedures Guide.

The TEXT function observations and subsequent TEXTCONT function
observations, if any, must be contiguous in the annotation data set.

Here is an example of a DATA step that creates the data for a text annotation that
contains normal text, blue text, and a simple equation. The equation contains a
Unicode character and a superscript character.

data textdata;
 length function $9 label $60;
 function="text";
 drawspace="graphpixel"; x1=100; y1=70;
 width=190; widthunit="pixel"; anchor="left";
 border="true"; linecolor="gray"; linepattern="solid";
 label="A text string that contains normal text and";
 output; /* Write normal-text observation. */
 function="textcont";
 textcolor="blue";
 label=" rich text with Unicode and superscript characters:";
 output; /* Write blue-text observation. */
 label=" A = (*ESC*){unicode pi}R(*ESC*){sup '2'}";
 output; /* Write Unicode and superscript observation. */
run;

Creating an SG Annotation Data Set 441

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1u3rxyi3n6ncfn18yobca3itqd6.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1u3rxyi3n6ncfn18yobca3itqd6.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=p1d3djir0t86nxn1l10ig8b2jbnl.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=p1d3djir0t86nxn1l10ig8b2jbnl.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=p096jyo0a0w5y8n1wqkpgpbto1qf.htm&locale=en

Note: Starting with SAS 9.4M1, you can also use the %SGTEXT macro to generate
the text annotation observations. See “Using the SG Annotation Macros to Create
Your SG Annotation Data Set” on page 451.

Here is a listing of the data.

Data Set TEXTDATA

Obs function label drawspace
 1 text A text string that contains normal text and graphpixel
 2 textcont rich text with Unicode and superscript characters: graphpixel
 3 textcont A = (*ESC*){unicode pi}R(*ESC*){sup '2'} graphpixel

Obs x1 y1 width widthunit anchor border linecolor linepattern textcolor
 1 100 70 190 pixel left true gray solid
 2 100 70 190 pixel left true gray solid blue
 3 100 70 190 pixel left true gray solid blue

In the first observation, the Function column specifies TEXT for a text annotation
using the default text attributes. The DrawSpace column specifies that all
coordinates are expressed in graph-area pixels. The X1 and Y1 columns specify the
location as 100 on the X axis and 70 on the Y axis. The Width, WidthUnit, and
Anchor columns specify a 190-pixel-wide text box that is anchored on the left side.
The Border, LineColor, and LinePattern columns specify a solid gray border around
the text box. The Label column specifies the normal-text portion of the text for this
annotation.

In the second observation, the Function column specifies the TEXTCONT function
in order to continue the text for this annotation. The TextColor column specifies blue
for the text color. The Label column specifies the text for this part of the annotation
text. In the third observation, the Function column remains TEXTCONT. The Label
column uses the ODS escape sequence, which is (*ESC*), with {UNICODE} and
{SUP} to specify the following equation:

A = πR2

Here is how this annotation is placed in a graph.

Adding Observations for Arrows and Lines
To add an arrow or line to your SG annotation data set, you must specify, at a
minimum, ARROW or LINE in the Function column, the coordinates of the arrow or
line starting point, and the coordinates of the arrow or line ending point. For an

442 Chapter 23 / Adding Data-Driven Annotations to Your Graph

arrow, by default, the arrowhead shape is OPEN and the arrow direction is OUT.
You can add the Shape and Direction columns to your observation to specify
different values. You can add other columns to specify other attributes of the arrow
such as arrowhead scale, line color, line pattern, line thickness, and so on. For
information about other columns that you can add, see “ARROW Function” in SAS
ODS Graphics: Procedures Guide.

Here is an example of a DATA step that creates the data for an arrow annotation.

data arrowdata;
 function="arrow";
 drawspace="graphpixel";
 x1=60; y1=70; x2=190; y2=70;
 shape="barbed"; scale=1.5; direction="both";
 linepattern="solid"; linecolor="black"; linethickness=2;
run;

Note: Starting with SAS 9.4M1, you can also use the %SGARROW and %SGLINE
macros to generate the line and arrow annotation observations. See “Using the SG
Annotation Macros to Create Your SG Annotation Data Set” on page 451.

Here is a listing of the data.

Data Set ARROWDATA

Obs function drawspace x1 y1 x2 y2 shape scale
 1 arrow graphpixel 60 70 190 70 barbed 1.5

Obs direction linepattern linecolor linethickness
 1 both solid black 2

In this observation, the Function column specifies ARROW for an arrow annotation.
The DrawSpace column specifies that all coordinates are expressed in graph-area
pixels. The X1 and Y1 columns specify the arrow starting location as 60 on the X
axis and 70 on the Y axis. The X2 and Y2 columns specify the arrow ending location
as 190 on the X axis and 70 on the Y axis. The Shape and Scale columns specify
the shape and size of the arrowheads. The Direction column specifies the direction
as BOTH. The LinePattern, LineColor, and LineThickness columns specify the arrow
line as a solid black line that is two pixels wide.

Here is how this annotation is placed in a graph.

An observation for a line is similar to that of an arrow. At a minimum, you must
specify LINE in the Function column, the line starting coordinates, and the line
ending coordinates. You can add other columns to specify different attributes of the
line, such as color, pattern, and thickness. For information about other columns that
you can add, see “LINE Function” in SAS ODS Graphics: Procedures Guide.

Creating an SG Annotation Data Set 443

http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=p0gu1z2zqvemgdn1ilwhx0k6ptq2.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=p0gu1z2zqvemgdn1ilwhx0k6ptq2.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=n0ofo6245brwetn0zvqmof0e2j7s.htm&locale=en

Here is the previous arrow observation modified to draw a dashed line instead of an
arrow.

data linedata;
 function="line";
 drawspace="graphpixel";
 x1=60; y1=70; x2=190; y2=70;
 linepattern="shortdash"; linecolor="black"; linethickness=2;
run;

Here is a listing of the data.

Data Set LINEDATA

Obs function drawspace x1 y1 x2 y2 linepattern linecolor linethickness
 1 line graphpixel 60 70 190 70 shortdash black 2

Adding Observations for Polylines and Polygons
Multiple observations are required to construct a polyline or polygon. For a polyline
annotation, the first observation must be the POLYLINE function, which specifies the
starting point of the polyline. One or more POLYCONT function observations must
immediately follow the POLYLINE function observation to specify the segments of
the polyline. The POLYLINE function observation and subsequent POLYCONT
function observations, if any, must be contiguous in the annotation data set. A
polygon is similar to a polyline except that the segments of the polygon must form a
closed shape.

To specify the starting point, you must specify, at a minimum, POLYLINE or
POLYGON in the Function column, and the coordinates of the polyline or polygon
starting point. You can add other columns to specify attributes of the lines, such as
color, pattern, and thickness. For information about other columns that you can add,
see “POLYLINE Function” in SAS ODS Graphics: Procedures Guide and
“POLYGON Function” in SAS ODS Graphics: Procedures Guide.

For each segment of your polyline or polygon, you must add one observation for
each segment. Each segment observation specifies POLYCONT in the Function
column and the ending coordinates for that segment. For the first segment, this
observation draws a line from the beginning point to the ending point that is
specified in the first segment observation. For the second and subsequent
segments, the observation draws a line from the ending point of the previous
segment to the ending point that is specified in the current segment observation.

Here is an example of a DATA step that creates the data for a five-segment polyline
annotation.

data polylinedata;
 function="polyline";
 drawspace="graphpixel";
 linecolor="black"; linethickness=2;
 x1=30; y1=150; /* Begin polyline */
 output;
 function="polycont";
 x1=110; y1=150; /* Draw Segment 1 */
 output;

444 Chapter 23 / Adding Data-Driven Annotations to Your Graph

http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=n0hrptgwdi9yukn15ey8y29wddah.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=p15nsl58lwz2z6n12o5hrz3d0gpg.htm&locale=en

 x1=145; y1=250; /* Draw Segment 2 */
 output;
 x1=170; y1=50; /* Draw Segment 3 */
 output;
 x1=205; y1=150; /* Draw Segment 4 */
 output;
 x1=285; y1=150; /* Draw Segment 5 */
 output;
run;

Note: Starting with SAS 9.4M1, you can also use the SG annotation macros to
generate the polyline and polygon annotation observations. See “Using the SG
Annotation Macros to Create Your SG Annotation Data Set” on page 451.

Here is a listing of the data.

Data Set POLYLINEDATA

Obs function drawspace linecolor linethickness x1 y1
 1 polyline graphpixel black 2 30 150
 2 polycont graphpixel black 2 110 150
 3 polycont graphpixel black 2 145 250
 4 polycont graphpixel black 2 170 50
 5 polycont graphpixel black 2 205 150
 6 polycont graphpixel black 2 285 150

Notice that the first observation is the POLYLINE function followed by one
POLYCONT function observation for each of the five segments. In all of the
observations, the DrawSpace column specifies that the coordinates are expressed
in graph-area pixels. In the first observation (POLYLINE), the X1 and Y1 columns
specify the coordinates of the polyline starting point. In the subsequent
observations, the X1 and Y1 columns specify the ending point for each segment.

Here is how this polyline is placed in a graph and how each segment is drawn.

The first segment (S1) is drawn from the polyline starting point to the ending point
that is specified in the first segment observation. The second segment (S2) is drawn

Creating an SG Annotation Data Set 445

from the ending point of S1 to the ending point that is specified in the S2
observation. This pattern repeats for the remaining segments.

A polygon is similar to a polyline except that the segments must form a closed
shape. If the segments that you specify result in an open shape, a segment is drawn
automatically from the ending point of the last segment back to the beginning point
of the polygon in order to close the shape.

Here is an example of a DATA step that creates the data for a four-segment polyline
annotation.

data polygondata;
 length function $8;
 function="polygon";
 drawspace="graphpixel";
 x1=40; y1=100; /* Begin polygon */
 display="all"; fillcolor="lightgray";
 linecolor="black"; linethickness=2;
 output;
 function="polycont";
 x1=30; y1=220; /* Draw Segment 1 */
 output;
 x1=160; y1=200; /* Draw Segment 2 */
 output;
 x1=180; y1=80; /* Draw Segment 3 */
 output;
 x1=40; y1=100; /* Draw Segment 4 */
 output;
run;

Here is a listing of the data.

Data Set POLYGONDATA

Obs function drawspace x1 y1 display fillcolor linecolor linethickness
 1 polygon graphpixel 40 100 all lightgray black 2
 2 polycont graphpixel 30 220 all lightgray black 2
 3 polycont graphpixel 160 200 all lightgray black 2
 4 polycont graphpixel 180 80 all lightgray black 2
 5 polycont graphpixel 40 100 all lightgray black 2

Because a polygon is a closed shape, you can add the FillColor column and specify
a fill color for the polygon. By default, only the polygon outline is displayed. To
display the fill, you must add the Display column and specify ALL or FILLED. For
more information about these columns and other columns that you can add, see
“POLYGON Function” in SAS ODS Graphics: Procedures Guide.

Here is how this polygon is placed in a graph and how each segment is drawn.

446 Chapter 23 / Adding Data-Driven Annotations to Your Graph

http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=p15nsl58lwz2z6n12o5hrz3d0gpg.htm&locale=en

TIP In this example, you can omit the observation for the fourth segment
(S4). In that case, the fourth segment is drawn automatically to close the
shape.

Adding Observations for Ovals
To add an oval to your SG annotation data set, you must specify, at a minimum,
OVAL in the Function column, the coordinates of the center point, the width, and the
height. By default, the height and width are expressed in PERCENT units. To use
different units such as PIXEL, you can add the HeightUnit and WidthUnit columns to
specify the new units. You can specify other attributes such as the line color, line
pattern, line thickness, and so on. For information about other columns that you can
add, see “OVAL Function” in SAS ODS Graphics: Procedures Guide.

Here is an example of a DATA step that creates the data for a 90-pixel by 110-pixel
oval annotation.

data ovaldata;
 function="oval";
 drawspace="graphpixel";
 x1=115; y1=110;
 width=90; widthunit="pixel"; height=110; heightunit="pixel";
 display="all"; fillcolor="lightgray";
 linecolor="blue"; linepattern="shortdash";
run;

Note: Starting with SAS 9.4M1, you can also use the %SGOVAL macro to generate
the oval annotation observations. See “Using the SG Annotation Macros to Create
Your SG Annotation Data Set” on page 451.

Here is a listing of the data.

Creating an SG Annotation Data Set 447

http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=n1vw4t2lsj01t5n1hvk0nsjjbhex.htm&locale=en

Data Set OVALDATA

Obs function drawspace x1 y1 width widthunit height heightunit
 1 oval graphpixel 115 110 90 pixel 110 pixel

Obs display fillcolor linecolor linepattern layer
 1 all lightgray blue shortdash back

In this observation, the Function column specifies OVAL for an oval annotation. The
DrawSpace column specifies that all coordinates are expressed in graph-area
pixels. The X1 and Y1 columns specify the oval center location as 115 on the X axis
and 110 on the Y axis. The Width and WidthUnit columns specify a width of 90
pixels, and the Height and HeightUnit columns specify a height of 110 pixels. The
FillColor column specifies a fill color for the oval. By default, only the oval outline is
displayed. The Display column specifies ALL, which displays both the outline and
the fill. The LineColor and LinePattern columns specify a blue short-dashed outline.

Here is how this annotation is placed in a graph.

Adding Observations for Rectangles
To add a rectangle to your SG annotation data set, you must specify, at a minimum,
RECTANGLE in the Function column, the coordinates of the anchor point, the width,
and the height. By default, the height and width are expressed in PERCENT units.
To use different units such as PIXEL, you can add the HeightUnit and WidthUnit
columns to specify the new units. You can specify other attributes such as the
anchor, line color, line pattern, line thickness, and so on. For information about other
columns that you can add, see “RECTANGLE Function” in SAS ODS Graphics:
Procedures Guide.

Here is an example of a DATA step that creates the data for 60%-by-40% rectangle
annotation.

data rectangledata;
 function="rectangle";
 drawspace="graphpixel";
 x1=80; y1=80; width=60; height=40; anchor="bottomleft";
 fillcolor="lightgray"; display="all";
 linecolor="black"; linethickness=2;

448 Chapter 23 / Adding Data-Driven Annotations to Your Graph

http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=p0smc16mv2obsvn1wivhwh2aywud.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=p0smc16mv2obsvn1wivhwh2aywud.htm&locale=en

run;

Note: Starting with SAS 9.4M1, you can also use the %SGRECTANGLE macro to
generate the rectangle annotation observations. See “Using the SG Annotation
Macros to Create Your SG Annotation Data Set” on page 451.

Here is a listing of the data.

Data Set RECTANGLEDATA

Obs function drawspace x1 y1 width height anchor
 1 rectangle graphpixel 80 80 60 40 bottomleft

Obs fillcolor display linecolor linethickness
 1 lightgray all black 2

In this observation, the Function column specifies RECTANGLE for a rectangle
annotation. The DrawSpace column specifies that all coordinates are expressed in
graph-area pixels. The X1 and Y1 columns specify the oval center location as 80 on
the X axis and 80 on the Y axis. The Width column specifies a width of 60% (default
unit), and the Height column specifies a height of 40%. The Anchor column specifies
the anchor at the bottom left corner of the rectangle. The FillColor column specifies
a fill color for the rectangle. By default, only the rectangle outline is displayed. The
Display column specifies ALL, which displays both the outline and the fill. The
LineColor and LineThickness columns specify a black outline that is two pixels wide.

Here is how this annotation is placed in a graph.

Adding Observations for Images
To add an image to your SG annotation data set, you must specify, at a minimum,
IMAGE in the Function column and the path to the file that contains the image in the
Image column. By default, the image is located in the center of the graph area and
is anchored at CENTER. You can add the X1 and Y1 columns to specify numeric
coordinates or the Xc1 and Yc1 columns to specify character coordinates for a new
location. You can add the Anchor column to specify a different anchor. You can add
other columns to specify other attributes such as a border, the image height, width,

Creating an SG Annotation Data Set 449

scale, and so on. For information about the columns that you can add, see “IMAGE
Function” in SAS ODS Graphics: Procedures Guide.

Here is an example of a DATA step that creates the data for a SAS logo.

data imagedata;
 function="image";
 drawspace="graphpixel";
 x1=70; y1=60;
 anchor="bottomleft";
 border="true";
 image=".\images\saslogo.png";
run;

Note: Starting with SAS 9.4M1, you can also use the %SGIMAGE macro to
generate the image annotation observations. See “Using the SG Annotation Macros
to Create Your SG Annotation Data Set” on page 451.

Here is a listing of the data.

Data Set IMAGEDATA

Obs function drawspace x1 y1 anchor border image
 1 image graphpixel 70 60 bottomleft true .\images\saslogo.png

In this observation, the Function column specifies IMAGE for an image annotation.
The DrawSpace column specifies that all coordinates are expressed in graph-area
pixels. The X1 and Y1 columns specify the location as 70 on the X axis and 60 on
the Y axis. The Anchor column specifies the anchor at the bottom left corner. The
Border column specifies a border around the image. The Image column specifies
the relative path to the image file.

Note: The image file must be accessible on the file system. URL access is not
supported.

Here is how this annotation is placed in a graph.

450 Chapter 23 / Adding Data-Driven Annotations to Your Graph

http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=p1cdsjhbc8dk20n1jp3xsozin5pe.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=p1cdsjhbc8dk20n1jp3xsozin5pe.htm&locale=en

Using the SG Annotation Macros to
Create Your SG Annotation Data Set

Table 23.1 SG Annotation Macros

Macro Name1 Description

%SGANNO Compiles the available macros and makes them
available for you to use.

Note: You must run the %SGANNO macro in your
SAS session before you can use any of the other
annotation macros that are listed in this table.

%SGANNO_HELP Displays help information for a specified annotation
macro.

%SGARROW Creates an observation that draws an arrow.

%SGIMAGE Creates an observation that displays an image.

%SGLINE Creates an observation that draws a line.

%SGOVAL Creates an observation that draws an oval.

%SGPOLYCONT Creates an observation that draws a polygon or
polyline segment.

%SGPOLYGON Creates an observation that specifies the starting
point of a polygon.

Note: Use the %SGPOLYCONT macro to draw the
segments.

%SGPOLYLINE Creates an observation that specifies the starting
point of a polyline.

Note: Use the %SGPOLYCONT macro to draw the
segments.

%SGRECTANGLE Creates an observation that draws a rectangle.

%SGTEXT Creates an observation that draws a single line of
text or the first line of text in a multiline annotation.

Note: For multiple lines of text, use the
%SGTEXTCONT macro for the subsequent lines.

Using the SG Annotation Macros to Create Your SG Annotation Data Set 451

Macro Name1 Description

%SGTEXTCONT Creates an observation that draws a continuing line
of text in a multiline annotation.

1 The macros listed in this table are valid starting with SAS 9.4M1. You can run these macros in a
DATA step to simplify the process of creating your SG annotation data sets.

For more information about these macros, see SAS ODS Graphics: Procedures
Guide.

Rendering a Graph with Annotations
In order to render a graph with annotations, you must include at least one
ANNOTATE statement in the graph template. The ANNOTATE statement causes the
annotations to be read from the SG annotation data set and drawn on the graph.
You can place an ANNOTATE statement anywhere in the template. However, the
drawing spaces that are specified for the annotations must be valid in the context of
the ANNOTATE statement location. The order in which the annotations are drawn
with respect to the graph elements depends on the LAYER option for the
annotations. By default, annotations are always drawn on the front layer. In that
case, the annotations are drawn after the graph elements are drawn and appear on
top of the plots and other graph elements. If you specify BACK for the annotation
layer, the annotations are drawn before the graph elements are drawn and appear
behind the plots and other graph elements.

When you render your graph, you must include the SGANNO= option in the
SGRENDER statement to specify the name of your SG annotation data set.For
examples, see “Example 1: Creating Custom Labels” on page 453 and “Example 2:
Displaying Subsets of Annotations in Axis-Aligned Insets” on page 457.

Subsetting Annotations
By default, the ANNOTATE statement draws all of the annotations that are stored in
the SG annotation data set. You can use the ANNOTATE statement ID= option to
display a subset of these annotations. Subsetting your annotations enables you to
use one SG annotation data set with multiple plots. To use the ID= option, the
observations for the annotations must contain an ID column. The ID column is a
character column that stores a unique character value that identifies the subset to
which each annotation belongs. When the ID="identifier" option is used in the
ANNOTATE statement, only the annotations with ID column values that match the
identifier value are displayed. The remaining annotations are ignored. For more
information about the ANNOTATE statement ID= option, see “ANNOTATE” in SAS
Graph Template Language: Reference. For an example, see “Example 2: Displaying
Subsets of Annotations in Axis-Aligned Insets” on page 457.

452 Chapter 23 / Adding Data-Driven Annotations to Your Graph

http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0fnr3r0fc0jfjn1rtp6di3ygpom.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0fnr3r0fc0jfjn1rtp6di3ygpom.htm&locale=en

Examples

Example 1: Creating Custom Labels

Overview
This example demonstrates how to use the Graphic Template Language (GTL)
annotation facility to create custom category labels for a horizontal bar chart. The
bar chart plots the average highway mileage (response) by vehicle type (category).
Ordinarily, the category labels for a horizontal bar chart appear on the Y axis to the
left of each bar. This example demonstrates how to print the labels on the left end of
each bar instead. This example also uses the sheen data skin on the bars. Because
of the reflection on the sheen data skin, the labels are raised slightly to center the
label in the reflection on each bar. Finally, the label text color is set to the graph
contrast color.

The following figure shows the final graph.

Example 1: Creating Custom Labels 453

Program
/* Summarize the highway mileage data in SASHELP.CARS. */
proc summary data=sashelp.cars nway;
 class type;
 var mpg_highway;
 output out=mileage mean(mpg_highway) = mpg_highway;
run;

/* Create the annotation data set. */
data anno;
 retain function "text" drawspace "datavalue"
 textfont "Arial" textweight "bold"
 textcolor "GraphData1:contrastColor"
 width 100 widthunit "pixel"
 anchor "left" x1 2
 discreteoffset 0.1;
 set mileage(keep=type);
 rename type=yc1;
 length label $12;
 label=type;
run;

/* Create the template. */
proc template;
 define statgraph barchart;
 begingraph;
 entrytitle "Average Highway Mileage by Vehicle Type";
 layout overlay /
 yaxisopts=(display=(label))
 xaxisopts=(label="Average Highway MPG" offsetmax=0.05);
 barchartparm category=type response=mpg_highway /
 orient=horizontal dataskin=sheen;
 annotate;
 endlayout;
 endgraph;
 end;

/* Render the graph with the Anno annotation data set */
proc sgrender data=mileage template=barchart sganno=anno;
run;

Program Description
Summarize the highway mileage data in Sashelp.Cars. Because a label is
needed for each unique value of vehicle type, the data in Sashelp.Cars is first
summarized for the Mpg_Highway column using the Type column as the class
variable. This step generates a data set that contains one observation for each
unique value of Type. See “Listing of the Mileage Data Set” on page 456.

/* Summarize the highway mileage data in SASHELP.CARS. */
proc summary data=sashelp.cars nway;
 class type;
 var mpg_highway;

454 Chapter 23 / Adding Data-Driven Annotations to Your Graph

 output out=mileage mean(mpg_highway) = mpg_highway;
run;

Create the SG annotation data set. The Mileage data set is used to create the
annotation data set Anno. The DATA step in the Anno data set reads the
observations from the Mileage data set. The Type column is used to set the Label
column and is then renamed to Yc1. The remaining columns from the Mileage data
set are then dropped. The X1 column is added and set to 2 in order to position the
labels on the left end of each bar. The DiscreteOffset column is added and set to 0.1
in order to center the labels in the sheen data skin reflection on each bar. Additional
columns are added to specify other attributes of the labels. See “Listing of the Anno
Data Set” on page 456.

/* Create the annotation data set. */
data anno;
 retain function "text" drawspace "datavalue"
 textfont "Arial" textweight "bold"
 textcolor "GraphData1:contrastColor"
 width 100 widthunit "pixel"
 anchor "left" x1 2
 discreteoffset 0.1;
 set mileage(keep=type);
 rename type=yc1;
 length label $12;
 label=type;
run;

Create the graph template and include an ANNOTATE statement. The
BARCHARTPARM statement is used to generate the horizontal bar chart from the
summarized mileage data. Because the annotation drawing space is DATAVALUE,
the ANNOTATE statement is placed in the BARCHARTPARM statement layout
block in the template. In this location, the DATAVALUE values are in the context of
the BARCHARTPARM data.

/* Create the template. */
proc template;
 define statgraph barchart;
 begingraph;
 entrytitle "Average Highway Mileage by Vehicle Type";
 layout overlay /
 yaxisopts=(display=(label))
 xaxisopts=(label="Average Highway MPG" offsetmax=0.05);
 barchartparm category=type response=mpg_highway /
 orient=horizontal dataskin=sheen;
 annotate;
 endlayout;
 endgraph;
 end;

Render the graph with the annotations. To render the graph with the annotations,
the SGANNO=ANNO option is included in the SGRENDER statement.

/* Render the graph with the Anno annotation data set */
proc sgrender data=mileage template=barchart sganno=anno;
run;

Example 1: Creating Custom Labels 455

Using the %SGTEXT Macro in the DATA Step
Starting with SAS 9.4M1, you can use the %SGTEXT annotation macro to simplify
the DATA step for the Anno data set in this example. Here is the DATA step for the
Anno data set modified to use the %SGTEXT macro.

%sganno; /* Compile the annotation macros */
data anno;
 set mileage;
 %sgtext(label=type,
 x1=2,yc1=type,drawspace="datavalue",
 textfont="Arial",textweight="bold",
 textcolor="GraphData1:contrastColor",width=100,
 widthunit="pixel",anchor="left",discreteoffset=0.1);
run;

In order to use the %SGTEXT macro, you must first run the %SGANNO macro to
compile the SG annotation macros. The Type column in the Mileage data set is
assigned to the Label and Yc1 columns in the annotation data set.

For more information about the SG annotation macros, see “SG Annotation Macro
Dictionary” in SAS ODS Graphics: Procedures Guide. For another example of using
the %SGTEXT macro, see “Example 2: Displaying Subsets of Annotations in Axis-
Aligned Insets” on page 457.

Listing of the Mileage Data Set
Here is a listing of the Mileage data set.

 mpg_
Obs Type _TYPE_ _FREQ_ mpg_city highway

 1 Hybrid 1 3 55.0000 56.0000
 2 SUV 1 60 16.1000 20.5000
 3 Sedan 1 262 21.0840 28.6298
 4 Sports 1 49 18.4082 25.4898
 5 Truck 1 24 16.5000 21.0000
 6 Wagon 1 30 21.1000 27.9000

Listing of the Anno Data Set
Here is a listing of the Anno data set.

456 Chapter 23 / Adding Data-Driven Annotations to Your Graph

http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=n1bd1o01uscfusn182luguuxtht1.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=n1bd1o01uscfusn182luguuxtht1.htm&locale=en

Obs function drawspace textfont textweight textcolor

 1 text datavalue Arial bold GraphData1:contrastColor
 2 text datavalue Arial bold GraphData1:contrastColor
 3 text datavalue Arial bold GraphData1:contrastColor
 4 text datavalue Arial bold GraphData1:contrastColor
 5 text datavalue Arial bold GraphData1:contrastColor
 6 text datavalue Arial bold GraphData1:contrastColor

Obs discreteoffset width widthunit anchor x1 yc1 label

 1 0.1 100 pixel left 2 Hybrid Hybrid
 2 0.1 100 pixel left 2 SUV SUV
 3 0.1 100 pixel left 2 Sedan Sedan
 4 0.1 100 pixel left 2 Sports Sports
 5 0.1 100 pixel left 2 Truck Truck
 6 0.1 100 pixel left 2 Wagon Wagon

Example 2: Displaying Subsets of Annotations in
Axis-Aligned Insets

Overview
This example shows you how to do the following:

n subset annotations in an SG annotation data set and display specific subsets of
annotations in a graph

n create axis-aligned insets outside of the plot wall area by using the GTL
annotation facility

n use the %SGTEXT annotation macro to generate observations for text
annotations

Note: The %SGTEXT macro is valid in SAS 9.4M1 and in later releases.

This example creates a vertical bar chart of vehicle type and average curb weight by
vehicle origin. The following figure shows the first graph.

Example 2: Displaying Subsets of Annotations in Axis-Aligned Insets 457

Above each bar in the bar chart, an axis-aligned inset displays the average city and
highway mileages for that vehicle type. A label above the Y-axis area describes the
inset content. The dynamic variable _BYLINE_ is used to specify the origin in the
chart title. The annotation data for this example requires a subset of data for each
vehicle type and an additional subset for the inset label.

Program
/* Sort Sashelp.Cars by Origin and summarize the mileage data */
proc sort data=sashelp.cars out=cars;
 by origin;
run;

proc summary data=cars nway mean;
 class type;
 by origin;
 var mpg_city mpg_highway;
 output out=mileage(drop=_type_ _freq_)
 mean(mpg_city mpg_highway) = mpg_city mpg_highway;
run;

/* Create variables for the inset positions. */
%let toprowpos=80; /* Y position of the insets (GRAPHPERCENT). */
%let labelpos=16; /* X position of the inset label (GRAPHPERCENT) */

/* Compile the annotation macros */
%sganno;

/* Create the annotation data set. */
data anno;
 set mileage end=_LAST; /* Base on Mileage data. */

458 Chapter 23 / Adding Data-Driven Annotations to Your Graph

 %sgtext(id=origin,
 label=put(round(mpg_city), F2.0) || " / " ||
 put(round(mpg_highway), F2.0),
 xc1=type,x1space="datavalue",
 y1=&toprowpos,y1space="graphpercent",
 border="true",anchor="center",justify="center",width=90);

 /* Add observations for the inset label to the end of the data. */
 if (_LAST) then do;
 %sgtext(reset=all,id="INSETLABEL",label="Avg. MPG",
 x1=&labelpos,x1space="graphpercent",
 y1=%eval(&toprowpos+1),y1space="graphpercent",
 border="false",anchor="right",width=90,justify="left");
 %sgtext(label="(City/Hwy)",y1=%eval(&toprowpos-3));
 end;
run;

/* Create the graph template and include the ANNOTATE statements. */
proc template;
 define statgraph barchart;
 dynamic _BYVAL_ _BYLINE_;
 begingraph / designwidth=450 designheight=360;
 entrytitle "Average Curb Weight by Vehicle Type";
 entrytitle "(" _BYLINE_ ")";
 layout overlay;
 layout overlay / pad=(top=40)
 yaxisopts=(label="Average Curb Weight (LBS)" offsetmax=0.2)
 xaxisopts=(label="Vehicle Type"
 discreteopts=(colorbands=even
 colorbandsattrs=(transparency=0.6)));

 /* Generate the mileage bar chart */
 barchart x=type y=weight / stat=mean dataskin=gloss;

 /* Draw the mileage annotations for this origin */
 annotate / ID="INSETLABEL"; /* Draw the inset label. */
 annotate / ID=_BYVAL_; /* Draw the bar insets. */
 endlayout;
 endlayout;
 endgraph;
 end;
run;

/* Render the graph by Origin with the Anno annotation data set */
options nobyline; /* Suppress the default BY line. */
proc sgrender data=cars template=barchart sganno=anno;
 by origin;
run;
options byline; /* Restore the default BY Line. */

Program Description
Sort Sashelp.Cars by Origin and summarize the mileage data. The data in
Sashelp.Cars is first sorted by Origin. Next, the sorted data is summarized for the
Mpg_City and Mpg_Highway columns by Origin, using Type as the classifier. The

Example 2: Displaying Subsets of Annotations in Axis-Aligned Insets 459

Freq and _Type_ columns are dropped, and the output is written to the data set
Mileage. See “Listing of the Mileage Data Set” on page 461.

/* Sort Sashelp.Cars by Origin and summarize the mileage data */
proc sort data=sashelp.cars out=cars;
 by origin;
run;

proc summary data=cars nway mean;
 class type;
 by origin;
 var mpg_city mpg_highway;
 output out=mileage(drop=_type_ _freq_)
 mean(mpg_city mpg_highway) = mpg_city mpg_highway;
run;

Create variables for the inset positions. To make it easier to adjust the inset
positions, macro variables are created in order to specify the inset X and Y positions
as graph percentages.

/* Create variables for the inset positions. */
%let toprowpos=80; /* Y position of the insets (GRAPHPERCENT). */
%let labelpos=16; /* X position of the inset label (GRAPHPERCENT) */

Compile the annotation macros. Before the annotation macros can be used, the
%SGANNO macro must be run to compile them.

/* Compile the annotation macros */
%sganno;

Create the SG annotation data set. The bar inset data is based on the data set
Mileage. The %SGTEXT annotation macro generates the observations for the bar
insets. The column Origin in the data set Mileage is specified in the ID= argument,
and the column Type is specified in the Xc1= argument. The LABEL= argument
specifies the inset text as cc / hh, where cc is Mpg_City and hh is Mpg_Highway.

/* Create the annotation data set. */
data anno;
 set mileage end=_LAST; /* Base on Mileage data. */
 %sgtext(id=origin,
 label=put(round(mpg_city), F2.0) || " / " ||
 put(round(mpg_highway), F2.0),
 xc1=type,x1space="datavalue",
 y1=&toprowpos,y1space="graphpercent",
 border="true",anchor="center",justify="center",width=90);

Add observations for the inset label to the end of the data. The %SGTEXT
macro generates the label observations. The RESET=ALL argument in the first
macro call resets all of the argument values from the previous macro call. Because
only the label text and the Y position values change for the second label
observation, the second macro call specifies only the LABEL= and Y1= arguments.
The values specified in the previous macro call apply to the unspecified arguments
in the second macro call.

 /* Add observations for the inset label to the end of the data. */
 if (_LAST) then do;
 %sgtext(reset=all,id="INSETLABEL",label="Avg. MPG",
 x1=&labelpos,x1space="graphpercent",
 y1=%eval(&toprowpos+1),y1space="graphpercent",
 border="false",anchor="right",width=90,justify="left");
 %sgtext(label="(City/Hwy)",y1=%eval(&toprowpos-3));

460 Chapter 23 / Adding Data-Driven Annotations to Your Graph

 end;
run;

Create the graph template and include the ANNOTATE statements. The BY line
is displayed in the graph title. The LAYOUT OVERLAY statement PAD= option
reserves space for the bar insets. Because the annotation XSPACE is DATAVALUE,
the ANNOTATE statements are placed in the BARCHART statement’s layout block.
The first ANNOTATE statement draws the inset label, and the second draws the bar
insets. The _BYVAL_ values (Origin) are used as the bar inset IDs.

/* Create the graph template and include the ANNOTATE statements. */
proc template;
 define statgraph barchart;
 dynamic _BYVAL_ _BYLINE_;
 begingraph / designwidth=450 designheight=360;
 entrytitle "Average Curb Weight by Vehicle Type";
 entrytitle "(" _BYLINE_ ")";
 layout overlay;
 layout overlay / pad=(top=40)
 yaxisopts=(label="Average Curb Weight (LBS)" offsetmax=0.2)
 xaxisopts=(label="Vehicle Type"
 discreteopts=(colorbands=even
 colorbandsattrs=(transparency=0.6)));

 /* Generate the mileage bar chart */
 barchart x=type y=weight / stat=mean dataskin=gloss;

 /* Draw the mileage annotations for this origin */
 annotate / ID="INSETLABEL"; /* Draw the inset label. */
 annotate / ID=_BYVAL_; /* Draw the bar insets. */
 endlayout;
 endlayout;
 endgraph;
 end;
run;

Render the graph with the annotations. The SGANNO=ANNO option is included
in the SGRENDER statement. Because the BY line is included in the graph title, the
default BY line is suppressed. The BY statement generates a graph for each unique
value of Origin.

/* Render the graph by Origin with the Anno annotation data set */
options nobyline; /* Suppress the default BY line. */
proc sgrender data=cars template=barchart sganno=anno;
 by origin;
run;
options byline; /* Restore the default BY Line. */

Listing of the Mileage Data Set
Here is a listing of the Mileage data set.

Example 2: Displaying Subsets of Annotations in Axis-Aligned Insets 461

 mpg_
Obs Origin Type mpg_city highway

 1 Asia Hybrid 55.0000 56.0000
 2 Asia SUV 17.3200 21.6800
 3 Asia Sedan 22.8404 29.9681
 4 Asia Sports 20.2353 26.6471
 5 Asia Truck 17.8750 22.0000
 6 Asia Wagon 22.3636 28.1818
 7 Europe SUV 14.5000 18.7000
 8 Europe Sedan 19.5128 27.1154
 9 Europe Sports 17.6522 25.1304
 10 Europe Wagon 19.2500 26.5833
 11 USA SUV 15.5200 20.0400
 12 USA Sedan 20.6111 28.5444
 13 USA Sports 16.8889 24.2222
 14 USA Truck 15.8125 20.5000
 15 USA Wagon 22.2857 29.7143

Partial Listing of the Anno Data Set
Here are the last seven observations from the Anno data set.

Obs ID FUNCTION LABEL BORDER ANCHOR JUSTIFY
 …
 11 USA TEXT 16 / 20 true center center
 12 USA TEXT 21 / 29 true center center
 13 USA TEXT 17 / 24 true center center
 14 USA TEXT 16 / 21 true center center
 15 USA TEXT 22 / 30 true center center
 16 INSETLABEL TEXT Avg. MPG false right left
 17 INSETLABEL TEXT (City/Hwy) false right left

Obs WIDTH X1 XC1 X1SPACE Y1 Y1SPACE
 …
 11 90 . SUV datavalue 80 graphpercent
 12 90 . Sedan datavalue 80 graphpercent
 13 90 . Sports datavalue 80 graphpercent
 14 90 . Truck datavalue 80 graphpercent
 15 90 . Wagon datavalue 80 graphpercent
 16 90 16 graphpercent 81 graphpercent
 17 90 16 graphpercent 77 graphpercent

Note: The actual column order is different from that presented here.

462 Chapter 23 / Adding Data-Driven Annotations to Your Graph

Example 3: Creating a Macro That Generates
Annotation Data

Overview
This example shows you how to create a macro that generates annotation data for
your graphs. It is based on the solution in post Creating an axis in GTL with both
major and minor tick marks shown inside on the Graphics Programming community
page. This example shows you how to apply the solution to GTL and how to use a
macro to generate annotation data.

The SAS macro facility programming language provides an extensive set of
programming features that you can use to perform tasks and to generate SAS code.
Macros can be compiled and stored for later use and can be shared with other
users. You can find detailed information about the SAS macro facility and examples
of how to use it in SAS Macro Language: Reference.

This example creates macro %GENTICKANNODATA, which generates annotation
data that draws custom tick marks inside a graph. Here is the output for this
example.

Figure 23.1 Plot with Custom Inside Tick Marks

50 60 70 80 90 100 110 120 130 140 150

Weight

50

55

60

65

70

75

H
ei

gh
t

FM

Scatter Plot with Custom Inside Tick Marks

Example 3: Creating a Macro That Generates Annotation Data 463

https://communities.sas.com/t5/Graphics-Programming/Creating-an-axis-in-GTL-with-both-major-and-minor-tick-marks/td-p/690688
https://communities.sas.com/t5/Graphics-Programming/Creating-an-axis-in-GTL-with-both-major-and-minor-tick-marks/td-p/690688
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

This example also shows you how to reference macro variables in GTL template
code using NMVAR run-time macro variable reference symbols.

About the %GENTICKANNODATA Macro
Macro %GENTICKANNODATA in this example generates data for a single axis per
execution: X, X2, Y, or Y2. It accepts several parameters that are used to generate
the annotation data. The data from multiple executions can be accumulated in a
single data set, which is helpful when you want to customize more than one axis.
Here is the syntax for macro %GENTICKANNODATA:

%GENTICKANNODATA(AXIS= X | X2 | Y | Y2 START=nnn END=nnn BY=nnn
<DSN=name> <APPEND=Y | N> <MINORTICKCOUNT=n> <BASELINE=n>
<LENGTH=n> <MAJORTICKCOLOR=color-name | style-reference>
<MAJORTICKTHICKNESS=n> <MINORTICKCOLOR=color-name | style-
reference> <MINORTICKTHICKNESS=n>)

The following table describes the macro parameters.

Parameter1 Description Default

AXIS= X | X2 | Y | Y2 Specifies the axis. This parameter is
required.

START=nnn Specifies the starting value on the
axis. This parameter is required.

END=nnn Specifies the ending value on the axis.
This parameter is required.

BY=nnn Specifies the major tick mark interval.
This parameter is required.

DSN=name Specifies the output data set name. TICKANNO

APPEND=Y | N Specifies whether the data is
appended to existing data (Y) or
replaces existing data (N).

N

MINORTICKCOUNT=n Specifies the number of minor tick
marks.

0 (no minor ticks)

BASELINE=n Specifies the starting baseline for the
tick marks as a percentage of the
graph wall area. This value can be
used to make minor adjustments to
the tick mark positions, if necessary.

0

LENGTH=n Specifies the length of the major tick
marks as a percentage of the graph
wall area. The length of the minor tick
marks is one-half of this value.

2

464 Chapter 23 / Adding Data-Driven Annotations to Your Graph

Parameter1 Description Default

MAJORTICKCOLOR=color-
name | style-reference

Specifies the color of the major tick
marks.2

style reference
GraphAxisLines:contrastColor

MAJORTICKTHICKNESS=n Specifies the thickness of the major
tick marks in pixels.

1

MINORTICKCOLOR=color-
name | style-reference

Specifies the color of the minor tick
marks.2

style reference
GraphAxisLines:contrastColor

MINORTICKTHICKNESS=n Specifies the thickness of the minor
tick marks in pixels.

1

1 Character values are not enclosed in quotation marks.
2 For color-name, see “Predefined Colors” on page 685 and “Color-Naming Schemes” on page 673. For style-reference, see

Appendix 2, “Graph Style Elements Used by ODS Graphics,” on page 651.

The Macro %GENTICKANNODATA Code
Here is the code for macro %GENTICKANNODATA.

%macro genTickAnnoData(axis=, start=, end=, by=, /* 1 */
 dsn=tickanno, append=n, minortickcount=0, baseline=0, length=2,
 majortickcolor=GraphAxisLines:contrastColor, majortickthickness=1,
 minortickcolor=GraphAxisLines:contrastColor, minortickthickness=1);

 %if %upcase(&append) eq Y %then %let name = &dsn._tmp; /* 2 */
 %else %let name = &dsn;

 data &name; /* 3 */
 length id $2 x1space x2space y1space y2space $15
 linecolor $30 xaxis yaxis $4;
 retain id function x1space x2space y1space y2space linecolor
 linethickness gap xaxis yaxis;
 id = upcase(trim("&axis"));
 function = "line";
 gap = &by / (&minortickcount + 1);

 if (substr(id,2,1) eq "2") then primary = 0; /* 4 */
 else primary = 1;

 if (id eq "X" or id eq "X2") then do; /* 5 */
 x1space = "datavalue"; x2space = "datavalue";
 y1space = "wallpercent"; y2space = "wallpercent";
 linecolor = "&majortickcolor";
 linethickness = &majortickthickness;
 if (primary) then do;
 xaxis="X";
 do i = &start to &end by &by;
 x1 = i; y1 = &baseline;
 x2 = x1; y2 = &baseline + &length; output;
 end;

Example 3: Creating a Macro That Generates Annotation Data 465

 end;
 else do;
 xaxis="X2";
 do i = &start to &end by &by;
 x1 = i; y1 = 100 - (&baseline + &length);
 x2 = x1; y2 = 100 - &baseline; output;
 end;
 end;
 linecolor = "&minortickcolor";
 linethickness = &minortickthickness;
 do i = &start to &end - &by by &by;
 if (primary) then do;
 do z = 1 to &minortickcount;
 x1 = i + (gap * z); y1 = &baseline;
 x2 = x1; y2 = &baseline + (&length / 2); output;
 end;
 end;
 else do;
 do z = 1 to &minortickcount;
 x1 = i + (gap * z);
 y1 = 100 - (&baseline + (&length / 2));
 x2 = x1; y2 = 100 - &baseline; output;
 end;
 end;
 end;
 end;
 else if (id eq "Y" or id eq "Y2") then do; /* 6 */
 y1space = "datavalue"; y2space = "datavalue";
 x1space = "wallpercent"; x2space = "wallpercent";
 linecolor = "&majortickcolor";
 linethickness = &majortickthickness;
 if (primary) then do;
 yaxis="Y";
 do i = &start to &end by &by;
 y1 = i; x1 = &baseline;
 y2 = y1; x2 = &baseline + &length; output;
 end;
 end;
 else do;
 yaxis="Y2";
 do i = &start to &end by &by;
 y1 = i; x1 = 100 - (&baseline + &length);
 y2 = y1; x2 = 100 - &baseline; output;
 end;
 end;
 linecolor = "&minortickcolor";
 linethickness = &minortickthickness;
 do i = &start to &end - &by by &by;
 if (primary) then do;
 do z = 1 to &minortickcount;
 y1 = i + (gap * z); x1 = &baseline;
 y2 = y1; x2 = &baseline + (&length / 2); output;
 end;
 end;
 else do;
 do z = 1 to &minortickcount;

466 Chapter 23 / Adding Data-Driven Annotations to Your Graph

 y1 = i + (gap * z); x1 = 100 - &baseline;
 y2 = y1;
 x2 = 100 - (&baseline + (&length / 2)); output;
 end;
 end;
 end;
 end;
 else put "ERROR: Axis " id "is not valid.";

 keep id function x1space x2space y1space y2space x1 x2 y1 y2
 linecolor linethickness xaxis yaxis;
 run;

 %if %upcase(&append) eq Y %then %do; /* 7 */
 proc append base=&dsn data=&name;
 run;
 proc delete data=&name;
 run;
 %end;
%mend genTickAnnoData;

1 Use the %MACRO statement to begin the macro definition. Specify the macro
name and the input parameters. See “About the %GENTICKANNODATA Macro”
on page 464 for a description of the input parameters.

2 If the data is to be appended to existing data, create a name for a temporary
data set. Otherwise, use the name provided, which replaces the data set if it
already exists.

3 Open the DATA step, and specify the data set name.

4 Determine whether the axis is primary or secondary.

5 Create the annotation data for the X or X2 axis, if requested.

6 Create the annotation data for the Y or Y2 axis, if requested.

7 If requested, append the data to the existing data set, and then delete the
temporary data set.

Using Macro %GENTICKANNODATA in a GTL
Program

The following program shows how to use the %GENTICKANNODATA macro to
generate the annotation data for the custom tick marks shown in Figure 23.1 on
page 463.

%let _xstart=50; /* 1 */
%let _xend=150;
%let _xinc=10;
%let _xmtc=4;
%let _ystart=50;
%let _yend=75;
%let _yinc=5;
%let _ymtc=4;

Example 3: Creating a Macro That Generates Annotation Data 467

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p1nypovnwon4uyn159rst8pgzqrl.htm&locale=en

%genTickAnnoData(axis=x2, start=&_xstart, end=&_xend, /* 2 */
 by=&_xinc,
 majortickcolor=GraphDataDefault:contrastColor,
 minortickcolor=cxa0a0a0,minortickcount=&_xmtc,
 majortickthickness=2);

%genTickAnnoData(axis=y, append=y, start=&_ystart, /* 3 */
 end=&_yend, by=&_yinc,
 majortickcolor=GraphDataDefault:contrastColor,
 minortickcolor=cxa0a0a0, minortickcount=&_ymtc,
 length=1.3, majortickthickness=2);

proc template;
 define statgraph scatter1; /* 4 */
 nmvar _xstart _xend _xinc _xmtc _ystart _yend
 _yinc _ymtc;
 begingraph;
 entrytitle "Scatter Plot with Custom Inside Tick Marks";
 layout overlay /
 x2axisopts=(display=(label line tickvalues)
 offsetmin=0.04 offsetmax=0.04
 griddisplay=on gridattrs=(color=cxa0a0a0 pattern=dot)
 linearopts=(minorgrid=true
 minorgridattrs=(color=lightgray pattern=dot)
 tickvaluesequence=(start=_xstart end=_xend
 increment=_xinc)
 minortickcount=_xmtc tickvaluepriority=true))
 yaxisopts=(display=(label line tickvalues)
 offsetmin=0.06 offsetmax=0.06
 griddisplay=on gridattrs=(color=cxa0a0a0 pattern=dot)
 linearopts=(minorgrid=true
 minorgridattrs=(color=lightgray pattern=dot)
 tickvaluesequence=(start=_ystart end=_yend
 increment=_yinc)
 minortickcount=_ymtc tickvaluepriority=true));
 scatterplot x=weight y=height / name="scatter"
 group=sex xaxis=x2;
 discretelegend "scatter";
 annotate;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=scatter1 /* 5 */
 sganno=tickanno;
run;

1 Create macro variables for the axis values. Using macro variables helps ensure
that the axis data specifications are consistent within the program. It also makes
it easy to change the values at a later time.

