
SAS® 9.4 Programmer’s
Guide: Essentials

SAS® Documentation
August 8, 2024

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2019. SAS® 9.4 Programmer’s Guide: Essentials. Cary, NC:
SAS Institute Inc.

SAS® 9.4 Programmer’s Guide: Essentials

Copyright © 2019, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire
this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal
and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of
copyrighted materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only
those set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

August 2024

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P3:lepg

Contents

About This Book . xi

PART 1 Introduction 1

Chapter 1 / The SAS Language . 3
About the SAS System . 3
Definition of Base SAS Software . 4
Components of Base SAS Software . 4
Base SAS Language Definitions . 5
Anatomy of a SAS Program . 10
Ways to Submit SAS Programs . 12
Customizing Your SAS Session . 14
Scope of This Book . 15
Operating Environment Information . 15
Using This Book . 16

Chapter 2 / SAS Processing . 17
Definition of SAS Processing . 17
Types of Input to a SAS Program . 18
The DATA Step . 20
The PROC Step . 21
SAS Processing Restrictions for Servers in a Locked-Down State 22

Chapter 3 / DATA Step Processing . 25
Why Use a DATA Step? . 25
About Creating a SAS Data Set with a DATA Step . 26
Reading Raw Data: Examples . 27
Reading Data from SAS Data Sets . 33
Generating Data from Programming Statements . 34
DATA Step Processing Time . 35
Stored Compiled DATA Step Programs . 37

PART 2 Syntax 39

Chapter 4 / Words and Names . 41
SAS Words . 42
SAS Names . 44

SAS Name Literals . 49
Variable Names . 51
Member Names . 54
Data Set Names . 56
Examples: SAS Words and Names . 63

Chapter 5 / Variables . 75
Definition of SAS Variables . 77
Ways to Create Variables . 77
Creating a New Variable in a Formatted INPUT Statement . 79
Manage Variables . 80
Variable Attributes . 88
Data Types . 91
Variable Type Conversions . 94
Automatic Variables . 96
SAS Variable Lists . 99
Missing Variable Values . 102
Numeric Precision . 107
Examples: Create and Modify SAS Variables . 121
Examples: Control Output of Variables . 130
Examples: Reorder and Align Variables . 133
Examples: Convert Variable Types . 141
Examples: Use Automatic Variables . 145
Examples: Use Variable Lists . 148
Examples: Manage Missing Variable Values . 153
Examples: Manage Problems Related to Precision . 157
Examples: Encrypt Variable Values . 172

Chapter 6 / Data Types . 179
Data Types in SAS . 179
Data Types in SAS Viya . 179

Chapter 7 / SAS Expressions . 191
SAS Expressions . 191
SAS Constants in Expressions . 192
SAS Variables in Expressions . 193
SAS Functions in Expressions . 193
SAS Operators in Expressions . 193

Chapter 8 / SAS Constants . 195
SAS Constants in Expressions . 195
Examples: Expressions and Constants . 203

Chapter 9 / Operators . 215
SAS Operators . 215
Summary of Ways to Use Operators . 229
Examples: Operators . 231

Chapter 10 / Dates and Times . 241
Dates, Times, and Intervals . 241

iv Contents

Chapter 11 / Component Objects . 243
DATA Step Component Objects . 243

PART 3 Accessing Data 245

Chapter 12 / SAS Libraries . 247
Definitions for SAS Libraries . 248
Elements of a Library Assignment . 250
Library Concatenation . 255
SAS Default Libraries . 256
Examples: Access Data by Using a Libref . 259
Examples: Access Data without Using a Libref . 272
Examples: View Information about a Library . 278
Examples: Manage SAS Libraries . 282

Chapter 13 / SAS Engines . 289
Definitions for SAS Engines . 289
How Engines Work with Files . 290
Engine Characteristics . 292
Examples: Use a SAS Engine to Process SAS Data . 298
Examples: Use a SAS Engine to Process External Data . 308

Chapter 14 / SAS Data Sets . 321
Definitions for SAS Data Sets . 322
Managing SAS Data Sets . 323
Generation Data Sets . 329
Examples: Create and Read SAS Data Sets . 329
Examples: Control Variables and Observations in Data Sets . 337
Examples: View Descriptor and Sort Information for Data Sets 346

Chapter 15 / Raw Data . 353
Definitions for Raw Data . 353
Reading Raw Data . 354
Definitions for External Files . 369
Reading External Files . 370
Examples: Read External Files Using PROC IMPORT . 378

Chapter 16 / Database and PC Files . 385
Definition of SAS/ACCESS Software . 385
Dynamic LIBNAME Engine . 386
SQL Procedure Pass-Through Facility . 387
ACCESS Procedure and Interface View Engine . 389
DBLOAD Procedure . 390
Interface DATA Step Engine . 390

Chapter 17 / SAS Views . 393
Definitions for SAS Views . 393

Chapter 18 / SAS Dictionary Tables . 395
Definition of a DICTIONARY Table . 395

Contents v

How to View DICTIONARY Tables . 396

PART 4 Manipulating Data 401

Chapter 19 / Grouping Data . 403
Definitions for BY-Group Processing . 404
Syntax . 405
Understanding BY Groups . 405
Invoking BY-Group Processing . 408
Determining Whether the Data Requires Preprocessing for BY-

Group Processing . 409
Preprocessing Input Data for BY-Group Processing . 409
FIRST. and LAST. DATA Step Variables . 410
Processing BY-Groups in the DATA Step . 415

Chapter 20 / Loops and Conditionals . 421
Definitions for Loops and Conditionals . 422
Summary of Statements for Conditional Processing in SAS . 423
DO Loops . 425
WHERE Expressions . 428
IF Statements . 444
SELECT WHEN Statement . 446
Other Control Flow Statements . 447
Examples: DO Loops . 449
Examples: WHERE Processing . 457
Examples: IF Statements . 464
Example: SELECT WHEN Statement . 467
Example: Data Set Options . 469

Chapter 21 / Combining Data . 473
Overview of Combining Data . 474
Comparing Methods . 488
Examples: Prepare Data . 495
Examples: Concatenate Data . 510
Examples: Interleave Data . 518
Examples: Match-Merge Data . 525
Examples: Merge Data One-to-One . 542
Examples: Combine Data One-to-One . 550
Example: Merge Data Using a Hash Table . 552
Examples: Update Data . 556
Example: Modify Data . 563

Chapter 22 / Using Indexes . 571
Indexes in SAS . 571

Chapter 23 / Using Arrays . 573
Definitions for Array Processing . 574
Rules for Referencing Arrays . 575
A Conceptual View of Arrays . 576

vi Contents

Syntax for Defining and Referencing an Array . 577
Processing Simple Arrays . 578
Variations on Basic Array Processing . 583
Multidimensional Arrays: Creating and Processing . 584
Specifying Array Bounds . 587
Examples . 590

Chapter 24 / Debugging Errors . 595
Definitions of Error Types in SAS . 595
Error Processing in SAS . 606
Error Checking When Using Indexes to Randomly Access or Update Data 615
Examples . 625

Chapter 25 / Optimizing System Performance . 635
Definitions for Optimizing System Performance . 636
Collecting and Interpreting Performance Statistics . 636
Techniques for Optimizing I/O . 638
Techniques for Optimizing Memory Usage . 646
Techniques for Optimizing CPU Performance . 647
Calculating Data Set Size . 649

Chapter 26 / Using Parallel Processing . 651
Overview . 651
What Is Threading Technology in SAS? . 652
How Is Threading Controlled in SAS? . 653
Threading in Base SAS . 654
SAS/ACCESS Engines . 657
SAS Scalable Performance Data Server . 657
SAS Intelligence Platform . 658
SAS High-Performance Analytics Portfolio of Products . 659
SAS Grid Manager . 660
SAS In-Database Technology . 661
SAS In-Memory Analytics Technology . 661
SAS High-Performance Analytics Product Integration . 663
SAS Viya . 665

PART 5 Creating Output 667

Chapter 27 / Output . 669
Definitions for SAS Output . 670
Default Output Destination . 671
Change the Output Destination . 672
Customize Output . 674
The SAS Log . 677
Examples: Manage Output Destinations . 686
Examples: Rolling Over the SAS Log . 688
Examples: Suppress Output to the SAS Log . 692

Contents vii

Chapter 28 / Printing . 697
Universal Printing . 697

PART 6 Managing Files 699

Chapter 29 / Protecting Files . 701
Definition of a Password . 702
Assigning Passwords . 703
Removing or Changing Passwords . 705
Using Password-Protected SAS Files in DATA and PROC Steps 705
How SAS Handles Incorrect Passwords . 706
Assigning Complete Protection with the PW= Data Set Option 707
Encoded Passwords . 708
Using Passwords with Views . 708
SAS Data File Encryption . 711
Blotting Passwords and Encryption Key Values . 716
Metadata-Bound Libraries . 718

Chapter 30 / Repairing SAS Files . 719
Repairing Damage to SAS Data Sets and Catalogs . 719
Examples . 724

Chapter 31 / Compressing SAS Data Sets . 733
Compression in SAS . 733

Chapter 32 / Moving SAS Files . 735
Moving Files between Operating Environments . 735

Chapter 33 / Cross-Environment Data Access . 737
Definitions for Cross-Environment Data Access (CEDA) . 737
Advantages of CEDA . 738
SAS File Processing with CEDA . 739
Alternatives to Using CEDA . 744
Examples: CEDA . 745

Chapter 34 / Managing SAS Catalogs . 757
Definition of a SAS Catalog . 757

PART 7 SAS System Features 759

Chapter 35 / The SAS Registry . 761
Introduction to the SAS Registry . 761
Managing the SAS Registry . 765
Configuring Your Registry . 776

Chapter 36 / The SAS Windowing Environment . 781
What Is the SAS Windowing Environment? . 782

viii Contents

Main Windows in the SAS Windowing Environment . 782
Navigating in the SAS Windowing Environment . 792
Getting Help in SAS . 797
List of SAS Windows and Window Commands . 799
Introduction to Managing Your Data in the SAS Windowing Environment 804
Managing Data with SAS Explorer . 804
Working with VIEWTABLE . 809
Subsetting Data By Using the WHERE Expression . 820
Exporting a Subset of Data . 824
Importing Data into a Table . 827

Chapter 37 / Cloud Analytic Services . 831
What is SAS Cloud Analytic Services? . 831
What Does This Mean for the SAS 9 Programmer? . 831
SAS Language Elements for CAS . 832
CAS-specific Language Elements . 834

Chapter 38 / Industry Protocols Used in SAS . 835
SAS Language Elements That Control SMTP E-Mail . 836
How the SMTP e-Mail Interface Authenticates Users . 838
Universally Unique Identifiers and the Object Spawner . 838
Using SAS Language Elements to Assign UUIDs . 841
Overview of IPv6 . 842
IPv6 Address Format . 843
Examples of IPv6 Addresses . 843
Fully Qualified Domain Names (FQDN) . 844

PART 8 Appendixes 847

Appendix 1 / Data Sets Used in Examples . 849
Data Sets Used in Examples . 850
Description of Column-Binary Data Storage . 860

Appendix 2 / Understanding How the DATA Step Works . 863
How the DATA Step Processes Data . 863
Processing a DATA Step: A Walk-Through . 866
More About DATA Step Execution . 871

Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option 879
Updating Data Using the MODIFY Statement and the KEY= Option 879

Contents ix

x Contents

About This Book

Audience
This document is appropriate for all users of the Base SAS programming language.
New users can run examples to quickly demonstrate each feature. Experienced
users can refer to the associated concepts topics for advanced details.

Syntax and Other References
The scope of this document includes features that are common to most SAS
engines. Features that are specific to an engine are covered in the engine document.
For example, features such as integrity constraints and catalogs are documented in
SAS V9 LIBNAME Engine: Reference. For links to the engine documents, see
“Summary of SAS Engines” on page 292.

For a summary of SAS programming interfaces, see “Ways to Submit SAS
Programs” on page 12.

This document covers the common concepts for Base SAS syntax. See also these
reference books:

n Base SAS Procedures Guide

n SAS Data Set Options: Reference

n SAS Formats and Informats: Reference

n SAS Functions and CALL Routines: Reference

n SAS DATA Step Statements: Reference

n SAS Global Statements: Reference

n SAS System Options: Reference

xi

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

xii About This Book

PART 1

Introduction

Chapter 1
The SAS Language . 3

Chapter 2
SAS Processing . 17

Chapter 3
DATA Step Processing . 25

1

2

1
The SAS Language

About the SAS System . 3

Definition of Base SAS Software . 4

Components of Base SAS Software . 4

Base SAS Language Definitions . 5
SAS Files . 5
External Files . 6
Database Management System Files . 6
SAS Language Elements . 7
Global Statements . 8
SAS Macro Facility . 8
SAS Engines . 8
Additional Languages . 9

Anatomy of a SAS Program . 10

Ways to Submit SAS Programs . 12

Customizing Your SAS Session . 14

Scope of This Book . 15

Operating Environment Information . 15

Using This Book . 16

About the SAS System
The SAS System is an advanced analytical environment that enables you to access,
explore, prepare, analyze, present, and share data. With SAS, you can access and
analyze data from almost any data source and create high-quality graphics and
reports that can be distributed in a variety of formats. You can also export the
results to other systems. You can access, analyze, create, and store your data where
it makes the most sense for your needs: on disk, in a database, or in the cloud.

The SAS System is the primary programming environment in the SAS 9.4 software
product and industry-specific solutions from SAS.

3

In SAS Viya products, the SAS System is one of several programming environments.
The SAS System is an addition to the action-based cloud analytic programming
environment named SAS Cloud Analytic Services (CAS). The SAS System is also a
client of the CAS server. Using the CAS engine provided with SAS Viya, you can
connect to the CAS server and use Base SAS language statements to read and
manipulate data from a CAS session in your SAS session. In addition, you can load
data from a SAS session to a CAS session. However, you cannot submit CAS
actions to a CAS server with the Base SAS language.

Definition of Base SAS Software
In this book, the term Base SAS software represents the minimum functionality that
is available with the SAS System. Base SAS software provides a powerful
programming environment for performing such tasks as these:

n data entry, retrieval, and management

n statistical and mathematical analysis

n report writing and graphics

n applications development

Components of Base SAS Software
DATA step

a programming language that you use to create, manipulate, and manage your
data.

SAS procedures
software tools for data analysis and reporting.

SAS global statements
statements that perform an operation that gives information to SAS and can be
used anywhere in SAS.

macro facility
a tool for extending and customizing SAS software programs and for reducing
text in your programs.

DATA step debugger
a programming tool that helps you find logic problems in DATA step programs.

Output Delivery System (ODS)
a system that delivers output in a variety of easy-to-access formats, such as
SAS data sets, Hypertext Markup Language (HTML), and Portable Document
Format (PDF).

4 Chapter 1 / The SAS Language

a choice of user interfaces
SAS offers batch, interactive command-line, desktop, and web-based graphical
user interfaces to enable you to easily write, run, and test your SAS programs.

a choice of engines
engines enable you to create SAS data sets and to read and write selected
external files.

additional languages
Base SAS software includes a set of languages that augment the functionality
provided by the preceding components. These languages include a fully
integrated proprietary Structured Query Language (SQL) query facility named
SAS SQL, an ANSI standard SQL query language named FedSQL, and a language
for advanced data manipulation named DS2. The FedSQL and DS2 languages
are partially integrated with Base SAS language.

Base SAS Language Definitions

SAS Files
When you work with the Base SAS language, you use files that are created and
maintained by SAS, as well as files that are created and maintained by other
systems that are not related to SAS.

Files that are created and maintained by SAS are referred to as SAS files. Table 1.1
summarizes the key SAS file types.

Table 1.1 Summary of SAS File Types

File Type Description

SAS data set a set of variables and observations that are stored as a
unit. A SAS data set is similar to a relational table, which
consists of columns and rows, except a SAS data set
stores descriptive information about the variables and
observations in addition to the data.

SAS view a virtual data set that extracts data values from other files
in order to provide a customized and dynamic
representation of the data.

There are two types of views:

DATA step view
is a stored DATA step program.

Base SAS Language Definitions 5

File Type Description

PROC SQL view
is a stored query expression that is created in PROC SQL.

SAS catalog a file that stores many different types of information that
are used in a SAS job. Examples include instructions for
reading and printing data values, or function key settings
for SAS user interfaces.

SAS stored program a type of SAS file that contains compiled code that you
create and save for repeated use.

item store file pieces of information that can be accessed independently.
The contents of an item store are organized in a directory
tree structure, which is similar to the directory structures
that are used by UNIX System Services or by Windows.
For example, a particular value might be stored and
located using a directory path (root_dir/sub_dir/value).
The SAS Registry is an example of an item store.

The most commonly used SAS file is the SAS data set. In most cases, the
functionality that is available for a SAS data set is available for a SAS view.

External Files
Data files that you use to read and write data, but which are in a structure unknown
to SAS, are called external files. External files can store any of the following:

n data that has not been processed by SAS

n SAS procedure output

n SAS programming statements

Database Management System Files
SAS software can read and write data to and from other vendors' proprietary
software, such as many common database management system (DBMS) files.
Requirement: You must license the SAS/ACCESS software for the DBMS and
operating environment in addition to Base SAS software.

6 Chapter 1 / The SAS Language

SAS Language Elements
The SAS language consists of statements, expressions, options, formats, and
functions similar to many other programming languages. In SAS, however, you use
these elements within one of two groups of SAS statements:

n DATA steps

n PROC steps

A DATA step consists of a group of statements in the SAS language that create or
manipulate SAS data sets. It is called a DATA step because every step begins with a
DATA statement. The following figure shows how a DATA step creates a SAS data
set in its simplest form:

Figure 1.1 High-Level View of the SAS DATA Step

You typically use a DATA step to read data from an input source, process it, and
create a SAS data set. In addition, you can perform the following tasks:

n compute the values for new variables

n check for and correct errors in your data

n produce new SAS data sets by subsetting, merging, and updating existing data
sets

A wide variety of statements are permissible in a DATA step.

Once your data is accessible as a SAS data set, you can analyze the data and write
reports by using SAS procedures. The following figure shows how a PROC step can
be used to operate on a SAS data set in its simplest form:

Figure 1.2 High-Level View of the PROC Step

Base SAS Language Definitions 7

A group of procedure statements is called a PROC step. Every PROC step begins
with a statement whose name begins with the word PROC and is followed by a
keyword that describes the purpose of the procedure. Using a PROC step, you can
perform simple tasks such as sorting data in a data set (PROC SORT) and printing a
data set (PROC PRINT). In addition, you can analyze data in SAS data sets to
produce statistics, tables, reports, charts, and plots; create SQL queries; and
perform other analyses and operations on your data.

A procedure has a defined set of required and optional statements.

Global Statements
Global statements are SAS language elements that are assigned outside the DATA
step and PROC step and provide information to both DATA steps and PROC steps.
The primary use of global statements is defining data access for a SAS session. The
secondary use is setting system options that modify the default behavior of the
SAS System or one of its subsystems.

SAS Macro Facility
The macro facility is a powerful programming tool for extending and customizing
your SAS programs, and for reducing the amount of code that you must enter to do
common tasks. The macro facility enables you to assign a name to character strings
or groups of SAS programming statements. You can work with the names that you
created rather than with the text itself. You can use macros to automatically
generate SAS statements and commands, write messages to the SAS log, accept
input, or create and change the values of macro variables. For complete
documentation, see SAS Macro Language: Reference.

SAS Engines
Base SAS provides several engines to read and write SAS data sets and selected
external files. For a summary of engines, see Chapter 13, “SAS Engines,” on page
289.

In SAS®9 and SAS Viya, the default Base SAS engine is the V9 engine. Base SAS
software includes an alternate storage engine: SAS Scalable Performance Data
(SPD) engine. Most SAS language features are supported for both V9 engine and
SPD engine, but not all.

The SAS language functionality described in this book applies to both storage
engines. Functionality that is specific to the SAS V9 engine is provided in SAS V9
LIBNAME Engine: Reference. Functionality that is specific to SPD engine is provided
in SAS Scalable Performance Data Engine: Reference.

8 Chapter 1 / The SAS Language

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Additional Languages
Base SAS software includes the following SAS languages in addition to the DATA
step and PROC step. These language statements are submitted through SAS
procedures. The languages can query and manipulate files created with the V9
engine, the SPD engine, and third-party databases that are accessed with
SAS/ACCESS software.

Table 1.2 Additional Languages Provided with Base SAS

Language Procedure Description

SAS SQL PROC SQL a SAS implementation of the ANSI SQL: 1992
core standard. A benefit of SAS SQL is that it
is fully integrated with the SAS language: it
uses SAS data types, can be managed with
SAS system options, and fully supports SAS
data set options, formats, and informats. It
supports explicit SQL pass-through to
external DBMS when appropriate
SAS/ACCESS software is licensed.

SAS SQL statements are submitted from a
SAS session by using the SQL procedure.

For more information, see SAS SQL Procedure
User’s Guide.

SAS FedSQL PROC FEDSQL a SAS implementation of the ANSI SQL:1999
core standard. FedSQL uses ANSI SQL 1999
data types and core features and extensions.
A benefit of SAS FedSQL is that it supports
many more data types than SAS SQL and is a
vendor-neutral SQL dialect. When
appropriate SAS/ACCESS software is
licensed, it can access data from various data
sources without having to submit queries in
the SQL dialect that is specific to the data
source. FedSQL is partially integrated with
the SAS language.

FedSQL statements are submitted from a
SAS session by using the FEDSQL procedure.
They can also be executed in a SAS Cloud
Analytic Services (CAS) session by using the
fedSql.execDirect action, and from SAS
Federation Server (a separately licensed
product).

Base SAS Language Definitions 9

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

For more information, see SAS FedSQL
Language Reference

SAS DS2 PROC DS2 a SAS proprietary programming language that
is appropriate for advanced data
manipulation. It intersects with the DATA
step, but supports additional data types,
ANSI SQL types, programming structure
elements, and user-defined methods and
packages. DS2 supports most SAS language
elements, except system options.

DS2 programs are submitted from a SAS
session by using the DS2 procedure. They can
also be executed from a CAS session by using
the ds2.runDS2 action, and from SAS
Federation Server (a separately licensed
product).

For more information, see SAS DS2 Language
Reference and SAS DS2 Programmer’s Guide.

Anatomy of a SAS Program
The following figure shows how the components of the Base SAS System are used
in a SAS program:

10 Chapter 1 / The SAS Language

http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Figure 1.3 Anatomy of a SAS Program

FedSQL

DS2

SAS SQL

Output Delivery System (ODS)ODS <options>;

PROC step

Procedures for other languages
proc ds2 ;
 <statements>;
run ;

proc sql ;
 <statements>;
run ;

proc fedsql ;
 <statements>;
run ;

System options

DATA step

Global statements

Macro language

proc tabulate
data =mylibref.mydata;
 <statements>;
run ;

options <options>;

%macro mymacro ;
 <statements>;
%mend;

libname mylibref ‘ path ’ ;
title ‘ My Data ’ ;
footnote ‘ My Note ’ ;

data mylibref.mydata;
 <statements>;
run ;

1 System options determine how SAS initializes its interfaces with your computer
hardware and the operating environment, how it reads and writes data, and
other global functions. These can be set in your SAS program, or in a
configuration file.

2 The Output Delivery System controls how DATA step and procedure output is
formatted and displayed. The default output for an interactive SAS program is
HTML. Optional output formats include PostScript (PDF), an output data set,
and RTF (for Word files), among others. ODS options can be set in your SAS
program, or in a configuration file.

3 The SAS macro language enables you to define SAS programming shortcuts.
Using the SAS macro language is optional. Character values, numeric values,
and SAS statements are associated with a variable that is defined in the
%MACRO statement. Later, the variable can be specified in a DATA or PROC
step with an ampersand (&). When the SAS System encounters the macro
variable, it inserts the associated character value, numeric value, or SAS
statements and includes them in its processing. The macro facility provides an
easy way to substitute values or code segments in a SAS program. To execute a
macro, you must precede the name of the macro by a percent (%) sign (for
example, %test).

Anatomy of a SAS Program 11

4 The global statement LIBNAME defines a pathname to a data library and
associates a libref with it. The LIBNAME statement does not specify an engine,
so the default storage engine is used. The libref MyLibref can later be specified
with a table name in a DATA or PROC step to identify the location of the table.
The global statements TITLE and FOOTNOTE define a title and footnote to be
appended to any session output.

5 The DATA step creates or modifies the data set MyLibref.MyData.

6 The PROC step analyzes the data set MyLibref.MyData and returns an output.
The title and footnote that were defined earlier are included in the output.

Ways to Submit SAS Programs
SAS provides several ways to submit SAS programs. The software for each of these
methods is delivered with Base SAS software.

Table 1.3 Summary of SAS Software User Interfaces

User Interface Descriptio
n

Documentation

SAS Studio a web-
based
graphical
user
interface
that
enables
you to
write and
run SAS
code from
your
browser
and
display
the
results.

Getting Started with Programming in SAS Studio and SAS Studio:
User’s Guide

SAS Windowing
Environment

a desktop
graphical
user
interface
that
enables
you to

Getting Started Under Windows in SAS Companion for Windows

Working in the SAS Windowing Environment in SAS 9.4 Companion for
UNIX Environments

Overview of Windows in the z/OS Environment in SAS 9.4 Companion
for z/OS

12 Chapter 1 / The SAS Language

http://documentation.sas.com/?docsetId=webeditorgs&docsetTarget=titlepage.htm&docsetVersion=3.7
http://documentation.sas.com/?docsetId=webeditorug&docsetTarget=titlepage.htm&docsetVersion=3.7
http://documentation.sas.com/?docsetId=webeditorug&docsetTarget=titlepage.htm&docsetVersion=3.7
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hostwin&docsetTarget=n1irzp596zz6jxn13qb5dojh0hp8.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hostunx&docsetTarget=p0f8pj72p9rpwmn12tvs9k90mo7t.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hosto390&docsetTarget=n0ojc8i7w8ine6n10t4fc0xcsqju.htm&locale=en

write and
run SAS
code and
display
the
results.

SAS Enterprise
Guide

a
Windows
client
applicatio
n and
graphical
user
interface
for writing
and
submitting
SAS code.
It uses
menus and
wizards to
guide you
through
code
developm
ent.

SAS Enterprise Guide Online Documentation and SAS Enterprise
Guide Tutorial

Non-interactive
batch mode

a mode in
which you
place your
SAS
statement
s in a file
and
submit
them for
execution
along with
the
control
statement
s and
system
commands
required at
your site.

Running SAS in Batch Mode in SAS Companion for Windows
Environments

“Noninteractive and Batch Modes in UNIX Environments” in SAS
Companion for UNIX Environments

Destinations of SAS Output Files and Directing SAS Log and
Procedure Output in SAS Companion for z/OS

Interactive line
mode

a mode in
which you
enter
program

Use SAS Interactively or in Batch Mode in SAS Companion for
Windows Environments

Ways to Submit SAS Programs 13

http://support.sas.com/software/products/enterprise-guide/index.html#s1=3
http://support.sas.com/documentation/onlinedoc/guide/tut71/en/menu.htm
http://support.sas.com/documentation/onlinedoc/guide/tut71/en/menu.htm
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hostwin&docsetTarget=p16esisc4nrd5sn1ps5l6u8f79k6.htm&locale=en#p01fzykn6n0s73n164xasi1t3ii9
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n0x9esc5c95qg4n1wogx5u2k7354.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n0x9esc5c95qg4n1wogx5u2k7354.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hosto390&docsetTarget=p0z43am12t5wltn1jhqi1jiascxe.htm&locale=en#n18xn5ousloumvn1x9348489rq4h
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hosto390&docsetTarget=n0nxd4t2obqstln12itjno35gywb.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hosto390&docsetTarget=n0nxd4t2obqstln12itjno35gywb.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hostwin&docsetTarget=p16esisc4nrd5sn1ps5l6u8f79k6.htm&locale=en#n1rcikkd50j7rbn1sb9ydwhozujp

statement
s in
sequence
in
response
to
prompts
from the
SAS
System.
DATA and
PROC
steps
execute
when a
step
boundary
is reached
(for
example, a
RUN or
QUIT
statement
is
encounter
ed).

Interactive Line Mode in UNIX Environments in SAS Companion for
UNIX Environments

Customizing Your SAS Session
You can customize a SAS session by setting system options and by configuring SAS
statements in a file for automatic execution.

When you customize your SAS session, we recommend that you set system options
as follows:

1 Store system options with the settings that you want in a configuration file.
When you start SAS, these settings are in effect. See the SAS documentation
for your operating environment for more information about the configuration
file.

In some operating environments, you can use both a system-wide and a user-
specific configuration file.

2 Specify system options in your SAS session to override the configured system
options. System options that are specified directly in your SAS session are
available for the duration of the SAS session.

14 Chapter 1 / The SAS Language

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hostunx&docsetTarget=n16ui9f6dacn8pn1t0y2hgxgi7wa.htm&locale=en

By placing SAS system options in a configuration file, you can avoid having to
specify the options every time you start SAS. For example, you can specify the
NODATE system option in your configuration file to prevent the date from
appearing at the top of each page of your output.

To execute SAS statements automatically each time you start SAS, store them in
an autoexec file. SAS executes the statements automatically after the system is
initialized. You can activate this file by specifying the AUTOEXEC= system option.
See the SAS documentation for your operating environment for information about
how autoexec files should be set up so that they can be located by SAS.

Any SAS statement can be included in an autoexec file. For example, you can set
report titles, footnotes, or create macros or macro variables automatically with an
autoexec file.

Scope of This Book
This book covers SAS global statements and SAS DATA step concepts that apply to
both the v9 and SPD engine storage engines. For a complete guide to Base SAS
software functionality, also see these documents:

n Base SAS Procedures Guide

n SAS Global Statements: Reference

n SAS System Options: Reference

n SAS Macro Language: Reference

n SAS Output Delivery System: User’s Guide

n SAS Logging: Configuration and Programming Reference

n SAS National Language Support (NLS): Reference Guide

n SAS V9 LIBNAME Engine: Reference

n SAS Scalable Performance Data Engine: Reference

n SAS SQL Procedure User’s Guide

n SAS DS2 Language Reference

n SAS FedSQL Language Reference

Operating Environment Information
Base SAS software runs on Windows, UNIX, and z/OS. The implementation of SAS
language functionality might differ slightly based on the host operating
environment. For example, the details for storing and accessing SAS files depends

Operating Environment Information 15

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

on the host operating environment. The characteristics of external files also vary
according to the host environment. See the following for host-specific information:

n SAS Companion for UNIX Environments

n SAS Companion for Windows

n SAS Companion for z/OS

Using This Book
n Part 1 acquaints you with the SAS System and how it works.

n Part 2 covers basic SAS programming rules.

n Parts 3 through 6 contain specific information about how to access and
manipulate data with the SAS System, how to create output, and how to
manage files.

n Part 7 provides conceptual information about special features of the SAS
System.

n The appendix contains code that creates the SAS data sets that are used in the
examples.

16 Chapter 1 / The SAS Language

http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

2
SAS Processing

Definition of SAS Processing . 17

Types of Input to a SAS Program . 18

The DATA Step . 20
Definition of the DATA Step . 20
DATA Step Output . 20

The PROC Step . 21
What Does the PROC Step Do? . 21
PROC Step Output . 21

SAS Processing Restrictions for Servers in a Locked-Down State . 22
General Information . 22
z/OS Specific Information . 23
Specifying Functions in the Lockdown Path List . 24

Definition of SAS Processing
SAS processing is the way that the SAS language reads and transforms input data
and generates the type of output that you request. The DATA step and the
procedure (PROC) step are the two steps in the SAS language. Generally, the DATA
step creates and manipulates data. The PROC step analyzes data, produces output,
or manages SAS files. These two types of steps, used alone or combined, form the
basis of SAS programs.

The following figure shows a high-level view of SAS processing using a DATA step
and a PROC step. The figure focuses primarily on the DATA step.

17

Figure 2.1 SAS Processing Flow

External files:
 - SAS log
 - reports
 - data files

External files:
 - SAS log
 - reports

SAS data setSAS data set

Raw data:
 - external files
 - instream data
 - remote data

SAS data set
SAS data view PROC stepDATA step

Output OutputInput

n You can use different types of data as input to a DATA step.

n In the DATA step, you include SAS statements that contain instructions for
processing the data.

n As each DATA step in a SAS program is compiling or executing, SAS generates a
log that contains processing messages and error messages. These messages can
help you debug a SAS program.

n PROC steps typically analyze and process data in the form of a SAS data set,
but they can sometimes be used to create SAS data sets.

Types of Input to a SAS Program
You can use different sources of input data in your SAS program:

Existing SAS data sets
either a SAS data set or SAS view.

Raw data
unprocessed data that has not been read into a SAS data set. You can read raw
data from two sources:

External files
contain records comprised of formatted data (data is arranged in columns)
or free-formatted data (data that is not arranged in columns).

Instream data
raw data in the job stream.

SAS library
a SAS library enables you to access one or more files, referenced as a unit, by
using an engine. You can access SAS data sets, selected external files, third-
party DBMS, and PC files, depending on the engine that you specify in the
library assignment. The engine transforms the target data into a form that is
recognizable by SAS.

18 Chapter 2 / SAS Processing

Remote access
enables you to read input data from nontraditional sources such as a TCP/IP
socket or a URL. SAS treats this data as if it were coming from an external file.
Remote access is available for the following data sources:

Azure
specifies the access method that enables you to access data in Microsoft
Azure Data Lake Storage. The Azure access method is supported only for
SAS Viya.

SAS catalog
specifies the access method that enables you to reference a SAS catalog as
an external file.

Clipboard
specifies the access method that enables you to read or write text data to
the clipboard on the host computer.

DATAURL
specifies the access method that enables you to access remote files by using
the DATAURL access method.

EMAIL
specifies the access method that enables you to send electronic mail
programmatically from SAS using the SMTP (Simple Mail Transfer Protocol)
email interface.

FILESRV
specifies the access method that enables you to store and retrieve user
content using the SAS Viya Files service. The FILESRV access method is
supported only for SAS Viya.

FTP
specifies the access method that enables you to use File Transfer Protocol
(FTP) to read from or write to a file from any host computer that is
connected to a network with an FTP server running.

Hadoop
specifies the access method that enables you to access files on a Hadoop
Distributed File System (HDFS) whose location is specified in a
configuration file.

S3
specifies the access method that enables you to access Amazon S3 files.
The S3 access method is supported only for SAS Viya.

SFTP
specifies the access method that enables you to use Secure File Transfer
Protocol (SFTP) to read from or write to a file from any host computer that
is connected to a network with an Open SSH SSHD server running.

TCP/IP socket
specifies the access method that enables you to read from or write to a
Transmission Control Protocol/Internet Protocol (TCP/IP) socket.

URL
specifies the access method that enables you to use the uniform resource
locator (URL) to read from and write to a file from any host computer that is
connected to a network with a URL server running.

Types of Input to a SAS Program 19

WebDAV
specifies the access method that enables you to use the WebDAV protocol
to read from or write to a file from any host computer that is connected to a
network with a WebDAV server running.

ZIP
specifies the access method that enables you to access ZIP files by using
zlib services.

The DATA Step

Definition of the DATA Step
The DATA step processes input data. In a DATA step, you can create a SAS data set.
The DATA step uses input from SAS data sets, raw data, SAS libraries, remote
access, or assignment statements. The DATA step can compute values, select
specific input records for processing, and use conditional logic. The output from the
DATA step can be of several types, such as a SAS data set or a report. You can also
write data to the SAS log or to an external data file. For more information, see
Chapter 3, “DATA Step Processing,” on page 25.

DATA Step Output
The output from the DATA step can be a SAS data set or an external file such as
the program log, a report, or an external data file. You can also update an existing
file in place, without creating a separate data set. Data must be in the form of a SAS
data set to be processed by many SAS procedures. You can create the following
types of DATA step output:

SAS log
contains a list of processing messages and program errors. The SAS log is
produced by default.

SAS data file
is a SAS data set that contains two parts: a data portion and a data descriptor
portion.

SAS view
is a SAS data set that uses descriptor information and data from other files. SAS
views enable you to dynamically combine data from various sources without
using disk space to create a new data set. A SAS data file contains actual data
values. However, SAS views contain only references to data stored elsewhere.
SAS views are of member type VIEW. In most cases, you can use a SAS view as
if it were a SAS data file.

20 Chapter 2 / SAS Processing

External data file
contains the results of DATA step processing. These files are data or text files.
The data can be records that are formatted or free-formatted.

Report
contains the results of DATA step processing. Although you usually generate a
report by using a PROC step, you can generate the following two types of
reports from the DATA step:

Procedure output file
contains printed results of DATA step processing and usually contains
headings and page breaks.

HTML file
contains results that you can display on the World Wide Web. This type of
output is generated through the Output Delivery System (ODS).

For more information about these output types, see Chapter 27, “Output,” on page
669.

The PROC Step

What Does the PROC Step Do?
The PROC step consists of a group of SAS statements that call and execute a
procedure, usually with a SAS data set as input. Use PROCs to analyze the data in a
SAS data set, produce formatted reports or other results, or provide ways to
manage SAS files. You can modify PROCs with minimal effort to generate the
output that you need. PROCs can also perform functions, such as displaying
information about a SAS data set. For more information about SAS procedures, see
Base SAS Procedures Guide.

PROC Step Output
The output from a PROC step can provide univariate descriptive statistics,
frequency tables, crosstabulation tables, tabular reports consisting of descriptive
statistics, charts, plots, and so on. Output can also be in the form of an updated
data set. For more information about procedure output, see Base SAS Procedures
Guide and the SAS Output Delivery System: User’s Guide.

The PROC Step 21

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

SAS Processing Restrictions for Servers
in a Locked-Down State

General Information
If you are running SAS in a client/server environment (for example, you are using
SAS Enterprise Guide), the SAS server administrator can restrict access to files and
directories on the host system. In addition, when a SAS session is in a locked-down
state, certain access methods, functions, CALL routines, and procedures are
restricted by default. For more information, see “Sign On to Locked-Down SAS
Sessions” in SAS/CONNECT User’s Guide.

When SAS is in a locked-down state, the following SAS language elements are not
available by default:

Functions and
CALL Routines Access Methods Procedures Other

ADDR function

ADDRLONG
function

CALL MODULE

CALL POKE
routine

CALL POKELONG
routine

PEEK function

PEEKC function

PEEKCLONG
function

PEEKLONG
function

EMAIL

FTP

HADOOP

HTTP

SOCKET

TCPIP

URL

GROOVY procedure

HADOOP procedure

HTTP procedure

JAVAINFO
procedure

SOAP procedure

DATA step Java
object

The ENABLE_AMS= option in the LOCKDOWN statement allows administrators to
re-enable access methods and procedures that are restricted by default when
LOCKDOWN is in effect. The following access methods and procedures can be re-
enabled using the ENABLE_AMS= option in the LOCKDOWN statement:

22 Chapter 2 / SAS Processing

http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=n0cxcsc85ocjutn10m3k68k73cpd.htm&docsetTargetAnchor=n1ricc38ufb01ln106fjuttclfe7&locale=en
http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=n0cxcsc85ocjutn10m3k68k73cpd.htm&docsetTargetAnchor=n1ricc38ufb01ln106fjuttclfe7&locale=en

ENABLE_AMS= Option Values

FTP

EMAIL

HADOOP (enables PROC HADOOP)

HTTP (enables PROC HTTP and PROC SOAP)

SOCKET

TCPIP

URL (enables PROC HTTP and PROC SOAP

If you attempt to use a resource that is locked down, SAS issues an error message
to the SAS log. If the SAS session is configured for the SAS logging facility, SAS
issues an error message to the Audit.Lockdown logger.

For more information, see the following resources. For SAS 9.4:

n LOCKDOWN System Option and LOCKDOWN Statement in SAS Intelligence
Platform: Application Server Administration Guide

n Locked-Down Servers in SAS Intelligence Platform: Security Administration
Guide

For Viya 3.5, see “LOCKDOWN System Option and LOCKDOWN Statement” in SAS
Viya Administraton: Programming Run-Time Servers.

To see the procedures that do not execute when the SAS server is in a locked-down
state, see “Restrictions” and “Interactions” syntax information for the individual
procedures in the Base SAS Procedures Guide.

z/OS Specific Information

Restricted Features

Access to permanent z/OS data sets and UFS files and directories is not permitted
unless enabled in the lockdown list. This restriction applies to all SAS features,
most notably FILENAME and LIBNAME statements in SAS programs that are
submitted for execution on the server. This restriction also applies to the ability to
list files on the server through SAS clients such as SAS Enterprise Guide. When
SAS is in the locked-down state, SAS does not permit access to uncataloged z/OS
data sets except through externally allocated ddnames that are established by the
server administrator. However, there are no restrictions on creating temporary z/OS
data sets and UFS files, and processing them within the context of a single client
session. The z/OS data sets are considered temporary if they are allocated
DISP=(NEW,DELETE). External files are considered temporary if they are assigned
using the FILENAME device of TEMP. All members of the client WORK library are
considered temporary.

SAS Processing Restrictions for Servers in a Locked-Down State 23

https://documentation.sas.com/?docsetId=biasag&docsetTarget=n22001intelplatform00srvradm.htm&docsetVersion=9.4
https://documentation.sas.com/?docsetId=biasag&docsetTarget=n23000intelplatform00srvradm.htm&docsetVersion=9.4
https://documentation.sas.com/?docsetId=bisecag&docsetTarget=p0eo05w7u850lgn1n1i5vquf07vg.htm&docsetVersion=9.4
https://documentation.sas.com/?docsetId=calsrvpgm&docsetTarget=p04d9diqt9cjqnn1auxc3yl1ifef.htm&docsetVersion=3.5
https://documentation.sas.com/?docsetId=calsrvpgm&docsetTarget=p04d9diqt9cjqnn1auxc3yl1ifef.htm&docsetVersion=3.5
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

The SAS server administrator at your organization is responsible for the content of
the lockdown list. Therefore, if you need to access a z/OS data set or UFS file that
is unavailable in the locked-down state, contact your server administrator.

Disabled Features

The following SAS procedures, which are specific to z/OS, cannot be executed
when SAS is in the locked-down state:

PDS SOURCE
PDSCOPY TAPECOPY
RELEASE TAPELABEL

The following DATA step functions, which are specific to z/OS, cannot be executed
when SAS is in the locked-down state:

ZVOLLIST ZDSATTR
ZDSLIST ZDSRATT
ZDSNUM ZDSXATT
ZDSIDNM ZDSYATT

The following access method, which is specific to z/OS, cannot be executed when
SAS is in the locked-down state:

VTOC

Specifying Functions in the Lockdown Path List
If the SAS session in which you are specifying a function is in a locked-down state,
and the pathname that is specified in the function has not been added to the
lockdown path list, then the function fails. A file access error related to the locked-
down data will not be generated in the SAS log unless you specify the SYSMSG
function.

The SYSMSG function can be placed after the function call in a DATA step to
display lockdown-related file access errors.

This condition is true for the following functions, as well as for any other functions
that take physical pathname locations as input:

n DCREATE

n FILEEXIST

n FILENAME

n RENAME

n DSNCATLGD (z/OS specific)

24 Chapter 2 / SAS Processing

3
DATA Step Processing

Why Use a DATA Step? . 25

About Creating a SAS Data Set with a DATA Step . 26
Creating a SAS Data Set or a SAS View . 26
Sources of Input Data . 26

Reading Raw Data: Examples . 27
Reading External File Data . 27
Reading Instream Data Lines . 28
Reading Instream Data Lines with Missing Values . 29
Using Multiple Input Files in Instream Data . 30

Reading Data from SAS Data Sets . 33
Example Code . 33
Key Ideas . 33
See Also . 33

Generating Data from Programming Statements . 34
Example Code . 34
Key Ideas . 35
See Also . 35

DATA Step Processing Time . 35

Stored Compiled DATA Step Programs . 37

Why Use a DATA Step?
The DATA step is the primary method for creating a SAS data set with Base SAS
software. The DATA step also enables you to manipulate existing SAS data sets.

You can use the DATA step to perform the following tasks:

n subset, modify, combine, and update existing SAS data sets

n analyze, manipulate, and present your data

n compute values for new variables

n write reports

25

n retrieve information

n manage your SAS files

About Creating a SAS Data Set with a
DATA Step

Creating a SAS Data Set or a SAS View
You can create either a SAS data set or a SAS view. A SAS view is a virtual data set
that references data that is stored elsewhere. By default, you create a SAS data set.
To create a SAS view instead, use the VIEW= option in the DATA statement. With a
SAS view, you can process current input data values (such as monthly sales
figures) without having to edit your DATA step. Whenever you need to create
output, the output from a SAS view reflects the current input data values.

The following DATA statement specifies to create a SAS view called
Monthly_Sales:

data monthly_sales / view=monthly_sales;

The following DATA statement specifies to create a data set called Test_Results.

data test_results;

Sources of Input Data
You select data-reading statements based on the source of your input data. There
are at least six sources of input data:

n raw data in an external file

n raw data in the jobstream (instream data)

n data in SAS data sets

n data that is created by programming statements

n data that you can remotely access through a SAS catalog entry, clipboard, data
URL, email, FTP protocol, Hadoop Distributed File System, TCP/IP socket, URL,
WebDAV protocol, or through zlib services

n data that is stored in a Database Management System (DBMS) or other vendor's
data files

26 Chapter 3 / DATA Step Processing

Usually, DATA steps read input data records from only one of the first three sources
of input. However, DATA steps can use a combination of some or all of the sources.

Reading Raw Data: Examples

Reading External File Data

Example Code

The components of a DATA step that produce a SAS data set from raw data stored
in an external file are outlined here.

data Weight; 1

 infile 'your-input-file'; 2

 input IDnumber $ week1 week16; 3

 WeightLoss=week1-week16; 4

run; 5

proc print data=Weight; 6

run; 7

1 Begin the DATA step and create the SAS data set Weight.

2 Specify the external file that contains your data.

3 Read a record and assign values to three variables.

4 Calculate a value for the variable WeightLoss.

5 Execute the DATA step.

6 Print the data set Weight using the PRINT procedure.

7 Execute the PRINT procedure.

Key Ideas

n The DATA statement specifies a name for the SAS data set.

n The INFILE statement specifies the path to the input file, within quotation marks.

n The INPUT statement describes the data set’s variables.

Reading Raw Data: Examples 27

See Also

Concepts

n Chapter 15, “Raw Data,” on page 353

Reference

n “DATA Statement” in SAS DATA Step Statements: Reference

n “INFILE Statement” in SAS DATA Step Statements: Reference

n “INPUT Statement” in SAS DATA Step Statements: Reference

Reading Instream Data Lines

Example Code

This example reads raw data from instream data lines.

data Weight2; 1

 input IDnumber $ week1 week16; 2

 AverageLoss=week1-week16; 3

 datalines; 4

2477 195 163
2431 220 198
2456 173 155
2412 135 116
; 5

proc print data=Weight2; 6

run;

1 Begin the DATA step and create the SAS data set Weight2.

2 Read a data line and assign values to three variables.

3 Calculate a value for the variable WeightLoss2.

4 Begin the data lines.

5 Signal the end of data lines with a semicolon and execute the DATA step.

6 Print the data set Weight2 using the PRINT procedure.

Key Ideas

When you are providing data instream, recall these points:

n The INPUT statement describes the data set’s variables.

28 Chapter 3 / DATA Step Processing

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0oaql83drile0n141pdacojq97s.htm&locale=en

n Values for the variables are supplied following a DATALINES statement as data
lines.

See Also

Concepts

n Chapter 15, “Raw Data,” on page 353

Reference

n “DATALINES Statement” in SAS DATA Step Statements: Reference

n “INPUT Statement” in SAS DATA Step Statements: Reference

Reading Instream Data Lines with Missing Values

Example Code

You can also take advantage of options in the INFILE statement when you read
instream data lines. This example shows the use of the MISSOVER option, which
assigns missing values to variables for records that contain no data for those
variables.

data weight2; 1

 infile datalines missover; 2

 input IDnumber $ Week1 Week16; 3
 WeightLoss2=Week1-Week16;
 datalines;
2477 195 163 4

2431
2456 173 155
2412 135 116
; 5

proc print data=weight2; 6
run;

1 Begin the DATA step and create the SAS data set Weight2.

2 Specify the INFILE statement, the Datalines variable, and the MISSOVER
option.

3 Read a data line and assign values to three variables.

4 Begin the data lines.

5 Signal the end of data lines with a semicolon and execute the DATA step.

Reading Raw Data: Examples 29

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0114gachtut3nn1and4ap8ke9nf.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0oaql83drile0n141pdacojq97s.htm&locale=en

6 Print the data set Weight2 using the PRINT procedure.

Key Ideas

n The INFILE statement provides options for reading a new input data record if the
DATALINES statement does not find values in the current input line for all the
variables in the data set.

n The MISSOVER option can be used with the INFILE statement to assign missing
values to variables that do not contain values in records.

See Also

Concepts

n Chapter 15, “Raw Data,” on page 353

Reference

n “INFILE Statement” in SAS DATA Step Statements: Reference

Using Multiple Input Files in Instream Data

Example Code

This example shows how to use multiple input files as instream data to your
program.

data all_errors; 1

 length filelocation $ 60; 2

 input filelocation; 3

 infile daily filevar=filelocation 4

 filename=daily 5

 end=done; 6

 do while (not done); 7

 input Station $ Shift $ Employee $ NumberOfFlaws;
 output;
 end;
 put 'Finished reading ' daily=;
 datalines;
pathmyfile_A 8

pathmyfile_B

30 Chapter 3 / DATA Step Processing

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&locale=en

pathmyfile_C
;

proc sort data=all_errors out=sorted_errors; 9

 by Station;
run;

proc print data = sorted_errors; 10

 title 'Flaws Report sorted by Station';
run;

1 Begin the DATA step and create the SAS data set All_Errors.

2 Use the LENGTH statement to specify a length for the variable Filelocation.

3 Use the INPUT statement to read the content of the Filelocation variable.

4 Use the INFILE statement to define temporary variables for the input data. In
the FILEVAR= option, specify the Filelocation variable. The FILEVAR= option
enables you to specify a physical filename whose change in value causes the
INFILE statement to close the current input file and open a new one. When the
next INPUT statement executes, it reads from the new file that the FILEVAR=
variable specifies.

5 In the FILENAME= option of the INFILE statement, specify the physical name of
the currently opened input file. In this example, the file name is Daily.

6 Use the END= option of the INFILE statement to specify a variable that SAS
sets to 1, when the current input data record is the last in the input file. In this
example, the name of the variable is Done. Until SAS processes the last data
record, the END= variable is set to 0.

7 Use the DOWHILE statement to execute the INPUT statement in a DO loop
repetitively while the NOT DONE condition is true. The INPUT statement reads
the input data and assigns values to four variables.

8 Specify the file pathnames following the DATALINES statement.

9 The program then sorts the observations by Station, and creates a sorted data
set called Sorted_Errors.

10 The print procedure prints the results.

Reading Raw Data: Examples 31

Output 3.1 Multiple Input Files in Instream Data

Key Ideas

The DATALINES statement does not provide input options for reading data. However,
you can specify INFILE options to manipulate how data is supplied to the DATALINES
statement.

See Also

Concepts

n Chapter 15, “Raw Data,” on page 353

Reference

n “DO WHILE Statement” in SAS DATA Step Statements: Reference

n “INFILE Statement” in SAS DATA Step Statements: Reference

32 Chapter 3 / DATA Step Processing

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1awxgleif5wlen1pja0nrn6yi6i.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&locale=en

Reading Data from SAS Data Sets

Example Code
This example reads data from one SAS data set, generates a value for a new
variable, and creates a new data set.

data average_loss; 1
 set weight; 2

 Percent=round((AverageLoss * 100) / Week1); 3

run; 4

1 Begin the DATA step and create the SAS data set Average_Loss.

2 Specify the name of the existing SAS data set Weight in the SET statement.

3 Calculate a value for the variable Percent.

4 Execute the DATA step.

Key Ideas

The SET statement enables you to create a new SAS data set from an existing SAS
data set.

See Also

Concepts

n Chapter 14, “SAS Data Sets,” on page 321

Reference

n “SET Statement” in SAS DATA Step Statements: Reference

Reading Data from SAS Data Sets 33

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en

Generating Data from Programming
Statements

Example Code

Generating Data from Programming Statements

You can create data for a SAS data set by generating observations with
programming statements rather than by reading data. A DATA step that reads no
input goes through only one iteration.

data investment; 1
 begin='01JAN1990'd;
 end='31DEC2009'd;
 do year=year(begin) to year(end); 2
 Capital+2000 + .07*(Capital+2000);
 output; 3
 end;
 put 'The number of DATA step iterations is '_n_; 4
run; 5

proc print data=investment; 6
 format Capital dollar12.2; 7
run; 8

1 Begin the DATA step and create a SAS data set Investment.

2 Calculate a value based on a $2,000 capital investment and 7% interest each
year from 1990 through 2009. Calculate variable values for one observation per
iteration of the DO loop.

3 Write each observation to the data set Investment.

4 Write a note to the SAS log proving that the DATA step iterates only once.

5 Execute the DATA step.

6 To see your output, print the Investment data set with the PRINT procedure.

7 Use the FORMAT statement to write numeric values with dollar signs, commas,
and decimal points.

8 Execute the PRINT procedure.

34 Chapter 3 / DATA Step Processing

Key Ideas

n You can use assignment statements and SAS language statements to create
calculated variables.

n This example defines beginning and end dates for the calculation with assignment
statements. Then it uses a DO loop and a SUM statement to define the calculation.
The SAS data set Investment contains the results of the calculation.

See Also

Concepts

n Chapter 14, “SAS Data Sets,” on page 321

n Chapter 12, “SAS Libraries,” on page 247

n Chapter 13, “SAS Engines,” on page 289

n Chapter 16, “Database and PC Files,” on page 385.

Reference

n “Assignment Statement” in SAS DATA Step Statements: Reference

n “DO WHILE Statement” in SAS DATA Step Statements: Reference

n “Sum Statement” in SAS DATA Step Statements: Reference

DATA Step Processing Time
DATA step processing time occurs in two stages: the first is the start-up (or
compilation) time, and the second is the execution time.

n The compilation time is the time that it takes the SAS compiler to scan the SAS
source code and convert it to an executable program.

n The execution time is the time that it takes SAS to execute the DATA step for
each observation in a SAS file.

The two phases do not occur simultaneously: that is, the DATA step compiles first,
and then it executes. For more information about these phases, see “How the DATA
Step Processes Data” on page 863.

DATA Step Processing Time 35

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hglxgj1sjhdzn18soqrqmvogvj.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1awxgleif5wlen1pja0nrn6yi6i.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1dfiqj146yi2cn1maeju9wo7ijs.htm&locale=en

Understanding these processing times and how they relate to the structure of your
SAS programs might be helpful when you are looking for ways to improve
performance. In general, the more statements a DATA step processes, the longer
the compilation time. Alternatively, DATA steps processing large numbers of
observations tend to have longer execution times because they are more I/O-
intensive.

For example, a very large DATA step job that is not I/O-intensive (that is, it must
process a relatively small number of observations) might need to be rewritten to
reduce complexity and to eliminate repetitive and unused code. DO loops and user-
defined functions created with PROC FCMP can reduce compilation time by
decreasing the amount of code that must be compiled. For more information about
how to improve performance when running CPU-intensive programs, see
“Techniques for Optimizing CPU Performance” on page 647.

If most of the time used by the DATA step is for processing hundreds of
observations, then other techniques designed to optimize I/O might be more useful.
For more information about how to improve performance when running I/O-
intensive programs, see “Techniques for Optimizing I/O” on page 638.

Several SAS system options provide information that can help you minimize
processing time and optimize performance. For example, the FULLSTIMER option
collects and displays performance statistics on each DATA step so that you can
determine which resources were used for each step of data processing. For more
information about this option and about optimization in general, see Chapter 25,
“Optimizing System Performance,” on page 635.

The following example shows how to estimate the compilation time for a very large
DATA step job that has a small number of observations. The program uses the
DATETIME function with the %PUT macro statement to calculate the compilation
start time. It then uses the _N_ automatic variable to find the execution start time
(SAS always sets this variable to 1 at the start of the execution phase). By
calculating the difference between the two times, the program returns the total
compilation time of the DATA step.

Example Code 3.1 Finding Compilation and Execution Time

options nosource;
%put Starting compilation of DATA step: %QSYSFUNC(DATETIME(),
DATETIME20.3);
%let startTime=%QSYSFUNC(DATETIME());

data a;
 if _N_ = 1 then do;
 endTime = datetime();
 put 'Starting execution of
 DATA step: ' endTime:DATETIME20.3;
 timeDiff=endTime-&startTime;
 put 'The Compile time for this DATA Step is
 approximately ' timeDiff:time20.6;
end;
 /* Lots of DATA step code */
run;

36 Chapter 3 / DATA Step Processing

Example Code 3.1 Log for Finding Compilation and Execution Time

Starting compilation of DATA step: 03AUG20:12:58:59.877
Starting execution of DATA step: 03AUG20:12:58:59.894
The Compile time for this DATA Step is approximately 0:00:00.015865
NOTE: The data set WORK.A has 1 observations and 2 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

Note: Macro statements and macro variables are resolved at compilation time and
do not affect the time it takes to execute the DATA step. For information, see
“Getting Started with the Macro Facility” in SAS Macro Language: Reference, and
“SAS Programs and Macro Processing” in SAS Macro Language: Reference.

Stored Compiled DATA Step Programs
A stored compiled DATA step program is a SAS file that contains a DATA step
program that has been compiled and then stored in a SAS library. You can execute
stored compiled programs as needed, without having to recompile them. Stored
compiled DATA step programs are of member type PROGRAM.

Stored compiled programs are available for the V9 engine and DATA step
applications only. For more information, see “Stored, Compiled DATA Step
Programs” in SAS V9 LIBNAME Engine: Reference.

