
SAS® Event Stream Processing
5.2: Connectors and Adapters

Using Connectors and Adapters

Overview

To stream data into or out of an event stream processing engine window, you can use a connector or an adapter.
Connectors and adapters use the publish/subscribe API to interface with a variety of communication fabrics,
drivers, and clients. Connectors are C++ classes that are instantiated in the same process space as the event
stream processing engine. You can use connectors from within XML models or C++ models. Adapters are stand-
alone executable files, usually built from connector classes. Thus, some adapters are executable versions of
their corresponding connector.

Configuration Directory

After you deploy SAS Event Stream Processing, configuration files are located in a specific location:

Table 1 Default Location of Configuration Files

Operating System Location

Linux /opt/sas/viya/config/etc/SASEventStreamProcessingEngine/default

Windows %ProgramData%\SAS\Viya\etc\SASEventStreamProcessingEngine\default

On Windows, if the environment variable ProgramData is defined, it is placed at the beginning of the
configuration directory’s path, before \SAS\.

You can use two environment variables to set up alternative configurations.

Table 2 Environment Variables to Set Up Alternative Configurations

Environment Variable Description

DFESP_CONFIG Replaces the default location. You must copy files from the default location to the full
path specified in order to use alternative logs, metering, and MAS stores. The ESP
servers run by a user with this variable set would abide by configuration values
specified in the alternative location.

DFESP_CONFIG_TAIL Appends to the default location. You must copy files from the default location to the
specified subdirectory in order to use alternative logs, metering, and MAS stores.

Note: To edit configuration files, you must be a member of the sas group.

Overview to Connectors

What Do Connectors Do?

Connectors use the SAS Event Stream Processing publish/subscribe API to do one of the following:

n publish event streams into Source windows.

Publish operations do the following, usually continuously:

o read event data from a specified source

o inject that event data into a specific Source window of a running event stream processor

n subscribe to window event streams.

Subscribe operations write output events from a window of a running event stream processor to the specified
target (usually continuously).

Connectors do not simultaneously publish and subscribe.

You can find connectors in libraries that are located at $DFESP_HOME/lib/plugins. On Microsoft Windows
platforms, you can find them at %DFESP_HOME%\bin\plugins.

All connector classes are derived from a base connector class that is included in a connector library. The base
connector library includes a connector manager that is responsible for loading connectors during initialization.
This library is located in $DFESP_HOME/lib/libdfxesp_connectors-Maj.Min, where Maj.Min indicates
the release number for the distribution.

Connector Examples

C++ Examples

Connector examples in C++ are available in $DFESP_HOME/examples/cxx. The sample_connector
directory includes source code for a user-defined connector derived from the dfESPconnector base class. It
also includes sample code that invokes a sample connector. For more information about how to write a
connector and getting it loaded by the connector manager, see “Writing and Integrating a Custom Connector”.

The remaining connector examples implement application code that invokes existing connectors. These
connectors are loaded by the connector manager at initialization. Those examples are as follows:

n db_connector_publisher

n db_connector_subscriber

n json_connector_publisher

2

n json_connector_subscriber

n socket_connector_publisher

n socket_connector_subscriber

n xml_connector_publisher

n xml_connector_subscriber

XML Examples

Examples of connectors specified in XML models are available in $DFESP_HOME/examples/xml:

n db_connector_publisher_xml

n db_connector_subscriber_xml

n url_connector_new

n url_connector_weather

n ws_connector_json

n ws_connector_xml

n xml_connector_publisher_xml

n xml_connector_subscriber_xml

Obtaining Connectors

To obtain a new instance of a connector in a C++ application, call the dfESPwindow::getConnector()
method. Pass the connector type as the first parameter, and pass a connector instance name and an "active"
Boolean value as optional second and third parameters:

dfESPconnector *inputConn =
static_cast<dfESPconnector *>(input->getConnector("fs","inputConn", true));

The packaged connector types are as follows:

n adapter

n bacnet (Linux only)

n db

n fs

n kafka

n modbus

n mq

n mqtt

n nurego

n opcua

n pylon

n project

n rmq

n sniffer

n smtp

3

n sol

n tdata

n tdlistener

n tibrv

n timer

n tva

n url

n uvc

n websocket

n pi (Windows only)

After a connector instance is obtained, any of its base class public methods can be called. This includes
setParameter(), which can be called multiple times to set required and optional parameters. Parameters
must be set before the connector is started.

The type parameter is required and is common to all connectors. It must be set to pub or sub.

Additional connector configuration parameters are required depending on the connector type, and are described
later in this section.

Activating Optional Plug-ins and Excluding Connectors

The $DFESP_HOME/lib/plugins directory contains the complete set of plug-in objects supported by SAS
Event Stream Processing. Plug-ins that contain "_cpi" in their filename are connectors.

When the connector manager starts, SAS Event Stream Processing loads all connectors found in the plugins
directory, except those specified in the file connectors.excluded in the configuration directory.

By default, this file specifies connectors that require third-party libraries that are not shipped with SAS Event
Stream Processing. Because listed connectors are not automatically loaded, errors due to missing
dependencies are prevented.

Edit connectors.excluded as needed. You can list any of the valid connector types in this file.

Setting Configuration Parameters

Use the setParameter() method to set required and optional parameters for a connector. You can use
setParameter() as many times as you need. You must set a connector’s parameters before starting it.

The type parameter is required and is common to all connectors. It must be set to pub or sub. What additional
connector configuration parameters are required depends on the connector type.

Setting Configuration Parameters in a File

You can completely or partially set configuration parameters in a configuration file. You specify a set of
parameters and give that set a section label. You then can use setParameter() to set the
configfilesection parameter equal to the section label. This configures the entire set. If any parameters
are redundant, a parameter value that you configure separately using setParameter() takes precedence.

When you configure a set of parameters, the connector finds the section label in connectors.config in the
configuration directory. It then configures the parameters listed in that section.

The following lines specify a set of connector parameters to configure and labels the set TestConfig

[testconfig]
type=pub

4

host=localhost
port=33340
project=sub_project
continuousquery=subscribeServer
window=tradesWindow
fstype=binary
fsname=./sorted_trades1M_256perblock.bin

You can list as many parameters as you want in a section so labeled.

Orchestrating Connectors

By default, all connectors start automatically when their associated project starts and they run concurrently.
Once connector orchestration is enabled, only connectors with connector orchestration defined are started.
Connector orchestration enables you to define the order in which connectors within a project execute, depending
on the state of the connector. You can thereby create self-contained projects that orchestrate all of their inputs.
Connector orchestration can be useful to load reference data, inject bulk data into a window before injecting
streaming data, or with join windows.

You can represent connector orchestration as a directed graph, similar to how you represent a continuous query.
In this case, the nodes of the graph are connector groups, and the edges indicate the order in which groups
execute.

Connectors ordinarily are in one of three states: stopped, running, or finished. Subscriber connectors and
publisher connectors that are able to publish indefinitely (for example, from a message bus) never reach finished
state.

In order for connector execution to be dependent on the state of another connector, both connectors must be
defined in different connector groups. Groups can contain multiple connectors, and all dependencies are defined
in terms of the group, not the individual connectors.

When you add a connector to a group, you must specify a corresponding connector state as well. This state
defines the target state for that connector within the group. When all connectors in a group reach their target
state, all other groups dependent on that group are satisfied. When a group becomes satisfied, all connectors
within that group enter running state.

Consider the following configuration that consists of four groups: G1, G2, G3, and G4:

G1: {<connector_pub_A, FINISHED>, <connector_sub_B, RUNNING>}
G2: {<connector_pub_C, FINISHED>}
G3: {<connector_pub_D, RUNNING>}
G4: {<connector_sub_E, RUNNING>}

And then consider the following orchestration:

n G1 -> G3: start the connectors in G3 after all of the connectors in G1 reach their target states.

n G2 -> G3: start the connectors in G3 after all of the connectors in G2 reach their target states. Given the
previous orchestration, this means that G3 does not start until the connectors in G1 and in G2 reach their
target states.

n G2 -> G4: start the connectors in G4 after all of the connectors in G2 reach their target states.

Because G1 and G2 do not have dependencies on other groups, all of the connectors in those groups start right
away. The configuration results in the following orchestration:

1 When the project is started, connector_pub_A, connector_sub_B, and connector_pub_C start
immediately.

2 When connector_pub_C finishes, connector_sub_E is started.

5

3 connector_pub_D starts only after all conditions for G3 are met, that is, when conditions for G1 and G2 are
satisfied. Thus, it starts only when connector_pub_A is finished, connector_sub_B is running, and
connector_pub_C is finished.

A connector group is defined by calling the project newConnectorGroup() method, which returns a pointer to
a new dfESPconnectorGroup instance. If you pass only the group name, the group is not dependent on any
other group. Conversely, you can also pass a vector or variable list of group instance pointers. This defines the
list of groups that must all become satisfied in order for the new group to run.

After you define a group, you can add connectors to it by calling the
dfESPconnectorGroup::addConnector() method. This takes a connector instance (returned from
dfESPwindow::getConnector()), and its target state.

The C++ code to define this orchestration is as follows:

dfESPconnectorGroup*G1= project->newConnectorGroup("G1");
G1-> addConnector(pub_A, dfESPabsConnector::state_FINISHED);
G1-> addConnector(sub_B, dfESPabsConnector::state_RUNNING);

dfESPconnectorGroup*G2= project->newConnectorGroup("G2");
G2-> addConnector(pub_C, dfESPabsConnector::state_FINISHED);

dfESPConnectorGroup*G3= project->newConnectorGroup("G3",2,G1,G2);
G3-> addConnector(pub_D, dfESPabsConnector::state_RUNNING);

dfESPConnectorGroup*G4= project->newConnectorGroup("G4",1,G2);
G4-> addConnector(sub_E, dfESPabsconnector::state_RUNNING);

The corresponding XML code is as follows:

<project-connectors>
 <connector-groups>
 <connector-group name='G1'>
 <connector-entry
 connector='contQuery_name/window_for_pub_A/pb_A'
 state='finished'/>
 <connector-entry
 connector='contQuery_name/window_for_sub_B/sub_B'
 state='running'/>
 </connector-group>
 <connector-group name='G2'>
 <connector-entry
 connector='contQuery_name/window_for_pub_C/pub_C'
 state='finished'/>
 </connector-group>
 <connector-group name='G3'>
 <connector-entry
 connector='contQuery_name/window_for_pub_D/pub_D'
 state='running'/>
 </connector-group>
 <connector-group name='G4'>
 <connector-entry
 connector='contQuery_name/window_for_sub_E/sub_E'
 state='running'/>
 </connector-group>
 </connector-groups>
 <edges>
 <edge source='G1' target='G3'/>
 <edge source='G2' target='G3'/>

6

 <edge source='G2' target='G4'/>
 </edges>
 </project-connectors>

Overview to Adapters

Adapters use the publish/subscribe API to do the following:

n publish event streams into an engine

n subscribe to event streams from engine windows

Many adapters are executable versions of connectors. Thus, the required and optional parameters of most
adapters directly map to the parameters of the corresponding connector. Unlike connectors, adapters can be
networked.

Adapters must have full access to all SAS Event Stream Processing libraries. Therefore, you must install SAS
Event Stream Processing on the computer system where an adapter is to be used. That system should not use
a product license if it is not licensed to run an event stream processing engine.

Adapters are written in C++, Java, or Python.

Language Adapter

C++ Bacnet Publisher

Database

Event Stream Processor

File and Socket

Kafka

Modbus

MQTT

OPC-UA

PI

Pylon Publisher

Rabbit MQ

SMTP Subscriber

Sniffer Publisher

Solace Systems

TD Listener Subscriber

Teradata Subscriber

Tervela Data Fabric

Tibco Rendezvous (RV)

Timer Publisher

UVC Publisher

IBM WebSphere MQ

7

Language Adapter

Java

Note: The Java
adapters are built
using Java version
8. You must use
Java SE Runtime
Environment 8 on
any platform running
a Java adapter.

SAS Cloud Analytic Server

Cassandra

HDAT Reader

HDFS (Hadoop Distributed File System)

Java Message Service (JMS)

SAS LASR Analytic Server

REST Subscriber

SAS Data Set

Twitter Publisher

Python BoardReader

Twitter GNIP

Similar to connectors, adapters can obtain their configuration parameters from a file. C++ adapters use the
configuration file in the configuration directory. Java adapters use javaadapters.config.

Note: All Java adapter parameters must be fully specified in the Java adapter configuration file. For a list of the
parameter names that must be specified in javaadapters.config for each Java adapter, see the
documentation for the adapters listed in the table here.

You can specify a section label in the configuration file using the -C argument on the command line when you
run the adapter. For more information, see “Setting Configuration Parameters in a File”.

All C++ and Java adapters can publish or subscribe using a Rabbit MQ server instead of a direct TCP/IP
connection to the ESP server. Each adapter has a configuration parameter to tell it to use the Rabbit MQ
transport type. When using the Rabbit MQ transport type, an adapter uses a code library to implement the
Rabbit MQ protocol. Adapters written in C++ use the rabbitmq-c libraries. Adapters written in Java use dfx-esp-
rabbitmq-api.jar and rabbitmq-client.jar. You must obtain rabbitmq-client.jar from the Rabbit MQ Java client
libraries at http://www.rabbitmq.com/java-client.html. Install rabbitmq-client.jar in $DFESP_HOME/lib on your
system.

All C++ and Java adapters can publish or subscribe using a Kafka cluster instead of a direct TCP/IP connection
to the ESP server. Each adapter has a configuration parameter to tell it to use the Kafka transport type. When
using the Kafka transport type, an adapter uses a code library to implement the Kafka protocol. Adapters written
in C++ use the librdkafka libraries. Adapters written in Java use dfx-esp-kafka-api.jar and kafka-clients-*.jar. You
must obtain kafka-clients-*.jar at http://kafka.apache.org/downloads.html. Install kafka-clients-*.jar in
$DFESP_HOME/lib on your system.

All adapters can publish or subscribe using a Solace fabric instead of a direct TCP/IP connection to the ESP
server. Each adapter has a configuration parameter to tell it to use the Solace transport type. When using the
Solace transport type, an adapter uses a code library to implement the Solace protocol. Adapters written in C++
use the libsolclient libraries. Adapters written in Java use dfx-esp-solace-api.jar and sol-*.jar. You must obtain
sol-*.jar from Solace Systems. Install sol-*.jar in $DFESP_HOME/lib on your system.

You can find adapters in $DFESP_HOME/bin.

Using the Adapter Connector

Recall that connectors are C++ classes that are instantiated in the same process space as the ESP server. You
can use the ESP server to orchestrate the order in which connectors run in a project. (For more information
about connector orchestration, see “Orchestrating Connectors”.)

8

Unlike connectors, adapters are stand-alone processes that you manage directly with command–line tools.
Adapters cannot be orchestrated with the ESP server or ESP client. The inability to use the ESP server to
manage the order in which adapters run makes them inconvenient to deploy in scale.

Many adapters have a corresponding connector, but some do not. The Adapter Connector functions as a
wrapper around an adapter, enabling the ESP server to process the adapter as a connector. Using the Adapter
Connector, you can orchestrate adapters as you orchestrate connectors. You can also use the Adapter
Connector to start and end adapter processes. This enables you to manage the lifecycle of an adapter with the
ESP server, regardless of any need for orchestration.

The Adapter Connector sets its state to RUNNING while the associated adapter is running and to FINISHED
when the adapter is not running. When the connector stops, the associated running adapter ends.

The following table describes the required and optional parameters in the XML project definition for the Adapter
Connector.

Table 3 Required Parameters for the Adapter Connector

Parameter Description

command Specifies the command and options that are used to run the adapter from the command line. All
required adapter parameters must be specified when defining the command parameter.

Include the ‑k parameter for adapters that require it to specify the mode.

Do not include ‑h in the command parameter definition here. It will be overwritten by the URL
specified by the url parameter or the generated default URL

type Specifies the mode of the adapter. The mode can be “pub” or “sub” and must match the mode
of the running adapter.

Table 4 Optional Parameters for the Adapter Connector

Parameter Description

url Specifies the URL for the adapter connection. If this parameter is not included, a default URL is
generated.

Include the adapter parameter along with the URL for the window. For example, if you are using
the Twitter adapter, you could write ‑u "dfESP://server.sas.com:9951/proj/cq/
src".

Note: When the Adapter Connector starts, the submitted command for the associated adapter appears in the
log. To troubleshoot the Adapter Connector, look for the submitted command in the log and verify that all the
parameters are correct.

Using the Bacnet Connector and Adapter

Using the Bacnet Connector

The Bacnet connector polls Bacnet devices for data from a predefined set of Bacnet objects for publish
operations into an event stream processing Source window.

Note: Support for the Bacnet connector is available only on Linux platforms.

9

The set of Bacnet devices and their objects is defined in a local JSON configuration file. The path to the JSON
configuration file is specified with the required connector configuration parameter bacnetconfigfile. The
polling interval for each object is defined by the JSON Period key value in the configuration file.

The format for the JSON configuration file is as follows:

[
 {
 “RemoteEndPoint”: “<device ipaddr:port>”,
 “MaxAPDULengthAccepted”: <max apdu length>,
 “LocalPort”: <local port to use with this device>,
 "NetworkNumber": <bacnet network number (optional)>,
 "MAC": "<bacnet mac address (optional)>”,
 “BacnetPoints”: [
 {
 “Topic”: “<any string unique to this point>”,
 “ObjectIdentifier”: <bacnet object identifier>,
 “PropertyIdentifier”: <bacnet property identifier>,
 “Period”: <polling interval in seconds>
 },
 …
]
 },
 …
]

To register the connector as a foreign device and directly access Bacnet devices, configure a BACnet-IP
Broadcast Management Device (BBMD) IP address and port.

Multiple Bacnet connector instances cannot exist within a single process. To run multiple Bacnet connector
instances as individual processes, you must run multiple Bacnet adapters. You can run these adapters manually
as separate processes or as multiple Adapter Connectors configured in the event stream processing model.

The following fields are required in the Source window schema of the Bacnet connector:

Schema Field Description

id:int64 Key field, controlled by the connector

adapterid:string Key field, controlled by the connector

topic:string Copied from JSON Topic key value

timestamp:stamp Timestamp indicating when the event was built

Define any number of additional fields to contain values read from Bacnet objects. When a Bacnet object is read
according to its polling interval, the received value is copied into the user-defined fields compatible with the
value type, and a corresponding ESP event is built. If there is no matching field for a received value type, a fatal
error is reported.

Table 5 Required Parameters for the Publisher Bacnet Connector

Parameter Description

bacnetbbmdaddress Specifies the IP address of the BBMD

bacnetbbmdport Specifies the port of the BBMD

10

Parameter Description

bacnetconfigfile Specifies the JSON configuration file containing Bacnet device and object

Table 6 Optional Parameters for the Publisher Bacnet Connector

Parameter Description

bacnetipport Specifies the local port used by the connector. The default port number is 47808.

blocksize Specifies the number of events to include in a published event block. The default value is
1.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/connectors.config
(Linux) or %ProgramData%\SAS\Viya\SASEventStreamProcessingEngine
\default\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

ignoretimeouts Logs a warning and continues if an attempt to read a property from a Bacnet device
results in a timeout. The default is to log an error and stop.

publishwithupsert Builds events with opcode=Upsert instead of Insert.

maxevents Specifies the maximum number of events to publish.

transactional Sets the event block type to transactional. The default event block type is normal.

The Bacnet to SAS Event Stream Processing data type mappings are as follows:

Bacnet type SAS Event Stream Processing data types

Boolean ESP_INT32

ESP_INT64

ESP_DOUBLE

Unsigned Int ESP_INT32

ESP_INT64

ESP_DOUBLE

Signed Int ESP_INT32

ESP_INT64

ESP_DOUBLE

Real ESP_DOUBLE

Double ESP_DOUBLE

Character String ESP_UTF8STR

11

Bacnet type SAS Event Stream Processing data types

Date ESP_DATETIME

ESP_TIMESTAMP

Enumerated ESP_INT32

ESP_INT64

ESP_DOUBLE

Octet String ESP_BINARY

Using the Bacnet Adapter

The Bacnet publisher adapter provides the same functionality as the Bacnet connector, in addition to several
adapter-only optional parameters.

Note: Support for the Bacnet adapter is available only on Linux platforms.

Publisher usage:

dfesp_bacnet_adapter -B bacnetbbmdaddress <-b blocksize> <-C configfilesection> -c bacnetconfigfile <-E
tokenlocation> <-e> <-g gdconfig> -h url <-I bacnetipport> <-i> <-j trace | debug | info | warn | error | fatal | off>
<-l native | solace | tervela | rabbitmq | kafka> <-m maxevents> -P bacnetbbmdport <-Q> <-R> <-V> <-y
logconfigfile> <-Z transportconfigfile>

Parameter Description

‑B bacnetbbmdaddress Specifies the IP address of the BBMD.

‑b blocksize Sets the block size. The default value is 1.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/
config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%
\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for
connection parameters.

‑c bacnetconfigfile Specifies the JSON configuration file containing Bacnet
device and object information.

‑E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token required for authentication by the
publish/subscribe server.

‑e Specifies that events are transactional.

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑h url Specifies the dfESP publish and subscribe standard URL in
the form dfESP://host:port/project/
continuousquery/window.

12

Parameter Description

‑j trace | debug | info | warn | error |
fatal | off

Sets the logging level for the adapter. This is the same
range of logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call and
in the engine initialize() call.

‑I bacnetipport Specifies the local port used by the adapter. The default
port number is 47808.

‑i Logs a warning and continues if an attempt to read a
property from a Bacnet device results in a timeout. The
default is to log an error and stop.

‑l native | solace | tervela | rabbitmq
| kafka

Specifies the transport type. If you specify solace,
tervela, rabbitmq, or kafka transports instead of
the default native transport, use the required client
configuration files. These files are specified in the
description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑m maxevents Specifies the maximum number of events to publish.

‑P bacnetbbmdport Specifies the port of the BBMD.

‑Q When maxevents is configured, quiesces the project after
all events are injected into the Source window.

‑R Builds events with opcode=Upsert instead of Insert.

‑V Restarts the adapter if a fatal error is reported.

‑y logconfigfile Specifies the log configuration file.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file.
The default value depends on the transport type specified
with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for
native transport.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the BoardReader Publisher Adapters

The BoardReader application aggregates message feeds. The BoardReader adapters provided by SAS Event
Stream Processing are a collection of Python scripts. These scripts invoke the C publish/subscribe and JSON
libraries to build event blocks from a BoardReader feed and then publish them to a source window. Each script

13

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

provides access to a specific BoardReader content source. These content sources include message boards,
blogs, news, YouTube, and reviews.

The parameters required to configure access to the content source are listed in /opt/sas/viya/
config/etc/SASEventStreamProcessingEngine/default/boardreader-*-config.txt (Linux) or
%ProgramData%\SAS\Viya\SASEventStreamProcessingEngine\default\boardreader-*-
config.txt (Windows). Sample versions of these files are included in your SAS Event Stream Processing
distribution.

Here are the parameters that you must configure:

n customer_project_id

n customer_query_id

n key

n query

You can leave the other parameters at their default values as shown in the sample files.

The adapters run configured queries in independent threads and wait for those threads to complete. As each
thread receives responses, it publishes event blocks to the event stream processing server from the same
thread. Each query gathers responses from the content source filtered per that query’s filter_date_from
and filter_date_to parameters.

When the adapter is in streaming mode (which is the default setting of the request_mode parameter), it waits
for all threads to complete. It then repeats the process after an interval specified by the request_interval
and request_interval_unit parameters. Before running the next iteration of queries, each query’s
filter_date_from and filter_date_to parameters are updated in the configuration file. This ensures that
its next invocation continues to stream from the content source uninterrupted.

Every received JSON response is converted to an event block using the JSON parsing rules described in
“Publish/Subscribe API Support for JSON Messaging” in SAS Event Stream Processing: Publish/Subscribe API .
The corresponding Source window must contain fields that correspond to every received JSON key unless you
specify the adapter parameter esp‑ignoremissingschemafields. Events are built with the Insert opcode
unless you configure the adapter to use Upsert instead. If needed, a JSON filtering function can be enabled
using the esp‑matchsubstrings parameter.

You assign key field(s) in the Source window. If it is not practical to use a JSON key as a key field, one or both of
the following key fields can be added to the Source window schema:

eventindex*:int64
adapterindex*:string

The eventindex key field is incremented for every event that is built from input JSON. The adapterindex
key field contains a constant GUID value that is unique for every instance of the adapter. The combination of
these two key fields enables multiple instances of the adapter to publish events to the same Source window
without duplicating keys.

The Source window schema must also include the following two fields:

n ProjectID:string

n Query:string

The contents of these fields mirrors the values in the customer_project_id and customer_query_id
configuration parameters, for correlation purposes.

Usage:

dfesp_*_boardreader -config-txt configtxt -esp-url url <-dev-mode-history-to-disk> <-dev-mode-resp-to-disk> <-
email-from emailfrom > <-email-level emaillevel > <-email-smtphost emailsmtphost <-email-subject emailsubject
>> <-email-to emailto > <-esp-dateformat dateformat > <-esp-logconfigfile logconfigfile > <-esp-loglevel loglevel
> <-esp-ignoremissingschemafields> <-esp-matchsubstrings substrings > <-esp-publishwithupsert>

14

http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p1rc0e7ritgwt7n1a0wnjc4zcn1j.htm&locale=en

Parameter Description

‑config‑txt configtxt Specifies the name of a text file in the configuration directory
that contains BoardReader content source configuration
parameters. See the sample files in your configuration
directory.

‑dev‑mode‑history‑to‑disk Provides additional debugging: writes SQLite database
formatted documents to disk in your configuration directory
unless you have configured the work_dir parameter.

‑dev‑mode‑resp‑to‑disk Provides additional debugging: writes responses to disk in
your configuration directory unless you have configured the
work_dir parameter.

‑email‑from emailfrom Specifies the source address for email logging messages.

‑email‑level emaillevel Specifies the email logging level. Permitted values are
DEBUG, INFO, WARNING, ERROR, and CRITICAL. The
default value is CRITICAL.

‑email‑smtphost emailsmtphost Specifies the SMTP host for email logging messages.

‑email‑subject emailsubject Specifies the subject line for email logging messages.

‑email‑to emailto Specifies the destination address for email logging
messages.

‑esp‑dateformat dateformat Specifies the format of ESP_DATETIME and
ESP_TIMESTAMP fields in CSV events. The default
behavior is that these fields are interpreted as an integer
number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat
parameter accepts any time format that is supported by the
UNIX strftime function.

‑esp‑ignoremissingschemafields Specifies to ignore and continue when the JSON key is
missing in schema. By default, an error is reported and the
process quits when the key is missing.

‑esp‑logconfigfile logconfigfile Specifies the name of the log configuration file.

‑esp‑loglevel loglevel Specifies the logging level. Permitted values are TRACE,
DEBUG, INFO, WARN, ERROR, or FATAL. The default value
is INFO.

‑esp‑matchsubstrings substrings Specifies a list of comma separated fieldname:value
pairs, where input events that do not contain a value
substring in the fieldname string field are dropped. The
comparison is case-insensitive.

‑esp‑publishwithupsert Specifies to publish events with opcode = Upsert. By
default, events are published with opcode = Insert.

‑esp‑url url Specifies the publisher standard URL in the form
"dfESP://host:port/project/
continuousquery/window"

15

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the SAS Cloud Analytic Services Adapter

The subscriber adapter supports appending event stream processing events to a global table in the SAS Cloud
Analytic Services server. The table includes a column named "_opcode" that contains the opcode associated
with each SAS Event Stream Processing event.

The publisher adapter supports fetching all rows from a global table in the SAS Cloud Analytic Services server.
The publisher adapter injects those rows as events with opcode=Insert (unless ‑u is configured) into a
Source window.

You must define the DFESP_JAVA_TRUSTSTORE and SSLCALISTLOC environment variables for the client target
platform. The SAS Cloud Analytic Services server requires that client connections be secured with TLS
encryption, so DFESP_JAVA_TRUSTSTORE sets the location of your trust store .jks file and SSLCALISTLOC sets
the location of the .pem file containing required certificates.

caspassword must be specified in non-encrypted form if the ‑p parameter is used and encryption is not
enabled with the ‑E parameter. The encrypted version of the password can be generated using OpenSSL. The
OpenSSL executable is included in the SAS Event Stream Processing System Encryption and Authentication
Overlay installation. Use the following command on the console to use OpenSSL to display your encrypted
password:

echo "caspassword" | openssl enc -e -aes-256–cbc -a -salt -pass pass:"SASespCASadapterUsedByUser=casusername"

Use the encrypted password to specify caspassword for the ‑p parameter and enable encryption with the ‑E
parameter.

Subscriber use:

dfesp_cas_adapter -H cashostport -h url -k sub -t castable <-a commitblocks> <-b buffersize> <-C
configfilesection> <-E> <-g gdconfigfile> <-i cassessionid> <-L pubsublib> <-l severe | warning | info> <-m
caslib> <-Z transportconfigfile> <-n casusername> <-O tokenlocation> <-p caspassword> <-s columns> <-V>

Note: For a subscriber, the specified table in the SAS Cloud Analytic Services does not need to exist. When it
does, its columns should match a subset of the columns in the event stream processor window. Rows are
appended to the existing table. When you do not specify the cassessionid parameter, the table is promoted to a
global table.

Publisher use:

dfesp_cas_adapter -H cashostport -h url -k pub -t castable <-b blocksize> <-C configfilesection> <-c> <-E> <-
e> <-g gdconfigfile> <-i cassessionid> <-L pubsublib> <-l severe | warning | info> <-m caslib> <-Z
transportconfigfile> <-n casusername> <-O tokenlocation> <-p caspassword> <-s columns> <-u> <-V> <-W
maxevents>

Note: For a publisher, the specified table in the SAS Cloud Analytic Services must exist. Its columns should
match a subset of the columns in the event stream processor Source window. In addition, when you do not
specify the cassessionid parameter, the table must be global. The first field in the event stream processor
Source window schema is reserved for the row number, and must be defined as an INT64. This first field serves
as the event’s key field.

16

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Parameter Description

‑a commitblocks Specifies the number of event blocks to commit to the SAS Cloud
Analytic Services table at one time. The default value is 8. This
parameter trades throughput for latency. Increase the value to increase
the number of event blocks appended to the SAS Cloud Analytic
Services table before being committed.

‑b blocksize Specifies the number of events per event block.

‑b buffersize Specifies the buffer size. The default value is 512. This buffering
parameter specifies the number of table rows that the adapter buffers
before sending them to the SAS Cloud Analytic Services.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/
config/etc/SASEventStreamProcessingEngine/
default/javaadapters.config (Linux) or %ProgramData%
\SAS\Viya\SASEventStreamProcessingEngine\default
\javaadapters.config (Windows) to parse for configuration
parameters.

‑c Specifies to quiesce the project after all events are injected into the
Source window.

javaadapters.config parameter name: quiesceproject

‑E Specifies that caspassword is encrypted.

javaadapters.config parameter name: pwdencrypted

‑e Specifies that event blocks are transactional. The default event block
type is normal.

javaadapters.config parameter name: transactional

‑g gdconfigfile Specifies the guaranteed delivery configuration file for the client.

‑H cashostport Specifies the SAS Cloud Analytic Services host name and port.

‑h url Specifies the dfESP standard publish and subscribe URL in the form
dfESP://host:port/project/continuousquery/window.

Append the following for subscribers: ?snapshot=true | false.

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The
subscriber then receives a stream of events produced from the time of
the snapshot onward. Those subsequent events can be Inserts,
Updates, or Deletes.

Append the following for subscribers if needed:

?collapse=true | false

?rmretdel=true | false

‑i cassessionid Specifies the UUID of the session to which to connect. If not specified,
the SAS Cloud Analytic Services adapter creates a new SAS Cloud
Analytic Services session.

‑k sub | pub Specifies subscribe or publish.

17

Parameter Description

‑L native | rabbitmq | solace |
tervela | kafka

Specifies the transport type. When you specify rabbitmq, solace,
tervela, or kafka transports instead of the default native
transport, use the required client configuration files. These files are
specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑l severe | warning | info Specifies the application logging level.

‑m caslib Specifies the SAS Cloud Analytic Services library containing the SAS
Cloud Analytic Services table. The default is the currently active SAS
Cloud Analytic Services library.

‑n casusername Specifies the user name used to authenticate the SAS Cloud Analytic
Services session.

‑O tokenlocation Specifies the location of the file in the local file system that contains the
OAuth token required for authentication by the publish/subscribe server.

‑p caspassword Specifies the password used to authenticate the SAS Cloud Analytic
Services session. When caspassword is not specified and casusername
is specified, the password is extracted from that user’s authoinfo/
netrc file.

‑s columns Specifies a subset of columns to read or write to and from the SAS Cloud
Analytic Services table. Use the form c1_name,...cn_name.

Note: When the column names in the SAS Cloud Analytic
Services table match all the fields names in the event stream
processing window, you do not need to use the ‑s parameter. The
event stream processing schema corresponds one–to–one with
the SAS Cloud Analytic Services schema (except for the
additional reserved key field required for a publisher and the
opcode field written by a subscriber).

‑t castable Specifies the name of the SAS Cloud Analytic Services table.

‑u Builds events with opcode = Upsert instead of Insert.

javaadapters.config parameter name: publishwithupsert

‑V Restarts the adapter if a fatal error is reported.

javaadapters.config parameter name: restartonerror

‑W maxevents Specifies the maximum number of events to publish.

18

Parameter Description

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default
value depends on the transport type specified with the ‑L parameter:

Specifies the publish/subscribe transport configuration file. The default
value depends on the transport type specified with the ‑L parameter:

For ‑L solace, the default is ./solace.cfg.

For ‑L tervela, the default is ./client.config.

For ‑L rabbitmq, the default is ./rabbitmq.cfg.

For ‑L kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native
transport.

Note: When the SAS Cloud Analytic Services table contains fewer columns than the event stream processing
window, use ‑s to choose the subset of event stream processing fields to read or write to or from the table. For a
publisher, unmatched fields in the window are loaded with null values. For a subscriber, unmatched fields in the
window are left out of the variable list that is appended to the SAS Cloud Analytic Services table.

The SAS Cloud Analytic Services to SAS Event Steam Processing data type mappings are as follows:

SAS Cloud Analytic Services type SAS Event Stream Processing data type

INT32 INT32

INT64 INT64

DOUBLE DOUBLE

DATE DATETIME

CHAR UTF8STR or RUTF8STR

VARCHAR UTF8STR or RUTF8STR

DECSEXT MONEY

TIME INT64

DATETIME TIMESTAMP

VARBINARY BINARY

Note: The SAS Cloud Analytic Services type DECQUAD and BINARY do not have an Event Stream Processor
data type mapping.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

19

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Using the Cassandra Adapter

The Cassandra adapter is available in dfx-esp-cassandra-adapter.jar, which bundles the Java publisher and
subscriber SAS Event Stream Processing clients. The subscriber client receives SAS Event Stream Processing
Engine event blocks and converts the enclosed events to Insert/Update/Delete operations on the target
Cassandra keyspace and table. The publisher client converts rows in a Cassandra result set to events and
injects them to the source window of an event stream processing engine

The adapter requires version 3.0.0 or higher of the Datastax Java Driver for Apache Cassandra, which you must
download from https://github.com/datastax/java-driver. This driver supports Cassandra version 1.2 through 3.0
and later. It negotiates the version of native protocol to use during a connection. The client target platform must
then define the environment variable DFESP_DATASTAX_JARS to specify the location of the Datastax Java
driver JAR files.

The adapter is functionally similar to the Database publisher and subscriber.

For the subscriber, every subscribed event block is separated into separate lists of Inserts and Updates and
Deletes. Each list is converted to a set of prepared statements that are added to a set of Insert, Update, and
Delete batches. The batches are then executed in the following order:

1 Insert batch

2 Update batch

3 Delete batch

By default, the batches are built and executed once for every subscribed event block. You can configure the
batchsize and batchsecs parameters to modify batching behavior.

For the publisher, the user configured select statement is executed on the target Cassandra keyspace and table.
Each row in the result set is converted to an Insert event (or Upsert if so configured), which is injected to the
Source window. After these operations, the adapter quits.

Subscriber usage:

dfesp_cassandra_subscriber -f node -k keyspace -t table -u url <-a loadbalancingpolicy > <-b batchsize > <-c
configfilesection > <-g gdconfigfile > <-l native | rabbitmq | solace | tervela | kafka> <-m compression > <-n
username > <-O tokenlocation > <-o loglevel > <-p password > <-S> <-s batchsecs > <-y retrypolicy > <-x port >
<-V> <-Z transportconfigfile>

Publisher usage:

dfesp_cassandra_publisher -e selectstatement -f node -k keyspace -t table -u url <-a loadbalancingpolicy > <-
b blocksize > <-c configfilesection > <-g gdconfigfile > <-l native | rabbitmq | solace | tervela | kafka> <-m
compression > <-n username > <-O tokenlocation > <-o loglevel > <-p password > <-r> <-S> <-s> <-y retrypolicy
> <-x port > <-Q> <-V> <-W maxevents> <-Z transportconfigfile>

Parameter Description

‑a loadbalancingpolicy Specify a Cassandra load balancing policy, with optional
comma-separated wrapped policies, default is
"TokenAware,DCAwareRoundRobin".

‑b batchsize Specify the total number of statements per Insert, Update,
and Delete set of batches. The default is the event block
size.

‑b blocksize Specify the number of events per event block.

20

Parameter Description

‑c [configfilesection] Specifies the name of the section in /opt/sas/viya/
config/etc/
SASEventStreamProcessingEngine/default/
javaadapters.config (Linux) or %ProgramData%
\SAS\Viya\SASEventStreamProcessingEngine
\default\javaadapters.config (Windows) to
parse for configuration parameters.

‑e selectstatement Specify the CQL statement to use to pull rows from the
Cassandra table.

‑f node Specify the Cassandra cluster node IP address or host
name.

‑g gdconfigfile Specifies the guaranteed delivery configuration file for the
client.

‑k keyspace Specify the Cassandra keyspace.

‑l native | rabbitmq | solace | tervela
| kafka

Specifies the transport type. If you specify rabbitmq,
solace, tervela, or kafka transports instead of the
default native transport, use the required client
configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑m compression Specifies Cassandra transport compression, valid values are
"NONE", "LZ4", "SNAPPY", default is "NONE".

‑n username Specifies the user name to log on to the Cassandra host.

‑O tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token required for authentication by the
publish/subscribe server.

‑o severe | warning | info Specifies the application logging level.

‑p password Specifies the password to use with the specified user name.

‑Q Quiesces the project after all events are injected into the
Source window.

javaadapters.config parameter name:
quiesceproject

‑r Specifies that event blocks are transactional. The default
event block type is normal.

javaadapters.config parameter name:
transactional

‑S Enables SSL on the Cassandra connection, using the default
platform JSSE options.

javaadapters.config parameter name: ssl

‑s batchsecs Specifies the maximum number of seconds to hold an
incomplete batch. The default is 0.

21

Parameter Description

‑s Builds events with opcode=Upsert instead of Insert.

javaadapters.config parameter name:
publishwithupsert

‑t table Specifies the Cassandra table.

‑u url Specifies the dfESP standard publish and subscribe URL in
the form dfESP://host:port/project/continuousquery/window.

Append the following for subscribers: ?snapshot=true
| false.

When ?snapshot=true, the subscriber receives a
collection of Insert events that are contained in the window
at that point in time. The subscriber then receives a stream
of events produced from the time of the snapshot onward.
Those subsequent events can be Inserts, Updates, or
Deletes.

Append the following for subscribers if needed:

?collapse=true | false

?rmretdel=true | false

‑V Restarts the adapter if a fatal error is reported.

javaadapters.config parameter name:
restartonerror

‑W maxevents Specifies the maximum number of events to publish.

‑x port Specifies the Cassandra cluster node port. The default value
is 9042.