2 Generate the tick annotation data for the X2 axis. If data set TICKANNO already
exists, replace it with the data for the X2 tick marks.

3 Generate the tick annotation data for the Y axis. Append the data to data set
TICKANNO.

468 Chapter 23 / Adding Data-Driven Annotations to Your Graph

4 Create the graph template. The NMVAR statement defines symbols that
reference the corresponding macro variables. The values are resolved at run
time, which means you do not have to recompile the template when the macro
variable values are changed. These symbols are used in the X2AXISOPTS= and
YAXISOPTS= options in the LAYOUT OVERLAY statement. The ANNOTATE
statement draws the annotations.

5 Render the graph. Specify the plot data set and the annotation data set.

Example 3: Creating a Macro That Generates Annotation Data 469

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n062gepfsxp3myn111k8fdk2ous8c.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0ra82ol659t4ln1ifal7w0nbydm.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0fnr3r0fc0jfjn1rtp6di3ygpom.htm&locale=en

470 Chapter 23 / Adding Data-Driven Annotations to Your Graph

PART 7

Creating Interactive Graphs

Chapter 24
Adding Data Tips to Your Graph . 473

Chapter 25
Adding Drill-Down Links to Your Graph . 477

Chapter 26
Creating Animated Graphs . 483

471

472

24
Adding Data Tips to Your Graph

Creating a Graph with Data Tips in an HTML Page . 473

Creating a Graph with Custom Data Tips in an HTML Page . 474

Creating a Graph with Data Tips in an
HTML Page

Data tips can be displayed by graphs that are included in HTML pages. When data
tips are provided, you can position your pointer over parts of a graph, and text
balloons open to show information (typically data values) that is associated with the
area where the mouse pointer rests. Nearly all plot statements in GTL create default
data tip information. However, this information is not generated unless you request it
with the IMAGEMAP= option in the ODS GRAPHICS statement as shown in the
following example.

proc template;
 define statgraph defaultdatatips;
 begingraph;
 entrytitle "Scatter Plot with Default Data Tips";
 layout overlay;
 scatterplot x=height y=weight / group=sex name="s";
 discretelegend "s";
 endlayout;
 endgraph;
 end;
run;

ods graphics / reset width=5in imagemap=on;
proc sgrender data=sashelp.class template=defaultdatatips;
run;
ods graphics / reset;

Here is an example of a default data tip when the mouse pointer is held over a data
point.

473

Prior to SAS 9.4M5, image-map support in the ODS HTML and ODS HTML5
destinations is restricted to only bitmapped images. Neither supports image maps
for SVG images. Starting with SAS 9.4M5, the ODS HTML and ODS HTML5
destinations support image maps for SVG images as well. However, image-map
support in the ODS HTML5 destination is restricted to only in-line SVG images.

ODS Graphics disables data tips when a preset upper threshold is reached. Prior to
SAS 9.4M3, the threshold is based on the number of observations in the graph data.
When the threshold is reached, data tips are disabled for the entire graph. Starting
with SAS 9.4M3, the data-tip upper threshold is based on the number of data tips in
each plot. The threshold is enforced on a per-plot basis. When the number of data
tips in a plot reaches the upper data-tip threshold, data tips are disabled for that plot
only. Data tips remain enabled for the remaining plots in the graph.

The data-tip upper threshold is controlled by the ODS GRAPHICS statement option
TIPMAX=. The default is 500. When the data-tip upper threshold is reached, a note
is written to the SAS log indicating that the data tips are disabled. The note provides
information about how to use the TIPMAX= option in an ODS GRAPHICS statement
to raise the threshold sufficiently to re-enable the data tips. For more information
about the ODS GRAPHICS statement TIPMAX= option, see “ODS GRAPHICS” in
SAS Graph Template Language: Reference.

Creating a Graph with Custom Data Tips
in an HTML Page

GTL supports plot statement syntax that enables you to suppress or customize the
default data tip information. The following layout block creates custom data tips.

layout overlay;

474 Chapter 24 / Adding Data Tips to Your Graph

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en

 /* scatter points have enhanced tooltips */
 scatterplot x=height y=weight / group=sex name="s"
 rolename=(tip1=name tip2=age)
 tip=(tip1 tip2 X Y GROUP)
 tiplabel=(tip1="Student Name")
 tipformat=(tip2=2.);
 discretelegend "s";
endlayout;

Here is an example of a custom data tip when the mouse pointer is held over a data
point.

The ROLENAME=, TIP=, TIPLABEL= and TIPFORMAT= options are common to
most plot statements in GTL.

ROLENAME defines one or more name / value pairs as role-name = column-name,
where column-name is some input data column that does not participate directly in
the plot. In this example, the Name and Age column values are shown in the data
tip. Notice that the choice of role names is somewhat arbitrary. The TIP1 and TIP2
role names are added to the default role names X, Y, and GROUP.

The TIP= option defines a list of roles to be displayed, and it also determines their
order in the display. Notice that it is not necessary to request all default roles. For
example, it might be obvious from the legend that the GROUP role does not really
need to be in the data tip, so in that case you would specify the following:

tip=(tip1 tip2 X Y)

For any role, the default tip label is 1) the data label, or 2) the name of the column
that is associated with the role. If you want other label text displayed, use the
followingTIPLABEL= option:

tiplabel=(tip1="Student Name" group="Group")

For any role, you can assign a format to the display of tip values.

Creating a Graph with Custom Data Tips in an HTML Page 475

476 Chapter 24 / Adding Data Tips to Your Graph

25
Adding Drill-Down Links to Your
Graph

About Drill-Down Graphs . 477

Create a Drill-Down Graph . 479

About Drill-Down Graphs
Drill-down graphs provide a convenient means for your users to explore complex
data. In a drill-down graph, certain elements of the graph contain active links. When
a user clicks a linked element, the linked resource appears in a new browser
window by default. The resource can be another web page or an image file that
contains a supporting graph. For several types of plots, you can use the URL=
option in the plot statement to add drill-down links to your graphs for HTML
presentations. The following plot statements support the URL= option:

BARCHART MOSAICPLOTPARM SERIESPLOT
BARCHARTPARM NEEDLEPLOT STEPPLOT
BUBBLEPLOT PIECHART TEXTPLOT
HEATMAPPARM POLYGONPLOT WATERFALLCHART
LINECHART SCATTERPLOT

Starting with SAS 9.4M1, the following support is available:

n The following draw statements support the URL= option:

BEGINPOLYGON DRAWLINE DRAWIMAGE
BEGINPOLYLINE DRAWARROW DRAWOVAL
DRAWTEXT DRAWRECTANGLE

n Many of the ODS Graphics annotation functions support URLs. For information
about the ODS Graphics annotation functions, see SAS ODS Graphics:
Procedures Guide.

477

http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

For an example of a drill-down graph, consider the pie chart shown in the following
figure.

To provide your users with sales information for each product, you can create a drill-
down pie chart in which each pie slice is linked to a bar chart that shows sales data
for that product. You can also add a footnote that prompts the user to click a pie
slice for more information. In this drill-down pie chart, if the user clicks the SOFA pie
slice, a bar chart showing the sales data for SOFA appears in a new browser
window, as shown in the following figure.

Figure 25.1 Drill-Down Pie Chart

When the mouse pointer is positioned on a pie slice, the data tip appears, and the
mouse pointer changes to indicate an active link.

Drill-down links are generated only when they are enabled by ODS GRAPHICS
statement option IMAGEMAP. Image maps are not generated by default. To
generate drill-down links, you must include option IMAGEMAP or IMAGEMAP=ON
in an ODS GRAPHICS statement. See “ODS GRAPHICS” in SAS Graph Template
Language: Reference.

478 Chapter 25 / Adding Drill-Down Links to Your Graph

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en

Prior to SAS 9.4M5, image-map support in the ODS HTML and ODS HTML5
destinations is restricted to only bitmapped images. Neither supports image maps
for SVG images. Starting with SAS 9.4M5, the ODS HTML and ODS HTML5
destinations support image maps for SVG images as well. However, image-map
support in the ODS HTML5 destination is restricted to only in-line SVG images.

Create a Drill-Down Graph
In order to create a drill-down graph, you must do the following:

n Add a column that contains the URL of each link to the data set for the drill-down
graph.

n Use the URL= option in the plot statement to specify the data column that
contains the link URLs.

n Enable image mapping in ODS Graphics by using the IMAGEMAP=ON option in
the ODS GRAPHICS statement.

n Write the graph output to the ODS HTML or ODS HTML5 destination.

For example, to create the drill-down pie chart in Figure 25.1 on page 478, you must
complete the following steps:

1 Add the URLs for the supporting bar charts to a character column in the data set
for your main graph.

Note: You must set the column length appropriately for the expected URL
values. If a URL value exceeds the column length, the URL is truncated and the
link does not work.

2 Create the template for the supporting bar charts.

3 Generate the supporting bar charts.

4 Create the template for the main pie chart. In the plot statement for the pie chart,
include the URL=url-column-name option to specify the name of the column in
the data set that contains the drill-down link URLs.

5 Use the following statement to enable image mapping in ODS Graphics:

ods graphics / imagemap=on;

Note: Drill-down links are displayed in a new browser window by default. To
specify a different target, such as _blank or _self, add the DRILLTARGET=
option to your ODS GRAPHICS statement. You must specify _blank or _self in
lowercase. See “ODS GRAPHICS” in SAS Graph Template Language:
Reference.

6 Generate the pie chart by using the ODS HTML destination.

7 Use the following statement to disable image mapping in ODS Graphics:

ods graphics / imagemap=off;

Create a Drill-Down Graph 479

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en

Here is the SAS code for this example.

/* Specify the ODS output path */
filename outp "output-path";

/* 1. Add a URL column for the drill-down links to the
 SASHELP.PRDSALE data set. */
data sales;
 length url $30;
 set sashelp.prdsale;
 format actual dollar12.0;
 select (product);
 when ("SOFA") url="sofa.html";
 when ("BED") url="bed.html";
 when ("TABLE") url="table.html";
 when ("CHAIR") url="chair.html";
 when ("DESK") url="desk.html";
 otherwise url=" ";
 end;
run;

/* 2. Create a template for the supporting graphs. */
proc template;
 define statgraph drilldown;
 begingraph;
 dynamic product;
 entrytitle product " Sales Data";
 layout overlay /
 yaxisopts=(griddisplay=on gridattrs=(color=lightgray
pattern=dot));
 barchart category=country response=actual /
 name="productsales"
 group=year
 groupdisplay=cluster
 barwidth=0.75
 dataskin=sheen;
 discretelegend "productsales" / title="Year:";
 endlayout;
 endgraph;
end;
run;

/* 3. Generate a supporting graph for each product. Because there are
 several products, create a macro that generates a graph
 for a specific product. */
%macro genchart(product=);
 /* Specify the image output filename. */
 ods graphics / imagename="&product";

 /* Generate the graph using ODS HTML. */
 ods _all_ close;
 ods html path=outp file="&product..html";
 proc sgrender data=sales template=drilldown;
 where product = "&product";
 dynamic product="&product"; /* Pass product to the template. */
 run;
 ods html close;

480 Chapter 25 / Adding Drill-Down Links to Your Graph

%mend genchart;

/* Use the macro to generate the supporting graphs. */
%genchart(product=SOFA);
%genchart(product=DESK);
%genchart(product=CHAIR);
%genchart(product=TABLE);
%genchart(product=BED);

/* 4. Create a template for the drill-down graph. */
proc template;
 define statgraph basechart;
 begingraph;
 entrytitle "Total Sales By Product";
 entryfootnote textattrs=(size=7pt) "Click a pie slice for
 product-specific sales data.";
 layout region;
 piechart category=product response=actual /
 datalabelcontent=(category response)
 datalabellocation=inside
 url=url
 tip=(category)
 dataskin=gloss;
 endlayout;
 endgraph;
end;
run;

/* 5. Enable image mapping in the HTML output and specify
 a base image name. */
ods graphics / reset imagemap=on imagename="prodsales"
 antialiasmax=2000 tipmax=2000;

/* 6. Generate the drill-down graph using ODS HTML. */
ods html path=outp file="sales.html";
proc sgrender data=sales template=basechart;
run;
ods html close;

/* 7. Disable image mapping and open an output destination. */
ods graphics / reset imagemap=off;
ods html; /* Not required in SAS Studio */

You can create multiple levels of drill-down graphs in your presentation. That is,
your supporting graphs can also be drill-down graphs in as many levels as needed.

Create a Drill-Down Graph 481

482 Chapter 25 / Adding Drill-Down Links to Your Graph

26
Creating Animated Graphs

About ODS Graphics Animation Support . 483

Create an Animated Graph . 484

About ODS Graphics Animation Support
An animated graph displays a series of charts automatically when the graph is
viewed in a web browser or other viewer that supports animation. The animation
plays as a sequence of graphs in a slide-show fashion with a delay between each
graph. The sequence can play only one time, loop a fixed number of times and then
stop, or loop indefinitely.

The ODS Graphics GIF and SVG universal printers support animation. The GIF
format provides basic animation with no user interaction. The SVG format provides
animation plus user-interaction features such as zoom, pause, replay, and so on.
System options enable you to control the animation output and various properties of
the animation. The following table lists the system options and the applicable
universal printers for each.

Table 26.1 System Options That Control Animated Graphs

Option Name

Valid
Printer
s Description

ANIMATION=START | STOP GIF and
SVG

Starts or stops the creation of an
animation file.

ANIMDURATION=MIN |
number

GIF and
SVG

Specifies the length of time, in seconds,
that each frame in an animation is held in
view. The default is MIN (0.1 seconds).

483

Option Name

Valid
Printer
s Description

ANIMLOOP=YES | NO |
number

GIF and
SVG

Specifies whether the animation loops.
For GIF, NO specifies no looping, YES or 0
specifies continuous looping, and
number specifies a fixed number of
loops. The default is YES.

For SVG, NO or a nonzero value specifies
no looping. YES or 0 specifies continuous
looping. The default is YES.

ANIMOVERLAY |
NOANIMOVERLAY

GIF and
SVG

Specifies whether animation frames are
overlaid or played sequentially. The
default is ANIMOVERLAY.

SVGAUTOPLAY |
NOSVGAUTOPLAY

SVG Specifies whether an SVG animation
starts immediately in the web browser.
The default is SVGAUTOPLAY.

SVGFADEIN=number SVG Specifies the number of seconds for an
SVG frame to fade into view. The default
is 0.

SVGFADEMODE=OVERLAP |
SEQUENTIAL

SVG Specifies whether an SVG frame
overlaps the previous frame or each
frame is played sequentially when a
frame is fading in and out. The default is
OVERLAP.

SVGFADEOUT=number SVG Specifies the number of seconds that it
takes for an SVG frame to fade out of
view. The default is 0.

For more information about these system options, see SAS System Options:
Reference.

The animated graph output is contained in a GIF file or SVG file. An HTML file that
displays the animation is not automatically created. To view the animation, you must
manually incorporate the GIF file or SVG file into your own web page or document
that supports animated images.

Create an Animated Graph
The basic steps for creating an animated graph in ODS Graphics are as follows:

1 Set the system options that you need in order to configure your animation. See
Table 26.1 on page 483.

484 Chapter 26 / Creating Animated Graphs

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

2 At the point in your SAS program where you want to start the animation output:

a Set the ANIMATION=START system option to start the animation output.

b Open the ODS PRINTER destination and specify the GIF printer or the SVG
printer.

3 Run the ODS Graphics statements that are required to generate your sequence
of graphs, such as SGRENDER, SGPLOT, and so on.

Note: To temporarily stop the animation output, set the ANIMATION=STOP
system option. When you are ready to resume, set the ANIMATION=START
system option.

4 After you have generated all of your graphs:

a Set the ANIMATION=STOP system option to stop the animation output.

b Close the ODS PRINTER destination.

For more information about creating GIF and SVG animations, see “Creating
Animated GIF Images and SVG Documents” in SAS 9.4 Universal Printing.

Here is an example that generates an animated graph in the SVG format. The
animation shows bar charts of the average city and highway mileage for vehicles
made in Asia, Europe, and the USA, in that order. The following figure shows the
first graph in the sequence.

Each graph is displayed sequentially. A three-second delay is inserted between
each graph. A one-second fade out and fade in is used to transition between
graphs. The sequence loops continuously. A BY statement is used in the
SGRENDER statement to automatically generate the sequence of graphs for Origin.
Because the graphs are generated by Origin, the data must be sorted by Origin. The

Create an Animated Graph 485

http://documentation.sas.com/?docsetId=uprint&docsetVersion=3.5&docsetTarget=n1im0x1yg09yvgn1ss6m28ul51i2.htm&locale=en
http://documentation.sas.com/?docsetId=uprint&docsetVersion=3.5&docsetTarget=n1im0x1yg09yvgn1ss6m28ul51i2.htm&locale=en

special dynamic variable _BYVAL_ is used to display the BY variable value in the
graph title. See “Special Dynamic Variables” on page 614.

Here is the SAS code for this example.

/* Sort data by origin */
proc sort data=sashelp.cars out=cars;
 by origin;
run;

/* Define the template for the graphs */
proc template;
 define statgraph mileage;
 dynamic _BYVAL_;
 begingraph;
 entrytitle "MPG By Vehicle Type for Cars Made In " _BYVAL_;
 layout overlay / cycleattrs=true
 xaxisopts=(label="Vehicle Type")
 yaxisopts=(label="MPG" griddisplay=on
 gridattrs=(color=lightgray pattern=dot)
 linearopts=(tickvaluesequence=(start=0 end=60
 increment=10) tickvaluepriority=true));
 barchart category=type response=mpg_city /
 name="City" legendlabel="City"
 discreteoffset=-0.1 barwidth=0.2 stat=mean;
 barchart category=type response=mpg_highway /
 name="Highway" legendlabel="Highway"
 discreteoffset=0.1 barwidth=0.2 stat=mean;
 discretelegend "City" "Highway";
 endlayout;
 endgraph;
 end;
run;

/* Create a file reference for the printer output */
filename prtout "anim.svg"; /* Specify the output filename */

/* Set the system animation options */
options printerpath=svg /* Specify the SVG universal printer */
 nonumber nodate /* Suppress the page number and date */
 animduration=3 /* Wait 3 seconds between graphs */
 animloop=yes /* Play continuously */
 noanimoverlay /* Display graphs sequentially */
 svgfadein=1 /* One-second fade-in for each graph */
 svgfadeout=1 /* One-second fade-out for each graph */
 nobyline; /* Suppress the BY-line */

/* Close all currently open ODS destinations */
ods _all_ close;

/* Start the animation output */
options animate=start;

/* Clear the titles and footnotes */
title;
footnote;

486 Chapter 26 / Creating Animated Graphs

/* Open the ODS PRINTER destination */
ods printer file=prtout style=htmlblue;

/* Generate the graphs */
proc sgrender data=cars template=mileage;
 by origin;
run;

/* Stop the animation output */
options animate=stop;

/* Close the ODS PRINTER destination */
ods printer close;

/* Open an ODS destination for subsequent programs */
ods html; /*Not required in SAS Studio */

Create an Animated Graph 487

488 Chapter 26 / Creating Animated Graphs

PART 8

Graphical Output

Chapter 27
Managing Your Graph’s Appearance . 491

Chapter 28
Managing Your Graphics Output . 567

489

490

27
Managing Your Graph’s
Appearance

Default Appearance Features in Graphs . 492

Methods for Changing the Appearance of Your Plots . 494

Using ODS Styles to Control Graph Appearance . 495
Evaluating Supplied Styles . 495
Creating Custom Styles . 499

Using Options to Override Style Attributes . 506
Options That Override Attributes for Individual Plots . 506
Options That Override Style Attributes for All of the Plots in a Template 510

Controlling the Appearance of Non-grouped Data . 511

Controlling the Appearance of Grouped Data . 514
Plots That Support Grouped Data . 514
Using the Default Appearance for Grouped Data . 514
Using Custom Styles to Control the Appearance of Grouped Data 517
Using a Discrete Attribute Map to Control the Appearance of Grouped Data 518
Controlling the Appearance of Grouped Data for All Graphs in a Template 519
Changing the Grouped Data Display . 523
Including Missing Group Values . 527
Changing the Grouped Data Order . 529
Making the Appearance of Grouped Data Independent of Data Order 532

Using Attribute Maps . 536
About Attribute Maps . 536
Using a Discrete Attribute Map . 538
Using a Range Attribute Map . 543

Attribute Rotation Patterns . 545
About the Attribute Rotation Patterns . 545
The Default Attribute Rotation Pattern . 546
The Color-Priority Attribute Rotation Pattern . 549

Using Transparency . 552

Using Data Skins . 554

491

Using Anti-Aliasing . 559

Using Subpixel Rendering . 562

Recommendations . 565

Default Appearance Features in Graphs
Graphs that are produced with GTL derive their general default appearance features
(fonts, colors, line properties, and marker properties) from the current ODS style.
The following three images show the same graph that is rendered with three
different styles.

Figure 27.1 ods listing style=default;

492 Chapter 27 / Managing Your Graph’s Appearance

Figure 27.2 ods listing style=meadow;

Figure 27.3 ods listing style=journal;

An important point to note, here, is that the appearance of the graph changes when
the template is executed, not when it is compiled.

Fully one third of all GTL syntax addresses matters of appearance. Yet, most of the
examples in this document do not use the appearance syntax because the
examples take advantage of the pre-defined styles. Whenever the options in your
graph template explicitly change a color or font family, you are locking those
decisions into the compiled template. Appearance options in GTL always override

Default Appearance Features in Graphs 493

any similar appearance settings contained in the style. Thus, setting a fixed font or
color appearance option might yield satisfactory results with some styles but not
with others. For that reason, the compiled graph and table templates that are
included with many SAS procedures do not contain references to fixed fonts and
colors.

This chapter shows "best practices" to follow so that your GTL programs integrate
style templates to create the look that you desire in your graphics output. The
coding strategy that you use depends on how much style integration you need. If
you want to change the appearance of all your plots or apply a custom style to them,
you can define your own style. For details, see “Using ODS Styles to Control Graph
Appearance” on page 495.

Methods for Changing the Appearance of
Your Plots

If you want to change the appearance of your plots from what the supplied styles
provide, there are several methods that you can use based on what you want to
change. The following table summarizes the available methods.

Attributes to Change Method For More Information

The attributes of all plots
that use a specific ODS
style

Use one of the other
supplied ODS styles or
create a custom ODS
style.

“Using ODS Styles to
Control Graph
Appearance” on page 495

The attributes of individual
plots to make them
independent of the current
style

Use the appropriate
attribute options in the
plot statements.

“Options That Override
Attributes for Individual
Plots” on page 506

The attributes of all of the
plots in a specific template
to make them independent
of the current style

Use the appropriate
attribute options in the
BEGINGRAPH statement
for the template.

“Controlling the
Appearance of Grouped
Data for All Graphs in a
Template” on page 519

The attributes of group
values to make them
independent of the data
order

Use a discrete attribute
map or the INDEX=
option.

“Making the Appearance of
Grouped Data Independent
of Data Order” on page
532

The attributes of numeric
values based on numeric
ranges

Use a range attribute
map.

“Using a Range Attribute
Map” on page 543

494 Chapter 27 / Managing Your Graph’s Appearance

Using ODS Styles to Control Graph
Appearance

Evaluating Supplied Styles
Over fifty ODS styles are available for use with ODS Graphics. These styles are
stored in the Sashelp.Tmplmst item store under the STYLES directory. To list the
names of all the supplied templates in the SAS Output window, you can submit the
following program:

proc template;
 path sashelp.tmplmst;
 list styles;
run;

Note: In the SAS windowing environment, you can also browse the styles
interactively using the Templates window. To do so, issue the ODSTEMPLATE
command to open the Templates window, and then select Styles under the
Sashelp.Tmplmst item store.

The following table lists the recommended styles and a brief description of each.
The example output shown was generated by running the following code:

proc template;
 define statgraph histogram;
 begingraph;
 layout overlay;
 histogram weight / primary=true binaxis=false
 LegendLabel="Weight (LBS)";
 densityplot weight / lineattrs=GraphFit normal()
 legendlabel="Normal" name="density1";
 densityplot weight / lineattrs=GraphFit2 kernel()
 legendlabel="Kernel" name="density2";
 discretelegend "density1" "density2";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.cars template=histogram;
run;

Using ODS Styles to Control Graph Appearance 495

Table 27.1 Recommended ODS Styles

Style Example

HTMLBLUE 1

n white background

n white wall

n sans-serif fonts

n table colors match the graph
colors

n a lighter color scheme for HTML
content

n group distinctions based primarily
on color rather than markers, line
styles, and fill patterns, when
displayed

n the default style for the ODS
HTML destination

DEFAULT 1

n gray background

n white wall

n sans-serif fonts

n group distinctions based on color,
line styles, and fill patterns, when
displayed

STATISTICAL 1

n white background

n white wall

n sans-serif fonts

n contrasting color scheme of blues,
reds, greens, and yellows for
markers, lines, fill colors, and fill
patterns

n group distinctions based on color,
line styles, and fill patterns, when
displayed

496 Chapter 27 / Managing Your Graph’s Appearance

Style Example

ANALYSIS 1

n light tan background

n white wall

n sans-serif fonts

n muted color scheme of tans,
greens, yellows, oranges, and
browns for lines, markers, fill
colors, and fill patterns

n group distinctions based on color,
line styles, and fill patterns, when
displayed

DAISY 1

n white background

n white wall

n sans-serif fonts

n a higher contrast color scheme for
lines, markers, and fill colors, and
fill patterns

n starting with SAS 9.4M6, group
distinctions based on color, line
styles, and fill patterns, when
displayed

prior to SAS 9.4M5, group
distinctions based primarily on
color rather than marker, line
styles, and fill patterns, when
displayed

n recommended for creating
accessible graphs (see Using
ODS Styles to Create Accessible
Output in Creating Accessible
SAS Output Using ODS and ODS
Graphics)

JOURNAL

and JOURNAL31, 2

n white background

n white wall

n sans-serif fonts

n gray-scale color scheme for fill
colors, and black-only color
scheme for markers, lines, and fill
patterns

Using ODS Styles to Control Graph Appearance 497

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=n1lwych7jlufxxn10jlr06zzoix9.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=n1lwych7jlufxxn10jlr06zzoix9.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=n1lwych7jlufxxn10jlr06zzoix9.htm

Style Example

n group distinctions based on color,
line styles, and fill patterns, when
displayed

n for bar charts, gray-scale fill color
scheme and back-only fill pattern
color scheme by default
(JOURNAL3 only)

JOURNAL2 2

n white background

n white wall

n sans-serif fonts

n gray-scale color scheme for fill
colors, and black-only color
scheme for markers, lines, and fill
patterns

n group distinctions based on color,
line styles, and fill patterns, when
displayed

n starting with SAS 9.4M5, for band
plots, bar charts, box plots, ellipse
plots, high-low plots, histograms,
and polygon plots, black-only color
scheme for fill patterns, by default

n no solid filled areas—a minimal ink
style

n recommended for creating
accessible graphs (see Using
ODS Styles to Create Accessible
Output in Creating Accessible
SAS Output Using ODS and ODS
Graphics)

1 Supports fill patterns starting with SAS 9.4M5.
2 The JOURNAL2 and JOURNAL3 styles, by default, render grouped bars with fill patterns.

TIP If you want groups to be distinguished by color, marker, and line
changes for all ODS styles that use color, specify ATTRPRIORITY=NONE in
your BEGINGRAPH statement or in an ODS GRAPHICS statement. See
“Attribute Rotation Patterns” on page 545.

498 Chapter 27 / Managing Your Graph’s Appearance

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=n1lwych7jlufxxn10jlr06zzoix9.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=n1lwych7jlufxxn10jlr06zzoix9.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=n1lwych7jlufxxn10jlr06zzoix9.htm

Creating Custom Styles

Reasons for Customizing an ODS Style
A custom style enables you to create graphs with specific visual characteristics that
do not have to be hard coded into the GTL code for every graph that you create. For
example, you might want to modify settings for the following graph features:

n font or font sizes

n line or marker properties

n colors

n display features for box plots, histograms, contour plots, and other plot types

n a combination of features that are related to a publication or corporate
presentation scheme

By using a custom template, you can create graphs that have a unique appearance,
such as the graph shown in the following figure.

A custom style template also enables you to modify the appearance of all graphs
that use the template without having to change graph template code for each graph.

Using ODS Styles to Control Graph Appearance 499

Style Elements in ODS Styles
Each ODS style consists of style elements that define the attributes of the style such
as colors, fonts, plot markers, and so on. For a list of the style elements that affect
ODS Graphics, see Appendix 2, “Graph Style Elements Used by ODS Graphics,” on
page 651. For additional information about ODS styles, see SAS Output Delivery
System: User’s Guide.

Font Specifications in ODS Styles
Two style elements govern all fonts in an ODS style: Fonts and GraphFonts. The
Fonts element governs fonts in tables. The GraphFonts element governs fonts in
graphs. Each element contains font attributes that specify the fonts for various text
elements. To see the font definition of an ODS style, use the TEMPLATE procedure
to write the style template code to the SAS log. Here is an example that displays the
style template code for the STATISTICAL style.

proc template;
 source styles.statistical;
run;

Here is a partial listing of the STATISTICAL style template code that shows the
Fonts and GraphFonts style elements and their attributes.

500 Chapter 27 / Managing Your Graph’s Appearance

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Output 27.1 Partial Listing of the STATISTICAL Style Template

define style Styles.Statistical;
 parent = styles.default;
 style fonts /
 'TitleFont2' = ("<sans-serif>, <MTsans-serif>, Helvetica, Helv",2,bold)
 'TitleFont' = ("<sans-serif>, <MTsans-serif>, Helvetica, Helv",3,bold)
 'StrongFont' = ("<sans-serif>, <MTsans-serif>, Helvetica, Helv",2,bold)
 'EmphasisFont' = ("<sans-serif>, <MTsans-serif>, Helvetica, Helv",2,italic)
 'FixedFont' = ("<monospace>, Courier",2)
 'BatchFixedFont' = ("SAS Monospace, <monospace>, Courier, monospace",2)
 'FixedHeadingFont' = ("<monospace>, Courier, monospace",2)
 'FixedStrongFont' = ("<monospace>, Courier, monospace",2,bold)
 'FixedEmphasisFont' = ("<monospace>, Courier, monospace",2,italic)
 'headingEmphasisFont' = ("<sans-serif>, <MTsans-serif>, Helvetica,
Helv",2,bold italic)
 'headingFont' = ("<sans-serif>, <MTsans-serif>, Helvetica, Helv",2,bold)
 'docFont' = ("<sans-serif>, <MTsans-serif>, Helvetica, Helv",2);
 class GraphFonts /
 'NodeDetailFont' = ("<sans-serif>, <MTsans-serif>",7pt)
 'NodeInputLabelFont' = ("<sans-serif>, <MTsans-serif>",9pt)
 'NodeLabelFont' = ("<sans-serif>, <MTsans-serif>",9pt)
 'NodeTitleFont' = ("<sans-serif>, <MTsans-serif>",9pt)
 'GraphDataFont' = ("<sans-serif>, <MTsans-serif>",7pt)
 'GraphUnicodeFont' = ("<MTsans-serif-unicode>",9pt)
 'GraphValueFont' = ("<sans-serif>, <MTsans-serif>",9pt)
 'GraphLabel2Font' = ("<sans-serif>, <MTsans-serif>",10pt)
 'GraphLabelFont' = ("<sans-serif>, <MTsans-serif>",10pt)
 'GraphFootnoteFont' = ("<sans-serif>, <MTsans-serif>",10pt)
 'GraphTitleFont' = ("<sans-serif>, <MTsans-serif>",11pt,bold)
 'GraphTitle1Font' = ("<sans-serif>, <MTsans-serif>",14pt,bold)
 'GraphAnnoFont' = ("<sans-serif>, <MTsans-serif>",10pt);

…

Note: The node font attributes in the GraphFonts style element apply to SAS 9.4M1
and to later releases.

The TitleFont attribute in the Fonts style element Output 27.1 on page 501, for
example, specifies the fonts for table titles. In style templates, the name of one or
more font families normally appears as a quoted string. However, ODS also
supports an indirect reference to a font family. When a font name appears between
less than and greater than symbols, such as <sans-serif>, the font family sans-
serif is defined in the SAS Registry. You can use the REGISTRY procedure to print
the font information in the SAS Registry to the SAS log. See Base SAS Procedures
Guide.

Note: In the SAS windowing environment, you can use the Registry Editor window
to browse the font information in the SAS Registry. To do so, issue the REGEDIT
command to open the Registry Editor window, expand ODS, and then click FONTS.

The registry definition of MTsans-serif and MTserif refer to TrueType fonts that are
shipped with SAS and that are similar to Arial and Times New Roman. These MT
(monotype) fonts can be used on any computer on which SAS is installed. A specific
font family such as Verdana could be used instead.

A font specification in an ODS style can specify multiple fonts so that a reasonable
substitution can be made when a font cannot be located on the current computer.
The fonts are normally listed in a most-specific to most generic order. The TitleFont

Using ODS Styles to Control Graph Appearance 501

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

attribute shown in Output 27.1 on page 501, for example, specifies a list of fonts in
the following order: <sans-serif>, <MTsans-serif>, Helvetica, and then Helv. For
table title text, SAS searches the computer for a font in the TitleFont font list in the
order listed. The first font in the list that is found is used.

Several of the graph font style elements affect different features of a graph. The
following table shows some features, but not all, that are affected by the graph fonts.

Style Element Graph Text That It Affects

GraphTitleFont Used for all titles of the graph. Typically, this is the largest font.

GraphFootnoteFon
t

Used for all footnotes. Typically, this font is smaller than the title
font. Sometimes footnotes are italicized.

GraphLabelFont Used for axis labels and legend titles. Generally, this font is
smaller than the title font.

GraphValueFont Used for axis tick values and legend entries. Generally, this font
is smaller than the label font.

GraphDataFont Used for text where minimum size is necessary (such as for
point labels).

GraphUnicodeFont Used for adding special glyphs (for example, α , ±, €) to text in
the graph (see Chapter 19, “Adding Titles, Footnotes, and Text
Entries to Your Graph,” on page 317).

GraphAnnoFont Default font for text added as an annotation in the ODS
Graphics Editor.

Example: Customize the Fonts in the
STATISTICAL Style
The recommended styles listed in Table 27.1 on page 496 use sans-serif fonts. This
example shows you how to create a custom style that uses serif fonts instead of
sans-serif fonts. Although you can create a style template from scratch, it is simpler
to identify a style that is close to what you want and make limited changes to it. This
example uses the STATISTICAL style as the starting point (parent) for the custom
style. (See Output 27.1 on page 501.)

To create a custom style from the STATISTICAL style:

1 Name your modified style template SerifStatistical.

2 Specify STYLES.STATISTICAL as the parent style.

502 Chapter 27 / Managing Your Graph’s Appearance

Note: By assigning the parent to STYLES.STATISTICAL, you need to change
only the Fonts and GraphFonts style elements. The rest of the style elements
are inherited from the STATISTICAL style.

3 In the Fonts element, make the following changes:

n Change all occurrences of <sans-serif> to <serif>.

n Change all occurrences of <MTsans-serif> to <MTserif>.

n Change Helvetica and Helv (sans-serif fonts) to Times (a serif font).

These changes affect the table fonts.

4 In the GraphFonts element, repeat the changes in Step 3 on page 503.

TIP When you change fonts in a style, be sure to make consistent
changes to the Fonts and GraphFonts elements.

These changes affect the graph fonts. The completed SerifStatistical template is
shown in Example Code 27.1 on page 503.

5 Submit your template code. The following note appears in the SAS log.

NOTE: STYLE 'Styles.SerifStatistical' has been saved to:
SASUSER.TEMPLAT

Example Code 27.1 Completed SerifStatistical Style Template

proc template;
 define style Styles.SerifStatistical;
 parent = styles.statistical;
 style fonts from fonts /
 'TitleFont2'=("<serif>,<MTserif>,Times",2,bold)
 'TitleFont'=("<serif>,<MTserif>,Times",3,bold)
 'StrongFont'=("<serif>,<MTserif>,Times",2,bold)
 'EmphasisFont'=("<serif>, <MTserif>,Times",2,italic)
 'FixedFont'=("<monospace>,Courier",2)
 'BatchFixedFont'=("SAS
Monospace,<monospace>,Courier,monospace",2)
 'FixedHeadingFont'=("<monospace>,Courier,monospace",2)
 'FixedStrongFont'=("<monospace>,Courier,monospace",2,bold)
 'FixedEmphasisFont'=("<monospace>,Courier,monospace",2,italic)
 'headingEmphasisFont'=("<serif>,<MTserif>,Times",
 2,bold italic)
 'headingFont'=("<serif>,<MTserif>,Times",2,bold)
 'docFont'=("<serif>,<MTserif>,Times",2);
 style GraphFonts from GraphFonts /
 'NodeDetailFont'=("<serif>, <MTserif>",7pt)
 'NodeInputLabelFont'=("<serif>, <MTserif>",9pt)
 'NodeLabelFont'=("<serif>, <MTserif>",9pt)
 'NodeTitleFont'=("<serif>, <MTserif>",9pt)
 'GraphTitleFont'=("<serif>,<MTserif>",11pt,bold)
 'GraphFootnoteFont'=("<serif>,<MTserif>",10pt,italic)
 'GraphLabelFont'=("<serif>,<MTserif>",10pt)
 'GraphValueFont'=("<serif>,<MTserif>",9pt)

Using ODS Styles to Control Graph Appearance 503

 'GraphDataFont'=("<serif>,<MTserif>",7pt)
 'GraphUnicodeFont'=("<MTserif-unicode>",9pt)
 'GraphAnnoFont'=("<serif>,<MTserif>",10pt);
 end;
run;

Note: The node font attributes in the GraphFonts style element apply to SAS 9.4M1
and to later releases.

Testing Your Modified Style Template
After you submit your modified template, you can run a test program that uses your
modified style to verify that your changes are correct. Here is a SAS program that
tests the style template that was created in “Example: Customize the Fonts in the
STATISTICAL Style” on page 502.

/* Open an HTML destination using the modified style */
ods html close;
ods html style=SerifStatistical;

/* Print the first 5 observations in SASHELP.CLASS */
proc print data=sashelp.class(obs=5);
run;

/* Create a histogram from variable Age */
proc template;
 define statgraph histogram;
 begingraph;
 entrytitle "Histogram of Age";
 entryfootnote "SASHELP.CLASS";
 layout overlay /
 xaxisopts=(label="Age");
 histogram age / name="Histogram"
 scale=density binwidth=1 datalabeltype=count;
 densityplot age / name="Density" normal()
 curvelabel="Normal";
 discretelegend "Histogram" "Density";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.class template=histogram;
run;

ods html close;

The following figure shows the output.

504 Chapter 27 / Managing Your Graph’s Appearance

Notice that serif fonts are used in the table and graph text, which is correct.

Making Your Modified Style Template
Available to Others
When you submit your template code, the template is stored by default in the first
location in your ODS search path that has Write permission. You can run the
following statement to see your current ODS search path.

ods path show;

Here is an example of the output.

Current ODS PATH list is:
1. SASUSER.TEMPLAT(UPDATE)
2. SASHELP.TMPLMST(READ)

The example output shows that the first location, SASUSER.TEMPLAT, has Write
permission (UPDATE). Your default Sasuser.Templat location is available to you
only, which is appropriate for templates that are intended for your personal use. If
you want to make your template available to others, do the following:

Using ODS Styles to Control Graph Appearance 505

1 Select a directory that is accessible to other users. This example uses the path
u:\ODS_templates.

2 Use the ODS PATH statement to modify the ODS search path to include the path
that you selected in Step 1 on page 506:

libname common "u:\ODS_templates";
ods path common.dept(update)
 sasuser.templat(update)
 sashelp.tmplmst(read);

The first item store (Common.Dept) can be updated and will contain the new
template (Styles.SerifStatistical). You must include Sashelp.Tmplmst in the path
because the inherited parent style (Styles.Default) is in Sashelp.

3 Submit your template code again. A note similar to the following appears in the
SAS log:

NOTE: STYLE 'Styles.SerifStatistical' has been saved to:
COMMON.DEPT

For other users to access your style template, they must include the following code
at the start of the SAS programs:

libname common "path-to-your-style-template" access=readonly;
ods path sasuser.templat(update)
 common.dept(read)
 sashelp.tmplmst(read);

The code creates a library for the path in which you stored your modified style
template, and then adds that library to the ODS search path after Sasuser.Templat.

Using Options to Override Style
Attributes

Options That Override Attributes for Individual Plots

Overview of Graphical Properties
In GTL, the syntax for explicitly setting the properties of a graphical feature is a list
of name-value pairs that is enclosed in parentheses. For example, to set the X-axis
properties, you use the following option in the layout statement:

XAXISOPTS=(LABEL="string" TYPE=axis-type …)

The syntax for setting appearance options is similar. For example, in statements
such as SERIESPLOT, DENSITYPLOT, REFERENCELINE, and DROPLINE, you
use the LINEATTRS= option to specify the appearance of the line:

506 Chapter 27 / Managing Your Graph’s Appearance

LINEATTRS= (COLOR=color PATTERN=line-pattern THICKNESS=line-thickness)

The properties of any line that you can draw in GTL are specified in exactly the
same way, possibly with a different option keyword.

In BANDPLOT and MODELBAND statements, you use the following option to
specify the appearance of the outline:

OUTLINEATTRS=(COLOR=color PATTERN=line-pattern THICKNESS=line-
thickness)

In a BOXPLOT statement, you use the following options to specify the appearance
of the whiskers and median:

WHISKERATTRS=(COLOR=color PATTERN=line-pattern THICKNESS=line-
thickness)

MEDIANATTRS=(COLOR=color PATTERN=line-pattern THICKNESS=line-
thickness)

In BARCHART and BARCHARTPARM statements, you use the following options to
specify the appearance of the bar fill color and pattern:

FILLATTRS=(COLOR=color TRANSPARENCY=number)

FILLPATTERNATTRS=(COLOR=color PATTERN=pattern)

The list of properties in each of these options is sometimes called an "attribute
bundle."

Some GTL statements provide other options that override the visual attributes of
graphical features for an individual graph. For more information, see SAS Graph
Template Language: Reference. The remainder of this section describes the most
commonly used options.

LINEATTRS Option
The following syntax is the complete syntax for the LINEATTRS= option:

LINEATTRS = style-element | style-element (line-options) | (line-options)

For information about the attributes that you can specify with line-options, see “Line
Options” on page 666.

By default, a style-element is used for the LINEATTRS= setting. For the
REFERENCELINE and DROPLINE statements, the default style element is the
GraphReference element. What exactly does this mean?

Here is the GraphReference style element definition in the DEFAULT style template.

style GraphReference /
 linethickness = 1px
 linestyle = 1
 contrastcolor = GraphColors('greferencelines');

This definition is ODS style syntax for an attribute bundle. The following table shows
how this definition's style attributes map to GTL options.

Using Options to Override Style Attributes 507

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Style Attribute Description GTL Suboption Description

LINETHICKNESS dimension, most
often pixels

THICKNESS dimension, most
often pixels

LINESTYLE numeric; 1 to 46, 1
being a solid line

PATTERN either 1 to 46 or a
pattern name, such
as SOLID, DASH,
DOT (see
“Available Line
Patterns” on page
670 for examples
of available line
patterns)

CONTRASTCOLO
R

color specification COLOR color specification

The default specification for REFERENCELINE and DROPLINE statements is
LINEATTRS=GraphReference, which is a shortcut meaning "initialize the three GTL
line properties with the corresponding attributes that are defined in a style element."
This can be explicitly expressed in GTL as follows:

LINEATTRS=(PATTERN = GraphReference:LineStyle
 THICKNESS= GraphReference:LineThickness
 COLOR = GraphReference:ContrastColor)

In GTL, a style reference is a construct of the form style-element : style-attribute.
This convention is the way to refer to a specific style attribute of a specific style
element.

When selecting a different style element for the LINEATTRS= option, make sure that
the style element sets line properties. Graph style elements do not necessarily
define all possible attributes. Some reasonable choices might be GraphDataDefault,
GraphAxisLines, GraphGridLines. and GraphBorderLines. You might choose
GraphGridLines to force a reference line to match the properties of grid lines (if
displayed). When you make this type of assignment, you really do not know what
actual line properties will be used because they might change, depending on how a
given style is defined. What you should be confident of is that the grid lines and
reference lines are identical in terms of line properties.

You might want the reference lines to be somewhat like a style element, but
different. This requires an override. Here are some examples of style overrides:

n The following example makes the reference line look like a grid line (color and
pattern), but it is thicker (assuming most styles define grid lines as 1px):

LINEATTRS=GraphGridLines(THICKNESS=2px)

n The following example makes the reference line look like an axis line (color and
thickness), but it uses the DASH line pattern:

LINEATTRS=GraphAxisLines(PATTERN=DASH)

n The following example makes the reference line look like a reference line
(pattern and thickness), but it has the color of axis lines:

LINEATTRS=GraphReference(COLOR=GraphAxisLines:ContrastColor)

n The following example is a shorter form of the previous example:

508 Chapter 27 / Managing Your Graph’s Appearance

LINEATTRS=(COLOR=GraphAxisLines:ContrastColor)

Anytime you do not supply a style element or do not override all the suboptions,
the suboptions not overridden come from the default style references.

n The following example shows how you can hardcode visual properties:

LINEATTRS=(COLOR=BLUE)

This technique is a straightforward way of getting what you want. The results
might look good with the current ODS style, but it might not look as good when a
different style is used.

For a complete list of all of the style elements and attributes and their default values,
see Appendix 2, “Graph Style Elements Used by ODS Graphics,” on page 651.

MARKERATTRS Option
Much of what is said about line properties in “LINEATTRS Option” on page 507 also
applies to marker properties. Some plot statements, such as SERIESPLOT, display
a line and can display markers. In those cases, you should use the
DISPLAY=(MARKERS) option to turn on the marker display, and also use the
MARKERATTRS= option to control the appearance of markers. (The BOXPLOT
statement uses OUTLIERATTRS= and MEANATTRS= options).

The following syntax is the complete syntax for the MARKERATTRS= option:

MARKERATTRS=style-element | style-element (marker-options) | (marker-options)

For information about the attributes that you can specify with marker-options, see
“Marker Options” on page 668.

The following table shows how the MARKERATTRS= style attributes map to GTL
options.

Style Attribute Description GTL Suboption Description

CONTRASTCOLO
R

color specification COLOR color specification

MARKERSIZE dimension, most
often pixels

SIZE dimension, most
often pixels

MARKERSYMBOL string (for example,
" circle " or " square
")

SYMBOL predefined
keywords such a
CIRCLE, SQUARE,
TRIANGLE

none TRANSPARENCY transparency
specification, which
ranges from 0
(opaque) to 1
(entirely
transparent)

none WEIGHT NORMAL or BOLD

Using Options to Override Style Attributes 509

TEXTATTRS Option
The appearance of all text that appears in a graph can be controlled by the style or
with GTL syntax. Title and footnote text in a graph is specified with the
ENTRYTITLE and ENTRYFOOTNOTE statements. One or more lines of text can be
displayed in the plot area by using one or more ENTRY statements. Each of these
statements provides the TEXTATTRS= option for controlling the appearance of that
text.