Stored Compiled DATA Step Programs 37

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p1ccprwibo8gvqn1q6zinvjlzuut.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p1lpbl12k9hhkxn1m721y05zgxhq.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1h8ok8rj6uzqkn18tpnp1lb4lp9.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1h8ok8rj6uzqkn18tpnp1lb4lp9.htm&locale=en

38 Chapter 3 / DATA Step Processing

PART 2

Syntax

Chapter 4
Words and Names . 41

Chapter 5
Variables . 75

Chapter 6
Data Types . 179

Chapter 7
SAS Expressions . 191

Chapter 8
SAS Constants . 195

Chapter 9
Operators . 215

Chapter 10
Dates and Times . 241

Chapter 11
Component Objects . 243

39

40

4
Words and Names

SAS Words . 42
Definition of a SAS Word . 42
Types of Words or Tokens . 42
Placement and Spacing of Words . 43

SAS Names . 44
Definition of a SAS Name . 44
Rules for Most SAS Names . 44
Length Rules for Names . 45
Extending SAS Names . 47
See Also . 48

SAS Name Literals . 49
Definition of SAS Name Literals . 49
Important Restrictions . 50
Using Name Literals in BY Groups . 51
Avoiding Errors When Using Name Literals . 51
See Also . 51

Variable Names . 51
Rules for Variable Names . 51
Extended Rules for SAS Variables . 52
See Also . 54

Member Names . 54
Rules for Member Names . 54
Extended Rules for SAS Member Names . 55
See Also . 56

Data Set Names . 56
Definition of a Data Set Name . 56
Structure of a Data Set Name . 57
Special Data Set Names . 59
Rules for Naming SAS Data Sets and Variables . 60
Extended Rules for Naming SAS Data Sets and Variables . 61
See Also . 62

Examples: SAS Words and Names . 63
Example: Create a Variable Name Containing Blanks . 63
Example: Create a SAS Data Set Name Containing a Special Character 64
Example: Manage Placement and Spacing of Words . 65
Example: Specify the FIRST. and LAST. BY Variables as Name Literals 66

41

Example: Create a One-Level Data Set Name . 68
Example: Create a Two-Level Data Set Name . 70
Example: Use the Automatic Naming Feature for Naming Data Sets 71
Example: Use the _LAST_= System Option to Specify the Default Input Data Set . 72

SAS Words

Definition of a SAS Word
A word in the SAS programming language is a collection of characters that
communicates a meaning to SAS. A word cannot be divided into smaller units that
can be used independently. A word can contain a maximum of 32,767 bytes.

A word ends when SAS encounters one of the following conditions:

n the beginning of a new word

n a blank after a name or a number

n the ending quotation mark of a literal word

Types of Words or Tokens
Each word in the SAS language belongs to one of four categories:

name
is a series of characters that begin with a letter or an underscore. Later
characters can include letters, underscores, and numeric digits. A name can
contain up to 32,767 bytes. In most contexts, however, names are limited to a
shorter maximum length, such as 32 or 8 bytes. See Table 4.1 on page 46. Here
are some examples of name tokens:

data

_new

yearcutoff

year_99

descending

n

literal
consists of 1 to 32,767 bytes enclosed in single or double quotation marks. Here
are some examples of literals:

n 'Chicago'

42 Chapter 4 / Words and Names

n "1990-91"

n 'Amelia Earhart'

n 'Amelia Earhart''s plane'

n "Amelia Earhart's plane"

n "Report for the Third Quarter"

Note: The surrounding quotation marks identify the character string as a literal,
but SAS does not store these marks as part of the literal string.

number
in general, is composed entirely of numeric digits, with an optional decimal point
and a leading plus or minus sign. SAS recognizes numeric values in the following
forms as number tokens: scientific (E−) notation, hexadecimal notation, missing
value symbols, and date and time literals. Here are some examples of numbers:

n 5683

n 2.35

n 0b0x

n -5

n 5.4E-1

n '24aug90'd

special character
is usually any single keyboard character other than letters, numbers, the
underscore, and the blank. In general, each special character is a single word,
although some two-character operators, such as ** and <=, form a single word.
The blank can end a name or a number, but it is not a word. Here are some
examples of special characters:

n =

n ;

n '

n +

n @

n /

Placement and Spacing of Words
The spacing requirements for words in SAS statements include the following:

n You can begin SAS statements in any column of a line and write several
statements on the same line.

SAS Words 43

n You can begin a statement on one line and continue it on another line, but you
cannot split a word between two lines.

n A blank is not treated as a character in a SAS statement unless it is enclosed in
quotation marks as a literal or part of a literal. Therefore, you can put multiple
blanks any place in a SAS statement where you can put a single blank. It has no
effect on the syntax.

n The rules for recognizing the boundaries of words or tokens determine the use
of spacing between them in SAS programs. If SAS can determine the beginning
of each token due to cues such as operators, you do not need to include blanks.
If SAS cannot determine the beginning of each token, you must use blanks.

SAS Names

Definition of a SAS Name
A SAS name is a name token that represents one of the following SAS language
elements:

n array n format n option

n catalog entry n informat n procedure

n component object n libref or fileref n statement label

n data set n macro or macro variable n variable

There are two types of names in SAS:

n SAS language element names

n user-supplied names

Rules for Most SAS Names
The following list contains the rules that you use when you create most SAS names:

Note: The rules are more flexible for SAS variable names, data set names, view
names, and item store names than for other language elements. See Rules for
Variable Names and Rules for Member Names.

44 Chapter 4 / Words and Names

n The length of a SAS name depends on which element it is assigned to. Many SAS
names can be 32 bytes long; others have a maximum length of 8 bytes. For a list
of SAS names and their maximum length, see Table 4.1.

n The first character must be an English letter (A, a, B, b, C, c, . . . , Z, z,) or an
underscore (_). Subsequent characters can be letters, numeric digits (0, 1, . . ., 9),
or underscores.

IMPORTANT User-defined format names cannot end in a number.

n You can use uppercase or lowercase letters.

n Blanks are not allowed.

n Special characters, except for the underscore, are not allowed. In filerefs only,
you can use the dollar sign ($), the number sign (#), and the at sign (@).

n SAS reserves a few names for automatic variables and variable lists, SAS data
sets, and librefs.

o When creating variables, do not use the names of special SAS automatic
variables (for example, _N_ and _ERROR_) or special variable list names (for
example, _CHARACTER_, _NUMERIC_, and _ALL_).

o When associating a libref with a SAS library, do not use these libref names:

n Sashelp

n Sasmsg

n Sasuser

n Work

o When you create SAS data sets, do not use these names:

n _NULL_

n _DATA_

n _LAST_

n When assigning a fileref to an external file, do not use the file name SASCAT.

n When you create a macro variable, do not use names that begin with SYS.

Length Rules for Names
The length of a SAS name depends on which element it is assigned to.

SAS Names 45

Table 4.1 Maximum Length of SAS Names by Language Element

Language Element Names
Maximum Length
in Bytes

Array names 32

CALL routines names 16

Catalog names 32

Component object names 32

Engine names 8

Fileref names 8

Format names, character 31

Format names, numeric 32

Function names 16

Generation data set names 28

Index names 32

Informat names, character 30

Informat names, numeric 31

Librefs (library names) 8

Library Member names1 32

Macro variable names 32

Macro window names 32

Macro names 32

Password names 8

Procedure names (the first eight characters must
be unique and cannot begin with “SAS”)

16

Statement label names 32

1. Some examples of SAS library member names are data set names, view names, and catalog names. For more
information, see “Member Types” in Base SAS Procedures Guide.

46 Chapter 4 / Words and Names

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1arud59qlaom1n15ol8c9h2u5uj.htm&locale=en

Language Element Names
Maximum Length
in Bytes

Variable (includes DATA step variables and SCL
variables) names

32

Variable label names 256

View names 32

Window names 32

Extending SAS Names
When VALIDVARNAME=ANY or VALIDMEMNAME=EXTEND, the length of these
SAS names must be measured in bytes:

System Option Setting
SAS Name Measured in
Bytes

Maximum Length
in Bytes

VALIDVARNAME=ANY variable names 32

VALIDMEMNAME=EXTEND SAS data set name

SAS view name

item store name

32

When these system option values are set, the maximum number of characters that
you can use for a SAS member name is determined by the number of bytes that are
used to store one character. This value is set by the SAS encoding value for your
SAS session. For more information, see “Determining the Encoding of a SAS Data
Set” in SAS National Language Support (NLS): Reference Guide.
VALIDVARNAME=ANY or VALIDMEMNAME=EXTEND must be set to allow the
use of National Language Support (NLS) characters.

When these system options are not set to ANY or EXTEND, the default session
encoding is used and only one-byte characters are allowed. For more information
about the default session encoding in SAS, see “Default SAS Session Encoding” in
SAS National Language Support (NLS): Reference Guide.

Note: A SAS member name includes names of data sets, DATA step views, PROC
SQL views, catalogs, stored, compiled DATA step programs, and item stores.

The SAS encodings for western languages use one byte of storage to store one
character. Therefore, in western languages, you can use 32 characters for these SAS

SAS Names 47

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p12mamjt5ccmshn1idwaklce27jg.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p12mamjt5ccmshn1idwaklce27jg.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1tktrbvawjqtzn180bw7al9wl5k.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1tktrbvawjqtzn180bw7al9wl5k.htm&locale=en

names. The SAS encoding for some Asian languages use one to two bytes of
storage to store one character. The Unicode encoding, UTF-8, supports one to four
bytes of storage for a single character. When the SAS encoding uses four bytes to
store one character, the maximum length of one of these SAS names is eight
characters.

All SAS encodings support the characters A–Z and a–z as one-byte characters.

Follow these instructions for finding the maximum number of characters that can
be used for a SAS name:

1 Find the SAS encoding in one of the following ways:

n Find the ENCODING= system option in the SAS System Options window:

1 Type options on the command bar.

2 Right-click Options and select Find Option.

3 Type encoding and click OK.

n In a SAS session, submit the ENCODING= system option in the OPTIONS
procedure:

proc options option=encoding;
run;

2 In the table “SBCS, DBCS, and Unicode Encoding Values Used to Transcode
Data,” find the maximum number of bytes per character for the SAS encoding.
This table is in SAS National Language Support (NLS): Reference Guide.

3 Find the maximum number of bytes for a SAS name from Table 4.1. Divide this
number by the bytes per character. The result is the maximum number of
characters that you can use for the SAS name.

See Also

Examples

n “Example: Create a Variable Name Containing Blanks”

n “Example: Manage Placement and Spacing of Words”

Statements

n “OPTIONS Statement” in SAS Global Statements: Reference

System Options

n “VALIDMEMNAME= System Option” in SAS System Options: Reference

n “VALIDVARNAME= System Option” in SAS System Options: Reference

48 Chapter 4 / Words and Names

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1r7pnb91iybs9n1hgvsj7q09srd.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1r7pnb91iybs9n1hgvsj7q09srd.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en

SAS Name Literals

Definition of SAS Name Literals
A SAS name literal is a user-supplied name that is expressed as a string within
quotation marks, followed by the uppercase or lowercase letter n.

When the VALIDVARNAME system option is set to V=7, the first character of a SAS
variable name must be an English letter (A, a, B, b, C, c, . . . , Z, z,) or an underscore
(_). Subsequent characters can be letters, numeric digits (0, 1, . . ., 9), or
underscores.

Name literals enable you to use many more characters in the name, including
blanks, national characters, and numerals as the first character in the name. To use
a numeral as the first character in the name, however, you must set the
VALIDVARNAME= option to ANY:

options validvarname=any;
data test;
 "1ABC"n="hello";
run;

You can use name literals in these types of SAS names:

n DBMS column names

n DBMS table

n item store

n SAS data set

n SAS view

n statement label

n variable names and values

To use characters in a name literal other than _, A–Z, or a–z, you must set either the
VALIDVARNAME=ANY or VALIDMEMNAME=EXTEND system options. The
following table specifies the options that you must set to use SAS name literals.

Table 4.2 SAS Name Literal System Option Requirements

SAS Name Type Name Literal Requirements

DBMS column Set VALIDVARNAME=ANY.

DBMS table name Set VALIDMEMNAME=EXTEND.

SAS Name Literals 49

SAS Name Type Name Literal Requirements

item store Set VALIDMEMNAME=EXTEND.

SAS data set name Set VALIDMEMNAME=EXTEND.

SAS view Set VALIDMEMNAME=EXTEND.

statement label Set VALIDVARNAME=ANY.

variable Set VALIDVARNAME=ANY.

Name literals are especially useful for expressing DBMS column and table names
that contain special characters and for including national characters in SAS names.

Important Restrictions
n You can use a name literal only for variables, statement labels, DBMS column

and table names, SAS data sets, SAS view, and item stores.

n When the name literal of a SAS data set name, a SAS view name, or an item
store name contains any characters that are not allowed when
VALIDMEMNAME=COMPAT, then you must set the system option
VALIDMEMNAME=EXTEND. See “VALIDMEMNAME= System Option” in SAS
System Options: Reference.

n When the name literal of a variable, DBMS table, or DBMS column contains any
characters that are not allowed when VALIDVARNAME=V7, then you must set
the system option VALIDVARNAME=ANY. See “VALIDVARNAME= System
Option” in SAS System Options: Reference.

n If you use either the percent sign (%) or the ampersand (&), then you must use
single quotation marks in the name literal in order to avoid interaction with the
SAS Macro Facility.

n When the name literal of a DBMS table or column contains any characters that
are not valid for SAS rules, you might need to specify a SAS/ACCESS LIBNAME
statement option. For more details and examples about the SAS/ACCESS
LIBNAME statement and about using DBMS table and column names that do
not conform to SAS naming conventions, see SAS/ACCESS for Relational
Databases: Reference.

n In a quoted string, SAS preserves and uses leading blanks, but SAS ignores and
trims trailing blanks.

n Blanks between the closing quotation mark and the n are not valid when you
specify a name literal.

n Note that even if you set VALIDVARNAME=ANY, the V6 engine does not
support names that have intervening blanks.

50 Chapter 4 / Words and Names

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en

Using Name Literals in BY Groups
When you designate a name literal as the BY variable in BY-group processing and
you want to refer to the corresponding FIRST. or LAST. temporary variables, you
must include the FIRST. or LAST. portion of the two-level variable name within
quotation marks.

Avoiding Errors When Using Name Literals
For information about avoiding errors when using name literals, see “Avoiding a
Common Error with Character Constants”.

See Also

Examples

n “Example: Create a Variable Name Containing Blanks”

n “Example: Specify the FIRST. and LAST. BY Variables as Name Literals”

Statements

n “BY Statement” in SAS DATA Step Statements: Reference

n “OPTIONS Statement” in SAS Global Statements: Reference

System Options

n “VALIDMEMNAME= System Option” in SAS System Options: Reference

n “VALIDVARNAME= System Option” in SAS System Options: Reference

Variable Names

Rules for Variable Names
The rules for SAS variable names have expanded to provide more functionality. The
setting of the “VALIDVARNAME= System Option” in SAS System Options: Reference

Variable Names 51

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en

determines which rules apply to the variables that you create in your SAS session,
as well as to variables that you want to read from existing data sets.

The VALIDVARNAME= system option has three settings (V7, UPCASE, and ANY),
each with varying degrees of flexibility for variable names. If you do not specify the
VALIDVARNAME= system option in your SAS session, the default value, V7, is
automatically assigned to your SAS session.

The table below shows a summary of the rules for naming SAS variables when the
VALIDVARNAME= system option is set to V7. These are the default settings in
Base SAS. In some SAS applications, such as SAS Visual Analytics and SAS Cloud
Analytic Services, the VALIDVARNAME= system options are set by default to allow
the most flexibility for naming SAS variables. These rules are summarized in Table
4.5.

Table 4.3 Summary of Default Rules for Naming SAS Variables

Variable Names

(with VALIDVARNAME=V7)

n can be up to 32 bytes in length.

n cannot contain special characters (except for the underscore), blanks, or national
characters.

n must begin with a letter of the Latin alphabet (A–Z, a–z) or the underscore.

n can contain mixed-case letters. SAS stores and writes the variable name in the
same case that is used in the first reference to the variable.

Note that SAS internally converts all variable names to uppercase.

For example, the names cat, Cat, and CAT all represent the same variable.

Extended Rules for SAS Variables
The following table shows a summary of rules for naming SAS variables when the
VALIDVARNAME= system option is set to UPCASE. All the variable names are
uppercase.

Table 4.4 Summary of Extended Rules for Naming SAS Variables

Variable Names

(with VALIDVARNAME=UPCASE)

n can be up to 32 bytes in length.

n cannot contain special characters (except for the underscore), blanks, or national
characters.

n must begin with a letter from the Latin alphabet (A–Z, a–z) or the underscore.

52 Chapter 4 / Words and Names

Variable Names

(with VALIDVARNAME=UPCASE)

n can contain mixed-case letters. SAS stores and writes the variable name in the
same case that is used in the first reference to the variable.

Note that SAS internally converts all variable names to uppercase.

For example, the names cat, Cat, and CAT all represent the same variable.

The following table shows a summary of the rules for naming SAS variables when
the highest level of flexibility is allowed (that is, when the VALIDVARNAME=
system option is set to ANY).

Table 4.5 Summary of Extended Rules for Naming SAS Variables

Variable Names

(with VALIDVARNAME=ANY)

n can be up to 32 bytes in length.

n can contain special characters including / \ * ? " < > | : - . A name that contains
special characters must be specified as a name literal.

n can begin with any character, including blanks, national characters, special
characters, and multibyte characters.

n preserves leading blanks, but trailing blanks are ignored.

n can contain mixed-case letters. SAS stores and writes the variable name in the
same case that is used in the first reference to the variable.

Note that SAS converts all variable names to uppercase.

For example, the names cat, Cat, and CAT all represent the same variable.

n cannot contain all blanks.

IMPORTANT Throughout SAS, using the name literal syntax with variable names
that exceed the 32-byte limit or have excessive embedded quotation marks might
cause unexpected results. The intent of the VALIDVARNAME=ANY system option is
to enable compatibility with other DBMS variable (column) naming conventions, such
as allowing embedded blanks and national characters.

Note: If VALIDVARNAME=V7 and you use any characters other than letters,
numerals, or underscores), then you must express the variable name as a name literal
and you must set VALIDVARNAME=ANY. If the name includes either the percent sign
(%) or the ampersand (&), then you must use single quotation marks in the name
literal in order to avoid interaction with the SAS Macro Facility. See SAS Name
Literals and Avoiding Errors When Using Name Literals.

Variable Names 53

See Also

Examples

n “Example: Create a Variable Name Containing Blanks”

n “Example: Specify the FIRST. and LAST. BY Variables as Name Literals”

n “Example: Create a SAS Data Set Name Containing a Special Character”

Statements

n “OPTIONS Statement” in SAS Global Statements: Reference

System Options

n “VALIDMEMNAME= System Option” in SAS System Options: Reference

n “VALIDVARNAME= System Option” in SAS System Options: Reference

Member Names

Rules for Member Names
Member names include SAS data set names, views names, and item store names.

The rules for member names have expanded to provide more functionality. The
setting of the “VALIDMEMNAME= System Option” in SAS System Options:
Reference determines which rules you apply to the member names that you create
in your SAS session. The VALIDMEMNAME= system option has three settings, each
with varying degrees of flexibility for member names. If you do not specify the
VALIDMEMNAME= system option in your SAS session the default is COMPATIBLE.

Table 4.6 Summary of Default Rules for Naming SAS Member Names

Member Names

(with VALIDMEMNAME=COMPATIBLE)

n The length of the names can be up to 32 characters.

n Names must begin with a letter from the Latin alphabet (A–Z, a–z) or an
underscore. Subsequent characters can be letters from the Latin alphabet,
numerals, or underscores.

n Names cannot contain blanks or special characters except for the underscore.

54 Chapter 4 / Words and Names

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en

Member Names

(with VALIDMEMNAME=COMPATIBLE)

n Names can contain mixed-case letters. SAS internally converts the member name
to uppercase. Note that the names, customer, Customer, and CUSTOMER all
represent the same member name.

Extended Rules for SAS Member Names
The following table shows a summary of the rules for naming SAS member names
when the highest level of flexibility is allowed (that is, when the
VALIDMEMNAME= system option is set to EXTEND).

Table 4.7 Summary of Extended Rules for Naming SAS Member Names

Variable Names

(with VALIDMEMNAME=EXTEND)

n Names can include national characters.

n The name can include special characters, except for the / \ * ? " < > |: -. characters.

Note: The SPD Engine does not allow ‘.’ (the period) anywhere in the member
name.

n The name must contain at least one character (letters, numbers, valid special
characters, and national characters).

n The length of the name can be up to 32 bytes.

n Null bytes are not allowed. Names cannot begin with a blank or a ‘.’ (the period).

Note: The SPD Engine does not allow ‘$’ as the first character of the member
name.

n Leading and trailing blanks are deleted when the member is created.

n Names can contain mixed-case letters. SAS internally converts the member name
to uppercase. Note that the names, customer, Customer, and CUSTOMER all
represent the same member name.

IMPORTANT Throughout SAS, using the name literal syntax with variable names
that exceed the 32-byte limit or have excessive embedded quotation marks might
cause unexpected results. The intent of the VALIDVARNAME=ANY system option is
to enable compatibility with other DBMS variable (column) naming conventions, such
as allowing embedded blanks and national characters.

Note: Regardless of the value of the VALIDMEMNAME= system option, a member
name cannot end in the special character # followed by three digits. This is because it
would conflict with the naming conventions for generation data sets. Using such a
member name results in an error.

Member Names 55

Variable Names

(with VALIDMEMNAME=EXTEND)

Note: When VALIDMEMNAME=EXTEND, SAS data set names, SAS data view
names, and item store names must be written as a SAS name literal if the name
includes blank spaces, special characters, or national characters. If you use either the
percent sign (%) or the ampersand (&), then you must use single quotation marks in
the name literal in order to avoid interaction with the SAS Macro Facility. For more
information, see “SAS Name Literals”.

See Also

Statements

n “OPTIONS Statement” in SAS Global Statements: Reference

System Options

n “VALIDMEMNAME= System Option” in SAS System Options: Reference

n “VALIDVARNAME= System Option” in SAS System Options: Reference

Data Set Names

Definition of a Data Set Name
A data set name is a user-supplied name that you give to a SAS data set when you
create it. Output data sets that you create in a DATA step are named in the DATA
statement. SAS data sets that you create in a procedure step are usually given a
name in the procedure statement or in an OUTPUT statement.

Follow the rules for naming SAS member names when naming SAS data sets. See
Rules for Member Names on page 54 for more information.

If you do not specify a name for the output data set in a DATA statement, SAS
automatically assigns a default data set name. If you do not specify a name for the
input data set in a SET statement, SAS automatically uses the last data set that
was created. For more information, see “Special Data Set Names” on page 59.

Here are some statements that might require you to supply a name for a data set:

n DATA= option

n MERGE statement

56 Chapter 4 / Words and Names

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n17dcq1elcvpvkn1pkecj41cva6j.htm&docsetTargetAnchor=n14fkplubfs9afn1qg1d3p8pe026&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en

n MODIFY statement

n OPEN function

n SET statement

n SQL Procedure

n UPDATE statement

SAS view names are created using one of the following:

n the VIEW= option in the “DATA Statement” in SAS DATA Step Statements:
Reference

n the ACCESS procedure

Note: SAS data sets and SAS Views that share the same library cannot have the
same name.

Structure of a Data Set Name

Levels

The complete name of every SAS data set has three levels. You assign the first two
levels and SAS supplies the third. The form for a SAS data set name is as follows:

libref (library name)
is the user-supplied logical name that is associated with the physical location of
the SAS library.

SAS data set
is the user-supplied data set name, which can be up to 32 bytes long for the
Base SAS engine starting in Version 7. Earlier SAS versions are limited to 8-byte
names.

member type
is the system-created name assigned by SAS that identifies the type of
information that is stored in a SAS file. For example, SAS data sets are of type
DATA and SAS DATA step views are of type VIEW. Other member types are
ACCESS, AUDIT, DMBD, CATALOG, FDB, INDEX, ITEMSTOR, MDDB,
PROGRAM, and UTILITY.

Data Set Names 57

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0q72zlfmfjplon1p3nprf85sdin.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n1oihmdy7om5rmn1aorxui3kxizl.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&docsetTargetAnchor=p0szvu3p89ijp7n0zztby8rbixuf&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en

When you refer to SAS data sets in your program statements, use a one- or two-
level name. You can use a one-level name when the data set is in the temporary
library Work. In addition, if the reserved libref User is assigned, you can use a one-
level name when the data set is in the permanent library User. Use a two-level
name when the data set is in some other permanent library that you have
established.

One-level Names

A one-level name consists of just the data set name. You can omit the libref, and
refer to data sets with a one-level name in the following form:

Data sets with one-level names are automatically assigned to one of two SAS
libraries:

Work
a SAS library that is used for temporarily saving data sets with one-level names.
Temporarily means that the contents of the library are deleted at the end of the
SAS job or session. Data sets with one-level names are stored in the Work
library by default.

User
a SAS library that is used for permanently saving data sets with one-level
names.

Most commonly, they are assigned to the temporary library Work and are deleted
at the end of a SAS job or session. If you have associated the libref User with a SAS
library or used the USER= system option to set the User library, data sets with one-
level names are stored in that library.

See “User Library” and “Work Library (Temporary)” for more information about
using the Work and User libraries.

Two-level Names

A two-level name consists of both the libref and the data set name. The form most
commonly used to create, read, or write to SAS data sets in permanent SAS
libraries is the two-level name as shown here:

58 Chapter 4 / Words and Names

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1tl8adik7ypwun1utdwxaauf9wq.htm&locale=en

When you create a new SAS data set, the libref indicates where it is to be stored.
When you reference an existing data set, the libref tells SAS where to find it.

Special Data Set Names
Reserved words are keywords in SAS that are “reserved” for system use only and
cannot be used to name your data sets. The following special data set names are
reserved words in SAS:

n _DATA_

n _LAST_

n _NULL_

DATA Data Set

If you do not specify a name for the output data set or specify the reserved name
DATA in a DATA statement, then SAS automatically assigns the names DATA1,
DATA2, ... DATA9999, after which time the names restart with DATA1 for each
successive data set that you create.

This feature is referred to as the DATAn naming convention.

For example, when the following program executes, SAS creates three data sets in
the WORK library, naming them DATA1, DATA2, and DATA3:

data _data_;
 x=1;
run;

data;
 y=2;
run;

data _data_;
 z=3;
run;

This feature enables you to automate the naming of output data sets without the
risk of overwriting your data. The names are unique when they are written to the

Data Set Names 59

WORK library, and they continue to increment numerically for the duration of the
SAS session.

See Splitting a data set into smaller data sets for some practical examples that
show how to use the SAS DATAn naming convention.

LAST Data Set

If you do not specify a name for the input data set in a SET statement, SAS
automatically uses the last data set that was created. SAS keeps track of the most
recently created data set through the reserved name _LAST_. When you execute a
DATA or PROC step without specifying an input data set, by default, SAS uses the
LAST data set.

Some functions use the _LAST_ default as well.

The _LAST_= system option enables you to designate a data set as the _LAST_ data
set.

See “Example: Use the _LAST_= System Option to Specify the Default Input Data
Set” on page 72 for an example that shows how to use the _LAST_ system option.

NULL Data Set

If you want to execute a DATA step but do not want to create a SAS data set, you
can specify the keyword _NULL_ as the data set name. The following statement
begins a DATA step that does not create a data set:

data _null_;

Using _NULL_ causes SAS to execute the DATA step as if it were creating a new
data set, but no observations or variables are written to an output data set. This
process can be a more efficient use of computer resources if you are using the
DATA step for some function, such as report writing, for which the output of the
DATA step does not need to be stored as a SAS data set.

Rules for Naming SAS Data Sets and Variables
The table below shows a summary of the rules for naming SAS data sets when the
VALIDMEMNAME= system option is set to COMPATIBLE and the
VALIDVARNAME= system option is set to V7. These are the default settings in
Base SAS. In some SAS applications, such as SAS Visual Analytics, the
VALIDMEMNAME= and VALIDVARNAME= system options are set by default to
allow the most flexibility for naming SAS variables and data sets. These rules are
summarized in Table 4.8.

60 Chapter 4 / Words and Names

https://blogs.sas.com/content/sgf/2020/07/23/splitting-a-data-set-into-smaller-data-sets/
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1jcqq2r7mbk5xn1nsi74aavcdak.htm&locale=en

Table 4.8 Summary of Default Rules for Naming SAS Data Sets and Variables

SAS Data Set Names, View Names, and
Item Store Names

(with VALIDMEMNAME=COMPAT)

Variable Names

(with VALIDVARNAME=V7)

n can be up to 32 bytes in length.

n cannot contain special characters
(except for the underscore), blanks, or
national characters.

n must begin with a letter from the Latin
alphabet (A–Z, a–z) or the underscore.

n can contain mixed-case letters. SAS
internally converts the member name
to uppercase. Therefore, you cannot
use the same member name with a
different combination of uppercase
and lowercase letters to represent
different members. For example, cat,
Cat, and CAT all represent the same
member name. How the name on the
disk appears is determined by the
operating environment.

n can be up to 32 bytes in length.

n cannot contain special characters
(except for the underscore), blanks, or
national characters.

n must begin with a letter from the Latin
alphabet (A–Z, a–z) or the underscore.

n can contain mixed-case letters. SAS
stores and writes the variable name in
the same case that is used in the first
reference to the variable. However,
when SAS processes variable names, it
internally converts them to uppercase.
Therefore, you cannot use the same
variable name with a different
combination of uppercase and
lowercase letters to represent
different variables. For example, cat,
Cat, and CAT all represent the same
variable.

IMPORTANT In the Linux operating environment, SAS reads only data set
names that are written in all lowercase characters.

Extended Rules for Naming SAS Data Sets and
Variables

The following table shows a summary of the rules for naming SAS data sets (that
is, when the VALIDMEMNAME= system option is set to EXTEND and the
VALIDVARNAME= system option is set to ANY).

Data Set Names 61

Table 4.9 Summary of Extended Rules for Naming SAS Data Sets and Variables

SAS Data Set Names, View Names, and
Item Store Names

(with VALIDMEMNAME=EXTEND)

Variable Names

(with VALIDVARNAME=ANY)

n can be up to 32 bytes in length.

n can contain special characters except
for / \ * ? " < > | : -. A name that contains
special characters must be specified as
a name literal.

n cannot begin with a blank or a period.

n ignores leading and trailing blanks.

n can contain mixed-case letters. SAS
internally converts the member name to
uppercase. Therefore, you cannot use
the same member name with a different
combination of uppercase and
lowercase letters to represent different
variables. For example, cat, Cat, and
CAT all represent the same member
name. 1

n can be up to 32 bytes in length.

n can contain special characters
including / \ * ? " < > | : - . A name
that contains special characters
must be specified as a name literal.

n can begin with any character,
including blanks, national
characters, special characters, and
multibyte characters.

n preserves leading blanks, but trailing
blanks are ignored.

n can contain mixed-case letters. SAS
stores and writes the variable name
in the same case that is used in the
first reference to the variable.
However, when SAS processes a
variable name, it internally converts
the variable name to uppercase.
Therefore, you cannot use the same
variable name with a different
combination of uppercase and
lowercase letters to represent
different variables. For example, cat,
Cat, and CAT all represent the same
variable.

n cannot contain all blanks.

IMPORTANT In the Linux operating environment, SAS reads only data set
names that are written in all lowercase characters.

See Also

Examples

n “Example: Create a SAS Data Set Name Containing a Special Character”

n “Example: Create a One-Level Data Set Name”

n “Example: Use the Automatic Naming Feature for Naming Data Sets”
1. In the UNIX operating environment, SAS reads only data set names that are written in all lowercase characters

62 Chapter 4 / Words and Names

n “Example: Use the _LAST_= System Option to Specify the Default Input Data
Set”

Functions

n OPEN function

Statements

n DATA Statement

n SET statement

n MERGE statement

n MODIFY statement

n “OPTIONS Statement” in SAS Global Statements: Reference

n UPDATE statement

System Options

n _LAST_= system option

n USER= system option

n “VALIDMEMNAME= System Option” in SAS System Options: Reference

n “VALIDVARNAME= System Option” in SAS System Options: Reference

n VIEW= option

Examples: SAS Words and Names

Example: Create a Variable Name Containing
Blanks

Example Code

The following example illustrates creating a variable name that contains blanks

options validvarname=any; /* 1 */
data mydata;
 'First Name'n='John'; /* 2 */
run;

Examples: SAS Words and Names 63

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0q72zlfmfjplon1p3nprf85sdin.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1jcqq2r7mbk5xn1nsi74aavcdak.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1tl8adik7ypwun1utdwxaauf9wq.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&docsetTargetAnchor=p0szvu3p89ijp7n0zztby8rbixuf&locale=en

1 Specify the VALIDVARNAME= system option in the OPTIONS statement.
VALIDVARNAME=ANY enables you to create a variable name containing a
blank, special characters, national characters, and multibyte characters.

2 Specify the variable name as a name literal. Name literals enable you to use
special characters in SAS names when you specify a variable or SAS data set.
Name literals are created by placing the name in quotation marks followed by
the letter n.

Key Ideas

n The VALIDVARNAME= system option determines which rules apply to the
variables that you can create and process in your SAS session.

n If you use any characters other than the ones that are valid when the
VALIDVARNAME= system option is set to the default setting (V7), then you must
express the variable name as a name literal and you must set
VALIDVARNAME=ANY.

n Blanks between the closing quotation mark and the n are not valid when you
specify a name literal.

See Also

n “Definition of SAS Name Literals”

n “OPTIONS Statement” in SAS Global Statements: Reference

n “Rules for Most SAS Names”

n “Rules for Variable Names”

n “VALIDVARNAME= System Option” in SAS System Options: Reference

Example: Create a SAS Data Set Name Containing
a Special Character

Example Code

The following example illustrates creating a new SAS data set name that contains
the special character $:

options validmemname=extend; /* 1 */

64 Chapter 4 / Words and Names

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en

data 'my$data'n; /* 2 */
 x=1;
 y=3;
 sum=x+y;
run;

1 Specify the VALIDMEMNAME=system option OPTIONS statement.
VALIDMEMNAME=EXTEND enables you to create a SAS data set name
containing any special character except for / \ * ? " < > | : -.

2 Specify the data set name as a name literal. Name literals enable you to use
special characters in SAS names when you specify a SAS data set name or
variable. Name literals are created by placing the name in quotation marks
followed by the letter n.

Key Ideas

n A SAS name literal is a user-supplied name that is expressed as a string within
quotation marks, followed by the uppercase or lowercase letter n.

n Name literals enable you to use characters (including blanks and national
characters) that are not otherwise allowed.

n Use the VALIDMEMNAME=EXTEND system option when specifying a SAS data
set name that contains special characters.

See Also

n “Definition of SAS Name Literals”

n “Extended Rules for Naming SAS Data Sets and Variables”

n “OPTIONS Statement” in SAS Global Statements: Reference

n “VALIDMEMNAME= System Option” in SAS System Options: Reference

Example: Manage Placement and Spacing of Words

Example Code

In the following example, blanks are not required because SAS can determine the
boundary of every word by examining the beginning of the next word.

total=x+y;

Examples: SAS Words and Names 65

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en

In the following example, the equal sign marks the end of the word total. The plus
sign, another special character, marks the end of the word x. The last special
character, the semicolon, marks the end of the y word. Though blanks are not
needed to end any words in this example, you can add them for readability.

total = x + y;

In the following example, blanks are required because SAS cannot recognize the
individual words without the spaces. Without blanks, the entire statement up to the
semicolon fits the rules for a name. Therefore, the statement requires blanks to
distinguish individual names and numbers.

 input group 15 room 20;

Key Ideas

n A word in the SAS programming language is a collection of characters that
communicates a meaning to SAS.

n A word cannot be divided into smaller units that can be used independently. A
word can contain a maximum of 32,767 bytes.

n A name is a series of characters that begin with a letter or an underscore. Later
characters can include letters, underscores, and numeric digits. A name can
contain up to 32,767 bytes. In most contexts, however, names are limited to a
shorter maximum length, such as 32 or 8 bytes.

See Also

n “Definition of a SAS Word” on page 42

n “Types of Words or Tokens”

n “Rules for Most SAS Names” on page 44

Example: Specify the FIRST. and LAST. BY
Variables as Name Literals

Example Code

The following example illustrates specifying FIRST. and LAST. BY variables as name
literals:

options validvarname=any; /* 1 */

66 Chapter 4 / Words and Names

data sedanTypes;
 set cars;
 by 'Sedan Types'n; /* 2 */
 if 'first.Sedan Types'n then type=1; /* 3 */
 else type=2;
run;

1 Specify the VALIDVARNAME= system option in the OPTIONS statement.
VALIDVARNAME=ANY enables you to create a variable name containing a
blank, special characters, national characters, and multibyte characters.

2 The variable Sedan Types contains a blank between the two words; therefore,
enclose the variable name in quotation marks followed by the letter n to declare
the variable as a name literal.

3 When you designate a name literal as the BY variable in BY-group processing
and you want to refer to the corresponding FIRST. or LAST. temporary variables,
use the FIRST. or LAST. portion of the two-level variable name within the
quotation marks.

Key Ideas

n The VALIDVARNAME= system option determines which rules apply to the
variables that you can create and process in your SAS session.

n If you use any characters other than the ones that are valid when the
VALIDVARNAME= system option is set to the default setting (V7), then express
the variable name as a name literal and set VALIDVARNAME=ANY.

n Specify your FIRST. and LAST. variable as name literals when there are special
characters in the variable name.

n Blanks between the closing quotation mark and the n are not valid when you
specify a name literal.

See Also

n “BY Statement” in SAS DATA Step Statements: Reference

n “OPTIONS Statement” in SAS Global Statements: Reference

n “VALIDMEMNAME= System Option” in SAS System Options: Reference

n “VALIDVARNAME= System Option” in SAS System Options: Reference

n “Using Name Literals in BY Groups”

Examples: SAS Words and Names 67

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en

Example: Create a One-Level Data Set Name

Example Code

The following example illustrates the use of one-level names in SAS statements:

options user='c:\temp'; /* 1 */
data test; /* 2 */
 x=1;
run;
data samptest; /* 3 */
 x=1;
 y=6;
 s=x*y+y;
run;

1 USER=system option specifies the name of the default permanent SAS library.
When you specify the USER= system option, any data set that you create with a
one-level name is permanently stored in the specified library.

2 The DATA statement creates the permanent data set, Test, in the SAS system
library, User. Note that you do not have to reference User as a part of your data
set name.

3 The DATA statement creates the permanent data set, Samptest, in the current
directory.

Note: You do not have to reference the USER= system option prior to the DATA
step or reference User as a part of your data set name in order for SAS to create
Samptest in the User library.

The following is printed to the SAS log:

68 Chapter 4 / Words and Names

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1tl8adik7ypwun1utdwxaauf9wq.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en

Output 4.1 SAS Log: One-Level Data Set Names

85 options user='C:\temp';
86 data test;
87 x=1;
88 run;

NOTE: The data set USER.TEST has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

89 data samptest;
90 x=1;
91 y=6;
92 s=x*y+y;
93 run;

NOTE: The data set USER.SAMPTEST has 1 observations and 3 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

Key Ideas

n Data sets with one-level names are automatically assigned either the Work or
User library. You can omit the libref and refer to data sets with a one-level name.

n Most commonly, data sets are assigned to the temporary library, Work, and are
deleted at the end of a SAS job or session.

n If you have associated the libref User with a SAS library or used the USER= system
option to set the User library, data sets with one-level names are stored in that
library.

See Also

n DATA Statement

n One-Level Names

n OPTIONS Statement

n Structure of a Data Set Name

n USER= System Option

Examples: SAS Words and Names 69

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1tl8adik7ypwun1utdwxaauf9wq.htm&locale=en

Example: Create a Two-Level Data Set Name

Example Code

The following example illustrates the use of two-level names in SAS statements:

libname finance 'C:\finance'; /* 1 */
data finance.balances; /* 2 */
 rate=0.03;
 months=12;
 balance=1000;
 endbal=(rate*months)+balance;
run;

1 The LIBNAME statement associates a SAS library with the libref, Finance. You
can reference the libref in subsequent DATA or PROC steps to create, read, or
write SAS data sets in the permanent library.

2 The DATA statement references the Finance libref and tells SAS to create a new
SAS data set in the Finance library and name the new data set Balances. The
new data set contains four variables and one observation.

The following is printed to the SAS log:

Output 4.2 SAS Log: Two-Level Data Set Names

94 libname finance 'C:\finance;
NOTE: Libref FINANCE was successfully assigned as follows:
 Engine: V9
 Physical Name: C:\finance
95
96 data finance.balances;
97 rate=.03;
98 months=12;
99 balance=1000;
100 endbal=(rate*months)+balance;
101 run;

NOTE: The data set FINANCE.BALANCES has 1 observations and 4 variables.
NOTE: DATA statement used (Total process time):
 real time 0.06 seconds
 cpu time 0.01 seconds

Key Ideas

n A two-level data set name is the most commonly used form to create, read, or
write SAS data sets in a permanent SAS library.

70 Chapter 4 / Words and Names

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en

n When you create a new SAS data set, the libref indicates where it is to be stored.
When you reference an existing data set, the libref tells SAS where to find it.

See Also

n DATA Statement

n LIBNAME Statement

n Structure of a Data Set Name

n Two-Level Names

Example: Use the Automatic Naming Feature for
Naming Data Sets

Example Code

The following example illustrates the use of the DATAn automatic naming feature
in the SAS DATA step. If you do not specify a name for the output data set or
specify it as DATA (or data as it is case insensitive), SAS automatically assigns
names to the data sets that you create as DATA1, DATA2, and so on up to
DATA9999. SAS assigns a successive name to every unnamed data set.

The example contains three unnamed output data sets and one named data set.

data;
 setsashelp.class;
run;

data DATA;
 set sashelp.air;
run;

data sample;
 set sashelp.cars;
run;

data data;
 setsashelp.flags;
run;

The following is printed to the SAS log.

Examples: SAS Words and Names 71

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en

Output 4.3 SAS Log: Use the DATAn Automatic Naming Feature

NOTE: There were 19 observations read from the data set SASHELP.CLASS.
NOTE: The data set WORK.DATA1 has 19 observations and 5 variables.
NOTE: There were 144 observations read from the data set SASHELP.AIR.
NOTE: The data set WORK.DATA2 has 144 observations and 2 variables.
NOTE: There were 428 observations read from the data set SASHELP.CARS.
NOTE: The data set WORK.SAMPLE has 428 observations and 15 variables.
NOTE: There were 220 observations read from the data set SASHELP.FLAGS.
NOTE: The data set WORK.DATA3 has 220 observations and 7 variables.

Key Ideas

n If you do not specify a SAS data set name in a DATA statement, SAS automatically
creates data sets with the names DATA1, DATA2, and so on, to successive data
sets.

n The automatically named data sets are stored in the Work or User library.

n If you do not save your automatically named data sets to a permanent library, they
will be removed at the end of your SAS session.

See Also

n _DATA_ Data Set

n DATA Statement

n SET Statement

Example: Use the _LAST_= System Option to
Specify the Default Input Data Set

Example Code

The following example illustrates the use of the _LAST_= system option to specify
the default input data set for the current SAS session:

options _last_=mysas.class; /* 1 */
libname mysas 'C:\Users\';
data mysas.class; /* 2 */
 set sashelp.class;

72 Chapter 4 / Words and Names

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en

run;
data mysas.test; /* 3 */
 set;
run;

1 The _LAST_= system option enables you to designate a data set as the _LAST_
data set. The name that you specify is used as the default data set until you
create a new data set. You can use the _LAST_= system option when you want
to use an existing permanent data set for a SAS job that contains a number of
procedure steps. Issuing the _LAST_= system option enables you to avoid
specifying the SAS data set name in each procedure statement.

2 The first DATA step creates a data set named mysas.class that is referenced in
the _LAST_= system option.

3 The second DATA step creates a permanent data set named mysas.test and
does not specify a data set in the SET statement. The SET statement then
executes the _LAST_= system option and sets the input data set as
mysas.class.

Output 4.4 SAS Log Output

NOTE: There were 19 observations read from the data set MYSAS.CLASS.
 NOTE: The data set MYSAS.CLASS has 19 observations and 5 variables.

Key Ideas

n SAS keeps track of the most recently created SAS data set through the reserved
name _LAST_.

n When you execute a DATA or PROC step without specifying an input data set, by
default, SAS uses the _LAST_ data set. Some functions use the _LAST_ default as
well.

n The _LAST_= system option enables you to designate a data set as the _LAST_
data set. The name that you specify is used as the default data set until you create
a new data set.

n You can use the _LAST_= system option when you want to use an existing
permanent data set for a SAS job that contains a number of DATA step or
procedure steps.

n Specifying the _LAST_= system option enables you to avoid specifying the SAS
data set name in each DATA step or procedure statement.

See Also

n Data Set Names

Examples: SAS Words and Names 73

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1jcqq2r7mbk5xn1nsi74aavcdak.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en

n _LAST_ Data Set

n LIBNAME Statement

n OPTIONS Statement

n SET Statement

74 Chapter 4 / Words and Names

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en

5
Variables

Definition of SAS Variables . 77

Ways to Create Variables . 77

Creating a New Variable in a Formatted INPUT Statement . 79

Manage Variables . 80
Modify Variables . 80
Specifying a New Variable in a FORMAT or INFORMAT Statement 82
Specifying a New Variable in the ATTRIB Statement . 84
Control Output of Variables . 85

Variable Attributes . 88
Definition . 88
See Also . 90

Data Types . 91
Definitions . 91
Numeric Data . 92
Character Data . 93

Variable Type Conversions . 94
Automatic Character-to-Numeric Conversion . 94
Explicit Character-to-Numeric Conversion . 95
Automatic Numeric-to-Character Conversion . 95
Explicit Numeric-to-Character Conversion . 96
See Also . 96

Automatic Variables . 96
Automatic DATA Step Variables . 97
Automatic Macro Variables . 98
See Also . 98

SAS Variable Lists . 99
Definition of a Variable List . 99
Types of Variable Lists . 99
The OF Operator with Functions and Variable Lists . 100
See Also . 101

Missing Variable Values . 102
Definition of Missing Values . 102
How to Represent Missing Values in Raw Data . 102
Special Missing Values . 103
Order of Missing Values . 103

75

When Variable Values Are Automatically Set to Missing by SAS 105
When Missing Values Are Generated by SAS . 106
See Also . 107

Numeric Precision . 107
Overview . 107
Truncation in Binary Numbers . 108
How SAS Stores Numeric Values . 108
Floating-Point Representation Using the IEEE Standard . 113
Floating-Point Representation on Windows . 114
Floating-Point Representation on IBM Mainframes . 116
Troubleshooting Errors in Precision . 117
Transferring Data between Operating Systems . 119
See Also . 120

Examples: Create and Modify SAS Variables . 121
Example: Create a SAS Variable Using an Assignment Statement 121
Example: Create a Variable Using the INPUT Statement . 122
Example: Modify a SAS Variable Using the LENGTH Statement . 123
Example: Modify a SAS Variable Using the FORMAT and INFORMAT Statement . 124
Example: Modify a SAS Variable Using the ATTRIB Statement . 125
Example: View Variable Attributes . 126
Example: Change Variable Attributes . 128

Examples: Control Output of Variables . 130
Example: Select Specific Variables for Output . 130
Example: Select Specific Variables for Processing . 132

Examples: Reorder and Align Variables . 133
Example: Reorder Variables Using the ATTRIB Statement . 133
Example: Reorder Variables Using the LENGTH Statement . 135
Example: Reorder Variables Using the RETAIN Statement . 137
Example: Reorder Variables Using the FORMAT Statement . 139

Examples: Convert Variable Types . 141
Example: Convert Character Variables to Numeric . 141
Example: Convert Numeric Variables to Character . 142
Example: Use Automatic Type Conversions . 144

Examples: Use Automatic Variables . 145
Example: Use the _N_ Automatic Variable . 145
Example: Use the _ERROR_ and _INFILE_ Automatic Variable with

the IF/THEN Statement . 147

Examples: Use Variable Lists . 148
Example: Create a Variable Numbered Range List . 148
Example: Create a Variable Name Range List . 149
Example: Use the OF Operator with a Variable List . 151
Example: Use the OF Operator to Create Multiple Variable Lists 152

Examples: Manage Missing Variable Values . 153
Example: Automatically Replacing Missing Values . 153
Example: Creating Special Missing Values . 154
Example: Preventing Propagation of Missing Values . 155

Examples: Manage Problems Related to Precision . 157
Example: Compare Imprecise Values in SAS . 157
Example: Convert a Decimal Value to a Floating Point Representation 158

76 Chapter 5 / Variables

Example: Convert a Decimal Value to a Hexadecimal Floating-
Point Representation . 161

Example: Round Values to Avoid Computational Errors . 163
Example: Use the LENGTH Statement to Compare Values . 164
Example: Compare Values That Have Imprecise Representations 166
Example: Confirm Precision Errors Using Formats . 167
Example: Determine How Many Bytes Are Needed to Store a

Number Accurately . 169
Example: Generate Inaccurate Results For Large Data . 171

Examples: Encrypt Variable Values . 172
Example: Create a Simple 1-Byte-to-1-Byte Swap Using the

TRANSLATE Function . 172
Example: Use a 1-Byte-to-2-Byte Swap Using the TRANWRD Function 174
Example: Use Different Functions to Encrypt Numeric Values as

Character Strings . 176

Definition of SAS Variables
automatic variables

are created automatically by the DATA step or by the DATA step statements.
These variables are added to the program data vector but are not included in the
data set being created. You cannot view these variables in the log or in the
results.

numerical precision
refers to the degree with which numeric variables are stored in your operating
environment.

variables
are containers that you create within a program to store and use character and
numeric values. Variables have attributes, such as name and type, that enable
you to identify them and that define how they can be used.

uninitialized variables
refers to variables that are not present in the input data set or have not been
created within the DATA step where SAS tries to use the variable.

Ways to Create Variables
You can create a variable using the assignment statement or read data with the
INPUT statement in a DATA step.

The assignment statement evaluates an expression and stores the result in a
variable. The INPUT statement describes the arrangement of values in the input
data record and assigns input values to the corresponding SAS variables.

Ways to Create Variables 77

Note: There are more ways to create variables. For example, the SET, MERGE,
MODIFY, and UPDATE statements can also create variables.

Table 5.1 Ways to Create Variables

Method Example Explanation

Assignment statement data vars;
 a='Tom Hanks';
 a='Rita Wilson';
 put a;
run;

Example: Create a SAS Variable
Using an Assignment Statement

The assignment statement
creates a character variable
called a.

When a LENGTH statement is
not used, the length of the first
literal encountered determines
the length of the character
variable. The PUT statement
output for variable a is truncated
as Rita Wils.

data vars;
 a=36;

Example: Create a SAS Variable
Using an Assignment Statement

The assignment statement
creates a new numeric variable
called a and its value is 36.

The default length for numeric
variables is 8 bytes, unless
otherwise specified.

data vars;
 length a $ 4 b $ 6 c $ 2;
 x=a||b||c;
run;

The LENGTH statement creates
three character variables, a, b,
and c with respective lengths of
4, 6, and 2 bytes. The
assignment statement creates
variable x with a length of 12,
which is the sum of the lengths
of all the variables on the right
side of the assignment operator.

The value for variable x is the
value that is produced when you
concatenate the variables a, b,
and c.

INPUT statement, List data vars;
 input Gem $
 Carats
 Color $;
datalines;
emerald 2 green
;

Example: Create a Variable
Using the INPUT Statement

The INPUT statement creates
two character variables: Gem and
Color, and one numeric variable
Carats. The variables are
defined based on their positions
in the raw data.

The length of each variable is 8
bytes.

78 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0lrz3gb7m9e4rn137op544ddg0v.htm&locale=en

Method Example Explanation

If you create a character variable
using the INPUT statement and
you do not otherwise specify the
variable’s length (for example, in
a length statement or in the
INPUT statement), then SAS
automatically sets the length of
the variable to 8 bytes.

INPUT statement, Formatted data vars;
 input Gem $char10.
 Carats comma3.1
 Color $char.;
datalines;
emerald 2 green
;

Example: Create a Variable
Using the INPUT Statement

The INPUT statement creates
two character variables: Gem is
created with a length specified
in its informat, and Color is
created without a length
specification. The numeric
variable Carats is created using
a numeric informat with its
length specified.

The variable types are defined
based on the category of
informat that is specified in the
INPUT statement.

The length of the numeric
variable, Carats is 8 bytes. The
length of the character variable,
Gem, is 10 bytes. The length of
the character variable, Color, is
8 bytes. See Creating a New
Variable Using the INPUT,
Formatted Statement for
information about how SAS
determines the lengths of
variables that are created using
formatted input.

See Informats by Category for a list of these categories.

Creating a New Variable in a Formatted
INPUT Statement

You can use various forms of the INPUT statement to create a new variable when
you read raw data into SAS. If the variable does not already exist and you create it

Creating a New Variable in a Formatted INPUT Statement 79

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0f9yk6pd4znukn1rlw6hzkg1url.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0verk17pchh4vn1akrrv0b5w3r0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0oaql83drile0n141pdacojq97s.htm&locale=en

for the first time in a formatted INPUT statement, then SAS defines the variable
and its attributes based on the category of the informat specified in the INPUT
statement:

n Associating a numeric informat with a variable when it is created for the first
time in a DATA step using formatted input causes the variable to be created as a
numeric type, with a default length of 8.

n Associating a character informat with a variable when it is created for the first
time in a DATA step using formatted input causes the variable to be created as a
character type. The length matches the width specified in the informat in the
INPUT statement. If you do not specify a length with the informat or anywhere
else in the DATA step, then SAS assigns the default length of 8 bytes.

Manage Variables

Modify Variables
You can modify SAS variables using the following methods:

n FORMAT or INFORMAT statement

n LENGTH statement

n ATTRIB statement

Table 5.2 Ways to Modify Variables

Method Example Explanation

FORMAT or
INFORMAT
statement

Insurance=100.28;
Fee=20.00;
format Insurance Fee dollar10.2;

Example: FORMAT Statement

You can create new variables and
specify their format or informat
with a FORMAT or INFORMAT
statement.1

The FORMAT statement creates
two variables Insurance and Fee
with a format of dollar 10.2

LENGTH
statement

length Name $20;

Example: LENGTH Statement

For character variables, you must
use the longest possible value in
the first statement that uses the
variable. The reason is that you
cannot change the length with a
subsequent LENGTH statement
within the same DATA step.

80 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0f9yk6pd4znukn1rlw6hzkg1url.htm&locale=en

Method Example Explanation

The maximum length of any
character variable in SAS is 32,767
bytes. For numeric variables, you
can change the length of the
variable by using a subsequent
LENGTH statement.

When SAS assigns a value to a
character variable, it pads the value
with blanks or truncates the value
on the right side to make it match
the length of the target variable.

ATTRIB
statement

attrib Class format=$12.;

Example: ATTRIB Statement

The ATTRIB statement enables you
to specify one or more of the
following variable attributes for an
existing variable:

n FORMAT=

n INFORMAT=

n LABEL=

n LENGTH=

If the variable does not already
exist, one or more of the FORMAT=,
INFORMAT=, and LENGTH=
attributes can be used to create a
new variable.

The ATTRIB statement creates a
new variable named Class, with a
format.

Note: You cannot create a new
variable by using a LABEL
statement or the ATTRIB
statement's LABEL= attribute by
itself. Labels can be applied only to
existing variables.

1 See “Specifying a New Variable in a FORMAT or INFORMAT Statement” for information about how
SAS determines variable attributes when variables are created using the FORMAT or INFORMAT
statement.

Manage Variables 81

Specifying a New Variable in a FORMAT or
INFORMAT Statement

If the variable does not already exist and you create it for the first time in a
FORMAT or INFORMAT statement, then SAS defines the variable and its attributes
based on the format or informat specified:

n Associating a numeric format or informat with a variable when it is created for
the first time in a DATA step using the FORMAT or INFORMAT statement
causes the variable to be created as a numeric type, with a default length of 8.

n Associating a character format or informat with a variable when it is created for
the first time in a DATA step using in the FORMAT or INFORMAT statement
causes the variable to be created as a character type. The length matches the
width of the format or informat that you specify as part of the format or
informat. If you do not specify a length, then SAS assigns the default length of 8
bytes.

See Formats by Category and Informats by Category for a list of these categories.

In Creating New Variables Using the FORMAT Statement Without Specifying
Length on page 82 the FORMAT statement creates the character variable Flavor
and the numeric variable Amount. These two variables appear for the first time in
the FORMAT statement, so SAS determines their type based on the category of
format that is assigned to them. Since the variable Amount is associated with
numeric type format (COMMAwd), SAS defines it as a numeric type variable, with a
default length of 8.

The Flavor variable is defined as a character type variable because the
$UPCASEw. format is a character type format. When character variables are
created using the FORMAT statement, SAS determines their length first based on
the length that you specify in the FORMAT statement. If you do not specify a
length with the format or anywhere else in the DATA step, then SAS gives the
variable a default length of 8. In this example, the format does not include a length
specification, so the length for the variable Flavor is 8 bytes.

Example Code 5.1 Specifying a New Variables Using the FORMAT Statement
(Without Specifying Lengths)

data lollipops;
 format Flavor $upcase. Amount comma.;
 Flavor='Cherry';
 Amount=10;
run;
proc contents data=lollipops; run;

The next example is identical except that a length is specified for both variables in
the FORMAT statement along with the format:

82 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0p2fmevfgj470n17h4k9f27qjag.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0verk17pchh4vn1akrrv0b5w3r0.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0sad1pg4gsni3n1gbjue9fxzyhq.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p1se7ztu8c931xn1cyh32znqjkkf.htm&locale=en

Output 5.1 PROC CONTENTS Output for Creating New Variables Using the
FORMAT Statement (Without Specifying Lengths)

Example Code 5.2 Specifying New Variables Using the FORMAT Statement (With
Length Specified)

data lollipops;
 format Flavor $upcase10. Amount comma10.;
 Flavor='Cherry';
 Amount=10;
run;
proc contents data=lollipops; run;

Output 5.2 PROC CONTENTS Output for Specifying New Variables Using the
FORMAT Statement (With Length Specified)

In the example, Example Code 5.3 on page 83, the variables appear for the first
time in an assignment statement rather than in the FORMAT statement. So, in this
case, the assignment statements create the variables. When a variable appears for
the first time on the left side of an assignment statement, SAS automatically sets
its type and length based on the expression on the right side of the assignment
statement. Since the expression on the right is the 5–letter character string Cherry,
SAS assigns a length of 5 bytes and the type character to the variable Flavor. SAS
assigns a length of 8 bytes to the numeric variable, Amount.

Example Code 5.3 Changing the Format of an Existing Variable Using the FORMAT
Statement

data lollipops;
 Flavor='Cherry';
 Amount=10;
 format Flavor $upcase10. Amount comma10.;
run;
proc contents data=lollipops; run;

Manage Variables 83

Output 5.3 PROC CONTENTS Output for Changing the Format of an Existing
Variable Using the FORMAT Statement

See Also

n Table 5.5 on page 88 for more information about how SAS determines variable
attributes with assignment statements.

n SAS Formats and Informats: Reference

Specifying a New Variable in the ATTRIB
Statement

If the variable does not already exist and you create it for the first time using either
the FORMAT= or INFORMAT= option in the ATTRIB statement, then SAS defines
the variable and its attributes based on the format or informat specified in the
option statement.

n Associating a numeric format or informat with a variable when it is created for
the first time in a DATA step using the FORMAT or INFORMAT statement
causes the variable to be created as a numeric type, with a default length of 8.

n Associating a character format or informat with a variable when it is created for
the first time in a DATA step using in the FORMAT or INFORMAT statement
causes the variable to be created as a character type. The length matches the
width of the format or informat that you specify as part of the format or
informat. If you do not specify a length, then SAS assigns the default length of 8
bytes.