‑y retrypolicy Specifies a Cassandra retry policy, with optional comma-
separated wrapped policies, default is “Default”.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file.
The default value depends on the transport type specified
with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for
native transport.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

22

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Using the Database Connector and Adapter

Using the Database Connector

Overview to Using the Database Connector

The database connector supports both publish and subscribe operations. The connector configuration
parameter connectstring requires a driver= statement that specifies the database type. Supported driver
values are:

n aster

n db2

n db2zos

n hawq

n impala

n mysql

n netezza

n odbc

n oracle

n postgres

n redshift

n saphana

n mssqlsvr

n sapiq

n teradata

n vertica

No ODBCINI environment variable, odbc.ini file, or DSN definition is required. All corresponding parameters are
defined directly in the connectstring parameter, following the driver specification. For more information about
driver-specific parameters, see the Driver Reference for SAS Federation Server in the SAS Federation Server:
Administrator’s Guide.

Some drivers also require additional installation of a client library. These requirements are also listed in the
Driver Reference for SAS Federation Server.

Note that if you specify driver=odbc, you can install and use any standard ODBC–compliant driver. In this
case, the driver might have other system requirements, such as odbc.ini. When using "driver=odbc" on
Linux installations, be sure to include "dm_unicode=UCS2" when specifying the connectstring parameter
to ensure that the driver correctly uses UTF-16/UCS-2 when calling into the unixODBC Driver Manager.

For Windows installations, some drivers require the definition of a DSN. To define a DSN, ensure that the
optional ODBC component is installed. Then you can configure a DSN using the Windows ODBC Data Source
Administrator. This application is located in the Windows Control Panel under Administrative Tools.
Beginning in Windows 8, the icon is named ODBC Data Sources. On 64-bit operating systems, there are 32-bit
and 64-bit versions.

Perform the following steps to create a DSN in a Windows environment:

23

1 Enter odbc in the Windows search window. The default ODBC Data Source Administrator is displayed.

2 Select the System DSN tab and click Add.

3 Select the appropriate driver from the list and click Finish.

4 Enter your information in the Driver Setup dialog box.

5 Click OK when finished.

This DSN is supplied in the connect string.

The connector publisher obtains result sets from the database using a single SQL statement configured by the
user. Additional result sets can be obtained by stopping and restarting the connector. The connector subscriber
writes window output events to the database table configured by the user.

If required, you can configure the pwd field in the connectstring parameter with an encrypted password. The
encrypted version of the password can be generated by using OpenSSL, which must be installed on your
system. When you installed the SAS Event Stream Processing System Encryption and Authentication Overlay,
you install the included OpenSSL executable. Use the following command on the console to invoke OpenSSL to
display your encrypted password:

echo "pwd in connectstring" | openssl enc -e -aes-256-cbc -a -salt
-pass pass:"SASespDBconnectorUsedByUser=uid in connectstring"

Then copy the encrypted password into your connectstring parameter and enable the pwdencrypted
parameter.

Use the following parameters with database connectors.

Note: For the Teradata platform, a separately packaged connector and adapter use the Teradata Parallel
Transporter for improved performance.

Table 7 Required Parameters for Subscriber Database Connectors

Parameter Description

connectstring Specifies the driver type and other driver-specific parameters.

desttablename Specifies the target table name.

snapshot Specifies whether to send snapshot data.

When true, the subscriber receives a collection of Insert events that are
contained in the window at that point in time. The subscriber then receives a
stream of events produced from the time of the snapshot onward. Those
subsequent events can be Inserts, Updates, or Deletes.

type Specifies to subscribe. Must be “sub”.

Table 8 Required Parameters for Publisher Database Connectors

Parameter Description

connectstring Specifies the driver type and other driver-specific parameters.

type Specifies to publish. Must be “pub”.

24

Table 9 Optional Parameters for Subscriber Database Connectors

Parameter Description

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

commitrows Specifies the minimum number of output rows to buffer.

commitsecs Specifies the maximum number of seconds to hold onto an incomplete
commit buffer.

ignoresqlerrors Enables the connector to continue to write Inserts, Updates, and Deletes to
the database table despite an error in a previous Insert, Update, or Delete.

maxcolbinding Specifies the maximum supported width of string columns. The default value
is 4096.

pwdencrypted Specifies that the pwd field in connectstring is encrypted.

rmretdel Specifies to remove all delete events from event blocks received by a
subscriber that were introduced by a window retention policy.

Table 10 Optional Parameters for Publisher Database Connectors

Parameter Description

blocksize Specifies the number of events to include in a published event block. The
default value is 1.

configfilesection Specifies the name of the section in /opt/sas/viya/
config/etc/SASEventStreamProcessingEngine/
default/connectors.config (Linux) or %ProgramData%
\SAS\Viya\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration
parameters. Specify the value as [configfilesection].

greenplumlogminer Enables Greenplum log miner mode. “Using Log Miner Modes”.

logminerdbname Specifies the gpperfmon database that contains the
queries_history table for Greenplum log miner mode. Use the
following format: dd‑mmm‑yyy hh:mm:ss.

logminerschemaowner Specifies the schema owner when using Oracle or Greenplum log miner
mode.

For more information, see “Using Log Miner Modes”.

logminerstartdatetime Specifies the start date time when using Oracle or Greenplum log miner
mode.

For more information, see “Using Log Miner Modes”.

25

Parameter Description

logminertablename Specifies the table name when using Oracle or Greenplum log miner
mode.

For more information, see “Using Log Miner Modes”.

maxcolbinding Specifies the maximum supported width of string columns. The default
value is 4096.

maxevents Specifies the maximum number of events to publish.

oraclelogminer Enables Oracle log miner mode. “Using Log Miner Modes”.

publishwithupsert Builds events with opcode=Upsert instead of Insert.

pwdencrypted Specifies that the pwd field in connectstring is encrypted.

selectstatement Specifies the SQL statement to be executed on the source database.
Required when oraclelogminer and greenplumlogminer are
not enabled.

transactional Sets the event block type to transactional. The default event block type is
normal.

The number of columns in the source or target database table and their data types must be compatible with the
schema of the involved event stream processor window.

Subscriber Event Stream Processor to SQL Data Type Mappings

Subscriber Event Stream
Processor Data Type SQL Data Type

ESP_UTF8STR SQL_CHAR, SQL_VARCHAR, SQL_LONGVARCHAR, SQL_WCHAR,
SQL_WVARCHAR, SQL_WLONGVARCHAR, SQL_BINARY, SQL_VARBINARY,
SQL_LONGVARBINARY, SQL_GUID

ESP_INT32 SQL_INTEGER, SQL_BIGINT, SQL_DECIMAL, SQL_BIT, SQL_TINYINT,
SQL_SMALLINT

ESP_INT64 SQL_BIGINT, SQL_DECIMAL, SQL_BIT, SQL_TINYINT, SQL_SMALLINT

ESP_DOUBLE SQL_DOUBLE, SQL_FLOAT, SQL_REAL, SQL_NUMERIC, SQL_DECIMAL

ESP_MONEY SQL_DOUBLE (converted to ESP_DOUBLE), SQL_FLOAT, SQL_REAL,
SQL_NUMERIC (converted to SQL_NUMERIC), SQL_DECIMAL (converted to
SQL_NUMERIC)

ESP_DATETIME SQL_TYPE_DATE (sets only year/month/day), SQL_TYPE_TIME (sets only hours/
minutes/seconds), SQL_TYPE_TIMESTAMP (sets fractional seconds = 0)

ESP_TIMESTAMP SQL_TYPE_TIMESTAMP

26

Publisher SQL to Event Stream Processor Data Type Mappings

Publisher SQL Data Type Event Stream Processor Data Types

SQL_CHAR ESP_UTF8STR

SQL_VARCHAR ESP_UTF8STR

SQL_LONGVARCHAR ESP_UTF8STR

SQL_WCHAR ESP_UTF8STR

SQL_WVARCHAR ESP_UTF8STR

SQL_WLONGVARCHAR ESP_UTF8STR

SQL_BIT ESP_INT32, ESP_INT64

SQL_TINYINT ESP_INT32, ESP_INT64

SQL_SMALLINT ESP_INT32, ESP_INT64

SQL_INTEGER ESP_INT32, ESP_INT64

SQL_BIGINT ESP_INT64

SQL_DOUBLE ESP_DOUBLE, ESP_MONEY (upcast from ESP_DOUBLE)

SQL_FLOAT ESP_DOUBLE, ESP_MONEY (upcast from ESP_DOUBLE)

SQL_REAL ESP_DOUBLE

SQL_TYPE_DATE ESP_DATETIME (sets only year/month/day)

SQL_TYPE_TIME ESP_DATETIME (sets only hours/minutes/seconds)

SQL_TYPE_TIMESTAMP ESP_TIMESTAMP, ESP_DATETIME

SQL_DECIMAL ESP_INT32 (only if scale = 0, and precision must be <= 10), ESP_INT64
(only if scale = 0, and precision must be <= 20), ESP_DOUBLE

SQL_NUMERIC ESP_INT32 (only if scale = 0, and precision must be <= 10), ESP_INT64
(only if scale = 0, and precision must be <= 20), ESP_DOUBLE,
ESP_MONEY (converted from SQL_NUMERIC)

SQL_BINARY ESP_UTF8STR

SQL_VARBINARY ESP_UTF8STR

SQL_LONGVARBINARY ESP_UTF8STR

27

Using Log Miner Modes

Overview

The database connector can run in one of two special log miner modes: Oracle or Greenplum. These modes
apply to a publisher only. They are designed to fetch rows from an Oracle Log Miner database or from a
queries_history table in a Greenplum gpperfmon database. After rows are fetched, an event per row is
published into a source window with a fixed, well-known subset of fields.

You configure log miner mode by enabling the appropriate parameter: oraclelogminer or
greenplumlogminer.

For information about Oracle requirements, see the Oracle Administration guide: http://docs.oracle.com/cd/
B28359_01/server.111/b28319/logminer.htm. To summarize: the database must be in archive log mode with
supplemental logging enabled, ALTER DATABASE ADD SUPPLEMENTAL LOG DATA. The user reading the logs
must also have SELECT_CATALOG_ROLE and SELECT ANY TRANSACTION privileges.

Using Oracle Log Miner Mode

The user name that you configure through the logminerschemaowner parameter must have the following
privileges on the Oracle Log Miner database: SELECT_CATALOG_ROLE, EXECUTE_CATALOG_ROLE,
SELECT_ANY_TRANSACTION. The connector then repeatedly executes a select operation to pull records from
the log, given a user-provided start time. Every subsequent select specifies a start time that is equal to
timestamp in the most recently received SQL_REDO response.

Specifically, the connector defines the initial start and end times with the following statement:

Declare startdate date := to_date('logminerstartdatetime','DD‑MON‑YYYY
HH24:MI:SS');begin execute immediate 'ALTER SESSION SET NLS_DATE_FORMAT = ' ||
chr(39) || 'DD‑MON‑YYYY HH24:MI:SS' || chr(39);dbms_logmnr.start_logmnr(OPTIONS=>
DBMS_LOGMNR.DICT_FROM_ONLINE_CATALOG
+DBMS_LOGMNR.CONTINUOUS_MINE,STARTTIME=>startdate,ENDTIME=>SYSDATE‑(1/86400));end;

The connector runs the repeated query with the following statement:

Select OPERATION, TIMESTAMP, replace (SQL_REDO,chr(0),' ') SQL_REDO, CSF from v
$logmnr_contents where SEG_OWNER='logminerschemaowner' and
SEG_NAME='logminertablename'and OPERATION in (‘INSERT’,’UPDATE’,’DELETE’);

The connector then processes SQL_REDO responses that contain Insert/Update/Delete operations. The start
date value for every subsequent query is set to the value in the sql_timestamp column in the current
response plus one second.

The statements are converted to events and injected into the Source window, whose schema must begin with
the following fields:

"index*:int64,ts:stamp,sql_operation:string,sql_timestamp:stamp,schema:string,table
name:string,sql_where:string"

The connector completes these fields as follows:

n index: a unique incrementing value

n ts: the timestamp when the SQL_REDO was received

n sql_operation: INSERT/UPDATE/DELETE

n sql_timestamp: the timestamp in the SQL_REDO response

n schema: the logminerschemaowner configured on the connector

n tablename: the logminertablename configured on the connector

28

http://docs.oracle.com/cd/B28359_01/server.111/b28319/logminer.htm
http://docs.oracle.com/cd/B28359_01/server.111/b28319/logminer.htm

n sql_where: the contents of the WHERE clause in Update and Delete statements, excluding the ROWID
value. Null for Insert.

The remainder of the schema must contain string fields named after columns returned in the SQL_REDO Insert/
Update/Delete responses. The values in these columns are copied into the corresponding source window
schema fields.

For Update and Delete events, values from the WHERE clause are copied first. For Update events, values from
the set clause are copied next, overwriting any values that were copied from the WHERE clause.

Using Greenplum Log Miner Mode

In this mode, the connector first checks for the presence of a work table named
cq_logminerstartdatetime. If the table exists, it is truncated, else it is created with a single column:
(last_ctime timestamp(0) without time zone). The connector then adds a row to the table that contains the
value of logminerstartdatetime. Then the connector repeatedly executes the following SQL code in one-
second intervals against the table queries_history until a nonzero row count is returned:

SELECT COUNT(1) FROM queries_history WHERE ctime > (select max(last_ctime) FROM
“cq__logminerstartdatetime”) AND db = ‘logminerdbname’ AND username=
‘logminerschemaowner’ AND query_text LIKE ‘%logminertablename%’;

When a nonzero row count is returned, the work table is updated as follows:

INSERT INTO “cq__logminerstartdatetime” SELECT max(ctime) FROM queries_history
WHERE ctime > (SELECT max(last_ctime) FROM “cq__logminerstartdatetime”);

Then rows are fetched from table queries_history as follows:

SELECT ctime, query_text FROM queries_history WHERE ctime > (SELECT max(last_ctime)
FROM “cq__logminerstartdatetime” WHERE last_ctime < (SELECT max(last_ctime) FROM
“cq__logminerstartdatetime”)) AND db = ‘logminerdbname’ AND username =
‘logminerschemaowner’ AND query_text LIKE ‘%logminertablename%’;

After all rows are fetched, the connector loops back and begins looking for another nonzero row count in table
queries_history. Fetched rows are converted to events and injected into the Source window.

The Source window schema requirements and field contents are the same as for SQL_REDO response
processing in Oracle Log Miner mode.

Using the Database Adapter

See “Using the Database Connector” for functional description and configuration requirements.

Subscriber usage:

dfesp_db_adapter -c connectstring -h url -k sub -t tablename <-C [configfilesection]> <-E tokenlocation > <-g
gdconfig > <-j trace | debug | info | warn | error | fatal | off> <-l native | solace | tervela | rabbitmq | kafka> <-N
maxcolbinding > <-q> <-V> <-X> <-x commitrows > <-y logconfigfile > <-Z transportconfigfile> <-z commitsecs >

Publisher usage:

dfesp_db_adapter -c connectstring -h url -k pub <-B logminerdbname > <-b blocksize > <-C [configfilesection]>
<-D logminerstartdatetime > <-E tokenlocation > <-e> <-G> <-g gdconfig > <-j trace | debug | info | warn | error |
fatal | off> <-l native | solace | tervela | rabbitmq | kafka> <-m maxevents> <-N maxcolbinding > <-O> <-Q> <-R>
<-S logminerschemaowner > <-s selectstatement > <-T logminertablename > <-V> <-X> <-y logconfigfile > <-Z
transportconfigfile>

Parameter Description

‑B logminerdbname Specifies the gpperfmon database that contains the queries_history
table.

29

Parameter Description

‑b blocksize Specifies the block size. The default value is 1.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

‑c connectstring Specifies the driver type and other driver–specific parameters.

‑D logminerstartdatetime Specifies the start date time for Oracle or Greenplum log miner mode. Use the
following format: "dd‑mmm‑yyyy hh:mm:ss"

‑E tokenlocation Specifies the location of the file in the local filesystem that contains the OAuth
token required for authentication by the publish/subscribe server

‑e Specifies that events are transactional.

‑G Enables Greenplum log miner mode.

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑h url Specifies the dfESP publish and subscribe standard URL in the form
"dfESP://host:port/project/continuousquery/window.

Append ?snapshot=true |false for subscribers.

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The subscriber
then receives a stream of events produced from the time of the snapshot
onward. Those subsequent events can be Inserts, Updates, or Deletes.

Append ?rmretdel=true | false for subscribers if needed.

‑j trace | debug | info |
warn | error | fatal | off

Sets the logging level for the adapter. This is the same range of logging levels
that you can set in the C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

‑k Specifies “sub” for subscriber use and “pub” for publisher use

‑l native | solace |
tervela | rabbitmq | kafka

Specifies the transport type. If you specify solace, tervela, rabbitmq
or kafka transports instead of the default native transport, use the
required client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑m maxevents Specifies the maximum number of events to publish.

‑N maxcolbinding Specifies the maximum supported width of string columns. The default value is
4096.

‑O Enables Oracle log miner mode.

‑Q For the publisher, quiesces the project after all events are injected into the
Source window.

30

Parameter Description

‑q Ignores errors when executing SQL Inserts, Updates, or Deletes.

‑R Builds events with opcode=Upsert instead of Insert.

‑S logminerschemaowner Specifies the schema owner for Oracle or Greenplum log miner mode.

‑s selectstatement Specifies the publisher source database SQL statement.

‑T logminertablename Specifies the table name for Oracle or Greenplum log miner mode.

‑t tablename Specifies the subscriber target database table.

‑V Restarts the adapter if a fatal error is reported.

‑X Specifies that the pwd field in connectstring is encrypted.

‑x commitrows Specifies the minimum number of rows to buffer.

‑y logconfigfile Specifies the log configuration file.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

‑z commitsecs Specifies the maximum number of seconds to hold onto an incomplete commit
buffer.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the Event Stream Processor Adapter

The event stream processor adapter enables you to subscribe to a window and publish what it passes into
another Source window. This operation can occur within a single event stream processor. More likely it occurs
across two event stream processors that are run on different machines on the network.

No corresponding event stream processor connector is provided.

Usage:

dfesp_esp_adapter –p url -s url

31

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Parameter Description

‑p url Specifies the publish standard URL in the form dfESP://host:port/project/
contquery/window

‑s url Specifies the subscribe standard URL in the form "dfESP://host:port/
project/contquery/window?snapshot=true |false

When ?snapshot=true, the subscriber receives a collection of Insert events that are
contained in the window at that point in time. The subscriber then receives a stream of
events produced from the time of the snapshot onward. Those subsequent events can
be Inserts, Updates, or Deletes.

Append the following if needed:

?collapse=true | false"

The eventblock size and transactional nature is inherited from the subscribed window.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the File and Socket Connector and
Adapter

Using File and Socket Connectors

Overview to File and Socket Connectors

File and socket connectors support both publish and subscribe operations on files or socket connections that
stream the following data types:

n binary

n cef (ArcSight Common Event Format, supports only publish operations)

n csv

n json

n sashdat (supports only subscribe operations, and only as a client type socket connector)

n syslog (supports only publish operations)

n xml

The file or socket nature of the connector is specified by the form of the configured fsname. A name in the form
of host: port is a socket connector. Otherwise, it is a file connector.

When the connector implements a socket connection, it might act as a client or server, regardless of whether it is
a publisher or subscriber. When you specify both host and port in the fsname, the connector implements the
client. The configured host and port specify the network peer implementing the server side of the connection.
However, when host is blank (that is, when fsname is in the form of “: port”), the connection is reversed. The
connector implements the server and the network peer is the client.

Use the following parameters when you specify file and socket connectors.

32

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Table 11 Required Parameters for File and Socket Connectors

Parameter Description

fsname Specifies the input file for publishers, output file for subscribers, or socket
connection in the form of host: port. Leave host blank to implement a server
instead of a client.

fstype binary | csv | xml | json | syslog | hdat | cef

type Specifies whether to publish or subscribe

Table 12 Required Parameters for Subscriber File and Socket Connectors

Parameter Description

snapshot Specifies whether to send snapshot data.

When true, the subscriber receives a collection of Insert events that are
contained in the window at that point in time. The subscriber then receives a
stream of events produced from the time of the snapshot onward. Those
subsequent events can be Inserts, Updates, or Deletes.

Table 13 Optional Parameters for Subscriber File and Socket Connectors

Parameter Description

collapse Converts UPDATE_BLOCK events to UPDATE events in order to make
subscriber output publishable.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

doubleprecision Specifies the number of fractional digits in the ASCII representation of a
double. The default value is 6.

hdatcashostport Specifies the CAS server host and port. Applies only to the hdat connector.

hdatcaspassword Specifies the CAS server password. Applies only to the hdat connector.

hdatcasusername Specifies the CAS server user name. Applies only to the hdat connector.

33

Parameter Description

hdatfilename Specifies the name of the Objective Analysis Package Data (HDAT) file to be
written to the Hadoop Distributed File System (HDFS). Include the full path, as
shown in the HDFS browser when you browse the name node specified in the
fsname parameter. Do not include the .sashdat extension. Applies only
to and is required for the hdat connector.

hdatlasrhostport Specifies the SAS LASR Analytic Server host and port. Applies only to the
hdat connector.

hdatlasrkey Specifies the path to tklasrkey.sh. By default, this file is located in
$DFESP_HOME/bin. Applies only to the hdat connector.

hdatmaxdatanodes Specifies the maximum number of data node connections. The default value
is the total number of live data nodes known by the name node. This
parameter is ignored when hdatnumthreads <=1. Applies only to the
hdat connector.

hdatmaxstringlength Specifies in bytes the fixed size of string fields in Objective Analysis Package
Data (HDAT) files. You must specify a multiple of 8. Strings are padded with
spaces. Applies only to and is required for the hdat connector.

To specify unique string lengths per column, configure a comma-separated
string of values, using no spaces. Every value must be a multiple of 8, and the
number of values must be equal to the number of string fields in the
subscribed window schema.

hdatnumthreads Specifies the size of the thread pool used for multi-threaded writes to data
node socket connections. A value of 0 or 1 indicates that writes are single-
threaded and use only a name-node connection. Applies only to and is
required for the hdat connector.

hdfsblocksize Specifies in Mbytes the block size used to write an Objective Analysis
Package Data (HDAT) file. Applies only to and is required for the hdat
connector.

hdfsnumreplicas Specifies the number of Hadoop Distributed File System (HDFS) replicas
created with writing an Objective Analysis Package Data (HDAT) file. The
default value is 1. Applies only to the hdat connector.

header false | true | full

For a CSV subscriber, specifies to write a header row that shows comma-
separated fields. Set the value to full to include opcode, flags, in the
header line.

maxfilesize Specifies the maximum size in bytes of the subscriber output file. When
reached, a new output file is opened. When configured, a timestamp is
appended to all output filenames. This parameter does not apply to socket
connectors with fstype other than hdat.

periodicity Specifies the interval in seconds at which the subscriber output file is closed
and a new output file opened. When configured, a timestamp is appended to
all output filenames for when the file was opened. This parameter does not
apply to socket connectors with fstype other than hdat.

rate When latency mode is enabled, shows this specified rate in generated output
files.

34

Parameter Description

rmretdel Specifies to remove all delete events from event blocks received by a
subscriber that were introduced by a window retention policy.

unbufferedoutputstreams Specifies to create an unbuffered stream when writing to a file or socket. By
default, streams are buffered.

Table 14 Optional Parameters for Publisher File and Socket Connectors

Parameter Description

addcsvflags Specifies the event type to insert into input CSV events (with a comma). Valid
values are normal and partialupdate.

addcsvopcode Prepends an opcode and comma to input CSV events. The opcode is Insert
unless publishwithupsert is enabled.

blocksize Specifies the number of events to include in a published event block. The
default value is 1.

cefsyslogprefix When fstype=cef, specifies that CEF events contain the syslog prefix.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

csvfielddelimiter Specifies the character delimiter for field data in input CSV events. The
default delimiter is the , character.

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

growinginputfile Enables reading from a growing input file by publishers. When enabled, the
publisher reads indefinitely from the input file until the connector is stopped or
the server drops the connection. This parameter does not apply to socket
connectors.

header Specifies the number of input lines to skip before starting publish operations.
The default value is 0. This parameter applies only to csv and syslog publish
connectors.

ignorecsvparseerrors Specifies that when a field in an input CSV event cannot be parsed, the event
is dropped, an error is logged, and publishing continues.

maxevents Specifies the maximum number of events to publish.

noautogenfield Specifies that input events are missing the key field that is autogenerated by
the source window.

35

Parameter Description

prebuffer Controls whether event blocks are buffered to an event block vector before
doing any injects. The default value is “false”. Not valid with
growinginputfile or for a socket connector

publishwithupsert Build events with opcode=Upsert instead of opcode=Insert.

rate Specifies the requested transmit rate in events per second.

repeatcount Specifies the number of times to repeat the publish operation. Applies to
publishers that publish a finite number of events. The default value is 0.

transactional Sets the event block type to transactional. The default event block type is
normal.

CSV File and Socket Connector Data Format

A CSV publisher converts each line into an event. The first two values of each line are expected to be an opcode
flag and an event flag. Use the addcsvopcode and addcsvflags parameters when any line in the CSV file
does not include an opcode and event flag. If the lines in the CVS file do not include a column with a unique
value that can be used as a key, you must specify true for both the autogen‑key and noautogenfield
connector properties.

XML File and Socket Connector Data Format

The following XML elements are valid:

n <data>

n <events>

n <transaction>

n <event>

n <opcode>

n <flags>

In addition, any elements that correspond to event data field names are valid when contained within an event.
Required elements are <events> and <event>, where <events> contains one or more <event> elements.
This defines an event block. Events included within a <transaction> element are included in an event block
with type = transactional. Otherwise, events are included in event blocks with type = normal.

A single <data> element always wraps the complete set of event blocks in output XML. A closing <data>
element on input XML denotes the end of streamed event blocks. Events are created from input XML with
opcode=INSERT and flags=NORMAL, unless otherwise denoted by an <opcode> or <flags> element.

Valid data for the opcode element in input data includes the following:

opcode Tag Value Opcode

i Insert

u Update

36

opcode Tag Value Opcode

p Upsert

d Delete

s Safe delete

Valid data for the flags element in input data includes the following:

n n — the event is normal

n p — the event is partial update

The subscriber writes only Insert, Update, and Delete opcodes to the output data.

Non-key fields in the event are not required in input data, and their value = NULL if missing, or if the fields
contain no data. The subscriber always writes all event data fields.

Any event field can include the partialupdate XML attribute. If its value is true, and the event contains a
flags element that specifies partial update, the event is built with the partial update flag. The field is flagged as
a partial update with a null value.

JSON File and Socket Connector Data Format

A JSON publisher requires that the input JSON text conform to the following format:

[[event_block_n],[event_block_n+1],[event_block_n+2],....]

The outermost brackets define an array of event blocks. Each nested pair of brackets defines an array of events
that corresponds to an event block. See “Publish/Subscribe API Support for JSON Messaging” in SAS Event
Stream Processing: Publish/Subscribe API for the semantics to convert this array to and from an event block.

A JSON subscriber writes JSON text in the same format expected by the JSON publisher. In addition to the
schema fields, the subscriber always includes an opcode field whose value is the event opcode. Each event
block in the output JSON is separated by a comma and new line.

Syslog File and Socket Connector Notes

The syslog file and socket connector is supported only for publisher operations. It collects syslog events,
converts them into ESP event blocks, and injects them into one or more Source windows in a running ESP
model.

The input syslog events are read from a file or named pipe written by the syslog daemon. Syslog events filtered
out by the daemon are not seen by the connector. When reading from a named pipe, the following conditions
must be met:

n The connector must be running in the same process space as the daemon.

n The pipe must exist.

n The daemon must be configured to write to the named pipe.

You can specify the growinginputfile parameter to read data from the file or named pipe as it is written.

The connector reads text data one line at a time, and parses the line into fields using spaces as delimiters.

The first field in the window schema must be a key field of type INT32. The other fields in the corresponding
window schema must be of type ESP_UTF8STR or ESP_DATETIME. The number of schema fields must not
exceed the number of fields parsed in the syslog file.

A sample schema is as follows:

37

http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p1rc0e7ritgwt7n1a0wnjc4zcn1j.htm&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p1rc0e7ritgwt7n1a0wnjc4zcn1j.htm&locale=en

<schema>
 <fields>
 <field name='ID' type='int32' key='true'/>
 <field name='udate' type='date'/>
 <field name='hostname' type='string'/>
 <field name='message' type='string'/>
 </fields>
</schema>

HDAT Subscribe Socket Connector Notes

This connector writes Objective Analysis Package Data (HDAT) files in SASHDAT format. This socket connector
connects to the name node specified by the fsname parameter. The default LASR name node port is 15452.
You can configure this port. Refer to the SAS Hadoop plug-in property for the appropriate port to which to
connect.

The SAS Hadoop plug-in must be configured to permit puts from the service. Configure the property
com.sas.lasr.hadoop.service.allow.put=true. By default, these puts are enabled. Ensure that this
property is configured on data nodes in addition to the name node.

If run multi-threaded (as specified by the hdatnumthreads parameter), the connector opens socket
connections to all the data nodes that are returned by the name node. It then writes subscriber event data as
Objective Analysis Package Data (HDAT) file parts to all data nodes using the block size specified by the
hdfsblocksize parameter. These file parts are then concatenated to a single file when the name node is
instructed to do so by the connector.

The connector automatically concatenates file parts when stopped. It might also stop periodically as specified by
the optional periodicity and maxfilesize parameters.

By default, socket connections to name nodes and to data nodes have a default time out of five minutes. This
time out causes the server to disconnect the event stream processing connector after five minutes of inactivity
on the socket. It is recommended that you disable the time out by configuring a value of 0 on the SAS Hadoop
plug-in configuration property com.sas.lasr.hadoop.socket.timeout.

Because SASHDAT format consists of static row data, the connector ignores Delete events. It treats Update
events the same as Insert events.

When you specify the hdatlasrhostport or hdatcashostport parameter, the HDAT file is written and then
the file is loaded into a LASR or CAS in-memory table. When you specify the periodicity or maxfilesize
parameters, each write of the HDAT file is immediately followed by a load of that file.

Common Event Format (CEF) File and Socket Connector

This mode publishes data in ArcSight Common Event Format (CEF) to a Source window. By default it processes
CEF events that do not contain the syslog prefix. Configure the parameter cefsyslogprefix when events
contain that prefix.

The Source window schema must start with the following fields:

index*:int32,version:int32,devicevendor:string,deviceproduct:string,deviceversion:s
tring,signatureid:string,name:string,severity:string

However, when cefsyslogprefix is configured, the schema must start like this:

index*:int32,datetime:date,hostname:string,version:int32,devicevendor:string,device
product:string,deviceversion:string,signatureid:string,name:string,severity:string

The index is added by the connector and serves as the event key field. The rest of the fields are the syslog
prefix and required CEF header fields.

The remainder of the schema can include additional fields from the CEF extension, but they are not required.
When you include them, the schema field name must match a key in a CEF key-value pair. The schema field

38

type must match the value type in the key-value pair. When there is no key match, the field is set to null. This
permits injecting of CEF events with different extension fields into a single Source window.

When a CEF key name contains any characters that are not alphanumeric or underscore, you must replace
them with an underscore in the corresponding Source window schema field name.

To properly parse the date in the syslog prefix, configure the dateformat parameter accordingly. For example:

"Jan 18 11:07:53" set dateformat to "%b %d %H:%M:%S”

Using the File and Socket Adapter

The file and socket adapter supports publish and subscribe operations on files or socket connections that stream
the following data types:

n dfESP binary

n CSV

n XML

n JSON

n syslog (publisher only)

n HDAT (subscriber only)

n CEF (ArcSight Common Event Format) (publisher only)

Subscriber use:

dfesp_fs_adapter -f fsname - h url -k sub -t binary | csv | xml | json | hdat <-a aggrsize > <-B> <-C
[configfilesection]> <-c period > <-d dateformat > <-E tokenlocation > <-g gdconfig > <-H hdatlasrhostport > <-j
trace | debug | info | warn | error | fatal | off> <-K hdatalasrkey > <-l native | solace | tervela | rabbitmq | kafka><-
M true | false | full> <-N latencyblksize > <-n> <-o hdat_filename > <-P hdatcashostport> <-q
hdat_max_data_nodes > <-r rate > <-s maxfilesize > <-U hdatcasusername> <-u hdfs_blocksize > <-V> <-v
hdfs_numreplicas > <-W hdatcaspassword> <-w hdat_numthreads > <-y log_configfile > <-z
hdat_max_stringlength > <-Z transportconfigfile> <-3 doubleprecision>

Publisher use:

dfesp_fs_adapter -f fsname -h url -k pub -t binary | csv | xml | json | syslog | cef < -A> <-b blocksize > <-C
[configfilesection]> < -D csvfielddelimiter > <-d dateformat > <-E tokenlocation > <-e> <-F eventtype > <-G
rampupsecs > <-g gdconfig > <-i> <-I> <-J repeatcount> <-j trace | debug | info | warn | error | fatal | off> <-l
native | solace | tervela | rabbitmq | kafka> <-m maxevents > <-n > <-O> <-p > <-Q> <-R> <-r rate > <-S> <-V>
<-x header > <-y log_configfile > <-Z transportconfigfile>

Parameter Description

‑A Specifies that input events are missing the key field that is autogenerated by
the Source window.

‑a aggrsize Specifies, in latency mode, statistics for aggregation block size. You can
follow the value with a comma-separated value to specify the number of
beginning and ending aggregation blocks to ignore in latency calculations.

‑B Specifies to create an unbuffered stream when writing to a file or socket. By
default, streams are buffered.

‑b blocksize Sets the block size. The default value is 1.

39

Parameter Description

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

‑c period Specifies the output file time (in seconds). The active file is closed and a new
active file opened with the timestamp appended to the filename

‑D csvfielddelimiter Specifies the character delimiter for field data in input CSV events. The
default delimiter is the , character.

‑d dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

‑E tokenlocation Specifies the location of the file in the local filesystem that contains the OAuth
token required for authentication by the publish/subscribe server.

‑e Specifies that events are transactional.

‑F eventtype Specifies the event type to Insert into input CSV events (with comma). Valid
values are "normal" and "partialupdate".

‑f fsname Specifies the subscriber output file, publisher input file, or socket
“host:port". Leave host blank to implement a server.

‑G rampupsecs Specifies the number of seconds to linearly ramp up from 0 to the transmit
rate that you request with ‑r. The default is 0

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑H hdatlasrhostport Specifies the LASR Analytic Server host and port.

‑h url Specifies the dfESP publish and subscribe standard URL in the form
dfESP://host:port/project/continuousquery/window

Append the following for subscribers: ?snapshot=true | false.
Append the following for subscribers if needed:

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The subscriber
then receives a stream of events produced from the time of the snapshot
onward. Those subsequent events can be Inserts, Updates, or Deletes.

n ?collapse=true | false

n ?rmretdel=true | false

‑I Specifies that when a field in an input CSV event cannot be parsed, the event
is dropped, an error is logged, and publishing continues.

‑i Reads from growing file.

40

Parameter Description

‑J repeatcount Specifies the number of times to repeat the publish operation. Applies to
publishers that publish a finite number of events. The default value is 0.

‑j trace | debug | info |
warn | error | fatal | off

Sets the logging level for the adapter. This is the same range of logging levels
that you can set in the C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

‑K hdatlasrkey Specifies the path to tklasrkey.sh. By default, this file is located in
$DFESP_HOME/bin

‑k Specifies sub for subscriber use and pub for publisher use

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the transport type. If you specify solace, tervela, rabbitmq,
or kafka transports instead of the default native transport, use the
required client configuration files. These files are specified in the description
of the C++ C_dfESPpubsubSetPubsubLib() API call.

‑M true | false | full For a CSV subscriber, writes a header row that shows comma-separated field
names. Set to "full" to include "opcode, flags," in header line.

‑m maxevents Specifies the maximum number of events to publish.

‑N latencyblksize Specifies the block size (in number of events) of memory to allocate for
storing timestamps when in latency mode. Additional blocks are allocated as
required. Required when you specify ‑n.

‑n Specifies latency mode.

‑O Prepends an opcode and comma to read CSV events. The opcode is Insert
unless ‑R is enabled.

‑o hdat_filename Specifies the filename to write to Hadoop Distributed File System (HDFS).

‑P hdatcashostport Specifies the CAS server host and port.

‑p Buffers all event blocks before publishing them.

‑Q For the publisher, quiesces the project after all events are injected into the
Source window.

‑q hdat_max_datanodes Specifies the maximum number of data nodes. The default value is the
number of live data nodes.

‑R Builds events with opcode=Upsert instead of Insert.

‑r rate Specifies the requested transmit rate in events per second for publishers. For
subscribers, writes the rate to write files when latency mode is enabled.

‑S Specifies that CEF events contain the syslog prefix. By default, they do not.

‑s maxfilesize Specifies the output file volume (in bytes). The active file is closed and a new
active file opened with the timestamp appended to the filename.

41

Parameter Description

‑t binary | csv | xml | json
| syslog | hdat | cef

Specifies the file system type. The syslog and cef values are valid only for
publishers. The hdat value is valid only for subscribers.

‑U hdatcasusername Specifies the CAS server user name.

‑u hdfs_blocksize Specifies the Hadoop Distributed File System (HDFS) block size in MB.

‑V Specify to restart the adapter if a fatal error is reported.

‑v hdfs_numreplicas Specifies the Hadoop Distributed File System (HDFS) number of replicas. The
default value is 1.

‑W hdatcaspassword Specifies the CAS server password.

‑w hdat_numthreads Specifies the adapter thread pool size. A value <= 1 means that no data
nodes are used.

‑x header Specifies the number of header lines to ignore.

‑y logconfigfile Specifies the log configuration file.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

‑z hdat_max_stringlength Specifies the fixed size to use for string fields in HDAT records. The value
must be a multiple of 8.

‑3 doubleprecision Specifies the number of fractional digits in the ASCII representation of a
double. The default value is 6.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the HDAT Reader Adapter

The HDAT reader adapter resides in dfx-esp-hdatreader-adapter.jar, which bundles the Java publisher SAS
Event Stream Processing client. The adapter converts each row in an HDAT file into an ESP event and injects
event blocks into a Source window of an engine. Each event is built with an Insert opcode unless you specify the
‑s parameter.

The number of fields in the target Source window schema must match the number of columns in the HDAT row
data. Also, all HDAT column types must be numeric, except for columns that correspond to an ESP field of type
UTF8STR. In that case, the column must contain character data.

42

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

The source Hadoop Distributed File System (HDFS) and the name of the file within the file system are passed
as required parameters to the adapter. The client target platform must define the environment variable
DFESP_HDFS_JARS. This specifies the location of the Hadoop JAR files.

List the JAR files in this order: hadoop-common-*.jar , hadoop-hdfs-*.jar , common hadoop JARs.

For example, in Linux:

$ export DFESP_HDFS_JARS=/usr/local/hadoop-2.5.0/share/hadoop/common/hadoop-common-2.5.0.jar:
/usr/local/hadoop-2.5.0/share/hadoop/hdfs/hadoop-hdfs-2.5.0.jar:
/usr/local/hadoop-2.5.0/share/hadoop/common/lib/*

Usage:

dfesp_hdat_publisher -f hdfs -i inputfile -u url <-b blocksize > <-c [configfilesection]> <-g gdconfigfile > <-l
native | solace | tervela | rabbitmq | kafka> <-O tokenlocation > <-o severe | warning | info> <-Q> <-s> <-t> <-V>
<-W maxevents> <-Z transportconfigfile>

Parameter Description

‑b blocksize Specifies the number of events per event block.

‑c [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
javaadapters.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\javaadapters.config (Windows) to parse for configuration
parameters.

‑f hdfs Specifies the target file system, in the form "hdfs://host:port".
Specifies the file system that is normally configured in property
fs.defaultFS in core-site.xml.

‑g gdconfigfile Specifies the guaranteed delivery configuration file for the client.

‑i inputfile Specifies the input CSV file, in the form "/path/filename.csv".

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the transport type. When you specify solace, tervela,
rabbitmq, or kafka transports instead of the default native transport,
use the required client configuration files specified in “Using Alternative
Transport Libraries for Java Clients” in SAS Event Stream Processing:
Publish/Subscribe API.

