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Overview: BGLIMM Procedure
The BGLIMM procedure is a high-performance, sampling-based procedure that provides Bayesian inference
for generalized linear mixed models (GLMMs).

GLMMs are hierarchical models that combine a generalized linear model with normally distributed random
effects. Conditional on the random effects, data have distributions in the exponential family (binary, binomial,
Poisson, normal, gamma, and so on). GLMMs are widely used in practice and are especially useful in
applications where the data consist of collections of units and are hierarchically structured. Variations of
GLMMs offer modeling flexibility that enables you to capture the complex nature of real-world data.

In a classical (frequentist) approach, the fixed-effects parameters are considered fixed with an unknown
mean and are the primary focus of inference. The random effects are treated as unobserved latent variables.
Estimation is achieved by maximizing the marginal likelihood of the fixed-effects parameters while integrating
out the random effects (Davidian and Giltinan 1995; Vonesh, Chinchilli, and Pu 1996). Typically, asymptotic
normality is assumed in inference.

In contrast, the Bayesian approach estimates the joint posterior distribution of all parameters in a model,
including all fixed- and random-effects parameters. The Monte Carlo method numerically integrates out the
random effects and propagates the uncertainties to the marginal posterior of the fixed-effects parameters.
PROC BGLIMM uses efficient Markov chain Monte Carlo (MCMC) sampling tools to estimate the posterior
marginal distributions and use them for further inference.

For a short introduction to Bayesian analysis and related basic concepts, see Chapter 8, “Introduction to
Bayesian Analysis Procedures.” For discussions of the relative advantages and disadvantages of the Bayesian
paradigm, see the section “Bayesian Analysis: Advantages and Disadvantages” on page 154 in Chapter 8,
“Introduction to Bayesian Analysis Procedures.” For a guide to Bayesian textbooks of varying degrees of
difficulty, see the section “A Bayesian Reading List” on page 178 in Chapter 8, “Introduction to Bayesian
Analysis Procedures.”

PROC BGLIMM uses syntax similar to that of PROC MIXED and PROC GLIMMIX in specifying a GLMM.
You use the MODEL statement to specify the distribution and link function, the RANDOM statement to
specify the random effects, the CLASS statement to specify categorical variables, the REPEATED statement
to specify the correlation of longitudinal responses, and the ESTIMATE statements for inferences. PROC
BGLIMM draws samples from the target distributions, computes summary and diagnostic statistics, and
saves the posterior samples in an output data set that you can use for further analysis.

Basic Features
The basic features of PROC BGLIMM include the following:

� GLMMs with univariate or multivariate dimensional random effects

� nested or non-nested hierarchical models

� repeated measures models (balanced or unbalanced data) with normal data

� suite of covariance structures for random effects and residuals, including variance components, com-
pound symmetry, unstructured, AR(1), Toeplitz, autoregressive, and many more
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� multinomial models for ordinal and nominal outcomes

� built-in prior distributions for regression coefficients and covariance parameters

� the ability to model heterogeneity in covariance structures

� the ability to produce estimates and credible intervals for estimable linear combination of effects

� support for missing completely at random (MCAR) and missing at random (MAR) approaches in
modeling missing data

� multithreading of optimal sampling algorithms for fast performance

� the ability to save posterior samples to an output data set for use in further inferences

PROC BGLIMM uses the Output Delivery System (ODS) to display and control the output. ODS enables
you to convert any of the output from PROC BGLIMM to a SAS data set. For more information, see the
section “ODS Table Names” on page 1359.

PROC BGLIMM uses ODS Graphics to create graphs as part of its output. For specific information about the
statistical graphics available with the BGLIMM procedure, see the PLOTS options in PROC BGLIMM.

Notation for the Generalized Linear Mixed Model
This section introduces the mathematical notation that the chapter uses to describe the generalized linear
mixed model. For a description of the statistical details and sampling algorithms, see the section “Details:
BGLIMM Procedure” on page 1333.

First consider the simple normal linear model. The quantity of primary interest, yi , is called the response or
outcome variable for the ith individual. The variable xi is the 1� p covariate vector for the fixed effects. The
distribution of yi given xi is normal with a mean that is a linear function of xi ,

yi D xiˇ C �i ; i D 1; : : : ; I

�i � N.0; �2/

where ˇ is a p � 1 vector of regression coefficients (also known as fixed effects) and �i is the noise with a
variance �2.

The normal linear model can be expanded to include random effects, and the model becomes a normal linear
mixed model,

yi D xiˇ C zi
i C �i

i � N.0;Gi /

�i � N.0; �
2/

where 
i is a q � 1 vector of random effects, zi is a 1 � q matrix of covariates for the 
i , and Gi is the
covariance matrix of the random effects 
i (G is a block diagonal matrix where each block is Gi ).

When an individual i has ni repeated measurements, the random-effects model for outcome vector yi is given
by

yi D Xiˇ C Zi
i C �i ; i D 1; : : : ; I
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where yi is ni � 1, Xi is an ni � p matrix of fixed covariates, ˇ is a p � 1 vector of regression coefficients
(also known as fixed effects), 
i is a q � 1 vector of random effects, Zi is an ni � q matrix of covariates for
the 
i , and �i is an ni � 1 vector of random errors.

It is further assumed that


i � N.0;Gi /
�i � N.0;Ri /

where Gi is the covariance matrix of 
i (G is a block diagonal matrix where each block is Gi ) and Ri is the
covariance matrix of the residual errors for the ith subject (R is a block diagonal matrix where each block is
Ri ).

There are cases where the relationship between the design matrix (X and Z) and the expectation of the
response is not linear, or where the distribution for the response is far from normal, even after transformation
of the data. The class of generalized linear mixed models unifies the approaches that you need in order to
analyze data in those cases. Let y be the collection of all yi ; and let X and Z be the collection of all Xi and
Zi , respectively. A generalized linear mixed model consists of the following:

� the linear predictor � D Xˇ C Z


� the link function g.�/ that relates the linear predictor to the mean of the outcome via a monotone link
function,

EŒY jˇ;
� D g�1.�/ D g�1.Xˇ C Z
/

where g.�/ is a differentiable monotone link function and g�1.�/ is its inverse

� a response distribution in the exponential family of distributions. The distribution can also depend on a
scale parameter, �.

The conditional distribution of the response variable, given 
 , is a member of the exponential family of
distributions, including the normal distribution. You specify the distribution by using the DIST= option in the
MODEL statement and specify the link function g.�/ by using the LINK= option.

The BGLIMM procedure distinguishes two types of covariance structure: the “G-side” and the “R-side.” The
G-side matrix is the covariance matrix of the random effects; the R-side matrix is the covariance matrix of
the residuals. Models without G-side effects are also known as marginal (or population-averaged) models.

The columns of X are constructed from effects that are listed on the right side in the MODEL statement.
Columns of Z and the G-side covariance matrix G are constructed from the RANDOM statement. The R-side
covariance matrix R is constructed from the REPEATED statement, or from the RANDOM statement with
the RESIDUAL option.

By default, the R matrix is the scaled identity matrix, R D �I. The scale parameter � is set to 1 if the
distribution does not have a scale parameter, such as in the case of the binary, binomial, Poisson, and
exponential distributions.

For the normal distribution, for which you can specify various types of covariance structure for R, use the
REPEATED statement. For example, to specify that the Time effect for each patient is an R-side effect with a
first-order autoregressive covariance structure, use the following statement:
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repeated Time / type=ar(1) subject=Patient;

Unknown quantities subject to estimation are the fixed-effects parameter vector ˇ, the random-effects
parameter 
 , and the covariance parameters that constitute all unknowns in G and R.

PROC BGLIMM Compared with Other SAS Procedures
Both PROC BGLIMM and PROC GENMOD can fit Bayesian generalized linear models. The posterior
estimates are similar but not exact because of the nature of simulation and the different algorithms that the
procedures use.

PROC MIXED and PROC GLIMMIX are two mixed modeling procedures that are related to PROC
BGLIMM. All three procedures share some common syntax. PROC BGLIMM provides Bayesian solutions
to GLMMs, whereas PROC MIXED and PROC GLIMMIX provide classical statistics solutions to the linear
and generalized linear mixed-effects models, respectively.

Frequentist estimation methods rely on maximizing the marginal likelihood function, and inferences are often
based on asymptotic theorems. This reflects frequentist assumptions in statistical inference—namely, that
parameters are fixed quantities and uncertainties are the result of sampling.

PROC BGLIMM provides Bayesian solutions, and it estimates, via simulation, the joint posterior distributions
of all parameters (fixed-effects, random-effects, covariance), conditional on the data. This approach reflects
assumptions in the Bayesian paradigm—namely, that parameters are random and you use probability
statements to quantify uncertainty associated with these random variables.

In practice, Bayesian estimates from PROC BGLIMM that use noninformative prior distributions closely
resemble those that are obtained from PROC MIXED in linear mixed-effects models, a result due to linear
model theory and the normality assumption. You can expect larger discrepancies between PROC BGLIMM
and PROC GLIMMIX results, especially in situations where the normal approximation to the marginal
likelihood function is inaccurate.

In terms of run time, the sampling-based BGLIMM procedure could run slower than the mixed modeling
procedures. The dimension of the regression problem can also hinder MCMC convergence. On the other hand,
if a complex hierarchical model requires high-dimensional and computationally costly integral approximation
methods in mixed procedures, using PROC BGLIMM can lead to better performance.

Model specifications in PROC BGLIMM are mostly identical to those in PROC MIXED and PROC GLIM-
MIX. You can expect the same construction of the design matrix, the covariance types, and the group structure
in PROC BGLIMM. One important difference is in how the procedures handle wrongly specified models,
such as singular or nearly singular design matrices. PROC BGLIMM requires the associated covariance
matrix to be strictly positive definite; PROC MIXED and PROC GLIMMIX might rely on numerical methods
(such as the general inverse) to bypass such difficulties in obtaining estimates.

PROC BGLIMM is similar to PROC MCMC in that both procedures use MCMC methods to estimate
posterior distributions. PROC MCMC is a more general procedure that can handle a wider range of Bayesian
statistical models. For example, PROC MCMC enables you to fit a model that includes random effects that
are not normally distributed, which is something that PROC BGLIMM does not support. But because PROC
MCMC relies on more detailed user inputs to construct a model, it uses generic sampling algorithms that are
not tailored to specific models. On the other hand, PROC BGLIMM provides convenient access to Bayesian
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analysis of complex mixed models, with improved performance that results from using optimal sampling
algorithms.

Getting Started: BGLIMM Procedure
This “Getting Started” section presents an example of a random-effects logistic model.

Logistic Regression with Random Intercepts
(View the complete code for this example at https://github.com/sassoftware/doc-
supplement-statug/tree/main/Examples/a-c/bglmmgs1.sas.)

Researchers investigated the performance of two medical procedures in a multicenter study. They randomly
selected 15 centers for inclusion. One of the study goals was to compare the occurrence of side effects from
the procedures. In each center, nA patients were randomly selected and assigned to treatment group A, and
nB patients were randomly assigned to treatment group B. The following DATA step creates the data set,
MultiCenter, for the analysis:

data MultiCenter;
input Center Group$ N SideEffect @@;
datalines;

1 A 32 14 1 B 33 18
2 A 30 4 2 B 28 8
3 A 23 14 3 B 24 9
4 A 22 7 4 B 22 10
5 A 20 6 5 B 21 12
6 A 19 1 6 B 20 3
7 A 17 2 7 B 17 6
8 A 16 7 8 B 15 9
9 A 13 1 9 B 14 5

10 A 13 3 10 B 13 1
11 A 11 1 11 B 12 2
12 A 10 1 12 B 9 0
13 A 9 2 13 B 9 6
14 A 8 1 14 B 8 1
15 A 7 1 15 B 8 0
;

The variable Group identifies the two procedures, N is the number of patients who received a given procedure
at a particular center, and SideEffect is the number of patients who reported side effects. Side effects ratios,
from different centers, are shown in Figure 31.1. Data from group A are represented by solid circles; data
from group B are represented by clear circles.

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/a-c/bglmmgs1.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/a-c/bglmmgs1.sas
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Figure 31.1 MultiCenter Data

If yiA and yiB denote the number of patients at center i who report side effects for procedures A and B,
respectively, then—for a given center—these are independent binomial random variables. To model the
probability of having side effects from the two procedures, piA and piB, you need to account for the fixed
group effect and the random selection of centers. One possibility is to assume a model that relates group and
center effects linearly to the logit of the probabilities:

log
�

piA

1 � piA

�
D ˇA C 
i

log
�

piB

1 � piB

�
D ˇB C 
i

In this model, ˇA � ˇB measures the difference in the logits of experiencing side effects, and the 
i are
independent random variables due to the random selection of centers. Observations from the same center
receive the same adjustment, and these adjustments vary randomly from center to center, with variance
VarŒ
i � D �2c .

Because piA is the conditional mean of the sample proportion, EŒyiA=niAj
i � D piA, you can model the
sample proportions as binomial ratios in a generalized linear mixed model. The following statements request
this analysis under the assumption of normally distributed center effects with equal variance and a logit link
function:

ods graphics on;
proc bglimm data=MultiCenter nmc=10000 thin=2 seed=976352

plots=all;
class Center Group;
model SideEffect/N = Group / noint;
random int / subject = Center;

run;
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The ODS GRAPHICS ON statement invokes the ODS Graphics environment, and the PLOTS=ALL option
displays the diagnostic plots—the trace, autocorrelation function, and kernel density plots of the posterior
samples.

The PROC BGLIMM statement invokes the procedure, and the DATA= option specifies the input data set
MultiCenter. The NMC= option specifies the number of posterior simulation iterations in the main simulation
loop after burn-in (the default number of burn-in iterations is 500). The THIN= option controls the thinning
of the Markov chain and specifies that one of every two samples be kept.1 The SEED= option specifies a
random number generator seed, which reproduces the results.

The CLASS statement treats the variables Center and Group as classification variables.

The MODEL statement specifies the response variable as a sample proportion by using the events/trials
syntax. In terms of the previous formulas, SideEffect/N corresponds to yiA=niA for observations from group
A and to yiB=niB for observations from group B. Note that because of the events/trials syntax, the BGLIMM
procedure defaults to the binomial distribution, and that distribution’s default link is the logit link. The
MODEL statement specifies an independent fixed-effects variable (Group). An intercept is included in the
fixed-effects model by default. You can remove it by using the NOINT option, so that you can obtain the
estimates for both treatment groups A and B.

Along with the MODEL statement for fixed effects, the RANDOM statement is used for random effects. It
specifies that the linear predictor contains an intercept term that randomly varies at the level of the Center
effect. The SUBJECT=CENTER option in the RANDOM statement defines Center as a subject index for
the random-effects grouping, so that each center has its own intercept. In other words, a random intercept is
drawn separately and independently for each center in the study.

The “Model Information Table” in Figure 31.2 summarizes important information about the model that you
fit and about aspects of the sampling technique. Information includes the input data set, response variable,
likelihood distribution, link function, sampling algorithm, MCMC burn-in size, simulation size, thinning rate,
and random number seed.

Figure 31.2 Model Information

The BGLIMM Procedure

Model Information

Data Set WORK.MULTICENTER

Response Variable SideEffect

Distribution Binomial

Link Function Logit

Fixed Effects Included Yes

Random Effects Included Yes

Sampling Algorithm Gamerman, Conjugate

Burn-In Size 500

Simulation Size 10000

Thinning 2

Random Number Seed 976352

Number of Threads 1

1Thinning is often used to reduce correlation among posterior sample draws. For more information about Markov chain sample
size, burn-in, and thinning, see the section “Burn-In, Thinning, and Markov Chain Samples” on page 162 in Chapter 8, “Introduction
to Bayesian Analysis Procedures.”
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PROC BGLIMM recognizes the variables SideEffect and N as the numerator and denominator in the
events/trials syntax, respectively. The distribution—conditional on the random center effects—is binomial.

Figure 31.3 displays two tables. The “Class Level Information” table lists the levels of the variables that
are specified in the CLASS statement and the ordering of the levels. The “Number of Observations” table
displays the number of observations that are read and used in the analysis.

Figure 31.3 Class Level Information and Number of Observations

Class Level Information

Class Levels Values

Center 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Group 2 A B

Number of Observations

Number of Observations Read 30

Number of Observations Used 30

Number of Events 155

Number of Trials 503

Two variables are listed in the CLASS statement. The Center variable has 15 levels, and the Group variable
has 2 levels. Because the response is specified through the events/trial syntax, the “Number of Observations”
table also contains the total number of events and trials that are used in the analysis.

In Figure 31.4, the “Posterior Summaries and Intervals” table lists the summary statistics (posterior means,
standard deviations, and HPD intervals) for each parameter, the fixed coefficients (ˇ), and the variance of the
random center intercepts (�2c ). Posterior summary statistics of random-effects parameters are not displayed
by default. You can display them by using the MONITOR option in the RANDOM statement.

Figure 31.4 Posterior Summaries and Intervals

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Group A 5000 -1.3895 0.3102 -2.0071 -0.7956

Group B 5000 -0.8839 0.2968 -1.4819 -0.3186

Random Var 5000 0.9184 0.4198 0.3024 1.7515

It is important to check for convergence of all model parameters, because chains that are not converged can
lead to biased conclusions. PROC BGLIMM produces a number of convergence diagnostics. By default, it
displays effective sample sizes (ESS; Kass et al. 1998) of each parameter (Figure 31.5). ESS is theoretically
equivalent to the number of independent samples that are generated directly from a target distribution.

Figure 31.5 PROC BGLIMM Effective Sample Size

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Group A 637.5 7.8432 0.1275

Group B 649.1 7.7028 0.1298

Random Var 2213.4 2.2590 0.4427
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.

PROC BGLIMM produces a number of graphs, shown in Figure 31.6, that also help your convergence
diagnostic checks. The trace plots show the stability of the Markov chain over the simulation and a number of
whiskers in the tail areas, indicating good mixing of the chain. The autocorrelation plots show a decrease in
autocorrelations, and the kernel density plots estimate the posterior marginal distributions for each parameter.

Figure 31.6 PROC BGLIMM Diagnostic Plots
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Figure 31.6 continued

You can use the ESTIMATE statement as follows to compute the log of odds ratios between the two treatment
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groups, A and B:

proc bglimm data=MultiCenter nmc=10000 thin=2 seed=976352
outpost=CenterOut;
class Center Group;
model SideEffect/N = Group / noint;
random int / subject=Center monitor;
estimate "log OR" group 1 -1;

run;

The ESTIMATE statement computes ˇA � ˇB by using every posterior draw of the parameters and saves the
values in the OUTPOST= data set under the variable name Log_or.

The “Estimated Differences in the Logits” table in Figure 31.7 shows that the posterior mean of the log of
odds ratio is around –0.5, with the 95% HPD interval all negative. This indicates less chance of developing
side effects among patients who undergo procedure A than among those who undergo procedure B.

Figure 31.7 Estimated Differences in the Logits

The BGLIMM Procedure

Results from ESTIMATE Statements

Label Mean
Standard
Deviation

95%
HPD Interval

log OR -0.5056 0.2087 -0.9292 -0.1102

The ESTIMATE statement does not compute the difference in probabilities of side effects directly. You
can use the posterior samples and compute the probability differences directly. The following DATA step
computes the probability difference between the two groups and saves it to the variable pDiff:

data prob;
set CenterOut;
pDiff = logistic(group_a) - logistic(group_b);

run;

You can use the %SUMINT autocall macro to compute the posterior summary statistics of pDiff:

%sumint(data=prob, var=pDiff)

proc sgplot data=prob noautolegend;
yaxis display=(nolabel noline noticks novalues);
xaxis label="Difference of Probability in Treatment";
density pDiff / type=kernel;

run;

The results are shown in Figure 31.8. The density plot of the posterior distribution is shown in Figure 31.9.
There is a significant difference between the two groups.

Figure 31.8 Posterior Summary Statistics

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

pDiff 5000 -0.0920 0.0395 -0.1750 -0.0195
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Figure 31.9 Posterior Density of the Difference in Probabilities

Syntax: BGLIMM Procedure
The following statements are available in the BGLIMM procedure. Items within angle brackets ( < > ) are
optional.

PROC BGLIMM < options > ;
BY variables ;
CLASS variable < (options) >: : : < variable < (options) > > < / global-options > ;
ESTIMATE 'label ' estimate-specification < (divisor=n) > < / options > ;
FREQ variable ;
LSMEANS fixed-effects < / options > ;
MODEL response < (response-options) > = < fixed-effects > < / model-options > ;
MODEL events / trials = < fixed-effects > < / model-options > ;
PREDDIST < 'label ' > OUTPRED=SAS-data-set < options > ;
RANDOM random-effects < / options > ;
REPEATED repeated-effect < / options > ;
WEIGHT variable ;

The PROC BGLIMM statement and the MODEL statement are required. The CLASS statement must precede
the MODEL statement. You can have multiple RANDOM statements in a program.

The ESTIMATE statement provides a mechanism for computing custom linear combination of the parameters.
The PREDDIST statement generates samples from the posterior predictive distribution,

The following sections provide a description of each statement.
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PROC BGLIMM Statement
PROC BGLIMM < options > ;

The PROC BGLIMM statement invokes the procedure. Table 31.1 summarizes the available options in the
PROC BGLIMM statement by function. The options are then described fully in alphabetical order.

Table 31.1 PROC BGLIMM Statement Options

Option Description

Basic Options
DATA= Specifies the SAS input data set
NBI= Specifies the number of burn-in iterations
NMC= Specifies the number of iterations, excluding the burn-in iterations
NTHREADS= Specifies the number of threads to use
OUTPOST= Names the output data set to contain posterior samples of parameters
SAMEBYSEED= Uses the same seed for each BY group
SEED= Sets the seed for pseudorandom number generation
THIN= Specifies the thinning rate

Display Options
NOCLPRINT Limits or suppresses the display of classification variable levels
MAXRESUBPRT Suppresses the display of subject levels in the “Random Effect Information”

table

Summary, Diagnostics, and Plotting Options
DIAG= Controls the convergence diagnostics
DIC Computes the deviance information criterion (DIC)
PLOTS= Controls plotting
STATS= Controls posterior statistics
WAIC Computes the Watanabe-Akaike information criterion (WAIC)

Other Options
LOGPOST Calculates the logarithm of the posterior density and likelihood
MISSING= Indicates how to handle missing values
SINGCHOL= Tunes the singularity criterion for Cholesky decomposition
SINGULAR= Tunes the general singularity criterion

You can specify the following options in the PROC BGLIMM statement.

DATA=SAS-data-set
names the input data set for PROC BGLIMM to use. The default is the most recently created data set.
Observations in this data set are used to compute the log-likelihood function.
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DIAGNOSTICS=NONE | (keyword-list)

DIAG=NONE | (keyword-list)
specifies options for convergence diagnostics. By default, PROC BGLIMM computes the effective
sample sizes. The sample autocorrelations, Monte Carlo errors, Geweke test, Raftery-Lewis test, and
Heidelberger-Welch test are also available. You can request all the diagnostic tests by specifying DI-
AGNOSTICS=ALL. You can suppress all the diagnostic tests by specifying DIAGNOSTICS=NONE.

You can specify one or more of the following keyword-list options:

ALL
computes all diagnostic tests and statistics. You can combine this option with any other specific
tests to modify test options. For example, DIAGNOSTICS=(ALL AUTOCORR(LAGS=(1 5
35))) computes all tests by using default settings and autocorrelations at lags 1, 5, and 35.

AUTOCORR < (autocorrelation-options) >

AC < (autocorrelation-options) >
computes default autocorrelations at lags 1, 5, 10, and 50 for each variable. You can choose other
lags by using the following autocorrelation-option:

LAGS=(numeric-list)
specifies autocorrelation lags. The numeric-list takes only positive integer values.

ESS
computes the effective sample sizes (Kass et al. 1998) of the posterior samples of each parameter.
It also computes the correlation time and the efficiency of the chain for each parameter. Small
values of ESS might indicate a lack of convergence.

GEWEKE < (Geweke-options) >
computes the Geweke spectral density diagnostics; this is a two-sample t test between the first f1
portion (as specified by the FRAC1= option) and the last f2 portion (as specified by the FRAC2=
option) of the chain. By default, FRAC1=0.1 and FRAC2=0.5, but you can choose other fractions
by using the following Geweke-options:

FRAC1=value

F1=value
specifies the beginning proportion of the Markov chain. By default, FRAC1=0.1.

FRAC2=value

F2=value
specifies the end proportion of the Markov chain. By default, FRAC2=0.5.

HEIDELBERGER < (Heidel-options) >

HEIDEL < (Heidel-options) >
computes the Heidelberger-Welch diagnostic (which consists of a stationarity test and a halfwidth
test) for each variable. The stationary diagnostic test tests the null hypothesis that the posterior
samples are generated from a stationary process. If the stationarity test is passed, a halfwidth test
is then carried out.

You can also specify the following Heidel-options, such as DIAGNOSTICS=HEIDELBERGER(EPS=0.05):
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EPS=value
specifies a small positive number � such that if the halfwidth is less than � times the sample
mean of the retaining iterations, the halfwidth test is passed. By default, EPS=0.1.

HALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the halfwidth test. By default, HALPHA=0.05.

SALPHA=value
specifies the ˛ level .0 < ˛ < 1/ for the stationarity test. By default, SALPHA=0.05.

MAXLAG=number
specifies the maximum number of autocorrelation lags to use to compute the effective sample
size. The value of number is also used in the calculation of the Monte Carlo standard error. By
default, MAXLAG=MIN(500, MCsample/4), where MCsample is the Markov chain sample size
that is kept after thinning—that is, MCsample D

h
NMC

NTHIN

i
. If number is too low, you might

observe significant lags, and the effective sample size cannot be calculated accurately. A warning
message appears in the SAS log, and you can increase the value of either the MAXLAG= option
or the NMC= option accordingly. Specifying this option implies the ESS and MCSE options.

MCSE

MCERROR
computes the Monte Carlo standard error for the posterior samples of each parameter.

NONE
suppresses all the diagnostic tests and statistics. This option is not recommended.

RAFTERY < (Raftery-options) >

RL < (Raftery-options) >
computes the Raftery-Lewis diagnostic, which evaluates the accuracy of the estimated quantile
( O�Q for a given Q 2 .0; 1/) of a chain. O�Q can achieve any degree of accuracy when the
chain is allowed to run for a long time. The algorithm stops when the estimated probability
OPQ D Pr.� � O�Q/ reaches within˙R of the value Q with probability S; that is, Pr.Q �R �
OPQ � QCR/ D S .

You can specify Q, R, S, and a precision level � for a stationarity test by specifying the following
Raftery-options—for example, DIAGNOSTICS=RAFTERY(QUANTILE=0.05):

ACCURACY=value

R=value
specifies a small positive number as the margin of error for measuring the accuracy of
estimation of the quantile. By default, ACCURACY=0.005.

EPS=value
specifies the tolerance level (a small positive number) for the stationarity test. By default,
EPS=0.001.
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PROB=value

S=value
specifies the probability of attaining the accuracy of the estimation of the quantile. By
default, PROB=0.95.

QUANTILE=value

Q=value
specifies the order (a value between 0 and 1) of the quantile of interest. By default, QUAN-
TILE=0.025.

DIC< (INCLUDE=variable) >
computes the deviance information criterion (DIC). DIC is calculated by using the posterior mean
estimates of the parameters.

The INCLUDE=variable specification selects observations that should be included for computing DIC.
The variable is binary with values being either 0 or 1. The observations for which variable=1 are
included to obtain DIC, whereas those observations for which variable=0 are not included.

LOGPOST
computes the logarithm of the posterior density of the parameters and the likelihood at each iteration.
The LogLike and LogPost variables are saved in the OUTPOST= data set.

MAXRESUBPRT< =number >
limits the display of subject levels in the “Random Effect Information” table. If you specify a number ,
the values of the subject effect are displayed up to that many characters. This option may help reduce
the size of the “Subject Values” column in the “Random Effect Information” table if the subject of a
RANDOM statement has a long list of levels. By default, MAXRESUBPRT = 200.

MISSING=keyword

MISS=keyword
specifies how to handle missing values. For more information, see the section “Missing Data” on
page 1350. PROC BGLIMM models missing response variables and discards observations that have
missing covariates. You can specify the following keywords:

CC

COMPLETECASE
assumes a complete case analysis, so all observations that have missing variable values are
discarded before the simulation.

CCMODELY
models the missing response variables and discards observations that have missing covariates.

By default, MISSING=CCMODELY.

NBI=number
specifies the number of burn-in iterations to perform before saving parameter estimate chains. By
default, NBI=500.
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NMC=number
specifies the number of iterations in the main simulation loop. If you specify a data set in the
OUTPOST= option, number is the number of posterior samples that are saved for each parameter.
This is the MCMC sample size if THIN=1. By default, NMC=5000.

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table if you do not specify number . If you
specify number , the values of the classification variables are displayed for only those variables whose
list of levels is less than number characters. Specifying number helps reduce the size of the “Class
Level Information” table if some classification variables have a large number of levels. By default,
NOCLPRINT = 200.

NTHREADS=number

NTHREAD=number
specifies the number of threads (CPUs) on which to run analytic computations and simulations
simultaneously. Multithreading is the use of more than one thread to perform computations concurrently.
When multithreading is possible, you can realize substantial performance gains compared to the
performance that you get from sequential (single-threaded) execution. The more threads there are, the
faster the computation runs. But do not specify a number greater than the number of CPUs on the host
where the analytic computations are performed.

PROC BGLIMM performs two types of threading. In sampling fixed-effects parameters, the procedure
allocates data to different threads and accumulates values from each thread; in sampling of random-
effects parameters, each thread generates a subset of these parameters simultaneously at each iteration.
Most sampling algorithms are threaded. NTHREADS=–1 sets the number of available threads to the
number of hyperthreaded cores available on the system. By default, NTHREADS=1.

OUTPOST=SAS-data-set
specifies an output data set to contain the posterior samples of all parameters and the iteration numbers.
It contains the log of the posterior density (LOGPOST) and the log likelihood (LOGLIKE) if you
specify the LOGPOST option. By default, no OUTPOST= data set is created.

PLOTS < (global-plot-option) > < = plot-requests < (option) > >
controls the display of diagnostic plots. You can request three types of plots: trace plots, autocorrelation
function plots, and kernel density plots. By default, the plots are displayed in panels unless you specify
the global-plot-option UNPACK. Also, when you specify more than one type of plot, the plots are
grouped by parameter unless you specify the global-plot-option GROUPBY=TYPE. When you specify
only one plot-request , you can omit the parentheses around it, as shown in the following example:

plots=none
plots(unpack)=trace
plots=(trace density)

If ODS Graphics is enabled and you specify PLOTS=ALL, then PROC BGLIMM produces, for each
parameter, a panel that contains the trace plot, the autocorrelation function plot, and the density plot.
This is equivalent to specifying PLOTS=(TRACE AUTOCORR DENSITY).

You can specify the following global-plot-options:
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FRINGE
adds a fringe plot to the horizontal axis of the density plot.

GROUPBY=PARAMETER | TYPE

GROUP=PARAMETER | TYPE
specifies how the plots are grouped when there is more than one type of plot. By default,
GROUPBY=PARAMETER. You can specify the following values:

PARAMETER
groups the plots by parameter.

TYPE
groups the plots by type.

LAGS=number
specifies the number of autocorrelation lags to use in plotting the ACF graph. By default,
LAGS=50.

SMOOTH
smooths the trace plot by using a fitted penalized B-spline curve (Eilers and Marx 1996).

UNPACKPANEL

UNPACK
unpacks all paneled plots so that each plot in a panel is displayed separately.

You can specify the following plot-requests:

ALL
requests all types of plots. PLOTS=ALL is equivalent to specifying PLOTS=(TRACE AUTO-
CORR DENSITY).

AUTOCORR

ACF
displays the autocorrelation function plots for the parameters.

DENSITY

D

KERNEL

K
displays the kernel density plots for the parameters.

NONE
suppresses the display of all plots.

TRACE

T
displays the trace plots for the parameters.

Consider a model that has four parameters, X1–X4. The following list shows which plots are produced
for various option settings:
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� PLOTS=(TRACE AUTOCORR) displays the trace and autocorrelation plots for each parameter
side by side, with two parameters per panel:

Display 1 Trace(X1) Autocorr(X1)
Trace(X2) Autocorr(X2)

Display 2 Trace(X3) Autocorr(X3)
Trace(X4) Autocorr(X4)

� PLOTS(GROUPBY=TYPE)=(TRACE AUTOCORR) displays all the paneled trace plots, fol-
lowed by panels of autocorrelation plots:

Display 1 Trace(X1)
Trace(X2)

Display 2 Trace(X3)
Trace(X4)

Display 3 Autocorr(X1) Autocorr(X2)
Autocorr(X3) Autocorr(X4)

� PLOTS(UNPACK)=(TRACE AUTOCORR) displays a separate trace plot and a separate correla-
tion plot, parameter by parameter:

Display 1 Trace(X1)

Display 2 Autocorr(X1)

Display 3 Trace(X2)

Display 4 Autocorr(X2)

Display 5 Trace(X3)

Display 6 Autocorr(X3)

Display 7 Trace(X4)

Display 8 Autocorr(X4)

� PLOTS(UNPACK GROUPBY=TYPE)=(TRACE AUTOCORR) displays all the separate trace
plots, followed by the separate autocorrelation plots:
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Display 1 Trace(X1)

Display 2 Trace(X2)

Display 3 Trace(X3)

Display 4 Trace(X4)

Display 5 Autocorr(X1)

Display 6 Autocorr(X2)

Display 7 Autocorr(X3)

Display 8 Autocorr(X4)

SAMEBYSEED
uses the same seed that you specify in the SEED= option to start the pseudorandom number generator
in each BY group. If you omit this option, the initial seed for the next BY group is the one that is
generated at the end of the previous BY group.