See Formats by Category and Informats by Category for a list of these formats and
informats.

84 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0p2fmevfgj470n17h4k9f27qjag.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0verk17pchh4vn1akrrv0b5w3r0.htm&locale=en

Control Output of Variables

Using Statements or Data Set Options

The DROP, KEEP, and RENAME statements or the DROP=, KEEP=, and RENAME=
data set options control which variables are processed or output during the DATA
step. You can use one or a combination of these statements and data set options to
achieve the results that you want. The action taken by SAS depends largely on
whether you perform one of the following actions:

n Use a statement or data set option or both.

n Specify the data set options on an input or an output data set.

The following table summarizes the general differences between the DROP, KEEP,
and RENAME statements and the DROP=, KEEP=, and RENAME= data set options.

Table 5.3 Statements versus Data Set Options for Dropping, Keeping, and Renaming
Variables

Statements Data Set Options

apply to output data sets only apply to output or input data sets

affect all output data sets affect individual data sets

can be used in DATA steps only can be used in DATA steps and PROC
steps

can appear anywhere in DATA steps must immediately follow the name of
each data set to which they apply

Using the Input or Output Data Set

You must also consider whether you want to drop, keep, or rename the variable
before it is read into the program data vector or as it is written to the new SAS data
set. If you use the DROP, KEEP, or RENAME statement, the action always occurs as
the variables are written to the output data set. With SAS data set options, where
you use the option determines when the action occurs. If the option is used on an
input data set, the variable is dropped, kept, or renamed before it is read into the
program data vector. If used on an output data set, the data set option is applied as
the variable is written to the new SAS data set. (In the DATA step, an input data set
is one that is specified in a SET, MERGE, or UPDATE statement. An output data set

Manage Variables 85

is one that is specified in the DATA statement.) Consider the following facts when
you make your decision:

n If variables are not written to the output data set and they do not require any
processing, using an input data set option to exclude them from the DATA step
is more efficient.

n If you want to rename a variable before processing it in a DATA step, you must
use the RENAME= data set option in the input data set.

n If the action applies to output data sets, you can use either a statement or a
data set option in the output data set.

The following table summarizes the action of data set options and statements
when they are specified for input and output data sets. The last column of the table
tells whether the variable is available for processing in the DATA step. If you want
to rename the variable, use the information in the last column.

Table 5.4 Status of Variables and Variable Names When Dropping, Keeping, and
Renaming Variables

Where
Specified

Data Set Option
or Statement Purpose

Status of
Variable or
Variable Name

Input data set DROP=

KEEP=

includes or excludes
variables from processing

if excluded,
variables are not
available for use
in DATA step

RENAME= changes name of variable
before processing

use new name in
program
statements and
output data set
options; use old
name in other
input data set
options

Output data
set

DROP, KEEP specifies which variables
are written to all output
data sets

all variables
available for
processing

RENAME changes name of
variables in all output
data sets

use old name in
program
statements; use
new name in
output data set
options

DROP=

KEEP=

specifies which variables
are written to individual
output data sets

all variables are
available for
processing

86 Chapter 5 / Variables

Where
Specified

Data Set Option
or Statement Purpose

Status of
Variable or
Variable Name

RENAME= changes name of
variables in individual
output data sets

use old name in
program
statements and
other output data
set options

Order of Application

Your program might require that you use more than one data set option or a
combination of data set options and statements. It is helpful to know that SAS
drops, keeps, and renames variables in the following order:

n First, options on input data sets are evaluated left to right within SET, MERGE,
and UPDATE statements. DROP= and KEEP= options are applied before the
RENAME= option.

n Next, DROP and KEEP statements are applied, followed by the RENAME
statement.

n Finally, options on output data sets are evaluated left to right within the DATA
statement. DROP= and KEEP= options are applied before the RENAME= option.

See Also

Examples

n Using the DROP= Data Set Option and DROP Statement

n Using the DROP= and RENAME= Data Set Options

Statements

n DROP Statement

Data Set Options

n DROP= Data Set Option

n RENAME= Data Set Option

Manage Variables 87

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1capr0s7tilbvn1lypdshkgpaip.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n15goor3q758g5n1eykstufkpdhy.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p09ikb01zz9knnn16y401utyq4un.htm&locale=en

Variable Attributes

Definition
SAS variables are containers that you create within a program to store and use
character and numeric values. Variables have the following attributes:

Table 5.5 Variable Attributes

Variable Attribute Definition Possible Values Default Value

Name identifies a variable. A
variable name must
conform to SAS naming
rules.

Any valid SAS name. None

Type identifies a variable as
numeric or character.

Within a DATA step, a
variable is assumed to
be numeric unless
character is indicated.
Numeric values
represent numbers, can
be read in a variety of
ways, and are stored in
floating-point format.
Character values can
contain letters,
numbers, and special
characters and can be
from 1 to 32,767
characters long.

Numeric and character. Numeric

Length refers to the number of
bytes used to store
each of the variable's
values in a SAS data
set. You can use a
LENGTH statement to
set the length of both
numeric and character
variables.

2 to 8 bytes for
numeric.

1 to 32,767 bytes for
character.

8 bytes for numeric and
character

88 Chapter 5 / Variables

Variable Attribute Definition Possible Values Default Value

During processing, all
numeric variables have
a length of 8. Lengths of
character variables
specified in a LENGTH
statement affect both
the length during
processing and the
length in the output
data set.

Format refers to the
instructions that SAS
uses when printing
variable values. If no
format is specified, the
default format is
BEST12. for a numeric
variable, and $w. for a
character variable. You
can assign SAS formats
to a variable in the
FORMAT or ATTRIB
statement.

See Dictionary of
Formats in SAS
Formats and Informats:
Reference

BEST12. for numeric,
$w. for character

Informat refers to the
instructions that SAS
uses when reading data
values. If no informat is
specified, the default
informat is w.d for a
numeric variable, and
$w. for a character
variable. You can assign
SAS informats to a
variable in the
INFORMAT or ATTRIB
statement.

You can also assign an
informat in the INPUT
statement or INPUT
function.

See About Informats in
SAS Formats and
Informats: Reference

w.d for numeric, $w.for
character

Label refers to a descriptive
label up to 256
characters long. A
variable label, which
can be printed by some
SAS procedures, is

Up to 256 characters. None

Variable Attributes 89

Variable Attribute Definition Possible Values Default Value

useful in report writing.
You can assign a label
to a variable with a
LABEL or ATTRIB
statement.

Position in observation is determined by the
order in which the
variables are defined in
the DATA step.

1- n None

Index type indicates whether the
variable is part of an
index for the data set.

NONE — The variable is
not indexed.

SIMPLE — The variable
is part of a simple
index.

COMPOSITE — The
variable is part of one
or more composite
indexes.

BOTH — The variable is
part of both simple and
composite indexes.

None

Extended attribute
(user-defined)

is a user-defined
attribute that is created
using the XATTR ADD
VAR statement in the
DATASETS procedure.

Numeric or character None

Note: Starting with SAS 9.1, the maximum number of variables can be greater than
32,767. The maximum number depends on your environment and the file's
attributes. For example, the maximum number of variables depends on the total
length of all the variables and cannot exceed the maximum page size.

See Also

Examples

n View Variable Attributes

n Change Attributes of a Variable Using the ATTRIB Statement

Statements

90 Chapter 5 / Variables

n ATTRIB Statement

n FORMAT Statement

n INFORMAT Statement

Procedures

n CONTENTS Procedure

Data Types

Definitions
A data type is an attribute of every SAS variable that specifies what type of data
the variable stores. The data type identifies a piece of data as a character string, an
integer, a floating-point number, or a date or time, for example. The data type also
determines how much memory to allocate for the variable’s values. The default SAS
engine is the V9 engine, or the Base SAS engine. In Base SAS, the following data
types are supported by the DATA step.

data values
are character or numeric values.

numeric value
contains only numbers, and sometimes a decimal point, a minus sign, or both.
When they are read into a SAS data set, numeric values are stored in the
floating-point format native to the operating environment. Nonstandard
numeric values can contain other characters as numbers; you can use formatted
input to enable SAS to read them.

character value
is a sequence of characters.

standard data
are character or numeric values that can be read with list, column, formatted, or
named input.

nonstandard data
is data that can be read only with the aid of informats. Examples of nonstandard
data include numeric values that contain commas, dollar signs, or blanks; date
and time values; and hexadecimal and binary values.

Data Types 91

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1wxb7p9jkxycin16lz2db7idbnt.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0d5oq7e0oia0wn13nsins0x8nmh.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p164164hob450kn1agkpcosya669.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

Numeric Data
Numeric data can be represented in several ways. SAS can read standard numeric
values without any special instructions. To read nonstandard values, SAS requires
special instructions in the form of informats. Table 5.7 on page 92 shows standard,
nonstandard, and invalid numeric data values and the special tools, if any, that are
required to read them. For complete descriptions of all SAS informats, see SAS
Formats and Informats: Reference.

Table 5.6 Reading Standard Numeric Data

Data Description Informat Needed

23 input right aligned None needed

23 input not aligned None needed

23 input left aligned None needed

00023 input with leading zeros None needed

23.0 input with decimal point None needed

2.3E1 in E notation, 2.30 (ss1) None needed

230E-1 in E notation, 230x10 (ss-1) None needed

-23 minus sign for negative numbers None needed

Table 5.7 Reading Nonstandard Numeric Data

Data Description Solution

2 3 embedded blank COMMA. or BZ.
informat

- 23 embedded blank COMMA. or BZ.
informat

2,341 comma COMMA. informat

(23) parentheses COMMA. informat

C4A2 hexadecimal value HEX. informat

92 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Data Description Solution

1MAR90 date value DATE. informat

Table 5.8 Reading Invalid Numeric Data

Data Description Solution

23 - minus sign follows
number

Put minus sign before number or solve programmatically.
It might be possible to use the S370FZDTw.d informat,
but positive values require the trailing plus sign (+).[

You can also use the TRAILSGN informat.

.. double instead of
single periods

Code missing values as a single period or use the ??
modifier in the INPUT statement to code any invalid
input value as a missing value.

J23 not a number Read as a character value, or edit the raw data to change
it to a valid number.

Character Data
A value that is read with an INPUT statement is assumed to be a character value if
one of the following is true:

n A dollar sign ($) follows the variable name in the INPUT statement.

n A character informat is used.

n The variable has been previously defined as character. For example, a value is
assumed to be a character value if the variable has been previously defined as
character in a LENGTH statement, in the RETAIN statement, by an assignment
statement, or in an expression.

Input data that you want to store in a character variable can include any character.
Use the guidelines in the following table when your raw data includes leading
blanks and semicolons.

Table 5.9 Reading Instream Data and External Files Containing Leading Blanks and
Semicolons

Characters in the Data What to Use Reason

leading or trailing blanks that
you want to preserve

formatted input and the
$CHARw. informat

List input trims leading
and trailing blanks from
a character value

Data Types 93

Characters in the Data What to Use Reason

before the value is
assigned to a variable.

semicolons in instream data DATALINES4 or CARDS4
statements and four
semicolons (;;;;) to mark
the end of the data

With the normal
DATALINES and
CARDS statements, a
semicolon in the data
prematurely signals the
end of the data.

delimiters, blank characters,
or quoted strings

DSD option, with DLM= or
DLMSTR= option in the
INFILE statement

These options enable
SAS to read a character
value that contains a
delimiter within a
quoted string; these
options can also treat
two consecutive
delimiters as a missing
value and remove
quotation marks from
character values.

Variable Type Conversions

Automatic Character-to-Numeric Conversion
By default, if you reference a character variable in a numeric context such as an
arithmetic operation, SAS tries to convert the variable values to numeric. If you use
a character variable with an operator that requires numeric operands, such as the
plus sign, SAS converts the character variable to numeric. If you use a comparison
operator, such as the equal sign, to compare a character variable and a numeric
variable, the character variable is converted to numeric.

In the example below, the character variable Rate appears in a numeric context. It is
multiplied by the numeric variable Hours to create a new variable named Salary.

Salary=Rate*Hours;

When this step executes, SAS automatically attempts to convert the character
values of Rate to numeric values so that the calculation can occur. This conversion
is completed by creating a temporary numeric value for each character value of
Rate. This temporary value is used in the calculation. The character values of Rate

94 Chapter 5 / Variables

are not replaced by numeric values. Whenever data is automatically converted, a
message is written to the SAS log stating that the conversion has occurred.

Example Code 5.1 SAS Log

NOTE: Character values have been converted to numeric values at the places given by:
(Line):(Column).
9248:8

Note: If converting a character variable to numeric produces invalid numeric
values, SAS assigns a missing value to the result, prints an error message in the log,
and sets the value of the automatic variable _ERROR_ to 1.

Explicit Character-to-Numeric Conversion
You can use the INPUT function to explicitly convert character data values to
numeric values. When choosing the informat, be sure to select a numeric informat
that can read the form of the values. In the example below, you can use the INPUT
function to explicitly convert Rate to numeric values. Rate has a length of 2, the
numeric informat 2. is used to read the values of the variable.

input (payrate,2.);

No conversion messages appear in the SAS log when the INPUT function is used.

Automatic Numeric-to-Character Conversion
The automatic conversion of numeric data to character data is very similar to
character-to-numeric conversion. Numeric data values are converted to character
values whenever they are used in a character context. Specifically, SAS writes the
numeric value with the BEST12. format, and the resulting character value is right-
aligned. This conversion occurs before the value is assigned or used with any
operator or function. However, automatic numeric-to-character conversion can
cause unexpected results. For example, suppose the original numeric value has
fewer than 12 digits. The resulting character value has leading blanks, which might
cause problems when you perform an operation or function.

Automatic numeric-to-character conversion also causes a message to be written to
the SAS log indicating that the conversion has occurred.

In the example below, you want to create a new character variable named Loc that
concatenates the values of the numeric variable Site and the character variable
Dept. The new variable values must contain the value of Site with a slash, and then
the value of Dept.

Loc=Site||'/'||Dept;

Submitting this statement in a DATA step causes SAS to automatically convert the
numeric values of Site to character values because Site is used in a character

Variable Type Conversions 95

context. The variable Site appears with the concatenation operator, which requires
character values.

Explicit Numeric-to-Character Conversion
Use the PUT function to explicitly convert numeric data values to character data
values. The PUT function in your assignment statement converts the numeric data
values to character. In the example below, to explicitly convert the numeric values
of Site to character values, use the PUT function in an assignment statement,
where Site is the source variable. Because Site has a length of 2, choose 2. as the
numeric format.

loc=put(site,2.)||'/'||Dept;

No conversion messages appear in the SAS log when you use the PUT function.

See Also

Examples

n “Example: Convert Character Variables to Numeric”

n “Example: Convert Numeric Variables to Character”

n “Example: Use Automatic Type Conversions”

Functions

n “INPUT Function” in SAS Functions and CALL Routines: Reference

n PUT Function

Automatic Variables
Automatic variables are system variables that SAS creates automatically when a
session is started. SAS creates both automatic macro variables and automatic
DATA step variables. The names of automatic variables are reserved for the
system-generated variables that are created when the DATA step executes. It is
recommended that you do not use names that start and end with an underscore in
your own applications.

96 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p19en16vskd2vhn1vwmxpxnglxxs.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0mlfb88dkhbmun1x08qbh5xbs7e.htm&locale=en

Automatic DATA Step Variables
When you run the DATA step, SAS creates variables that contain information about
the data being processed by the DATA step as well as processing information such
as return codes for error processing. These variables are added to the program data
vector but are not displayed in the output data set. The values of automatic
variables are retained from one iteration of the DATA step to the next, rather than
set to missing.

CMD
contains the last command from the window’s command line that was not
recognized by the window. This automatic variable is created in the DATA step
when you use the WINDOW statement to create customized windows for your
applications.

Example: _CMD_ Example

ERROR
is 0 by default but is set to 1 whenever an error is encountered. Examples of
errors include an input data error, a conversion error, or a math error, as in
division by 0 or a floating point overflow. You can use the value of this variable
to help locate errors in data records and to print an error message to the SAS
log.

IORC
The automatic variable _IORC_ contains the return code for each I/O operation
that the MODIFY statement attempts to perform. The best way to test for
values of _IORC_ is with the mnemonic codes that are provided by the SYSRC
autocall macro. Each mnemonic code describes one condition. The mnemonics
provide an easy method for testing problems in a DATA step program. This
automatic variable is created in the DATA step when you use the MODIFY
statement to replace, delete, and append observations in an existing SAS data
set.

Example: Example: Controlling I/O

N
is initially set to 1. Each time the DATA step loops past the DATA statement, the
variable _N_ increments by 1. The value of _N_ represents the number of times
the DATA step has iterated.

MSG
contains a message that you specify to be displayed in the message area of the
window. This automatic variable is created in the DATA step when you use the
WINDOW statement to create customized windows for your applications.

Example: _MSG_ Example

FIRST.variable
are variables that SAS creates for each BY variable. SAS sets FIRST.variable
when it is processing the first observation in a BY group.

Automatic Variables 97

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=lestmtsref&docsetTarget=n15a4llng8vzm0n14bv88cpejcuh.htm#n0ztsu5qb91lyun12iwfjj8mzvj7
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=lestmtsref&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm#p0nik8fbgzc280n1twyyllqetf4s
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=lestmtsref&docsetTarget=n15a4llng8vzm0n14bv88cpejcuh.htm#n0ztsu5qb91lyun12iwfjj8mzvj7

Example “Example: Specify the FIRST. and LAST. BY Variables as Name
Literals” on page 66

LAST.variable
are variables that SAS creates for each BY variable. SAS sets LAST.variable
when it is processing the last observation in a BY group.

Example “Example: Specify the FIRST. and LAST. BY Variables as Name
Literals” on page 66

Automatic Macro Variables
Automatic macro variables are variables that are created by the SAS macro facility
rather than by the user. When you start a session, SAS creates automatic macro
variables and assigns values to them.The values provide information about your
SAS session, such as the date and time your session began, the operating system,
and the version of SAS that you are running. For example, the SYSPROCESSID
automatic macro variable contains the process ID of the current SAS process. The
following statement displays the time at which a SAS session started.

%put This SAS session started running at: &systime;

See Also

Examples

n “Example: Use the _N_ Automatic Variable”

n “Example: Use the _ERROR_ and _INFILE_ Automatic Variable with the IF/THEN
Statement”

Statements

n “_INFILE_=variable” in SAS DATA Step Statements: Reference

98 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p14ym6slnzfstzn1t9yp5v31ijis.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n0ez2gsfe6gvo7n15s0sc1zo8sbn&locale=en

SAS Variable Lists

Definition of a Variable List
A SAS variable list is an abbreviated method of referring to a list of variable names.
SAS enables you to use the following variable lists:

n numbered range lists

n name range lists

n name prefix lists

n special SAS name lists

SAS keeps track of active variables in the order in which the compiler encounters
them within a DATA step. With name variable lists, you refer to the variables in a
variable list in the same order.

You can use variable lists when you define variables. You can use variable lists in
SAS statements and data set options in the DATA step. Variable lists are useful
because they provide a quick way to reference existing groups of data.

Note: Only the numbered range list are supported in the RENAME= option.

Types of Variable Lists

Type Definition Example

Numbered
range
variable list

Lists that consist of variables that
are prefixed with the same name,
but have different numeric values
for the last characters. The values
must be consecutive.

input var1-var6;

Note that this is equivalent to this numbered list
that is not specified as a range:

input var1 var2 var3 var4 var5 var6;

Name range
lists

Name range lists rely on the order
of variable definition.

x--b

Specifies all columns ordered as they are in the
program data vector, from x to b, inclusive.

Name prefix
lists

Some SAS functions and
statements enable you to use a
name prefix list to refer to all

sum(of Sales:)

SAS Variable Lists 99

Type Definition Example

variables that begin with a
specified character string.

This character string tells SAS to calculate the
sum of all the variables that begin with “Sales,”
such as Sales_Jan, Sales_Feb, and Sales_Mar.

Special SAS
name lists

Special SAS name lists include:

NUMERIC
specifies all numeric variables that
are already defined in the current
DATA step.

CHARACTER
specifies all character variables
that are already defined in the
current DATA step.

ALL
specifies all variables that are
already defined in the current
DATA step.

NUMERIC

CHARACTER

ALL

The OF Operator with Functions and Variable Lists

Definition

The OF operator enables you to specify SAS variable lists or SAS arrays as
arguments to functions. Here is the syntax for functions used with the OF operator:

FUNCTION (OF variable-list)

FUNCTION (<argument | OF variable-list | OF array-name[*]><…, <argument | OF
variable-list | OF array-name[*]>>)

The following table shows the types of SAS variable lists that are valid with the OF
operator:

Table 5.10 SAS Variable Lists Used with the OF Operator

Type Example Description

Name range lists Function(OF x-character-a) Performs the function on
all the character variables
from x to a inclusive.

Name prefix lists Function(OF x:) Performs the function on
all the variables that begin

100 Chapter 5 / Variables

with “x” such as “x1”, “x2”
and so on.

Numbered range lists Function(OF x1 – xn) Performs the function on
variable values between x1
and xn inclusive.1

Arrays Function(OF array-name(*)) Performs the function on
the named array.2

Special SAS name lists Function(OF _numeric_) Performs the function on
the _numeric_variable,
which specifies all numeric
variables that are already
defined in the current
DATA step.

See Also

Examples

n “Example: Create a Variable Numbered Range List”

n “Example: Create a Variable Name Range List”

n “Example: Use the OF Operator with a Variable List”

n “Example: Use the OF Operator to Create Multiple Variable Lists”

Statements

n ARRAY Statement

n INPUT Statement, List

n KEEP Statement

n PUT Statement

n VAR Statement

Functions

n SUM Function

1. Requires you to have a series of variables with the same name except for the last character or characters, which are
consecutive numbers.

2. If array-name is a temporary array, there are limitations. See “Using the OF Operator with Temporary Arrays” in SAS
Functions and CALL Routines: Reference.

SAS Variable Lists 101

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p08do6szetrxe2n136ush727sbuo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0lrz3gb7m9e4rn137op544ddg0v.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1nnrzzsw6rzrjn1p2jfky6pdv23.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1spe7nmkmi7ywn175002rof97fv.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1cfqafrw9xvoln1sz5oed59lyf3.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0zxive1z1ctqin12w06c85jfigd.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p07c8e0ktns1c7n1vtowjev5g724.htm&docsetTargetAnchor=n0uo16w5gip29fn1mbyfexni1udd&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p07c8e0ktns1c7n1vtowjev5g724.htm&docsetTargetAnchor=n0uo16w5gip29fn1mbyfexni1udd&locale=en

Missing Variable Values

Definition of Missing Values
A missing value is a value that indicates that no data value is stored for the variable
in the current observation. There are three types of missing values:

n numeric

n character

n special numeric

How to Represent Missing Values in Raw Data
The following table shows how to represent each type of missing value in raw data
so that SAS reads and stores the value appropriately.

Table 5.11 Representing Missing Values

Missing Values Representation in Data

Numeric . (a single decimal point)

Character ' ' (a blank enclosed in quotation marks)

Special . letter (a decimal point followed by a letter, for
example, .B)

Special ._ (a decimal point followed by an underscore)

102 Chapter 5 / Variables

Special Missing Values

Definition

A special missing value is a type of numeric missing value that enables you to
represent different categories of missing data by using the letters A–Z or an
underscore.

Tips for Special Missing Values

n SAS accepts either uppercase or lowercase letters. Values are displayed and
printed as uppercase.

n If you do not begin a special numeric missing value with a period, SAS identifies
it as a variable name. Therefore, to use a special numeric missing value in a SAS
expression or assignment statement, you must begin the value with a period,
followed by the letter or underscore. For example:

x=.d;

n When SAS prints a special missing value, it prints only the letter or underscore.

n When data values contain characters in numeric fields that you want SAS to
interpret as special missing values, use the MISSING statement to specify those
characters.

Order of Missing Values

Numeric Variables

Within SAS, a missing value for a numeric variable is smaller than all numbers. If
you sort your data set by a numeric variable, observations with missing values for
that variable appear first in the sorted data set. For numeric variables, you can
compare special missing values with numbers and with each other. The following
table shows the sorting order of numeric values.

Missing Variable Values 103

Table 5.12 Numeric Value Sort Order

Sort Order Symbol Description

smallest ._ underscore

. period

.A-.Z special missing values A
(smallest) through Z (largest)

-n negative numbers

0 zero

largest +n positive numbers

For example, the numeric missing value (.) is sorted before the special numeric
missing value .A, and both are sorted before the special missing value .Z. SAS does
not distinguish between lowercase and uppercase letters when sorting special
numeric missing values.

Note: The numeric missing value sort order is the same regardless of whether your
system uses the ASCII or EBCDIC collating sequence.

Character Variables

Missing values of character variables are smaller than any printable character
value. Therefore, when you sort a data set by a character variable, observations
with missing (blank) values of the BY variable always appear before observations in
which values of the BY variable contain only printable characters. However, some
unprintable characters (for example, machine carriage-control characters and real
or binary numeric data that have been read in error as character data) have values
less than the blank. Therefore, when your data includes unprintable characters,
missing values might not appear first in a sorted data set.

104 Chapter 5 / Variables

When Variable Values Are Automatically Set to
Missing by SAS

When Reading Raw Data

At the beginning of each iteration of the DATA step, SAS sets the value of each
variable that you create in the DATA step to missing, with the following exceptions:

n variables named in a RETAIN statement

n variables created in a SUM statement

n data elements in a _TEMPORARY_ array

n variables created with options in the FILE or INFILE statements

n variables created by the FGET function

n data elements that are initialized in an ARRAY statement

n automatic variables

When Reading a SAS Data Set

When variables are read with a SET, MERGE, or UPDATE statement, SAS sets the
values to missing only before the first iteration of the DATA step. (If you use a BY
statement, the variable values are also set to missing when the BY group changes.)
The variables retain their values until new values become available (for example,
through an assignment statement or through the next execution of the SET,
MERGE, or UPDATE statement). Variables created with options in the SET, MERGE,
and UPDATE statements also retain their values from one iteration to the next.

When all rows in a data set in a match-merge operation (with a BY statement) are
processed, the variables in the output data set retain their values as described
earlier. That is, as long as there is no change in the BY value in effect when all of the
rows in the data set have been processed, the variables in the output data set
retain their values from the final observation. FIRST.variable and LAST.variable, the
automatic variables that are generated by the BY statement, both retain their
values. Their initial value is 1.

When the BY value changes, the variables are set to missing and remain missing
because the data set contains no additional observations to provide replacement
values. When all of the rows in a data set in a one-to-one merge operation (without
a BY statement) have been processed, the variables in the output data set are set
to missing and remain missing.

Missing Variable Values 105

When Missing Values Are Generated by SAS

Propagate Missing Values in Calculations

If you use a missing value in an arithmetic calculation, SAS sets the result of that
calculation to missing. Then, if you use that result in another calculation, the next
result is also missing. This action is called propagation of missing values. SAS prints
notes in the log to notify you which arithmetic expressions have missing values and
when they were created. However, processing continues.

Prevent Propagation of Missing Values

You can omit missing values from computations by using statistic functions, such
as SUM statement and SUM function, if you do not want missing values to
propagate in your arithmetic expressions.

Invalid Operations

SAS prints a note in the log and assigns a missing value to the result if you try to
perform an invalid operation, such as the following:

n dividing by zero

n taking the logarithm of zero

n using an expression to produce a number too large to be represented as a
floating-point number (known as overflow)

Invalid Character-to-Numeric Conversions

SAS automatically converts character values to numeric values if a character
variable is used in an arithmetic expression. If a character value contains
nonnumeric information and SAS tries to convert it to a numeric value, a note is
printed in the log, the result of the conversion is set to missing, and the _ERROR_
automatic variable is set to 1.

106 Chapter 5 / Variables

See Also

Examples

n “Example: Automatically Replacing Missing Values”

n “Example: Creating Special Missing Values”

n “Example: Preventing Propagation of Missing Values”

Functions

n MISSING Function

Statements

n MISSING Statement

Numeric Precision

Overview
In any number system, whether it is binary or decimal, there are limitations to how
precise numbers can be represented. As a result, approximations have to be made.

For example, in the decimal number system, the fraction 1/3 cannot be perfectly
represented as a finite decimal value because it contains infinitely repeating digits
(.333...). On computers, because of finite precision, this number cannot be
represented with perfect precision. Numerical precision is the accuracy with which
numbers are approximated or represented.

In computing, software applications are particularly susceptible to numerical
precision errors due to finite precision and machine hardware limitations.
Computers are finite machines with finite storage capacity, so they cannot
represent an infinite set of numbers with perfect precision.

The problem is further compounded by the fact that computers use a different
number system than people do. Decimal infinite-precision arithmetic is the norm
for human calculations but computers use finite binary representations of values
and finite-precision arithmetic. This representation has been proven adequate for
many calculations. Yet, depending on the problem, you might need an extended
precision that is wider than what the hardware offers. In that case, representation
and arithmetic are done mostly in software and are relatively much slower than
hardware arithmetic.

Furthermore, although computers do allow the use of decimal numbers and decimal
arithmetic via human-centric software interfaces, all numbers and data are

Numeric Precision 107

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p06ybg84o0asa4n17l9ieauk58hb.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0ewjmosjtyjbtn1t5zabfkrof4f.htm&locale=en

eventually converted to binary format to be stored and processed by the computer
internally. It is in the conversion between these 2 number systems – decimal to
binary – that precision is affected and rounding errors are introduced.

Truncation in Binary Numbers
Just like there are decimal values with infinitely repeating representations, there
are also binary values that have infinitely repeating representations. However, the
numbers that are imprecise in decimal are not always the same ones that are
imprecise in binary.

For example, the decimal value 1/10 has a finite decimal representation (0.1), but in
binary it has an infinitely repeating representation. In binary, the value converts to

0.000110011001100110011 ...

where the pattern 0011 is repeated indefinitely. As a result, the value is rounded
when stored on a computer.

Performing calculations and comparisons on imprecise numbers in SAS can lead to
unexpected results. Even the simplest calculations can lead to a wrong conclusion.
Hardware cannot always match what might seem obvious and expected in the
decimal system.

For example, in decimal arithmetic, the expression (3 x 0.1) is expected to be
equal to 0.3, so the difference between (3 x 0.1) and (0.3), must be 0. Because
the decimal values 0.1 and 0.3 do not have exact binary representations, this
equality does not hold true in binary arithmetic. If you compute the difference
between the two values in a SAS program, the result is not 0.

There are many decimal fractions whose binary equivalents are infinitely repeating
binary numbers, so be careful when interpreting results from general rational
numbers in decimal. There are some rational numbers that do not present problems
in either number system. For example, 1/2 can be finitely represented in both the
decimal and binary systems.

To understand better why a simple calculation such as this one can go wrong, or
how a number can be out of range, it is important to understand in more detail how
SAS stores binary numbers.

How SAS Stores Numeric Values

Maximum Integer Size

SAS stores all numeric values in 8 bytes of storage unless you specify differently.
This does not mean that a value is limited to 8 digits, but rather that 8 bytes are
allocated for storing the value. In the previous section, you learned how storing
non-integer values (fractions) can lead to problems with precision. But you can also

108 Chapter 5 / Variables

encounter problems of magnitude, or range, when working with integers (whole
numbers).

On any computer, there are limits to how large the absolute value of an integer can
be. In SAS, this maximum integer value depends on two factors:

n the number of bytes that you explicitly specify for storing the variable (using
the LENGTH statement)

n the operating environment on which SAS is running

If you have not explicitly specified the number of storage bytes, then SAS uses the
default length of 8 bytes, and the maximum integer then depends solely on what
operating system you are using.

The following table lists the largest integer that can be reliably stored by a SAS
variable in the mainframe, UNIX, and Windows operating environments.

Table 5.13 Largest Integer That Can Be Safely Stored in a Given Length

When Variable
Length

Equals ...

Largest Integer

z/OS

Largest Integer

Windows or UNIX

2 256 not applicable

3 65,536 8,192

4 16,777,216 2,097,152

5 4,294,967,296 536,870,912

6 1,099,511,627,776 137,438,953,472

7 281,474,946,710,656 35,184,372,088,832

8 (default) 72,057,594,037,927,936 9,007,199,254,740,992

When viewing this table, consider the following points:

n The minimum length for a SAS variable on Windows and UNIX operating
systems is 3 bytes, and the maximum length is 8 bytes. On IBM mainframes, the
minimum length for a SAS variable is 2 bytes, and the maximum length is 8
bytes.

n As the length of the variable increases, so does the size of the integer that can
be reliably represented.

n For any given variable length, the maximum integer varies by host. This is
because mainframes have different specifications for storing floating-point
numbers than UNIX and PC machines do.

n Always store real numbers in the full 8 bytes of storage. If you want to save disk
space by using the LENGTH statement to reduce the length of your variables,
you can do so but only for variables whose values are integers. When adjusting

Numeric Precision 109

the length of variables, make sure that the values are less than or equal to the
largest integer allowed for that specified length.

For example, in the UNIX operating environment, if you know that the values of
your numeric variables are always integers between -8192 and 8192, then you
can safely specify a length of 3 to store the number:

data myData;
 length num 3;
 num=8000;
run;

CAUTION
Use the full 8 bytes to store variables that contain real numbers.

Floating-Point Representation

SAS stores numeric values in 8 bytes of data. The way that the numbers are stored
and the space available to store them also affects numerical accuracy. Although
there are various ways to store binary numbers internally, SAS uses floating-point
representation to store numeric values. Floating-point representation supports a
wide range of values (very large or very small numbers) with an adequate amount
of numerical accuracy.

You might already be familiar with floating-point representation because it is
similar to scientific notation. In both scientific notation and floating-point
representation, each number is represented as a mantissa, a base, and an exponent.

 987 =
mantissa exponent

base
.987 x 103

n the mantissa is the number that is being multiplied by the base. In the example,
the mantissa is .987.

n the base is the number that is being raised to a power. In the example, the base
is 10.

n the exponent is the power to which the base is raised. In the example, the
exponent is 3.

One major difference between scientific notation and floating-point representation
is that in scientific notation, the base is 10. In floating-point representation, on most
operating systems, the base is either 2 or 16 depending on the system.

The following figure shows the decimal value 987 written in the IEEE 754 binary
floating-point format. Because it is a small value, no rounding is needed.

 987 = 0 100 0100 0111 0110
mantissa exponent sign

110 Chapter 5 / Variables

To store binary floating-point numbers, computers use standard formats called
interchange formats, or byte layouts. The byte layout is a standard way of grouping
and ordering bit strings, from left to right, so that the parts of the floating-point
number are represented in a standardized way. Each part of the floating-point value
(sign, exponent, mantissa) is allotted a specific number of bits in the string and a
specific position in the string. This allows for the exchange of floating-point data in
an efficient and compact form.

Figure 5.1 on page 111 shows the byte layout for a double-precision binary floating-
point number. This layout uses the first bit to encode the sign of the number, the
next 11 bits to encode the exponent, and the final 52 bits to encode the mantissa. If
the sign bit is 1, then the number is negative and if the sign bit is 0, the number is
positive.

Figure 5.1 Byte Layout for a Double-Precision Binary Floating-Point Number

sign
exponent (11 bit)

byte 1 byte 2 byte 3 byte 4 byte 8byte 7byte 6byte 5

mantissa

Different host computers can have different formats and specifications for floating-
point representation. All platforms on which SAS runs use 8-byte floating-point
representation.

Precision versus Magnitude

The largest integer value that can be represented exactly (without rounding)
depends on the base and the number of bits that are allotted to the exponent. The
precision is determined by the number of bits that are allotted for the mantissa.
Whether an operating system truncates or rounds digits affects errors in
representation.

SAS stores truncated floating-point numbers using the LENGTH statement, which
reduces the number of mantissa bits.The following table shows some differences
between floating-point formats for the IBM mainframe and the IEEE standard. The
IEEE standard is used by the Windows and UNIX operating systems.

Numeric Precision 111

Table 5.14 IBM and IEEE Standard for Floating-Point Formats

Specifications
IBM
Mainframe

IEEE Standard

(Windows/UNIX) Affects

Base 16 2 magnitude

Exponent Bits 7 11 magnitude

Mantissa bits 56 52 precision

Round or Truncate Truncate Round precision

Bias for Exponent 64 1023

The following bullet points describe the table above in more detail:

n Base 16 – uses digits 0-9 and letters A-F (to represent the values 10-15).

For example, to convert the decimal value 3000 to hexadecimal, you use the
base 16 number system:

Base 16

167 ... 164 163 162 161 160

268,435,456 ... 65,536 4096 256 16 1

So, the value 3000 is represented in hexadecimal as BB8

n Base 2 – uses digits 0 and 1.

For example, to convert the decimal value 184 to binary, you use the base 2
number system:

Base 2

27 ... 24 23 22 21 20

128 ... 16 8 4 2 1

So, the value 184 is represented in binary as 10111000.

112 Chapter 5 / Variables

n exponent bits – the number of bits reserved for storing the exponent, which
determines the magnitude of the number that you can store. The number of
exponent bits varies between operating systems. IEEE systems yield numbers of
greater magnitude because they use more bits for the exponent.

n mantissa bits – the number of bits reserved for storing the mantissa, which
determines the precision of the number. Because there are more bits reserved
for the mantissa on mainframes, you can expect greater precision on a
mainframe compared to a PC.

n round or truncate – the chosen conversion method used for handling two or
more digits. Because there is room for only two hexadecimal characters in the
mantissa, a convention must be adopted on how to handle more than two digits.
One convention is to truncate the value at the length that can be stored. This
convention is used by IBM Mainframe systems.

An alternative is to round the value based on the digits that cannot be stored,
which is done on IEEE systems. There is no right or wrong way to handle this
dilemma since neither convention results in an exact representation of the
value.

In SAS, the LENGTH statement works by truncating the number of mantissa
bits. For more information about the effects of truncated lengths, see “Using the
TRUNC Function When Comparing Values”.

n bias – an offset used to enable both negative and positive exponents with the
bias representing 0. If a bias is not used, an additional sign bit for the exponent
must be allocated. For example, if a system uses a bias of 64, a characteristic
with the value 66 represents an exponent of +2, whereas a characteristic of 61
represents an exponent of –3.

Floating-Point Representation Using the IEEE
Standard

The IEEE standard for floating-point arithmetic is a technical standard for floating-
point computation created by the Institute of Electrical and Electronic Engineers
(IEEE). The standard defines how computers store numbers in floating-point
representation. The IEEE standard for floating-point numbers is used by many
operating systems, including Windows and UNIX.

Although the IEEE platforms use the same set of specifications, you might
occasionally see varying results between the platforms due to compiler differences,
and math library differences. Also, because the IEEE standard allows for some
variations in how the standard is implemented, there might be differences in how
different platforms perform calculations even though they are following the same
standard. Hosts might yield different results because the underlying instructions
that each operating system uses to perform calculations are slightly different.

There is no standard method for performing computations. All operating systems
attempt to compute numbers as accurately as possible. It is not uncommon to get
slightly different results between operating systems whose floating-point

Numeric Precision 113

representation components differ. For example, there are differences between the
z/OS and Windows operating systems and between the z/OS and UNIX operating
systems.

The IEEE standard for double-precision, floating-point numbers specifies an 11-bit
exponent with a base of 2 and a bias of 1023, which means that it has much greater
magnitude than the IBM mainframe representation, but sometimes at the expense
of 3 bits less in the mantissa. The value of 1 represented by the IEEE standard is as
follows:

3F F0 00 00 00 00 00 00

On Windows platforms, the processor performs computations in extended real
precision. This means that instead of the 64 bits that are used to store numeric
values in the basic format (52 bits for the mantissa and 11 bits for the exponent),
there are 16 additional bits: 12 additional bits for the mantissa and 4 additional bits
for the exponent. Numeric values are not stored in 80 bits (10 bytes) since the
maximum width for a numeric variable in SAS is 8 bytes. This simply means that the
processor uses 80 bits to represent a numeric value before it is passed back to its
64–bit memory slot. Intermediate calculations might be done in 80 bits, which
affects a part of the final answer.

On Windows this allows storage of numbers larger than the basic IEEE floating-
point format used by operating systems such as UNIX. This is one reason why you
might see slightly different values from operating systems that use the same IEEE
standard. Extended precision formats provide greater precision and more exponent
range than the basic floating-point formats.

Floating-Point Representation on Windows

Storage Format

The byte layout for a 64-bit, double-precision number on Windows is as follows:

S E E E E E E E

Byte 1

E E E E M M M M

Byte 2

M M M M M M M M

Byte 3

M M M M M M M M

Byte 4

M M M M M M M M

Byte 5

M M M M M M M M

Byte 6

M M M M M M M M

Byte 7

M M M M M M M M

Byte 8

This representation corresponds to bytes of data with each character being 1 bit, as
follows:

n The S in byte 1 is the sign bit of the number. A value of 0 in the sign bit is used to
represent positive numbers.

114 Chapter 5 / Variables

n The remaining M characters in bytes 2 through 8 represent the bits of the
mantissa. There is an implied radix point before the left-most bit of the
mantissa. Therefore, the mantissa is always less than 1. The term radix point is
used instead of decimal point because decimal point implies that you are
working with decimal (base 10) numbers, which might not be the case. The radix
point can be thought of as the generic form of decimal point.

The exponent has a base associated with it. Do not confuse this with the base in
which the exponent is represented; the exponent is always represented in binary
format, but the exponent is used to determine how many times the base should be
multiplied by the mantissa.

Accuracy on x64 Windows Processors

Consider this example:

data _null_;
 x=.500000000000000000000000;
 y=.500000000000000000000000000;
 if x=y then put 'equal';
 else put 'not equal';
run;

Log Output

not equal

Although these values appear to be alike, the internal representations differ
slightly, because the IEEE floating-point representation can represent only 15 digits.
Here is the floating-point representation of both variables using the HEX16. format.

x=3FE0000000000000
y=3FDFFFFFFFFFFFFF

When the number of significant digits is reduced to 15 or less, the floating-point
representation is the same and the values are equal.

data _null_;
 x=.5000000000000000;
 y=.500000000000000;
 if x=y then put 'equal';
 else put 'not equal';
 put x=hex16./
 y=hex16.;
run;

Log Output

equal
x=3FE0000000000000
y=3FE0000000000000

Numeric Precision 115

This issue pertains to floating-point representation on the x64 processors. The
routine used to compute the result is slightly different on Windows than on any
other host (Linux, UNIX, AIX, and so on).

Floating-Point Representation on IBM Mainframes

Storage Format

SAS for z/OS uses the traditional IBM mainframe floating-point representation as
follows:

S E E E E E E E

Byte 1

M M M M M M M M

Byte 2

M M M M M M M M

Byte 3

M M M M M M M M

Byte 4

M M M M M M M M

Byte 5

M M M M M M M M

Byte 6

M M M M M M M M

Byte 7

M M M M M M M M

Byte 8

This representation corresponds to bytes of data with each character being 1 bit, as
follows:

n The S in byte 1 is the sign bit of the number. A value of 0 in the sign bit is used to
represent positive numbers.

n The seven E characters in byte 1 represent a binary integer known as the
characteristic. The characteristic represents a signed exponent and is obtained
by adding the bias to the actual exponent. The bias is an offset used to enable
both negative and positive exponents with the bias representing 0. If a bias is
not used, an additional sign bit for the exponent must be allocated. For example,
if a system uses a bias of 64, a characteristic with the value of 66 represents an
exponent of +2, whereas a characteristic of 61 represents an exponent of –3.

n The remaining M characters in bytes 2 through 8 represent the bits of the
mantissa. There is an implied radix point before the left-most bit of the
mantissa. Therefore, the mantissa is always less than 1. The term radix point is
used instead of decimal point because decimal point implies that you are
working with decimal (base 10) numbers, which might not be the case. The radix
point can be thought of as the generic form of decimal point.

116 Chapter 5 / Variables

Troubleshooting Errors in Precision

Computational Considerations

Regardless of how much precision is available, there are still some numbers that
cannot be represented exactly. Most rational numbers (for example, .1) cannot be
represented exactly in base 2 or base 16. This is why it is often difficult to store
fractions in floating-point representation.

Consider the IBM mainframe representation of

1: 40 19 99 99 99 99 99 99

Notice that here is an infinitely repeating 9 digit similar to the trailing 3 digit in the
attempted decimal representation of one-third (.3333 …). This lack of precision
can be compounded when arithmetic operations are performed on these values
repeatedly.

For example, when you add .33333 to .99999, the theoretical answer is 1.33333, but
in practice, this answer is not possible. The sums become more imprecise as the
values continue to be calculated.

For example, consider the following DATA step:

data _null_;
 do i=-1 to 1 by .1;
 put i=;
 if i=0 then put 'AT ZERO';
 end;
run;

The AT ZERO message in the DATA step is never printed because the accumulation
of the imprecise number introduces enough errors that the exact value of 0 is never
encountered. The calculated result is close to 0, but never exactly equal to 0.
Therefore, when numbers cannot be represented exactly in floating point,
performing mathematical operations with other non-exact values can compound
the imprecision.

Using the LENGTH Statement When Comparing
Values

You can use the LENGTH statement to control the number of bytes that are used to
store variable values. However, you must use it carefully to avoid errors and
significant data loss.

For example, the IBM mainframe representation uses 8 bytes for full precision, but
you can store as few as 2 bytes on disk. The value 1 is represented as

Numeric Precision 117

41 10 00 00 00 00 00 00

in 8 bytes. In 2 bytes, it is truncated to 41 10. In this case, you still have the full
range of magnitude because the exponent remains intact, but there are fewer digits
involved. A decrease in the number of digits means either fewer digits to the right
of the decimal place or fewer digits to the left of the decimal place before trailing
zeros must be used.

For example, consider the number 1234567890, which is .1234567890 to the 10th
power of 10 in base 10 floating-point notation. If you have only five digits of
precision, the number becomes 123460000 (rounding up). Note that this is the case
regardless of the power of 10 that is used (.12346, 12.346, .0000012346, and so
on).

In addition, you must be careful in your choice of lengths, as the previous discussion
shows. Consider a length of 2 bytes on an IBM mainframe system. This value
enables 1 byte to store the exponent and sign, and 1 byte for the mantissa. The
largest value that can be stored in 1 byte is 255. Therefore, if the exponent is 0
(meaning 16 to the 0th power, or 1 multiplied by the mantissa), then the largest
integer that can be stored with complete certainty is 255. However, some larger
integers can be stored because they are multiples of 16.

For example, consider the 8-byte representation of the numbers 256 to 272 in the
following table:

Table 5.15 Table Representation of the Numbers 256 to 272 in 8 Bytes

Value
Sign or
Exp

Mantissa
1 Mantissa 2-7 Considerations

256 43 10 000000000000 trailing zeros; multiple of 16

257 43 10 100000000000 extra byte needed

258 43 10 200000000000

259 43 10 300000000000

...

271 43 10 F00000000000

272 43 11 000000000000 trailing zeros; multiple of 16

Using the TRUNC Function When Comparing Values

The TRUNC function truncates a number to a requested length and then expands
the number back to full length. The truncation and subsequent expansion duplicate
the effect of storing numbers in less than full length and then reading them. For
example, if the variable

118 Chapter 5 / Variables

 x = 1/3

is stored with a length of 3, then the following comparison is not true:

 if x = 1/3 then ...;

However, adding the TRUNC function makes the comparison true, as in the
following:

 if x=trunc(1/3,3) then ...;

See“TRUNC Function” in SAS Functions and CALL Routines: Reference for more
information about this function.

Double-Precision versus Single-Precision Floating-
Point Numbers

You might have data that has been created by an external program that you want to
read into a SAS data set. If the data is in floating-point representation, you can use
the RBw.d informat to read in the data. However, there are exceptions. The RBw.d
informat might truncate double-precision floating-point numbers if the w value is
less than the size of the double-precision floating-point number (8 on all the
operating systems discussed in this section). Therefore, theRB8. informat
corresponds to a full 8-byte floating point. The RB4. informat corresponds to an 8-
byte floating point truncated to 4 bytes, exactly the same as a LENGTH 4 in the
DATA step.

An 8-byte floating point that is truncated to 4 bytes might not be the same as a
float point in a C program. In the C language, an 8-byte floating-point number is
called a double. In Fortran, it is a REAL*8. In IBM PL/I, it is a FLOAT BINARY(53). A
4-byte floating-point number is called a float in the C language, REAL*4 in Fortran,
and FLOAT BINARY(21) in IBM PL/I.

On the IBM mainframes, a single-precision floating-point number is exactly the
same as a double-precision number truncated to 4 bytes. On operating systems
that use the IEEE standard, this is not the case; a single-precision floating-point
number uses a different number of bits for its exponent and uses a different bias, so
that reading in values using the RB4. informat does not produce the expected
results.

Transferring Data between Operating Systems
Problems of precision and magnitude can occur when you transfer data containing
very large or very small numeric values that are represented in floating-point
notation. “Floating-Point Representation Using the IEEE Standard”, “Floating-Point
Representation on Windows”, and “Floating-Point Representation on IBM
Mainframes” shows the maximum number of digits of the base, exponent, and
mantissa. Because there are differences in the maximum values that can be stored
in different operating environments, there might be problems in transferring your
floating-point data from one computer to another.

Numeric Precision 119

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1lfp83m4yht68n1luxn5tnmuhp3.htm&locale=en

Consider transporting data between an IBM mainframe and a PC, for example. The
IBM mainframe has a range limit of approximately .54E−78 to .72E76 (and their
negative equivalents and 0) for its floating-point numbers.

Other computers, such as the PC, have wider limits (the PC has an upper limit of
approximately 1E308). Therefore, if you are transferring numbers in the magnitude
of 1E100 from a PC to a mainframe, you lose that magnitude. During data transfer,
the number is set to the minimum or maximum allowable on that operating system,
so 1E100 on a PC is converted to a value that is approximately .72E76 on an IBM
mainframe.

CAUTION
Transfer of data between computers can affect numerical precision.

If you are transferring data from an IBM mainframe to a PC, notice that the number
of bits for the mantissa is 4 less than that for an IBM mainframe. This means that
you lose 4 bits when moving to a PC.

This precision and magnitude difference is a factor when moving from one
operating environment to any other where the floating-point representation is
different.

An alternative solution, and probably the safest way to avoid numerical precision
problems when transferring data between operating systems, is to convert the
numbers in your data to integers.

For more information about moving data between operating systems, see Moving
and Accessing SAS Files.

See Also

Examples

n “Example: Compare Imprecise Values in SAS”

n “Example: Convert a Decimal Value to a Floating Point Representation”

n “Example: Convert a Decimal Value to a Hexadecimal Floating-Point
Representation”

n “Example: Round Values to Avoid Computational Errors”

n “Example: Use the LENGTH Statement to Compare Values”

n “Example: Compare Values That Have Imprecise Representations”

n “Example: Confirm Precision Errors Using Formats”

n “Example: Determine How Many Bytes Are Needed to Store a Number
Accurately”

Functions

n “ROUND Function” in SAS Functions and CALL Routines: Reference

n “TRUNC Function” in SAS Functions and CALL Routines: Reference

120 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=movefile&docsetVersion=v_001&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=v_001&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0tj6cmga7p8qln1ejh6ebevm0c9.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1lfp83m4yht68n1luxn5tnmuhp3.htm&locale=en

Statements

n “LENGTH Statement” in SAS DATA Step Statements: Reference

Formats and Informats

n “HEXw. Format” in SAS Formats and Informats: Reference

n “Dictionary of Formats” in SAS Formats and Informats: Reference

Examples: Create and Modify SAS
Variables

Example: Create a SAS Variable Using an
Assignment Statement

Example Code

This example shows how to create a numeric and character variable using an
assignment statement. A numeric variable evaluates the value on the right side of
the expression as an integer and the variable type is implicitly set to a numeric data
type. To create the character variable, you can enclose the value in quotation marks
specifies that the variable type is character. The length of the variable is set to the
length of the character value. The length for the variable Patient is set to 12.

data newvar;
 Insurance=100;
 Patient="John Whitman"
run;

Key Ideas

n You can create a new variable and assign it a value by using it for the first time on
the left side of an assignment statement.

n The variable gets the same type and length as the expression on the right side of
the assignment statement.

Examples: Create and Modify SAS Variables 121

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0ueabv26pr2fwn19uxk2f4bf10y.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0z62k899n6a7wn1r5in6q5253v1.htm&locale=en

See Also

n Assignment Statement

n Ways to Create Variables

Example: Create a Variable Using the INPUT
Statement

Example Code

This example demonstrates using simple list input to create a SAS data set, named
gems, and define four variables based on the data provided.

data gems;
 input Name $ Color $ Carats Owner $;
 datalines;
emerald green 1 smith
sapphire blue 2 johnson
ruby red 1 clark
;
run;

The INPUT statement reads in four variables: Name, Color, Carats, and Owner. Name,
Color, and Owner were character variables as indicated by the $ and Carats is a
numeric variable.

Key Ideas

n When reading raw data into SAS, you can use the INPUT statement to define your
variables based on positions within the raw data.

n You can use one of the following methods with the INPUT statement to provide
information about the raw data organization:

o column input

o list input (simple or modified)

o formatted input

o named input

122 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hglxgj1sjhdzn18soqrqmvogvj.htm&locale=en

See Also

n INPUT Statement, List

n Assignment Statement

Example: Modify a SAS Variable Using the LENGTH
Statement

Example Code

This example shows how to modify a SAS variable using the LENGTH statement.

data sales;
 length Salesperson $25;
 Salesperson='Jonathon Mark Walker';
run;

Key Ideas

n For character variables, you must use the longest possible value in the first
statement that uses the variable. The reason is that you cannot change the length
with a subsequent LENGTH statement within the same DATA step. The maximum
length of any character variable in SAS is 32,767 bytes.

n For numeric variables, you can change the length of the variable by using a
subsequent LENGTH statement.

n When SAS assigns a value to a character variable, it pads the value with blanks or
truncates the value on the right side, if necessary, to make it match the length of
the target variable.

See Also

n LENGTH Statement

n Assignment Statement

Examples: Create and Modify SAS Variables 123

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0lrz3gb7m9e4rn137op544ddg0v.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en

Example: Modify a SAS Variable Using the
FORMAT and INFORMAT Statement

Example Code

This example demonstrates how to read in raw data from an external data file and
create new variables in an output data set using both simple list INPUT and
formatted input. The INPUT statement creates the variable Name as a character
variable with a default length of 8 using simple list input (no length is specified).
The INPUT statement also creates a numeric variable Carats that also has a length
of 8. Because the last variable in the INPUT statement, Color, specifies an
INFORMAT in the INPUT statement, it is being read in using formatted input, SAS
defines the variable as a character variable with a length of 10.

data gems;
 input Name $ Carats comma3.1 Color $char10.;
 informat Name $char10.;
 format Carats comma3.1;
datalines;
emerald 15 green
aquamarine 20 blue
;
proc print data=gems; run;
proc contents data=gems; run;

data gems;
 input Name $char10. Carats comma3.1 Color $char.;
datalines;
emerald 15 green
aquamarine 20 blue
;
proc print data=gems; run;
proc contents data=gems; run;

Output 5.4 PROC PRINT Result

124 Chapter 5 / Variables

Key Ideas

n If a variable does not already exist and you create it for the first time in a
formatted INPUT statement, then SAS defines the variable and its attributes
based on the category of the informat specified in the INPUT statement:

o Associating a numeric informat with a variable when it is created for the first
time in a DATA step using formatted input causes the variable to be created as
a numeric type, with a default length of 8.

o Associating a character informat with a variable when it is created for the first
time in a DATA step using formatted input causes the variable to be created as
a character type. The length matches the width specified in the informat in the
INPUT statement. If you do not specify a length with the informat or anywhere
else in the DATA step, then SAS assigns the default length of 8 bytes.

n You can modify a variable and specify its format or informat with a FORMAT or
INFORMAT statement.

See Also

n FORMAT Statement

n INFORMAT Statement

n Ways to Create Variables

Example: Modify a SAS Variable Using the ATTRIB
Statement

Example Code

The following DATA step creates a variable named Flavor in a data set named
lollipops.

data lollipops;
 attrib Flavor format=$10.;
 Flavor="Cherry";
run;

Examples: Create and Modify SAS Variables 125

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0d5oq7e0oia0wn13nsins0x8nmh.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p164164hob450kn1agkpcosya669.htm&locale=en

Key Ideas

n The ATTRIB statement enables you to specify one or more of the following
variable attributes for an existing variable:

o FORMAT=

o INFORMAT=

o LABEL=

o LENGTH=

n If the variable does not already exist, one or more of the FORMAT=, INFORMAT=,
and LENGTH= attributes can be used to create a new variable.

n You cannot create a new variable by using a LABEL statement or the ATTRIB
statement's LABEL= attribute by itself. Labels can be applied only to existing
variables.

See Also

n ATTRIB Statement

n Ways to Create Variables

Example: View Variable Attributes

Example Code

This example shows you how to use the CONTENTS procedure to view
Sashelp.Cars variable names, types, and attributes.

The CONTENTS procedure generates summary information about the contents of a
data set, including:

n The number of observations in a data set

n The number of variables in a data set

n The maximum number of observations in each page and file size

n The variables' names, types, and attributes (including formats, informats, and
labels)

n If your data is sorted by any variable, then the sort information is also displayed.

126 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1wxb7p9jkxycin16lz2db7idbnt.htm&locale=en

proc contents data=sashelp.cars;
run;

The output of the CONTENTS procedure is engine dependent.

The alphabetic list of variables and attributes table generated by the CONTENTS
procedure shows #, Variable, Type, Len, Format and Label.

#
The original order of the variable in the columns of the data set. PROC
CONTENTS prints the variables in alphabetical order with respect with the
name, instead of the order in which they appear in the data set.

Variable
Identifies the variable name. This might be different from what you see as the
name displayed in the output.

Type
Whether the variable is numeric (Num) or character (Char).

Len
Short for “Length”. Represents the width of the variable.

Format
The assigned format that will be used when the variables are printed in the
Results window.

Informat
The original format of the variable when it was read into SAS.

Label
The assigned variable label that will be used when the name of the variable is
printed in the Output window. If your variables do not have labels, this column is
identical to the Variable column.

Key Ideas

n PROC CONTENTS describes the structure and displays the variable attributes of
the data set, rather than the data values.

n This procedure is especially useful if you have imported your data from a file and
want to check that your variables have been read correctly, and have the
appropriate variable type and format.