‑O tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token required for authentication by the publish/subscribe server.

‑o severe | warning | info Specifies the application logging level.

‑Q Quiesces the project after all events are injected into the Source window.

javaadapters.config parameter name: quiesceproject

‑s Builds events with opcode=Upsert instead of Insert.

javaadapters.config parameter name: publishwithupsert

‑t Specifies that event blocks are transactional. The default event block type is
normal.

javaadapters.config parameter name: transactional

43

http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en

Parameter Description

‑u url Specifies the publish standard URL in the form "dfESP://host:port/
project/continuousquery/window".

‑V Restarts the adapter if a fatal error is reported.

javaadapters.config parameter name: restartonerror

‑W maxevents Specifies the maximum number of events to publish.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the HDFS (Hadoop Distributed File System)
Adapter

The HDFS adapter resides in dfx-esp-hdfs-adapter.jar, which bundles the Java publisher and subscriber SAS
Event Stream Processing clients. The subscriber client receives event blocks and writes events in CSV format to
an HDFS file. The publisher client reads events in CSV format from an HDFS file and injects event blocks into a
Source window of an engine.

The target HDFS and the name of the file within the file system are both passed as required parameters to the
adapter.

The subscriber client enables you to specify values for HDFS block size and number of replicas. You can
configure the subscriber client to periodically write the HDFS file using the optional periodicity or
maxfilesize parameters. If so configured, a timestamp is appended to the filename of each written file.

You can configure the publisher client to read from a growing file. In that case, the publisher runs indefinitely and
publishes event blocks whenever the HDFS file size increases.

You must define the DFESP_HDFS_JARS environment variable for the client target platform. This variable
specifies the locations of the Hadoop JAR files and your core-site.xml file.

List the JAR files in this order: hadoop-common-*.jar , hadoop-hdfs-*.jar , common hadoop JARs.

For example, in Linux you would run the following from the command line:

$ export DFESP_HDFS_JARS=/usr/local/hadoop-2.5.0/share/hadoop/common/hadoop-common-2.5.0.jar:
/usr/local/hadoop-2.5.0/share/hadoop/hdfs/hadoop-hdfs-2.5.0.jar:
/usr/local/hadoop-2.5.0/share/hadoop/common/lib/*:/usr/local/hadoop-2.5.0/conf

Subscriber usage:

dfesp_hdfs_subscriber -f hdfs -t outputfile -u url <-b hdfsblocksize > <-c [configfilesection]> <-d dateformat >
<- g gdconfigfile > <-j jaasconf> <-k krb5conf> <-l native | solace | tervela | rabbitmq | kafka> <-m maxfilesize >

44

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

<-n hdfsnumreplicas > <-O tokenlocation > <-o severe | warning | info> <-P opaquestringfield> <-p periodicity >
<-V> <-Z transportconfigfile>

Parameter Description

‑b hdfsblocksize Specifies the HDFS block size in MB. The default value is 64.

‑c [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
javaadapters.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\javaadapters.config (Windows) to parse for configuration
parameters.

‑d dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

‑f hdfs Specifies the target file system, in the form "hdfs://host:port".
Specifies the file system normally configured in property fs.defaultFS in
file core-site.xml.

‑g gdconfigfile Specifies the guaranteed delivery configuration file for the client.

‑j jaasconf Specifies the location of the JAAS configuration on the local file system. This
file is used for Kerberos authentication to the Hadoop grid. By default, there is
no authentication.

‑k krb5conf Specifies the location of the Kerberos 5 configuration file on the local file
system. This file is required for Kerberos authentication to the Hadoop grid.
The default value is /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/krb5.conf
(Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default\krb5.conf
(Windows).

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the transport type. When you specify solace, tervela,
rabbitmq, or kafka transports instead of the default native transport,
use the required client configuration files specified in “Using Alternative
Transport Libraries for Java Clients” in SAS Event Stream Processing:
Publish/Subscribe API.

‑m maxfilesize Specifies the output file periodicity in bytes.

‑n hdfsnumreplicas Specifies the HDFS number of replicas. The default value is 1.

‑O tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token required for authentication by the publish/subscribe server.

‑o severe | warning | info Specifies the application logging level.

‑p periodicity Specifies the output file periodicity in seconds.

‑P opaquestringfield Specifies the subscribed window field from which to extract the output line.

45

http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en

Parameter Description

‑t outputfile Specifies the output CSV file, in the form "/path/filename.csv".

‑u url Specifies the dfESP subscribe standard URL in the form dfESP://
host:port/project/continuousquery/window?
snapshot=true | false.

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The subscriber
then receives a stream of events produced from the time of the snapshot
onward. Those subsequent events can be Inserts, Updates, or Deletes.

Append the following if needed:

?collapse=true | false

?rmretdel=true | false

‑V Restarts the adapter if a fatal error is reported.

javaadapters.config parameter name:restartonerror

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

Publisher usage:

dfesp_hdfs_publisher -f hdfs –i inputfile -u url <-b blocksize > <-C> <-c [configfilesection]> <-d dateformat > < -
e> <-F eventtype> <- g gdconfigfile > <-j jaasconf> <-k krb5conf> <-l native | solace | tervela | rabbitmq | kafka>
< -m csvfielddelimiter > <-n > <-O tokenlocation > <-o severe | warning | info> <-Q> <-q> <-s> <-t> <-V> <-W
maxevents> <-Z transportconfigfile>

Parameter Description

‑b blocksize Specifies the number of events per event block.

‑C Prepends an opcode and comma to read CSV events. The opcode is Insert
unless ‑s is enabled.

javaadapters.config parameter name: addcsvopcode

‑c [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
javaadapters.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\javaadapters.config (Windows) to parse for configuration
parameters.

46

Parameter Description

‑d dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

‑e Specifies that when a field in an input CSV event cannot be parsed, the event
is dropped, an error is logged, and publishing continues.

javaadapters.config parameter name: ignorecsvparseerrors

‑F eventtype Specifies the event type to Insert into input CSV events (with comma). Valid
values are "normal" and "partialupdate".

‑f hdfs Specifies the target file system, in the form "hdfs://host:port".

‑g gdconfigfile Specifies the guaranteed delivery configuration file for the client.

‑i inputfile Specifies the input CSV file, in the form "/path/filename.csv".

‑j jaasconf Specifies the location of the JAAS configuration on the local file system. This
file is used for Kerberos authentication to the Hadoop grid. By default, there is
no authentication.

‑k krb5conf Specifies the location of the Kerberos 5 configuration file on the local file
system. This file is required for Kerberos authentication to the Hadoop grid.
The default value is /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/krb5.conf
(Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default\krb5.conf
(Windows).

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the transport type. When you specify solace, tervela,
rabbitmq, or kafka transports instead of the default native transport,
use the required client configuration files specified in “Using Alternative
Transport Libraries for Java Clients” in SAS Event Stream Processing:
Publish/Subscribe API.

‑m csvfielddelimiter Specifies the character delimiter for field data in input CSV events. The
default delimiter is the , character.

‑n Specifies that input events are missing the key field that is autogenerated by
the source window.

javaadapters.config parameter name: noautogenfield

‑O tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token required for authentication by the publish/subscribe server.

‑o severe | warning | info Specifies the application logging level.

‑Q Quiesces the project after all events are injected into the Source window.

javaadapters.config parameter name: quiesceproject

47

http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en

Parameter Description

‑q Specifies that every line read from the file should be treated as an opaque
string. The Source window schema is assumed to be
"index:int64,message:string".

javaadapters.config parameter name: opaquestring

‑s Builds events with opcode=Upsert instead of opcode=Insert.

javaadapters.config parameter name: publishwithupsert

‑t Specifies that event blocks are transactional. The default event block type is
normal.

javaadapters.config parameter name: transactional

‑u url Specifies the publish standard URL in the form "dfESP://host:port/
project/continuousquery/window".

‑V Restarts the adapter if a fatal error is reported.

javaadapters.config parameter name: restartonerror

‑W maxevents Specifies the maximum number of events to publish.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the Java Message Service (JMS) Adapter

The Java Message Service (JMS) adapter resides in dfx-esp-jms-adapter.jar, which bundles the Java publisher
and subscriber clients. Both are JMS clients. The subscriber client receives event blocks and is a JMS message
producer. The publisher client is a JMS message consumer and injects event blocks into a source window of an
engine.

The subscriber client requires a command line parameter that defines the type of JMS message used to contain
events. The publisher client consumes the following JMS message types:

n BytesMessage - an Event Streams Processing event block

n TextMessage - an Event Streams Processing event in CSV or XML format

n MapMessage - an Event Stream Processing event with its field names and values mapped to corresponding
MapMessage fields

48

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

A JMS message in TextMessage format can contain an XML document encoded in a third-party format. You can
substitute the corresponding JAR file in the class path in place of dfx-esp-jms-native.jar, or you can use the ‑x
switch in the JMS adapter script. Currently, dfx-esp-jms-axeda.jar is the only supported alternative.

The JMS password must be passed in unencrypted form unless ‑E is configured. The encrypted version of the
password can be generated using OpenSSL, which must be installed on your system. When you install the SAS
Event Stream Processing System Encryption and Authentication Overlay, you install the included OpenSSL
executable. Use the following command on the console to use OpenSSL to display your encrypted password:

echo "jmspassword" | openssl enc ‑e ‑aes‑256–cbc ‑a ‑salt ‑pass
pass:"SASespJMSadapterUsedByUser=jmsuserid"

Specify the encrypted password for your jmspassword parameter and enable encryption with the ‑E parameter.

When running with an alternative XML format, you must specify the JAXB JAR files in the environment variable
DFESP_JAXB_JARS. You can download JAXB from https://jaxb.java.net .

The client target platform must connect to a running JMS broker (or JMS server) . The environment variable
DFESP_JMS_JARS must specify the location of the JMS broker JAR files. The clients also require a
jndi.properties file, which you must specify through the DFESP_JMS_PROPERTIES environment variable. This
properties file specifies the connection factory that is needed to contact the broker and create JMS connections,
as well as the destination JMS topic or queue.

You can override the default JNDI names that are looked up by the adapter to find the connection factory and
queue or topic. Do this by configuring the jndidestname and jndifactname adapter parameters. When the
destination requires credentials, you can specify these as optional parameters on the adapter command line.

A sample jndi.properties file is included in your configuration directory.

Subscriber usage:

dfesp_jms_subscriber -m BytesMessage | TextMessage | MapMessage -u url <-a jndifactname > <-c
[configfilesection]> <-d dateformat > <-E> <-f protofile > <- g gdconfigfile > <-i jmsuserid > <-j jndidestname > <-
L> <-l native | solace | tervela | rabbitmq | kafka> <-M> <-O tokenlocation > <-o severe | warning | info> <-P
opaquestringfield> <-p jmspassword > <-r protomsg ><-V><-x native | axeda> <-Z transportconfigfile>

Parameter Description

‑a jndifactname Specifies the JNDI name to look up for the JMS connection factory. The
default value is "ConnectionFactory". This option overrides
settings in jndi.properties.

‑c [configfilesection] Specifies the name of the section in /opt/sas/viya/
config/etc/SASEventStreamProcessingEngine/
default/javaadapters.config (Linux) or %ProgramData%
\SAS\Viya\SASEventStreamProcessingEngine
\default\javaadapters.config (Windows) to parse for
configuration parameters.

‑d dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields
in CSV events. The default behavior is that these fields are interpreted
as an integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter
accepts any time format that is supported by the UNIX strftime
function.

‑E Specifies that the JMS password is encrypted.

javaadapters.config parameter name: pwdencrypted

‑f protofile Specifies the .proto file that contains the message used for Google
Protocol buffer support.

49

Parameter Description

‑g gdconfigfile Specifies the guaranteed delivery configuration file for the client.

‑i jmsuserid Specifies the user ID for the JMS destination.

‑j jndidestname Specifies the JNDI name to look up for the JMS destination. The default
value is "jmsDestination". This option overrides settings in
jndi.properties.

‑L For CSV, specifies to send one message per event block. The default is
one message per transactional event block and one message per event
in a non-transactional event block. In a multi-event message, CSV lines
are delimited by the "line.separator" system property.

javaadapters.config parameter name:
csvmsgpereventblock

‑l native | solace | tervela |
rabbitmq | kafka

Specifies the transport type. When you specify solace, tervela,
rabbitmq, or kafka transports instead of the default native
transport, use the required client configuration files specified in “Using
Alternative Transport Libraries for Java Clients” in SAS Event Stream
Processing: Publish/Subscribe API.

‑M For CSV, specifies to send one message per event. The default is one
message per transactional event block and one message per event in a
non-transactional event block. In a multi-event message, CSV lines are
delimited by the "line.separator" system property.

javaadapters.config parameter name: csvmsgperevent

‑m BytesMessage | TextMessage |
MapMessage

Specifies the JMS message type.

‑O tokenlocation Specifies the location of the file in the local file system that contains the
OAuth token required for authentication by the publish/subscribe server.

‑o severe | warning | info Specifies the application logging level.

‑P opaquestringfield Specifies the subscribed window field from which to extract the JMS
TextMessage.

‑p jmspassword Specifies the password for the JMS destination.

‑r protomsg Specifies the message itself in the .proto file that is specified by the
protofile parameter.

‑u url Specifies the dfESP subscribe standard URL in the form dfESP://
host:port/project/continuousquery/window?snapshot=true | false .

When ?snapshot=true, the subscriber receives a collection of
Insert events that are contained in the window at that point in time. The
subscriber then receives a stream of events produced from the time of
the snapshot onward. Those subsequent events can be Inserts,
Updates, or Deletes.

Append the following if needed:

?collapse=true | false

?rmretdel=true | false

50

http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en

Parameter Description

‑V Restarts the adapter if a fatal error is reported.

javaadapters.config parameter name: restartonerror

‑x native | axeda Specifies the XML format for TextMessage. Specifies native when
the message is in CSV format.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default
value depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native
transport.

Publisher usage:

dfesp_jms_publisher -u url <-a jndifactname > <-b blocksize > <-C> <-c [configfilesection]> <-d dateformat > <-
E> <-e> <-F eventtype> <-f protofile > <- g gdconfigfile > <-i jmsuserid > <-j jndidestname > <-l native | solace |
tervela | rabbitmq | kafka> < -m csvfielddelimiter > <-n > <-O tokenlocation > <-o severe | warning | info> <-p
jmspassword > <-q> <-r protomsg > <-s> <-t> <-V> <-x native | axeda> <-W maxevents> <-Z
transportconfigfile>

Parameter Description

‑a jndifactname Specifies the JNDI name to look up for the JMS connection factory. The
default value is "ConnectionFactory". This option overrides settings in
jndi.properties.

‑b blocksize Specifies the number of events per event block.

‑C Prepends an opcode and comma to input CSV events, or received messages
of type = MapMessage that are missing the "eventOpcode" field. The opcode
is Insert unless ‑s is enabled.

javaadapters.config parameter name: addcsvopcode

‑c [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
javaadapters.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\javaadapters.config (Windows) to parse for configuration
parameters.

‑d dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

‑E Specifies that the JMS password is encrypted.

javaadapters.config parameter name: pwdencrypted

51

Parameter Description

‑e Specifies that when a field in an input CSV event cannot be parsed, the event
is dropped, an error is logged, and publishing continues.

javaadapters.config parameter name: ignorecsvparseerrors

‑F eventtype Specifies the event type to Insert into input CSV events (with comma), or
received messages of type = MapMessage that are missing the "eventFlags"
field. Valid values are "normal" and "partialupdate".

‑f protofile Specifies the .proto file that contains the message used for Google
Protocol buffer support.

‑g gdconfigfile Specifies the guaranteed delivery configuration file for the client.

‑i jmsuserid Specifies the user ID for the JMS destination.

‑j jndidestname Specifies the JNDI name to look up for the JMS destination. The default value
is "jmsDestination". This option overrides settings in
jndi.properties.

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the transport type. When you specify solace, tervela,
rabbitmq, or kafka transports instead of the default native transport,
use the required client configuration files specified in “Using Alternative
Transport Libraries for Java Clients” in SAS Event Stream Processing:
Publish/Subscribe API.

‑o severe | warning | info Specifies the application logging level.

‑m csvfielddelimiter Specifies the character delimiter for field data in input CSV events. The
default delimiter is the , character.

‑n Specifies that input events are missing the key field that is autogenerated by
the source window.

javaadapters.config parameter name: noautogenfield

‑O tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token required for authentication by the publish/subscribe server.

‑p jmspassword Specifies the password for the JMS destination.

‑q Specifies that a received JMS string message should be treated as an opaque
string. The source window schema is assumed to be
"index:int64,message:string".

javaadapters.config parameter name: opaquestring

‑r protomsg Specifies the message itself in the .proto file that is specified by the
protofile parameter.

‑s Builds events with opcode=Upsert instead of Insert.

javaadapters.config parameter name: publishwithupsert

‑t Specifies that event blocks are transactional. The default event block type is
normal.

javaadapters.config parameter name: transactional

52

http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en

Parameter Description

‑u url Specifies the publish standard URL in the form "dfESP://host:port/
project/continuousquery/window"

‑V Restarts the adapter if a fatal error is reported.

javaadapters.config parameter name: restartonerror

‑W maxevents Specifies the maximum number of events to publish.

‑x native | axeda Specifies the XML format for TextMessage. Specifies native when the
message is in CSV format.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the Kafka Connector and Adapter

Using the Kafka Connector for Kafka 0.9 and MapR
Streams

The Kafka connector communicates with a Kafka broker for publish and subscribe operations. Apache Kafka
version 0.9 or higher is required. The bus connectivity provided by the connector eliminates the need for the
engine to manage individual publish/subscribe connections. The connector achieves a high capacity of
concurrent publish/subscribe connections to a single engine.

Note: The Kafka connector is certified to work with the MapR converged data platform for publishing and
subscribing.

A Kafka subscriber connector publishes subscribed event blocks to a fixed partition in a Kafka topic. A Kafka
publisher connector reads event blocks from a fixed partition in a Kafka topic and then injects the event blocks
into a Source window. The topic and partition are required connector configuration parameters. You can read or
write all partitions in the topic by setting the partition parameter to ‑1. Failover is not supported when reading or
writing all partitions in the topic, so setting the partition parameter to ‑1 for a single connector instance is not
recommended. A better alternative is to run additional instances of the connector to read or write additional
partitions in the topic.

The initial offset from which to begin consuming from a Kafka partition is an optional parameter. The default
value is the smallest available offset. Using the smallest available offset ensures that state can be completely
rebuilt from the topic’s message store. The Kafka cluster administrator should ensure that the log.retention
properties for the server are appropriately set for that offset. Other possible values for the initial offset are the
largest offset, or a specific offset value.

53

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Event blocks transmitted through a Kafka cluster can be encoded as binary, CSV, Google protobufs, or JSON
messages. The connector performs any conversion to and from binary format. You can configure the message
format through a parameter.

The Kafka connector supports hot failover operation. When enabled for hot failover, the connector uses Apache
Zookeeper to monitor the presence of other connectors in the failover group. Zookeeper C client libraries must
be installed even if hot failover operation is not enabled. The connector was tested using Zookeeper version
3.4.8.

You must install Kafka client run-time libraries on the platform that hosts the running instance of the connector.
The connector uses the LibrdKafka C and C++ libraries. You can download these libraries from https://
github.com/edenhill/librdkafka. Use version 0.9.5 with SAS Event Stream Processing version 4.3 or higher. The
run-time environment must define the path to those libraries (for example, specifying LD_LIBRARY_PATH on
Linux platforms). The path must include both the C LibrdKafka library and the C++ LibrdKafka library. The path
must also include the Zookeeper libraries, which can be downloaded from http://www.apache.org/dyn/closer.cgi/
zookeeper/. Make sure the LibrdKafka and Zookeeper libraries are built on the machine where the connector
runs, so that the same system libraries used while building are available at run time. To build the libraries with
SSL support, on the ./configure step, use option ‑‑LDFLAGS=‑L$DFESP_HOME/lib so that LibrdKafka is built
against the same libraries as SAS Event Stream Processing.

Except for the relevant connector parameters described below, all LibrdKafka configuration parameters are left
at default values by the connector. The user can modify any librdkafka parameter from its default value via
the connector kafkaglobalconfig and kafkatopicconfig parameters described below. Some latency-
related parameters of interest are described at https://github.com/edenhill/librdkafka/wiki/How-to-decrease-
message-latency. Steps for configuring LibrdKafka to support SASL are described at https://github.com/edenhill/
librdkafka/wiki/Using-SASL-with-librdkafka.

Corresponding event stream processing publish/subscribe client plug-in libraries are available for C and Java
publish/subscribe clients. These libraries enable a standard event stream processing publish/subscribe client
application to exchange event blocks with an event stream processing server through a Kafka cluster. Messages
are exchanged through the cluster instead of a direct TCP connection. No changes are required to the publish/
subscribe client code except for the following:

n making an additional call to C_dfESPpubsubSetPubsubLib() that specifies the Kafka plug-in library (for C
clients)

n adding dfx-esp-kafka-api.jar to the front of your classpath (for Java clients)

The file kafka.cfg must be in the current working directory. This file specifies the client’s Kafka configuration
parameters.

The client plug-in libraries use fixed topic names, where these names are built from the event stream processing
URL passed by the user. The URL references the model’s project and query and window names. Because Kafka
has limited support for special characters, ensure that project/query/window names contain only alphanumeric
characters and underscore, hyphen, and dot. To meet this requirement, the client plug-in modifies the passed
URL to replace ‘:’ with ‘_’ and ‘/’ with ‘.’ when building the topic name. The configured topic in the corresponding
Kafka connector must match the topic name built by the client.

When configured for hot failover operation, Zookeeper coordinates the active/standby status of the connector
with other connectors running in other event stream processing servers in the hot failover group. Thus, a
standby connector becomes active when the active connector fails. All event stream processing servers in a hot
failover group must meet the following conditions to guarantee successful Switchovers:

n They must be running identical models.

n The Kafka publisher connectors must begin consuming from the same Kafka partition at the same offset.
Kafka guarantees message order only within a partition. Using the same offset is required to ensure an
identical state in all involved servers. In addition, message IDs added to inbound event blocks by the model
must be synchronized across all publisher connectors. These message IDs also require consistent ordering.
The initial offset is a required parameter for publisher connectors, which can be set to largest, smallest,
or an integer number. The connector ensures that all publishers receive all messages on the partition by
assigning each consumer to a different consumer group with a GUID-based unique group ID.

54

n The Zookeeper configuration must specify a value for tickTime no greater than 500 milliseconds. This
enables subscriber connectors acting as Zookeeper clients to detect a failed client within one second, and to
initiate the switch over process.

When a new subscriber connector becomes active, outbound message flow remains synchronized.
Synchronization occurs because of buffering of messages by standby connectors and coordination of the
resumed flow with the Kafka cluster. Specifically, the new active subscriber connector obtains the current offset
of the Kafka partition being written to, and consumes the message at current offset – 1. The active subscriber
connector does the following:

n extracts the message ID from this message

n writes all buffered messages that contain a greater ID to the partition

n resumes writing messages from the subscribed window

The size of the message buffer is a required parameter for subscriber connectors.

The Kafka connector does not support sending custom snapshots to newly connected publish/subscribe clients
that use the SAS Event Stream Processing Kafka client plug-in library. There is no need since Kafka is a
message store and the initial partition offset for a client consumer is configurable in the client plug-in library.

When the connector starts, it subscribes to topic urlhostport.M (where urlhostport is a connector
configuration parameter). This enables the connector to receive metadata requests from clients using the Kafka
plug-in that publish or subscribe to a window in an engine associated with that host:port combination.
Remember that ‘:’ must be replaced with ‘_’ in the urlhostport parameter. Metadata responses consist of
some combination of the following:

n project name of the window associated with the connector

n query name of the window associated with the connector

n window name of the window associated with the connector

n the serialized schema of the window

By default, all Kafka subscriber connectors and client transports require message acknowledgments from the
broker. Acknowledgments enable the graceful handling of broker connection failures, topic leader changes, and
producer errors signaled by the broker.

Table 15 Required Parameters for the Kafka Subscriber Connector

Parameter Description

type Specifies to subscribe. Must be “sub”.

kafkahostport Specifies one or more Kafka brokers in the following form:
host:port,host:port,….

kafkatopic Specifies the Kafka topic.

kafkapartition Specifies the Kafka partition. Specify ‑1 to use all partitions in the topic. This value
is not supported when hot failover is enabled.

kafkatype Specifies binary, CSV, JSON, or the name of a string field in the subscribed
window schema. For opaquestring, the Source window schema is assumed
to be index:int64,message:string.

urlhostport Specifies the host:port field in the metadata topic that is subscribed to on
start-up. This combination fields metadata requests. To meet Kafka topic naming
requirements, replace ‘:’ with ‘_’.

55

Parameter Description

numbufferedmsgs Specifies the maximum number of messages buffered by a standby subscriber
connector. When exceeded, the oldest message is discarded. When the connector
goes active, the buffer is flushed and buffered messages are sent to the cluster as
required to maintain message ID sequence.

snapshot Specifies whether to send snapshot data. The only supported value is false.
Subscriber clients reading messages sent by this subscriber can control their
snapshot by configuring an appropriate initial offset into the Kafka partition.

Table 16 Required Parameters for the Kafka Publisher Connector

Parameter Description

type Specifies to publish. Must be “pub”.

kafkahostport Specifies one or more Kafka brokers in the following form:
host:port,host:port,….

kafkatopic Specifies the Kafka topic.

kafkapartition Specifies the Kafka partition. Specify ‑1 to use all partitions in the topic. This value
is not supported when hot failover is enabled.

kafkatype Specifies binary, CSV, JSON, or opaquestring.

urlhostport Specifies the host:port field in the metadata topic that is subscribed to on
start-up. This combination fields metadata requests. To meet Kafka topic naming
requirements, replace ‘:’ with ‘_’.

Table 17 Optional Parameters for the Kafka Subscriber Connector

Parameter Description

collapse Enables conversion of UPDATE_BLOCK events to make subscriber output
publishable.

rmretdel Specifies to remove all delete events from event blocks received by a subscriber
that were introduced by a window retention policy.

hotfailover Enables hot failover mode.

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in CSV
events. The default behavior is that these fields are interpreted as an integer
number of seconds (ESP_DATETIME) or microseconds (ESP_TIMESTAMP)
since epoch. The dateformat parameter accepts any time format that is
supported by the UNIX strftime function.

protofile Specifies the .proto file that contains the Google Protocol Buffers message
definition used to convert event blocks to protobuf messages. When you specify
this parameter, you must also specify the protomsg parameter.

56

Parameter Description

protomsg Specifies the name of a Google Protocol Buffers message in the .proto file that
you specified with the protofile parameter. Event blocks are converted into this
message.

csvincludeschema When kafkatype=CSV, specifies when to prepend output CSV data with the
window's serialized schema. Valid values are never, once, and
pereventblock. The default value is “never”.

useclientmsgid Uses the client-generated message ID instead of the engine-generated message
ID when performing a failover operation and extracting a message ID from an
event block.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

zookeeperhostport Specifies the Zookeeper server in the form host:port.

kafkaglobalconfig Specifies a semicolon-separated list of key=value strings to configure
librdkafka global configuration values.

kafkatopicconfig Specifies a semicolon-separated list of key=value strings to configure
librdkafka topic configuration values.

csvmsgperevent For CSV, specifies to send one message per event. The default is one message
per transactional event block or else one message per event.

csvmsgpereventblock For CSV, specifies to send one message per event block. The default is one
message per transactional event block or else one message per event.

doubleprecision Specifies the number of fractional digits in the ASCII representation of a double.
The default value is 6.

Table 18 Optional Parameters for the Kafka Publisher Connector

Parameter Description

transactional When kafkatype=CSV, sets the event block type to transactional. The default
event block type is normal.

blocksize When kafkatype=CSV, specifies the number of events to include in a
published event block. The default value is 1.

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in CSV
events. The default behavior is that these fields are interpreted as an integer
number of seconds (ESP_DATETIME) or microseconds (ESP_TIMESTAMP)
since epoch. The dateformat parameter accepts any time format that is
supported by the UNIX strftime function.

ignorecsvparseerrors Specifies that when a field in an input CSV event cannot be parsed, the event is
dropped, an error is logged, and publishing continues.

57

Parameter Description

protofile Specifies the .proto file that contains the Google Protocol Buffers message
definition used to convert event blocks to protobuf messages. When you specify
this parameter, you must also specify the protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in the .proto file
that you specified with the protofile parameter. Event blocks are converted into
this message.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

csvfielddelimiter Specifies the character delimiter for field data in input CSV events. The default
delimiter is the ,character.

noautogenfield Specifies that input events are missing the key field that is autogenerated by the
source window.

publishwithupsert Specifies to build events with opcode = Upsert instead of opcode =
Insert.

kafkainitialoffset Specifies the offset from which to begin consuming messages from the Kafka
topic and partition. Valid values are smallest, largest, or an integer. The
default value is smallest.

addcsvopcode Prepends an opcode and comma to write CSV events. The opcode is Insert
unless publishwithupsert is enabled.

addcsvflags Specifies the event type to insert into input CSV events (with a comma). Valid
values are normal and partialupdate.

kafkaglobalconfig Specifies a semicolon-separated list of key=value strings to configure
librdkafka global configuration values.

kafkatopicconfig Specifies a semicolon-separated list of key=value strings to configure
librdkafka topic configuration values.

useclientmsgid If the Source window has been restored from a persist to disk, ignore received
binary event blocks that contain a message ID less than the greatest message ID
in the restored window.

maxevents Specifies the maximum number of events to publish.

Using the Kafka Adapter for Kafka 0.9 and MapR
Streams

The Kafka adapter supports publish and subscribe operations on a Kafka cluster. You must install the LibrdKafka
C, C++, and Apache Zookeeper libraries to use the adapter. For more information, see the Apache Kafka
documentation.

58

http://kafka.apache.org/documentation.html
http://kafka.apache.org/documentation.html

Note: The Kafka adapter is certified to work with the MapR converged data platform for publishing and
subscribing.

Subscriber usage:

dfesp_kafka_adapter -h url -k sub -n numbufferedmsgs -o urlhostport -p kafkapartition -s kafkahostport -t
kafkatopic -z binary | csv | json <-C configfilesection> <-d dateformat > <-E tokenlocation> <-f protofile > <-G
kafkaglobalconfig> <-g gdconfig > <-j trace | debug | info | warn | error | fatal | off> <-L> <-l native | solace |
tervela | rabbitmq | kafka> <-M> <-m protomsg > <-T kafkatopicconfig> <-V> <-w never | once | pereventblock>
<-y logconfigfile> <-Z transportconfigfile> <-3 doubleprecision>

Publisher usage:

dfesp_kafka_adapter -h url -k pub -o urlhostport -p kafkapartition -s kafkahostport -t kafkatopic -z binary | csv |
json | opaquestring <-A> <-b blocksize > <-C configfilesection > <-D csvfielddelimiter > <-d dateformat> <-E
tokenlocation > <-e > <-F eventtype> <-f protofile> <-G kafkaglobalconfig> <-g gdconfig > <-I> <-j trace | debug |
info | warn | error | fatal | off> <-l native | solace | tervela | rabbitmq | kafka> <-m protomsg > <-O> <-P
kafkainitialoffset > <-Q> <-R> <-T kafkatopicconfig> <-V> <-Y maxevents> <-y logconfigfile> <-Z
transportconfigfile>

Parameter Description

‑A Specifies that input events are missing the key field that is
autogenerated by the Source window.

‑b blocksize Specifies the event block size. The default is 1.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/
config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%
\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for
configuration parameters. Specify the value as
[configfilesection].

‑D csvfielddelimiter Specifies the character delimiter for field data in input CSV
events. The default delimiter is the , character.

‑d dateformat Specifies the format of ESP_DATETIME and
ESP_TIMESTAMP fields in CSV events. The default
behavior is that these fields are interpreted as an integer
number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat
parameter accepts any time format that is supported by the
UNIX strftime function.

‑E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token. This token is required for
authentication by the publish/subscribe server.

‑e Specifies that events are transactional.

‑F eventtype Specifies the event type to Insert into input CSV events
(with comma). Valid values are "normal" and
"partialupdate".

59

Parameter Description

‑f protofile Specifies the .proto file to be used for Google protocol
buffer support.

‑G kafkaglobalconfig Specifies a semicolon-separated list of "key=value"
strings to configure librdkafka global configuration
values.

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑h url Specifies the dfESP publish and subscribe standard URL in
the form dfESP://host:port/project/
continuousquery/window.

Append the following for subscribers:?
snapshot=false.

Note: ?snapshot=true is invalid.
Append the following for subscribers if needed:

?collapse=true | false

?rmretdel=true

‑I Specifies that when a field in an input CSV event cannot be
parsed, the event is dropped, an error is logged, and
publishing continues.

‑j trace | debug | info | warn | error |
fatal | off

Specifies the logging level. The default is “warn”.

‑k sub | pub Specifies sub for subscriber or pub for publisher.

‑L For CSV, specifies to send one message per event block.
The default is one message per transactional event block or
else one message per event.

‑l native | solace | tervela | rabbitmq
| kafka

Specifies the publish/subscribe transport. The default is
native.

‑M For CSV, specifies to send one message per event. The
default is one message per transactional event block or
else one message per event.

‑m protomsg Specifies the message itself in the .proto file that is
specified by the protofile parameter.

‑n numbufferedmsgs Specifies the maximum number of messages buffered by a
standby subscriber connector.

‑O Prepends an opcode and comma to write CSV events. The
opcode is Insert unless ‑R is enabled.

‑o urlhostport Specifies the host:port field in the metadata topic to
which the connector subscribes (replace ‘:’ with ‘_’)

60

Parameter Description

‑P kafkainitialoffset Specifies the offset from which to begin consuming from the
Kafka partition. Valid values are "smallest", "largest", or an
integer. The default is "smallest".

‑p kafkapartition Specifies the Kafka partition. Specify ‑1 to use all partitions
in the topic. This value is not supported when hot failover is
enabled.

‑Q When maxevents is configured, quiesces the project after
all events are injected into the Source window.

‑R Builds events with opcode=Upsert instead of
opcode=Insert.

‑s kafkahostport Specifies one or more Kafka brokers in the following form:
"host:port,host:port,...".

‑T kafkatopicconfig Specifies a semicolon-separated list of "key=value"
strings to configure librdkafka topic configuration
values.

‑t kafkatopic Specifies the Kafka topic.

‑w never | once | pereventblock When rmqtype=CSV, specifies when to prepend output
CSV data with the window's serialized schema. The default
value is “never”.

‑V Specifies to restart the adapter if a fatal error is reported.

‑Y maxevents Specifies the maximum number of events to publish.

‑y logconfigfile Specifies the logging configuration file. By default, there is
none.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file.
The default value depends on the transport type specified
with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for
native transport.

‑z binary | csv | json | opaquestring Specifies the message format. opaquestring is valid
only for publishers. For opaquestring, the Source
window schema is assumed to be
"index:int64,message:string". For subscribers,
the name of a string field in the subscribed window schema
is also supported.

‑3 doubleprecision Specifies the number of fractional digits in the ASCII
representation of a double. The default value is 6.

61

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the SAS LASR Analytic Server Adapter

The SAS LASR Analytic Server adapter supports publish and subscribe operations on the SAS LASR Analytic
Server. To authenticate to the SAS LASR Analytic server, you can do one of the following:

n configure the adapter with a path to a script that invokes password-less SSH to the server

n configure the adapter to access SAS LASR Analytic Server authentication services

Note: If you do not configure the adapter to access SAS LASR Analytic Server authentication services:

n Running this adapter in a UNIX environment requires the installation of an SSH client.

n Running this adapter in a Microsoft Windows environment requires the installation of the SAS Event Stream
Processing System Encryption and Authentication Overlay.

n If the SAS LASR Analytic Server is running in SMP mode without SSH support or SAS LASR Analytic Server
authentication services support, the LASR adapter must be running on the same computer system as the
SAS LASR Analytic Server. When you start the adapter, you must be logged in as a user with permission to
access the SAS LASR Analytic Server.

n The user running the adapter must be the same user that started the SAS LASR Analytic Server.

Note: Datetime and timestamp values that are mapped to a numeric column in a LASR table are automatically
converted to and from SAS format (seconds since 1/1/1960).

Note: LASR table column names cannot exceed 32 characters. Ensure that your window schema complies with
this restriction.

Note: To visualize data written by the subscriber adapter in Visual Analytics, you must register the LASR table
in Visual Analytics after it has been created.

The subscriber writes rows to the LASR table my implementing an instance of the
com.sas.lasr.LASRPreparedAppender class. The appender is flushed when the adapter is shut down, so
the LASR table can be updated with additional rows at that time. While the adapter is running, there are 2
configuration parameters that control when the appender sends rows to the SAS LASR Analytic Server:
blocksize and autocommit. The default values for these are blocksize=0 and autocommit=0 (disabled).
So by default, every row is sent to the SAS LASR Analytic Server in real time, but they are not committed to the
table until the appender is closed by the adapter. If the subscribed window is producing insert-only events (that
is, no updates or deletes), the appender is not closed until the adapter is closed. Alternatively, you can configure
autocommit to commit rows to the LASR table periodically based on number of seconds or number of rows.

If the SAS LASR Analytic Server adapter is configured to access LASR authentication services, authpassword
must be specified in non-encrypted form for the ‑Z parameter if encryption is not enabled with the ‑N parameter.
The encrypted version of the password can be generated using OpenSSL. The OpenSSL executable is included
in the SAS Event Stream Processing System Encryption and Authentication Overlay installation. Use the
following command on the console to use OpenSSL to display your encrypted password:

echo "authpassword" | openssl enc -e -aes-256–cbc -a -salt -pass pass:"SASespLASRadapterUsedByUser=authusername"

Use the encrypted password to specify authpassword for the ‑Z parameter and enable encryption with the ‑N
parameter.

Subscriber usage:

dfesp_lasr_adapter -H lasrurl -h url1<, url2,...urlN> -k sub -t lasr_library_server_tag.table_name -X tklasrkey <-
A autocommit > <-a obstoanalyze > <-b blocksize > <-C [configfilesection]> <-d dateformat > <-g gdconfigfile >
<-L native | solace | tervela | rabbitmq | kafka> <-l loglevel > <-N> <-n> <-O tokenlocation > <-S> <-s schema>
<-U authurl > <-V> <-Y authusername > <-y transportconfigfile> <-Z authpassword > <-z bufsize >

62

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Publisher usage:

dfesp_lasr_adapter -H lasrurl -h url1<, url2,...urlN> -k pub -t table -X tklasrkey <-b blocksize > <-C
[configfilesection]> <-c> <-d dateformat > <-E> <-e> <-g gdconfigfile > <-L native | solace | tervela | rabbitmq |
kafka> <-l loglevel > <-N> <-O tokenlocation > < -Q action | -q action> <-S> <-T stimeout > <-U authurl <-u> > <-
V> <-W maxevents> <-Y authusername > <-y transportconfigfile> <-Z authpassword > <-z bufsize >

Parameter Description

‑A autocommit Specifies the number of observations to commit to the server. A value < 0
specifies the time in seconds between auto-commit operations. A value >
0 specifies the number of records that, after reached, forces an auto-
commit operation. A value of 0 specifies no auto-commit operation. The
default value is 0.

‑a obstoanalyze Specifies the number of observations to analyze in order to define the
output SAS LASR Analytic Server structure. The default value is 4096.
When you specify ‑s, this option is ignored.

‑b blocksize For a subscriber, specifies the buffer size (number of observations) to be
flushed to the server. For a publisher, specifies the event block size to be
published to a Source window. The default is 1.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
javaadapters.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\javaadapters.config (Windows) to parse for configuration
parameters.

‑c Quiesces the project after all events are injected into the Source window.

javaadapters.config parameter name: quiesceproject

‑d dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

‑E For a publisher, enables caching as data is fetched from a table. By
default, caching is disabled.

javaadapters.config parameter name: fetchallcached

‑e Specifies that event blocks are transactional. By default, event blocks are
normal.

javaadapters.config parameter name:transactional

‑g gdconfigfile Specifies the guaranteed delivery configuration file.