SEED=number
specifies an integer that is used to start the pseudorandom number generator. If you omit this option or
if number � 0, the seed is generated from the time of day, which is read from the computer’s clock.

SINGCHOL=number
tunes the singularity criterion in Cholesky decomposition and matrix inversion operations. The default
is 1E4 times the machine epsilon, or approximately 1E–12 on most computers.

SINGULAR=number
tunes the general singularity criterion applied by the procedure in divisions and inversions. The default
is 1E4 times the machine epsilon, or approximately 1E–12 on most computers.

STATISTICS < (global-stats-options) > = NONE | ALL | stats-request

STATS < (global-stats-options) > = NONE | ALL | stats-request
specifies options for posterior statistics. By default, PROC BGLIMM computes the posterior mean,
standard deviation, quantiles, and two 95% credible intervals: equal-tail and highest posterior density
(HPD). Other available statistics include the posterior correlation and covariance. You can request all
the posterior statistics by specifying STATS=ALL. You can suppress all the calculations by specifying
STATS=NONE.

You can specify the following global-stats-options:

ALPHA=numeric-list
specifies the ˛ level for the equal-tail and HPD intervals. The value of ˛ must be between 0 and
0.5. By default, ALPHA=0.05.
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PERCENT=numeric-list

PERCENTAGE=numeric-list
calculates the posterior percentages. The numeric-list contains values between 0 and 100,
separated by spaces. By default, PERCENTAGE=(25 50 75).

You can specify the following stats-requests:

ALL
computes all posterior statistics. You can combine the ALL option with any other options. For
example, STATS(ALPHA=(0.02 0.05 0.1))=ALL computes all statistics by using the default
settings and intervals at ˛ levels of 0.02, 0.05, and 0.1.

BRIEF
computes the posterior means, standard deviations, and 100.1 � ˛/% HPD credible interval for
each variable. By default, ALPHA=0.05, but you can use the global global-stats-option ALPHA=
to specify other values. This is the default output for posterior statistics.

CORR
computes the posterior correlation matrix.

COV
computes the posterior covariance matrix.

INTERVAL

INT
computes the 100.1 � ˛/% equal-tail and HPD credible intervals for each variable. By default,
ALPHA=0.05, but you can use the global-stats-option ALPHA= to specify other intervals of any
probabilities.

NONE
suppresses all the statistics.

SUMMARY

SUM
computes the posterior means, standard deviations, and percentile points for each variable. By
default, the 25th, 50th, and 75th percentile points are produced, but you can use the global-stats-
option PERCENT= to request specific percentile points.

THIN=number

NTHIN=number
controls the thinning rate of the simulation. PROC BGLIMM keeps every nth simulation sample and
discards the rest. All posterior statistics and diagnostics are calculated by using the thinned samples.
By default, THIN=1.

WAIC
computes the Watanabe-Akaike information criterion (WAIC), also known as the widely applicable
information criterion. WAIC is proposed as an approximation to n-fold leave-one-out cross validation,
which computes the posterior mean and variance of the likelihood and the log likelihood.
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BY Statement
BY variables ;

You can specify a BY statement in PROC BGLIMM to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the NOTSORTED or DESCENDING option in the BY statement in the BGLIMM procedure.
The NOTSORTED option does not mean that the data are unsorted but rather that the data are arranged
in groups (according to values of the BY variables) and that these groups are not necessarily in
alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

For more information about BY-group processing, see the “Grouping Data” section of SAS Programmers
Guide: Essentials. For more information about the DATASETS procedure, see the discussion in the Base
SAS Procedures Guide.

CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < / global-options > ;

The CLASS statement names the classification variables to be used as explanatory variables in the analysis.
Response variables do not need to be specified in the CLASS statement.

The CLASS statement must precede the MODEL statement. Most options can be specified either as individual
variable options or as global-options. You can specify options for each variable by enclosing the options
in parentheses after the variable name. You can also specify global-options for the CLASS statement by
placing them after a slash (/). Global-options are applied to all the variables that are specified in the CLASS
statement. If you specify more than one CLASS statement, the global-options that are specified in any one
CLASS statement apply to all CLASS statements. However, individual CLASS variable options override the
global-options. You can specify the following values for either an option or a global-option:

CPREFIX=n
specifies that, at most, the first n characters of a CLASS variable name be used in creating names for
the corresponding design variables. The default is 32 �min.32;max.2; f //, where f is the formatted
length of the CLASS variable.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
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DESCENDING

DESC
reverses the sort order of the classification variable. If you specify both the DESCENDING and
ORDER= options, PROC BGLIMM orders the categories according to the ORDER= option and then
reverses that order.

LPREFIX=n
specifies that, at most, the first n characters of a CLASS variable label be used in creating labels for the
corresponding design variables. The default is 256 �min.256;max.2; f //, where f is the formatted
length of the CLASS variable.

MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
values of the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so this option can be useful when you
use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC BGLIMM interprets values of the ORDER= option:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

FREQ Descending frequency count; levels with more
observations come earlier in the order

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in the “Grouping Data” section of SAS
Programmers Guide: Essentials.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table.

The default is PARAM=GLM. Design matrix columns are created from CLASS variables according to
the corresponding coding schemes.

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=proc&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=default&docsetId=lepg&docsetTarget=titlepage.htm
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Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only in a global option)

REFERENCE
REF

Reference cell coding

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for EFFECT and REFERENCE coding and for their
orthogonal parameterizations. It also indirectly determines the reference level for a singular GLM
parameterization through the order of levels.

If a PARAM= option is specified as a variable option for some variables, then any variables for which
PARAM= is not specified use either the EFFECT parameterization if the global PARAM= option is
not specified, or the full-rank parameterization indicated in the global PARAM= option if specified. If
the global PARAM=GLM option is specified and PARAM= is also specified for some variables, GLM
parameterization is used for all variables.

REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. For PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format is
assigned. For a global or individual variable REF= option, you can use one of the following keywords:

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

By default, REF=LAST.

TRUNCATE< =n >
specifies the length n of CLASS variable values to use in determining CLASS variable levels. The
default is to use the full formatted length of the CLASS variable. If you specify TRUNCATE without
the length n, the first 16 characters of the formatted values are used. The TRUNCATE option is
available only as a global option.
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ESTIMATE Statement
ESTIMATE 'label ' estimate-specification < (divisor=n) >< / options > ;

The ESTIMATE statement provides a mechanism for computing custom linear combination of the parameters.
The basic element of this statement is the estimate-specification, which consists of MODEL statement effects,
random effects, and their coefficients. Specifically, an estimate-specification takes the form

< fixed-effect values . . . > < | random-effect values . . . >

You can estimate the linear combination of the parameters L0�, where L0 D .K0M0/ and �0 D .ˇ0 
 0/.
Based on the estimate-specification in your ESTIMATE statement, PROC BGLIMM constructs the vector
L0 D ŒK0 M0�, where K is associated with the fixed effects and M is associated with the G-side random
effects.

PROC BGLIMM then produces for L0� an estimate (by using the posterior mean), the standard deviation (by
using the posterior standard deviation), and the HPD intervals. Results from all ESTIMATE statements are
combined in the ODS table named Estimates.
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The ESTIMATE statement has the following arguments:

label identifies the ESTIMATE statement in the table. A label is required for every ESTIMATE
statement that you specify. Labels can be up to 32 characters and must be enclosed in
quotation marks.

fixed-effect identifies an effect that appears in the MODEL statement. You can use the keyword
INTERCEPT as an effect when you are fitting an intercept in the model. You do not need
to include all effects that are specified in the MODEL statement.

random-effect identifies an effect that appears in the RANDOM statement. The first random effect must
follow a vertical bar (|); however, you are not required to specify random effects.

values are constants that are elements of the L vector that are associated with the fixed and
random effects.

The vector of L is specified in order. The K component of L is specified on the left side of the vertical bars
(|). The M component of L is specified on the right side of the vertical bars. The estimability checking is
necessary.

If PROC BGLIMM finds a portion of the specified estimate statement to be nonestimable, then it displays a
message in the log.

In the following program, the first ESTIMATE statement compares the first level with the second level for
the effect A, and the second ESTIMATE statement compares the first level with the third level for the effect A
in a split-plot study where A has three levels and B has two levels:

estimate 'A 1 vs 2' A 1 -1 0 A*B .5 .5 -.5 -.5 0 0;
estimate 'A 1 vs 3' A 1 0 -1 A*B .5 .5 0 0 -.5 -.5;

Note that no random effects are specified in the preceding statement. The following statements make the
same comparison for A when Block and A*Block are random effects:

estimate 'A 1 vs 2'
A 1 -1 0
A*B .5 .5 -.5 -.5 0 0 |
A*Block .25 .25 .25 .25

-.25 -.25 -.25 -.25
0 0 0 0 ;

estimate 'A 1 vs 3'
A 1 0 -1
A*B .5 .5 0 0 -.5 -.5 |
A*Block .25 .25 .25 .25

0 0 0 0
-.25 -.25 -.25 -.25 ;

The preceding statements do not contain coefficients for B and Block, because they cancel out in estimated
differences between levels of A. Coefficients for B and Block are necessary to estimate the mean of one of the
levels of A.
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Table 31.2 summarizes the options available in the ESTIMATE statement after a slash (/).

Table 31.2 ESTIMATE Statement Options

Option Description

BYCAT= Reports estimates for each category of the response in the
generalized logit model

DIVISOR= Specifies a value to divide the coefficients
E Prints the L matrix
EXP Displays exponentiated estimates
GROUP Sets up random-effects contrasts between different groups
ILINK Computes and displays estimates on the inverse linked

scale
SUBJECT Sets up random-effects contrasts between different subjects

BYCATEGORY

BYCAT
reports estimates for each category of the response variable in the multinomial model for nominal
data with the generalized logit link. The BYCATEGORY option has no effect unless your model is a
generalized (mixed) logit model.

In this example, the response variable Style is multinomial with three categories. The following
statements fit a generalized logit model relating the response to the two covariates: School and
Program:

proc bglimm data=school;
class School Program;
model Style = School Program / dist=multinomial link=glogit;
freq Count;
estimate 'School 1 vs. 2' School 1 -1 / bycat;
estimate 'School 1 vs. 2' School 1 -1;

run;

The first ESTIMATE statement compares the School effects separately for each nonredundant response
category because of the BYCAT option. The second ESTIMATE statement compares the School
effects for the first non-reference category only.

DIVISOR=value
specifies a value by which to divide the coefficients so that fractional coefficients can be entered as
integer numerators. By default, DIVISOR=1.0.

EST

E
displays the L matrix coefficients.
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EXP | ODDSRATIO | OR
requests the exponentiated version of the linear combination of the parameters. When you model data
by using the logit link function, the estimate of the linear combination of the parameters represents
a log odds ratio, and the EXP option produces an odds ratio. Based on the number of iterations in
the main simulation loop, PROC BGLIMM takes the exponential of the linear combination of the
parameters for each of the posterior samples and then calculates the posterior mean.

GROUP coeffs
sets up random-effects contrasts between different groups when you include a GROUP= variable in the
RANDOM statement, as in the following example:

estimate 'Trt 1 vs 2 @ x=0.4' trt 1 -1 0 | x 0.4 / group 1 -1;

By default, ESTIMATE statement coefficients on random effects are distributed equally across groups.

ILINK
reports the parameter estimates on the scale of the mean (the inverse linked scale). PROC BGLIMM
computes the value on the mean scale by applying the inverse link to the linear combination of the
parameters for each of the posterior samples and then calculating the posterior mean. The interpretation
of this quantity depends on the fixed-effect values and random-effect values that you specify in the
ESTIMATE statement and on the link function. In a model for binary data with a logit link, for
example, the following statements compute

1

1C expf�.˛1 � ˛2/g

proc bglimm data=Sales seed=9988;
class A;
model y = A / dist=binary link=logit;
estimate 'A one vs. two' A 1 -1 / ilink;

run;

Here ˛1 and ˛2 are the fixed-effects solutions that are associated with the first two levels of the
classification effect A. This quantity is not the difference of the probabilities associated with the two
levels,

�1 � �2 D
1

1C expf�ˇ0 � ˛1g
�

1

1C expf�ˇ0 � ˛2g

SUBJECT coeffs
sets up random-effects contrasts between different subjects when you include a SUBJECT= variable
in the RANDOM statement. By default, ESTIMATE statement coefficients on random effects are
distributed equally across subjects.
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FREQ Statement
FREQ variable ;

The variable in the FREQ statement identifies a numeric variable (in the input data set) that contains the
frequency of occurrence for each observation. PROC BGLIMM treats each observation as if it appears f
times, where f is the value of the FREQ variable for the observation.

The following option can be specified in the FREQ statement after a slash (/):

NOTRUNCATE

NOTRUNC
specifies that frequency values are not truncated to integers.

By default, the frequency value is truncated to an integer if it is not an integer. If the frequency value is less
than 1 or missing, the observation is not used in the analysis. When the FREQ statement is not specified,
each observation is assigned a frequency of 1.

LSMEANS Statement
LSMEANS fixed-effects < / options > ;

The LSMEANS statement computes least squares means (LS-means) of fixed effects. LS-means estimate the
marginal means over a balanced population. A more appropriate approach to LS-means views them as linear
combinations of the parameter estimates that are constructed in such a way that they correspond to average
predicted values in a population where the levels of classification variables are balanced.

The L matrix that is constructed to compute them is the same as the L matrix that is constructed in other SAS
procedures. LS-means computations are not supported for multinomial models.

LS-means are constructed on the linked scale—that is, the scale on which the model effects are additive. For
example, in a binomial model with a logit link, the LS-means are predicted population margins of the logits.

LS-means can be computed for any effect in the MODEL statement that involves only CLASS variables.
You can specify multiple effects in one LSMEANS statement or in multiple LSMEANS statements, and all
LSMEANS statements must appear after the MODEL statement.

The fixed-effects parameters that are used in the LSMEANS statement come directly from the posterior
samples. They are marginal posterior samples (with random effects integrated out), not marginal predictive
samples.

For more information about the syntax of the LSMEANS statement, see the section “LSMEANS Statement”
on page 492 in Chapter 20, “Shared Concepts and Topics.”

You can specify the following options in the LSMEANS statement after a slash (/):
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DIFF

PDIFF
displays differences of the LS-means in a table titled “Differences of Least Squares Means.”

For multiple effects, the results depend on the order of the list, so you should check the output to make
sure that the controls are correct.

EST

E
displays the L matrix coefficients (coefficients that are used to compute the LS-means).

ILINK
requests that estimates in the “Least Squares Means” table also be reported on the scale of the mean
(the inverse linked scale). This option is specific to an LSMEANS statement.

The BGLIMM procedure applies the inverse link transform to the LS-mean that is reported in the
Inverse Link Mean column. In a logistic model, for example, this implies that the value that is reported
as the inversely linked estimate corresponds to a predicted probability that is based on an average
estimable function (the function that produces the LS-mean on the linear scale).

MODEL Statement
MODEL response < (response-options) > = < fixed-effects > < / model-options > ;

MODEL events / trials = < fixed-effects > < / model-options > ;

The MODEL statement, which is required, names the dependent variable and the fixed effects. The fixed-
effects determine the X matrix of the model (see the section “Notation for the Generalized Linear Mixed
Model” for details). You specify effects in the same way as in other SAS procedures.

An intercept is included in the fixed-effects model by default. You can remove it by using the NOINT option.

You can specify the dependent variable by using either the response syntax or the events/trials syntax.
The events/trials syntax is specific to models for binomial data. A binomial(n,�) variable is the sum of n
independent Bernoulli trials with event probability � . Each Bernoulli trial results in either an event or a
nonevent (with probability 1 � �). You use the events/trials syntax to indicate to the BGLIMM procedure
that the Bernoulli outcomes are grouped. The value of the second variable, trials, gives the number n of
Bernoulli trials. The value of the first variable, events, is the number of events out of n. The values of both
events and (trials–events) must be nonnegative, and the value of trials must be positive. Observations for
which these conditions are not met are excluded from the analysis. If the events/trials syntax is used, PROC
BGLIMM defaults to the binomial distribution. The response is then the events variable. The trials variable
is accounted for in model fitting as an additional weight. If you use the response syntax, the procedure
defaults to the normal distribution.

The MODEL statement uses two sets of options. The response-options determine how PROC BGLIMM
models probabilities for binary, binomial, and multinomial data. The model-options control other aspects of
model formation and inference. Table 31.3 summarizes these options, and subsequent sections describe them
in detail.
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Table 31.3 MODEL Statement Options

Option Description

Response Variable Options
DESCENDING Reverses the order of response categories
EVENT= Specifies the event category in binary and binomial models
ORDER= Specifies the sort order for the response variable
REF= Specifies the reference category in generalized logit models

Model Options
COEFFPRIOR= Specifies the prior of the fixed-effects coefficients
DIST= Specifies the response distribution
SCALE= Specifies a fixed value for the scale parameter
INIT= Controls the generation of initial values of the fixed-effects

coefficients
LINK= Specifies the link function
NOINT Excludes the fixed-effects intercept from the model
NOOUTPOST Suppresses storing the posterior samples of missing responses

in the OUTPOST= data set
OFFSET= Specifies the offset variable
SCALEPRIOR= Specifies the prior of the scale parameter

Response Variable Options

Response variable options determine how the BGLIMM procedure models probabilities for binary, binomial,
and multinomial data.

You can specify the following response-options by enclosing them in parentheses after the response variable.

DESCENDING

DESC
reverses the order of the response categories. If you specify both the DESCENDING and ORDER=
options, PROC BGLIMM orders the response categories according to the ORDER= option and then
reverses that order.

EVENT='category ' | FIRST | LAST
specifies the event category for the binary or binomial response model. PROC BGLIMM models the
probability of the event category. This option has no effect when there are more than two response
categories.

You can specify any of the following values:

'category '
specifies that observations whose value matches category (formatted, if a format is applied) in
quotation marks represent events in the data. For example, the following statements specify that
observations that have a formatted value of ‘1’ represent events in the data. The probability that
is modeled by PROC BGLIMM is thus the probability that the variable def takes the (formatted)
value ‘1’.
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proc bglimm data=MyData;
class A B C;
model Def(event ='1') = A B C;

run;

FIRST
designates the first ordered category as the event.

LAST
designates the last ordered category as the event.

By default, EVENT=FIRST.

ORDER=FORMATTED | FREQ | INTERNAL
specifies the sort order of the levels of the response variable. When ORDER=FORMATTED (the
default) for numeric variables for which you have supplied no explicit format (that is, for which there
is no corresponding FORMAT statement in the current PROC BGLIMM run or in the DATA step that
created the data set), the levels are ordered by their internal (numeric) value. Table 31.4 shows the
interpretation of the ORDER= option.

Table 31.4 Sort Order

ORDER= Levels Sorted By

FORMATTED External formatted value, except for numeric variables that
have no explicit format, which are sorted by their
unformatted (internal) value

FREQ Descending frequency count (levels that have the most
observations come first in the order)

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For the FORMATTED and INTERNAL orders, the sort order is
machine-dependent.

For more information about sort order, see the chapter about the SORT procedure in Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REFERENCE='category ' | FIRST | LAST

REF='category ' | FIRST | LAST
specifies the reference category for the binary or binomial response model. Specifying one response
category as the reference is the same as specifying the other response category as the event category.
You can specify any of the following values:

'category '
specifies that observations whose value matches category (formatted, if a format is applied) are
designated as the reference.
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FIRST
designates the first ordered category as the reference.

LAST
designates the last ordered category as the reference.

By default, REF=LAST.

Model Options

You can specify the following model-options in the MODEL statement after a slash (/):

COEFFPRIOR=NORMAL < (options) > | CONSTANT

CPRIOR=NORMAL < (options) > | CONSTANT
specifies the prior distribution for the fixed-effects coefficients. The default is COEFF-
PRIOR=CONSTANT, which specifies the noninformative and improper prior of a constant. If
you specify COEFFPRIOR=NORMAL, it is N.0; 104I/, where I is the identity matrix. You can
specify the following options for the normal prior, enclosed in parentheses:

INPUT=SAS-data-set
specifies a SAS data set that contains the mean and covariance information of the normal prior.
The data set must have a _TYPE_ variable to represent the type of each observation and a
variable for each regression coefficient. If the data set also contains a _NAME_ variable, the
values of this variable are used to identify the covariance for the _TYPE_='COV' observations;
otherwise, the _TYPE_='COV' observations are assumed to be in the same order as the explana-
tory variables in the MODEL statement. PROC BGLIMM reads the mean vector from the
observation for which _TYPE_='MEAN' and reads the covariance matrix from observations for
which _TYPE_='COV'. For an independent normal prior, the variances can be specified using
_TYPE_='VAR'; alternatively, the precision (inverse of the variances) can be specified using
_TYPE_='PRECISION'.

VAR < =c >
specifies the normal prior N.0; cI/, where I is the identity matrix and c is a scalar. By default,
c=1e4.

This VAR=c option specifies a normal prior with a single variance value that is equal to “c”, hence the
covariance matrix is uncorrelated in the multivariate normal cases. If you want to have a specific mean
and variance that are different from the default values, you can provide a SAS data set that contains the
mean and variance of the normal prior through the INPUT=SAS-data-set in the CPRIOR= option. See
an example below:

data Prior1;
length _TYPE_ $4;
input _TYPE_ $ Age Duration;
datalines;
Mean 1.0 -2.0
Var 10 9
;

proc bglimm data=Neuralgia seed=123;
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model numPain = Age Duration / dist=binary cprior=normal(input=Prior1);
run;

Instead of providing values only for the variances, you might want to specify values for the whole
covariance matrix. Here is an example:

data Prior2;
length _TYPE_ $4 _NAME_ $13;
input _TYPE_ $ _NAME_ $ Intercept Age Treatment_A;
datalines;
Mean . 1.0 -2.0 1.0
Cov Intercept 1 0.5 0.2
Cov Age 0.5 2 0.5
Cov Treatment_A 0.2 0.5 3
;

proc bglimm data=Neuralgia seed=123;
class Treatment;
model numPain = Age Duration Treatment / dist=binary

cprior=normal(input=Prior2);
run;

If there is a classification variable for which you want to specify a prior value, you need to name
it by using both the variable name and one of its levels. For example, the last parameter is called
“Treatment_A” instead of “Treatment”. If any model parameter is not specified in the prior data, its
prior mean and variance use the default values.

DISTRIBUTION=keyword

DIST=keyword

ERROR=keyword

ERR=keyword
specifies the response distribution for the model. The keywords and their associated distributions are
shown in Table 31.5.

Table 31.5 Built-In Distribution Functions

Distribution
DISTRIBUTION= Function

BETA Beta
BINARY Binary
BINOMIAL Binary or binomial
EXPONENTIAL | EXPO Exponential
GAMMA | GAM Gamma
GEOMETRIC | GEOM Geometric
INVGAUSS | IG Inverse Gaussian
MULTINOMIAL Multinomial
NEGBINOMIAL | NEGBIN | NB Negative binomial
NORMAL | GAUSSIAN | GAUSS Normal
POISSON | POI Poisson
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If you do not specify a distribution, PROC BGLIMM defaults to the normal distribution for continuous
response variables and to the binomial or multinomial distribution for classification or character
variables, unless you use the events/trial syntax in the MODEL statement. If you use the events/trial
syntax, the procedure defaults to the binomial distribution.

If you do not specify a link function in the LINK= option, a default link function is used. The default
link function for each distribution and other commonly used link functions are shown in Table 31.6.
You can also use the LINK= option to specify any link function shown in Table 31.7.

Table 31.6 Default and Commonly Used Link Functions

Default Other Commonly Used
DISTRIBUTION= Link Function Link Functions

BETA Logit Probit, complementary log-log, log-log
BINARY Logit Probit, complementary log-log, log-log
BINOMIAL Logit Probit, complementary log-log, log-log
EXPONENTIAL | EXPO Log Reciprocal
GAMMA | GAM Log Reciprocal
GEOMETRIC | GEOM Log
INVGAUSS | IG Reciprocal square
MULTINOMIAL Cumulative logit Cumulative probit, cumulative log-log, generalized logit
NEGBINOMIAL | NEGBIN | NB Log
NORMAL | GAUSSIAN | GAUSS Identity Log
POISSON | POI Log

INIT=keyword-list | (numeric-list)

INITIAL=keyword-list | (numeric-list)
specifies options for generating the initial values for the coefficients parameters that you specify as
fixed-effects in the MODEL statement. You can specify the following keywords:

LIST=numeric-list
assigns the numbers to use as the initial values of the fixed effects in the corresponding list order,
including the intercept. The length of the numeric-list must be the same as the number of fixed
effects. For example, the following statement assigns the values 1, 2, and 3 to the first, second,
and third coefficients in the model and prints the table of initial values:

model y = x / init=(list=(1 2 3) pinit);

If the number of items in the numeric-list is less than the number of fixed effects, the initial value
of each remaining parameter is replaced by the corresponding default initial value. For example,
the corresponding mode of the posterior density is used. If the number of items in the numeric-list
is greater than the number of fixed effects, the extra numbers are ignored.
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PINIT
tabulates initial values for the fixed effects. (By default, PROC BGLIMM does not display the
initial values.)

POSTMODE
uses the mode of the posterior density as the initial value of the parameter.

PRIORMODE
uses the mode of the prior density as the initial value of the parameter.

By default, INIT=POSTMODE.

LINK=keyword
specifies the link function for the model. The keywords and the associated link functions are shown
in Table 31.7. Default and commonly used link functions for the available distributions are shown in
Table 31.6.

Table 31.7 Built-In Link Functions

LINK= Link Function g.�/ D � D

CUMCLL | CCLL Cumulative log.� log.1 � �//
Complementary log-log

CUMLOGIT | CLOGIT Cumulative logit log.�=.1 � �//
CUMLOGLOG Cumulative log-log � log.� log.�//
CUMPROBIT | CPROBIT Cumulative probit ˆ�1.�/

CLOGLOG | CLL Complementary log-log log.� log.1 � �//
GLOGIT | GENLOGIT Generalized logit
IDENTITY | ID Identity �

INVERSE | RECIPROCAL Reciprocal 1=�

LOG Logarithm log.�/
LOGIT Logit log.�=.1 � �//
LOGLOG Log-log � log.� log.�//
POWERMINUS2 Power with exponent –2 1=�2

PROBIT Probit ˆ�1.�/

ˆ�1.�/ in the probit and cumulative probit links denotes the quantile function of the standard normal
distribution. For the other cumulative links, � denotes a cumulative category probability. The
cumulative and generalized logit link functions are appropriate only for the multinomial distribution.
When you choose a cumulative link function, PROC BGLIMM assumes that the data are ordinal.
When you specify LINK=GLOGIT, the procedure assumes that the data are nominal (not ordered).

NOINT
excludes the intercept from the fixed-effects model. An intercept is included by default.
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NOOUTPOST
suppresses storing the posterior samples of missing responses in the OUTPOST= data set. By default,
PROC BGLIMM outputs the posterior samples of all missing responses to the OUTPOST= data set.

OFFSET=variable
specifies a variable to use as an offset to the linear predictor. An offset plays the role of an effect whose
coefficient is known to be 1. The offset variable cannot be a classification variable or appear elsewhere
in the MODEL statement. Observations that have missing values for the offset variable are excluded
from the analysis.

SCALE=options
specifies a fixed value for the scale parameter that is denoted by � in the log-likelihood functions. Not
all exponential family distributions have a scale parameter. For the normal distribution, � corresponds
to the variance of the response. This option is available only to the normal distribution that has the
identity link and has no repeated measurements.

You can specify the following options:

SCALE=variable
enables you to use a variable to specify what value the scale parameter takes for each observation
in the DATA= data set. The variable value can be different from observation to observation.

SCALE=c
specifies a numerical value for the scale parameter of a distribution. The value is the same for all
the observation lines in the DATA= data set. The specified value must be within the range of the
scale parameter. By default, c=1.

By default, when you omit the SCALE= option, the scale is a random parameter whose prior distribution
is specified in the SCALEPRIOR= option.

SCALEPRIOR=prior-distribution

SPRIOR=prior-distribution
specifies the prior distribution for the scale parameter, if the model has a scale parameter. For models
that do not have a dispersion parameter (the Poisson and binomial), this option is ignored.

You can specify the one of following prior-distributions:

GAMMA< (options) >
specifies a gamma prior G.a; b/ with the density f .t/ D b.bt/a�1e�bt

�.a/
. The hyperparameters a

and b are the shape and inverse-scale parameters of the gamma distribution, respectively. The
default is G.10�4; 10�4/. You can set the parameters of the gamma distribution by specifying
one or both of the following options, separated by a comma or a space:

SHAPE=a
specifies the shape parameter a of the gamma distribution. By default, SHAPE=0.0001.

ISCALE=b
specifies the inverse-scale parameter b of the gamma distribution. By default,
ISCALE=0.0001.
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IGAMMA< (options) >
specifies an inverse gamma prior IG.a; b/ with the density f .t/ D ba

�.a/
t�.aC1/e�b=t . The

hyperparameters a and b are the shape and scale parameters of the inverse gamma distribu-
tion, respectively. The default is IG.2; 2/ for the normal likelihood with an identity link, and
IG.2:001; 0:001/ for all other models. You can set the parameters of the inverse gamma distribu-
tion by specifying one or both of the following options, separated by a comma or a space:

SHAPE=a
specifies the shape parameter a of the inverse gamma distribution. By default, SHAPE=2 for
the normal likelihood with an identity link, and SHAPE=2.001 for all other models.

SCALE=b
specifies the scale parameter b of the inverse gamma distribution. By default, SCALE=2 for
the normal likelihood with an identity link, and SCALE=0.001 for all other models.

IMPROPER
specifies an improper prior with the density f .t/ proportional to t�1.

UNIFORM< (options) >

UNIF< (options) >
specifies a uniform prior, UNIFORM.a; b/, for the scale parameter. You can set the lower and
upper bounds of the uniform distribution by specifying one or both of the following options,
separated by a comma or a space:

LOWER=a
specifies the lower bound a of the uniform distribution. The lower bound must be nonnegative.
By default, LOWER=0.

UPPER=b
specifies the upper bound b of the uniform distribution. The upper bound must be positive.
By default, UPPER=1E10.

For the normal likelihood with an identity link, the prior for the scale parameter is always an inverse
gamma, and the default is IG.2; 2/. Any other prior specification is ignored if the prior is not an inverse
gamma.

For any other likelihood or link function, you can choose a gamma prior, an inverse gamma prior, an
improper prior, or a uniform prior. The default is the improper prior.
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PREDDIST Statement
PREDDIST < 'label ' > OUTPRED=SAS-data-set < NSIM=n > < COVARIATES=SAS-data-set >

< STATISTICS=options > ;

The PREDDIST statement creates a new SAS data set that contains random samples from the posterior
predictive distribution of the response variable. The posterior predictive distribution is the distribution of
unobserved observations (prediction) conditional on the observed data. Let y be the observed data, X be the
covariates, � be the parameter, and ypred be the unobserved data. The posterior predictive distribution is
defined as

p.ypredjy;X/ D
Z
p.ypred; � jy;X/d�

D

Z
p.ypredj�; y;X/p.� jy;X/d�

Given the assumption that the observed and unobserved data are conditional independent given � , the
posterior predictive distribution can be further simplified as

p.ypredjy;X/ D
Z
p.ypredj�/p.� jy;X/d�

The posterior predictive distribution is an integral of the likelihood function p.ypredj�/ with respect to
the posterior distribution p.� jy/. The PREDDIST statement generates samples from a posterior predictive
distribution on the basis of draws from the posterior distribution of � .

You can specify the following options:

COVARIATES=SAS-data-set
names the SAS data set that contains the sets of explanatory variable values for which the predictions
are established. This data set must contain data that have the same variable names that are used in
the likelihood function. If you omit this option, the DATA= data set that you specify in the PROC
BGLIMM statement is used instead.

ILINK
outputs the inverse link function of the linear predictor for each observation.

LINP
outputs the linear predictors.

MILINK
outputs the inverse link function of the marginal linear predictor for each observation.

MLINP
outputs the marginal linear predictor for each observation.
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NSIM=n
specifies the number of simulated predicted values. By default, n is the same as the NMC= option
value that you specify in the PROC BGLIMM statement.