See Also

n CONTENTS Procedure

n Variable Attributes

Examples: Create and Modify SAS Variables 127

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

Example: Change Variable Attributes

Example Code

This example shows how to change variable attributes using the ATTRIB
statement. The ATTRIB statement associates a format, informat, label, and length
with one or more variables.

data flightmiles;
 attrib
 Atlanta label='ATL' length=8 format=comma8.
 Chicago label='ORD' length=8 format=comma8.
 Denver label='DEN' length=8 format=comma8.
 Houston label='IAH' length=8 format=comma8.
 LosAngeles label='LAX' length=8 format=comma8.
 Miami label='MIA' length=8 format=comma8.
 NewYork label='JFK' length=8 format=comma8.
 SanFrancisco label='SFO' length=8 format=comma8.
 Seattle label='SEA' length=8 format=comma8.
 WashingtonDC label='DCA' length=8; format=comma8.
;
 set sashelp.mileages;
run;
title1 'Flying Miles Between Ten US Cities';
proc print data=flightmiles label;
run;

Output 5.5 Using ATTRIB Statement — Label and Format

128 Chapter 5 / Variables

If you add a PROC CONTENTS step, you can see how the ATTRIB statement
changed your variable attributes. Each variable is formatted (boxed in orange),
length (boxed in brown), and a label (boxed in red).

Output 5.6 Partial Output: PROC CONTENTS

Key Ideas

n For character variables, you must use the longest possible value in the first
statement that uses the variable. The reason is that you cannot change the length
with a subsequent LENGTH statement within the same DATA step. The maximum
length of any character variable in SAS is 32,767 bytes.

n Using the ATTRIB statement in the DATA step permanently associates attributes
with variables by changing the descriptor information of the SAS data set that
contains the variables.

n You can use either an ATTRIB statement or an individual attribute statement such
as FORMAT, INFORMAT, LABEL, and LENGTH to change an attribute that is
associated with a variable.

See Also

n ATTRIB Statement

n Variable Attributes

Examples: Create and Modify SAS Variables 129

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1wxb7p9jkxycin16lz2db7idbnt.htm&locale=en

Examples: Control Output of Variables

Example: Select Specific Variables for Output

Example Code

This example uses the DROP statement and the DROP= data set option to control
the output of variables to the new SAS data sets. The DROP statement drops the
MSRP variable from the new data set, newcars, while the DROP= data set option
drops seven variables from the original data set, sashelp.cars, and does not bring
those variables into the new data set when reading from sashelp.cars.

There are 428 observations and 15 variables in sashelp.cars. The new data set,
newcars, contains 17 observations and 7 variables.

data newcars;
 set sashelp.cars(drop=origin enginesize cylinders horsepower weight
wheelbase length);
 if MSRP>75000 then output;
 drop msrp;
run;
proc print data=newcars;
run;

130 Chapter 5 / Variables

Output 5.7 DROP= and DROP Statement Output

Key Ideas

n The DROP statement or the DROP= data set options control which variables are
processed during the DATA step.

n If you use the DROP, KEEP, or RENAME statement, the action always occurs as the
variables are written to the output data set.

n With SAS data set options, where you use the option determines when the action
occurs. If the option is used on an input data set, the variable is dropped, kept, or
renamed before it is read into the program data vector.

n If used on an output data set, the data set option is applied as the variable is
written to the new SAS data set.

See Also

n DROP Statement

n DROP= Data Set Option

n Using Statements or Data Set Options

Examples: Control Output of Variables 131

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1capr0s7tilbvn1lypdshkgpaip.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n15goor3q758g5n1eykstufkpdhy.htm&locale=en

Example: Select Specific Variables for Processing

Example Code

This example uses the DROP= and RENAME= data set options and the INPUT
function to convert the variable Day from numeric to character. The variable name
Day is changed to Weekday before processing so that a new variable Weekday can be
written to the output data set. Note that the variable Day is dropped from the
output data set and that the new name Weekday is used in the program statements.

data fails (drop=Process);
 length Day 8;
 set sashelp.failure(rename=(Day=Weekday));
 Day=input(Weekday,8.);
run;
proc print data=fails;
run;

Key Ideas

n The DROP= data set options control which variables are processed or output
during the DATA step.

n With SAS data set options, where you use the option determines when the action
occurs. If the option is used on an input data set, the variable is dropped, kept, or
renamed before it is read into the program data vector. If used on an output data
set, the data set option is applied as the variable is written to the new SAS data
set.

See Also

n RENAME= Data Set Option

n DROP= Data Set Option

n Using Statements or Data Set Options

132 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p09ikb01zz9knnn16y401utyq4un.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n15goor3q758g5n1eykstufkpdhy.htm&locale=en

Examples: Reorder and Align Variables

Example: Reorder Variables Using the ATTRIB
Statement

Example Code

In the following example, the data set sashelp.class contains variables Name, Sex,
Age, Height, and Weight (in that order). The ATTRIB statement is specified before
the SET statement so that the variable Sex is moved to the first position in the
output data set.

data class3;
 attrib Sex length=$8;
 set sashelp.class;
 if Sex='M' then Sex='Male';
 else Sex='Female';
run;
proc print data=class3;
run;

The output displays the Sex variable listed first because the ATTRIB statement
preceded the SET statement.

Examples: Reorder and Align Variables 133

Output 5.8 Using the ATTRIB Statement to Reorder Variables

Key Ideas

n You can control the order in which variables are displayed in SAS output by using
the ATTRIB statement.

n Use the ATTRIB statement prior to the SET, MERGE, or UPDATE statement in
order for you to reorder the variables.

n Variables not listed in the ATTRIB statement retain their original position.

134 Chapter 5 / Variables

See Also

n ARRAY Statement

n ATTRIB Statement

n FORMAT Statement

n INFORMAT Statement

n LENGTH Statement

n RETAIN Statement

n CONTENTS Procedure

Example: Reorder Variables Using the LENGTH
Statement

Example Code

In the following example, the data set sashelp.class contains variables Name, Sex,
Age, Height, and Weight (in that order). The LENGTH statement is specified before
the SET statement so that the variable Height is moved to the first position in the
output data set

data class1;
 length Height 3;
 set sashelp.class;
run;
proc print data=class1;
run;

The output displays the Height variable listed first because the LENGTH
statement preceded the SET statement.

Examples: Reorder and Align Variables 135

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p08do6szetrxe2n136ush727sbuo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1wxb7p9jkxycin16lz2db7idbnt.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0d5oq7e0oia0wn13nsins0x8nmh.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p164164hob450kn1agkpcosya669.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0t2ac0tfzcgbjn112mu96hkgg9o.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

Output 5.9 Using the LENGTH Statement to Reorder Variables

TIP You can use the CONTENTS procedure on the Class1 data set to view
the length of each variable.

Key Ideas

n You can control the order in which variables are displayed in SAS output by using
the LENGTH statement.

n Use the LENGTH statement prior to the SET, MERGE, or UPDATE statement in
order for you to reorder the variables.

n Variables not listed in the LENGTH statement retain their original position.

136 Chapter 5 / Variables

See Also

n ARRAY Statement

n ATTRIB Statement

n FORMAT Statement

n INFORMAT Statement

n LENGTH Statement

n RETAIN Statement

n CONTENTS Procedure

Example: Reorder Variables Using the RETAIN
Statement

Example Code

In the following example, the RETAIN statement causes the variables Weight and
Age to be listed first in the output data set. The data set sashelp.class contains
variables Name, Sex, Age, Height, and Weight (in that order).

data class2;
 retain Weight Age;
 set Sashelp.Class;
run;
proc print data=class2;
run;

The output displays the Weight and Agevariables listed first because the RETAIN
statement preceded the SET statement.

Examples: Reorder and Align Variables 137

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p08do6szetrxe2n136ush727sbuo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1wxb7p9jkxycin16lz2db7idbnt.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0d5oq7e0oia0wn13nsins0x8nmh.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p164164hob450kn1agkpcosya669.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0t2ac0tfzcgbjn112mu96hkgg9o.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

Output 5.10 Using the RETAIN Statement to Reorder Variables

Key Ideas

n The RETAIN statement is most often used to reorder variables simply because no
other variable attribute specifications are required.

n The RETAIN statement has no effect on retaining values of existing variables being
read from the data set.

n Only the variables whose positions are relevant need to be listed. Variables not
listed in the RETAIN statement retain their original position.

n Use the RETAIN statement prior to the SET, MERGE, or UPDATE statement in
order for you to reorder the variables.

See Also

n ARRAY Statement

138 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p08do6szetrxe2n136ush727sbuo.htm&locale=en

n ATTRIB Statement

n FORMAT Statement

n INFORMAT Statement

n LENGTH Statement

n RETAIN Statement

n CONTENTS Procedure

Example: Reorder Variables Using the FORMAT
Statement

Example Code

In the following example, the first DATA step creates the data set investment
where the variables Material, Item, Investment, and Profit are defined.

The FORMAT statement causes the variable Item to be listed first in the output
data set. The data set investment contains variables Material, Item, Investment,
and Profit (in that order).

data investment;
 input Material $1-7 Item $9-15 Investment Profit;
 datalines;
 cotton shirts 2256354 83952175
 silk ties 498678 2349615
 silk suits 9482146 69839563
 leather belts 7693 14893
 leather shoes 7936712 22964
;
run;
data invest01;
 format Item Material $upcase9. Investment Profit dollar15.2;
 set investment;
run;
proc print data=invest01;
run;

The output below has a boxed red section that illustrates the Item variable listed
first. The boxed orange section illustrates the FORMAT statement transformations
where Item and Material variables are uppercased and Investment and Profit
variables include dollar signs, commas, and two decimal places.

Examples: Reorder and Align Variables 139

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1wxb7p9jkxycin16lz2db7idbnt.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0d5oq7e0oia0wn13nsins0x8nmh.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p164164hob450kn1agkpcosya669.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0t2ac0tfzcgbjn112mu96hkgg9o.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

Output 5.11 Using the FORMAT Statement to Reorder Variables

Key Ideas

n You can control the order in which variables are displayed in SAS output by using
the FORMAT statement.

n Use the FORMAT statement prior to the SET, MERGE, or UPDATE statement in
order for you to reorder the variables.

n A single FORMAT statement can associate the same format with several variables,
or it can associate different formats with different variables.

n When you use the FORMAT statement to reorder your variables, you do not have
to associate a format with your variables.

n You can also use the INFORMAT statement to reorder your variables.

See Also

n ARRAY Statement

n ATTRIB Statement

n FORMAT Statement

n INFORMAT Statement

n LENGTH Statement

n RETAIN Statement

n CONTENTS Procedure

140 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p08do6szetrxe2n136ush727sbuo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1wxb7p9jkxycin16lz2db7idbnt.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0d5oq7e0oia0wn13nsins0x8nmh.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p164164hob450kn1agkpcosya669.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0t2ac0tfzcgbjn112mu96hkgg9o.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

Examples: Convert Variable Types

Example: Convert Character Variables to Numeric

Example Code

This example shows how to explicitly convert character data values to numeric
values. The INPUT function explicitly converts the rate variable to a numeric and
rate has a length of 2, the numeric informat 2. is used to read the values of the
variable. You can print the data set to see your new variable pay_chk with the
numeric values.

data work.weeksal;
 set work.payscale;
 pay_chk=input(rate,2.)*Hours;
run;
proc print data=work.weeksal;
run;

Note: No conversion messages appear in the SAS log when the INPUT function is
used.

Output 5.12 PROC PRINT Result

Examples: Convert Variable Types 141

Key Ideas

n Explicit conversions help you to control the data type and avoids having
conversion errors.

See Also

n “INPUT Function” in SAS Functions and CALL Routines: Reference

n Explicit Character-to-Numeric Conversion

Example: Convert Numeric Variables to Character

Example Code

This example shows how to explicitly do numeric to character conversion using the
PUT function. Use the PUT function in an assignment statement, where Site is the
source variable. Because Site has a length of 2, choose 2. as the numeric format.
The DATA step adds the new variable named Loc from the assignment statement to
the data set. You use PROC PRINT to view your Loc variable.

data work.dept;
 set work.payscale;
 Loc=catx('/',put(Site,2.),Dept);
run;
proc print data=work.dept;
run;

142 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p19en16vskd2vhn1vwmxpxnglxxs.htm&locale=en

Output 5.13 PROC PRINT Results

Note: No conversion messages appear in the SAS log when you use the PUT
function.

Key Ideas

n Parentheses or a minus sign preceding the number (without an intervening blank)
indicates a negative value.

n Leading zeros and the placement of a value in the input field do not affect the
value assigned to the variable. Leading zeros and leading and trailing blanks are
not stored with the value. Unlike some languages, SAS does not read trailing
blanks as zeros by default. To cause trailing blanks to be read as zeros, use the BZ.
informat described in SAS Formats and Informats: Reference.

n Numeric data can have leading and trailing blanks but cannot have embedded
blanks (unless they are read with a COMMA. or BZ. informat).

n To read decimal values from input lines that do not contain explicit decimal points,
indicate where the decimal point belongs by using a decimal parameter with
column input or an informat with formatted input. See the full description of the
INPUT statement in SAS Formats and Informats: Reference for more information.
An explicit decimal point in the input data overrides any decimal specification in
the INPUT statement.

See Also

n “INPUT Function” in SAS Functions and CALL Routines: Reference

n Explicit Numeric-to-Character Conversion

Examples: Convert Variable Types 143

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p19en16vskd2vhn1vwmxpxnglxxs.htm&locale=en

Example: Use Automatic Type Conversions

Example Code

By default, if you reference a character variable in a numeric context such as an
arithmetic operation, SAS tries to convert the variable values to numeric. In the
example, Rate is a character variable, but it is used in a numeric context. Therefore,
SAS automatically convertsthe values of Rate to numeric to complete the
arithmetic operation.

The automatic conversion of numeric data to character data is very similar to
character-to-numeric conversion. Numeric data values are converted to character
values whenever they are used in a character context. SAS automatically converts
the numeric values of Site to character values because Site is used in a character
context. The variable Site appears with the concatenation operator, which requires
character values.

data work.autosal;
 set work.payscale;
 PayChk=Rate*Hours;
 Loc=Site||'/'||Dept;
run;
proc print data=work.autosal;
run;

Whenever data is automatically converted, a message is written to the SAS log
stating that the conversion has occurred.

Output 5.14 SAS Log

NOTE: Character values have been converted to numeric values at the places given
by: (Line):(Column).
 75:10
NOTE: Numeric values have been converted to character values at the places given
by: (Line):(Column).
 76:7
NOTE: There were 9 observations read from the data set WORK.PAYSCALE.
NOTE: The data set WORK.AUTOSAL has 9 observations and 7 variables.

Key Ideas

n Automatic conversions occur in the following circumstances:

o A character value is assigned to a previously defined numeric variable.

o A character value is used in an arithmetic operation.

144 Chapter 5 / Variables

o A character value is compared to a numeric value, using a comparison operator.

o A character value is specified in a function that requires numeric arguments.

o Numeric data values are converted to character values whenever they are used
in a character context.

n The following statements are true about automatic conversion:

o It uses the w. informat, where w is the width of the character value that is being
converted.

o It produces a numeric missing value from any character value that does not
conform to standard numeric notation (digits with an optional decimal point,
leading sign, or scientific notation).

See Also

n Automatic Character-to-Numeric Conversion

n Automatic Numeric-to-Character Conversion

Examples: Use Automatic Variables

Example: Use the _N_ Automatic Variable

Example Code

The following example illustrates how to use the _N_ automatic variable with the
PUT function.

data test;
 input x $ y;
 put 'This is row ' _n_;
datalines;
 a 1
 b 2
 c 3
 x 24
 z 26
;
run;
proc print data=test;
run;

Examples: Use Automatic Variables 145

The following is printed to the SAS log:

Output 5.15 SAS Log: _N_ Automatic Variable

This is row 1
This is row 2
This is row 3
This is row 4
This is row 5

The following is the output from the PRINT procedure.

Output 5.16 Automatic Variable _N_ PRINT Output

Key Ideas

n Each time the DATA step loops past the DATA statement, the variable _N_
increments by 1.

n The value of _N_ represents the number of times the DATA step has iterated.

See Also

n Automatic Variables

n _N_ Automatic Variable

146 Chapter 5 / Variables

Example: Use the _ERROR_ and _INFILE_
Automatic Variable with the IF/THEN Statement

Example Code

The following example illustrates the use of _ERROR_ and _INFILE_= to write to the
SAS log, during each iteration of the DATA step, the contents of an input record in
which an input error is encountered.

data testerr;
 input x $ y;
 if _error_=1 then put 'Error before row ' _n_ 'which contains '
infile;
 put _infile_;
datalines;
 a 1
 ^#
 b 2
 c3
;
run;

The following is printed to the SAS log:

Example Code 5.2 SAS Log: _ERROR_ and _INFILE_

NOTE: Invalid data for y in line 65 2-2.

Error before row 2 which contains
 b 2

Key Ideas

n Automatic variables are created automatically by the DATA step or by DATA step
statements. These variables are added to the program data vector but are not sent
as output to the data set being created.

n _INFILE_ is an automatic character variable that gets created automatically by the
DATA step when you use the INFILE statement. It contains the value of the current
input record (row) read in either a file or in data in the DATALINES statement.

n Use the value of _ERROR_ to help locate errors in data records and to print an error
message to the SAS log.

Examples: Use Automatic Variables 147

See Also

n Automatic Variables

n _ERROR_ Automatic Variable

n “_INFILE_=variable” in SAS DATA Step Statements: Reference

Examples: Use Variable Lists

Example: Create a Variable Numbered Range List

Example Code

This example shows you how to create variable numbered range lists. You can
begin with any number and end with any number as long as you do not violate the
rules for user-supplied names and the numbers are consecutive. Use the INPUT
statement to write out a numbered range list. You can also use a numbered range
list in an ARRAY statement.

data temperatures;
 input Day1-Day7;
 datalines;
 74 75 82 84 85 86 89
 ;
run;
proc print data=temperatures noobs;
 title "Average Daily Low Temperature";
run;
data tempCelsius(drop=i);
 set temperatures;
 array celsius{7} Day1-Day7;
 do i=1 to 7;
 celsius{i}=(celsius{i}-32)*5/9;
 end;
run;
proc print data=tempCelsius;
 title "Average Daily Low Temperature in Celsius";
run;

The following graphic displays the PROC PRINT output for temperatures. The box
highlighted in red shows the variable numbered range list Day1–Day7.

148 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n0ez2gsfe6gvo7n15s0sc1zo8sbn&locale=en

Output 5.17 PROC PRINT Output: Temperatures

Key Ideas

n Numbered range variable lists are lists consisting of variables that are prefixed
with the same name but that have different numeric values for the last characters.

n The numeric values must be consecutive numbers.

n In a numbered range list, you can refer to variables that were created in any order,
provided that their names have the same prefix.

See Also

n ARRAY Statement

n INPUT Statement, List

n Types of Variable Lists

Example: Create a Variable Name Range List

Example Code

In the example, the name range list specified in the KEEP statement keeps all
numeric variables between and including nAtBat and nOuts. The name range list
specified in the ARRAY statement reads all variables between nAtbat and nRuns. In
this case that also includes variables nHits and nHome.

Examples: Use Variable Lists 149

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p08do6szetrxe2n136ush727sbuo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0lrz3gb7m9e4rn137op544ddg0v.htm&locale=en

Note: All variables in the range list must be the same case.

The name range list specified in the VAR statement in the PRINT procedure
specifies that only the variables between and including Name and nBB are printed in
the PROC PRINT output.

data changeStats(where=(YrMajor>18));
 set sashelp.baseball;
 keep Name nAtBat-numeric-nOuts YrMajor;
 array stats(4) nAtBat--nRuns;
 do i=1 to 4;
 stats{i} = stats{i}*10;
 end;
run;
proc print data=changeStats;
 var Name--nBB;
run;

Key Ideas

n You can use a name range list in an ARRAY declaration as long as you have already
defined the variables prior to declaring the array. The variables can be defined in
the same DATA step or in a previous DATA step.

n Notice that name range lists use a double hyphen (--) to designate the range
between variables, and numbered range lists use a single hyphen to designate the
range.

See Also

n ARRAY Statement

n KEEP Statement

n VAR Statement

n Types of Variable Lists

150 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p08do6szetrxe2n136ush727sbuo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1nnrzzsw6rzrjn1p2jfky6pdv23.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1cfqafrw9xvoln1sz5oed59lyf3.htm&locale=en

Example: Use the OF Operator with a Variable List

Example Code

In the following example, arguments are passed in as numbered range lists, both
with and without the use of the OF operator.

data _null_;
 x1=30; x2=20; x3=10;
 T=sum(x1-x3); /* #1 */
 T2=sum(OF x1-x3); /* #2 */
 put T=; /* #3 */
 put T2=; /* #4 */
run;

1 The first SUM function returns T=20.

2 The second SUM function returns T2=60.

3 Writes to the log the difference between x1 and x3.

4 Writes to the log the sum of the values of variables x1, x2, and x3.

Key Ideas

n The OF operator enables you to specify SAS variable lists or SAS arrays as
arguments to functions.

n The OF operator is important when used with functions whose arguments are in
the form of a numbered-range list. For example, an argument in the form of a
numbered range (x1 – xn) is read in as a range of values only if the list is preceded
by the OF operator.

n If the same list is not preceded by the OF operator and it is used with the SUM
function, the (-) character is treated as a subtraction sign. The function returns the
difference between the variables rather than the sum of the range of values.

See Also

n SUM Function

n PUT Statement

n Using the OF Operator with Temporary Arrays

Examples: Use Variable Lists 151

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0zxive1z1ctqin12w06c85jfigd.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1spe7nmkmi7ywn175002rof97fv.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p07c8e0ktns1c7n1vtowjev5g724.htm&docsetTargetAnchor=n0uo16w5gip29fn1mbyfexni1udd&locale=en

Example: Use the OF Operator to Create Multiple
Variable Lists

Example Code

The following example illustrates a ranged variable list in which the entire list is
preceded by the OF operator and the lists are separated by spaces or commas.

data _null_;
 T=sum(OF x1-x3 y1-y3 z1-z3);
run;

or

data _null_;
 T=sum(OF x1–x3, OF y1–y3, OF z1–z3);
run;

Key Ideas

n The OF operator enables you to specify SAS variable lists or SAS arrays as
arguments to functions. as arguments to functions.

n The OF operator is also used to distinguish one variable list from another when
multiple ranged lists are used as arguments in functions.

See Also

n Types of Variable Lists

n The OF Operator with Functions and Variable Lists

n Using the OF Operator with Temporary Arrays

152 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p07c8e0ktns1c7n1vtowjev5g724.htm&docsetTargetAnchor=n0uo16w5gip29fn1mbyfexni1udd&locale=en

Examples: Manage Missing Variable
Values

Example: Automatically Replacing Missing Values

Example Code

SAS replaces the missing values as it encounters values that you assign to the
variables. Thus, if you use program statements to create new variables, their values
in each observation are missing until you assign the values in an assignment
statement, as shown in the following DATA step:

data new;
 input x;
 if x=1 then y=2;
 datalines;
 4
 1
 3
 1
;
run;
proc print data=new;
run;

y is created by the IF statement, so it is a numeric variable where all values are
missing. When the IF statement is executed, for example, when x=1, the value of y
is set to 2. Since no other statements set y's value when x is not equal to 1, y
remains missing (.) for those observations. This DATA step produces a SAS data set
with the following variable values:

Output 5.18 DATA Step Output for Missing Values

Examples: Manage Missing Variable Values 153

Key Ideas

n SAS replaces the missing values as it encounters values that you assign to the
variables.

n At the beginning of each iteration of the DATA step, SAS sets the value of each
variable that you create in the DATA step to missing.

See Also

n When Reading Raw Data

Example: Creating Special Missing Values

Example Code

The following example uses data from a marketing research company. Five testers
were hired to test five different products for ease of use and effectiveness. If a
tester was absent, there is no rating to report, and the value is recorded with an X
for “absent.” If the tester was unable to test the product adequately, there is no
rating, and the value is recorded with an I for “incomplete test.” The following
program reads the data and displays the resulting SAS data set. Note the special
missing values in the first and third data lines:

data period_a;
 missing X I;
 input Id $4. Foodpr1 Foodpr2 Foodpr3 Coffeem1 Coffeem2;
 datalines;
1001 115 45 65 I 78
1002 86 27 55 72 86
1004 93 52 X 76 88
1015 73 35 43 112 108
1027 101 127 39 76 79
 ;

proc print data=period_a;
 title 'Results of Test Period A';
 footnote1 'X indicates TESTER ABSENT';
 footnote2 'I indicates TEST WAS INCOMPLETE';
run;

The following output is produced:

154 Chapter 5 / Variables

Output 5.19 Output with Multiple Missing Values

Key Ideas

n When data values contain characters in numeric fields that you want SAS to
interpret as special missing values, use the MISSING statement to specify those
characters.

n If you do not begin a special numeric missing value with a period, SAS identifies it
as a variable name. Therefore, to use a special numeric missing value in a SAS
expression or assignment statement, you must begin the value with a period,
followed by the letter or underscore. Here is an example: x=.d;

See Also

n MISSING Statement

n Representing Missing Values

Example: Preventing Propagation of Missing Values

Example Code

If you do not want missing values to propagate in your arithmetic expressions, you
can omit missing values from computations by using the sample statistic functions.
The SUM statement also ignores missing values, so the value of c is also 5. For
example, consider the following DATA step:

Examples: Manage Missing Variable Values 155

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0ewjmosjtyjbtn1t5zabfkrof4f.htm&locale=en

data test;
 x=.;
 y=5;
 a=x+y;
 b=sum(x,y);
 c=5;
 c+x;
 put a= b= c=;
run;

Adding x and y together in an expression produces a missing result because the
value of x is missing. The value of a, therefore, is missing. However, since the SUM
function ignores missing values, adding x to y produces the value 5, not a missing
value.

Output 5.20 SAS Log Results for a Missing Value in a Statistic Function

184 data test;
185 x=.;
186 y=5;
187 a=x+y;
188 b=sum(x,y);
189 c=5;
190 c+x;
191 put a= b= c=;
192 run;

a=. b=5 c=5
NOTE: Missing values were generated as a result of performing
 an operation on missing values.
 Each place is given by:
 (Number of times) at (Line):(Column).
 1 at 187:6
NOTE: The data set WORK.TEST has 1 observations and 5 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

Key Ideas

n The SUM function and SUM statement ignore missing values when making the
calculation.

n If you use a missing value in an arithmetic calculation, SAS sets the result of that
calculation to missing.

n SAS prints notes in the log to notify you which arithmetic expressions have
missing values and when they were created.

156 Chapter 5 / Variables

See Also

n MISSING Function

n Missing Variable Values

Examples: Manage Problems Related to
Precision

Example: Compare Imprecise Values in SAS

Example Code

In the example, SAS sets the variables point_three and three_time_point_one to
0.3 and (3 x 0.1), respectively. It then compares the two values by subtracting
one from the other and writing the result to the SAS log:

data a;
 point_three=0.3;
 three_time_point_one=3*0.1;
 difference=point_three - three_times_point_one;
 put 'The difference is ' difference;
run;

The log output shows that (3 x 0.1) — 0.3 does not equal 0, as it does in decimal
arithmetic. The reason for this is because the values are stored in floating-point
representation and cannot be stored precisely. For more information, see “Storage
Format”.

Output 5.21 Log Output for Comparing Imprecise Values in SAS

The difference is -5.55112E-17

Examples: Manage Problems Related to Precision 157

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p06ybg84o0asa4n17l9ieauk58hb.htm&locale=en

Key Ideas

n The numbers that are imprecise in decimal are not always the same ones that are
imprecise in binary.

n Performing calculations and comparisons on imprecise numbers in SAS can lead to
unexpected results.

n There are many decimal fractions whose binary equivalents are infinitely repeating
binary numbers, so be careful when interpreting results from general rational
numbers in decimal. There are some rational numbers that do not present
problems in either number system.

See Also

n Numeric Precision

Example: Convert a Decimal Value to a Floating
Point Representation

Example Code

This example shows the conversion process for the decimal value 255.75 to
floating-point representation.

1 Use the base 2 number system to write out the value 255.75 in binary.

Note: Each bit in the mantissa represents a fraction whose numerator is 1 and
whose denominator is a power of 2. The mantissa is the sum of a series of
fractions such as 1/2, 1/4 , 1/8 , and so on. Therefore, for any floating-point
number to be represented exactly, you must express it as the previously
mentioned sum.

Base 2

27 26 25 24 23 22 21 20 .2-1 2-2

128 64 32 16 8 4 2 1 1/2 1/4

158 Chapter 5 / Variables

Base 2

255.75 = 1 x 27 1 x 26 1 x 25 1 x 24 1 x 23 1 x 22 1 x 21 1 x 20 1 x 2-1 1 x 2-2

So, the value 255.75 is represented in binary format as 1111 1111.11

2 Move the decimal over until there is only one digit to the left of it. This process
is called normalizing the value. Normalizing a value in scientific notation is the
process by which the exponent is chosen so that the absolute value of the
mantissa is at least one but less than ten. For this number, you move the
decimal point 7 places:

1.111 1111 11

Because the decimal point was moved 7 places, the exponent is now 7.

3 The bias is 1023, so add 7 to 1023 to get

1030

4 Convert the decimal value, 1030, to hexadecimal using the base 16 number
system:

Base 16

167 ... 164 163 162 161 160

268,435,456 ... 65,536 4096 256 16 1

The converted hexadecimal value for 1030 is placed in the exponent portion of
the final result.

5 Convert 406 to binary format:

0100 0000 0110
 4 0 6

If the value that you are converting is negative, change the first bit to 1:

1100 0000 0110

This translates in hexadecimal to

C 0 6

6 In Step 2 above, delete the first digit and decimal (the implied one-bit):

11111111

7 Break these up into nibbles (half bytes) so that you have

Examples: Manage Problems Related to Precision 159

1111 1111 1

8 To have a complete nibble at the end, add enough zeros to complete 4 bits:

 1111 1111 1000

9 Convert

1111 1111 1000

to its hexadecimal equivalent to get the mantissa portion:

1111 1111 1000
 F F 8

The final floating-point representation for 255.75 is

406F F800 0000 0000

The final floating-point representation for –255.75 is

C06F F800 0000 0000

In this example, the starting decimal value, 255.75, conveniently converts to a
finite binary value that can be represented without rounding in both binary and
hexadecimal. The following section shows the conversion process for a decimal
number that cannot be represented precisely in floating-point representation.

Key Ideas

n On Windows platforms, the processor performs computations in extended real
precision.

n On Windows this allows storage of numbers larger than the basic IEEE floating-
point format used by operating systems such as UNIX. This is one reason why you
might see slightly different values from operating systems that use the same IEEE
standard.

See Also

n Floating-Point Representation on Windows

160 Chapter 5 / Variables

Example: Convert a Decimal Value to a
Hexadecimal Floating-Point Representation

Example Code

The following example shows the conversion process for the decimal value 512.1
to hexadecimal floating-point representation. This example illustrates how values
that can be precisely represented in decimal cannot be precisely represented in
hexadecimal floating point.

1 Because the base is 16, you must first convert the value 512.1 to hexadecimal
notation.

2 First, convert the integer portion, 512, to hexadecimal using the base 16 number
system:

Base 16

167 ... 164 163 162 161 160

268,435,456 ... 65,536 4096 256 16 1

200 = .200 × 163

The value 512 is represented in hexadecimal as 200.

3 Write the hexadecimal number, 200, in floating-point representation. To do this,
move the decimal point all the way to the left, counting the number of positions
that you moved it. The number that you moved it is the exponent:

200 = .200 × 163

4 Convert the fraction portion (.1) of the original number, 512.1 to hexadecimal:

.1 = 1
10 = 1.6

16

The numerator cannot be a fraction, so keep the 1 and convert the .6 portion
again.

.6 = 6
10 = 9.6

16

Again, there cannot be fractions in the numerator, so keep the 9 and reconvert
the .6 portion.

The .6 continues to repeat as 9.6, which means that you keep the 9 and
reconvert. The closest that .1 can be represented in hexadecimal is

Examples: Manage Problems Related to Precision 161

.1 = .1999999 × 160

5 The exponent for the value is 3 (Step 2 above). To determine the actual
exponent that will be stored, take the exponent value and add the bias to it:

true exponent + bias = 3 + 40 = 43 (hexadecimal) = stored exponent

The final portion to be determined is the sign of the mantissa. By convention,
the sign bit for positive mantissas is 0, and the sign for negative mantissas is 1.
This information is stored in the first bit of the first byte. From the hexadecimal
value in Step 4, compute the decimal equivalent and write it in binary format.
Add the sign bit to the first position. The stored value now looks like this:

43 hexadecimal = (4 × 161) + (3 × 160) = 67 decimal = 0100 0003 binary

11000003 = 195 in decimal = C3 in hexadecimal

6 The final step is to put it all together:

4320019999999999 – floating point representation for 512.1

C320019999999999 – floating point representation for –512.1

Therefore, the decimal value 512.1 cannot be precisely represented in binary or
hexadecimal floating point notation. When the number 512.1 is converted, the
result is an infinitely repeating number. This is analogous to representing the
fraction 1/3 in decimal form.

The closest approximation is .33333333 with infinitely repeating ‘3s’.

Key Ideas

n Values that can be represented exactly in decimal notation cannot always be
represented precisely in floating-point notation.

n If a floating-point value has a repeating pattern of numbers, there is a good chance
that the value cannot be represented exactly.

See Also

n Floating-Point Representation on Windows

162 Chapter 5 / Variables

Example: Round Values to Avoid Computational
Errors

Example Code

The following example shows how you can use the ROUND function to round the
results for one iteration of the DATA step.

data _null_;
 do i=-1 to 1 by .1;
 i=round(i, .1);
 put i=;
 if i=0 then put 'AT ZERO';
 end;
run;

The following is printed to the SAS log:

Output 5.22 SAS Log Output for the ROUND Function

i=-1
i=-0.9
i=-0.8
i=-0.7
i=-0.6
i=-0.5
i=-0.4
i=-0.3
i=-0.2
i=-0.1
i=0
AT ZERO
i=0.1
i=0.2
i=0.3
i=0.4
i=0.5
i=0.6
i=0.7
i=0.8
i=0.9
i=1

Example Code

You can avoid comparison errors by explicitly rounding the values before
performing the comparison. The next example compares the calculated result of
1/3 to the assigned value .33333. Because 1/3 is an imprecise number, the value

Examples: Manage Problems Related to Precision 163

is not equal to .33333, and the PUT statement is not executed. However, if you add
the ROUND function, as in the following example, the PUT ‘MATCH’ statement is
executed:

data _null_;
 x=1/3;
 if round(x, .00001)=.33333 then put 'MATCH';
run;

Output 5.23 Log Output: Using the ROUND Function to Avoid Comparison Errors

MATCH

Key Ideas

n Errors that are caused by the accumulation of performing calculations on
imprecise values can be resolved by rounding.

n In general, if you are doing comparisons with fractional values, it is good practice
to use the ROUND function before performing any computations or comparisons.

See Also

n “ROUND Function” in SAS Functions and CALL Routines: Reference

Example: Use the LENGTH Statement to Compare
Values

Example Code

The numbers from 257 to 271 cannot be stored exactly in the first 2 bytes; a third
byte is needed to store the number precisely. As a result, the following code
produces misleading results:

data ab;
 length x 2;
 x=257;
 y1=x+1;
data abc;
 set ab;

164 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0tj6cmga7p8qln1ejh6ebevm0c9.htm&locale=en

 if x=257 then put 'FOUND';
 else put 'NOT FOUND';
 y2=x+1;
run;

The following is printed to the SAS log:

Example Code 5.3 SAS Log

337 data ab;
338 length x 2;
 -
 352
ERROR 352-185: The length of numeric variables is 3-8.

339 x=257;
340 y1=x+1;

NOTE: The SAS System stopped processing this step because of
 errors.
WARNING: The data set WORK.AB may be incomplete. When this
 step was stopped there were 0 observations and 2
 variables.
WARNING: Data set WORK.AB was not replaced because this step
 was stopped.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

341 data abc;
342 set ab;
343 if x=257 then put 'FOUND';
344 else put 'NOT FOUND';
345 y2=x+1;
346 run;

NOTE: There were 0 observations read from the data set WORK.AB.
NOTE: The data set WORK.ABC has 0 observations and 3 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

The PUT statement is never executed because the value of X is actually 256 (the
value 257 truncated to 2 bytes). Recall that 256 is stored in 2 bytes as 4310, but
257 is also stored in 2 bytes as 4310, with the third byte of 10 truncated.

Note, however, that Y1 has the value 258 because the values of X are kept in full, 8-
byte floating-point representation in the program data vector. The value is
truncated only when stored in a SAS data set. Y2 has the value 257 because X is
truncated before the number is read into the program data vector.

CAUTION
Do not use the LENGTH statement if your variable values are not integers.
Fractional numbers lose precision if truncated. Also, use the LENGTH statement to
truncate values only when disk space is limited. Refer to the length table in the SAS
documentation for your operating environment for maximum values.

Examples: Manage Problems Related to Precision 165

Key Ideas

n You can use the LENGTH statement to control the number of bytes that are used
to store variable values. However, you must use it carefully to avoid errors and
significant data loss.

n During compilation SAS allocates as many bytes of storage space as there are
characters in the first value that it encounters for that variable.

See Also

n “LENGTH Statement” in SAS DATA Step Statements: Reference

n Using the LENGTH Statement When Comparing Values

Example: Compare Values That Have Imprecise
Representations

Example Code

In decimal arithmetic, the expression 15.7 – 11.9 = 3.8 is true. But, in SAS, if
you compare the literal value of 3.8 to the calculated value of 15.7 – 11.9 and
output the result to the SAS log, you will get a result of

'not equal'

.

data a;
 x=15.7-11.9;
 if x=3.8 then put 'equal';
 else put 'not equal';
run;
proc print data=a;
run;

The log output indicates that the values 3.8 and (15.7 – 11.9) are not
equivalent. This is because the values involved in the computation cannot be
precisely represented in floating-point representation.

166 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en

Output 5.24 Log Output for Comparing Values That Have Imprecise
Representations

not equal

The PROC PRINT statement displays the value for x as 3.8 rather than the actual
stored value because the procedure automatically applies a format and rounds the
results before displaying them. This example shows how non-explicit rounding can
cause confusion because, in this case, PROC PRINT rounds only the final results
after they are calculated.

Output 5.25 Output for Comparing Values

Key Ideas

n When comparing non-integer values that do not have precise floating-point
representations you can sometimes encounter surprising results.

See Also

n Floating-Point Representation

Example: Confirm Precision Errors Using Formats

Example Code

In the next example, two different formats are applied to the results given and
displayed in the SAS log. The first format, 10.8 shows that the value of x is 3.8;
however, displaying the value using the 18.16 format indicates that x is slightly less
than 3.8.

data a;
x=15.7-11.9;

Examples: Manage Problems Related to Precision 167

if x=3.8 then put 'equal';
 else put 'not equal';
put x=10.8;
put x=18.16;
run;

Output 5.26 Log Output: Using Formats to Confirm Precision Errors

not equal
x=3.80000000
x=3.7999999999999900

Example Code

You can also use the width of 16 with the HEXw.d format to show floating-point
representation.

data a;
 x=15.7-11.9;
 if x=3.8 then put 'equal';
 else put 'not equal';
put x=hex16.;
run;

Output 5.27 Using the HEX16 Format to Verify Calculated Results

not equal
x=400E666666666664

Key Ideas

n The HEXw. format is a special format that can be used to show floating-point
representation.

n When comparing non-integer values that do not have precise floating-point
representations you can sometimes encounter surprising results.

See Also

n “HEXw. Format” in SAS Formats and Informats: Reference

n “Dictionary of Formats” in SAS Formats and Informats: Reference

n Floating-Point Representation

168 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0ueabv26pr2fwn19uxk2f4bf10y.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0z62k899n6a7wn1r5in6q5253v1.htm&locale=en

Example: Determine How Many Bytes Are Needed
to Store a Number Accurately

Example Code

You can also use the TRUNC function to determine the minimum number of bytes
that are needed to store a value accurately. The following program finds the
minimum length of bytes (MinLen) that are needed for numbers stored in a native
SAS data set named Numbers in an IBM mainframe environment. The data set
Numbers contains the variable Value. Value contains a range of numbers from 269
to 272:

data numbers;
 input value;
 datalines;
 269
 270
 271
 272
;
data temp;
 set numbers;
 x=value;
 do L=8 to 1 by -1;
 if x NE trunc(x,L) then
 do;
 minlen=L+1;
 output;
 return;
 end;
 end;
run;
proc print data=temp noobs;
 var value minlen;
run;

The following output shows the results from this example:

Examples: Manage Problems Related to Precision 169

Output 5.28 Determining How Many Bytes Are Needed to Store a Number
Accurately

Key Ideas

n The minimum length required for the value 271 is greater than the minimum
required for the value 272.

n This fact illustrates that it is possible for the largest number in a range of numbers
to require fewer bytes of storage than a smaller number.

n If precision is needed for all numbers in a range, you should obtain the minimum
length for all the numbers, not just the largest one.

See Also

n “TRUNC Function” in SAS Functions and CALL Routines: Reference

170 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1lfp83m4yht68n1luxn5tnmuhp3.htm&locale=en

Example: Generate Inaccurate Results For Large
Data

Example Code

The following example illustrates an inaccurate result for large data.

data _null_;
 lo2hi =0;
 hi2lo =0;
 do i = -10 to 10 by 0.1;
 lo2hi = lo2hi + 10**i;
 end;
 do i = 10 to -10 by -0.1;
 hi2lo = hi2lo + 10**i;
 end;
 diff = hi2lo-lo2hi;
put lo2hi;
put hi2lo;
put diff;
run;

The following output shows the log output from this example:

Example Code 5.4 SAS Log

lo2hi=48621160939
hi2lo=48621160939
diff=0.0041885376

Key Ideas

n Calculated statistics can vary slightly, depending on the order in which
observations are processed. Such variations are due to numerical error introduced
by floating-point arithmetic, the results of which should be considered
approximate and not exact.

n Order of observation processing can be affected by non-deterministic effects of
multi-threaded or parallel processing.

n Order of processing can also be affected by inconsistent or non-deterministic
ordering of observations produced by a data source, such as a DBMS delivering
query results through an ACCESS engine.

Examples: Manage Problems Related to Precision 171

See Also

n “DO Statement: Iterative” in SAS DATA Step Statements: Reference

n “Accuracy on x64 Windows Processors”

Examples: Encrypt Variable Values

Example: Create a Simple 1-Byte-to-1-Byte Swap
Using the TRANSLATE Function

Example Code

This example shows how to use a simple 1-byte-to-1-byte swap with the
TRANSLATE function.

data sample1; /* 1 */
 input @1 name $;
 length encrypt decrypt $ 8;

/*ENCRYPT*/
 do i = 1 to 8; /* 2 */
 encrypt=strip(encrypt)||translate(substr(name,i,1),
 '0123456789!@#$%^&*()-=,./?<','ABCDEFGHIJKLMNOPQRSTUVWXYZ');
 end;

/*DECRYPT*/
 do j = 1 to 8; /* 3 */
 decrypt=strip(decrypt)||translate(substr(encrypt,j,1),
 'ABCDEFGHIJKLMNOPQRSTUVWXYZ','0123456789!@#$%^&*()-=,./?<');
 end;

 drop i j;
datalines;
ROBERT
JOHN
GREG
;
proc print;
run;*/

172 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en

1 The DATA step reads a name that is 8 or fewer characters in length and uses a
DO loop to process the TRANSLATE function and SUBSTR function 1 byte at a
time.

2 The first DO loop creates the encrypted value.

3 The second DO loop creates the decrypted value by reversing the order and
returning the original value.

Output 5.29 PROC PRINT Result: A Simple 1-Byte-to-1-Byte Swap

Key Ideas

n SAS provides encryption for SAS data sets with the ENCRYPT= data set option,
but this option is typically used to encrypt data at the data set level.

n To encrypt data at the SAS variable level, you can use a combination of DATA step
functions and logic to create your own encryption and decryption algorithms.

n However, if you create your own algorithms, it is important that you create a
program that not only is secure and hidden from public view, but that also contains
methods to both encrypt and decrypt the data.

See Also

n SUBSTR-left Function

n SUBSTR-right Function

n TRANSLATE Function

Examples: Encrypt Variable Values 173

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0uev77ebdwy90n1rsd7hwjd2qc3.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0n08xougp40i5n1xw7njpcy0a2b.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p05ww22zp7lcg3n1bjk7v93tscyo.htm&locale=en

Example: Use a 1-Byte-to-2-Byte Swap Using the
TRANWRD Function

Example Code

This example shows how to encrypt values using a 1-byte-to-2-byte swap with the
TRANWRD function. In the following sample code, the DATA step reads an ID that
is 6 or fewer characters in length. However, the variable is assigned a length of 12 to
double the character length, because this is a 1-byte-to-2-byte exchange. A DO
loop processes the TRANWRD function 1 byte at a time.

data sample2; /* 1 */
 input @1 id $12.;

/*ENCRYPT*/
 encrypt=id;
 i=21;
 do from_1 = "C","F","E","A","D","B"; /* 2 */
 to_1=put(i,2.);
 encrypt=tranwrd(encrypt,from_1,to_1);
 i+1;
 end;

/*DECRYPT*/
 decrypt=encrypt;
 j=21;
 do to_2 = "C","F","E","A","D","B"; /* 3 */
 from_2=put(j,2.);
 decrypt=tranwrd(decrypt,from_2,to_2);
 j+1;
 end;
 drop i j to_1 from_1 to_2 from_2;

datalines;
ABCDEF
FEDC
ACE
BDFA
CAFDEB
BADCF
ABC
;
proc print;
run;

1 The DATA step reads an ID that is 6 or fewer characters in length. However, the
variable is assigned a length of 12 to double the character length, because this is
a 1-byte-to-2-byte exchange.

174 Chapter 5 / Variables

2 The first DO loop creates the encrypted value.

3 The second DO loop creates the decrypted value by reversing the order and
returning the original value. New variables are assigned to the ID variable before
the TRANWRD function to avoid overwriting the original ID variable.

Output 5.30 PROC PRINT Result: A Simple 1-Byte-to-2-Byte Swap

Key Ideas

n SAS provides encryption for SAS data sets with the ENCRYPT= data set option,
but this option is typically used to encrypt data at the data set level.

n To encrypt data at the SAS variable level, you can use a combination of DATA step
functions and logic to create your own encryption and decryption algorithms.

n However, if you create your own algorithms, it is important that you create a
program that not only is secure and hidden from public view, but that also contains
methods to both encrypt and decrypt the data.

See Also

n TRANWRD Function

Examples: Encrypt Variable Values 175

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0pgemqcslm9uen1tvr5gcrusgrw.htm&locale=en

Example: Use Different Functions to Encrypt
Numeric Values as Character Strings

Example Code

This example shows how to encrypt a numeric value to create a character value
using a different character every third time. This method uses the PUT, SUBSTR,
INDEXC, TRANSLATE, CATS, and INPUT functions, as well as array processing.

data
sample3;
 /* 1 */
 input num;
 array from(3) $ 10 from1-from3
('0123456789','0123456789','0123456789'); /* 2 */
 array to(3) $ 10 to1-to3 ('ABCDEFGHIJ','KLMNOPQRST','UVWXYZABCD');
 array old(5) $ old1-old5;
 array new(5) $ new1-new5;

char_num=put(num,5.);
 /* 3 */
 do i = 1 to
5; /* 4 */
 old(i)=substr(char_num,i,1);
 end;
 j=1;
 do k = 1 to
5; /* 5 */
 if indexc(old(k),from(j)) > 0 then do;
 new(k)=translate(old(k),to(j),from(j));
 j+1;
 if j=4 then j=1;
 end;
 end;
 encrypt_num=cats(of new1-
new5); /* 6 */
 keep num encrypt_num;
 datalines;
 12345
 70707
 99
 1111
 ;
run;

data
sample4;
 /* 7 */
 set sample3;

176 Chapter 5 / Variables

 array to(3) $ 10 to1-to3 ('0123456789','0123456789','0123456789');
 array from(3) $ 10 from1-from3
('ABCDEFGHIJ','KLMNOPQRST','UVWXYZABCD');
 array old(5) $ old1-old5;
 array new(5) $ new1-new5;
 do i = 1 to 5;
 old(i)=substr(encrypt_num,i,1);
 end;
 j=1;
 do k = 1 to 5;
 if indexc(old(k),from(j)) > 0 then do;
 new(k)=translate(old(k),to(j),from(j));
 j+1;
 if j=4 then j=1;
 end;
 end;
 decrypt_num=input(cats(of new1-new5),5.);
 keep num encrypt_num decrypt_num;
run;

proc print;
run;

1 The first DATA step reads numeric values that are 5 digits or fewer. The numeric
variable is converted to a character variable and is split into five separate
values.

2 Four ARRAY statements are used: the first array sets up the from values; the
second sets up the to values; the third holds the five separate numeric values;
and the fourth holds the five new, separate encrypted values. The from and to
arrays are each created with three elements. The from ARRAY is assigned the
same string of numbers for all three elements, and the to ARRAY is assigned a
different string of letters for each of the three elements to build the every-third-
time rotating pattern.

3 The PUT function converts the numeric value to a character value.

4 The first DO loop uses the SUBSTR function to split the value into five separate
values and assigns each to the old ARRAY.

5 The second DO loop translates each value by using the INDEXC function to find
the original number in the from ARRAY and, if found, translates the value using
the from ARRAY, and rotates through the list of elements every third time.

6 The encrypted value is created by using the CATS function to concatenate the
five translated values. The same process that is used to encrypt the values is
also used to decrypt the values. The only differences are that the encrypted
variable is passed to the SUBSTR function, and the final decrypted variable is
passed to the INPUT function following the CATS function. This is done so that
the final values are numeric values.

7 The second DATA step reverses the encryption done in the first DATA step,
converting the values back to their original values. If you compare the two DATA
steps, you can see that the values in the to and from arrays are reversed. This is
because the second DATA step reverses the encryption done in the first DATA
step, converting the values back to their original values.

Examples: Encrypt Variable Values 177

Output 5.31 PROC PRINT Result: Use Different Functions to Encrypt Numeric
Values as Character Strings

Key Ideas

n SAS provides encryption for SAS data sets with the ENCRYPT= data set option,
but this option is typically used to encrypt data at the data set level.

n To encrypt data at the SAS variable level, you can use a combination of DATA step
functions and logic to create your own encryption and decryption algorithms.

n However, if you create your own algorithms, it is important that you create a
program that not only is secure and hidden from public view, but that also contains
methods to both encrypt and decrypt the data.

See Also

n CATS Function

n INDEXC Function

n INPUT Function

n PUT Function

n SUBSTR-left Function

n SUBSTR-right Function

n TRANSLATE Function

178 Chapter 5 / Variables

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1e21rr6al5m2nn19r1fat5qxwrt.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n04ha26lk1sr1in1043awq6wav80.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p19en16vskd2vhn1vwmxpxnglxxs.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0mlfb88dkhbmun1x08qbh5xbs7e.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0uev77ebdwy90n1rsd7hwjd2qc3.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0n08xougp40i5n1xw7njpcy0a2b.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p05ww22zp7lcg3n1bjk7v93tscyo.htm&locale=en

6
Data Types

Data Types in SAS . 179

Data Types in SAS Viya . 179
Summary of CAS LIBNAME Engine Data Types . 179
VARCHAR Data Type . 181
Support for Implicit Declaration of Data Types . 189

Data Types in SAS
A data type is an attribute of a SAS variable that tells SAS what kind of data the
value is. SAS variables can be defined as either character (CHAR) or numeric
(NUMERIC). For information about data types in SAS, see “Data Types” on page 91.

n Arrays in SAS on page 573

n Chapter 8, “SAS Constants,” on page 195

n Chapter 5, “Variables,” on page 75

Data Types in SAS Viya

Summary of CAS LIBNAME Engine Data Types
The CAS engine supports the storage of three data types. The following table
provides information for each type:

179

Table 6.1 CAS LIBNAME Engine Data Types

Data Type Description Example
How Missing Values
are Designated

CHAR $n Stores a fixed-length
character string. n is the
number of bytes used to
store all values. If the
value stored contains
fewer than n bytes, then
SAS adds blanks
(spaces) to the end of
the value to fill the
column.

Length: 1 - 32767 bytes

data casuser.names;
 length fname $20;
 fname= "Sam";
run;

zero or more blank
spaces surrounded by
single or double
quotation marks:

fname="";

or

f=' ';

Note: The length of
fname=""; (defined
with no blank spaces)
is 1.

VARCHAR(n)2 Stores a varying-length
character string. n is the
maximum number of
characters to store.

Length: 0 - 536,870,911
characters (UTF-8
encoding)

data casuser.names;
 length lname varchar(40);
 lname="Adams";
run;

zero or more blank
spaces surrounded by
single or double
quotation marks:

lname="";

lname=' ';

Note: The length of
lname=""; (defined
with no blank spaces)
is 0.

DOUBLE Stores a numeric value,
including dates and
times, as a floating-point
number.

Length: 8 bytes for the
CAS Engine1

data casuser.names;
 length num 8;
 num = 25;
run;

a single period

num1=.;

For special numeric
missing variables on
page 103, the upper or
lowercase letters A-Z,
or the underscore (_)
character:

.

.A-.Z

._

1 If a shorter length is specified, then 8 bytes are used and a note is printed to the SAS log.
2 The CAS engine is required for storing VARCHAR variables in the output table of a DATA step. The DATA step can read

CAS tables containing VARCHAR variables, but it cannot store them unless a CAS engine libref is specified on the output
table.

The CHAR data type does not support zero-length character strings. Strings
defined with no blank spaces (double or single quotation marks with no characters
or blank spaces) have a length of 1.

180 Chapter 6 / Data Types

VARCHAR data type does support zero-length character strings. Zero-length
VARCHAR variables are specified in an assignment statement and they consist of
single or double quotation marks that contain no characters or blank spaces.

To determine whether a CHAR variable is missing, use the MISSING function:

 /* lc=1, lvc=0 */
data _null_;
 length vc varchar(32);
 c = ''; /* no blanks */
 vc = '';
 lc = lengthc(c);
 lvc= lengthc(vc);
 put 'char length is ' lc;
 put 'varchar length is ' lvc;
 if missing(c) then put 'c is missing';
 if missing(vc) then put 'vc is missing';
run;

The DATA step above returns lc=1 and lvc=0.

For more information about data types in CAS, see “Data Types” in SAS Cloud
Analytic Services: User’s Guide.

The SAS V9 engine supports only the CHAR and NUMERIC types. For more
information about data types that are supported by the SAS V9 Engine, see “Data
Types” on page 91.

SAS Cloud Analytic Services does not support the LENGTH statement for numeric
data types and does not support DOUBLE columns that use less than 8 bytes. If
you use the LENGTH statement to store numeric data with less than 8 bytes and
then load that data into CAS, the server stores the data with 8 bytes. If you have
several numeric columns that use less than 8 bytes, the in-memory table size can
be much larger than what is required for a .sas7bdat file.

VARCHAR Data Type

Definition

VARCHAR(length | *)

Stores a varying-length character string. length is the user-defined maximum length
of the character string, and * indicates that the maximum storage size is 536,870,911
characters.

Syntax
LENGTH (variable-naame) VARCHAR(length|*);
ARRAY array-name[N] VARCHAR(length|*);
ARRAY array-name[*] VARCHAR-variables;

variable-name
specifies one or more variables that are assigned the type VARCHAR.

Data Types in SAS Viya 181

http://documentation.sas.com/?docsetId=casref&docsetVersion=v_002&docsetTarget=p15v3s2e4650jqn1ag70twij6pwl.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=v_002&docsetTarget=p15v3s2e4650jqn1ag70twij6pwl.htm&locale=en

length
specifies a numeric constant that is the user-defined maximum number of
characters that can be stored in the VARCHAR variable. This value can be up
to 536,870,911 characters in length. Uninitialized VARCHAR variables are
given a length of 1 by default. This value is based on the defined range.

length xyz varchar(32);

Uninitialized VARCHAR variables are given a length of 1 by default. 1 is the
minimum length of a VARCHAR variable.

Range 1 to 536,870,911 (UTF-8) characters (231 bytes)

See “PROC CONTENTS Output for VARCHAR Variables” on page 186

*
specifies that SAS uses the maximum length allowed, which is 536,870,911
characters. When assigning a character constant to a VARCHAR variable, the
character constant is limited to 32,767 bytes.

length xyz varchar(*);

Uninitialized or missing VARCHAR variables are given a length of 1 by
default. This value is based on the defined range for VARCHAR variables, in
which 1 is the minimum length a VARCHAR variable can be.

See “PROC CONTENTS Output for VARCHAR Variables” on page 186

array-name
specifies the name of the array. Defines the elements in an array as a list of
VARCHAR variables.

When using a list of VARCHAR variables with the ARRAY statement, you
can use the hyphen (–), colon / prefix, and double-dash lists:

array arr1[*] v1-v5;
array arr2[*] v:;
array arr3[*] v1--v5;

You cannot use VARCHAR character lists specified as _CHARACTER_.

N
describes the number and arrangement of elements in the array

*
specifies the maximum length allowed, 536,870,911 characters. When
assigning a character constant to a VARCHAR variable, the character
constant is limited to 32767 bytes.

array myArray{*} varchar(*) a1 a2 a3 ('a','b','c');

Requirements requires a CAS engine libref on the output table

requires additional storage space. See VARCHAR Variable
Storage. on page 188

Engine CAS engine only

182 Chapter 6 / Data Types

Note If you have sites that support multiple languages, consider
running your SAS session using UTF-8 encoding and using the
VARCHAR data type to minimize character conversion issues.

Details

The VARCHAR type is a varying length character data type whose length
represents the maximum number of characters you want to store in a column.
VARCHAR variables have the following characteristics:

n their length is measured in terms of characters rather than bytes

n their length varies depending on the values present

These characteristics are in contrast to those of the CHAR data type, in which
length is fixed and measured in bytes.

For example, a VARCHAR(100) can store up to 100 characters, but the actual
storage used in any given row depends on the lengths of the individual values in the
row and column.

For example, if a VARCHAR variable, vc2, is defined as a VARCHAR(100) variable,
this means that it can store up to 100 characters. But because the value “abc”
contains only 3 characters and each character uses one byte, only 3 bytes of
memory are allocated for the value in that row. A fixed-length CHAR column, on
the other hand, takes up the defined number of bytes regardless of the actual value.
In the case of the example, the fixed-width CHAR with a defined length of 100
would use all 100 bytes even though the actual value “abc” needs only 3 bytes.