‑H lasrurl Specifies the SAS LASR Analytic Server URL in the form
"host:port".

63

Parameter Description

‑h url Specifies the publish and subscribe standard URL in the form dfESP://
host:port/project/continuousquery/window.

You must append the following for subscribers: ?snapshot=true |
false.

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The
subscriber then receives a stream of events produced from the time of the
snapshot onward. Those subsequent events can be Inserts, Updates, or
Deletes.

Append the following for subscribers if needed: ?collapse=true |
false ?rmretdel=true | false.

Note: You can specify multiple URLs.

‑k sub | pub Specifies subscribe or publish.

‑L native | solace | tervela |
rabbitmq | kafka

Specifies the transport type. When you specify solace, tervela,
rabbitmq, or kafka transports instead of the default native
transport, use the required client configuration files specified in “Using
Alternative Transport Libraries for Java Clients” in SAS Event Stream
Processing: Publish/Subscribe API.

‑l loglevel Specifies the Java standard logging level. Valid values are SEVERE |
WARNING | INFO. The default value is WARNING.

‑N Specifies that the authentication services password is encrypted.

javaadapters.config parameter name: pwdencrypted

‑n Creates a new LASR table. By default, the adapter assumes a LASR table
already exists.

javaadapters.config parameter name: newtable

‑O tokenlocation Specifies the location of the file in the local file system that contains the
OAuth token that is required for authentication by the publish/subscribe
server.

‑Q action For a publisher, specifies the action to get cached results from the LASR
table. For example, specify ‑q "fetch field1 / to=100 where
field2=2".

‑q action For a publisher, specifies the action to get results from the LASR table.
For example, specify ‑q "fetch field1 / to=100 where
field2=2".

‑S Does not observe strict SAS LASR Analytic Server adapter schema. The
default is to observe strict schema.

javaadapters.config parameter name: nostrictschema

‑s schema Specifies the explicit SAS LASR Analytic Server schema in the form
rowname1:sastype1:sasformat1:label1,...rownameN:sastypeN:sasformatN
:labelN.

Note: When you omit the sasformat, no SAS format is applied to
the row. When you omit the label, no label is applied to the row. If
you previously specified ‑a, this option is ignored.

64

http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en

Parameter Description

‑T stimeout Specifies the time out interval (in seconds) to wait for each response from
the server. By default, there is no time out interval

‑t
lasr_library_server_tag.table_
name

Specifies the full name of the LASR table. You must locate the server tag
in the metadata properties for the LASR table.

‑U authurl Specifies the URL for SAS LASR Analytic Server authentication services.

‑u Builds events with opcode=Upsert. By default, events are built with
opcode=Insert.

javaadapters.config parameter name: publishwithupsert

‑V Restarts the adapter if a fatal error is reported.

javaadapters.config parameter name: restartonerror

‑W maxevents Specifies the maximum number of events to publish.

‑X tklasrkey Specifies the path to tklasrkey.sh for Linux or tklasrkey.bat
for Microsoft Windows. By default, these files are located in
$DFESP_HOME/bin.

‑Y authusername Specifies the user name for SAS LASR Analytic Server authentication
services.

‑y transportconfigfile Specifies the publish/subscribe transport configuration file. The default
value depends on the transport type specified with the ‑l parameter:

For ‑l solace the default is ./solace.cfg

For ‑l tervela the default is ./client.config

For ‑l rabbitmq the default is ./rabbitmq.cfg

For ‑l kafka the default is ./kafka.cfg

Note: No transport configuration file is required for native
transport.

‑Z authpassword Specifies the password for SAS LASR Analytic Server authentication
services.

‑z bufsize Specifies the socket buffer size.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the Modbus Connector and Adapter

Using the Modbus Connector

The Modbus connector supports publish and subscribe operations to and from SAS Event Stream Processing
through the Modbus protocol.

65

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

The Modbus connector uses four object types. Each object type has a value for addresses between 0 and
65,534.

Table 19 Modbus Connector Object Types

Object Type Read or Write Value

Coil Read and Write 8 bit (on or off)

Input Read Only 8 bit (on or off)

Input Register Read Only 16 bit

Holding Register Read and Write 16 bit

The Modbus publisher connector reads values for each of the object types from the Modbus server and
publishes the values to SAS Event Stream Processing. The Modbus subscriber connector reads data from SAS
Event Stream Processing and publishes the values to Modbus. The subscriber supports only the Read-Only
object types coil and holding register.

The Modbus connector uses the libmodbus library to communicate with the Modbus server. For more
information about libmodbus, see http://libmodbus.org/.

You can use the Modbus PLC Simulator to simulate a Modbus instance. The Modbus PLC simulator is a
Windows executable that supports the Modbus protocol. With the simulator, you can view and modify the current
values for all addresses for Modbus objects. The Modbus connector communicates with the simulator to read
and write Modbus addresses through the libmodbus library. You can download the simulator at http://
www.plcsimulator.org/.

The Modbus publisher connector polls the Modbus server for data and publishes the values to a Source window
on a running ESP server. To receive data from a Modbus connector, the Source window must have the following
schema:

type*:string,address*:int32,value:int32

n type is the Modbus object type (coil, input, input register, or holding register)

n address is the Modbus object address (between 0 and 65,534)

n value is the Modbus object value (0 or 1 for coil and input, 16–bit value for registers)

If the publisher connector reads a non-0 value, it publishes an Upsert event into the model, such as
p,n,holding‑register,1,118. If the publisher connector reads a 0 value, it publishes a Delete event into
the model, such as d,n,holding‑register,1,0.

The Modbus subscriber connector subscribes to a window on a running ESP server and publishes data to the
Modbus server. The window subscribed to must also include the type, address, and value fields in its
schema.

When the subscriber connector receives an event from SAS Event Stream Processing, the values are pulled
from the event and sent to Modbus using the libmodbus library. If you are running the simulator, the values
update immediately.

You can choose to specify the data types and addresses to poll. When specifying multiple addresses, separate
each address with a comma. The items in the list are either individual addresses or address ranges. For
example, to poll holding registers for addresses 10 through 20, 33, and 44, define the connector property as
follows:

<property name='holdingRegisters'>10-20,33,44</property>

Note: If you specify a data type but no addresses, the connector scans through all available addresses.

66

http://libmodbus.org/
http://www.plcsimulator.org/
http://www.plcsimulator.org/

Table 20 Required Parameters for the Modbus Publisher Connector

Parameter Description

type Specifies to publish. Must be pub.

modbus Specifies the Modbus server host. Instead of a host name, you can specify
host:port. If no port is specified, the default is 502.

Table 21 Optional Parameters for the Modbus Publisher Connector

Parameter Description

interval Specifies the interval, in seconds, at which the object value data is pulled from the
Modbus server. The default is 10.

coils Specifies the coil addresses to poll.

inputs Specifies the input addresses to poll.

inputRegisters Specifies the input register addresses to poll.

holdingRegisters Specifies the holding register addresses to poll.

slaveId Specifies the device slave ID in the Modbus environment.

Table 22 Required Parameters for the Modbus Subscriber Connector

Parameter Description

type Specifies to subscribe. Must be sub.

modbus Specifies the Modbus server host. Instead of a host name, you can specify a port
with the form host:port. If no port is specified, the default is 502.

snapshot If true, pulls a snapshot from the window at start-up.

Table 23 Optional Parameters for the Modbus Subscriber Connector

Parameter Description

slaveId Specifies the device slave ID in the Modbus environment.

Using the Modbus Adapter

The Modbus adapter supports publish and subscribe operations between SAS Event Stream Processing and a
Modbus server.

67

In publisher mode, the adapter reads data from Modbus and publishes it to a Source window on a running ESP
server. A Source window receiving data from a Modbus publisher adapter must follow the same schema rules as
a Source window receiving events through a Modbus publisher connector.

In subscriber mode, the adapter receives events from a window on a running ESP server and publishes the data
to Modbus. A window sending data to a Modbus subscriber adapter must follow the same schema rules as a
window sending events through a Modbus subscriber connector.

Subscriber usage:

dfesp_modbus_adapter -h url -k sub -S slaveID -s server <-C configfilesection> <-E tokenlocation> <-g
gdconfig> <-l native | solace | tervela | rabbitmq | kafka> <-V> <-Z transportconfigfile>

Publisher usage:

dfesp_modbus_adapter -h url -k pub -S slaveID -s server <-b blocksize> <-C configfilesection> <-c coils> <-E
tokenlocation> <-g gdconfig> <-H holdingRegisters> <-I inputs> <-i interval> <-l native | solace | tervela |
rabbitmq | kafka> <-m maxevents> <-r inputRegisters> <-V> <-Z transportconfigfile>

Table 24 Modbus Adapter Parameters

Parameter Description

‑b blocksize Specifies the event block size. The default is 1.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/
config/etc/SASEventStreamProcessingEngine/
default/connectors.config (Linux) or
%ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration
parameters. Specify the value as [configfilesection].

‑c coils Specifies the Modbus coils to read.

‑E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token. This token is required for
authentication by the publish/subscribe server.

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑H holdingRegisters Specifies the Modbus holding registers to read.

‑h url Specifies the dfESP publish and subscribe standard URL in the
form dfESP://host:port/project/
continuousquery/window.

Append the following for subscribers:?snapshot=false.

Note: ?snapshot=true is invalid.
Append the following for subscribers if needed:

?collapse=true | false

?rmretdel=true

‑I inputs Specifies the Modbus inputs to read.

‑i interval Specifies the Modbus polling interval, in seconds. The default is
10.

68

Parameter Description

‑k sub | pub Specifies to publish or subscribe.

‑l native | solace | tervela |
rabbitmq | kafka

Specifies the publish/subscribe transport. The default is
native.

‑m maxevents Specifies the maximum number of events to publish. The default
is no maximum.

‑r inputRegisters Specifies the Modbus input registers to read.

‑S slaveID Specifies the slave ID of the Modbus device.

‑s server Specifies the Modbus server host name. The default port is 502.
To specify a different port, use the form ‑s server:port.

‑V Restarts the adapter if a fatal error is reported.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The
default value depends on the transport type specified with the ‑l
parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native
transport.

Using the MQTT Connector and Adapter

Using the MQTT Connector

MQ Telemetry Transport (MQTT) is a simple and lightweight publish/subscribe messaging protocol, designed for
constrained devices and low-bandwidth, high-latency, or unreliable networks. The design principle is to minimize
network bandwidth and device resource requirements while also attempting to ensure reliability and some
degree of assurance of delivery. This principle makes the protocol suitable for the emerging “machine-to-
machine” (M2M) or “Internet of Things” world of connected devices. It is also suitable for mobile applications,
where bandwidth and battery power are at a premium.

The MQTT connector communicates with an MQTT broker for both publish and subscribe operations, and
provides the following capabilities:

n Subscribe to an MQTT broker topic and publish received messages into a Source window.

n Subscribe to a window and publish received events to an MQTT broker topic.

n Auto-reconnect to the MQTT broker in case of lost connection.

n SSL/TLS v1.2 encryption and authentication for the MQTT server connections.

69

n Event as transmitted through the MQTT broker can be encoded as ESP binary event blocks, CSV, JSON,
Google Protocol buffers, and opaque string message formats.

n Supports MQTT protocol v3.1.1 .

You must install the Eclipse Mosquitto Client library v1.4.5 run-time libraries on the platform that hosts the
running instance of the connector. It provides the fastest interface to MQTT brokers. This library is available for
all platforms and can be downloaded from http://mosquitto.org/download. The run-time environment must define
the path to those libraries (for example, specifying LD_LIBRARY_PATH).

The MQTT connector is not supported on Windows systems.

If required, you can configure the mqttpassword parameter with an encrypted password. The encrypted
version of the password can be generated by using OpenSSL, which must be installed on your system. When
you install the SAS Event Stream Processing System Encryption and Authentication Overlay, you install the
included OpenSSL executable. Use the following command on the console to invoke OpenSSL to display your
encrypted password:

echo "mqttpassword" | openssl enc -e -aes-256-cbc -a -salt -pass pass:"SASespMQTTconnectorUsedByUser=mqttuserid"

Then copy the encrypted password into your mqttpassword parameter and enable the
mqttpasswordencrypted parameter.

Table 25 Required Parameters for Subscriber MQTT Connectors

Parameter Description

type Specifies to subscribe. Must be “sub”.

snapshot Specifies whether to send snapshot data.

When true, the subscriber receives a collection of Insert events that are
contained in the window at that point in time. The subscriber then receives
a stream of events produced from the time of the snapshot onward. Those
subsequent events can be Inserts, Updates, or Deletes.

mqtthost Specifies the MQTT server host name.

mqttclientid Specifies the string to use as the MQTT Client ID. If NULL, a random client
ID is generated. If NULL, mqttdonotcleansession must be false.
Must be unique among all clients connected to the MQTT server.

mqtttopic Specifies the string to use as an MQTT topic to publish events to.

mqttqos Specifies the requested Quality of Service. Values can be 0, 1 or 2.

mqttmsgtype Specifies binary, CSV, JSON, or the name of a string field in the
subscribed window schema.

Table 26 Required Parameters for Publisher MQTT Connectors

Parameter Description

type Specifies to publish. Must be “pub”.

mqtthost Specifies the MQTT server host name.

70

http://mosquitto.org/download

Parameter Description

mqttclientid Specifies the string to use as the MQTT Client ID. If NULL, a random
client ID is generated. If NULL, mqttdonotcleansession must be
false. Must be unique among all clients connected to the MQTT server.

mqtttopic Specifies the string to use as an MQTT subscription topic pattern.

mqttqos Specifies the requested Quality of Service. Values can be 0, 1 or 2.

mqttmsgtype Specifies binary, CSV, JSON, or opaquestring. For
opaquestring, if the Source window schema has 3 fields, it is
assumed to be
index:int64,topic:string,message:string. If the Source
window schema has 2 fields, it is assumed to be
index:int64,message:string.

Table 27 Optional Parameters for Publisher MQTT Connectors

Parameter Description

mqttuserid Specifies the user name required to authenticate the connector’s session
with the MQTT server.

mqttpassword Specifies the password associated with mqttuserid.

mqttport Specifies the MQTT server port. Default is 1883.

mqttacceptretainedmsg Sets to true to accept to receive retained message. The default is
“false”.

mqttcleansession Set to true to instruct the MQTT Server to clean all messages and
subscriptions on disconnect, false to instruct it to keep them. The default
is “true”.

mqttkeepaliveinterval Specifies the number of seconds after which the broker should send a
PING message to the client if no other messages have been exchanged in
that time. The default is 10.

publishwithupsert Builds events with opcode=Upsert instead of Insert.

transactional When mqttmsgtype=CSV, sets the event block type to transactional.
The default event block type is normal.

blocksize When mqttmsgtype=CSV, specifies the number of events to include in
a published event block. The default value is 1.

ignorecsvparseerrors Specifies that when a field in an input CSV event cannot be parsed, the
event is dropped, an error is logged, and publishing continues.

csvfielddelimiter Specifies the character delimiter for field data in input CSV events. The
default delimiter is the , character.

noautogenfield Specifies that input events are missing the key field that is automatically
generated by the Source window.

71

Parameter Description

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

protofile Specifies the .proto file that contains the Google Protocol Buffers
message definition used to convert event blocks to protobuf
messages. When you specify this parameter, you must also specify the
protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in the .proto
file that you specified with the protofile parameter. Event blocks are
converted into this message.

mqttssl Specifies to use SSL/TLS to connect to the MQTT broker. The default is
“false”. In order to use SSL/TLS, the SAS ESP encryption overlay must
be installed.

mqttsslcafile If mqttssl=true, specifies the path to a file containing the PEM
encoded trusted CA certificate files. Either mqttsslcafile or
mqttsslcapath must be specified.

mqttsslcapath If mqttssl=true, specifies the path to a directory containing the PEM
encoded trusted CA certificate files. See mosquitto.conf for more
details about configuring this directory. Either mqttsslcafile or
mqttsslcapath must be specified.

mqttsslcertfile If mqttssl=true, specifies the path to a file containing the PEM
encoded certificate file for this client. Both mqttsslcertfile and
mqttsslkeyfile must be provided if one of them is.

mqttsslkeyfile If mqttssl=true, specifies the path to a file containing the PEM
encoded private key for this client. Both mqttsslcertfile and
mqttsslkeyfile must be provided if one of them is.

mqttsslpassword If mqttssl=true, and if key file is encrypted, specifies the password
for decryption.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration
parameters. Specify the value as [configfilesection].

mqttpasswordencrypted Specifies that mqttpassword is encrypted.

maxevents Specifies the maximum number of events to publish.

72

Table 28 Optional Parameters for Subscriber MQTT Connectors

Parameter Description

mqttuserid Specifies the user name required to authenticate the connector’s session
with the MQTT server.

mqttpassword Specifies the password associated with mqttuserid.

mqttport Specifies the MQTT server port. The default is 1883.

mqttretainmsg Sets to true to make the published message retained in the MQTT Server.
The default is “false”.

mqttdonotcleansession Instructs the MQTT Server to keep all messages and subscriptions on
disconnect, instead of keeping them. The default is “false”.

mqttkeepaliveinterval Specifies the number of seconds after which the broker should send a
PING message to the client if no other messages have been exchanged in
that time. The default is 10.

mqttmsgmaxdeliveryattempts Specifies the number of times the connector tries to resend the message
in case of failure. The default is 20.

mqttmsgdelaydeliveryattempts Specifies the delay in milliseconds between delivery attempts specified
with mqttmsgmaxdeliveryattempts . The default is 500.

mqttmsgwaitbeforeretry Specifies the number of seconds to wait before retrying to send messages
to the MQTT broker. This applies to publish messages with QoS > 0. The
default is 20.

mqttmaxinflightmsg Specifies the number of QoS 1 and 2 messages that can be
simultaneously in flight. The default is 20.

collapse Enables conversion of UPDATE_BLOCK events to make subscriber
output publishable.

rmretdel Specifies to remove all delete events from event blocks received by a
subscriber that were introduced by a window retention policy

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

protofile Specifies the .proto file that contains the Google Protocol Buffers
message definition used to convert event blocks to protobuf
messages. When you specify this parameter, you must also specify the
protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in the .proto
file that you specified with the protofile parameter. Event blocks are
converted into this message.

mqttssl Specifies to use SSL/TLS to connect to the MQTT broker. The default is
“false”. In order to use SSL/TLS, the SAS ESP encryption overlay must
be installed.

73

Parameter Description

mqttsslcafile If mqttssl=true, specifies the path to a file containing the PEM
encoded trusted CA certificate files. Either mqttsslcafile or
mqttsslcapath must be specified.

mqttsslcapath If mqttssl=true, specifies the path to a directory containing the PEM
encoded trusted CA certificate files. See mosquitto.conf for more
details about configuring this directory. Either mqttsslcafile or
mqttsslcapath must be specified.

mqttsslcertfile If mqttssl=true, specifies the path to a file containing the PEM
encoded certificate file for this client. Both mqttsslcertfile and
mqttsslkeyfile must be provided if one of them is.

mqttsslkeyfile If mqttssl=true, specifies the path to a file containing the PEM
encoded private key for this client. Both mqttsslcertfile and
mqttsslkeyfile must be provided if one of them is.

mqttsslpassword If mqttssl=true, and if key file is encrypted, specifies the password
for decryption.

csvincludeschema Specifies never, once, or pereventblock. The default value is
“never”. When mqttmsgtype = CSV, prepend output CSV with the
window’s serialized schema.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration
parameters. Specify the value as [configfilesection].

mqttpasswordencrypted Specifies that mqttpassword is encrypted.

addcsvopcode Prepends an opcode and comma to input CSV events. The opcode is
Insert unless publishwithupsert is enabled.

addcsvflags Specifies the event type to insert into input CSV events (with a comma).
Valid values are normal and partialupdate.

csvmsgperevent For CSV, specifies to send one message per event. The default is one
message per transactional event block or else one message per event.

csvmsgpereventblock For CSV, specifies to send one message per event block. The default is
one message per transactional event block or else one message per
event.

doubleprecision Specifies the number of fractional digits in the ASCII representation of a
double. The default value is 6.

Using the MQTT Adapter

The MQTT adapter supports publish and subscribe operations against an MQTT server. You must install the
Eclipse Mosquitto Client libraries to use the adapter.

74

The MQTT adapter is not supported on Windows systems.

Note: Remove the reference to this connector from the file /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/connectors.excluded (Linux).

Subscriber usage:

dfesp_mqtt_adapter -c mqttclientid -h url -k sub -q 0 | 1 | 2 -z binary | csv | json -s mqtthost -t mqtttopic <-a
mqttkeepaliveinterval> <-B mqttmsgwaitbeforeretry> <-C configfilesection> <-d dateformat> <-E tokenlocation>
<-f protofile> <-G mqttmaxinflightmsg> <-g gdconfig> <-i mqttsslcafile> <-j trace | debug | info | warn | error | fatal
| off> <-K mqttsslkeyfile> <-L> <-l native | solace | tervela | rabbitmq | kafka> <-M> <-m protomsg> <-n> <-o
mqttport> <-P mqttsslcapath> <-p mqttpassword> <-r> <-S> <-T mqttsslcertfile> <-u mqttuserid> <-V> <-v
mqttmsgmaxdeliveryattempts> <-W mqttsslpassword> <-w never | once | pereventblock> <-X> <-x
mqttmsgdelaydeliveryattempts> <-y logconfigfile> <-Z transportconfigfile> <-3 doubleprecision>

Publisher usage:

dfesp_mqtt_adapter -c mqttclientid -h url -k pub -q 0 | 1 | 2 -z binary | csv | json -s mqtthost -t mqtttopic <-A> <-
a mqttkeepaliveinterval> <-b blocksize> <-C configfilesection> <-D csvfielddelimiter> <-d dateformat> <-E
tokenlocation> <-e> <-F eventtype> <-f protofile> <-g gdconfig> <-I> <-i mqttsslcafile> <-J> <-j trace | debug |
info | warn | error | fatal | off> <-K mqttsslkeyfile> <-l native | solace | tervela | rabbitmq | kafka> <-m protomsg>
<-n> <-O> <-o mqttport> <-P mqttsslcapath> <-p mqttpassword> <-Q> <-R> <-S> <-T mqttsslcertfile> <-u
mqttuserid> <-V> <-W mqttsslpassword> <-X> <-Y maxevents> <-y logconfigfile> <-Z transportconfigfile>

Parameter Description

‑A Specifies that input events are missing the key field that is automatically
generated by the Source window.

‑a mqttkeepaliveinterval Specifies the number of seconds after which the broker should send a PING
message to the client if no other messages have been exchanged in that time.
The default is 10 seconds.

‑B mqttmsgwaitbeforeretry Specifies the number of seconds to wait before retrying to send messages to the
MQTT broker (applies only to messages with QoS > 0). The default is 20.

‑b blocksize Specifies the event block size. The default is 1.

‑C configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

‑c mqttclientid Specifies the string to use as the MQTT Client ID. If NULL, a random client ID
will be generated. If NULL, mqttcleansession must be true. Must be
unique among all clients connected to the MQTT server.

‑D csvfielddelimiter Specifies the character delimiter for field data in input CSV events. The default
delimiter is the , character.

‑d dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in CSV
events. The default behavior is that these fields are interpreted as an integer
number of seconds (ESP_DATETIME) or microseconds (ESP_TIMESTAMP)
since epoch. The dateformat parameter accepts any time format that is
supported by the UNIX strftime function.

‑E tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token that is required for authentication by the publish/subscribe server.

75

Parameter Description

‑e Specifies that events are transactional.

‑F eventtype Specifies the event type to Insert into input CSV events (with comma). Valid
values are "normal" and "partialupdate".

‑f protofile Specifies the .proto file to be used for Google protocol buffer support.

‑G mqttmaxinflightmsg Specifies the number of QoS 1 and 2 messages that can be simultaneously in
flight. The default is 20.

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑h url Specifies the dfESP publish and subscribe standard URL in the form
dfESP://host:port/project/continuousquery/window.

Append the following for subscribers:?snapshot=false.

Append the following for subscribers if needed:

?collapse=true | false

?rmretdel=true

‑I Specifies that when a field in an input CSV event cannot be parsed, the event is
dropped, an error is logged, and publishing continues.

‑i mqttsslcafile If mqttssl=true, specifies the path to a file containing the PEM encoded
trusted CA certificate files. Either mqttsslcafile or mqttsslcapath
must be specified.

‑J Enables receiving of retained messages. The default is “false”.

‑j trace | debug | info |
warn | error | fatal | off

Specifies the logging level. The default is “warn”.

‑K mqttsslkeyfile If mqttssl=true, specifies the path to a file containing the PEM encoded
private key for this client. Both mqttsslcertfile and mqttsslkeyfile
must be provided if one of them is.

‑k sub | pub Specifies sub for subscriber or pub for publisher.

‑L For CSV, specifies to send one message per event block. The default is one
message per transactional event block or else one message per event.

‑l native | solace |
tervela | rabbitmq | kafka

Specifies the publish/subscribe transport. The default is native.

‑M For CSV, specifies to send one message per event. The default is one message
per transactional event block or else one message per event.

‑m protomsg Specifies the message itself in the .proto file that is specified by the
protofile parameter.

‑n Instructs the MQTT Server to keep all messages and subscriptions on
disconnect (instead of cleaning them). The default is “false”.

76

Parameter Description

‑O Prepends an opcode and comma to input CSV events. The opcode is Insert
unless ‑R is enabled.

‑o mqttport Specifies the MQTT server port. The default is 1883.

‑P mqttsslcapath If mqttssl=true, specifies the path to a directory containing the PEM
encoded trusted CA certificate files. See mosquitto.conf for more details
about configuring this directory. Either mqttsslcafile or
mqttsslcapath must be specified.

‑p mqttpassword Specifies the password associated with mqttuserid.

‑Q When maxevents is configured, quiesces the project after all events are injected
into the Source window.

‑q 0 | 1 | 2 Specifies the requested Quality of Service.

‑R Builds events with opcode=Upsert instead of opcode=Insert.

‑r Retains the published message in the MQTT Server. The default is “false”.

‑S Uses SSL/TLS to connect to the MQTT broker. The default is “false”. In order
to use SSL/TLS, the SAS ESP encryption overlay must be installed.

‑s mqtthost Specifies the MQTT server host name.

‑t mqtttopic Specifies the MQTT topic.

‑T mqttsslcertfile If mqttssl=true, specifies the path to a file containing the PEM encoded
certificate file for this client. Both mqttsslcertfile and
mqttsslkeyfile must be provided if one of them is.

‑u mqttuserid Specifies the user name required to authenticate the session with the MQTT
server.

‑V Restarts the adapter if a fatal error is reported.

‑v
mqttmsgmaxdeliveryattempts

Specifies the number of times to try to resend the message in case of failure.
The default is 20.

‑W mqttsslpassword If mqttssl=true and keyfile is encrypted, specifies the password for
decryption.

‑w never | once |
pereventblock

When rmqtype=CSV, specifies when to prepend output CSV data with the
window's serialized schema. The default value is “never”.

‑X Specifies that mqttpassword is encrypted.

‑x
mqttmsgdelaydeliveryattemp
ts

Specifies the delay in milliseconds between delivery attempts specified in
mqttmsgmaxdeliveryattempts. The default is 500.

‑Y maxevents Specifies the maximum number of events to publish.

77

Parameter Description

‑y logconfigfile Specifies the logging configuration file. By default, there is none.

‑z binary | csv | json |
opaquestring

Specifies the message format. opaquestring is valid only for publishers. For
opaquestring, if the Source window schema has 3 fields, it is assumed to
be "index:int64,topic:string,message:string". If the Source
window schema has 2 fields, it is assumed to be
"index:int64,message:string". For subscribers, the name of a string
field in the subscribed window schema is also supported.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

‑3 doubleprecision Specifies the number of fractional digits in the ASCII representation of a double.
The default value is 6.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the Nurego Connector

The Nurego connector is subscriber-only, and intended for use with a Metering window . When subscribed to the
Metering window, the connector builds a REST request for each subscribed event. It forwards the request to a
Nurego server through the HTTPS protocol.

The primary use case for the Nurego connector is to periodically provide usage information (number of events
processed) to the Nurego server. Because the REST request format is Nurego specific, this connector is not
general purpose.

Specify the URL of the Nurego service that fields the REST request with the mandatory configuration parameter
serviceurl. The serviceurl must be set to the Nurego REST API endpoint that accepts single–usage
reporting: https://api.nurego.com/v1/subscriptions/subscription_id/usage

The format and contents of the JSON payload in the REST request is as follows:

{
 “provider”: “cloud-foundry”,
 “feature_id”: “num_events”,
 “amount”: “<number of events>”,
 “usage_date”: “<usage_date>”
}

The connector builds and sends this JSON request for every event that is generated by the Metering window.
(By default the Metering window generates an event every five seconds). If the metering interval has been
reconfigured to a value greater than 30 seconds, then the Nurego connector logs an error and halts at start-up.

78

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcreatewindows&docsetVersion=5.2&docsetTarget=n1lkzgcuyg9y1xn1d1dn8rdnq4gz.htm&docsetTargetAnchor=p19oyjuuv22hien1oj21y8uta3bl&locale=en

Table 29 Required Parameters of the Nurego Connector

Parameter Description

type Specifies to subscribe. Must be “sub”.

snapshot Specifies whether to send snapshot data.

When true, the subscriber receives a collection of Insert events that are contained in the
window at that point in time. The subscriber then receives a stream of events produced
from the time of the snapshot onward. Those subsequent events can be Inserts, Updates,
or Deletes.

serviceurl Specifies the target Nurego REST service URL.

certificate Specifies the full path and filename of the client certificate that is used to establish the
HTTPS connection to the Nurego REST service.

username Specifies the user name to use in requests to Nurego for a new token.

password Specifies the password to use in requests to Nurego for a new token.

instanceid Specifies the instance ID to use in requests to Nurego for a new token

Table 30 Optional Parameters of the Nurego Connector

Parameter Description

certpassword Specifies the password associated with the client certificate
that is configured in certificate.

collapse Enables conversion of UPDATE_BLOCK events to make
subscriber output publishable.

rmretdel Specifies to remove all delete events from event blocks
received by a subscriber that were introduced by a window
retention policy

configfilesection Specifies the name of the section in /opt/sas/viya/
config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%
\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for
configuration parameters. Specify the value as
[configfilesection].

79

Using the OPC-UA Connector and Adapter

Using the OPC-UA Connector

The OPC-UA connector communicates with an OPC-UA server for publish and subscribe operations against the
Value attribute of a fixed set of OPC-UA nodes. The OPC-UA server endpoint is a required connector
configuration parameter.

The set of OPC-UA nodes must belong to a common namespace in the OPC-UA server. By default, the
connector uses the namespace with namespace index=0. You can configure an optional connector parameter to
specify a different namespace URI. To access additional nodes in a different server namespace, you must run a
separate instance of the connector attached to a different Source window.

The set of OPC-UA nodes accessed by the connector is defined by the schema of the window attached to the
connector. By default, the window schema field names must specify the Node ID of an OPC-UA node in the
configured OPC-UA server namespace. The appropriate Node IDs to configure on the connector can be found
using a standard OPC-UA browsing tool against the target OPC-UA server.

Alternatively, you can specify an optional connector parameter that maps each window field name to a Node ID.
In that case, the window fields can be named as desired.

The Node ID format is a fixed notation that contains the node identifier type and the node identifier, in the form of
s_MyTemperature. The first character is the identifier type and must be ‘s’ (String), ‘i’ (Integer), ‘g’ (GUID), or
‘b’ (Opaque). Following the underscore is the identifier string. If the type is Opaque, then the string must be
base64–encoded.

The window schema field types must match the type of the corresponding OPC-UA node. The supported
mappings are:

Table 31 Supported Mappings for a Publisher:

ESP type OPC-UA type

ESP_INT32 INT32 or UINT32 or INT16 or UINT16 or BOOLEAN

ESP_INT64 INT64 or UINT64 or INT32 or UINT32 or INT16 or UINT16
or BOOLEAN

ESP_DOUBLE DOUBLE or FLOAT or BOOLEAN

ESP_UTF8STR STRING

ESP_DATETIME DATETIME

ESP_TIMESTAMP DATETIME

ESP_MONEY Not supported

80

Table 32 Supported Mappings for a Subscriber:

ESP type OPC-UA type

ESP_INT32 INT32 or UINT32

ESP_INT64 INT64 or UINT64

ESP_DOUBLE DOUBLE

ESP_UTF8STR STRING

ESP_DATETIME DATETIME

ESP_TIMESTAMP DATETIME

ESP_MONEY Not supported

The OPC-UA publisher connector requires one additional field at the front of the Source window schema. This
additional field is a 64-bit integer that is incremented by the connector with every published event. You can use
this field as the window key field if no other field is appropriate.

The publisher publishes an event when the value of the Value attribute of an OPC-UA node in the Source
window schema changes. If the Source window contains additional fields representing other OPC-UA nodes, the
values in those fields remain unchanged. By default, the event contains an Insert opcode unless you configure
the connector to use Upsert instead.

You can also configure an optional publisher parameter that specifies an interval in seconds, where each
expiration of this interval generates a fetch of the current value of all OPC-UA nodes in the Source window, and
an event containing those values is published.

The OPC-UA subscriber connector writes the values in all fields of a subscribed event to the Value attribute of
the corresponding OPC-UA node when the event is generated by the subscribed window. It ignores all opcodes
except Insert and Update.

Table 33 Required Parameters for OPC-UA Connectors

Parameter Description

type Specifies to publish or subscribe.

opcuaendpoint Specifies the OPC-UA server endpoint (only the portion
following opc.tcp://).

Table 34 Optional Parameters for Publisher OPC-UA Connectors

Parameter Description

opcuanamespaceuri Specifies the OPC-UA server namespace URI. The default
is the namespace at index=0.

opcuausername Specifies the OPC-UA user name. By default, there is none.

opcuapassword Specifies the OPC-UA password. By default, there is none.

81

Parameter Description

opcuanodeids Specifies a comma-separated list of Node IDs to map to
ESP window schema fields, in the form <identifier
type>_<identifier>. The list size must be equal to
the number of fields in the subscribed window schema - 1.
Window field names are in Node ID form by default.

publishinterval Specifies an interval in seconds when current values of all
nodes in the Source window schema are published. The
default is to publish when one or more values changes.

transactional Sets the event block type to transactional. The default value
is “normal”.

blocksize Specifies the number of events to include in a published
event block. The default value is 1.

configfilesection Specifies the name of the section in /opt/sas/viya/
config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%
\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for
configuration parameters. Specify the value as
[configfilesection].

publishwithupsert Builds events with opcode=Upsert instead of Insert.

maxevents Specifies the maximum number of events to publish.

Table 35 Optional Parameters for Subscriber OPC-UA Connectors

Parameter Description

opcuanamespaceuri Specifies the OPC-UA server namespace URI. The default
is the namespace at index=0.

opcuausername Specifies the OPC-UA user name. By default, there is none.

opcuapassword Specifies the OPC-UA password. By default, there is none.

opcuanodeids Specifies a comma-separated list of Node IDs to map to
ESP window schema fields, in the form <identifier
type>_<identifier>. The list size must be equal to
the number of fields in the subscribed window schema.
Window field names are in Node ID form by default.

82

Parameter Description

configfilesection Specifies the name of the section in /opt/sas/viya/
config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%
\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for
configuration parameters. Specify the value as
[configfilesection].

Using the OPC-UA Adapter

The OPC-UA publisher and subscriber adapter and the OPC-UA publisher and subscriber connector share
configuration parameters, with the exception of some adapter-only optional parameters.

Subscriber usage:

dfesp_opcua_adapter -h url -k sub -s opcuaendpoint <-C configfilesection> <-E tokenlocation> <-g gdconfig>
<-i opcuanodeids> <-j trace | debug | info | warn | error | fatal | off> <-l native | solace | tervela | rabbitmq | kafka>
<-n opcuanamespaceuri> <-p opcuapassword> <-u opcuausername> <-V> <-y logconfigfile> <-Z
transportconfigfile>

Publisher usage:

dfesp_opcua_adapter -h url -k pub -s opcuaendpoint <-b blocksize> <-C configfilesection> <-E tokenlocation>
<-e > <-g gdconfig> <-i opcuanodeids> <-j trace | debug | info | warn | error | fatal | off> <-l native | solace |
tervela | rabbitmq | kafka> <-m maxevents> <-n opcuanamespaceuri> <-p opcuapassword> <-Q> <-R> <-u
opcuausername> <-V> <-v publishinterval> <-y logconfigfile> <-Z transportconfigfile>

Parameter Description

‑b blocksize Specifies the event block size. The default is 1.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/
config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%
\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for
configuration parameters. Specify the value as
[configfilesection].

‑E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token. This token is required for
authentication by the publish/subscribe server. By default,
there is none.

‑e Specifies that events are transactional.

‑g gdconfig Specifies a guaranteed delivery configuration file.

83

Parameter Description

‑h url Specifies the dfESP publish and subscribe standard URL in
the form dfESP://host:port/project/
continuousquery/window.

Append the following for subscribers:?
snapshot=false.

Note: ?snapshot=true is invalid.

‑i opcuanodeids Specifies a comma–separated list of Node IDs to map to
ESP window schema fields, in the form <identifier
type>_<identifier>. The default assumes that
window field names are in Node ID form.

‑j trace | debug | info | warn | error |
fatal | off

Specifies the logging level. The default is “warn”.

‑k sub | pub Specifies sub for subscriber or pub for publisher.

‑l native| solace | tervela | rabbitmq |
kafka

Specifies the publish/subscribe transport. The default is
native.

‑m maxevents Specifies the maximum number of events to publish.

‑n opcuanamespaceuri Specifies the OPC-UA server namespace URI. The default
is the namespace at index=0.

‑p opcuapassword Specifies the OPC-UA password. By default, there is none.

‑Q When maxevents is configured, quiesces the project after
all events are injected into the Source window.

‑R Builds events with opcode=Upsert instead of
opcode=Insert.

‑s opcuaendpoint Specifies the OPC-UA server endpoint, without the
opc.tcp:// prefix.

‑u opcuausername Specifies OPC-UA user name. By default, there is none.

‑V Restarts the adapter after a fatal error.

–v publishinterval Specifies the interval (in seconds) at which all current Node
ID values are published into the Source window. By default,
values are published when they change.

‑y logconfigfile Specifies the logging configuration file. By default, there is
none.

84

Parameter Description

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file.
The default value depends on the transport type specified
with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for
native transport.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the PI Connector and Adapter

Using the PI Connector

The PI connector supports publish and subscribe operations for a PI Asset Framework (AF) server. The model
must implement a window of a fixed schema to carry values that are associated with AF attributes owned by AF
elements in the AF hierarchy. The AF data reference can be defined as a PI Point for these elements.

Note: Support for the PI connector is available only on 64–bit Microsoft Windows platforms.

The PI Asset Framework (PI AF) Client from OSIsoft must be installed on the Microsoft Windows platform that
hosts the running instance of the connector. The connector loads the OSIsoft.AFSDK.DLL public assembly,
which requires .NET 4.0 installed on the target platform. The run-time environment must define the path to
OSIsoft.AFSDK.dll.

Note: Remove the reference to this connector from the file /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/connectors.excluded (Linux) or %ProgramData%\SAS
\Viya\SASEventStreamProcessingEngine\default\connectors.excluded (Windows) before using
it.

The PI connector also loads the esp_pi_afsdk52 DLL located in the $DFESP_HOME/bin/plugins directory.
Make sure that the run-time environment also defines the path to this DLL.

The window that is associated with the connector must use the following schema:

ID*:int32,elementindex:string,element:string,attribute:string,value:variable:,
timestamp:stamp,status:string

Use the following schema values.

Schema Value Description

elementindex Value of the connector afelement configuration parameter. Specify either an
AF element name or an AF element template name.

element Name of the AF element associated with the value.

attribute Name of the AF attribute owned by the AF element.

85

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Schema Value Description

value Value of the AF attribute.

timestamp Timestamp associated with the value.

status Status associated with the value.

Note: The type of the value field is determined by the type of the AF attribute as defined in the AF hierarchy.