OUTPRED=SAS-data-set
creates an output data set to contain the samples from the posterior predictive distribution. The output
variable names are listed as resp_1–resp_m, where resp is the name of the response variable and m
is the number of observations in the COVARIATES= data set in the PREDDIST statement. If the
COVARIATES= data set is not specified, m is the number of observations in the DATA= data set that
you specify in the PROC BGLIMM statement.

Table 31.7 displays the keywords for the variables to be included in the OUTPRED= data set.

Table 31.7 Keywords for Variables in OUTPRED= Data Set

Keyword Description Expression Variable Name

ILINK Mean using inverse link g�1.�i / ILink
LINP Linear predictor �i D xiˇ C zi
i Linp
MILINK Marginal mean using inverse link g�1.�mi / MILnk
MLINP Marginal linear predictor �mi D xiˇ MLinp

STATISTICS< (global-options) > = NONE | ALL |stats-request

STATS< (global-options) > = NONE | ALL |stats-request
specifies options for calculating posterior statistics. This option works in exactly the same way as the
STATISTICS= option in the PROC BGLIMM statement. By default, the STATS option takes the same
value that you specify in the STATISTICS= option in the PROC BGLIMM statement.

RANDOM Statement
RANDOM random-effects < / options > ;

Using notation from the section “Notation for the Generalized Linear Mixed Model” on page 1278, the
RANDOM statement defines the Z matrix of the mixed model, the random effects in the 
 vector, and the
covariance structure of G.

The Z matrix is constructed exactly like the X matrix for the fixed effects, and the G matrix is constructed to
correspond to the effects that constitute Z. The covariance structure of G is defined by using the TYPE=
option. The random effects can be classification or continuous effects, and you can specify multiple
RANDOM statements.

You can specify INTERCEPT (or INT) as a random effect to indicate the intercept. PROC BGLIMM does
not include the intercept in the RANDOM statement by default as it does in the MODEL statement.

Table 31.8 summarizes the options available in the RANDOM statement. All options are then discussed in
alphabetical order.



RANDOM Statement F 1317

Table 31.8 RANDOM Statement Options

Option Description

Construction and Sampling of Covariance Structure
COVALG= Specifies the sampling algorithm for the G matrix
COVPRIOR= Specifies the prior for the G matrix
GROUP= Varies the G covariance matrix by group
RESIDUAL Designates a covariance structure as R-side
SUBJECT= Identifies the subjects in the model
TYPE= Specifies the type of the G matrix

Statistical Output
G Displays the estimated G matrix
GCORR Displays the correlation matrix that corresponds to the estimated G matrix
MONITOR Displays the summary, diagnostic statistics, and plots

of individual random effects
NOOUTPOST Suppresses storing the posterior samples of

individual random effects in the OUTPOST= data set

You can specify the following options in the RANDOM statement after a slash (/).

COVALG=< (algorithms) >
specifies the sampling algorithm that is used to sample the parameters in the G matrix of the corre-
sponding RANDOM statement, when conjugate sampling is unavailable. For more information, see the
section “Sampling Methods” on page 1342. You can specify one of the following sampling algorithms:

NUTS< (nuts-options) >
applies the No-U-Turn Sampler (NUTS) of the Hamiltonian algorithm to sample the parameters
in the G matrix of the corresponding RANDOM statement. The NUTS algorithm is a version
of the adaptive Hamiltonian Monte Carlo algorithm with automatic tuning of the step size and
number of steps in each iteration. For more information, see the section “Hamiltonian Monte
Carlo Sampler” on page 1344. You can specify the following nuts-options:

DELTA=value
specifies the target acceptance rate during the tuning process of the NUTS algorithm. In-
creasing the value can often improve mixing, but it can also significantly slow down the
sampling. By default, DELTA=0.6.

MAXHEIGHT=value
specifies the maximum height of the NUTS algorithm tree. The taller the tree, the more
gradient evaluations per iteration the procedure calculates. The number of evaluations is
2height. Usually, the height of a tree should be no more than 10 during the sampling stage,
but it can go higher during the tuning stage. A larger number indicates that the algorithm is
having difficulty converging. By default, MAXHEIGHT=10.
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NOCONJCOV
uses the NUTS algorithm, instead of the conjugate sampler, on the scale parameter of the G
matrix when the covariance type is AR(1) or ARMA(1,1).

NTU=n
specifies the number of tuning iterations for the NUTS algorithm to use. By default, n is the
same as the NBI= option value that you specify in the PROC BGLIMM statement.

STEPSIZE=value
specifies the initial step size in the NUTS algorithm. By default, STEPSIZE=0.1.

SLICE< (option) >
applies the slice sampling algorithm to sample the parameters in the G matrix of the corresponding
RANDOM statement. Slice sampling is a Markov chain Monte Carlo (MCMC) method that
can be applied to sample any continuous parameter, as long as its unnormalized conditional
distribution can be evaluated at any parameter value. For more information, see the section “Slice
Sampler” on page 1345. You can specify the following option:

NOCONJCOV
uses the slice sampler, instead of the conjugate sampler, on the scale parameter of the G
matrix when the covariance type is AR(1) or ARMA(1,1).

By default, COVALG=SLICE.

COVPRIOR=prior-distribution
specifies a prior distribution for the covariance matrix, G, of the random effects, when the G matrix is
of the UN, UN(1), VC, or TOEP(1) type, where a conjugate sampler is used to sample the covariance
matrix. This option is ignored for other covariance types, because you assign a flat prior to the G
matrix if its type is not UN, UN(1), VC, or TOEP(1). For more information, see the section “Prior for
the G-Side Covariance” on page 1346.

You can specify one of the following prior-distributions:

HALFCAUCHY < (SCALE=a) >
HCAUCHY < (SCALE=a) >
HC < (SCALE=a) >

specifies the prior to be a half-Cauchy distribution. The half-Cauchy prior is applied only to the
diagonal terms (variances) of the G matrix. The off-diagonal terms of the G matrix are assumed
to have a flat prior.

You can specify the scale parameter a of the half-Cauchy distribution. The scale parameter a
must be positive. By default, SCALE=25.

HALFNORMAL < (VAR=a) >
HNORMAL < (VAR=a) >
HN < (VAR=a) >

specifies the prior to be a half-normal distribution. The half-normal prior is applied only to the
diagonal terms (variances) of the G matrix. The off-diagonal terms of the G matrix are assumed
to have a flat prior.

You can specify the variance a of the half-normal distribution. The variance a must be positive.
By default, VAR=25.
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IGAMMA < (options) >
specifies an inverse gamma prior, IG.a; b/, with the density f .t/ D ba

�.a/
t�.aC1/e�b=t for each

diagonal term of the G matrix. It is the default prior for the covariance types UN(1), VC, and
TOEP(1).

You can set the parameters of the inverse gamma distribution by specifying one or both of the
following options, separated by a comma or a space:

SHAPE=a
specifies the shape parameter a of the inverse gamma distribution. By default, SHAPE=2.

SCALE=b
specifies the scale parameter b of the inverse gamma distribution. BY default, SCALE=2.

IWISHART < (options) >

IWISH < (options) >

IW < (options) >
specifies an inverse Wishart prior, IWISHART.a; S/, for the G matrix of the random effects.
The hyperparameters a and S are the degrees of freedom and scale matrix of an inverse Wishart
distribution, respectively. The inverse Wishart prior is the default prior for the UN covariance
type. The following examples show several ways to specify an inverse Wishart prior distribution:

covprior=iwishart

covprior=iwishart(scale=25)

covprior=iwishart(df=6, diagonal=(1 4 9))

You can set the parameters of the inverse Wishart distribution by specifying one or more of the
following options, separated by a comma or a space:

DF=a
specifies the degrees of freedom of the inverse Wishart distribution. The default is the
dimension of the G matrix plus 3.

SCALE=b
specifies S D bI as the scale matrix of the inverse Wishart distribution, where I is the identity
matrix. The default is the dimension of the G matrix plus 3. You can set the scale matrix S
by specifying one of these options: SCALE=, DIAGONAL=, or COV=.

DIAGONAL=numeric-list
specifies a list of positive values for the diagonal terms in the scale matrix S of the inverse
Wishart distribution. The default value of each diagonal term is the dimension of the G
matrix plus 3. You can set the scale matrix S by specifying one of these options: SCALE=,
DIAGONAL=, or COV=.

COV=numeric-list
specifies a list of values for the entries in the lower-triangle portion of the scale matrix S for
the inverse Wishart distribution. The specified values of the diagonal terms must be positive,
and the whole matrix must be positive definite. The order of the list is rowwise. The default
setting is S D bI, where b is the dimension of the G matrix plus 3. You can set the scale
matrix S by specifying one of these options: SCALE=, DIAGONAL=, or COV=.
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SIWISHART < (options) >
SIWISH < (options) >
SIW < (options) >

specifies a scaled inverse Wishart prior for the G matrix of the random effects.

You can set the parameters of the scaled inverse Wishart distribution by specifying one or more
of the following options, separated by a comma or a space:

DF=a
specifies the degrees of freedom a of the scaled inverse Wishart distribution. The default is
the dimension of the G matrix of the random effects plus 3.

SCALE=b
specifies bI as the scale matrix of the scaled inverse Wishart distribution, where I is the
identity matrix. The default is the dimension of the G matrix of the random effects plus 3.

VAR=c
specifies the variance parameter c of the normal prior for log.ıi /. By default, VAR=1.

UNIFORM < (options) >
UNIF < (options) >

specifies a uniform prior, UNIFORM.a; b/, for the G matrix of the random effects. The uniform
prior is applied to standard deviations (the square root of the diagonal terms) of the G matrix.

You can set the lower and upper bounds of the uniform distribution by specifying one or both of
the following options, separated by a comma or a space:

LOWER=a
specifies the lower bound a of the uniform distribution. The lower bound must be nonnegative.
By default, LOWER=0.

UPPER=b
specifies the upper bound b of the uniform distribution. The upper bound must be positive.
By default, UPPER=1E10.

G
displays the estimated G matrix for G-side random effects that are associated with this RANDOM
statement. PROC BGLIMM displays blanks for values that are 0. The ODS table name is G.

GCORR
displays the correlation matrix that corresponds to the estimated G matrix for G-side random effects
that are associated with this RANDOM statement. PROC BGLIMM displays blanks for values that are
0. The ODS table name is GCORR.

GROUP=effect
GRP=effect

identifies groups by which to vary the covariance parameters. All observations that have the same level
of the effect have the same covariance parameters. Each new level of the grouping effect produces a
new set of covariance parameters. You should exercise caution in properly defining the effect , because
strange covariance patterns can result when it is misused. Also, the effect can greatly increase the
number of estimated covariance parameters, which can adversely affect the sampling process.

The GROUP= effect must be specified in the CLASS statement.
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MONITOR< =(numeric-list | RANDOM (number )) >

SOLUTION< =(numeric-list | RANDOM (number )) >

S< =(numeric-list | RANDOM (number )) >
displays results (summary, diagnostic statistics, and plots) for the individual-level random-effects
parameters. By default, to save time and space, PROC BGLIMM does not print results for individual-
level random-effects parameters. In models that have a large number of individual random effects (for
example, tens of thousands), it can take a long time to display the summary, diagnostic statistics, and
plots for all the individual-level parameters, so be cautious when using this option.

You can monitor a subset of the random-effects parameters. You can provide a numeric list of the
SUBJECT indexes, or PROC BGLIMM can randomly choose a subset of all subjects for you.

To monitor a list of random-effects parameters for certain subjects, you can provide their indexes as
follows:

random x / subject=index monitor=(1 to 5 by 2 23 57);

In this case, PROC BGLIMM outputs results of random effects for subjects 1, 3, 5, 23, and 57. If the
number of items in the list is greater than the number of subjects, the extra list items are ignored.

PROC BGLIMM can also randomly choose a subset of all the subjects to monitor, if you submit a
statement such as the following:

random x / subject=index monitor=(random(12));

In this case, PROC BGLIMM outputs results of random effects for 12 randomly selected subjects. You
control the sequence of the random indexes by specifying the SEED= option in the PROC BGLIMM
statement.

When you specify the MONITOR option, it uses the values that you specify in the STATISTICS= and
PLOTS= options in the PROC BGLIMM statement.

NOOUTPOST
suppresses storing the posterior samples of individual random-effects parameters in the OUTPOST=
data set. By default, PROC BGLIMM outputs the posterior samples of all random-effects parameters
to the OUTPOST= data set. You can use this option to avoid saving the random-effects parameters. In
models that have a large number of individual random effects (for example, tens of thousands), PROC
BGLIMM can run faster if it does not save the posterior samples of all the individual random effects.

When you specify both the NOOUTPOST option and the MONITOR option, PROC BGLIMM outputs
the list of variables that are monitored.

There is a limit on the maximum number of variables that you can save to an OUTPOST= data set.
If you run a large-scale random-effects model in which the number of parameters exceeds that limit,
the NOOUTPOST option is invoked automatically and PROC BGLIMM does not save the individual
random-effects draws to the output data set. You can use the MONITOR option to select a subset of
the parameters to store in the OUTPOST= data set.
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RESIDUAL

RSIDE
specifies that the random effects listed in this statement be R-side effects. You use this option in the
RANDOM statement if the covariance matrix is for the R-side. Specifying this option is equivalent to
using the REPEATED statement. For example, if it is necessary to order the columns of the R-side
AR(1) covariance structure by the Time variable, you can use the RESIDUAL option as in the following
statements:

class time id;
random time / subject=id type=ar(1) residual;

SUBJECT=effect

SUB=effect
identifies the subjects in the model for the random effects.

A set of random effects is estimated for each subject. All variables in the effect must be declared as
categorical variables in the CLASS statement. PROC BGLIMM assumes independence across subjects,
conditional on other parameters in the model. Specifying a subject effect is equivalent to nesting all
other effects in the RANDOM statement within the subject effect. Thus, for the RANDOM statement,
the SUBJECT= option produces a block-diagonal structure that has identical blocks.

For more information about specifying a random effect with or without the SUBJECT= variable, see
the section “Treatment of Subjects in the RANDOM Statement” on page 1349.

TYPE=covariance-structure
specifies the covariance structure of the G matrix for G-side effects.

Although a variety of structures are available, many applications call for either simple diagonal
(TYPE=VC) or unstructured covariance matrices. The default structure is TYPE=VC (variance
components), which models a different variance component for each random effect.

If you want different covariance structures in different parts of G, you must use multiple RANDOM
statements with different TYPE= options.

Valid values for covariance-structure and their descriptions are provided in Table 31.9.

Table 31.9 Covariance Structures

Structure Description Parms .i; j / Element

ANTE(1) Antedependence 2t � 1 �i�j
Qj�1

kDi
�k

AR(1) Autoregressive(1) 2 �2�ji�j j

ARH(1) Heterogeneous AR(1) t C 1 �i�j�
ji�j j

ARMA(1,1) ARMA(1,1) 3 �2Œ
�ji�j j�11.i ¤ j /C 1.i D j /�

CS Compound symmetry 2 �1 C �
21.i D j /

CSH Heterogeneous compound symmetry t C 1 �i�j Œ�1.i ¤ j /C 1.i D j /�

FA(1) Factor analytic 2t �i�j C di1.i D j /

HF Huynh-Feldt t C 1 .�2i C �
2
j /=2 � �1.i ¤ j /
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Table 31.9 continued

Structure Description Parms .i; j / Element

TOEP Toeplitz t �ji�j jC1

TOEP(q) Banded Toeplitz q �ji�j jC11.ji � j j < q/

TOEPH Heterogeneous Toeplitz 2t � 1 �i�j�ji�j j

TOEPH(q) Banded heterogeneous Toeplitz t C q � 1 �i�j�ji�j j1.ji � j j < q/

UN Unstructured t .t C 1/=2 �ij

UN(q) Banded q
2
.2t � q C 1/ �ij 1.ji � j j < q/

VC Variance components q �2
k
1.i D j /

and i corresponds to kth effect

In Table 31.9, Parms refers to the number of covariance parameters in the structure, t is the overall
dimension of the covariance matrix, q is the order parameter, and 1.A/ equals 1 when A is true and 0
otherwise. For example, 1.i D j / equals 1 when i D j and 0 otherwise, and 1.ji � j j < q/ equals 1
when ji � j j < q and 0 otherwise. For the TYPE=TOEPH structures, �0 D 1.

ANTE(1)
specifies a first-order antedependence structure (Kenward 1987; Patel 1991) parameterized in
terms of variances and correlation parameters. If t ordered random variables �1; : : : ; �t have a
first-order antedependence structure, then each �j , j > 1, is independent of all other �k; k < j ,
given �j�1. This Markovian structure is characterized by its inverse variance matrix, which is
tridiagonal. Parameterizing an ANTE(1) structure for a random vector of size t requires 2t – 1
parameters: variances �21 ; : : : ; �

2
t and t – 1 correlation parameters �1; : : : ; �t�1. The covariances

among random variables �i and �j are then constructed as

Cov
�
�i ; �j

�
D

q
�2i �

2
j

j�1Y
kDi

�k

PROC BGLIMM constrains the correlation parameters to satisfy j�kj < 1; 8k. For variable-order
antedependence models see Macchiavelli and Arnold (1994).

AR(1)
specifies a first-order autoregressive structure,

Cov
�
�i ; �j

�
D �2�ji

��j�j

The values i� and j � are derived for the ith and jth observations, respectively, and are not
necessarily the observation numbers. For example, in the following statements, the values
correspond to the class levels for the Time effect of the ith and jth observation within a particular
subject:

proc bglimm;
class time patient;
model y = x x*x;
random time / sub=patient type=ar(1);

run;

PROC BGLIMM imposes the constraint j�j < 1 for stationarity.
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ARH(1)
specifies a heterogeneous first-order autoregressive structure,

Cov
�
�i ; �j

�
D

q
�2i �

2
j �
ji��j�j

where j�j < 1. This covariance structure has the same correlation pattern as the TYPE=AR(1)
structure, but the variances are allowed to differ.

ARMA(1,1)
specifies the first-order autoregressive moving average structure,

Cov
�
�i ; �j

�
D

�
�2 i D j

�2
�ji
��j�j�1 i 6D j

Here, � is the autoregressive parameter, 
 models a moving average component, and �2 is a scale
parameter. In the notation of Fuller (1976, p. 68), � D �1 and


 D
.1C b1�1/.�1 C b1/

1C b21 C 2b1�1

The example in Table 31.10 and jb1j < 1 imply that

b1 D
ˇ �

p
ˇ2 � 4˛2

2˛

where ˛ D 
 � � and ˇ D 1 C �2 � 2
�. PROC BGLIMM imposes the constraints j�j < 1

and j
 j < 1 for stationarity, although for some values of � and 
 in this region, the resulting
covariance matrix is not positive definite.

CS
specifies the compound symmetry structure, which has constant variance and constant covariance

Cov
�
�i ; �j

�
D

�
�1 C �

2 i D j

�1 i 6D j

The compound symmetry structure arises naturally with nested random effects, such as when
subsampling error is nested within experimental error. Hierarchical random assignments or
selections, such as subsampling or split-plot designs, give rise to compound symmetric covariance
structures. This implies exchangeability of the observations in the subunit, leading to constant
correlations between the observations. Compound symmetry structures are thus usually not
appropriate for processes in which correlations decline according to some metric, such as spatial
and temporal processes.

CSH
specifies the heterogeneous compound symmetry structure, which is an equicorrelation structure
but allows for different variances,

Cov
�
�i ; �j

�
D

8<:
q
�2i �

2
j i D j

�
q
�2i �

2
j i 6D j
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FA(1)
specifies the factor-analytic structure with one factor (Jennrich and Schluchter 1986). This
structure is of the form ��0 CD, where � is a t � 1 vector and D is a t � t diagonal matrix with
t different parameters.

HF
specifies a covariance structure that satisfies the general Huynh-Feldt condition (Huynh and Feldt
1970). For a random vector that has t elements, this structure has t C 1 positive parameters and
covariances

Cov
�
�i ; �j

�
D

�
�2i i D j

0:5.�2i C �
2
j / � � i 6D j

A covariance matrix † generally satisfies the Huynh-Feldt condition if it can be written as
† D �10C1�0C�I. The preceding parameterization chooses �i D 0:5.�2i ��/. Several simpler
covariance structures give rise to covariance matrices that also satisfy the Huynh-Feldt condition.
For example, TYPE=CS, VC, and UN(1) are nested within TYPE=HF. Note also that the HF
structure is nested within an unstructured covariance matrix.

TOEP
models a Toeplitz covariance structure. This structure can be viewed as an autoregressive structure
whose order is equal to the dimension of the matrix,

Cov
�
�i ; �j

�
D

�
�2 i D j

�ji�j j i 6D j

TOEP(q)
specifies a banded Toeplitz structure,

Cov
�
�i ; �j

�
D

�
�2 i D j

�ji�j j ji � j j < q

This can be viewed as a moving average structure whose order is equal to q – 1. The specification
TYPE=TOEP(1) is the same as �2I, and it can be useful for specifying the same variance
component for several effects.

TOEPH< (q) >
models a Toeplitz covariance structure. The correlations of this structure are banded as in the
TOEP or TOEP(q) structures, but the variances are allowed to vary:

Cov
�
�i ; �j

�
D

(
�2i i D j

�ji�j j

q
�2i �

2
j i 6D j

The correlation parameters satisfy j�ji�j jj < 1. If you specify the optional value q, the correlation
parameters with ji �j j � q are set to 0, creating a banded correlation structure. The specification
TYPE=TOEPH(1) results in a diagonal covariance matrix with heterogeneous variances.
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UN< (q) >
specifies a completely general (unstructured) covariance matrix that is parameterized directly in
terms of variances and covariances,

Cov
�
�i ; �j

�
D �ij

The variances are constrained to be nonnegative, and the covariances are unconstrained. This
structure is constrained to be nonnegative definite. If you specify the order parameter q, then
PROC BGLIMM estimates only the first q bands of the matrix, setting elements in all higher
bands equal to 0.

VC
specifies standard variance components and is the default structure for both G-side and R-side
covariance structures. In a G-side covariance structure, a distinct variance component is assigned
to each effect. In an R-side structure, TYPE=VC is usually used only to add overdispersion
effects or, with the GROUP= option, to specify a heterogeneous variance model.

Table 31.10 lists some examples of the structures in Table 31.9.

Table 31.10 Covariance Structure Examples

Description Structure Example

First-order
antedependence

ANTE(1)

24 �21 �1�2�1 �1�3�1�2
�2�1�1 �22 �2�3�2
�3�1�2�1 �3�2�2 �23

35

First-order
autoregressive

AR(1) �2

2664
1 � �2 �3

� 1 � �2

�2 � 1 �

�3 �2 � 1

3775

Heterogeneous
AR(1)

ARH(1)

2664
�21 �1�2� �1�3�

2 �1�4�
3

�2�1� �22 �2�3� �2�4�
2

�3�1�
2 �3�2� �23 �3�4�

�4�1�
3 �4�2� �4�3� �24

3775

First-order
autoregressive
moving average

ARMA(1,1) �2

2664
1 
 
� 
�2


 1 
 
�


� 
 1 



�2 
� 
 1

3775

Compound
symmetry

CS

2664
�1 C �

2 �1 �1 �1
�1 �1 C �

2 �1 �1
�1 �1 �1 C �

2 �1
�1 �1 �1 �1 C �

2

3775

Heterogeneous
compound
symmetry

CSH

2664
�21 �1�2� �1�3� �1�4�

�2�1� �22 �2�3� �2�4�

�3�1� �3�2� �23 �3�4�

�4�1� �4�2� �4�3� �24

3775
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Table 31.10 continued

Description Structure Example

First-order
factor
analytic

FA(1)

2664
�21 C d1 �1�2 �1�3 �1�4
�2�1 �22 C d2 �2�3 �2�4
�3�1 �3�2 �23 C d3 �3�4
�4�1 �4�2 �4�3 �24 C d4

3775

Huynh-Feldt HF

2664 �21
�2

1C�
2
2

2
� �

�2
1C�

2
3

2
� �

�2
2C�

2
1

2
� � �22

�2
2C�

2
3

2
� �

�2
3C�

2
1

2
� �

�2
3C�

2
2

2
� � �23

3775

Toeplitz TOEP

2664
�2 �1 �2 �3
�1 �2 �1 �2
�2 �1 �2 �1
�3 �2 �1 �2

3775

Toeplitz with
two bands

TOEP(2)

2664
�2 �1 0 0

�1 �2 �1 0

0 �1 �2 �1
0 0 �1 �2

3775

Heterogeneous
Toeplitz

TOEPH

2664
�21 �1�2�1 �1�3�2 �1�4�3

�2�1�1 �22 �2�3�1 �2�4�2
�3�1�2 �3�2�1 �23 �3�4�1
�4�1�3 �4�2�2 �4�3�1 �24

3775

Unstructured UN

2664
�21 �21 �31 �41
�21 �22 �32 �42
�31 �32 �23 �43
�41 �42 �43 �24

3775

Banded main
diagonal

UN(1)

2664
�21 0 0 0

0 �22 0 0

0 0 �23 0

0 0 0 �24

3775

Variance
components

VC (default)

2664
�2B 0 0 0

0 �2B 0 0

0 0 �2AB 0

0 0 0 �2AB

3775
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REPEATED Statement
REPEATED repeated-effect < / options > ;

The REPEATED statement specifies the R matrix in the model. Its syntax is similar to that of the REPEATED
statement in PROC MIXED. If you omit this statement, R is assumed to be equal to �2I. The REPEATED
statement is available only for the normal distribution with the identity link in this release.

Specifying a repeated-effect is required in order to inform PROC BGLIMM of the proper location of the
observed repeated responses. The repeated-effect must contain only classification variables. You specify the
SUBJECT= option to identify repeated measures for the same subject and set up the blocks of R. You can
use the TYPE= option to define the covariance structure. The levels of the repeated-effect must be different
for each observation within a subject; otherwise, PROC BGLIMM produces an error message.

Table 31.11 summarizes the options available in the REPEATED statement. All options are then discussed in
alphabetical order.

Table 31.11 Summary of REPEATED Statement Options

Option Description

Construction of Covariance Structure
COVALG= Specifies the sampling algorithm for the R matrix
COVPRIOR= Specifies the prior for the R matrix
GROUP= Defines an effect that specifies heterogeneity in the R covariance structure
SUBJECT= Identifies the subjects in the R-side model
TYPE= Specifies the type of the R matrix

Statistical Output
NOPRINTCOV Suppresses displaying the results for the covariance matrix parameters
R Displays the estimated R matrix
RCORR Display the correlation matrix that corresponds to the estimated R matrix

You can specify the following options in the REPEATED statement after a slash (/):

COVALG=< (algorithms) >
specifies the sampling algorithm that is used to sample the parameters in the R matrix of the residuals,
when conjugate sampling is unavailable. For more information, see the section “Sampling Methods”
on page 1342. You can specify one of the following sampling algorithms:

NUTS< (nuts-options) >
applies the No-U-Turn Sampler (NUTS) of the Hamiltonian algorithm to sample the parameters
in the R matrix of the residuals. The NUTS algorithm is a version of the adaptive Hamiltonian
Monte Carlo algorithm with automatic tuning of the step size and number of steps in each iteration.
For more information, see the section “Hamiltonian Monte Carlo Sampler” on page 1344. You
can specify the following nuts-options:
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DELTA=value
specifies the target acceptance rate during the tuning process of the NUTS algorithm. In-
creasing the value can often improve mixing, but it can also significantly slow down the
sampling. By default, DELTA=0.6.

MAXHEIGHT=value
specifies the maximum height of the NUTS algorithm tree. The taller the tree, the more
gradient evaluations per iteration the procedure calculates. The number of evaluations is
2height. Usually, the height of a tree should be no more than 10 during the sampling stage,
but it can go higher during the tuning stage. A larger number indicates that the algorithm is
having difficulty converging. By default, MAXHEIGHT=10.

NOCONJCOV
uses the NUTS algorithm, instead of the conjugate sampler, on the scale parameter of the R
matrix when the covariance type is AR(1) or ARMA(1,1).

NTU=n
specifies the number of tuning iterations for the NUTS algorithm to use. By default, n is the
same as the NBI= option value that you specify in the PROC BGLIMM statement.

STEPSIZE=value
specifies the initial step size in the NUTS algorithm. By default, STEPSIZE=0.1.

SLICE< (option) >
applies the slice sampling algorithm to sample the parameters in the R matrix of the residuals.
Slice sampling is a Markov chain Monte Carlo (MCMC) method that can be applied to sample
any continuous parameter, as long as its unnormalized conditional distribution can be evaluated
at any parameter value. For more information, see the section “Slice Sampler” on page 1345.
You can specify the following option:

NOCONJCOV
uses the slice sampler, instead of the conjugate sampler, on the scale parameter of the R
matrix when the covariance type is AR(1) or ARMA(1,1).

These options are similar to those in the RANDOM statement. By default, COVALG=SLICE.

COVPRIOR=prior-distribution
specifies a prior distribution for the R matrix of the residuals, when the R matrix is of the UN, UN(1),
VC, or TOEP(1) type, where a conjugate sampler is used. This option is ignored for other covariance
types, because you assign a flat prior to the R matrix if its type is not UN, UN(1), VC, or TOEP(1).

You can specify one of the following prior-distributions:

HALFCAUCHY < (SCALE=a) >

HCAUCHY < (SCALE=a) >

HC < (SCALE=a) >
specifies the prior to be a half-Cauchy distribution. The half-Cauchy prior is applied only to the
diagonal terms (variances) of the R matrix. The off-diagonal terms of the R matrix are assumed
to have a flat prior.

You can specify the scale parameter a of the half-Cauchy distribution. The scale parameter a
must be positive. By default, SCALE=25.
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HALFNORMAL < (VAR=a) >

HNORMAL < (VAR=a) >

HN < (VAR=a) >
specifies the prior to be a half-normal distribution. The half-normal prior is applied only to the
diagonal terms (variances) of the R matrix. The off-diagonal terms of the R matrix are assumed
to have a flat prior.

You can specify the variance a of the half-normal distribution. The variance a must be positive.
By default, VAR=25.

IGAMMA < (options) >
specifies an inverse gamma prior, IG.a; b/, with the density f .t/ D ba

�.a/
t�.aC1/e�b=t for each

diagonal term of the R matrix. It is the default prior for the covariance types UN(1), VC, and
TOEP(1).

You can set the parameters for the inverse gamma distribution by specifying one or both of the
following options, separated by a comma or a space:

SHAPE=a
specifies the shape parameter a of the inverse gamma distribution. By default, SHAPE=2.

SCALE=b
specifies the scale parameter b of the inverse gamma distribution. By default, SCALE=2.

IWISHART < (options) >

IWISH < (options) >

IW < (options) >
specifies an inverse Wishart prior, IWISHART.a; b/, for the R matrix. It is the default prior for
the UN covariance type.

You can set the parameters of the inverse Wishart distribution by specifying one or both of the
following options, separated by a comma or a space:

DF=a
specifies the degrees of freedom a of the inverse Wishart distribution. The default is the
dimension of the R matrix plus 3.

SCALE=b
specifies bI as the scale matrix of the inverse Wishart distribution, where I is the identity
matrix. The default is the dimension of the R matrix plus 3.

SIWISHART < (options) >

SIWISH < (options) >

SIW < (options) >
specifies a scaled inverse Wishart prior for the R matrix.

You can set the parameters of the scaled inverse Wishart distribution by specifying one or more
of the following options, separated by a comma or a space:
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DF=a
specifies the degrees of freedom a of the scaled inverse Wishart distribution. The default is
the dimension of the R matrix plus 3.

SCALE=b
specifies bI as the scale matrix of the scaled inverse Wishart distribution, where I is the
identity matrix. The default is the dimension of the R matrix plus 3.

VAR=c
specifies the variance parameter c of the normal prior for log.ıi /. By default, VAR=1.

UNIFORM < (options) >

UNIF < (options) >
specifies a uniform prior, UNIFORM.a; b/, for the R matrix. The uniform prior is applied to
standard deviations (the square root of the diagonal terms) of the R matrix.

You can set the lower and upper bounds of the uniform distribution by specifying one or both of
the following options, separated by a comma or a space:

LOWER=a
specifies the lower bound a of the uniform distribution. The lower bound must be nonnegative.
By default, LOWER=0.

UPPER=b
specifies the upper bound b of the uniform distribution. The upper bound must be positive.
By default, UPPER=1E10.

GROUP=effect

GRP=effect
defines an effect that specifies heterogeneity in the covariance structure of R. All observations that
have the same level of the effect have the same covariance parameters. Each new level of the effect
produces a new set of covariance parameters that has the same structure as the original group. You
should exercise caution in properly defining the effect , because strange covariance patterns can result
when it is misused. The effect can greatly increase the number of estimated covariance parameters.

The GROUP= effect must be specified as a variable in the CLASS statement.

NOPRINTCOV
suppresses displaying results (summary statistics, diagnostics, and plots) for the parameters for the
covariance matrix. In models that have many repeated measurements, the number of parameters
involved in the covariance matrix can be very large and then it can take a long time to display the
summary, diagnostic statistics, and plots for all these parameters. By default, this option is off.