Example: Create a VARCHAR Using the LENGTH
Statement

libname mycas cas;
data mycas.roman;
 length vc32 varchar(32);
 do i = 1 to 10;
 vc32 = put(i, ROMAN.);
 output;
 end;
run;

Example: Create a VARCHAR Variable Using the
ARRAY Statement

data mycas.test;
 array test{*} varchar(*) a1 a2 a3 ('a','b','c');
 put test[1]; put test[2]; put test[3];

Data Types in SAS Viya 183

run;

When to Use a VARCHAR Data Type

The VARCHAR data type is useful because it can save space when the lengths of
the column values vary. With fixed-width data types, any space that is not used by
the value in the column is padded with trailing blanks, which wastes space. The
entire space is blocked out in memory whether the value needs the space or not.
With varying-length data types, such as VARCHAR, only the space that is needed is
used (there are no trailing blanks).

n CHAR – use a fixed-width CHAR when the sizes of the column data entries are
similar. Fixed-width columns are usually accessed faster.

n VARCHAR(n) – use when the sizes of the column data vary considerably but
you are reasonably certain they will not exceed a certain width.

n VARCHAR(*) – use when the sizes of the column data vary considerably and the
column width might exceed any limits you might place on it.

In most cases, you should take advantage of VARCHAR support. However, if values
are consistently short, such as an ID column of airport codes, then a fixed-width
CHAR variable uses less memory and runs faster. This is because VARCHAR values
require 16 bytes plus the memory needed to store the VARCHAR value. So, if your
values are always smaller than 16 bytes, you can save memory and processing time
by using a CHAR type variable instead.

Range

SAS defines the length of a VARCHAR data type in terms of characters rather than
bytes. The maximum length of a VARCHAR variable is 536,870,911 Unicode
characters, or, 231 bytes. This means that up to 536,870,911 characters, or
2,147,483,644 bytes of data or can be stored in a VARCHAR variable. The maximum
length in bytes is calculated by multiplying 536,870,911 by the maximum length that
any one character in the UTF-8 character set can be, which is 4 bytes.

Setting Missing VARCHAR Variables

You can use the CALL MISSING routine to set a VARCHAR variable to missing:

if var1 = "abc" then call missing(var1);

You can use the MISSING function to test whether a VARCHAR variable is missing.

if missing(var2) then var2 = "missing";

184 Chapter 6 / Data Types

VARCHAR Support for Implicit and Explicit Data
Type Conversion

Type conversion happens when a SAS DATA step or procedure moves data from a
CAS table into a SAS data set. The data must be converted from the data type
supported by the CAS engine to a data type supported by the SAS V9 engine.
VARCHAR type variables are not supported by the Base SAS V9 engine, so they are
automatically converted from VARCHAR types to fixed-length CHAR types.

The DATA step supports the processing of VARCHAR data. However, only the CAS
engine supports the VARCHAR data type. This means that the DATA step can read
in and process VARCHAR data, but the data is converted to a CHAR when it is
stored as a SAS data set.

When you convert between CAS data and SAS data, the supported data type
conversions are defined by the engine.

If character strings declared as VARCHAR data types are converted to the CHAR
data type, values that are too long for the CHAR data type are truncated.

Data types can be converted from one type to another either implicitly or explicitly.

In implicit conversions SAS automatically converts data from one type to another
and the conversions are not visible to the user. An example is when you save a CAS
table containing a VARCHAR as a SAS data set. The VARCHAR is implicitly
converted to a CHAR in the output data set.

In explicit conversions, users deliberately convert one type to another using
programming statements.

SAS language elements that can explicitly convert one data type to another are the
PUT function and the INPUT function. The following converts the numeric value of
a VARCHAR to a DOUBLE data type and writes the output to a CAS table.

data mycas.new;
 length vc varchar(40);
 vc = '5000';
 num = input(vc,8.);
run;
proc contents data=mycas.new; run;

Output 6.1 PROC CONTENTS Output Showing Explicit Data Type Conversion

Data Types in SAS Viya 185

PROC CONTENTS Output for VARCHAR Variables

The CONTENTS procedure provides metadata about a CAS table including detailed
information about the variables in the table.

When a table contains a VARCHAR variable, PROC CONTENTS displays extra
length information about the variable that is not normally displayed when a
VARCHAR is not present in the table:

n Len displays the length specified by the user when the variable is declared. The
defined length is given in 2 sub-columns, Chars and Bytes:

o Chars displays the defined length in characters, or the length that the user
specifies n the VARCHAR(n | *) statement when the variable is declared.

o Bytes displays a length in bytes that SAS calculates based on the defined
length and the SAS session encoding. SAS calculates the length by
multiplying the defined length by the largest possible number of bytes
required to store any one character in the character set encoding. The
defined length is the value defined by the user in the VARCHAR(n)
statement.

For example, if your SAS session encoding is UTF-8, then the Len Bytes
value is calculated as (n x 4), where n is the length defined in the
VARCHAR(n) statement and 4 is the largest possible number of bytes
required to store any character in the UTF-8 character set. Similarly, if the
local SAS session encoding is Latin1, then the Len Bytes value is calculated
as (n x 1), where n is the length defined in the VARCHAR(n) statement and 1
is the largest number of bytes required to store any character in the Latin1
character set.

n Max Bytes Used displays the number of bytes that are used to store the longest
string value in the column.

data mycas.new;
 length vc1 varchar(*) /* defined length of vc1, shown in "Len
Chars" column */
 vc2 varchar(100) /* defined length of vc2, shown in "Len
Chars" column */
 vc3 varchar(10); /* defined length of vc3, shown in "Len
Chars" column */
 vc2 = "123456789"; /* actual bytes used for vc2, shown in Max
Bytes Used column */
 vc3 = "abc"; /* actual bytes used for vc3, shown in Max
Bytes Used column */
run;
proc contents data=mycas.new; run;

186 Chapter 6 / Data Types

If you specify VARCHAR(*), then SAS defines the length as the maximum allowable
length.

VARCHAR Length with Implicit Type Conversion

VARCHAR variables are not supported by the SAS V9 engine. SAS automatically
converts VARCHAR variables to CHAR variables if you try to store them in
anything other than a CAS table.

When converting a variable from a VARCHAR to a CHAR, the length of the CHAR
depends on how the VARCHAR is originally defined.

n VARCHAR(*) – If a table that contains a VARCHAR(*) definition is saved as a
SAS data set, the VARCHAR is automatically converted to a CHAR that has a
length equal to the Max Bytes Used for the original VARCHAR.

n VARCHAR(n) – If a table that contains a VARCHAR(n) definition is converted to
a SAS data set, then the length of the variable depends on the local SAS session
encoding. The length is calculated as follows: SAS multiplies the current length
of the VARCHAR by the maximum value that a character’s length can be in the
local SAS session encoding.

o If the local SAS session encoding uses single-byte characters, then the
VARCHAR is converted to a CHAR with a length of (n x 1). n is the length of
the original VARCHAR and 1 is the largest number of bytes required to store
any character in the character set.

o If the local SAS session encoding uses double-byte characters, then the
VARCHAR is converted to a CHAR with length (n x 2). n is the length of the
original VARCHAR and 2 is the largest number of bytes required to store any
character in the character set.

o If the local SAS session encoding uses UTF-8 encoding, then the VARCHAR
is converted to a CHAR with length (n x 4). n is the length of the original
VARCHAR and 4 is the largest number of bytes required to store any
character in the character set.

Data Types in SAS Viya 187

Note: When assigning a character constant to a VARCHAR variable, the character
constant is limited to 32767 bytes.

VARCHAR Variable Storage

When CHAR values are stored, they are right-padded with spaces to the specified
length. VARCHAR values are not padded. When VARCHAR values are stored, they
are stored with descriptor information in each row that takes space along with the
data value. The descriptor is a 16-byte prefix that is stored with the data value in
each row and that contains information about the length of the data value.

Restrictions for the VARCHAR Data Type in the
CAS Engine

Not all SAS language elements support the VARCHAR data type, even with the
CAS engine. There are also differences in how some SAS language elements behave
with VARCHAR variables. These limitations and behavior differences are listed in
the table below.

Table 6.2 Restrictions and Notable Behaviors for the VARCHAR Data Type in the
CAS Engine

Feature Description

ATTRIB You cannot use the ATTRIB statement to create
VARCHAR variables.

BY statement The BY statement uses a fixed width for VARCHAR
variables. Using a VARCHAR(*) type in the BY
statement might cause unexpected results.

Formats The width of VARCHAR formats is measured in bytes
rather than characters.

Functions When passing a character value to a function, numbers
indicating a length or position that are passed to the
function or returned by the function are in units of
bytes. When passing a VARCHAR variable to functions,
these numbers are in units of characters.

Of note, this includes the INDEX and SUBSTR
functions. See “Index CHAR and VARCHAR Character
Strings” in SAS Cloud Analytic Services: DATA Step
Programming for a related example.

188 Chapter 6 / Data Types

http://documentation.sas.com/?docsetId=casdspgm&docsetVersion=3.5&docsetTarget=p10ux48pz7qknzn1ux1bs48vplnx.htm&docsetTargetAnchor=n11dama8z0vcdfn1fmsj9s94kvxf&locale=en
http://documentation.sas.com/?docsetId=casdspgm&docsetVersion=3.5&docsetTarget=p10ux48pz7qknzn1ux1bs48vplnx.htm&docsetTargetAnchor=n11dama8z0vcdfn1fmsj9s94kvxf&locale=en
http://documentation.sas.com/?docsetId=casdspgm&docsetVersion=3.5&docsetTarget=p10ux48pz7qknzn1ux1bs48vplnx.htm&docsetTargetAnchor=n11dama8z0vcdfn1fmsj9s94kvxf&locale=en

KEY= on SET and MODIFY
statements

VARCHAR variables are not supported by the KEY=
option in either the SET or MODIFY statements.

PUT statement (to ODS
output)

VARCHAR variables are not supported with the PUT
statement when the DATA step writes output using
ODS.

VARCHAR The VARCHAR data type is supported by the CAS
engine but not by the V9 engine. This means that to
create or store a VARCHAR variable, you must use the
CAS engine. The SAS DATA step (with the V9 engine)
can read data containing VARCHAR variables but it
converts and stores them as CHAR data types.

Variable Lists Selecting a character variable range for character
variable lists (for example, a-character-f) is not
supported for VARCHAR variables because VARCHAR
variables are not fixed-width character variables.

For example, you cannot specify VARCHAR variables
using the following shorthand forms:

CHARACTER

var1–CHARACTER-varN

Concatenating variables When concatenating character values, the result is a
character value that is limited to 32767 bytes. In this
example, the character result of the concatenation is
assigned to a VARCHAR variable and the result value
is limited to 32767 bytes.

length vc varchar(*);
vc = "a string that is 32000 bytes long"
 || "another string that is 32000 bytes long";

To go beyond the 32767 byte limit, include a VARCHAR
variable in the concatenation. The concatenation result
is a VARCHAR that can go beyond 32767 bytes.

length vc1 vc2 varchar(*);
vc1 = "a string that is 32000 bytes long";
vc2 = vc1 || "another string that is 32000 bytes long";

Support for Implicit Declaration of Data Types
The CAS engine supports implicit data type declaration for DOUBLE (NUMERIC)
and CHAR type variables.

Implicit declaration means that you do not have to explicitly declare a variable’s
type or length before using it. You can create a new variable and use it for the first
time in an assignment statement without having to explicitly declare its type or

Data Types in SAS Viya 189

length. When you create a variable in this way, SAS determines the type based on
the values that you assign to the variable.

n Variables that are assigned a character string value are implicitly defined as a
CHAR types with a default length of 8 bytes.

n Variables that are assigned an integer value are implicitly defined as DOUBLE
types with a default length of 8 bytes.

Note: This is different from the V9 engine, which supports a length range of 1 -
8 bytes for NUMERIC types.

n Implicit type declaration is not supported for VARCHAR variables. VARCHAR
variables must be explicitly declared in either a LENGTH statement or an
ARRAY statement.

In the following DATA step, the type and length for variables x and y are set
implicitly:

libname mycas cas;
data mycas.datatypes;
 x=1;
 y='hello';
run;

proc contents data mycas.datatypes;
run;

For information about data types supported by the SAS V9 engine, see “Data
Types” on page 91.

190 Chapter 6 / Data Types

7
SAS Expressions

SAS Expressions . 191
Definitions . 191
Use of SAS Expressions . 192

SAS Constants in Expressions . 192

SAS Variables in Expressions . 193

SAS Functions in Expressions . 193

SAS Operators in Expressions . 193

SAS Expressions

Definitions
expression

is a sequence of operands and operators that form a set of instructions that are
performed to produce a resulting value.

operands
are constants or variables that can be numeric or character.

operators
are symbols that represent a comparison, arithmetic calculation, or logical
operation; a SAS function; or grouping parentheses.

simple expression
is an expression with no more than one operator. A simple expression can
consist of one of the following single operators:

n constant

n variable

n function

191

compound expression
is an expression that includes several operators. When SAS encounters a
compound expression, it follows rules to determine the order in which to
evaluate each part of the expression.

WHERE expression
is a type of SAS expression that is used within a WHERE statement or WHERE=
data set option to specify a condition for selecting observations for processing
in a DATA or PROC step.

See Also

n Operators

n Conditionally Selecting Data

n WHERE Statement

Use of SAS Expressions
SAS expressions are used in assignment statements and many other SAS
programming statements to do the following:

n transform variables

n create new variables

n conditionally process variables

n calculate new values

n assign new values

SAS expressions can resolve to numeric values, character values, or Boolean
values.

SAS Constants in Expressions
A SAS constant is a number or character string that indicates a fixed value.
Constants can be used as expressions in many SAS statements. For more
information, see “SAS Constants in Expressions” on page 195.

192 Chapter 7 / SAS Expressions

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en

SAS Variables in Expressions
A SAS variable can be used in an expression. However, if the variable value does
not match the data type called for then SAS attempts to convert the value to the
expected type. For more information, see SAS variables on page 77.

SAS Functions in Expressions
A SAS function is a keyword that you use to perform a specific computation or
system manipulation. Functions return a value, might require one or more
arguments, and can be used in expressions. For more information about SAS
functions, see SAS Functions and CALL Routines: Reference.

SAS Operators in Expressions
A SAS operator is a symbol that represents a comparison, arithmetic calculation, or
logical operation; a SAS function; or grouping parentheses. For more information,
see “SAS Operators” on page 215.

SAS Operators in Expressions 193

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

194 Chapter 7 / SAS Expressions

8
SAS Constants

SAS Constants in Expressions . 195
Definitions . 195
Character Constants . 196
Numeric Constants . 199
Date, Time, and Datetime Constants . 200
Bit Testing Constants . 201

Examples: Expressions and Constants . 203
Example: Use Character Constants in Expressions . 203
Example: Compare Character Constants with Character Variables 204
Example: Use Quotation Marks Within Strings . 206
Example: Define Character Constants in Hexadecimal Notation 207
Example: Define Numeric Constants in Standard Notation . 208
Example: Define Numeric Constants in Scientific Notation . 209
Example: Define Numeric Constants in Hexadecimal Notation . 210
Example: Define Date, Time, and Datetime Values in Date Constants 211
Example: Bit Test a Variable’s Value . 212
Example: Avoiding a Common Error with Constants . 213

SAS Constants in Expressions

Definitions
A SAS constant is a number or a character string that indicates a fixed value.
Constants can be used as expressions in many SAS statements, including variable
assignment and IF-THEN statements. Here are some examples of constants used in
SAS expressions:

n x=10;

n name="James";

n date=01/23/2018;

195

They can also be used as values for certain options. Constants are also called
literals. The following are types of SAS constants:

n character constants

n numeric constants

n date, time, and datetime constants

n bit testing constants

Character Constants

Definition

A character constant consists of 1 to 32,767 characters and must be enclosed in
quotation marks. The quotation marks can be either single or double quotation
marks. 'Tom' and "Tom" are equivalent.

Character Constants and Character Variables

It is important to remember that character constants are enclosed in quotation
marks, but names of variables are not. This distinction applies wherever you can
use a character constant, such as in titles, footnotes, labels, and other descriptive
strings; in option values; and in operating environment-specific strings, such as file
specifications and commands.

The following statements use character constants:

n x='abc';

n if name='Smith' then do;

The following statements use character variables:

n x=abc;

n if name=Smith then do;

In the second set of examples, SAS searches for variables named ABC and SMITH,
instead of constants.

Note: SAS distinguishes between uppercase and lowercase when comparing
character constants. For example, the character constants 'Smith' and 'SMITH' are
not equivalent.

196 Chapter 8 / SAS Constants

Apostrophes and Quotation Marks within Character
Constants

n If a character constant includes a single quotation mark, enclose it in double
quotation marks.

n If a character constant includes an apostrophe, you can enclose the string in
single quotation marks and express the apostrophe as two consecutive
quotation marks. SAS treats the two consecutive quotation marks as one
quotation mark.

name='Tom''s'

n If a character constant includes a single quotation mark or an apostrophe, you
can enclose the string and the apostrophe in two consecutive, double quotation
marks. SAS treats the two consecutive double quotation marks as one double
quotation mark.

CAUTION
Matching quotation marks correctly is important. Missing or extraneous quotation
marks cause SAS to misread both an erroneous statement and the statements that
follow it. For example, in name='O'Brien';, O is the character value of Name, Brien is
extraneous, and '; begins another quoted string.

Character Constants Expressed in Hexadecimal
Notation

SAS character constants can be expressed in hexadecimal notation, with each
character represented by a pair of hexadecimal characters. The character constant
string is enclosed in single or double quotation marks, followed immediately by an
X, as in this example:

'534153'x

Commas can be used to make the string more readable, but they are not part of and
do not alter the hexadecimal value, as in this example:

'31,32,33,34'x

Note: Trailing or leading blanks within the quotation marks cause an error message
to be written to the log.

For example, see “Example: Define Character Constants in Hexadecimal Notation”
on page 207.

SAS Constants in Expressions 197

Avoiding a Common Error with Character Constants

Always put a blank space after a character constant. Otherwise, SAS might
interpret the letters that follow the character constant as the type of value of the
character constant.

In the following statement, '821't is evaluated as a time constant because there is
no space between the string and the t in then.

if flight='821'then flight='230';

The following lines appear in the SAS log:

ERROR: Invalid date/time/datetime constant '821't.
ERROR 77–185: Invalid number conversion on '821't.

A space after the ending quotation mark eliminates this misinterpretation.

Table 8.1 Characters That Cause Misinterpretation When Following a Character
Constant

Character Possible Interpretation Example

b bit testing constant '00100000'b

d date constant '01jan04'd

dt datetime constant '18jan2005:9:27:05am'dt

n name literal 'My Table'n

t time constant '9:25:19pm't

x hexadecimal notation '534153'x

See Also

Examples

n “Example: Use Character Constants in Expressions” on page 203

n “Example: Compare Character Constants with Character Variables”

n “Example: Use Quotation Marks Within Strings”

n “Example: Define Character Constants in Hexadecimal Notation”

198 Chapter 8 / SAS Constants

Numeric Constants

Definition

A numeric constant is a number that appears in a SAS statement. Numeric
constants can be presented in many forms, including these:

n standard notation

n scientific (E) notation

n hexadecimal notation

Numeric Constants Expressed in Standard Notation

Most numeric constants are written just as numeric data values are. The numeric
constant in the following expression is 100:

part/all*100

Numeric constants can be expressed in standard notation in the following ways:

Table 8.2 Standard Notation for Numeric Constants

Numeric Constant Description

1 is an unsigned integer

-5 contains a minus sign

+49 contains a plus sign

1.23 contains decimal places

01 contains a leading zero, which is not significant

Numeric constants that are larger than (1032)−1 must be written using scientific
notation. For example, a number such as 2E4 would need to be written in scientific
notation.

SAS Constants in Expressions 199

Numeric Constants Expressed in Scientific Notation

In scientific notation (such as 2E4), the number before the E is multiplied by the
power of ten, which is indicated by the number after the E. For example, 2E4 is the
same as 2x104 or 20,000.

Numeric Constants Expressed in Hexadecimal
Notation

A numeric constant that is expressed in hexadecimal notation starts with a numeric
digit (usually 0). It can be followed by more hexadecimal characters, and ends with
the letter X. The constant can contain up to 16 valid hexadecimal characters (0 to
F).

See Also

Examples

n “Example: Define Numeric Constants in Standard Notation”

n “Example: Define Numeric Constants in Scientific Notation”

n “Example: Define Numeric Constants in Hexadecimal Notation”

Statements

n FORMAT Statement

Date, Time, and Datetime Constants
A date constant, time constant, or datetime constant is a date or time or datetime
in single or double quotation marks, followed by a D (date), T (time), or DT
(datetime) to indicate the type of value. For an example of how to use D, T, and DT
to create to create date, time, and datetime constants, see “Example: Define Date,
Time, and Datetime Values in Date Constants”.

Constant Format Examples

Date 'ddmmm<yy>yy'D

“ddmmm<yy>yy”D

'1jan2018'D

"01jan18"D

200 Chapter 8 / SAS Constants

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0d5oq7e0oia0wn13nsins0x8nmh.htm&locale=en

Constant Format Examples

Time 'hh:mm<:ss.s>'T

“hh:mm<:ss.s>”T

'9:25'T

"9:25:19pm"T

Datetime 'ddmmm<yy>yy:hh:mm<:ss.s>'DT

“ddmmm<yy>yy:hh:mm<:ss.s>”DT

'01may18:9:30:00'DT

"18jan2018:9:27:05am"DT

Datetime with
time zone
designators

(ISO 8601
standard)

'yyyy-mm-ddThh:mm:ssZ'DT

'yyyy-mm-ddThh:mm:ss+|-hh:ss'DT

'2018-07-20T12:00:00Z'DT

'2018-05-17T09:15:30-05:00'DT

IMPORTANT UTC or ISO 8601 Datetime constants, which have the Zulu
timezone indication or a numeric offset from the Universal Coordinate Time,
are converted to local time by adjusting the internal value according to the
system timezone offset. This adjustment occurs regardless of whether the
system TIMEZONE option has been explicitly set. If you have specified the
TIMEZONE= system option, then SAS converts UTC and ISO 8601
DATETIME constants based on the value that you specify in the
TIMEZONE= system option. Otherwise, if you do not specify the
TIMEZONE= system option, then SAS converts UTC and ISO 8601
DATETIME constants based on the system UTC time zone offset.

Note: This information is also included in “Common Functions” in SAS Cloud
Analytic Services: CASL Reference.

Trailing blanks or leading blanks that are included within the quotation marks do
not affect the processing of the date constant, time constant, or datetime constant.

See Also
“Example: Define Date, Time, and Datetime Values in Date Constants” on page 211

Bit Testing Constants
A bit testing constant is a bit mask that is used in bit testing to compare internal
bits in a value's representation. You can perform bit testing on both character and
numeric variables.

The general form of the operation is:

expression comparison-operator bit-mask

SAS Constants in Expressions 201

https://en.wikipedia.org/wiki/ISO_8601#Time_zone_designators
https://en.wikipedia.org/wiki/ISO_8601#Time_zone_designators
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p15siqs0s00e50n1wuuvygzkr14r.htm&locale=en
https://en.wikipedia.org/wiki/UTC_offset
http://documentation.sas.com/?docsetId=proccas&docsetVersion=3.5&docsetTarget=n16syfxkihjoasn1hs0fosjtul3n.htm&locale=en
http://documentation.sas.com/?docsetId=proccas&docsetVersion=3.5&docsetTarget=n16syfxkihjoasn1hs0fosjtul3n.htm&locale=en

Here are the components of the bit testing operation:

expression
can be any valid SAS expression. Both character and numeric variables can be
bit tested.

When SAS tests a character value, it aligns the left-most bit of the mask with
the left-most bit of the string; the test proceeds through the corresponding bits,
moving to the right.

When SAS tests a numeric value, the value is truncated from a floating-point
number to a 32-bit integer. The right-most bit of the mask is aligned with the
right-most bit of the number, and the test proceeds through the corresponding
bits, moving to the left.

comparison-operator
compares an expression with the bit mask. For more information, see Operators.

bit-mask
is a string of 0s, 1s, and periods in quotation marks that is immediately followed
by a B, such as '..1.0000'b. Zeros test whether the bit is off; ones test whether
the bit is on; and periods ignore the bit. Commas and blanks can be inserted in
the bit mask for readability without affecting its meaning.

CAUTION
Truncation can occur when SAS uses a bit mask. If the expression is longer than
the bit mask, SAS truncates the expression before it compares it with the bit mask. A
false comparison might result. An expression's length (in bits) must be less than or equal
to the length of the bit mask. If the bit mask is longer than a character expression, SAS
generates a warning in the log, stating that the bit mask is truncated on the left, and
continues processing.

Note: Bit masks cannot be used as bit literals in assignment statements. For
example, the following statement is not valid:

x='0101'b; /* incorrect*/

TIP The $BINARYw. and BINARYw. formats and the $BINARYw.,
BINARYw.d, and BITSw.d informats can be useful for bit testing. You can use
them to convert character and numeric values to their binary values, and
vice versa, and to extract specified bits from input data. For complete
descriptions of these formats and informats, see SAS Formats and Informats:
Reference.

See Also

Examples

n “Example: Bit Test a Variable’s Value”

202 Chapter 8 / SAS Constants

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Formats

n $BINARYw. Format

Examples: Expressions and Constants

Example: Use Character Constants in Expressions

Example Code

The following example illustrates how to create character constants using single
and double quotation marks:

data example;
 char_const = 'Tom'; /* 1 */
 apostrophe = "Tom's"; /* 2 */
 singlequote = 'Tom''s'; /* 3 */
run;
proc print data=example;
run;

1 A character constant is created using single quotation marks around the string
value.

2 A character constant contains an apostrophe, which is created using double
quotation marks on the outside of the string. A single quotation mark on the
inside represents the apostrophe.

3 You can also use two single quotation marks in the string with single quotation
marks around the whole value.

Output 8.1 Results of Single and Double Quotations in Character Constants

Key Ideas

n A character constant is a fixed-value that consists of 1 to 32,767 characters and
must be enclosed in quotation marks. Character constants can also be represented
in hexadecimal form.

Examples: Expressions and Constants 203

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0fj5y4ynlo6ipn1sho7km8ij31w.htm&locale=en

n A character variable contains alphabetic characters, numeric digits 0 through 9,
and other special characters.

n Matching quotation marks correctly is important.

n Missing or extraneous quotation marks cause SAS to misread the statement and
generate an error.

n If a character constant contains an apostrophe (or single quotation mark), it could
be created by enclosing the whole string in double quotation marks.

See Also

n “Character Constants and Character Variables”

n “Apostrophes and Quotation Marks within Character Constants”

n “Example: Use Quotation Marks Within Strings”

Example: Compare Character Constants with
Character Variables

Example Code

The following example illustrates creating character constants with character
variables:

data compare;
 var1 = 'abc'; /* 1 */
 var2 = 'def'; /* 2 */
 name1 = var1; /* 3 */
 name2 = var2; /* 4 */
run;

proc print data=compare;
run;

1 Create character variables, var1 and var2, by placing their assigned values in
single or double quotation marks. The variables var1 and var2 are created from
character constants because their values are contained within quotation marks.

2 Create character variables name1 and name2. Do not place the values in
quotation marks. The value for the variables is the name of the character
constants created in Step 1.

204 Chapter 8 / SAS Constants

3 The variable name1 is a character variable whose value is the value of var1. The
value for var1 is 'abc'.

4 The variable name2 is a character variable whose value is the value of var2. The
value for var2 is 'def'.

The variables name1 and name2 are not created from character constants. They are
character variables because the values assigned to them are not contained within
quotation marks. Their values are the names of the previously created character
variables var1 and var2. If you assign a character string to a variable and do not use
quotation marks around the value, SAS expects the value to be the name of an
existing variable.

Output 8.2 Results of Character Constants and Character Variable Comparison

Key Ideas

n Character constants are enclosed in quotation marks, but variable names are not.

n A character constant consists of 1 to 32,767 characters. Character constants can
also be represented in hexadecimal form.

n A character variable is a variable of type character that contains alphabetic
characters, numeric digits 0 through 9, and other special characters.

n This distinction applies wherever you can use a character constant, such as in
titles, footnotes, labels, and other descriptive strings.

n SAS distinguishes between uppercase and lowercase when comparing character
expressions.

See Also

n “Character Constants and Character Variables”

n “Apostrophes and Quotation Marks within Character Constants”

n “Example: Use Character Constants in Expressions”

Examples: Expressions and Constants 205

Example: Use Quotation Marks Within Strings

Example Code

The following example illustrates using quotation marks, both double and single,
within character constants:

data titles;
 book1 = "Uncle Tom's Cabin"; /* 1 */
 book2 = 'Uncle Tom''s Cabin'; /* 2 */
 book3 = '"Ben Hur"'; /* 3 */
 book4 = """Ben Hur"""; /* 4 */
run;
proc print data=titles;
run;

1 book1 uses alternating double and single quotation marks.

2 book2 uses single quotation marks to escape the inner quotation character.

3 book3 uses single and double quotation marks.

4 book4 uses three double quotation marks.

Output 8.3 Results of Literal Constants Containing Apostrophes

Key Ideas

n You can use one of two methods to escape quotation marks in character
constants. You can use alternating double and single quotation marks, or you can
double up on the quotation marks to escape the character.

n If a constant contains an apostrophe or a single quotation mark, then use double
quotation marks around the entire constant value and use the single quotation
mark inside the value. Alternatively, you can “escape” the single quotation mark by
using another single quotation mark.

206 Chapter 8 / SAS Constants

See Also

n “Character Constants and Character Variables”

n “Apostrophes and Quotation Marks within Character Constants”

n “Character Constants Expressed in Hexadecimal Notation”

Example: Define Character Constants in
Hexadecimal Notation

Example Code

The following example illustrates character constants in hexadecimal notation:

data _null_;
 value1='534153'x; /* 1 */
 value2='53,41,53'x; /* 2 */
 put value1 "is identical to " value2;
 run;

1 value1 is defined by enclosing the constant string in single quotation marks,
followed immediately by an x.

2 value2 is defined by enclosing the constant string in single quotation marks and
uses commas to make the string more readable, followed immediately by an x.

The following is printed to the SAS log:

Example Code 8.1 SAS Log

SAS is identical to SAS

Key Ideas

n SAS character constants can be expressed in hexadecimal notation, with each
character represented by the hexadecimal notation.

n The character constant string is enclosed in single or double quotation marks,
followed immediately by an X.

n Commas can be used to make the string more readable, but they are not part of
and do not alter the hexadecimal value.

Examples: Expressions and Constants 207

See Also

n “Character Constants Expressed in Hexadecimal Notation”

n “Numeric Constants Expressed in Hexadecimal Notation”

Example: Define Numeric Constants in Standard
Notation

Example Code

The following example defines numeric constants expressed in standard notation.
The numeric constants assigned to num1–num5 have different representations. num1
is an unsigned integer, num2 contains a leading zero, num3 and num4 contain a plus
sign, and num5 represents the signed integer, negative 1.25. The minus sign (-) is
used to represent negative integers or negative numbers.

Note: Even if you specify a leading zero when creating your variables, leading zeros
are dropped by default for numeric variables.

data _null_;
 num1=1;
 num2=01;
 num3=+1;
 num4=+01;
 put num1 "= " num2 "= " num3 "= " num4;
 num5=-1.25;
 put num5;
run;

The following is printed to the SAS log:

Example Code 8.2 SAS Log

1 = 1 = 1 = 1
-1.25

208 Chapter 8 / SAS Constants

Key Ideas

n You can express a numeric constant in standard notation using plus and minus
signs to indicate positive and negative numbers.

n You can also express numeric constants in scientific and hexadecimal notation.

See Also

n Numeric Constants Expressed in Standard Notation

n Numeric Constants Expressed in Scientific Notation

n Numeric Constants Expressed in Hexadecimal Notation

Example: Define Numeric Constants in Scientific
Notation

Example Code

The following example defines numeric constants in scientific notation:

data _null;
 large1=1.2e23;
 med1=0.5e-10;
 put "large1=" large1;
 put "med1=" med1;
run;

The following is printed to the SAS log:

large1=1.2E23
med1=5E-11

Key Ideas

n In scientific notation, the number before the E is multiplied by the power of ten,
which is indicated by the number after the E.

Examples: Expressions and Constants 209

n For numeric constants that are larger than (1032)-1, you must use scientific
notation.

n Use E and an exponent after the value to signify scientific notation.

n You can also express numeric constants in standard and hexadecimal notation.

See Also

n “Numeric Constants Expressed in Standard Notation”

n “Numeric Constants Expressed in Scientific Notation”

n “Numeric Constants Expressed in Hexadecimal Notation”

Example: Define Numeric Constants in
Hexadecimal Notation

Example Code

The following example defines numeric constants in hexadecimal notation:

data _null;
 hex1=0c1x;
 hex2=9x;
 put "hex1=" hex1;
 put "hex2=" hex2;
run;

The following is printed to the SAS log:

Example Code 8.3 SAS Log

hex1=193
hex2=9

Key Ideas

n A numeric constant that is expressed as a hexadecimal value starts with a numeric
digit (usually 0), can be followed by more hexadecimal characters, and ends with
the letter x.

210 Chapter 8 / SAS Constants

n A numeric constant can contain up to 16 valid hexadecimal characters (0 to 9, A to
F).

n You can express numeric constants in standard and scientific notation.

See Also

n “Numeric Constants Expressed in Standard Notation”

n “Numeric Constants Expressed in Scientific Notation”

n “Numeric Constants Expressed in Hexadecimal Notation”

Example: Define Date, Time, and Datetime Values
in Date Constants

Example Code

The following example contains three illustrations of date, time, and datetime
constants:

data dtconsts;
 date='1jan2018'd; /* 1 */
 time="9:25:19pm"t; /* 2 */
 datetime='18jan2018:9:27:05am'dt; /* 3 */
run;

proc print data=dtconsts; /* 4 */
 format date date.
 time time.
 datetime datetime.;
run;

1 The variable date is expressed as a date constant, which has single quotation
marks and is followed by a d signifying date.

2 The variable time is expressed as a time constant, which has double quotation
marks and is followed by a t signifying time.

3 The variable datetime is expressed as a datetime constant, which has single
quotation marks and is followed by a dt signifying datetime.

4 PROC PRINT uses the FORMAT statement to format the date, time, and
datetime constants. Without the FORMAT statement the result is displayed as a
number, which represents the SAS date, time, and datetime values.

Examples: Expressions and Constants 211

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0d5oq7e0oia0wn13nsins0x8nmh.htm&locale=en

Output 8.4 Results of Date, Time, and DateTime Constants

Key Ideas

n The constants are enclosed in single or double quotation marks.

n Use d, t, or dt after the value to signify the type of constant.

n Trailing blanks or leading blanks that are included within the quotation marks do
not affect the processing of the date constant, time constant, or datetime
constant.

See Also

n “Dates, Times, and Intervals”

n “FORMAT Statement” in SAS DATA Step Statements: Reference

Example: Bit Test a Variable’s Value

Example Code

The following example uses bit masks to do bit testing. The example tests whether
bit 4 is 1 (TRUE) for the values 8 and 7.

data _null_;
 var=8;
 if var="1..."b then state="1";
 else state="O";
 put "For value " var "bit 4 is " state;

 var=7;
 if var="1..."b then state="1";
 else state="O";
 put "For value " var "bit 4 is " state;
run;

The following is printed to the SAS log:

212 Chapter 8 / SAS Constants

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0d5oq7e0oia0wn13nsins0x8nmh.htm&locale=en

Example Code 8.4 SAS Log

For value 8 bit 4 is 1
For value 7 bit 4 is O

Key Ideas

n A bit testing constant is a bit mask that is used in bit testing to compare internal
bits in a value's representation.

n You can perform bit testing on both character and numeric variables.

n Enclose the bit mask in quotation marks and use b to signify a bit mask.

See Also

n “Bit Testing Constants”

n $BINARYw. Format

Example: Avoiding a Common Error with Constants

Example Code

The following example illustrates a common error that you might get when you use
a string in quotation marks. It is followed by a variable name, which does not have a
space between the quoted string and the variable name. ‘821’t is evaluated as a
time constant because there is no space between the numeric value of 821 and the
t in the THEN statement.

data aireuro;
 set sasuser.europe;
 if flight='821'then flight='230';
run;

The following errors are printed to the SAS log:

Examples: Expressions and Constants 213

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0fj5y4ynlo6ipn1sho7km8ij31w.htm&locale=en

Example Code 8.5 SAS Log

ERROR: Invalid date/time/datetime constant '821't.
ERROR 77-185: Invalid number conversion on '821't.
ERROR 388-185: Expecting an arithmetic operator.
ERROR 202-322: The option or parameter is not recognized and
 will be ignored.

To correct this error, insert a blank space between the ending quotation mark and
the t in the THEN statement. This eliminates the misinterpretation. No error
message is generated and all observations with a FLIGHT value of 821 are replaced
with a value of 230.

if flight='821' then flight='230';

Key Ideas

n Always insert a blank space between ending quotation marks and variable names
to avoid errors.

n Without the blank space, SAS misinterprets a character constant followed by a
letter as a special SAS constant.

See Also

n Avoiding a Common Error with Character Constants

214 Chapter 8 / SAS Constants

9
Operators

SAS Operators . 215
Definitions for SAS Operators . 215
Arithmetic Operators . 216
Comparison Operators . 217
Logical Operators . 221
MIN and MAX Operators . 223
Concatenation Operators . 224
Order of Operation in Compound Expressions . 225
Short-Circuit Evaluation in SAS . 227

Summary of Ways to Use Operators . 229
Summary of Ways to Use Operators Tables . 229

Examples: Operators . 231
Example: Subset Data Using a Comparison Operator . 231
Example: Create Variables Using Comparison Operators . 232
Example: Search an Array of Numeric Variable Values Using the IN Operator 233
Example: Search an Array of Character Variable Values Using the IN Operator . . 235
Example: Compare a Specified Prefix of a Character Expression 236
Example: Compare Variables Using Boolean Operators . 237
Example: Use the NOT Operator to Reverse the Logic of a Comparison 238
Example: Remove Trailing Blanks Using the TRIM Function in a

Concatenation Operation . 240

SAS Operators

Definitions for SAS Operators
A SAS operator is a symbol that is used to perform a comparison, arithmetic
calculation, or logical operation. SAS uses two major types of operators:

n prefix operators

n infix operators

215

A prefix operator applies to the variable, constant, function, or parenthetical
expression that the operator precedes. The plus sign (+) and the minus sign (−) can
be used as prefix operators. The word NOT and its equivalent symbols can also be
used as prefix operators. Here are examples of how to use prefix operators:

n Variables:

+y

n Constants:

-25

n Functions:

-cos(angle1)

n Parenthetical expressions:

+(x*y)

An infix operator is an operator that is placed between operands. Infix operators
include the following types of operators:

n Arithmetic:

a=b+c

n Comparison:

Weight>150

n Logical or Boolean:

if x or y eq 1

n Minimum and maximum:

where a=(b max c)

n Concatenation:

Name=Firstname || Lastname

SAS also provides several other operators that are used only with certain SAS
statements. The WHERE statement uses a special group of SAS operators, valid
only when used with WHERE expressions. For a discussion of these operators, see
WHERE Statement.

Arithmetic Operators
Arithmetic operators perform calculations, as shown in the following table.

Table 9.1 Arithmetic Operators

Symbol Description Example

** Raise A to the third power. a**3

216 Chapter 9 / Operators

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en

Symbol Description Example

*1 Multiply 2 by the value of
Y.

2*y

/ Divide the value of VAR by
5.

var/5

+ Add 3 to the value of
NUM.

num+3

- Subtract the value of
DISCOUNT from the value
of SALE.

sale-discount

1 The asterisk (*) is always necessary to indicate multiplication; 2Y and 2(Y) are not valid expressions.

See “Order of Operation in Compound Expressions” on page 225 for the order in
which SAS evaluates these operators.

Note: When a value that is used with an arithmetic operator is missing, the result
is a missing value. See “Missing Variable Values” on page 102 for information about
how to prevent the propagation of missing values.

Comparison Operators
Comparison operators express a condition. If the comparison is true, the result is 1.
If the comparison is false, the result is 0.

Ways to Make Comparisons

Comparison operators can be expressed as symbols or with their mnemonic
equivalents, which are shown in the following table.

You can add a colon (:) modifier to any of the operators to compare only a specified
prefix of a character string. See “Character Comparisons” in SAS Language
Reference: Concepts for details.

Table 9.2 Comparison Operators

Symbol/Mnemonic Definition Example

= or EQ equal to a=3

^=, ¬=, ~=, or NE 1 not equal to a ne 3

SAS Operators 217

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p00iah2thp63bmn1lt20esag14lh.htm&docsetTargetAnchor=p1vu0ts68u42xun141p7vt4ne29k&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p00iah2thp63bmn1lt20esag14lh.htm&docsetTargetAnchor=p1vu0ts68u42xun141p7vt4ne29k&locale=en

Symbol/Mnemonic Definition Example

> or GT greater than num>5

< or LT less than num<8

>= or GE2 greater than or equal to sales>=300

<= or LE3 less than or equal to sales<=100

or IN equal to one of a list num in (3, 4, 5)

1 The symbol that you use for NE depends on your operating environment.
2 The symbol => is also accepted for compatibility with previous releases of SAS. It is not supported

in WHERE clauses or in PROC SQL.
3 The symbol =< is also accepted for compatibility with previous releases of SAS. It is not supported

in WHERE clauses or in PROC SQL.

Numeric Comparisons

SAS makes numeric comparisons that are based on true and false values. The
expression evaluates to 1 if the expression is true and the expression evaluates to 0
if the expression is false. For example, in the expression A<B, if A has the value 4
and B has the value 3, then A<B has the value 0, or false.

Numeric comparisons are commonly used in the following instances:

n IF-THEN/ELSE Statement

n Expression in an Assignment Statement

For numeric comparison examples, see the following:

n “Example: Subset Data Using a Comparison Operator”

n “Example: Create Variables Using Comparison Operators”

You might get an incorrect result when you compare numeric values of different
lengths because values less than 8 bytes have less precision than those longer than
8 bytes. Rounding also affects the outcome of numeric comparisons. See “SAS
Variables” in SAS Language Reference: Concepts for a complete discussion of
numeric precision.

A missing numeric value is smaller than any other numeric value, and missing
numeric values have their own sort order. See “Missing Variable Values” on page
102 for more information.

218 Chapter 9 / Operators

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1j60arf27ll4nn1ejavv3nby4pa.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hglxgj1sjhdzn18soqrqmvogvj.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1hl9hzbtcm1rnn1ub746qoyku1k.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1hl9hzbtcm1rnn1ub746qoyku1k.htm&locale=en

Character Comparisons

Character variable values are compared character by character from left to right.
Character order depends on the collating sequence used by your computer, and
your SAS session encoding option.

For example, in the Latin 1 (cp1252 West European) and UTF-8 (UTF-8 Unicode)
collating sequences, G is greater than A. Therefore, this expression is true:

'Gray'>'Adams'

There are several important notes to keep in mind when making character
comparisons:

n A blank and a period in character strings are smaller than any other printable
character in the string. A blank is smaller than a period. For example, the
following expressions are true:

'C.Jones'<'CharlesJones'
'C Jones' < 'CJones'
'C Jones' < 'C.Jones'

n Character values of unequal length are compared as if blanks were attached to
the end of the shorter value before the comparison is made. For example, the
following expression is true:

'ab'<'abc'

n Trailing blanks are ignored in a comparison. For example, 'fox ' is equivalent to
'fox'.

n A colon modifier after the comparison operator compares the quoted characters
after the colon with value on the other side of the comparison operator. SAS
truncates the longer value to the length of the shorter value during the
comparison. For example, see “Example: Compare a Specified Prefix of a
Character Expression” on page 236.

n Character values are case sensitive.

IN Operator

The IN operator checks whether a value exists in a list and selects records that
match the search. The value that is checked against the list can be the result of an
expression. Individual values in the list can be separated by commas or spaces. You
can use a colon to specify a range of sequential integers.

The three forms of the IN comparison are:

Form 1: Individual values can be separated by commas.
expression IN(value-1<...,value-n>)

Form 2: Individual values can be separated by spaces.
expression IN(value-1<... value-n>)

SAS Operators 219

Form 3: A range of values can be specified by placing a colon between values.
expression IN(value-1<...:value-n>)

The components of the comparison are as follows:

expression
can be any valid SAS expression, but is usually a variable name when it is used
with the IN operator.

value
must be a constant.

For more information and examples of using the IN operator, see “The IN Operator
in Numeric Comparisons” in SAS Language Reference: Concepts and “Example:
Search an Array of Numeric Variable Values Using the IN Operator”.

Why Use the IN Operator?

The IN operator enables you to determine whether a variable's value is among a list
of character or numeric values. You can use an array with the IN operator to search
variable values, or you can search with a range or string.

The following table shows how to use the IN operator with numeric and character
variables.

Table 9.3 Use Cases for the IN Operator

Use Cases Examples

Numeric Variables Specify a range of sequential
integers to search. You can
also use multiple ranges in
the same IN list.

n y=x in(1, 2, 3, 4, 5, 6, 7, 8,
9, 10);

n y=x in(1 2 3 4 5 6 7 8 9 10);

n y=x in(1:10);1

Use both ranges and
constants in the list of
values to compare.

if x in (0,9,1:5);

Search an array of numeric
values.

“Example: Search an Array of Numeric
Variable Values Using the IN Operator”

Character Variables Determine whether a
variable's value is among a
list of character values.2

n if state in ('NY','NJ','PA')
then region+1;

n if state in ('NY' 'NJ' 'PA')
then region+1;

n if state='NY' or state='NJ' or

state='PA' then region+1; 1

220 Chapter 9 / Operators

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p00iah2thp63bmn1lt20esag14lh.htm&docsetTargetAnchor=n04kpsq1li1yatn1ncmtz0obz57o&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p00iah2thp63bmn1lt20esag14lh.htm&docsetTargetAnchor=n04kpsq1li1yatn1ncmtz0obz57o&locale=en

Use Cases Examples

Search an array of character
values.

“Example: Search an Array of Character
Variable Values Using the IN Operator”

1 These statements produce the same results.
2 The IN operator accepts character variable values of different lengths.

Logical Operators
Logical operators, also called Boolean operators, are usually used in expressions to
link a sequence of expressions into compound expressions.

Ways to Use Logical Operators

The logical operators are shown in the following table.

A numeric expression without any logical operators can serve as a logical numeric
expression.

Table 9.4 Logical Operators

Symbol/Mnemonic Description Example

& or AND If both of the quantities
linked by an AND are 1
(true), then the result of
the AND operation is 1.
Otherwise, the result is 0.

(a>b & c>d)

| or OR1 If either of the quantities
linked by an OR is 1 (true),
then the result of the OR
operation is 1 (true).
Otherwise, the OR
operation produces a 0.

(a>b or c>d)

! or OR

¦ or OR

¬ or NOT2 not(a>b)

∘ or NOT

SAS Operators 221

Symbol/Mnemonic Description Example

~ or NOT

1 The symbol that you use for OR depends on your operating environment.
2 The symbol that you use for NOT depends on your operating environment.

See “Order of Operation in Compound Expressions” for the order in which SAS
evaluates these operators.

AND Operator

Two comparisons with a common variable linked by AND can be condensed with an
implied AND. The following two subsetting IF statements produce the same result:

n if 16<=age and age<=65;

n if 16<=age<=65;

OR Operator

A comparison using the OR operator resolves as true if only one of the operands is
true. Any nonzero, nonmissing constant is always evaluated as true. Therefore, in
the list below, the first subsetting IF statement is always true and the second is not
necessarily true:

n if x=1 or 2;

n if x=1 or x=2;

NOT Operator

The NOT operator is a prefix operator and a logical operator. The NOT operator
inverts the truth of a statement value. The result of negating a false statement (0)
is true (1).The result of negating a true statement (1) is false (0).

Comparisons that use the NOT operator can be written differently and yield the
same results. The following two expressions are equivalent:

n not(a=b & c>d) is the same as a ne b | c le d

n not(name='SMITH') is the same as name ne 'SMITH'

For example, see “Example: Use the NOT Operator to Reverse the Logic of a
Comparison” on page 238.

222 Chapter 9 / Operators

Logical Numeric Expressions

In computing terms, a value of true is a 1 and a value of false is a 0. In SAS, any
numeric value other than 0 or missing is true, and a value of 0 or missing is false.
Therefore, a numeric variable or expression can stand alone in a condition. If its
value is a number other than 0 or missing, the condition is true. If its value is 0 or
missing, the condition is false.

For example, suppose that you want to assign values to the variable Remarks
depending on whether the value of Cost is present for a given observation. You can
write the IF-THEN statement as follows:

if cost then remarks='Ready to budget';

This statement is equivalent to the following:

if cost ne . and cost ne 0
 then remarks='Ready to budget';

A numeric expression can be a numeric constant, as follows:

if 5 then do;

The numeric value that is returned by a function is also a valid numeric expression:

if index(address,'Avenue') then do;

MIN and MAX Operators

Ways to Use MIN and MAX Operators Summary
Table

The MIN and MAX operators are used to find the minimum or maximum value of
two quantities. The MIN and MAX operators are commonly used in WHERE
expressions and Subsetting IF Statement. Surround the operators with the two
quantities whose minimum or maximum value you want to know.

Table 9.5 Ways to Use the MIN and MAX Operators

Symbol/Mnemonic Description Examples

>< or MIN 1 Returns the lower of the two values. n where x = (b min c);

n if x = (y><z);

<> or MAX 2 Returns the higher of the two values. n where a=(b max c)

SAS Operators 223

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1jd70cudhsnogn1d6kr8j43n6bu.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1jd70cudhsnogn1d6kr8j43n6bu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&locale=en

Symbol/Mnemonic Description Examples

n if x = (a<>b)

1 In a WHERE expression, the symbol representation >< is not supported. The MIN mnemonic is converted to >< in the LOG.
2 In a WHERE expression, the symbol representation <> is interpreted as “not equal to”.

If missing values are part of the comparison, SAS uses the sorting order for missing
values that is described in “Order of Missing Values” on page 103.

Comparison of MIN and MAX Operators and MIN
and MAX Functions

The MIN and MAX operators should not be confused with the MIN and MAX
functions. The MIN and MAX operators compare exactly two variables, but the MIN
function and the MAX function compare any number of variables.

Concatenation Operators
The concatenation operator combines character values. It is indicated by the
double vertical bar ||. The results of a concatenation operation are usually stored in
a variable with an assignment statement, as in <inlineCode>level='grade '||'A'</
inlineCode>. The length of the resulting variable is the sum of the lengths of each
variable or constant in the concatenation operation. You can use a LENGTH or an
ATTRIB statement to specify a different length for the new variable.

The concatenation operator does not trim leading or trailing blanks. If variables are
padded with trailing blanks, check the lengths of the variables and use the TRIM
function to trim trailing blanks from values before concatenating them.

Concatenation Operator Summary Table

The concatenation operator is useful for combining character values. The following
table demonstrates use cases for the concatenation operator:

Table 9.6 Use Cases for the Concatenation Operator

Use Case Example

Concatenate the value of a variable with
a character constant.

newname='Mr. or Ms. ' ||oldname; If the value of
OldName is 'Jones', then NewName has the value 'Mr. or
Ms. Jones'

224 Chapter 9 / Operators

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1525p9momafkwn15gm707mtsbat.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1525p9momafkwn15gm707mtsbat.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n00bjr4jof59pwn1bfzk9f5i0ujr.htm&locale=en

Use Case Example

Convert a numeric value to a character
value using the PUT function.

month='sep '; year=99; date=trim(month) ||
left(put(year,8.)); The value of DATE is the character
value 'sep99'

Eliminate trailing blanks using the TRIM
function in a concatenation operation.

Use the TRIM function in a Concatenation Operation to
Eliminate Trailing Blanks on page 240

Comparison of the Concatenation Operator and the
Concatenation Function

Concatenation functions perform concatenation operations without needing to use
the TRIM and PUT functions. The concatenation functions include the following:

n CAT Function: same as the concatenation operator (| |)

n CATQ Function: adds a delimiter and quotes to individual items

n CATS Function: removes leading and trailing blanks

n CATT Function: removes only trailing blanks

n CATX Function: removes leading and trailing blanks and inserts delimiters

Order of Operation in Compound Expressions
The order of operations is determined by the following conditions:

n In compound expressions, SAS evaluates the part of the expression containing
priority 1 operators first, then each group in order.

n Consecutive operations that have the same priority are performed from right to
left within priority 1 and from left to right within priority 2 and 3.

n Expressions within parentheses are evaluated before those outside of them.

n SAS does not guarantee the order in which subsequent expressions are
evaluated. Fore more information, see “Short-Circuit Evaluation in SAS”.

Table 9.7 Order of Operation in Compound Expressions

Priority
Order of
Evaluation

Symbol/
Mnemonic Action Example

Group 1 right to left ** exponentiation n y=a**2;

SAS Operators 225

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0wism8jqta3qmn1swtpxrs71e9a.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n11fqp8lmm22sen1cxlzksrtfefo.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1e21rr6al5m2nn19r1fat5qxwrt.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n16y1vyi397p84n19dpvzw0pemsa.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0p7wxtk0hvn83n1pveisbcp2ae9.htm&locale=en

Priority
Order of
Evaluation

Symbol/
Mnemonic Action Example

n x=2**3**4 is evaluated
as x=(2**(3**4))

+ positive prefix 1 y=+(a*b);

- negative prefix2 z=-(a+b);

∘ ¬ ~ or
NOT

logical not3 if not z
 then put x;

>< or MIN minimum n x=(a><b);

n -3><-3 is evaluated as
-(3><-3). These are
equal to -(-3), which
equals +3.

<> or MAX maximum x=(a<>b);

Group 2 left to right * multiplication c=a*b;

/ division f=g/h;

Group 3 left to right + addition c=a+b;

- subtraction f=g-h;

Group 4 left to right || ¦¦ !! concatenate character
values4

name= 'J'||'SMITH';

Group 55 left to right6 < or LT less than if x<y
 then c=5;

<= or LE less than or equal to if x le y
 then a=0;

= or EQ equal to if y eq (x+a)
 then output;

¬= or NE not equal to if x ne z
 then output;

>= or GE greater than or equal to if y>=a
 then output;

> or GT greater than if z>a
 then output;

IN equal to one of a list if state in
 ('NY','NJ','PA')
 then region='NE';

y = x in (1:10);

226 Chapter 9 / Operators

Priority
Order of
Evaluation

Symbol/
Mnemonic Action Example

Group 6 left to right & or AND logical and if a=b & c=d
 then x=1;

Group 7 left to right | ¦ ! or OR logical or7 if y=2 or x=3
 then a=d;

1 The plus (+) sign can be either a prefix or arithmetic operator. A plus sign is a prefix operation only when it appears at the
beginning of an expression or when it is immediately preceded by an open parenthesis or another operator.

2 The minus (−) sign can be either a prefix or arithmetic operator. A minus sign is a prefix operator only when it appears at
the beginning of an expression or when it is immediately preceded by an open parenthesis or another operator.

3 Depending on the characters available on your keyboard, the symbol can be the not sign (¬), tilde (~), or caret (^). The
SAS system option CHARCODE allows various other substitutions for unavailable special characters.

4 Depending on the characters available on your keyboard, the symbol that you use as the concatenation operator can be a
double vertical bar (||), broken vertical bar (¦¦), or exclamation mark (!!).

5 Group 5 operators are comparison operators. The result of a comparison operation is 1 if the comparison is true and 0 if it
is false. Missing values are the lowest in any comparison operation. The symbols =< (less than or equal to) are also
allowed for compatibility with previous versions of SAS.

6 An exception to this rule occurs when two comparison operators surround a quantity. For example, the expression x<y<z
is evaluated as (x<y) and (y<z).

7 Depending on the characters available on your keyboard, the symbol that you use for the logical or can be a single vertical
bar (|), broken vertical bar (¦), or exclamation mark (!). You can also use the mnemonic equivalent OR.

Note: When a value that is used with an arithmetic operator is missing, the result
is a missing value. See “Missing Variable Values” on page 102 for information about
how to prevent the propagation of missing values.

Short-Circuit Evaluation in SAS
Minimal evaluation, or short-circuit evaluation, is a method that is used by some
programming languages to evaluate Boolean operators. In short-circuit evaluation,
the second argument in a Boolean expression is executed only if the first argument
does not determine the value of the overall expression. For example, in the
expression (X AND Y), if the first argument (X) evaluates to FALSE, then the
overall expression (X AND Y) must evaluate to FALSE. So there is no need to
calculate the second argument (Y).

SAS does not guarantee short-circuit evaluation. When using Boolean operators to
join expressions, you might get undesired results if your intention is to short circuit,
or to avoid the evaluation of the second expression. To guarantee the order in
which SAS evaluates an expression, you can rewrite the expression using nested IF
statements. The following examples show how SAS might use short-circuit
evaluation at some times and not at others. The final example shows how you can
use nested IF statements to guarantee the order of evaluation.

In the first example below, SAS uses short-circuit evaluation when it evaluates the
first argument of the condition a>0. The expression evaluates to FALSE, and as a
result, SAS does not evaluate the second expression a=1/a, which contains an
invalid, division-by-zero operation. Since SAS does not evaluate this second
expression, the program does not return the error.

SAS Operators 227

data test;
 a=0;
 if (a>0 AND a=1/a) then put 'hello';
 else put 'goodbye';
run;

goodbye
NOTE: The data set WORK.TEST has 1 observations and 1 variables.

In the next example, short-circuit evaluation is not used. Even though the first
argument in the condition, a, evaluates to FALSE, the second argument, a=1/a, is
evaluated and a division-by-zero error is returned.

data test;
 a=0;
 if (a AND a=1/a) then put 'hello';
 else put 'goodbye';
run;

NOTE: Division by zero detected at line 12 column 19.
goodbye
a=0 _ERROR_=1 _N_=1
NOTE: Mathematical operations could not be performed at the following places.
The results of the operations have been set to missing values.

To guarantee the order in which SAS evaluates an expression such as this one, you
can rewrite the expression using nested IF statements.

data test;
 a=0;
 IF a>0 THEN
 DO;
 IF a=1/a THEN put 'hello';
 ELSE put 'goodbye';
 END;
 ELSE
 put 'goodbye again';
run;

goodbye again
NOTE: The data set WORK.TEST has 1 observations and 1 variables.