The following syntax is the complete syntax for the TEXTATTRS= option:

TEXTATTRS=style-element | style-element (text-options) | (text-options)

Most often the TEXTATTRS=(text-options) settings are used to control text font and
color properties.

Text can also be specified on numerous options that are available on plot
statements and layout statements, and also on various axis options. For example,
most plot statements that can display a line provide the CURVELABEL= for labeling
the line. Axis options that are available for the layout statements provide the
LABEL= option for specifying an axis label. The default appearance of the text in
these cases is controlled by styles, but GTL syntax provides the
CURVELABELATTRS= and LABELATTRS= options for overriding the defaults. The
syntax and use for these options is similar to that of the TEXTATTRS= option. For
example, the following syntax is the complete syntax for the LABELATTRS= option:

LABELATTRS=style-element | style-element (text-options) | (text-options)

Changing text attributes is fully discussed in Chapter 19, “Adding Titles, Footnotes,
and Text Entries to Your Graph,” on page 317.

Options That Override Style Attributes for All of the
Plots in a Template

GTL provides options that you can use to override style attributes for all plots in a
template. These options are specified in the BEGINGRAPH statement for the
template. The following table lists these options.

Option Description

ATTRPRIORITY=AUTO |
COLOR | NONE

Specifies a priority for cycling the group attributes.
When COLOR is in effect, a color-priority rotation
pattern is used instead of the default GraphData1–
GraphDataN rotation pattern. See “The Color-
Priority Attribute Rotation Pattern” on page 549.

DATACOLORS=(color-list) Specifies the list of fill colors that replace the
graph data colors from the GraphData1–
GraphDataN style elements.

510 Chapter 27 / Managing Your Graph’s Appearance

Option Description

DATACONTRASTCOLORS=(col
or-list)

Specifies the list of contrast colors that replace the
graph data contrast colors from the GraphData1–
GraphDataN style elements.

DATALINEPATTERNS=(line-
pattern-list)

Specifies the list of line patterns that replace the
graph data line patterns from the GraphData1–
GraphDataN style elements.

DATASKIN=NONE | CRISP |
GLOSS | MATTE | PRESSED |
SHEEN

Enhances the visual appearance of all plots in the
template that support data skins. See “Using Data
Skins” on page 554.

DATASYMBOLS=(marker-
symbol-list)

Specifies a list of marker symbols that replace the
graph data marker symbols from the marker
symbols that are defined in the GraphData1–
GraphDataN style elements.

For more information about these BEGINGRAPH statement options, see
“BEGINGRAPH” in SAS Graph Template Language: Reference.

Controlling the Appearance of Non-
grouped Data

When you use statements such as SERIESPLOT, BANDPLOT, NEEDLEPLOT,
ELLIPSE, STEPPLOT, FRINGEPLOT, LINEPARM, and VECTORPLOT to draw
plots containing lines, the same style element, GraphDataDefault, is used for all line
and marker properties. You can think of these plots as "non-specialized," and they
all have the same default appearance when used in overlays

The following example produces series lines that have the same default
appearance.

proc template;
 define statgraph series;
 begingraph;
 entrytitle "Overlay of Multiple SERIESPLOTs";
 layout overlay / yaxisopts=(label="IBM Stock Price");
 seriesplot x=date y=high / curvelabel="High";
 seriesplot x=date y=low / curvelabel="Low";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.stocks template=series;
 where date between "1jan2002"d and "31dec2005"d
 and stock="IBM";

Controlling the Appearance of Non-grouped Data 511

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0j696v6yqkb79n12zed3am3omcx.htm&locale=en

run;

Here is the output.

To ensure that the series lines differ in appearance, you can use any style element
with line properties. A set of carefully constructed style elements named
GraphData1–GraphDataN (where N=12 for most styles, some styles might have
fewer) are normally used for this purpose. These elements all use different marker
symbols, line pattern, fill colors (COLOR=) and line and marker colors
(CONTRASTCOLOR=). All line and marker colors are of different hues but with the
same brightness, which means that all twelve colors can be distinguished but none
stands out more than another. Fill colors are based on the same hue but have less
saturation, making them similar but more muted than the corresponding contrast
colors.

In the following layout block, the style elements GraphData1 and GraphData2 are
used to change the default appearance of the series lines in the graph.

layout overlay / yaxisopts=(label="IBM Stock Price");
 seriesplot x=date y=high / curvelabel="High" lineattrs=GraphData1;
 seriesplot x=date y=low / curvelabel="Low" lineattrs=GraphData2;
endlayout;

Here is example output.

512 Chapter 27 / Managing Your Graph’s Appearance

This same graph could also be achieved by specifying CYCLEATTRS=TRUE on the
LAYOUT OVERLAY statement and omitting the LINEATTRS= options on the plot
statements. In that case, the visual attributes for each plot in the overlay are rotated
as described in “Attribute Rotation Patterns” on page 545. The GraphDataN style
elements provide visual distinction. All of these elements vary color, line pattern, and
marker symbols to gain maximum differentiation.

Sometimes, you might not want to vary all properties at once. For example, to force
only the color to change but not the line pattern, you can override one or more
properties that you want to hold constant as shown in the following layout block.

layout overlay / yaxisopts=(label="IBM Stock Price");
 seriesplot x=date y=high / curvelabel="High"
 lineattrs=GraphData1(pattern=shortdash);
 seriesplot x=date y=low / curvelabel="Low"
 lineattrs=GraphData2(pattern=shortdash);
endlayout;

Here is example output.

Other statements such as DENSITYPLOT, REGRESSIONPLOT, LOESSPLOT,
PBSPLINEPLOT, MODELBAND, REFERENCELINE, and DROPLINE are
"specialized" in the sense that their default line appearance is governed by other

Controlling the Appearance of Non-grouped Data 513

style elements such as GraphFit, GraphConfidence, GraphPrediction,
GraphReference, or some other specialized style element. When these statements
are used in conjunction with the "non-specialized" plot statements, there are
differences in appearance.

Controlling the Appearance of Grouped
Data

Plots That Support Grouped Data
The GROUP= column option is used to plot data when a classification or grouping
variable is available. Plots that support the GROUP= option include the following:

AXISTABLE HEATMAPPARM PIECHART
BANDPLOT HIGHLOWPLOT POLYGONPLOT
BARCHART LINECHART REGRESSIONPLOT
BARCHARTPARM LINEPARM SCATTERPLOT
BOXPLOT LOESSPLOT SCATTERPLOTMATRIX
BOXPLOTPARM MODELBAND SERIESPLOT
BUBBLEPLOT MOSAICPLOTPARM STEPPLOT
ELLIPSEPARM NEEDLEPLOT VECTORPLOT
FRINGEPLOT PBSPLINEPLOT WATERFALLCHART

Starting with SAS 9.4M2, the DENSITYPLOT, ELLIPSE, and HISTOGRAM
statements also support the GROUP= option.

Using the Default Appearance for Grouped Data
By default, the GROUP= option automatically uses the style elements GraphData1–
GraphDataN for the presentation of each unique group value. Consider the following
template for a series plot that displays grouped data.

Example Code 27.2 Template for a Grouped Series Plot

proc template;
 define statgraph groupedseries;
 begingraph;
 entrytitle "Tech Stocks 2002-2004";
 entryfootnote halign=left "Source: SASHELP.STOCKS";
 layout overlay;
 seriesplot x=date y=close / group=stock name="series"
 lineattrs=(thickness=2);
 discretelegend "series";
 endlayout;

514 Chapter 27 / Managing Your Graph’s Appearance

 endgraph;
 end;
run;
proc sgrender data=sashelp.stocks template=groupedseries;
 where date between "1jan02"d and "31dec04"d;
run;

Executing this template with the ODS style HTMLBLUE generates the following
output.

Attributes such as line color and pattern are used to display the group values. The
attributes are defined by the GraphData1–GraphDataN style elements for the style
that is in effect. Each group value is assigned attributes from a GraphData1–
GraphDataN style element sequentially (1 to N). When a SAS data set is plotted, the
group-value attributes are assigned in data order. When a CAS in-memory table is
plotted, the group-value attributes are assigned in ascending order of the group
column character or unformatted numeric values. For more information about
attribute rotation, see “Attribute Rotation Patterns” on page 545.

In the previous example, there are three unique values of column Stock in the
Sashelp.Stocks data set: IBM, Intel, and Microsoft. The line colors and line patterns
from the GraphData1–GraphData3 style elements of the HTMLBLUE style are used
for each of the three group values. Because the HTMLBLUE style defines the
AttrPriority="COLOR" style attribute, the color-priority attribute rotation pattern is
used. The ContrastColor attribute specifies the line color, and the LineType attribute
specifies the line pattern. See Graph Style Elements Used by ODS Graphics for
information about the GTL style elements and attributes. Attribute See “Attribute
Rotation Patterns” on page 545 for information about how the style attributes are
rotated for group values.

The colors and patterns are assigned to the values in the order in which they occur
in the Sashelp.Stocks data set. In this case, GraphData1 is assigned to IBM,
GraphData2 is assigned to Intel, and GraphData3 is assigned to Microsoft. Other
attributes such as fill color, fill pattern, and marker color that are used in other plot
types are assigned in a similar manner. Here are some additional examples of the
default grouped data appearance for other plot types. All of the plots in these
examples use the HTMLBLUE style.

Controlling the Appearance of Grouped Data 515

To specify different colors and patterns that you can specify a different ODS style or
you can create a custom style. For information about creating custom styles, see
“Using Custom Styles to Control the Appearance of Grouped Data” on page 517.
For many plots and charts, you can also use attribute maps to override certain style
attributes for specific group values. For information about attribute maps, see “Using
a Discrete Attribute Map to Control the Appearance of Grouped Data” on page
518.

516 Chapter 27 / Managing Your Graph’s Appearance

Using Custom Styles to Control the Appearance of
Grouped Data

Each style potentially can change the style attributes for GraphData1–GraphDataN.
If you have certain preferences for grouped data items, you can create a modified
style that will display your preferences. The following template creates a new style
named STOCKS that is based on the supplied style STYLES.LISTING. This
modification changes the properties for the GraphData1–GraphData3 style
elements. All other style elements are inherited from LISTING.

Example Code 27.3 Custom Style STOCKS

proc template;
 define style Styles.stocks;
 parent=styles.listing;
 style GraphData1 from GraphData1 /
 ContrastColor=blue
 Color=blue
 MarkerSymbol="CircleFilled"
 Linestyle=1;
 style GraphData2 from GraphData2 /
 ContrastColor=brown
 Color=brown
 MarkerSymbol="TriangleFilled"
 Linestyle=1;
 style GraphData3 from GraphData3 /
 ContrastColor=orange
 Color=orange
 MarkerSymbol="SquareFilled"
 Linestyle=1;
 end;
run;

In this style template, the LINESTYLE is set to 1 (solid) for the first three data
values. Style syntax requires that line styles be set with their numeric value, not their
keyword counterparts in GTL such as SOLID, DASH, or DOT. See “Available Line
Patterns” on page 670 for the complete set of line patterns.

CONTRASTCOLOR is the attribute applied to grouped lines and markers. COLOR
is the attribute applied to grouped filled areas, such as grouped bar charts or
grouped ellipses. MARKERSYMBOL defines the same values that can be specified
with the MARKERATTRS=(SYMBOL=keyword) option in GTL. See
“SYMBOL=style-reference | marker-name ” on page 668 for the complete set of
marker symbol names.

After the STOCKS style is defined, it must be requested on the ODS destination
statement. No modification of the compiled template is necessary. Here is an
example that uses the STOCKS style with the template in Example Code 27.2 on
page 514.

/* Specify a path for the ODS output */
filename odsout "output-path";
ods _all_ close;
ods graphics / reset imagename="stocks";

Controlling the Appearance of Grouped Data 517

ods html file="stocks.html" path=odsout style=stocks;

proc sgrender data=sashelp.stocks
 template=groupedseries;
 where date between "1jan02"d and "31dec04"d;
run;
ods html close;
ods html; /* Not required in SAS Studio */

Here is the output.

One issue that you should be aware of is that the STOCKS style only customized
the appearance of the first three group values. If there were more group values,
other unaltered style elements will be used, starting with GraphData4. Most styles
define (or inherit) GraphData1–GraphData12 styles elements. If you need more
elements, you can add as many as you desire, starting with one more than the
highest existing element (for example, GraphData13) and numbering them
sequentially thereafter.

Using a Discrete Attribute Map to Control the
Appearance of Grouped Data

You can use a discrete attribute map to specify the appearance of grouped data. For
more information, see “Using a Discrete Attribute Map” on page 538.

518 Chapter 27 / Managing Your Graph’s Appearance

Controlling the Appearance of Grouped Data for All
Graphs in a Template

Options That Override Style Attributes for
All of the Plots in a Template
You can use options in the BEGINGRAPH statement to override various style
attributes for all of the plots that are defined in a template. The following table lists
the options that you can use.

BEGINGRAPH Option Description

ATTRPRIORITY= Specifies a priority for the cycling of the attributes from
the GraphData1–GraphDataN style elements. See
“Attribute Rotation Patterns” on page 545.

DATACOLORS= Specifies the list of fill colors that replace the graph
data colors from the GraphData1–GraphDataN style
elements.

DATACONTRASTCOLORS
=

Specifies the list of contrast colors that replace the
graph data contrast colors from the GraphData1–
GraphDataN style elements.

DATASYMBOLS= Specifies the list of marker symbols that replace the
graph data marker symbols from the marker symbols
that are defined in the GraphData1–GraphDataN style
elements.

DATALINEPATTERNS= Specifies the list of line patterns that replace the graph
data line patterns from the GraphData1–GraphDataN
style elements.

These options apply to all of the plots that are defined in the template. They affect
the attribute assignments when the following criteria are true:

n The GROUP= option is used on a plot statement.

n Attribute options such as LINEATTRS= or MARKERATTRS= reference a
graphData1–GraphDataN style element.

n The CYCLEATTRS=TRUE option is in effect in an overlay-type layout.

You can override the attributes that are defined by these options on a per-plot basis
by using attribute options or a reference to an attribute map on the plot statement.

Controlling the Appearance of Grouped Data 519

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0j696v6yqkb79n12zed3am3omcx.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0j696v6yqkb79n12zed3am3omcx.htm&docsetTargetAnchor=n0eanbejabaughn1kfxv4rplsecw&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0j696v6yqkb79n12zed3am3omcx.htm&docsetTargetAnchor=p0kd9f9mn4lnhmn1ege4whinzih2&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0j696v6yqkb79n12zed3am3omcx.htm&docsetTargetAnchor=p0m4zl6pflral7n1151q4vjfqez6&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0j696v6yqkb79n12zed3am3omcx.htm&docsetTargetAnchor=p0m4zl6pflral7n1151q4vjfqez6&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0j696v6yqkb79n12zed3am3omcx.htm&docsetTargetAnchor=n07s3oib3h19fmn1ssu53041yldg&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0j696v6yqkb79n12zed3am3omcx.htm&docsetTargetAnchor=p0bv6vqav4ozdmn13ovrrolpg5nz&locale=en

Overriding the Fill Colors
You can use the DATACOLORS=(color-list) option to override the fill colors that are
defined in the current style’s GraphData1–GraphDataN style elements. When you
specify the DATACOLORS= option, the fill colors rotate through the colors that are
specified in the color list rather than through the colors that are specified in the
current style’s GraphData1–GraphDataN style elements. This rotation pattern
enables you to use the same colors in your plots regardless of the style that is in
effect.

Here is an example that specifies the fill colors very light red, very light green, and
light blue as the colors for the three group values of a grouped bar chart.

proc template;
 define statgraph groupedbar;
 dynamic year;
 begingraph / datacolors=(verylightred verylightgreen lightblue);
 entrytitle "Stock Index Performance - " year;
 layout overlay / xaxisopts=(label="Month");
 barchart category=date response=close / group=stock
name="barchart";
 discretelegend "barchart";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.stocks template=groupedbar;
 where date between "1jan02"d and "31dec02"d;
 format date MONNAME3.;
 dynamic year="2002";
run;

The following figure shows the result.

520 Chapter 27 / Managing Your Graph’s Appearance

If the number of unique colors needed exceeds the number of colors that are
specified in the color list, two new sets of colors are computed based on the original
colors. The first set is one shade lighter that the original colors, and the second set
is one shade darker. In the previous example, this pattern provides a maximum of
nine unique colors. Beyond nine values, the color pattern repeats, starting with the
10th value.

Overriding the Line Patterns and Line
Colors
You can use the DATACONTRASTCOLORS= and DATALINEPATTERNS= options
to override the line patterns and line colors that are defined in the current style’s
GraphData1–GraphDataN style elements. In this way, you can use the same colors
and line patterns in your plots regardless of the style that is in effect. Here is an
example that specifies the contrast colors light red, orange, and medium blue as the
colors for the three group values of a grouped series plot. It also specifies the line
patterns 2, 9, and 41 as the line patterns for the group values. (See “Available Line
Patterns” on page 670.) This example uses the HTMLBLUE style. In order to use a
different line pattern for each group value, the code must also include the
ATTRPRIORITY=NONE option to ensure that color does not take priority in the
attribute rotation.

Here is the SAS code for this example.

proc template;
 define statgraph groupedseries2;
 dynamic year;
 begingraph / attrpriority=none
 datacontrastcolors=(lightred orange mediumblue)
 datalinepatterns=(2 9 41);
 entrytitle "Stock Performance - " year;
 layout overlay / xaxisopts=(type=discrete label="Month");
 seriesplot x=date y=close / group=stock name="series";
 discretelegend "series";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.stocks template=groupedseries2;
 where date between "1jan02"d and "31dec02"d;
 format date MONNAME3.;
 dynamic year="2002";
run;

The following figure shows the result.

Controlling the Appearance of Grouped Data 521

The colors and line patterns remain constant regardless of the style that is in effect.

Overriding the Marker Symbols and Marker
Colors
You can use the DATACONTRASTCOLORS= and DATASYMBOL= options to
override the marker symbols and marker colors that are defined in the current style’s
GraphData1–GraphDataN style elements. In this way, you can use the same marker
symbols in your plots regardless of the style that is in effect. Here is an example that
specifies the marker symbols circle, square, and triangle for the three group values
of a grouped scatter plot. This example uses the HTMLBLUE style. In order to use a
different marker symbol for each group value, the code must also include the
ATTRPRIORITY=NONE option to ensure that color does not take priority in the
attribute rotation.

Here is the SAS code for this example.

proc template;
 define statgraph groupedscatter;
 dynamic year;
 begingraph / attrpriority=none
 datasymbols=(circlefilled squarefilled trianglefilled)
 datacontrastcolors=(lightred orange mediumblue);
 entrytitle "Stock Performance - " year;
 layout overlay / xaxisopts=(type=discrete label="Month");
 scatterplot x=date y=close / group=stock name="scatterplot";
 discretelegend "scatterplot";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.stocks template=groupedscatter;
 where date between "1jan02"d and "31dec02"d;
 format date MONNAME3.;

522 Chapter 27 / Managing Your Graph’s Appearance

 dynamic year="2002";
run;

The following figure shows the result.

The marker symbols remain constant regardless of the style that is in effect.

Changing the Grouped Data Display
With many plots, you can use the GROUPDISPLAY= option to change how group
values are displayed. The following table summarizes the values that you can use
with this option and the plot statements that are applicable for each.

Table 27.2 GROUPDISPLAY Option Values and the Applicable Plots for Each

Value
Applicable Plot
Statements Description

STACK BARCHART

BARCHARPARM

Stacks each group value on a single bar at
the category value on the axis.

CLUSTER BARCHART

BARCHARPARM

BOXPLOT

BOXPLOTPARM

NEEDLEPLOT

SCATTERPLOT

SERIESPLOT

STEPPLOT

Displays the group values side-by-side in a
cluster that is centered on the category value
on the axis.

Note: For NEEDLEPLOT, SCATTERPLOT,
SERIESPLOT, and STEPPLOT, the X axis
must be categorical.

Note: For SCATTERPLOT, SERIESPLOT,
and STEPPLOT, you can use the
CLUSTERAXIS= option to specify cluster
grouping on the Y axis, when applicable.

Controlling the Appearance of Grouped Data 523

Value
Applicable Plot
Statements Description

OVERLAY BOXPLOT

BOXPLOTPARM

NEEDLEPLOT

SCATTERPLOT

SERIESPLOT

STEPPLOT

Overlays the group values at the category
value on the axis.

For bar charts, by default, group values are stacked on each category bar. The
following figure shows an example using the STOCKS style that was created in
Example Code 27.3 on page 517.

When GROUPDISPLAY=CLUSTER, the group values are shown as a cluster of
bars, one bar for each group value in the category value, centered over the category
value as shown in the following figure.

524 Chapter 27 / Managing Your Graph’s Appearance

Here is the code that generated the previous plot.

/* Create a variable for the desired year. */
%let year=2002;

/* Specify a path for the ODS output */
filename outp "output-path";

/* Create a data set of the first six months of the year. */
data stocks;
 set sashelp.stocks;
 where year(date) eq &year and month(date) le 6;
 month=month(date);
run;

/* Format the numeric months into 3-character month names. */
proc format;
 value month3char
 1="Jan" 2="Feb" 3="Mar" 4="Apr" 5="May" 6="Jun";
run;

/* Create the template. */
proc template;
 define statgraph stocksgraph;
 begingraph;
 dynamic year;
 entrytitle "Stock Volume By Month for First Six Months of " year;
 layout overlay /
 yaxisopts=(griddisplay=on display=(line ticks tickvalues))
 xaxisopts=(display=(line ticks tickvalues));
 barchart category=month response=volume /
 name="total"
 dataskin=pressed
 group=stock
 groupdisplay=cluster;
 discretelegend "total";
 endlayout;
 endgraph;

Controlling the Appearance of Grouped Data 525

 end;
run;

/* Generate the bar chart using the bar template. */
ods graphics on / reset outputfmt=static imagename="stocks_&year";;
ods _all_ close;
ods html file="stocks_&year..html" path=outp style=stocks;
proc sgrender data=stocks template=stocksgraph;
 dynamic year=&year;
 format month month3char.;
run;
ods html close;
ods html; /* Not required in SAS Studio */

The STOCKS ODS style defines the graph appearance. (See Example Code 27.3
on page 517.) The width of each cluster is directly based on the number of category
values on the axis. By default, the cluster width is 85% of the midpoint spacing. You
can use the CLUSTERWIDTH= option to adjust the cluster width.

Within each cluster, by default, each bar occupies 100% of its available space.
When a cluster contains the maximum number of bars, no gap exits between the
adjacent bars in the cluster. You can use the BARWIDTH= option to add space
between the bars in the cluster.

For the remaining plot types (see Table 27.2 on page 523), the behavior of the
GROUPDISPLAY=CLUSTER option is similar to that of bar charts. That is, the
group values are clustered at the category value on the axis. You can also use the
CLUSTERWIDTH= option to vary the width of the clusters. For these plots, the
clusters include the following:

n plot markers for series plots and scatter plots

n step transitions and plot markers for step plots

n boxes for box plots

This is useful if you want to overlay a grouped SERIESPLOT onto a grouped
clustered BARCHART, for example.

When GROUPDISPLAY=OVERLAY is used, each group value for a category is
positioned at the category value on the axis. If one or more values appear in the
same position, the symbol for the last value overlays the symbol for the previous
value. The following figure shows series plot cluster and overlay group displays
together so that you can compare the two.

Note: Style STOCKS was used to generate the series plots. See Example Code
27.3 on page 517.

526 Chapter 27 / Managing Your Graph’s Appearance

Notice in the cluster display that the three-symbol cluster for each category is
centered on the category value, while in the overlay display, all of the symbols are
aligned on the category value. Also notice that in the overlay display some of the
symbols overwrite others that appear in the same location. In the case of a scatter
plot, the plot symbols behave in the same manner.

Including Missing Group Values
By default, missing group values are excluded from the plot. If you want to include a
group for the missing values, use the INCLUDEMISSINGGROUP=TRUE option in
your plot statement. If you include a discrete legend, the missing group is also
added to the legend. For numeric values, the label for the missing group in the
legend is a dot or the character that is specified by the SAS MISSING option. For
character values, the label for the missing group is a blank. You can use a FORMAT
statement to assign a more meaningful label to the missing group category. For
example, consider the following survey data.

 purchase_
Obs location method rating

 1 Atlanta In Person 8.4
 2 Atlanta In Person 7.4
 3 Seattle In Person 6.4
 4 Vermont Web 9.0
 5 Vermont 5.0
 6 Vermont In Person 9.8
 7 Seattle In Person 8.8
 8 Seattle Web 9.5
 9 Atlanta Web 8.5

Notice that the purchase method value is missing in observation 5. Here is a
template that generates a vertical bar chart from this data that is grouped by the
Purchase_Method column.

Controlling the Appearance of Grouped Data 527

proc template;
 define statgraph survey;
 begingraph;
 entrytitle "Customer Survey Results";
 layout overlay / xaxisopts=(label="Store Location")
 yaxisopts=(label="Satisfaction Rating");
 barchart category=location response=rating / name="barchart"
 stat=mean group=purchase_method groupdisplay=cluster
 barwidth=0.9 dataskin=sheen includemissinggroup=true;
 discretelegend "barchart" / title="Purchase Method";
 endlayout;
 endgraph;
 end;
run;

To include a group for missing Purchase_Method column values, the
INCLUDEMISSINGGROUP=TRUE option is specified in the BARCHART statement.
The FORMAT procedure is used to create a format that assigns a meaningful label
to the missing group.

/* Create a format for the missing order-type values */
proc format;
 value $ordertypefmt " "="Not Specified";
run;

The FORMAT procedure VALUE statement defines format $ORDERTYPEFMT,
which assigns the label Not Specified to any missing character value. Notice that a
missing character value is specified as a blank space enclosed in quotation marks in
the VALUE statement. It might seem appropriate to use empty quotation marks ('' or
"") to specify a missing character value. However, doing so produces unexpected
results. To specify a missing character value, enclose a single space in quotation
marks (' ' or " ").

Format $ORDERTYPEFMT is then applied to the Purchase_Method column in the
PROC SGRENDER statement.

/* Generate the chart */
proc sgrender data=surveydata template=survey;
 format purchase_method $ordertypefmt.;
run;
ods graphics off;

Here is the output.

528 Chapter 27 / Managing Your Graph’s Appearance

By default, the visual attributes of the missing group are determined by the
GraphMissing style element. Because a user-defined format is applied to the group
value in this example, the visual attributes of the missing group are determined by
the GraphData3 style element of the default style. To change the visual attributes of
the missing group value, you can use the INDEX= option in the BARCHART
statement to specify a different GraphDataN style element, use a different ODS
style, or you can use an attribute map.

Changing the Grouped Data Order
When unique group values are gathered, they are internally recorded in the order in
which they appear in the data. They are not subsequently sorted. As a result, the
group values appear in the plot in the order in which they occur in the data. Here is
an example using the GROUPEDSERIES template was created in Example Code
27.2 on page 514 and the custom style STOCKS that was created in Example Code
27.3 on page 517.

/* Specify a path for the ODS output */
filename odsout "output-path";
ods _all_ close;
ods graphics / reset imagename="stocks";
ods html file="stocks.html" path=odsout style=stocks;

proc sgrender data= sashelp.stocks template=groupedseries;
 where date between "1jan02"d and "31dec04"d;
run;
ods html close;
ods html; /* Not required in SAS Studio */

Here is the output.

Controlling the Appearance of Grouped Data 529

In this example, the groups are ordered in the order in which they appear in the
Sashelp.Stocks data set. Assume that you want to arrange the groups in ascending
order. One way to do this is to use the SORT procedure to create a sorted data set
to use with your plot. Here is an example.

/* Specify a path for the ODS output */
filename odsout "output-path";

proc sort data=sashelp.stocks out=stocks;
 by descending stock;
run;
ods _all_ close;
ods graphics / reset imagename="stocks";
ods html filename="stocks.html" path=odsout style=stocks;

proc sgrender data= stocks template=groupedseries;
 where date between
 "1jan02"d and "31dec04"d;
run;
ods html close;
ods html; /* Not required in SAS Studio */

Here is the result.

530 Chapter 27 / Managing Your Graph’s Appearance

Changing the order of the data changes the order in which the group values appear
on the plot. It also changes their association with the GraphData1–GraphDataN
style elements, which might change their appearance. This is apparent in the
previous example.

Another way to arrange your data is to use the GROUPORDER= option. For many
plots, you can instead use the GROUPORDER= option to change the order of the
groups in your plot without having to create a sorted data set or change the order of
the data in the original data set.

Note: The GROUPORDER= option is ignored if the GROUP= option is not used.

The GROUPORDER= option determines the default order of groups in the legend
and the order of the groups within each category. It does not change the association
of the GraphData1–GraphDataN style attributes with the group values. You can set
GROUPORDER= to one of the values that is shown in the following table.

Value Description

DATA Displays the group values in the order in which they appear in the
plot data (default)

ASCENDING Displays the group values in ascending order

DESCENDING Displays the group values in descending order

The attributes of the missing group value are determined by the GraphMissing style
element except when the MISSING= system option is used to assign a missing
character other than "." or when a user-defined format is applied to the missing
group value. In those cases, the attributes of the missing group value are
determined by a GraphData1-GraphdDataN style element based on data order
instead of the GraphMissing style element.

Controlling the Appearance of Grouped Data 531

Note: Using the GROUPORDER=ASCENDING or
GROUPORDER=DESCENDING option performs a linguistic sort on the group items
and has the same effect as sorting the input data. However, the data is not changed.

Making the Appearance of Grouped Data
Independent of Data Order

About Grouped Data Appearance and
Data Order
When a SAS data set is plotted, group values are assigned a GraphDataN style
element in data order. When a CAS in-memory table is plotted, the group values are
assigned a GraphDataN style element in ascending order of the group column
character or of the unformatted numeric values. When the input data source is
modified, sorted, or filtered, the association of each group value with a GraphData1–
GraphDataN style element might change. If you do not care which line pattern,
marker symbols, or colors are associated with particular group values, changing
associations might not be a problem. However, there might be cases in which you
want the appearance of your plots to be consistent. For example, if you create
several stock market plots grouped by STOCK, you might want a consistent set of
visual properties for each stock name across all of the plots, regardless of the input
data order.

There are two methods that you can use to achieve visual consistency regardless of
the data order: you can use a discrete attribute map to assign attributes to specific
group values or you can use the INDEX= option to map group values to specific
graphData1–graphDataN style elements. This section shows you how to use both
methods.

Using a Discrete Attribute Map to Achieve
Data-Independent Appearance for
Grouped Plots
You can use a discrete attribute map to associate visual attributes with specific
group values, which enables you to make plots that are consistent regardless of the
data order. Here is an example of a stock plot that is visually consistent regardless
of the order of the data. This example plots the closing stock price for IBM,
Microsoft, and Intel. In this example, each plot always uses the attributes shown in
the following table.

532 Chapter 27 / Managing Your Graph’s Appearance

Stock Line Pattern Marker Line and Marker Color

IBM solid filled circle blue

Intel solid filled square orange

Microsoft solid filled triangle dark red

To enforce this consistency, you must create a discrete attribute map that maps the
desired attributes to the stock values. Here is the code for this example.

/* Define the graph template. */
proc template;
 define statgraph groupindex;
 begingraph;
 /* Create an attribute map for this graph. */
 discreteattrmap name="stockname" / ignorecase=true;
 value "IBM" /
 markerattrs=GraphData1(color=blue symbol=circlefilled)
 lineattrs=GraphData1(color=blue pattern=solid);
 value "Intel" /
 markerattrs=GraphData2(color=orange symbol=squarefilled)
 lineattrs=GraphData2(color=orange pattern=solid);
 value "Microsoft" /
 markerattrs=GraphData3(color=darkred symbol=trianglefilled)
 lineattrs=GraphData3(color=darkred pattern=solid);
 enddiscreteattrmap;

 /* Create the attribute map variable. */
 discreteattrvar attrvar=stockmarkers var=stock
 attrmap="stockname";

 /* Define the graph. */
 entrytitle "Tech Stocks 2002-2004";
 entryfootnote halign=left "Source: SASHELP.STOCKS";
 layout overlay;
 seriesplot x=date y=close / group=stockmarkers
 name="series" lineattrs=(thickness=2) display=(markers);
 discretelegend "series";
 endlayout;
 endgraph;
 end;
run;

/* Render the graph. */
proc sgrender data= sashelp.stocks template=groupindex;
 where date between "1jan02"d and "31dec04"D;
run;

Note: Custom style STOCKS was created in Example Code 27.3 on page 517.

Here is the output.

Controlling the Appearance of Grouped Data 533

Figure 27.4 Graph Using a Discrete Attribute Map

To verify that the plot attributes are consistent regardless of the data order, create a
temporary data set from the Sashelp.Stocks data set and sort it by date and stock
name as shown in the following code.

/* Sort the SASHELP.STOCKS data by date and stock name. */
proc sort data=sashelp.stocks out=work.stocks;
 by date descending stock;
run;

Next, generate the graph again using the sorted data set.

/* Render the graph. */
proc sgrender data= stocks template=groupindex;
 where date between "1jan02"d and "31dec04"D;
run;

Here is the result.

Figure 27.5 Graph with the Data in Descending Order

534 Chapter 27 / Managing Your Graph’s Appearance

Notice that the colors, line patterns, and markers remain the same for each stock
even though the data order has changed. For more information about discrete
attribute maps, see “Using a Discrete Attribute Map” on page 538.

Using the INDEX= Option to Achieve Data-
Independent Appearance for Grouped
Plots
You can use the INDEX= option to specify a column in your data set that maps
graphData1–graphDataN style elements to specific group values. This enables you
to make plots that are visually consistent regardless of the data order. Here is the
example in “Using a Discrete Attribute Map to Achieve Data-Independent
Appearance for Grouped Plots” on page 532 modified to use the INDEX= option
instead of a discrete attribute map to achieve the same result.

To enforce this consistency, you must do the following:

n Add numeric column IDX to the data set that maps the stock values to a
graphDataN style element as follows:

1 IBM

2 Intel

3 Microsoft

n Specify the INDEX=IDX option in the SERIESPLOT statement. This maps
graphData1 to IBM, graphData2 to Intel, and graphData3 to Microsoft regardless
of the data order.

Here is the code for this example.

/* Specify a path for the ODS output */
filename odsout "output-path";

/* Add the IDX column to the data set */
data stocks;
 set sashelp.stocks;
 if (stock="IBM") then idx=1;
 else if (stock="Microsoft") then idx=2;
 else if (stock="Intel") then idx=3;
run;

/* Create the template for the graph */
proc template;
define statgraph groupindex;
 begingraph;
 /* Define the graph. */
 entrytitle "Tech Stocks 2002-2004";
 entryfootnote halign=left "Source: SASHELP.STOCKS";
 layout overlay;
 seriesplot x=date y=close / index=idx group=stock
 name="series" lineattrs=(thickness=2) display=(markers);
 discretelegend "series";
 endlayout;

Controlling the Appearance of Grouped Data 535

 endgraph;
end;
run;

/* Render the graph using the custom style. */
ods _all_ close;
ods graphics / reset imagename="stocks";
ods html file="stocks.html" path=odsout style=stocks;
proc sgrender data= stocks template=groupindex;
 where date between "1jan02"d and "31dec04"D;
run;
ods html close;
ods html; /* Not required in SAS Studio */

Note: Custom style STOCKS was created in Example Code 27.3 on page 517.

The output is the same as that shown in Figure 27.4 on page 534.

As described in “Using a Discrete Attribute Map to Achieve Data-Independent
Appearance for Grouped Plots” on page 532, if you sort the data and generate the
graph again, the visual attributes of the graph remain the same as that shown in
Figure 27.5 on page 534.

Using Attribute Maps

About Attribute Maps
By default, many of the graphical attributes of a plot vary with the plot data. For
example, when plots display grouped values, the graphical attributes for each group
value are selected by default from the GraphData1–GraphDataN style elements in
data order. Changes in the data order can significantly change the appearance of
the plot. When plots display a color gradient, the colors assigned to the classification
variable are derived by default from a color ramp based on the actual range of the
data. The color assigned to each value can vary with the range of the classification
values. Attribute maps enable you to assign the same graphical properties to
specific values or ranges of values regardless of data order or the data range. They
are useful when you want your graphs to have consistent visual properties when the
data varies.

GTL supports two types of attribute maps: discrete attribute maps and range
attribute maps. A discrete attribute map maps discrete values to graphical
properties. For example, consider the following plot of height and weight grouped by
sex. You can use a discrete attribute map to assign a filled blue diamond to M and a
red filled circle to F, as shown in the following figure.

536 Chapter 27 / Managing Your Graph’s Appearance

Regardless of data order, the same plot markers and colors are applied to the group
values.

A range attribute map maps numeric values or ranges of numeric values to
graphical properties. For example, consider the following plot of height and weight
distribution. You can use a range attribute map to assign colors based on specific
ranges of density, as shown in the following figure.

Regardless of the actual data ranges, the same colors are applied to the data that
falls within the specified ranges.

Using Attribute Maps 537

Using a Discrete Attribute Map

How a Discrete Attribute Map Is Defined
and Used
To define and use a discrete attribute map, you must do the following:

n Define the attribute map in a DISCRETEATTRMAP block in your template or in a
SAS data set.

n Associate the attribute map with a classification variable in the plot data.

n Reference the attribute map where needed in your plot statements.

For more information about how to create a discrete attribute map and how to
reference it in your plot statements, see “Key Concepts for Using Attribute Maps” in
SAS Graph Template Language: Reference.

Defining Your Discrete Attribute Map in
Your Template
To define and use your attribute map in your template, use a DISCRETEATTRMAP
block to specify the mapping information. Use a DISCRETEATTRVAR statement to
create an attribute-map variable that you can use to reference the attribute map in
your plot statements. Place the DISCRETEATTRMAP block and the
DISCRETEATTRVAR statement in the global definition area of the BEGINGRAPH
block. Do not embed the DISCRETEATTRMAP block or the DISCRETEATTRVAR
statement in any other GTL block. They must be children of the BEGINGRAPH
statement.

Here is an example that creates and applies a discrete attribute map to the values in
column Stock of the plot data set.

/* Create a stock data set for the year 2002 */
proc sort data=sashelp.stocks out=stocks;
 by stock date;
 where date between '01JAN02'd and '30DEC02'd;
run;

/* Create a template for IBM, Microsoft, and Intel stocks */
proc template;
define statgraph stockchart;
begingraph;
 entrytitle "Trends for IBM, Intel, and Microsoft";
 discreteattrmap name="stockname" / ignorecase=true;
 value "IBM" /
 markerattrs=GraphData1(color=red symbol=circlefilled)
 lineattrs=GraphData1(color=red pattern=solid);

538 Chapter 27 / Managing Your Graph’s Appearance

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nwfi81yxphp7n15on8f5rp4ahy.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1nwfi81yxphp7n15on8f5rp4ahy.htm&locale=en

 value "Intel" /
 markerattrs=GraphData2(color=green symbol=trianglefilled)
 lineattrs=GraphData2(color=green pattern=shortdash);
 value "Microsoft" /
 markerattrs=GraphData3(color=blue symbol=squarefilled)
 lineattrs=GraphData3(color=blue pattern=dot);
 enddiscreteattrmap;
 discreteattrvar attrvar=stockmarkers var=stock
 attrmap="stockname";
 layout overlay;
 seriesplot x=date y=close /
 group=stockmarkers
 display=(markers)
 name="trends";
 discretelegend "trends" / title="Stock Trends";
 endlayout;

endgraph;
end;
run;

/* Plot the stock trends */
proc sgrender data=stocks template=stockchart;
run;
quit;

This example overrides the attributes in the default style with different line and
marker attributes for the IBM, Intel, and Microsoft stock plot lines. In the example
code, notice that the NAME="stockname" option in the DISCRETEATTRMAP
statement provides a name for the discrete attribute map. Also notice that the
ATTRVAR=stockmarkers option in the DISCRETEATTRVAR statement provides a
name for the attribute-map-to-data-set-column association. The
ATTRMAP="stockname" and the VAR=stock options in the DISCRETEATTRVAR
statement associate the attribute map stockname with the data set column Stock
respectively to create an attribute variable. In the SERIESPLOT statement, the
GROUP=stockmarkers option applies the attribute map to the specified group
values.

The following figure shows the resulting output.

Using Attribute Maps 539

Figure 27.6 An Attribute Map Used in a Plot of Stock Trends

In this example, the markers, line colors, and line patterns in the plot remain the
same regardless of the data, data order, or ODS style that is in effect. For example,
if you run this example with a different ODS style and without any data for IBM, the
appearance of the Intel and Microsoft plot lines and markers remain the same. The
legend displays the items that appear in the data using the attributes that are
defined in the discrete attribute map.

TIP To display all of the items that are defined in the discrete attribute map
in the legend regardless of whether they appear in the data, specify the
DISCRETELEGENDENTRYPOLICY=ATTRMAP option in the
DISCRETEATTRMAP statement. See “DISCRETEATTRMAP” in SAS Graph
Template Language: Reference for more information.

Defining Your Discrete Attribute Map in a
SAS Data Set
Starting with SAS 9.4M1, you can define your discrete attribute map in a SAS data
set rather than in your template. An attribute map cannot be defined in a CAS in-
memory table. You must define it in a SAS data set. Using a SAS data set enables
you to change the attribute mapping without having to modify your template. The
data set replaces the DISCRETEATTRMAP block and VALUE statements in the
template code. The SAS data set contains one observation for each discrete value
that you want to map.

Each observation contains a required ID and VALUE column, and one or more
graphical property columns. The ID column specifies the name of the attribute map.
The Value column specifies the discrete values that are to be mapped to the
specified graphical properties. The graphical property columns define the graphical
properties that are mapped to each value. The data set can contain observations for
more than one attribute map.

540 Chapter 27 / Managing Your Graph’s Appearance

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0mx6gudpcurt7n1ubv4fvbhj4fc.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0mx6gudpcurt7n1ubv4fvbhj4fc.htm&locale=en

For more information about how to define a discrete attribute map in a SAS data set,
see “Specifying the Attribute Mapping Information in a SAS Data Set” in SAS Graph
Template Language: Reference.

To associate the attribute map that is defined in the data set with a classification
variable in the plot data, use one of the following methods in the template:

n Use a DISCRETEATTRVAR statement to create an attribute map variable for the
attribute map, and then specify the attribute map variable as needed in your plot
statements.

n Specify the classification variable by name in your plot statements as needed. In
the SGRENDER statement, include a DATTRVAR statement that associates the
classification variable in the plot data with the attribute map.

With both methods, you must also include the DATTRMAP= option in the
SGRENDER statement to specify the name of the attribute map data set.

Note: For information about the SGRENDER DATTRMAP= option and the
DATTRVAR statement, see SAS ODS Graphics: Procedures Guide

In the example shown in “Defining Your Discrete Attribute Map in Your Template” on
page 538, you can create the following data set to replace the
DISCRETEATTRMAP block in the template code:

/* Create the attribute map data set */
data attrmap;
 length ID VALUE MARKERCOLOR MARKERSYMBOL LINECOLOR LINEPATTERN $15;
 input ID$ VALUE$ MARKERCOLOR$ MARKERSYMBOL$ LINECOLOR$ LINEPATTERN$;
datalines;
stockname IBM red circlefilled red solid
stockname Intel green trianglefilled green shortdash
stockname Microsoft blue squarefilled blue dot
;
run;

The ID column specifies STOCKNAME as the name of the attribute map. The Value
column specifies the mapped values, and the remaining columns specify the
graphical properties that are mapped to each value. Here is the example code,
modified to use the Attrmap data set rather than the DISCRETEATTRMAP block .

/* Create a stock data set for the year 2002 */
proc sort data=sashelp.stocks out=stocks;
 by stock date;
 where date between '01JAN02'd and '30DEC02'd;
run;

/* Create a template for IBM, Microsoft, and Intel stocks */
proc template;
define statgraph stockchart;
begingraph;
 entrytitle "Trends for IBM, Intel, and Microsoft";
 discreteattrvar attrvar=stockmarkers var=stock
 attrmap="stockname";
 layout overlay;
 seriesplot x=date y=close /
 group=stockmarkers
 display=(markers)
 name="trends";

Using Attribute Maps 541

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1oq0axfb1tc1yn10kgw6dyuitk2.htm&docsetTargetAnchor=n04wk3609m6iv9n1ofbsryxx57w8&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1oq0axfb1tc1yn10kgw6dyuitk2.htm&docsetTargetAnchor=n04wk3609m6iv9n1ofbsryxx57w8&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

 discretelegend "trends" / title="Stock Trends";
 endlayout;
endgraph;
end;
run;

/* Plot the stock trends */
proc sgrender data=stocks dattrmap=attrmap template=stockchart;
run;
quit;

The DISCRETEATTRVAR statement creates the attribute map variable
STOCKMARKERS, which is specified by the GROUP= option in the
SCATTERPLOT statement. The ATTRMAP= option in the DISCRETEATTRVAR
statement specifies the name of the attribute map, as specified in the ID column of
the attribute map data set. The DATTRMAP= option in the SGRENDER statement
specifies the name of the attribute map data set. The output is shown in Figure 27.6
on page 540. To associate the Stock variable with a different attribute map, you
must modify the DISCRETEATTRVAR statement ATTRMAP= option in the template
code to specify the new attribute map name. Likewise, to associate the
STOCKNAME attribute map with a different variable, you must modify the
DISCRETEATTRVAR statement VAR= option to specify the new variable name.

Here is the template, modified to use a DATTRVAR statement in the SGRENDER
statement instead of using the DISCRETEATTRVAR statement in the template. The
modification associates the attribute map with column Stock in the plot data.

/* Create a template for IBM, Microsoft, and Intel stocks */
proc template;
define statgraph stockchart;
begingraph;
 entrytitle "Trends for IBM, Intel, and Microsoft";
 layout overlay;
 seriesplot x=date y=close /
 group=stock
 display=(markers)
 name="trends";
 discretelegend "trends" / title="Stock Trends";
 endlayout;
endgraph;
end;
run;

/* Plot the stock trends */
proc sgrender data=stocks dattrmap=attrmap template=stockchart;
 dattrvar stock="stockname";
run;
quit;

In this case, the Stock column is specified by name in the GROUP= option in the
SERIESPLOT statement. In the SGRENDER statement, the DATTRMAP= option
specifies the attribute map data set name, and the DATTRVAR statement
associates the column Stock with the attribute map that is specified in the ID column
of the attribute map data set. To associate the Stock variable with a different
attribute map or to associate the STOCKNAME attribute map with a different
variable, you need only modify the DATTRVAR statement. You do not need to
modify the template code.

542 Chapter 27 / Managing Your Graph’s Appearance

In some cases, you might need to use a WHERE statement in your SGRENDER
procedure step to subset your data. Be aware that a WHERE statement in the
SGRENDER procedure step applies to the data set specified in the DATA= option
only. It does not apply to the attribute-map data set specified in the DATTRMAP=
option. If you need to subset the data in your attribute map data set using a WHERE
clause, use a WHERE statement in a DATA step to create a new attribute map data
set or use the data set WHERE option in the SGRENDER procedure DATTRMAP=
option. Here is an example of the latter:

dattrmap=attrmap(where=(value in ("Microsoft", "Intel")))

Using a Range Attribute Map
To define and use a range attribute map, you must do the following:

n Define the attribute map in a RANGEATTRMAP block in the global definition
area of your template between the BEGINGRAPH statement and the first layout
statement. Do not embed the RANGEATTRMAP block in any other GTL block. It
must be a child of the BEGINGRAPH statement.

n Use a RANGEATTRVAR statement to associate the attribute map with a
response variable in the plot data. Place the RANGEATTRVAR statement in the
global definition area of your template. Do not embed the RANGEATTRVAR
statement in any other GTL block. It must be a child of the BEGINGRAPH
statement.

n Reference the attribute map where needed in your plot statements.

For more information about how to create a range attribute map, see “Defining a
Range Attribute Map” in SAS Graph Template Language: Reference.