The following mapping of event stream processor data type to AF attributes is supported:

Event Stream Processor Data Type AF Attribute

ESP_DOUBLE TypeCode::Single

TypeCode::Double

ESP_INT32 TypeCode::Byte

TypeCode::SByte

TypeCode::Char

TypeCode::Int16

TypeCode::UInt16

TypeCode::Int32

TypeCode::UInt32

ESP_INT64 TypeCode::Int64

TypeCode::UInt64

ESP_UTF8STR TypeCode::String

ESP_TIMESTAMP TypeCode::DateTime

If an attribute has TypeCode::Object, the connected uses the type of the underlying PI point. Valid event
stream processing data types to PI point mappings are as follows:

Event Stream Processor Data Type PI Point

ESP_INT32 PIPointType::Int16

PIPointType::Int32

ESP_DOUBLE PIPointType::Float16

PIPointType::Float32

ESP_TIMESTAMP PIPointType::Timestamp

ESP_UTF8STR PIPointType::String

Use the following parameters with PI connectors:

86

Table 36 Required Parameters for Subscriber PI Connectors

Parameter Description

type Specifies to subscribe. Must be “sub”.

afelement Specifies the AF element or element template name. Wildcards are supported.

iselementtemplate Specifies whether the afelement parameter is an element template name.
By default, the afelement parameter specifies an element name. Valid
values are TRUE or FALSE.

snapshot Specifies whether to send snapshot data.

When true, the subscriber receives a collection of Insert events that are
contained in the window at that point in time. The subscriber then receives a
stream of events produced from the time of the snapshot onward. Those
subsequent events can be Inserts, Updates, or Deletes.

Table 37 Required Parameters for Publisher PI Connectors

Parameter Description

type Specifies to publish. Must be “pub”.

afelement Specifies the AF element or element template name. Wildcards are supported.

iselementtemplate Specifies that the afelement parameter is an element template name. By
default, the afelement parameter specifies an element name.

Table 38 Optional Parameters for Subscriber PI Connectors

Parameter Description

rmretdel Removes all delete events from event blocks received by the subscriber that
were introduced by a window retention policy.

pisystem Specifies the PI system. The default is the PI system that is configured in the PI
AF client.

afdatabase Specifies the AF database. The default is the AF database that is configured in
the PI AF client.

afrootelement Specifies the root element in the AF hierarchy from which to search for
parameter afelement. The default is the top-level element in the AF
database.

afattribute Specifies a specific attribute in the element. The default is all attributes in the
element.

87

Parameter Description

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

Table 39 Optional Parameters for Publisher PI Connectors

Parameter Description

blocksize Specifies the number of events to include in a published event block. The
default value is 1.

transactional Sets the event block type to transactional. The default event block type is
normal.

pisystem Specifies the PI system. The default is the PI system that is configured in the PI
AF client.

afdatabase Specifies the AF database. The default is the AF database that is configured in
the PI AF client.

afrootelement Specifies the root element in the AF hierarchy from which to search for the
parameter afelement. The default is the top-level element in the AF
database.

afattribute Specifies a specific attribute in the element. The default is all attributes in the
element.

archivetimestamp Specifies that all archived values from the specified timestamp onwards are to
be published when connecting to the PI system. The default is to publish only
new values.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

publishwithupsert Builds events with opcode=Upsert instead of Insert.

maxevents Specifies the maximum number of events to publish.

Using the PI Adapter

The PI adapter supports publish and subscribe operations against a PI Asset Framework (PI) server. You must
install the PI AF Client from OSISoft in order to use the adapter.

Note: Support for the PI adapter is available only on 64–bit Microsoft Windows platforms.

Subscriber usage:

88

dfesp_pi_adapter -h url -k sub -s afelement <-a afattribute > <-C [configfilesection]> <-d afdatabase > <-E
tokenlocation > <-g gdconfig > <-j trace | debug | info | warn | error | fatal> <-l native | solace | tervela | rabbitmq |
kafka> <-p pisystem > <-r afrootelement > <-t> <-V> <-y logconfigfile > <-Z transportconfigfile>

Publisher usage:

dfesp_pi_adapter -h url -k pub -s afelement <-a afattribute > <-b blocksize > <-C [configfilesection]> <-c> <-d
afdatabase > <-E tokenlocation > <-e> <-g gdconfig > <-j trace | debug | info | warn | error | fatal> <-l native |
solace | tervela | rabbitmq | kafka> <-m maxevents> <-p pisystem > <-Q> <-R> <-r afrootelement > <-t> <-V> <-
y logconfigfile > <-Z transportconfigfile>

Parameter Description

‑a afattribute Specifies an attribute in afelement and ignore other attributes there.

‑b blocksize Specifies the block size. The default value is 1.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

‑c archivetimestamp Specifies that when connecting to the AF server, retrieve all archived values
from the specified timestamp onwards.

‑d afdatabase Specifies the AF database

‑E tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token that is required for authentication by the publish/subscribe server.

‑e Specifies that events are transactional.

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑h url Specifies the dfESP publish and subscribe standard URL in the form
dfESP://host:port/project/continuousquery/window .

Append the following for subscribers: ?snapshot=true | false.

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The subscriber
then receives a stream of events produced from the time of the snapshot
onward. Those subsequent events can be Inserts, Updates, or Deletes.

Append the following for subscribers if needed: ?collapse=true |
false ?rmretdel=true | false.

‑j trace | debug | info |
warn | error | fatal | off

Sets the logging level for the adapter. This is the same range of logging levels
that you can set in the C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

‑k Specifies sub for subscriber use and pub for publisher use

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the transport type. If you specify solace, tervela, rabbitmq,
or kafka transports instead of the default native transport, use the
required client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

89

Parameter Description

‑m maxevents Specifies the maximum number of events to publish.

‑p pisystem Specifies the PI system.

‑Q When maxevents is configured, quiesces the project after all events are
injected into the Source window.

‑R Builds events with opcode=Upsert instead of Insert.

‑r afrootelement Specifies a root element in the AF hierarchy from which to search for
afelement.

‑s afelement Specifies the AF element or element template name. Wildcards are
supported.

‑t Specifies that afelement is the name of an element template.

‑V Restarts the adapter if a fatal error is reported.

‑y logconfigfile Specifies the log configuration file.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the Project Publish Connector

Use the project publish connector to subscribe to event blocks that are produced by a window from a different
project within the event stream processing model. The connector receives that window’s event blocks and injects
them into its associated window. Window schemas must be identical. When the source project is stopped, the
flow of event blocks to the publisher is stopped.

The project publish connector has a reference-counted copy of the events so that only a single copy of the event
is in memory.

Table 40 Required Parameters for the Project Publish Connector

Parameter Description

type Specifies to publish. Must be “pub”.

90

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Parameter Description

srcproject Specifies the name of the source project.

srccontinuousquery Specifies the name of the source continuous query.

srcwindow Specifies the name of the Source window.

Table 41 Optional Parameters for the Project Publish Connector

Parameter Description

maxevents Specifies the maximum number of events to publish.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/connectors.config
(Linux) or %ProgramData%\SAS\Viya\SASEventStreamProcessingEngine
\default\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

Using the Pylon Publisher Connector and
Adapter

Using the Pylon Publisher Connector

The Pylon connector communicates with a Basler GigE camera to continuously publish captured frames into a
Source window. The camera must have a known, fixed IP address, and the attached Ethernet network cable
must provide power using Power-over-Ethernet.

If the camera does not have an IP configuration or its IP address is unknown, you must run the Pylon IP
Configurator. The Pylon IP Configurator can be found in the Basler Pylon Camera Software Suite available for
download at https://www.baslerweb.com/en/support/downloads/software-downloads/. In order for the camera to
be discovered, it must be connected to the same subnet as the machine running the software. You can then
copy its IP address into the connector configuration to run the connector. If no camera IP address has been
configured, the connector connects to the first camera found on the local subnet. Running the connector without
a camera IP address might be useful for testing, but it is not recommended for production deployments.

To optimize performance, configure all network interfaces between the camera and the machine running the
connector to support jumbo frames. Be sure to configure the camerapacketsize connector parameter with the
same MTU value.

The frame data received by the connector is uncompressed and copied into a Source window field of type
ESP_BINARY. The Source window schema must consist of a 64–bit integer followed by the binary blob field (for
example: id*:int64,frame:blob). The integer field, id, is incremented by the connector with every
published event and serves as the window key field.

By default, frames are published as fast as the camera can provide them, but the user can configure the
connector to publish frames at a slower, fixed rate. Basic frame parameters such as pixel format and Area-Of-
Interest width and height are configurable with connector configuration parameters.

91

Full access to the complete set of camera configuration parameters is available only in the Basler Pylon Camera
Software Suite mentioned earlier. This utility can save a camera’s configuration to a file, and the path to that file
can be configured on the connector to allow the user to run the camera with any valid camera configuration.

Multiple connector instances can be started to capture frames simultaneously from different cameras and
publish them to any combination of Source windows.

Note: You must install the Pylon run-time libraries on the platform that hosts the running instance of the
connector. These libraries are installed as part of the Pylon Camera Software Suite installation and can be found
under the same /pylon* directory. The run-time environment must define the path to those libraries (for
example, specifying LD_LIBRARY_PATH on Linux platforms).

Table 42 Required Parameters for Pylon Connectors

Parameter Description

type Specifies to publish. Must be pub.

Table 43 Optional Parameters for Pylon Connectors

Parameter Description

cameraipaddress Specifies the camera IP address. The default value is the
address of the first camera found on the local subnet.

maxnumframes Specifies the maximum number of frames to publish. The
default value is no maximum.

maxframerate Specifies the maximum number of frames per second to
publish. The default value is the rate at which frames are
received from the camera.

camerafeaturesfile Specifies a Pylon Features Stream (*.pfs) configuration file
to load. The default is to use the current camera
configuration unmodified.

camerawidth Specifies the Area-Of-Interest width. The default value is
the value in the current camera configuration.

cameraheight Specifies the Area-Of-Interest height. The default value is
the value in the current camera configuration.

camerapixelformat Specifies the image pixel format. The default value is the
format in the current camera configuration.

camerapacketsize Specifies the Ethernet packet size. The default value is the
value in the current camera configuration.

transactional Sets the event block type to transactional. The default event
block type is normal.

92

Parameter Description

configfilesection Specifies the name of the section in /opt/sas/viya/
config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%
\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for
configuration parameters. Specify the value as
[configfilesection].

publishwithupsert Builds events with opcode=Upsert instead of
opcode=Insert.

cameraxoffset Specifies the Area-Of-Interest horizontal offset. The default
value is the value in the current camera configuration.

camerayoffset Specifies the Area-Of-Interest vertical offset. The default
value is the value in the current camera configuration.

maxevents Specifies the maximum number of events to publish.

Using the Pylon Publisher Adapter

The Pylon publisher adapter provides the same functionality as the Pylon publisher connector, with the addition
of some adapter-only optional parameters.

Usage:

dfesp_pylon_adapter -h url <-a camerafeaturesfile> <-C configfilesection> <-E tokenlocation> <-e> <-f
maxframerate> <-g gdconfig> <-i cameraipaddress> <-j trace | debug | info | warn | error | fatal | off> <-l native |
solace | tervela | rabbitmq | kafka> <-m maxevents> <-n maxnumframes> <-p camerapixelformat> <-Q> <-R> <-
s camerapacketsize> <-t cameraheight> <-V> <-w camerawidth> <-y logconfigfile> <-Z transportconfigfile> <-X
cameraxoffset> <-Y camerayoffset>

Parameter Description

‑a camerafeaturesfile Specifies a Pylon Features Stream (*.pfs) configuration file
to load. The default is to use the current camera
configuration unmodified.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/
config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%
\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for
configuration parameters. Specify the value as
[configfilesection].

‑E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token that is required for authentication
by the publish/subscribe server.

93

Parameter Description

‑e Specifies that events are transactional.

‑f maxframerate Specifies the maximum number of frames per second to
publish. The default value is the rate at which frames are
received from the camera.

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑h url Specifies the dfESP publish and subscribe standard URL in
the form dfESP://host:port/project/continuousquery/
window .

‑i cameraipaddress Specifies the camera IP address. The default value is the
address of the first camera found on the local subnet.

‑j trace | debug | info | warn | error |
fatal | off

Sets the logging level for the adapter. This is the same
range of logging levels that you can set in the
C_dfESPpubsubInit() publish/subscribe API call and
in the engine initialize() call.

‑l native | solace | tervela | rabbitmq
| kafka

Specifies the transport type. If you specify solace,
tervela, rabbitmq, or kafka transports instead of
the default native transport, use the required client
configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑m maxevents Specifies the maximum number of events to publish.

‑n maxnumframes Specifies the maximum number of frames to publish. The
default value is no maximum.

‑p camerapixelformat Specifies the image pixel format. The default value is the
format in the current camera configuration.

‑Q When maxevents is configured, quiesces the project after
all events are injected into the Source window.

‑R Builds events with opcode=Upsert instead of
opcode=Insert.

‑s camerapacketsize Specifies the Ethernet packet size. The default value is the
value in the current camera configuration.

‑t cameraheight Specifies the Area-Of-Interest height. The default value is
the value in the current camera configuration.

‑V Restarts the adapter if a fatal error is reported.

‑w camerawidth Specifies the Area-Of-Interest width. The default value is
the value in the current camera configuration.

‑y logconfigfile Specifies the log configuration file.

94

Parameter Description

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file.
The default value depends on the transport type specified
with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for
native transport.

‑X cameraxoffset Specifies the Area-Of-Interest horizontal offset. The default
value is the value in the current camera configuration.

‑Y camerayoffset Specifies the Area-Of-Interest vertical offset. The default
value is the value in the current camera configuration.

Using the Rabbit MQ Connector and Adapter

Using the Rabbit MQ Connector

The Rabbit MQ connector communicates with a Rabbit MQ server for publish and subscribe operations. The bus
connectivity provided by the connector eliminates the need for the engine to manage individual publish/
subscribe connections. The connector achieves a high capacity of concurrent publish/subscribe connections to a
single engine.

A Rabbit MQ subscriber connector receives event blocks and publishes them to a Rabbit MQ routing key. A
Rabbit MQ publisher connector reads event blocks from a dynamically created Rabbit MQ queue and injects
them into an event stream processing Source window.

Event blocks as transmitted through the Rabbit MQ server can be encoded as binary, CSV, Google protobufs, or
JSON messages. The connector performs any conversion to and from binary format. The message format is a
connector configuration parameter.

The Rabbit MQ connector supports hot failover operation. This mode requires that you install the presence-
exchange plug-in on the Rabbit MQ server. You can download that plug-in from https://github.com/tonyg/
presence-exchange.

Ensure that the presence-exchange version that you use matches that of the installed Rabbit MQ server. For
example, if you use server version 3.5.x, you can use presence-exchange version 3.5.y, where x and y differ but
both are version 3.5. Mismatched versions (for example, 3.4.x and 3.3.y) might work in some cases, but this
type of mismatch is not recommended.

A corresponding event stream processing publish/subscribe client plug-in library is available. This library
enables a standard event stream processing publish/subscribe client application to exchange event blocks with
an event stream processing server through a Rabbit MQ server. The exchange takes place through the Rabbit
MQ server instead of through direct TCP connections. To enable this exchange, add a call to
C_dfESPpubsubSetPubsubLib().

When configured for hot failover operation, the active/standby status of the connector is coordinated with the
Rabbit MQ server. Thus, a standby connector becomes active when the active connector fails. All involved
connectors must meet the following conditions to guarantee successful switchovers:

95

n They must belong to identical ESP models.

n They must initiate message flow at the same time. This is required because message IDs must be
synchronized across all connectors.

When a new subscriber connector becomes active, outbound message flow remains synchronized. This is due
to buffering of messages by standby connectors and coordination of the resumed flow with the Rabbit MQ
server. The size of the message buffer is a required parameter for subscriber connectors.

You can configure a subscriber Rabbit MQ connector to send a custom snapshot of window contents to any
subscriber client. The client must have established a new connection to the Rabbit MQ server. This enables late
subscribers to catch up upon connecting. This functionality also requires that you install the presence-exchange
plug-in on the Rabbit MQ server.

When the connector starts, it subscribes to topic urlhostport/M (where urlhostport is a connector
configuration parameter). This enables the connector to receive metadata requests from clients that publish or
subscribe to a window in an engine associated with that host:port combination. Metadata responses consist of
some combination of the following:

n project name of the window associated with the connector

n query name of the window associated with the connector

n window name of the window associated with the connector

n the serialized schema of the window

You must install Rabbit MQ client run-time libraries on the platform that hosts the running instance of the
connector. The connector uses the rabbitmq‑c v0.5.2 C libraries, which you can download from https://
github.com/alanxz/rabbitmq-c. The run-time environment must define the path to those libraries (for example,
specifying LD_LIBRARY_PATH on Linux platforms). If you build your rabbitmq‑c libraries with SSL support
enabled, make sure to include the path to those SSL libraries in your run-time environment.

For queues that are created by a publisher, the optional buspersistence parameter controls both
auto‑delete and durable.

Setting of the buspersistence parameter Effect

true auto‑delete = false
durable = true

false auto‑delete = true
durable = false

The following holds when consuming from those queues:

Setting of the buspersistence parameter Effect

true exclusive = true

noack = false

false exclusive = false

noack = true

When the publisher connector creates a durable receive queue with auto-delete disabled, it consumes from that
queue with noack = false but does not explicitly acknowledge messages. This enables a rebooted event
stream processing server to receive persisted messages. To have a buspersistent publisher occasionally

96

acknowledge groups of messages older than a specified age, configure the combination of ackwindow and
acktimer parameters. This keeps the message queue from growing unbounded, avoiding administrator
intervention.

The queue name is equal to the buspersistencequeue parameter appended with the configured topic
parameter. The buspersistencequeue parameter must be unique on all publisher connectors that use the
same Rabbit MQ exchange. The publisher connector enforces this by consuming the queue in exclusive mode
when buspersistence is enabled.

For a subscriber connector, enabling buspersistence means that messages are sent with the delivery mode
set to persistent.

For exchanges that are created by a publish or a subscribe, buspersistence controls only durable. That is,
when buspersistence = true, durable = true, and when buspersistence = false, durable =
false.

If required, you can configure the rmqpassword parameter with an encrypted password. The encrypted version
of the password can be generated by using OpenSSL, which must be installed on your system. If you have
installed the SAS Event Stream Processing System Encryption and Authentication Overlay, you can use the
included OpenSSL executable. Use the following command on the console to invoke OpenSSL to display your
encrypted password:

echo "rmqpassword" | openssl enc -e -aes-256-cbc -a -salt -pass pass:"SASespRMQconnectorUsedByUser=rmquserid"

Then copy the encrypted password into your rmqpassword parameter and enable the
rmqpasswordencrypted parameter.

Table 44 Required Parameters for Subscriber Rabbit MQ Connectors

Parameter Description

type Specifies to subscribe. Must be “sub”.

rmquserid Specifies the user name required to authenticate the connector’s session with the
Rabbit MQ server.

rmqpassword Specifies the password associated with rmquserid.

rmqhost Specifies the Rabbit MQ server host name.

rmqport Specifies the Rabbit MQ server port.

rmqexchange Specifies the Rabbit MQ exchange created by the connector, if nonexistent.

rmqtopic Specifies the Rabbit MQ routing key to which messages are published.

rmqtype Specifies binary, CSV, JSON, or the name of a string field in the subscribed window
schema.

urlhostport Specifies the host:port field in the metadata topic subscribed to on start-up to field
metadata requests.

numbufferedmsgs Specifies the maximum number of messages buffered by a standby subscriber
connector. When exceeded, the oldest message is discarded. When the connector
goes active, the buffer is flushed and buffered messages are sent to the fabric as
required to maintain message ID sequence.

97

Parameter Description

snapshot Specifies whether to send snapshot data.

When true, the subscriber receives a collection of Insert events that are contained in
the window at that point in time. The subscriber then receives a stream of events
produced from the time of the snapshot onward. Those subsequent events can be
Inserts, Updates, or Deletes.

This parameter is invalid if buspersistence or hotfailover is enabled.

Table 45 Required Parameters for Publisher Rabbit MQ Connectors

Parameter Description

type Specifies to publish. Must be “pub”.

rmquserid Specifies the user name required to authenticate the connector’s session with the
Rabbit MQ server.

rmqpassword Specifies the password associated with rmquserid.

rmqhost Specifies the Rabbit MQ server host name.

rmqport Specifies the Rabbit MQ server port.

rmqexchange Specifies the Rabbit MQ exchange created by the connector, if nonexistent.

rmqtopic Specifies the Rabbit MQ routing key to which messages are published.

rmqtype Specifies binary, CSV, JSON, or opaquestring. For opaquestring, the
Source window schema is assumed to be
index:int64,message:string.

urlhostport Specifies the host:port field in the metadata topic subscribed to on start-up to field
metadata requests.

Table 46 Optional Parameters for Subscriber Rabbit MQ Connectors

Parameter Description

collapse Enables conversion of UPDATE_BLOCK events to make subscriber output
publishable.

rmretdel Specifies to remove all delete events from event blocks received by a subscriber
that were introduced by a window retention policy.

hotfailover Enables hot failover mode.

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in CSV
events. The default behavior is that these fields are interpreted as an integer
number of seconds (ESP_DATETIME) or microseconds (ESP_TIMESTAMP)
since epoch. The dateformat parameter accepts any time format that is
supported by the UNIX strftime function.

98

Parameter Description

buspersistence Specify to send messages using persistent delivery mode.

protofile Specifies the .proto file that contains the Google Protocol Buffers message
definition used to convert event blocks to protobuf messages. When you
specify this parameter, you must also specify the protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in the .proto file that
you specified with the protofile parameter. Event blocks are converted into
this message.

csvincludeschema When rmqtype=CSV, specifies when to prepend output CSV data with the
window’s serialized schema. Valid values are never, once, and
pereventblock. The default value is “never”.

useclientmsgid When performing a failover operation and extracting a message ID from an event
block, use the client-generated message ID instead of the engine-generated
message ID.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

rmqpasswordencrypted Specifies that rmqpassword is encrypted.

rmqvhost Specifies the Rabbit MQ vhost. The default is /.

csvmsgperevent For CSV, specifies to send one message per event. The default is one message
per transactional event block or else one message per event.

csvmsgpereventblock For CSV, specifies to send one message per event block. The default is one
message per transactional event block or else one message per event.

rmqcontenttype Specifies the value of the content_type parameter in messages sent to
RabbitMQ. The default value depends on the message format as follows:

n binary

application/octet‑stream
n csv

text/csv;charset=utf‑8
n json

application/json

n protobufs

application/x‑protobuf
n opaque

text/csv;charset=utf‑8

rmqheaders A comma–separated list of key value optional headers in messages sent to
RabbitMQ. The default value is no headers.

99

Parameter Description

rmqssl Enables SSL encryption on the connection to the Rabbit MQ server.

rmqsslcacert When rmqssl is enabled, specifies the full path of the SSL CA certificate .pem
file.

rmqsslkey When rmqssl is enabled, specifies the full path of the SSL key .pem file.

rmqsslcert When rmqssl is enabled, specifies the full path of the SSL certificate .pem file.

doubleprecision Specifies the number of fractional digits in the ASCII representation of a double.
The default value is 6.

Table 47 Optional Parameters for Publisher Rabbit MQ Connectors

Parameter Description

transactional When rmqtype=CSV, sets the event block type to transactional. The
default event block type is normal.

blocksize When rmqtype=CSV, specifies the number of events to include in a published
event block. The default value is 1.

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in CSV
events. The default behavior is that these fields are interpreted as an integer
number of seconds (ESP_DATETIME) or microseconds (ESP_TIMESTAMP)
since epoch. The dateformat parameter accepts any time format that is
supported by the UNIX strftime function.

buspersistence Controls both auto‑delete and durable.

buspersistencequeue Specifies the queue name used by a persistent publisher.

ignorecsvparseerrors Specifies that when a field in an input CSV event cannot be parsed, the event is
dropped, an error is logged, and publishing continues.

protofile Specifies the .proto file that contains the Google Protocol Buffers message
definition used to convert event blocks to protobuf messages. When you
specify this parameter, you must also specify the protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in the .proto file
that you specified with the protofile parameter. Event blocks are converted
into this message.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

csvfielddelimiter Specifies the character delimiter for field data in input CSV events. The default
delimiter is the , character.

100

Parameter Description

noautogenfield Specifies that input events are missing the key field that is autogenerated by the
source window.

ackwindow Specifies the time period (in seconds) to leave messages that are received from
Rabbit MQ unacknowledged. Applies only when buspersistence =
true, when, by default, messages are never acknowledged. When configured,
messages are acknowledged this number of seconds after having been
received. Must be configured if acktimer is configured.

acktimer Specifies the time interval (in seconds) for how often to check whether to send
acknowledgments that are triggered by the ackwindow parameter. Must be
configured if ackwindow is configured.

publishwithupsert Builds events with opcode=Upsert instead of Insert.

rmqpasswordencrypted Specifies that rmqpassword is encrypted.

addcsvopcode Prepends an opcode and comma to input CSV events. The opcode is Insert
unless publishwithupsert is enabled.

addcsvflags Specifies the event type to insert into input CSV events (with a comma). Valid
values are normal and partialupdate.

rmqvhost Specifies the Rabbit MQ vhost. The default is /.

useclientmsgid If the Source window has been restored from a persist to disk, ignores received
binary event blocks that contain a message ID less than the greatest message
ID in the restored window.

rmqssl Enables SSL encryption on the connection to the Rabbit MQ server.

rmqsslcacert When rmqssl is enabled, specifies the full path of the SSL CA certificate .pem
file.

rmqsslkey When rmqssl is enabled, specifies the full path of the SSL key .pem file.

rmqsslcert When rmqssl is enabled, specifies the full path of the SSL certificate .pem
file.

maxevents Specifies the maximum number of events to publish.

Using the Rabbit MQ Adapter

The Rabbit MQ adapter supports publish and subscribe operations on a Rabbit MQ server. You must install the
rabbitmq-c V0.5.2 client run-time libraries to use the adapter.

Note: Remove the reference to this connector from the file /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/connectors.excluded (Linux) or %ProgramData%\SAS
\Viya\SASEventStreamProcessingEngine\default\connectors.excluded (Windows) before using
it.

Subscriber usage:

101

dfesp_rmq_adapter -h url -k sub -n numbufferedmsgs -o urlhostport -p rmqpassword -r rmqport -s rmqhost -t
rmqtopic -u rmquserid -v rmqexchange -z binary | csv | json <-C configfilesection > <-c rmqcontenttype> <-d
dateformat > <-E tokenlocation > <-f protofile > <-g gdconfig > <-H rmqheaders> <-j trace | debug | info | warn |
error | fatal | off> <-K rmqsslkey> <-L> <-l native | solace | tervela | rabbitmq | kafka> <-M> <-m protomsg > <-S>
<-T rmqsslcacert> <-U rmqsslcert> <-V> <-w never | once | pereventblock> <-X> <-x > <-Y rmqvhost> <-y
logconfigfile > <-Z transportconfigfile> <-3 doubleprecision>

Publisher usage:

dfesp_rmq_adapter -h url -k pub -o urlhostport -p rmqpassword -r rmqport -s rmqhost -t rmqtopic -u rmquserid -
v rmqexchange -z binary | csv | json | opaquestring <-A> < -a ackwindow > <-b blocksize > <-C configfilesection
> <-D csvfielddelimiter > <-d dateformat > <-E tokenlocation > <-e > <-F eventtype> <-f protofile > <-g gdconfig >
<-I > <-i acktimer > <-j trace | debug | info | warn | error | fatal | off> <-K rmqsslkey> <-l native | solace | tervela |
rabbitmq | kafka> <-m protomsg > <-N maxevents> <-O> <-Q> <-q buspersistencequeue > <-R> <-S> <-T
rmqsslcacert> <-U rmqsslcert> <-V> <-X> < -x > <-Y rmqvhost> <-y logconfigfile > <-Z transportconfigfile>

Parameter Description

‑A Specifies that input events are missing the key field that is
autogenerated by the source window.

‑a ackwindow Specifies the time period to leave unacknowledged
messages received from Rabbit MQ when
buspersistence is enabled.

‑b blocksize Specifies the event block size. The default is 1.

‑C configfilesection Specifies the name of the section in /opt/sas/viya/
config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%
\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for
configuration parameters. Specify the value as
[configfilesection].

‑c rmqcontenttype Specifies the value of the content_type parameter in
messages sent to RabbitMQ. The default value depends on
the message format, as follows:

n binary

"application/octet‑stream"
n csv

"text/csv;charset=utf‑8"
n json

"application/json"

n protobufs

"application/x‑protobuf"
n opaque

"text/csv;charset=utf‑8"

‑D csvfielddelimiter Specifies the character delimiter for field data in input CSV
events. The default delimiter is the , character.

102

Parameter Description

‑d dateformat Specifies the format of ESP_DATETIME and
ESP_TIMESTAMP fields in CSV events. The default
behavior is that these fields are interpreted as an integer
number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat
parameter accepts any time format that is supported by the
UNIX strftime function.

‑E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token that is required for authentication
by the publish/subscribe server.

‑e Specifies that events are transactional.

‑F eventtype Specifies the event type to Insert into input CSV events
(with comma). Valid values are "normal" and
"partialupdate".

‑f protofile Specifies the .proto file to be used for Google protocol
buffer support.

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑H rmqheaders Specifies a comma–separated list of key value optional
headers in messages sent to RabbitMQ. The default value
is no headers.

‑h url Specifies the dfESP publish and subscribe standard URL in
the form dfESP://host:port/project/
continuousquery/window.

Append the following for subscribers: ?snapshot=true
| false.

When ?snapshot=true, the subscriber receives a
collection of Insert events that are contained in the window
at that point in time. The subscriber then receives a stream
of events produced from the time of the snapshot onward.
Those subsequent events can be Inserts, Updates, or
Deletes.

Append the following for subscribers if needed:

n ?collapse=true | false

n ?rmretdel=true | false

‑I Specifies that when a field in an input CSV event cannot be
parsed, the event is dropped, an error is logged, and
publishing continues.

‑i acktimer Specifies the time interval for how often to check whether to
send acknowledgments that are triggered by the
ackwindow parameter.

‑j trace | debug | info | warn | error |
fatal | off

Specifies the logging level. The default is “warn”.

103

Parameter Description

‑K rmqsslkey When rmqssl is enabled, specifies the full path of the
SSL key .pem file.

‑k Specifies sub for subscriber or pub for publisher.

‑L For CSV, specifies to send one message per event block.
The default is one message per transactional event block or
else one message per event.

‑l native | solace | tervela | rabbitmq
| kafka

Specifies the transport type. If you specify solace,
tervela, rabbitmq, or kafka transports instead of
the default native transport, use the required client
configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑M For CSV, specifies to send one message per event. The
default is one message per transactional event block or
else one message per event.

‑m protomsg Specifies the message itself in the .proto file that is
specified by the protofile parameter.

‑N maxevents Specifies the maximum number of events to publish.

‑n numbufferedmsgs Specifies the maximum number of messages buffered by a
standby subscriber connector.

‑O Prepends an opcode and comma to input CSV events. The
opcode is Insert unless ‑R is enabled.

‑o urlhostport Specifies the host:port field in the metadata topic to which
the connector subscribes.

‑p rmqpassword Specifies the Rabbit MQ password.

‑Q When maxevents is configured, quiesces the project after
all events are injected into the Source window.

‑q buspersistencequeue Specifies the queue name used by a persistent publisher.

‑R Builds events with opcode=Upsert instead of Insert.

‑r rmqport Specifies the Rabbit MQ port.

‑S Enables SSL encryption on the connection to the Rabbit
MQ server.

‑s rmqhost Specifies the Rabbit MQ host.

‑T rmqsslcacert When rmqssl is enabled, specifies the full path of the
SSL CA certificate .pem file.

‑t rmqtopic Specifies the Rabbit MQ routing key.

104

Parameter Description

‑U rmqsslcert When rmqssl is enabled, specifies the full path of the
SSL certificate .pem file.

‑u rmquserid Specifies the Rabbit MQ user name.

‑V Restarts the adapter if a fatal error is reported.

‑v rmqexchange Specifies the Rabbit MQ exchange.

‑w never | once | pereventblock When rmqtype=CSV, specifies when to prepend output
CSV data with the window’s serialized schema. The default
value is “never”.

‑X Specifies that rmqpassword is encrypted.

‑x Uses durable queues and persistent messages.

‑Y rmqvhost Specifies the Rabbit MQ vhost. The default is /.

‑y logconfigfile Specifies the logging configuration file. By default, there is
none.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file.
The default value depends on the transport type specified
with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for
native transport.

‑z binary | csv | json | opaquestring Specifies the message format. opaquestring is valid
only for publishers. For opaquestring, the Source
window schema is assumed to be
"index:int64,message:string". For subscribers,
the name of a string field in the subscribed window schema
is also supported.

‑3 doubleprecision Specifies the number of fractional digits in the ASCII
representation of a double. The default value is 6.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the REST Subscriber Adapter

The REST adapter supports subscribe operations to generate HTTP POST requests to a configured REST
service. For each subscribed event, the adapter formats a JSON string that uses all fields of the event unless

105

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

you configure the opaquejson parameter. In that case, only one field is used. After formatting the string, the
adapter forwards the JSON through an HTTP POST to the REST service that is configured in the adapter
parameter resturl. You can also configure the HTTP Content-Type and the number of retries when an HTTP
POST fails. Additional HTTP POST headers can be specified with the httprequestproperties parameter.

The HTTP response can be forwarded to an unrelated Source window. This requires building an event from the
JSON formatted response and forwarding it to the ESP URL that is configured in the esprespurl adapter
parameter.

Any field names in the subscribed window schema that contain an underscore are converted into a nested
JSON field. For example, field name foo_bar produces the following JSON: "foo":{"bar":"value". The
field name foobar produces the following JSON: "foobar":"value".

When the JSON response includes one or more arrays, one of the following conditions must be true in order to
successfully build events:

n The array is an outer array that contains the entire response. In this case, an event is built for every entry in
the array.

n The array contains multiple values for some key. In this case, all other keys at the same nesting level must
contain values in an array of the same size. Then events are built for every array index, using values from
that index in each array at that nesting level.

The response event fields are appended to the fields in the original subscribed event. Thus, you must be careful
to ensure that the beginning fields in the schema of the Source window in esprespurl exactly match the
complete schema of the subscribed window. Also, the response fields must follow the beginning fields.

Each HTTP request-response action is run in a separate adapter thread. In this way, adapter memory usage
does not grow with queued subscribed events waiting synchronously for the previous request-response to
complete.

Usage:

dfesp_rest_subscriber -r resturl -t httpcontenttype -u url <-c [configfilesection]> <-d dateformat > <-e
esprespurl > <- g gdconfigfile > <-i> <-j opaquejson > <-l native | solace | tervela | rabbitmq | kafka> <-m
maxnumthreads > <-O tokenlocation > <-o severe | warning | info> <-p httpretries > <-q httprequestproperties>
<-s httpstatuscodes > <-V> <-v httpretryinterval> <-Z transportconfigfile>

Parameter Description

‑c [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
javaadapters.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\javaadapters.config (Windows) to parse for configuration
parameters.

‑d dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in CSV
events. The default behavior is that these fields are interpreted as an integer
number of seconds (ESP_DATETIME) or microseconds (ESP_TIMESTAMP)
since epoch. The dateformat parameter accepts any time format that is
supported by the UNIX strftime function.

‑e esprespurl Specifies the publish/subscribe standard URL to which responses should be
published.

‑g gdconfigfile Specifies the guaranteed delivery configuration file for the client.

106

Parameter Description

‑i Specifies to drop the subscribed event and continue when an HTTP connect
fails. The default is to exit.

javaadapters.config parameter name:
ignorefailedhttpconnects

‑j opaquejson Specifies a subscribed window field from which to extract the complete JSON
request. This is in contrast to building the request from all window fields. The
field must have type ESP_UTF8STR.

‑l native | solace |
tervela | rabbitmq | kafka

Specifies the transport type. If you specify solace, tervela, rabbitmq,
or kafka transports instead of the default native transport, use the required
client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑m maxnumthreads Specifies the maximum number of threads used by the adapter. This limits the
number of concurrent connections to the REST service. The default value is
32.

‑O tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token that is required for authentication by the publish/subscribe server.

‑o severe | warning | info Specifies the application logging level.

‑p httpretries Specifies the number of times to retry a failed HTTP post. The default value is
0. A value of -1 specifies to retry the post infinitely.

‑r resturl Specifies the URL of the target REST service.

‑s httpstatuscodes Specifies a comma-separated list of acceptable status codes in response to the
HTTP post. The default required response is 201.

‑t httpcontenttype Specifies the value of the Content-Type string used in the HTTP post.

‑u url Specifies the dfESP subscribe standard URL in the form "dfESP://host:port/
project/contquery/window?snapshot=true|false".

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The subscriber
then receives a stream of events produced from the time of the snapshot
onward. Those subsequent events can be Inserts, Updates, or Deletes.

Append the following if needed:

?collapse=true | false

?rmretdel=true | false

‑V Restarts the adapter if a fatal error is reported.

javaadapters.config parameter name: restartonerror

‑v httpretryinterval Specifies the number of seconds between HTTP post retries. The default is 0.

107

Parameter Description

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

‑q httprequestproperties Specifies any number of additional headers to include in the HTTP POST
request to the REST service. Specify as semicolon– separated <key>:<value>
pairs. For keys that support multiple values, separate those values with a
comma.

Using the SAS Data Set Adapter

The SAS data set adapter resides in dfx-esp-dataset-adapter.jar, which bundles the Java publisher and
subscriber SAS Event Stream Processing clients.

The adapter uses SAS Java Database Connectivity (JDBC) to connect to a SAS Workspace Server. This SAS
Workspace Server manages reading and writing of the data set. The SAS data set name and SAS Workspace
Server user credentials are passed as required parameters to the adapter.

The SAS JDBC requires log4j-version.jar for logging. Configure the value of the DFESP_LOG4J_JAR
environment variable to be the path to log4j-version.jar.

Note: JAR files are located in $DFESP_HOME/lib.

Configure the value of the DFESP_LOG4J_XML environment variable to the location of the log4j.xml file.

The user password must be passed in encrypted form unless ‑w true is configured. The encrypted version of
the password can be generated by using OpenSSL, which must be installed on your system. When you install
the SAS Event Stream Processing System Encryption and Authentication Overlay, you install the included
OpenSSL executable.

Use the following command on the console to invoke OpenSSL to display your encrypted password:

echo "password" | openssl enc -e -aes-256-cbc -a -salt -pass pass:"SASespDSadapterUsedByUser=userid""

The subscriber client receives event blocks and appends corresponding rows to the SAS data set it creates. It
also supports Update and Delete operations on the data set.

Note: Invoking the SAS data set adapter on an existing data set overwrites the data set.

The Workspace Server creates the data set on its local file system, so the data set name must comply with
these SAS naming rules:

n The length of the names can be up to 32 characters.

n Names must begin with a letter of the Latin alphabet (A–Z, a–z) or the underscore. Subsequent characters
can be letters of the Latin alphabet, numerals, or underscores.

n Names cannot contain blanks or special characters except for the underscore.

n Names can contain mixed-case letters. SAS internally converts the member name to uppercase.

108

You can explicitly specify the data set schema using the –s option. You can use the –a switch to do the
following:

n specify a number of received events to analyze

n extract an appropriate row size for the data set before creating data set rows

The –s or –a switch must be present.

You can also configure the subscriber client to periodically write a SAS data set using the optional
periodicity or maxnumrows parameters. If so configured, a timestamp is appended to the filename of each
written file. Be aware that Update and Delete operations are not supported if periodicity or maxnumrows is
configured, because the referenced row might not be present in the currently open data set.

If you have configured a subscriber client with multiple ESP URLs, events from multiple windows in multiple
models are aggregated into a single output data set. In this case, each subscribed window must have the same
schema. Also, the order in which rows are appended to the data set is not guaranteed.