228 Chapter 9 / Operators

Summary of Ways to Use Operators

Summary of Ways to Use Operators Tables
Table 9.8 Summary of Ways to Use SAS Operators

Symbol Description Example

Arithmetic Operators

** Raise A to the third power. a**3

* Multiply 2 by the value of Y. 2*y

/ Divide the value of VAR by 5. var/5

+ Add 3 to the value of NUM. num+3

- Subtract the value of DISCOUNT from the
value of SALE.

sale-discount

Comparison Operators

= or EQ equal to n a=3

n ‘Jones’ EQ ‘Jones’

^=, ¬=, ~=, or NE not equal to n a ne 3

n ‘Jones’ NE ‘JONES’

> or GT greater than n num>5

n ‘CharlesJones’>’C.Jones’

< or LT less than num<8

>= or GE greater than or equal to sales>=300

<= or LE less than or equal to sales<=100

IN equal to one of a list n num in (3, 4, 5)

n state in ('NY','NJ','PA')

Summary of Ways to Use Operators 229

Symbol Description Example

Logical Operators

& or AND If both of the quantities linked by an AND are
1 (true), then the result of the AND operation
is 1. Otherwise, the result is 0.

(a>b & c>d)

| or OR If either of the quantities linked by an OR is 1
(true), then the result of the OR operation is 1
(true). Otherwise, the OR operation produces
a 0.

(a>b or c>d)

! or OR

¦ or OR

¬ or NOT not(a>b)

∘ or NOT

~ or NOT

MIN and MAX Operators

>< or MIN  Returns the lower of the two values. n where x = (b min c);

n if x = (y><z);

<> or MAX Returns the higher of the two values. n where a=(b max c)

n if x = (a<>b)

Concatenation Operator

|| Combines character values. Address= StreetNum || CityStateZip

230 Chapter 9 / Operators

Examples: Operators

Example: Subset Data Using a Comparison
Operator

Example Code

This example demonstrates how comparison operators can be used in an IF-THEN/
ELSE Statement to subset data.

data greencars;
 set sashelp.cars;
 MPG_AVG=(MPG_City + MPG_Highway)/2;
 if MPG_AVG>30 then Green_Rating=1; /* 1 */
 if MPG_AVG<30 and MPG_AVG>=25 then Green_Rating=2; /* 2 */
 else if MPG_AVG<=25 then delete; /* 3 */
proc print data=greencars;
 var Make Model MPG_City MPG_Highway MPG_AVG Green_Rating;
run;

1 Observations with an MPG_AVG value that is greater than 30 are given a
Green_Rating of 1.

2 Observations with an MPG_AVG value that is less than 30 and greater than or
equal to 25 are given a Green_Rating of 2.

3 Observations with an MPG_AVG value that is less than or equal to 25 are deleted.

Examples: Operators 231

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1j60arf27ll4nn1ejavv3nby4pa.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1j60arf27ll4nn1ejavv3nby4pa.htm&locale=en

Key Ideas

n Comparison operators express a condition.

n A numeric variable or expression can stand alone in a condition.

n You can use arithmetic operators in an Assignment Statement when creating new
variables.

n Numeric comparisons yield a 1 if the result is true and a 0 if the result is false.

See Also

n “Summary of Ways to Use Operators Tables” on page 229

n You can use comparisons in expressions in Assignment statements. For
example, see “Example: Create Variables Using Comparison Operators” on page
232.

n Missing numeric values have their own sort order. For more information, see
“Missing Variable Values” on page 102.

Example: Create Variables Using Comparison
Operators

Example Code

The following example shows how to use comparisons in the Assignment
Statement to create a variable.

data test; /* 1 */
 x=6;
 y=8;
 c=5*(x<y)+12*(x>=y); /* 2 */
 put c; /* 3 */
run;

1 Assign values to the variables x and y so that x equals 6 and y equals 8.

2 Compare the values of x and y in an Assignment statement. Because the value
for x (6) is less than the value for y (8), the expression (x<y) evaluates to 1
(true). Likewise, because 6 is not greater than or equal to 8, the expression
(x>=y) evaluates to 0 (false). Therefore, c=(5*1)+(12*0)=5.

232 Chapter 9 / Operators

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hglxgj1sjhdzn18soqrqmvogvj.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hglxgj1sjhdzn18soqrqmvogvj.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hglxgj1sjhdzn18soqrqmvogvj.htm&locale=en

3 Print the value for c in the log.

314 data test;
315 x=6;
316 y=8;
317 c=5*(x<y)+12*(x>=y);
318 put c;
319 run;
5

Key Ideas

n Comparison operators express a condition.

n Comparisons yield a 1 if the result is true and a 0 if the result is false.

n SAS evaluates quantities inside parentheses before performing any operations.

See Also

n “Summary of Ways to Use Operators Tables” on page 229

Example: Search an Array of Numeric Variable
Values Using the IN Operator

Example Code

This example shows how you can use the IN operator to search an array of numeric
values. The following code creates an array a, defines a constant x, and uses the IN
operator to search for the value of x in the array.

data test;
 array a{10} (2*1:5); /* 1 */
 x=99; /* 2 */
 y= x in a; /* 3 */
 put y=;
run;
proc print data=test;run;

1 Create an array named a that contains the following 10 values: 1, 2, 3, 4, 5, 1, 2, 3,
4, 5.

Examples: Operators 233

2 Create a variable, x, and assign it the value 99.

3 The x in a part of the statement searches the array named a for the value 99.
The variable y evaluates to 0, or false, because 99 does not exist in the array.

The output is below.

The code above shows how to create the array and assign values. The code below
shows how to assign values once you add a{5}=98.

data test;
 array a{10} (2*1:5);
 x=99;
 a{5} = 99; /* 1 */
 y = x in a;
 put y=;
run;
proc print data=test;
run;

1 The Assignment statement assigns the value 99 to the fifth element in the array,
overwriting the original value of 5 that was assigned in the ARRAY statement.

The output is below.

376 data test;
377 array a{10} (2*1:5);
378 x=99;
379 a{5} = 99;
380 y = x in a;
381 put y=;
382 run;
y=1

Key Ideas

n You can assign values to the variables in an array when you create it by specifying
the values in parenthesis.

n PROC SQL does not support the IN operator.

234 Chapter 9 / Operators

See Also

n “IN Operator” on page 219

Example: Search an Array of Character Variable
Values Using the IN Operator

Example Code

In this example, the array, a, defines the constant, x, and then uses the IN operator
to search for x in the array.

data _null_;
 array a{5} $ (5*'');
 x='b1';
 y = x in a;
 put y=;
 a{5} = 'b1';
 y = x in a;
 put y=;
run;

Example Code 9.1 Results from Using the IN Operator to Search an Array of Character
Values (Partial Output)

190 data _null_;
191 array a{5} $ (5*'');
192 x='b1';
193 y = x in a;
194 put y=;
195 a{5} = 'b1';
196 y = x in a;
197 put y=;
198 run;
y=0
y=1

Key Ideas

n You can also use the IN operator to search an array of numeric values.

Examples: Operators 235

See Also

n “Why Use the IN Operator?” on page 220

Example: Compare a Specified Prefix of a Character
Expression

Example Code

This example shows how you can use a colon (:) after the comparison operator to
compare only a specified prefix of a character expression.

data restaurantratings;
length Action $10;
input Name $1-18 Eval_1 20-21 Eval_2 Eval_3 Status $;
 if Status=:'F' then Action='Contact';
 if Status=:'P' then Action='Print Card';
datalines;
Lilac and Lavender 97 95 99 Passed
The Salty Pearl 85 70 65 F
Taste the Range 90 92 90 Pass
The Underground 85 90 90 P
When Pigs Fly 70 70 67 Fail
Basil 85 90 90 Passed
;

proc print data=restaurantratings;
run;

Here is the output:

236 Chapter 9 / Operators

Key Ideas

n In this example, the colon modifier after the equal sign tells SAS to select only the
first character. But it has the capability to compare as many characters as are
placed in quotation marks after the colon modifier.

n SAS truncates the longer value to the length of the shorter value during the
comparison.

n If you compare a zero-length character value with any other character value in
either an IN: comparison or an EQ: comparison, the two-character values are not
considered equal. The result always evaluates to 0, or false.

See Also

n SAS Functions and CALL Routines: Reference

n “Character Comparisons” on page 219

Example: Compare Variables Using Boolean
Operators

Example Code

This example shows how you can use Boolean operators to compare variables.

data inventory;
length Restock $ 3;
input ItemNum 1-4 Quantity 5-7 PriorityLev 8-10;
 if Quantity<=10 and PriorityLev>=5
 or Quantity<=10 then Restock=1;
 else Restock=0;
datalines;
6530 10 8
8759 3 1
4573 22 10
9237 2 10
4329 12 4
9831 9 7
9830 15 4
9458 25 1
5673 4 10

Examples: Operators 237

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

7562 7 3
3291 3 10
;

proc print data=inventory;
run;

Key Ideas

n If both of the quantities linked by AND are 1 (true), then the result of the AND
operation is 1. Otherwise, the result is 0.

n If either of the quantities linked by an OR is 1 (true), then the result of the OR
operation is 1 (true). Otherwise, the OR operation produces a 0.

See Also

n “Boolean Numeric Expressions” in SAS Language Reference: Concepts.

Example: Use the NOT Operator to Reverse the
Logic of a Comparison

Example Code

This example shows how you can use the NOT operator with the IN operator to
reverse the logic of a comparison.

238 Chapter 9 / Operators

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p00iah2thp63bmn1lt20esag14lh.htm&docsetTargetAnchor=p084fxdgd12w4sn1o2xivbvaxmx8&locale=en

data productreviews;
 length Category $ 10;
 input ProdID Satisfaction Quality Safety Usability;
 Avg= round((Satisfaction+Quality+Safety+Usability)/4,0.1);
 if (avg>=3) then Category='Pass'; /* 1 */
 else if (avg) NOT IN (3,4,5) then Category='Fail';
datalines;
8954 5 3 2 5
9183 5 5 5 5
6839 1 1 1 1
3493 2 1 3 2
2908 3 2 3 3
5419 5 4 5 5
3759 3 4 3 3
5301 4 3 4 4
;
run;
proc print data=productreviews;
 var ProdID avg Category;
run;

1 The variable category depends on the average of the values of satisfaction,
quality, safety, and usability.

Key Ideas

n You can use the NOT operator with other operators to reverse the logic of the
comparison.

See Also

n “NOT Operator” on page 222

Examples: Operators 239

Example: Remove Trailing Blanks Using the TRIM
Function in a Concatenation Operation

Example Code

In this example, the TRIM function is used with the concatenation operator to
remove the trailing blanks that are visible after the concatenation of the variables
color and name.

data namegame;
 length color name $8 game $12;
 color='black'; /* 1 */
 name='jack';
 game=trim(color)||name;/* 2 */
 put game=;
run;

1 The length of the color variable is eight, so the value black has 3 trailing
blanks.

2 The value of game is black jack. The TRIM function removes the spacing.

Key Ideas

n The concatenation operator does not trim leading or trailing blanks.

n You can use the CAT Functions to perform concatenation operations without
needing to use the TRIM and PUT functions.

See Also

n SAS Functions and CALL Routines: Reference

240 Chapter 9 / Operators

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0wism8jqta3qmn1swtpxrs71e9a.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

10
Dates and Times

Dates, Times, and Intervals . 241

Dates, Times, and Intervals
SAS provides date, time, and datetime intervals for counting different periods of
elapsed time. See the following resources for more information:

n “Date, Time, and Datetime Constants” on page 200

n “Example: Define Date, Time, and Datetime Values in Date Constants”

n “About Date and Time Intervals” in SAS Formats and Informats: Reference

241

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0pxq4af0hx60nn1i1x3xn41mc3c.htm&locale=en

242 Chapter 10 / Dates and Times

11
Component Objects

DATA Step Component Objects . 243

DATA Step Component Objects
A DATA step component object is an element in Base SAS that can be created and
manipulated by using statements, attributes, methods, and operators in the DATA
step.

SAS provides five predefined component objects for use in a DATA step: hash, hash
iterator, logger, appender, and Java objects.

For more information, see SAS Component Objects: Reference

243

http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

244 Chapter 11 / Component Objects

PART 3

Accessing Data

Chapter 12
SAS Libraries . 247

Chapter 13
SAS Engines . 289

Chapter 14
SAS Data Sets . 321

Chapter 15
Raw Data . 353

Chapter 16
Database and PC Files . 385

Chapter 17
SAS Views . 393

Chapter 18
SAS Dictionary Tables . 395

245

246

12
SAS Libraries

Definitions for SAS Libraries . 248

Elements of a Library Assignment . 250
Introduction to Assigning Libraries . 250
Library Name (Libref) . 251
Library Engine . 252
Library Location . 252
Library Options . 253
Benefits of Using a Libref . 253
Accessing Data without Using a Libref . 254

Library Concatenation . 255
Definition of SAS Library Concatenation . 255
How to Concatenate Libraries . 255
Rules for Library Concatenation . 255

SAS Default Libraries . 256
Introduction to SAS Default Libraries . 256
Work Library (Temporary) . 257
User Library . 257
Sashelp Library . 258
Sasuser Library . 258

Examples: Access Data by Using a Libref . 259
Example: Assign a Libref by Using the LIBNAME Statement . 259
Example: Assign a Libref by Using a Function . 260
Example: Concatenate SAS Libraries . 262
Example: Access a Remote SAS Library by Using SAS/CONNECT Software 263
Example: Access a Remote SAS Library on a WebDAV Server . 265
Example: Access DBMS Data as a SAS Library . 266
Example: Access DBMS Data to Create a SAS View . 267
Example: Automatically Create a New Subdirectory for a Library 269
Example: Deassign (Clear) a Libref . 270

Examples: Access Data without Using a Libref . 272
Example: Use the Work Library for Temporary Data . 272
Example: Assign the User Library for Permanent Data . 273
Example: Access a Data Set by Specifying a Path Name in Quotation Marks 275
Example: Specify a Fileref for a File That Is Not a Library Member 276

Examples: View Information about a Library . 278
Example: Print Information about a Library and Its Members . 278

247

Example: Return Library Attributes by Using the LIBNAME Statement 280
Example: Return Library Location by Using a Function . 281

Examples: Manage SAS Libraries . 282
Example: Copy a SAS Library . 282
Example: Migrate a SAS Library . 283
Example: Copy a SAS Library by Using a Transport File . 285

Definitions for SAS Libraries
A SAS library is a collection of one or more SAS files, including SAS data sets, that
are referenced and stored as a unit. In directory-based environments, a SAS library
is a group of SAS files that are stored in the same folder or directory.

Each SAS library is associated with a libref, an engine, a physical location, and
options that are specific to the engine or environment.

The libref is a shortcut name or a nickname that you can use to reference the
physical location of the data. For example, in the two-level name mylib.myfile,
the libref is mylib, and the library member is myfile.

Library members can be any of the SAS file types in the following table. Other files
can be stored in the directory, but only SAS files are recognized as part of the SAS
library.

Table 12.1 Most Common SAS Library Members

File
Member
Type Examples

data set or
table

DATA n “Example: Create and Print a V9 Engine Data Set”
in SAS V9 LIBNAME Engine: Reference

n “Example: Access DBMS Data as a SAS Library”

n “Example: Read and Write SAS Data in Hadoop by
Using the SPD Engine”

n “Using an XMLMap to Import an XML Document
as One SAS Data Set” in SAS XMLV2 and XML
LIBNAME Engines: User’s Guide

view VIEW n “Examples: SAS Views” in SAS V9 LIBNAME
Engine: Reference

n “Example: Access DBMS Data to Create a SAS
View”

catalog CATALOG n “Examples: Catalogs” in SAS V9 LIBNAME Engine:
Reference

248 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1v9ruerrh26otn1s8ycr23jkaaj.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1v9ruerrh26otn1s8ycr23jkaaj.htm&locale=en
http://documentation.sas.com/?docsetId=engxml&docsetVersion=9.4&docsetTarget=p0b4dnu019ycsxn11k3savd51h6k.htm&locale=en
http://documentation.sas.com/?docsetId=engxml&docsetVersion=9.4&docsetTarget=p0b4dnu019ycsxn11k3savd51h6k.htm&locale=en
http://documentation.sas.com/?docsetId=engxml&docsetVersion=9.4&docsetTarget=p0b4dnu019ycsxn11k3savd51h6k.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p03xrihh99de3rn1lcmreflkm8fa.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1hoqlgqac8laan1eia6ogp9u3ke.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1hoqlgqac8laan1eia6ogp9u3ke.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0sxxeg3uxl796n13zn9cwzqjhlq.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0aocxsvfm1v90n1wfv10spn5irh.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0aocxsvfm1v90n1wfv10spn5irh.htm&locale=en

File
Member
Type Examples

stored
compiled
DATA step
program

PROGRAM n “Examples: Stored, Compiled DATA Step
Programs” in SAS V9 LIBNAME Engine: Reference

item store ITEMSTOR n “Listing Templates in a Template Store” in SAS
Output Delivery System: Procedures Guide

n “Where the SAS Registry Is Stored”

n For information about linear model item stores,
see the PLM procedure in SAS/STAT User’s Guide

In output from the DATASETS procedure that lists the contents of a library, you
might notice that additional files are listed below a data set and have a different
member type. These files are attributes of the data set and are stored in separate
files. These member types are associated with a data set and cannot be specified in
a MEMTYPE= option.

Table 12.2 Data Set Attributes That Are Stored in Separate Files

SAS File Member Type

audit trail AUDIT

extended attributes XATTR

index INDEX

Each SAS member type has a distinctive file extension. Therefore, a library can
contain files with the same name but with different member types. File extensions
vary, depending on the operating environment:

n “File Extensions and Member Types in UNIX Environments” in SAS Companion
for UNIX Environments

n “File Extensions for SAS Files” in SAS Companion for Windows

n “UFS Libraries” in SAS Companion for z/OS

Definitions for SAS Libraries 249

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1h8ok8rj6uzqkn18tpnp1lb4lp9.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1h8ok8rj6uzqkn18tpnp1lb4lp9.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1h8ok8rj6uzqkn18tpnp1lb4lp9.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1h8ok8rj6uzqkn18tpnp1lb4lp9.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n15sgybfqvqi99n1dbd87byei3b2.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n15sgybfqvqi99n1dbd87byei3b2.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n1551aai5l9e6zn0zt5zc59u37pb.htm&docsetTargetAnchor=n1551aai5l9e6zn0zt5zc59u37pb&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n1551aai5l9e6zn0zt5zc59u37pb.htm&docsetTargetAnchor=n1551aai5l9e6zn0zt5zc59u37pb&locale=en
http://documentation.sas.com/?docsetId=statug&docsetVersion=v_011&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n12c3arsqxnkxmn1n7obupqgxscc.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n147km0e9cssn7n16zbeio08u5rn.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p10cebw3m3saimn1mxwhjt1q8um5.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p10cebw3m3saimn1mxwhjt1q8um5.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n0sk6o15955yoen19n9ghdziqw1u.htm&docsetTargetAnchor=n0mqfkm2esyf6ln1rxt8qynf5cho&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p0zcnanujjomx7n16r8vajm70x0s.htm&docsetTargetAnchor=n1sw3p5qpbtc9kn1urwy49qsaiak&locale=en

Elements of a Library Assignment

Introduction to Assigning Libraries
The following table summarizes common ways to assign a library. The assignment
is valid only for the current SAS session unless you choose a method of persisting
the assignment.

Table 12.3 Ways to Assign and Persist a SAS Library

Method Persistence Beyond the Current Session

LIBNAME statement
(example)

LIBNAME function
(example)

Place the LIBNAME statement in the SAS Registry, an
autoexec file, or the configuration file.

New Library window Check the Enable at start-up box in the SAS windowing
environment or the Re-create this library at start-up
box in SAS Studio.

Administrative interface
such as SAS Management
Console

A SAS administrator pre-assigns and persists the
library.

Operating environment
commands, such as JCL
statements on z/OS

See information about deallocation in “Assigning SAS
Libraries Externally” in SAS Companion for z/OS.

Environment variable You can store the location of a library in an environment
variable and then use the variable name in place of a
libref. However, you cannot include an engine name or
library options. The default engine is used.

250 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n03xehosq1kmbon11kh4bywr79e2.htm&docsetTargetAnchor=n07u9wwa4f76a7n1ebfs83tr5eq3&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n03xehosq1kmbon11kh4bywr79e2.htm&docsetTargetAnchor=n07u9wwa4f76a7n1ebfs83tr5eq3&locale=en

Library Name (Libref)

Rules for Naming a Libref

The libref is a required element in a library assignment:

libname libref engine 'location' options;

The libref is a shortcut name or a nickname that you can use to reference the
physical location of the data. For example, in the two-level name mylib.myfile,
the libref is mylib, and the library member is myfile.

Here are the rules for libref names:

n A libref can be no longer than eight bytes.

n The first character must be an English letter or underscore. Subsequent
characters can be letters, numbers, or underscores. For details, see “Rules for
Most SAS Names” on page 44.

n Do not use the reserved names Sashelp, Sasuser, or Work as librefs, except as
intended. (See “SAS Default Libraries” on page 256.) Additional names are
reserved for SAS under every operating environment, and should not be used for
librefs:

o “Librefs Assigned by SAS in UNIX Environments” in SAS Companion for UNIX
Environments

o “Assigning SAS Libraries Using the LIBNAME Statement or Function” in SAS
Companion for Windows

o “Reserved z/OS Ddnames” in SAS Companion for z/OS

Rules for Using a Libref

Here are some rules for using librefs:

n Specify the libref as the first element in a two-level name for a SAS file.

n A libref is valid only for the current SAS session unless you choose a method of
persisting the library assignment.

n You can deassign (clear) a libref before the session ends.

n When a libref is deassigned or the session ends, the library members are not
deleted from the physical storage location. (However, contents of the Work
library are deleted when the session ends.)

n You can reference a libref repeatedly within a SAS session.

Elements of a Library Assignment 251

http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p1342o22j36ho7n1gwaufs2vivye.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p1342o22j36ho7n1gwaufs2vivye.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p1janotyd8q0qrn1jhkin21462in.htm&docsetTargetAnchor=n09aan5sgx10uzn1m4u6kkiha5fg&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p1janotyd8q0qrn1jhkin21462in.htm&docsetTargetAnchor=n09aan5sgx10uzn1m4u6kkiha5fg&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n19inwxboerixun17me9fsd7kwob.htm&locale=en

n If you use a macro variable as a libref name, do not enclose the variable in
quotation marks. Place a delimiter after the variable. For example, the two-level
name &mylib..mydata references the &mylib variable to find the libref for the
library where the mydata file is located. See “Creating a Period to Follow
Resolved Text” in SAS Macro Language: Reference.

Library Engine
The engine name might not be required in a library assignment, but specifying the
engine is a best practice:

libname libref engine 'location' options;

SAS provides a number of engines to access SAS files or files formatted by another
application or DBMS. The shipped default Base SAS engine is BASE. In SAS®9 and
SAS® Viya®, the BASE engine is an alias for the V9 engine. If you do not specify an
engine name when you create a new library, and if you have not specified the
ENGINE system option, then the V9 engine is automatically selected. If the library
location already contains SAS files, then SAS might be able to assign the correct
engine based on those files. For example, if the location contains V9 data sets only,
then SAS assigns the V9 engine. However, if a library location contains a mix of
different engine files, then SAS might not assign the engine you want. Therefore,
specifying the engine is a best practice. For more information, see Chapter 13, “SAS
Engines,” on page 289. See also “Example: Set a Default Engine” on page 307.

Library Location
The physical location is required in a library assignment:

libname libref engine 'location' options;

Specify the path name of the physical location where you want to create or access
data. If you specify a relative path name, it references your current working
directory, which depends on the SAS interface and your deployment.

Enclose the physical location in single or double quotation marks. If you are
concatenating libraries, the syntax for library location is slightly different.

If the library’s physical location does not exist before you submit the LIBNAME
statement, SAS writes a note to the log. In some cases, if you create the location
after you submit such a LIBNAME statement, you can then successfully use the
libref. However, in many processing modes and interfaces, you must resubmit the
LIBNAME statement after you create the physical location.

You can set the DLCREATEDIR system option to automatically create a new
subdirectory for the library.

252 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n0700fspmubii5n1vecutttwz93n.htm&docsetTargetAnchor=p18lhx5lrj0n1tn1wfs3siwgqlc4&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n0700fspmubii5n1vecutttwz93n.htm&docsetTargetAnchor=p18lhx5lrj0n1tn1wfs3siwgqlc4&locale=en

Library Options
Library options might be required in a library assignment, depending on the engine
and environment:

libname libref engine 'location' options;

When you access data that is stored in a DBMS or application other than SAS,
usually you must specify connection information. You might need additional
LIBNAME statement options that are specific to the engine.

In addition, some SAS data set options are also available as LIBNAME statement
options. Note that LIBNAME statement options take precedence over system
options. Data set options take precedence over LIBNAME statement options.

For LIBNAME statement options that are specific to an operating environment, see
the SAS companions:

n “LIBNAME Statement: UNIX” in SAS Companion for UNIX Environments

n “LIBNAME Statement: Windows” in SAS Companion for Windows

n “LIBNAME Statement: z/OS” in SAS Companion for z/OS

For LIBNAME statement options that are specific to a SAS engine, see documents
such as these:

n SAS V9 LIBNAME Engine: Reference

n SAS/ACCESS for Relational Databases: Reference

n SAS/ACCESS Interface to PC Files: Reference

n SAS Scalable Performance Data Engine: Reference

n SAS XMLV2 and XML LIBNAME Engines: User’s Guide

Benefits of Using a Libref
Accessing data through a SAS library provides the following benefits:

n Specifying a libref in your SAS code is more convenient than specifying the path
name, especially if you reference the file repeatedly in a program.

n You can specify options for an entire library. Accessing data that is stored in a
DBMS or application other than SAS usually requires multiple options.

n If your data changes location, you can modify its path name once, in the library
assignment, instead of multiple places in your code.

n Related files can be grouped in the same physical location.

n In addition to user interfaces, SAS provides programmatic ways to assign a
library, to view information about a library, and to manage a library.

Elements of a Library Assignment 253

http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p0bnp6asvws4don1jxyxe9cc91wb.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=chloptfmain.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p07a4muofiu0nqn125qb6fwcwc8h.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engxml&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Accessing Data without Using a Libref
In some cases, a library assignment is not required:

n If you omit a libref and specify a one-level name, SAS uses the temporary Work
library, which is typically deleted when the session ends. You can change this
behavior. To set a default library to permanently store SAS files, assign a User
library. If a User library is assigned, it takes precedence over the Work library.

n If you specify the file name only (no path name) in quotation marks, the default
location is the current working directory. This location depends on the SAS
interface and your deployment.

n In most language elements, you can omit a libref and refer to a file directly by
specifying the physical location.

n For external unstructured data, such as raw data that is stored in a text file, you
use a fileref instead of a libref.

Here are the rules for specifying a physical location instead of a libref:

n Enclose the path name and file name in quotation marks. You can omit the file
extension if the file is a SAS data set.

n The quoted path name and file name must conform to the naming conventions
of your operating environment.

n Specifying a libref is preferred to specifying the physical location, due to the
benefits of library assignment.

n A quoted physical location is not supported for the following SAS features:

o engines other than the default Base SAS engine (V9)

o contexts that do not accept a libref, such as the SELECT statement of PROC
COPY and most PROC DATASETS statements

o PROC SQL

o certain data set options

o SAS views

o stored compiled DATA step programs

o SAS catalogs

o MDDB and FDB references

254 Chapter 12 / SAS Libraries

Library Concatenation

Definition of SAS Library Concatenation
When you concatenate two or more SAS libraries, you logically join the contents of
the libraries. Although the libraries are stored in different locations, you can
reference them all with one libref.

How to Concatenate Libraries
In the LIBNAME statement or LIBNAME function, specify each library with its
previously assigned libref or its physical location (full path name).

n You can use a combination of librefs and physical locations.

n If you specify a physical location, enclose it in single or double quotation marks.

n Separate each specification with either a blank or a comma.

n Enclose the entire list in parentheses.

Here is an example that concatenates three libraries. The specification includes
two librefs and one physical location.

libname year (quarter1 quarter2 'c:/quarter3/sales');

For a more detailed example, see “Example: Concatenate SAS Libraries” on page
262.

Rules for Library Concatenation
After you create a library concatenation, you can specify the libref in any context
that accepts a libref. SAS applies the following rules:

n If you specify any options or engines, they apply only to the libraries that you
specified with the physical location, not to any library that you specified with a
libref.

n If you alter a libref after it has been assigned in a concatenation, it does not
affect the concatenation.

n When you logically concatenate two or more SAS libraries, you also
concatenate any SAS catalogs. See “Catalog Concatenation” in SAS V9
LIBNAME Engine: Reference.

Library Concatenation 255

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p15n6d69xgthc5n1izqhk4p2xbal.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p15n6d69xgthc5n1izqhk4p2xbal.htm&locale=en

n If any library in the concatenation is sequential, then all of the libraries are
treated as sequential.

The order in which you list the libraries determines how SAS files are processed:

n When a data set is opened for input or update, the concatenated libraries are
searched in the order in which they are listed in the concatenation. The first
occurrence of the data set is used.

n When a data set is created, it is created in the first library that is listed in the
concatenation, even if a file exists with the same name in another library in the
concatenation.

n When you delete or rename a SAS file, only the first occurrence of the file is
affected.

n When a list of SAS files is displayed, only the first occurrence of a file name is
shown.

n A SAS file that is logically associated with another file (such as an index to a
data set) is included in the concatenation only if the parent file resides in that
same library. This rule is affected by the rule that only the first occurrence of a
file is used. For example, two libraries are concatenated. Both libraries contain a
data set that is named Mytable. In the second library, Mytable is indexed. The
index is not included in the concatenation.

n The attributes of the first library determine the attributes of the concatenation.
For example, if the first library is Read-Only, then the entire concatenated
library is Read-Only.

SAS Default Libraries

Introduction to SAS Default Libraries
The following libraries are supplied by SAS:

n Work is assigned by default.

n User is assigned by the user or by an administrator.

n Sashelp is assigned by default.

n Sasuser is assigned by default.

256 Chapter 12 / SAS Libraries

Work Library (Temporary)
SAS assigns the Work library automatically. The Work library stores two types of
temporary files:

n files that you create

n files that are created internally by SAS as part of processing

The Work library enables you to specify one-level names for temporary storage.
Specifying a one-level name means that you omit a libref and specify the file name
only, without quotation marks. See “Example: Use the Work Library for Temporary
Data” on page 272.

By default, the Work library is deleted at the end of each SAS session if the session
terminates normally. To change the default behavior for the Work library, see the
WORK=, WORKINIT, and WORKTERM system options in SAS System Options:
Reference.

In contrast to the Work library, most SAS libraries are permanent, not temporary.

User Library
The User library enables you to specify one-level names for permanent storage. If
you assign a User library, then all files that are created with a one-level name are
stored in the User library instead of the temporary Work library. When you refer to
a file by a one-level name, SAS looks for the file in the User library. If you have not
assigned a User library, then SAS looks for the file in the Work library.

You can assign the User library by using one of the methods in the User library
example on page 273. See also “USER= System Option” in SAS System Options:
Reference.

Files that are stored in the User library are not deleted by SAS when the session
terminates. Data files that SAS creates internally are still stored in the Work library.
After you assign the User library, if you want to create a temporary file in Work, you
must specify Work in a two-level name, such as Work.MyFile.

For the SPD Engine, you can use the TEMP=YES LIBNAME statement option with
the USER= system option to store temporary data sets that can be referenced with
a one-level name. See “TEMP= LIBNAME Statement Option” in SAS Scalable
Performance Data Engine: Reference.

SAS Default Libraries 257

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1tl8adik7ypwun1utdwxaauf9wq.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1tl8adik7ypwun1utdwxaauf9wq.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p1lyps4q15kuusn1gnxje260ksjp.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p1lyps4q15kuusn1gnxje260ksjp.htm&locale=en

Sashelp Library
SAS assigns the Sashelp library automatically. The Sashelp library contains the
following items:

n sample data that is used for some examples in SAS documentation.

n catalogs, item stores, and other files that store SAS settings for your entire site.
The defaults in the Sashelp library can be customized by your on-site SAS
support personnel. (Many settings are stored in the SAS Registry, which is two
item stores. See Chapter 35, “The SAS Registry,” on page 761.)

Use PROC DATASETS or PROC CATALOG to list the catalogs in a library. The
SASHELP system option specifies the location of the Sashelp library. The option is
set during the installation process and normally is not changed after installation.

Sasuser Library
SAS assigns the Sasuser library automatically. The Sasuser library contains
catalogs and other files that store your personal settings and customizations. For
example, in Base SAS, you can store your defaults for function key settings or
window attributes. These values are stored in a catalog named Sasuser.Profile. See
“Sasuser.Profile Catalog” in SAS V9 LIBNAME Engine: Reference. (Many settings are
stored in the SAS Registry, which is two item stores. See Chapter 35, “The SAS
Registry,” on page 761.)

The SASUSER system option specifies the location of the Sasuser library.

The RSASUSER system option enables the system administrator to control the
mode of access to the Sasuser library. RSASUSER is helpful for installations that
have one Sasuser library for multiple users, to prevent those users from modifying
it.

258 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10dxfd522hpvin181z2zftbk8h2.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n001altrkaasm3n1t5fpzv396894.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0ekml3zuuv87bn1ktbbr9x19ybz.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0yehy4wog1ti3n1u3nnqf794fhk.htm&locale=en

Examples: Access Data by Using a Libref

Example: Assign a Libref by Using the LIBNAME
Statement

Example Code

This example assigns a libref and then references it in a DATA step and a PROC
step.

libname sales 'c:\myfiles'; /* 1 */
data sales.quarter1; /* 2 */
 length mileage 4;
 input account mileage;
 datalines;
1 932
2 563
;
proc print data=sales.quarter1; /* 3 */
run;

1 The LIBNAME statement assigns the libref sales to the physical location
c:\myfiles.

2 The DATA step creates the data set sales.quarter1 and stores it in the library’s
physical location.

3 The PROC PRINT step references the data set by its two-level name,
sales.quarter1.

Operating Environment Information: Here are examples of the LIBNAME
statement for different operating environments. The rules for assigning and using
librefs differ across operating environments. See the SAS documentation for your
operating environment for specific information. The V9 engine is specified in these
examples.

Table 12.4 Syntax for Assigning a Libref

Operating Environment Examples

DOS, Windows libname mylibref v9 'c:\myfiles\data;

Examples: Access Data by Using a Libref 259

Operating Environment Examples

UNIX libname mylibref v9 '/myfiles/data;

z/OS libname mylibref v9 'userid.myfiles.data;
libname mylibref v9 '/myfiles/data;

Key Ideas

n The LIBNAME statement is a commonly used way to assign a libref to a physical
location for a library.

n Even if your libraries are assigned by an administrator, understanding the library
concept is useful.

See Also

n “LIBNAME Statement: V9 Engine” in SAS V9 LIBNAME Engine: Reference

n “Elements of a Library Assignment” on page 250

n “Example: Assign the User Library for Permanent Data” on page 273

n "Working with Libraries" in SAS Studio: User’s Guide

n "Creating a SAS Library"in SAS Enterprise Guide: User’s Guide

Example: Assign a Libref by Using a Function

Example Code

This example creates a macro named test that uses functions to assign a libref and
verify the assignment.

%macro test;
 %let mylibref=new; /* 1 */
 %let mydirectory=c:\example; /* 2 */
 %if %sysfunc(libname(&mylibref,&mydirectory)) %then /* 3 */
 %put %sysfunc(sysmsg());
 %else %put success;
 %if %sysfunc(libref(&mylibref)) %then /* 4 */

260 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1e6qvz7mrer88n1pqs1ypx6d4it.htm&locale=en
https://documentation.sas.com/?cdcId=webeditorcdc&cdcVersion=3.8&docsetId=webeditorug&docsetTarget=p092daf4a5ypjcn138maiooc8wsn.htm#p0l1s0cjpmo7szn1jpugnbftkt21
https://documentation.sas.com/?cdcId=egdoccdc&cdcVersion=8.2&docsetId=egug&docsetTarget=p0h7kkydwto5u5n1s3tbaz7h3rlu.htm

 %put %sysfunc(sysmsg());
 %else %put library &mylibref is assigned to &mydirectory;
%mend test;

%test

1 The macro variable mylibref specifies the libref name, new.

2 The macro variable mydirectory specifies the library’s physical location,
c:\example.

3 An IF-THEN-ELSE statement calls the %SYSFUNC macro function, which in turn
calls the LIBNAME function to attempt the library assignment. If an error or
warning occurs, the message is written to the SAS log. If no error or warning
occurs, then success is written to the log. Note that in a macro statement, you
do not enclose character strings in quotation marks.

4 Another IF-THEN-ELSE statement calls the %SYSFUNC macro function, which
calls the LIBREF function to validate the library assignment. Again, if an error or
warning occurs, the message is written to the SAS log. If no error or warning
occurs, then an informative message is written to the log.

Here is the output in the log from running the macro test:

12 %test
success
library new is assigned to c:\example

Key Ideas

n Some programmers prefer using SAS functions rather than statements. The
LIBNAME function can assign or deassign (clear) a library assignment. The LIBREF
function can verify a library assignment.

n The behavior of the LIBNAME function depends on the number of arguments.

n Be aware of additional rules when you use DATA step functions within macro
functions.

See Also

n “LIBNAME Function” in SAS Functions and CALL Routines: Reference

n “LIBREF Function” in SAS Functions and CALL Routines: Reference

n “%SYSFUNC, %QSYSFUNC Macro Functions” in SAS Macro Language: Reference

n “Using DATA Step Functions within Macro Functions” in SAS Functions and
CALL Routines: Reference

n “Elements of a Library Assignment” on page 250

Examples: Access Data by Using a Libref 261

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0pe5ebdcgjnxkn1cgx90o5cla9a.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p1o13d7wb2zfcnn19s5ssl2zdxvi.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p07c8e0ktns1c7n1vtowjev5g724.htm&docsetTargetAnchor=n06zaa7npzvlpin1jrvxwqennd9g&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p07c8e0ktns1c7n1vtowjev5g724.htm&docsetTargetAnchor=n06zaa7npzvlpin1jrvxwqennd9g&locale=en

Example: Concatenate SAS Libraries

Example Code

This LIBNAME statement concatenates two SAS libraries:

libname lib3 (lib1 lib2);

The following figure demonstrates the concatenation.

Output 12.1 Concatenation of Lib1 and Lib2

Notice that the index for apples does not appear in the concatenation. The
lib2.apples data set has an index. However, the lib1.apples data set does not
have an index, and lib1 is listed first in the concatenation. SAS suppresses the
index when its associated data set is not part of the concatenation.

If multiple catalogs have the same name, their entries are concatenated. The
lib3.formats catalog combines the entries of the lib1.formats and
lib2.formats catalogs. For details, see “Catalog Concatenation” in SAS V9
LIBNAME Engine: Reference.

Key Ideas

n Library concatenation enables you to reference multiple libraries that are stored in
different physical locations.

n When a data set is opened for input or update, the concatenated libraries are
searched and the first occurrence of the data set is used. When a data set is
created, it is created in the first library that is listed in the concatenation, even if a
file exists with the same name in another library in the concatenation. Unwanted
behavior could occur if data sets exist with the same name in the different
locations.

262 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p15n6d69xgthc5n1izqhk4p2xbal.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p15n6d69xgthc5n1izqhk4p2xbal.htm&locale=en

See Also

n “Library Concatenation” on page 255

n “Catalog Concatenation” in SAS V9 LIBNAME Engine: Reference

Example: Access a Remote SAS Library by Using
SAS/CONNECT Software

Example Code

This example uses a SAS/CONNECT spawner to access a SAS library that is stored
on a remote computer.

options comamid=tcp; /* 1 */
%let myserver=host.name.com; /* 2 */
signon myserver.__1234 user=userid password='mypw'; /* 3 */
libname reports '/myremotedata' server=myserver.__1234; /* 4 */
proc datasets library=reports; /* 5 */
run;
quit;
signoff myserver.__1234;

1 The COMAMID= system option specifies TCP/IP as the communications access
method.

2 The myserver macro variable is assigned to the host name of the remote
SAS/CONNECT server.

3 The SIGNON statement references the myserver macro variable followed by the
port number that the SAS/CONNECT spawner is listening on. If your port
number or service name is defined in the macro variable, then omit it from the
SIGNON statement.

4 In the LIBNAME statement, do not specify an engine. Specify the location of
your data, and specify the myserver macro variable in the SERVER= option.
Include the port number if it is specified in the SIGNON statement.

5 PROC DATASETS runs in the client. Although the client accesses data that is on
the server, the data is not written to the client's local disk.

The following output from PROC DATASETS shows the REMOTE engine is
assigned to the directory. In this case, the SAS client is running on Windows, the
spawner is running on z/OS, and the data is located on UNIX.

Examples: Access Data by Using a Libref 263

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p15n6d69xgthc5n1izqhk4p2xbal.htm&locale=en

Output 12.2 Portion of PROC DATASETS Output Showing the Remote Directory
Information

Key Ideas

n If you license SAS/CONNECT or SAS/SHARE software, you can use a LIBNAME
statement to read, write, and update server (remote) data as if it were stored on
the client's disk.

n SAS processes the data in client memory, which is overwritten in subsequent
client requests for server data.

n Remote access can be useful for accessing data sets across computers that have
different architectures. Some catalog entry types are available for Read-Only
access.

See Also

n “Types of Sign-ons” in SAS/CONNECT User’s Guide

n “COMAMID=” in SAS/CONNECT User’s Guide

264 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=n1mnvt2zgyyaqzn1gq0m8t9q7qbu.htm&locale=en
http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=p1itusznwqqxedn1vmx2bg4ep5ll.htm&locale=en

Example: Access a Remote SAS Library on a
WebDAV Server

Example Code

The following LIBNAME statement accesses a WebDAV server:

libname davdata v9 "http://www.webserver.com/users/mydir/
datadir" /* 1 */
 webdav user="mydir"
pw="12345"; /* 2 */

1 The LIBNAME statement assigns the libref davdata to the URL location of a
WebDAV server.

2 The WEBDAV option is required in order to access a WebDAV server.

Key Ideas

n WebDAV (Web Distributed Authoring and Versioning) is a protocol that enhances
the HTTP protocol. It provides a standard infrastructure for collaborative
authoring across the internet. WebDAV enables you to edit web documents, stores
versions for later retrieval, and provides a locking mechanism to prevent
overwriting.

n When you access files on a WebDAV server, SAS pulls the file from the server to
your local disk for processing. The files are temporarily stored in the Work library,
unless you use the LOCALCACHE= option in the LIBNAME statement, which
specifies a different location for temporary storage. When you finish updating the
file, SAS pushes the file back to the WebDAV server for storage and removes the
file from the local disk.

n SAS supports the WebDAV protocol under the UNIX and Windows operating
environments.

See Also

n “LIBNAME Statement: WebDAV Server Access” in SAS Global Statements:
Reference

Examples: Access Data by Using a Libref 265

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n01hbvwcwm3qcfn16lo2kj1vgrn6.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n01hbvwcwm3qcfn16lo2kj1vgrn6.htm&locale=en

n “FILENAME Statement: WebDAV Access Method” in SAS Global Statements:
Reference

Example: Access DBMS Data as a SAS Library

Example Code

In this example, a SAS DATA step creates a Teradata table. To run this example, you
must license a SAS/ACCESS interface.

libname mytddata teradata server=mytera user=myid password=mypw; /* 1 */
data mytddata.grades; /* 2 */
 input student $ test1 test2 final;
 datalines;
Fred 66 80 70
Wilma 97 91 98
;
proc datasets library=mytddata; /* 3 */
run;
quit;

1 The LIBNAME statement specifies the mytddata libref and TERADATA, which is
the engine nickname for SAS/ACCESS Interface to Teradata. The statement also
specifies connection options for Teradata. Change these options to specify your
SAS/ACCESS connection values and any other options you need.

2 The DATA step creates a table named grades. The table is in the Teradata
DBMS and is not a SAS data set.

3 The PROC DATASETS output for the mytddata library shows that the engine is
Teradata. For the grades table, the SAS member type is DATA and the DBMS
member type is TABLE.

Output 12.3 PROC DATASETS Output Showing the DBMS Directory Information

266 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0l1vivxo238din1jt3sip83eugu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0l1vivxo238din1jt3sip83eugu.htm&locale=en

Output 12.4 PROC DATASETS Output Showing the Library Contents for DBMS
Content

Key Ideas

n If you license a SAS/ACCESS interface for your DBMS data, you can submit a
LIBNAME statement in SAS to run SAS code against the DBMS data. SAS can
create or process a DBMS table as if it were a SAS data set.

n Some SAS/ACCESS interfaces are case sensitive. You might need to change the
case of table or column names to comply with the requirements of your DBMS.

n When you access data that is stored in a DBMS or application other than SAS,
usually you must specify connection information. You might need additional
LIBNAME statement options that are specific to the engine.

See Also

n SAS/ACCESS documentation

n Chapter 13, “SAS Engines,” on page 289

Example: Access DBMS Data to Create a SAS View

Example Code

This example creates a SAS view that references the Teradata table that was
created in “Example: Access DBMS Data as a SAS Library” on page 266. This code
creates a SAS view, not a native Teradata view.

libname target 'U:\mysasdata'; /* 1 */
libname mytddata teradata server=mytera user=myid password=mypw; /* 2 */
data target.highgrades / view=target.highgrades; /* 3 */
 set mytddata.grades;
 where final gt 80; /* 4 */
run;
proc print data=target.highgrades; /* 5 */

Examples: Access Data by Using a Libref 267

https://support.sas.com/en/software/sas-access.html#documentation

run;

1 In the LIBNAME statement, the libref target is assigned with a Windows path
name, not the Teradata server. No engine is specified, so SAS assigns the
default V9 engine.

2 This is the same SAS/ACCESS LIBNAME statement as in “Example: Access
DBMS Data as a SAS Library” on page 266.

3 The DATA step creates a SAS view named highgrades that references the
Teradata table named grades.

4 The view includes rows where the final variable is greater than 80.

5 PROC PRINT executes the view. Be aware that DATA step views do not retain
the LIBNAME statement. Therefore, when you reference this view, you must
first submit LIBNAME statements for the mytddata library as well as the target
library.

The PROC PRINT output shows that Wilma’s final grade is greater than 80. Fred’s
final grade is not greater than 80, so Fred is not included in the view.

Output 12.5 PROC PRINT of a SAS View That References a Teradata Table

If you run PROC DATASETS, you can see that the member type of highgrades is
VIEW.

proc datasets library=target;
run;
quit;

Output 12.6 PROC DATASETS Output for the Target Library

For comparison, you could create a native table and view in Teradata by using the
Teradata BTEQ tool. Submit the CREATE TABLE and CREATE VIEW commands in
BTEQ to create a table named gradessql and a view named gradessqlview.

If you run PROC DATASETS against the mytddata library, you can see that the SAS
member types differ from the DBMS member types.

proc datasets library=mytddata;
run;
quit;

268 Chapter 12 / SAS Libraries

Output 12.7 PROC DATASETS Output for the Mytddata Library

Key Ideas

n Many customers use a DBMS as a large, ongoing data store. Rather than process
an entire DBMS table, you can create a SAS view to query a subset of the data.

n After you submit a SAS/ACCESS LIBNAME statement, you can create a DATA step
view or a PROC SQL view. Another option is a PROC SQL view that uses the SQL
pass-through facility, which submits DBMS-specific syntax.

n A SAS view reflects the current state of data in the underlying data source.
Alternatively, if the underlying DBMS data is not expected to change, you could
read the DBMS data to create a permanent SAS data set.

See Also

n “SAS Views of DBMS Data” in SAS/ACCESS for Relational Databases: Reference

n “SAS Views” in SAS V9 LIBNAME Engine: Reference

n Chapter 13, “SAS Engines,” on page 289

Example: Automatically Create a New Subdirectory
for a Library

Example Code

This example sets the DLCREATEDIR system option in order to create a
subdirectory in the file system for a library.

In the example, the directory c:\example exists in the file system, but the
subdirectory project does not. Because the DLCREATEDIR system option is set,
SAS creates project.

Examples: Access Data by Using a Libref 269

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p03xrihh99de3rn1lcmreflkm8fa.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=p142j988nfaq6in14uh4bzlku34u.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p03xrihh99de3rn1lcmreflkm8fa.htm&locale=en

options dlcreatedir;
libname mynewlib 'c:\example\project';

The SAS log includes a note that the library was created:

NOTE: Library MYNEWLIB was created.
NOTE: Libref MYNEWLIB was successfully assigned as follows:
 Engine: V9
 Physical Name: c:\example\project

z/OS Specifics: On z/OS, the shipped default is DLCREATEDIR.

Key Ideas

n You can set the DLCREATEDIR system option to create a subdirectory for the SAS
library that is specified in the LIBNAME statement if that directory does not exist.

n SAS can create one new subdirectory of an existing directory. In other words, SAS
creates only the final component in the path name.

n The shipped default is NODLCREATEDIR for all environments except z/OS.

See Also

n “DLCREATEDIR System Option” in SAS System Options: Reference

n “DLCREATEDIR System Option: z/OS” in SAS Companion for z/OS

Example: Deassign (Clear) a Libref

Example Code

The following statement deassigns the libref mylib from its physical location:

libname mylib clear;

Use the _ALL_ keyword in the LIBNAME statement to deassign all library
assignments (other than system libraries):

libname _all_ clear;

You can also use the LIBNAME function. The following code deassigns the libref
new, which was assigned in “Example: Assign a Libref by Using a Function” on page
260:

270 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1pihdnfpj4b32n1t62lx0zdsmdn.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1jrsjpog0knqrn116y9hzjg01j5.htm&locale=en

%macro test;
 %if (%sysfunc(libname(new))) %then
 %put %sysfunc(sysmsg());
%mend test;
%test

Key Ideas

n Deassigning a libref can be useful for freeing up resources, especially for shared
data.

n By default, SAS deassigns librefs automatically at the end of each SAS session.

n You can request to deassign a libref before the end of the session:

o In the LIBNAME statement, specify the libref name and CLEAR to deassign a
single libref. Specify _ALL_ and CLEAR to deassign all currently assigned librefs.
System libraries such as Sashelp and Sasuser are not deassigned.

o In the LIBNAME function, use the one-argument form to deassign the libref. In
certain operating environments, you can deassign the libref by specifying a
blank between quotation marks for the library location. However, in some
operating environments, a blank for the library location assigns a libref to the
current directory. Therefore, the one-argument form is recommended.

n If you use a method to persist a library assignment beyond the current session, you
cannot permanently deassign the libref by using the LIBNAME statement or
LIBNAME function. The libref is deassigned for the current session only and is
reassigned when you start a new session.

See Also

n “LIBNAME Statement: V9 Engine” in SAS V9 LIBNAME Engine: Reference

n “LIBNAME Function” in SAS Functions and CALL Routines: Reference

Examples: Access Data by Using a Libref 271

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1e6qvz7mrer88n1pqs1ypx6d4it.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en

Examples: Access Data without Using a
Libref

Example: Use the Work Library for Temporary Data

Example Code

If you have not set a User library, the following code writes mytable to the Work
library.

Notice the one-level name mytable does not have a libref. This code behaves the
same if you specify work.mytable.

data mytable;
 x=1;
run;
proc contents data=mytable;
run;

Here is a portion of the PROC CONTENTS output, showing that the Work library is
used.

Output 12.8 Portion of PROC CONTENTS Output for a Data Set in Work

272 Chapter 12 / SAS Libraries

Key Ideas

n You can use the Work library for intermediate or temporary results.

n By default, if you specify a one-level name when you create a data set, the data
set is stored temporarily in the Work library. If you want to specify a one-level
name to create and use permanent files instead of temporary files, then assign a
User library.

n The Work library is automatically defined by SAS at the beginning of each SAS
session. Typically, files in the Work library are deleted at the end of each SAS
session if the session terminates normally.

See Also

n “Work Library (Temporary)” on page 257

n “Example: Assign the User Library for Permanent Data” on page 273

n “Example: Access a Data Set by Specifying a Path Name in Quotation Marks” on
page 275

Example: Assign the User Library for Permanent
Data

Example Code

If you want to specify a one-level name to create and use permanent files instead
of temporary files, then assign a User library. This example references the data set
quarter1, which was created in “Example: Assign a Libref by Using the LIBNAME
Statement” on page 259.

libname sales 'c:\myfiles'; /* 1 */
options user=sales; /* 2 */
proc print data=quarter1; /* 3 */
run;

1 The LIBNAME statement assigns the libref sales to a physical location for the
library.

Examples: Access Data without Using a Libref 273

2 The USER= system option specifies the sales library as the default for one-
level names.

3 The PROC PRINT step references the data set by its one-level name, quarter1.

The log output confirms the data is read from sales.quarter1, even though sales
is not specified in the PROC PRINT:

1 libname sales 'c:\myfiles';
NOTE: Libref SALES was successfully assigned as follows:
 Engine: V9
 Physical Name: c:\myfiles
1 ! /*1*/
2 options user=sales; /*2*/
3
4 proc print data=quarter1; /*3*/
NOTE: Writing HTML Body file: sashtml.htm
5 run;

NOTE: There were 2 observations read from the data set SALES.QUARTER1.

Instead of setting the USER= system option, you can use a LIBNAME statement or
LIBNAME function to assign the User library. Try these two examples:

libname user 'c:\myfiles';
proc print data=quarter1;
run;

data _null_;
 x=libname ('user', 'c:\myfiles');
run;
proc print data=quarter1;
run;

The behavior is the same as setting the USER= system option, except the log shows
the libref as user:

NOTE: There were 2 observations read from the data set USER.QUARTER1.

Key Ideas

n By default, if you specify a one-level name when you create a data set, the data
set is stored temporarily in the Work library. If you want to specify a one-level
name to create and use permanent files instead of temporary files, then assign a
User library.

n You can use the USER= system option to set a User library. You can also use the
common ways to assign libraries, such the LIBNAME statement. Specify a
previously assigned libref or a physical location.

n After you set the User library, if you want to store a temporary data set in the
Work library, you must specify the Work libref in a two-level name.

274 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1tl8adik7ypwun1utdwxaauf9wq.htm&locale=en

See Also

n “User Library” on page 257

n “USER= System Option” in SAS System Options: Reference

n “Example: Use the Work Library for Temporary Data” on page 272

n “Example: Access a Data Set by Specifying a Path Name in Quotation Marks” on
page 275

Example: Access a Data Set by Specifying a Path
Name in Quotation Marks

Example Code

This example prints a data set that is identified by its full path name and file name
instead of a libref and data set name. The data set quarter1 is created in “Example:
Assign a Libref by Using the LIBNAME Statement” on page 259. A Windows path
name is used for this demonstration.

proc print data='c:\myfiles\quarter1.sas7bdat';
run;

Key Ideas

n Instead of using a two-level name libref.file-name, you can omit the libref and
hardcode the full path name and file name, enclosed in quotation marks. You can
omit the file extension if the file is a SAS data set.

n Many language elements do not accept a physical location. For the restrictions,
see “Accessing Data without Using a Libref” on page 254.

See Also

n “LIBNAME Statement: V9 Engine” in SAS V9 LIBNAME Engine: Reference

n “Elements of a Library Assignment” on page 250

n “Example: Assign the User Library for Permanent Data” on page 273

Examples: Access Data without Using a Libref 275

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1tl8adik7ypwun1utdwxaauf9wq.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1e6qvz7mrer88n1pqs1ypx6d4it.htm&locale=en

Example: Specify a Fileref for a File That Is Not a
Library Member

Example Code

This example uses a fileref to identify the location of raw data. The file
sampdata.txt is an external text file.

filename test url "http://support.sas.com/publishing/cert/sampdata.txt"
 ; /* 1 *
/
data
credit; /* 2 */
 infile test firstobs=945
obs=954; /* 3 */
 input Account $ 1-4 Name $ 6-22 Type $ 24 Transaction $ 26-31;
run;
proc print
data=credit; /* 4 */
run;

1 The FILENAME statement specifies the location of a file. The fileref is test, the
access method is URL, and the location is the full URL of the file.

If you download sampdata.txt to a file system that is accessible from your SAS
session (such as an NFS-mounted directory), then the URL access method is not
necessary.

2 The DATA step creates a temporary data set named credit in the Work library.

3 The INFILE statement specifies the fileref test, which was assigned in the
FILENAME statement. The FIRSTOBS= and OBS= data set options specify the
lines to read from the external file. The file sampdata.txt contains many sample
data sets and programs. This example uses lines 945–954 only, which is raw
data that is delimited by spaces.

4 PROC PRINT verifies that the external data is imported as a SAS data set.

276 Chapter 12 / SAS Libraries

Output 12.9 PROC PRINT Output Showing Successful Import from the External File

Key Ideas

n A text file that contains delimited data (also called raw data) is not a SAS library
member. Therefore, you cannot use a libref to refer to the location of the file.
Instead, use the FILENAME statement to assign a SAS fileref.

n The FILENAME statement can assign a fileref to an external file or an output
device, deassign a fileref and external file, or list attributes of external files.

n If you do not need to reuse a fileref, and if you do not need an access method such
as URL, you can omit the FILENAME statement. Instead, you can choose to specify
the quoted path name and file name in the INFILE statement. However, filerefs can
be helpful for many of the same reasons as librefs.

See Also

n Chapter 15, “Raw Data,” on page 353

n “FILENAME Statement: URL Access Method” in SAS Global Statements:
Reference

Examples: Access Data without Using a Libref 277

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p103pi2vrzn6qhn1e8alrs01jrb7.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p103pi2vrzn6qhn1e8alrs01jrb7.htm&locale=en

Examples: View Information about a
Library

Example: Print Information about a Library and Its
Members

Example Code

The DATASETS procedure prints a list, or directory, of the members in a SAS library.

libname myfiles 'c:\example';
proc datasets library=myfiles;
run;
quit;

In the example output from PROC DATASETS, the directory information includes
the libref, the physical location, and other attributes of the library. The second
section of the output shows the name of each member and its member type,
followed by any associated files. In the output, notice that the flowers data set has
an index.

Output 12.10 PROC DATASETS Output Showing the Directory Information

278 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hmips60w5w3yn1hj9klna7aplw.htm&locale=en

Output 12.11 PROC DATASETS Output Showing the Library Members

Key Ideas

n Without the CONTENTS statement, PROC DATASETS returns information about
the directory. Add the CONTENTS statement if you want more information about a
library member or members. Like many of the PROC DATASETS statements,
CONTENTS is also available as a stand-alone procedure, PROC CONTENTS.

n Specify the DETAILS option to include information about the number of
observations, number of variables, number of indexes, and data set labels.
DETAILS is available as a PROC DATASETS option and as a system option.

n The returned information varies according to the operating environment and the
engine.

n Any files that are not considered to be library members are not listed in the library
directory. Some examples are internal SAS utility files or text files that contain
SAS programs. You might see these files in the file system, but they are not listed
in PROC DATASETS output.