Here is an example of a template that creates and applies a range attribute map to
the Weight column of a SCATTERPLOT statement data set in order to color the
markers in the resulting plot by weight range. It also creates a continuous legend.

proc template;
 define statgraph attrrange;
 begingraph;
 /* Create the range attribute map. */
 rangeattrmap name="scale";
 range 0-70 /
 rangealtcolor=black; /* 0 to 70 inclusive */
 range 70<-107 /
 rangealtcolor=blue; /* 70 exclusive to 107 inclusive */
 range 107<-125 /
 rangealtcolor=green; /* 107 exclusive to 125 inclusive */
 range 125<-200 /
 rangealtcolor=red; /* 125 exclusive to 200 inclusive */
 endrangeattrmap;

 /* Create the range attribute map variable. */
 rangeattrvar attrvar=weightrange var=weight attrmap="scale";

 /* Create the graph. */
 entrytitle "Weight Class";
 layout overlay /

Using Attribute Maps 543

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1hck9rzd8g1s1n1hvo4p8kvmyhe.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1hck9rzd8g1s1n1hvo4p8kvmyhe.htm&locale=en

 xaxisopts=(griddisplay=on gridattrs=(color=lightgray
pattern=dot))
 yaxisopts=(griddisplay=on gridattrs=(color=lightgray
pattern=dot));
 scatterplot x=weight y=height / markercolorgradient=weightrange
 markerattrs=(symbol=circlefilled size=10) name='wgtclass';

 /* Add a continuous legend. */
 continuouslegend 'wgtclass';
 endlayout;
 endgraph;
 end;
run;

/* Render the graph. */
ods graphics / width=4in height=3in;
proc sgrender data=sashelp.class template=attrrange;
run;

The following figure shows the resulting output.

In the example code, notice that the NAME=”scale” option in the RANGEATTRMAP
statement provides a name for the range attribute map. A RANGE statement
specifies a color for each of four ranges. Because the SCATTERPLOT statement
uses the ContrastColor style attribute for the marker colors in a grouped plot, the
RANGEALTCOLOR= option is used in each RANGE statement to define the range
color. The ATTRVAR=weightrange option in the RANGEATTRVAR statement
provides a name for the attribute-map-to-data-set-column association. The
ATTRMAP=”scale” and the VAR=weight options in the RANGEATTRVAR statement
associate the attribute map scale with the data set column Weight respectively. In
the SCATTERPLOT statement, the MARKERCOLORGRADIENT=weightrange
option applies the range attribute map to the Weight column values and colors the
plot markers according to the ranges that are specified in the range attribute map.
To add a legend that displays the marker colors for the weight ranges, you can
include a CONTINUOUSLEGEND statement. For information about continuous
legends, see “Adding a Continuous Legend” on page 374.

544 Chapter 27 / Managing Your Graph’s Appearance

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p08qhdljvzthmnn1vkbule00ad6r.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n11ergda33xtlwn1rdkbl1crim9n.htm&docsetTargetAnchor=n11azanu2fbrvdn1jnib8ekhf8cl&locale=en

Attribute Rotation Patterns

About the Attribute Rotation Patterns
By default, attributes such as colors, marker symbols, fill patterns, and line patterns
are rotated for group values in a grouped plot or for each plot in an overlay when
CYCLEATTRS=TRUE. The attributes are derived from the GraphData1–
GraphDataN style elements for the style that is in effect. There are two distinct
attribute rotation patterns: the default pattern and the color-priority pattern. These
patterns are described in “The Default Attribute Rotation Pattern” on page 546 and
“The Color-Priority Attribute Rotation Pattern” on page 549.

The rotation pattern that is used is determined by the AttrPriority attribute in the
current style, by the ATTRPRIORITY= option in the ODS GRAPHICS statement, or
by the ATTRPRIORITY= option in the BEGINGRAPH statement. The ODS
GRAPHICS statement ATTRPRIORITY= option value is AUTO by default, which
enables the AttrPriority attribute in the current style to determine the rotation pattern.
In that case, if the current style’s AttrPriority attribute specifies COLOR, the color-
priority rotation pattern is used. If the current style does not specify the AttrPriority
attribute or specifies AttrPriority="NONE", the default rotation pattern is used. The
ODS GRAPHICS statement ATTRPRIORITY= option can override the current
AttrPriority style attribute setting with NONE or COLOR. (See “ODS GRAPHICS” in
SAS Graph Template Language: Reference.) The BEGINGRAPH statement
ATTRPRIORITY= option overrides the ODS GRAPHICS statement
ATTRPRIORITY= option for all plots in a BEGINGRAPH block. (See
ATTRPRIORITY=.)

TIP If you want groups to be distinguished by color, marker, and line
changes for all ODS styles that use color, specify ATTRPRIORITY=NONE in
your BEGINGRAPH statement or in an ODS GRAPHICS statement.

When you plot a SAS data set with either the default rotation pattern or the color-
priority pattern, the group-value attributes are assigned in data order. Any change in
the data order can affect the appearance of grouped plots. When you plot a CAS in-
memory table, the group-value attributes are always assigned in ascending order of
the group column character or of the unformatted numeric values.

TIP To make the appearance of your grouped plots independent of data
order, use a discrete attribute map or the INDEX= option (where supported)
to control the appearance of your group values. See “Making the Appearance
of Grouped Data Independent of Data Order” on page 532.

Attribute Rotation Patterns 545

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0j696v6yqkb79n12zed3am3omcx.htm&docsetTargetAnchor=n0eanbejabaughn1kfxv4rplsecw&locale=en

The Default Attribute Rotation Pattern
The default rotation iterates through the lists of colors, marker symbols, fill patterns
(when supported), and line patterns as they are defined in the GraphData1–
GraphDataN style elements.

Note: Prior to SAS 9.4M5, fill patterns are supported only by selected ODS styles
such as JOURNAL2 and MONOCHROMEPRINTER. Starting with SAS 9.4M5, the
DEFAULT ODS style and all of the styles that are derived from it support fill
patterns. For more information, see SAS Output Delivery System: User’s Guide.

When all of the values in the list for contrast colors, marker symbols, fill patterns,
and line patterns have been used, the values iterate through the list again. When all
of the values for the area fill colors have been used, two new sets of colors are
automatically generated, which are based on the original colors. The first set is one
shade lighter than the original colors, and the second set is one shade darker.

The number of unique attribute combinations that are available depends on the
ODS style that you are using. The DEFAULT style, for example, defines the
attributes that are shown in the following table.

Table 27.3 Colors, Marker Symbols, and Line Patterns Defined in the DEFAULT Style

Style
Element Color1

Contrast
Color1

Marker
Symbol2

Line
Pattern3

Fill
Pattern 4

GraphData1 cx7C95CA cx2A25D9 CIRCLE 1 L1

GraphData2 cxDE7E6F cxB2182B PLUS 4 X1

GraphData3 cx66A5A0 cx01665E X 8 R1

GraphData4 cxA9865B cx543005 TRIANGLE 5 L2

GraphData5 cxB689CD cx9D3CDB SQUARE 14 X2

GraphData6 cxBABC5C cx7F8E1F ASTERISK 26 R2

GraphData7 cx94BDE1 cx2597FA DIAMOND 15 L3

GraphData8 cxCD7BA1 cxB26084 20 X3

GraphData9 cxCF974B cxD17800 41 R3

GraphData1
0

cx87C873 cx47A82A 42 L4

GraphData1
1

cxB7AEF1 cxB38EF3 2 R4

546 Chapter 27 / Managing Your Graph’s Appearance

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Style
Element Color1

Contrast
Color1

Marker
Symbol2

Line
Pattern3

Fill
Pattern 4

GraphData1
2

cxDDD17E cxF9DA04

1 The colors are defined by GDATA1 through GDATA12, and the contrast colors are defined by
GCDATA1 through GCDATA12 in the style template.

2 See the SYMBOL= option in “Marker Options” on page 668.
3 See “Available Line Patterns” on page 670.
4 Fill patterns are available with the DEFAULT ODS style starting with SAS 9.4M5. For an example of

each of the fill patterns, see Table A3.1 on page 666.

These attribute definitions yield the following results:

n 36 unique area fill colors (12 base colors + 12 lighter colors + 12 darker colors)

n 7 unique marker symbols, and 84 unique marker symbol and marker color
combinations (7 symbols x 12 contrast colors or fill colors)

n 11 unique line patterns, and 132 unique line color and line pattern combinations
(11 patterns x 12 contrast colors)

n 11 unique area fill patterns, and 396 unique area fill pattern and fill color
combinations (11 fill patterns x 36 fill colors)

Note: Fill patterns are available with the DEFAULT ODS style starting with SAS
9.4M5.

When area fill colors are rotated, the colors first iterate through the 36 unique colors
(the 12 base colors, the 12 lighter colors, and finally the 12 darker colors). The
entire pattern repeats starting with the 37th iteration. The following figure shows one
complete fill color rotation cycle for the DEFAULT style.

When marker symbol attributes are rotated, the marker symbols first iterate through
the seven symbols and the first seven contrast colors (unfilled markers). On the
eighth iteration, the first marker symbol (CIRCLE in this case) is repeated with the
eighth contrast color. The next four symbols are then repeated with the remaining
three contrast colors. On the 13th iteration, the first contrast color is repeated with
the fifth marker symbol (SQUARE in this case). This pattern continues for the
remaining group values. The entire pattern repeats, starting with the 85th iteration.

Note: For filled markers and outlined filled markers, the marker fill colors rotate
through the fill colors that are defined in the GraphData1–GraphDataN style

Attribute Rotation Patterns 547

elements. Unlike area fill colors, new lighter and darker colors are not generated for
the marker fills. The marker fill colors simply repeat.

The following figure shows the complete standard rotation of marker symbols and
symbol colors for the DEFAULT style.

When line attributes are rotated, the line patterns first iterate through the 11 line
patterns with the first 11 contrast colors. On the 12th iteration, the first line pattern
(1) is repeated with the 12th contrast color (see “Available Line Patterns” on page
670). On the 13th iteration, the first contrast color is repeated with the second line
pattern (4). This pattern continues for the remaining group values. The entire pattern
repeats, starting with the 133rd iteration.

The following figure shows the complete standard rotation of line styles and line
colors for the DEFAULT style.

Prior to SAS 9.4M5, some ODS styles such as JOURNAL2 provide fill pattern as an
additional attribute. Starting with SAS 9.4M5, the DEFAULT ODS style and all of the
styles that are derived from it provide fill pattern as an additional attribute. By
default, the fill patterns rotate as they are defined in the GraphData1–GraphDataN
style elements. The JOURNAL2 style, for example, provides 36 gray-scale fill colors

548 Chapter 27 / Managing Your Graph’s Appearance

and 15 unique fill patterns, which yield 540 unique fill color and fill pattern
combinations. The following figure shows the default fill color and fill pattern rotation
for the first 36 iterations using the JOURNAL2 style.

Starting with SAS 9.4M5, the DEFAULT ODS style provides 36 fill colors and 11
unique fill patterns, which yield 396 unique fill color and fill pattern combinations.
The following figure shows the default fill color and fill pattern rotation for the first 36
iterations using the DEFAULT style.

ODS styles that are derived from the DEFAULT style follow the same default fill-
pattern rotation.

The Color-Priority Attribute Rotation Pattern
The color-priority rotation pattern alters the rotation of marker symbol and line
attributes, and fill patterns (when supported) only. Area fill-color rotation follows the
default rotation in the color-priority pattern. In the color-priority rotation pattern, the
marker symbol, line pattern, or fill pattern is held constant while each color in the list
is applied to the marker symbol, line, or area. The number of unique combinations is
unchanged from the default rotation pattern. The examples in this section use the
DEFAULT style to describe the color-priority rotation pattern so that you can
compare the two patterns. See Table 27.3 on page 546.

Note: Because the DEFAULT style does not define the AttrPriority="COLOR" style
attribute, in order to activate the color-priority rotation pattern, you must specify the
ATTRPRIORITY=COLOR option in an ODS GRAPHICS statement in your SAS

Attribute Rotation Patterns 549

program or in the BEGINGRAPH statement in your template. See
ATTRPRIORITY=.

When marker attributes are rotated, the first symbol (CIRCLE in this case) is held
constant while the colors iterate through the entire list of contrast colors (unfilled
markers). On the 13th iteration, the marker symbol changes to the second symbol in
the list (PLUS in this case), which is held constant while the colors iterate again.
This pattern continues for the remaining group values. The entire pattern repeats,
starting with the 85th iteration.

The following figure shows the complete color-priority rotation of marker symbols
and symbol colors for the DEFAULT style.

When line attributes are rotated, the first line pattern (1) is held constant while the
colors iterate through the entire list of contrast colors (see “Available Line Patterns”
on page 670). On the 13th iteration, the line pattern changes to the second pattern
(4), which is held constant while the colors iterate again. This pattern continues for
the remaining group values. The entire pattern repeats, starting with the 133rd
iteration.

The following figure shows the complete color-priority rotation of line styles and line
colors for the DEFAULT style.

550 Chapter 27 / Managing Your Graph’s Appearance

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n0j696v6yqkb79n12zed3am3omcx.htm&docsetTargetAnchor=n0eanbejabaughn1kfxv4rplsecw&locale=en

When fill patterns are rotated, the first pattern is held constant while the fill colors
rotate through the entire list of fill colors. When all of the fill colors have been used,
the next fill pattern is held constant while the fill colors iterate again. This pattern
continues for the remaining fill patterns. Prior to SAS 9.4M5, only ODS styles
JOURNAL2, JOURNAL3, and MONOCHROMEPRINTER support fill patterns.
Starting with SAS 9.4M5, the DEFAULT style and all of the styles that are derived
from it also support fill patterns. The following figures show the color-priority fill color
and fill pattern rotation for the first 36 iterations using the JOURNAL2 and DEFAULT
styles.

Attribute Rotation Patterns 551

ODS styles that are derived from the DEFAULT style follow the same color-priority
fill-pattern rotation.

Using Transparency
GTL supports transparency for plot features such as filled areas, marker symbols,
lines, and so on, for output formats that support transparency. Output formats that
support transparency are PNG and vector graphics, with the following exceptions:

n The EMF output format does not support transparency when the graph is
rendered as vector-graphics output. Transparency is supported when the graph
is rendered as a PNG image.

n The ODS PS destination does not support transparency when the graph is
rendered as a PNG image. Transparency is supported when the graph is
rendered as vector-graphics output.

Transparency is useful in overlay situations where filled areas obscure underlying
graph elements. In that case, you can make the filled areas semitransparent in order
to allow the underlying elements to show through. You can also reduce the visual
impact of certain elements in relation to others in order to draw attention to certain
aspects of a graph. Many of the GTL plot statements provide the
DATATRANSPARENCY= option, which enables you to adjust the transparency of
the plot data elements. Many of the attribute options such as MARKERATTRS=,
OUTLINEATTRS=, FILLATTRS= that are provided in GTL statements support a
TRANSPARENCY= suboption. This suboption enables you to adjust the
transparency of more specific elements. For information about how to adjust
transparency by using these options, see SAS Graph Template Language:
Reference.

Here is an example that specifies data transparency for model band plots that are
overlaid with a scatter plot and a regression plot. Transparency is used to change
the focus of the graph. Here is the SAS code.

/* Generate the data for the graph */
proc reg data=sashelp.class noprint;
 model weight=height / alpha=.01;
 output out=predict predicted=p lclm=lclm uclm=uclm;
run;

/* Define the template for the graph */
proc template;
 define statgraph fit;
 begingraph;
 entrytitle "Regression Fit Plot";
 layout overlay;
 modelband "cli" / display=(outline)
 outlineattrs=GraphPrediction
 datatransparency=.5;
 modelband "clm" / display=(fill)
 fillattrs=GraphConfidence
 datatransparency=.5;
 scatterplot x=height y=weight /
 primary=true;

552 Chapter 27 / Managing Your Graph’s Appearance

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

 regressionplot x=height y=weight /
 alpha=.05 clm="clm" cli="cli";
 endlayout;
 endgraph;
 end;
run;

/* Render the graph */
proc sgrender data=predict template=fit;
run;

Here is the output generated in the PNG format.

Setting the transparency of the model band data elements to 0.5 reduces their
visual impact. Focus on the scatter plot markers and the regression line in the graph
is increased.

Starting with SAS 9.4M3, you can use transparency to enable the background to
show through a graph. To make the graph background transparent, use the
OPAQUE=FALSE option in the BEGINGRAPH statement. To make the graph layout
background transparent as well, use the WALLDISPLAY=NONE or
WALLDISPLAY=(OUTLINE) option in the layout statement.

Here is an example.

proc template;
 define statgraph barchart;
 begingraph / opaque=false;
 entrytitle "Average Mileage by Vehicle Type";
 layout overlay / walldisplay=(outline);
 barchart category=type response=mpg_highway / name="barchart"
 fillattrs=(color=DarkSeaGreen)
 stat=mean orient=horizontal dataskin=matte;
 endlayout;
 endgraph;
 end;

proc sgrender data=sashelp.cars template=barchart;
run;

Here is the output generated using the Analysis ODS style.

Using Transparency 553

Using Data Skins
Data skins add a heightened visual effect to two-dimensional plots. Each skin uses
shading, highlighting, and shadowing to give the appearance of contour and depth
to certain elements of a graph, including the legend. For plots, the effect is
generated by filters and is applied to filled areas, markers, and lines. When a data
skin is applied to a filled area, it does not change the underlying fill color and pattern
of the area. Typically, a data skin sets the area fill outline color to black. The outline
color is controlled by the filters that generate the skin and is not controlled by the
ODS style attributes or any custom outline attributes that are specified. For very
small or very narrow filled areas, the data skin might not draw an outline around the
filled area. For filled outlined markers, the outline color is determined by the ODS
style attributes or by any custom marker attributes that are specified.

The effect that a data skin has on a filled area depends on the skin type, and on the
size and color of the filled area. Because the ODS style determines the fill color by
default, the effect can depend on the ODS style. Some skins have a greater effect
than others. Most of the skins work best with lighter colors over a medium to large
filled area. Over small filled areas and with some fill colors, the effect can be
significantly reduced.

Note: Some ODS styles such as JOURNAL2 and MONOCHROMPRINTER use
pattern fill for certain areas rather than color fill. For these styles, data skins have no
effect on the pattern-filled areas.

You can apply data skins to filled areas, markers, and lines in a plot. The data skins
include CRISP, GLOSS, MATTE, PRESSED, and SHEEN. The following figure
shows the effect of each data skin on filled bars and bubbles with the default
HTMLBlue ODS style. A display with no data skin applied is included for
comparison.

554 Chapter 27 / Managing Your Graph’s Appearance

Figure 27.7 Data Skins Applied to Filled Bars and Bubbles

The next figure shows each of the data skins applied to large HOMEDOWNFILLED
markers.

Using Data Skins 555

Figure 27.8 Data Skins Applied to HOMEDOWNFILLED Markers

The effect of a data skin on filled markers is more apparent when the markers are
enlarged.

Except for the GLOSS data skin, the data skins also affect the appearance of plot
lines and the outlines for unfilled markers and bubbles. They do not affect the
outlines of unfilled bars, boxes, and so on. As with filled areas, the effect of data
skins on lines varies with skin type and line color. It is also more apparent when the
thickness of the lines is increased. The skins do not change the color of the lines.
They add subtle effects such as drop shadows that enhance their appearance. The
following figures show each of the data skins applied to plot lines, unfilled bubbles,
and unfilled markers.

556 Chapter 27 / Managing Your Graph’s Appearance

Figure 27.9 Data Skins Applied to Plot Lines

Figure 27.10 Data Skins Applied to Unfilled Bubbles

Using Data Skins 557

Figure 27.11 Data Skins Applied to HOMEDOWN Markers

You can specify data skins in the following GTL plot statements:

BARCHART HISTOGRAM SCATTERPLOT
BARCHARTPARM HISTOGRAMPARM SCATTERPLOTMATRIX
BOXPLOT LINECHART SERIESPLOT
BOXPLOTPARM NEEDLEPLOT STEPPLOT
BUBBLEPLOT PIECHART VECTORPLOT
DROPLINE POLYGONPLOT WATERFALLCHART
HIGHLOWPLOT REFERENCELINE

You cannot specify data skins for data-driven annotations or for graphical elements
that are drawn using the GTL draw statements.

For all plots that support data skins, the GraphSkin:DataSkin style element in the
active style specifies by default the data skin that is applied. For all of the plots in a
template, you can use the DATASKIN= option in the BEGINGRAPH statement to
override the data skin that is specified by the current style. For an individual plot,
you can use the DATASKIN= option in the plot statement to override the data skin
that is specified by the current style or by the BEGINGRAPH statement’s
DATASKIN= option. You can set the following values for the style
GraphSkin:DataSkin element and the DATASKIN= options: NONE, SHEEN,
GLOSS, PRESSED, CRISP, or MATTE.

In OVERLAY and PROTOTYPE layouts, the maximum number of skinned graphical
elements is limited to 200 per plot for performance reasons. This limit does not
apply to plots in other layout types. For graphs that contain multiple plots, this limit
applies to each plot and not to the entire graph. A skinned graphical element can be
a bar, bubble, marker, series line, and so on. It does not necessarily correlate with
the number of observations in the plot data. If this limit is exceeded for a plot, the

558 Chapter 27 / Managing Your Graph’s Appearance

specified data skin is not applied to that plot, and the following warning appears in
the SAS log:

NOTE: Data skin has been disabled because the threshold has been
reached. You can set DATASKINMAX=nnn in the ODS GRAPHICS statement
to restore data skin.

In that case, you can use the DATASKINMAX= option in your ODS GRAPHICS
statement to increase the threshold to the value specified in the note (nnn) or to a
higher value.

Note: A plot that contains a large number of skinned graphical elements might take
several minutes to render.

Using Anti-Aliasing
Anti-aliasing is a graphical rendering technique that improves the readability of text
and the crispness of the graphical primitives, such as the markers and lines. By
default, ODS Graphics uses anti-aliasing.

Note: Titles, footnotes, entry text, axis labels, tick values, and legend text is always
anti-aliased. Graphical components related to the data, such as markers, lines, and
data labels, are affected by the ANTIALIAS= and ANTIALIASMAX= options, as
discussed in this section.

To see how much the graph quality is improved with anti-aliasing, you can turn this
feature on and off with the ANTITALIAS= option in the ODS GRAPHICS statement.

proc template;
 define statgraph fitline;
 begingraph;
 entrytitle "Spline Fit";
 layout overlay;
 scatterplot x=height y=weight / primary=true datalabel=name;
 pbsplineplot x=height y=weight;
 endlayout;
 endgraph;
 end;
run;

ods graphics / antialias=on;
proc sgrender data=sashelp.class template=fitline;
run;

Here is the output.

Using Anti-Aliasing 559

Here is the result when ANTIALIAS=OFF.

The following image shows a zoomed-in view of a portion of the anti-aliased image
(100dpi). Notice that the text, markers, and line appear fuzzy because of the anti-
aliasing algorithm.

This next image shows a zoomed-in view of the image (100dpi) that has anti-
aliasing turned off. Notice that the text, markers, and line are not fuzzy but have a
jagged appearance.

560 Chapter 27 / Managing Your Graph’s Appearance

If the image is created at 300dpi, the combination of anti-aliasing and higher
resolution produces a very high quality image.

The non-anti-aliased image at 300dpi, is good but still has jagged edges.

To perform anti-aliasing requires additional computer resources (CPU, memory, and
execution time). Graphs that have a lot of markers, lines, and text use even more
resources. Filled or gradient 3-D surface plots might require even more resources.

A higher DPI increases anti-aliasing resources. ODS Graphics disables the anti-
aliasing feature when the resources required for anti-aliasing exceed a preset upper
threshold. Prior to SAS 9.4M3, the threshold is based on the number of
observations in the graph data. When the threshold is reached, anti-aliasing is
disabled for the entire graph. Starting with SAS 9.4M3, the anti-aliasing upper
threshold is based on the number of drawing elements in each plot. The threshold is
enforced on a per-plot basis. When the number of drawing elements in a plot
reaches the upper anti-aliasing threshold, anti-aliasing is disabled for that plot only.
Anti-aliasing remains enabled for the remainder of the graph.

Using Anti-Aliasing 561

The anti-aliasing threshold is controlled by the ODS GRAPHICS statement
ANTIALIASMAX= option. The default is 4000. When the anti-aliasing upper
threshold is reached, a note is written to the SAS log indicating that anti-aliasing is
disabled in all or part of the graph. The note also provides information about how to
use the ANTIALIASMAX= option in an ODS GRAPHICS statement to raise the
threshold sufficiently to re-enable anti-aliasing for all of the plots in the graph. For
more information about the ODS GRAPHICS statement ANTIALIASMAX= option,
see “ODS GRAPHICS” in SAS Graph Template Language: Reference.

Using Subpixel Rendering

You can specify subpixel rendering in order to generate smooth curves and more
precise bar spacing in many plots. In SAS 9.4M2 and in earlier releases, you can
use subpixel rendering for plots that are generated with the following statements:

BANDPLOT HIGHLOWPLOT REGRESSIONPLOT
BARCHART LINECHART SERIESPLOT
BARCHARTPARM LOESSPLOT
DENSITYPLOT PBSPLINEPLOT

Starting with SAS 9.4M3, you can also use subpixel rendering for plots that are
generated with the following statements:

BOXPLOT HEATMAP SCATTERPLOT
BOXPLOTPARM HEATMAPPARM SCATTERPLOTMATRIX
BUBBLEPLOT HIGHLOWPLOT WATERFALLCHART
CONTOURPLOTPARM HISTOGRAMPARM
DENSITYPLOT POLYGONPLOT

The SAS default rendering technology for ODS Graphics is used to render curved
lines for GTL plots. For the Java technology, for example, subpixel rendering is
disabled by default in SAS 9.4M2 and in earlier releases. Starting with SAS 9.4M3,
subpixel rendering is always enabled for vector-graphics output. Prior to SAS
9.4M3, subpixel rendering is enabled by default for image output, unless the graph
contains a scatter plot or a scatter-plot matrix. In those cases, subpixel rendering is
disabled by default. Starting with SAS 9.4M3, subpixel rendering is enabled by
default for all images.

When subpixel rendering is disabled, curved lines can appear slightly jagged. The
following figure shows a series plot with smoothed lines
(SMOOTHCONNECT=TRUE) that was rendered with Java technology, using the
default line rendering.

562 Chapter 27 / Managing Your Graph’s Appearance

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en

Notice that the line curves appear slightly jagged.

To enable subpixel rendering, include the SUBPIXEL=ON option in your
BEGINGRAPH statement. Starting with SAS 9.4M3, you can also use the
SUBPIXEL= option in an ODS GRAPHICS statement to control subpixel rendering
for images. In order to use subpixel rendering, anti-aliasing must also be enabled.
Anti-aliasing is enabled by default. If it is disabled, include the ANTIALIAS=ON
option in your ODS GRAPHICS statement.

Anti-aliasing is disabled automatically when the resources required for anti-aliasing
exceed a preset threshold. When anti-aliasing is disabled for all or part of a graph,
subpixel rendering is disabled for the entire graph. The anti-aliasing threshold is
controlled by the ODS GRAPHICS statement ANTIALIASMAX= option. When the
anti-aliasing threshold is reached, a note is written to the SAS log stating that anti-
aliasing is disabled. The note recommends a new value for the ANTIALIASMAX=
option that you can use to re-enable anti-aliasing. When you re-enable anti-aliasing,
you also re-enable subpixel rendering in this case.

For more information about the ODS GRAPHICS statement SUBPIXEL=,
ANTIALIAS=, and ANTIALIASMAX= options, see “ODS GRAPHICS” in SAS Graph
Template Language: Reference.

The next figure shows the same series plot generated with subpixel rendering
enabled, anti-aliasing enabled, and smoothed lines.

Using Subpixel Rendering 563

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en

Notice that the line curves are much smoother. Here is the SAS code for the
previous graph.

/* Sort the SASHELP.STOCKS data by date. */
proc sort data=sashelp.stocks out=stocks;
 by date;
run;

/* Create the template for the graph. */
proc template;
 define statgraph subpixelon;
 begingraph / subpixel=on;
 entrytitle "Stock Index Performance: 2001";
 layout overlay /
 xaxisopts=(label="Month" griddisplay=on
 gridattrs=(pattern=dot color=lightgray))
 yaxisopts=(label="Average Close" type=linear
 linearopts=(viewmin=10) griddisplay=on
 gridattrs=(pattern=dot color=lightgray));
 seriesplot x=eval(put(date, monname3.)) y=close /
 name="stocks"
 group=stock
 smoothconnect=true;
 discretelegend "stocks";
 endlayout;
 endgraph;
 end;

 /* Render the graph for the year 2001. */
proc sgrender data=stocks template=subpixelon;
 where year(date) = 2001;
run;

To disable subpixel rendering for all images, specify SUBPIXEL=OFF in an ODS
GRAPHICS statement. When subpixel rendering is disabled for all images, you can
specify the SUBPIXEL=ON option in a template’s BEGINGRAPH statement to re-
enable subpixel rendering only for that template.

564 Chapter 27 / Managing Your Graph’s Appearance

Recommendations
The issue of when to use hardcoded values versus style references for overriding
appearance features is complex and basically boils down to what you are trying to
achieve with GTL. Here are some recommendations that are based on common use
cases:

n You are creating a graph for a specific purpose and probably will not use the
code again.

Recommendation: Develop your template with one style in mind and use
hardcoded overrides to make desired changes. One possibility is to use the
JOURNAL style as a starting point. It has a gray-scale color scheme. If you want
to introduce colors for certain parts the graph, there will not be much conflict with
blacks and grays coming from the style. You really do not care what the graph
looks like with another style.

n You are creating a reusable graph template (without hardcoded variable names)
that can be used with different sets of data in different circumstances.

Recommendation: If style overrides are needed, use style-reference overrides,
not hardcoded overrides. This allows your graph's appearance to change
appropriately when you or someone else uses a different style.

n You want all of your templates to produce output with the same look-and-feel,
possibly a corporate theme.

Recommendation: Spend time developing a new style that produces the desired
"look-and-feel" rather than making a lot of similar appearance changes every
time you create a new graph template to enforce consistency. Be sure to
coordinate the colors and fonts for the graphical style elements with tabular style
elements. See “Using ODS Styles to Control Graph Appearance” on page 495
for more information.

Recommendations 565

566 Chapter 27 / Managing Your Graph’s Appearance

28
Managing Your Graphics Output

Introduction to ODS Graphics Output . 567

SAS Registry Settings for ODS Graphics . 568

ODS Destination Statement Options That Affect ODS Graphics 569

ODS GRAPHICS Statement Options . 571

Controlling the Image Name and Image Format . 574
Specifying and Resetting the Image Name . 574
Specifying the Image Format . 575
Using a Universal Printer with ODS PRINTER to Control the Image Format 578

Controlling the Location of the Image Output . 579

Controlling Graph Size . 581
Overview of Graph Size Control . 581
BEGINGRAPH Statement . 581

Scaling Graphs . 582

Controlling Image Resolution . 586

Creating a Graph That Can Be Edited . 588

Creating a Graph That You Can Import into Microsoft Office Applications 590

Introduction to ODS Graphics Output
Whenever you run a program that creates ODS Graphics output, several details are
handled by default. Among them are the following:

n output file characteristics (file path and filename)

n image characteristics (format, name, DPI, size)

n ODS style used

n when anti-aliasing is used

n whether fonts and markers are scaled when graph size is changed

567

n whether the graph that is created can be edited

n whether data tips are produced

In addition to the actual template code, you have a great deal of control over the
environment in which ODS graphs are produced. Knowing what options are
available and how to adjust these options gives you the maximum control in
producing the best possible graphs for your needs.

Three areas work in conjunction with each other to control all aspects of graph
creation:

Area How It Controls Graph Creation

SAS Registry Provides a repository of defaults for many options that
affect ODS Graphics

ODS Destination
statement

Provides options specific to destinations, such as HTML,
PDF, and RTF

ODS GRAPHICS
statement

Provides many global options that affect ODS Graphics

You often need to add options to both the ODS destination statement and the ODS
GRAPHICS statement to get the desired output. Resetting SAS registry keys serves
to configure your default ODS Graphics environment.

SAS Registry Settings for ODS Graphics
The SAS Registry is a special SAS item store file that is stored in your SASUSER
storage location. It contains the default settings for many SAS products and their
features. You can use the REGISTRY procedure to browse or edit this hierarchical
file. Here is an example of how to use the REGISTRY procedure to print the current
ODS Graphics registry settings to the SAS log.

proc registry list startat="ods\ods graphics";
run;

Here is the output.

NOTE: Contents of SASHELP REGISTRY starting at subkey [ods\ods graphics]
[ods\ods graphics]
 Default State="Off"
 Design Height="480PX"
 Design Width="640PX"

Note: In the SAS windowing environment, you can also use the Registry Editor
window to browse the Registry interactively. To do so, issue the REGEDIT
command to open the Registry Editor window, expand ODS, and then click ODS
GRAPHICS.

568 Chapter 28 / Managing Your Graphics Output

The following table describes how the ODS GRAPHICS registry keys are used.

Registry Key Use

Default State Determines whether the ODS Graphics environment is
active by default

Design Height Determines the default height of a graph that is generated
with GTL

Design Width Determines the default width of a graph that is generated
with GTL

If you were to change the Default State from Off to On, it would make the ODS
Environment active in every SAS session. This implies that if you run a procedure
that normally requires you to activate the ODS Graphics environment with the ODS
GRAPHICS ON statement, you would not have to issue this statement. ODS graphs
are automatically produced every time you run an ODS Graphics-enabled procedure
such as UNIVARIATE, ARIMA, or REG.

Note: The SAS procedures such as SGRENDER, SGPLOT, SGPANEL, and
SGSCATTER produce template-based graphics only. They internally activate the
ODS Graphics environment if it is not active and are unaffected by the Default State
key value.

The Design Height and Design Width keys control the default graph size for all
graph templates. The 640px by 480px size represents a 4/3 aspect ratio. If you
change these values, any new or existing graph templates are affected unless you
explicitly set a DESIGNWIDTH= or DESIGNHEIGHT= option in the BEGINGRAPH
statement in the graph template definition. For details, see “Controlling Graph Size”
on page 581.

ODS Destination Statement Options That
Affect ODS Graphics

Each ODS destination has options that govern aspects of your ODS Graphics
output. The following table shows the options for the most commonly used
destinations.

Table 28.1 ODS Destination Options That Affect ODS Graphics

ODS Destination
Options for ODS
Graphics Description

LISTING Creates a standalone image. The
default image format is PNG.

ODS Destination Statement Options That Affect ODS Graphics 569

ODS Destination
Options for ODS
Graphics Description

(See also “Using a Universal
Printer with ODS PRINTER to
Control the Image Format” on
page 578.)

GPATH="directory-spec" Indicates the directory where
images are created. The default is
the current working directory.

IMAGE_DPI=number Specifies the image resolution in
dots per inch for output images.
IMAGE_DPI=96 is the default.

Note: For TIFF output in SAS
9.4M2 and in earlier releases, the
DPI property for the TIFF image
might show 100 DPI instead of the
IMAGE_DPI= setting. The actual
image resolution is the
IMAGE_DPI= setting. This issue is
fixed in SAS 9.4M3.

STYLE= style-definition Specifies the style to use.
STYLE=LISTING is the default.

PDF Creates one or more embedded
images in a PDF document. The
default image format is SVG.

DPI=number Specifies the resolution in dots per
inch for image output. DPI=150 is
the default.

STYLE= style-definition Specifies the style to use.
STYLE=PEARL is the default.

RTF Creates one or more embedded
images in RTF document. The
default image format is PNG.

IMAGE_DPI=number Specifies the image resolution in
dots per inch for output images.
IMAGE_DPI=200 is the default.

STYLE= style-definition Specifies the style to use.
STYLE=RTF is the default.

HTML Creates one or more standalone
images and the HTML page. The
images are referenced in the

570 Chapter 28 / Managing Your Graphics Output

ODS Destination
Options for ODS
Graphics Description

HTML page. The default image
format is PNG.

FILE="filename.html" Specifies the name of the HTML
output file.

PATH="directory-spec" Specifies the directory where the
HTML output and the images are
created. Use the GPATH= option
to specify a different directory for
the images.

GPATH="directory-spec" Specifies the directory where the
images are created. If not
specified, the PATH= "directory-
spec" is used.

IMAGE_DPI=number Specifies the image resolution in
dots per inch for output images.
IMAGE_DPI=96 is the default.

STYLE= style-definition Specifies the style to use.
HTMLBLUE is the default style in
the SAS windowing environment
and in SAS Studio.

ODS GRAPHICS Statement Options
The ODS GRAPHICS statement is the primary statement that controls the run-time
environment for producing template-based graphs. It is similar to the GOPTIONS
statement for GRSEG-based graphs, but completely independent of that statement.
The GOPTIONS statement does not affect template-based graphical output and the
ODS GRAPHICS statement does not affect GRSEG-based graphs.

All options for the ODS GRAPHICS statement are global to a SAS session, unless
one of the following occurs:

n The graphics environment is disabled with the ODS GRAPHICS OFF statement

n The ODS Graphics options are reset to their default state with the ODS
GRAPHICS RESET or ODS GRAPHICS RESET=option statement

The following table shows some of the available options. For a complete and more
detailed explanation of all available options, see “ODS GRAPHICS” in SAS Graph
Template Language: Reference.

ODS GRAPHICS Statement Options 571

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en

Table 28.2 Partial Listing of ODS GRAPHICS Statement Options

Task Option

Specify the threshold for
allowing anti-aliasing.

ANTIALIASMAX= positive-integer

The default is 4000.

Specify whether graph
rendering uses anti-aliasing.

ANTIALIAS= ON | OFF

The default is ON.

Specify whether to draw a
border around any graph.

BORDER= ON | OFF

The default is ON.

Increase the maximum
number of discrete values
that are allowed in a graph.

DISCRETEMAX=positive-integer

The default is 1000. If your graph data contains more
than 1000 discrete values, your graph is not drawn and
a warning message is written to the SAS log stating
that the DISCRETEMAX threshold has been reached.
In that case, use the DISCRETEMAX= option to
increase the maximum number of discrete values that
are allowed. Starting with SAS 9.4M5, the log message
includes a suggested value for DISCRETEMAX=.

Increase the maximum
number of group values that
are allowed in a graph.

GROUPMAX=positive-integer

The default is 1000. If your graph data contains more
than 1000 group values, the plot GROUP= option is
ignored, and a warning message is written to the SAS
log stating that the GROUPMAX threshold has been
reached. In that case, use the GROUPMAX= option to
increase the maximum number of group values that
are allowed. Starting with SAS 9.4M5, the log message
includes a suggested value for GROUPMAX=.

Specify the height of any
graph.

HEIGHT= dimension

Supported dimension units include SPX (special
pixels), PX (pixels), IN (inches), CM (centimeters), and
MM (millimeters). This option overrides the design
height specified by the template definition. The default
unit is SPX. You should always provide a unit such as
PX, IN, CM, or MM with the dimension value.

Specify the image format
used to generate image
files.

OUTPUTFMT= STATIC | image-format

Supported formats include PNG, GIF, JPEG, WMF,
TIFF, PDF, EMF, PS, EPS, EPSI, PCL, SVG, and
others. The keyword STATIC is the default, which
means to automatically select the best format, based
on the output destination.

Note: The PDF, PS, EPS, EPSI, EMF, and PCL
formats support images in the vector graphics format.

572 Chapter 28 / Managing Your Graphics Output

Task Option

Specify whether data tips
are generated.

IMAGEMAP= OFF | ON

The default is OFF.

Specify the base image
filename.

IMAGENAME= "file-name" (no path information)

The default is to use the invoking procedure name as
the base name.

Control whether legends are
drawn.

LEGENDAREAMAX=n

MAXLEGENDAREA=n

Specifies an integer that is interpreted as the maximum
percentage that a legend can occupy in the overall
graphics area. The default integer is 20. Use the
MAXLEGENDAREA= option in SAS releases prior to
SAS 9.4M3. Use the LEGENDAREAMAX= option
starting with SAS 9.4M3.

Note: You can continue using the
MAXLEGENDAREA= option in SAS 9.4M3 and in later
releases. However, the LEGENDAREAMAX= option is
preferred.

Reset one or more ODS
GRAPHICS options to its
default. RESET by itself is
the same as RESET=ALL.

RESET | RESET= option

Options include ALL, HEIGHT, WIDTH, INDEX, and so
on.

By default, each time you run a procedure, new images
are created and numbered incrementally using a base
name, such as SGRender, SGRender1, SGRender2,
and so on. RESET resets to the base name without the
increment number. This is useful if you run a PROC
several times and are interested only in the images
from the last run (the previous ones are overwritten).
This option is positional, so it typically comes first.

Specify whether the content
of any graph is scaled
proportionally.

SCALE = ON | OFF

The default is ON.

Specify whether the plot
markers are scaled with the
graph size.

SCALEMARKERS=YES | NO | ON | OFF

The default is ON. The scale factor is based on the
height of the graph cells and the height of the graph.

Specify the maximum
number of distinct hotspot
areas that are allowed
before data tips are
disabled.

TIPMAX=n

The default number is 500.

Specify the width of any
graph.

WIDTH= dimension

Supported dimension units include SPX (special
pixels), PX (pixels), IN (inches), CM (centimeters), and

ODS GRAPHICS Statement Options 573

Task Option

MM (millimeters). This option overrides the design
width specified by the template definition. The default
unit is SPX. You should always provide a unit such as
PX, IN, CM, or MM with the dimension value.

Controlling the Image Name and Image
Format

Specifying and Resetting the Image Name

Specifying the Image Name
For ODS Graphics output, by default, the ODS object name is used as the “root”
name for the image output file. The following example creates a GIF image named
REGPLOT:

ods graphics / imagename="regplot" outputfmt=gif;

The assigned name REGPLOT is treated as a "root" name and the first output
created is named REGPLOT. Subsequent graphs are named REGPLOT1,
REGPLOT2, and so on, with an increasing index counter. This numbering can be
reset with the RESET=INDEX option.

Resetting the Image Name
The RESET=INDEX option enables you to reset the file name numbering sequence.
This feature applies to SAS 9.4M3 and later releases.

For a usage example, suppose that you are developing a paper or a presentation
and it takes several submissions to get the desired output. You can use the RESET
or RESET=INDEX option to force each output to replace itself:

ods graphics / reset=index ... ;

This specification causes all subsequent images to be created with the default or
current image name.

When specifying this option, you can also specify the value for the index counter.
The value that you specify determines the suffix for the next subsequent image. For
example:

574 Chapter 28 / Managing Your Graphics Output

ods graphics / reset=index(100) imagename="MyName";

The next graph that you produce is named MYNAME100.

This feature is useful for creating animated graphics. For example, for a sequence
of 100 images, you might begin with the following statement:

ods graphics / reset=index(1) imagename="MyName";

In the example, your program produces 100 images named MYNAME1,
MYNAME2, ..., MYNAME100. If you later add more images to the animation, you
might submit the following:

ods graphics / reset=index(101) imagename="MyName";

The next generated image is named MYNAME101.

Specifying the Image Format
Each ODS destination uses a default format for its output. You can use the
OUTPUTFMT= option in the ODS GRAPHICS statement to change the output
format.

Note: Unless you have a special requirement for changing the image format, we
recommend that you not change it. The default PNG or vector graphic format is far
superior to other formats, such as GIF, in support for transparency and a large
number of colors. Also, PNG and vector graphics images require much less disk
storage space than JPEG or TIFF formats.

If you want to generate vector graphics images, you can use the following
OUTPUTFMT= values for each destination:

Table 28.3 Generating Vector Graphics Output with ODS

ODS Destination OUTPUTFMT=value

ODS EPUB OUTPUTFMT=SVG

ODS destination for Excel OUTPUTFMT=EMF

ODS HTML OUTPUTFMT=SVG

ODS HTML5 Vector graphics images are generated by default

ODS LISTING OUTPUTFMT=EMF

OUTPUTFMT=PDF

OUTPUTFMT=PS | EPS | EPSI

OUTPUTFMT=SVG

OUTPUTFMT=PCL

ODS PDF Vector graphics images are generated by default

Controlling the Image Name and Image Format 575

ODS Destination OUTPUTFMT=value

ODS PCL OUTPUTFMT=PCL (for PCL output)

ODS PS OUTPUTFMT=PS (for PostScript output)

ODS destination for
PowerPoint

OUTPUTFMT=EMF

ODS PRINTER OUTPUTFMT=PCL (for PCL output)

OUTPUTFMT=PDF (for PDF output)

OUTPUTFMT=PS | EPS | EPSI (for PostScript
output)

OUTPUTFMT=SVG

ODS RTF OUTPUTFMT=EMF

ODS Measured RTF OUTPUTFMT=EMF

Note: For information about SVG and SAS Universal Printing, see “Creating SVG
Documents Using Universal Printing” in SAS 9.4 Universal Printing.

When a vector graphics image cannot be generated for the format that you specify,
a PNG image is generated instead and is embedded in the specified output file. The
output file format and extension are not changed in that case. In the following cases,
a vector graphics image cannot be generated:

n surface plots

n bivariate histograms

n graphs that use smooth gradient contours

n graphs that include continuous legends

n graphs that use data skins

n graphs that use transparency (EMF and PS ODS destinations only)

n graphs that contain one or more rotated images

n graphs that have a broken axis

n graphs that contain outline marker characters

Starting with SAS 9.4M2, additional cases for which vector graphics output cannot
be generated for graphs are as follows:

n graphs that use gradient fill for bars in a bar chart, histogram, or waterfall chart

n graphs that use the back-light effect on text

n graphs that include a text plot that displays text with an outlined bounding box or
text with a filled bounding-box background

n graphs that include images (PostScript output only)

Starting with SAS 9.4M3, vector graphics output can be generated in the EMF, PDF,
and SVG output formats for the following cases:

576 Chapter 28 / Managing Your Graphics Output

http://documentation.sas.com/?docsetId=uprint&docsetVersion=3.5&docsetTarget=p1ng9bz6utkmmxn1xyudcbj30oy2.htm&locale=en
http://documentation.sas.com/?docsetId=uprint&docsetVersion=3.5&docsetTarget=p1ng9bz6utkmmxn1xyudcbj30oy2.htm&locale=en

n graphs that use data skins

Note: For the EMF, PDF, and SVG formats, vector graphics output is not
supported for graphs that use transparency and data skins. An image is
generated in that case.

n graphs that include one or more rotated images

n graphs that use gradient fills (except PDF)

n graphs that use a continuous legend

Note: For the PDF output format, vector graphics output is not supported for
graphs that use a continuous legend and data transparency. An image is
generated in that case.

Starting with SAS 9.4M5, vector graphics output can or cannot be generated in the
output formats as indicated in the following table:

Table 28.4 Support for Vector Graphics

Case EMF PCL PDF PS SVG

Surface plots No No No No No

Gradient fill contour plots No No No No No

3-D bivariate histograms No No No No No

Continuous legends without data or
fill transparency

Yes No Yes No Yes

Continuous legends with data
transparency

Yes No No No Yes

Data skins Yes No Yes No Yes

Data skins with transparency No No No No Yes

Data transparency, without images Yes Yes Yes No Yes

Transparent images1 Yes No Yes No Yes

Images with data transparency No No No No Yes

Rotated images Yes No Yes No Yes

Text plots with backlight Yes No Yes No Yes

Text plots with fill and outline Yes No Yes Yes Yes

Scatter plots with an outlined marker
character

Yes No Yes No Yes

Broken axis Yes No Yes No Yes

Controlling the Image Name and Image Format 577

Case EMF PCL PDF PS SVG

Fill patterns Yes No No No Yes

Fill pattern legend chiclets No No No No No

1 Starting with SAS 9.4M7, vector graphics are supported for transparent images in EMF, PDF, and SVG output. The image
itself must be transparent. If you make an image transparent by specifying transparency in your program, a vector graphic
is not created.

Note: The SGMAP procedure, which is new in SAS 9.4M5, does not support
vector-based output.

Using a Universal Printer with ODS PRINTER to
Control the Image Format

When you use the ODS PRINTER destination, you can use the PRINTER= option to
specify a universal printer to generate the image. The universal printers can
generate image files in formats other than PNG, such as SVG, PDF, or EMF. For
more information about the ODS PRINTER destination, see SAS Output Delivery
System: User’s Guide.