The publisher client does the following:

n reads rows from the SAS data set

n converts them into events with opcode = insert (unless you specify ‑r)

n injects event blocks into a Source window of an engine

If you configure a publisher client with multiple URLs, each generated event block is injected into multiple
Source windows. Each Source window must have the same schema.

Subscriber usage:

dfesp_dataset_adapter -d wssurl -f dsname -h url1 … urlN -k sub -u username -x password <-a obstoanalyze >
<-C configfilesection > <-g gdconfigfile > <-L native | solace | tervela | rabbitmq | kafka> <-l loglevel > <-m
maxnumrows > <-O tokenlocation > <-p periodicity > <-s dsschema> <-V> <-w> <-Z transportconfigfile> <-z
bufsize >

Publisher usage:

dfesp_dataset_adapter -d wssurl -f dsname -h url1 … urlN -k pub -u username -x password <-b blocksize > <-
C configfilesection > <-e> <-g gdconfigfile > <-L native | solace | tervela | rabbitmq | kafka> <-l loglevel > <-O
tokenlocation > <-Q> <-q sqlquery > <-r> <-V> <-W maxevents> <-w> <-Z transportconfigfile> <-z bufsize >

Parameter Description

‑a obstoanalyze Specifies the number of observations to analyze to define the output SAS data
set structure. Default value is 4096. If you had previously specified the ‑s
option, this option is ignored.

‑b blocksize For a subscriber, specifies the number of event blocks to be appended to the
data set at once. For a publisher, specifies the event block size to be
published to the ESP Source window. Default value is 1.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
javaadapters.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\javaadapters.config (Windows) to parse for configuration
parameters.

‑d wssurl Specifies the SAS Workspace Server connection URL in the form
“host:port”.

109

Parameter Description

‑e Specifies that event blocks are transactional. By default, event blocks are
normal.

javaadapters.config parameter name: transactional

‑f dsname Specifies the subscriber output file or publisher input file. The full path,
including the extension, must be specified for dsname. Here is an example:
‑f "D:/sas/SASBI/Lev1/AppData/filename.sas7bdat"

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑h url Specifies one or more standard dfESP URLs in the following form:

dfESP://host:port/project/continuousquery/window

Append the following to the URL for subscribers: ?snapshot=true |
false

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The subscriber
then receives a stream of events produced from the time of the snapshot
onward. Those subsequent events can be Inserts, Updates, or Deletes.

Append the following for subscribers if needed: ?collapse=true |
false ?rmretdel=true | false

‑k pub | sub Specifies a publisher or a subscriber.

‑L native | solace |
tervela | rabbitmq | kafka

Specifies the transport type. When you specify solace, tervela,
rabbitmq, or kafka transports instead of the default native transport,
use the required client configuration files specified in “Using Alternative
Transport Libraries for Java Clients” in SAS Event Stream Processing:
Publish/Subscribe API.

‑l loglevel Specifies the Java standard logging level. Use one of the following values:
SEVERE | WARNING | INFO. Default value is INFO.

‑m maxnumrows Specifies the output file periodicity in number of rows. Invalid if data is not
insert-only.

‑O tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token that is required for authentication by the publish/subscribe server

‑p periodicity Specifies the output file periodicity in seconds. Invalid if data is not insert-only.

‑Q Quiesces the project after all events are injected into the Source window.

javaadapters.config parameter name: quiesceproject

‑q sqlquery Specifies an SQL query to get SAS data set content. For example: "select
* from dataset”.

Note: Use the dataset specified for the ‑f option without an extension.

‑r Builds events with opcode=Upsert. By default, events are built with
opcode=Insert.

javaadapters.config parameter name: publishwithupsert

110

http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en

Parameter Description

‑s dsschema Specifies the output data set schema in the following form:

"rowname1:sastype1:sasformat1:label1,...,rownameN:sa
stypeN:sasformatN:labelN"

If you omit sasformatX, then no SAS format is applied to the row. If you omit
labelX, then no label is applied to the row.

You must specify the type size for type 'char'. The size for type 'num' has
a default size of 8 and does not need to be specified.

Labels do not need to be wrapped in quotation marks.

See the example here:
-s "ID:num,OUTPUT_DTTM:num:DATETIME20.:Output Datetime,VIN:char(17)"

Note: If you had previously specified the ‑a option, this option is
ignored.

‑u username Specifies the SAS Workspace Server user name.

‑V Restarts the adapter if a fatal error is reported.

javaadapters.config parameter name: restartonerror

‑W maxevents Specifies the maximum number of events to publish.

‑w Specifies that the configured SAS Workspace Server password is
unencrypted. By default, the password is encrypted.

javaadapters.config parameter name: unencryptedpassword

‑x password Specifies the SAS Workspace Server password. When ‑w true is
configured, this password must be encrypted.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑L parameter:

For ‑L solace, the default is ./solace.cfg.

For ‑L tervela, the default is ./client.config.

For ‑L rabbitmq, the default is ./rabbitmq.cfg.

For ‑L kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

‑z bufsize Specifies the socket buffer size.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

111

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Using the SMTP Connector and Adapter

Using the SMTP Subscribe Connector

You can use the Simple Mail Transfer Protocol (SMTP) subscribe connector to e-mail window event blocks or
single events, such as alerts or items of interest. This connector is subscribe-only. The connection to the SMTP
server uses port 25. No user authentication is performed, and the protocol runs unencrypted.

The e-mail sender and receiver addresses are required information for the connector. The e-mail subject line
contains a standard event stream processor URL in the form dfESP://host:port/project/contquery/
window, followed by a list of the key fields in the event. The e-mail body contains data for one or more events
encoded in CSV format.

The parameters for the SMTP connector are as follows:

Table 48 Required Parameters for the SMTP Connector

Parameter Description

type Specifies to subscribe. Must be “sub”.

smtpserver Specifies the SMTP server host name or IP address.

sourceaddress Specifies the e-mail address to be used in the “from” field of the e-mail.

destaddress Specifies the e-mail address to which to send the e-mail message.

snapshot Specifies whether to send snapshot data.

When true, the subscriber receives a collection of Insert events that are
contained in the window at that point in time. The subscriber then receives a
stream of events produced from the time of the snapshot onward. Those
subsequent events can be Inserts, Updates, or Deletes.

Table 49 Optional Parameters for SMTP Connectors

Parameter Description

collapse Enables conversion of UPDATE_BLOCK events to make subscriber output
publishable.

emailperevent Specifies true or false. The default is false. If false, each e-mail body contains
a full event block. If true, each mail body contains a single event.

rmretdel Specifies to remove all delete events from event blocks received by a
subscriber that were introduced by a window retention policy.

112

Parameter Description

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

doubleprecision Specifies the number of fractional digits in the ASCII representation of a
double. The default value is 6.

Using the SMTP Subscriber Adapter

The SMTP subscriber adapter is subscriber only. Publishing to a Source window is not supported. This adapter
forwards subscribed event blocks or single events as e-mail messages to a configured SMTP server, with the
event data in the message body encoded in CSV format.

Subscriber use:

dfesp_smtp_adapter -d destaddress -h url -m smtpserver -u sourceaddress <-a dateformat> <-C
[configfilesection]> <-E tokenlocation > <-g gdconfig > <-j trace | debug | info | warn | error | fatal | off> <-l native |
solace | tervela | rabbitmq | kafka> <-p> <-V> <-y logconfigfile ><-Z transportconfigfile> <-3 doubleprecision>

Parameter Description

‑a dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts any
time format that is supported by the UNIX strftime function.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

‑d destaddress Specifies the destination email address

‑E tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token that is required for authentication by the publish/subscribe server

‑g gdconfig Specifies the guaranteed delivery configuration file.

113

Parameter Description

‑h url Specifies the dfESP subscribe standard URL in the form "dfESP://
host:port/project/continuousquery/window?
snapshot=true |false.

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The subscriber
then receives a stream of events produced from the time of the snapshot
onward. Those subsequent events can be Inserts, Updates, or Deletes.

You can append the following if needed:

n ?collapse=true | false

n ?rmretdel=true | false

‑j trace | debug | info |
warn | error | fatal | off

Sets the logging level for the adapter. This is the same range of logging levels
that you can set in the C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

‑l native | solace |
tervela | rabbitmq | kafka

Specifies the transport type. If you specify solace, tervela, rabbitmq,
or kafka transports instead of the default native transport, use the
required client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑m smtpserver Specifies the SMTP server name.

‑p Specifies that each email contains a single event instead of a complete event
block containing one or more events.

‑u sourceaddress Specifies the source email address.

‑V Restarts the adapter if a fatal error is reported.

‑y logconfigfile Specifies the log configuration file.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

‑3 doubleprecision Specifies the number of fractional digits in the ASCII representation of a
double. The default value is 6.

114

Using the Sniffer Connector and Adapter

Using the Sniffer Publish Connector

The sniffer connector captures packets from a local network interface in promiscuous mode and builds an event
per received packet to be injected into a source window. An instance of the connector is configured with the
interface name, a protocol, and a comma separated list of fields to be extracted and included in the event.
Additional connectors can be instanced to capture additional packets in any combination of interface/protocol/
fields, and injected to any Source window.

Protocol support is currently limited to the following:

n HTTP packets sent to port 80 over TCP. To capture HTTP packets that you send to other ports (for example,
8080), configure the list of ports in thehttpports parameter.

n Radius Accounting-Request packets sent to port 1813 over UDP. Only attribute values between 1 and 190
inclusive are supported. If you capture the Attribute‑Specific field of a Vendor‑Specific attribute,
you must configure the vendorid and vendortype connector parameters.

n SSL/TLS Client Hello packets sent to port 443 over TCP or UDP.

n Traffic on other ports is supported only to the extent that the IP source and destination address, TCP or UDP
source and destination port, and the verbatim payload are captured. Other packet fields are not available for
capture.

Support is included for an optional 802.1Q VLAN tag header following the Ethernet header, but in all other cases
the IP header must directly follow the Ethernet header.

The connector uses the libpcap libraries, which are not shipped with ESP. You must install these libraries
separately on the target machine. They are available for download at http://www.tcpdump.org or, for Microsoft
Windows, http://www.winpcap.org.

Most kernels protect against applications opening raw sockets. On Linux platforms, the connector logs the
following error message unless the application is given permission to open raw sockets:

“You don't have permission to capture on that device (socket: Operation not permitted)”

To grant suitable permissions to the server that is running the connector, run the following command: setcap
cap_net_raw,cap_net_admin=eip executable. You must have root privileges to run the command.

A side effect of granting these permissions is that the application no longer uses the shell’s LD_LIBRARY_PATH
environment variable. For the SAS Event Stream Processing server application, this means that it must have an
alternative method of finding shared objects in $DFESP_HOME/lib. Use the ldconfig command to update the
shared library cache with the $DFESP_HOME/lib directory before running the SAS Event Stream Processing
server.

The packetfields configuration parameter uses SAS Event Stream Processing schema-like syntax, and must
match the Source window schema. There are three exceptions:

n The Source window schema must contain an additional index:int64 field that contains an increasing index
value and that serves as the key field.

n The Source window schema must also contain an additional frame_time:stamp field that contains the
timestamp created by the pcap driver.

n When the optional addtimestamp connector configuration parameter is specified, the Source window
schema must also contain a ts:stamp field to hold the timestamp. This field is created by the connector and
holds the current time.

115

http://www.tcpdump.org/
http://www.winpcap.org/

The index and frame_time fields must be the first two fields in the window schema. The ts field must be the
last field in the window schema.

When the blocksize parameter is configured with a value greater than 1, the connector builds event blocks of
size no greater than the configured blocksize. It can build event blocks with a smaller size when the pcap
driver buffer has filled up, or when the read timeout on the socket opened by the pcap driver has expired. This
ensures that the connector injects all events available from packets received on the interface as soon as
possible, without having to wait to fill an event block.

When the protocol parameter is not set to 80, 1813, or 443 and httpports is not configured, the fields
supported in packetfields are as follows:

n the IP source and destination address

n the TCP or UDP source and destination ports

n payload:string

When a received packet is malformed or contains an invalid parameter or length, the connector generally logs
an info level message, ignores the packet, and continues.

For testing, you can receive packets from a .pcap capture file instead of a network interface. You can specify
the name of this capture file in the connector interface parameter. When the connector cannot find a matching
interface name, it treats the name as a .pcap filename.

Table 50 Required Parameters for the Sniffer Connector

Parameter Description

type Specifies to publish. Must be “pub”.

interface Specifies the name of the network interface on the local machine from which to
capture packets.

protocol Specifies the port number associated with the protocol type of packets to be
captured. You can specify this as a comma-separated list of port numbers.

116

Parameter Description

packetfields Specifies the packet fields to be extracted from a captured packet and included
in the published event. Use SAS Event Stream Processing schema syntax. This
value does not include the index:int64 frame_time:stamp, or
ts:stamp fields.

Separate nested fields with an underscore character. Match field names to
standard names as displayed by the Wireshark open-source packet analyzer.
You must remove spaces and hyphens to maintain field name integrity.

An example for Radius is as follows:
radius_AcctStatusType:int32,radius_EventTimestamp:sta
mp,radius_FramedIPAddress:string,radius_UserName:stri
ng.

An example for HTTP is as follows:
ip_Source:string,ip_Destination:string,http_Host:stri
ng,http_Referer:string,http_UserAgent:string,http_GET
_RequestURI:string.

An example for SSL/TLS is as follows:
ssltls_Handshake_ClientHello_GMTUnixTime:date,ssltls_
Handshake_ClientHello_SessionID:string,ssltls_Handsha
ke_ClientHello_CypherSuites:string,ssltls_Handshake_C
lientHello_CompressionMethods:string,ssltls_Handshake
_ClientHello_Extensions_ServerName:string.

If protocol is not set to 80, 1813, or 443 and httpports is not configured,
the only supported values are as follows:

n the IP source and destination address
n the TCP or UDP source and destination ports
n payload:string

Table 51 Optional Parameters for the Sniffer Connector

Parameter Description

transactional Sets the event block type to transactional. The default value is “normal”.

blocksize Specifies the number of events to include in a published event block. The default
value is 1.

addtimestamp Specifies to append an ESP_TIMESTAMP field to each published event. The
field value is the current time when the packet was received by the connector.
This field must be present in the Source window schema, but it is not required in
the connector packetfields parameter.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

vendorid Specifies the vendor‑Id field to match when capturing the
Attribute‑Specific field in a Vendor‑Specific attribute in a Radius
Accounting-Request packet.

117

Parameter Description

vendortype Specifies the vendor‑Type field to match when capturing the
Attribute‑Specific field in a Vendor‑Specific attribute in a Radius
Accounting-Request packet.

indexfieldname Specifies the name to use instead of index for the index:int64 field in the
Source window schema.

publishwithupsert Specifies to build events with opcode=Upsert instead of opcode=Insert.

pcapfilter Specifies a filter expression as defined in the pcap documentation. Passed to
the pcap driver to filter packets received by the connector.

httpports Specifies a comma-separated list of destination ports. All sniffed packets that
contain a specified port are parsed for HTTP GET parameters. The default value
is 80.

ignorenopayloadpackets Specifies whether to ignore packets with no payload, as calculated by
subtracting the TCP or UDP header size from the packet size. The default value
is “false”.

maxevents Specifies the maximum number of events to publish.

Using the Sniffer Publisher Adapter

The sniffer adapter supports publish operations of events that are created from packets captured from a local
network interface in promiscuous mode. You must install the libpcap run-time libraries in order to use this
adapter.

Note: Remove the reference to this connector from the file /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/connectors.excluded (Linux) or %ProgramData%\SAS
\Viya\SASEventStreamProcessingEngine\default\connectors.excluded (Windows) before using
it.

Publisher use:

dfesp_sniffer_adapter -f packetfields -h url -i interface -p protocol <-b blocksize > <-C configfilesection > <-d
vendorID > <-E tokenlocation > <-e > <-F pcapfilter > <-g gdconfig > <-I> <-j trace | debug | info | warn | error |
fatal | off> <-l native | solace | tervela | rabbitmq | kafka> <-m maxevents> <-n indexfieldname > <-o httpports >
<-Q> <-R> <-t> <-V> <-v vendorType > <-y logconfigfile > <-Z transportconfigfile>

Parameter Description

‑b blocksize Specifies the event block size. The default value is 1.

‑C configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

‑d vendorID Specifies the vendor ID field to match when capturing the Attribute-Specific
field in a Vendor-Specific attribute in a Radius Accounting-Request packet.

118

Parameter Description

‑E tokenlocation Specifies the location of the file in the local file system that contains the
OAuth token that is required for authentication by the publish/subscribe
server.

‑e Specifies that events are transactional.

‑F pcapfilter Specifies a filter expression as defined in the pcap documentation. The value
is passed to the pcap driver in order to filter packets received by the adapter.

‑f packetfields Specifies a list of fields to be extracted from captured packets. You must
specify "payload:string" when the protocol type is not 80 (http) or
1813 (radius).

‑g gdconfig Specifies the name of the guaranteed delivery configuration file.

‑h url Specifies the dfESP publish standard URL in the form "dfESP://
host:port/project/contquery/window".

‑I Specifies whether to ignore packets that have no payload, as calculated by
subtracting the TCP or UDP header size from the packet size.

‑i interface Specifies the name of the network interface on the local machine from which
to capture packets.

‑j trace | debug | info |
warn | error | fatal | off

Specifies the logging level. The default is “warn”.

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the publish/subscribe transport. When you specify solace,
tervela, rabbitmq, or kafka transports instead of the default native
transport, use the required client configuration files specified in the
description of the C++ C_dfESPpubsubSetPubsubLib() API call.

‑m maxevents Specifies the maximum number of events to publish.

‑n indexfieldname Specifies the name to use instead of index for the index:int65 field in
the Source window schema.

‑o httpports Specifies a comma-separated list of destination ports. All sniffed packets that
contain a specified port are parsed for HTTP GET parameters. The default
value is 80.

‑p protocol Specifies the port number associated with the protocol type of packets to be
captured.

‑Q When maxevents is configured, quiesces the project after all events are
injected into the Source window.

‑R Builds events with opcode=Upsert instead of Insert.

‑t Appends an ESP_TIMESTAMP field to each published event.

‑V Restarts the adapter if a fatal error is reported.

119

Parameter Description

‑v vendorType Specifies the vendor type filed to match when capturing the Attribute-Specific
field in a Vendor-Specific attribute in a Radius Accounting-Request packet.

‑y logconfigfile Specifies the name of the logging configuration file. By default, there is none.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the Solace Connector and Adapter

Using the Solace Systems Connector

The Solace Systems connector communicates with a hardware-based Solace fabric for publish and subscribe
operations.

A Solace Systems subscriber connector receives event blocks and publishes them to this Solace topic:

host:port/projectname/queryname/windowname/O

A Solace Systems publisher connector reads event blocks from the following Solace topic

host:port/projectname/queryname/windowname/I

and injects them into the corresponding Source window.

As a result of the bus connectivity provided by the connector, the engine does not need to manage individual
publish/subscribe connections. A high capacity of concurrent publish/subscribe connections to a single event
stream processing engine is achieved.

The Solace Systems run-time libraries must be installed on the platform that hosts the running instance of the
connector. The run-time environment must define the path to those libraries (for example, specifying
LD_LIBRARY_PATH on Linux platforms).

Note: Remove the reference to this connector from the file /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/connectors.excluded (Linux) or %ProgramData%\SAS
\Viya\SASEventStreamProcessingEngine\default\connectors.excluded (Windows) before using
it.

The Solace Systems connector operates as a Solace client. All Solace connectivity parameters are required as
connector configuration parameters.

You must configure the following items on the Solace appliance to which the connector connects:

n a client user name and password to match the connector’s soluserid and solpassword configuration
parameters

120

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

n a message VPN to match the connector’s solvpn configuration parameter

n On the message VPN, you must enable “Publish Subscription Event Messages”.

n On the message VPN, you must enable “Client Commands” and “Show Commands” under “SEMP over
Message Bus”.

n On the message VPN, you must configure a nonzero “Maximum Spool Usage”.

n When hot failover is enabled on subscriber connectors, you must create a single exclusive queue named
“active_esp” in the message VPN. Set the queue owner to the appropriate client user name. The subscriber
connector that successfully binds to this queue becomes the active connector.

n When buspersistence is enabled, you must enable “Publish Client Event Messages” on the message
VPN.

n When buspersistence is enabled, you must create exclusive queues for all subscribing clients. The queue
name must be equal to the buspersistenceque queue configured on the publisher connector (for “/I”
topics), or the queue configured on the client subscriber (for “/O” topics). Add the corresponding topic to each
configured queue.

n When buspersistence is enabled or hot failover is enabled on subscriber connectors, you must enable
“Allow Guaranteed Endpoint Create”, “Allow Guaranteed Message Send”, and “Allow Guaranteed Message
Receive” in your client profile.

When the connector starts, it subscribes to topic urlhostport/M (where urlhostport is a connector
configuration parameter). This enables the connector to receive metadata requests from clients that publish or
subscribe to a window in an ESP engine associated with that host:port combination. Metadata responses consist
of some combination of the project, query, and window names of the window associated with the connector, as
well as the serialized schema of the window.

Solace Systems subscriber connectors support a hot failover mode. The active/standby status of the connector
is coordinated with the fabric so that a standby connector becomes active when the active connector fails.
Several conditions must be met to guarantee successful switchovers:

n All involved connectors must be active on the same set of topics.

n All involved connectors must initiate message flow at the same time. This is required because message IDs
must be synchronized across all connectors.

n Google protocol buffer support must not be enabled, because these binary messages do not contain a
usable message ID.

When a new subscriber connector becomes active, outbound message flow remains synchronized due to
buffering of messages by standby connectors and coordination of the resumed flow with the fabric. The size of
this message buffer is a required parameter for subscriber connectors.

You can configure Solace Systems connectors to use a persistent mode of messaging instead of the default
direct messaging mode. (See the description of the buspersistence configuration parameter.) This mode
might require regular purging of persisted data by an administrator, if there are no other automated mechanism
to age out persisted messages. The persistent mode reduces the maximum throughput of the fabric, but it
enables a publisher connector to connect to the fabric after other connectors have already processed data. The
fabric updates the connector with persisted messages and synchronizes window states with the other engines in
a hot failover group.

Solace Systems subscriber connectors subscribe to a special topic that enables them to be notified when a
Solace client subscribes to the connector’s topic. When the connector is configured with snapshot enabled, it
sends a custom snapshot of the window contents to that client. This enables late subscribers to catch up upon
connecting.

Solace Systems connector configuration parameters named sol… are passed unmodified to the Solace API by
the connector. See your Solace documentation for more information about these parameters.

If required, you can configure the solpassword parameter with an encrypted password. The encrypted version
of the password can be generated by using OpenSSL, which must be installed on your system. When you install

121

the SAS Event Stream Processing System Encryption and Authentication Overlay, you install the included
OpenSSL executable. Use the following command on the console to invoke OpenSSL to display your encrypted
password:

echo "solpassword" | openssl enc -e -aes-256-cbc -a -salt -pass pass:"SASespSOLconnectorUsedByUser=soluserid"

Then copy the encrypted password into your solpassword parameter and enable the
solpasswordencrypted parameter.

A Solace publisher connector instance can be configured to copy the message payload from the destination
attribute instead of the body. The Source window schema must begin with an int64 key field to serve as an index
that is written by the connector. To parse a message from the destination attribute, field data is pulled
sequentially from each slash-separated entry and copied to Source window fields following the index field in the
same order. All messages received on the corresponding topic by a connector instance that is configured to
copy from the destination attribute are processed this way. Messages that still contain a body need to be
received by a different connector instance and on a different topic.

Use the following parameters with Solace Systems connectors.

Table 52 Required Parameters for Subscriber Solace Systems Connectors

Parameter Description

type Specifies to subscribe. Must be “sub”.

soluserid Specifies the user name required to authenticate the connector’s session with
the appliance.

solpassword Specifies the password associated with soluserid.

solhostport Specifies the appliance to connect to, in the form host:port.

solvpn Specifies the appliance message VPN to assign the client to which the
session connects.

soltopic Specifies the Solace destination topic to which to publish.

urlhostport Specifies the host:port field in the metadata topic subscribed to on start-
up to field metadata requests.

numbufferedmsgs Specifies the maximum number of messages buffered by a standby
subscriber connector. If exceeded, the oldest message is discarded. If the
connector goes active the buffer is flushed, and buffered messages are sent
to the fabric as required to maintain message ID sequence.

snapshot Specifies whether to send snapshot data.

When true, the subscriber receives a collection of Insert events that are
contained in the window at that point in time. The subscriber then receives a
stream of events produced from the time of the snapshot onward. Those
subsequent events can be Inserts, Updates, or Deletes.

Table 53 Required Parameters for Publisher Solace Systems Connectors

Parameter Description

type Specifies to publish. Must be “pub”.

122

Parameter Description

soluserid Specifies the user name required to authenticate the connector’s session with
the appliance.

solpassword Specifies the password associated with soluserid.

solhostport Specifies the appliance to connect to, in the form host:port.

solvpn Specifies the appliance message VPN to assign the client to which the
session connects.

soltopic Specifies the Solace topic to which to subscribe.

urlhostport Specifies the host:port field in the metadata topic subscribed to on start-
up to field metadata requests.

Table 54 Optional Parameters for Subscriber Solace Systems Connectors

Parameter Description

collapse Enables conversion of UPDATE_BLOCK events to make subscriber output
publishable.

hotfailover Enables hot failover mode.

buspersistence Sets the Solace message delivery mode to Guaranteed Messaging. The
default delivery mode is Direct Messaging.

rmretdel Specifies to remove all delete events from event blocks received by a
subscriber that were introduced by a window retention policy.

protofile Specifies the .proto file that contains the Google Protocol Buffers message
definition used to convert event blocks to protobuf messages. When you
specify this parameter, you must also specify the protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in the .proto file
that you specified with the protofile parameter. Event blocks are
converted into this message.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

json Enables transport of event blocks encoded as JSON messages.

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

123

Parameter Description

solpasswordencrypted Specifies that solpassword is encrypted.

Table 55 Optional Parameters for Publisher Solace Systems Connectors

Parameter Description

buspersistence Creates the Guaranteed message flow to bind to the topic endpoint
provisioned on the appliance that the published Guaranteed messages are
delivered and spooled to. By default this flow is disabled, because it is not
required to receive messages published using Direct Messaging.

buspersistencequeue Specifies the name of the queue to which the Guaranteed message flow
binds.

protofile Specifies the .proto file that contains the Google Protocol Buffers message
definition used to convert event blocks to protobuf messages. When you
specify this parameter, you must also specify the protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in the .proto file
that you specified with the protofile parameter. Event blocks are
converted into this message.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

json Enables transport of event blocks encoded as JSON messages.

publishwithupsert Specifies to build with opcode = Upsert instead of opcode =
Insert.

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

solpasswordencrypted Specifies that solpassword is encrypted.

getmsgfromdestattr Extracts the payload from the destination attribute instead of the message
body.

transactional When getmsgfromdestattr is enabled, sets the event block type to
transactional. The default event block type is normal.

blocksize When getmsgfromdestattr is enabled, specifies the number of events
to include in a published event block. The default value is 1.

maxevents Specifies the maximum number of events to publish.

124

Using the Solace Systems Adapter

The Solace Systems adapter supports publish and subscribe operations on a hardware-based Solace fabric.
You must install the Solace run-time libraries to use the adapter.

Subscriber usage:

dfesp_sol_adapter -h url -k sub -n numbufferedmsgs -o urlhostport -p solpassword -t soltopic -u soluserid -v
solvpn <-b > <-C [configfilesection]> <-d dateformat > <-E tokenlocation > <-f protofile > <-g gdconfig > <-j trace
| debug | info | warn | error | fatal | off> <-l native | solace | tervela | rabbitmq | kafka> <-m protomsg > <-V> <-X>
<-y logconfigfile > <-Z transportconfigfile>

Publisher usage:

dfesp_sol_adapter -h url -k pub -o urlhostport -p solpassword -t soltopic -u soluserid -v solvpn <-B blocksize>
<-b > <-C [configfilesection]> <-D> <-d dateformat > <-E tokenlocation > <-e> <-f protofile > <-g gdconfig > <-j
trace | debug | info | warn | error | fatal | off> <-l native | solace | tervela | rabbitmq | kafka> <-m protomsg > <-Q>
<-q buspersistencequeue > <-R> <-V> <-X> <-Y maxevents> <-y logconfigfile > <-Z transportconfigfile>

Parameter Description

‑B blocksize When getmsgfromdestattr is enabled, specifies the number of events
to include in a published event block. The default value is 1.

‑b Uses Solace Guaranteed Messaging. By default, Solace Direct Messaging is
used.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

‑D Extracts the payload from the destination attribute instead of the message
body.

‑d dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

‑E tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token that is required for authentication by the publish/subscribe server

‑e When getmsgfromdestattr is enabled, sets the event block type to
transactional. The default event block type is normal.

‑f protofile Specifies the .proto file that contains the message used for Google
Protocol buffer support.

‑g gdconfig Specifies the guaranteed delivery configuration file.

125

Parameter Description

‑h url Specifies the dfESP publish and subscribe standard URL in the form
"dfESP://host:port/project/continuousquery/window”.

Append the following for subscribers: ?snapshot= true | false.

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The subscriber
then receives a stream of events produced from the time of the snapshot
onward. Those subsequent events can be Inserts, Updates, or Deletes.

Append the following for subscribers if needed:

n ?collapse= true | false

n ?rmretdel=true | false

‑j trace | debug | info |
warn | error | fatal | off

Sets the logging level for the adapter. This is the same range of logging levels
that you can set in the C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

‑k Specifies sub for subscriber use and pub for publisher use

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the transport type. If you specify solace, tervela, rabbitmq,
or kafka transports instead of the default native transport, use the
required client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑m protomsg Specifies the message itself in the .proto file that is specified by the
protofile parameter.

‑n numbufferedmsgs Specifies the maximum number of messages buffered by a standby
subscriber connector.

‑o urlhostport Specifies the host:port field in the metadata topic subscribed to by the
connector.

‑p solpassword Specifies the Solace password.

‑Q When maxevents is configured, quiesces the project after all events are
injected into the Source window.

‑q buspersistencequeue Specifies the queue name used by Solace Guaranteed Messaging publisher.

‑R Builds events with opcode=Upsert instead of opcode=Insert.

‑s solhostport Specifies the Solace host:port.

‑t soltopic Specifies the Solace topic.

‑u soluserid Specifies the Solace user name.

‑V Restarts the adapter if a fatal error is reported.

‑v solvpn Specifies the Solace VPN name.

‑X Specifies that solpassword is encrypted.

126

Parameter Description

‑Y maxevents Specifies the maximum number of events to publish.

‑y logconfigfile Specifies the log configuration file.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the Teradata Connector and Adapter

Using the Teradata Connector

The Teradata connector uses the Teradata Parallel Transporter (TPT) API to support subscribe operations
against a Teradata server.

The Teradata Tools and Utilities (TTU) package must be installed on the platform running the connector. The
run-time environment must define the path to the Teradata client libraries in the TTU. For Teradata ODBC
support while using the load operator, you must also define the path to the Teradata TeraGSS libraries in the
TTU. To support logging of Teradata messages, you must define the NLSPATH environment variable
appropriately. For example, with a TTU installation in /opt/teradata, define NLSPATH as /opt/teradata/
client/version/tbuild/msg64/%N. The connector has been certified using TTU version 14.10.

For debugging, you can install optional PC-based Teradata client tools to access the target database table on
the Teradata server. These tools include the GUI SQL workbench (Teradata SQL Assistant) and the DBA/Admin
tool (Teradata Administrator), which both use ODBC.

You must use one of three TPT operators to write data to a table on the server:stream, update, or load.

Operator Description

stream Works like a standard ESP database subscriber connector, but with improved
throughput gained through using the TPT. Supports insert, update, and delete events.
As it receives events from the subscribed window, it writes them to the target table. If
you set the required tdatainsertonly configuration parameter to false,
serialization is automatically enabled in the TPT to maintain correct ordering of row data
over multiple sessions.

update Supports insert/update/delete events but writes them to the target table in batch mode.
The batch period is a required connector configuration parameter. At the cost of higher
latency, this operator provides better throughput with longer batch periods (for example
minutes instead of seconds).

127

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Operator Description

load Supports insert events. Requires an empty target table. Provides the most optimized
throughput. Staggers data through a pair of intermediate staging tables. These table
names and connectivity parameters are additional required connector configuration
parameters. In addition, the write from a staging table to the ultimate target table uses
the generic ODBC driver used by the database connector. Thus, the associated connect
string configuration and odbc.ini file specification is required. The staging tables are
automatically created by the connector. If the staging tables and related error and log
tables already exist when the connector starts, it automatically drops them at start-up.

If required, you can configure the tdatauserpwd parameter with an encrypted password. The encrypted
version of the password can be generated by using OpenSSL, which must be installed on your system. If you
have installed the SAS Event Stream Processing System Encryption and Authentication Overlay, you can use
the included OpenSSL executable. Use the following command on the console to invoke OpenSSL to display
your encrypted password:

echo "tdatauserpwd" | openssl enc -e -aes-256-cbc -a -salt
-pass pass:"SASespTDATAconnectorUsedByUser=tdatausername"

Then copy the encrypted password into your tdatauserpwd parameter and enable the
tdatauserpwdencrypted parameter.

Table 56 Required Parameters for Teradata Connectors

Parameter Description

type Specifies to subscribe. Must be “sub”.

desttablename Specifies the target table name.

tdatausername Specifies the user name for the user account on the target Teradata server.

tdatauserpwd Specifies the user password for the user account on the target Teradata server.

tdatatdpid Specifies the target Teradata server name

tdatamaxsessions Specifies the maximum number of sessions created by the TPT to the Teradata server.

tdataminsessions Specifies the minimum number of sessions created by the TPT to the Teradata server.

tdatadriver Specifies the operator: stream, update, or load.

tdatainsertonly Specifies whether events in the subscriber event stream processing window are insert
only. Must be true when using the load operator.

snapshot Specifies whether to send snapshot data.

When true, the subscriber receives a collection of Insert events that are contained in
the window at that point in time. The subscriber then receives a stream of events
produced from the time of the snapshot onward. Those subsequent events can be
Inserts, Updates, or Deletes.

128

Table 57 Optional Parameters for Teradata Connectors

Parameter Description

rmretdel Removes all delete events from event blocks received by the subscriber that
were introduced by a window retention policy.

tdatabatchperiod Specifies the batch period in seconds. Required when using the update
operator, otherwise ignored.

stage1tablename Specifies the first staging table. Required when using the load operator,
otherwise ignored.

stage2tablename Specifies the second staging table. Required when using the load operator,
otherwise ignored.

connectstring Specifies the connect string used to access the target and staging tables.

See “Using the Database Connector” for Teradata connectstring
requirements.

tdatatracelevel Specifies the trace level for Teradata messages written to the trace file in the
current working directory. The trace file is named operator1.txt. Default is 1
(TD_OFF). Other valid values are: 2 (TD_OPER), 3 (TD_OPER_CLI), 4
(TD_OPER_OPCOMMON), 5 (TD_OPER_SPECIAL), 6 (TD_OPER_ALL), 7
(TD_GENERAL), and 8 (TD_ROW).

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

tdatauserpwdencrypted Specifies that tdatauserpwd is encrypted.

Using the Teradata Subscriber Adapter

The Teradata adapter supports subscribe operations against a Teradata server, using the Teradata Parallel
Transporter for improved performance. You must install the Teradata Tools and Utilities (TTU) to use the adapter.

Note: Remove the reference to this connector from the file /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/connectors.excluded (Linux) or %ProgramData%\SAS
\Viya\SASEventStreamProcessingEngine\default\connectors.excluded (Windows) before using
it.

Note: A separate database adapter uses generic ODBC drivers for the Teradata platform. For more information,
see “Using the Database Adapter”.

Usage:

dfesp_tdata_adapter -a maxsessions -d stream | update | load -h url -i true | false -n minsessions -s
servername -t tablename -u username -x userpwd <-b batchperiod > <-C [configfilesection]> <-c connectstring >
<-E tokenlocation > <-g gdconfig > <-j trace | debug | info | warn | error | fatal | off> <-l native | solace | tervela |
rabbitmq | kafka> <-q stage1table > <-r stage2table > <-V> <-X> <-y logconfigfile > <-Z transportconfigfile> <-z
tracelevel >

129

Parameter Description

‑a maxsessions Specifies the maximum number of sessions on the Teradata server. A
Teradata session is a logical connection between an application and Teradata
Database. It allows an application to send requests to and receive responses
from Teradata Database. A session is established when Teradata Database
accepts the user name and password of a user.

‑b batchperiod Specifies the batch period in seconds. This parameter is required when ‑d
specifies the update operator.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

‑c connectstring Specifies the connect string to be used by the ODBC driver to access the
staging and target tables on the Teradata server. See “Using the Database
Connector” for Teradata connectstring requirements. This parameter is
required when ‑d load is specified.

‑d stream | update | load Specifies the Teradata operator. For more information about these operators,
see the documentation provided with the Teradata Tools and Utilities.

‑E tokenlocation Specifies the location of the file in the local file system that contains the
OAuth token that is required for authentication by the publish/subscribe
server

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑h url Specifies the dfESP subscribe standard URL in the form dfESP://
host:port/project/continuousquery/window?
snapshot=true |false.

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The subscriber
then receives a stream of events produced from the time of the snapshot
onward. Those subsequent events can be Inserts, Updates, or Deletes.

Append ?collapse=true | false if needed.

Append ?rmretdel=true | false if needed.

‑i Specifies that the subscribed window contains insert-only data.

‑j trace | debug | info |
warn | error | fatal | off

Sets the logging level for the adapter. Use the same range of logging levels
that you can set in the C_dfESPpubsubInit() publish/subscribe API call
or in the engine initialize() call.

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the transport type. If you specify solace, tervela, rabbitmq,
or kafka transports instead of the default native transport, use the
required client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑n minsessions Specifies the minimum number of sessions on the Teradata server.

‑q stage1table Specifies the name of the first staging table on the Teradata server. This
parameter is required when ‑d specifies the load operator.

130

Parameter Description

‑r stage2table Specifies the name of the second staging table on the Teradata server. This
parameter is required when ‑d specifies the load operator.

‑s servername Specifies the name of the target Teradata server.

‑t tablename Specifies the name of the target table on the Teradata server.

‑u username Specifies the Teradata user name.

‑V Restarts the adapter if a fatal error is reported.

‑X Specifies that tdatauserpwd is encrypted.

‑x userpwd Specifies the Teradata user password.

‑y logconfigfile Specifies the log configuration file.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

‑z tracelevel Specifies the trace level for Teradata messages written to the trace file in the
current working directory. The trace file is named operator1.txt. Default value
is 1 (TD_OFF). Other valid values are: 2 (TD_OPER), 3 (TD_OPER_CLI), 4
(TD_OPER_OPCOMMON), 5 (TD_OPER_SPECIAL), 6 (TD_OPER_ALL), 7
(TD_GENERAL), and 8 (TD_ROW).

Using the Teradata Listener Connector and
Adapter

Using the Teradata Listener Connector

The Teradata Listener connector sends data from SAS Event Stream Processing to the Teradata Listener
application.

Note: Teradata Listener version 2.02 and higher versions are not supported.

Teradata Listener ingests high-volume, real-time data streams and persists the data from those streams to
Teradata, Aster, or Hadoop. Listener withstands service interruptions in target systems by buffering data until the
target systems become available.

Blocks of events are sent to the Teradata Listener Ingest service using a REST API. The Teradata Listener
connector supports Listener Ingest REST API (version 1).

131

After data is delivered to the Listener Ingest service, Listener queues the data and sends it to all targets that
subscribe to that Listener source stream. Targets can be one or more Teradata, Aster, or Hadoop systems, as
well as other applications that read from the same Listener source using the Listener Stream service.

The Teradata Listener connector collects events from SAS Event Stream Processing and transforms them into
JSON or plaintext format, as specified by the contentType parameter. The connection to the Listener Ingest
service is defined by the ingestUrl and SSLCert parameters. The Listener source (data stream) where the
data will be delivered is identified by the sourceKey parameter.