R
displays the estimated R matrix. The ODS table name is R.
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RCORR
produces the correlation matrix that corresponds to the estimated R matrix. The ODS table name is
RCorr.

SUBJECT=effect

SUB=effect
identifies the subjects for the blocking structure in R. The repeated measures for the same subject
must be together in the data. Complete independence is assumed across subjects; therefore, this option
produces a block diagonal structure in R that has identical blocks. The effect must be specified as a
categorical variable in the CLASS statement.

TYPE=covariance-structure
specifies the covariance structure of the R matrix. The SUBJECT= option defines the blocks of R, and
the TYPE= option specifies the structure of these blocks. Valid values for covariance-structure and
their descriptions are provided in Table 31.9, and some examples are shown in Table 31.10. By default,
TYPE=VC.

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement identifies a variable in the input data set to provide a value to rescale each observation
in a data set: the scale parameter is replaced by �=wi in the density, where wi is the weight that is associated
with the observation yi . When there is not a scale parameter in the response distribution, wi behaves the
same as the frequency fi by treating an observation as if it appears wi times.

Observations that have relatively large weights have more influence in the analysis than observations that
have smaller weights. An unweighted analysis is the same as a weighted analysis in which all weights are 1.

Observations with nonpositive or missing weights are not used in the analysis. If a WEIGHT statement is not
included, all observations included in the analysis are assigned a weight of 1. The WEIGHT variable does
not have to be an integer; it can have decimals.
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Details: BGLIMM Procedure

Generalized Linear Mixed Models
First consider the simplest model: a normal linear model. The quantity of primary interest, yi , is called the
response or outcome variable for the ith individual. The variable xi is the 1 � p covariate vector for the fixed
effects. The distribution of yi given xi is normal with a mean that is a linear function of xi ,

yi D xiˇ C �i ; i D 1; : : : ; I

�i � N.0; �2/

where ˇ is a p � 1 vector of regression coefficients (also known as fixed effects) and �i is the noise with a
variance �2.

The normal linear model can be expanded to include random effects, and the model becomes a normal linear
mixed model,

yi D xiˇ C zi
i C �i

i � N.0;Gi /

�i � N.0; �
2/

where 
i is a q � 1 vector of random effects, zi is an 1 � q matrix of covariates for the 
i , and Gi is the
covariance matrix of the random effects 
i (G is a block diagonal matrix where each block is Gi ).

When an individual i has ni repeated measurements, the random-effects model for outcome vector yi is given
by

yi D Xiˇ C Zi
i C �i ; i D 1; : : : ; I

where yi is ni � 1, Xi is an ni � p matrix of fixed covariates, ˇ is a p � 1 vector of regression coefficients
(also known as fixed effects), 
i is a q � 1 vector of random effects, Zi is an ni � q matrix of covariates for
the 
i , and �i is an ni � 1 vector of random errors.

It is further assumed that


i � N.0;Gi /
�i � N.0;Ri /

where Gi is the covariance matrix of 
i (G is a block diagonal matrix where each block is Gi ) and Ri is the
covariance matrix of the residual errors for the ith subject (R is a block diagonal matrix where each block is
Ri ).

There are cases where the relationship between the design matrix (X and Z) and the expectation of the
response is not linear, or where the distribution for the response is far from normal, even after transformation
of the data. The class of generalized linear mixed models unifies the approaches that you need in order to
analyze data in those cases. Let y be the collection of all yi , and let X and Z be the collection of all Xi and
Zi , respectively. A generalized linear mixed model consists of the following:

� the linear predictor � D Xˇ C Z
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� the link function g.�/ that relates the linear predictor to the mean of the outcome via a monotone link
function,

EŒY jˇ;
� D g�1.�/ D g�1.Xˇ C Z
/

where g.�/ is a differentiable monotone link function and g�1.�/ is its inverse.

� a response distribution in the exponential family of distributions. The distribution can also depend on a
scale parameter, �.

A density or mass function in the exponential family can be written as

f .y/ D exp
�
y� � b.�/

�
C c.y; f .�//

�
for some functions b.�/ and c.�/. The parameter � is called the natural (canonical) parameter. The parameter
� is a scale parameter, and it is not present in all exponential family distributions. For example, in logistic
regression and Poisson regression, � D 1.

The mean and variance of the data are related to the components of the density, EŒY � D � D b0.�/,
VarŒY � D �b00.�/, where primes denote first and second derivatives. If you express � as a function of �, the
relationship is known as the natural link function or the canonical link function. In other words, modeling data
by using a canonical link assumes that � D xˇ C z
; the effect contributions are additive on the canonical
scale. The second derivative of b.�/, expressed as a function of �, is the variance function of the generalized
linear model, a.�/ D b00.�.�//. Note that because of this relationship, the distribution determines the
variance function and the canonical link function. However, you cannot proceed in the opposite direction.

Likelihood-based inference is based on the marginal likelihood in which the random effects are integrated
out. The integration requires numerical methods, such as Gaussian quadrature methods (which can be
computationally costly) or Laplace methods (which are faster but not as accurate). The Bayesian approach
estimates the joint distribution of all parameters in the model, and it is made possible by the Markov chain
Monte Carlo (MCMC) methods. The presence of the random-effects parameters 
 adds an extra sampling
step to the Gibbs algorithm, thus eliminating the need to numerically integrate out 
 to make inferences about
ˇ. The MCMC methods produce marginal distribution estimates of all fixed-effects parameters, include the
G and R covariance matrices, making estimation convenient.

Response Probability Distributions

Probability distributions of the response y in generalized linear models are usually parameterized in terms of
the mean � and dispersion parameter � instead of the natural parameter � . The probability distributions
that are available in the BGLIMM procedure are shown in the following list. The PROC BGLIMM scale
parameter and the variance of y are also shown.
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� Beta:

f .y/ D
�.p C q/

�.p/�.q/
yp�1.1 � y/q�1 for 0 < y < 1

� D
p

p C q

� D p C q

scale D p C q

Var.Y / D
pq

.p C q/2.p C q C 1/

� Binary:

f .y/ D �y.1 � �/1�y for y D 0; 1

� D 1

Var.Y / D �.1 � �/

� Binomial:

f .y/ D

�
n

r

�
�r.1 � �/n�r for y D

r

n
; r D 0; 1; 2; : : : ; n

� D 1

Var.Y / D
�.1 � �/

n

� Exponential:

f .y/ D
1

�
exp

�
�
y

�

�
for 0 < y <1

� D 1

Var.Y / D �2

� Gamma:

f .y/ D
1

�.�/y

�
y�

�

��
exp

�
�
y�

�

�
for 0 < y <1

� D ��1

scale D �

Var.Y / D
�2

�
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� Geometric: This is a special case of the negative binomial where k = 1.

f .y/ D
.�/y

.1C �/yC1
for y D 0; 1; 2; : : :

� D 1

Var.Y / D �.1C �/

� Inverse Gaussian:

f .y/ D
1p

2�y3�
exp

"
�
1

2y

�
y � �

��

�2#
for 0 < y <1

� D �2

scale D �2

Var.Y / D �2�3

� Multinomial:

f .y1; y2; : : : ; yk/ D
mŠ

y1Šy2Š � � �ykŠ
p
y1

1 p
y2

2 � � �p
yk

k

� D 1

� Negative binomial:

f .y/ D
�.y C 1=k/

�.y C 1/�.1=k/

.k�/y

.1C k�/yC1=k
for y D 0; 1; 2; : : :

� D 1

dispersion D k

Var.Y / D �C k�2

� Normal (Gaussian):

f .y/ D
1

p
2��

exp
�
�
1

2

�y � �
�

�2�
for �1 < y <1

� D �2

scale D �2

Var.Y / D �2
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� Poisson:

f .y/ D
�ye��

yŠ
for y D 0; 1; 2; : : :

� D 1

Var.Y / D �

The negative binomial and zero-inflated negative binomial distributions contain a parameter k, called the
negative binomial dispersion parameter. This is not the same as the generalized linear model dispersion �;
rather, it is an additional distribution parameter that must be estimated or set to a fixed value.

For the binomial distribution, the response is the binomial proportion y D events=trials . The variance
function is V.�/ D �.1 � �/, and the binomial trials parameter n is regarded as a weight w.

Likelihood

The BGLIMM procedure forms the log likelihoods of generalized linear models as

L.�; �I y; fi ; wi / D
nX
iD1

fi l.�i ; �Iyi ; wi /

where l.�i ; �Iyi / is the log-likelihood contribution of the ith observation with weight wi and fi is the value
of the frequency variable. In the case where observations have weights, the scale parameter is replaced by
�=wi in the density, where wi is the weight that is associated with the observation yi . For the determination
of wi and fi , see the WEIGHT and FREQ statements.

The individual log-likelihood contributions for the various distributions are as follows:

Beta:

l.�i ; �Iyi ; wi / D log
�

�.�=wi /

�.�i�=wi /�..1 � �i /�=wi /

�
C .�i�=wi � 1/ logfyig
C ..1 � �i /�=wi � 1/ logf1 � yig

VarŒY � D �.1 � �/=.1C �/I � > 0. See Ferrari and Cribari-Neto (2004).

Binary:

l.�i ; �Iyi ; wi / D wi .yi logf�ig C .1 � yi / logf1 � �ig/

VarŒY � D �.1 � �/I � � 1.

Binomial:

l.�i ; �Iyi ; wi / D wi .yi logf�ig C .ni � yi / logf1 � �ig/
C wi .logf�.ni C 1/g � logf�.yi C 1/g � logf�.ni � yi C 1/g/

where yi and ni are the events and trials in the events/trials syntax, and 0 < � < 1.
VarŒY=n� D �.1 � �/=nI � � 1.
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Exponential:

l.�i ; �Iyi ; wi / D

(
� logf�ig � yi=�i wi D 1

wi log
n
wiyi

�i

o
�
wiyi

�i
� logfyi�.wi /g wi 6D 1

VarŒY � D �2I � � 1.

Gamma:

l.�i ; �Iyi ; wi / D wi� log
�
wiyi�

�i

�
�
wiyi�

�i
� logfyig � log f�.wi�/g

VarŒY � D ��2I � > 0.

Geometric:

l.�i ; �Iyi ; wi / D yi log
�
�i

wi

�
� .yi C wi / log

�
1C

�i

wi

�
C log

�
�.yi C wi /

�.wi /�.yi C 1/

�
VarŒY � D �C �2I � � 1.

Inverse Gaussian:

l.�i ; �Iyi ; wi / D �
1

2

"
wi .yi � �i /

2

yi��
2
i

C log

(
�y3i
wi

)
C logf2�g

#

VarŒY � D ��3I � > 0.

Multinomial:

l.�i ; �I yi ; wi / D wi
JX
jD1

yij logf�ij g

� � 1.

Negative binomial:

l.�i ; �Iyi ; wi / D yi log
�
k�i

wi

�
� .yi C wi=k/ log

�
1C

k�i

wi

�
C log

�
�.yi C wi=k/

�.wi=k/�.yi C 1/

�
VarŒY � D �C k�2I k > 0I� � 1.

For a given k, the negative binomial distribution is a member of the exponential
family. The parameter k is related to the scale of the data, because it is part of the variance
function. However, it cannot be factored from the variance, as is the case with the �
parameter in many other distributions. The parameter k is designated as “Scale” in the
output of PROC BGLIMM.
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Normal (Gaussian):

l.�i ; �Iyi ; wi / D �
1

2

�
wi .yi � �i /

2

�
C log

�
�

wi

�
C logf2�g

�
VarŒY � D �I � > 0.

Poisson:

l.�i ; �Iyi ; wi / D wi .yi logf�ig � �i � logf�.yi C 1/g/

VarŒY � D �I � � 1.

Define the parameter vector for the generalized linear model as � D ˇ, if � � 1, and as � D Œˇ0; ��0

otherwise. ˇ denotes the fixed-effects parameters in the linear predictor. For the negative binomial distribution,
the relevant parameter vector is � D Œˇ0; k�0. The gradient and Hessian of the negative log likelihood are then

g D �
@L.�I y/
@�

H D �
@2L.�I y/
@� @� 0

Scale and Dispersion Parameters

The parameter � in the log-likelihood functions is a scale parameter. McCullagh and Nelder (1989, p. 29)
refer to it as the dispersion parameter. With the exception of the normal distribution, � does not correspond
to the variance of an observation; the variance of an observation in a generalized linear model is a function of
� and �. In a generalized linear model, the BGLIMM procedure displays the estimate of � as “Scale” in
the “Posterior Summaries and Intervals” table. Note that the scale parameter is the same as that reported by
the GLIMMIX procedure for almost all distributions, but it is different from that reported by the GENMOD
procedure for some distributions of this scale (see the “Parameter Estimates” table in PROC GLIMMIX and
PROC GENMOD). The scale that is reported by PROC GENMOD is sometimes a transformation of the
dispersion parameter in the log-likelihood function. Table 31.11 displays the “Scale” entries that are reported
by the three procedures in terms of the � (or k) parameter.

Table 31.11 Scale Reported in Output Table

Distribution PROC BGLIMM PROC GLIMMIX PROC GENMOD

Beta b� b� N/A
Gamma 1=b� b� 1=b�
Inverse Gaussian b� b� qb�
Negative binomial bk bk bk
Normal b� DbVarŒy� b� DbVarŒy�

qb�
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How PROC BGLIMM Works
PROC BGLIMM is a simulation-based procedure that uses a variety of sampling algorithms to draw
samples from the joint posterior distribution of parameters from a generalized linear mixed model (GLMM).
Sampling methods include the conjugate sampler, direct sampler, Gamerman algorithm (a variation of the
Metropolis-Hastings algorithm that is tailored to generalized linear models), and No-U-Turn Sampler (NUTS,
a self-tuning variation of the Hamiltonian Monte Carlo (HMC) method).

For situations in which the conjugate samplers are used, see the section “Conjugate Sampling” on page 1342.
The direct sampling method is used for missing values, where the sampling distribution is known. The
Gamerman algorithm is used for both the fixed-effects and random-effects parameters in nonnormal models.
The NUTS algorithm is used for covariance parameters when conjugacy is not available.

PROC BGLIMM updates parameters conditionally, through Gibbs sampling. The fixed-effects parameters ˇ
are drawn jointly at each iteration. The random-effect parameters (in a RANDOM statement) are updated
by clusters, unless the SUBJECT= option is not specified. In that situation, the random-effects parameters
from the same RANDOM statement are updated jointly (for more information about how the random-effects
parameters can be parameterized differently with or without the presence of the SUBJECT= option, see
the section “Treatment of Subjects in the RANDOM Statement” on page 1349). Missing data values are
updated in sequence, and the G-side and the R-side covariance parameters are updated separately, in their full
posterior conditionals.

The rest of this section describes how PROC BGLIMM computes the full conditional distributions in the
Gibbs updating. Let � D fˇ;G;Rg, the collection of all fixed-effects parameters and the covariance matrices;
let 
 denote random-effects parameters and 
j denote the random-effects parameters from cluster j. For
simplicity, it is assumed that there is only one random effect, thus omitting an extra subindex for 
 . The
treatment of random effects is identical for effects in multiple RANDOM statements.

GLM Parameters

In generalized linear models that have only fixed effects, the log of the posterior density is

log.p.ˇjy;R// D log.�.ˇ//C
nX
iD1

log.f .yi jˇ;R//

where ˇ is the vector of fixed-effects parameters and log.�.ˇ// is the log of the joint prior density of ˇ. The
log likelihood, log.f .yi jˇ;R//, is computed for the ith observation. The summation reflects the assumption
that all observations in the data set are independent. The response variable yi can be a vector, and R can
be either a scalar or a covariance. The logarithm of the prior distribution of R is not included because it is
constant with respect to ˇ.

The objective function of R is similar to that of ˇ:

log.p.Rjy;ˇ// D log.�.R//C
nX
iD1

log.f .yi jˇ;R//
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GLMM with Random Effects

In a random-effects model, the conditional distribution of ˇ is similar to that of the fixed-effects-only model,

log.p.ˇj
; y;R// D log.�.ˇ//C
nX
iD1

log.f .yi jˇ;
;R//

where the log-likelihood function now includes the random effects 
 . This construction reflects two PROC
BGLIMM modeling settings: all random-effects parameters enter the likelihood function (linearly at the
mean level), and the fixed-effects parameters cannot be hyperparameters of 
 (hence no log.�.
j jˇ// terms).

The conditional distribution of R again mirrors that of ˇ:

log.p.Rj
; y;ˇ// D log.�.R//C
nX
iD1

log.f .yi jˇ;
;R//

For 
j , the following conditional is used:

log.p.
j j�; y// D log.�.
j jG//C
X

i2fj th clusterg
log.f .yi jˇ;
j ;R//

In this computation, only subjects from the jth cluster are used. This reflects the conditional independence
assumption that the RANDOM statement makes. This simplification in the calculation makes updating the
random-effects parameters computationally efficient and enables the procedure to handle random effects that
contain large number of clusters just as easily.

The G-side covariance matrix G depends only on the random effects 
 and not on the data or other parameters,
ˇ or R,

log.p.Gj
// D log.�.G///C
X
j

log.�.
j jG//

where �.G/ is the prior distribution of G.

Models with Missing Values

Missing response values are treated as parameters by default and sampled in the MCMC simulation. This
mechanism of modeling missing values is referred to as missing at random (MAR). You can delete all
observations that contain missing values by using the MISSING=CC option in the PROC BGLIMM statement.

Suppose that

y D fyobs; ymisg

The response variable y consists of n1 observed values, yobs, and n2 missing values, ymis. At each iteration,
PROC BGLIMM samples every missing response value (by using the likelihood function as the sampling
distribution). After these samples are drawn, the GLMM is reduced to a full data scenario with no missing
data. PROC BGLIMM then proceeds to update ˇ, 
 , G, and R sequentially, in the same way as described in
the section “How PROC BGLIMM Works” on page 1340.
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Sampling Methods
This section describes the sampling algorithms that PROC BGLIMM uses.

Conjugate Sampling

Conjugate prior distributions are a type of prior distribution in which the prior and posterior distributions are
in the same family of distributions. For example, if you model an independently and identically distributed
random variable yi by using a normal likelihood with known variance �2,

yi � normal.x0iˇ; �
2/

then a normal prior on ˇ,

ˇ � normal.ˇ0;†0/

is a conjugate prior, because the posterior distribution of ˇ is also a normal distribution, where the covariance
is †�10 C

1
�2

PN
iD1 xix0i and the mean is .†�10 C

1
�2

PN
iD1 xix0i /

�1.†�10 ˇ0 C
1
�2

PN
iD1 xiyi /

PROC BGLIMM uses conjugate samplers in the normal and multivariate normal cases, as shown in Ta-
ble 31.12.

Table 31.12 Conjugate Sampling in PROC BGLIMM

Family Parameter Prior

Normal ˇ Multivariate normal
Normal Variance �2 Inverse gamma
Multivariate normal ˇ Multivariate normal
Multivariate normal Covariance † Inverse Wishart

The fixed-effects parameters ˇ and the covariances G and R are sampled when applicable.

Gamerman Algorithm

The Gamerman algorithm (Gamerman 1997), which is named after the inventor Dani Gamerman, is a special
case of the Metropolis algorithm in which the proposal distribution is derived from one iteration of the
iterative weighted least squares (IWLS) algorithm. As the name suggests, a weighted least squares algorithm
runs inside an iteration loop. For each iteration, a set of weights for the observations is used in the least
squares fit. The weights are constructed by applying a weight function to the current residuals. The proposal
distribution uses the current iteration’s parameter values to form the proposal distribution from which to
generate a proposed random value (Gamerman 1997).

The Gamerman algorithm is suitable for both GLM and GLMM models.

The maximum likelihood (ML) estimator in a GLM and the asymptotic variance are obtained by iterative
application of weighted least squares (IWLS) to transformed observations. Following McCullagh and Nelder
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(1989), define the transformed response as

Qyi .ˇ/ D �i C .yi � �i /g0.�i /

and define the corresponding weights as

W�1i .ˇ/ D b00.�i /Œg
0.�i /�

2

The Gamerman algorithm is summarized as follows:

1. Start with ˇ.0/ and t D 1.

2. Sample ˇ� from the proposal density N.m.t/;C.t//, where

m.t/
D f��1ˇ CX0W.ˇ.t�1//Xg�1f��1ˇ

Ň CX0W.ˇ.t�1// Qy.ˇ.t�1//g

C.t/ D f��1ˇ CX0W.ˇ.t�1//Xg�1

3. Accept ˇ� with probability

˛.ˇ.t�1/;ˇ
�/ D minŒ1;

p.ˇ�jy/q.ˇ�;ˇ.t�1//
p.ˇ.t�1/jy/q.ˇ.t�1/;ˇ�/

�

where p.ˇjy/ is the posterior density and q.ˇ�;ˇ.t�1// and q.ˇ.t�1/;ˇ�/ are the transitional prob-
abilities that are based on the proposal density N.m.:/;C.://. More specifically, q.ˇ�;ˇ.t�1// is an
N.m�;C�/ density that is evaluated at ˇ.t�1/, whereas m� and C� have the same expression as m.t/

and C.t/ but depend on ˇ� instead of ˇ.t�1/. If ˇ� is not accepted, the chain stays with ˇ.t�1/.

4. Set t D t C 1 and return to step 1.

PROC BGLIMM uses this algorithm to draw samples for both the fixed-effects parameters ˇ and the random-
effects parameters 
: the GLMM simplifies to a GLM when 
 is conditioned on; similarly, for the ith cluster,
the model for 
i is simplified to a GLM when ˇ are treated as known and conditioned on.

For the random-effects 
i block, the same Metropolis-Hastings sampling with the least squares proposal can
apply. The conditional posterior is

p.
i jy;ˇ;G/ / exp f
yi�i � b.�i /

�i
�
1

2

 0iG

�1
ig

The transformed response is now Qyi .

.t�1/
i /, and the proposal density is N.m.t/

i ;C
.t/
i /, where

m.t/
i D fG�1 C Z0W.


.t�1/
i /Zg�1Z0W.


.t�1/
i /fQy.
.t�1/i / �Xiˇg

C.t/ D fG�1 C Z0W.

.t�1/
i /Xig�1
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Hamiltonian Monte Carlo Sampler

The Hamiltonian Monte Carlo (HMC) algorithm, also known as the hybrid Monte Carlo algorithm, is a
version of the Metropolis algorithm that uses gradient information and auxiliary momentum variables to draw
samples from the posterior distribution (Neal 2011). The algorithm uses Hamiltonian dynamics to enable
distant proposals in the Metropolis algorithm, making it efficient in many scenarios. The HMC algorithm is
applicable only to continuous parameters.

HMC translates the target density function to a potential energy function and adds an auxiliary momentum
variable r for each model parameter � . The resulting joint density has the form

p.�; r/ / p.�/ exp
�
�
1

2
r0r
�

where p.�/ is the posterior of the parameters � (up to a normalizing constant). HMC draws from the joint
space of .�; r/, discards r, and retains � as samples from p.�/. The algorithm uses the idea of Hamiltonian
dynamics in preserving the total energy of a physical system, in which � is part of the potential energy
function and r is part of the kinetic energy (velocity). As the velocity changes, the potential energy changes
accordingly, leading to the movements in the parameter space.

At each iteration, the HMC algorithm first generates the momentum variables r, usually from standard normal
distributions, that are independent of � . Then the algorithm follows with a Metropolis update that includes
many steps along a trajectory while maintaining the total energy of the system. One of the most common
approaches in moving along this trajectory is the leapfrog method, which involves L steps with a step size �,

rtC�=2 D rt C .�=2/5� logp.� t /

� tC� D � t C �rtC�=2

rtC� D rtC�=2 C .�=2/5� logp.� tC�/

where 5� logp.�/ is the gradient of the log posterior with respect to � . After L steps, the proposed state
.��; r�/ is accepted as the next state of the Markov chain with probability minf1; p.��; r�/=p.�; r/g.

Although HMC can lead to rapid convergence, it also heavily relies on two requirements: the gradient
calculation of the logarithm of the posterior density and carefully selected tuning parameters, in step size �
and number of steps L. Step sizes that are too large or too small can lead to acceptance rates that are too low
or too high, both of which affect the convergence of the Markov chain. A large L leads to a large trajectory
length (� �L), which can move the parameters back to their original positions. A small L limits the movement
of the chain.

An example of an adaptive HMC algorithm with automatic tuning of � and L is the No-U-Turn Sampler
(NUTS; Hoffman and Gelman 2014). The NUTS algorithm uses a doubling process to build a binary tree
whose leaf nodes correspond to the states of the parameters and momentum variables. The initial tree has
a single node with no heights (j D 0). The doubling process expands the tree to either the left or right in
a binary fashion, and in each direction, the algorithm takes 2j leapfrog steps of size �. Obviously, as the
height of the tree (j) increases, the computational cost increases dramatically. The tree expands until one
sampling trajectory makes a U-turn and starts to revisit parameter space that has been already explored.
The NUTS algorithm tunes � so that the actual acceptance rate during the doubling process is close to a
predetermined target acceptance probability ı (usually set to 0.6 or higher). When the tuning stage ends, the
NUTS algorithm proceeds to the main sampling stage and starts to draw posterior samples that have a fixed �
value. Increasing the targeted acceptance probability ı can often improve mixing, but it can also slow down
the process significantly. For more information about the NUTS algorithm and its efficiency, see Hoffman
and Gelman (2014).
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Slice Sampler

The slice sampling algorithm (Neal 2003) is a general algorithm that you can use to sample parameters from
their target distribution. The requirement of applying the slice sampler is the ability to evaluate the objective
function (the unnormalized conditional distribution in a Gibbs step, for example) at a given parameter value.
In theory, you can draw a random number from any given distribution as long as you can first obtain a
random number uniformly under the curve of that distribution. Treat the area under the curve of p.�/ as
a two-dimensional space that is defined by the � axis and the Y axis; the latter is the axis for the density
function. You uniformly draw a two-dimensional vector .�i ; yi / in this area, ignore the yi , and keep the �i .
The �i ’s are distributed according to the density function.

To solve the problem of sampling uniformly under the curve, Neal (2003) proposed the idea of slices (hence
the name of the sampler), which can be explained as follows:

1. Start the algorithm at �0.

2. Calculate the objective function p.�0/, and draw a line between y D 0 and y D p.�0/, which defines
a vertical slice. You draw a uniform number, y1, on this slice, between 0 and p.�0/.

3. Draw a horizontal line at y1, and find the two points where the line intercepts with the curve, L1 and
R1. These two points define a horizontal slice. Draw a uniform number, x1, on this slice, between L1
and R1.

4. Repeat steps 2 and 3 many times.

The challenging part of the algorithm is finding the horizontal slice .Li ; Ri / at each iteration. The closed-
form expressions of p�1L .yi / and p�1R .yi / are virtually impossible to obtain analytically in most problems.
Neal (2003) proved that although exact solutions would be ideal, devising a search algorithm that finds
portions of this horizontal slice is sufficient for the sampler to work. The search algorithm applies a rejection
method to perform regional expansion and contraction, when needed, until the obtained sample is within the
slice.

The sampler is implemented as the default algorithm in the BGLIMM procedure to draw the parameters in
the G matrix and the R matrix, when conjugate sampling is unavailable.

Prior Distributions
A GLMM model contains various types of parameters: the coefficients for the fixed effects that are specified
in the MODEL statement; the coefficients for the random effects that are specified in the RANDOM statement;
and the parameters for the covariance matrices, including both the G-side and R-side covariance matrices.

Prior for the Fixed-Effects Coefficients

In GLMMs, flat priors on the fixed-effects coefficients (ˇ) are considered to be noninformative. The flat prior
assigns equal likelihood for all possible values of the parameter, �.ˇ/ / 1. This is the default prior for the
fixed-effects coefficients in PROC BGLIMM.

In addition to the flat prior, a normal prior that has very large variance is also considered to be noninformative
or weakly informative. The following statement specifies such a prior:
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model y = x / cprior=normal(var=1e4);

This normal prior is noninformative because its variance value is sufficiently larger than the posterior variances
of all the ˇ parameters.

On the other hand, you can use an informative prior by making the variance small in the normal distribution.
If you want to have a specific mean and covariance for the normal prior, you can provide a SAS data set that
contains the mean and covariance information of the normal prior through the INPUT=SAS-data-set in the
CPRIOR= option,

model y = x / cprior=normal(input=MyPrior);

where MyPrior is the name of a SAS data set.

Prior for the Random-Effects Coefficients

The random-effects coefficients 
 are assumed to have the normal prior


 � Normal.0;G/

where 
 D .
1;
2; : : : ;
n/
T and G is a block diagonal matrix where each block is Gi . For a specific

subject i, the random-effects coefficients 
i are normally distributed with mean zero and the covariance
matrix Gi . When the dimension is the same, Gi D Gj for any i and j.

You use the TYPE= option in the RANDOM statement to specify the types of the G matrix.

Prior for the G-Side Covariance

PROC BGLIMM supports the following prior distributions of G:

� Inverse Wishart distribution: �.Gi / D IW.a,bI/. You can specify this distribution as follows:

random x / sub=Id covprior=iwishart(df=a, scale=b);

The inverse Wishart distribution is a generalization of the inverse gamma distribution; when the
dimension is 1, the inverse Wishart distribution is equivalent to an inverse gamma distribution. The
inverse Wishart prior is frequently used in Bayesian analysis, in part because it is a conjugate prior
for a normal covariance, which leads to efficient sampling. An inverse Wishart prior that has small
degrees of freedom (interpreted as prior sample size) and small diagonal values of the scale matrix is
considered to be weakly informative.

The inverse Wishart prior applies to the covariance types UN, UN(1), VC, and TOEP(1). It is the
default prior for the UN type.

� Inverse gamma distribution: �.�2g/ D IG.a,b/. You can specify this distribution as follows:

random x / sub=Id covprior=igamma(shape=a, scale=b);

The inverse gamma prior applies to the diagonal variance terms of a covariance that is of type UN,
UN(1), VC, or TOEP(1). It is the default prior for the covariance types UN(1), VC, and TOEP(1).

� Uniform distribution: �.�
 / D 1
Upper�Lower . You can specify this distribution as follows:
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random x / sub=Id covprior=uniform(lower=, upper=);

The uniform prior is on the standard deviation, not the variance, terms of G. This prior applies to the
diagonal standard deviation terms of a covariance that is of type UN, UN(1), VC, or TOEP(1).

� Half-Cauchy distribution: �.�2
 / D half-Cauchy.a/. You can specify this distribution as follows:

random x / sub=Id covprior=halfcauchy(scale=a);

The half-Cauchy prior is a truncated prior whose lower bound is equal to zero. The prior applies to the
variance terms of a covariance that is of type UN, UN(1), VC, or TOEP(1).

The half-Cauchy prior is a special case of the conditionally conjugate folded-noncentral-t distribution.
The right tail of the half-Cauchy distribution is thick and decays slowly. Large a translates to weakly
informative, a goes to infinity, and the half-Cauchy distribution becomes a uniform distribution.

� Half-normal distribution: �.�2
 / D half-normal.0; �2 D a/. You can specify this distribution as
follows:

random x / sub=Id covprior=halfnormal(var=a);

The half-normal prior is a truncated prior whose lower bound is equal to zero. The prior applies to the
variance terms of a covariance that is of type UN, UN(1), VC, or TOEP(1).

� Scaled inverse Wishart distribution. You can specify this distribution as follows:

random x / sub=Id covprior=siwishart(df=a, scale=b, var=c);

This is a generalization of the inverse Wishart prior. The distribution decomposes the Gi matrix into
variance and correlation components and specifies separate priors for each component (O’Malley and
Zaslavsky 2008). Define � D diag.ı/, where ı D .ı1; ı2; : : : ; ın/ and ıi > 0; let ˆ be a positive
definite matrix; and write Gi D �ˆ�,

�.�/ D IW.a; bI/; �.log.ıi // D normal.0; �2ı /

where the hyperparameters a and b are the degrees of freedom and scale parameters, respectively, of
the inverse Wishart prior; �2

ı
D c is the variance of the normal prior; and the default variance is 1. You

can choose values for the hyperparameters a and b, and the default is the dimension of the Gi matrix
plus 3 for both a and b.

Although ˆ determines the correlations, it is not constrained to be a correlation matrix, so the model
is overparameterized. The associated correlation matrix is�.ˆ/ D diag.ˆ/�

1
2ˆdiag.ˆ/�

1
2 , where

diag.ˆ/ retains the diagonal elements of ˆ but has zeros elsewhere.

Like the inverse Wishart prior, the scaled inverse Wishart prior applies to types UN, UN(1), VC, and
TOEP(1).

For the covariance types AR(1) and ARMA(1,1), by default, a conjugate inverse gamma prior
IG.2:001; 0:001/ is applied to the scale parameter of the G covariance matrix, and the flat prior is ap-
plied to other parameters of the G covariance matrix. If you specify the NOCONJCOV option in the
RANDOM statement, the flat prior is applied to all parameters of the G covariance matrix. For all other
covariance types, the flat prior is applied to all parameters of the G covariance matrix.
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Prior for the Scale Parameter

In models that have a scale parameter (see Table 31.11), you can specify the following prior distribution:

� Inverse gamma distribution: �.�/ D IG.a,b/. You can specify this distribution as follows:

model y = x / scaleprior = igamma(shape=a, scale=b);

The inverse gamma prior applies to all distributions that have a scale parameter.