To use a universal printer with the ODS PRINTER destination to generate an image
file, do the following:

1 Create a template to generate your graph if you have not already done so.

2 Use a FILENAME statement to create a file reference for your image output file.

3 Close the currently open ODS destinations.

ods _all_ close;

4 Open the ODS PRINTER destination and specify the SVG printer.

ods printer printer=svg file=filref;

5 Use the SGRENDER procedure to generate your graph.

6 Close the ODS PRINTER destination.

7 Open an ODS destination for subsequent programs.

Note: This step is not required in SAS Studio.

Here is an example that generates a graph in the SVG format using the ODS
LISTING destination.

/* Specify the path and name for the image output file */
filename imgout "./barchart.svg";

/* Create the graph template */
proc template;

578 Chapter 28 / Managing Your Graphics Output

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

 define statgraph barchart;
 begingraph;
 dynamic printer dev imagedpi;
 entrytitle "Average Mileage by Vehicle Type";
 layout overlay;
 barchart category=type response=mpg_highway /
 stat=mean orient=horizontal;
 endlayout;
 endgraph;
 end;
run;

/* Close the currently open ODS destinations */
ods _all_ close;

/* Open the ODS PRINTER destination */
ods printer printer=svg file=imgout;

/* Generate the graph */
proc sgrender data=sashelp.cars template=barchart;
run;

/* Close the ODS PRINTER destination */
ods printer close;

/* Open an ODS destination for subsequent programs. (Not
 required in SAS Studio.) */
ods html;

Controlling the Location of the Image
Output

To control the image location (path) for ODS Graphics output, use the PATH= or
GPATH= option on the ODS destination statement.

ods listing gpath="C:\ODSgraphs";
ods html gpath="C:\ODSgraphs\images";

For the HTML destination, the PATH= option is used to indicate whether the HTML
page is stored. If GPATH= is not used, images are stored at the PATH= storage
location. Use PATH= and GPATH= together when you want to store images in a
different storage location. The (URL= NONE | url-spec) suboption specifies a
Uniform Resource Locator for the PATH= or the GPATH= options.

For example, the following program will create an HTML page named
u:\public_html\report.html:

ods graphics / reset imagename="graph";
ods _all_ close;
ods html style=statistical
 path="u:\public_html"
 gpath="u:\public_html" (url=none)

Controlling the Location of the Image Output 579

 file="report.html";

/* Create the graph template */
proc template;
 define statgraph barchart;
 begingraph;
 dynamic mpgtype;
 entrytitle "Average " mpgtype " MPG by Vehicle Type";
 layout overlay;
 /* Generate graph based on MPG type */
 if (upcase(mpgtype) = "CITY")
 barchart category=type response=mpg_city /
 stat=mean orient=horizontal;
 else
 barchart category=type response=mpg_highway /
 stat=mean orient=horizontal;
 endif;
 endlayout;
 endgraph;
 end;
run;

/* Generate city MPG chart */
proc sgrender data=sashelp.cars template=barchart
 des="Average City MPG by Type";
 dynamic mpgtype="City";
run;

/* Generate highway MPG chart */
proc sgrender data=sashelp.cars template=barchart
 des="Average Highway MPG by Type";
 dynamic mpgtype="Highway";
run;

ods html close;
ods html; /* Not required in SAS Studio */

The graphs produced are named graph.png and graph1.png, and are stored in
u:\public_html\. The (URL=NONE) suboption prevents any path or URL information
from being included in the SRC=" " attribute of the tag. This creates relative
references to the images in the HTML source:

<img alt="Average City MPG by Type" src="graph.png" style=" height: 480px;
 width: 640px;" border="0" class="c">

<img alt="Average Highway MPG by Type" src="graph1.png" style=" height:
 480px; width: 640px;" border="0" class="c">

For ODS destinations such as RTF or PDF, the image is embedded in the document
that is created by that destination.

580 Chapter 28 / Managing Your Graphics Output

Controlling Graph Size

Overview of Graph Size Control
By default, the size of the graph that you create with ODS Graphics is governed by
the following:

n settings for ODS Graphics in the SAS Registry

n the size indicated by the DESIGNWIDTH= and DESIGNHEIGHT= options of the
BEGINGRAPH statement

n the WIDTH= and HEIGHT= options of the ODS GRAPHICS statement

BEGINGRAPH Statement
When creating a graphics template, you often want to control the design width and
design height, especially for multi-cell graphs.

BEGINGRAPH / DESIGNWIDTH= dimension DESIGNHEIGHT= dimension;

In addition to specifying sizes in several units, you can also refer to the current
registry settings with the constants DEFAULTDESIGNWIDTH and
DEFAULTDESIGNHEIGHT.

In the following example, the intent is to produce a square graph (equal height and
width) in order to reduce unused graphical area. The design width is set to the

Controlling Graph Size 581

default internal height (DEFAULTDESIGNHEIGHT), which creates a 480px by
480px graph.

proc template;
 define statgraph squareplot;
 dynamic title xvar yvar;
 begingraph / designwidth=defaultDesignHeight;
 entrytitle title;
 layout overlayequated / equatetype=square;
 scatterplot x=xvar y=yvar;
 regressionplot x=xvar y=yvar;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.cars template="squareplot";
 dynamic title="Square Plot" xvar="mpg_highway" yvar="mpg_city";
run;

If a 550px width or height is set in an ODS GRAPHICS statement before the
template is executed with the SGRENDER procedure, a 550px by 550px graph is
created, maintaining the 1:1 aspect ratio:

ods graphics / width=550px;
proc sgrender data=sashelp.cars template="squareplot";
 dynamic title="Square Plot" xvar="mpg_highway" yvar="mpg_city";
run;

/* Setting a 550px height would create the same size graph */
ods graphics / height=550px;
proc sgrender data=sashelp.cars template="squareplot";
 dynamic title="Square Plot" xvar="mpg_highway" yvar="mpg_city";
run;

When no DESIGNWIDTH= or DESIGNHEIGHT= option is specified in the
BEGINGRAPH statement, graphs are rendered with the registry defaults, unless
changed by the ODS GRAPHICS statement HEIGHT= or WIDTH= options.

Examples for sizing multi-cell graphs are discussed in Chapter 14, “Creating
Gridded Graphs Using the GRIDDED Layout ,” on page 207, Chapter 15, “Creating
Lattice Graphs Using the LATTICE Layout,” on page 221, and Chapter 16, “Creating
Classification Panels Using the DATALATTICE and DATAPANEL Layouts,” on page
255.

Scaling Graphs
ODS Graphics uses style information to control the appearance of the graph. Style
templates contain information about fonts, color, lines, and markers, and they also
contain settings such as font size and marker size. When a graph is rendered at a
size larger or smaller than its design size, scaling takes place by default. Consider
the following example.

proc template;
 define statgraph boxplot;

582 Chapter 28 / Managing Your Graphics Output

 dynamic title;
 begingraph / designwidth=640 designheight=480;
 entrytitle title;
 layout overlay;
 boxplot y=mrw x=bp_status / datalabel=deathcause
labelfar=true;
 endlayout;
 endgraph;
 end;
run;
ods graphics / reset width=440px height=330px scale=on;
proc sgrender data=sashelp.heart template=boxplot;
 where status="Dead";
 dynamic title="SCALE=ON";
run;

Here is the output.

If you turn off scaling, the font sizes, marker sizes, and so on, revert to the sizes that
are defined in the style. To accommodate the larger font sizes for the titles,
footnotes, axis labels, tick values, and data labels, the wall area and contained
graphical components automatically shrink.

ods graphics / reset width=440px height=330px scale=off;
proc sgrender data=sashelp.heart template=boxplot;
 where status="Dead";
 dynamic title="SCALE=OFF";
run;

Here is the result.

Scaling Graphs 583

In general, having the fonts scale up or down as the graph size increases or
decreases is desirable. However, in some cases you might want greater control of
the font sizes.

The examples in this document were created with different styles that varied only in
the font sizes that they used. In some cases, smaller graphs look better when
rendered in a smaller set of fonts. The style examples below use the HTMLBLUE
style as a parent, but you could use any style as the parent. The DOCIMAGE style
keeps fonts close to the default sizes and weights while the
DOCIMAGE_SMALLFONT style reduces the font sizes by a few points. See “Using
ODS Styles to Control Graph Appearance” on page 495 for a discussion of defining
your own styles and what parts of the graph are affected by various style elements.

proc template;
 define style Styles.docimage;
 parent=styles.htmlblue;
 style GraphFonts from GraphFonts
 "Fonts used in graph styles" /
 'GraphDataFont'=("<sans-serif>,<MTsans-serif>",8pt)
 'GraphUnicodeFont'=("<MTsans-serif-unicode>",10pt)
 'GraphValueFont'=("<sans-serif>,<MTsans-serif>",10pt)
 'GraphLabelFont'=("<sans-serif>,<MTsans-serif>",11pt)
 'GraphFootnoteFont'=("<sans-serif>,<MTsans-serif>",8pt)
 'GraphTitleFont'=("<sans-serif>,<MTsans-serif>",12pt,bold);
 end;

 define style Styles.docimage_smallfont;
 parent=styles.htmlblue;
 style GraphFonts from GraphFonts
 "Fonts used in graph styles" /
 'GraphDataFont'=("<sans-serif>,<MTsans-serif>",6pt)
 'GraphUnicodeFont'=("<MTsans-serif-unicode>",8pt)
 'GraphValueFont'=("<sans-serif>,<MTsans-serif>",8pt)
 'GraphLabelFont'=("<sans-serif>,<MTsans-serif>",9pt)

584 Chapter 28 / Managing Your Graphics Output

 'GraphFootnoteFont'=("<sans-serif>,<MTsans-serif>",8pt)
 'GraphTitleFont'=("<sans-serif>,<MTsans-serif>",10pt,bold);
 end;
run;

The previous two graphs were rendered using the DOCIMAGE style. These next
two graphs were rendered with the DOCIMAGE_SMALLFONT style.

/* Specify a path for the ODS output */
filename odsout "output-path";
ods graphics / reset width=440px height=330px scale=on
imagename="smallfont";
ods _all_ close;
ods html path=odsout file="smallfont.html" style=docimage_smallfont;
proc sgrender data=sashelp.heart template=boxplot;
 where status="Dead";
 dynamic title="STYLE=DOCIMAGE_SMALLFONT With SCALE=ON";
run;
ods html close;
ods html; /* Not required in SAS Studio */

ods graphics / reset width=440px height=330px scale=off;
ods html style=docimage_smallfont;
proc sgrender data=sashelp.heart template=boxplot;
 where status="Dead";
 dynamic title="STYLE=DOCIMAGE_SMALLFONT With SCALE=OFF";
run;

Scaling Graphs 585

In both of these graphs that use the DOCIMAGE_SMALLFONT style, the text in the
graph is still legible whether scaling is on or off. Also, more space is available to the
graphical elements in the output.

Controlling Image Resolution
All ODS destinations use a default DPI (dots per inch) setting when creating ODS
Graphics image output. By default, LISTING and HTML use 96 DPI, PDF uses 150
DPI, and RTF uses 200 DPI. Graphs that are rendered at higher DPI have greater
resolution and larger file size. Although DPI can be set to large values such as
1200, from a practical standpoint, settings larger than 300 DPI are seldom
necessary for most applications. Also, setting an unrealistically large DPI like 1200
could cause an out-of-memory condition. Note that the ODS option for setting DPI is
not the same for all destinations. For the LISTING, HTML, and RTF destinations,
use the IMAGE_DPI= option. For PDF destination, use the DPI= option. Here is an
example for the HTML destination that sets the image DPI to 100.

proc template;
 define statgraph boxplot;
 dynamic title;
 begingraph / designwidth=640 designheight=480;
 entrytitle title;
 layout overlay;
 boxplot y=mrw x=bp_status / datalabel=deathcause
labelfar=true;
 endlayout;
 endgraph;
 end;
run;

586 Chapter 28 / Managing Your Graphics Output

/* Specify a path for the ODS output */
filename odsout "output-path";
ods graphics / width=440px height=330px scale=off
imagename="smallfont100";
ods _all_ close;
ods html image_dpi=100 style=docimage_smallfont path=odsout
 file="smallfont100.html";
proc sgrender data=sashelp.heart template=boxplot;
 where status="Dead";
 dynamic title="DPI=100";
run;
ods html close;
ods html; /* Not required in SAS Studio */

Here is the output.

Here is an example that sets the image DPI to 200.

/* Specify a path for the ODS output */
filename odsout "output-path";
ods graphics / width=440px height=330px scale=off
imagename="smallfont200";
ods _all_ close;
ods html image_dpi=200 style=docimage_smallfont path=odsout
 file="smallfont200.html";
proc sgrender data=sashelp.heart template=boxplot;
 where status="Dead";
 dynamic title="DPI=200";
run;
ods html close;
ods html; /* Not required in SAS Studio */

Here is the output.

Controlling Image Resolution 587

In these examples, the text in the 200 DPI graph is slightly more legible. Markers
and lines are also more legible.

Creating a Graph That Can Be Edited
SAS provides an application called the ODS Graphics Editor that can be used to
post-process ODS Graphics output. With the ODS Graphics Editor, you can edit the
following features in a graph that was created using ODS Graphics:

n Change, add, or remove titles and footnotes.

n Change style, marker symbols, line patterns, axis labels, and so on.

n Highlight or explain graph content by adding annotation, such as text, lines,
arrows, and circles.

For example, suppose the following template is used to create box plots in a graph
and you want to indicate that the labeled outliers are far outliers (more than 3 IQR
above 75th percentile).

proc template;
 define statgraph boxplot;
 begingraph;
 entrytitle "Deceased Subjects in Framingham Heart Study";
 layout overlay;
 boxplot y=mrw x=bp_status / datalabel=deathcause
 labelfar=true;
 endlayout;
 endgraph;
 end;
run;

588 Chapter 28 / Managing Your Graphics Output

To create ODS Graphics output that can be edited, you must specify the SGE=ON
option in the ODS LISTING destination statement before creating the graph:

/* Specify a path for the ODS output */
filename odsout "output-path";
ods _all_ close;
ods listing sge=on gpath=odsout;

proc sgrender data=sashelp.heart template=boxplot;
 where status="Dead";
run;
ods listing close;
ods html; /* Not required in SAS Studio */

When SGE=ON is in effect, an .SGE file is created in addition to the image file
normally produced. From the Results Window, you can open the .SGE file in the
ODS Graphics Editor by selecting Open in the icon. You can also open the .SGE file
directly from the Windows file system. The .SGE file is always created in the same
location as the image output. Here is the image output.

The following figure shows the Graphical User Interface for the ODS Graphics Editor
after some of the annotation has been completed.

Creating a Graph That Can Be Edited 589

You can save your annotated graph as an .SGE file or as an image file. If you save
it as an .SGE file, you can open it again for further editing.

Note: Changes that are made in the ODS Graphics Editor do not affect the
compiled template code.

After you are finished creating editable graphics, you should either close the ODS
destination (in this case LISTING) or specify SGE=OFF to discontinue
producing .SGE files and avoid the extra computational resources used to generate
the extra .SGE files:

ods listing sge=off;

Creating a Graph That You Can Import
into Microsoft Office Applications

The default height for a graph is 480 pixels. At a 100 dots per inch (DPI) setting, you
can consider the default height to be 4.8 inches. If you render a graph at 480 pixels
and 100 DPI, insert it into a document like an MS Office application, and then print
the page, the graph height on paper will be 4.8 inches and all font sizes will look
right in their point weights. You can render the graph at a higher DPI to get higher
quality graphs. As long as the graph is then inserted in the document as a 4.8 inch
graph, it will work as expected.

590 Chapter 28 / Managing Your Graphics Output

To alter the graph size or DPI for a graph that you want to include in an MS Office
application, one technique that produces good results is to create a standalone
image that is sized appropriately and has high resolution, say 200 DPI or 300 DPI.

ods graphics / reset width=5in imagename="fitplot" outputfmt=png
 antialias=on;
ods _all_ close;
ods listing gpath="output-path" image_dpi=200 style=analysis;

proc sgrender data= . . . template= . . .;
run;

This code produces a 5 inch, 200 DPI image .\fitplot.png, which can be inserted
into Microsoft Office documents. When only the WIDTH= or HEIGHT= option is
specified in the ODS GRAPHICS statement, the design aspect ratio of the graph is
maintained. Also, check the SAS log to ensure that anti-aliasing has not been
disabled. If it has been disabled, add the ANTIALIASMAX= option. See “Using Anti-
Aliasing” on page 559 for a discussion of anti-aliasing.

After inserting the graph into the MS Office document, you can change the picture
size with good results (while maintaining aspect ratio). If you find that the text in the
graph is too large or too small, re-create the graph with different font sizes using the
techniques discussed in “Scaling Graphs” on page 582.

To create good looking graphs for a two-column MS Word document where each
column is about 3.5 inches wide, use a graph width of 3.5 inches. If the original
graph has a default width of 640 pixels, you can set WIDTH=3.5IN in the ODS
GRAPHICS statement to get a smaller graph with appropriately smaller fonts. In this
case, the fonts will not be exactly the right point size, but they will be scaled smaller
using a non-linear scaling factor.

Creating a Graph That You Can Import into Microsoft Office Applications 591

592 Chapter 28 / Managing Your Graphics Output

PART 9

Graph Templates

Chapter 29
Executing Graph Templates . 595

Chapter 30
Using Dynamic Variables and Macro Variables in Your Templates 605

Chapter 31
Using Conditional Logic and Expressions in Your Templates 619

Chapter 32
Using Functions in Your Templates . 627

Chapter 33
Sharing Your Custom Templates . 639

Chapter 34
Modifying Predefined Templates . 641

593

594

29
Executing Graph Templates

Techniques for Executing Templates . 595

Minimal Required Syntax . 596

Managing the Input Data . 597
Filtering the Input Data . 597
Performing Data Transformations . 597

Initializing Template Dynamic Variables and Macro Variables 598

Managing the Output Data Object . 600
Setting Labels and Formats for the Output Columns . 600
Setting a Name and Label for the Output Data Object . 601
Viewing the Data Object Name and Label in the SAS Windowing Environment . . 602
Setting a Name for the Output Image File . 603
Converting the Output Data Object to a SAS Data Set . 603

Techniques for Executing Templates
Compiled graph templates can be executed using either the PROC SGRENDER
statement or a DATA step. Both techniques offer the same functionality but differ in
their syntax. The SGRENDER syntax is simpler, but any required data
manipulations must be completed before the PROC SGRENDER statement is used.
The DATA step syntax is more complex, but it can integrate data manipulations with
the graph execution.

Both PROC SGRENDER and a DATA step can be used to do the following:

n specify the input template

n specify the input data set

n associate a label with one or more input variables by using a LABEL statement

n associate a format with one or more input variables by using a FORMAT
statement

n filter input data using a WHERE statement or WHERE= input data set option

595

n assign values to dynamic variables for substitution in the template

n name the output data object

n label the output data object

The following sections show how to use both SGRENDER and a DATA step to
generate graphs from compiled GTL templates.

Minimal Required Syntax
Consider the following simple GTL template definition.

Example Code 29.1 Simple GTL Template

proc template;
 define statgraph mygraphs.scatter;
 begingraph;
 layout overlay;
 scatterplot X=height Y=weight;
 endlayout;
 endgraph;
 end;
run;

Both PROC SGRENDER and the DATA step can be used to execute this template.
Both techniques minimally require you to specify the input data source and the
template name. Behind the scenes in both cases, an ODS data object is populated
and bound to the template. The data object is then passed to a graph renderer,
which processes the data and graph request to produce an output image.

The PROC SGRENDER syntax is simple. It uses the DATA= option to specify the
data source and the TEMPLATE= option to specify the template to use for rendering
the graph:

proc sgrender data=sashelp.class template=mygraphs.scatter;
run;

The DATA step syntax is slightly more complex. To execute a GTL template, the
DATA step FILE and PUT statements provide syntax that is specific to ODS. You
must minimally specify the following:

data _null_;
 set sashelp.class;
 file print ods=(template="mygraphs.scatter");
 put _ods_;
run;

Note the following:

n The DATA step uses keyword _NULL_ for the data set name so that the DATA
step executes without writing observations or variables to an output data set.
The input data source is defined with a SET statement. This approach is
appropriate in the current example, but the input data source can be defined with
any appropriate DATA step syntax (INPUT with DATALINES, INPUT with INFILE,
SET, MERGE, UPDATE, and so on).

596 Chapter 29 / Executing Graph Templates

n FILE PRINT ODS directs output to ODS. PRINT is a reserved fileref that is
required when executing a GTL template. It directs output that is produced by
any PUT statements to the same file as output that is produced by SAS
procedures. The TEMPLATE= specification is required to specify the input
template name.

n The PUT _ODS_ statement, also required, writes the necessary variables to the
output object for each execution of the DATA step.

Note: The necessary columns for the output data object are the ones defined by
the graph template (in this case, Height and Weight), not the input data source. As
with other DATA step or procedure processing, if you know exactly which columns
the template uses, you can restrict the input columns with DROP= or KEEP= input
data set options for slightly more efficient processing.

Managing the Input Data

Filtering the Input Data
If you do not need all of the variables or all of the data values from the input data
source, you can use WHERE statements or input SAS data set options (for
example, OBS= or WHERE=) to control the observations that are processed. The
filtering techniques can be used whether the GTL template is executed with PROC
SGRENDER or with a DATA step.

The following example executes template MYGRAPHS.SCATTER, which is defined
in Example Code 29.1 on page 596. The first PROC SGRENDER uses a WHERE
statement to select only female observations for the graph. The second PROC
SGRENDER uses the OBS= input data set option to limit the number of
observations used in the graph.

/* plot only observations for females */
proc sgrender data=sashelp.class template=mygraphs.scatter;
 where sex="F";
run;

/* test the template */
proc sgrender data=sashelp.class(obs=5)
 template=mygraphs.scatter;
run;

Performing Data Transformations
When using PROC SGRENDER, any required data transformations or computations
must take place before a template is executed. The transformations therefore

Managing the Input Data 597

require an intermediate step. For example, the following code performs data
transformations on the Height and Weight columns that are in the data set
Sashelp.Class. The transformations are stored in a temporary data set named
Class, which is then used in the SGRENDER statement to produce a graph:

data class;
 set sashelp.class;
 height=height*2.54;
 weight=weight*.45;
 label height="Height in CM" weight="Weight in KG";
run;
proc sgrender data=class template=mygraphs.scatter;
run;

When executing a template with a DATA step, the same DATA step that builds the
data object can perform any required data transformations or computations. An
intermediate data set is not needed. This next example produces the same graph
that the previous example produced with the SGRENDER procedure:

data _null_;
 set sashelp.class;
 height=height*2.54;
 weight=weight*.45;
 label height="Height in CM" weight="Weight in KG";
 file print ods=(template="mygraphs.scatter");
 put _ods_;
run;

Initializing Template Dynamic Variables
and Macro Variables

A useful technique for generalizing templates is to define dynamic variables or
macro variables that resolve when the template is executed.

You can create new macro variables or use the automatic macro variables that are
defined in SAS, such as the system date and time value (SYSDATE). Both types of
macro variables must be declared before they can be referenced. Whereas
automatic macro variables do not require initialization, you must initialize any macro
variables that you create with the variable declarations. The macro variable values
are obtained from the current symbol table (local or global), so SAS resolves their
values according to the context in which they are used.

The following template declares the dynamic variables XVAR and YVAR, and the
macro variables STUDY and SYSDATE:

Example Code 29.2 REGFIT Template

proc template;
 define statgraph mygraphs.regfit;
 dynamic XVAR YVAR;
 mvar STUDY SYSDATE;
 begingraph;
 entrytitle "Regression fit for Model " YVAR " = " XVAR;

598 Chapter 29 / Executing Graph Templates

 entryfootnote halign=left STUDY halign=right SYSDATE;
 layout overlay;
 scatterplot X=XVAR Y=YVAR;
 regressionplot X=XVAR Y=YVAR;
 endlayout;
 endgraph;
 end;
run;

Note the following:

n The DYNAMIC statement declares dynamic variables XVAR and YVAR. On the
statements that later execute this template, you must initialize these dynamic
variables by assigning them to variables from the input data source so that they
have values at run time.

n The ENTRYTITLE statement concatenates dynamic variables XVAR and YVAR
into a string that will be displayed as the graph title. At run time, the dynamic
variables are replaced by the names of the variables that are assigned to the
dynamic variables when they are initialized.

n The SCATTERPLOT and REGRESSIONPLOT statements each reference the
dynamic variables on their X= and Y= arguments. At run time for both plots, the
variable that has been assigned to XVAR will provide X values for the plot, and
the variable that has been assigned to YVAR will provide Y values.

n The MVAR statement declares the macro variable STUDY. Because STUDY is
not a SAS automatic macro variable, it will be created for use in this template.
On the statements that later execute this template, you must initialize a value for
STUDY.

The MVAR statement also declares the automatic macro variable SYSDATE. At
run time, the current system date and time will be substituted for this variable.

n The ENTRYFOOTNOTE statement references both of the macro variables
STUDY and SYSDATE. The value that you assign to STUDY will be displayed
as a left-justified footnote, and the run-time value of SYSDATE will be displayed
as a right-justified footnote.

As with all GTL templates, the MYGRAPHS.REGFIT template can be executed with
either a PROC SGRENDER statement or a DATA step. Either way, any dynamic
variables and new macro variables that are declared in the template must be
initialized to provide run-time values for them. The following example executes the
template with PROC SGRENDER:

%let study=CLASS dataset;
proc sgrender data=sashelp.class template=mygraphs.regfit;
 dynamic xvar="height" yvar="weight";
run;

Note the following:

n The %LET statement assigns string value "CLASS data set" to the STUDY
macro variable.

n PROC SGRENDER uses the DYNAMIC statement to initialize the dynamic
variables XVAR and YVAR. XVAR is assigned to the input variable HEIGHT, and
YVAR is assigned to the input variable WEIGHT.

Here is the output.

Initializing Template Dynamic Variables and Macro Variables 599

The DATA step uses the DYNAMIC= suboption of the ODS= option to initialize
dynamic variables. Macro variables can be initialized from the existing symbol table.
You can update the symbol table during DATA step execution with a CALL SYMPUT
or CALL SYMPUTX routine. The following DATA step executes the
MYGRAPHS.REGFIT template.

data _null_;
 if _n_=1 then call symput("study","CLASS data set");
 set sashelp.class;
 file print ods=(template="mygraphs.regfit"
 dynamic=(xvar="height" yvar="weight"));
 put _ods_;
run;

Note the following:

n The CALL SYMPUT routine initializes the macro variable STUDY with the string
value "CLASS data set." The macro variable only needs to be initialized once, so
the IF statement limits the initialization to the first observation (_N_ = 1).

n The DYNAMIC= suboption initializes the dynamic variables XVAR and YVAR.
XVAR is assigned to the input variable HEIGHT, and YVAR is assigned to the
input variable WEIGHT.

For a more complete discussion of this topic and additional examples, see Chapter
30, “Using Dynamic Variables and Macro Variables in Your Templates,” on page
605.

Managing the Output Data Object

Setting Labels and Formats for the Output Columns
By default, the columns in the output data object derive variable attributes (name,
type, label, and format) from the input variables. However, using the LABEL and
FORMAT statements, you can change the label and format of the corresponding
output object column.

600 Chapter 29 / Executing Graph Templates

The LABEL and FORMAT statements are available on PROC SGRENDER and on
the DATA step. The following example assigns labels to the HEIGHT and WEIGHT
variables that are used in the MYGRAPHS.SCATTER template. (See Example
Code 29.1 on page 596.) It also assigns a format to the WEIGHT variable.

proc sgrender data=sashelp.class template=mygraphs.scatter;
 label height="Height in Inches" weight="Weight in Pounds";
 format weight 3.;
run;

Setting a Name and Label for the Output Data
Object

When the output data object is created, it is assigned a name and a label. The
following table shows the default names and labels, depending on whether the
corresponding GTL template is executed with a PROC SGRENDER statement or a
DATA step:

Option

Default Name
with

PROC
SGRENDER

Default Name with

DATA Step

OBJECT= name SGRENDER FilePrintn (each execution of the
DATA step increments the object
name : FilePrint1, FilePrint2, and so
on)

OBJECTLABEL="string
"

The SGRENDER
Procedure

same as object name

Using either PROC SGRENDER or a DATA step, you can use the OBJECT= option
to set a name for the output data object. You can use the OBJECTLABEL= option to
set a descriptive label for the data object. The following example sets the object
name and label on PROC SGRENDER:

/* Create the graph template */
proc template;
 define statgraph mygraphs.scatter;
 begingraph;
 entrytitle "Height and Weight by Sex";
 layout overlay;
 scatterplot x=height y=weight /
 group=sex name="scatter" datalabel=name;
 discretelegend "scatter";
 endlayout;
 endgraph;
 end;
run;

/* Set object name and label on PROC SGRENDER */

Managing the Output Data Object 601

proc sgrender data=sashelp.class template=mygraphs.scatter
 object=Scatter1
 objectlabel="Scatter Plot 1";
run;

This next example sets the object name and label on a DATA step:

/* set object name and label on a DATA step */
data _null_;
 set sashelp.class;
 file print ods=(template="mygraphs.scatter"
 object=Scatter2
 objectlabel="Scatter Plot 2");
 put _ods_;
run;

Viewing the Data Object Name and Label in the
SAS Windowing Environment

When a GTL template is executed, an ODS data object is populated and bound to
the template. The data object is assigned a name, and that name can be used to
reference the object on various ODS statements, such as ODS SELECT, ODS
EXCLUDE, and ODS OUTPUT. The data object is also assigned a label.

In the SAS windowing environment, object names and labels appear in the Results
window. To view them, do the following:

1 Open the Results window if it is not already open (choose View ð Results).

2 Right-click on the graph and choose Properties to view the object properties.

The following figure shows the output objects that were created in “Setting a
Name and Label for the Output Data Object” on page 601. The Results window
shows the two objects that were created, and the Scatter2 Properties window
shows the properties for the second object, which was named Scatter2.

Note: The ODS data object Properties window is not available in SAS Studio.

602 Chapter 29 / Executing Graph Templates

Setting a Name for the Output Image File
By default, the output image file is assigned the same name as the output data
object. You can use the IMAGENAME= option in the ODS GRAPHICS statement to
assign an alternative name to the output image file. For example, the following code
assigns the filename regfit_heightweight to the output image file and then renders
the MYGRAPHS.REGFIT template. (See Example Code 29.2 on page 598).

ods graphics / imagename="regfit_heightweight";
proc sgrender data=sashelp.class template=mygraphs.regfit;
 dynamic xvar="height" yvar="weight";
run;

Converting the Output Data Object to a SAS Data
Set

A data object can be converted to a SAS data set with the ODS OUTPUT
statement. Generally, you identify the data object to convert, and assign it a data set
name.

When a GTL template is executed with PROC SGRENDER, the output data object
is always named SGRENDER. Thus, you can identify the data object by that name
in the ODS OUTPUT statement. The following example converts the data object to a
SAS data set named RegFit1:

ods output sgrender=regfit1;

proc sgrender data=sashelp.class template=mygraphs.regfit;
 dynamic xvar="height" yvar="weight";
run;

Because the output object name from the DATA step changes with each execution,
it is handy to use the OBJECT= option on the DATA step FILE statement to set the
object name so that it is easy to identify for the conversion.

The following example assigns the name DATAOBJ to the data object and uses that
name to convert the data object to a SAS data set named RegFit2:

ods output dataobj=regfit2;

data _null_;
 if _n_=1 then call symput("study","CLASS dataset");
 set sashelp.class;
 file print ods=(template="mygraphs.regfit"
 dynamic=(xvar="height" yvar="weight")
 object=dataobj);
 put _ods_;
run;

Managing the Output Data Object 603

604 Chapter 29 / Executing Graph Templates

30
Using Dynamic Variables and
Macro Variables in Your
Templates

Introduction to Dynamic Variables and Macro Variables . 605

Declaring Dynamic Variables and Macro Variables . 606

Referencing Dynamic Variables and Macro Variables . 607

Initializing Dynamic Variables and Macro Variables . 609

Special Dynamic Variables . 614

Introduction to Dynamic Variables and
Macro Variables

If all of the variable names and options that are referenced in GTL templates had to
be "hard coded" in the compiled template, it would require that you redefine and
recompile the template every time you created the same type of graph with different
variables. SAS programmers are familiar with using SAS macros and macro
variables to build application code in which variables and other parameters can be
specified by a calling program. The same techniques, as well as other techniques
unique to ODS templates, can be applied in GTL to create reusable templates.

605

Declaring Dynamic Variables and Macro
Variables

Within the scope of a template definition, GTL supports the DYNAMIC statement for
declaring dynamic variables, and the MVAR and NMVAR statements for declaring
macro variables. These statements must appear after the DEFINE statement and
before the BEGINGRAPH block. The following syntax shows the overall template
structure:

PROC TEMPLATE;
DEFINE STATGRAPH template-name;

DYNAMIC variable-1 <"text-1"> <…variable-n<"text-n">>;
MVAR variable-1 <"text-1"> <…variable-n<"text-n">>;
NMVAR variable-1 <"text-1"> <…variable-n<"text-n">>;
BEGINGRAPH;

GTL statements;
ENDGRAPH;

END;
RUN;

The difference between the MVAR and NMVAR declaration of macro variables is
that NMVAR always converts the supplied value to a numeric token (like the
SYMGETN function of the DATA step). Macro variables that are defined by MVAR
resolve to strings (like the SYMGET function of the DATA step).

Each of the DYNAMIC, MVAR, and NMVAR statements can define multiple
variables and an optional text string that denotes its purpose or usage:

dynamic YVAR "required" YLABEL "optional";
mvar LOCATE "can be INSIDE or OUTSIDE" SYSDATE;
nmvar TRANS "transparency factor";

Note: To make the template code more readable, it is helpful to adopt a naming
convention for these variables to distinguish them from actual option values or
column names. Common conventions include capitalization or adding leading or
trailing underscores to their names. The examples in this document use
capitalization to indicate a dynamic variable or macro variable.

606 Chapter 30 / Using Dynamic Variables and Macro Variables in Your Templates

Referencing Dynamic Variables and
Macro Variables

After dynamic variables and macro variables are declared, you can make one or
more template references to them by simply using the name of the dynamic variable
or macro variable in any valid context. These contexts include the following:

n as argument or option values:

seriesplot x=date y=YVAR / curvelabel=YLABEL
 curvelabellocation=LOCATE datatransparency=TRANS;

n as parts of concatenated text strings:

entrytitle "Time Series for " YLABEL;
entryfootnote "Created on " SYSDATE;

Note: If you precede a macro variable reference with an ampersand (&), the
reference will be resolved when the template is compiled, not when it is executed.

For example, it is permissible to define TRANS as an MVAR for use in the following
context:

proc template;
 define statgraph timeseries;
 dynamic YVAR YLABEL;
 mvar LOCATE TRANS;
 begingraph;
 layout overlay;
 seriesplot x=date y=YVAR / curvelabel=YLABEL
 curvelabellocation=LOCATE datatransparency=TRANS;
 endlayout;
 endgraph;
 end;
run;

This context is valid because an automatic, internal conversion using the BEST.
format will be performed (with no warning messages). Dynamic variables and run-
time macro variable references cannot be used in place of punctuation that is part of
the syntax (parentheses, semicolons, and so on). In most contexts, you can use a
dynamic variable reference or a macro variable reference as an option value.
However, there are other contexts in which a dynamic variable or run-time macro
variable reference cannot be used. The following table provides general information
about some of the common contexts in which dynamic variables and run-time macro
variable references are not supported.

Referencing Dynamic Variables and Macro Variables 607

Table 30.1 Common Contexts in Which Dynamic Variable References and Macro Variable References Are Not
Supported

Context

Dynamic Variable
Reference and Macro
Variable Reference Support

Example Variable Definition and
Usage

A quoted reference name
specified in an option such as
NAME=, CLI=, or CLM=, or
one or more quoted
reference names required by
statements such as
DISCRETELEGEND,
MERGEDLEGEND,
AXISLEGEND, and
MODELBAND

Not supported.

A list of variable names in
options such as
CLASSVARS= in a LAYOUT
DATALATTICE statement,
CATEGORY= in a
MOSAICPLOTPARM
statement, and so on

Partially supported. A
dynamic or MVAR variable
can be used to specify a
variable in the list. A dynamic
or MVAR variable cannot be
used to specify the entire list.

Dynamic variable definition:
dynamic VAR1="type" VAR2="origin";

Example usage:
mosaicPlotParm category=(VAR1 VAR2)
 count=count / name="mosaic"
 colorresponse=avgMpg;

A free-form name=value pair
list, where name is an option
name, keyword, or role name

Partially supported. A
dynamic or MVAR variable
can be used to specify a
value in the list, in most
cases. A dynamic or MVAR
variable cannot be used to
replace a name or to specify
the entire list of name=value
pairs, in most cases.1

Dynamic variable definition:
dynamic MTICKS="true" MTICKCNT=5
 ROLE1="age" TIPS="X Y ROLE1"
 MARKERSIZE="12pt";

Example usage:
layout overlay /
 yaxisopts=(linearopts=(
 minorticks=MTICKS
 minortickcount=MTICKCNT));
 scatterplot x=height y=weight /
 rolename=(tip1=ROLE1) tip=TIPS
 markerattrs=(size=MARKERSIZE);

Simple scalar lists Partially supported. A
dynamic or MVAR variable
can be used to replace the
entire list. A dynamic, MVAR,
or NMVAR variable cannot be
used to replace one or more
values in the list, in most
cases.1

Dynamic variable definition:
dynamic TICKVALUES="10 20 30 40"
 TICKDISPLAY="A B C D";

Example usage:
layout overlay / xaxisopts=(type=discrete
 discreteopts=(tickvaluelist=TICKVALUES
 tickdisplaylist=TICKDISPLAY));

One or more start–end range
value pairs

Not supported in the RANGE
statement in a
RANGEATTRMAP block.

Partially supported in linear
axis option
INCLUDERANGES=. A

Dynamic variable definition:
dynamic RANGES="50 - 52 54 - 73";

Example usage:
layout overlay / xaxisopts=(linearopts=
 (includeranges=RANGES));

608 Chapter 30 / Using Dynamic Variables and Macro Variables in Your Templates

Context

Dynamic Variable
Reference and Macro
Variable Reference Support

Example Variable Definition and
Usage

dynamic or MVAR variable
can be used to specify the
entire list of start–end range
value pairs. A dynamic or
NMVAR variable cannot be
used to specify a value in the
range list.

Special text-item command
{text-command}

Partially supported. A
dynamic or MVAR variable
can be used to replace a
text-command value in text
statements such as ENTRY,
ENTRYTITLE, and
FOOTNOTE. A dynamic or
MVAR variable cannot be
used to replace a SUP, SUB,
or UNICODE command
keyword.

Dynamic variable definition:
dynamic VAR="'03b1'"; VARVAL=0.05;

Example usage:
entry {unicode VAR} " = " VARVAL;

1 Where applicable, exceptions are noted in the option descriptions in SAS Graph Template Language: Reference.

Initializing Dynamic Variables and Macro
Variables

The main difference between dynamic variables and macro variables is that they are
initialized differently.

For dynamic variables, use the DYNAMIC statement with PROC SGRENDER as
shown in the following example.

proc sgrender data=financial template=timeseries;
 dynamic yvar="inflation" ylabel="Inflation Rate"
 ylabelrotation=90;
run;

For dynamic variables that resolve to column names or strings, enclose the value in
quotation marks. For dynamic variables that resolve to numeric values, specify the
value without quotation marks.

For macro variables, use the current symbol table (local or global) to look up the
macro variable values at run time as shown in the following example.

%let locate=inside;
%let trans=.3;
proc sgrender data=financial template=timeseries;
 dynamic yvar="inflation" ylabel="Inflation Rate";

Initializing Dynamic Variables and Macro Variables 609

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

run;

No initialization is needed for automatic macro variables like the system date and
time value SYSDATE.

It is the responsibility of the person or process that initializes the dynamic variables
or macro variables to ensure that the expected value type and value that is supplied
is appropriate for the substitution context. If necessary, you can use conditional logic
to evaluate the supplied values of dynamic variables or macro variables. Conditional
logic is discussed in Chapter 31, “Using Conditional Logic and Expressions in Your
Templates,” on page 619.

If a dynamic variable is used to supply a GTL option with a specific value and the
supplied value is not valid or it is not initialized, then the option specification is
ignored and the option's default value is used. For example, the HALIGN= option
accepts the values RIGHT, CENTER, and LEFT. If the dynamic variable ALIGN is
defined and then the template code specifies HALIGN=ALIGN, the ALIGN dynamic
variable must be initialized with one of the values RIGHT, CENTER, or LEFT. If it is
initialized with another value, TOP for example, the HALIGN= specification in the
template is ignored, the default setting for HALIGN= is used, and you might see a
warning in the SAS log.

If a dynamic variable is used to supply a required argument such as a column name,
and the name is misspelled or not provided, then a warning is issued and that plot
statement drops out of the final graph. A graph will still be produced, but it might be
a blank graph, or it might show the results of all statements except those that are in
error.

The following example shows how to create a generalized template that can be
used to show the distribution of any numeric variable. The dynamic variable named
VAR must be set, but the other dynamic variables are optional: BINS (sets the
number of histogram bins) and FOOTNOTE. In the following example, the
DYNAMIC and MVAR variables are highlighted to emphasize where they are being
used.

proc template;
 define statgraph distribution;
 dynamic VAR BINS FOOTNOTE;
 mvar SYSDATE;
 begingraph;
 entrytitle "Distribution of " VAR " with Normal Density Curve";
 entryfootnote halign=left FOOTNOTE halign=right "Created " SYSDATE;
 layout lattice / rowweights=(.9 .1) columndatarange=union
 rowgutter=2px;
 columnaxes;
 columnaxis / display=(ticks tickvalues);
 endcolumnaxes;
 layout overlay / yaxisopts=(offsetmin=.04 griddisplay=auto_on);
 histogram VAR / scale=percent nbins=BINS;
 densityplot VAR / normal() name="Normal";
 fringeplot VAR / datatransparency=.7;
 endlayout;
 boxplot y=VAR / orient=horizontal primary=true boxwidth=.9;
 endlayout;
 endgraph;
 end;
run;

The following execution of the template initializes the dynamic variables VAR and
FOOTNOTE, but it does not initialize BIN.

610 Chapter 30 / Using Dynamic Variables and Macro Variables in Your Templates

proc sgrender data=sashelp.heart template=distribution;
 dynamic var="Cholesterol"
 footnote="From Framingham Heart Study (SASHELP.HEART)";
run;

Here is the output.

In this case, the template option bins=BINS drops out because the BINS dynamic
variable has not been initialized. This following execution of the template assigns
values to each of the dynamic variables VAR, BIN, and FOOTNOTE, using different
values from the previous example.

proc sgrender data=sashelp.cars template=distribution;
 dynamic var="Invoice" bins=20 footnote="From SASHELP.CARS";
run;

Here is the output.

Initializing Dynamic Variables and Macro Variables 611

The next example shows a simplified version of the previous graph, this time adding
an inset. The inset statistics are computed external to the template and passed into
the template at run time, using dynamic variables and macro variables.

proc template;
 define statgraph inset;
 dynamic VAR FOOTNOTE;
 mvar N MEAN STD;
 begingraph;
 entrytitle "Distribution of " VAR;
 entryfootnote halign=left FOOTNOTE;
 layout overlay / yaxisopts=(griddisplay=on);
 histogram VAR / scale=percent;
 layout gridded / columns=2
 autoalign=(topleft topright) border=true
 opaque=true backgroundcolor=GraphWalls:color;
 entry halign=left "N"; entry halign=left N;
 entry halign=left "Mean"; entry halign=left MEAN;
 entry halign=left "Std Dev"; entry halign=left STD;
 endlayout;
 endlayout;
 endgraph;
 end;
run;

For more information about coding insets in graphs, see Chapter 21, “Adding Insets
to Your Graph,” on page 383.

We will now define a macro that can pass values to this template. For a given
numeric variable, the macro computes the number of observations, the mean, and
the standard deviation, storing these statistics in macro variables N, MEAN, and
STD. The macro variables are available to the SGRENDER step when the macro
executes. Here is the definition for the macro, which is named HIST.

%macro hist(dsn,numvar,footnote);
 /* these macro variables are declared in the template */

612 Chapter 30 / Using Dynamic Variables and Macro Variables in Your Templates

 %local N MEAN STD;
 proc sql noprint;
 select put(n(&numvar),12. -L),
 put(mean(&numvar),12.2 -L),
 put(std(&numvar),12.2 -L) into :N, :MEAN, :STD
 from &dsn;
 quit;

 /* remove trailing blanks */
 %let N=&N; %let MEAN=&MEAN; %let STD=&STD;

 ods graphics / reset width=450px;
 proc sgrender data=&dsn template=inset;
 dynamic VAR="&numvar" FOOTNOTE="&footnote";
 run;
%mend;

Here are results of two executions of the macro with different input data. Notice the
placement of the inset might change based on the amount of space that is available
and the setting for the AUTOALIGN= option.

%hist(sashelp.heart, cholesterol, From SASHELP.HEART)

%hist(sashelp.cars, Weight, From SASHELP.CARS)

Initializing Dynamic Variables and Macro Variables 613

If you are familiar with the macro facility, you can create macros that validate the
parameters before executing the template. It is also possible to validate the
parameters within the compiled template, using the conditional logic syntax of GTL.
For more information, see Chapter 31, “Using Conditional Logic and Expressions in
Your Templates,” on page 619.

GTL supports user-defined computed expressions within compiled templates. This
means that the inset statistics could have been computed inside the template,
eliminating the need to pass them in with dynamic variables or macro variables. An
example of how to do this is also discussed in Chapter 31, “Using Conditional Logic
and Expressions in Your Templates,” on page 619.

For developers who would like to create a library of reusable templates, see the
discussion on creating shared templates in “Creating Shared Templates” on page
639.

Special Dynamic Variables
Several special predefined dynamic variables are available that you can use with
your templates. These special variables are listed in Table 30.2 on page 614.

Table 30.2 Special Dynamic Variables

Dynamic
Variable Description

LIBNAME This variable represents the name of the library that contains the
data set.

614 Chapter 30 / Using Dynamic Variables and Macro Variables in Your Templates

Dynamic
Variable Description

MEMNAME This variable represents the name of the library member that
contains the data set.

_BYFOOTNOT
E_1

This variable is set to 1 when you specify a BY statement and the
ODS GRAPHICS BYLINE= option is set to FOOTNOTE.
Otherwise, it is set to 0 or is NULL. For more information about the
ODS GRAPHICS BYLINE= option, see “ODS GRAPHICS” in SAS
Graph Template Language: Reference.

BYLINE This variable represents the complete BY line when you specify a
BY statement.

_BYTITLE_1 This variable is set to 1 when you specify a BY statement and the
ODS GRAPHICS BYLINE= option is set to TITLE. Otherwise, it is
set to 0 or is NULL.

BYVAR This variable represents the name of the first BY variable when you
specify a BY statement.

BYVARn This variable represents the name of the nth BY variable when you
specify a BY statement with multiple variables.

BYVAL This variable represents the first BY value when you specify a BY
statement.

BYVALn This variable represents the value of the nth BY variable when you
specify a BY statement with multiple variables.

1 This variable is set automatically only for analytical procedures that support ODS Graphics. For all
other procedures, this variable is not set automatically (NULL).

To use a special variable in your template, you must define it in the DYNAMIC
statement in your template. However, you do not have to define and initialize the
special variable in your SGRENDER procedure statement. The special variables are
defined and initialized automatically at run time for the SGRENDER procedure.

Here is an example that shows you how special variables can be used in a
template. This example generates a graph of the monthly stock closing price for
each year for the years 2000 through 2005. It uses a BY statement in the
SGRENDER statement to generate the graphs by year and provides the following
options for displaying the BY value in each graph:

n Display the BY line in the graph title.

n Display the BY line in a footnote.

n Display the BY value in the graph title.