The Teradata Listener connector is a subscribe-only. To send data from Teradata Listener to SAS Event Stream
Processing, use the WebSocket connector with contentType=JSON.

Note: Because the Teradata Listener connector uses SSL to establish an encrypted connection to the Teradata
Listener Ingest service, the run-time environment must define the path to your SSL libraries (for example,
specifying LD_LIBRARY_PATH on Linux platforms). For more information about SSL libraries that are used in
SAS Event Stream Processing, see SAS Event Stream Processing: Security.

Table 58 Required Parameters for Teradata Listener Connectors

Parameter Description

type Specifies to subscribe. Must be “sub”.

ingestUrl Specifies the URL for the Listener Ingest REST API (version 1).

SSLCert Specifies the path to a file that contains SSL certificates securely connect to the Listener Ingest
service. Listener uses TLS 1.2.

sourceKey Specifies the Listener source secret key that identifies the Listener source feed to which SAS
Event Stream Processing sends data. Contact your Teradata Listener administrator to obtain the
source secret key.

snapshot Specifies whether to send snapshot data. When true, the subscriber receives a collection of
Insert events that are contained in the window at that point in time. The subscriber then receives a
stream of events produced from the time of the snapshot onward. Those subsequent events can
be Inserts, Updates, or Deletes.

Table 59 Optional Parameters for Teradata Listener Connectors

Parameter Description

ingestBlocksize Specifies the maximum number of data rows to send in one Listener Ingest
message. Matching the connector block size to the Source window block size
is recommended. The default block size is 256.

contentType Specifies the format of the data sent from SAS Event Stream Processing to
Listener, either JSON or plaintext (comma-delimited). The default is
“JSON”.

ingestDelim Specifies the character that delimits data rows in a multi-row message from
SAS Event Stream Processing to the Listener Ingest REST API. The delimiter
must not be a JSON punctuation character. The default is a tilde (~).

‑3 doubleprecision Specifies the number of fractional digits in the ASCII representation of a
double. The default value is 6.

132

http://documentation.sas.com/?docsetId=espsec&docsetVersion=5.2&docsetTarget=titlepage.htm&locale=en

Using the Teradata Listener Adapter

The Teradata Listener subscriber adapter provides the same functionality as the Teradata Listener connector in
addition to several optional, adapter-only parameters.

Usage:

dfesp_tdlistener_adapter -h url -i ingestUrl -k sourceKey -s SSLCert <-b ingestBlocksize> <-C
configfilesection> <-c JSON | plaintext> <-d ingestDelim> <-E tokenlocation> <-g gdconfig> <-j trace | debug |
info | warn | error | fatal | off> <-l native | solace | tervela | rabbitmq | kafka> <-V> <-y logconfigfile> <-Z
transportconfigfile> <-3 doubleprecision>

Parameter Description

‑b ingestBlocksize Specifies the maximum number of data rows to send in one Listener Ingest
message. The default is 256.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

‑c JSON | plaintext Specifies the format of the data sent from SAS Event Stream Processing to
the Listener. The default is “JSON”.

‑d ingestDelim Specifies the character that delimits data rows in a multi-row message from
SAS Event Stream Processing to the Listener Ingest REST API. The delimiter
must not be a JSON punctuation character. The default is tilde (~).

‑E tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token that is required for authentication by the publish/subscribe server.

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑h url Specifies the dfESP publish and subscribe standard URL in the form
"dfESP://host:port/project/continuousquery/window”.

Append the following for subscribers: ?snapshot= true | false.

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The subscriber
then receives a stream of events produced from the time of the snapshot
onward. Those subsequent events can be Inserts, Updates, or Deletes.

Append the following if needed:

?rmretdel=true | false

‑i ingestUrl Specifies the URL for the Listener Ingest REST API (version 1).

‑j trace | debug | info |
warn | error | fatal | off

Sets the logging level for the adapter. This is the same range of logging levels
that you can set in the C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

‑k sourceKey Specifies the Listener source secret key that identifies the Listener source
feed where SAS Event Stream Processing sends data. Contact your Teradata
Listener administrator to obtain the source key.

133

Parameter Description

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the transport type. If you specify solace, tervela, rabbitmq,
or kafka transports instead of the default native transport, use the
required client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑n numbufferedmsgs Specifies the maximum number of messages buffered by a standby
subscriber connector.

‑s SSLCert Specifies the path to a file that contains SSL certificates for securely
connecting to the Listener Ingest service. Listener uses TLS 1.2.

‑V Restarts the adapter if a fatal error is reported.

‑y logconfigfile Specifies the log configuration file.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

‑3 doubleprecision Specifies the number of fractional digits in the ASCII representation of a
double. The default value is 6.

Using the Tervela Connector and Adapter

Using the Tervela Data Fabric Connector

The Tervela Data Fabric connector communicates with a software or hardware-based Tervela Data Fabric for
publish and subscribe operations.

A Tervela subscriber connector receives events blocks and publishes to the following Tervela topic:
“SAS.ENGINES.enginename.projectname.queryname.windowname.OUT.”

A Tervela publisher connector reads event blocks from the following Tervela topic:
“SAS.ENGINES.enginename.projectname.queryname.windowname.IN” and injects them into Source windows.

As a result of the bus connectivity provided by the Tervela Data Fabric connector, the engine does not need to
manage individual publish/subscribe connections. A high capacity of concurrent publish/subscribe connections
to a single ESP engine is achieved.

You must install the Tervela run-time libraries on the platform that hosts the running instance of the connector.
The run-time environment must define the path to those libraries (specify LD_LIBRARY_PATH on Linux
platforms, for example).

Note: Remove the reference to this connector from the file /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/connectors.excluded (Linux) or %ProgramData%\SAS

134

\Viya\SASEventStreamProcessingEngine\default\connectors.excluded (Windows) before using
it.

The Tervela Data Fabric Connector has the following characteristics:

n It works with binary event blocks. No other event block formats are supported.

n It operates as a Tervela client. All Tervela Data Fabric connectivity parameters are required as connector
configuration parameters.

Before using Tervela Data Fabric connectors, you must configure the following items on the Tervela TPM
Provisioning and Management System:

n a client user name and password to match the connector’s tvauserid and tvapassword configuration
parameters

n the inbound and outbound topic strings and associated schema

n publish or subscribe entitlement rights associated with a client user name

When the connector starts, it publishes a message to topic SAS.META.tvaclientname (where tvaclientname is a
connector configuration parameter). This message contains the following information:

n The mapping of the ESP engine name to a host:port field potentially used by an ESP publish/subscribe
client. The host:port string is the required urlhostport connector configuration parameter, and is
substituted by the engine name in topic strings used on the fabric.

n The project, query, and window names of the window associated with the connector, as well as the serialized
schema of the window.

All messaging performed by the Tervela connector uses the Tervela Guaranteed Delivery mode. Messages are
persisted to a Tervela TPE appliance. When a publisher connector connects to the fabric, it receives messages
already published to the subscribed topic over a recent time period. By default, the publisher connector sets this
time period to eight hours. This enables a publisher to catch up with a day’s worth of messages. Using this mode
requires regular purging of persisted data by an administrator when there are no other automated mechanism to
age out persisted messages.

Tervela subscriber connectors support a hot failover mode. The active/standby status of the connector is
coordinated with the fabric so that a standby connector becomes active when the active connector fails. Several
conditions must be met to guarantee successful switchovers:

n The engine names of the ESP engines running the involved connectors must all be identical. This set of ESP
engines is called the failover group.

n All involved connectors must be active on the same set of topics.

n All involved subscriber connectors must be configured with the same tvaclientname.

n All involved connectors must initiate message flow at the same time, and with the TPE purged of all
messages on related topics. This is required because message IDs must be synchronized across all
connectors.

n Message IDs that are set by the injector of event blocks into the model must be sequential and synchronized
with IDs used by other standby connectors. When the injector is a Tervela publisher connector, that
connector sets the message ID on all injected event blocks, beginning with ID = 1.

When a new subscriber connector becomes active, outbound message flow remains synchronized due to
buffering of messages by standby connectors and coordination of the resumed flow with the fabric. The size of
this message buffer is a required parameter for subscriber connectors.

Tervela connector configuration parameters named tva… are passed unmodified to the Tervela API by the
connector. See your Tervela documentation for more information about these parameters.

If required, you can configure the tvapassword parameter with an encrypted password. The encrypted version
of the password can be generated by using OpenSSL, which must be installed on your system. If you have
installed the SAS Event Stream Processing System Encryption and Authentication Overlay, you can use the

135

included OpenSSL executable. Use the following command on the console to invoke OpenSSL to display your
encrypted password:

echo "tvapassword" | openssl enc -e -aes-256-cbc -a -salt -pass pass:"SASespTVAconnectorUsedByUser=tvauserid"

Then copy the encrypted password into your tvapassword parameter and enable the
tvapasswordencrypted parameter.

Use the following parameters with Tervela connectors.

Table 60 Required Parameters for Subscriber Tervela Connectors

Parameter Description

type Specifies to subscribe. Must be “sub”.

tvauserid Specifies a user name defined in the Tervela TPM. Publish-topic entitlement
rights must be associated with this user name.

tvapassword Specifies the password associated with tvauserid.

tvaprimarytmx Specifies the host name or IP address of the primary TMX.

tvatopic Specifies the topic name for the topic to which to subscribed. This topic must
be configured on the TPM for the GD service and tvauserid must be
assigned the Guaranteed Delivery subscribe rights for this Topic in the TPM.

tvaclientname Specifies the client name associated with the Tervela Guaranteed Delivery
context. If hot failover is enabled, this name must match the
tvaclientname of other subscriber connectors in the failover group.
Otherwise, the name must be unique among all instances of Tervela
connectors.

tvamaxoutstand Specifies the maximum number of unacknowledged messages that can be
published to the Tervela fabric (effectively the size of the publication cache).
Should be twice the expected transmit rate.

numbufferedmsgs Specifies the maximum number of messages buffered by a standby
subscriber connector. When exceeded, the oldest message is discarded. If
the connector goes active the buffer is flushed, and buffered messages are
sent to the fabric as required to maintain message ID sequence.

urlhostport Specifies the host/port string sent in the metadata message published by
the connector on topic SAS.META.tvaclientname when it starts.

snapshot Specifies whether to send snapshot data.

When true, the subscriber receives a collection of Insert events that are
contained in the window at that point in time. The subscriber then receives a
stream of events produced from the time of the snapshot onward. Those
subsequent events can be Inserts, Updates, or Deletes.

Table 61 Required Parameters for Publisher Tervela Connectors

Parameter Description

type Specifies to publish. Must be “pub”.

136

Parameter Description

tvauserid Specifies a user name defined in the Tervela TPM. Subscribe-topic
entitlement rights must be associated with this user name.

tvapassword Specifies the password associated with tvauserid.

tvaprimarytmx Specifies the host name or IP address of the primary TMX.

tvatopic Specifies the topic name for the topic to which to publish. This topic must be
configured on the TPM for the GD service.

tvaclientname Specifies the client name associated with the Tervela Guaranteed Delivery
context. Must be unique among all instances of Tervela connectors.

tvasubname Specifies the name assigned to the Guaranteed Delivery subscription being
created. The combination of this name and tvaclientname are used by
the fabric to replay the last subscription state. If a subscription state is found,
it is used to resume the subscription from its previous state. If not, the
subscription is started new, starting with a replay of messages received in the
past eight hours.

urlhostport Specifies the host:port string sent in the metadata message published by
the connector on topic SAS.META.tvaclientname when it starts.

Table 62 Optional Parameters for Subscriber Tervela Connectors

Parameter Description

collapse Enables conversion of UPDATE_BLOCK events to make subscriber output
publishable.

hotfailover Enables hot failover mode.

tvasecondarytmx Specifies the host name or IP address of the secondary TMX. Required if
logging in to a fault-tolerant pair.

tvalogfile Causes the connector to log to the specified file instead of to syslog (on Linux
or Solaris) or Tervela.log (on Windows).

tvapubbwlimit Specifies the maximum bandwidth, in Mbps, of data published to the fabric.
The default is 100 Mbps.

tvapubrate Specifies the rate at which data messages are published to the fabric, in
Kbps. The default is 30,000 messages per second.

tvapubmsgexp Specifies the maximum amount of time, in seconds, that published messages
are kept in the cache in the Tervela API. This cache is used as part of the
channel egress reliability window (if retransmission is required). The default
value is 1 second.

rmretdel Specifies to remove all delete events from event blocks received by a
subscriber that were introduced by a window retention policy.

137

Parameter Description

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

protofile Specifies the .proto file that contains the Google Protocol Buffers message
definition. This definition is used to convert event blocks to protobuf
messages. When you specify this parameter, you must also specify the
protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in the .proto file
that you specified with the protofile parameter. Event blocks are
converted into this message.

json Enables transport of event blocks encoded as JSON messages.

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

tvapasswordencrypted Specifies that tvapassword is encrypted.

Table 63 Optional Parameters for Publisher Tervela Connectors

Parameter Description

tvasecondarytmx Specifies the host name or IP address of the secondary TMX. Required when
logging in to a fault-tolerant pair.

tvalogfile Causes the connector to log to the specified file instead of to syslog (on Linux
or Solaris) or Tervela.log (on Windows)

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

protofile Specifies the .proto file that contains the Google Protocol Buffers message
definition. This definition is used to convert event blocks to protobuf
messages. When you specify this parameter, you must also specify the
protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in the .proto file
that you specified with the protofile parameter. Event blocks are
converted into this message.

json Enables transport of event blocks encoded as JSON messages.

138

Parameter Description

publishwithupsert Specifies to build events with opcode = Upsert instead of opcode =
Insert.

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

tvapasswordencrypted Specifies that tvapassword is encrypted.

maxevents Specifies the maximum number of events to publish.

Using the Tervela Data Fabric Adapter

The Tervela adapter supports publish and subscribe operations on a hardware-based or software-based Tervela
fabric. You must install the Tervela run-time libraries to use the adapter.

Subscriber usage:

dfesp_tva_adapter -b numbufferedmsgs -c tvaclientname -f tvatopic -h url -k sub -m tvamaxoutstand -o
urlhostport -p tvapassword -t tvaprimarytmx -u tvauserid <-a protofile > <-C [configfilesection]> <-D dateformat >
<-d protomsg > <-E tokenlocation > <-e tvapubmsgexp > <-g gdconfig > <-i tvalogfile > <-j trace | debug | info |
warn | error | fatal | off> <-l native | solace | tervela | rabbitmq | kafka> <-r tvapubrate > <-s tvasecondarytmx > <-
V> <-w tvapubbwlimit > <-X> <-y logconfigfile > <-Z transportconfigfile>

Publisher usage:

dfesp_tva_adapter -c tvaclientname -f tvatopic -h url -k pub -n tvasubname -o urlhostport -p tvapassword -t
tvaprimarytmx -u tvauserid <-a protofile > <-C [configfilesection]> <-D dateformat > <-E tokenlocation > <-g
gdconfig > <-i tvalogfile > <-j trace | debug | info | warn | error | fatal | off> <-l native | solace | tervela | rabbitmq |
kafka> <-m protomsg > <-Q> <-R> <-s tvasecondarytmx > <-V> <-X> <-Y maxevents> <-y logconfigfile > <-Z
transportconfigfile>

Parameter Description

‑a protofile Specifies the .proto file that contains the message used for Google
Protocol buffer support.

‑b numbufferedmsgs Specifies the maximum number of messages buffered by a standby
subscriber connector.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

‑c tvaclientname Specifies the Tervela client name.

139

Parameter Description

‑D dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

‑d protomsg Specifies the message itself in the .proto file that is specified by the
protofile parameter.

‑E tokenlocation Specifies the location of the file in the local file system that contains the
OAuth token that is required for authentication by the publish/subscribe
server.

‑e tvapubmsgexp Specifies the Tervela maximum time to cache published messages (seconds);
the default value is 1.

‑f tvatopic Specifies the Tervela topic.

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑h url Specifies the dfESP publish and subscribe standard URL in the form
"dfESP://host:port/project/continuousquery/window”.

Append the following for subscribers: ?snapshot=true | false

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The subscriber
then receives a stream of events produced from the time of the snapshot
onward. Those subsequent events can be Inserts, Updates, or Deletes.

Append the following for subscribers if needed:

n ?collapse=true | false

n ?rmretdel=true | false

‑i tvalogfile Specifies the Tervela log file. The default is “syslog”.

‑j trace | debug | info |
warn | error | fatal | off

Sets the logging level for the adapter. This is the same range of logging levels
that you can set in the C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

‑k Specifies sub for subscriber use and pub for publisher use

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the transport type. If you specify solace, tervela, rabbitmq,
or kafka transports instead of the default native transport, use the
required client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑m tvamaxoutstand Specifies the Tervela maximum number of unacknowledged messages.

‑o urlhostport Specifies the host:port string sent in connector metadata message

‑p tvapassword Specifies the Tervela password.

‑Q When maxevents is configured, quiesces the project after all events are
injected into the Source window.

140

Parameter Description

‑R Builds events with opcode=Upsert rather than opcode=Insert.

‑r tvapubrate Specifies the Tervela publish rate (Kbps). The default value is 30.

‑s tvasecondarytmx Specifies the Tervela secondary TMX.

‑t tvaprimarytmx Specifies the Tervela primary TMX.

‑u tvauserid Specifies the Tervela user name.

‑V Specifies to restart the adapter if a fatal error is reported.

‑w tvapubbwlimit Specifies the Tervela maximum bandwidth of published data (Mbps). The
default value is 100.

‑X Specifies that tvapassword is encrypted.

‑Y maxevents Specifies the maximum number of events to publish.

‑y logconfigfile Specifies the log configuration file.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the Tibco Rendezvous Connector and
Adapter

Using the Tibco Rendezvous (RV) Connector

The Tibco Rendezvous (RV) connector supports the Tibco RV API for publish and subscribe operations through
a Tibco RV daemon. The subscriber receives event blocks and publishes them to a Tibco RV subject. The
publisher is a Tibco RV subscriber, which injects received event blocks into source windows.

The Tibco RV run-time libraries must be installed on the platform that hosts the running instance of the
connector. The run-time environment must define the path to those libraries (for example, specifying
LD_LIBRARY_PATH on Linux platforms).

Note: Remove the reference to this connector from the file /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/connectors.excluded (Linux) or %ProgramData%\SAS

141

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

\Viya\SASEventStreamProcessingEngine\default\connectors.excluded (Windows) before using
it.

The system path must point to the Tibco/RV/bin directory so that the connector can run the RVD daemon.

The subject name used by a Tibco RV connector is a required connector parameter. A Tibco RV subscriber also
requires a parameter that defines the message format used to publish events to Tibco RV. A Tibco RV publisher
can consume any message type produced by a Tibco RV subscriber.

By default, the Tibco RV connector assumes that a Tibco RV daemon is running on the same platform as the
connector. Alternatively, you can specify the connector tibrvdaemon configuration parameter to use a remote
daemon.

Similarly, you can specify the optional tibrvservice and tibrvnetwork parameters to control the
Rendezvous service and network interface used by the connector. For more information, see your Tibco RV
documentation.

The Tibco RV connector relies on the default multicast protocols for message delivery. The reliability interval for
messages sent to and from the Tibco RV daemon is inherited from the value in use by the daemon.

Use the following parameters with Tibco RV connectors:

Table 64 Required Parameters for Subscriber Tibco RV Connectors

Parameter Description

type Specifies to subscribe. Must be “sub”.

tibrvsubject Specifies the Tibco RV subject name.

tibrvtype Specifies binary, CSV, JSON, or the name of a string field in the
subscribed window schema.

snapshot Specifies whether to send snapshot data.

When true, the subscriber receives a collection of Insert events that are
contained in the window at that point in time. The subscriber then receives a
stream of events produced from the time of the snapshot onward. Those
subsequent events can be Inserts, Updates, or Deletes.

Table 65 Required Parameters for Publisher Tibco RV Connectors

Parameter Description

type Specifies to publish. Must be “pub”.

tibrvsubject Specifies the Tibco RV subject name.

tibrvtype Specifies binary, CSV, JSON, or opaquestring. For opaquestring,
the Source window schema is assumed to be
index:int64,message:string.

142

Table 66 Optional Parameters for Subscriber Tibco RV Connectors

Parameter Description

collapse Enables conversion of UPDATE_BLOCK events to make subscriber output
publishable.

tibrvservice Specifies the Rendezvous service used by the Tibco RV transport created by
the connector. The default service name is “rendezvous”.

tibrvnetwork Specifies the network interface used by the Tibco RV transport created by the
connector. The default network depends on the type of daemon used by the
connector.

tibrvdaemon Specifies the Rendezvous daemon used by the connector. The default is the
default socket created by the local daemon.

rmretdel Specifies to remove all delete events from event blocks received by a
subscriber that were introduced by a window retention policy.

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

protofile Specifies the .proto file that contains the Google Protocol Buffers message
definition. This definition is used to convert event blocks to protobuf
messages. When you specify this parameter, you must also specify the
protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in the .proto file
that you specified with the protofile parameter. Event blocks are
converted into this message.

csvmsgperevent For CSV, specifies to send one message per event. The default is one
message per transactional event block or else one message per event.

csvmsgpereventblock For CSV, specifies to send one message per event block. The default is one
message per transactional event block or else one message per event.

doubleprecision Specifies the number of fractional digits in the ASCII representation of a
double. The default value is 6.

Table 67 Optional Parameters for Publisher Tibco RV Connectors

Parameter Description

blocksize Specifies the number of events to include in a published event block. The
default value is 1.

143

Parameter Description

transactional Sets the event block type to transactional. The default event block type is
normal.

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

tibrvservice Specifies the Rendezvous service used by the Tibco RV transport created by
the connector. The default service name is rendezvous.

tibrvnetwork Specifies the network interface used by the Tibco RV transport created by the
connector. The default network depends on the type of daemon used by the
connector.

tibrvdaemon Specifies the Rendezvous daemon used by the connector. The default is the
default socket created by the local daemon.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

ignorecsvparseerrors Specifies that when a field in an input CSV event cannot be parsed, the event
is dropped, an error is logged, and publishing continues.

protofile Specifies the .proto file that contains the Google Protocol Buffers message
definition. This definition is used to convert event blocks to protobuf
messages. When you specify this parameter, you must also specify the
protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in the .proto file
that you specified with the protofile parameter. Event blocks are
converted into this message.

csvfielddelimiter Specifies the character delimiter for field data in input CSV events. The
default delimiter is the , character.

noautogenfield Specifies that input events are missing the key field that is autogenerated by
the source window.

publishwithupsert Specifies to build events with opcode=Upsert instead of
opcode=Insert.

addcsvopcode Prepends an opcode and comma to input CSV events. The opcode is Insert
unless publishwithupsert is enabled.

addcsvflags Specifies the event type to insert into input CSV events (with a comma). Valid
values are normal and partialupdate.

maxevents Specifies the maximum number of events to publish.

144

Using the Tibco Rendezvous (RV) Adapter

The Tibco RV adapter supports publish and subscribe operations using a Tibco RV daemon. You must install the
Tibco RV run-time libraries to use the adapter.

Subscriber usage:

dfesp_tibrv_adapter -f tibrvsubject -h url -k sub -s tibrvservice -t tibrvtype <-A> <-a protofile > <-b protomsg >
<-C [configfilesection]> <-D csvfielddelimiter > <-d dateformat > <-E tokenlocation > <-g gdconfig > <-j trace |
debug | info | warn | error | fatal | off> <-L> <-l native | solace | tervela | rabbitmq | kafka> <-M> <-m tibrvdaemon
> <-n tibrvnetwork > <-R> <-V> <-y logconfigfile > <-Z transportconfigfile> <-3 doubleprecision>

Publisher usage:

dfesp_tibrv_adapter -f tibrvsubject -h url -k pub -s tibrvservice -t tibrvtype <-a protofile > <-b protomsg > <-C
[configfilesection]> <-d dateformat > <-E tokenlocation > <-e> <-F eventtype> <-g gdconfig > <-I> <-j trace |
debug | info | warn | error | fatal | off> <-l native | solace | tervela | rabbitmq | kafka> <-m tibrvdaemon > <-n
tibrvnetwork > <-O> <-Q> <-r blocksize > <-V> <-Y maxevents> <-y logconfigfile ><-Z transportconfigfile>

Parameter Description

‑A Specifies that input events are missing the key field that is autogenerated by
the source window.

‑a protofile Specifies the .proto file that contains the message used for Google
Protocol buffer support.

‑b blocksize Specifies the block size. The default value is 1.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

‑D csvfielddelimiter Specifies the character delimiter for field data in input CSV events. The
default delimiter is the , character.

‑d dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

‑E tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token that is required for authentication by the publish/subscribe server

‑e Specifies that events are transactional.

‑F eventtype Specifies the event type to Insert into input CSV events (with comma). Valid
values are "normal" and "partialupdate".

‑f tibrvsubject Specifies the Tibco RV subject.

‑g gdconfig Specifies the guaranteed delivery configuration file.

145

Parameter Description

‑h url Specifies the dfESP publish and subscribe standard URL in the form
"dfESP://host:port/project/continuousquery/window”.

Append the following for subscribers: "?snapshot= true | false ".

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The subscriber
then receives a stream of events produced from the time of the snapshot
onward. Those subsequent events can be Inserts, Updates, or Deletes.

Append the following for subscribers if needed:

n ?collapse= true | false

n ?rmretdel= true | false

‑I Specifies that when a field in an input CSV event cannot be parsed, the event
is dropped, an error is logged, and publishing continues.

‑j trace | debug | info |
warn | error | fatal | off

Sets the logging level for the adapter. This is the same range of logging levels
that you can set in the C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

‑k Specifies sub for subscriber use and pub for publisher use.

‑L For CSV, specifies to send one message per event block. The default is one
message per transactional event block or else one message per event.

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the transport type. If you specify solace, tervela, rabbitmq,
or kafka transports instead of the default native transport, use the
required client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑M For CSV, specifies to send one message per event. The default is one
message per transactional event block or else one message per event.

‑m tibrvdaemon Specifies the Tibco RV daemon.

‑n tibrvnetwork Specifies the Tibco RV network.

‑O Prepends an opcode and comma to input CSV events. The opcode is Insert
unless ‑R is enabled.

‑Q When maxevents is configured, quiesces the project after all events are
injected into the Source window.

‑R Builds events with opcode=Upsert instead of Insert.

‑r protomsg Specifies the message itself in the .proto file that is specified by the
protofile parameter.

‑s tibrvservice Specifies the Tibco RV service.

‑t tibrvtype Specifies binary, CSV, or JSON. opaquestring is supported for
publishers. For opaquestring, the Source window schema is assumed to
be "index:int64,message:string". For subscribers, the name of a
string field in the subscribed window schema is also supported.

146

Parameter Description

‑V Restarts the adapter if a fatal error is reported.

‑Y maxevents Specifies the maximum number of events to publish.

‑y logconfigfile Specifies the log configuration file.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

‑3 doubleprecision Specifies the number of fractional digits in the ASCII representation of a
double. The default value is 6.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the Timer Connector and Adapter

Using the Timer Publisher Connector

The timer publisher connector generates and publishes trigger events at regular intervals. On every interval
expiration, an event with schema <id*:int64,time:stamp,label:string> is generated. The connector’s
Source window must follow this schema.

The timer interval is defined as follows, as specified by connector parameters:

n A start time

n An interval that could be any number of seconds, minutes, hours, days, weeks, months, or years

n A label string that identifies the timer source, in case there are multiple timer connector instances. If not
specified, the default is the connector’s name.

The start time can be a date in the future or in the past. If it is in the future, this is a start time; if it is in the past,
this is more of a base time.

Suppose the time is set to 2017‑08‑01 11:25:32 and the interval to 1 hour. If the current time when the model
starts is 2017‑09‑15 01:12:31, then the first event is generated at 2017‑09‑15 01:25:32, the second at
2017‑09‑15 02:25:32, and so on.

Table 68 Required Parameters for Timer Connectors

Parameter Description

type Specifies to publish or subscribe.

147

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Parameter Description

basetime Specifies the start time in the format defined by the timeformat parameter.

interval Specifies the interval length in units defined by the unit parameter.

unit Specifies the unit of the interval parameter. Units include second |
minute | hour | day | week | month | year.

Table 69 Optional Parameters for Timer Connectors

Parameter Description

label Specifies the string to be written to the source window “label” field. The default
value is the connector name.

timeformat Specifies the format of the basetime parameter. The default value is
“%Y‑%m‑%d %H:%M:%S”.

transactional Sets the event block type to transactional. The default value is
normal.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

publishwithupsert Builds events with opcode = Upsert instead of opcode = Insert.

maxevents Specifies the maximum number of events to publish.

Using the Timer Publisher Adapter

The timer publisher adapter provides the same functionality as the timer publisher connector, with the addition of
some adapter-only optional parameters.

Usage:

dfesp_timer_adapter -b basetime -h url -i interval -u second | minute | hour | day | week | month | year <-C
configfilesection> <-E tokenlocation> <-e> <-f timeformat> <-g gdconfig> <-j trace | debug | info | warn |
error | fatal | off> <-L label> <-l native | solace | tervela | rabbitmq | kafka> <-m maxevents> <-Q> <-R> <-
V> <-y logconfigfile> <-Z transportconfigfile>

Usage:

Parameter Description

‑b basetime Specifies the start time in the format defined by the timeformat parameter.

148

Parameter Description

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

‑E tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token that is required for authentication by the publish/subscribe server.

‑e Specifies that events are transactional.

‑f timeformat Specifies the format of the basetime parameter. The default value is
%Y‑%m‑%d %H:%M:%S.

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑h url Specifies the dfESP publish and subscribe standard URL in the form dfESP://
host:port/project/continuousquery/window.

‑i interval Specifies the interval length in units defined by the unit parameter.

‑j trace | debug | info |
warn | error | fatal | off

Sets the logging level for the adapter. This is the same range of logging levels
that you can set in the C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

‑L label Specifies the string to be written to the Source window label field. The
default value is the connector name.

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the transport type. If you specify solace, tervela, rabbitmq,
or kafka transports instead of the default native transport, use the
required client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑m maxevents Specifies the maximum number of events to publish.

‑Q When maxevents is configured, quiesces the project after all events are
injected into the Source window.

‑R Builds events with opcode=Upsert instead of opcode=Insert.

‑u second | minute | hour |
day | week | month | year

Specifies the units of the interval parameter.

‑V Restarts the adapter if a fatal error is reported.

‑y logconfigfile Specifies the log configuration file.

149

Parameter Description

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

Using the Twitter Publisher Adapter

The Twitter adapter is publisher only. It consumes Twitter streams and injects event blocks into Source windows
of an engine. The Twitter adapter provides the following capabilities:

n subscribes to Twitter streams and receives a continuous flow of tweets as soon as they are tweeted.

n filters the incoming streams using the following standard features provided by Twitter:

o follows specific users.

o tracks specific keywords.

o filters specific geographical locations.

o filters specific languages.

o receives random generated tweets.

o receives only RT tweets. This requires specific Twitter account authorization.

o receives only tweets that include links. This requires specific Twitter account authorization.

o receives full “fire hose.” This requires specific Twitter account authorization.

n publishes received tweets to a Source window for processing inside a model.

Usage:

dfesp_twitter_publisher -m sample | filter | links | firehose | retweet -u url <-a languages > < -b blocksize > <-C
prevcount > <-c [configfilesection]> <-D dumpfile > <-d dateformat > <-f followlist > < -g gdconfigfile > <-k
tracklist > < -l native | solace | tervela | rabbitmq | kafka> <-O tokenlocation > <-o severe | warning | info> < -p
locations > <-s> <-T twitterpropfile > <-t> <-V> <-W maxevents> <-Z transportconfigfile>

150

Parameter Description

‑a languagelist Specifies a comma-separated list of BCP 47 language
identifiers to return only Tweets that have been detected as
being written in the specified languages. For example,
connecting with “en,fr” streams only Tweets detected to be
in the English or French language.

Note: This parameter must be used in conjunction
with at least one of the filter predicates of the filter
access method. The ‑a languagelist parameter is
only supported with the filter access method,
specified at the command line with the ‑m filter
argument. The filter access method requires at least
one of its supported filter predicates. For more
information, see Table 70.

‑b blocksize Specifies the number of events per event block.

‑C prevcount Used with filter, link, or retweet method. Indicates the
number of previous statuses to stream before transitioning
to the live stream. Default is 0. The supplied value can be
an integer from 1 to 150000 or from -1 to -150000. If a
positive number is specified, the stream transitions to live
values after the backfill has been delivered to the client.
When a negative number is specified, the stream
disconnects after the backfill has been delivered to the
client, which might be useful for debugging. This parameter
requires elevated access to use.

See Streaming API request parameters for more
information.

‑c [configfilesection] Specifies the name of the section in /opt/sas/viya/
config/etc/
SASEventStreamProcessingEngine/default/
javaadapters.config (Linux) or %ProgramData%
\SAS\Viya
\SASEventStreamProcessingEngine\default
\javaadapters.config (Windows) to parse for
configuration parameters.

‑D dumpfile Specifies the full path of a file in which to dump binary event
blocks for replay. Use dfESP_fs_adapter to replay
event blocks.

‑d dateformat Specifies the format of ESP_DATETIME and
ESP_TIMESTAMP fields in CSV events. The default
behavior is that these fields are interpreted as an integer
number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat
parameter accepts any time format that is supported by the
UNIX strftime function.

‑f followlist Specifies the list of user IDs to follow with the filter method
in the form “user1,user2,user3”. The default access level
allows up to 400 follower user IDs. See Streaming API
request parameters for more details.

‑g gdconfigfile Specifies the guaranteed delivery configuration file for the
client.

151

https://dev.twitter.com/streaming/overview/request-parameters
https://dev.twitter.com/streaming/overview/request-parameters
https://dev.twitter.com/streaming/overview/request-parameters

Parameter Description

‑k tracklist Specifies the list of keywords to track with the filter method
in the form “keyword1,keyword2,keyword3”. The default
access level allows up to 200 track keywords.

‑l native | solace | tervela | rabbitmq
| kafka

Specifies the transport type. When you specify solace,
tervela, rabbitmq, or kafka transports instead of
the default native transport, use the required client
configuration files specified in “Using Alternative Transport
Libraries for Java Clients” in SAS Event Stream Processing:
Publish/Subscribe API .

‑m sample | filter | links | firehose |
retweet

Specifies the method type for subscribing to Twitter
streams. See the table that follows.

‑O tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token that is required for authentication
by the publish/subscribe server

‑o severe | warning | info Specifies the application logging level.

‑p locationlist Specifies the list of locations to track with the filter method
in the form of a comma-separated list of longitude,latitude
pairs. Each pair specifies a set of bounding boxes with the
southwest corner of the bounding box coming first. Sample:
“-122.75,36.8,-121.75,37.8” for San Francisco. Note that
bounding boxes do not act as filters for other filter
parameters. The default access level allows up to 10 1-
degree location boxes.

‑s Builds events with opcode=Upsert instead of Insert.

javaadapters.config parameter name:
publishwithupsert

‑T twitterpropfile Specifies the name of the file in your configuration directory
to parse for Twitter configuration parameters. Default is
twitterpublisher.properties.

‑t Specifies that event blocks are transactional. The default
event block type is normal.

javaadapters.config parameter name:
transactional

‑u url Specifies the publish standard URL in the form
"dfESP://host:port/project/
continuousquery/window".

‑V Restarts the adapter if a fatal error is reported.

javaadapters.config parameter name:
restartonerror

‑W maxevents Specifies the maximum number of events to publish.

152

http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p0tyxhiahf6sa4n1s53ynvzpbl14.htm&docsetTargetAnchor=p007un1lfvrhxxn18wvt4zxdoo8i&locale=en

Parameter Description

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file.
The default value depends on the transport type specified
with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for
native transport.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Twitter sets limitations to access streams and uses some methods depending on the user-account level of
access:

Table 70 Twitter Stream Access Methods

Access Method Limitations

sample Starts listening on random sample of all public statuses. The default access level provides a
small proportion of the firehose. The "Gardenhose" access level provides a proportion more
suitable for data mining and research applications that need a statistically significant sample.

filter Starts consuming public statuses that match one or more filter predicates. At least one predicate
parameter, follow, locations, or track must be specified. Multiple parameters can be specified that
enable most clients to use a single connection to the Streaming API. Placing long parameters in
the URL can cause the request to be rejected for excessive URL length. The default access level
allows up to 200 track keywords, 400 follower user IDs and 10 1-degree location boxes.
Increased access levels enable the following:

n 80,000 follower user IDs ("shadow" role)
n 400,000 follower user IDs ("birddog" role)
n 10,000 track keywords ("restricted track" role)
n 200,000 track keywords ("partner track" role)
n 200 10-degree location boxes ("locRestricted" role)
Increased track access levels also pass a higher proportion of statuses before limiting the stream.
For more information about specifying parameters, see https://developer.twitter.com/en/docs.

firehose Starts listening on all public statuses. Available only to Twitter approved parties and requires a
signed agreement to access.

retweet Starts listening on all retweets. The retweet stream is not a generally available resource. Few
applications require this level of access. Creative use of a combination of other resources and
various access levels can satisfy nearly every application use case.

link Starts listening on all public statuses containing links. Available only to Twitter approved parties
and requires a signed agreement to access

Before you run the Twitter adapter, download the twitter4j-core and twitter4j-stream JAR files from twitter4j.org
and copy them to $DFESP_HOME/lib. Versions 4.0.2 and 4.0.4 are certified.

153

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

To authorize a Twitter user account to be used by the Twitter adapter, you need to grant access to your Twitter
user account on behalf of the SAS Twitter app ID. The Twitter properties file located in the SAS Event Stream
Processing configuration directory must include an encrypted access token in order for a user account to access
the adapter. By default, the Twitter properties file is named twitterpublisher.properties and does not
include the access token. To generate and write an encrypted access token to the properties file, run the
dfesp_twitter_auth utility that is located in $DFESP_HOME/bin. Once the token is included in the properties file,
verify that the adapter runs successfully. You do not need to run the dfesp_twitter_auth utility more than once for
the same Twitter account.

If you need to add other settings such as proxy servers, API stream URLs, or trace settings, see http://
twitter4j.org/en/configuration.html#Streaming and edit your Twitter properties file accordingly.