� Gamma distribution: �.�/ D gamma.a,b/. You can specify this distribution as follows:

model y = x / scaleprior = gamma(shape=a, iscale=b);

The gamma prior applies to the gamma, inverse gamma, and negative binomial distributions. It does
not apply to the normal likelihood function with an identity link.

� Improper prior: �.�/ / 1=�. You can specify this distribution as follows:

model y = x / scaleprior = improper;

The improper prior applies to the gamma, inverse gamma, and negative binomial distributions. It does
not apply to the normal likelihood function with an identity link.

Prior for the R-Side Covariance

You can specify one of the following prior distributions for the R covariance matrix: inverse gamma
distribution, inverse Wishart distribution, half-Cauchy distribution, half-normal distribution, scaled inverse
Wishart distribution, and uniform distribution. These distributions are the same as what you can specify for
the G covariance matrix. The inverse Wishart distribution is the default prior for the UN type, and the inverse
gamma distribution is the default prior for types UN(1), VC, and TOEP(1).

For the covariance types AR(1) and ARMA(1,1), by default, a conjugate inverse gamma prior
IG.2:001; 0:001/ is applied to the scale parameter of the R covariance matrix, and the flat prior is ap-
plied to other parameters of the R covariance matrix. If you specify the NOCONJCOV option in the
REPEATED statement, the flat prior is applied to all parameters of the R covariance matrix. For all other
covariance types, the flat prior is applied to all parameters of the R covariance matrix.
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Treatment of Subjects in the RANDOM Statement
PROC BGLIMM supports the syntax of specifying random effects without specifying a SUBJECT= option,
but this is different from specifying an intercept random effect and using the same random effects in the
SUBJECT= option.

For example, suppose you have a nested effect A(B), where both A and B are categorical variables. You can
specify the following statement:

random A(B);

In the traditional mixed modeling procedures, such as PROC MIXED and PROC GLIMMIX, this specification
is the same as

random int / subject = A(B);

But this is not the case in PROC BGLIMM. The difference is as follows:

� When you specify the SUBJECT= option in PROC BGLIMM, the procedure fits a normal prior (with
default TYPE=VC),

�.
j / � normal.0; �2
 /; j D 1; : : : ; J

where 
j is the intercept from cluster j and J is the total number of unique clusters in effect A(B). This
is the expected way of specifying a prior on intercept random effects.

� When you omit the SUBJECT= option, PROC BGLIMM assumes that there is only one cluster (instead
of J clusters). This cluster, which represents the entire data set, has nested (categorical) effects of
A(B).

This is equivalent to treating A(B) as categorical fixed effects in the regression model (in the MODEL
statement):

model resp = A(B);

The exception is that, instead of a noninformative or flat prior on the regression coefficients, a
hierarchical normal prior is assumed (again, following the specification of the TYPE= covariance),

ˇj � normal.0; �2ˇ /; j D 1; : : : ; K

where ˇj (used here instead of 
j to emphasize the different treatment in modeling by PROC
BGLIMM) is a categorical coefficient for the jth level and K is less or equal to J, depending on
the rank of the regression model.

In other words, after you specify a random effect without using the SUBJECT= option, the effect
becomes equivalent to a fixed effect (but with a shrinkage prior). The number of estimable parameters
from that effect depends on the rank of the model, so you will often see that some of the cluster
parameters are inestimable (hence, their value is displayed as zero).
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In PROC MIXED and PROC GLIMMIX, the two specifications lead to identical numerical estimates,
because neither procedure requires the design matrix (of the regression model) to be nonsingular. But PROC
BGLIMM has this requirement, and this results in different posterior estimates.

If you want to specify a random-effects model in the strict Bayesian sense, use the SUBJECT= option in the
RANDOM statement.

Initial Values of the Markov Chains
A GLMM model has various types of parameters: fixed-effects parameters (in the MODEL statement),
random-effects parameters (in the RANDOM statement), parameters in the covariance matrix, and missing
data variables in the response.

For the fixed-effects parameters, PROC BGLIMM generates initial values that are based on the optimization
of the posterior density functions. To assign initial values to the fixed-effects parameters, you can use the
INIT= option in the MODEL statement. If there are multiple fixed effects, you can provide a list of numbers,
where the length of the list is the same as the dimension of the fixed effects. Each number is then given to all
corresponding fixed-effects parameters in order.

For all the individual random-effects parameters, PROC BGLIMM sets the initial values to zero.

The initial values for either the G or R matrix are set to the identity matrix.

For missing data in the response, PROC BGLIMM uses the sample average of the nonmissing values as the
initial value. The procedure requires some response value to be nonmissing—if all values of a particular
variable are missing, PROC BGLIMM issues an error and stops.

Missing Data
When you have missing data, you can use the MISSING= option in the PROC BGLIMM statement as follows
to specify how you want to handle the missing response values:2

� If you specify MISSING=CC (CC stands for complete cases), PROC BGLIMM discards all obser-
vations that have missing or partial missing values (for example, in a repeated measures model)
before carrying out the simulation. This is equivalent to assuming that the missing values are missing
completely at random (MCAR).

� If you specify MISSING=CCMODELY, PROC BGLIMM treats missing response values as parameters
and includes the sampling of the missing data as part of the simulation. The procedure discards all
observations that have missing covariates. This is equivalent to assuming that the missing values are
missing at random (MAR).

Different types of missing data were first defined by Rubin (1976). For a comprehensive treatment of missing
data analysis, see Little and Rubin (2002). PROC BGLIMM does not model the missing not at random
(MNAR) type of missing data.

2A missing value is usually, although not necessarily, represented by a single period (.) in the input data set.



Multinomial Models F 1351

Multinomial Models
The BGLIMM procedure fits two kinds of models to multinomial data: one that has a cumulative link that
applies to ordinal data, and one that has a generalized logit link that applies to nominal data.

PROC BGLIMM models the proportional-odds cumulative probabilities for ordinal data. This model uses
cumulative probabilities up to a threshold, thereby making the whole range of ordinal categories binary at that
threshold. If the nominal response has J categories and the ordering is natural, the associated probabilities
are �1; �2; : : : ; �J , and a cumulative probability of a response less than equal to j is

log
�

Pr.Y � j /
Pr.Y > j /

�
D log

�
Pr.Y � j /

1 � Pr.Y � j /

�
D log

�
�1 C �2 C � � � C �j

�jC1 C � � � C �J

�
This describes the log odds of two cumulative probabilities: a less-than type and a greater-than type. This
measures how likely the response is to be in category j or below, or how likely it is to be in a category higher
than j.

The linear predictor depends on the response category only through the intercepts (cutoffs) ˛1; : : : ; ˛J�1,

�1 D ˛1 C x0ˇ C z0

�2 D ˛2 C x0ˇ C z0

:::

�J�1 D ˛J�1 C x0ˇ C z0

�J D 0;

where ˛1 � ˛2 � � � � ˛J�1 to ensure the cumulative property and .ˇ;
/ remains the same across all levels
of the response variable. The cumulative logits are formed as

log
�

Pr.Y � j /
Pr.Y > j /

�
D �j D ˛j C x0ˇ C z0
 D ˛j C Q�

The odds ratio that compares two conditions represented by the linear predictors �j1 and �j0 is then

 
�
�j1; �j0

�
D exp

�
�j1 � �j0

�
D exp . Q�1 � Q�0/

and is independent of category. You might think of this as a set of parallel lines (or hyperplanes) with different
intercepts. The proportional-odds condition forces the lines that correspond to each cumulative logit to be
parallel.

In the generalized logit model, you model baseline-category logits. By default, the BGLIMM procedure
chooses the last category as the baseline category or reference, but you can use another category as the
reference. If the nominal response has J categories, both the fixed effects and the random effects in the linear
predictor depend on the response category:

�1 D x0ˇ1 C z0
1
�2 D x0ˇ2 C z0
2
:::

�J�1 D x0ˇJ�1 C z0
J�1
�J D 0
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The last category defaults to zero in order to ensure the estimability property. The baseline-category logit for
category j is

log.�j =�J / D �j D x0ˇj C z0
j

and

�j D
exp.�j /PJ
kD1 exp.�k/

Suppose that the two conditions to be compared are identified using subscripts 1 and 0. The log odds ratio of
outcome j versus J for the two conditions is then

log
˚
 
�
�j1; �j0

�	
D log

�
�j1=�J1

�j0=�J0

�
D log

�
expf�j1g
expf�j0g

�
D �j1 � �j0

Note that the log odds ratios are again differences on the scale of the linear predictor, but they depend on the
response category. The BGLIMM procedure determines the estimable functions whose differences represent
log odds ratios, but it produces separate estimates for each nonreference response category.

Autocall Macros for Postprocessing
Although PROC BGLIMM provides a number of convergence diagnostic tests and posterior summary
statistics, it performs the calculations only for the default tests and statistics or only if you specify the
necessary options. If you want to analyze the posterior draws of unmonitored parameters or functions of
the parameters that are calculated in later DATA step calls, you can use the autocall macros that are listed in
Table 31.13.

Table 31.13 Postprocessing Autocall Macros

Macro Description

%ESS Effective sample sizes
%GEWEKE* Geweke diagnostic
%HEIDEL* Heidelberger-Welch diagnostic
%MCSE Monte Carlo standard errors
%POSTACF Autocorrelation
%POSTCOR Correlation matrix
%POSTCOV Covariance matrix
%POSTINT Equal-tail and HPD intervals
%POSTSUM Mean, standard deviation, and various quantiles
%RAFTERY Raftery diagnostic
%SUMINT Mean, standard deviation, and HPD interval
%TADPLOT Trace plot, autocorrelation plot, and density plot
*The %GEWEKE and %HEIDEL macros use a different optimization routine
than PROC BGLIMM uses. As a result, there might be numerical differences in
some cases, especially when the sample size is small.
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Table 31.14 lists options that are shared by all postprocessing autocall macros. For macro-specific options,
see Table 31.15.

Table 31.14 Shared Options

Option Description

DATA=SAS-data-set Names the input data set that contains posterior samples
OUT=SAS-data-set Specifies a name for the output SAS data set to contain the results
PRINT=YES | NO Displays the results (the default is YES)
VAR=variable-list Specifies the variables on which to perform the calculation

Suppose that the data set that contains posterior samples is called Post and the variables of interest are defined
in the macro variable &PARMS. The following statement calls the %ESS macro and calculates the effective
sample sizes for each variable:

%ESS(data=Post, var=Alpha Beta U_1-U_17)

By default, the ESS estimates are displayed. You can choose not to display the result and instead use the
following statement to save the output to a data set:

%ESS(data=Post, var=&parms, print=NO, out=eout)

Some of the macros can take additional options, which are listed in Table 31.15.

Table 31.15 Macro-Specific Options

Macro Option Description

%ESS AUTOCORLAG=numeric Specifies the maximum number of autocorrelation lags used in
computing the ESS estimates. By default,
AUTOCORLAG=MIN(500, NOBS/4), where NOBS is the
sample size of the input data set.

HIST=YES | NO Displays a histogram of all ESS estimates. By default,
HIST=NO.

%GEWEKE FRAC1=numeric Specifies the earlier portion of the Markov chain used in the
test. By default, FRAC1=0.1.

FRAC2=numeric Specifies the latter portion of the Markov chain used in the test.
By default, FRAC2=0.5.

%HEIDEL SALPHA=numeric Specifies the ˛ level for the stationarity test. By default,
SALPHA=0.05.

HALPHA=numeric Specifies the ˛ level for the halfwidth test. By default,
HALPHA=0.05.

EPS=numeric Specifies a small positive number � such that if the halfwidth is
less than � times the sample mean of the remaining iterations,
the halfwidth test is passed. By default, EPS=0.1.



1354 F Chapter 31: The BGLIMM Procedure

Table 31.15 continued

Option Description

%MCSE AUTOCORLAG=numeric Specifies the maximum number of autocorrelation lags used in
computing the Monte Carlo standard error estimates. By
default, AUTOCORLAG=MIN(500, NOBS/4), where NOBS is
the sample size of the input data set.

%POSTACF LAGS=%str(numeric-list) Specifies which autocorrelation lags to calculate. The default
values are 1, 5, 10, and 50.

%POSTINT ALPHA=value Specifies the ˛ level .0 < ˛ < 1/ for the interval estimates. By
default, ALPHA=0.05.

%RAFTERY Q=numeric Specifies the order of the quantile of interest. By default,
Q=0.025.

R=numeric Specifies the margin of error for measuring the accuracy of
estimation of the quantile. By default, R=0.005.

EPS=numeric Specifies the tolerance level for the stationary test. By default,
EPS=0.001.

For example, the following statement calculates and displays autocorrelation at lags 1, 6, 11, 50, and 100.
Note that the lags in the numeric-list must be separated by commas.

%POSTACF(data=Post, var=&parms, lags=%str(1 to 15 by 5, 50, 100))

Regenerating Diagnostics Plots
By default, PROC BGLIMM generates three plots: the trace plot, the autocorrelation plot, and the kernel
density plot. Unless ODS Graphics is enabled before the procedure is called, it is hard to generate the same
graph afterward. Directly using the Stat.Bglimm.Graphics.TraceAutocorrDensity template is not
feasible. The easiest way to regenerate the same graph is to use the %TADPLOT autocall macro. This macro
requires you to specify an input data set (which is the output data set from a previous PROC BGLIMM call)
and a list of variables that you want to plot.

Suppose that the output data set Postsamp contains posterior draws for the regression coefficients of Mode1,
Mode2, and Mode3. If you want to examine these parameters graphically, you can use the following statement
to regenerate the graphs:

%TADPLOT(data=Postsamp, var=Mode1 Mode2 Mode3)
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Displayed Output
The following sections describe the output that the BGLIMM procedure produces by default. The output is
organized into various tables, which are discussed in the order of their appearance.

Model- and Data-Related ODS Tables

Model Information
The “Model Information” table displays basic information about the model, such as the response variable,
frequency variable, link function, and model category that the BGLIMM procedure determines on the basis
of your input and options, sampling algorithm, burn-in size, simulation size, thinning, and random number
seed. This table also displays the distribution of the data that PROC BGLIMM assumes. For information
about the supported response distributions, see the description of the DIST= option.

Number of Observations
The “Number of Observations” table displays the number of observations that are read from the input data set
and the number of observations that are used in the analysis. If the events/trials syntax is used, the number of
events and trials is also displayed.

Response Profile
The “Response Profile” table displays the ordered values from which the BGLIMM procedure determines the
probability that is modeled as an event in binary models. For each response category level, the frequency
that is used in the analysis is reported. You can determine the ordering of the response values by specifying
response-options in the MODEL statement. For binary models, the note that follows this table indicates
which outcome is modeled as the event in binary models and which value serves as the reference category.

The “Response Profile” table is not produced for binomial (events/trials) data. You can find information
about the number of events and trials in the “Number of Observations” table.

Class Level Information
The “Class Level Information” table lists the levels of every variable that you specify in the CLASS statement.
You should check this information to make sure that the data are correct. You can adjust the order of the
CLASS variable levels by specifying the ORDER= option in the CLASS statement. You can suppress this
table completely or partially by specifying the NOCLPRINT= option in the PROC BGLIMM statement.

Random Effect Information
The “Random Effect Information” table lists some basic information, such as the subject name, number of
subject levels, list of subject levels, and the covariance type, of a RANDOM statement. You should check
this table to make sure that the random effects are specified correctly.

Estimate Coefficients
The “Coefficients for label” table, where label is the label that you specify in the ESTIMATE statement,
displays the L matrix coefficients.

Least Squares Means Coefficients
The “Coefficients for effect Least Squares Means” table, where effect is the effect that you specify in the
LSMEANS statement, displays the L matrix coefficients.
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Sampling-Related ODS Tables

Parameters Initial Value
The “Parameters Initial” table (ODS table name ParametersInit) shows the initial value of each fixed regression
coefficient. This table is not displayed by default. You can display it by specifying the INIT=PINIT option in
the MODEL statement.

Constant Priors for Fixed Effects
The “Constant Priors for Fixed Effects” table (ODS table name ConstantCoeffPrior) shows the information
for the constant prior for the fixed-effects coefficients. The table is displayed by default for a model that
contains fixed effects.

Independent Normal Priors for Fixed Effects
The “Independent Normal Priors for Fixed Effects” table (ODS table name IndepNormalCoeffPrior) shows
the information for the independent normal prior for the fixed-effects coefficients. The table is displayed
when you specify that fixed effects have an independent normal prior.

Normal Priors for Fixed Effects
The “Normal Priors for Fixed Effects” table (ODS table name NormalCoeffPrior) shows the information for
the normal prior for the fixed-effects coefficients. The table is displayed when you specify that fixed effects
have a normal prior and are not independent.

Priors for Scale and Covariance Parameters
The “Priors for Scale and Covariance Parameters” table (ODS table name ScaleCovPrior) shows the prior
distributions for the scale and covariance parameters. The table is displayed by default for a model that
contains any scale and covariance parameters.

ODS Tables Related to Posterior Statistics

PROC BGLIMM calculates some essential posterior statistics and outputs them to a number of ODS tables.
Some of the ODS tables are produced by default, and you can request others by specifying an option in
the PROC BGLIMM statement. For more information about the calculations, see the section “Summary
Statistics” on page 175 in Chapter 8, “Introduction to Bayesian Analysis Procedures.”

Summary and Interval Statistics
The “Posterior Summaries and Intervals” table (ODS table name PostSumInt) contains basic summary and
interval statistics for each parameter. The table lists the number of posterior samples, the posterior mean
and standard deviation estimates, and the highest posterior density (HPD) interval estimates. This table is
displayed by default.

Summary Statistics
The “Posterior Summaries” table (ODS table name PostSummaries) contains basic statistics for each
parameter. The table lists the number of posterior samples, the posterior mean and standard deviation
estimates, and the percentile estimates. This table is not displayed by default. You can request it by specifying
the STATISTICS=SUM option in the PROC BGLIMM statement.
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Correlation Matrix
The “Posterior Correlation Matrix” table (ODS table name Corr) contains the posterior correlation of model
parameters. This table is not displayed by default. You can display it by specifying the STATISTICS=CORR
option in the PROC BGLIMM statement.

Covariance Matrix
The “Posterior Covariance Matrix” table (ODS table name Cov) contains the posterior covariance of model
parameters. This table is not displayed by default. You can display it by specifying the STATISTICS=COV
option in the PROC BGLIMM statement.

Deviance Information Criterion
The “Deviance Information Criterion” table (ODS table name DIC) contains the deviance information
criterion (DIC) of the model. This table is not displayed by default. You can display it by specifying the
DIC option in the PROC BGLIMM statement. For more information about the calculations, see the section
“Deviance Information Criterion (DIC)” on page 177 in Chapter 8, “Introduction to Bayesian Analysis
Procedures.”

Interval Statistics
The “Posterior Intervals” table (ODS table name PostIntervals) contains the equal-tail and highest posterior
density (HPD) interval estimates for each parameter. The default ˛ value is 0.05, and you can change it to
other levels by using the STATISTICS= option in the PROC BGLIMM statement. This table is not displayed
by default. You can display it by specifying the STATISTICS=INT option.

Estimated G Matrix
The “Estimated G Matrix” table (ODS table name G) contains the estimated G matrix. This table is not
displayed by default. You can display it by specifying the G option in a RANDOM statement.

Estimated G Correlation Matrix
The “Estimated G Correlation Matrix” table (ODS table name GCorr) contains the correlation matrix that
corresponds to the estimated G matrix. This table is not displayed by default. You can display it by specifying
the GCORR option in a RANDOM statement.

Estimated R Matrix
The “Estimated R Matrix” table (ODS table name R) contains the R matrix for the REPEATED statement.
This table is not displayed by default. You can request it by specifying the R option in a REPEATED
statement.

Estimated R Correlation Matrix
The “Estimated R Correlation Matrix” table (ODS table name RCorr) contains the correlation matrix that
corresponds to the estimated R matrix. This table is not displayed by default. You can display it by specifying
the RCORR option in the REPEATED statement.

Results from ESTIMATE Statements
The “Results from ESTIMATE statements” table (ODS table name Estimates) contains basic summary and
interval statistics for each linear combination of the parameters. The table lists the posterior mean and
standard deviation estimates, as well as the highest posterior density (HPD) interval estimates. This table is
displayed by default when you specify an ESTIMATE statement.
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Least Squares Means
The “Least Squares Means” table (ODS table name LSMeans) contains basic summary and interval statistics
for least squares means. The table lists the posterior mean and standard deviation estimates, as well as the
highest posterior density (HPD) interval estimates. This table is displayed by default when you specify an
LSMEANS statement.

Differences of Least Squares Means
The “effect Diffs” table (ODS table name Diffs), where effect is the effect that you specify in the LSMEANS
statement, contains basic summary and interval statistics for differences of LS-means. The table lists the
posterior mean and standard deviation estimates, as well as the highest posterior density (HPD) interval
estimates. The table is displayed when you specify the DIFF option in the LSMEANS statement.

ODS Tables Related to Convergence Diagnostics

PROC BGLIMM provides convergence diagnostic tests that check for Markov chain convergence. It produces
a number of ODS tables that you can display and save individually. For information about calculations,
see the section “Statistical Diagnostic Tests” on page 166 in Chapter 8, “Introduction to Bayesian Analysis
Procedures.”

Autocorrelation
The “Autocorrelations” table (ODS table name AUTOCORR) contains the first-order autocorrelations of the
posterior samples for each parameter. The Parameter column states the name of the parameter. By default,
PROC BGLIMM displays lag 1, 5, 10, and 50 estimates of the autocorrelations. You can request different
autocorrelations by specifying the DIAGNOSTICS=AUTOCORR(LAGS=) option in the PROC BGLIMM
statement. This table is displayed by default.

Effective Sample Size
The “Effective Sample Sizes” table (ODS table name ESS) calculates the effective sample size of each
parameter. For more information, see the section “Effective Sample Size” on page 175 in Chapter 8,
“Introduction to Bayesian Analysis Procedures.” This table is displayed by default.

Monte Carlo Standard Errors
The “Monte Carlo Standard Errors” table (ODS table name MCSE) calculates the standard errors of the
posterior mean estimate. For more information, see the section “Standard Error of the Mean Estimate” on
page 176 in Chapter 8, “Introduction to Bayesian Analysis Procedures.” This table is not displayed by default.
You can display it by specifying the DIAGNOSTICS=MCSE option in the PROC BGLIMM statement.

Geweke Diagnostics
The “Geweke Diagnostics” table (ODS table name Geweke) lists the results of the Geweke diagnostic test.
For more information, see the section “Geweke Diagnostics” on page 169 in Chapter 8, “Introduction to
Bayesian Analysis Procedures.” This table is not displayed by default. You can display it by specifying the
DIAGNOSTICS=GEWEKE option in the PROC BGLIMM statement.

Heidelberger-Welch Diagnostics
The “Heidelberger-Welch Diagnostics” table (ODS table name Heidelberger) lists the results of the
Heidelberger-Welch diagnostic test. The test consists of two parts: a stationarity test and a halfwidth
test. For more information, see the section “Heidelberger and Welch Diagnostics” on page 170 in Chapter 8,
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“Introduction to Bayesian Analysis Procedures.” This table is not displayed by default. You can display it by
specifying the DIAGNOSTICS=HEIDEL option in the PROC BGLIMM statement.

Raftery-Lewis Diagnostics
The “Raftery-Lewis Diagnostics” table (ODS table name Raftery) lists the results of the Raftery-Lewis
diagnostic test. For more information, see the section “Raftery and Lewis Diagnostics” on page 172 in
Chapter 8, “Introduction to Bayesian Analysis Procedures.” This table is not displayed by default. You can
display it by specifying the DIAGNOSTICS=RAFTERY option in the PROC BGLIMM statement.

Watanabe-Akaike Information Criterion
The “Watanabe-Akaike Information Criterion” table (ODS table name WAIC) contains the Watanabe-Akaike
information criterion (WAIC) of the model. This table is not displayed by default. You can display it by
specifying the WAIC option in the PROC BGLIMM statement.

ODS Table Names
Each table that the BGLIMM procedure creates has a name that is associated with it. You must use this name
to refer to the table when you use ODS statements. These names are listed in Table 31.16.

Table 31.16 ODS Tables Produced by PROC BGLIMM

Table Name Description Statement or Option

AutoCorr Autocorrelation statistics for each
parameter

DIAG=AUTOCORR

ClassLevels Class level information Default
Coef L matrix coefficients E option in ESTIMATE or

LSMEANS
CoeffPrior Constant prior information for fixed

effects
Default

CoeffPrior Independent normal prior
information for fixed effects

COEFFPRIOR=NORMAL(VAR=c)

CoeffPrior Normal prior information for fixed
effects

COEFFPRIOR=NORMAL(INPUT=SAS-
data-set)

Corr Correlation matrix of the posterior
samples

STATS=CORR

Cov Covariance matrix of the posterior
samples

STATS=COV

DIC Deviance information criterion DIC
Diffs Differences of LS-means DIFF option in LSMEANS
ESS Effective sample size for each

parameter
Default

Estimates Results from ESTIMATE statements ESTIMATE
G Estimated G matrix G
GCORR Correlation matrix of the estimated

G matrix
GCORR
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Table 31.16 continued

Table Name Description Statement or Option

Geweke Geweke diagnostics for each
parameter

DIAG=GEWEKE

Heidelberger Heidelberger-Welch diagnostics for
each parameter

DIAG=HEIDEL

LSMeans LS-means LSMEANS
MCSE Monte Carlo standard error for each

parameter
DIAG=MCSE

ModelInfo Model information Default
NObs Number of observations Default
ParametersInit Parameter initial values INIT=PINIT
PostIntervals Equal-tail and HPD intervals for

each parameter
STATS=INT

PostSumInt Posterior statistics for each
parameter, including sample size,
mean, standard deviation, and HPD
intervals

Default

PostSummaries Posterior statistics for each
parameter, including sample size,
mean, standard deviation, and
percentiles

STATS=SUM

R Estimated R matrix R
Raftery Raftery-Lewis diagnostics for each

parameter
DIAG=RAFTERY

REInfo Random Effect Information Default
RCORR Correlation matrix of the estimated

R matrix
RCORR

ResponseProfile Frequency counts for response
categories

Default output in models with binary
or multinomial responses

ScaleCovPrior Priors for scale and covariance
parameters

Default

WAIC Watanabe-Akaike information
criterion

WAIC
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ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 24, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPH-
ICS ON statement). For more information about enabling and disabling ODS Graphics, see the section
“Enabling and Disabling ODS Graphics” on page 687 in Chapter 24, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 686 in Chapter 24,
“Statistical Graphics Using ODS.”

When ODS Graphics is enabled, the BGLIMM procedure by default produces plots of the partial predictions
for each spline term in the model. Use the PLOTS option in the PROC BGLIMM statement to control aspects
of these plots.

PROC BGLIMM assigns a name to each graph that it creates by using ODS. You can use these names to
refer to the graphs when using ODS. The names are listed in Table 31.17.

You can refer by name to every graph that is produced through ODS Graphics. The names of the graphs that
PROC BGLIMM generates are listed in Table 31.17.

Table 31.17 Graphs Produced by PROC BGLIMM

ODS Graph Name Plot Description Option

ADPanel Autocorrelation function
and density panel

PLOTS=(AUTOCORR DENSITY)

AutocorrPanel Autocorrelation function
panel

PLOTS=AUTOCORR

AutocorrPlot Autocorrelation function
plot

PLOTS(UNPACK)=AUTOCORR

DensityPanel Density panel PLOTS=DENSITY
DensityPlot Density plot PLOTS(UNPACK)=DENSITY
TADPanel Trace, density, and

autocorrelation function
panel

PLOTS=(TRACE AUTOCORR DENSITY)

TAPanel Trace and autocorrelation
function panel

PLOTS=(TRACE AUTOCORR)

TDPanel Trace and density panel PLOTS=(TRACE DENSITY)
TracePanel Trace panel PLOTS=TRACE
TracePlot Trace plot PLOTS(UNPACK)=TRACE
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Examples: BGLIMM Procedure
The examples in this chapter are available in the GitHub repository located at https://github.com/
sassoftware/doc-supplement-statug.

Example 31.1: Normal Regression with Repeated Measurements
(View the complete code for this example (bglmmex1.sas) in the example repository.)

This example illustrates how to use PROC BGLIMM to fit a repeated measures model.

The data were collected by a pharmaceutical company that examined the effects of three drugs on the
respiratory capacity of patients with asthma. Treatments involved a standard drug (A), a test drug (C), and
a placebo (P). Patients received each treatment on different days. The forced expiratory volume (FEV) of
each patient was measured hourly for eight hours following treatment, and a baseline FEV was also recorded.
Analysis in this section is based on the scenario that each patient received all three treatments on different
visits. For more information about this data set (Fev1), see Littell et al. (2006, Chapter 5).

The following statements show the first few records of the Fev data set. Patient is the patient ID (total number
24), BaseVal is the baseline measurement, Drug is the drug type, Hour measures time (8 hours), and FEV is
the response variable.

data Fev;
input Patient Baseval Drug$ Hour FEV;
datalines;
201 2.46 a 1 2.68
201 2.46 a 2 2.76
201 2.46 a 3 2.50
201 2.46 a 4 2.30
201 2.46 a 5 2.14
201 2.46 a 6 2.40
201 2.46 a 7 2.33

... more lines ...

232 2.88 p 1 3.04
232 2.88 p 4 3.37
232 2.88 p 5 2.69
232 2.88 p 6 2.89

;

The data are unbalanced, meaning that some patients have missing measurements at certain time points. A
subset of patient profiles is plotted in Output 31.1.1.

https://github.com/sassoftware/doc-supplement-statug
https://github.com/sassoftware/doc-supplement-statug
https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/a-c/bglmmex1.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/
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Output 31.1.1 Profile Plots from Six Patients

There are a number of ways that you can fit this model to account for the patient effect as well as the time
(Hour) effect. For example, you can fit a random-effects model with three fixed effects (intercept, BaseVal,
and Drug) and two random intercepts—one patient-level and one hour-level. This is referred to as Model 1 in
this example.

Let Fevijk be the FEV value that is measured in the ith patient at jth hour who is in the (Drug = k) group,
where i D 1; : : : ; 24, j D 1; : : : ; 8, and k = {A, C, P}.

Fevijk D �ijk C 
patient;i C 
hour;j C �ijk

�ijk Dˇ0 C ˇ1 � basevalijk C ˇ2 � .drugij;kDA/C ˇ3 � .drugij;kDC /


patient;i � N.0; �g2
p
/ i D 1; : : : ; 24


hour;j � N.0; �g2
h
/ j D 1; : : : ; 8

�ijk � N.0; �
2
y /

The following statements fit a model that has two random intercepts—one patient-level and one hour-level:

proc bglimm data=Fev nmc=50000 nbi=2000 seed=44672057
outpost=Fev_mod1 ;

class Drug Patient Hour;
model FEV = BaseVal Drug;
random int / subject=Hour covprior=uniform(lower=0,upper=2);
random int / subject=Patient;

run;
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The MODEL statement specifies a BaseVal effect and two Drug effects (categorical variables), and the two
RANDOM statements add two random-intercept effects to the model. The prior for the shrinkage parameter
of the Hour effect is taken to be a uniform(0, 2) distribution. The prior for the shrinkage parameter of the
Patient effect is the default inverse gamma prior.

Output 31.1.2 show the posterior summary statistics of the fixed-effects parameters and the two random
effects. The Scale parameter is the residual variance, Random1 Var is the G-side variance for the Hour effect,
and Random2 Var is the G-side variance for the Patient effect.

Output 31.1.2 Posterior Summary Statistics from Model 1

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Intercept 50000 1.4844 0.3099 0.8861 2.0997

Baseval 50000 0.5008 0.1028 0.2993 0.7043

Drug a 50000 0.3237 0.0415 0.2427 0.4047

Drug c 50000 0.5245 0.0420 0.4423 0.6069

Drug p 0 . . . .

Scale 50000 0.1184 0.00857 0.1016 0.1350

Random1 Var 50000 0.0600 0.0653 0.00787 0.1580

Random2 Var 50000 0.3646 0.1108 0.1853 0.5863

You can see that the Drug A effect (versus the placebo group) is 0.32 and the Drug C effect is 0.52. You can
also, for example, use the ESTIMATE statement as follows to measure the effect difference between the two
drug groups (the posterior mean difference is around –0.2, and the posterior standard deviation is 0.042):

estimate "Drug A vs C" drug 1 -1;

The second way of modeling these data (Model 2) is to treat the Hour effect as fixed effects, not as a random
effect. And the Hour variable enters the main model as a categorical variable, as shown in the following
statements:

proc bglimm data=Fev nmc=10000 seed=44672057
outpost=Fev_mod2;

class Drug Patient Hour;
model FEV = BaseVal Drug Hour;
random int / subject=Patient;
estimate "A vs C" Drug 1 -1;

run;

This model has only one random effect (Patient). The posterior summary statistics of the fixed-effects
parameters are displayed in Output 31.1.3.
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Output 31.1.3 Posterior Summary Statistics from Model 2

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Intercept 10000 1.2592 0.3090 0.6002 1.8231

Baseval 10000 0.5031 0.1021 0.3111 0.7078

Drug a 10000 0.3247 0.0413 0.2475 0.4077

Drug c 10000 0.5253 0.0419 0.4412 0.6064

Drug p 0 . . . .