The _BYLINE_ variable is used to include the BY line in the graph title or in a
footnote. The _BYTITLE_ and _BYFOOTNOTE_ variables are used with the
BYLINE= ODS GRAPHICS option to select between displaying the BY line in the
title or footnote. When neither _BYTITLE_ nor _BYFOOTNOTE_ is set, the
BYVAL variable is used to include the BY value in the graph title as the default
behavior. Finally, before the graph is rendered, system option NOBYLINE is set to

Special Dynamic Variables 615

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0kroq43yu0lspn16hk1u4c65lti.htm&locale=en

suppress the default BY line that is normally displayed when the BY statement is
used.

Here is the code for this example.

/* Add a YEAR column to the data set. */
data stocks;
 set sashelp.stocks;
 year=year(date);
 label year="YEAR";
run;

/* Sort the data by YEAR. */
proc sort data=stocks;
 by year;
run;

/* Create the template for the graph. */
proc template;
 define statgraph seriesgroup;
 begingraph;
 /* Define the special variables that will be used. */
 dynamic _BYVAL_ _BYLINE_ _BYTITLE_ _BYFOOTNOTE_;

 /* If BYTITLE is set, put the BY line in the graph title. */
 if (_BYTITLE_)
 entrytitle "Monthly Closing Price";
 entrytitle "(" _BYLINE_ ")";
 else
 /* If BYFOOTNOTE is set, put the BY line in a footnote. */
 if (_BYFOOTNOTE_)
 entrytitle "Monthly Closing Price";
 entryfootnote halign=right "(" _BYLINE_ ")";
 else
 /* Otherwise, include _BYVAL_ in the title. */
 entrytitle "Monthly Closing Price In " _BYVAL_;
 endif;
 endif;
 layout overlay / xaxisopts=(label="Month" type=discrete
 griddisplay=on gridattrs=(pattern=dot))
 yaxisopts=(griddisplay=on gridattrs=(pattern=dot));
 seriesplot x=eval(month(date)) y=close /
 group=stock name="s";
 discretelegend "s";
 endlayout;
 endgraph;
 end;
run;

/* Disable the default BY line. */
options nobyline;

/* Put the BY line in the graph title */
ods graphics / byline=title;

/* Generate the graph. */
proc sgrender data=stocks template=seriesgroup;

616 Chapter 30 / Using Dynamic Variables and Macro Variables in Your Templates

 by year;
 where year between 2000 and 2005;
run;

Notice that _BYVAL_, _BYLINE_, _BYTITLE_, and _BYFOOTNOTE_ are included
in the DYNAMIC statement of the template definition but are not declared or
initialized in the SGRENDER statement. Conditional logic is used to test whether the
BYTITLE or _BYFOOTNOTE_ variable is set and to place the BY line
accordingly. If neither variable is set, the conditional logic includes the _BYVAL_
value in the graph title. The BYLINE=TITLE option in the ODS GRAPHICS
statement specifies that the BY line be displayed in the graph title.

The following figure shows the first graph. As shown in the figure, the first BY line,
YEAR=2000, is included in the graph title.

To display the BY line in a footnote, specify BYLINE=FOOTNOTE in the ODS
GRAPHICS statement. To display the BY value in the title instead, use the
BYLINE=NOBYLINE option in the ODS GRAPHICS statement or remove the ODS
GRAPHICS statement.

Special Dynamic Variables 617

618 Chapter 30 / Using Dynamic Variables and Macro Variables in Your Templates

31
Using Conditional Logic and
Expressions in Your Templates

Constructs Available for Run-Time Programming . 619

Expressions . 619

Conditional Logic . 621

Constructs Available for Run-Time
Programming

GTL has several constructs that can take advantage of the following run-time
programming features:

n dynamic variables and macro variables

n expressions

n conditional processing

This chapter discusses expressions and conditional processing. Dynamic variables
and macro variables are discussed in Chapter 30, “Using Dynamic Variables and
Macro Variables in Your Templates,” on page 605.

Expressions
In GTL, as in Base SAS, an expression is an arithmetic or logical expression that
consists of a sequence of operators, operands, and functions. An operand is a
dynamic, a macro variable, a column, a function, or a constant. An operator is a

619

symbol that requests a comparison, logical operation, arithmetic calculation, or
character concatenation.

Expressions can be used to set an option value that is any one of the following:

n a constant (character or numeric)

n a column

n part of the text for ENTRYTITLE, ENTRYFOOTNOTE, and ENTRY statements

In GTL, an expression must be enclosed in an EVAL function.

The following examples show how to specify an expression. This first example uses
the MEAN function to compute several constants:

/* create reference lines at computed positions */
referenceline y=eval(mean(weight)+2*std(weight)) / curvelabel="+2 STD";
referenceline y=eval(mean(weight)) / curvelabel="Mean";
referenceline y=eval(mean(weight)-2*std(weight)) / curvelabel="-2 STD";

This next example creates a new column:

/* create a new column as a log transformation */
scatterplot x=date y=eval(log10(amount));

This final example builds a text string:

/* create a date and time stamp as a footnote */
entryfootnote eval(put(today(),date9.)||" : "||put(time(),timeampm8.));

Valid GTL expressions are identical to valid WHERE expressions. See the WHERE
statement documentation in Base SAS for a comprehensive list of operators and
operands. Unlike WHERE expressions, however, GTL expressions do not perform
operations that create subsets. For example, the difference between the result of a
WHERE expression and that of a logical GTL expression on a column is that the
GTL expression returns a Boolean value for each observation, without changing the
number of observations.

For example, the expression for the Y= argument below does not reduce the
number of observations that are plotted.

scatterplot x=name y=eval(height between 40 and 60);

Instead, the computed numeric column for the Y= argument consists of 0s and 1s,
based on whether each observation's HEIGHT value is between 40 and 60.

Whenever expressions are used to create new columns, a new column name is
internally manufactured so that it does not collide with other columns in use.

Expressions in Statement Syntax. Throughout GTL documentation, you see
expression used in statement documentation:

BOXPLOT X= column | expression
Y= numeric-column | expression </ option(s)>;

For the X= argument in this BOXPLOT syntax, expression means any
EVAL(expression) that results in either a numeric or character column. An
expression that yields a constant is not valid.

For the Y= argument, expression means any EVAL(expression) that results in a
numeric column. The expression cannot result in a character column or any
constant.

REFERENCELINE X= x-axis-value | column | expression </ option(s)>;

620 Chapter 31 / Using Conditional Logic and Expressions in Your Templates

For a single line in this REFERENCELINE syntax, the X= argument can be a
constant (x-axis-value). For multiple lines, it can be a column. In either case, the
supplied value(s) must have the same data type as the axis. Thus,
EVAL(expression) can result in a constant, or it can result in a numeric or character
column. In either case, the data type of the result must agree with the axis type.

Type Conversion in GTL Expressions. Although expressions that are used in a
DATA step perform automatic type conversion, GTL expression evaluation does not.
Thus, you must use one or more functions to perform required type conversions in
an expression. Otherwise, the expression generates an error condition without
warning when the template is executed.

For example, consider the following GTL expression:

if(substr(value, 1, 2) = "11")

This expression uses the SUBSTR function to determine whether the first two
characters from VALUE evaluate to the string value "11". If VALUE is a string, the
expression works fine. However, if VALUE is numeric, then the expression
generates an error condition. For a numeric, you must convert the value to a string
before passing it to the SUBSTR function. The following modification uses the CATS
function to perform the type conversion when necessary:

if(substr(cats(value), 1, 2) = "11")

Conditional Logic
GTL supports conditional logic that enables you to include or exclude one or more
GTL statements at run time:

IF (condition)
GTL statement(s);

ELSE
GTL statement(s);

ENDIF;

The IF statement requires an ENDIF statement, which delimits the IF block. The IF
block can be placed anywhere within the BEGINGRAPH / ENDGRAPH block.

The condition is an expression that evaluates to a numeric constant, where all
numeric constants other than 0 and MISSING are true. The IF block is evaluated
with an implied EVAL(condition), so it is not necessary to include an EVAL as part
of the condition.

Note: Dynamic variables that are initialized to an ODS-recognized value, such as
YES, NO, TRUE, or FALSE, do not work as expected when used as an expression
in an IF-THEN statement. In that case, the expression is treated as a string, which
always evaluates to a positive integer value (FALSE).

Here are some examples:

/* test a computed value */
if (weekday(today()) in (1 7))
 entrytitle "Run during the weekend";

Conditional Logic 621

else
 entrytitle "Run during the work week";
endif;

/* test for the value of a numeric dynamic */
if (ADDREF > 0)
 referenceline y=1;
 referenceline y=0;
 referenceline y=-1;
endif;

/* test for the value of a character dynamic */
if (upcase(ADDREF) =: "Y")
 referenceline y=1;
 referenceline y=0;
 referenceline y=-1;
endif;

/* test whether a dynamic is initialized */
if (exists(ADDREF))
 referenceline y=1;
 referenceline y=0;
 referenceline y=-1;
endif;

The GTL conditional logic is used only for determining which statements to render. It
is not used to control what is in the data object. In the following example, the data
object contains columns Date, Amount, and LOG10(AMOUNT), but only one scatter
plot is created.

if (LOGFLAG)
 scatterplot x=date y=amount;
else
 scatterplot x=date y=eval(log10(amount));
endif;

For the conditional logic in GTL, it is seldom necessary to test for the existence of
option values that are set by columns or dynamic variables. Consider the following
statement:

scatterplot x=date y=amount / group=GROUPVAR;

This SCATTERPLOT statement is equivalent to the following code because option
values that are set by columns that do not exist, or by dynamic variables that are
uninitialized, simply "drop out" at run time and do not produce errors or warnings:

if (exists(GROUPVAR))
 scatterplot x=date y=amount / group=GROUPVAR;
else
 scatterplot x=date y=amount;
endif;

The GTL code that is specified in the conditional block must contain complete
statements and / or complete blocks of statements. For example, the following IF
block produces a compile error because there are more LAYOUT statements than
ENDLAYOUT statements:

/* produces a compile error */
if (exists(SQUAREPLOT))
 layout overlayequated / equatetype=square;

622 Chapter 31 / Using Conditional Logic and Expressions in Your Templates

else
 layout overlay;
endif;

 scatterplot x=XVAR y=YVAR;
endlayout;

The following logic is the correct conditional construct:

if (exists(SQUAREPLOT))
 layout overlayequated / equatetype=square;
 scatterplot x=XVAR y=YVAR;
 endlayout;
else
 layout overlay;
 scatterplot x=XVAR y=YVAR;
 endlayout;
endif;

GTL does not provide ELSE IF syntax, but you can create a nested IF/ ELSE block
as follows:

IF (condition)
GTL statement(s);

ELSE
IF (condition)

GTL statement(s);
ELSE

GTL statement(s);
ENDIF;

ENDIF;

The following example creates a generalized histogram that conditionally shows the
variable label and combinations of fitted distribution curves:

proc template;
 define statgraph conditional;
 dynamic NUMVAR "required" SCALE CURVE;
 begingraph;
 entrytitle "Distribution of " eval(colname(NUMVAR));

 if (colname(NUMVAR) ne collabel(NUMVAR))
 entrytitle "(" eval(collabel(NUMVAR)) ")";
 endif;

 layout overlay / xaxisopts=(display=(ticks tickvalues line));
 histogram NUMVAR / scale=SCALE;

 if (upcase(CURVE) in ("ALL" "NORMAL"))
 densityplot NUMVAR / normal() name="N"
 lineattrs=GraphData1 legendlabel="Normal Distribution";
 endif;

 if (upcase(CURVE) in ("ALL" "KDE" "KERNEL"))
 densityplot NUMVAR / kernel() name="K"
 lineattrs=GraphData2 legendlabel="Kernel Density Estimate";
 endif;

Conditional Logic 623

 discretelegend "N" "K";
 endlayout;

 endgraph;
 end;
run;

n The DYNAMIC statement identifies the dynamic variables.

n The first IF block specifies an ENTRYTITLE statement that is conditionally
executed if the column name differs from the column label.

n The next two IF blocks evaluate the value of the dynamic variable CURVE. If
CURVE is not used, the code in the conditional blocks is not executed. If CURVE
is initialized to one of the strings "all" or "normal" in any letter case, then the first
DENSITYPLOT statement is executed. If CURVE is initialized to one of the
strings "all", "kde", or "kernel" in any letter case, then the second DENSITYPLOT
statement is executed. Thus, the results of the conditional logic determine
whether zero, one, or two density plots are generated in the graph.

n Constructing the legend does not require conditional logic because any
referenced plot names that do not exist are not used.

After submitting the template code, you can execute the template with various
combinations of dynamic values.

In this first execution, the NUMVAR dynamic variable is initialized with a column that
has a defined label, so two title lines are generated. The first title line displays the
column name, and the second title line displays the column label. The CURVE
dynamic variable is not initialized, so the template does not generate a density plot.

proc sgrender data=sashelp.heart template=conditional;
 dynamic numvar="mrw";
run;

Here is the output.

624 Chapter 31 / Using Conditional Logic and Expressions in Your Templates

In this next execution of the template, the NUMVAR dynamic variable is initialized
with a column that does not have a label, so only a single title line is displayed in the
graph. The CURVE dynamic variable is initialized with the value "kde", so in addition
to the histogram, the template generates a kernel density estimate.

proc sgrender data=sashelp.heart template=conditional;
 dynamic numvar="cholesterol" curve="kde";
run;

Here is the output.

In this final execution of the template, the CURVE dynamic variable is initialized with
the value "all", so in addition to the histogram, the template generates a normal
density estimate and a kernel density estimate.

proc sgrender data=sashelp.heart template=conditional;
 dynamic numvar="cholesterol" scale="count" curve="all";
run;

Here is the output.

Conditional Logic 625

The value of the SCALE dynamic does not need to be verified. If it is not one of
COUNT, DENSITY, PERCENT, or PROPORTION (not case sensitive), the default
scale is used with no warning or error.

626 Chapter 31 / Using Conditional Logic and Expressions in Your Templates

32
Using Functions in Your
Templates

Overview . 627

SAS Functions . 628
SAS Functions That Can Be Used in a GTL Template . 628
SAS Functions That Can Be Used to Create Flexible Templates 628
Examples of Using the IFC and IFN SAS Functions . 629

Functions Defined Only in GTL . 631
GTL Functions Used with the EVAL Function . 631
Examples . 632
Using the TYPEOF SAS Function . 633

GTL Summary Statistic Functions . 634
Commonly Used Summary Statistic Functions . 634
Example . 636

Overview
GTL supports a large number of functions, including:

n SAS functions that can be used in the context of a WHERE expression

n functions that are defined only in GTL

n summary statistic functions

627

SAS Functions

SAS Functions That Can Be Used in a GTL
Template

Most of the SAS functions that are available in WHERE expressions can be used in
a GTL template. These SAS functions include:

n character-handling functions

n date and time functions

n mathematical and statistical functions

Not all SAS functions are available in WHERE expressions. Call routines and other
DATA-step-only functions (for example, LAG, VNAME, OPEN) are some examples
of functions that cannot be used. Not all functions that are available in WHERE
expressions are supported in GTL templates in all cases. The following form of the
PUT function is an example:

markercharacter = eval(put(amount, dollar7.2 -L))

This form results in an error when the template is compiled. However, the following
form is supported.

markercharacter = eval(put(amount, dollar7.2))

If you want to justify a string that is generated by the PUT function, use the LEFT or
RIGHT function with the PUT function as shown in the following example:

markercharacter = eval(left(put(amount, dollar7.2)))

Functions that accept null parameter values also might not be supported when you
specify a null parameter value.

For more information about SAS functions, see “Dictionary of Functions and CALL
Routines” in SAS Functions and CALL Routines: Reference.

SAS Functions That Can Be Used to Create
Flexible Templates

The following table shows some of the SAS functions can be used to increase the
flexibility of your template code.

SAS Function Name Description

IFC(logical-expression,
"true-value", "false-

Returns the character value true-value if logical-expression
resolves to TRUE, false-value if it resolves to FALSE, or

628 Chapter 32 / Using Functions in Your Templates

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1q8bq2v0o11n6n1gpij335fqpph.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1q8bq2v0o11n6n1gpij335fqpph.htm&locale=en

SAS Function Name Description

value" <,"missing-
value">)

missing-value if it resolves to a missing value. The TRUE,
FALSE, and MISSING values must be enclosed in quotation
marks.

IFN(logical-expression,
true-value, false-value
<,missing-value>)

Returns the numeric value true-value if logical-expression
resolves to TRUE, false-value if it resolves to FALSE, or
missing-value if it resolves to a missing value.

Examples of Using the IFC and IFN SAS Functions
The IFC and IFN functions return one of two character or numeric values based on
whether a conditional expression resolves to TRUE or FALSE. They can also return
an optional third value if the conditional expression resolves to a missing value.
These functions enable you to specify a value based on a conditional expression,
effectively creating a new data column. In some cases, these functions can be used
in place of IF-THEN-ELSE statements in your template code. As with other
functions, you must enclose the IFC and IFN functions in the EVAL function.

Here is an example that uses both the IFN and IFC functions for creating a sales-
based commission chart for employees in a sales group. Each employee in the
group works in one of two sales units: Products and Services. The data for this
example includes the employee ID, total sales, and sales unit code for each
member of the sales group. Here is the data.

data sales;
 input empID totalSales salesUnit $18;
 format totalSales dollar9.;
datalines;
112876 129489.44 P
112421 169842.97 S
115331 108763.51 S
110765 181009.22 P
113722 147688.78 P
;

The TotalSales column contains the total sales for each employee. The SalesUnit
column contains a code that identifies the sales unit in which each employee works.
The codes are P for the Products unit and S for the Services unit.

Here is the output for this example.

SAS Functions 629

The two bar charts show the total sales and earned commission for each employee.
The IFN function is used to compute commission for each employee based on his or
her total sales. Employees that achieved a sales total of $120,000 or more earn a
commission of 5% of their total sales. All other employees earn a commission of
2.5% of their total sales.

An axis table along the X axis shows the sales unit for each employee. The IFC
function is used to convert the P and S SalesUnit codes into more descriptive values
in the axis table. Because only two sales unit codes are used in this case, the IFC
function can be used for this purpose. This eliminates the need to add a new
column to the data in a DATA step or to create and apply a custom format to the
SalesUnit column.

Here is the SAS code that defines the template and generates the graph.

proc template;
 define statgraph commission;
 begingraph;
 entrytitle "Sales-Based Commission";
 layout overlay /
 xaxisopts=(label="Employee ID")
 yaxisopts=(label="Total Sales")
 y2axisopts=(label="Commission"
 linearopts=(viewmax=15000 tickvalueformat=dollar9.));
 /* Generate the sales bar chart. */
 barchart category=empID response=totalSales /
 name="Sales" legendlabel="Total Sales" barwidth=0.3
 discreteoffset=-0.2 fillattrs=graphData1;

 /* Generate the commission bar chart. */
 barchart category=empID
 /* Use IFN to compute the commission. */
 response=eval(ifn(totalSales >= 120000,
 totalSales * 0.05, /* 5% if TRUE */

630 Chapter 32 / Using Functions in Your Templates

 totalSales * 0.025)) / /* 2.5% if FALSE */
 name="Commission" legendlabel="Commission"
 barwidth=0.3 yaxis=y2 discreteoffset=0.2
 fillattrs=graphData2;

 /* Add an axis table that shows the sales unit for each
 employee. */
 innermargin / align=bottom;
 axistable x=empID
 /* Use IFC to convert the codes to meaningful
 values. */
 value=eval(ifc(salesUnit = 'P',"Products",
 "Services")) / display=(values);
 endinnermargin;
 discretelegend "Sales" "Commission";
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sales template=commission;
run;

Functions Defined Only in GTL

GTL Functions Used with the EVAL Function
The following table shows some functions that are used only in GTL. As with other
functions, these must be enclosed within an EVAL. In all these functions, column
can be either the name of a column in the input data set or a dynamic / macro
variable that resolves to such a column.

Function Name Description

COLC("string-1",
"string-1"<, "string-n" …
>)

Converts a list of comma-separated string values into a
temporary character column. Starting with SAS 9.4M2,
you can use this function to specify values in options that
accept a character column.

COLN(n-1, n-1<, n-N…
>)

Converts a list of comma-separated numeric values into a
temporary numeric column. You can use this function to
specify values in options that accept a numeric column.

COLNAME(column) Returns the case-sensitive name of the column.

Functions Defined Only in GTL 631

Function Name Description

COLLABEL(column) Returns the case-sensitive label of the column. If no label
is defined for the column, then the case-sensitive name of
the column is returned.

EXISTS(item) Returns 1 if specified item exists, 0 otherwise. If item is a
column, then it tests for the presence of the column in the
input data set. If item is a dynamic / macro variable, then it
tests whether there has been a run-time initialization of the
variable.

EXPAND(numeric-
column, freq-column)

Creates a new column as (numeric-column * frequency-
column) .

ASORT(column,
RETAIN=ALL)

Sorts all columns of the data object by the values of
column in ascending order. SORT is an alias for ASORT.

Warning: if the RETAIN=ALL argument is not included,
column alone is sorted, not the other columns, causing
rowwise information to be lost.

Limitation: only one sort operation (whether an ASORT()
or DSORT() function) can be used within a single template
definition.

DSORT(column,
RETAIN=ALL)

Sorts all columns of the data object by the values of
column in descending order.

Warning: if the RETAIN=ALL argument is not included,
column alone is sorted, not the other columns, causing
rowwise information to be lost.

Limitation: only one sort operation (whether an ASORT()
or DSORT() function) can be used within a single template
definition.

NUMERATE(column) Returns a column that contains the ordinal position of
each observation in the input data set (similar to an Obs
column).

Examples

/* arrange bars in descending order of response values */
barchartparm category=region response=eval(dsort(amount,retain=all));

/* label outliers with their position in the data set */
/* it does not matter which column is used for NUMERATE() */
boxplot x=age y=weight / datalabel=eval(numerate(age));

/* add information about the column being processed,

632 Chapter 32 / Using Functions in Your Templates

 which is passed by a dynamic */
entrytitle "Distribution for " eval(colname(DYNVAR));

Using the TYPEOF SAS Function
The TYPEOF function returns the type of a specified column at run time.

TYPEOF(column)

This function returns the character ‘C’ if the specified column is a character column
or ‘N’ if it is a numeric column.

You can use the TYPEOF function to take specific actions in your template at run
time based on the input data type. Here is an example that creates a graph of two
columns and uses the TYPEOF function to select a graph type that is appropriate
for the column types. The result returned by the TYPEOF function determines the
graph type as follows:

n If both columns are numeric, then it creates a scatter plot.

n If the X column is character and the Y column is numeric, then it creates a
vertical bar chart.

n If the X column is numeric and the Y column is character, then it swaps the
category and response columns in the BARCHART statement and orients the
chart horizontally.

Here is the output for the third case, a numeric X column and a character Y column.

Here is the SAS code.

/* Define the graph template. */
proc template;
 define statgraph plot;
 dynamic cat resp; /* Category and response columns. */
 begingraph;
 entrytitle "Graph of " eval(collabel(resp)) " and "

Functions Defined Only in GTL 633

 eval(collabel(cat));
 layout overlay;
 /* If cat and resp are numeric, then generate a scatter plot.
 Otherwise, generate a bar chart. */
 if (typeof(cat) = "N" and typeof(resp) = "N")
 scatterplot x=cat y=resp;
 else
 /* If cat is a character column, then generate a vertical bar
 chart. Otherwise, generate a horizontal bar chart. */
 if (typeof(cat) = "C")
 barchart category=cat response=resp / stat=mean;
 else
 barchart category=resp response=cat /
 stat=mean orient=horizontal;
 endif;
 endif;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.cars template=plot;
 dynamic cat="MPG_CITY" resp="TYPE";
run;

Note: See “Functions Defined Only in GTL” on page 631 for information about the
COLLABEL function.

GTL Summary Statistic Functions

Commonly Used Summary Statistic Functions
Several GTL summary statistic functions are available that return a numeric
constant, based on a summary operation on a numeric column. The results are the
same as if the corresponding statistics were requested with PROC SUMMARY.
These functions take a single argument that resolves to the name of a numeric
column. Here is an example.

number = EVAL(function-name(numeric-column))

The GTL summary statistic functions take precedence over similar multi-argument
DATA step functions. The following table lists the GTL summary statistic functions
that you can use.

Function Name Description

CSS Corrected sum of squares

634 Chapter 32 / Using Functions in Your Templates

Function Name Description

CV Coefficient of variation

KURTOSIS Kurtosis

LCLM One-sided confidence limit below the mean

MAX Largest (maximum) value

MEAN Mean

MEDIAN Median (50th percentile)

MIN Smallest (minimum) value

N Number of nonmissing values

NMISS Number of missing values

P1 1st percentile

P5 5th percentile

P25 25th percentile

P50 50th percentile

P75 75th percentile

P90 90th percentile

P95 95th percentile

P99 99th percentile

PROBT p-value for Student’s t statistic

Q1 First quartile

Q3 Third quartile

QRANGE Interquartile range

RANGE Range

SKEWNESS Skewness

STDDEV Standard deviation

GTL Summary Statistic Functions 635

Function Name Description

STDERR Standard error of the mean

SUM Sum

SUMWGT Sum of weights

T Student’s t statistic

UCLM One-sided confidence limit above the mean

USS Uncorrected sum of squares

VAR Variance

Example
The following example uses GTL summary statistic functions to dynamically
construct reference lines and a table of statistics for a numeric variable, which is
supplied at run time.

Here is the graph for this example.

Here is the SAS code.

proc template;
 define statgraph expression;

636 Chapter 32 / Using Functions in Your Templates

 dynamic NUMVAR "required";
 begingraph;
 entrytitle "Distribution of " eval(colname(NUMVAR));
 layout overlay / xaxisopts=(display=(ticks tickvalues line));
 histogram NUMVAR;

 /* create reference lines at computed positions */
 referenceline x=eval(mean(NUMVAR)+2*std(NUMVAR)) /
 lineattrs=(pattern=dash) curvelabel="+2 STD";
 referenceline x=eval(mean(NUMVAR)) /
 lineattrs=(thickness=2px) curvelabel="Mean";
 referenceline x=eval(mean(NUMVAR)-2*std(NUMVAR)) /
 lineattrs=(pattern=dash) curvelabel="-2 STD";

 /* create inset */
 layout gridded / columns=2 order=rowmajor
 autoalign=(topleft topright) border=true;
 entry halign=left "N";
 entry halign=left eval(strip(put(n(NUMVAR),12.0)));
 entry halign=left "Mean";
 entry halign=left eval(strip(put(mean(NUMVAR),12.2)));
 entry halign=left "Std Dev";
 entry halign=left eval(strip(put(stddev(NUMVAR),12.2)));
 endlayout;
 endlayout;
 endgraph;
 end;
run;

proc sgrender data=sashelp.heart template=expression;
 dynamic numvar="MRW";
run;

GTL Summary Statistic Functions 637

638 Chapter 32 / Using Functions in Your Templates

33
Sharing Your Custom Templates

Creating Shared Templates . 639

Creating Shared Templates
When creating templates (especially with dynamic variables that generalize the
usefulness of the template), you typically want to enable several people to create
graphs from the template. To enable access to templates, you must store the
"public" templates in a directory that is accessible to others. PROC TEMPLATE can
store templates in specified SAS libraries and within specific item stores. By default,
templates are stored in Sasuser.Templat , but another library.itemstore can be
specified with the STORE= option in the DEFINE statement.

libname p "\\public\templates";

proc template;
 define statgraph graphs.distribution / store=p.templat;
 ...
 end;
 define statgraph graphs.regression / store=p.templat;
 ...
 end;
run;

When this template code is submitted, you see the following notes in the SAS log:

NOTE: STATGRAPH 'Graphs.Distribution' has been saved to:
PUBLIC.TEMPLAT
NOTE: STATGRAPH 'Graphs.Regression' has been saved to:
PUBLIC.TEMPLAT

After shared templates are compiled and stored, others can access them to produce
graphs.

libname p "\\public\templates" access=readonly;

639

ods path reset;
ods path (prepend) p.templat(read);

proc sgrender data= ... template=graphs.distribution;
 dynamic var="height";
run;

Manipulating the ODS search path is the best way to make the templates publicly
available.

Note that this code did not replace the path but rather added an item store at the
beginning of the path. This is done to allow access to all SAS supplied production
templates, which are stored in Sashelp.Tmplmst.

ods path show;

Current ODS PATH list is:
1. P.TEMPLAT(READ)
2. SASUSER.TEMPLAT(UPDATE)
3. SASHELP.TMPLMST(READ)

640 Chapter 33 / Sharing Your Custom Templates

34
Modifying Predefined Templates

Predefined Templates for SAS Analytical Procedures . 641

Modify a Predefined Template . 643

Predefined Templates for SAS Analytical
Procedures

The graphs that are produced by the SAS analytical procedures are created from
precompiled STATGRAPH templates that are written in GTL. For each graph that is
created by a procedure, a template has been defined by the procedure writers and
shipped with SAS. These templates can be found in the appropriate subfolder of the
Sashelp.Tmplmst item store. All of the template subfolder names have the prefix
Tmpl. The template subfolder in which a specific predefined template is stored
depends on the procedure.

To locate the predefined templates that a procedure uses, you can run the
procedure with ODS TRACE ON in effect. In that case, trace information written to
the SAS log indicates the path to the predefined templates that the procedure uses
to generate output. For example, the following code shows how to display the
predefined templates that the FREQ procedure uses.

ods trace on;
ods graphics on;
proc freq data=sashelp.cars order=freq;
 tables Type / plots=freqplot(type=dotplot);
 weight Weight;
 title "Vehicle Weight";
run;
ods graphics off;
ods trace off;

In this case, the FREQ procedure prints a table of frequency statistics for Type
followed by a dot plot of the Type distribution. With ODS TRACE ON in effect, the
following trace information about the output is written to the SAS log.

641

Output Added:

Name: OneWayFreqs
Label: One-Way Frequencies
Template: Base.Freq.OneWayFreqs
Path: Freq.Table1.OneWayFreqs

Output Added:

Name: FreqPlot
Label: Frequency Plot
Template: Base.Freq.Graphics.OneWayFreqDotPlot
Path: Freq.Table1.OneWayFreqPlots.FreqPlot

The second Output Added item in the trace output provides information about the
dot plot. The Template line identifies the predefined template that is used to
generate the dot plot. When searching the template catalogs, ODS searches a
specific list of search paths. To see the search paths that are currently in effect, run
the following command.

ods path show;

Current ODS PATH list is:

1. SASUSER.TEMPLAT(UPDATE)
2. SASHELP.TMPLMST(READ)

As indicated in the output, in this case, ODS searches the Sasuser.Templat catalog
first, and then searches the Sashelp.Tmplmst catalog next. Once you have
determined the path to the predefined template, you can then use the TEMPLATE
procedure SOURCE statement to display the contents of the template.

proc template;
 source Base.Freq.Graphics.OneWayFreqDotPlot;
run;

When the TEMPLATE procedure is executed, ODS searches the template catalogs
in the order of its search paths in order to locate the template. The first instance
found is used. Once the template is located, the TEMPLATE procedure writes the
template contents to the SAS log. Following the template contents in the SAS log is
a note that indicates where the template was found.

NOTE: Path 'Base.Freq.Graphics.OneWayFreqDotPlot' is in: SASHELP.TMPLBASE
 (via SASHELP.TMPLMST).

As indicated in the note, the OneWayFreqDotPlot predefined template was found in
the Sashelp.Tmplbase catalog.

Note: In the SAS Windowing Environment, you can also use the Templates window
to browse the template catalogs. To open the Templates window, type
ODSTEMPLATES in the command line, and then press Enter.

For more information about the ODS Graphics predefined templates, see SAS/STAT
User's Guide.

642 Chapter 34 / Modifying Predefined Templates

Modify a Predefined Template
If you want to make persistent changes to the SAS statistical procedures automatic
graphics, you can do so by editing and recompiling their predefined graph
templates.

To modify a predefined template:

1 Determine the name of the template that you want to modify. For more
information, see “Predefined Templates for SAS Analytical Procedures” on page
641.

2 Edit the template code as needed.

3 Submit the modified template code in order to compile it and save it in your
Sasuser.Templat item store.

4 Verify that the Sasuser.Templat item store appears first in the ODS search path
list.

To modify a template, you must be familiar with the structure of the templates, which
requires a thorough knowledge of GTL. If you are not familiar with GTL, use this
guide and SAS Graph Template Language: Reference to gain a working knowledge
of GTL before you proceed. You must also follow the recommended guidelines for
modifying these templates. For more information about modifying the predefined
templates, see SAS/STAT User's Guide.

Modify a Predefined Template 643

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

644 Chapter 34 / Modifying Predefined Templates

PART 10

Appendixes

Appendix 1
Reserved Keywords and Unicode Values . 647

Appendix 2
Graph Style Elements Used by ODS Graphics . 651

Appendix 3
Display Attributes . 663

Appendix 4
Predefined Colors . 685

Appendix 5
Tick Value Fit Policy Applicability . 699

Appendix 6
SAS Formats Not Supported . 703

Appendix 7
Memory Management for ODS Graphics . 709

Appendix 8
Understanding Hexadecimal Values . 713

Appendix 9
ODS Graphics and SAS/GRAPH . 717

645

646

Appendix 1
Reserved Keywords and
Unicode Values

Reserved Keywords and Unicode Values . 647
Overview . 647
Lowercase Greek Letters . 648
Uppercase Greek Letters . 649
Special Characters . 650

Reserved Keywords and Unicode Values

Overview
The tables in this section show some of the reserved keywords and Unicode values
that can be used with the UNICODE text command. For information about rendering
Unicode characters, see “Managing the String on Text Statements” on page 324.

Note the following:

n Keywords and Unicode values are not case-sensitive: "03B1"x is the same code
point as "03b1"x.

n The word blank is the keyword for a blank space.

647

Lowercase Greek Letters

Keyword Glyph Unicode Description

alpha α 03B1 lowercase alpha

beta β 03B2 lowercase beta

gamma γ 03B3 lowercase gamma

delta δ 03B4 lowercase delta

epsilon ε 03B5 lowercase epsilon

zeta ζ 03B6 lowercase zeta

eta η 03B7 lowercase eta

theta θ 03B8 lowercase theta

iota ι 03B9 lowercase iota

kappa κ 03BA lowercase kappa

lambda λ 03BB lowercase lambda

mu μ 03BC lowercase mu

nu ν 03BD lowercase nu

xi ξ 03BE lowercase xi

omicron ο 03BF lowercase omicron

pi π 03C0 lowercase pi

rho ρ 03C1 lowercase rho

sigma σ 03C3 lowercase sigma

tau τ 03C4 lowercase tau

upsilon υ 03C5 lowercase upsilon

phi φ 03C6 lowercase phi

chi χ 03C7 lowercase chi

648 Appendix 1 / Reserved Keywords and Unicode Values

Keyword Glyph Unicode Description

psi ψ 03C8 lowercase psi

omega ω 03C9 lowercase omega

Uppercase Greek Letters

Keyword Glyph Unicode Description

alpha_u Α 0391 uppercase alpha

beta_u Β 0392 uppercase beta

gamma_u Γ 0393 uppercase gamma

delta_u Δ 0394 uppercase delta

epsilon_u Ε 0395 uppercase epsilon

zeta_u Ζ 0396 uppercase zeta

eta_u Η 0397 uppercase eta

theta_u Θ 0398 uppercase theta

iota_u Ι 0399 uppercase iota

kappa_u Κ 039A uppercase kappa

lambda_u Λ 039B uppercase lambda

mu_u Μ 039C uppercase mu

nu_u Ν 039D uppercase nu

xi_u Ξ 039E uppercase xi

omicron_u Ο 039F uppercase omicron

pi_u Π 03A0 uppercase pi

rho_u Ρ 03A1 uppercase rho

sigma_u Σ 03A3 uppercase sigma

Reserved Keywords and Unicode Values 649

Keyword Glyph Unicode Description

tau_u Τ 03A4 uppercase theta

upsilon_u Υ 03A5 uppercase upsilon

phi_u Φ 03A6 uppercase phi

chi_u Χ 03A7 uppercase chi

psi_u Ψ 03A8 uppercase psi

omega_u Ω 03A9 uppercase omega

Special Characters

Keyword Glyph Unicode Description

prime ´ 00B4 single prime sign

bar ̅ 0305 combining overline1

bar2 ̿ 033F combining double overline1

tilde ̃ 0303 combining tilde1

hat ̂ 0302 combining circumflex accent1

1 This is an overstriking character that requires a Unicode font to render properly.

650 Appendix 1 / Reserved Keywords and Unicode Values

Appendix 2
Graph Style Elements Used by
ODS Graphics

About the Graphical Style Elements . 651

General Graph Appearance Style Elements . 652

Graphical Data Representation Style Elements (Non-Grouped Data) 654

Graphical Data Representation Style Elements (Grouped Data) 658

Display Style Elements . 659

About the Graphical Style Elements
The style elements that are described in this appendix affect template-based
graphics. These style elements can be specified by Graph Template Language
appearance options or used in style templates. The graphical style elements fall into
the following categories:

n general graph appearance

n graphical data representation (non-grouped data)

n graphical data representation (grouped data)

n display

The following sections list the graphical style elements that are in each of these
categories. For additional information about ODS style elements, see SAS Output
Delivery System: User’s Guide

651

General Graph Appearance Style
Elements

The following table lists the general graph appearance style elements.

Table A2.1 Graph Style Elements: General Graph Appearance

Style Element Portion of Graph Affected Recognized Attributes

GraphAnnoLine Annotation lines and arrows, and
outlines for closed annotation
shapes such as circles and
squares.

ContrastColor

LineStyle

LineThickness

GraphAnnoShape Fill for closed annotation shapes
such as circles and squares, and
the default annotation marker in
ODS Graphics Editor.

Color

MarkerSize

MarkerSymbol

Transparency

GraphAnnoText Annotation text Color

Font

or font-attributes1

GraphAxisLines X-, Y-, and Z-axis lines ContrastColor

LineStyle

LineThickness

TickDisplay

GraphBackground Background of the graph Color

Transparency

GraphBorderLines Border line around the graph
and around the graph legend

ContrastColor

LineStyle

LineThickness

GraphDataText Text font and color for point and
line labels

Color

Font

or font-attributes1

GraphFootnoteText Text font and color for
footnote(s)

Color

Font

652 Appendix 2 / Graph Style Elements Used by ODS Graphics

Style Element Portion of Graph Affected Recognized Attributes

or font-attributes1

GraphGridLines Horizontal and vertical grid lines
drawn at major tick marks

ContrastColor

DisplayOpts

LineStyle

LineThickness

Transparency

GraphHeaderBackground Background color of the cell
headers in a data-driven lattice
or data-driven panel graph

Color

Transparency

GraphLabelText Text font and color for axis labels
and legend titles

Color

Font

or font-attributes1

GraphLegendBackground Background color of the legend Color

Transparency

GraphMinorGridLines Appearance of the horizontal
and vertical minor grid lines.

ContrastColor

DisplayOpts

LineStyle

LineThickness

GraphOutlines Outline properties for fill areas
such as bars, pie slices, box
plots, ellipses, and histograms

Color

ContrastColor

LineStyle

LineThickness

GraphReference Horizontal and vertical reference
lines and drop lines

ContrastColor

LineStyle

LineThickness

GraphTitleText Text font and color for title(s) Color

Font

or font-attributes1

GraphUnicodeText Text font for Unicode values Color

Font

orfont-attributes1

GraphValueText Text font and color for axis tick
values and legend values

Color

Font

General Graph Appearance Style Elements 653

Style Element Portion of Graph Affected Recognized Attributes

or font-attributes1

GraphWalls Vertical wall(s) bounded by axes Color

ContrastColor

FrameBorder

LineStyle

LineThickness

1 Font-attributes can be one or more of the following: FONTFAMILY=, FONTSIZE=, FONTSTYLE=, FONTWEIGHT=.

Graphical Data Representation Style
Elements (Non-Grouped Data)

The following table lists the graphical data representation style elements that affect
non-grouped data.

Table A2.2 Style Elements Affecting Graphical Data Representation

Style Element Portion of Graph Affected Recognized Attributes

GraphBoxMean Marker for mean ContrastColor

MarkerSize

MarkerSymbol

GraphBoxMedian Line for median ContrastColor

LineStyle

LineThickness

GraphBoxWhisker Box whiskers and serifs ConstrastColor

LineStyle

LineThickness

GraphConfidence Primary confidence lines and
bands, colors for bands and lines

ContrastColor

Color

LineStyle

LineThickness

MarkerSize

MarkerSymbol

654 Appendix 2 / Graph Style Elements Used by ODS Graphics

Style Element Portion of Graph Affected Recognized Attributes

Transparency

GraphConfidence2 Secondary confidence lines and
bands, color for bands, and
contrast color for lines

ContrastColor

Color

LineStyle

LineThickness

MarkerSize

MarkerSymbol

Transparency

GraphConnectLine Line for connecting boxes or
bars

ContrastColor

LineStyle

LineThickness

GraphCutLine Cutline attributes for a
dendogram

Color

LineStyle

GraphDataDefault Primitives related to non-grouped
data items, colors for filled areas,
markers, and lines

Color

ContrastColor

EndColor

LineStyle

LineThickness

NeutralColor

MarkerSymbol

MarkerSize

StartColor

GraphError Error line or error bar fill,
ContrastColor for lines, Color for
bar fill

CapStyle

Color

ContrastColor

LineStyle

Transparency

GraphFit Primary fit lines such as a normal
density curve

Color

ContrastColor

LineStyle

LineThickness

MarkerSize

MarkerSymbol

Graphical Data Representation Style Elements (Non-Grouped Data) 655

Style Element Portion of Graph Affected Recognized Attributes

GraphFit2 Secondary fit lines such as a
kernel density curve

Color

ContrastColor

LineStyle

LineThickness

MarkerSize

MarkerSymbol

GraphFinal Final data for the waterfall chart.
Color applies to filled areas.

Color

ContrastColor

LineStyle

LineThickness

MarkerSize

MarkerSymbol

TextColor

GraphInitial Initial data for the waterfall chart.
Color applies to filled areas.

Color

ContrastColor

LineStyle

LineThickness

MarkerSize

MarkerSymbol

TextColor

GraphMissing Properties for graph items
representing missing values

Color

ContrastColor

FillPattern1

LineStyle

LineThickness

MarkerSymbol

MarkerSize

Transparency

GraphOther Other data for the graph. Color
applies to filled areas.

Color

ContrastColor

LineStyle

LineThickness

MarkerSize

MarkerSymbol

TextColor

656 Appendix 2 / Graph Style Elements Used by ODS Graphics

Style Element Portion of Graph Affected Recognized Attributes

GraphOverflow Overflow data for the graph.
Color applies to filled areas.
ContrastColor applies to markers
and lines.

Color

ContrastColor

LineStyle

LineThickness

MarkerSize

MarkerSymbol

TextColor

GraphOutlier Outlier data for the graph ContrastColor

Color

MarkerSize

MarkerSymbol

LineStyle

LineThickness

GraphPrediction Prediction lines ContrastColor

Color

LineStyle

LineThickness

MarkerSize

MarkerSymbol

Transparency

GraphPredictionLimits Fills for prediction limits ContrastColor

Color

LineStyle

LineThickness

MarkerSize

MarkerSymbol

Transparency

GraphSelection For interactive graphs, visual
properties of selected item. Color
for selected fill area,
ContrastColor for selected
marker or line.

ContrastColor

Color

LineStyle

LineThickness

MarkerSymbol

MarkerSize

GraphUnderflow Underflow data for the graph.
Color applies to filled areas.

Color

ContrastColor

Graphical Data Representation Style Elements (Non-Grouped Data) 657

Style Element Portion of Graph Affected Recognized Attributes

ContrastColor applies to markers
and lines.

LineStyle

LineThickness

MarkerSize

MarkerSymbol

TextColor

ThreeColorAltRamp Line contours, markers, and data
labels with segmented range
color response

EndColor

NeutralColor

StartColor

ThreeColorRamp Gradient contours, surfaces,
markers, and data labels with
continuous color response

EndColor

NeutralColor

StartColor

TwoColorAltRamp Line contours, markers, and data
labels with segmented range
color response

EndColor

StartColor

TwoColorRamp Gradient contours, surfaces,
markers, and data labels with
continuous color response

EndColor

StartColor

1 Attribute FillPattern is available in style element GraphMissing starting with SAS 9.4M5.

Graphical Data Representation Style
Elements (Grouped Data)

The following table lists and describes the data-related style elements that affect
grouped data.

Table A2.3 Graphical Style Elements: Data Related (Grouped)

Style Elements Portion of Graph Affected Attributes Defined

GraphData1

GraphData2

GraphData3

GraphData4

GraphData5

GraphData6

Primitives related to the first
seven grouped data items. Color
applies to filled areas.
ContrastColor applies to markers
and lines.

Color

ContrastColor

FillPattern1

LineStyle

MarkerSymbol

658 Appendix 2 / Graph Style Elements Used by ODS Graphics

Style Elements Portion of Graph Affected Attributes Defined

GraphData7

GraphData8

GraphData9

GraphData10

GraphData11

Primitives related to the 8th
through 11th grouped data items.

Color

ContrastColor

FillPattern1

LineStyle

MarkerSymbol2

GraphData12 Primitives related to the 12th
grouped data item.

Color

ContrastColor

FillPattern1

MarkerSymbol2

GraphData133

GraphData14

GraphData15

Primitives related to the 13th
through 15th grouped data items.

FillPattern1

MarkerSymbol

1 Prior to SAS 9.4M5, style attribute FillPattern is available only with the JOURNAL2, JOURNAL3, and
MONOCHROMEPRINTER styles. Starting with SAS 9.4M5, style attribute FillPattern in GraphData1–GraphData11 is also
available with the DEFAULT ODS style and all styles that are derived from it.

2 Style attribute MarkerSymbol in these style elements is defined for styles JOURNAL2, JOURNAL3, and
MONOCHROMEPRINTER only.

3 Style elements GraphData13–GraphData15 are available only with the JOURNAL2, JOURNAL3, and
MONOCHROMEPRINTER styles.

Display Style Elements
The following table lists the display style elements.

Table A2.4 Display Style Elements

Style Element
Portion of Graph
Affected Recognized Attributes Possible Values

GraphAltBlock Alternate fill color for
block plots

Color GraphColors("gablock")

GraphBand Display options for
confidence bands

DisplayOpts "Fill fillpattern outline" 1

GraphBar Display options for bar
charts

DisplayOpts "Connect fill fillpattern
outline"

Display Style Elements 659

Style Element
Portion of Graph
Affected Recognized Attributes Possible Values

GraphBlock Fill color for block plots Color GraphColors("gblock")

GraphBox Display options for box
plots

DisplayOpts "Caps connect fill
fillpattern mean median
notches outliers" 1

CapStyle "Serif"

Connect "Mean"

GraphContour Display options for
contours

DisplayOpts "LabeledLineGradient"

EndColor GraphColors(‘gramp3ce
nd’)

NeutralColor GraphColors(‘gramp3cn
eutral’)

StartColor GraphColors(‘gramp3cs
tart’)

GraphEllipse Display options for
confidence ellipses

DisplayOpts "Fill fillpattern outline" 1

GraphHighLow 2 Display options for high-
low plots

DisplayOpts "Fill fillpattern outline"

GraphHistogram Display options for
histograms

DisplayOpts "Fill fillpattern outline" 1

GraphPolygon 2 Display options for
polygon plots

DisplayOpts "Fill fillpattern outline"

GraphSkins Display skins DataSkin "Crisp"

"Gloss"

"Matte"

"None"

"Pressed"

KpiSkin "Basic"

"Modern"

"None"

"Onyx"

"Satin"

1 Display option FillPattern is available starting with SAS 9.4M5.
2 Style elements GraphHighLow and GraphPolygon are valid starting with SAS 9.4M5.