See Also

n “DATASETS Procedure” in Base SAS Procedures Guide

n “DETAILS System Option” in SAS System Options: Reference

Examples: View Information about a Library 279

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hmips60w5w3yn1hj9klna7aplw.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0v54tw1kqg4qsn1e00e60wy4s10.htm&locale=en

Example: Return Library Attributes by Using the
LIBNAME Statement

Example Code

This example uses the LIST argument in the LIBNAME statement. The LIST
argument prints the library’s attributes in the log.

libname myfiles 'c:\example';
libname myfiles list;

The following information is written to the log.

Example Code 12.1 Library Information from SAS Log

NOTE: Libref= MYFILES
 Scope= DMS Process
 Engine= V9
 Physical Name= c:\example
 Filename= c:\example
 Owner Name= userid
 File Size= 8KB
 File Size (bytes)= 8192

Key Ideas

n Specify the libref name to list the attributes of a single SAS library. Specify _ALL_
to list the attributes of all SAS libraries that have librefs in your current session.

n If you specify _ALL_, then librefs that are defined as environment variables appear
only if you have already used those librefs in a SAS statement.

See Also

n “LIBNAME Statement: V9 Engine” in SAS V9 LIBNAME Engine: Reference

n “Elements of a Library Assignment” on page 250

n “The SAS Log” on page 677

280 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1e6qvz7mrer88n1pqs1ypx6d4it.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1e6qvz7mrer88n1pqs1ypx6d4it.htm&locale=en

Example: Return Library Location by Using a
Function

Example Code

This example uses the PATHNAME function to return the physical location that is
assigned to the libref myfiles.

libname myfiles 'c:\example';
data _null_;
 length path $ 100;
 path=pathname('myfiles');
put path;
run;

The PUT statement writes the path name to the SAS log:

c:\example

Key Ideas

n The PATHNAME function returns the physical location that is assigned to a libref.
You can also view the physical location by using PROC DATASETS or by using the
LIST argument in the LIBNAME statement.

n Several other SAS functions are available to return information about a SAS library
or a library member.

See Also

n “ATTRC Function” in SAS Functions and CALL Routines: Reference

n “ATTRN Function” in SAS Functions and CALL Routines: Reference

n “EXIST Function” in SAS Functions and CALL Routines: Reference

n “PATHNAME Function” in SAS Functions and CALL Routines: Reference

Examples: View Information about a Library 281

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p048h4pczkr351n1pk558jo8hcc0.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p12uchp7hm5h2zn1om2ut816af7h.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1thpm9d6f5itan1c37zh8uz273z.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0sycvpqwxea06n1klcseze1mdak.htm&locale=en

Examples: Manage SAS Libraries

Example: Copy a SAS Library

Example Code

The following COPY procedure example copies the entire myfiles library to the
target library. PROC COPY has many useful options, but none are specified, so the
default behavior such as CLONE is used.

libname myfiles 'c:\example';
libname target 'd:\new';
proc copy in=myfiles out=target;
run;

The SAS log shows the results of the copy:

NOTE: Copying MYFILES.CONTAINERS to TARGET.CONTAINERS (memtype=VIEW).
NOTE: Copying MYFILES.FLOWERS to TARGET.FLOWERS (memtype=DATA).
NOTE: Simple index plantname has been defined.
NOTE: There were 7 observations read from the data set MYFILES.FLOWERS.
NOTE: The data set TARGET.FLOWERS has 7 observations and 3 variables.
NOTE: Copying MYFILES.FORMATS to TARGET.FORMATS (memtype=CATALOG).
NOTE: Copying MYFILES.RESTOCK to TARGET.RESTOCK (memtype=DATA).
NOTE: There were 7 observations read from the data set MYFILES.RESTOCK.
NOTE: The data set TARGET.RESTOCK has 7 observations and 4 variables.
NOTE: PROCEDURE COPY used (Total process time):
 real time 5.70 seconds
 cpu time 0.87 seconds

Key Ideas

n SAS file management utilities such as PROC COPY have the following capabilities:

o can operate on all library members or selected ones only

o can copy, rename, or move a data set and its associated files, such as indexes, in
most cases

o are supported on all operating environments

n If you copy a library to a different operating environment, or to a different
character encoding, specify the NOCLONE option for PROC COPY. The NOCLONE
option changes the data representation and encoding to that of the OUT= library.

282 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p04y85z9f13uaan10s1k40ptx6gs.htm&locale=en

In addition, if cross-environment data access (CEDA) is invoked, then you must be
aware of CEDA restrictions.

n If you use SAS Studio, you can perform some file maintenance tasks in the
navigation pane. If you use the SAS windowing environment, you can perform
maintenance tasks in the SAS Explorer window.

See Also

n “COPY Procedure” in Base SAS Procedures Guide

n “DATASETS Procedure” in Base SAS Procedures Guide

n “CATALOG Procedure” in Base SAS Procedures Guide

Example: Migrate a SAS Library

Example Code

The following MIGRATE procedure example migrates members in a SAS library to
take advantage of features that are provided in a newer SAS release. This example
does not use a SAS/CONNECT or SAS/SHARE server, which is required in some
cases.

Run this code in a session of the SAS release that you are migrating to.

libname myfiles 'c:\example';
libname target 'd:\new';
proc migrate in=myfiles out=target;
run;

The SAS log shows the results of the migration. Notice that PROC MIGRATE calls
PROC CPORT to migrate catalogs.

Examples: Manage SAS Libraries 283

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p04y85z9f13uaan10s1k40ptx6gs.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hmips60w5w3yn1hj9klna7aplw.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n11st7possem5en1vo07v2nlxg0c.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1kv04orx2cy03n1urntor37gzkz.htm&locale=en

NOTE: The BUFSIZE= option was not specified with the MIGRATE procedure.
The migrated library members will use the current value for BUFSIZE. For more
information, see the PROC MIGRATE documentation.
NOTE: Migrating MYFILES.CONTAINERS to TARGET.CONTAINERS (memtype=VIEW).
NOTE: Migrating MYFILES.FLOWERS to TARGET.FLOWERS (memtype=DATA).
NOTE: Simple index plantname has been defined.
NOTE: There were 7 observations read from the data set MYFILES.FLOWERS.
NOTE: The data set TARGET.FLOWERS has 7 observations and 3 variables.
NOTE: Migrating MYFILES.RESTOCK to TARGET.RESTOCK (memtype=DATA).
NOTE: There were 7 observations read from the data set MYFILES.RESTOCK.
NOTE: The data set TARGET.RESTOCK has 7 observations and 4 variables.

NOTE: PROC CPORT begins to transport catalog MYFILES.FORMATS
NOTE: Entry TESTFMT.FORMAT has been transported.
NOTE: PROCEDURE MIGRATE used (Total process time):
 real time 2.34 seconds
 cpu time 0.15 seconds

If you migrate to a different operating environment (for example, from Windows to
UNIX), PROC MIGRATE has some limitations. For example, the following log note
says that cross environment data access (CEDA) was used. This message informs
you that performance can be slowed by CEDA.

NOTE: Data file MYFILES.FLOWERS.DATA is in a format that is native to another
host, or the file encoding does not match the session encoding. Cross Environment
Data Access will be used, which might require additional CPU resources and might
reduce performance.

An error message like the following is also due to CEDA, and it indicates that the
formats catalog was not migrated. To migrate catalogs with PROC MIGRATE to an
incompatible operating environment, you must use a SAS/CONNECT or
SAS/SHARE server to access the IN= library.

ERROR: File MYFILES.FORMATS.CATALOG was created for a different operating system.
WARNING: No data is available.

Key Ideas

n PROC MIGRATE is usually the best way to migrate members in a SAS library to the
current SAS version. PROC MIGRATE is a one-step copy procedure that retains the
data attributes that most users want in a data migration.

n If either of the following issues is present, then a SAS/CONNECT or SAS/SHARE
server is required, and different syntax is used. See “Migrating from a SAS®9
Release by Using SAS/CONNECT” in Base SAS Procedures Guide.

o if you do not have direct access to the source library from the target session via
a Network File System (NFS)

o if the source library contains catalogs and if the processing invokes CEDA on
the target session

n Alternatively, if you have direct access to the source library through NFS, then you
can use cross-environment data access (CEDA) instead of migrating. This Read-

284 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1lge8me9rzbjen14kb9608z27h4.htm&docsetTargetAnchor=p1lge8me9rzbjen14kb9608z27h4&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1lge8me9rzbjen14kb9608z27h4.htm&docsetTargetAnchor=p1lge8me9rzbjen14kb9608z27h4&locale=en

Only access is automatic and transparent, but you must be aware of the
restrictions. See Chapter 33, “Cross-Environment Data Access,” on page 737.

n If you are changing to a different character encoding that uses more bytes to
represent the characters, you might want to use the CVP engine as part of the
copy or migration process. See “Example: Avoid Truncation When Migrating a SAS
Library by Using a Two-Step Process” in SAS V9 LIBNAME Engine: Reference.

See Also

n “MIGRATE Procedure” in Base SAS Procedures Guide

n “Compatibility and Migration” in SAS V9 LIBNAME Engine: Reference

Example: Copy a SAS Library by Using a Transport
File

Example Code

This example copies a SAS library across environments by using the CPORT and
CIMPORT procedures. A multistep process is necessary:

1 In the source environment, use PROC CPORT to create a transport file.

2 Use communication software (such as FTP) or a storage device to move the
transport file to the target environment. If you use FTP, transfer the file in
binary mode.

3 In the target environment, use PROC CIMPORT to import the library from the
transport file.

For step 1, PROC CPORT creates the transport file mytransfer, which is referenced
by the fileref tranfile.

libname source 'c:\example';
filename tranfile 'c:\myfiles\mytransfer';
proc cport library=source file=tranfile;
run;

In the log, notice that containers is not ported, because it is a SAS view.

Examples: Manage SAS Libraries 285

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=n15b0bl4gwdvz3n1wljwvybvb4f9&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=n15b0bl4gwdvz3n1wljwvybvb4f9&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1kv04orx2cy03n1urntor37gzkz.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0xntq65hjj4jkn1nrryzly5fm7u.htm&locale=en

NOTE: Not porting SOURCE.CONTAINERS because memtype is not supported.

NOTE: PROC CPORT begins to transport data set SOURCE.FLOWERS
NOTE: The data set contains 3 variables and 7 observations.
 Logical record length is 24.
NOTE: Transporting data set index information.

NOTE: PROC CPORT begins to transport catalog SOURCE.FORMATS
NOTE: The catalog has 1 entries and its maximum logical record length is 120.
NOTE: Entry TESTFMT.FORMAT has been transported.

NOTE: PROC CPORT begins to transport data set SOURCE.RESTOCK
NOTE: The data set contains 4 variables and 7 observations.
 Logical record length is 40.
NOTE: PROCEDURE CPORT used (Total process time):
 real time 18.14 seconds
 cpu time 0.17 seconds

For step 2, the user copies the mytransfer file from their Windows environment to
a UNIX environment.

For step 3, PROC CIMPORT creates the target library by importing the contents of
mytransfer.

libname target '/mydata/example';
filename tranfile '/mydata/mytransfer';
proc cimport library=target infile=tranfile;
run;

The log indicates that the import was successful.

NOTE: PROC CIMPORT begins to create/update data set TARGET.FLOWERS
NOTE: The data set index plantname is defined.
NOTE: Data set contains 3 variables and 7 observations.
 Logical record length is 24

NOTE: PROC CIMPORT begins to create/update catalog TARGET.FORMATS
NOTE: Entry TESTFMT.FORMAT has been imported.
NOTE: Total number of entries processed in catalog TARGET.FORMATS: 1

NOTE: PROC CIMPORT begins to create/update data set TARGET.RESTOCK
NOTE: Data set contains 4 variables and 7 observations.
 Logical record length is 40

NOTE: PROCEDURE CIMPORT used (Total process time):
 real time 0.74 seconds
 cpu time 0.00 seconds

Key Ideas

n PROC CPORT and PROC CIMPORT have several limitations as compared to PROC
MIGRATE. Only use this method for migration if PROC MIGRATE would require
SAS/CONNECT or SAS/SHARE software, and you do not have access to that
software. PROC MIGRATE migrates an entire library, including data sets, catalogs,
and most other member types. See “Example: Migrate a SAS Library across
Environments by Using SAS/CONNECT” in SAS V9 LIBNAME Engine: Reference.

n PROC CPORT supports SAS data sets and catalogs but not other member types.

286 Chapter 12 / SAS Libraries

http://documentation.sas.com/?docsetId=movefile&docsetVersion=v_001&docsetTarget=p0rwst58jh7zl0n115kbmamv0pyu.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=v_001&docsetTarget=p0rwst58jh7zl0n115kbmamv0pyu.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=p00w6hsg95tzp9n1la7im2tjacfl&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=p00w6hsg95tzp9n1la7im2tjacfl&locale=en

n If you use FTP to move the transport file to the target environment, transfer the
file in binary mode.

n When you are transcoding to a new encoding, truncation could occur. If truncation
occurs, you must expand variable lengths. You can either use the CVP engine with
PROC CPORT or use the EXTENDVAR= option with PROC CIMPORT.

n Transport files that are created by the CPORT procedure are not interchangeable
with transport files that are created by the XPORT engine.

See Also

n “CPORT Procedure” in Base SAS Procedures Guide

n “CIMPORT Procedure” in Base SAS Procedures Guide

n “PROC CPORT and PROC CIMPORT” in Moving and Accessing SAS Files

n “Compatibility and Migration” in SAS V9 LIBNAME Engine: Reference

Examples: Manage SAS Libraries 287

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1pihdm18p7g5wn1ezqpet80fvw8.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0sf0mvsb4f076n14i2u82w9z4st.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=v_001&docsetTarget=p0p45wa0uwhgcan1e6xwi9jy53j6.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0xntq65hjj4jkn1nrryzly5fm7u.htm&locale=en

288 Chapter 12 / SAS Libraries

13
SAS Engines

Definitions for SAS Engines . 289

How Engines Work with Files . 290

Engine Characteristics . 292
Summary of SAS Engines . 292
Default Base SAS Engine (V9 Engine) . 294
Legacy Engines . 295
Access Patterns . 297
Levels of Locking . 297
Operating Environment Information . 298

Examples: Use a SAS Engine to Process SAS Data . 298
Example: Assign the V9 Engine in a LIBNAME Statement . 298
Example: Assign the SPD Engine in a LIBNAME Statement . 300
Example: Read and Write SAS Data in Hadoop by Using the SPD Engine 301
Example: Avoid Truncation by Using the CVP Engine with the V9 Engine 302
Example: Load a SAS Data Set to a CAS Server . 305
Example: Set a Default Engine . 307

Examples: Use a SAS Engine to Process External Data . 308
Example: Read a Comma-Delimited File . 308
Example: Read Microsoft Excel Data by Using a SAS/ACCESS

Engine and PROC IMPORT . 310
Example: Create Data in a DBMS by Using a SAS/ACCESS Engine 311
Example: Embed a SAS/ACCESS LIBNAME Statement in a PROC SQL View 313
Example: Access DBMS Data by Using the SQL Pass-Through Facility 315
Example: Import XML Data by Using the XMLV2 Engine . 316
Example: Import JSON Data by Using the JSON Engine . 318

Definitions for SAS Engines
An engine is a component of SAS software that reads from and writes to a file in a
particular file format. (Some engines are read-only.)

289

Most engines are referred to as library engines, because they access a group of SAS
files that are used as a SAS library. For more information, see Chapter 12, “SAS
Libraries,” on page 247.

The SAS Multi Engine Architecture enables you to access a variety of file formats:

n Certain engines process SAS data only. See “Examples: Use a SAS Engine to
Process SAS Data” on page 298.

n Other engines interpret data from other applications (for example, DBMS, XML,
JSON, or Microsoft Excel). These engines apply a layer of abstraction so that
SAS can process the external data as if it were a SAS data set or a SAS library of
data sets. See “Examples: Use a SAS Engine to Process External Data” on page
308.

You specify an engine in a library assignment or in the ENGINE system option:

n A library assignment consists of a libref, an engine, a physical location, and
options that are specific to the engine or environment. See “Elements of a
Library Assignment” on page 250.

n A default engine is shipped with the software. To change the default, specify the
ENGINE system option at invocation. See “Example: Set a Default Engine” on
page 307.

How Engines Work with Files
The following figure shows how files are accessed through an engine. In the
diagram, the shaded components represent external file types or applications.

Figure 13.1 How SAS Engines Access Data

1

2

3

4

290 Chapter 13 / SAS Engines

1 A SAS data set or table is stored in one or more physical files, depending on the
engine and attributes. If you have licensed the appropriate SAS engine, SAS can
read and write data that is created by other applications, such as a DBMS.

Base SAS can read some raw data. For example, the DATA step or the IMPORT
procedure can read comma-separated data from a text file. The DATA step or
procedure provides the data to the V9 engine for output to a SAS data set. See
Chapter 15, “Raw Data,” on page 353.

2 When you specify a SAS data set name, the engine locates the stored file or
files to obtain metadata. V9 engine data sets contain metadata (also known as
descriptor information) within the data set file. Other file types store metadata
in a separate file. Although SAS can determine the metadata for many external
file types, you might be required to provide additional instructions. The
metadata provides information such as variable names and attributes, and
whether the file has special processing characteristics such as indexes or
compressed observations.

Note that more than one engine might be involved in processing. For example, in
a DATA step, one engine could be used to read data, and a different engine used
to write data.

3 The engine uses the metadata to organize the data in the standard logical form
for SAS processing. This standard form is the SAS data set model. A SAS data
set consists of data values that are organized into variables (columns) and
observations (rows).

Similar to the SAS data set model, the SAS library model is a group of data sets
and other library members that are organized in a logical form for processing.
When files are accessed as a SAS library, you can use SAS utilities such as the
DATASETS procedure to list their contents and to manage them.

4 SAS procedures and DATA step statements process the data in this logical form,
the SAS data set model. During processing, the engine passes down whatever
instructions are necessary to open and close physical files and to read and write
data. Processing can occur in the SAS data set model without the data ever
being physically stored as a SAS data set. If the data is stored in an external
application, such as a DBMS, some SAS procedures can pass processing to that
application.

How Engines Work with Files 291

Engine Characteristics

Summary of SAS Engines
Table 13.1 Commonly Used SAS Engines

LIBNAME
Engine
Nickname Uses Examples and Documentation

V9 or BASE Shipped default Base SAS engine

SAS data sets

“Example: Assign the V9 Engine in a LIBNAME
Statement” on page 298

“Example: Read a Comma-Delimited File” on
page 308

“Example: Set a Default Engine” on page 307

“Default Base SAS Engine (V9 Engine)” on page
294

SAS V9 LIBNAME Engine: Reference

SAS/ACCESS
engines
(multiple)

External data from other
applications

“Example: Read Microsoft Excel Data by Using a
SAS/ACCESS Engine and PROC IMPORT” on
page 310

“Example: Create Data in a DBMS by Using a
SAS/ACCESS Engine” on page 311

“Example: Embed a SAS/ACCESS LIBNAME
Statement in a PROC SQL View” on page 313

“Example: Access DBMS Data by Using the SQL
Pass-Through Facility” on page 315

SAS/ACCESS for Relational Databases:
Reference

SAS/ACCESS for Nonrelational Databases:
Reference

SAS/ACCESS Interface to PC Files: Reference

SAS/ACCESS Interface to R/3: User’s Guide

SAS/ACCESS documentation

292 Chapter 13 / SAS Engines

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acnrdb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acnrdb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=accr3&docsetVersion=v_002&docsetTarget=titlepage.htm&locale=en
https://support.sas.com/en/software/sas-access.html#documentation

LIBNAME
Engine
Nickname Uses Examples and Documentation

CAS Big data

Multi-threaded distributed
processing

Cloud computing

“Example: Load a SAS Data Set to a CAS Server”
on page 305

“CAS LIBNAME Engine Overview” in SAS Cloud
Analytic Services: User’s Guide

SPDE Alternative Base SAS engine

SPD Engine data sets

Big data

Multi-CPU threaded processing

Optional Hadoop storage

“Example: Assign the SPD Engine in a LIBNAME
Statement” on page 300

“Example: Read and Write SAS Data in Hadoop
by Using the SPD Engine” on page 301

SAS Scalable Performance Data Engine:
Reference

SAS SPD Engine: Storing Data in the Hadoop
Distributed File System

ORC Import and export open-source
file format in Base SAS

Big data

Cloud storage

Example: Read an ORC Table

SAS Viya Engine for ORC: Reference

CVP National language support “Example: Avoid Truncation by Using the CVP
Engine with the V9 Engine” on page 302

SAS National Language Support (NLS): Reference
Guide

XMLV2 Import and export XML in Base
SAS

“Example: Import XML Data by Using the
XMLV2 Engine” on page 316

SAS XMLV2 and XML LIBNAME Engines: User’s
Guide

JSON Import and export JSON in Base
SAS

“Example: Import JSON Data by Using the JSON
Engine” on page 318

“LIBNAME Statement: JSON Engine” in SAS
Global Statements: Reference

SASESOCK SAS/CONNECT

TCP/IP piping

“LIBNAME: SASESOCK Engine” in
SAS/CONNECT User’s Guide

SASIOLA and
SASHDAT

SAS LASR Analytic Server SAS LASR Analytic Server: Reference Guide

Engine Characteristics 293

http://documentation.sas.com/?docsetId=casref&docsetVersion=v_002&docsetTarget=p0lti7m8oeo1bqn1nnq84mco40ut.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=v_002&docsetTarget=p0lti7m8oeo1bqn1nnq84mco40ut.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=engspdehdfsug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=engspdehdfsug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=enghdff&docsetTarget=n1ginf51kejgc4n1os12lv59d81a.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=enghdff&docsetTarget=titlepage.htm
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engxml&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engxml&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1jfdetszx99ban1rl4zll6tej7j.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1jfdetszx99ban1rl4zll6tej7j.htm&locale=en
http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=p0ysgkja4otun1n1sw1jku2ryurd.htm&locale=en
http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=p0ysgkja4otun1n1sw1jku2ryurd.htm&locale=en
https://documentation.sas.com/?cdcId=bicdc&cdcVersion=9.4&docsetId=inmsref&docsetTarget=titlepage.htm

LIBNAME
Engine
Nickname Uses Examples and Documentation

Multi-threaded distributed
processing

Optional Hadoop storage

FEDSVR External data or SAS data by
using the SAS Federation Server

SAS LIBNAME Engine for SAS Federation Server:
User’s Guide

EDOC ODS DOCUMENT output objects “LIBNAME Statement: SASEDOC” in SAS
Output Delivery System: User’s Guide

JMP JMP statistical discovery
software

“LIBNAME Statement: JMP Engine” in
SAS/ACCESS Interface to PC Files: Reference

INFOMAP SAS Information Maps Base SAS Guide to Information Maps

META SAS Metadata Server SAS Language Interfaces to Metadata

Default Base SAS Engine (V9 Engine)
The shipped default Base SAS engine is BASE. In SAS®9 and SAS® Viya®, the BASE
engine is an alias for the V9 engine. If you do not specify an engine name when you
create a new library, and if you have not specified the ENGINE system option, then
the V9 engine is automatically selected. If the library location already contains SAS
files, then SAS might be able to assign the correct engine based on those files. For
example, if the location contains V9 data sets only, then SAS assigns the V9 engine.
However, if a library location contains a mix of different engine files, then SAS
might not assign the engine you want. Therefore, specifying the engine is a best
practice. See “Example: Assign the V9 Engine in a LIBNAME Statement” on page
298. See also “Example: Set a Default Engine” on page 307.

The file format for SAS 9, SAS 8, and SAS 7 data sets is very similar, so SAS does
not differentiate between them. See “Cross-Release and Cross-Environment
Compatibility” in SAS V9 LIBNAME Engine: Reference. However, new file features
can make a data set unusable in an earlier release. See “File Features That Are Not
Supported in a Previous Release” in SAS V9 LIBNAME Engine: Reference.

If you see an unexpected engine name in the log or in output from PROC
CONTENTS or PROC DATASETS, the engine was probably called internally from
the V9 engine. These internal engines are not valid for a user to specify. For
example, when you create a DATA step view, SAS calls the SASDSV engine. When
you create a PROC SQL view, SAS calls SQLVIEW.

294 Chapter 13 / SAS Engines

http://documentation.sas.com/?docsetId=engfedsrv&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engfedsrv&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n0d0r6ehyq1gftn1qdy5p8gplcwh.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n0d0r6ehyq1gftn1qdy5p8gplcwh.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=p1h80b3a6znyo0n136823vqw8t4e.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=p1h80b3a6znyo0n136823vqw8t4e.htm&locale=en
http://documentation.sas.com/?docsetId=engimap&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0dkmxc4jwo45hn1l6enh58xbk6q.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0dkmxc4jwo45hn1l6enh58xbk6q.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0dkmxc4jwo45hn1l6enh58xbk6q.htm&docsetTargetAnchor=p12w83qukrpbf6n1rh6hhjab3dgk&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0dkmxc4jwo45hn1l6enh58xbk6q.htm&docsetTargetAnchor=p12w83qukrpbf6n1rh6hhjab3dgk&locale=en

When you use SAS/CONNECT or SAS/SHARE software, SAS calls the REMOTE
engine. Usually, you should not specify the REMOTE engine in a LIBNAME
statement, because the client automatically determines which engine to use.

Legacy Engines

V6 Compatibility Engine

The SAS 6 compatibility engine can automatically support some processing of SAS
6 files in SAS 9 without requiring you to convert the file to the SAS 9 format. For
more information, see the Migration Focus Area at support.sas.com/migration.

Tape Engines

The tape engines are sequential engines and are typically used for legacy data
storage.

A tape engine processes SAS files on storage media that do not provide random
access methods (for example, tape or sequential format on disk). The tape engines
require less overhead than the V9 engine because sequential access is simpler than
random access. The following tape engines are available:

n V9TAPE (alias TAPE) processes SAS 9, SAS 8, and SAS 7 files.

n V6TAPE processes SAS 6 files.

Before you store SAS libraries in sequential format, consider the following
restrictions:

n DATA is the only member type that is useful for purposes other than backup and
restore. Member types CATALOG, VIEW, and MDDB are supported for backup
and restore purposes only.

n You cannot use random (direct) access with sequential SAS data sets. Some
examples of direct access are the use of indexes, or the use of the POINT= or
KEY= options in the SET or MODIFY statements.

n The DATASETS procedure is not supported.

n Update processing is not supported.

n Audit trails, extended attributes, generation data sets, indexes, integrity
constraints, item stores, and AES-encrypted data are not supported.

n You cannot reference more than one data set from a sequential library in a
single DATA step or PROC step. However:

o You can access two or more SAS files in different sequential libraries or on
different tapes at the same time, if enough tape drives are available.

Engine Characteristics 295

http://support.sas.com/rnd/migration

o You can access a SAS file during one DATA or PROC step. You can then
access another SAS file in the same sequential library or on the same tape
during a later DATA or PROC step.

o You can use the OPEN=DEFER option of the SET statement in the DATA
step to delay opening multiple data sets. OPEN=DEFER opens the first data
set during the compilation phase and opens subsequent data sets during the
execution phase. See the SET statement.

n The tape engines are not supported on Windows.

Operating Environment Information: For more details about storing and accessing
SAS files in sequential format, see the following documentation:

n SAS Companion for UNIX Environments

n SAS Companion for z/OS

Transport Engine

The XPORT engine creates files in transport format, which uses an environment-
independent standard for character encoding and numeric representation.
Transport files that are created by the XPORT engine can be transferred across
operating environments. The transport file can be read on the target environment
by using the XPORT engine with the DATA step or the COPY procedure (or the
COPY statement of the DATASETS procedure).

The XPORT engine is not a best practice for moving SAS files across environments.
For other methods, see “Strategies for Moving and Accessing SAS Files” in Moving
and Accessing SAS Files. If you are migrating to a newer SAS release, see “MIGRATE
Procedure” in Base SAS Procedures Guide.

SPSS Engine

The SPSS engine reads data that was created in the external application SPSS. The
engine reads the SPSS portable file format, which has a .por extension. This file
format is analogous to the transport format for SAS data sets. An SPSS portable
file (also called an export file) must be created by using the SPSS EXPORT
command. Under z/OS, the SPSS engine also reads SPSS Release 9 files and SPSS-
X files in either compressed or uncompressed format. The SPSS engine is a
sequential engine.

To read SPSS files in SAS, choose one of these methods:

n If you have a .por file, you can use the SPSS engine or the CONVERT procedure
to convert from SPSS to a SAS data set. These methods are documented in the
SAS documentation for your operating environment. See “Operating
Environment Information” on page 298.

n If you have a .sav file and not a .por file, you must have a license to
SAS/ACCESS to PC Files. Use the IMPORT procedure to convert from SPSS to a
SAS data set. See SAS/ACCESS Interface to PC Files: Reference.

296 Chapter 13 / SAS Engines

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=v_001&docsetTarget=n1jpv5olim02bvn1vkvgsz2zntc7.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=v_001&docsetTarget=n1jpv5olim02bvn1vkvgsz2zntc7.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1kv04orx2cy03n1urntor37gzkz.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1kv04orx2cy03n1urntor37gzkz.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

n For examples, see also Sample 34629: Coming to SAS from SPSS.

Access Patterns
SAS procedures and statements can read observations in SAS data sets in one of
four general patterns:

sequential access
processes observations one after the other, starting at the beginning of the file
and continuing in sequence to the end of the file. For example, the XMLV2 and
JSON engines perform sequential processing only.

random access
processes observations according to the value of some indicator variable
without processing previous observations. For example, the POINT= option in
the SET statement requires random access to observations as well as the ability
to calculate observation numbers from record identifiers within the file.

BY-group access
groups and processes observations in order of the values of the variables that
are specified in a BY statement.

multiple-pass
performs two or more passes on data when required by SAS statements or
procedures.

If a statement or procedure tries to access a data set whose engine does not
support the required access pattern, SAS prints an appropriate error message in the
SAS log.

Levels of Locking
When a SAS data set can be opened concurrently by more than one SAS session or
by more than one statement or procedure within a single session, the level of
locking is important. The level of locking determines how many sessions,
procedures, or statements can read and write to the file at the same time. Some
engines do not support locking at all, or do not support some of these levels. For
details, see the engine documentation.

Library-level locking
specifies that concurrent access is controlled at the library level. This locking
restricts concurrent access to only one Update process to the library.

Member-level (data set) locking
enables Read access to many sessions, statements, or procedures. This locking
restricts all other access to the SAS data set when a session, statement, or
procedure acquires Update or Output access.

Engine Characteristics 297

http://support.sas.com/kb/34/629.html

Record-level (row) locking
enables concurrent Read access and Update access to the SAS data set by more
than one session, statement, or procedure. This locking prevents concurrent
Update access to the same observation.

By default, SAS provides the greatest possible level of concurrent access, while
guaranteeing the integrity of the data. Here are the ways of controlling the locking
level:

n Although controlling the access level yourself is usually not needed, the
CNTLLEV= data set option enables locking at the library, record, or member
level.

n The LOCK statement acquires, lists, or releases an exclusive lock on an existing
SAS file.

n Some SAS products, such as SAS/ACCESS and SAS/SHARE, contain engines
that support enhanced session-management services and file-locking
capabilities.

Operating Environment Information
Engine availability and engine options are host dependent. See the SAS
documentation for your operating environment:

n SAS Companion for UNIX Environments

n SAS Companion for Windows

n SAS Companion for z/OS

Examples: Use a SAS Engine to Process
SAS Data

Example: Assign the V9 Engine in a LIBNAME
Statement

Example Code

This library assignment specifies the V9 engine.

298 Chapter 13 / SAS Engines

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0ta56uht2h9lgn1xwvs7uipanik.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p0pc4mpj7xzxs4n1257fgz2tkuyb.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

libname myfiles v9 'c:\examples'; /* 1 */
data myfiles.myclass; /* 2 */
 set sashelp.class;
run;

1 The LIBNAME statement assigns the myfiles libref and the V9 engine to a
physical location.

2 The DATA step creates the myclass data set in the myfiles library by copying
the class data set in the sashelp library.

Example Code 13.1 SAS Log Showing a Successful V9 Library Assignment

1 libname myfiles v9 'c:\examples';
NOTE: Libref MYFILES was successfully assigned as follows:
 Engine: V9
 Physical Name: c:\examples
2 !
3 data myfiles.myclass;
4 set sashelp.class;
5 run;

NOTE: There were 19 observations read from the data set SASHELP.CLASS.
NOTE: The data set MYFILES.MYCLASS has 19 observations and 5 variables.

Key Ideas

n The LIBNAME statement is a common way to programmatically assign a library. A
library assignment consists of a libref, an engine, a physical location, and options
that are specific to the engine or environment.

n The shipped default Base SAS engine is BASE. In SAS®9 and SAS® Viya®, the BASE
engine is an alias for the V9 engine. If you do not specify an engine name when you
create a new library, and if you have not specified the ENGINE system option, then
the V9 engine is automatically selected. If the library location already contains
SAS files, then SAS might be able to assign the correct engine based on those files.
For example, if the location contains V9 data sets only, then SAS assigns the V9
engine. However, if a library location contains a mix of different engine files, then
SAS might not assign the engine you want. Therefore, specifying the engine is a
best practice.

See Also

n “Examples: Access Data by Using a Libref” on page 259

n “Elements of a Library Assignment” on page 250

n “Default Base SAS Engine (V9 Engine)” on page 294

Examples: Use a SAS Engine to Process SAS Data 299

Example: Assign the SPD Engine in a LIBNAME
Statement

Example Code

The following LIBNAME statement for the SPD Engine is very similar to a LIBNAME
statement for the V9 engine.

libname mylib spde 'c:\examples' /* 1 */
 datapath=('d:\mydatadir') /* 2 */
 indexpath=('e:\myindexdir'); /* 3 */

1 This portion of the LIBNAME statement assigns the mylib libref and the SPD
Engine to a primary path name. The first (and usually only) metadata file for a
data set is always stored in the library’s primary path.

2 Optionally, you can assign one or more path names in the DATAPATH= option to
store data partitions. Otherwise, the data partition files are stored in the
primary path.

3 Optionally, you can assign one or more path names in the INDEXPATH= option
to store index files. Otherwise, the index files are stored in the primary path.

Example Code 13.2 SAS Log Showing a Successful SPD Engine Library Assignment

1 libname mylib spde 'c:\examples'
2 datapath=('d:\mydatadir')
3 indexpath=('e:\myindexdir');
NOTE: Libref MYLIB was successfully assigned as follows:
 Engine: SPDE
 Physical Name: c:\examples\
3 !

Key Ideas

n The SPD Engine is an alternative Base SAS engine.

n The SPD Engine is designed for high-speed processing of very large tables. The
engine uses threads to read data very rapidly and in parallel, executing on multiple
CPUs. Contributing to this performance is the partitioned file format, which can
take advantage of distributed environments.

n Although SPD Engine stores a data set in multiple files, you can process an SPD
Engine data set very similarly to a V9 engine data set. Most of the Base SAS
language works very well with an SPD Engine data set. However, the engine

300 Chapter 13 / SAS Engines

supports some language elements that are specific to its processing and storage
optimizations. For differences from V9 engine capabilities, see the documentation.

See Also

n SAS Scalable Performance Data Engine: Reference

n “Engine Characteristics” on page 292

Example: Read and Write SAS Data in Hadoop by
Using the SPD Engine

Example Code

The following example assigns a Base SAS library to a Hadoop cluster.

options set=SAS_HADOOP_CONFIG_PATH='\\myconfigpath'; /* 1 */
options set=SAS_HADOOP_JAR_PATH='\\myconfigpath';

libname mydata spde '/user/abcdef' hdfs=yes accelwhere=yes; /* 2 */

1 The SET= system option defines environment variables for Hadoop. If these
environment variables are already set (for example, in the SAS configuration file
or SAS invocation), do not submit these lines of code. If these environment
variables are not correctly set, then the following LIBNAME statement produces
errors in the SAS log.

2 The LIBNAME statement assigns the mydata libref to the SPD Engine and a
directory in the Hadoop cluster. The HDFS=YES argument specifies to connect
to the Hadoop cluster that is defined in the Hadoop cluster configuration files.
The ACCELWHERE=YES option requests that data subsetting be performed by
a MapReduce program in the Hadoop cluster.

Key Ideas

n The SPD Engine is an alternative Base SAS engine that can read and write SAS
data on a traditional file system or on Hadoop. The engine does not require you to
license additional SAS products such as SAS/ACCESS, but you must be running a
supported Hadoop distribution.

Examples: Use a SAS Engine to Process SAS Data 301

http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

n Customers often choose Hadoop for low-cost storage of very large data. The
distributed storage and processing of the SPD Engine works well with the Hadoop
file system (HDFS). In addition, the engine can optimize most WHERE expressions
by automatically submitting a MapReduce program in the Hadoop cluster.

n The engine can read SPD Engine data sets on Hadoop. After you use the engine to
store a data set on Hadoop, you can use most of the Base SAS language for
processing the data. However, the engine supports some language elements that
are specific to its processing and storage on Hadoop.

See Also

n SAS SPD Engine: Storing Data in the Hadoop Distributed File System

n SAS Hadoop Configuration Guide for Base SAS and SAS/ACCESS

Example: Avoid Truncation by Using the CVP
Engine with the V9 Engine

Example Code

To run this example, first create a data set named myclass as in “Example: Assign
the V9 Engine in a LIBNAME Statement” on page 298. Run PROC CONTENTS to
see the length of the variables:

libname myfiles v9 'c:\examples';
proc contents data=myfiles.myclass;
run;

In the PROC CONTENTS output, notice the two character variables. Name has a
length of 8, and Sex has a length of 1.

Output 13.1 PROC CONTENTS Showing Variable Lengths before Expansion

302 Chapter 13 / SAS Engines

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=engspdehdfsug&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hadoopbacg&docsetTarget=titlepage.htm

The example below uses the CVP engine with the V9 engine to expand the size of
character variables. The CVP engine can help you avoid truncation if you copy a
data set to an encoding that uses more bytes to represent the characters.

libname srclib cvp 'c:\examples' cvpengine=v9 cvpmult=2.5; /* 1 */
libname target v9 'c:\temp'; /* 2 */
proc copy in=srclib out=target; /* 3 */
run;

proc contents data=target.myclass; /* 4 */
run;

1 This LIBNAME statement assigns the srclib library to the CVP engine and the
location of the data that you want to copy. The CVPENGINE= option specifies
the V9 engine as the underlying engine to process the data. The CVPMULT=
option specifies a multiplication factor of 2.5 to expand all character variables.

2 This LIBNAME statement assigns the target library to contain the copied data.

3 The COPY procedure copies the srclib library to the target library. During the
copy, the CVP engine expands the character variable lengths 2.5 times larger.

4 The CONTENTS procedure shows that the lengths of the character variables
have been multiplied by 2.5:

For Name, 8 × 2.5 = 20.

For Sex, 1 × 2.5 = 2.5, which is 3 when rounded up to a whole number.

Output 13.2 PROC CONTENTS Showing Variable Lengths after Expansion

Key Ideas

n When you copy a data set to an encoding that uses more bytes to represent the
characters, truncation might occur if the column length does not accommodate the
larger character size. For example, a character might be represented in wlatin1
encoding as one byte but in UTF-8 as two bytes.

n If an error in the log states character data was lost during transcoding, it
usually indicates that truncation has occurred. You can troubleshoot the error by
using the CVP engine to expand the length of character variables.

Examples: Use a SAS Engine to Process SAS Data 303

n The CVPMULTIPLIER=2.5 value is usually sufficient to avoid truncation. If disk
space is a concern, try a smaller value such as 1.5.

n The default CVPFORMATWIDTH=YES option expands the length for formats but
does not affect user-defined formats. For user-defined formats, see “Example:
Avoid Truncation in Formats When Migrating Catalogs” in SAS V9 LIBNAME
Engine: Reference.

n If you copy a library to a different operating environment, or to a different
character encoding, you probably want to specify options such as NOCLONE for
PROC COPY. NOCLONE does not copy certain data set attributes, such as data
representation and character encoding, so that the library is compatible in the
target environment.

As an alternative to the NOCLONE option, you can use the OVERRIDE= option to
specify ENCODING= and OUTREP= options. This method keeps other data set
attributes from the source library, so make sure that you want those attributes.

n If the library contains indexes or integrity constraints, then cross-environment
data access (CEDA) is an important issue. If you have experienced truncation
across environments, then SAS is probably using CEDA to access the files. Check
the log for a CEDA message.

PROC COPY does not copy indexes or integrity constraints under CEDA
processing, but PROC MIGRATE does. However, PROC MIGRATE does not support
the CVP engine to expand character column lengths. Therefore, if you want to
migrate indexes or integrity constraints, you must copy the library with the CVP
engine first and then migrate (in other words, a two-step process). See “Example:
Avoid Truncation When Migrating a SAS Library by Using a Two-Step Process” in
SAS V9 LIBNAME Engine: Reference.

n PROC COPY or the COPY statement of the DATASETS procedure do not preserve
an audit trail.

See Also

n SAS National Language Support (NLS): Reference Guide

n “Compatibility and Migration” in SAS V9 LIBNAME Engine: Reference

n “COPY Procedure” in Base SAS Procedures Guide

304 Chapter 13 / SAS Engines

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0aocxsvfm1v90n1wfv10spn5irh.htm&docsetTargetAnchor=n15yg3x16ir5cwn1hq0s2bvl6zyh&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0aocxsvfm1v90n1wfv10spn5irh.htm&docsetTargetAnchor=n15yg3x16ir5cwn1hq0s2bvl6zyh&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0aocxsvfm1v90n1wfv10spn5irh.htm&docsetTargetAnchor=n15yg3x16ir5cwn1hq0s2bvl6zyh&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=n15b0bl4gwdvz3n1wljwvybvb4f9&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=n15b0bl4gwdvz3n1wljwvybvb4f9&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=n15b0bl4gwdvz3n1wljwvybvb4f9&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0xntq65hjj4jkn1nrryzly5fm7u.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p04y85z9f13uaan10s1k40ptx6gs.htm&locale=en

Example: Load a SAS Data Set to a CAS Server

Example Code

The following example uses the DATA step to load a SAS data set into memory as a
SAS Cloud Analytic Services (CAS) table.

cas casauto host="cloud.example.com" port=5570; /* 1 */

libname mycas cas; /* 2 */
data mycas.cars (promote=yes); /* 3 */
 set sashelp.cars;
run;
proc contents data=mycas.cars; /* 4 */
run;

1 The CAS statement starts a CAS session and specifies casauto as the CAS
session name. Use your connection information in the PORT= and HOST=
options.

2 The LIBNAME statement assigns the mycas libref to the CAS engine. The
SESSREF= LIBNAME option is not specified, so the engine uses the casauto
session.

3 The DATA step copies the SAS data set sashelp.cars to the CAS session. The
PROMOTE=YES data set option promotes the table with global scope.

4 PROC CONTENTS shows the mycas.cars table is available on the CAS server
for the duration of the session. After data is loaded into memory, subsequent
steps can process the data in memory. Loading and processing are done in
separate steps.

Examples: Use a SAS Engine to Process SAS Data 305

Output 13.3 Portion of PROC CONTENTS Output for mycas.cars

Key Ideas

n You can submit a LIBNAME statement that uses the CAS engine to connect your
SAS session to a CAS session. You must have access to a CAS server and an
existing CAS session.

n The CAS LIBNAME engine with the DATA step is one way of loading SAS data to
the CAS server as an in-memory table. Other methods might be more efficient for
large tables.

n After you load data to the CAS server, you can execute SAS procedures or the
DATA step from your SAS session by referencing the SAS libref and table name.
You do not process the table in memory in the same DATA step that you use to
load the table into memory. Loading and processing are done in separate steps.

n Tables are not automatically saved when they are loaded to a caslib. You can use
the CASUTIL procedure to save tables. Native CAS tables have the file
extension .sashdat.

306 Chapter 13 / SAS Engines

See Also

n “LIBNAME Statement: CAS Engine” in SAS Cloud Analytic Services: User’s Guide

n “Example: Load SAS Data to CAS by Using the CASUTIL Procedure” in SAS V9
LIBNAME Engine: Reference

n An Introduction to SAS Viya Programming

Example: Set a Default Engine

Example Code

The following invocation command is an example for the Windows file system. The
path to the executable might be different in your deployment.

In this example, the ENGINE system option assigns the SPD Engine as the default
for new data sets.

"c:\program files\SASHome\SASFoundation\9.4\sas.exe" -engine spde

Key Ideas

n The ENGINE system option cannot be set interactively. You must specify ENGINE
in a configuration file, at invocation, or in an environment variable.

n The shipped default Base SAS engine is BASE. In SAS®9 and SAS® Viya®, the BASE
engine is an alias for the V9 engine. If you do not specify an engine name when you
create a new library, and if you have not specified the ENGINE system option, then
the V9 engine is automatically selected. If the library location already contains
SAS files, then SAS might be able to assign the correct engine based on those files.
For example, if the location contains V9 data sets only, then SAS assigns the V9
engine. However, if a library location contains a mix of different engine files, then
SAS might not assign the engine you want. Therefore, specifying the engine is a
best practice.

See Also

n “ENGINE= System Option” in SAS System Options: Reference

Examples: Use a SAS Engine to Process SAS Data 307

http://documentation.sas.com/?docsetId=casref&docsetVersion=v_002&docsetTarget=n14gqqdmdco6wzn17eb5v0o0p679.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0m1rfyq51m56yn1kxs1os9gkoch.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0m1rfyq51m56yn1kxs1os9gkoch.htm&locale=en
http://documentation.sas.com/?docsetId=pgmdiff&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0z1880hy56m9gn105dlswu7e0sk.htm&locale=en

n “Default Base SAS Engine (V9 Engine)” on page 294

n “Default Engine for a Mixed Library” in SAS V9 LIBNAME Engine: Reference

n “Operating Environment Information” on page 298

Examples: Use a SAS Engine to Process
External Data

Example: Read a Comma-Delimited File

Example Code

In this example, the IMPORT procedure imports a file that contains comma-
separated values.

filename chol temp; /* 1 */
proc http /* 2 */
 url="http://support.sas.com/documentation/onlinedoc/viya/
exampledatasets/cholesterol.csv"
 out=chol;
quit;
proc import datafile=chol /* 3 */
 out=work.mycholesterol
 dbms=csv
 replace;
run;
proc print data=work.mycholesterol; /* 4 */
run;

1 The FILENAME statement assigns the chol fileref. The TEMP option specifies
that the file is temporary, so a path name is not necessary.

2 The HTTP procedure specifies the URL of the cholesterol.csv input file. The
data is written to the chol fileref.

3 PROC IMPORT reads the comma-delimited data and creates the mycholesterol
data set.

4 The PRINT procedure prints the data set. The output shows that the file was
imported correctly, including the column names.

The output shows that the file was imported correctly, including the column names.

308 Chapter 13 / SAS Engines

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0dkmxc4jwo45hn1l6enh58xbk6q.htm&docsetTargetAnchor=n125ml3x475l6pn1ujldzaao78s0&locale=en

Output 13.4 PROC PRINT of work.mycholesterol

Key Ideas

n Base SAS software can import and export some external text files without using a
SAS/ACCESS engine. These files are usually referred to as raw data or delimited
data. The DATA step or PROC IMPORT can read data from a text file and provide
that data to the V9 engine for output to a SAS data set.

n If you want Base SAS to read or write a Microsoft Excel file, the file must have
a .csv extension. To import a file that has an Excel file extension of .xls or .xlsx,
you must have a license to SAS/ACCESS Interface to PC Files. In Excel, you can
save an Excel file as a .csv file.

n If you create a SAS data set from an Excel file, the data is static and does not
change to reflect the underlying Excel data. If you want to keep data in Excel as an
ongoing data store that you can query from SAS, then use the XLSX or EXCEL
engine. You must have a license to SAS/ACCESS Interface to PC Files.

See Also

n “Default Base SAS Engine (V9 Engine)” on page 294

n Chapter 15, “Raw Data,” on page 353

n “IMPORT Procedure” in Base SAS Procedures Guide

n “Comparing SAS LIBNAME Engines for PC Files Data” in SAS/ACCESS Interface
to PC Files: Reference

Examples: Use a SAS Engine to Process External Data 309

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1qn5sclnu2l9dn1w61ifw8wqhts.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n1t1gvr8q2u9xjn1bm1rpej2wkw9.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n1t1gvr8q2u9xjn1bm1rpej2wkw9.htm&locale=en

Example: Read Microsoft Excel Data by Using a
SAS/ACCESS Engine and PROC IMPORT

Example Code

This example uses the XLSX engine and PROC IMPORT to import Excel data. To
create the data for this example, start Microsoft Excel and open the cholesterol.csv
file that you used in “Example: Read a Comma-Delimited File” on page 308. (The
cholesterol.csv file can be downloaded from http://support.sas.com/
documentation/onlinedoc/viya/exampledatasets/cholesterol.csv.) In Excel, save
the file with an .xlsx extension. The following code imports cholesterol.xlsx as a
SAS data set, mycholesterol.

options validvarname=v7; /* 1 */
proc import datafile='C:\examples\cholesterol.xlsx' /* 2 */
 dbms=xlsx /* 3 */
 out=work.mycholesterol /* 4 */
 replace; /* 5 */
run;

1 The VALIDVARNAME=V7 statement forces SAS to convert spaces to
underscores when it converts column names to variable names.

2 The DATAFILE= option specifies the path for the input file.

3 The DBMS= option specifies the type of data to import. When you import an
Excel workbook, specify DBMS=XLSX. PROC IMPORT calls the XLSX engine, so
you do not need to submit a LIBNAME statement.

4 The OUT= option identifies the output SAS data set.

5 The REPLACE option overwrites an existing SAS data set.

Key Ideas

n The XLSX engine enables you to read data directly from Excel .xlsx files. You must
have a license to SAS/ACCESS Interface to PC Files. The XLSX engine supports
connections to Microsoft Excel 2007, 2010, and later files.

n SAS/ACCESS Interface to PC Files also provides the EXCEL engine for earlier
releases of Excel.

n Excel has different naming conventions than SAS. A best practice for reading Excel
data is to set VALIDVARNAME=V7. This option converts spaces to underscores,
and truncates names greater than 32 characters.

310 Chapter 13 / SAS Engines

http://support.sas.com/documentation/onlinedoc/viya/exampledatasets/cholesterol.csv
http://support.sas.com/documentation/onlinedoc/viya/exampledatasets/cholesterol.csv

n Date values are automatically converted to numeric SAS date values.

See Also

n SAS/ACCESS Interface to PC Files: Reference

n “IMPORT Procedure” in Base SAS Procedures Guide

n “VALIDVARNAME= System Option” in SAS System Options: Reference

Example: Create Data in a DBMS by Using a
SAS/ACCESS Engine

Example Code

In this example, a SAS DATA step creates a Teradata table. To run this example, you
must license a SAS/ACCESS interface.

libname mytddata teradata server=mytera user=myid password=mypw; /* 1 */
data mytddata.grades; /* 2 */
 input student $ test1 test2 final;
 datalines;
Fred 66 80 70
Wilma 97 91 98
;
proc datasets library=mytddata; /* 3 */
run;
quit;

1 The LIBNAME statement specifies the mytddata libref and TERADATA, which is
the engine nickname for SAS/ACCESS Interface to Teradata. The statement also
specifies connection options for Teradata. Change these options to specify your
SAS/ACCESS connection values and any other options you need.

2 The DATA step creates a table named grades. The table is in the Teradata
DBMS and is not a SAS data set.

3 The PROC DATASETS output for the mytddata library shows that the engine is
Teradata. For the grades table, the SAS member type is DATA and the DBMS
member type is TABLE.

Examples: Use a SAS Engine to Process External Data 311

http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1qn5sclnu2l9dn1w61ifw8wqhts.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en

Output 13.5 PROC DATASETS Output Showing the DBMS Directory Information

Output 13.6 PROC DATASETS Output Showing the Library Contents for DBMS
Content

Key Ideas

n If you license a SAS/ACCESS interface for your DBMS data, you can submit a
LIBNAME statement in SAS to run SAS code against the DBMS data. SAS can
create or process a DBMS table as if it were a SAS data set.

n Most SAS/ACCESS engines fully support the Base SAS language. A few Base SAS
features, such as catalogs, are specific to the V9 engine and are not available in
SAS/ACCESS engines. The SAS/ACCESS engines support some language
elements that are specific to the data source. For details, see the documentation.

n Some SAS/ACCESS interfaces are case sensitive. You might need to change the
case of table or column names to comply with the requirements of your DBMS.

See Also

n SAS/ACCESS documentation

n “DATA Statement” in SAS DATA Step Statements: Reference

312 Chapter 13 / SAS Engines

https://support.sas.com/en/software/sas-access.html#documentation
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en

Example: Embed a SAS/ACCESS LIBNAME
Statement in a PROC SQL View

Example Code

The following example embeds a SAS/ACCESS LIBNAME statement in a PROC
SQL view.

libname viewlib v9 '/mydata'; /* 1 */
proc sql;
 create view viewlib.mygrades as /* 2 */
 select *
 from mytddata.grades /* 3 */
 using libname mytddata teradata
 server=mytera
 user=myid password=mypw; /* 4 */
quit;
proc print data=viewlib.mygrades noobs; /* 5 */
run;

1 The V9 engine LIBNAME statement assigns the viewlib libref to the location
where the SAS view will be stored.

2 The CREATE VIEW statement in the SQL procedure creates the mygrades view
in the viewlib library.

3 The mytddata.grades table is referenced in the view.

4 The USING argument embeds the LIBNAME statement for the SAS/ACCESS
Interface to Teradata engine.

5 The PRINT procedure executes the viewlib.mygrades view, which references
the mytddata.grades table by using the embedded LIBNAME statement.

Here is the PROC PRINT output.

Output 13.7 PROC PRINT of viewlib.mygrades

Examples: Use a SAS Engine to Process External Data 313

Key Ideas

n Most SAS/ACCESS engines require several connection options. Embedding the
LIBNAME statement enables you to store DBMS connection information in the
view for ease of use. However, if the connection information is expected to change
(for example, a different user ID), then this practice is not recommended.

n To embed a LIBNAME statement in a PROC SQL view, specify the USING clause of
the CREATE VIEW statement. You can embed a LIBNAME statement for most
SAS/ACCESS engines, the V9 engine, and other engines.

n When PROC SQL executes the SAS view, the SELECT statement assigns the libref
and establishes the connection to the DBMS. The scope of the libref is local to the
SAS view and does not conflict with identically named librefs that might exist in
the SAS session. When the query finishes, the connection is terminated and the
libref is deassigned.

n When you create a V9 engine view of a DBMS table, the data stays in the DBMS.
You can run a procedure or DATA step against a view at any time to get the latest
data from the underlying data source.

However, if you need the data to remain constant for multiple steps, a better
choice is to read the data once, and store it in a SAS data set. This practice can
also benefit performance. Reading a SAS data set multiple times is usually more
efficient than reading a DBMS table multiple times.

See Also

n “LIBNAME Statement: External Databases” in SAS/ACCESS for Relational
Databases: Reference

n “CREATE VIEW” in SAS SQL Procedure User’s Guide

n “SAS Views of DBMS Data” in SAS/ACCESS for Relational Databases: Reference

n “SAS Views” in SAS V9 LIBNAME Engine: Reference

n SAS/ACCESS documentation

314 Chapter 13 / SAS Engines

http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n0v059azebcuepn1o8x4c7wi1pfs.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n0v059azebcuepn1o8x4c7wi1pfs.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n0nolnbokay91in1gouzgw3xzl5e.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=p142j988nfaq6in14uh4bzlku34u.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p03xrihh99de3rn1lcmreflkm8fa.htm&locale=en
https://support.sas.com/en/software/sas-access.html#documentation

Example: Access DBMS Data by Using the SQL
Pass-Through Facility

Example Code

This PROC SQL example uses the SQL pass-through facility to send a query to a
Teradata table.

proc sql;
 connect to teradata as myconn (server=mytera
 user=myid password=mypw); /* 1 */
 select *
 from connection to myconn /* 2 */
 (select *
 from grades
 where final gt 90);
 disconnect from myconn; /* 3 */
quit;

1 The CONNECT statement establishes a connection to the DBMS.

2 The CONNECTION TO component in the FROM clause of a PROC SQL SELECT
statement retrieves data directly from a DBMS. The DBMS-specific query is
enclosed in parentheses.

3 The DISCONNECT statement terminates the connection to the DBMS.

Here is the result of the PROC SQL query.

Output 13.8 Output of PROC SQL Pass-Through Facility

Key Ideas

n The SQL pass-through facility is an extension of PROC SQL that enables you to
use DBMS-specific SQL syntax instead of SAS SQL syntax.

n You can use SQL pass-through facility statements in a PROC SQL query or store
them in a PROC SQL view.

n The pass-through facility consists of three statements and one component:

o The CONNECT statement establishes a connection to the DBMS.

Examples: Use a SAS Engine to Process External Data 315

o The EXECUTE statement sends dynamic, non-query DBMS-specific SQL
statements to the DBMS.

o The CONNECTION TO component in the FROM clause of a PROC SQL SELECT
statement retrieves data directly from a DBMS.

o The DISCONNECT statement terminates the connection to the DBMS.

See Also

n “SQL Pass-Through Facility” in SAS/ACCESS for Relational Databases: Reference

n “SAS Views of DBMS Data” in SAS/ACCESS for Relational Databases: Reference

n “SAS Views” in SAS V9 LIBNAME Engine: Reference

n SAS/ACCESS documentation

Example: Import XML Data by Using the XMLV2
Engine

Prerequisites

To run the XMLV2 example code, first create a file named nhl.xml that contains
the following XML data. Store this file in a location that is accessible by your SAS
session.

<?xml version="1.0" encoding="iso-8859-1" ?>
<NHL>
 <CONFERENCE> Eastern
 <DIVISION> Southeast
 <TEAM name="Thrashers" abbrev="ATL" />
 <TEAM name="Hurricanes" abbrev="CAR" />
 <TEAM name="Panthers" abbrev="FLA" />
 <TEAM name="Lightning" abbrev="TB" />
 <TEAM name="Capitals" abbrev="WSH" />
 </DIVISION>
 </CONFERENCE>

 <CONFERENCE> Western
 <DIVISION> Pacific
 <TEAM name="Stars" abbrev="DAL" />
 <TEAM name="Kings" abbrev="LA" />
 <TEAM name="Ducks" abbrev="ANA" />
 <TEAM name="Coyotes" abbrev="PHX" />
 <TEAM name="Sharks" abbrev="SJ" />

316 Chapter 13 / SAS Engines

http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n0zrxodm0bij90n11r2fhkxrjit1.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=p142j988nfaq6in14uh4bzlku34u.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p03xrihh99de3rn1lcmreflkm8fa.htm&locale=en
https://support.sas.com/en/software/sas-access.html#documentation

 </DIVISION>
 </CONFERENCE>
</NHL>

Example Code

The following example uses the XMLV2 engine to import XML data. You can
process XML data as SAS data sets in memory, without creating permanent SAS
data sets.

filename nhl 'c:\example\nhl.xml'; /* 1 */
filename map 'c:\output\nhlgenerate.map'; /* 2 */
libname nhl xmlv2 automap=replace xmlmap=map; /* 3 */
proc print data=nhl.team noobs; /* 4 */
 var TEAM_name TEAM_abbrev;
run;

1 The first FILENAME statement assigns the file reference nhl to the physical
location of the XML document nhl.xml that will be imported.