Hour 1 10000 0.4261 0.0700 0.2869 0.5612

Hour 2 10000 0.4779 0.0703 0.3369 0.6130

Hour 3 10000 0.3679 0.0706 0.2317 0.5090

Hour 4 10000 0.2562 0.0692 0.1212 0.3926

Hour 5 10000 0.1094 0.0709 -0.0256 0.2529

Hour 6 10000 0.1140 0.0719 -0.0269 0.2540

Hour 7 10000 0.0312 0.0704 -0.1028 0.1749

Hour 8 0 . . . .

Scale 10000 0.1185 0.00855 0.1031 0.1364

Random Var 10000 0.3653 0.1131 0.1815 0.5863

Although both models account for the Hour effect, they differ in the sense that the Hour random effects in
Model 1 have a shared hyperprior distribution with a shrinkage parameter, whereas in Model 2 they are
treated as independent fixed effects with a noninformative flat prior. Some statisticians prefer one or the other
approach, because they offer different interpretations of the model. For a detailed discussion, see Gelman
and Hill (2007, p. 245). The estimated effects in Model 1 and Model 2 are almost identical.

Model 3 is a minor variation of Model 2. You can consider an interaction main effect between Drug and Hour.
The change in the SAS program is minor—you add a vertical bar (|) between the two effects to create two
main effects and the cross effect between the two, as follows:

model FEV = BaseVal Drug|Hour;

Results from Model 3 are not displayed.

Models 1 through 3 all treat within-patient measurements as independent observations (the R-side covariance
is of the VC type), which do not account for correlations. To model the longitudinal aspect of the measure-
ments across hours, you can specify a nonidentity R-side covariance type, such as an unstructured covariance
(Model 4),

Fevik � MVN.�ik;R/

where Fevik denotes all hourly observations from the ith patient who is taking drug k.

You can use the following PROC BGLIMM program to fit a repeated measures model with three fixed-effects
(BaseVal, Drug, and Hour), one patient-level random effect, and an unstructured R-side covariance matrix:

proc bglimm data=Fev nmc=10000 seed=44672057
outpost=Fev_mod4;

class Drug Patient Hour;
model FEV = BaseVal Drug Hour;
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random int / subject=Patient;
repeated Hour / subject=Patient(Drug) type=un r rcorr;

run;

The REPEATED statement specifies that the Hour variable is the repeated measures variable, and an
unstructured covariance is specified. The nested effects, Patient(Drug), that are specified in the SUBJECT=
option indicate that the repeats occur for each drug treatment within a patient (3 � 24 = 72 in total). The R
and RCORR options display the estimate R covariance and correlation matrices, respectively.

Output 31.1.4 displays the estimated covariance and correlation matrices.

Output 31.1.4 R Covariance and Correlation Matrices

The BGLIMM Procedure

Estimated R Matrix

Row Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8

1 0.3161 0.07613 0.07626 0.05901 0.03782 0.03430 0.01952 0.01276

2 0.07613 0.3073 0.07901 0.06354 0.04803 0.04112 0.02169 0.01940

3 0.07626 0.07901 0.3055 0.08042 0.06196 0.05621 0.04712 0.03937

4 0.05901 0.06354 0.08042 0.3017 0.06413 0.06189 0.05752 0.04989

5 0.03782 0.04803 0.06196 0.06413 0.3527 0.07724 0.08092 0.07187

6 0.03430 0.04112 0.05621 0.06189 0.07724 0.3405 0.07785 0.06671

7 0.01952 0.02169 0.04712 0.05752 0.08092 0.07785 0.3560 0.08926

8 0.01276 0.01940 0.03937 0.04989 0.07187 0.06671 0.08926 0.3549

Estimated R Correlation Matrix

Row Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7 Col 8

1 1.0000 0.2443 0.2454 0.1911 0.1133 0.1046 0.05821 0.03809

2 0.2443 1.0000 0.2579 0.2087 0.1459 0.1271 0.06557 0.05876

3 0.2454 0.2579 1.0000 0.2649 0.1887 0.1743 0.1429 0.1196

4 0.1911 0.2087 0.2649 1.0000 0.1966 0.1931 0.1755 0.1525

5 0.1133 0.1459 0.1887 0.1966 1.0000 0.2229 0.2283 0.2031

6 0.1046 0.1271 0.1743 0.1931 0.2229 1.0000 0.2236 0.1919

7 0.05821 0.06557 0.1429 0.1755 0.2283 0.2236 1.0000 0.2511

8 0.03809 0.05876 0.1196 0.1525 0.2031 0.1919 0.2511 1.0000

For easier visualization, you can use the correlation matrix to plot a heat map. The graph is displayed in
Output 31.1.5. You can see an evenly declining correlation matrix away from the diagonal axis. This indicates
stronger correlation with nearby time points, and the correlation becomes weaker as the time lag increases.
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Output 31.1.5 Heat Map of the Correlation Matrix in Model 4

Suppose you are interested in estimating the drug response profiles (over time) of a hypothetical patient who
has a known BaseVal FEV value. You can use PROC BGLIMM to estimate the predictive distribution of this
patient.

The first step is to create the data set Pred, which contains the new covariates information:

data Pred;
input Patient BaseVal Drug$ Hour FEV;
datalines;
1 2.46 a 1 .
1 2.46 a 2 .
1 2.46 a 3 .
1 2.46 a 4 .
1 2.46 a 5 .
1 2.46 a 6 .
1 2.46 a 7 .
1 2.46 a 8 .
1 2.46 c 1 .
1 2.46 c 2 .
1 2.46 c 3 .
1 2.46 c 4 .
1 2.46 c 5 .
1 2.46 c 6 .
1 2.46 c 7 .
1 2.46 c 8 .
1 2.46 p 1 .
1 2.46 p 2 .
1 2.46 p 3 .
1 2.46 p 4 .
1 2.46 p 5 .
1 2.46 p 6 .



1368 F Chapter 31: The BGLIMM Procedure

1 2.46 p 7 .
1 2.46 p 8 .

;

The Patient variable takes the value of 1. As long as the patient value is not a repeat of any existing Patient
values in the Fev data set, PROC BGLIMM treats these observations as data from new patients. The BaseVal
variable takes a value of 2.46 (the initial FEV value for this patient), the Drug variable takes three treatments,
and the Hour variable goes from 1 to 8. The FEV variable takes a missing value, indicating that you want to
make predictions in these scenarios.

Next, you concatenate the Pred data set with the original input data set to create a new data set to use in
PROC BGLIMM. Model 4 is used here.

data Combined;
set Fev Pred;

run;

proc bglimm data=Combined nmc=10000 seed=44672057
outpost=Fev_mod4_pred;

class Drug Patient Hour;
model FEV = BaseVal Drug|Hour;
random int / subject=Patient;
repeated Hour / subject=Patient(Drug) type=un;

run;

PROC BGLIMM treats the 24 observations that have missing FEV values as missing data and generates
predictive samples for them. The missing data variables have names that follow the convention of FEV_n,
where n is the observation index of these values in the input data set. In this example, the 24 variables are
named FEV_416 to FEV_439. There are 415 observation in the Fev data set.

Next, you use the %SUMINT autocall macro to compute the posterior summary statistics for the predicted
values as follows. You can plot the predicted response profiles of this patient for different treatment over
time. The results are shown in Output 31.1.6.

%sumint(data=Fev_mod4_pred, var=FEV_:, print=NO, out=pred_si)

data Comb_pred;
merge Pred Pred_si;
run;

proc sgpanel data=Comb_pred noautolegend;
panelby Drug / columns=3 ;
rowaxis label = "FEV";
scatter x=Hour y=mean / group=Patient;
series x=Hour y=mean / group=Patient;

run;
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Output 31.1.6 Predicted Patient Profiles over Time for Different Treatments

The first two panels in Output 31.1.6 both show an initial improvement, then a gradual decline of the FEV
values over time. Drug C appears to have a better treatment effect than drug A. The third panel is the placebo
group. It has a horizontal profile, which is what you would expect.

Example 31.2: Mating Experiment with Crossed Random Effects
(View the complete code for this example (bglmmex2.sas) in the example repository.)

This example illustrates how to use PROC BGLIMM to fit a non-nested logistic random-effects model and
perform prediction-based inference.

McCullagh and Nelder (1989, Ch. 14.5) describe a mating experiment—conducted by S. Arnold and P.
Verell at the University of Chicago—that involves two geographically isolated populations of mountain dusky
salamanders. One goal of the experiment was to determine whether barriers to interbreeding have evolved as
a result of the geographical isolation of the populations. In this case, matings within a population should
be more successful than matings between the populations. The experiment, which was conducted in the
summer of 1986, involved 40 animals—20 rough butt (R) and 20 whiteside (W) salamanders—with equal
numbers of males and females. The animals were grouped into two sets of R males, two sets of R females,
two sets of W males, and two sets of W females, so that each set contained five salamanders. Each set was
mated against one rough butt and one whiteside set, creating eight crossings. Within the pairings of sets, each
female salamander was paired with three male salamanders.

The following DATA step creates the data set, Salamander, for the analysis:

data Salamander;
input Day Fpop$ Fnum Mpop$ Mnum Mating @@;
datalines;

4 rb 1 rb 1 1 4 rb 2 rb 5 1

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/a-c/bglmmex2.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/
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4 rb 3 rb 2 1 4 rb 4 rb 4 1
4 rb 5 rb 3 1 4 rb 6 ws 9 1
4 rb 7 ws 8 0 4 rb 8 ws 6 0
4 rb 9 ws 10 0 4 rb 10 ws 7 0
4 ws 1 rb 9 0 4 ws 2 rb 7 0
4 ws 3 rb 8 0 4 ws 4 rb 10 0

... more lines ...

24 ws 5 ws 7 0 24 ws 6 rb 1 0
24 ws 7 rb 5 1 24 ws 8 rb 3 0
24 ws 9 rb 4 0 24 ws 10 rb 2 0
;

The first observation in the first line, for example, indicates that rough butt female 1 was paired in the
laboratory on day 4 of the experiment with rough butt male 1, and the pair mated. On the same day rough butt
female 7 was paired with whiteside male 8, but the pair did not mate (the first observation in the fourth line).

The model that is adopted by many authors for these data contains fixed effects for gender and population.
Let pRR, pRW, pWR, and pWW denote the mating probabilities between the populations, where the first
subscript identifies the female partner and the second subscript identifies the male partner. Then, you model

log
�

pkl

1 � pkl

�
D ˇkl k; l 2 fR;Wg

where ˇkl denotes the average logit of mating between females of population k and males of population l.

The following statements fit a generalized model that contains fixed effects:

proc bglimm data=Salamander seed=725697;
class Fpop Fnum Mpop Mnum;
model Mating (event='1') = Fpop|Mpop / dist=binary;

run;

The response variable is the two-level variable Mating. Because it is coded as zeros and ones, and because by
default PROC BGLIMM models the probability of the first level according to the response-level ordering,
the EVENT='1' option instructs PROC BGLIMM to model the probability of a successful mating. The
distribution of the mating variable is binary.

The first table in the output is the “Model Information” table, shown in Output 31.2.1. This table displays
basic information about the data and model, such as the name of the input data set, response variable,
distribution, link function, sampling algorithm, burn-in size, simulation size, thinning number, and random
number seed. The random number seed initializes the random number generators. If you repeat the analysis
and use the same seed, you get an identical stream of random numbers.
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Output 31.2.1 Model Information

The BGLIMM Procedure

Model Information

Data Set WORK.SALAMANDER

Response Variable Mating

Distribution Binary

Link Function Logit

Fixed Effects Included Yes

Random Effects Included No

Sampling Algorithm Gamerman

Burn-In Size 500

Simulation Size 5000

Thinning 1

Random Number Seed 725697

Number of Threads 1

The “Class Level Information” table in Output 31.2.2 displays the levels of variables that are listed in the
CLASS statement. Note that there are two female populations and two male populations.

Output 31.2.2 Class Level Information

Class Level Information

Class Levels Values

Fpop 2 rb ws

Fnum 10 1 2 3 4 5 6 7 8 9 10

Mpop 2 rb ws

Mnum 10 1 2 3 4 5 6 7 8 9 10

Output 31.2.3 displays the “Number of Observations” table. All 120 observations in the data set are used in
the analysis. For data sets that have missing or invalid values, the number of observations that are used might
be less than the number of observations that are read.

Output 31.2.3 Number of Observations

Number of Observations

Number of Observations Read 120

Number of Observations Used 120

The “Response Profile” table, which is displayed only for binary data, lists the levels of the response variable
and their order (Output 31.2.4). The table also provides information about which level of the response
variable defines the event. Because of the EVENT='1' response variable option in the MODEL statement, the
probability that is being modeled is that of the higher-ordered value.
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Output 31.2.4 Response Profile

Response Profile

Ordered
Value Mating

Total
Frequency

1 0 50

2 1 70

Probability modeled is Mating ='1'.

PROC BGLIMM reports posterior summary statistics (posterior means, standard deviations, and highest
posterior density (HPD) intervals) for each parameter in the “Posterior Summaries and Intervals” table, as
shown in Output 31.2.5.

Output 31.2.5 Posterior Summary Statistics

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Intercept 5000 0.8845 0.4082 0.1391 1.7387

Fpop rb 5000 -0.1674 0.5659 -1.2915 0.8939

Fpop ws 0 . . . .

Mpop rb 5000 -2.1235 0.5964 -3.3360 -1.0176

Mpop ws 0 . . . .

Fpop rb*Mpop rb 5000 2.4627 0.8352 0.8322 4.0574

Fpop rb*Mpop ws 0 . . . .

Fpop ws*Mpop rb 0 . . . .

Fpop ws*Mpop ws 0 . . . .

There are four levels in the Fpop*Mpop effect. An intercept is included by default in the fixed effects, so the
last level of the Fpop*Mpop effect (pairing of a whiteside female and a whiteside male) is not estimable (this
explains why the estimate for the last level is missing). The estimate for the intercept gives the logit for the
last level of Fpop*Mpop effect—that is, the pairing of a whiteside female and a whiteside male. And the
estimates for other three pairings are the deviates from the logit for the pairing of a whiteside female and a
whiteside male. For example, the posterior mean of the estimate for “Fpop rb*Mop rb” is 0.16, meaning
that the logit for the pairing of a rough butt female and a rough butt male is 0.16 higher than the logit for the
pairing of a whiteside female and a whiteside male.

In a pairing with a female whiteside salamander, the logit drops sharply by 2.12 when the female is paired
with a whiteside male from a different population instead of a male from her own population. If the same
comparisons are made in pairs with whiteside males, then you also notice a drop of 0.17 in the logit if the
female comes from a different population from that of the male. However, the change is considerably less.

This model can be fitted using a logistic regression with two random effects:

pi D
1

1C exp.�.ˇ0 C ˇ1 � FpoprbMpopws C ˇ2 � FpopwsMpoprb C ˇ3 � FpoprbMpoprb C 
f C 
m//


f � N.0; �
2
f /


m � N.0; �
2
m/
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This represents a logistic regression model that has a fixed intercept, an interaction, one random effect for the
female group (for f D 1; : : : ; 20), and one random effect for the male group (for m D 1; : : : ; 20). You can
use the following statements to fit the model:

proc bglimm data=salamander nmc=20000 seed=901214;
class Fpop Fnum Mpop Mnum;
model Mating (event='1') = Fpop|Mpop / dist=binary;
random int / sub=Fpop*Fnum;
random int / sub=Mpop*Mnum;

run;

The Fpop*Fnum effect in the first RANDOM statement creates a random intercept for each female animal.
Because Fpop and Fnum are CLASS variables, the effect has 20 levels (10 rough butt and 10 whiteside
females). Similarly, the Mpop*Mnum effect in the second RANDOM statement creates the random intercepts
for the male animals. No TYPE= option is specified in the RANDOM statement, so the covariance structure
defaults to TYPE=VC. The random effects and their levels are independent, and each effect has its own
variance component. Because the conditional distribution of the data, conditioned on the random effects,
is binary, no extra scale parameter (�) is added. The RANDOM statements in PROC BGLIMM take two
interaction effects: Fpop*Fnum and Mpop*Mnum. The SUB= option in the RANDOM statement in PROC
BGLIMM supports a syntax for interaction effects.

The “Posterior Summaries and Intervals” table is shown in Output 31.2.6.

Output 31.2.6 Posterior Summary Statistics

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Intercept 20000 1.3187 0.7770 -0.2395 2.8228

Fpop rb 20000 -0.2836 0.9660 -2.1719 1.6527

Fpop ws 0 . . . .

Mpop rb 20000 -3.1839 0.9695 -5.1256 -1.3199

Mpop ws 0 . . . .

Fpop rb*Mpop rb 20000 3.7212 1.1306 1.4989 5.9243

Fpop rb*Mpop ws 0 . . . .

Fpop ws*Mpop rb 0 . . . .

Fpop ws*Mpop ws 0 . . . .

Random1 Var 20000 2.1019 1.3387 0.3421 4.6481

Random2 Var 20000 1.0683 0.6602 0.2376 2.3319

The parameter labeled “Random1 Var” measures the variability among the 20 females (10 rough butt and 10
whiteside); the parameter labeled “Random2 Var” measures the variability among the 20 males (10 rough
butt and 10 whiteside). It seems that there is more variability among the females than among the males.

In the previous program, two RANDOM statements are used to specify two random intercepts. Alternatively,
you can combine the two SUBJECT= variables into a single RANDOM statement, as follows:
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random Fpop*Fnum Mpop*Mnum;

This is an equivalent model specification. However, the posterior sampling sequence will be different: in
programs that use the SUBJECT= option, the random-effects parameters are updated in sequence; if you omit
the SUBJECT= option, all random effects from that RANDOM statement are updated together. Therefore,
the posterior samples will be different, and you can also experience mixing and performance differences,
depending on the model and the number of random-effects parameters involved.

The following ESTIMATE statements compute the four levels of the Fpop*Mpop effect, which are labeled as
"rb and rb" and so on:

proc bglimm data=salamander nmc=20000 seed=901214 outpost=Sal_Out;
class Fpop Fnum Mpop Mnum;
model Mating (event='1') = Fpop|Mpop / dist=binary;
random int / sub=Fpop*Fnum;
random int / sub=Mpop*Mnum;
estimate "rb and rb" Int 1 Fpop 1 0 Mpop 1 0 Fpop*Mpop 1;
estimate "rb and ws" Int 1 Fpop 1 0 Mpop 0 1 Fpop*Mpop 0 1;
estimate "ws and rb" Int 1 Fpop 0 1 Mpop 1 0 Fpop*Mpop 0 0 1;
estimate "ws and ws" Int 1 Fpop 0 1 Mpop 0 1 Fpop*Mpop 0 0 0 1;

run;

These are some linear combinations of the fixed-effects parameters, which, if you choose not to use the
ESTIMATE statement, you replicate by using the following DATA step manipulations:

data Post;
set Sal_Out;
rr = Intercept + Fpop_rb + Mpop_rb + Fpop_rb_Mpop_rb;
rw = Intercept + Fpop_rb;
wr = Intercept + Mpop_rb;
ww = Intercept;
drop Intercept__:;

run;

The RR variable in the Post data set is identical to what the first ESTIMATE statement produces. You can
check by comparing RR with rb_and_rb, which was created by the first ESTIMATE statement in the earlier
program.

What is more relevant is the need to transfer these linear combinations back to the scale of the data and to
estimate different mating probabilities: pRR, pRW, pWR, and pWW. If the fitted model is a fixed-effects
model, as in

log
�

pkl

1 � pkl

�
D ˇkl k; l 2 fR;Wg

then the transformation back to p is simple:

pkl D
exp.ˇkl/

1C exp.ˇkl/

And the programming is straightforward:
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data Prob;
set Post;
p_rr_f = logistic(rr);
p_rw_f = logistic(rw);
p_wr_f = logistic(wr);
p_ww_f = logistic(ww);

run;

But because the fitted model is a random-effects model,

log
�

pkl

1 � pkl

�
D ˇkl C 
f C 
m k; l 2 fR;Wg

The transformation must account for the variability in the random effects. In other words, you must integrate
out the uncertainties of the 
f and 
m in order to obtain the marginal posterior distribution of the pkl
parameters:

�.pkljdata/ D
Z

f

Z

m

�.pkl; 
f ; 
mjdata/ � �.
f / � �.
m/d
md
f

Most frequently and most conveniently, �.
f / and �.
m/ are taken to be the distribution of the random
effects, given the posterior samples of �2

f
and �2m.

The following DATA step program uses the Monte Carlo method to integrate out the random effects and
compute the marginal posterior of the mating probabilities:

data Prob;
set Post;
call streaminit(87925);
g_f = rand("normal", 0, sqrt(random1_var));
g_m = rand("normal", 0, sqrt(random2_var));
p_rr = logistic(rr + g_f + g_m);
g_f = rand("normal", 0, sqrt(random1_var));
g_m = rand("normal", 0, sqrt(random2_var));
p_rw = logistic(rw + g_f + g_m);
g_f = rand("normal", 0, sqrt(random1_var));
g_m = rand("normal", 0, sqrt(random2_var));
p_wr = logistic(wr + g_f + g_m);
g_f = rand("normal", 0, sqrt(random1_var));
g_m = rand("normal", 0, sqrt(random2_var));
p_ww = logistic(ww + g_f + g_m);
drop g_f g_m;

run;

The CALL STREAMINIT statement ensures reproducibility; the RAND call draws samples from the random-
effects prior distribution, conditional on posterior samples of �2

f
and �2m. You compute the mean and apply

the logistic transformation. This process is repeated for the computation of each individual probability. The
g_f and g_m are temporary symbols that do not need to be saved after the sampling and computation are
done.
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The Prob data set contains 20,000 draws of p_rr, p_rw, p_wr, and p_ww, which are estimates of the four
mating probabilities, respectively. You can use the following program to display the posterior distributions of
the four mating probabilities:

proc sgplot data=Prob noborder;
density p_rr / type=kernel legendlabel='p(rb & rb)'

lineattrs=(pattern=solid);
density p_rw / type=kernel legendlabel='p(rb & ws)'

lineattrs=(pattern=ShortDash);
density p_wr / type=kernel legendlabel='p(ws & rb)'

lineattrs=(pattern=DashDotDot);
density p_ww / type=kernel legendlabel='p(ws & ws)'

lineattrs=(pattern=LongDash);
keylegend / location=inside position=topright across=1;
xaxis label="Probability";
yaxis display=(nolabel noline noticks novalues);

run;

The posterior distributions of the mating probabilities are shown in Output 31.2.7. The probability of a
female whiteside mating with a male rough butt (the dash-dotted line) is significantly lower than the other
three probabilities. The smoothness at the boundaries (probability less than 0 or greater than 1) is an artifact
of the kernel method that is used in the SGPLOT procedure.

Output 31.2.7 Marginal Posterior Distributions of Mating Probability

Considering the posterior distributions of these probabilities, you can make additional inferences rather easily.
For example, you can estimate that the probability of a female rough butt mating with a male rough butt is
greater than the probability of a female whiteside mating with a male whiteside.

To compare, Output 31.2.8 shows the posterior distributions of the mating probabilities by using logistic
transformation on the fixed-effects parameters only, without accounting for the variability of the random
effects. These distributions are clearly different from those shown in Output 31.2.7, with noticeably thinner
tails, precisely because they do not account for additional variability in the model.
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Output 31.2.8 Posterior Distributions of Mating Probability without Accounting for Random Effects

After the PREDDIST statement becomes available, you can obtain the posterior predictive distribution of the
response and its related quantities for given covariates more conveniently. Suppose you have a data set that
contains the covariates (design matrix) for the four mating groups:

data ForPreddist;
input Fpop$ Mpop$ Fnum Mnum;
datalines;
rb rb 11 11
rb ws 11 11
ws rb 11 11
ws ws 11 11

;

The Fpop and Mpop defines the four female and male combinations. The Fnum and Mnum variables have the
value of 11, which is different from their values (1 to 10) in the DATA= data set salamander and this makes a
new subject level for the RANDOM effects. PROC BGLIMM will treat these observations as data from a
new subject and draw random effects from the prior (normal distribution with the current sampled variance)
and use those samples to predict for the responses.

proc bglimm data=salamander nmc=20000 seed=901214 outpost=Sal_Out;
class Fpop Fnum Mpop Mnum;
model Mating (event='1') = Fpop|Mpop / dist=binary;
random int / sub=Fpop*Fnum s;
random int / sub=Mpop*Mnum s;
preddist covariates=ForPreddist outpred=Preddist_Out ilink;

run;

%sumint(data=Preddist_Out, var=Mating: Ilink:)

In the PREDDIST statement, the OUTPRED= option creates a new SAS data set Preddist_Out that contains
random samples from the posterior predictive distribution of the response variable and the ILINK option
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computes the inverse link function of the linear predictor for each of the four mating groups, which is the
mating probability. The %SUMINT autocall macro is used to compute the posterior summary statistics for
the predicted responses and mating probabilities for the four groups. The results (not shown) are very similar
to those obtained previously for the mating probabilities: pRR, pRW, pWR, and pWW.

Example 31.3: Poisson Regression with Random Effects
(View the complete code for this example (bglmmex3.sas) in the example repository.)

This example illustrates how to use PROC BGLIMM to fit a Poisson random-effects model with offsets. The
example also discusses the use of the deviance information criterion (DIC) as a way to evaluate the fit of a
model.

Clayton and Kaldor (1987, Table 1) present data on observed and expected cases of lip cancer in the 56
counties of Scotland between 1975 and 1980. The expected number of cases was determined by a separate
multiplicative model that accounted for the age distribution in the counties. The goal of the analysis is to
estimate the county-specific log-relative risks, also known as standardized mortality ratios (SMRs).

If yi is the number of incident cases in county i and Ei is the expected number of incident cases, then
the ratio of observed to expected counts, yi=Ei , is the standardized mortality ratio. Clayton and Kaldor
(1987) assume that there exists a relative risk, �i , that is specific to each county and is a random variable.
Conditional on �i , the observed counts are independent Poisson variables with mean Ei�i .

An elementary mixed model for �i specifies only a random intercept for each county, in addition to a fixed
intercept. Breslow and Clayton (1993), in their analysis of these data, also provide a covariate that measures
the percentage of the population who work in agriculture, fishing, and forestry and therefore spend a lot of
time exposed to sunlight. The expanded model for the region-specific relative risk in Breslow and Clayton
(1993) is

�i D exp fˇ0 C ˇ1Employmenti=10C 
ig ; i D 1; : : : ; 56

where ˇ0 and ˇ1 are fixed effects and 
i are county random effects.

Because the mean of the Poisson variates, conditional on the random effects, is �i D Ei�i , applying a log
link yields

logf�ig D logfEig C ˇ0 C ˇ1Employmenti=10C 
i

The term logfEig is an offset, a regressor variable whose coefficient is known to be 1. Note that it is assumed
that the Ei are known; they are not treated as random variables.

The following DATA step creates the data set LipCancer:

data LipCancer;
input County Observed Expected Employment SMR;
if (Observed > 0) then ExpCount = 100*Observed/SMR;
else ExpCount = Expected;
x = Employment / 10;
LogN = log(ExpCount);
datalines;

1 9 1.4 16 652.2
2 39 8.7 16 450.3

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/a-c/bglmmex3.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/
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3 11 3.0 10 361.8
4 9 2.5 24 355.7
5 15 4.3 10 352.1
6 8 2.4 24 333.3
7 26 8.1 10 320.6
8 7 2.3 7 304.3
9 6 2.0 7 303.0

... more lines ...

53 1 5.7 1 17.4
54 1 7.0 1 14.2
55 0 4.2 16 0.0
56 0 1.8 10 0.0
;

The expected number of cases, ExpCount, is based on the observed standardized mortality ratio for counties
that have lip cancer cases and based on the expected counts that are reported by Clayton and Kaldor (1987,
Table 1) for the counties without such cases. The sum of the expected counts then equals the sum of the
observed counts. The offset is created in the DATA step by using the following assignment statement:

LogN = log(ExpCount);

In addition, in the DATA step, you use the following statement to transform the covariate that measures the
percentage of employment in agriculture, fisheries, and forestry to agree with the analysis of Breslow and
Clayton (1993):

x = Employment / 10;

The following statements fit this Poisson model with an offset and a random intercept for each county:

proc bglimm data=LipCancer seed=10571042 nmc=10000
outpost=LipCancer_Out;
class County;
model Observed = x / dist=poisson offset=LogN;
random int / sub=County;

run;

In the MODEL statement, DIST=POISSON specifies that the response variable has a Poisson distribution
with an offset, LogN. The offset is associated with the linear predictor through the OFFSET=LOGN option in
the MODEL statement.

Along with the MODEL statement for fixed effects, the RANDOM statement is used for random effects. It
specifies that the linear predictor contains an intercept term that randomly varies at the level of the County
effect. The SUBJECT=COUNTY option in the RANDOM statement defines County as a subject index for
the random-effects grouping, so that each county has its own intercept.

The “Model Information” table, the “Class Level Information” table, and the “Number of Observations” table
are shown in Output 31.3.1. Note that there are 56 counties.
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Output 31.3.1 Model Information

The BGLIMM Procedure

Model Information

Data Set WORK.LIPCANCER

Response Variable Observed

Distribution Poisson

Link Function Log

Fixed Effects Included Yes

Random Effects Included Yes

Sampling Algorithm Gamerman, Conjugate

Burn-In Size 500

Simulation Size 10000

Thinning 1

Random Number Seed 10571042

Number of Threads 1

Class Level Information

Class Levels Values

County 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Number of Observations

Number of Observations Read 56

Number of Observations Used 56

The “Posterior Summaries and Intervals” table in Output 31.3.2 displays the estimates of ˇ0 and ˇ1 along
with their standard deviations. The covariate that measures employment percentage in agriculture, fisheries,
and forestry does not have zero in the 95% HPD interval, indicating that this covariate might be a surrogate
for the exposure to sunlight, an important risk factor for lip cancer.

Output 31.3.2 Posterior Summaries and Intervals

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Intercept 10000 -0.5069 0.1712 -0.8502 -0.1835

x 10000 0.6900 0.1585 0.3785 0.9989

Random Var 10000 0.4763 0.1217 0.2702 0.7213
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Looking at the estimate of the variance of the region-specific log-relative risks, you can see significant
county-to-county heterogeneity in risks. If the covariate were removed from the analysis, as in Clayton and
Kaldor (1987), the heterogeneity in county-specific risks would increase. (The fitted SMRs in Table 6 of
Breslow and Clayton (1993) were obtained without the covariate x in the model.)

You can use the posterior data set LipCancer_Out to compute the predicted SMR value, which is

SMRi D 100 � exp.ˇ0 C ˇ1xi C 
i /

where i denotes the county, ˇ0 is the intercept, ˇ1 is the parameter for the covariate x, and 
i is the random
effect for county i. The following DATA step computes the predicted SMR for each county and saves them in
the data set SMR_Pred:

data SMR_PRED;
array gamma[56] Intercept__County_1-Intercept__County_56;
array SMR_pred[56];
set LipCancer_Out;

do i = 1 to 56;
set LipCancer(rename=(x=data_x)) point=i;
SMR_pred[i] = 100 * exp(Intercept + x * data_x + gamma[i]);

end;
keep smr_pred:;
run;

You can compute the mean estimates for each SMR_Pred and plot them against the observed SMR values
(Output 31.3.3) to get a sense of how the model fits the data, as follows:

%sumint(data=SMR_PRED, var=_numeric_, print=NO, out=SMR_SI)

data combine;
merge LipCancer SMR_SI;

run;

proc sgplot data=combine noautolegend aspect=1;
yaxis label="Predicted SMR" max=700;
xaxis label="Observed SMR" max=700;
text x=SMR y=mean text=employment;
lineparm x=0 y=0 slope=1;

run;
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Output 31.3.3 Observed and Predicted SMRs; Data Labels Indicate Employment Types

In contrast, you can fit a fixed-effects-only model to the data by using the following program (results not
shown):

proc bglimm data=LipCancer seed=10571042 nmc=10000
outpost=LipCancer_fOut;
class County;
model Observed = x / dist=poisson offset=LogN;

run;

The fixed-effects model provides a worse fit than the random-effects model (Output 31.3.4).
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Output 31.3.4 Observed and Predicted SMRs; Fixed-Effects-Only Model

Another way to understand the fit of a model is to use the deviation information criterion (DIC), which you
can specify by using the DIC option in the PROC BGLIMM call, as follows:

proc bglimm data=LipCancer seed=10571042 nmc=10000 DIC;
class County;
model Observed = x / dist=poisson offset=LogN;
random int / sub=County;

run;

proc bglimm data=LipCancer seed=10571042 nmc=10000 DIC;
class County;
model Observed = x / dist=poisson offset=LogN;

run;

The DIC values are shown in Output 31.3.5 (random-effects model) and in Output 31.3.6 (fixed-effects-only
model). The discrepancy suggests that the model that includes county-specific adjustments fits the data much
better.