660 Appendix 2 / Graph Style Elements Used by ODS Graphics

Display Style Elements 661

662 Appendix 2 / Graph Style Elements Used by ODS Graphics

Appendix 3
Display Attributes

General Syntax for Attribute Options . 663

Attributes Available for the Attribute Options . 664
Fill Color Options . 664
Fill Pattern Options . 665
Line Options . 666
Marker Options . 668
Text Options . 670

Available Line Patterns . 670

Color-Naming Schemes . 673
Overview of Color-Naming Schemes . 673
RGB Color Codes . 674
CMYK Color Codes . 675
HLS Color Codes . 676
HSV (or HSB) Color Codes . 677
Gray-Scale Color Codes . 677
Color Naming System (CNS) Values . 678
SAS Color Names and RGB Values in the SAS Registry . 679
Converting Color Values between Color-Naming Schemes . 680
Converting Numeric Color Component Values to Color Names 681
Converting Color Values from Other Applications . 681

General Syntax for Attribute Options
Most statements provide options that enable you to specify attributes for the fills,
lines, data markers, or text that is used in the display. For example, many plots
provide a DATALABELATTRS= option that specifies the attributes of the data labels.
This appendix discusses the general syntax for those options and the valid values
for they accept.

A statement’s attribute options use the following general syntax:

attribute-option-name = style-element | style-element (options) | (options)

663

style-element
specifies the name of a style element. Only style attributes that are relevant for
rendering the fill, line, data marker, or text are used.

Example fillattrs = graphdata1

style-element (options)
specifies the name of a style element, plus individual options to be used as style
overrides. Options is a space-delimited list of option = value pairs. Any options
that are not specified are derived from the specified style element.

Example fillattrs = graphdata1(color = blue)

(options)
specifies individual options as a space-delimited list of option = value pairs. Any
options that are not specified are derived from the default style element.

Example datalabelattrs = (family = "Arial" size = 10pt)
datalabelattrs = (family = graphvaluetext:fontfamily)

Depending on the attribute option used, the options might be fill options , line
options , marker options , or text options .

In general, any relevant attribute that is not specified defaults to an internal value,
which is typically derived from the style element that you specify for the attributes.
When choosing a style element, you should use an element of the correct type. See
Appendix 2, “Graph Style Elements Used by ODS Graphics,” on page 651 for a list
of style elements and their types.

Attributes Available for the Attribute
Options

Depending on the attribute option used on a statement, the available attributes
might be fill-color options on page 664, fill-pattern options on page 665, line
options on page 666, marker options on page 668, or text options on page 670.

Fill Color Options
Use one or more of the following options to specify fill-color attributes. The options
must be enclosed in parentheses and specified as a space-delimited list of name =
value pairs.

COLOR=style-reference | color
specifies the fill color. Style-reference must specify a valid style attribute such as
Color, ContrastColor, StartColor, NeutralColor, or EndColor in the form style-
element-name:attribute-name. If style-reference is not defined in the active
ODS style, the COLOR= option is ignored and the default color is used.

Color must be a valid color name, such as RED, or a color code, such as
CXFF0000 or #FF0000. The color name must not exceed 64 characters. A color

664 Appendix 3 / Display Attributes

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p06hgx459w75qen1wpavfghx4ket.htm&docsetTargetAnchor=n07bb2dzjku81an1nqd3a2btd4yq&locale=en

code must be a valid code for a SAS color-naming scheme, such as RGB,
CMYK, HLS, or HSV (HSB). See “Color-Naming Schemes” on page 673.

TRANSPARENCY=number
specifies the degree of the transparency of the filled area. This setting enables
you to set the transparency for the filled elements of some graph types. You can
set just this fill transparency, or set the fill independently of the other transparent
elements in the graph. For example, you can use this setting to set the
transparency level for the filled bars of a bar chart, and use the bar chart’s
DATATRANSPARENCY= option to set a different transparency level for the bar
outlines.

Default The same as the setting of the statement’s
DATATRANSPARENCY= option.

Range 0–1, where 0 is opaque and 1 is entirely transparent

Interaction This setting overrides the statement’s DATATRANSPARENCY=
setting for the fills but not for the outlines.

Example fillattrs = (transparency = 0.5)

Fill Pattern Options
Use one or more of the following options to specify fill-pattern attributes. The options
must be enclosed in parentheses and specified as a space-delimited list of name =
value pairs.

COLOR=style-reference | color
specifies the fill color.Style-reference must specify a valid style attribute such as
Color, ContrastColor, StartColor, NeutralColor, or EndColor in the form style-
element-name:attribute-name. If style-reference is not defined in the active
ODS style, the COLOR= option is ignored and the default color is used.

Color must be a valid color name, such as RED, or a color code, such as
CXFF0000 or #FF0000. The color name must not exceed 64 characters. A color
code must be a valid code for a SAS color-naming scheme, such as RGB,
CMYK, HLS, or HSV (HSB). See “Color-Naming Schemes” on page 673.

PATTERN=style-reference | fill-pattern
specifies the fill pattern. Style-reference is valid starting with SAS 9.4M5. It must
specify a FILLPATTERN attribute in the form style-element-
name:FILLPATTERN. If style-reference is not defined in the active ODS style, the
PATTERN= option is ignored and the default fill pattern is used, if one is
specified by the active ODS style.

Fill-pattern is a two-character specification that consists of a line-direction prefix
(R for right, L for left, and X for cross hatch) and a line-identification number, 1–
5. The following table shows the patterns for each of the possible combinations.

Attributes Available for the Attribute Options 665

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p06hgx459w75qen1wpavfghx4ket.htm&docsetTargetAnchor=n07bb2dzjku81an1nqd3a2btd4yq&locale=en

Table A3.1 Fill Patterns

Pattern
Name Example

Pattern
Name Example

Pattern
Name Example

L1 R1 X1

L2 R2 X2

L3 R3 X3

L4 R4 X4

L5 R5 X5

Line Options
Use one or more of the following options to specify line attributes. The options must
be enclosed in parentheses and specified as a space-delimited list of name = value
pairs.

COLOR=style-reference | color
specifies the line color. Style-reference must specify a valid style attribute such
as Color, ContrastColor, StartColor, NeutralColor, or EndColor in the form style-
element-name:attribute-name. If style-reference is not defined in the active
ODS style, the COLOR= option is ignored and the default color is used.

Color must be a valid color name, such as RED, or a color code, such as
CXFF0000 or #FF0000. The color name must not exceed 64 characters. A color
code must be a valid code for a SAS color-naming scheme, such as RGB,
CMYK, HLS, or HSV (HSB). See “Color-Naming Schemes” on page 673.

PATTERN=style-reference | line-pattern-name | line-pattern-number
specifies the line pattern. Style-reference must specify a LineStyle attribute in the
form style-element-name:LINESTYLE. Line patterns can be specified as a
pattern name or pattern number. The following table lists commonly used line
patterns.

Table A3.2 Commonly Used Line Patterns

Pattern
Number Pattern Name Example

1 Solid

666 Appendix 3 / Display Attributes

Pattern
Number Pattern Name Example

2 ShortDash

4 MediumDash

5 LongDash

8 MediumDashShortDash

14 DashDashDot

15 DashDotDot

20 Dash

26 LongDashShortDash

34 Dot

35 ThinDot

41 ShortDashDot

42 MediumDashDotDot

Valid line-pattern numbers range from 1 to 46. Not all line-pattern numbers have
names. See “Available Line Patterns” on page 670 for a list of all possible line
patterns. We recommend that you use the named patterns because they have
been optimized to provide good discriminability when used in the same plot.

Note Anti-aliasing might alter the appearance of some line patterns that have
fine detail such as line patterns 33 through 46. For example, if you specify
the color black and the pattern 33 for a line, and anti-aliasing is enabled,
then the line might appear gray. In that case, you can use the ODS
GRAPHICS statement to disable anti-aliasing as shown in the following
example:

ods graphics / antialias = off;

THICKNESS=style-reference | dimension
specifies the line thickness. Style-reference must specify a LINETHICKNESS
attribute in the form style-element-name:LINETHICKNESS.

See “dimension” in SAS Graph Template Language: Reference

Attributes Available for the Attribute Options 667

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p06hgx459w75qen1wpavfghx4ket.htm&docsetTargetAnchor=p048pd790xmt9sn1775q6192eljv&locale=en

Marker Options
Use one or more of the following options to specify data-marker attributes. You must
enclose the options in parentheses and specify the options as a space-delimited list
of name = value pairs.

COLOR=style-reference | color
specifies the line color. Style-reference must specify a valid style attribute such
as Color, ContrastColor, StartColor, NeutralColor, or EndColor in the form style-
element-name:attribute-name. If style-reference is not defined in the active
ODS style, the COLOR= option is ignored and the default color is used.

Color must be a valid color name, such as RED, or a color code, such as
CXFF0000 or #FF0000. The color name must not exceed 64 characters. A color
code must be a valid code for a SAS color-naming scheme, such as RGB,
CMYK, HLS, or HSV (HSB). See “Color-Naming Schemes” on page 673.

Restriction This option has no effect on marker symbols that are created with
the SYMBOLIMAGE statement.

See “SYMBOLIMAGE” in SAS Graph Template Language: Reference

SIZE=style-reference | dimension
specifies the marker size (both width and height). Style-reference must specify a
MARKERSIZE attribute in the form style-element-name:MARKERSIZE.

See “dimension” in SAS Graph Template Language: Reference

SYMBOL=style-reference | marker-name
specifies the name of the marker. Style-reference must specify a
MARKERSYMBOL attribute in the form style-element-
name:MARKERSYMBOL.The following table lists the SAS symbols that are
supported.

Table A3.3 Supported Marker Symbols

Symbol Name Plot Symbol Symbol Name Plot Symbol

ArrowDown StarFilled

Asterisk Tack

Circle Tilde

CircleFilled Triangle

Diamond TriangleFilled

DiamondFilled TriangleDown

668 Appendix 3 / Display Attributes

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1acmlx1oc6ca3n1nkzhork5hilt.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p06hgx459w75qen1wpavfghx4ket.htm&docsetTargetAnchor=p048pd790xmt9sn1775q6192eljv&locale=en

Symbol Name Plot Symbol Symbol Name Plot Symbol

GreaterThan TriangleDownFille
d

Hash TriangleLeft

HomeDown TriangleLeftFilled

HomeDownFilled TriangleRight

IBeam TriangleRightFilled

LessThan Union

Plus X

Square Y

SquareFilled Z

Star

You can also specify the names of symbols that are created by the
SYMBOLCHAR and SYMBOLIMAGE statements.

See “SYMBOLCHAR” in SAS Graph Template Language: Reference

“SYMBOLIMAGE” in SAS Graph Template Language: Reference

TRANSPARENCY=number
specifies the degree of transparency for the plot markers.

Default The transparency that is specified by the DATATRANSPARENCY=
option, which is 0 by default.

Range 0–1, where 0 is opaque and 1 is entirely transparent

Interaction This suboption overrides the DATATRANSPARENCY= option for the
plot markers only.

WEIGHT=NORMAL | BOLD
specifies the marker weight.

Restriction This option has no effect on marker symbols that are created with
the SYMBOLCHAR and SYMBOLIMAGE statements.

See “SYMBOLCHAR” in SAS Graph Template Language: Reference

“SYMBOLIMAGE” in SAS Graph Template Language: Reference

Attributes Available for the Attribute Options 669

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0cf4zbevcqzxjn19w5berzi6ocd.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1acmlx1oc6ca3n1nkzhork5hilt.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p0cf4zbevcqzxjn19w5berzi6ocd.htm&locale=en
http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=n1acmlx1oc6ca3n1nkzhork5hilt.htm&locale=en

Text Options
Use one or more of the following options to specify text attributes. The options must
be enclosed in parentheses and specified as a space-delimited list of name = value
pairs.

COLOR=style-reference | color
specifies the line color. Style-reference must specify a valid style attribute such
as Color, ContrastColor, StartColor, NeutralColor, or EndColor in the form style-
element-name:attribute-name. If style-reference is not defined in the active
ODS style, the COLOR= option is ignored and the default color is used.

Color must be a valid color name, such as RED, or a color code, such as
CXFF0000 or #FF0000. The color name must not exceed 64 characters. A color
code must be a valid code for a SAS color-naming scheme, such as RGB,
CMYK, HLS, or HSV (HSB). See “Color-Naming Schemes” on page 673.

FAMILY=style-reference | "string"
specifies the font family of the text. Style-reference must specify a FONTFAMILY
attribute in the form style-element-name:FONTFAMILY.

SIZE=style-reference | dimension
specifies the font size of the text. Style-reference must specify a FONTSIZE
attribute in the form style-element-name:FONTSIZE.

Restriction The font size cannot be less than the minimum font size in SAS,
which is determined by the SAS system. If you specify a font size
that is less than the minimum font size, the minimum size is used.

See “dimension” in SAS Graph Template Language: Reference

STYLE=style-reference | NORMAL | ITALIC
specifies the font style of the text. Style-reference must specify a FONTSTYLE
attribute in the form style-element-name:FONTSTYLE.

WEIGHT=style-reference | NORMAL | BOLD
specifies the font weight of the text. Style-reference must specify a
FONTWEIGHT attribute in the form style-element-name:FONTWEIGHT.

Available Line Patterns
The following line patterns can be used with the Graphics Template Language. A
line pattern can be specified by its number or name. Not all patterns have names.
We recommend that you use the named patterns because they have been
optimized to provide good discriminability when used in the same plot.

670 Appendix 3 / Display Attributes

http://documentation.sas.com/?docsetId=grstatgraph&docsetVersion=9.4&docsetTarget=p06hgx459w75qen1wpavfghx4ket.htm&docsetTargetAnchor=p048pd790xmt9sn1775q6192eljv&locale=en

Table A3.4 Full List of Line Patterns

Pattern
Number Pattern Name Example

1 Solid

2 ShortDash

3

4 MediumDash

5 LongDash

6

7

8 MediumDashShortDash

9

10

11

12

13

14 DashDashDot

15 DashDotDot

16

17

18

19

20 Dash

21

22

23

Available Line Patterns 671

Pattern
Number Pattern Name Example

24

25

26 LongDashShortDash

27

28

29

30

31

32

33

34 Dot

35 ThinDot

36

37

38

39

40

41 ShortDashDot

42 MediumDashDotDot

43

44

45

46

672 Appendix 3 / Display Attributes

Color-Naming Schemes

Overview of Color-Naming Schemes
The valid color-naming schemes in SAS are as follows:

n RGB (red green blue)

n CMYK (cyan magenta yellow black)

n HLS (hue lightness saturation)

n HSV (hue saturation brightness), also called HSB

n Gray scale

n SAS color names (from the SAS Registry)

n SAS Color Naming System (CNS)

Table A3.5 on page 673 shows examples of each color-naming scheme.

Table A3.5 Examples of SAS Color-Naming Schemes

Color-Naming
Scheme Example

RGB COLOR=(CX98FB98)

CMYK COLOR=(FF00FF00)
COLOR=(CMYK00FFFF00)

HLS COLOR=(H14055FF)

HSV COLOR=(V0F055FF)

Gray Scale COLOR=(GRAY4F)

SAS Registry
Colors

COLOR=(palegreen)

CNS Color Names COLOR=(VeryLightPurplishBlue)
COLOR=(Very_Light_Purplish_Blue)

You can also mix color-naming schemes in the same statement. For example:

DATACOLORS=(CXEE0044 vivid_blue darkgreen);

Each of the color-naming schemes has its advantages and disadvantages based on
how the output is used. For example, if you are creating a report that will be viewed
only online, then specifying colors using the RGB naming scheme or the SAS color

Color-Naming Schemes 673

names defined in the registry might produce better results. If you are creating a
report for publishing in printed form, you might want to use the CMYK color-naming
scheme.

Note: If you specify an invalid color name, the default color is used instead.

For additional information about color-naming schemes, see Effective Color
Displays: Theory and Practice by David Travis, Computer Graphics: Principles and
Practice by Foley, van Dam, Feiner, and Hughes, and http://colorbrewer2.org.

RGB Color Codes
The RGB color-naming scheme is usually used to define colors for a display screen.
This color-naming scheme is based on the properties of light. An RGB color code
defines a color by combining red, green, and blue colors in different ratios. All the
colors combined together create white. The absence of all color creates black.

Color names are in the form CXrrggbb, where the following is true:

n CX indicates to SAS that this is an RGB color specification.

n rr is the red component.

n gg is the green component.

n bb is the blue component.

The components are hexadecimal numbers in the range 00–FF (0% to 100%). Each
hexadecimal number indicates how much of the red, green, or blue is included in the
color. Lower percentage values are darker and higher values are lighter. This
scheme allows for up to 256 levels of each color component (more than 16 million
different colors).

Table A3.6 Examples of RGB Color Values

Color RGB Value

Red CXFF0000

Green CX00FF00

Blue CX0000FF

White CXFFFFFF

Black CX000000

Any combination of the color components is valid. Some combinations match the
colors produced by predefined SAS color names. See “Predefined Colors” on page
685.

674 Appendix 3 / Display Attributes

http://colorbrewer2.org

CMYK Color Codes
The CMYK color-naming scheme is used in four-color printing. CMYK is based on
the principles of objects reflecting light. Combining equal values of cyan, magenta,
and yellow produces process black, which might not appear as pure black. The
black component (K) of CMYK can be used to specify the level of blackness in the
output. A lack of all colors produces white when the output is printed on white paper.

To specify the colors from a printer's Pantone Color Lookup Table, you can use the
CMYK color-naming scheme. Specify colors in terms of their cyan, magenta, yellow,
and black components. Color names are in the form CMYKccmmyykk or
Kccmmyykk, where the following is true:

n CMYK or K is an optional prefix that indicates to SAS that this is a CMYK color
specification.

n cc is the cyan component.

n mm is the magenta component.

n yy is the yellow component.

n kk is the black component.

The color-value components are hexadecimal numbers in the range 00–FF, where
higher values are darker and lower values are brighter. This scheme allows for up to
256 levels of each color component. When the color value begins with a letter (A–
F), you can omit the CMYK or K prefix. When the color value begins with a number
(0–9), you must use the CMYK or K prefix.

Table A3.7 Examples of CMYK Color Values

Color CMYK Value

Red CMYK00FFFF00

Green FF00FF00

Blue CMYKFFFF0000

White K00000000

Process black (using cyan, magenta, and yellow
ink)

FFFFFF00

Pure black (using only black ink) K000000FF

Note: You can specify a CMY value by specifying zero (00) for kk, the color's black
component.

CMYK color specifications are for output devices that support four colors. If you
specify CMYK colors on an output device that supports three colors such as RGB,

Color-Naming Schemes 675

the CMYK colors are converted to colors in the three-color space. Because the four-
color space supports many more colors than a three-color space, the CMYK colors
might map to different colors in the three-color space. To preserve your CMYK
colors in that case, specify a device that supports the CMYK color space. See
“Color Support for Universal Printers” in SAS 9.4 Universal Printing.

HLS Color Codes
The HLS color scheme specifies colors in terms of hue, lightness, and saturation
levels. It is based on the Tektronix Color Standard. HLS color names are of the form
Hhhhllss, where the following is true:

n H indicates to SAS that this is an HLS color specification.

n hhh is the hue component, which is expressed as an angle.

n ll is the lightness component.

n ss is the saturation component.

The components are hexadecimal numbers. The hue component is in the range
000–168 hexadecimal, which represents an angular value in the range 0–360
decimal. Hue starts with the primary color blue at 0 degrees, and then progresses to
red at 120 degrees, to green at 240 degrees, and back to blue at 360 degrees. Both
the lightness and saturation components are in the range 00–FF hexadecimal (0–
255 decimal), which provides 256 levels that represent 0% to 100% for each
component.

Table A3.8 Examples of HLS Color Codes

Color HLS Color Code

Red H07880FF

Green H0F080FF

Blue H00080FF

Light gray H000BB00

White1 HxxxFF00, such as H000FF00

Black1 Hxxx0000 such as H0000000

1 When the saturation is set to 00, the color is a shade of gray that is determined by the lightness
value. Therefore, white is defined as HxxxFF00 and black as Hxxx0000, where xxx can be any hue.

676 Appendix 3 / Display Attributes

http://documentation.sas.com/?docsetId=uprint&docsetVersion=3.5&docsetTarget=p0b86isjmwxhb3n1glammt6gaj1h.htm&locale=en

HSV (or HSB) Color Codes
The HSV color-naming scheme specifies colors in terms of hue, saturation, and
value (or brightness) components. HSV color names are of the form Vhhhssvv,
where the following is true:

n V indicates to SAS that this is an HSV color specification.

n hhh is the hue component, which is expressed as an angle.

n ss is the saturation component.

n vv is the value or brightness component.

The components are hexadecimal numbers. The hue component is in the range
000–168 hexadecimal, which represents an angular value in the range 0–360
decimal. Hue starts with the primary color red at 0 degrees, and then progresses to
green at 120 degrees, to blue at 240 degrees, and back to red at 360 degrees. Both
the saturation and value (brightness) components are in the range 00–FF
hexadecimal (0–255 decimal), which provides 256 levels for each component.

Table A3.9 Examples of HSV (or HSB) Color Codes

Color HSV Color Code

Red V000FFFF

Green V078FFFF

Blue V0F0FFFF

Light gray1 Vxxx00BB such as V07900BB

White1 Vxxx00FF such as V07900FF

Black1 Vxxx00000 such as V0790000

1 When the saturation is set to 00, the color is a shade of gray. The value component determines the
intensity of gray level. The xxx value can be any hue.

Gray-Scale Color Codes
Gray-scale colors are specified using the word GRAY and a lightness value in the
form GRAYhh. The value hh is the lightness of the gray and is a hexadecimal
number in the range 00–FF, which provides 256 levels on the gray scale.

Color-Naming Schemes 677

Note: GRAY, without a lightness value, is a SAS color name defined in the SAS
registry. (See “SAS Color Names and RGB Values in the SAS Registry” on page
679.) Its value is CX808080. Invalid color specifications are mapped to GRAY.

The following figure shows the gray-scale color for each hexadecimal value.

Color Naming System (CNS) Values
For CNS, you specify a color value by specifying lightness, saturation, and hue, in
that order, using the terms shown in the following table.

Table A3.10 Color Naming System Values

Lightness Saturation Hue

Black Gray Blue

Very Dark Grayish Purple

Dark Moderate Red

Medium Strong Orange/Brown

Light Vivid Yellow

Very Light Green

678 Appendix 3 / Display Attributes

Lightness Saturation Hue

White

Follow these rules when you are determining the CNS color name:

n You should not use the lightness values Black and White with saturation or hue
values.

n If you do not specify default values, medium is the default lightness value and
vivid is the default saturation value.

n Gray is the only saturation value that can be used without a hue.

n Unless the color that you want is black, white, or some form of gray, you must
specify at least one hue.

You can use one or two hue values in the CNS color name. When you use two hue
values, the hues must be adjacent to each other in the following list: blue, purple,
red, orange/brown, yellow, green, and then returning to blue. Two hue values result
in a color that is a combination of both colors. Use the suffix “ish” to reduce the
effect of a hue when two hues are combined. Reddish purple is less red than red
purple. The color specified with the “ish” suffix must precede the color without the
“ish” suffix.

You can write color names in the following ways:

n without space separators between words

n with an underscore to separate words

Do not enclose color names in quotation marks in GTL. For example, the following
color specifications are valid:

n verylightmoderatepurplishblue

n very_light_moderate_purplish_blue

Note: If a CNS color name is also a color name in the SAS Registry, the SAS
Registry color value takes precedence. Some CNS color names and color names in
the SAS Registry have different color values. Dark blue is an example. To use a
CNS color value when the color name is also in the SAS Registry, include an
underscore to separate the words. Here is an example.

color=dark_blue

SAS Color Names and RGB Values in the SAS
Registry

The SAS Registry provides a set of color names and RGB values that you can use
to specify colors. These color names and RGB values are common to most web
browsers. You can specify the name itself or the RGB value associated with that
color name. To view the color names as associated RGB values that are defined in
the registry, submit the following code:

Color-Naming Schemes 679

proc registry list
 startat="COLORNAMES";
run;

SAS prints the output in the SAS log. Here is a partial listing.

NOTE: Contents of SASHELP REGISTRY starting at subkey [COLORNAMES]
[COLORNAMES]
 Active="HTML"
[HTML]
 AliceBlue=hex: F0,F8,FF
 AntiqueWhite=hex: FA,EB,D7
 Aqua=hex: 00,FF,FF
 Aquamarine=hex: 7F,FD,D4
 Azure=hex: F0,FF,FF
 Beige=hex: F5,F5,DC
 ...

For a list of the color names that are defined in the SAS Registry, see “Predefined
Colors” on page 685.

You can also create your own color values by adding them to the SAS registry. For
information about viewing and modifying the list of color names, see “The SAS
Registry” in SAS Programmer’s Guide: Essentials.

Converting Color Values between Color-Naming
Schemes

If the SAS/GRAPH software is included in your SAS installation, several macros are
provided with SAS/GRAPH that enable you to perform selected conversions
between color-naming schemes. The following table shows the conversions that are
possible using these macros.

From Color Value To Color Value Conversion Macro

CMY RGB %CMY

CNS HLS %CNS

RGB HLS %RGB2HLS

HLS RGB %HLS2RGB

For information about these macros, see SAS/GRAPH: Reference.

680 Appendix 3 / Display Attributes

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ljywa7os0gqgn1gj5lp8lds8o7.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ljywa7os0gqgn1gj5lp8lds8o7.htm&locale=en

Converting Numeric Color Component Values to
Color Names

If the SAS/GRAPH software is included in your SAS installation, several macros are
provided with SAS/GRAPH that enable you to convert numeric color component
values to color names. The following table shows the macros that you can use for
this purpose.

From Numeric Color Component Values To Color Name Conversion Macro

cyan, magenta, yellow, black CMYK %CMYK

hue, lightness, saturation HLS %HLS

hue, saturation, value HSV %HSV

red, green, blue RGB %RGB

Converting Color Values from Other Applications
Many software programs enable you to change or customize various colors. A
dialog box typically provides a means of selecting a different color or modifying the
attributes of an existing color. In the SAS ODS Graphics Editor, for example, the
More Colors dialog box shown in the following figure serves this purpose.

Color-Naming Schemes 681

Figure A3.1 More Colors Dialog Box

Figure A3.1 on page 682 shows the HSB and RGB numeric color component values
for the currently selected color. It also shows the RGB values in hexadecimal. To
use the RGB specification for this color in a SAS program, add the CX prefix to the
Hex value E7B3B4. If the application provides only the numeric component values,
you must convert the decimal component values to hexadecimal. In Figure A3.1 on
page 682, the H value is in the range 0–360 degrees, and the S and B values are
each in the range 0–100 percent. The R, G, and B values are in the range 0–255
each. You can convert the component values manually. (See “Understanding
Hexadecimal Values” on page 713.) Be aware that you must first convert the S and
B values from percentages to 255-based values by rounding the result of the
following computation to the nearest integer:

Value
100 × 255

If the SAS/GRAPH software is included in your SAS installation, you can also use
the SAS/GRAPH color utility macros to convert the values. The %HSV color utility
macro converts HSV (HSB) numeric color component values to an HSV color name.
Likewise, the %RGB macro converts RGB numeric color component values to an
RGB color name. The following example shows how to use the %HSV color utility
macro to convert the H, S, and B color component values in Figure A3.1 on page
682 to an HSV color name.

%COLORMAC;
data _null_;
 put "%HSV(357,22,90)";
run;

Note: The %COLORMAC macro compiles all of the SAS/GRAPH color utility
macros. You need to run it only once during a SAS session.

Because the %HSV macro accepts values in the range 0–100 as a percentage of
255 for saturation and value, use the S and B values as shown. The result is
V16538E6.

682 Appendix 3 / Display Attributes

The following example shows how to use the %RGB color utility macro to convert
the R, G, and B numeric color component values in Figure A3.1 on page 682 to an
RGB color name.

/* Compute the RGB percentages */
data _null_;
 r = 231;
 g = 179;
 b = 180;
 call symputx("r", round((r/255)*100));
 call symputx("g", round((g/255)*100));
 call symputx("b", round((b/255)*100));
run;

/* Convert to RGB color name */
%COLORMAC;
data _null_;
 put "%RGB(&r,&g,&b)";
run;

Because the %RGB color utility macro accepts integer values in the range 0–100 as
a percentage of 255, you must convert the 255-based values to integer percentages
in order to use them in the %RGB macro call. The result is CXE8B3B5. The result
from the %RGB macro is not exact due to rounding. If you want more exact results,
use the following program.

data _null_;
 r = 231;
 g = 179;
 b = 180;
 rgb="CX" || put(r,hex2.) || put(g,hex2.) || put(b,hex2.);
 put rgb;
run;

The result is CXE7B3B4.

To convert the RGB color name to an HLS color name, use the %RGB2HLS macro
as shown in the following program.

%COLORMAC;
data _null_;
 put "%RGB2HLS(CXE7B3B4)";
run;

The result is H077CD84.

For more information about the SAS/GRAPH color utility macros, see SAS/GRAPH:
Reference.

Color-Naming Schemes 683

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

684 Appendix 3 / Display Attributes

Appendix 4
Predefined Colors

Predefined Colors . 685

Predefined Colors
The following table shows the colors that are predefined in the SAS Registry,
arranged by name. For each color, the equivalent CX color code (RGB), the
equivalent HLS color code, and a color sample are shown. For a table of the SAS
registry colors arranged by hue, see Table A4.2 on page 692.

Table A4.1 SAS Registry Colors by Name

Color Name Color Sample
CX Color Code
(RGB)

HLS Color
Code1

AliceBlue CXF0F8FF H148F8FF

AntiqueWhite CXFAEBD7 H09AE9C6

Aqua CX00FFFF H12C80FF

Aquamarine CX7FFDD4 H118BEF7

Azure CXF0FFFF H12CF8FF

Beige CXF5F5DC H0B4E98E

Bisque CXFFE4C4 H098E2FF

Black CX000000 H0000000

685

Color Name Color Sample
CX Color Code
(RGB)

HLS Color
Code1

BlanchedAlmond CXFFEBCD H09CE6FF

Blue CX0000FF H00080FF

BlueViolet CX8A2BE2 H01F87C2

Brown CXA52A2A H0786898

Burlywood CXDEB887 H099B391

CadetBlue CX5F9EA0 H12D8041

Chartreuse CX7FFF00 H0D280FF

Chocolate CXD2691E H09178BF

Coral CXFF7F50 H088A8FF

CornflowerBlue CX6495ED H152A9CA

Cornsilk CXFFF8DC H0A7EEFF

Crimson CXDC143C H06C78D5

Cyan CX00FFFF H12C80FF

DarkBlue CX00008B H00046FF

DarkCyan CX008B8B H12C46FF

DarkGoldenrod CXB8860B H0A262E2

DarkGray CXA9A9A9 H000A900

DarkGreen CX006400 H0F032FF

DarkKhaki CXBDB76B H0AF9462

DarkMagenta CX8B008B H03C46FF

DarkOliveGreen CX556B2F H0CA4D63

DarkOrange CXFF8C00 H09880FF

686 Appendix 4 / Predefined Colors

Color Name Color Sample
CX Color Code
(RGB)

HLS Color
Code1

DarkOrchid CX9932CC H0287F9B

DarkRed CX8B0000 H07846FF

DarkSalmon CXE9967A H087B2B7

DarkSeaGreen CX8FBC8F H0F0A640

DarkSlateBlue CX483D8B H0086463

DarkSlateGray CX2F4F4F H12C3F41

DarkSlateGrey CX2F2F2F H0002F00

DarkTurquoise CX00CED1 H12C69FF

DarkViolet CX9400D3 H02A6AFF

DeepPink CXFF1493 H0578AFF

DeepSkyBlue CX00BFFF H13B80FF

DimGray CX696969 H0006900

DodgerBlue CX1E90FF H1498FFF

Firebrick CXB22222 H0786AAD

FloralWhite CXFFFAF0 H0A0F8FF

ForestGreen CX228B22 H0F0579B

Fuchsia CXFF00FF H03C80FF

Gainsboro CXDCDCDC H000DC00

GhostWhite CXF8F8FF H000FCFF

Gold CXFFD700 H0AA80FF

Goldenrod CXDAA520 H0A27DBE

Gray or Grey CX808080 H0008000

Predefined Colors 687

Color Name Color Sample
CX Color Code
(RGB)

HLS Color
Code1

Green CX008000 H0F040FF

GreenYellow CXADFF2F H0CB97FF

Honeydew CXF0FFF0 H0F0F8FF

HotPink CXFF69B4 H05AB4FF

IndianRed CXCD5C5C H0789587

Indigo CX4B0082 H02241FF

Ivory CXFFFFF0 H0B4F8FF

Khaki CXF0E68C H0AEBEC4

Lavender CXE6E6FA H000F0AA

LavenderBlush CXFFF0F5 H064F8FF

LawnGreen CX7CFC00 H0D27EFF

LemonChiffon CXFFFACD H0AEE6FF

LightBlue CXADD8E6 H13ACA88

LightCoral CXF08080 H078B8C9

LightCyan CXE0FFFF H12CF0FF

LightGoldenrodYellow CXFAFAD2 H0B4E6CC

LightGray CXD3D3D3 H000D300

LightGreen CX90EE90 H0F0BFBB

LightPink CXFFB6C1 H06EDBFF

LightSalmon CXFFA07A H089BDFF

LightSeaGreen CX20B2AA H12869B1

LightSkyBlue CX87CEFA H142C1EB

688 Appendix 4 / Predefined Colors

Color Name Color Sample
CX Color Code
(RGB)

HLS Color
Code1

LightSlateGray CX778899 H14A8824

LightSteelBlue CXB0C4DE H14DC769

LightYellow CXFFFFE0 H0B4F0FF

Lime CX00FF00 H0F080FF

LimeGreen CX32CD32 H0F0809B

Linen CXFAF0E6 H095F0AA

Magenta CXFF00FF H03C80FF

Maroon CX800000 H07840FF

MediumAquamarine CX66CDAA H1179A81

MediumBlue CX0000CD H00067FF

MediumOrchid CXBA55D3 H0309496

MediumPurple CX9370DB H013A698

MediumSeaGreen CX3CB371 H10A787F

MediumSlateBlue CX7B68EE H008ABCB

MediumSpringGreen CX00FA9A H1147DFF

MediumTurquoise CX48D1CC H1298D99

MediumVioletRed CXC71585 H0526ECE

MidnightBlue CX191970 H00045A2

MintCream CXF5FFFA H10EFAFF

MistyRose CXFFE4E1 H07EF0FF

Moccasin CXFFE4B5 H09EDAFF

NavajoWhite CXFFDEAD H09BD6FF

Predefined Colors 689

Color Name Color Sample
CX Color Code
(RGB)

HLS Color
Code1

Navy CX000080 H00040FF

OldLace CXFDF5E6 H09FF2D9

Olive CX808000 H0B440FF

OliveDrab CX6B8E23 H0C7599A

Orange CXFFA500 H09E80FF

OrangeRed CXFF4500 H08880FF

Orchid CXDA70D6 H03EA596

PaleGoldenrod CXEEE8AA H0AECCAA

PaleGreen CX98FB98 H0F0CAEC

PaleTurquoise CXAFEEEE H12CCFA6

PaleVioletRed CXDB7093 H064A698

PapayaWhip CXFFEFD5 H09DEAFF

Peachpuff CXFFDAB9 H094DCFF

Peru CXCD853F H0958696

Pink CXFFC0CB H06DE0FF

Plum CXDDA0DD H03CBF79

PowderBlue CXB0E0E6 H132CB84

Purple CX800080 H03C40FF

Red CXFF0000 H07880FF

RosyBrown CXBC8F8F H078A640

RoyalBlue CX4169E1 H15991B9

SaddleBrown CX8B4513 H0914FC2

690 Appendix 4 / Predefined Colors

Color Name Color Sample
CX Color Code
(RGB)

HLS Color
Code1

Salmon CXFA8072 H07EB6EE

SandyBrown CXF4A460 H093AADE

SeaGreen CX2E8B57 H10A5D80

Seashell CXFFF5EE H090F7FF

Sienna CXA0522D H08B678F

Silver CXC0C0C0 H000C000

SkyBlue CX87CEEB H13DB9B6

SlateBlue CX6A5ACD H0089488

SlateGray CX708090 H14A8020

Snow CXFFFAFA H078FDFF

SpringGreen CX00FF7F H10D80FF

SteelBlue CX4682B4 H1477D70

Tan CXD2B48C H09AAF70

Teal CX008080 H12C40FF

Thistle CXD8BFD8 H03CCC3E

Tomato CXFF6347 H081A3FF

Turquoise CX40E0D0 H12690B8

Violet CXEE82EE H03CB8C2

Wheat CXF5DEB3 H09FD4C4

White CXFFFFFF H000FF00

WhiteSmoke CXF5F5F5 H000F500

Yellow CXFFFF00 H0B480FF

Predefined Colors 691

Color Name Color Sample
CX Color Code
(RGB)

HLS Color
Code1

YellowGreen CX9ACD32 H0C7809B

1 The HLS color naming scheme in SAS follows the Tektronix Color Standard, which places blue at 0
degrees on the hue coordinate. For more information, see “HLS Color Codes” on page 676.

The following table shows the colors that are predefined in the SAS Registry,
arranged by hue according to the Tektronix model. For each color, a color sample,
and the equivalent RGB (CX) and HLS color codes are shown.

Table A4.2 SAS Registry Colors by Hue

Color Sample Color Name
CX Code
(RGB) HLS Code1

Black CX000000 H0000000

DarkSlateGrey CX2F2F2F H0002F00

DimGray CX696969 H0006900

Gray or Grey CX808080 H0008000

DarkGray CXA9A9A9 H000A900

Silver CXC0C0C0 H000C000

LightGray CXD3D3D3 H000D300

Gainsboro CXDCDCDC H000DC00

WhiteSmoke CXF5F5F5 H000F500

White CXFFFFFF H000FF00

MidnightBlue CX191970 H00045A2

Lavender CXE6E6FA H000F0AA

Navy CX000080 H00040FF

DarkBlue CX00008B H00046FF

MediumBlue CX0000CD H00067FF

Blue CX0000FF H00080FF

692 Appendix 4 / Predefined Colors

Color Sample Color Name
CX Code
(RGB) HLS Code1

GhostWhite CXF8F8FF H000FCFF

SlateBlue CX6A5ACD H0089488

DarkSlateBlue CX483D8B H0086463

MediumSlateBlue CX7B68EE H008ABCB

MediumPurple CX9370DB H013A698

BlueViolet CX8A2BE2 H01F87C2

Indigo CX4B0082 H02241FF

DarkOrchid CX9932CC H0287F9B

DarkViolet CX9400D3 H02A6AFF

MediumOrchid CXBA55D3 H0309496

Thistle CXD8BFD8 H03CCC3E

Plum CXDDA0DD H03CBF79

Violet CXEE82EE H03CB8C2

Purple CX800080 H03C40FF

DarkMagenta CX8B008B H03C46FF

Fuchsia CXFF00FF H03C80FF

Magenta CXFF00FF H03C80FF

Orchid CXDA70D6 H03EA596

MediumVioletRed CXC71585 H0526ECE

DeepPink CXFF1493 H0578AFF

HotPink CXFF69B4 H05AB4FF

LavenderBlush CXFFF0F5 H064F8FF

Predefined Colors 693

Color Sample Color Name
CX Code
(RGB) HLS Code1

PaleVioletRed CXDB7093 H064A698

Crimson CXDC143C H06C78D5

Pink CXFFC0CB H06DE0FF

LightPink CXFFB6C1 H06EDBFF

RosyBrown CXBC8F8F H078A640

IndianRed CXCD5C5C H0789587

Brown CXA52A2A H0786898

Firebrick CXB22222 H0786AAD

LightCoral CXF08080 H078B8C9

Maroon CX800000 H07840FF

DarkRed CX8B0000 H07846FF

Red CXFF0000 H07880FF

Snow CXFFFAFA H078FDFF

MistyRose CXFFE4E1 H07EF0FF

Salmon CXFA8072 H07EB6EE

Tomato CXFF6347 H081A3FF

DarkSalmon CXE9967A H087B2B7

Coral CXFF7F50 H088A8FF

OrangeRed CXFF4500 H08880FF

LightSalmon CXFFA07A H089BDFF

Sienna CXA0522D H08B678F

Seashell CXFFF5EE H090F7FF

694 Appendix 4 / Predefined Colors

Color Sample Color Name
CX Code
(RGB) HLS Code1

Chocolate CXD2691E H09178BF

SaddleBrown CX8B4513 H0914FC2

SandyBrown CXF4A460 H093AADE

Peachpuff CXFFDAB9 H094DCFF

Peru CXCD853F H0958696

Linen CXFAF0E6 H095F0AA

Bisque CXFFE4C4 H098E2FF

DarkOrange CXFF8C00 H09880FF

Burlywood CXDEB887 H099B391

Tan CXD2B48C H09AAF70

AntiqueWhite CXFAEBD7 H09AE9C6

NavajoWhite CXFFDEAD H09BD6FF

BlanchedAlmond CXFFEBCD H09CE6FF

PapayaWhip CXFFEFD5 H09DEAFF

Moccasin CXFFE4B5 H09EDAFF

Orange CXFFA500 H09E80FF

Wheat CXF5DEB3 H09FD4C4

OldLace CXFDF5E6 H09FF2D9

FloralWhite CXFFFAF0 H0A0F8FF

DarkGoldenrod CXB8860B H0A262E2

Goldenrod CXDAA520 H0A27DBE

Cornsilk CXFFF8DC H0A7EEFF

Predefined Colors 695

Color Sample Color Name
CX Code
(RGB) HLS Code1

Gold CXFFD700 H0AA80FF

Khaki CXF0E68C H0AEBEC4

LemonChiffon CXFFFACD H0AEE6FF

PaleGoldenrod CXEEE8AA H0AECCAA

DarkKhaki CXBDB76B H0AF9462

Beige CXF5F5DC H0B4E98E

LightGoldenrodYellow CXFAFAD2 H0B4E6CC

Olive CX808000 H0B440FF

Yellow CXFFFF00 H0B480FF

LightYellow CXFFFFE0 H0B4F0FF

Ivory CXFFFFF0 H0B4F8FF

OliveDrab CX6B8E23 H0C7599A

YellowGreen CX9ACD32 H0C7809B

DarkOliveGreen CX556B2F H0CA4D63

GreenYellow CXADFF2F H0CB97FF

Chartreuse CX7FFF00 H0D280FF

LawnGreen CX7CFC00 H0D27EFF

DarkSeaGreen CX8FBC8F H0F0A640

ForestGreen CX228B22 H0F0579B

LimeGreen CX32CD32 H0F0809B

LightGreen CX90EE90 H0F0BFBB

PaleGreen CX98FB98 H0F0CAEC

696 Appendix 4 / Predefined Colors

Color Sample Color Name
CX Code
(RGB) HLS Code1

DarkGreen CX006400 H0F032FF

Green CX008000 H0F040FF

Lime CX00FF00 H0F080FF

Honeydew CXF0FFF0 H0F0F8FF

SeaGreen CX2E8B57 H10A5D80

MediumSeaGreen CX3CB371 H10A787F

SpringGreen CX00FF7F H10D80FF

MintCream CXF5FFFA H10EFAFF

MediumSpringGreen CX00FA9A H1147DFF

MediumAquamarine CX66CDAA H1179A81

Aquamarine CX7FFDD4 H118BEF7

Turquoise CX40E0D0 H12690B8

LightSeaGreen CX20B2AA H12869B1

MediumTurquoise CX48D1CC H1298D99

DarkSlateGray CX2F4F4F H12C3F41

PaleTurquoise CXAFEEEE H12CCFA6

Teal CX008080 H12C40FF

DarkCyan CX008B8B H12C46FF

Aqua CX00FFFF H12C80FF

Cyan CX00FFFF H12C80FF

LightCyan CXE0FFFF H12CF0FF

Azure CXF0FFFF H12CF8FF

Predefined Colors 697

Color Sample Color Name
CX Code
(RGB) HLS Code1

DarkTurquoise CX00CED1 H12C69FF

CadetBlue CX5F9EA0 H12D8041

PowderBlue CXB0E0E6 H132CB84

LightBlue CXADD8E6 H13ACA88

DeepSkyBlue CX00BFFF H13B80FF

SkyBlue CX87CEEB H13DB9B6

LightSkyBlue CX87CEFA H142C1EB

SteelBlue CX4682B4 H1477D70

AliceBlue CXF0F8FF H148F8FF

DodgerBlue CX1E90FF H1498FFF

SlateGray CX708090 H14A8020

LightSlateGray CX778899 H14A8824

LightSteelBlue CXB0C4DE H14DC769

CornflowerBlue CX6495ED H152A9CA

RoyalBlue CX4169E1 H15991B9

1 The HLS color naming scheme in SAS follows the Tektronix Color Standard, which places blue at 0
degrees on the hue coordinate. For more information, see “HLS Color Codes” on page 676.

698 Appendix 4 / Predefined Colors

Appendix 5
Tick Value Fit Policy Applicability

Tick Value Fit Policy Applicability Matrix . 699

Tick Value Fit Policy Applicability Matrix
Table A5.1 on page 700 provides a matrix of the tick value fit policies and the axes
to which each applies in the OVERLAY, LATTICE, DATALATTICE, DATAPANEL, and
EQUATED layouts. In the matrix, the notations V, H, and B are used to indicate the
axes to which each policy applies for a specific case. V indicates that the policy
applies to the vertical axis only (Y, Y2, and row axes). H indicates that the policy
applies to the horizontal axes only (X, X2, and column axes). B indicates that the
policy applies to both the horizontal and vertical axes.

699

Ta
bl

e
A

5.
1

Ti
ck

 V
al

ue
 F

it
P

ol
ic

y
A

pp
lic

ab
ili

ty
 M

at
rix

Fi
t P

ol
ic

y

LA
YO

U
T

O
VE

R
LA

Y

LA
YO

U
T

LA
TT

IC
E

LA
YO

U
T

D
AT

A
LA

TT
IC

E

LA
YO

U
T

D
AT

A
PA

N
EL

LA
YO

U
T

EQ
U

AT
ED

N
ot

es
D

is
cr

et
e

A
xe

s
Li

ne
ar

A

xe
s

Ti
m

e
A

xe
s

D
is

cr
et

e
A

xe
s

Li
ne

ar

A
xe

s
Ti

m
e

A
xe

s

E
X

TR
A

C
T

B
B

Th
e

tic
k

va
lu

es
 a

re
 e

xt
ra

ct
ed

 to
 a

n
ax

is
 le

ge
nd

on

ly
 if

 th
e

va
lu

es
 c

an
no

t b
e

fit
 o

n
th

e
ax

is
.

E
X

TR
A

C
TA

LW
AY

S
B

B
Th

e
tic

k
va

lu
es

 a
re

 a
lw

ay
s

ex
tra

ct
ed

 to
 a

n
ax

is

le
ge

nd
 e

ve
n

if
th

e
va

lu
es

 c
an

 b
e

fit
 o

n
th

e
ax

is
.

N
O

N
E

V
V

N
o

ad
ju

st
m

en
t i

s
at

te
m

pt
ed

.

R
O

TA
TE

H
H

H
H

H
H

H
Th

e
tic

k
va

lu
es

 a
re

 ro
ta

te
d

45
 d

eg
re

es
 w

he
n

a
co

lli
si

on
 o

cc
ur

s.

R
O

TA
TE

A
LW

AY
S

H
H

H
H

H
H

H
Th

e
tic

k
va

lu
es

 a
re

 a
lw

ay
s

ro
ta

te
d

45
 d

eg
re

es

re
ga

rd
le

ss
 o

f w
he

th
er

 a
 c

ol
lis

io
n

oc
cu

rs
.

R
O

TA
TE

A
LW

AY
S

D
R

O
P

H
H

Th
e

tic
k

va
lu

es
 a

re
 a

lw
ay

s
ro

ta
te

d
45

 d
eg

re
es

re

ga
rd

le
ss

 o
f w

he
th

er
 a

 c
ol

lis
io

n
oc

cu
rs

. I
f

un
su

cc
es

sf
ul

, t
he

 v
al

ue
s

ar
e

dr
op

pe
d.

R
O

TA
TE

TH
IN

H
H

H
H

H
H

H
Th

e
R

O
TA

TE
 p

ol
ic

y
is

 a
tte

m
pt

ed
 fi

rs
t.