The Source window of the model that the Twitter adapter publishes to must have the following schema:

tw_ID*:int64,tw_AuthorScreenName:string,tw_AuthorId:int64,tw_AuthorDescrip
tion:string,tw_AuthorFavouritesCount:int32,tw_AuthorFollowersCount:int32,tw
_AuthorFriendsCount:int32,tw_AuthorProfileImageURL:string,tw_AuthorLang:str
ing,tw_AuthorLocation:string,tw_AuthorName:string,tw_AuthorTimeZone:string,
tw_AuthorURL:string,tw_AuthorStatusesCount:int32,tw_AuthorListedCount:int32
,tw_Text:string,tw_CreatedAt:stamp,tw_CurrentUserRetweetId:int64,tw_Favorit
eCount:int32,tw_GeolocLatitude:double,tw_GeolocLongitude:double,tw_InReplyT
oScreenName:string,tw_InReplyToStatusId:int64,tw_InReplyToUserId:int64,tw_L
ang:string,tw_RetweetCount:int32,tw_RetweetedStatusId:int64,tw_SourceText:s
tring,tw_Source:string,tw_isFavorited:int32,tw_isPossiblySensitive:int32,tw
_isRetweet:int32,tw_isRetweeted:int32,tw_isTruncated:int32,tw_PlaceFullName
:string,tw_MentionedUserNames:string,tw_MentionedUserScreenNames:string,tw_
MentionedUserIds:string,tw_StatusLinks:string,tw_StatusTags:string,f_method
:string,f_followed_IDs:string,f_tracked_terms:string,f_GeoLocations:string,
f_Languages:string

Field Type Description

tw_ID int64 The ID of the status

tw_AuthorScreenName string The screen name of the user ID associated with the
status

tw_AuthorId int64 The user ID associated with the status.

tw_AuthorDescription string The description of the author

tw_AuthorFavouritesCount int32 The number of favorites of the author

tw_AuthorFollowersCount int32 The number of followers of the author

tw_AuthorFriendsCount int32 The number of friends of the author

tw_AuthorProfileImageURL string The profile image url of the author

tw_AuthorLang string The preferred language of the author

tw_AuthorLocation string The location of the author

tw_AuthorName string The name of the author

tw_AuthorTimeZone string The time zone of the author

154

http://twitter4j.org/en/configuration.html#Streaming
http://twitter4j.org/en/configuration.html#Streaming

Field Type Description

tw_AuthorURL string The URL of the author

tw_AuthorStatusesCount int32 The status count of the author

tw_AuthorListedCount int32 The number of public lists the author is listed on, or
-1 if the count is unavailable.

tw_Text string The text of the Status

tw_CreatedAt The date of creation of the Status

tw_CurrentUserRetweetId int64 The authenticating user's retweet's ID of this tweet,
or -1L when the tweet was created before this feature
was enabled.

tw_FavoriteCount int32 The number of times this Tweet has been "favorited"
by Twitter users.

tw_GeolocLatitude double The location that this tweet refers to, if available (can
be null).

tw_GeolocLongitude double The location that this tweet refers to, if available (can
be null).

tw_InReplyToScreenName string The screen name of the status, this status is replying
to.

tw_InReplyToStatusId int64 The ID of the status, this status is replying to.

tw_InReplyToUserId int64 The ID of the user, this status is replying to.

tw_Lang string The two-letter ISO language code if the status if
available.

tw_RetweetCount int32 The number of times this tweet has been retweeted,
or -1 when the tweet was created before this feature
was enabled. Please note that as tweets are
received, in real time, this value is always 0, except
when the prevcount parameter is specified.

tw_RetweetedStatusId int64 The ID of the status, this status is a retweet of.

tw_SourceText string The source this status has been emitted from, in the
form of the source HTML tag.

tw_Source string The source device or application this status has been
emitted from.

tw_isFavorited int32 True when the status is flag as a Favorite.

tw_isPossiblySensitive int32 True when the status contains a link that is identified
as sensitive.

tw_isRetweet int32 True when the status is retweet.

155

Field Type Description

tw_isRetweeted int32 True when the status is retweeted.

tw_isTruncated int32 True when the status has been truncated.

tw_PlaceFullName string The place attached to this status.

tw_MentionedUserNames string A list of names of user mentioned in the tweet.

tw_MentionedUserScreenNames string A list of screen names of user mentioned in the
tweet.

tw_MentionedUserIds string A list of IDs of user mentioned in the tweet.

tw_StatusLinks string A list of links mentioned in the tweet.

tw_StatusTags string The list of mentioned hashtags without #

f_method string The method specified on the followlist
parameter of the adapter used to query Twitter
streams (source, filter, retweet, firehose, links).

f_followed_IDs string The list of user IDs specified on the followlist
parameter of the adapter to filter Twitter streams.

f_tracked_terms string The list of keywords specified on the tracklist
parameter of the adapter to filter Twitter streams.

f_GeoLocations string The list of geolocations specified on the
locations parameter of the adapter to filter
Twitter streams.

f_Languages string The list of languages specified on the languages
parameter of the adapter to filter Twitter streams.

Using the Twitter Gnip Publisher Adapter

Using the Adapter

The Twitter Gnip adapter is a Python script that invokes the SAS Event Stream Processing C publish/subscribe
and JSON libraries. The adapter builds event blocks from a Twitter Gnip firehose stream and publishes them to
a source window. Access to this Twitter stream is restricted to Twitter-approved parties. Access requires a
signed agreement.

The adapter taps into the Gnip stream through a keep-alive connection to the configured URL. The connection
uses the configured user ID and password credentials. Every subsequent JSON response is converted to an
event block that uses the JSON parsing rules described in “Publish/Subscribe API Support for JSON
Messaging” in SAS Event Stream Processing: Publish/Subscribe API. The corresponding Source window must
contain fields that correspond to every received JSON key unless you specify the adapter parameter
esp‑ignoremissingschemafields. Events are built with the Insert opcode unless you configure the adapter

156

http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p1rc0e7ritgwt7n1a0wnjc4zcn1j.htm&locale=en
http://documentation.sas.com/?docsetId=esppsapi&docsetVersion=5.2&docsetTarget=p1rc0e7ritgwt7n1a0wnjc4zcn1j.htm&locale=en

to use Upsert instead. If needed, a JSON filtering function can be enabled using the esp‑matchsubstrings
parameter.

You assign key field(s) in the Source window. If it is not practical to use a JSON key as a key field, one or both of
the following key fields can be added to the Source window schema:

eventindex*:int64
adapterindex*:string

The eventindex key field is incremented for every event that is built from input JSON. The adapterindex
key field contains a constant GUID value that is unique for every instance of the adapter. The combination of
these two key fields enables multiple instances of the adapter to publish events to the same Source window
without duplicating keys.

Usage:

dfesp_twittergnip_publisher -esp-url url -streampassword streampassword -streamurl streamurl -streamuserid
streamuserid < <-esp-dateformat dateformat > > <-esp-ignoremissingschemafields > <-esp-logconfigfile
logconfigfile > < <-esp-loglevel loglevel > > <-esp-matchsubstrings substrings > <-esp-publishwithupsert> <-
gnipkeepalive gnipkeepalive><--maxrecords maxrecords >

Parameter Description

‑esp‑dateformat dateformat Specifies the format of ESP_DATETIME and
ESP_TIMESTAMP fields in CSV events. The default
behavior is that these fields are interpreted as an integer
number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat
parameter accepts any time format that is supported by the
UNIX strftime function.

‑esp‑ignoremissingschemafields Specifies to ignore and continue when the JSON key is
missing in schema. By default, an error is reported and the
process quits when the key is missing.

‑esp‑logconfigfile logconfigfile Specifies the name of the log configuration file.

‑esp‑loglevel loglevel Specifies the logging level. Permitted values are TRACE,
DEBUG, INFO, WARN, ERROR, or FATAL. The default
value is INFO.

‑esp‑matchsubstrings substrings Specifies a list of comma–separated fieldname:value
pairs, where input events that do not contain a value
substring in the fieldname string field are dropped. The
comparison is case-insensitive.

‑esp‑publishwithupsert Publish events with opcode=Upsert. By default, events
are published with opcode=Insert.

‑esp‑url url Specifies the publisher standard URL in the form
"dfESP://host:port/project/
continuousquery/window"

‑gnipkeepalive gnipkeepalive Specifies the keep-alive value on Gnip connections. The
default is 30 seconds.

‑maxrecords maxrecords Sets the maximum number of records to process. By
default, there is no maximum.

‑streampassword streampassword Specifies the Gnip password.

157

Parameter Description

‑streamurl streamurl Specifies the Gnip streaming URL, in the form https://
stream.gnip.com:443/accounts/account/
publishers/twitter/streams/stream/
label.json

‑streamuserid streamuserid Specifies the Gnip user name.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Using the Twitter Gnip Query Registration Utility

There is a companion Python script in $DFESP_HOME/lib called GNIPQueryMgr.py. Run the script with no
parameters to see usage.

This script enables you to view, add, and remove specific query strings registered with Gnip (that is, the Gnip
rules that are associated with a specific Gnip stream and label).

Viewing registered queries shows all matching queries unless you use the groupname parameter to filter them.
This parameter corresponds to the tag key that is associated with the value key in a rules array entry. A rule
is shown when the specified groupname appears as a substring in the rule’s tag value.

Adding or removing a query requires a corresponding groupname parameter, in addition to the specified query
string.

Using the URL Connector

The URL connector enables you to bring data into SAS Event Stream Processing over a URL-based connection,
transform the data, and publish events into an event stream processing model. Some examples of data that you
can publish into SAS Event Stream Processing with a URL connector are:

n XML data pulled from several RSS headline news feeds

n Live weather data in JSON pulled with REST requests from a weather service

n News stories pulled from an HTML page

A single URL request can generate many events. The URL connector uses event loop technology to parse,
transform, and publish the data into SAS Event Stream Processing as events.

The XML defining the event stream processing model that uses the URL connector points to an external
configuration file. This configuration file contains information about the URLs to retrieve and how to transform
the information from each URL into data that can be published into SAS Event Stream Processing. For example
configuration files, see the URL connector examples located in the examples folder of your SAS Event Stream
Processing installation directory:

(Linux) $DFESP_HOME/examples/xml/url_connector_news/config.xml or DFESP_HOME/
examples/xml/url_connector_weather/config.xml

(Windows) DFESP_HOME\examples\xml\url_connector_news\config.xml or DFESP_HOME\examples
\xml\url_connector_weather\config.xml

The URL connector enables you to specify any number of publishers for the associated Source window. Each
publisher has its own transformation rules to prepare the data for event stream processing publishing. Each
publisher can have any number of requests defined for that publisher. Requests can reside in the same

158

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcreatewindows&docsetVersion=5.2&docsetTarget=p0okbkc8kzyxzqn1l3j7he5oe6qc.htm&docsetTargetAnchor=p0w3mqaebcpo72n11rzlvmrf4vza&locale=en

publisher if they use the same data preparation rules to form events. For example, you can have a single
publisher send REST requests to several news feeds and publish them into SAS Event Stream Processing
using a single publisher and several request definitions.

The URL connector can only be used to publish events.

Table 71 Required Parameters for Publisher URL Connectors

Parameter Description

type Specifies to publish. Must be “pub”.

configUrl Specifies the URL for the connector configuration.

Table 72 Optional Parameters for Publisher URL Connectors

Parameter Description

interval Specifies the interval at which the requests are sent. The
default is 10 seconds.

properties Specifies the properties that can be used in the
configuration. The properties are entered as a semicolon-
delimited list of name-value pairs.

maxevents Specifies the maximum number of events to publish.

Using the UVC Connector and Adapter

Using the UVC Connector

The UVC connector enables you to publish photos taken by a V4L2–compatible camera to SAS Event Stream
Processing. One UVC connector can run in memory at a time. A camera’s streaming speed depends on several
factors, including the resolution of the streaming photos, the format of the image, the quality of the camera, and
the frame_rate adapter configuration parameter.

You can specify image format, frame rate, image size, and other photo properties in the UVC connector
parameters of a model's XML definition. When the UVC connector starts, the console returns a list of the image
formats, frame rates, and image sizes that the camera supports.

The UVC connector supports MJPG (Motion-JPEG) and YUYV. If the format_in or format_out connector
parameters specify a format other than MJPG and YUYV or if the camera does not support the format that is
specified, the connector fails. If the width and height parameters specify an image size that is not supported
by the camera, the camera scales the photo to the closest compatible size, the console issues a warning about
the difference in captured and published image sizes, and the process continues. Similarly, if the frame_rate
parameter specifies a frame rate that is not supported by the camera, the connector sets the camera’s capture
rate to the closest supported rate.

Note: The frame_rate parameter specifies the published frame rate, which is distinct from the captured frame
rate. The captured frame rate is the frame rate at which the camera captures photos, which might not be the
same as the published frame rate that is specified by the frame_rate parameter. The image that is published
is always the latest captured image.

159

V4L2–compatible cameras support blocking and non-blocking modes. V4L2 uses output buffers to deliver
photos to users. If the output buffer is not filled with data and available, a connector in blocking mode waits, and
a connector in non-blocking mode returns immediately without data. Enable blocking with the blocking
parameter.

The UVC connector can be used only to publish events.

Table 73 Required Parameters for the UVC Publisher Connector

Parameter Description

type Specifies to publish. Must be “pub”.

Table 74 Optional Parameters for the UVC Publisher Connector

Parameter Description

frame_rate Specifies the frames per second that the camera streams.

Must be a double. The default value is 15.

format_in Specifies the image format of captured photos.

The default is mjpg”. yuyv, an uncompressed image
format, is also supported.

format_out Specifies the image format that the connector publishes.

The default is mjpg. yuyv, an uncompressed image
format, is supported only when format_in is yuyv.

width Specifies the width of the photo.

Not all resolutions are supported. Consult the camera menu
or use the v4l2‑ctl command-line utility for a list of
supported resolutions.

height Specifies the height of the photo.

Not all resolutions are supported. Consult the camera menu
or use the v4l2‑ctl command-line utility for a list of
supported resolutions.

brightness Specifies the brightness of the photo.

Consult the camera menu or use the v4l2‑ctl command-
line utility for a list of supported brightness values.

gain Specifies the gain of the photo.

Consult the camera menu or use the v4l2‑ctl command-
line utility for a list of supported gain values.

saturation Specifies the saturation of the photo.

Consult the camera menu or use the v4l2‑ctl command-
line utility for a list of supported saturation values.

contrast Specifies the contrast of the photo.

Consult the camera menu or use the v4l2‑ctl command-
line utility for a list of supported contrast values.

160

Parameter Description

device Specifies the device name the camera is using on the Linux
operating system.

The device name is typically /dev/videoX.

blocking Specifies whether the connector is in blocking mode.

The default is false (non-blocking).

predelay Specifies a delay time, in seconds, on starting the
connector.

In some environments, the camera might take time to reset
and initialize. If the camera fails to start and predelay is
n, the connector waits n seconds to start. If the connector
fails to detect the camera, the ESP server exits with a fatal
error.

maxevents Specifies the maximum number of events to publish.

Using the UVC Adapter

The UVC adapter enables you to publish photos taken by a V4L2–compatible camera to SAS Event Stream
Processing.

Publisher usage:

dfesp_uvc_adapter -h url <-B> <-b blocksize> <-C configfilesection> <-d device> <-E tokenlocation> <-e> <-g
gdconfig> <-H height> <-j trace | debug | info | warn | error | fatal | off> <-l native | solace | tervela | rabbitmq |
kafka> <-m maxevents> <-Q> <-R> <-r frame_rate> <-V> <-W width> <-y logconfigfile> <-Z transportconfigfile>

Parameter Description

‑B true|false If true, sets the adapter to blocking mode. The default is
“false”.

‑b blocksize Specifies event block size. The default is 1.

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/
config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%
\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for
configuration parameters. Specify the value as
[configfilesection].

‑D delay Specifies the number of seconds to delay before a retry if
unable to start camera. The default is 0.

‑d devicename Specifies the device name. The default is “/dev/
video0”.

161

Parameter Description

‑E tokenlocation Specifies the location of the file in the local file system that
contains the OAuth token. This token is required for
authentication by the publish/subscribe server.

‑e Specifies that events are transactional.

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑H height Specifies the height for the frame resolution. The default is
480.

‑h url Specifies the ESP publish/subscribe standard URL in the
form dfESP://<host>:<port>/<project>/<contquery>/
<window> .

‑j trace | debug | info | warn | error |
fatal | off

Specifies the logging level. The default is “warn”.

‑l native | solace | tervela | rabbitmq
| kafka

Specifies the publish/subscribe transport. The default is
native.

‑m maxevents Specifies the maximum number of events to publish.

‑Q When maxevents is configured, quiesces the project after
all events are injected into the Source window.

‑R Builds events with opcode=Upsert instead of Insert.

‑r framespersecond Specifies the number of frames per second. The default is
15.

‑V Restarts the adapter if a fatal error is reported.

‑W width Specifies the width for the frame resolution. The default is
640.

‑y logconfigfile Specifies the logging configuration file. By default, there is
none.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file.
The default value depends on the transport type specified
with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for
native transport.

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

162

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Using the WebSocket Connector

Overview

The WebSocket connector enables you to read data over a WebSocket-based connection and publish the data
into SAS Event Stream Processing. The connector supports XML and JSON over the WebSocket connection
and provides a fully functional API that enables you to parse and transform the data into streaming events.

The WebSocket connector uses event loop technology to parse, transform, and publish the data into SAS Event
Stream Processing.

For XML and JSON, the connector reads the WebSocket data until it can build an object of the appropriate type.
It then uses functions to process the object and publish events.

The WebSocket connector can be used only to publish.

Table 75 Required Parameters for WebSocket Connectors

Parameter Description

type Specifies to publish. Must be “pub”.

url Specifies the URL for the WebSocket connection.

configUrl Specifies the URL for the connector configuration file. This
configuration file contains information about the
transformation steps required to publish events.

For example configuration files, see the WebSocket
connector examples located in the examples folder of your
SAS Event Stream Processing installation directory:

(Linux) $DFESP_HOME/examples/xml/
ws_connector_json/config.xml or
DFESP_HOME/examples/xml/
ws_connector_xml/config.xml

(Windows) DFESP_HOME\examples\xml
\ws_connector_json\config.xml or
DFESP_HOME\examples\xml
\ws_connector_xml\config.xml

contentType Specifies XML or JSON as the type of content received
over the WebSocket connection.

Table 76 Optional Parameters for WebSocket Connectors

Parameter Description

sslCertificate Specifies the location of the SSL certificate to use when
connecting to a secure server.

sslPassphrase Specifies the password for the SSL certificate.

163

http://documentation.sas.com/?docsetId=espcreatewindows&docsetVersion=5.2&docsetTarget=p0okbkc8kzyxzqn1l3j7he5oe6qc.htm&docsetTargetAnchor=p0w3mqaebcpo72n11rzlvmrf4vza&locale=en

Parameter Description

requestHeaders Specifies a comma-separated list of request headers to
send to the server. The list must consist of name-value
pairs in name:value format.

maxevents Specifies the maximum number of events to publish.

Example: Using the WebSocket Connector to Publish
from Teradata Listener

Use the WebSocket connector to publish from sources with subscribe-only SAS Event Stream Processing
connectors.

You can send data from the Teradata Listener Stream service to SAS Event Stream Processing using the
WebSocket connector. Use cases include using SAS Event Stream Processing to filter, aggregate, score, or
detect patterns in a Listener data stream. The transformed data can then be inserted back into another Listener
source to be loaded to Teradata, Aster, or Hadoop. The following XML example follows the syntax for declaring a
WebSocket connector that is attached to the Teradata Listener Stream service:

<connectors>
 <connector class='websocket'>
 <properties>
 <property name='type'>pub</property>
 <property name='url'>wss://listener-streamer-services-poc.labs.teradata.com/v1/streamer/
 444186fb-b652-485f-9dc3-c00c60863476?secret=e52378aa-b7aa-4722-a226-ca18225481f9</property>
 <property name='contentType'>json</property>
 <property name='configUrl'>file://ws.xml</property>
 <property name='sslCertificate'>/etc/pki/tls/certs/listener.crt</property>
 </properties>
 </connector>
</connectors>

For the url WebSocket connector parameter, specify the URL for the Listener Stream API (version 1) that
includes the Stream identifier and the Stream secret key. To obtain these values, contact your Teradata Listener
administrator.

For the SSLCert WebSocket connector parameter, specify the path to a file that contains SSL certificates for
securely connecting to the Listener Stream service. Listener uses TLS 1.2.

Using the IBM WebSphere MQ Connector and
Adapter

Using the IBM WebSphere MQ Connector

The IBM WebSphere MQ connector (MQ) supports the IBM WebSphere Message Queue Interface for publish
and subscribe operations. The subscriber receives event blocks and publishes them to an MQ queue. The
publisher is an MQ subscriber, which injects received event blocks into Source windows.

The IBM WebSphere MQ Client run-time libraries must be installed on the platform that hosts the running
instance of the connector. The run-time environment must define the path to those libraries (for example,
specifying LD_LIBRARY_PATH on Linux platforms).

164

Note: Remove the reference to this connector from the file /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/connectors.excluded (Linux) or %ProgramData%\SAS
\Viya\SASEventStreamProcessingEngine\default\connectors.excluded (Windows) before using
it.

The connector operates as an MQ client. It requires that you define the environment variable MQSERVER to
specify the connector’s MQ connection parameters. This variable specifies the server’s channel, transport type,
and host name. For more information, see your WebSphere documentation.

An MQ connector can read and write messages to and from an MQ queue or topic, depending on the settings of
the mqqueue and mqtopic parameters. In addition, an MQ subscriber requires a parameter that defines the
message format used to publish events to MQ. An MQ publisher can consume any message type that is
produced by an MQ subscriber.

Specifically, when the message payload is text instead of binary, the format name in the message header must
be equal to MQSTR. Any other value causes the publisher to assume that the payload is binary.

Alternatively, you can configure the ignoremqmdformat parameter to ignore the message format parameter. In
this case, the publisher connector assumes the format is compatible with the mqtype parameter setting.

An MQ subscriber or publisher reading or writing to or from an MQ queue must have the mqqueue parameter
configured. Configuring the mqtopic parameter is not required. If reading from a Websphere topic, an MQ
publisher requires two additional parameters that are related to durable subscriptions. The publisher always
subscribes to an MQ topic using a durable subscription. This means that the publisher can re-establish a former
subscription and receive messages that had been published to the related topic while the publisher was
disconnected.

These parameters are as follows:

n subscription name, which is user supplied and uniquely identifies the subscription

n the MQ queue opened for input by the publisher

The MQ persistence setting of messages written to MQ by an MQ subscriber is always equal to the persistence
setting of the MQ queue.

Both publishers and subscribers support a usecorrelid parameter that causes the correlation ID on every MQ
message to be copied to or from a correlid field in a SAS Event Stream Processing event. This only applies
when the mqtype parameter is csv or json. The correlid field can be anywhere in the window schema but
must be of type ESP_UTF8STR. For a subscriber writing multiple events to an MQ message, the correlation ID
value is copied from the first event in the event block. For a publisher reading multiple events from an MQ
message, the same correlation ID value is written to every event created from the message. Because MQ
correlation ID is a byte string (not a character string), the value of the correlid field in a SAS Event Stream
Processing event is always base64 encoded.

Use the following parameters for MQ connectors.

Table 77 Required Parameters for Subscriber MQ Connectors

Parameter Description

type Specifies to subscribe. Must be “sub”.

mqtype Specifies binary, CSV, JSON, XML, or the name of a string field in the subscribed
window schema.

snapshot Specifies whether to send snapshot data.

When true, the subscriber receives a collection of Insert events that are contained in the
window at that point in time. The subscriber then receives a stream of events produced
from the time of the snapshot onward. Those subsequent events can be Inserts, Updates,
or Deletes.

165

Table 78 Required Parameters for Publisher MQ Connectors

Parameter Description

type Specifies to publish. Must be “pub”.

mqtype Specifies binary, CSV, JSON, XML, or opaquestring. For opaquestring, the
Source window schema is assumed to be index:int64,message:string.

Table 79 Optional Parameters for Subscriber MQ Connectors

Parameter Description

mqtopic Specifies the MQ topic name. Required if mqqueue is not configured.

mqqueue Specifies the MQ queue name. Required if mqtopic is not configured.

collapse Enables conversion of UPDATE_BLOCK events to make subscriber output
publishable.

queuemanager Specifies the MQ queue manager.

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

rmretdel Specifies to remove all delete events from event blocks received by a
subscriber that were introduced by a window retention policy.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

protofile Specifies the .proto file that contains the Google Protocol Buffers message
definition. This definition is used to convert event blocks to protobuf
messages. When you specify this parameter, you must also specify the
protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in the .proto file
that you specified with the protofile parameter. Event blocks are
converted into this message.

usecorrelid Copies the value of the correlid field in the event to the MQ message
correlation ID.

csvmsgperevent For CSV, specifies to send one message per event. The default is one
message per transactional event block or else one message per event.

166

Parameter Description

csvmsgpereventblock For CSV, specifies to send one message per event block. The default is one
message per transactional event block or else one message per event.

doubleprecision Specifies the number of fractional digits in the ASCII representation of a
double. The default value is 6.

Table 80 Optional Parameters for Publisher MQ Connectors

Parameter Description

mqtopic Specifies the MQ topic name. Required if mqqueue is not configured.

mqqueue Specifies the MQ queue name. Required if mqtopic is not configured.

mqsubname Specifies the MQ subscription name. Required if mqqueue is not configured.

blocksize Specifies the number of events to include in a published event block. The
default value is 1.

transactional Sets the event block type to transactional. The default event block type is
normal.

dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts any
time format that is supported by the UNIX strftime function.

queuemanager Specifies the MQ queue manager.

configfilesection Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

ignorecsvparseerrors Specifies that when a field in an input CSV event cannot be parsed, the event
is dropped, an error is logged, and publishing continues.

protofile Specifies the .proto file that contains the Google Protocol Buffers message
definition. This definition is used to convert event blocks to protobuf
messages. When you specify this parameter, you must also specify the
protomsg parameter.

protomsg Specifies the name of a Google Protocol Buffers message in the .proto file
that you specified with the protofile parameter. Event blocks are
converted into this message.

csvfielddelimiter Specifies the character delimiter for field data in input CSV events. The default
delimiter is the , character.

noautogenfield Specifies that input events are missing the key field that is autogenerated by
the source window.

167

Parameter Description

publishwithupsert Builds events with opcode=Upsert instead of Insert.

addcsvopcode Prepends an opcode and comma to input CSV events. The opcode is Insert
unless publishwithupsert is enabled.

addcsvflags Specifies the event type to insert into input CSV events (with a comma). Valid
values are normal and partialupdate.

usecorrelid Copies the value of the MQ message correlation ID into the correlid field
in every SAS Event Stream Processing event.

ignoremqmdformat Specifies to ignore the value of the Message Descriptor Format parameter,
and assume the message format is compatible with the mqtype parameter
setting.

maxevents Specifies the maximum number of events to publish.

Using the IBM WebSphere MQ Adapter

The IBM WebSphere MQ adapter supports publish and subscribe operations on IBM WebSphere Message
Queue systems. To use this adapter, you must install IBM WebSphere MQ Client run-time libraries and define
the environment variable MQSERVER to specify the adapter’s MQ connection parameters.

Subscriber usage:

dfesp_mq_adapter -h url -k sub -t mqtype <-a protofile > <-C [configfilesection]> <-c> <-d dateformat > <-E
tokenlocation > <-f mqtopic> <-g gdconfig > <-j trace | debug | info | warn | error | fatal | off> <-L> <-l native |
solace | tervela | rabbitmq | kafka> <-M> <-m protomsg > <-q mqqueuemanager > <-U mqqueue> <-V> <-y
logconfigfile > <-Z transportconfigfile> <-3 doubleprecision>

Publisher usage:

dfesp_mq_adapter -h url -k pub -t mqtype < -A> <-a protofile > <-b blocksize > <-C [configfilesection]> <-c> < -
D csvfielddelimiter > <-d dateformat > <-E tokenlocation > <-e> <-F eventtype> <-f mqtopic> <-g gdconfig > <-I>
<-j trace | debug | info | warn | error | fatal | off> <-l native | solace | tervela | rabbitmq | kafka> <-m protomsg > <-
n mqsubname > <-O> <-o> <-Q> <-q mqqueuemanager > <-R> <-U mqqueue> <-V> <-Y maxevents> <-y
logconfigfile > <-Z transportconfigfile>

Parameter Description

‑A Specifies that input events are missing the key field that is autogenerated by
the Source window.

‑a protofile Specifies the .proto file that contains the message used for Google
Protocol buffer support.

‑b blocksize Specifies the block size. The default value is 1.

168

Parameter Description

‑C [configfilesection] Specifies the name of the section in /opt/sas/viya/config/etc/
SASEventStreamProcessingEngine/default/
connectors.config (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default
\connectors.config (Windows) to parse for configuration parameters.
Specify the value as [configfilesection].

‑c Copies the MQ correlation ID to or from the correlid string field in the SAS
Event Stream Processing event.

‑D csvfielddelimiter Specifies the character delimiter for field data in input CSV events. The
default delimiter is the , character.

‑d dateformat Specifies the format of ESP_DATETIME and ESP_TIMESTAMP fields in
CSV events. The default behavior is that these fields are interpreted as an
integer number of seconds (ESP_DATETIME) or microseconds
(ESP_TIMESTAMP) since epoch. The dateformat parameter accepts
any time format that is supported by the UNIX strftime function.

‑E tokenlocation Specifies the location of the file in the local file system that contains the OAuth
token required for authentication by the publish/subscribe server.

‑e Specifies that events are transactional.

‑F eventtype Specifies the event type to Insert into input CSV events (with comma). Valid
values are "normal" and "partialupdate".

‑f mqtopic Specifies the MQ topic name. Required if mqtopic is not configured.

‑g gdconfig Specifies the guaranteed delivery configuration file.

‑h url Specifies the dfESP publish and subscribe standard URL in the form
“dfESP://host:port/project/continuousquery/window”.

Append the following for subscribers: ?snapshot=true | false.

When ?snapshot=true, the subscriber receives a collection of Insert
events that are contained in the window at that point in time. The subscriber
then receives a stream of events produced from the time of the snapshot
onward. Those subsequent events can be Inserts, Updates, or Deletes.

Append the following for subscribers if needed:

n ?collapse=true | false

n ?rmretdel=true | false

‑I Specifies that when a field in an input CSV event cannot be parsed, the event
is dropped, an error is logged, and publishing continues.

‑j trace | debug | info |
warn | error | fatal | off

Sets the logging level for the adapter. This is the same range of logging levels
that you can set in the C_dfESPpubsubInit() publish/subscribe API call
and in the engine initialize() call.

‑k Specifies sub for subscriber use and pub for publisher use

‑L For CSV, specifies to send one message per event block. The default is one
message per transactional event block or else one message per event.

169

Parameter Description

‑l native | solace | tervela
| rabbitmq | kafka

Specifies the transport type. If you specify solace, tervela, rabbitmq,
or kafka transports instead of the default native transport, use the
required client configuration files specified in the description of the C++
C_dfESPpubsubSetPubsubLib() API call.

‑M For CSV, specifies to send one message per event. The default is one
message per transactional event block or else one message per event.

‑m protomsg Specifies the message itself in the .proto file that is specified by the
protofile parameter.

‑n mqsubname Specifies the MQ subscription name. Required if mqqueue is not configured.

‑O Prepends an opcode and comma to input CSV events. The opcode is Insert
unless ‑R is enabled.

‑o Specifies to ignore the value of the Message Descriptor Format parameter,
and assume the message format is compatible with the mqtype parameter
setting.

‑Q When maxevents is configured, quiesces the project after all events are
injected into the Source window.

‑q mqqueuemanager Specifies the MQ queue manager name.

‑R Builds events with opcode=Upsert instead of Insert.

‑t mqtype Specifies binary, CSV, XML, or JSON. For publishers, opaquestring is
also supported. For opaquestring, the Source window schema is
assumed to be "index:int64,message:string". For subscribers,
the name of a string field in the subscribed window schema is also supported.

‑U mqqueue Specifies the MQ queue name.

‑V Restarts the adapter if a fatal error is reported.

‑Y maxevents Specifies the maximum number of events to publish.

‑y logconfigfile Specifies the log configuration file.

‑Z transportconfigfile Specifies the publish/subscribe transport configuration file. The default value
depends on the transport type specified with the ‑l parameter:

For ‑l solace, the default is ./solace.cfg.

For ‑l tervela, the default is ./client.config.

For ‑l rabbitmq, the default is ./rabbitmq.cfg.

For ‑l kafka, the default is ./kafka.cfg.

Note: No transport configuration file is required for native transport.

‑3 doubleprecision Specifies the number of fractional digits in the ASCII representation of a
double. The default value is 6.

170

For information about implementing hot failover for publisher adapters, see “Publisher Adapter Failover with
Kafka” in SAS Event Stream Processing: Advanced Topics.

Writing and Integrating a Custom Connector

Writing a Custom Connector

When you write your own connector, the connector class must inherit from base class dfESPconnector.

Connector configuration is maintained in a set of key or value pairs where all keys and values are text strings. A
connector can obtain the value of a configuration item at any time by calling getParameter() and passing the
key string. An invalid request returns an empty string.

A connector can implement a subscriber that receives events generated by a window, or a publisher that injects
events into a window. However, a single instance of a connector cannot publish and subscribe simultaneously.

A subscriber connector receives events by using a callback method defined in the connector class that is
invoked in a thread owned by the engine. A publisher connector typically creates a dedicated thread to read
events from the source. It then injects those events into a Source window, leaving the main connector thread for
subsequent calls made into the connector.

A connector must define these static data structures:

Static Data Structure Description

dfESPconnectorInfo Specifies the connector name, publish/subscribe type,
initialization function pointer, and configuration data pointers.

subRequiredConfig Specifies an array of dfESPconnectorParmInfo_t
entries listing required configuration parameters for a
subscriber.

sizeofSubRequiredConfig Specifies the number of entries in subRequiredConfig.

pubRequiredConfig Specifies an array of dfESPconnectorParmInfo_t
entries listing required configuration parameters for a
publisher.

sizeofPubRequiredConfig Specifies the number of entries in pubRequiredConfig.

subOptionalConfig Specifies an array of dfESPconnectorParmInfo_t
entries listing optional configuration parameters for a
subscriber.

sizeofSubOptionalConfig Specifies the number of entries in subOptionalConfig.

pubOptionalConfig Specifies an array of dfESPconnectorParmInfo_t
entries listing optional configuration parameters for a
publisher.

sizeofPubOptionalConfig Specifies the number of entries in pubOptionalConfig.

A connector must define these static methods:

171

http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en
http://documentation.sas.com/?docsetId=espcases&docsetVersion=5.2&docsetTarget=n0mif7r1kl5j4pn19i57hjgac7sf.htm&docsetTargetAnchor=p1glxpgc7vzx7dn1qug7g1h3iozy&locale=en

Static Method Description

dfESPconnector *initialize(dfESPengine *engine,
dfESPpsLib_t psLib)

Returns an instance of the connector.

dfESPconnectorInfo *getConnectorInfo() Returns the dfESPconnectorInfo
structure.

You can invoke these static methods before you create an instance of the connector.

A connector must define these virtual methods:

Virtual Method Description

start() Starts the connector. Must call base class method
checkConfig() to validate connector configuration before
starting. Must also call base class method start(). Must
set variable _started = true upon success.

stop() Stops the connector. Must call base class method stop().
Must leave the connector in a state whereby start() can
be subsequently called to restart the connector.

callbackFunction() Specifies the method invoked by the engine to pass event
blocks generated by the window to which it is connected.

errorCallbackFunction() Specifies the method invoked by the engine to report errors
detected by the engine. Must call user callback function
_errorCallback, if nonzero.

setupCallbackFunction() Specifies the method invoked by the engine to set up any
connector that requires the Source window schema.

A connector must set its running state for use by the connector orchestrator. It does this by calling the
dfESPconnector::setState() method. The two relevant states are state_RUNNING and
state_FINISHED. All connectors must set state_RUNNING when they start. Only connectors that actually
finish transferring data need to set state_FINISHED. Typically, setting state in this way is relevant only for
publisher connectors that publish a finite number of event blocks.

Finally, a derived connector can implement up to ten user-defined methods that can be called from an
application. Because connectors are plug-ins loaded at run time, a user application cannot directly invoke class
methods. It is not linked against the connector.

The base connector class defines virtual methods userFunction_01 through userFunction_10, and a
derived connector then implements those methods as needed. For example:

 void * myConnector::userFunction_01(void *myData) {

An application would invoke the method as follows:

 myRC = myConnector->userFunction_01((void *)myData);

Integrating a Custom Connector

All connectors are managed by a global connector manager. The default connectors shipped with SAS Event
Stream Processing are automatically loaded by the connector manager during product initialization. Custom
connectors built as libraries and placed in $DFESP_HOME/lib/plugins are also loaded during initialization,

172

with the exception of those listed in /opt/sas/viya/config/etc/SASEventStreamProcessingEngine/
default/connectors.excluded (Linux) or %ProgramData%\SAS\Viya
\SASEventStreamProcessingEngine\default\connectors.excluded (Windows).

After initialization, the connector is available for use by any event stream processor window defined in an
application. As with any connector, an instance of it can be obtained by calling the window getConnector()
method and passing its user-defined method. You can configure the connector using setParameter() before
starting the project.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other
brand and product names are trademarks of their respective companies. Copyright © 2018, SAS
Institute Inc., Cary, NC, USA. All Rights Reserved. August 2021 5.2-P1:espca

173

174

	Connectors and Adapters
	Using Connectors and Adapters
	Overview
	Configuration Directory
	Overview to Connectors
	What Do Connectors Do?
	Connector Examples
	C++ Examples
	XML Examples

	Obtaining Connectors
	Activating Optional Plug-ins and Excluding Connectors
	Setting Configuration Parameters
	Setting Configuration Parameters in a File
	Orchestrating Connectors

	Overview to Adapters

	Using the Adapter Connector
	Using the Bacnet Connector and Adapter
	Using the Bacnet Connector
	Using the Bacnet Adapter

	Using the BoardReader Publisher Adapters
	Using the SAS Cloud Analytic Services Adapter
	Using the Cassandra Adapter
	Using the Database Connector and Adapter
	Using the Database Connector
	Overview to Using the Database Connector
	Subscriber Event Stream Processor to SQL Data Type Mappings
	Publisher SQL to Event Stream Processor Data Type Mappings
	Using Log Miner Modes
	Overview
	Using Oracle Log Miner Mode
	Using Greenplum Log Miner Mode

	Using the Database Adapter

	Using the Event Stream Processor Adapter
	Using the File and Socket Connector and Adapter
	Using File and Socket Connectors
	Overview to File and Socket Connectors
	CSV File and Socket Connector Data Format
	XML File and Socket Connector Data Format
	JSON File and Socket Connector Data Format
	Syslog File and Socket Connector Notes
	HDAT Subscribe Socket Connector Notes
	 Common Event Format (CEF) File and Socket Connector

	Using the File and Socket Adapter

	Using the HDAT Reader Adapter
	Using the HDFS (Hadoop Distributed File System) Adapter
	Using the Java Message Service (JMS) Adapter
	Using the Kafka Connector and Adapter
	Using the Kafka Connector for Kafka 0.9 and MapR Streams
	Using the Kafka Adapter for Kafka 0.9 and MapR Streams

	Using the SAS LASR Analytic Server Adapter
	Using the Modbus Connector and Adapter
	Using the Modbus Connector
	Using the Modbus Adapter

	Using the MQTT Connector and Adapter
	Using the MQTT Connector
	Using the MQTT Adapter

	Using the Nurego Connector
	Using the OPC-UA Connector and Adapter
	Using the OPC-UA Connector
	Using the OPC-UA Adapter

	Using the PI Connector and Adapter
	Using the PI Connector
	Using the PI Adapter

	Using the Project Publish Connector
	Using the Pylon Publisher Connector and Adapter
	Using the Pylon Publisher Connector
	Using the Pylon Publisher Adapter

	Using the Rabbit MQ Connector and Adapter
	Using the Rabbit MQ Connector
	Using the Rabbit MQ Adapter

	Using the REST Subscriber Adapter
	Using the SAS Data Set Adapter
	Using the SMTP Connector and Adapter
	Using the SMTP Subscribe Connector
	Using the SMTP Subscriber Adapter

	Using the Sniffer Connector and Adapter
	Using the Sniffer Publish Connector
	Using the Sniffer Publisher Adapter

	Using the Solace Connector and Adapter
	Using the Solace Systems Connector
	Using the Solace Systems Adapter

	Using the Teradata Connector and Adapter
	Using the Teradata Connector
	Using the Teradata Subscriber Adapter

	Using the Teradata Listener Connector and Adapter
	Using the Teradata Listener Connector
	Using the Teradata Listener Adapter

	Using the Tervela Connector and Adapter
	Using the Tervela Data Fabric Connector
	Using the Tervela Data Fabric Adapter

	Using the Tibco Rendezvous Connector and Adapter
	Using the Tibco Rendezvous (RV) Connector
	Using the Tibco Rendezvous (RV) Adapter

	Using the Timer Connector and Adapter
	Using the Timer Publisher Connector
	Using the Timer Publisher Adapter

	Using the Twitter Publisher Adapter
	Using the Twitter Gnip Publisher Adapter
	Using the Adapter
	Using the Twitter Gnip Query Registration Utility

	Using the URL Connector
	Using the UVC Connector and Adapter
	Using the UVC Connector
	Using the UVC Adapter

	Using the WebSocket Connector
	Overview
	Example: Using the WebSocket Connector to Publish from Teradata
Listener

	Using the IBM WebSphere MQ Connector and Adapter
	Using the IBM WebSphere MQ Connector
	Using the IBM WebSphere MQ Adapter

	Writing and Integrating a Custom Connector
	Writing a Custom Connector
	Integrating a Custom Connector