Output 31.3.5 DIC Values from Random-Effects Model

The BGLIMM Procedure

Deviance Information Criterion

Dbar (Posterior Mean of Deviance) 267.919

Dmean (Deviance Evaluated at Posterior Mean) 226.337

pD (Effective Number of Parameters) 41.582

DIC (Smaller is Better) 309.501
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Output 31.3.6 DIC Values from Fixed-Effects-Only Model

The BGLIMM Procedure

Deviance Information Criterion

Dbar (Posterior Mean of Deviance) 449.038

Dmean (Deviance Evaluated at Posterior Mean) 447.023

pD (Effective Number of Parameters) 2.015

DIC (Smaller is Better) 451.053

You can further extend the model by including another random effect, the Employment-level random-intercept
effect that accounts for employment-related variability, as follows:

proc bglimm data=LipCancer seed=10571042 nmc=10000;
class County Employment;
model Observed = x / dist=poisson offset=LogN;
random int / sub=Employment;
random int / sub=County;

run;

This type of overparameterized model can often encounter convergence difficulties and might not provide any
more meaningful fitting than County-level random-effects models. Note that PROC BGLIMM produces an
error message if the two RANDOM statements are switched; the procedure requires that the observation-level
random effects be specified last.

Example 31.4: Repeated Growth Measurements with Group Difference
(View the complete code for this example (bglmmex4.sas) in the example repository.)

This example illustrates how to model heterogeneity in covariance structures by using grouped growth
measurements data.

Changes in the distance (measured in mm) from the center of the pituitary gland to the pterygomaxillary
fissure near the teeth are important in orthodontic therapy. The dental study of Pothoff and Roy (1964)
consists of growth measurements of 27 children (11 girls and 16 boys) at ages 8, 10, 12, and 14.

The following DATA step creates the data set, PR, for the analysis:

data pr;
input Person Gender $ y1 y2 y3 y4;
Distance=y1; Age=8; Time=1; output;
Distance=y2; Age=10; Time=2; output;
Distance=y3; Age=12; Time=3; output;
Distance=y4; Age=14; Time=4; output;
drop y1-y4;
datalines;

1 F 21.0 20.0 21.5 23.0
2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0
4 F 23.5 24.5 25.0 26.5
5 F 21.5 23.0 22.5 23.5
6 F 20.0 21.0 21.0 22.5

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/a-c/bglmmex4.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/
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7 F 21.5 22.5 23.0 25.0
8 F 23.0 23.0 23.5 24.0
9 F 20.0 21.0 22.0 21.5

10 F 16.5 19.0 19.0 19.5
11 F 24.5 25.0 28.0 28.0
12 M 26.0 25.0 29.0 31.0
13 M 21.5 22.5 23.0 26.5
14 M 23.0 22.5 24.0 27.5
15 M 25.5 27.5 26.5 27.0
16 M 20.0 23.5 22.5 26.0
17 M 24.5 25.5 27.0 28.5
18 M 22.0 22.0 24.5 26.5
19 M 24.0 21.5 24.5 25.5
20 M 23.0 20.5 31.0 26.0
21 M 27.5 28.0 31.0 31.5
22 M 23.0 23.0 23.5 25.0
23 M 21.5 23.5 24.0 28.0
24 M 17.0 24.5 26.0 29.5
25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0
;

Questions of interest include the following:

� Does the distance from the center of the pituitary gland to the pterygomaxillary fissure change over
time?

� What is the pattern of change?

� Does the pattern of change differ between boys and girls?

� How correlated are the repeated measurements across age for the same subject?

� Is the correlation similar for boys and girls?

Output 31.4.1 shows the distance growth plots for boys and girls as they age. The plots show apparent
tracking (for children who start with small distance, the distances tend to stay small) and approximately
linear growth. However, the growth rates are noticeably different for boys (faster) and girls (slower).
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Output 31.4.1 Distance Growth Plot for Dental Data

You can fit a linear repeated measures model to the data: the Age variable is the fixed-effect covariate, and
the repeats are over the variable Time. The BY statement offers a convenient way to perform a separate
and independent analysis between the boys’ group and the girls’ group. This accounts for different growth
profiles for the two groups, because correlation can differ by gender.

The following PROC BGLIMM program fits two linear repeated measures models to the data:

proc bglimm data=pr seed=475193 outpost=pr_out;
by Gender;
class Person Time;
model Distance = Age;
repeated Time / subject=Person type=un r;

run;

The MODEL statement specifies the response variable Distance and the covariate Age, which models an
overall linear growth trend over time.

The REPEATED statement specifies that the repeated measurements be taken over the Time variable. The
repeated effect is required in a REPEATED statement, and it must be specified as a CLASS variable. The
TYPE=UN option specifies an unstructured covariance for the residuals. The repeated measurements are
grouped according to Person (the SUBJECT= variable), and the covariance type is unstructured. The R
option displays the estimated covariance matrix of R.

Output 31.4.2 and Output 31.4.3 show the estimate covariance matrix for girls and boys, respectively. The
point estimates are different, and you can get a more accurate sense of the degree of differences by plotting
the posterior density estimates. This is shown in Output 31.4.4.
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Output 31.4.2 Estimated Covariance Matrix of R for Girls

The BGLIMM Procedure

Gender=F

Estimated R Matrix

Row Col 1 Col 2 Col 3 Col 4

1 4.2652 2.8200 3.5671 3.5578

2 2.8200 3.5672 3.3555 3.3955

3 3.5671 3.3555 5.1359 4.5170

4 3.5578 3.3955 4.5170 5.4541

Output 31.4.3 Estimated Covariance Matrix of R for Boys

Gender=M

Estimated R Matrix

Row Col 1 Col 2 Col 3 Col 4

1 5.6814 1.9663 3.1060 1.4269

2 1.9663 4.4751 2.0155 2.4799

3 3.1060 2.0155 6.4496 2.8814

4 1.4269 2.4799 2.8814 4.2419

Output 31.4.4 Posterior Density Comparison of the R Covariance—Independent Analysis
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The independent analysis accounts for the heterogeneity in the data (different groups have different covariance
structure), but the model cannot represent, for example, the Gender effect, after you separate the data set by
Gender. Ideally, you want both to account for the heterogeneity and to fit a model that estimates the Gender
effect,

yi � MVN.�i ;Rk/

where yi is the vector of observed measurements from the ith subject; �i is the regression mean that has the
Gender effect; and k D F;M, indicating that there are two distinct covariance structures for the two gender
groups.

You can fit this model by using the following statements:

proc bglimm data=pr seed=475193 outpost=pr_out;
class Person Gender Time;
model Distance = Age|Gender;
repeated Time / type=un subject=Person group=Gender r;

run;

The MODEL statement specifies the interaction main effect between Age and Gender, by using a shorthand
notation (the vertical bar) for including Age, Gender, and Age*Gender. GROUP=GENDER (in the RE-
PEATED statement) models a separate R-side covariance matrix for each gender. The R option prints the
estimated covariance matrix of R.

The results are shown in Output 31.4.5 and Output 31.4.6.
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Output 31.4.5 Posterior Summaries and Intervals

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter Group N Mean
Standard
Deviation

95%
HPD Interval

Intercept 5000 15.9070 1.1413 13.7924 18.2695

Age 5000 0.8254 0.0962 0.6374 1.0135

Gender F 5000 1.4767 1.4106 -1.1653 4.3705

Gender M 0 . . . .

Age*Gender F 5000 -0.3439 0.1222 -0.5893 -0.1010

Age*Gender M 0 . . . .

Residual UN(1,1) Gender F 5000 4.2321 1.8217 1.6445 7.8020

Residual UN(2,1) Gender F 5000 2.7878 1.4636 0.7293 5.7478

Residual UN(2,2) Gender F 5000 3.5504 1.5892 1.3130 6.4988

Residual UN(3,1) Gender F 5000 3.5348 1.7821 1.0138 6.9532

Residual UN(3,2) Gender F 5000 3.3304 1.6826 0.8530 6.5813

Residual UN(3,3) Gender F 5000 5.0936 2.2021 1.8895 9.1471

Residual UN(4,1) Gender F 5000 3.5407 1.8271 0.9083 7.1369

Residual UN(4,2) Gender F 5000 3.3792 1.7284 0.8135 6.6893

Residual UN(4,3) Gender F 5000 4.4877 2.1267 1.3969 8.5377

Residual UN(4,4) Gender F 5000 5.4479 2.3883 2.0321 9.9821

Residual UN(1,1) Gender M 5000 5.7815 2.1501 2.5561 10.0795

Residual UN(2,1) Gender M 5000 1.9706 1.3886 -0.3006 4.9087

Residual UN(2,2) Gender M 5000 4.4630 1.6476 1.9748 7.6177

Residual UN(3,1) Gender M 5000 3.1485 1.7035 0.3229 6.5712

Residual UN(3,2) Gender M 5000 2.0219 1.4383 -0.4459 5.0039

Residual UN(3,3) Gender M 5000 6.3990 2.2197 2.9795 10.8205

Residual UN(4,1) Gender M 5000 1.4408 1.3267 -1.0554 4.1671

Residual UN(4,2) Gender M 5000 2.5001 1.2867 0.4869 5.1913

Residual UN(4,3) Gender M 5000 2.8916 1.4919 0.4865 6.0024

Residual UN(4,4) Gender M 5000 4.2609 1.5520 1.9952 7.4605

Output 31.4.6 R-Side Covariance Matrix

Estimated R Matrix

Group Row Col 1 Col 2 Col 3 Col 4

Gender F 1 4.2321 2.7878 3.5348 3.5407

Gender F 2 2.7878 3.5504 3.3304 3.3792

Gender F 3 3.5348 3.3304 5.0936 4.4877

Gender F 4 3.5407 3.3792 4.4877 5.4479

Gender M 1 5.7815 1.9706 3.1485 1.4408

Gender M 2 1.9706 4.4630 2.0219 2.5001

Gender M 3 3.1485 2.0219 6.3990 2.8916

Gender M 4 1.4408 2.5001 2.8916 4.2609

The “Posterior Summaries and Intervals” table in Output 31.4.5 lists posterior estimates for the fixed-effects
and residual covariance estimates. The posterior mean estimate of the boys’ intercept is 15.907, and that of
the girls’ intercept is 15:907C 1:4767 D 17:3837. Similarly, the estimate for the boys’ slope is 0.8254, and
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that of the girls’ slope is 0:8254 � 0:3439 D 0:4815. Thus the girls’ starting point is greater than the boys’
starting point, but the girls’ growth rate is about half the boys’ growth rate.

You can use ESTIMATE statements as follows to obtain the posterior distribution of these gender-related
intercepts and slopes:

proc bglimm data=pr seed=475193 outpost=pr_out;
class Person Gender Time;
model Distance = Age|Gender;
repeated Time / type=un subject=Person group=Gender r;
estimate 'Girls Intercept' Int 1 Gender 1 0;
estimate 'Boys Intercept' Int 1 Gender 0 1;
estimate 'Girls Slope' Age 1 Age*Gender 1 0;
estimate 'Boys Slope' Age 1 Age*Gender 0 1;

run;

Output 31.4.7 lists the posterior summary and interval statistics of the transformed parameters. These values
are saved in the OUTPOST= data set, under variable names of Girls_Intercept, Boys_Intercept, Girls_Slope,
and Boys_Slope.

Output 31.4.7 Intercepts and Slopes

The BGLIMM Procedure

Results from ESTIMATE Statements

Label Mean
Standard
Deviation

95%
HPD Interval

Girls Intercept 17.3838 0.8261 15.7077 18.9964

Boys Intercept 15.9070 1.1413 13.7924 18.2695

Girls Slope 0.4814 0.0735 0.3405 0.6304

Boys Slope 0.8254 0.0962 0.6374 1.0135

With these posterior estimates, you can use the following statements to directly infer the probability—
for example, that the boys’ growth rate is greater than the girls’ growth rate. The results are shown in
Output 31.4.8.

data prob;
set pr_out;
pDiff = boys_slope - girls_slope;
prob = (pDiff > 0);
keep pDiff prob;

run;

%sumint(data=prob, var=pDiff prob)

Output 31.4.8 Probability in Growth Rate Difference

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

pDiff 5000 0.3439 0.1222 0.1010 0.5893

prob 5000 0.9972 0.0528 1.0000 1.0000
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The expected slope difference is 0.3439. Output 31.4.9 plots the distribution of the difference in slopes; the
shaded area under the positive axis represents the probability that the difference is greater than zero. The area
is greater than 99%, and the probability that the boys have a greater growth slope than the girls is over 99%.

Output 31.4.9 Visualizing the Slope Difference

In Output 31.4.5, two of the estimates equal 0; this is a result of the overparameterized model that PROC
BGLIMM uses. You can obtain a full-rank parameterization by using the following MODEL statement:

model y = Gender Gender*Age / noint;

The posterior estimates from the full-rank parameterization (program not shown) are listed in Output 31.4.10.
The four estimates are the girls’ intercept (17.3857), boys’ intercept (15.9519), girls’ slope (0.4803), and
boys’ slope (0.8212). You might find that this parameterization makes it easier to interpret the model.
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Output 31.4.10 Posterior Summaries and Intervals from Full-Rank Parameterization

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter Group N Mean
Standard
Deviation

95%
HPD Interval

Gender F 5000 17.3857 0.8215 15.7553 18.9998

Gender M 5000 15.9519 1.1635 13.6144 18.1640

Age*Gender F 5000 0.4803 0.0731 0.3371 0.6247

Age*Gender M 5000 0.8212 0.0982 0.6247 1.0101

Residual UN(1,1) Gender F 5000 4.2270 1.8240 1.6174 7.8089

Residual UN(2,1) Gender F 5000 2.7806 1.4563 0.7068 5.6685

Residual UN(2,2) Gender F 5000 3.5446 1.5888 1.3287 6.5472

Residual UN(3,1) Gender F 5000 3.5277 1.7762 1.0206 6.8974

Residual UN(3,2) Gender F 5000 3.3243 1.6771 0.9705 6.6051

Residual UN(3,3) Gender F 5000 5.0854 2.1934 1.9174 9.1690

Residual UN(4,1) Gender F 5000 3.5329 1.8214 0.8502 6.9560

Residual UN(4,2) Gender F 5000 3.3734 1.7233 0.9427 6.8214

Residual UN(4,3) Gender F 5000 4.4801 2.1247 1.3600 8.5490

Residual UN(4,4) Gender F 5000 5.4416 2.3974 2.0595 10.0870

Residual UN(1,1) Gender M 5000 5.7797 2.1686 2.5756 10.0388

Residual UN(2,1) Gender M 5000 1.9783 1.3982 -0.4409 4.7993

Residual UN(2,2) Gender M 5000 4.4669 1.6497 1.9516 7.6345

Residual UN(3,1) Gender M 5000 3.1495 1.6962 0.4838 6.6577

Residual UN(3,2) Gender M 5000 2.0172 1.4267 -0.4760 4.9811

Residual UN(3,3) Gender M 5000 6.3930 2.2058 3.0217 10.8284

Residual UN(4,1) Gender M 5000 1.4432 1.3330 -0.9448 4.2283

Residual UN(4,2) Gender M 5000 2.4933 1.2900 0.4163 5.1829

Residual UN(4,3) Gender M 5000 2.8882 1.4818 0.5280 5.9364

Residual UN(4,4) Gender M 5000 4.2620 1.5549 1.7624 7.2623

The posterior estimates of the covariance matrices (Output 31.4.6) are close to those from the independent
model (Output 31.4.2 and Output 31.4.3), and you are now able to make inferences on Gender-related
questions.

The first two ESTIMATE statements in the following program compute the intercept and slope differences
in gender, a more intuitive specification than in the overparameterized model. The last two ESTIMATE
statements compute the estimated mean distance for girls and boys at age 11, respectively.

proc bglimm data=pr seed=475193 outpost=pr_out;
class Person Gender Time;
model Distance = Gender Age*Gender / noint;
repeated Time / type=un subject=Person group=Gender;
estimate 'Intercept Difference' Gender 1 -1;
estimate 'Slope Difference' Gender*Age 1 -1;
estimate 'Girl at Age 11' Gender 1 0 Gender*Age 11 0;
estimate 'Boy at Age 11' Gender 0 1 Gender*Age 0 11;

run;

The results are shown in Output 31.4.11.
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Output 31.4.11 Results from ESTIMATE Statements

The BGLIMM Procedure

Results from ESTIMATE Statements

Label Mean
Standard
Deviation

95%
HPD Interval

Intercept Difference 1.4338 1.4336 -1.3417 4.2965

Slope Difference -0.3409 0.1243 -0.5923 -0.1003

Girl at Age 11 22.6688 0.5266 21.6213 23.6831

Boy  at Age 11 24.9852 0.4243 24.1859 25.8446

Example 31.5: Multinomial Distribution with Cumulative Links
(View the complete code for this example (bglmmex5.sas) in the example repository.)

This example shows how to analyze multinomial data in which the response variable has more than two
categories and is ordinal. The BGLIMM procedure fits two kinds of link function for multinomial data:
one with a cumulative link that applies to ordinal data, and the other with a generalized logit that applies to
nominal data. For more information, see the section “Multinomial Models” on page 1351.

The data, which are shown in the following DATA step, are collected from a study (Vonesh 2012) that
compares active treatment to placebo for patients who had shoulder pain after rotator-cuff surgery. The two
treatments were randomly assigned to patients. The patients were asked how serious their pain was in both
the morning and the afternoon for three days (hence six follow-up data points) after surgery. The response
variable that is used to rate the pain score is an ordinal measure containing five categories, from 1 to 5 (low to
severe pain) (Kiernan 2018).

data Shoulder_pain;
input Trt$ Gender$ Age T1 T2 T3 T4 T5 T6 @@;
ID = _n_;
datalines;

y f 64 1 1 1 1 1 1
y m 41 3 2 1 1 1 1
y f 77 3 2 2 2 1 1
y f 54 1 1 1 1 1 1
y f 66 1 1 1 1 1 1
y m 56 1 2 1 1 1 1

... more lines ...

n f 41 5 5 5 4 3 3
n m 72 3 3 3 3 1 1
n f 60 5 4 4 4 2 2
n m 61 1 3 3 3 2 1
;

To analyze these multinomial data with PROC BGLIMM, you need to rearrange the data in univariate format.
The following DATA step creates several observation lines from each record in the original data set, so each
patient has six data lines, one for each of the six follow-up sessions.

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/a-c/bglmmex5.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/
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data ShoulderData;
set Shoulder_pain;
array tt T1-T6;
do over tt;

Y = tt;
Time = _i_;
output;

end;
run;

You can add formats for treatment (Trt) and gender as follows to make the data more readable:

proc format;
value $abc 'y' = 'Active'

'n' = 'Placebo';
value $xyz 'f' = 'Female'

'm' = 'Male';
run;

proc print data=ShoulderData(obs=18);
var ID Trt Gender Age Time y;
format Trt $abc. Gender $xyz.;

run;

The resulting data are shown in Table 31.5.1 for the first three patients, who have ID=1, 2, and 3.

Output 31.5.1 First 18 Observations of the Shoulder_pain Data Set

Obs ID Trt Gender Age Time Y

1 1 Active Female 64 1 1

2 1 Active Female 64 2 1

3 1 Active Female 64 3 1

4 1 Active Female 64 4 1

5 1 Active Female 64 5 1

6 1 Active Female 64 6 1

7 2 Active Male 41 1 3

8 2 Active Male 41 2 2

9 2 Active Male 41 3 1

10 2 Active Male 41 4 1

11 2 Active Male 41 5 1

12 2 Active Male 41 6 1

13 3 Active Female 77 1 3

14 3 Active Female 77 2 2

15 3 Active Female 77 3 2

16 3 Active Female 77 4 2

17 3 Active Female 77 5 1

18 3 Active Female 77 6 1

Because the response categories are ordered, a proportional-odds model is chosen. The initial model is a
proportional-odds model with the cumulative logit link (McCullagh 1980) and J = 5 categories. Separate
intercepts (cutoffs) are modeled for the first J � 1 D 4 cumulative categories, and the intercepts are
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monotonically increasing, which guarantees ordering of the cumulative probabilities and nonnegative category
probabilities. The probability of observing a rating in at most category j � 4 is

Pr.Y � j / D
1

1C exp.��j /
�j D ˛j C ˇ1TrtC ˇ2GenderC ˇ3AgeC ˇ4Time

where ˛j is the intercept for the jth response category and ˛1 � ˛2 � ˛3 � ˛4.

The following PROC BGLIMM statements fit a model that uses the cumulative logit. Later other links, such
as the cumulative probit, are considered.

proc bglimm data=ShoulderData seed=8875 nmc=10000 thin=2 dic;
class ID Trt Gender;
model y = Trt Gender Age Time / dist=multinomial link=clogit;
format Trt $abc. Gender $xyz. ;

run;

The “Model Information” table, shown in Output 31.5.2, displays basic information about the data and
model. In this case, the distribution is multinomial with ordered response categories, and the link function is
cumulative logit.

Output 31.5.2 Model Information

The BGLIMM Procedure

Model Information

Data Set WORK.SHOULDERDATA

Response Variable Y

Distribution Multinomial (ordered)

Link Function Cumulative Logit

Fixed Effects Included Yes

Random Effects Included No

Sampling Algorithm Gamerman

Burn-In Size 500

Simulation Size 10000

Thinning 2

Random Number Seed 8875

Number of Threads 1

The “Response Profile” table (Output 31.5.3) lists all levels of the response variable, the ordering of the
response variable, and a breakdown of the frequencies by category. The probabilities that are modeled are
accumulated over the lower ordered values. You should review the “Response Profile” table to ensure that the
categories are properly arranged and the desired outcome levels are modeled. In this table, response levels are
arranged by ordered value. The lowest response level is assigned ordered value 1, the next-lowest response
level is assigned ordered value 2, and so on. For a categorical response, the probability that is modeled is the
probability of the response level that has the lower ordered value.
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Output 31.5.3 Response Profile

Response Profile

Ordered
Value Y

Total
Frequency

1 1 131

2 2 40

3 3 35

4 4 28

5 5 12

Probabilities modeled are accumulated over the lower ordered values.

For multinomial models, the response-level ordering is important. With a cumulative link, the categories are
assumed to be ordered by their ordered value in the “Response Profile” table. If the response variable is a
character variable or has a format, check this table carefully to determine whether the ordered values reflect
the correct ordinal scale.

The parameter estimates are shown in Output 31.5.4. The probabilities that are modeled here are accumulated
at the lower end of the pain scale. There are four intercept terms: Intercept 1 defines the boundary between
pain levels 1 and 2, Intercept 2 defines the boundary between pain levels 2 and 3, and so on. The intercept
terms are in increasing order, and they correspond to the four cumulative logits that are defined for the
response levels in the order shown in the “Response Profile” table.

Output 31.5.4 Posterior Summaries and Intervals

Posterior Summaries and Intervals

Parameter Y N Mean
Standard
Deviation

95%
HPD Interval

Intercept  1 1 5000 -3.2178 0.6412 -4.3631 -1.8889

Intercept  2 2 5000 -2.2858 0.6158 -3.4348 -1.0306

Intercept  3 3 5000 -1.2499 0.6009 -2.3614 0.00273

Intercept  4 4 5000 0.2732 0.6365 -0.9863 1.5235

Trt Active . 5000 1.9550 0.2801 1.4226 2.5186

Trt Placebo . 0 . . . .

Gender Female . 5000 0.1213 0.2728 -0.4057 0.6705

Gender Male . 0 . . . .

Age . 5000 0.0271 0.00856 0.0106 0.0441

Time . 5000 0.2026 0.0771 0.0627 0.3625

The treatment (Trt) effect shows how far the boundaries move up or down under the two treatment groups,
active treatment and placebo. In this case, the active treatment (labeled “Trt Active”) is positive in relation
to the placebo group (labeled “Trt Placebo”), which is the reference group and whose value is fixed at 0.
Therefore, the active treatment group has a higher probability of a low pain score and a lower probability of
severe pain than the placebo group. The fact that the Time effect estimate is positive indicates a reduction in
pain over time. The results support an expected pain-decreasing process after surgery. The treatment and time
effects play a role in the pain rating because their 95% HPD intervals do not contain the value 0, whereas age
does not seem to affect the pain scoring because age’s 95% HPD interval has 0 in it.

You can also use other link functions. For the multinomial distribution, these links are available: CUMLOGIT,
CUMPROBIT, CUMLOGLOG, CUMCLL, and GLOGIT. In the following statements, the LINK=CPROBIT
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option specifies that the cumulative probit link be used:

proc bglimm data=ShoulderData seed=8875 nmc=10000 thin=2;
class ID Trt Gender;
model y = Trt Gender Age Time / dist=multinomial link=cprobit;
format Trt $abc. Gender $xyz. ;

run;

Because the patients were selected at random, you can include patient-specific random effects in the model
as follows:

Pr.Y � j / D
1

1C expf��j g
�j D ˛j C ˇ1TrtC ˇ2GenderC ˇ3AgeC ˇ4TimeC 
i

i � iidN.0; �2
 /;

where 
i denotes the intercept for the ith patient and �2
 is the variance of individual random intercepts that
measures the variability among all patients. Note that the random effects do not depend on the response
category.

The following statements fit a model that has both the fixed covariates and the random patient-specific
intercepts and produce the results in Output 31.5.5:

proc bglimm data=ShoulderData seed=8875 nmc=10000 thin=2 dic;
class ID Trt Gender;
model y = Trt Gender Age Time / dist=multinomial link=clogit;
random int / sub=ID s=(1 to 3);
format Trt $abc. Gender $xyz. ;

run;

In the “Random Var” row of the “Posterior Summaries and Intervals” table in Output 31.5.5, you can see that
the posterior mean of the variance of the random intercepts is about 5.6 and the 95% HPD interval does not
include 0, implying that there is heterogeneity among subjects that needs to be accounted for.



1398 F Chapter 31: The BGLIMM Procedure

Output 31.5.5 Posterior Summaries and Intervals

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter Subject Y N Mean
Standard
Deviation

95%
HPD Interval

Intercept  1 1 5000 -5.7518 1.7866 -9.3910 -2.3964

Intercept  2 2 5000 -4.1819 1.7548 -7.5569 -0.7251

Intercept  3 3 5000 -2.5194 1.7275 -6.0605 0.7211

Intercept  4 4 5000 -0.3470 1.7239 -3.6830 3.0815

Trt Active . 5000 2.9931 0.8525 1.3478 4.6608

Trt Placebo . 0 . . . .

Gender Female . 5000 0.2491 0.8678 -1.4435 1.9503

Gender Male . 0 . . . .

Age . 5000 0.0515 0.0277 -0.00198 0.1086

Time . 5000 0.3904 0.0936 0.1982 0.5649

Random Var . 5000 5.5546 2.0659 2.4095 9.8033

Intercept ID 1 . 5000 1.7409 1.6941 -1.3510 5.1678

Intercept ID 2 . 5000 0.0638 1.1541 -2.3022 2.3000

Intercept ID 3 . 5000 -2.8045 1.1375 -5.0011 -0.6100

In the following code, the ESTIMATE statement is added in order to compare the two treatment groups:
active and placebo. The results are shown in Output 31.5.6. The EXP option produces its exponentiated
version, which is the odds ratio in the case of using the logit link.

proc bglimm data=ShoulderData seed=8875 nmc=10000 thin=2 dic;
class ID Trt Gender;
model y = Trt Gender Age Time / dist=multinomial link=clogit;
random int / sub=ID s=(1 to 3);
format Trt $abc. Gender $xyz. ;
estimate 'Active vs Placebo' Trt 1 -1 / exp;

run;

The large value of the odds ratio indicates that the odds that the active treatment group is in lower pain
categories is approximately 32 times the odds that the placebo group is in lower pain categories. Simply put,
the odds ratio indicates approximately a 32-fold reduction in pain while controlling heterogeneity among
subjects.

Output 31.5.6 Results from ESTIMATE Statement

The BGLIMM Procedure

Results from ESTIMATE Statements

Label Mean
Standard
Deviation

95%
HPD Interval

Exponentiated
Mean

Active vs Placebo 2.9931 0.8525 1.3478 4.6608 32.0356
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Example 31.6: Multinomial Generalized Logit Model for Nominal Response
(View the complete code for this example (bglmmex6.sas) in the example repository.)

This example uses data from a study in which educational researchers compared three different styles of
mathematics instruction for third graders (Stokes, Davis, and Koch 2012). Students were rotated through
three learning styles: a self-instruction mode largely based on computer use, a team approach in which
students solved problems in groups, and a traditional class approach that is used at a regular school. The
students were asked which style they preferred, and their responses were classified by the type of program
that they were placed in (a regular school day versus a regular day supplemented with an after-school program
in the afternoon). Researchers were interested in how other school programs influenced the effectiveness of
the styles and how they affected the students’ perceptions of the different styles.

Table 31.18 displays data that reflect the students’ preferences of styles, cross-classified by their school and
the program that they were placed in.

Table 31.18 Learning Style Preference Data

Learning Style Preference
School Program Self Team Class

1 Regular 10 17 26
1 Afternoon 5 12 50
2 Regular 21 17 26
2 Afternoon 16 12 36
3 Regular 15 15 16
3 Afternoon 12 12 20

The levels (self, team, and class) of the response variable Style have no essential ordering. Instead of fitting
a model that uses cumulative logits, a model that uses generalized logits is more appropriate for nominal
responses. There are three response levels, so you could form logits that compare self to class, or team to
class, treating class as the reference level, because that is the traditional way of learning.

The following statements create the data set school and request the analysis:

data school;
length Program $ 9;
input School Program $ Style $ Count @@;
datalines;

1 regular self 10 1 regular team 17 1 regular class 26
1 afternoon self 5 1 afternoon team 12 1 afternoon class 50
2 regular self 21 2 regular team 17 2 regular class 26
2 afternoon self 16 2 afternoon team 12 2 afternoon class 36
3 regular self 15 3 regular team 15 3 regular class 16
3 afternoon self 12 3 afternoon team 12 3 afternoon class 20
;

A multinomial logistic regression is performed on the generalized logits. In the following statements, the
LINK=GLOGIT option forms the generalized logits. You can choose a reference category by specifying the
REF= option. The choice of reference category for generalized logit models affects the results. An interaction
between School and Program is added to the two main effects. Because the data are in frequency/count

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/a-c/bglmmex6.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/
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form, you need to indicate this to PROC BGLIMM: you do this by specifying the FREQ statement. If all
frequencies are 1, you can omit the FREQ statement.

proc bglimm data=school seed=123 dic;
freq Count;
class School Program;
model Style(ref="class")=School Program School*Program / dist=multinomial

link=glogit;
run;

The “Response Profile” table (Output 31.6.1) contains the response information. In generalized logit models
for unordered response, one category is chosen as the reference in the formulation of the generalized logits.
By default, the linear predictor in the reference category is set to 0, and the reference category corresponds
to the entry in the “Response Profile” table for the first ordered value. You can change the assignment of
ordered values by specifying the DESCENDING and ORDER= options in the MODEL statement. You can
choose a different reference category by specifying the REF= option. The choice of reference category for
generalized logit models affects the results. It is sometimes recommended that you choose the category that
has the highest frequency as the reference (see, for example, Brown and Prescott 1999, p. 160). Because
the REF=“CLASS” option is specified, the generalized logits are formed for the probability of “self” with
respect to “class”, and for the probability of “team” with respect to “class”.

Output 31.6.1 Response Profile

The BGLIMM Procedure

Response Profile

Ordered
Value Style

Total
Frequency

1 class 174

2 self 79

3 team 85

Logits modeled use 'class' as the reference category.

The results are shown in Output 31.6.2. Essentially, the parameter space has the same structure that it would
for modeling a single response function, except that it models two response functions: the first logit of “self”
with respect to “class” (labeled “self” in the response Style column), and the second logit of “team” with
respect to “class” (labeled “team” in the response Style column).
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Output 31.6.2 Posterior Summaries and Intervals

Posterior Summaries and Intervals

Parameter Style N Mean
Standard
Deviation

95%
HPD Interval

Intercept  1 self 5000 -0.0597 0.3621 -0.7973 0.6100

School 1  1 self 5000 -0.9194 0.5067 -2.0099 0.0362

School 2  1 self 5000 -0.1527 0.4731 -1.0109 0.8400

School 3  1 self 0 . . . .

Program afternoon  1 self 5000 -0.4807 0.5253 -1.5254 0.4697

Program regular  1 self 0 . . . .

School 1*Program afternoon  1 self 5000 -0.9416 0.8158 -2.6314 0.5057

School 1*Program regular  1 self 0 . . . .

School 2*Program afternoon  1 self 5000 -0.1267 0.6779 -1.5019 1.0586

School 2*Program regular  1 self 0 . . . .

School 3*Program afternoon  1 self 0 . . . .