If
un

su
cc

es
sf

ul
, t

he
 T

H
IN

 p
ol

ic
y

is
 a

pp
lie

d.

S
P

LI
T

B
B

Th
e

tic
k

va
lu

es
 o

n
a

di
sc

re
te

 a
xi

s
ar

e
sp

lit
 in

to

m
ul

tip
le

 li
ne

s
on

 b
la

nk
 s

pa
ce

s
by

 d
ef

au
lt

w
he

n
a

co
lli

si
on

 o
cc

ur
s.

700 Appendix 5 / Tick Value Fit Policy Applicability

Fi
t P

ol
ic

y

LA
YO

U
T

O
VE

R
LA

Y

LA
YO

U
T

LA
TT

IC
E

LA
YO

U
T

D
AT

A
LA

TT
IC

E

LA
YO

U
T

D
AT

A
PA

N
EL

LA
YO

U
T

EQ
U

AT
ED

N
ot

es
D

is
cr

et
e

A
xe

s
Li

ne
ar

A

xe
s

Ti
m

e
A

xe
s

D
is

cr
et

e
A

xe
s

Li
ne

ar

A
xe

s
Ti

m
e

A
xe

s

S
P

LI
TA

LW
AY

S
B

B
Th

e
tic

k
va

lu
es

 o
n

a
di

sc
re

te
 a

xi
s

ar
e

al
w

ay
s

sp
lit

 in
to

 m
ul

tip
le

 li
ne

s
on

 e
ve

ry
 b

la
nk

 s
pa

ce
 in

th

e
va

lu
e

by
 d

ef
au

lt
re

ga
rd

le
ss

 o
f w

he
th

er
 a

co

lli
si

on
 o

cc
ur

s.

S
P

LI
TA

LW
AY

S
TH

IN
V

V
Th

e
S

P
LI

TA
LW

AY
S

 p
ol

ic
y

is
 a

tte
m

pt
ed

 fi
rs

t.
If

un
su

cc
es

sf
ul

, t
he

 T
H

IN
 p

ol
ic

y
is

 a
pp

lie
d.

S
P

LI
TR

O
TA

TE
H

H
Th

e
S

P
LI

T
po

lic
y

is
 a

tte
m

pt
ed

 fi
rs

t.
If

un
su

cc
es

sf
ul

, t
he

 R
O

TA
TE

 p
ol

ic
y

is
 a

pp
lie

d.

S
P

LI
TT

H
IN

V
V

Th
e

S
P

LI
T

po
lic

y
is

 a
tte

m
pt

ed
 fi

rs
t.

If
un

su
cc

es
sf

ul
, t

he
 T

H
IN

 p
ol

ic
y

is
 a

pp
lie

d.

S
TA

C
K

E
D

A
LW

AY
S

1
H

H
H

H
H

H
Th

e
tic

k
va

lu
es

 a
re

 a
lw

ay
s

di
sp

la
ye

d
ve

rti
ca

lly

as
 s

ta
ck

ed
 le

tte
rs

.

S
TA

C
K

E
D

A
LW

AY
S

TH
I

N
1

H
H

H
H

H
H

Th
e

S
TA

C
K

E
D

A
LW

AY
S

 p
ol

ic
y

is
 a

tte
m

pt
ed

fir

st
. I

f u
ns

uc
ce

ss
fu

l,
th

e
TH

IN
 p

ol
ic

y
is

ap

pl
ie

d.

S
TA

G
G

E
R

H
H

H
H

H
H

H
Th

e
tic

k
va

lu
es

 a
lte

rn
at

e
be

tw
ee

n
tw

o
ro

w
s.

S
TA

G
G

E
R

R
O

TA
TE

H
H

H
H

H
H

H
Th

e
S

TA
G

G
E

R
 p

ol
ic

y
is

 a
tte

m
pt

ed
 fi

rs
t.

If
un

su
cc

es
sf

ul
, t

he
 R

O
TA

TE
 p

ol
ic

y
is

 a
pp

lie
d.

S
TA

G
G

E
R

TH
IN

H
H

H
H

H
H

H
Th

e
S

TA
G

G
E

R
 p

ol
ic

y
is

 a
tte

m
pt

ed
 fi

rs
t.

If
un

su
cc

es
sf

ul
, t

he
 T

H
IN

 p
ol

ic
y

is
 a

pp
lie

d.

Tick Value Fit Policy Applicability Matrix 701

Fi
t P

ol
ic

y

LA
YO

U
T

O
VE

R
LA

Y

LA
YO

U
T

LA
TT

IC
E

LA
YO

U
T

D
AT

A
LA

TT
IC

E

LA
YO

U
T

D
AT

A
PA

N
EL

LA
YO

U
T

EQ
U

AT
ED

N
ot

es
D

is
cr

et
e

A
xe

s
Li

ne
ar

A

xe
s

Ti
m

e
A

xe
s

D
is

cr
et

e
A

xe
s

Li
ne

ar

A
xe

s
Ti

m
e

A
xe

s

S
TA

G
G

E
R

TR
U

N
C

AT
E

H
H

Th
e

S
TA

G
G

E
R

 p
ol

ic
y

is
 a

tte
m

pt
ed

 fi
rs

t.
If

un
su

cc
es

sf
ul

, t
he

 T
R

U
N

C
AT

E
 p

ol
ic

y
is

ap

pl
ie

d.

TH
IN

B
B

H
B

B
H

B
S

om
e

tic
k

va
lu

es
 a

re
 re

m
ov

ed
.

TR
U

N
C

AT
E

H
H

Th
e

tic
k

va
lu

es
 a

re
 s

ho
rte

ne
d.

TR
U

N
C

AT
E

R
O

TA
TE

H
H

Th
e

TR
U

N
C

AT
E

 p
ol

ic
y

is
 a

tte
m

pt
ed

 fi
rs

t.
If

un
su

cc
es

sf
ul

, t
he

 R
O

TA
TE

 p
ol

ic
y

is
 a

pp
lie

d.

TR
U

N
C

AT
E

S
TA

G
G

E
R

H
H

Th
e

TR
U

N
C

AT
E

 p
ol

ic
y

is
 a

tte
m

pt
ed

 fi
rs

t.
If

un
su

cc
es

sf
ul

, t
he

 S
TA

G
G

E
R

 p
ol

ic
y

is
 a

pp
lie

d.

TR
U

N
C

AT
E

TH
IN

H
H

Th
e

TR
U

N
C

AT
E

 p
ol

ic
y

is
 a

tte
m

pt
ed

 fi
rs

t.
If

un
su

cc
es

sf
ul

, t
he

 T
H

IN
 p

ol
ic

y
is

 a
pp

lie
d.

1
Va

lid
 s

ta
rti

ng
 w

ith
 S

A
S

 9
.4

M
5.

702 Appendix 5 / Tick Value Fit Policy Applicability

Appendix 6
SAS Formats Not Supported

Assigning Formats . 703

Using Locale-Sensitive Decimal Separators with Numeric Formats 704

SAS Formats That Are Not Supported . 704
Unsupported Numeric Formats . 704
Unsupported Date and Time Formats Related to ISO 8601 . 704
Other Unsupported Date and Time Formats . 705
Unsupported Currency Formats . 705

User-Defined Formats That Are Not Supported . 706
Picture Formats with Date, Time, or Datetime Directives . 706
Unicode Values with a User-Defined ODS Escape Character 707

Assigning Formats
SAS formats and user-defined formats can be assigned to input data columns with
the FORMAT statement of the SGRENDER procedure. Also, several GTL statement
options accept a format as an option value. Examples include the
TICKVALUEFORMAT= option for formatting axis tick values, and the TIPFORMAT=
option for formatting data tips. For information about SAS formats, see SAS Formats
and Informats: Reference. For information about user-defined formats, see
“FORMAT Procedure” in Base SAS Procedures Guide.

Not all SAS formats and user-defined formats are supported in GTL or with the
SGPLOT, SGSCATTER, SGPANEL, and SGRENDER procedures. See “SAS
Formats That Are Not Supported” on page 704. When an unsupported format is
encountered, a note similar to the following is written to the SAS log:

TICKVALUEFORMAT=bestx. is invalid. The format is invalid or unsupported.
 The default will be used.

703

http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=n0kdscfhkob956n196h4jixhibn5.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1xidhqypi0fnwn1if8opjpqpbmn.htm&locale=en

Using Locale-Sensitive Decimal
Separators with Numeric Formats

System option NLDESCEPARATOR= is not supported by ODS Graphics. When
system option NLDECSEPARATOR is in effect, syntax errors or null debug errors
might result when using an ODS Graphics enabled procedure. For locale-sensitive
decimal separators in your graph’s numeric values, specify system option
NONLDESCEPARATOR, and then use appropriate NL formats to format your
numeric variables. See “Dictionary of Formats for NLS” in SAS National Language
Support (NLS): Reference Guide.

SAS Formats That Are Not Supported

Unsupported Numeric Formats
The following numeric formats are not supported in ODS Graphics:

BESTD BESTX D FLOAT FRACT

FREE IB IBR IEEE IEEER

ODDSR PCPIB PD PIB PIBR

PK RB SSN WORDF WORDS

Z ZD

Unsupported Date and Time Formats Related to
ISO 8601

The following date and time formats are not supported in ODS Graphics:

$N8601B $N8601BA $N8601E $N8601EA $N8601EH

$N8601EX $N8601H $N8601X B8601DA B8601DN

704 Appendix 6 / SAS Formats Not Supported

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p01itdp4pna998n1wc25iifsephg.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0qenieob5jr4mn1dcthvv8822vo.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0qenieob5jr4mn1dcthvv8822vo.htm&locale=en

B8601DT B8601DZ B8601LZ B8601TM B8601TZ

E8601DA E8601DN E8601DT E8601DZ E8601LZ

E8601TM E8601TZ IS8601DA IS8601DN IS8601DT

IS8601DZ IS8601LZ IS8601TM IS8601TZ

Other Unsupported Date and Time Formats
The following date and time formats are not supported in ODS Graphics:

HDATE HEBDATE JDATEMDW JDATEMNW JDATEWK

JDATEYDW JDATEYM JDATEYMD JDATEYMW JDATEYT

JDATEYTW JNENGO JNENGOT JNENGOTW JNENGOW

JTIMEH JTIMEHM JTIMEHMS JTIMEHW JTIMEMW

JTIMESW MDYAMPM MINGUO NENGO NLDATEYQ

NLDATEYR NLDATEYW NLDATMYQ NLDATMYR NLDATMYW

NLSTRMON NLSTRQTR NLSTRWK PDJULG PDJULI

TWMDY XYYMMDD YYQZ

Unsupported Currency Formats
The following currency formats are not supported in ODS Graphics:

EURFRATS EURFRBEF EURFRCHF EURFRCZK EURFRDEM

EURFRDKK EURFRESP EURFRFIM EURFRFRF EURFRGBP

EURFRGRD EURFRHUF EURFRIEP EURFRITL EURFRLUF

EURFRNLG EURFRNOK EURFRPLZ EURFRPTE EURFRROL

EURFRRUR EURFRSEK EURFRSIT EURFRTRL EURFRYUD

EURTOATS EURTOBEF EURTOCHF EURTOCZK EURTODEM

EURTODKK EURTOESP EURTOFIM EURTOFRF EURTOGBP

SAS Formats That Are Not Supported 705

EURTOGRD EURTOHUF EURTOIEP EURTOITL EURTOLUF

EURTONLG EURTONOK EURTOPLZ EURTOPTE EURTOROL

EURTORUR EURTOSEK EURTOSIT EURTOTRL EURTOYUD

User-Defined Formats That Are Not
Supported

Picture Formats with Date, Time, or Datetime
Directives

ODS Graphics does not support user-defined picture formats that specify date, time,
or datetime directives such as %a, %W, %H, and so on. Using a picture format with
directives produces unexpected results in ODS Graphics. To work around this
limitation, apply the picture format to a new column in your data, and then plot the
new preformatted column instead. Here is an example that creates column
NewDate by formatting the Date column as MM/YYYY.

/* Create picture format MonYear for MM/YYYY date */
proc format;
 picture monyear (min=7)
 low-high='%0m/%Y' (datatype=date);
run;

/* Add preformatted date column NewDate to the data */
data stocks;
 set sashelp.stocks
 (where=(year(date) eq 2001 and stock eq "IBM"));
 newdate = put(date, monyear.);
 label newdate="Date: MM/YYYY";
run;

The NewDate column can be used in ODS Graphics plot statements instead of the
Date column.

For information about the PICTURE statement in the FORMAT procedure, see Base
SAS Procedures Guide.

706 Appendix 6 / SAS Formats Not Supported

Unicode Values with a User-Defined ODS Escape
Character

ODS Graphics supports Unicode values in user-defined formats only if they are
preceded by the (*ESC*) escape sequence as shown in the following example.

"(*ESC*){unicode beta}"

ODS Graphics does not support the use of a user-defined ODS escape character to
escape Unicode values in user-defined formats.

For an example of how to use Unicode values in user-defined formats with ODS
Graphics, see “Formatting the Tick Values on a Discrete Axis” on page 141.

User-Defined Formats That Are Not Supported 707

708 Appendix 6 / SAS Formats Not Supported

Appendix 7
Memory Management for ODS
Graphics

SAS Options Affecting Memory . 709

Managing a Java Out of Memory Error . 710

SAS Options Affecting Memory
ODS Graphics uses Java technology to produce its graphs. Most of the time this
fact is transparent to you because the required Java Runtime Environment (JRE)
and JAR files are included with SAS software installation. Also, the Java
environment is automatically started and stopped for you. When Java is started, it
allocates a fixed amount of memory. The memory can grow up to the value set for
the -Xmx suboption in the JREOPTIONS option (discussed in a moment). This
memory is independent of the memory limit that SAS sets for the SAS session with
its MEMSIZE= option.

Normally, the memory limit for Java is sufficient for most ODS Graphics applications.
However, some tasks are very memory intensive and might exhaust all available
Java memory, resulting in an OutOfMemoryError condition. You might encounter
Java memory limitations in the following cases:

n the product of the output size and the DPI setting results in very large output

n a classification panel has a very large number of classifier crossings

n a scatter plot matrix has a large number of variables

n creating 3-D plots and 2-D contours, which are memory intensive to generate

n a plot has a very large number of marker labels

n a plot uses many character variables or has a large number of GROUP values

n using the SG Editor to edit a graph with a large amount of data

709

Managing a Java Out of Memory Error
If you encounter a Java OutOfMemoryError, then you can try executing your
program again by restarting SAS and specifying a larger amount of memory for Java
at SAS invocation.

To determine what the current Java memory settings are, you can submit a PROC
OPTIONS statement that shows the value of the JREOPTIONS option:

proc options option=jreoptions;
run;

After you submit this procedure code, a list of JREOPTIONS settings is written to
the SAS log. The JREOPTIONS option has many suboptions that configure the SAS
Java environment. Many of the suboptions are installation and host specific and
should not be modified, especially the ones that provide installed file locations. For
managing memory, look for the -Xmx and -Xms suboptions:

JREOPTIONS=(/* other Java suboptions */ -Xmx128m -Xms128m)

-Xms
Use this option to set the minimum Java memory (heap) size, in bytes. Set this
value to a multiple of 1024 greater than 1MB. Append the letter k or K to indicate
kilobytes, or m or M to indicate megabytes. The default is 2MB. Examples:

-Xms6291456
-Xms6144k
-Xms6m

-Xmx
Use this option to set the maximum size, in bytes, of the memory allocation pool.
Set this value to a multiple of 1024 greater than 2MB. Append the letter k or K to
indicate kilobytes, or m or M to indicate megabytes. The default is 64MB.
Examples:

-Xmx83886080
-Xmx81920k
-Xmx80m

As a general rule, you should set the minimum heap size (-Xms) equal to the
maximum heap size (-Xmx) to minimize garbage collections.

Typically, SAS sets both -Xms and -Xmx to be about 1/4 of the total available
memory or a maximum of 128M. However, you can set a more aggressive
maximum memory (heap) size, but it should never be more than 1/2 of physical
memory.

You should be aware of the maximum amount of physical memory your computer
has available. Let us assume that doubling the Java memory allocation is feasible.
So when you start SAS from a system prompt, you can add the following option:

710 Appendix 7 / Memory Management for ODS Graphics

-jreoptions (-Xmx256m -Xms256m)

Alternatively, you might need to specify the setting in quotation marks:

-jreoptions '(-Xmx256m -Xms256m)'

The exact syntax varies for specifying Java options, depending on your operating
system, and the amount of memory that you can allocate varies from system to
system. The set of JRE options must be enclosed in parentheses. If you specify
multiple JREOPTIONS system options, then SAS appends JRE options to JRE
options that are currently defined. Incorrect JRE options are ignored.

If you choose to create a custom configuration file, then you would simply replace
the existing -Xms and -Xmx suboption values in the JREOPTIONS=(all Java
options) portion of the configuration file.

For more information, see the SAS Companion for your operating system.

Managing a Java Out of Memory Error 711

712 Appendix 7 / Memory Management for ODS Graphics

Appendix 8
Understanding Hexadecimal
Values

Understanding Hexadecimal Values . 713

Understanding Hexadecimal Values
This section provides an overview of the hexadecimal numbering system. The
hexadecimal system is a base 16 numbering system where each digit represents
one of the values shown in the following table.

Hexadecimal Value Decimal Equivalent

0–9 0–9

A 10

B 11

C 12

D 13

E 14

F 15

The maximum decimal value that a hexadecimal value can represent is 16n – 1,
where n is the number of digits in the hexadecimal value. A two-digit hexadecimal
value can represent a maximum decimal value of 255, and a four-digit hexadecimal
value can represent a maximum decimal value of 65,535. To convert a hexadecimal

713

number to decimal, sum the product of each hexadecimal character and its base
power, 16n, where n is the digit’s significance. For example, to convert hexadecimal
value C8A4 to decimal manually, do the following:

12 × 163 + 8 × 162 + 10 × 16 + 4 = 51364

To convert from decimal to hexadecimal manually, iteratively divide the decimal
value by 16. In each iteration, multiply the remainder by 16 to get the hexadecimal
character for that iteration, and then use the quotient in the next iteration until the
quotient is zero. This method generates the hexadecimal value from the least-
significant digit to the most significant digit. The following table demonstrates how to
convert decimal value 51,364 back to its hexadecimal value.

Divide by 16 Quotient Remainder 16 x Remainder Hexadecimal Value

51364 / 16 3210 0.25 4 4

3210 / 16 200 0.625 10 A

200 / 16 12 0.5 8 8

12 / 16 0 0.75 12 C

Since the hexadecimal characters are generated from the least-significant digit to
the most significant, the result is C8A4.

Apart from the base and the value representation, the methods for manipulating
hexadecimal values, such as addition, subtraction, and multiplication, are the same
as those that are used in the base 10 system. Here are some examples.

Base 10 Base 16

9 + 1 = 10 9 + 1 = A

8 + 8 = 16 8 + 8 = 10

3 x 85 = 255 3 x 55 = FF

Many pocket calculators and calculator programs enable you to manipulate
hexadecimal values and convert values between hexadecimal and decimal. You can
also use a DATA step in SAS to manipulate and convert hexadecimal values. Here
is a simple macro that uses the INPUT statement in a DATA step to convert a
hexadecimal value to its equivalent decimal value.

%macro hex2dec(hex);
 data _null_;
 msg=cat("#", %upcase("&hex"), " = ", input("&hex", hex.));
 put msg;
 run;
%mend hex2dec;

The following example shows how to use this macro to convert the hexadecimal
value C8A4 to its decimal equivalent.

%hex2dec(c8a4);

714 Appendix 8 / Understanding Hexadecimal Values

#C8A4 = 51364

Here is a simple macro that uses the PUT statement in a DATA step to convert a
decimal value to its equivalent hexadecimal value.

%macro dec2hex(dec);
 data _null_;
 msg=cat("&dec = #", put(&dec, hex4.));
 put msg;
 run;
%mend dec2hex;

The following example shows how to use this macro to convert the decimal value
51,364 back to its hexadecimal equivalent.

%dec2hex(51364);
51364 = #C8A4

For information about macros, see SAS Macro Language: Reference. For
information about the INPUT and PUT DATA step functions, see SAS Functions and
CALL Routines: Reference.

When you use the hexadecimal system to define you own colors, the exact value for
the color is not as significant as the relationship of the digits in the value to each
other, and the relationship of the value of this color to other colors.

Understanding Hexadecimal Values 715

716 Appendix 8 / Understanding Hexadecimal Values

Appendix 9
ODS Graphics and SAS/GRAPH

ODS Graphics and SAS/GRAPH . 717

ODS Graphics and SAS/GRAPH
SAS produces graphics using two very distinct systems: ODS Graphics and
SAS/GRAPH. ODS Graphics and GTL produce graphics through the Output
Delivery System (ODS) using a template-based system. SAS/GRAPH produces
graphics using a device-based system. You can use both systems to generate your
graphical output. That is, you can use SAS/GRAPH to generate the output for some
jobs, and ODS Graphics to generate the output for others. To help you understand
the differences between the two systems in that case, here is a comparison:

n GTL does not produce GRSEGs or use device drivers. The output format that is
produced is specified by the OUTPUTFMT= option in the ODS GRAPHICS
statement. GTL produces all output in industry standard output formats such as
PNG, GIF, JPEG, WMF, TIFF, PDF, EMF, PS, PCL, and SVG. Most SAS/GRAPH
procedures produce a GRSEG entry in a SAS catalog. Other output formats in
SAS/GRAPH, such as an image or metagraphics file, can be created by
selecting an appropriate device driver such as PNG, JPEG, or GIF.

n GTL has a layout-centric architecture. Each graph contains components such as
plots, insets, and legends that can be combined in flexible ways inside layout
containers to build complex graphs. Several layout types are available, some
that produce a graph in a single cell and others that produce a graph as a panel
of cells. In most cases, the components used in the single-cell graphs can also
be used in the multi-cell graphs.

n The GTL global options are specified in the ODS GRAPHICS statement or in the
ODS destination statement. GTL does not use the traditional SAS/GRAPH global
statements, such as SYMBOL, PATTERN, AXIS, LEGEND, and GOPTIONS.

n The GTL statements and options provide control over the visual properties of a
graph. The SAS/GRAPH global statements such as GOPTIONS, AXIS,
LEGEND, PATTERN, SYMBOL, and NOTE control the properties for text,
markers, and lines.

717

n GTL controls the size, format, and name of output images with the HEIGHT=,
WIDTH=, OUTPUTFMT=, and IMAGENAME= options in the ODS GRAPHICS
statement. The ODS GRAPHICS statement is similar in purpose to the
GOPTIONS statement. SAS/GRAPH controls the size and format of graphical
output with options such as HSIZE=, VSIZE=, and DEVICE= in the GOPTIONS
statement.

n The GTL axes, backgrounds, titles, legends, and the other graph components
are managed by the layout containers and do not belong to an individual plot.

n Titles and footnotes produced by the SAS TITLE and FOOTNOTE statements do
not appear in graphs that are generated using GTL. GTL has its own statements
for producing titles and footnotes. (However, the SGPLOT, SGPANEL, and
SGSCATTER procedures support the TITLE and FOOTNOTE statements. They
generate GTL behind the scenes.)

n The GTL plot type is determined by the plot statement. A plot statement is
provided for each plot type. The SAS/GRAPH plot type is determined by global
options for some graphs. For example, the INTERPOL= option in the SYMBOL
statement might determine whether a graph is a scatter plot or a box plot.

n The GTL graphical attributes for markers, lines, color, and so on, are derived by
default from the active ODS style, which cannot be turned off. SAS/GRAPH also
uses ODS styles by default. However, with SAS/GRAPH, the style can be turned
off and the appearance information that is specified in the device entries used
instead. For more information about ODS styles, see “Using ODS Styles to
Control Graph Appearance” on page 495.

n GTL supports all of the ODS destinations. For the LISTING destination, an
image node is created for the graph in the Results tree. To view the graph, it
must be manually opened in an external viewer or in the ODS Graphics Editor.
SAS/GRAPH also supports all of the ODS destinations. However, for the
LISTING destination, SAS/GRAPH creates a GRSEG node in the Results tree,
and the image appears in the graph window automatically.

n GTL supports scaling of fonts and markers by default. This means that the sizes
of fonts and markers are adjusted as appropriate to the size of your graph. Font
and marker scaling is disabled by the NOSCALE option in the ODS GRAPHICS
statement. SAS/GRAPH does not support scaling of fonts and markers.

n GTL does not support the SAS/GRAPH Annotate facility. The GTL annotation
facility or the GTL draw statements can be used to add a variety of data-driven
or non-data-driven graphical elements to graphs. For information about using the
GTL annotation facility, see Chapter 23, “Adding Data-Driven Annotations to
Your Graph,” on page 439. For information about using the GTL draw
statements, see Chapter 22, “Adding Code-Driven Graphics Elements to Your
Graph,” on page 425.

You can also use the ODS Graphics Editor to add annotations to your graphs.
See SAS ODS Graphics Editor: User’s Guide.

n GTL does not support RUN-group processing. SAS/GRAPH supports RUN-
group processing for some procedures.

718 Appendix 9 / ODS Graphics and SAS/GRAPH

http://documentation.sas.com/?docsetId=grstateditug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

	Contents
	About This Book
	Using This Book
	Prerequisites
	About the Examples in This Book
	Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language
	Syntax Components
	Style Conventions
	Special Characters
	References to SAS Libraries and External Files

	Value Type Notation Used for GTL Statement Options

	Recommended Reading

	Getting Started
	Get Started Using the Graph Template Language
	Introduction to the Graph Template Language
	What Is the Graph Template Language?
	When You Need to Use GTL
	What You Can Create Using GTL
	Single-Cell Graphs
	Multicell Graphs
	Interactive Graphs

	What You Need to Know to Get Started Using GTL
	How Graphs Are Creating Using GTL
	Graph Templates
	What Is a Graph Template?
	Structure of a Minimal Graph Template
	Compiling and Saving the Template
	Creating a Graph from a Graph Template

	Graph Layouts
	Axis Management
	Plots
	Legends
	Titles, Footnotes, and Other Text

	Learning By Example: Create Your First Bar Chart Using GTL
	About the Scenario in This Topic
	Creating a Bar Chart Using GTL

	Where to Go from Here

	A Quick Look at Additional Features of GTL
	Appearance Options
	Attribute Maps
	Custom Plot Markers
	Annotations
	Types of Annotations That Are Supported in GTL
	Drawing Statements
	ODS Graphics Annotate Facility

	Insets
	Specialized Legends
	Axis Legends
	Merged Legends
	Custom Legend Items

	Axis Tables
	Run-Time Programming Features

	Common Tasks Associated with Creating GTL Templates
	About the GTL Tasks
	Output Environment Tasks
	Graph Creation Tasks
	Graph Enhancement Tasks

	Additional Resources to Help You Develop Your GTL Templates
	Resources on the Web
	Examples and Resources on the Web

	Books

	GTL Statements and Features
	A Quick Look at GTL Statement Syntax
	Statement Syntax
	Statement-Block Syntax

	Overview of the GTL Statements
	GTL Statement Categories
	Plot Statements
	Legend Statements
	Text Statements
	Layout Statements
	Layouts in GTL
	Layout Types
	Single-Cell Layout Statements
	Multi-Cell, Non-Data-Driven Layout Statements
	Multi-Cell, Data-Driven Layout Statements
	Axis Management in GTL Layouts

	Common Features Supported by GTL Statements
	Features Supported by Many Plot Statements
	Plot Features to Be Displayed
	Plot Appearance
	Plot Transparency
	Plot Identification
	Labels for Plot Features
	Grouping
	Axis Assignment
	Data Tips

	Features Supported by Layout, Legend, and Text Statements
	About Layout, Legend, and Text Statement Features
	Backgrounds
	Borders
	Padding
	Test Position
	Legend and Layout Positions

	Selecting GTL Plot Statements
	How the GTL Plot Statements Are Categorized
	Plot Types
	Overview of the Plot Types
	Computed Plots
	Parameterized Plots
	Standalone Plots
	Dependent Plots
	2-D Plots and 3-D Plots

	Plot Categories
	Additional Plot Category: the Primary Plot

	Plot Statements Listed by Category
	Standalone, 2-D, Computed Plots
	Standalone, 2-D, Parameterized Plots
	Standalone, 3-D, Parameterized Plots
	Dependent Plots

	Gallery of the GTL Plots
	A Quick Look at the Gallery
	Gallery of Basic Single-Cell Plots
	Band Plots
	Bar Charts
	Bar-Line Charts
	Block Plots
	Box Plots
	Bubble Plots
	Contour Plots
	Dendrograms
	Density Plots
	Dot Plots
	Ellipse Plots
	Fringe Plots
	Heat Maps
	High-Low Plots
	Histograms (Univariate)
	Histograms (Bivariate)
	Line Charts
	Loess Plots
	Model Band Plots
	Mosaic Plots
	Needle Plots
	Penalized B-Spline Plots
	Pie Charts
	Polygon Plots
	Regression Plots
	Scatter Plots
	Series Plots
	Spline Plots (Quadratic Bézier Curves)
	Step Plots
	Straight-Line Plot (Point and Slope)
	Surface Plots
	Text Plots
	Vector Plots
	Waterfall Charts

	Gallery of Additional Plot Features
	Axis-Aligned Tables
	Drop Lines
	Reference Lines

	Gallery of Multicell Graphs
	Grid Graphs
	Scatter Plot Matrices
	Lattice Graphs
	Data-Driven Lattice Graphs
	Data-Driven Panel Graphs

	Creating Graphs Using GTL
	Creating Overlay Graphs Using the OVERLAY Layout
	The LAYOUT OVERLAY Statement
	Statements You Can Use in an OVERLAY Block
	Restrictions on Allowed Statements
	Restrictions on Statement Combinations
	Statement Order
	Managing Axes in OVERLAY Layouts
	Overview
	Axis Terminology
	How Plot Statements Affect Axis Construction
	Avoiding Plot Axis Conflicts
	Axis Line versus Wall Outline
	Axis Appearance Features Controlled by the Current Style
	Specifying Axis Options
	Axis Type
	Axis Data Range
	Axis Labels
	Default Axis Labels
	Overriding the Default Axis Label
	Making Long Axis Labels Fit
	Positioning the Axis Labels

	Axis Tick Values
	Axis Thresholds
	Axis Offsets
	LINEAR Axes
	Setting the Data Range and Tick Values on a Linear Axis
	Formatting the Tick Values on a Linear Axis
	Scaling the Tick Values on a Linear Axis
	Fitting the Tick Values on a Linear Axis
	Creating a Broken Linear Axis

	Discrete Axes
	Setting the Tick Values on a Discrete Axis
	Formatting the Tick Values on a Discrete Axis
	Fitting Tick Values on a Discrete Axis
	Displaying the Discrete Axis Tick Values Vertically
	Extracting Discrete Axis Tick Values into a Legend
	Splitting the Discrete Axis Tick Values
	Truncating the Discrete Axis Tick Values
	Setting Alternating Wall Color Bands for Discrete Intervals
	Offsetting Graph Elements from the Category Midpoint

	TIME Axes
	Overview of TIME Axes
	Setting the Tick Values on a Time Axis
	Formatting the Tick Values on a Time Axis
	Fitting the Tick Values on a Time Axis
	Setting the Data Range on a Time Axis
	Creating a Broken Time Axis

	LOG Axes
	Overview of LOG Axes
	Setting the Base on a Log Axis
	Setting the Tick Intervals on a Log Axis
	Setting the Tick Values on a Log Axis
	Formatting the Tick Values on a Log Axis

	Avoiding Plot Data Conflicts
	Overlay Examples
	Vertical and Horizontal Bar-Line Charts
	Bar-Line Charts
	Horizontal Bar Charts

	Plot with Multiple Axes
	Plot with Fit Line
	Plot with Fit Line with Confidence Bands
	Plot of Grouped Data
	Using Overlays to Graph Multiple Response Variables
	Plot with Insets
	Plot Appearance

	Creating Overlay Graphs with Equated Axes Using the OVERLAYEQUATED
Layout
	The LAYOUT OVERLAYEQUATED Statement
	Managing Axes in OVERLAYEQUATED Layouts
	Types of Equated Axes
	Defining Axes for Equated Layouts

	Equated Overlay Layout Examples

	Creating Overlay 3-D Graphs Using the OVERLAY3D Layout
	The LAYOUT OVERLAY3D Statement
	Data Requirements for 3-D Plots
	Overview of the Data Requirements for 3-D Plots
	Producing Bivariate Histograms
	Producing Surface Plots

	Managing Axes in OVERLAY3D Layouts
	Display Features of the OVERLAY3D Layout
	Managing the Display of Cube Lines
	Displaying a Fill in the Graph Walls
	Defining a Viewpoint

	Creating Gridded Graphs Using the GRIDDED Layout
	The LAYOUT GRIDDED Statement
	Defining a Basic Grid
	Setting Grid Dimensions
	Setting Gutters
	Defining Cells

	Building a Table of Text
	Sizing Issues
	Row and Column Sizes
	Adjusting Graph Size

	Creating Lattice Graphs Using the LATTICE Layout
	The LAYOUT LATTICE Statement
	Defining a Basic Lattice
	Setting Grid Dimensions
	Setting Gutters
	Populating Cells
	Adding Cell Headers

	Managing Axes in LATTICE Layouts
	Internal Axes
	Uniform Axis Ranges
	Row and Column Axes
	Specifying Row and Column Axes
	Displaying Row and Column Secondary Axes
	External Axes and Empty Cells

	Adjusting the Sizes of Rows and Columns
	Adjusting the Graph Size
	Examples: Lattice Layout
	Example 1: Basic Lattice with Internal Axes
	About This Example
	Transforming the Input Data
	Creating the Basic Lattice
	Customizing the Cell Axes

	Example 2: Lattice with Side Bars
	Example 3: Lattice with Row and Column Axes
	Example 4: Lattice with Row Headers
	Example 5: Lattice with Custom Row Sizing

	Creating Classification Panels Using the DATALATTICE and DATAPANEL
Layouts
	About Classification Panels
	The LAYOUT DATALATTICE Statement
	The LAYOUT DATAPANEL Statement
	The LAYOUT PROTOTYPE Statement
	Distinction between DATAPANEL and DATALATTICE
	Organizing Panel Contents
	Overview of What to Consider When Planning a Classification
Panel
	Grid Dimensions and Cell Population Order
	Gutters
	Graph Aspect Ratio
	Cell Size
	Prototype Orientation

	Managing Axes in DATALATTICE and DATAPANEL Layouts
	Controlling Data Ranges of Rows or Columns
	Setting Axis Options

	Controlling the Classification Headers
	Using Sidebars
	Controlling the Interactions of Classifiers
	Appearance of the Last Panel
	User Control of Panel Generation
	Sparse Data
	Missing Class Values

	Using Non-computed Plots in Classification Panels
	Adding an Inset to Each Cell
	Using PROC SGPANEL to Create Classification Panels
	Examples: Data Lattice Layout and Data Panel Layout
	Example 1: A Basic Data Lattice
	Example 2: A Basic Data Panel
	Example 3: A Data Panel with Sidebars
	Example 4: A Data Panel with an Inset in Each Cell

	Creating Graphs with No Axis Using the REGION Layout
	The LAYOUT REGION Statement
	Examples: Region Layout
	Example 1: Pie Chart
	Example 2: Bar Chart and Pie Chart
	Example 3: Mosaic Plot

	Plotting a SAS Cloud Analytic Services
(CAS)
In-Memory Table
	Accessing In-Memory Tables
	About In-Memory Tables and Data Order
	GTL Features That Do Not Support In-Memory Tables
	Example: Preprocessing Data in CAS
and Plotting the Results Using GTL

	Adding Text, Legends, and Insets
	Adding Titles, Footnotes, and Text Entries to Your Graph
	Text Strings in Graphs
	Text Properties and Syntax Conventions
	Text Statement Basics
	Using Titles and Footnotes
	Using Text Entries in the Graphical Area

	Managing the String on Text Statements
	Text Statement Syntax
	Using Rich Text
	Horizontally Aligning Text Items
	Generating Text Items with Dynamic Variables, Macro Variables,
and Expressions
	Adding Subscripts, Superscripts, and Unicode Rendering
	Using Unicode Values in Labels

	Using Options on Text Statements
	Options Available on All Text Statements
	Setting Text Background, Borders, and Padding
	Managing Long Text in Titles and Footnotes

	ENTRY Statements: Additional Control
	Features Available for ENTRY Text
	Positioning ENTRY Text
	Rotating ENTRY Text

	Adding Legends to Your Graph
	Introduction to Legend Management
	Some of the Uses for a Legend
	Types of Legends in GTL
	General Syntax for Using Legends
	Example Legend Coding for Common Situations
	Show Group Values in a Legend
	Identify Overlaid Plots in a Legend
	Show Group Values and Identify Plots in a Legend
	Show a Legend for a Continuous Response Variable (Scatter Plot)
	Show a Legend for a Continuous Response Variable (contour plot)

	General Legend Features
	Positioning Options
	Overview of the Legend Placement Options
	Displaying Legends outside of the Plot Wall
	Displaying Legends inside the Plot Wall
	Automatically Aligning an Inside Legend

	General Appearance Options
	Using Background Transparency and Color
	Using a Legend Title and Title Border
	Legend Border
	Legend Text Properties

	Adding a Discrete Legend
	Placing the Legend
	Ordering the Legend Entries for a Grouped Plot
	Overview of the Group Value Default Order
	Sorting the Legend Items
	Formatting the Data

	Ordering the Legend Entries for Non-grouped Plots
	Ordering Entries from Overlaid Plots
	Varying Visual Properties
	Assigning Legend Entry Labels

	Arranging Legend Entries into Columns and Rows
	Default Legend Item Arrangement
	Options to Control Legend Wrapping
	Organizing Legend Entries in a Fixed Number of Columns
	Organizing Legend Entries in a Fixed Number of Rows

	Controlling the Label and Item Size
	Adding Items to a Discrete Legend
	Adding Items with the LEGENDITEM Statement
	Adding Text Items with the LEGENDTEXTITEMS Statement

	Removing Items from a Discrete Legend
	Removing Items with the EXCLUDE= Option
	Filtering Items from Multiple Plots with the TYPE= Option

	Merging Legend Items from Two Plots into One Legend
	Creating a Global Legend
	When Discrete Legends Get Too Large

	Adding a Continuous Legend
	Plots That Can Use Continuous Legends
	Positioning a Continuous Legend
	Using Color Gradients to Represent Response Values
	Scaling the Legend Values

	Adding Insets to Your Graph
	Uses for Insets in a Graph
	Creating a Simple Inset with an ENTRY Statement
	Creating an Inset as a Table of Text
	Positioning an Inset
	Creating an Inset with Values That Are Computed in the Template
	Creating an Inset from Values That Are Passed to the Template
	Overview of Importing Data into a Template
	Creating a Template That Uses Macro Variables
	Defining a Macro to Initialize the Variables and Generate the
Graph
	Executing the Macro

	Adding Insets to a SCATTERPLOTMATRIX Graph
	Adding Insets to Classification Panels
	About Cell Insets in Classification Panels
	Adding Insets By Using the Match-Merging Data Scheme
	Adding Insets By Using the One-To-One-Merging Data Scheme

	Creating Axis-Aligned Insets
	Creating an Axis-Aligned Inset with a Block Plot
	Displaying Axis-Aligned Values with a Block Plot
	Displaying Axis-Aligned Filled Segments with a Block Plot
	Creating an Axis-Aligned Table of Values with a Block Plot

	Creating an Axis-Aligned Inset with an Axis Table
	Displaying Axis-Aligned Values with an Axis Table
	Creating an Axis-Aligned Table of Values with an Axis Table

	Creating an Axis-Aligned Inset in a Classification Panel
	Creating an Axis-Aligned Inset with the GTL Annotation Facility

	Adding Custom Graphical Elements
	Adding Code-Driven Graphics Elements to Your Graph
	Overview: Adding Non-Data-Driven Graphics Elements to a Graph
	Selecting the Drawing Space and Units
	How the Graphics Elements Are Anchored
	Adding Graphics Elements to Your Graph
	The Draw Statements
	Adding Text
	Adding Arrows and Lines
	Adding Geometric Shapes
	Ovals
	Rectangles
	Polylines
	Polygons

	Adding Images

	Adding Data-Driven Annotations to Your Graph
	Overview: Adding Data-Driven Annotations to a Graph
	Creating an SG Annotation Data Set
	Adding Observations for Text Annotations
	Adding Observations for Arrows and Lines
	Adding Observations for Polylines and Polygons
	Adding Observations for Ovals
	Adding Observations for Rectangles
	Adding Observations for Images

	Using the SG Annotation Macros to Create Your SG Annotation
Data Set
	Rendering a Graph with Annotations
	Subsetting Annotations
	Examples
	Example 1: Creating Custom Labels
	Overview
	Using the %SGTEXT Macro in the DATA Step
	Listing of the Mileage Data Set
	Listing of the Anno Data Set
	Example 2: Displaying Subsets of Annotations in Axis-Aligned Insets
	Overview
	Listing of the Mileage Data Set
	Partial Listing of the Anno Data Set
	Example 3: Creating a Macro That Generates Annotation Data
	Overview
	About the %GENTICKANNODATA Macro

	Creating Interactive Graphs
	Adding Data Tips to Your Graph
	Creating a Graph with Data Tips in an HTML Page
	Creating a Graph with Custom Data Tips in an HTML Page

	Adding Drill-Down Links to Your Graph
	About Drill-Down Graphs
	Create a Drill-Down Graph

	Creating Animated Graphs
	About ODS Graphics Animation Support
	Create an Animated Graph

	Graphical Output
	Managing Your Graph’s Appearance
	Default Appearance Features in Graphs
	Methods for Changing the Appearance of Your Plots
	Using ODS Styles to Control Graph Appearance
	Evaluating Supplied Styles
	Creating Custom Styles
	Reasons for Customizing an ODS Style
	Style Elements in ODS Styles
	Font Specifications in ODS Styles
	Example: Customize the Fonts in the STATISTICAL Style
	Testing Your Modified Style Template
	Making Your Modified Style Template Available to Others

	Using Options to Override Style Attributes
	Options That Override Attributes for Individual Plots
	Overview of Graphical Properties
	LINEATTRS Option
	MARKERATTRS Option
	TEXTATTRS Option

	Options That Override Style Attributes for All of the Plots
in a Template

	Controlling the Appearance of Non-grouped Data
	Controlling the Appearance of Grouped Data
	Plots That Support Grouped Data
	Using the Default Appearance for Grouped Data
	Using Custom Styles to Control the Appearance of Grouped Data
	Using a Discrete Attribute Map to Control the Appearance of
Grouped Data
	Controlling the Appearance of Grouped Data for All Graphs in
a Template
	Options That Override Style Attributes for All of the Plots
in a Template
	Overriding the Fill Colors
	Overriding the Line Patterns and Line Colors
	Overriding the Marker Symbols and Marker Colors

	Changing the Grouped Data Display
	Including Missing Group Values
	Changing the Grouped Data Order
	Making the Appearance of Grouped Data Independent of Data Order
	About Grouped Data Appearance and Data Order
	Using a Discrete Attribute Map to Achieve Data-Independent
Appearance for Grouped Plots
	Using the INDEX= Option to Achieve Data-Independent Appearance
for Grouped Plots

	Using Attribute Maps
	About Attribute Maps
	Using a Discrete Attribute Map
	How a Discrete Attribute Map Is Defined and Used
	Defining Your Discrete Attribute Map in Your Template
	Defining Your Discrete Attribute Map in a SAS Data Set

	Using a Range Attribute Map

	Attribute Rotation Patterns
	About the Attribute Rotation Patterns
	The Default Attribute Rotation Pattern
	The Color-Priority Attribute Rotation Pattern

	Using Transparency
	Using Data Skins
	Using Anti-Aliasing
	Using Subpixel Rendering
	Recommendations

	Managing Your Graphics Output
	Introduction to ODS Graphics Output
	SAS Registry Settings for ODS Graphics
	ODS Destination Statement Options That Affect ODS Graphics
	ODS GRAPHICS Statement Options
	Controlling the Image Name and Image Format
	Specifying and Resetting the Image Name
	Specifying the Image Name
	Resetting the Image Name

	Specifying the Image Format
	Using a Universal Printer with ODS PRINTER to Control the Image
Format

	Controlling the Location of the Image Output
	Controlling Graph Size
	Overview of Graph Size Control
	BEGINGRAPH Statement

	Scaling Graphs
	Controlling Image Resolution
	Creating a Graph That Can Be Edited
	Creating a Graph That You Can Import into Microsoft Office
Applications

	Graph Templates
	Executing Graph Templates
	Techniques for Executing Templates
	Minimal Required Syntax
	Managing the Input Data
	Filtering the Input Data
	Performing Data Transformations

	Initializing Template Dynamic Variables and Macro Variables
	Managing the Output Data Object
	Setting Labels and Formats for the Output Columns
	Setting a Name and Label for the Output Data Object
	Viewing the Data Object Name and Label in the SAS Windowing
Environment
	Setting a Name for the Output Image File
	Converting the Output Data Object to a SAS Data Set

	Using Dynamic Variables and Macro Variables in Your Templates
	Introduction to Dynamic Variables and Macro Variables
	Declaring Dynamic Variables and Macro Variables
	Referencing Dynamic Variables and Macro Variables
	Initializing Dynamic Variables and Macro Variables
	Special Dynamic Variables

	Using Conditional Logic and Expressions in Your Templates
	Constructs Available for Run-Time Programming
	Expressions
	Conditional Logic

	Using Functions in Your Templates
	Overview
	SAS Functions
	SAS Functions That Can Be Used in a GTL Template
	SAS Functions That Can Be Used to Create Flexible Templates
	Examples of Using the IFC and IFN SAS Functions

	Functions Defined Only in GTL
	GTL Functions Used with the EVAL Function
	Examples
	Using the TYPEOF SAS Function

	GTL Summary Statistic Functions
	Commonly Used Summary Statistic Functions
	Example

	Sharing Your Custom Templates
	Creating Shared Templates

	Modifying Predefined Templates
	Predefined Templates for SAS Analytical Procedures
	Modify a Predefined Template

	Appendixes
	Reserved Keywords and Unicode Values
	Reserved Keywords and Unicode Values
	Overview
	Lowercase Greek Letters
	Uppercase Greek Letters
	Special Characters

	Graph Style Elements Used by ODS Graphics
	About the Graphical Style Elements
	General Graph Appearance Style Elements
	Graphical Data Representation Style Elements (Non-Grouped Data)
	Graphical Data Representation Style Elements (Grouped Data)
	Display Style Elements

	Display Attributes
	General Syntax for Attribute Options
	Attributes Available for the Attribute Options
	Fill Color Options
	Fill Pattern Options
	Line Options
	Marker Options
	Text Options

	Available Line Patterns
	Color-Naming Schemes
	Overview of Color-Naming Schemes
	RGB Color Codes
	CMYK Color Codes
	HLS Color Codes
	HSV (or HSB) Color Codes
	Gray-Scale Color Codes
	Color Naming System (CNS) Values
	SAS Color Names and RGB Values in the SAS Registry
	Converting Color Values between Color-Naming Schemes
	Converting Numeric Color Component Values to Color Names
	Converting Color Values from Other Applications

	Predefined Colors
	Predefined Colors

	Tick Value Fit Policy Applicability
	Tick Value Fit Policy Applicability Matrix

	SAS Formats Not Supported
	Assigning Formats
	Using Locale-Sensitive Decimal Separators with Numeric Formats
	SAS Formats That Are Not Supported
	Unsupported Numeric Formats
	Unsupported Date and Time Formats Related to ISO 8601
	Other Unsupported Date and Time Formats
	Unsupported Currency Formats

	User-Defined Formats That Are Not Supported
	Picture Formats with Date, Time, or Datetime Directives
	Unicode Values with a User-Defined ODS Escape Character

	Memory Management for ODS Graphics
	SAS Options Affecting Memory
	Managing a Java Out of Memory Error

	Understanding Hexadecimal Values
	Understanding Hexadecimal Values

	ODS Graphics and SAS/GRAPH
	ODS Graphics and SAS/GRAPH