School 3*Program regular  1 self 0 . . . .

Intercept  2 team 5000 -0.0635 0.3586 -0.7852 0.6055

School 1  2 team 5000 -0.3704 0.4695 -1.2872 0.5298

School 2  2 team 5000 -0.3760 0.4793 -1.3432 0.4804

School 3  2 team 0 . . . .

Program afternoon  2 team 5000 -0.4812 0.5342 -1.6885 0.4042

Program regular  2 team 0 . . . .

School 1*Program afternoon  2 team 5000 -0.5497 0.6954 -1.8526 0.8048

School 1*Program regular  2 team 0 . . . .

School 2*Program afternoon  2 team 5000 -0.1973 0.7271 -1.6619 1.2083

School 2*Program regular  2 team 0 . . . .

School 3*Program afternoon  2 team 0 . . . .

School 3*Program regular  2 team 0 . . . .

Because the interaction terms include 0 in the 95% HPD intervals, it is suspected that the interaction of
“School*Program” does not affect the model. As shown in Output 31.6.3 and Output 31.6.4, the DIC for the
model that contains the interaction is greater than the DIC for the main-effects model without an interaction.
Hence the interaction term might be unnecessary.

Output 31.6.3 DIC for the Main-plus-Interaction Model

Deviance Information Criterion

Dbar (Posterior Mean of Deviance) 677.372

Dmean (Deviance Evaluated at Posterior Mean) 665.230

pD (Effective Number of Parameters) 12.143

DIC (Smaller is Better) 689.515

Output 31.6.4 DIC for the Main-Effects Model

Deviance Information Criterion

Dbar (Posterior Mean of Deviance) 674.981

Dmean (Deviance Evaluated at Posterior Mean) 666.965

pD (Effective Number of Parameters) 8.016

DIC (Smaller is Better) 682.996



1402 F Chapter 31: The BGLIMM Procedure

The following statements fit the main-effects model. The first two ESTIMATE statements compare differences
among the three schools, and the last ESTIMATE statement computes the difference between the two
programs. The EXP option produces the odds ratio for each effect comparison. The BYCAT option reports
estimates for each category of the response variable.

proc bglimm data=school seed=123 dic;
freq Count;
class School Program;
model Style(ref="class")= School Program / dist=multinomial

link=glogit;
estimate 'School 1 vs 3' School 1 0 -1 / exp bycat;
estimate 'School 2 vs 3' School 0 1 -1 / exp bycat;
estimate 'Afternoon vs Regular' Program 1 -1 / exp bycat;

run;

The parameter posterior summaries and intervals of the main-effects model are shown in Output 31.6.5. The
first section of parameters is for the first logit, which is of “self” versus “class”, and the second section of
parameters is for the second logit, which is of “team” versus “class”. For the School effect, “School 1 1” is
the effect of specifying a value of 1 for School for the first logit, “School 2 1” is the effect of specifying a
value of 2 for School for the first logit, “School 1 2” is the effect of specifying a value of 1 for School for the
second logit, and “School 2 2” is the effect of specifying a value of 2 for School for the second logit. For the
Program effect, “Program afternoon 1” is the effect of specifying a value of “afternoon” for Program for the
first logit, and “Program afternoon 2” is the effect of specifying a value of “afternoon” for Program for the
second logit.

Output 31.6.5 Posterior Summaries and Intervals

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter Style N Mean
Standard
Deviation

95%
HPD Interval

Intercept  1 self 5000 0.0942 0.2878 -0.5241 0.6155

School 1  1 self 5000 -1.3376 0.3823 -2.0287 -0.5633

School 2  1 self 5000 -0.2390 0.3283 -0.8340 0.4287

School 3  1 self 0 . . . .

Program afternoon  1 self 5000 -0.7696 0.2866 -1.3255 -0.2117

Program regular  1 self 0 . . . .

Intercept  2 team 5000 0.0977 0.2852 -0.4775 0.6350

School 1  2 team 5000 -0.6725 0.3428 -1.3106 0.00307

School 2  2 team 5000 -0.4945 0.3400 -1.1672 0.1437

School 3  2 team 0 . . . .

Program afternoon  2 team 5000 -0.7564 0.2673 -1.3210 -0.2522

Program regular  2 team 0 . . . .

Table 31.19 displays the parameter estimates, which are arranged according to the logits that they reference.
This is an effective way to show the results from an analysis of a multinomial generalized logits model.
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Table 31.19 Parameter Estimates from the Main-Effects Model

logit(self/class) logit(team/class)
Parameter Mean StdDev Mean StdDev

Intercept 0.09 0.29 0.10 0.29
School 1 -1.34 0.38 -0.67 0.34
School 2 -0.24 0.33 -0.49 0.34
Program afternoon -0.77 0.29 -0.76 0.27

School with the value of 1 has the largest effect of the schools, particularly for the logit that compares “self”
to “class”. The Program covariate has nearly the same effect on both logits.

The results from the three ESTIMATE statements are shown in Output 31.6.6, which displays the differences
among the three schools and the two programs. The Exponentiated Mean column shows the odds ratio for
each effect comparison. Because the BYCAT option is specified, the effect comparison is made for each
category of the response variable Style.

Output 31.6.6 Results from ESTIMATE Statements

Results from ESTIMATE Statements

Label Style Mean
Standard
Deviation

95%
HPD Interval

Exponentiated
Mean

School 1 vs 3 self -1.3376 0.3823 -2.0287 -0.5633 0.2823

School 1 vs 3 team -0.6725 0.3428 -1.3106 0.00307 0.5415

School 2 vs 3 self -0.2390 0.3283 -0.8340 0.4287 0.8306

School 2 vs 3 team -0.4945 0.3400 -1.1672 0.1437 0.6464

Afternoon vs Regular self -0.7696 0.2866 -1.3255 -0.2117 0.4826

Afternoon vs Regular team -0.7564 0.2673 -1.3210 -0.2522 0.4863

Example 31.7: Bayesian Networking Meta-analysis
(View the complete code for this example (bglmmex7.sas) in the example repository.)

Networking meta-analysis (NMA) synthesizes direct and indirect evidence on multiple treatments from a
collection of independent studies or randomized controlled trials (Lee 2014). There are two ways to set up
the model: using the contrast-based NMA method (Dias and Ades 2016) and using the arm-based NMA
method (Lin et al. 2017). In the popular arm-based NMA method, population-averaged treatment-specific
parameters, such as absolute risks, are modeled and estimated. This example demonstrates how to use PROC
BGLIMM to perform arm-based NMA for various types of responses.

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/a-c/bglmmex7.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/
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Arm-Based NMA for Binomial Outcomes

Suppose that there are I studies on K treatments and that each study has a subset of the K treatments. In the
ith study, the numbers of events and trials in treatment group k are denoted by yik and nik . The response yik
is assumed to have a binomial distribution:

yik � Binomial.nik; pik/

ˆ�1.pik/ D �k C 
ik

.
i1; 
i2; : : : ; 
iK/
T
� MVN.0;G/

where �k represents the fixed main effect for treatment k; 
i D .
i1; 
i2; : : : ; 
iK/T are the random effects
that follow a multivariate normal distribution (MVN) with a covariance matrix G and ˆ is the standard
normal cumulative density function that connects the event probability pik and the linear predictor �k C 
ik .
You can also consider other link functions, but they do not have simple expressions for population-averaged
absolute risks.

The absolute risk (event probability) of treatment k can be estimated as

pk D ˆ.�k=
p
1CGk/

where Gk is the kth diagonal element in G. Because this is a marginal expectation of pik given �k and
Gk , you can interpret pk as the population-averaged absolute risk of treatment k. With the estimates pk for
absolute risk, it is often of interest to estimate the risk difference (RD), odds ratio (OR), and risk ratio (RR),
which are defined as follows:

RDkl D pk � pl

ORkl D
pk=.1 � pk/

pl=.1 � pl/

RRkl D pk=pl

Here is an example. The data in the following DATA step contain 24 studies on smoking cessation (Lin et al.
2017). There are four treatments (Treat): no contact (NC), self-help (SH), individual counseling (IC), and
group counseling (GC). Event and Total are the number of events (successful smoking cessation) and the
total number of participants, respectively.

data SmokeData;
input Study Treat $ Event Total;
datalines;

1 NC 9 140
1 IC 23 140
1 GC 10 138
2 SH 11 78
2 IC 12 85
2 GC 29 170
3 NC 79 702

... more lines ...

22 GC 32 127
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23 IC 12 76
23 GC 20 74
24 IC 9 55
24 GC 3 26
;

The following statements fit the model by using arm-based NMA for binomial responses:

proc bglimm data=SmokeData seed=1315 nbi=5000 nmc=100000 thin=10
outpost=CSout;

class Study Treat / order=data;
model Event/Total = Treat / link=probit noint;
random Treat / sub=Study type=cs g monitor=(1 to 2);

run;

The response is the proportion of events as binomial ratios, so the events/trials syntax is used, which in this
example is Event/Total. The fixed effect Treat measures the main effect of each treatment, and the random
effect Treat (clustered at Study) measures the deviation of each treatment’s effect in a study from the main
effect—that is, the overall mean of all studies. Note that the probit link is used to relate the linear predictor
to the event probability. PROC BGLIMM includes many choices of link function, such as the logit and
complementary log-log. The probit link (LINK=PROBIT) is used here both for its easy comparison with the
results from other software packages that allow only the probit link (Lin et al. 2017) and for its closed-form
solution of the absolute risk estimates. The covariance matrix of the random effects is compound symmetry
by the TYPE=CS specification, because compound symmetry is one of the structures that are seen most often
in this kind of meta-analysis. The G option prints the estimated covariance matrix of the random effects. The
MONITOR=(1 TO 2) option prints the estimates of the random effects for the first two studies.

Output 31.7.1 displays the “Posterior Summaries and Intervals” table, which lists the summary statistics
(posterior means, standard deviations, and HPD intervals) for the model parameters.

Output 31.7.1 Posterior Summaries and Intervals for the Smoking Cessation Data

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter Subject N Mean
Standard
Deviation

95%
HPD Interval

Treat NC 10000 -1.5176 0.1226 -1.7591 -1.2791

Treat IC 10000 -1.2293 0.1133 -1.4577 -1.0069

Treat GC 10000 -0.8543 0.2034 -1.2416 -0.4508

Treat SH 10000 -1.1256 0.2012 -1.5248 -0.7407

Random Var 10000 0.2195 0.0776 0.0938 0.3769

Random CS 10000 0.00251 0.0541 -0.0896 0.1125

Treat NC Study 1 10000 -0.00819 0.1915 -0.3673 0.3798

Treat IC Study 1 10000 0.2318 0.1595 -0.0773 0.5498

Treat GC Study 1 10000 -0.5428 0.2349 -1.0060 -0.0921

Treat SH Study 1 10000 0.0267 0.4509 -0.8366 0.9311

Treat NC Study 2 10000 0.00259 0.4413 -0.8924 0.8451

Treat IC Study 2 10000 0.1286 0.1860 -0.2482 0.4802

Treat GC Study 2 10000 -0.0951 0.2211 -0.5425 0.3265

Treat SH Study 2 10000 0.0365 0.2410 -0.4236 0.5243

The fixed effects, labeled “Treat NC”, “Treat IC”, “Treat GC”, and “Treat SH”, measure the main effects of
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the four treatments. “Treat NC” has the smallest value, indicating that the no-contact group has the lowest
probability of quitting smoking in general; “Treat GC” has the largest value, indicating that group counseling
is the best treatment for smoking cessation.

The next two parameters in Output 31.7.1, labeled “Random Var” and “Random CS”, are the two parameters
in the following covariance matrix of random effects. A compound-symmetry covariance matrix has constant
variance and constant covariance.2664

�1 C �
2 �1 �1 �1

�1 �1 C �
2 �1 �1

�1 �1 �1 C �
2 �1

�1 �1 �1 �1 C �
2

3775
The parameters “Random Var” and “Random CS” correspond to �2 and �1, respectively, in the above matrix.
Therefore, the kth diagonal term in G is the sum of “Random Var” and “Random CS”.

You can calculate the absolute risk / event probability by using the equation

pk D ˆ.�k=
p
1CGk/

where Gk is the variance of the kth treatment’s random effect (that is, the kth diagonal element of the
covariance matrix G). You can use a SAS DATA step to obtain the posterior samples of treatment-specific
absolute event probabilities as follows, by using the posterior samples of the model parameters that are saved
in the OUTPOST=CSOUT data set:

data CSoutP;
set CSout;
p_NC = probnorm(Treat_NC/sqrt(1+Random_Var+Random_CS));
p_IC = probnorm(Treat_IC/sqrt(1+Random_Var+Random_CS));
p_GC = probnorm(Treat_GC/sqrt(1+Random_Var+Random_CS));
p_SH = probnorm(Treat_SH/sqrt(1+Random_Var+Random_CS));

run;

Output 31.7.2 plots the estimated posterior density of the absolute event probabilities (p_NC, p_SH, p_IC,
p_GC). The no-contact group clearly has the lowest event probability, and its posterior density overlaps
with the posterior densities of the other three groups only in a very small area. Group counseling offers the
greatest chance to quit smoking; hence it is the best intervention in the study.
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Output 31.7.2 Posterior Distributions of Absolute Event Probabilities

Arm-Based NMA for Continuous Outcomes

You can also perform arm-base NMA in studies that have continuous outcomes. In addition to the same
notation with I studies on K treatments, the total number of participants in treatment group k is denoted by
nik , sample mean Nyik , and sample variance s2

ik
:

Nyik � Normal.�ik; s
2
ik=nik/

�ik D ˇk C 
ik

.
i1; 
i2; : : : ; 
iK/
T
� MVN.0;G/

In this setup, ˇk is of interest because it is the overall effect of treatment k, EŒ�ikjˇk; �k� D ˇk , and you
can estimate the effect difference between treatments k and l, which is defined as Dkl D ˇk � ˇl .

In this example, the data contain seven studies that have a continuous outcome, which is the mean off-time
reduction in patients who are given dopamine agonists as adjunct therapy for Parkinson’s disease (Lin et al.
2017). There are five treatments (Trt): placebo (coded 1) is listed first and the other four treatments are active
drugs (coded 2 to 5). The data set is as follows:

data Parkinson;
input Sid Trt Mean SD Nstudy;
datalines;

1 1 -1.22 3.70 54
1 3 -1.53 4.28 95
2 1 -0.70 3.70 172
2 2 -2.40 3.40 173
3 1 -0.30 4.40 76
3 2 -2.60 4.30 71
3 4 -1.20 4.30 81
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4 3 -0.24 3.00 128
4 4 -0.59 3.00 72
5 3 -0.73 3.00 80
5 4 -0.18 3.00 46
6 4 -2.20 2.31 137
6 5 -2.50 2.18 131
7 4 -1.80 2.48 154
7 5 -2.10 2.99 143
;

In the data, Mean and SD represent the sample mean and sample standard deviation, respectively, of the
continuous outcome for each treatment in the study.

To fit the model shown in the preceding equations, you use a DATA step as follows in order to obtain the
sample variance for each treatment in the study:

data Parkinson2;
set Parkinson;
SVar= SD*SD/Nstudy;
run;

Then you can use the SCALE= option as follows to specify the variance variable so that PROC BGLIMM
reads in that variable and holds the variance of each response at a fixed value:

proc bglimm data=Parkinson2 seed=1315 nmc=50000 thin=10 outpost=PostSamples;
class Trt Sid / order=internal;
model mean = Trt / noint scale=SVar cprior=normal;
random Trt / sub=Sid type=cs monitor=(1 to 2);

run;

The results are shown in Output 31.7.3 along with the posterior summary statistics for the model parameters.
The variance parameter is not displayed in this table, because it is fixed at a known value for each treatment
in the study.
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Output 31.7.3 Posterior Summaries and Intervals for Parkinson’s Data

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter Subject N Mean
Standard
Deviation

95%
HPD Interval

Trt 1 5000 -0.7224 0.5926 -1.7988 0.5667

Trt 2 5000 -2.5525 0.6816 -3.9816 -1.2508

Trt 3 5000 -1.0800 0.5894 -2.3027 0.0715

Trt 4 5000 -1.3227 0.5020 -2.3581 -0.3296

Trt 5 5000 -1.8498 0.6726 -3.2085 -0.4942

Random Var 5000 0.3266 0.5261 0.000198 1.2168

Random CS 5000 1.1006 1.9663 -0.2783 3.7573

Trt 1 Sid 1 5000 -0.3863 0.6130 -1.6470 0.8055

Trt 2 Sid 1 5000 -0.2869 0.8083 -1.9034 1.3898

Trt 3 Sid 1 5000 -0.3883 0.6099 -1.5535 0.9171

Trt 4 Sid 1 5000 -0.2811 0.8171 -1.9340 1.4125

Trt 5 Sid 1 5000 -0.2900 0.7904 -1.8455 1.3164

Trt 1 Sid 2 5000 0.0496 0.6013 -1.1535 1.2659

Trt 2 Sid 2 5000 0.1269 0.6702 -1.3069 1.3822

Trt 3 Sid 2 5000 0.0704 0.7808 -1.5111 1.6367

Trt 4 Sid 2 5000 0.0845 0.7986 -1.5658 1.6240

Trt 5 Sid 2 5000 0.0744 0.8048 -1.5636 1.5804

Output 31.7.4 displays the 95% credible interval of each treatment effect. The interval lines for treatment 1
(placebo) and treatment 2 (drug 1) have very little overlap, showing that these two treatments have different
effects on the outcome. The other three drugs do not have much difference from the placebo.

Output 31.7.4 Treatment-Specific Effects
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One quantity of interest is the overall effect difference of each drug compared to the placebo, controlling for
the random effects. You can estimate the effect difference between each drug and the placebo conveniently
by using the ESTIMATE statement as follows:

proc bglimm data=Parkinson2 seed=1315 nmc=50000 thin=10 outpost=PostSamples;
class Trt Sid / order=internal;
model mean = Trt / noint scale=SVar cprior=normal;
random Trt / sub=Sid type=cs monitor=(1 to 2);
estimate "Placebo_Drug2" Trt -1 1 0 0 0 / e;
estimate "Placebo_Drug3" Trt -1 0 1 0 0 / e;
estimate "Placebo_Drug4" Trt -1 0 0 1 0 / e;
estimate "Placebo_Drug5" Trt -1 0 0 0 1 / e;

run;

Output 31.7.5 shows the results from the four ESTIMATE statements for comparison between each drug
(coded 2 to 5) and the placebo.

Output 31.7.5 Effect Difference between Each Drug and Placebo

Results from ESTIMATE Statements

Label Mean
Standard
Deviation

95%
HPD Interval

Placebo_Drug2 -1.8301 0.6191 -3.0728 -0.5609

Placebo_Drug3 -0.3576 0.6523 -1.6176 1.0036

Placebo_Drug4 -0.6002 0.6022 -1.7390 0.6686

Placebo_Drug5 -1.1273 0.7608 -2.6869 0.3665

Output 31.7.6 displays the credible interval of the effect difference for each drug compared to the placebo.
The interval line for the effect difference between the placebo and drug 2 does not intersect with the vertical
line at 0, implying that these two treatments have different effects on the outcome and that drug 2 leads to
smaller off-time reduction than the placebo. The other three drugs do not differ much from the placebo. This
confirms what is shown in Output 31.7.4.
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Output 31.7.6 Effect Difference between Each Drug and Placebo

Example 31.8: Power Prior
(View the complete code for this example (bglmmex8.sas) in the example repository.)

Informative priors express specific information about parameters in a model. Although they often demonstrate
the power of Bayesian analysis—in combining multiple sources of information—they are also a source of
controversy, because analysts often view such priors as too personal and disagree with what it means to be
informative. The power prior (Ibrahim and Chen 2000), which is a type of informative prior, is intended to be
an automatic way to construct an informative prior that does not rely heavily on personal opinion: the power
prior translates information from a data set, which can be a historical or previously observed data set, into
distributional information about parameters that you can use for the analysis. For a detailed discussion on the
theory and practice of the power prior, see Ibrahim et al. (2015). The power prior has long been seen as a
useful class of informative priors for a variety of situations in which historical data are available.

The idea of the power prior is as follows. Suppose you want to infer on the parameter � by using a data set D,
and you want to construct a prior distribution. Further suppose you have another data set, a historical data set
D0, that provides certain information about the parameter � . For example, D0 could come from an early
data collection procedure that provides similar information about � . The power prior enables you to use the
D0 data set to construct a prior on � that you can use to analyze D.

In addition to the D0 data set, the power prior requires the specification of a scalar parameter a0 that takes a
value between 0 and 1. The prior has the formulation

�.�jD0; a0/ / L.�jD0/
a0�0.�/

where L is the likelihood function of the historical data set. The form of the power prior is similar to the
form of a typical Bayesian analysis, where the posterior is the product of the likelihood function and a

https://github.com/sassoftware/doc-supplement-statug/tree/main/Examples/a-c/bglmmex8.sas
https://github.com/sassoftware/doc-supplement-statug/tree/main/
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(noninformative) prior distribution, referred to as �0.�/. The difference is that for the power prior, the
likelihood function is weighted by the parameter a0, where 0 � a0 � 1. In this way, a weighted posterior
distribution based on D0 can now be used as a prior distribution for the current analysis that uses D. The
corresponding posterior distribution is given by

�.�jD;D0; a0/ / L.�jD/L.�jD0/
a0�0.�/

The following example demonstrates how to conduct a Bayesian analysis with a power prior for the benchmark
approach that is a useful tool in toxicology. A benchmark dose (BMD) is defined as the dose of an
environmental toxicant that corresponds to a prescribed change in response compared with the background
response level.

The toxicological data consist of n binomial responses y D .y1; : : : ; yn/, where yi � binomial.ni ; pi /, and
where ni is the number of animals tested and pi is the probability that an animal gives an adverse response at
dose level xi :

pi D
exp.ˇ0 C ˇ1xi /

1C exp.ˇ0 C ˇ1xi /
; i D 1; : : : ; n

This example uses two data sets. The first data set is from the Kociba study (Kociba et al. 1978), which is a
lifetime feeding study of female and male Sprague Dawley rats. In this study, rats were placed in groups and
tested at doses of 0, 1, 10, and 100 ng/kg/day of the drug tetrachlorodibenzodioxin (TCDD). The dosing was
carried out by oral gavage, because the majority of human exposure to TCDD is oral. Inferences that were
derived from the Kociba study had been used as the basis for risk assessments of the drug. The second data
set is from the 1982 National Toxicology Program (NTP), a study in which groups of about 50 male rats, 50
female rats, and 50 male mice received TCDD as a suspension in 9:1 corn oil–acetone by gavage twice a
week for two years. These are similar but not identical studies that can both provide information about how
TCDD can increase the probability of adverse responses. Here, the Kociba data set is treated as a historical
data set that provides information used in constructing a prior distribution for the NTP analysis.

data Kociba;
input y n Dose;

datalines;
9 86 0
3 50 1
18 50 10
34 48 100
;

data NTP;
input y n Dose;

datalines;
5 75 0
1 49 1.4
3 50 7.1
12 49 71
;

First, you can run a separate analysis of each data set and compare posterior estimates of the regression
parameters to get a sense of how the data sets differ from each other:



Example 31.8: Power Prior F 1413

proc bglimm data=Kociba seed=1181 nmc=10000;
model y/n = Dose;

run;

proc bglimm data=NTP seed=1181 nmc=10000;
model y/n = Dose;

run;

In the preceding code, PROC BGLIMM performs a logistic regression on each data set. The default flat
priors are used for both the intercept ˇ0 and the slope ˇ1 of the variable Dose. The results are shown in
Output 31.8.1 and Output 31.8.2, respectively, along with the posterior summary statistics for the two separate
analyses. The posterior means of the slope parameter (Dose) are very similar in the two data sets, whereas
the posterior means of the intercept are quite different.

Output 31.8.1 Posterior Summaries and Intervals for the Kociba Data

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Intercept 10000 -1.7828 0.2077 -2.1883 -1.3816

Dose 10000 0.0278 0.00394 0.0197 0.0351

Output 31.8.2 Posterior Summaries and Intervals for the NTP Data

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Intercept 10000 -3.0349 0.3761 -3.7461 -2.2948

Dose 10000 0.0264 0.00706 0.0142 0.0421

Output 31.8.3 displays the scatter plot of the joint posterior of the intercept and the Dose slope from the two
data sets. The cluster of blue crosses is from the Kociba analysis, and the cluster of red circles is from the
NTP analysis. You can see that the two posterior distributions are similar in their growth, or slope, estimates
(Y axis) but different in their intercept estimates (X axis); this is consistent with the posterior summary
statistics shown earlier.
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Output 31.8.3 Joint Posterior Distributions from Two Separate Analyses

One purpose of the analysis is to predict the probability that an animal gives an adverse response at a dose
level. For any dose value, the probability of an event can be computed using the logistic function of the linear
predictor, ˇ0 C ˇ1xi . To predict the probability of an adverse response given a specific dose level (x), the
estimates of the two regression parameters, . Ǒ0; Ǒ1/, are plugged in as follows:

Op.x/ D
exp. Ǒ0 C Ǒ1x/

1C exp. Ǒ0 C Ǒ1x/

The predictive curves, from the two separate analyses, of the probability of reporting an adverse response for
dose levels in the range of 0 to 100 are shown in Output 31.8.4.
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Output 31.8.4 Predictive Curves from Two Separate Analyses

The solid blue line is the predictive curve for the Kociba analysis, and the dashed red line is the predictive
curve for the NTP analysis; the round blue points represent the four observations in the Kociba data, and the
diamond-shaped red points refer to the four observations in the NTP data. The predicted probability of an
adverse response at any dose level seems to be different between these two studies.

Because the historical data are available, it is natural to incorporate these data into the comparison study by
using the power prior to control the influence of the historical data on this study and to construct a suitable
informative prior distribution on the model parameters. To use the power prior, you can use the Kociba study
to construct the prior, and the posterior distribution of the analysis has the following form:

p.� jD;D0; a0/ /

nCn0Y
iD1

fi .yi j�; xi / � �0.�/

where fi D
�
f .yi j�; xi / for each i in the current data set; i D 1; : : : ; n
f .y0;i j�; x0;i /

a0 for each i in the historical data set; i D 1; : : : ; n0

where n is the sample size of the current data and n0 is the sample size of the historical data. The form
of the posterior distribution suggests that fitting the power prior is equivalent to combining two data sets.
The posterior distribution is very much like a combined analysis that uses all data, albeit weighting those
observations in D0 with a0.

The following DATA step merges the two data sets, creates a frequency variable a0, and assigns 1 for
observations in the NTP data set and 0.3 for observations in the Kociba data set:
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data Combined;
set Kociba(in=i) NTP;
a0 = 1;
if i then a0 = 0.3;
run;

Now you can use the Combined data set in PROC BGLIMM and perform a power prior analysis by using the
FREQ statement:

proc bglimm data=Combined seed=1181 nmc=10000;
model y/n = Dose;
freq a0 / notrunc;

run;

The FREQ statement assigns a frequency to each observation according to the a0 value: 0.3 to those in
the Kociba data and 1 to those in the NTP data. The NOTRUNC option specifies that frequency values not
be truncated to integers, to ensure that observations are properly weighted according to the power prior
specification. By default, the frequency value would be truncated to an integer for any noninteger values,
which is not what you want here, so the NOTRUNC option is needed.

The results are shown in Output 31.8.5 with the posterior summary statistics for the model parameters in the
combined analysis that uses the power prior. The posterior mean of the intercept is between the posterior
means of the intercept from the previous two separate analyses, as shown in Output 31.8.1 and Output 31.8.2,
because the analysis of the current data incorporates some information from the historical data.

Output 31.8.5 Posterior Summaries and Intervals Using the Power Prior

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Intercept 10000 -2.6657 0.2654 -3.1773 -2.1574

Dose 10000 0.0275 0.00476 0.0188 0.0376

Output 31.8.6 displays the scatter plot of the posterior samples of the intercept and Dose slope coefficient
from the combined analysis that uses the power prior (green), compared with the two previous separate
analyses (blue and red). The combined analysis gives results that are between those from the two separate
analyses; this is consistent with the findings in the posterior summary statistics shown previously.
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Output 31.8.6 Posterior Distributions Using a Power Prior

Output 31.8.7 displays the predictive curve of the adverse event probability from the joint data analysis that
uses the power prior, in addition to the two predictive curves of the event probability from the two separate
analyses. Similarly, the combined analysis that uses the power prior moves the current data closer to the
historical data.
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Output 31.8.7 Predictive Curves Using a Power Prior

In the previous analysis, the selection of a0 D 0:3 is arbitrary. In practice, you need to get a sense of what a
proper level of borrowing from the historical data should be. The question is then how to select a proper a0
value in a systematic way. Although it is possible to treat a0 as a parameter (Neuenschwander, Branson, and
Spiegelhalter 2009), the formulation requires a normalizing constant in the power prior, which can sometimes
be challenging to compute. A viable alternative is to rely on a model-selection criterion, such as the deviance
information criterion (DIC) (Ibrahim et al. 2015), to choose an optimal value of a0. This can be achieved by
repeating a power prior analysis by using different values of a0 (for example, gridded values from 0 to 1) and
by selecting the a0 that produces the lowest DIC value. You can use the BY statement in PROC BGLIMM in
this case: each BY group consists of the combined data set that has a different value of a0 for the historical
portion of the data. The following DATA step makes many copies of the combined data, with a0 taking the
values 0; 0:1; 0:2; 0:3; : : : ; 0:9; 1 for the Kociba data set and taking the value 1 for the NTP data set. Then,
the observations in the new SAS data set CombinedBy are sorted according to the val variable. All models
can be run in PROC BGLIMM sequentially via the BY statement, which offers a convenient way to perform
separate and independent analyses.

data CombinedBy;
set Kociba(in=i) NTP;
do val = 0 to 1 by 0.1;

a0 = 1;
dicIdx = 1;
if i then do;

a0 = val;
dicIdx = 0;
end;

output;
end;
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proc sort;
by val;

run;

ods output dic = dic0;
proc bglimm data=CombinedBy seed=1181 nmc=10000 dic(include=dicIdx);

model y/n = Dose;
freq a0 / notrunc;
by val;

run;

The BY statement repeats the power prior analysis according to unique values in the val variable. The DIC
option requests the DIC calculation for each BY group. However, you cannot use the default DIC option here,
because it leads to incorrect results. The reason is that the deviance in the DIC method (Spiegelhalter et al.
2002) depends only on the likelihood of the current data, which are from the NTP data set. Here, by default,
PROC BGLIMM computes the DIC by using observations from both the NTP and Kociba data sets. Instead,
specify the INCLUDE=DICIDX suboption in the DIC option to indicate which observations to include in the
DIC calculation. This suboption specifies the DIC computation, including the observations for which the
value of dicIdx is 1 (the NTP data) and excluding the observations for which the value of dicIdx value is 0
(the Kociba data). This way, the DIC values that PROC BGLIMM returns are correct.

Output 31.8.8 plots the DIC values together with their corresponding a0 values. DIC reaches its minimum
when a0 is 0.1, suggesting that 0.1 might be an optimal choice for the prior weight. A small value of a0
corresponds to a small amount of borrowing from the historical data set. This intuitively agrees with the
early results: the joint posterior distributions (of beta0 and beta1) from the two independent analyses are
well separated, indicating that the two data sets might contain very different information about the model
parameters. Hence, you might not want to borrow too much information from the historical data set.

Output 31.8.8 DIC Values with Different Prior Weights
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Next, the power prior analysis is conducted with a0 D 0:1. The DATA step assigns a0 D 0:1 to the
observations in the Kociba data set and a0 D 1 to those in the NTP data set, as follows:

data Combined;
set Kociba(in=i) NTP;
a0 = 1;
if i then a0 = 0.1;
run;

proc bglimm data=Combined seed=1181 nmc=10000;
model y/n = Dose;
freq a0 / notrunc;

run;

The posterior summary statistics for the model parameters are shown in Output 31.8.9. The posterior mean
of the intercept is a little farther away from the posterior mean of the intercept from the analysis that uses
only the Kociba data than the posterior mean of the intercept in the previous power prior analysis in which
a0 D 0:3 (Output 31.8.5), because this analysis incorporates less information from the historical data in
which a0 D 0:1.

Output 31.8.9 Posterior Summaries and Intervals Using the Power Prior (a0 D 0:1)

The BGLIMM Procedure

Posterior Summaries and Intervals

Parameter N Mean
Standard
Deviation

95%
HPD Interval

Intercept 10000 -2.8936 0.3372 -3.5207 -2.2265

Dose 10000 0.0272 0.00605 0.0165 0.0402

The power prior is a useful class of informative priors when you want to use information that is contained
in separate data sets. The FREQ statement and the INCLUDE= suboption in the DIC option give you a
convenient way to perform the power prior analysis and select the a0 weight. You can use them in all models
that PROC BGLIMM supports. If you want to borrow information from multiple historical data sets, you can
assign different a0 values to the different data sets, or you can conduct a gridded DIC search over a larger
combination of a0 values to identify the optimal a0 value for the level of information borrowing from the
historical data, as this example demonstrates.
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