2 The second FILENAME statement assigns the file reference map to a physical
location to store the XMLMap nhlgenerate.map that will be generated by SAS.

3 The LIBNAME statement assigns the nhl library to the XMLV2 engine. The
AUTOMAP=REPLACE option specifies to automatically generate an XMLMap
and to replace the XMLMap if it already exists. The XMLMAP= option specifies
the fileref of the XMLMap.

4 PROC PRINT produces output, verifying that the import was successful.

Here is the output from PROC PRINT.

Output 13.9 PROC PRINT of Data Set Imported from nhl.xml

Examples: Use a SAS Engine to Process External Data 317

Key Ideas

n The Base SAS XMLV2 engine provides sequential access to read (import) XML
data. The engine can also write (export) SAS data sets as XML data.

n The engine creates temporary data sets in memory. To create permanent data sets,
reference the temporary data sets in the DATA step or in PROC COPY.

n One XML file can contain multiple related data sets. See the documentation for an
example that imports an XML document as multiple SAS data sets.

n The engine can automatically create an XMLMap of the data in an XML file. To
save the map, specify the MAP= option and AUTOMAP=REPLACE in the LIBNAME
statement. Then you can open the map in a text editor to customize it. After you
edit a map, specify the MAP= option and AUTOMAP=REUSE to avoid overwriting
your customizations.

n You can also generate and customize an XMLMap by using SAS XML Mapper, a
graphical interface.

See Also

n SAS XMLV2 and XML LIBNAME Engines: User’s Guide

n “FILENAME Statement” in SAS Global Statements: Reference

Example: Import JSON Data by Using the JSON
Engine

Example Code

The following example uses the SAS JSON engine to read JSON data. The example
creates temporary, in-memory SAS data sets for analysis.

To run this example, first copy the JSON code for example.json from “LIBNAME
Statement: JSON Engine” in SAS Global Statements: Reference. Create the file in a
location that is accessible by your SAS session.

libname mydata json 'c:\examples\example.json';
proc datasets lib=mydata;
run;
quit;

318 Chapter 13 / SAS Engines

http://documentation.sas.com/?docsetId=engxml&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1jfdetszx99ban1rl4zll6tej7j.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1jfdetszx99ban1rl4zll6tej7j.htm&locale=en

Here is the PROC DATASETS output, showing the SAS data sets imported from
example.json.

Output 13.10 PROC DATASETS Output of SAS Data Sets Imported from JSON

Key Ideas

n The Base SAS JSON engine provides read-only, sequential access to JSON data.

n The engine creates temporary data sets in memory. To create permanent data sets,
reference the temporary data sets in the DATA step or in PROC COPY.

n One JSON file can contain multiple related data sets. See the documentation for
an example that merges the imported data sets into a single data set.

n The engine automatically creates a map of the data in a JSON file. To save the
map, specify the MAP= option and AUTOMAP=CREATE in the LIBNAME
statement. Then you can open the map in a text editor to customize it. After you
edit a map, specify the MAP= option and AUTOMAP=REUSE to avoid overwriting
your customizations.

n To export a JSON file from a SAS data set, use the JSON procedure.

See Also

n “LIBNAME Statement: JSON Engine” in SAS Global Statements: Reference

n “JSON Procedure” in Base SAS Procedures Guide

Examples: Use a SAS Engine to Process External Data 319

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1jfdetszx99ban1rl4zll6tej7j.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0ie4bw6967jg6n1iu629d40f0by.htm&locale=en

320 Chapter 13 / SAS Engines

14
SAS Data Sets

Definitions for SAS Data Sets . 322
Definition of a SAS Data Set . 322
Parts of a SAS Data Set . 322

Managing SAS Data Sets . 323
Ways to Read and Create SAS Data Sets . 323
Ways to Manage Variables in SAS Data Sets . 323
Ways to Read Rows in SAS Data Sets . 326
Rules for Naming SAS Data Sets . 327
Data Set Name Lists . 327

Generation Data Sets . 329

Examples: Create and Read SAS Data Sets . 329
Example: Read a Single SAS Data Set . 329
Example: Read Multiple SAS Data Sets . 331
Example: Read a SAS Data Set from a User-defined Library . 333
Example: Read a Permanent SAS Data Set Without Using a Libref 335

Examples: Control Variables and Observations in Data Sets . 337
Example: Keep Specific Variables in a Data Set . 337
Example: Control Which Observations are Read Using the WHERE Statement . . 339
Example: Read a Specific Observation First (FIRSTOBS) . 341
Example: Read a Range of Observations (FIRSTOBS and OBS) . 342
Example: Read an Observation Directly Using the POINT= Option 344

Examples: View Descriptor and Sort Information for Data Sets . 346
Example: View Descriptor Information for a Data Set . 346
Example: View Sort Information for a Data Set . 348

321

Definitions for SAS Data Sets

Definition of a SAS Data Set
A SAS data set is a tabular set of data whose contents are in a SAS file format. A
SAS data set contains the data and information about the data (metadata).

For more information about SAS data views, see “Definitions for SAS Views” on
page 393.

Parts of a SAS Data Set
When you create a SAS data set using the V9 engine, the data values and the
metadata are stored in a single file. When you create a SAS data set using the SAS
Scalable Performance Data Engine, the data values and the metadata are stored in
multiple separate files. Metadata is also called descriptor information. For specific
information about how data is stored based on the engine, see the following
documentation:

n For the V9 engine, see Parts of a SAS data set .

n For the SPD engine, see “Differences between the Default Base SAS Engine
Data Sets and the SPD Engine Data Sets” in SAS Scalable Performance Data
Engine: Reference and “Organizing SAS Data Using the SPD Engine” in SAS
Scalable Performance Data Engine: Reference.

n “Data” in SAS Cloud Analytic Services: Fundamentals.

To view the descriptor information (metadata) about a SAS data set, you can use
the CONTENTS procedure or the CONTENTS Statement in the DATASETS
procedure:

proc contents data=sashelp.air;
run;

If a data set is sorted, then additional sort information is added to the data set’s
metadata. For more information about sorting SAS data sets, see BY-Group
Processing on page 403.

322 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1r3xl25fm6a4in1son1zqjieax3.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=n1cfsh8mhovf18n1j3cv6s4yl4vy.htm&docsetTargetAnchor=p1qkw2fl4yshfxn1nj2zkrhc09yo&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=n1cfsh8mhovf18n1j3cv6s4yl4vy.htm&docsetTargetAnchor=p1qkw2fl4yshfxn1nj2zkrhc09yo&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=n1cfsh8mhovf18n1j3cv6s4yl4vy.htm&docsetTargetAnchor=p1qkw2fl4yshfxn1nj2zkrhc09yo&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=n156t2c5xlnxfln12c7lud2vjfrd.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=n156t2c5xlnxfln12c7lud2vjfrd.htm&locale=en
http://documentation.sas.com/?docsetId=casfun&docsetVersion=3.5&docsetTarget=n09ssmi0ko8uyfn1022ezo2hv0pm.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1v2467vdjbp7xn1222c7t3sejz3.htm&locale=en

Managing SAS Data Sets

Ways to Read and Create SAS Data Sets
The following table contains some common tasks for managing SAS data sets. This
table contains a small sampling of ways that you can manipulate and manage SAS
data sets. For more information about SAS engines, see Chapter 13, “SAS Engines,”
on page 289.

Table 14.1 Ways to Manage Data Sets

Task More Information

Read and Create a SAS data set on page 329 V9 Engine LIBNAME statement

Copy a SAS data set DATASETS procedure

Get information about a SAS data set

Many of the methods that you use to manage data sets are identical to the ones
that you use to manage SAS libraries on page 282.

Ways to Manage Variables in SAS Data Sets
By default, SAS writes all the variables and all the rows from the input data set to
the output data set. You can control which variables and rows that SAS reads and
writes by using any of the following language elements:

Table 14.2 Ways to Control the Reading and Writing of Variables and Rows

Category Task
More
Information

Control
variables
(columns)

Drop variables from output

Drop variables from input

DROP statement
and DROP= data
set option

Managing SAS Data Sets 323

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1e6qvz7mrer88n1pqs1ypx6d4it.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p19ugnx9u6hi6xn1t1gsiyg6l3ag.htm&docsetTargetAnchor=p19ugnx9u6hi6xn1t1gsiyg6l3ag&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hmips60w5w3yn1hj9klna7aplw.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0gekzko26oxpxn1ubtdqyiqenyz.htm&docsetTargetAnchor=p0gekzko26oxpxn1ubtdqyiqenyz&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1capr0s7tilbvn1lypdshkgpaip.htm&docsetTargetAnchor=p1ck0h1nzai40xn1pnpwcupxmqdh&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n15goor3q758g5n1eykstufkpdhy.htm&docsetTargetAnchor=n19f54oy7uzhofn15rj0x06wsl94&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1capr0s7tilbvn1lypdshkgpaip.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n15goor3q758g5n1eykstufkpdhy.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n15goor3q758g5n1eykstufkpdhy.htm&locale=en

Category Task
More
Information

Keep variables in the output data set

Keep variables in the input data set

KEEP statement
and KEEP= data
set option

Rename variables

Rename variables in the output data set output

RENAME
statement and
RENAME= data
set option

Control rows Conditionally select rows by using the WHERE
statement

Conditionally select rows by using the IF
statement

WHERE
statement

WHERE= data
set option

subsetting IF
statement

Delete rows based on a condition DELETE
statement

Remove a row REMOVE
statement

Write the current row to the output data set

Write the current row when a specified
condition is true

Create multiple rows from one line of input

Create one row from multiple lines of input

OUTPUT
statement

Directly access
rows

Modify rows based on row number

“Example: Read an Observation Directly Using
the POINT= Option” on page 344

POINT=
statement
option

Modify rows based on row number KEY= statement
option

Read a range of rows using the FIRSTOBS= and
OBS= data set options

Process a specific row first in the data set

FIRSTOBS= data
set option (V9
engine only)

Specify when to stop processing rows OBS= data set
option (V9
engine only)

324 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1nnrzzsw6rzrjn1p2jfky6pdv23.htm&docsetTargetAnchor=p1l5angatif3egn15828ewcjxnyh&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0vw9lyyxk1cxkn0zzfemrsr3t9a.htm&docsetTargetAnchor=p0yu4egxn1p3byn15grw495wb4dq&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1nnrzzsw6rzrjn1p2jfky6pdv23.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0vw9lyyxk1cxkn0zzfemrsr3t9a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0vw9lyyxk1cxkn0zzfemrsr3t9a.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0x16kvqkxxdx5n1t04voifvo8wo.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p09ikb01zz9knnn16y401utyq4un.htm&docsetTargetAnchor=p1h9ysw8b9mm4an137f03jb2awsw&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0x16kvqkxxdx5n1t04voifvo8wo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0x16kvqkxxdx5n1t04voifvo8wo.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p09ikb01zz9knnn16y401utyq4un.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p09ikb01zz9knnn16y401utyq4un.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&docsetTargetAnchor=p0t2giipfd4uhgn1mvld2wsi95k5&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&docsetTargetAnchor=p0t2giipfd4uhgn1mvld2wsi95k5&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&docsetTargetAnchor=p0jmh6ktof3qkxn13ks0qulusxiu&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&docsetTargetAnchor=p0jmh6ktof3qkxn13ks0qulusxiu&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0ny9o8t8hc5zen1qn3ft9dhtsxx.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0ny9o8t8hc5zen1qn3ft9dhtsxx.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p068vr83ld69mrn1fpvs67k5l5as.htm&docsetTargetAnchor=n18cqcs7vpypifn183wjbgzu0ff9&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p068vr83ld69mrn1fpvs67k5l5as.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p068vr83ld69mrn1fpvs67k5l5as.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1gx8o8pxm8pgdn1q68cmf5jnorw.htm&docsetTargetAnchor=p05sudvbvpk1u4n1qw2ges4igt97&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1gx8o8pxm8pgdn1q68cmf5jnorw.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1gx8o8pxm8pgdn1q68cmf5jnorw.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&docsetTargetAnchor=n0pyagjuba3u1ln1a1pjmtexc099&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&docsetTargetAnchor=n0pyagjuba3u1ln1a1pjmtexc099&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&docsetTargetAnchor=n0pyagjuba3u1ln1a1pjmtexc099&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&docsetTargetAnchor=p0xidhjtlzbky2n1hgz1pahcioad&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&docsetTargetAnchor=n08f406bfs627dn1j5dfzyfalinp&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n0x4qkfwk75ai2n1rlujbsb8w1qj&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p0u2yq8x2b1fu4n1m0d5hzam9hjv&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p0u2yq8x2b1fu4n1m0d5hzam9hjv&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p0u2yq8x2b1fu4n1m0d5hzam9hjv&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n0qeq0vwno1ktzn1wihg0gz4xnd9&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=p1uabnmk9o2b51n1j5r4hpg6ktfd&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=p1uabnmk9o2b51n1j5r4hpg6ktfd&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0c2av6mvf2zsrn1b48go7vk6bro.htm&docsetTargetAnchor=n158r1cdfsgecsn1vfs3k3biotrg&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0wjxoxrco6dsgn1ls5n3mbybcng.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0wjxoxrco6dsgn1ls5n3mbybcng.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&docsetTargetAnchor=n0gl8izyb6tklin1xxfgriftuq9w&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en

Table 14.3 Ways to Control the Reading and Writing of Variables and Rows

Category Task More Information

Control
variables

Drop variables from output

Drop variables from input

DROP statement and
DROP= data set option

V9 Engine LIBNAME
statement

Keep variables in the output data set

Keep variables in the input data set

KEEP statement and
KEEP= data set option

Rename variables

Rename variables in the output data set
output

RENAME statement and
RENAME= data set
option

Control rows Conditionally select rows by using the
WHERE statement

Conditionally select rows by using the IF
statement

WHERE statement and
subsetting IF statement

Delete rows based on a condition DELETE statement

Remove a row REMOVE statement

Write the current row to the output data
set

Write the current row when a specified
condition is true

Create multiple rows from one line of
input

Create one row from multiple lines of
input

OUTPUT statement

Directly
access rows

Modify rows based on row number POINT= statement
option

Modify rows based on row number KEY= statement option

Read a range of rows using the
FIRSTOBS= and OBS= data set options

FIRSTOBS= data set
option

Process a specific row first in the data
set

FIRSTOBS= system
option

Specify when to stop processing rows OBS= data set option

Managing SAS Data Sets 325

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1capr0s7tilbvn1lypdshkgpaip.htm&docsetTargetAnchor=p1ck0h1nzai40xn1pnpwcupxmqdh&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n15goor3q758g5n1eykstufkpdhy.htm&docsetTargetAnchor=n19f54oy7uzhofn15rj0x06wsl94&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1capr0s7tilbvn1lypdshkgpaip.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n15goor3q758g5n1eykstufkpdhy.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1e6qvz7mrer88n1pqs1ypx6d4it.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1e6qvz7mrer88n1pqs1ypx6d4it.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1nnrzzsw6rzrjn1p2jfky6pdv23.htm&docsetTargetAnchor=p1l5angatif3egn15828ewcjxnyh&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0vw9lyyxk1cxkn0zzfemrsr3t9a.htm&docsetTargetAnchor=p0yu4egxn1p3byn15grw495wb4dq&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1nnrzzsw6rzrjn1p2jfky6pdv23.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0vw9lyyxk1cxkn0zzfemrsr3t9a.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0x16kvqkxxdx5n1t04voifvo8wo.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p09ikb01zz9knnn16y401utyq4un.htm&docsetTargetAnchor=p1h9ysw8b9mm4an137f03jb2awsw&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p09ikb01zz9knnn16y401utyq4un.htm&docsetTargetAnchor=p1h9ysw8b9mm4an137f03jb2awsw&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0x16kvqkxxdx5n1t04voifvo8wo.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p09ikb01zz9knnn16y401utyq4un.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p09ikb01zz9knnn16y401utyq4un.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&docsetTargetAnchor=p0t2giipfd4uhgn1mvld2wsi95k5&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&docsetTargetAnchor=p0t2giipfd4uhgn1mvld2wsi95k5&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&docsetTargetAnchor=p0jmh6ktof3qkxn13ks0qulusxiu&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&docsetTargetAnchor=p0jmh6ktof3qkxn13ks0qulusxiu&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p068vr83ld69mrn1fpvs67k5l5as.htm&docsetTargetAnchor=n18cqcs7vpypifn183wjbgzu0ff9&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p068vr83ld69mrn1fpvs67k5l5as.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1gx8o8pxm8pgdn1q68cmf5jnorw.htm&docsetTargetAnchor=p05sudvbvpk1u4n1qw2ges4igt97&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1gx8o8pxm8pgdn1q68cmf5jnorw.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&docsetTargetAnchor=n0pyagjuba3u1ln1a1pjmtexc099&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&docsetTargetAnchor=n0pyagjuba3u1ln1a1pjmtexc099&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&docsetTargetAnchor=n0pyagjuba3u1ln1a1pjmtexc099&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&docsetTargetAnchor=n0pyagjuba3u1ln1a1pjmtexc099&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&docsetTargetAnchor=p0xidhjtlzbky2n1hgz1pahcioad&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&docsetTargetAnchor=p0xidhjtlzbky2n1hgz1pahcioad&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&docsetTargetAnchor=n08f406bfs627dn1j5dfzyfalinp&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&docsetTargetAnchor=n08f406bfs627dn1j5dfzyfalinp&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n0x4qkfwk75ai2n1rlujbsb8w1qj&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p0u2yq8x2b1fu4n1m0d5hzam9hjv&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p0u2yq8x2b1fu4n1m0d5hzam9hjv&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n0qeq0vwno1ktzn1wihg0gz4xnd9&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=p1uabnmk9o2b51n1j5r4hpg6ktfd&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0wjxoxrco6dsgn1ls5n3mbybcng.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0wjxoxrco6dsgn1ls5n3mbybcng.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0c2av6mvf2zsrn1b48go7vk6bro.htm&docsetTargetAnchor=n158r1cdfsgecsn1vfs3k3biotrg&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0c2av6mvf2zsrn1b48go7vk6bro.htm&docsetTargetAnchor=n158r1cdfsgecsn1vfs3k3biotrg&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0c2av6mvf2zsrn1b48go7vk6bro.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0c2av6mvf2zsrn1b48go7vk6bro.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&docsetTargetAnchor=n0gl8izyb6tklin1xxfgriftuq9w&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en

Ways to Read Rows in SAS Data Sets
You can access rows in data sets either sequentially or directly.

Sequential access
reads rows sequentially, in the order in which they appear in the physical file.
The SET, MERGE, UPDATE, and MODIFY statements read rows sequentially by
default. The SAS functions OPEN, FETCH, and FETCHOBS also read rows
sequentially.

Direct access

by row number
In the DATA step, to access rows directly by their row number, use the
POINT= option in the SET or MODIFY statements. The POINT= option
names a temporary variable whose current value determines which row that
a SET or MODIFY statement reads.

You can subset rows from one data set and combine them with rows from
another data set by using direct access methods, as follows:

data south;
 set revenue;
 if region=4;
 set expense point=_n_;
run;

by index
To directly access rows that are based on the values of one or more specified
variables, you must first create an index for the variables. An index is a
separate structure that contains the data values of the key variable or
variables, paired with a location identifier for the rows that contain the
value.

Once the index is created, you can then use the DATA step with the KEY=
option in the SET or MODIFY statement to directly access rows based on the
values of the indexed variable.

For example, suppose that you need to match information in one data set
with a specific value in a second data set. If the second data set is properly
indexed, you can use the KEY= option in the SET statement to perform a
“table lookup” on the indexed table to combine only those rows with the first
data set.

data combine;
 set invtory(keep=partno instock price);
 set partcode(keep=partno desc) key=partno;
run;

For another example, see “Modifying Observations Located by an Index” in
SAS DATA Step Statements: Reference.

Here are some methods for creating indexes:

326 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p0u2yq8x2b1fu4n1m0d5hzam9hjv&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=n0bef2ksq08u9yn1a0hj5zoetvzm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=n0bef2ksq08u9yn1a0hj5zoetvzm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n0qeq0vwno1ktzn1wihg0gz4xnd9&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n0qeq0vwno1ktzn1wihg0gz4xnd9&locale=en

Table 14.4 Ways to Create Indexes

Language Element Used Example

INDEX= data set option Create an Index Using the
INDEX= Data Set Option

INDEX CREATE statement (DATASETS
procedure)

“Modifying SAS Data Sets” in
Base SAS Procedures Guide

CREATE INDEX statement (SQL procedure) “Creating an Index” in SAS SQL
Procedure User’s Guide

Indexes can be created on SAS data sets that are created using the Base SAS
V9 Engine. For more information about creating indexes on SAS data sets,
see “Indexes” in SAS V9 LIBNAME Engine: Reference.

Rules for Naming SAS Data Sets
n “Data Set Names” on page 56

n Summary of Rules for Naming SAS Data Sets on page 61

n “Special Data Set Names” on page 59

n “Example: Create a SAS Data Set Name Containing a Special Character” on page
64 and “Example: Create a Two-Level Data Set Name” on page 70

Data Set Name Lists
A data set name list is a shorthand way of specifying multiple SAS data set names
in a statement or procedure.

A data set name list can be either a numbered range list or a name prefix list.

Numbered range list
data combine;
 set sales0 sales1 sales2 sales3 sales4 sales5;
run;

data combine;
 set sales0-sales5;
run;

n data set names in a numbered range list have the same name except for the
last character or characters, which are consecutive numbers.

Managing SAS Data Sets 327

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n1aaucjme18e43n1jfgz8zsijv88.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n1aaucjme18e43n1jfgz8zsijv88.htm&docsetTargetAnchor=n1te9tceklywtbn1p0ely8hndc4x&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n1aaucjme18e43n1jfgz8zsijv88.htm&docsetTargetAnchor=n1te9tceklywtbn1p0ely8hndc4x&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p03h320ajtd062n1d05vyoqso4yo.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0mfav25learpan1lerk79jsp30n.htm&docsetTargetAnchor=n0mfav25learpan1lerk79jsp30n&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0mfav25learpan1lerk79jsp30n.htm&docsetTargetAnchor=n0mfav25learpan1lerk79jsp30n&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n0cvv6ppmhcubdn0z54q91ip5vgk.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p15pjnz1edzj8xn12k6xnqjjy33d.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p15pjnz1edzj8xn12k6xnqjjy33d.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n13je192njez2on1g6l65w1yxs6r.htm&locale=en

n data set names in a numbered range list can begin with any number and end
with any number as long as the numbers are consecutive. For example, the
following SET statements refer to the same data sets:

proc datasets;
 copy in=work out=mysas;
 select d1-d3;
run; quit;

Note: If the numeric suffix contains leading zeros, the number of digits in the
suffix of the last data set name must be greater than or equal to the number of
digits in the first data set name. For example, the data set lists sales001–
sales99 causes an error. The data set list sales001–sales999 is valid.

Name prefix list (colon list)
A name prefix list is a shorthand way of specifying multiple data set names by
using a single name prefix followed by a colon. The shorthand (prefix) name
must begin with the same character or characters as the names that it
represents. A colon (:) is used to designate the end of the character string prefix.
For example, the following two DATA steps refer to the same data set:

data combine;
 set sales5 sales3 sales2 sal sal_weekly sales_monthly;
run;

data combine;
 set sal:;
run;

Data set name lists are typically used in these SAS language elements:

Statements in PROC DATASETS:

n COPY statement (“Copying Selected SAS Files” in Base SAS Procedures Guide)

n SELECT statement (“Selecting Several Like-Named Files” in Base SAS
Procedures Guide)

n EXCLUDE statement (“Excluding Several Like-Named Files” in Base SAS
Procedures Guide)

n DELETE statement

n REPAIR statement

n SORTEDBY option in the MODIFY statement

DATA step statements:

n MERGE statement, (Using Data Set Lists with MERGE)

n SET statement

See “SAS Variable Lists” on page 99 for more information about creating character
and numeric variable lists in SAS code.

328 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hmips60w5w3yn1hj9klna7aplw.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1juxu16zautpxn1dikxecc3kn7w.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1juxu16zautpxn1dikxecc3kn7w.htm&docsetTargetAnchor=n05ajcwgom25rsn1xf12vylv8qg8&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0hr91w8lbf9ugn13k9wj1br4qoa.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0hr91w8lbf9ugn13k9wj1br4qoa.htm&docsetTargetAnchor=p1gckh472brmpln1wg176bs6zplc&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0hr91w8lbf9ugn13k9wj1br4qoa.htm&docsetTargetAnchor=p1gckh472brmpln1wg176bs6zplc&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1jj27rd4c52nmn1lds6mzouzfc2.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1jj27rd4c52nmn1lds6mzouzfc2.htm&docsetTargetAnchor=n00g322is030ayn1gnhjdctqpke4&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1jj27rd4c52nmn1lds6mzouzfc2.htm&docsetTargetAnchor=n00g322is030ayn1gnhjdctqpke4&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1dsrfw3zlxkfqn1wct59dubq3mp.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0ve5g6x5vtjrkn1llarizdwfe6e.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0ahh0eqtadmp3n1uwv55i2gyxiz.htm&docsetTargetAnchor=n0710hizv01lown1d83khn9vjcww&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&docsetTargetAnchor=p1h5x6kfbl8k6mn1g2pdjcmjjkjh&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en

See Also
“Definitions for SAS Data Sets” on page 322

Generation Data Sets
A generation data set is an archived version of a SAS data set that is created when
the data set is updated. For more information about generation data sets, see
“Definitions for Generation Data Sets” in SAS V9 LIBNAME Engine: Reference.

Examples: Create and Read SAS Data
Sets

Example: Read a Single SAS Data Set

Example Code

This example reads a SAS data set from the Sashelp library and writes the output
to the SAS Work library.

The SET statement reads the Sashelp.shoes data set into the DATA step where it
is processed by the WHERE statement. The WHERE statement selects only those
observations that contain a value greater than 500,000 for the variable sales. The
DATA step then writes the output to the data set that is specified in the DATA
statement (work.shoes).

data work.shoes;
 set sashelp.shoes;
 where sales>500000;
run;
proc print data=shoes; run;

Examples: Create and Read SAS Data Sets 329

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0vrpyn14nsr0en13zrczwygqmlj.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en

Output 14.1 PROC PRINT Output for the Work.shoes Data Set Read from the
Sashelp Library

Key Ideas

n The SET statement reads SAS data sets into the DATA step for processing. You
can also use the MERGE statement, the MODIFY statement, and the UPDATE
statement to read SAS data sets into a DATA step.

n The DATA statement writes out SAS data sets that have been processed by the
DATA step.

n If you do not specify a location for the output data set, the DATA statement
automatically writes the output to the SAS Work library. Data sets written to the
Work library are saved only for the duration of the current SAS session. To specify
a permanent output location, you must create a SAS library (libref) by using the
LIBNAME statement. See Chapter 12, “SAS Libraries,” on page 247 for more
information about libraries in SAS.

n By default, the DATA step reads observations from a SAS data set using sequential
access. For more information about sequential and direct data access, see “Ways
to Read Rows in SAS Data Sets” on page 326.

See Also

n SET statement, DATA statement, and “WHERE Statement” in SAS DATA Step
Statements: Reference

n “Sashelp Library” on page 258 in SAS Programmer’s Guide: Essentials

n “Ways to Read Rows in SAS Data Sets” on page 326

330 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en

Example: Read Multiple SAS Data Sets

Example Code

This example reads in three data sets from the Sashelp library and then
concatenates them into a single output data set named concat. Since a SAS library
or output location is not specified, the output data set, concat, is temporarily saved
in the SAS Work library.

data concat;
 set sashelp.nvst1 sashelp.nvst2 sashelp.nvst3;
run;
proc print data=concat; run;

The output data set consists of observations from all three data sets. The order in
which the data sets are concatenated in the output data set is based on how the
data sets are listed in the SET statement. Observations from sashelp.nvst1 are
first, followed by observations from sashelp.nvst2, followed by observations from
sashelp.nvst3.

Here is the PROC PRINT output for the data set concat, annotated to show how
the DATA step concatenates multiple input data sets:

Examples: Create and Read SAS Data Sets 331

Output 14.2 PROC PRINT Output for Data Set Concat

Here is the log output:

Output 14.3 Log Output for Reading Multiple SAS Data Sets

NOTE: There were 6 observations read from the data set SASHELP.NVST1.
NOTE: There were 6 observations read from the data set SASHELP.NVST2.
NOTE: There were 6 observations read from the data set SASHELP.NVST3.
NOTE: The data set WORK.CONCAT has 18 observations and 2 variables.

Key Ideas

n You can read from multiple SAS data sets and combine and modify data in
different ways. See “Summary of Ways to Combine SAS Data Sets” on page 478 for
more information.

n The SET statement reads SAS data sets into the DATA step for processing. You
can also use the MERGE statement, the MODIFY statement, and the UPDATE
statement to read SAS data sets into a DATA step.

332 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en

n The DATA statement writes out SAS data sets that have been processed by the
DATA step.

n If you do not specify a location for the output data set, the DATA statement
automatically writes the output to the SAS Work library. Data sets written to the
Work library are saved only for the duration of the current SAS session. To specify
a permanent output location, you must create a SAS library (libref) by using the
LIBNAME statement. See Chapter 12, “SAS Libraries,” on page 247 for more
information about libraries in SAS.

n By default, the DATA step reads observations from a SAS data set using sequential
access. For more information about sequential and direct data access, see “Ways
to Read Rows in SAS Data Sets” on page 326.

See Also

n “SET Statement” in SAS DATA Step Statements: Reference

n “WHERE Statement” in SAS DATA Step Statements: Reference

n “Sashelp Library” on page 258

Example: Read a SAS Data Set from a User-defined
Library

Example Code

This example reads the permanent data set, quakes, from the user-defined library,
mysas, and then writes it out as quakes_mag in the same library.

To set up this example, first use the LIBNAME statement to create a user-defined
library (libref), mysas. Then, create the data set sashelp.quakes and specify
mysas.quakes as the output data set.

libname mysas "<path-to-file>"; /* 1 */

data mysas.quakes; /* 2 */
 set sashelp.quakes;
run;

proc sort data=mysas.quakes;
 by Magnitude;
run; /* 3 */

data mysas.quakes_mag; /* 4 */

Examples: Create and Read SAS Data Sets 333

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en

 set mysas.quakes; /* 5 */
 by Magnitude; /* 6 */
run;
proc print data=mysas.quakes_mag(obs=10); /* 7 */
 title "Earthquakes by Magnitude";
run;

1 The LIBNAME statement creates the libref, mysas. The path to the library is
specified in single or double quotation marks.

2 To create the permanent data set for the example, the SET statement reads the
quakes data set from the Sashelp library. The DATA statement writes the data
set quakes to the mysas library, where it is saved to disc.

3 The SORT procedure sorts the mysas.quakes data set by the values of the
variable Magnitude.

4 The DATA statement writes the quakes data set to the data set quakes_mag in
the same library.

5 The SET statement reads the data set quakes from the mysas library.

6 The BY statement groups and orders the observations by the values of the
variable Magnitude.

7 The PRINT procedure prints the results for the quakes_mag data set. The OBS=
data set option in the PRINT statement causes the PRINT procedure to display
only the first 10 observations of the output data set.

The following PROC PRINT output shows the results:

Output 14.4 PROC PRINT Output for Mysas.Quakes by Magnitude

Note: The output is only a portion of the output data set. The OBS= data set
option in the PROC PRINT statement limits the number of observations that are
displayed.

334 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en

Key Ideas

n If you do not specify a location for the output data set, the DATA statement
automatically writes the output to the SAS Work library. Data sets written to the
Work library are saved only for the duration of the current SAS session. To specify
a permanent output location, you must create a SAS library (libref) by using the
LIBNAME statement. See Chapter 12, “SAS Libraries,” on page 247 for more
information about libraries in SAS.

n The SET statement reads SAS data sets into the DATA step for processing. You
can also use the MERGE statement, the MODIFY statement, and the UPDATE
statement to read SAS data sets into a DATA step.

n The DATA statement writes out SAS data sets that have been processed by the
DATA step.

n By default, the DATA step reads observations from a SAS data set using sequential
access. For more information about sequential and direct data access, see “Ways
to Read Rows in SAS Data Sets” on page 326.

See Also

n Chapter 12, “SAS Libraries,” on page 247

n “BY Statement” in SAS DATA Step Statements: Reference

Example: Read a Permanent SAS Data Set Without
Using a Libref

Example Code

This example reads a permanent SAS data set that has been saved to the Windows
directory, demo, and writes it out to a new data set in a different directory (the
demo2 directory). Instead of using a libref, the pathname to the SAS data set is
specified in quotation marks in the DATA statement.

The SET statement reads the data set, shoesales, in the folder demo. The DATA
statement uses the same syntax to write the output to shoesales2, in the folder
demo2.

data "c:\Users\demo\shoesales2.sas7bdat";

Examples: Create and Read SAS Data Sets 335

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en

 set "c:\Users\demo2\shoesales.sas7bdat";
run;

data "c:\Users\Jdoe\courses2.sas7bdat";
 set "c:\Users\Jdoe\sasuser\courses.sas7bdat";
run;
proc print data="c:\Users\Jdoe\courses2.sas7bdat"; run;

The following shows the log output:

Output 14.5 Log Output

NOTE: There were 395 observations read from the data set c:\Users\demo
\shoesales.sas7bdat.
NOTE: The data set c:\Users\demo2\shoesales2.sas7bdat has 395 observations and 8
variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

Key Ideas

n If you do not specify a location for the output data set, the DATA statement
automatically writes the output to the SAS Work library. Data sets written to the
Work library are saved only for the duration of the current SAS session. To specify
a permanent output location, you must create a SAS library (libref) by using the
LIBNAME statement. See Chapter 12, “SAS Libraries,” on page 247 for more
information about libraries in SAS.

n The SET statement reads SAS data sets into the DATA step for processing. You
can also use the MERGE statement, the MODIFY statement, and the UPDATE
statement to read SAS data sets into a DATA step.

n The DATA statement writes out SAS data sets that have been processed by the
DATA step.

n By default, the DATA step reads observations from a SAS data set using sequential
access. For more information about sequential and direct data access, see “Ways
to Read Rows in SAS Data Sets” on page 326.

See Also

n Chapter 12, “SAS Libraries,” on page 247

n “SAS Default Libraries” on page 256

336 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en

Examples: Control Variables and
Observations in Data Sets

Example: Keep Specific Variables in a Data Set

Example Code

This example uses the KEEP statement to control which variables are written to the
output data set.

The LIBNAME statement specifies the location for writing the output data set, and
it associates that location with the name mysas. The SET statement reads the input
data set, Sashelp.Cars and the DATA statement writes the results to the output
data set mysas.cars.

This example uses the KEEP statement to include only the variables Make, Mpg, and
MSRP in the output data set. SAS reads all the variables from the Sashelp.Cars data
set into memory and then removes the unwanted variables when it creates the
output data set. The variables MPG_City and MPG_Highway are read into memory by
the DATA step and are used to calculate the weighted average MPG, but they are
not included in the output.

libname mysas "c:\Users\demo";
data cars;
 set sashelp.cars;
 keep make mpg MSRP;
 Mpg=(MPG_City*.45)+(MPG_Highway*.55)/2;
run;
proc print data=cars(obs=10); run;

Examples: Control Variables and Observations in Data Sets 337

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1nnrzzsw6rzrjn1p2jfky6pdv23.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en

Output 14.6 PROC PRINT Output for the Mysas.Cars Data Set Showing Only the
Variables Specified in the KEEP Statement

Note: The output is only a portion of the output data set. The OBS= data set
option in the PROC PRINT statement limits the number of observations that are
displayed.

An alternate way to control the selection of variables is to use the KEEP= data set
option. The KEEP= data set option in the input data set in the SET statement
controls which variables are read and written to the output data set. The KEEP=
data set option in the output data set in the DATA statement controls which
variables are written to the output data set.

Key Ideas

n If you do not instruct it to do otherwise, SAS writes all variables and all
observations from input data sets to output data sets.

n You can control which variables and observations that you want to read and write
by using SAS statements, data set options, and functions. See “Ways to Manage
Variables in SAS Data Sets” on page 323 for a list of these language elements.

n The DROP statement and DROP= data set option work the same way that the
KEEP= statement and KEEP= data set option work except that the selected
variables are dropped rather than kept.

See Also

n Comparing the DROP= data set option and the DROP statement

n Comparing the KEEP= data set option and the KEEP statement

n “Excluding Variables from Input ” in SAS Data Set Options: Reference

n “Processing Variables without Writing Them to a Data Set” in SAS Data Set
Options: Reference

338 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0vw9lyyxk1cxkn0zzfemrsr3t9a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0vw9lyyxk1cxkn0zzfemrsr3t9a.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1capr0s7tilbvn1lypdshkgpaip.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n15goor3q758g5n1eykstufkpdhy.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n15goor3q758g5n1eykstufkpdhy.htm&docsetTargetAnchor=n0ofz5cb2ujjcyn18aeg2n4ac30t&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0vw9lyyxk1cxkn0zzfemrsr3t9a.htm&docsetTargetAnchor=p04x1ri8wsbi42n15kd9kl5ujy5g&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n15goor3q758g5n1eykstufkpdhy.htm&docsetTargetAnchor=n19f54oy7uzhofn15rj0x06wsl94&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n15goor3q758g5n1eykstufkpdhy.htm&docsetTargetAnchor=p0wrl4sqopdekkn1ci9m0px29zqi&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n15goor3q758g5n1eykstufkpdhy.htm&docsetTargetAnchor=p0wrl4sqopdekkn1ci9m0px29zqi&locale=en

Example: Control Which Observations are Read
Using the WHERE Statement

Example Code

This example uses the WHERE statement to select observations that are based on
the values of the variables age and height.

data class;
 set sashelp.class;
 where age>12 and height>=67;
run;
proc print data=class; run;

When the DATA step runs this program, it does not read every row in the input data
set, as the following log shows:

Output 14.7 Log Output

NOTE: There were 3 observations read from the data set SASHELP.CLASS.
 WHERE (age>12) and (height>=67);

Using the WHERE statement can improve the efficiency of your SAS program when
the DATA step has to read fewer observations.

You can also use the WHERE= data set option to conditionally select observations
in either the input data set or the output data set.

data class;
 set sashelp.class(where=(age>12 and height >=67));
run;

Like the WHERE statement, the WHERE= data set option, when specified in the
input data set, does not require that the DATA step reads all the observations. Here
is the log output when the WHERE= data set option is specified in the SET
statement, in the input data set:

Output 14.8 Log Output

NOTE: There were 3 observations read from the data set SASHELP.CLASS.
 WHERE (age>12) and (height>=67);

Examples: Control Variables and Observations in Data Sets 339

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0ny9o8t8hc5zen1qn3ft9dhtsxx.htm&locale=en

When the WHERE= data set option is specified in the DATA statement, in the
output data set, the DATA step reads all the rows of the input data set and then
writes only those observations that meet the criteria to the output data set:

data class(where=(age>12 and height >=67));
 set sashelp.class;
run;

Output 14.9 Log Output

NOTE: There were 19 observations read from the data set SASHELP.CLASS.
NOTE: The data set WORK.CLASS has 3 observations and 5 variables.

Key Ideas

n If you do not instruct it to do otherwise, SAS writes all variables and all
observations from input data sets to output data sets.

n You can control which variables and observations that you want to read and write
by using SAS statements, data set options, and functions. See “Controlling the
Reading and Writing of Variables and Observations” in SAS Language Reference:
Concepts for a list of these language elements.

n The WHERE statement controls which observations are read by the SET
statement based on the value of a variable.

n When the WHERE statement is used in a DATA step, the DATA step does not read
every observation in the input data set. Therefore, using the WHERE statement
can improve the efficiency of your SAS programs.

n The WHERE= data set option in the DATA statement controls which observations
are written to the output data set by the DATA statement. When the WHERE=
data set option is specified in the DATA statement, the DATA step reads all the
observations in the input data set.

See Also

n “WHERE Statement” in SAS DATA Step Statements: Reference and “Specify the
WHERE Statement in a SAS DATA Step” in SAS DATA Step Statements:
Reference

n “WHERE= Data Set Option” in SAS Data Set Options: Reference

340 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0hej907u0c3fcn1760duvj0unjh.htm&docsetTargetAnchor=n1v21n4beat789n10w1b1dafknkc&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0hej907u0c3fcn1760duvj0unjh.htm&docsetTargetAnchor=n1v21n4beat789n10w1b1dafknkc&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0hej907u0c3fcn1760duvj0unjh.htm&docsetTargetAnchor=n1v21n4beat789n10w1b1dafknkc&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&docsetTargetAnchor=p0t2giipfd4uhgn1mvld2wsi95k5&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&docsetTargetAnchor=p0t2giipfd4uhgn1mvld2wsi95k5&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&docsetTargetAnchor=p0t2giipfd4uhgn1mvld2wsi95k5&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0ny9o8t8hc5zen1qn3ft9dhtsxx.htm&locale=en

Example: Read a Specific Observation First
(FIRSTOBS)

Example Code

In this example, the DATA step directly accesses a specific observation in the input
data set and writes the output to a new data set starting with that specified
observation. The FIRSTOBS= data set option specifies that the observations are
written to the output data set, quakes2, beginning with observation number 5 of
the input data set, Sashelp.quakes.

To create an input data set for this example, the following DATA step is used to
create a subset of the Sashelp.Quakes data set. The DATA step creates a subset by
conditionally selecting observations in which the values of the variable Magnitude
are greater than 6.0.

data quakes;
 set sashelp.quakes(where=(Magnitude>6.0));
 keep Depth Type Magnitude;
run;
proc print data=quakes; run;

Output 14.10 PROC PRINT Output for the Quakes Data Set

In the next DATA step, the FIRSTOBS= data set option is specified in the SET
statement to create a new output data set that begins with observation 5 from the
input data set. The output data set contains all of the remaining observations from
the input data set.

data quakes2;
 set quakes(firstobs=5);
run;
proc print data=quakes2; run;

Examples: Control Variables and Observations in Data Sets 341

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0wjxoxrco6dsgn1ls5n3mbybcng.htm&locale=en

Output 14.11 PROC PRINT Output Showing Row 5 from the Quakes Data Set as the
First Row in the Quakes2 Data Set

You can also use the following functions to access observations directly by
observation number: the NOTE function, the CUROBS Function, the POINT
function, and the FETCHOBS function.

Key Ideas

n When the OBS= data set option specifies an ending point for processing, the
FIRSTOBS= data set option specifies a starting point. The two options are often
used together to define a range of observations to be processed.

n The OBS= data set option enables you to select observations from SAS data sets.
You can select observations to be read from external data files by using the OBS=
option in the INFILE statement.

See Also

n “FIRSTOBS= System Option” in SAS System Options: Reference and “OBS=
System Option” in SAS System Options: Reference

n “FIRSTOBS= Data Set Option” in SAS Data Set Options: Reference and “OBS=
Data Set Option” in SAS Data Set Options: Reference

Example: Read a Range of Observations
(FIRSTOBS and OBS)

Example Code

In this example, the DATA step accesses a range of observations in a data set by
using the FIRSTOBS= and OBS= data set options together. The FIRSTOBS= data set
option specifies that the observations are written to the output data set, quakes2,
beginning with observation number 2 from the input data set, Sashelp.quakes. The

342 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0km7ljsfulh2qn1mtan4npinh0c.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1vy2pblbfcadun1w3ndljol2b2b.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1aj8rhc06qkion1o0u6xfinrtee.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1aj8rhc06qkion1o0u6xfinrtee.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1rib9q3hpxph0n1m27u5tzgl5lh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0c2av6mvf2zsrn1b48go7vk6bro.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n06qlo77ayax2kn1xobou72cdz20.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n06qlo77ayax2kn1xobou72cdz20.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0wjxoxrco6dsgn1ls5n3mbybcng.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0wjxoxrco6dsgn1ls5n3mbybcng.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en

OBS= data set option tells SAS to stop processing observations after reading a
specified number of observations.

SAS uses the following formula to determine the number of observations to read
when using the OBS= and FIRSTOBS= data set options together: (obs -
firstobs) + 1 = number of rows.

To create the input data set for this example, the first DATA step creates a subset
of the Sashelp.Quakes data set. The second DATA step creates a range of
observations.

data quakes;
 set sashelp.quakes(where=(Magnitude>6.0));
 keep Depth Type Magnitude;
run;
proc print data=quakes; run;

data quakes2;
 set quakes(firstobs=2 obs=4);
run;
proc print data=quakes2; run;

Output 14.12 PROC PRINT Output Showing a Range of Observations Selected from
Quakes and Written to Quakes2

You can also use the following functions to access observations directly by
observation number: the NOTE function, the CUROBS Function, the POINT
function, and the FETCHOBS function.

Key Ideas

n When the OBS= data set option specifies an ending point for processing, the
FIRSTOBS= data set option specifies a starting point. The two options are often
used together to define a range of observations to be processed.

n The OBS= data set option enables you to select observations from SAS data sets.
You can select observations to be read from external data files by using the OBS=
option in the INFILE statement.

Examples: Control Variables and Observations in Data Sets 343

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0km7ljsfulh2qn1mtan4npinh0c.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1vy2pblbfcadun1w3ndljol2b2b.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1aj8rhc06qkion1o0u6xfinrtee.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1aj8rhc06qkion1o0u6xfinrtee.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1rib9q3hpxph0n1m27u5tzgl5lh.htm&locale=en

See Also

n “FIRSTOBS= System Option” in SAS System Options: Reference and “OBS=
System Option” in SAS System Options: Reference

n “FIRSTOBS= Data Set Option” in SAS Data Set Options: Reference and “OBS=
Data Set Option” in SAS Data Set Options: Reference

Example: Read an Observation Directly Using the
POINT= Option

Example Code

In this example, the DATA step directly accesses the third row in the
Sashelp.Comet data set.

A temporary numeric variable, num, is created to hold the value of the observation
to be directly accessed from the Sashelp.Comet data set. The assignment
statement creates the variable and assigns a value of 3, which represents the third
observation in the Sashelp.Comet data set. Then, the POINT= option is specified in
the SET statement and is set equal to the temporary variable num. The OUTPUT
statement writes the current observation to the output data set Comet. The STOP
statement is used to prevent continuous processing of the DATA step.

The CALL SYMPUT routine assigns the value for the row number to a macro
variable that can be used in the TITLE statement to denote which row is being
accessed.

The first PRINT procedure below is used to show the first few rows of the input
data set in which the third row is directly accessed by the DATA step.

proc print data=sashelp.comet(obs=5);
title "Sashelp.Comet Data Set";

run;

data comet;
 num=3;
 set sashelp.comet point=num;
 call symput('num',num);
 output;
 stop;
run;

344 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0c2av6mvf2zsrn1b48go7vk6bro.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n06qlo77ayax2kn1xobou72cdz20.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n06qlo77ayax2kn1xobou72cdz20.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0wjxoxrco6dsgn1ls5n3mbybcng.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p10gcmrmf83iaxn1ilrx4pra969n.htm&locale=en

proc print data=comet;
title "Row &num from Sashelp.Comet Data Set";
run;

Output 14.13 Partial PROC PRINT Output for the Sashelp.Comet Data Set (for
Comparison)

Output 14.14 PROC Print Output for the Comet Data Set Showing the Directly
Accessed Row 3

Key Ideas

n If you do not instruct it to do otherwise, SAS writes all variables and all
observations from input data sets to output data sets.

n You can control which variables and observations that you want to read and write
by using SAS statements, data set options, and functions. See “Controlling the
Reading and Writing of Variables and Observations” in SAS Language Reference:
Concepts for a list of these language elements.

n Because SAS does not detect an end-of-file when directly accessing an
observation using the POINT= option, you must specify the STOP statement with
the POINT= option to prevent continuous processing of the DATA step.

n The WHERE statement controls which observations are read by the SET
statement based on the value of a variable.

See Also

n POINT= option

n STOP statement

n OUTPUT statement

n “CALL SYMPUT Routine” in SAS Macro Language: Reference

Examples: Control Variables and Observations in Data Sets 345

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0hej907u0c3fcn1760duvj0unjh.htm&docsetTargetAnchor=n1v21n4beat789n10w1b1dafknkc&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0hej907u0c3fcn1760duvj0unjh.htm&docsetTargetAnchor=n1v21n4beat789n10w1b1dafknkc&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0hej907u0c3fcn1760duvj0unjh.htm&docsetTargetAnchor=n1v21n4beat789n10w1b1dafknkc&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p02jy612cym9oxn10i19cbewlrdf.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p0u2yq8x2b1fu4n1m0d5hzam9hjv&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p02jy612cym9oxn10i19cbewlrdf.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p09y28i2d1kn8qn1p1icxchz37p3.htm&locale=en

Examples: View Descriptor and Sort
Information for Data Sets

Example: View Descriptor Information for a Data
Set

Example Code

In this example, the CONTENTS procedure displays information about the SAS
data set Sashelp.Snacks.

proc contents data=sashelp.snacks;
run;

346 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

Output 14.15 PROC CONTENTS Output Showing the Descriptor Information for the Sashelp.Snacks
Data Set

Key Ideas

n The descriptor information is the part of a SAS data set that contains information
about the contents of the data set.

n Descriptor information includes the number of observations, the observation
length, the date that the data set was last modified, and other facts.

Examples: View Descriptor and Sort Information for Data Sets 347

n Descriptor information for individual variables includes attributes such as name,
type, length, format, label, and whether the variable is indexed.

n When a data set has been sorted, the Sort Information table shows the BY variable
that was used to sort the data.

See Also

n “CONTENTS Procedure” in Base SAS Procedures Guide

n “OPTIONS Statement” in SAS Global Statements: Reference

Example: View Sort Information for a Data Set

Example Code

In this example, the CONTENTS procedure is used to view information about the
Sashelp.Air data set. The Sorted field in the PROC CONTENTS output indicates
that the data set is not sorted. Therefore, there is no additional Sort Indicator table
in the output.

proc contents data=sashelp.air; run;

Output 14.16 PROC CONTENTS Output Showing That the Data Set Sashelp.Air is
Not Sorted

In the DATA step below, data set air is created from the Sashelp.Air data set and
it is sorted by the variable air. The CONTENTS procedure is used again to view the
sort information.

data air(sortedby=air);

348 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en

 set sashelp.air;
run;

proc contents data=air; run;

The PROC CONTENTS output indicates that the data set was sorted using the
SORTEDBY= data set option. The Sort Information table (the Sort Indicator) is
included now. Notice that the Sorted field is set to NO. This is because the
SORTEDBY= data set option was used to sort the data set. Sort information
indicates a valid sort only when the data set is sorted using either PROC SORT or
PROC SQL.

Output 14.17 PROC CONTENTS Output Showing That the Data Set Was Sorted
Using SORTEDBY

Next, the SORT procedure is used to sort the data set by the values of the variable
air, in descending order.

proc sort data=air; by descending air; run;
proc contents data=air; run;

Examples: View Descriptor and Sort Information for Data Sets 349

Output 14.18 Partial PROC CONTENTS Output Showing Validated Sort

The PROC CONTENTS output now shows that the data set is sorted and that the
sort is validated. YES in the Validated field indicates that the data was sorted by
SAS using PROC SORT or PROC SQL.

Key Ideas

n The sort indicator is set when a data set is sorted by any of the following methods:

o SORT procedure

o ORDER BY clause in PROC SQL

o MODIFY statement in PROC DATASETS

o SORTEDBY= data set option in the DATA step DATA statement

n PROC SORT and PROC SQL generate validated sorts, which can be seen in the
Validated field of the descriptor information.

n The SORTEDBY= data set option and the SORTEDBY= option in the DATASETS
procedure generate sorts that are not validated.

n SAS procedures that require data to be sorted read sort indicator field in the the
descriptor information for the data set to determine if the data set is sorted.

n You can specify the SORTVALIDATE system option in the OPTIONS statement to
validate sorts and to ensure that the data set is sorted according to the variables
in the BY statement. If the data set is not sorted correctly, SAS sorts the data set.

350 Chapter 14 / SAS Data Sets

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n0gwogdxntzooun1azrzwrwrqvzq.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0ahh0eqtadmp3n1uwv55i2gyxiz.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1pnjylslu2ryrn1ra3a6ney2bzs.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n0gwogdxntzooun1azrzwrwrqvzq.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1pnjylslu2ryrn1ra3a6ney2bzs.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0cdfgq2lsgve4n13cflndvlte98.htm&locale=en

See Also

n “CONTENTS Procedure” in Base SAS Procedures Guide

Examples: View Descriptor and Sort Information for Data Sets 351

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

352 Chapter 14 / SAS Data Sets

15
Raw Data

Definitions for Raw Data . 353

Reading Raw Data . 354
Ways to Read Raw Data . 354
Reading Raw Instream Data . 355
Reading Raw Data with the DATA Step (INPUT Statement) . 356
Types of Raw Data . 363
How SAS Handles Invalid Data . 366
How SAS Handles Missing Values . 367

Definitions for External Files . 369

Reading External Files . 370
Reading an External File Using the DATA Step . 370
Reading and Writing to External Files Directly . 371
Referencing External Files Indirectly By Using a Fileref . 372
Referencing Many External Files Efficiently . 373
Referencing External Files with Other Access Methods . 373
Reading Binary Data . 375

Examples: Read External Files Using PROC IMPORT . 378
Example: Read a Comma-Delimited File . 378
Example: Read and Write a Space-delimited File . 380

Definitions for Raw Data
raw data

unprocessed data that has not been read into a SAS data set. You can use the
IMPORT procedure or the SAS DATA step to read raw data into a SAS data set.
Here are the types of raw data that SAS can read:

n instream data

n external files

Note: “Definition of SAS/ACCESS Software” on page 385.

353

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1qn5sclnu2l9dn1w61ifw8wqhts.htm&locale=en

Raw data does not include Database Management System (DBMS) files. You must
license SAS/ACCESS software to access data stored in DBMS files. For more
information about SAS/ACCESS features, see “About SAS/ACCESS Software” in
SAS Language Reference: Concepts.

Reading Raw Data

Ways to Read Raw Data
You can read raw data by using one of the following items:

n IMPORT procedure

See the following examples:

o “Importing a Delimited File” in Base SAS Procedures Guide

o “Importing a Specific Delimited File Using a Fileref” in Base SAS Procedures
Guide

o “Importing a Tab-Delimited File” in Base SAS Procedures Guide

n DATA Step Statements on page 356

n SAS I/O functions, such as the FOPEN, FGET, and and FCLOSE functions.

For a description of available functions, see the SAS File I/O and External File
categories in “SAS Functions and CALL Routines by Category” in SAS Functions
and CALL Routines: Reference. See “Using Functions to Manipulate Files” in SAS
Functions and CALL Routines: Reference for information about how statements
and functions manipulate files.

n External File Interface (EFI)

If your operating environment supports a graphical user interface, you can use
the EFI or the Import Wizard to read raw data. The EFI is a point-and-click
graphical interface that you can use to read and write data that is not in SAS
software's internal format. By using EFI, you can read data from an external file
and write it to a SAS data set. You can also read data from a SAS data set and
write it to an external file. For more information about EFI, see SAS/ACCESS
Interface to PC Files: Reference.

n Import Wizard

The Import Wizard guides you through the steps to read data from an external
data source and write it to a SAS data set. As a wizard, it is a series of windows
that present simple choices to guide you through a process. For more
information about the wizard, see SAS/ACCESS Interface to PC Files: Reference.

354 Chapter 15 / Raw Data

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0q6zakpcbrh4in17uqnpz5bb0ck.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0q6zakpcbrh4in17uqnpz5bb0ck.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1qn5sclnu2l9dn1w61ifw8wqhts.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n03ji3gyt52p10n1mma27gr6rdxg.htm&docsetTargetAnchor=n03ji3gyt52p10n1mma27gr6rdxg&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0d91ee1lrsfn3n1dioi4rrix0kw.htm&docsetTargetAnchor=p0d91ee1lrsfn3n1dioi4rrix0kw&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0d91ee1lrsfn3n1dioi4rrix0kw.htm&docsetTargetAnchor=p0d91ee1lrsfn3n1dioi4rrix0kw&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1w1xy48wd290bn1mqalitn7wy13.htm&docsetTargetAnchor=n1w1xy48wd290bn1mqalitn7wy13&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1fr3ny0ek8sr9n1pujj2om3bia7.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1a70mpbj2usaln1r9z4qldliexk.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0ihcrv5rt8mw4n16kqi1p9caq6i.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n01f5qrjoh9h4hn1olbdpb5pr2td.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n01f5qrjoh9h4hn1olbdpb5pr2td.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p07c8e0ktns1c7n1vtowjev5g724.htm&docsetTargetAnchor=n0mpsdy5ldzhepn1heb0zsodu8or&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p07c8e0ktns1c7n1vtowjev5g724.htm&docsetTargetAnchor=n0mpsdy5ldzhepn1heb0zsodu8or&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n08zixb5hl7tarn17jjc66xnl7le.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0cbb3sk7ykinon1inoqyijif8zt.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Note: If the data file that you are passing to EFI is password protected, you are
prompted multiple times for your logon ID and password.

Operating Environment Information: Using external files with your SAS jobs
requires that you specify filenames with syntax that is appropriate to your
operating environment. For information about operating system documentation,
see “Operating Environment Information” on page 15.

Reading Raw Instream Data

Definition for Instream Data
Instream data

rows of raw data records that are contained within a SAS program. Instream
data begins with the DATALINES statement and ends with a semicolon on a new
line in a SAS DATA step.

Reading Instream Data

This example reads in instream data using the INPUT and DATALINES statements.
The INPUT statement specifies the variable (column) names and the DATALINES
statement indicates the raw, instream data to follow:

data weight;
 input PatientID $ State $;
 loss=Week1-Week16;
 datalines;
2477 TX
2431 TX
2456 NC
2412 NC
;

Note: A semicolon appearing alone on the line immediately following the last data
line is the convention that is used in this example. However, a PROC statement,
DATA statement, or a global statement ending in a semicolon on the line
immediately following the last data line also submits the previous DATA step.

Reading Instream Data Containing Semicolons

This example reads in instream data containing semicolons:

Reading Raw Data 355

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0114gachtut3nn1and4ap8ke9nf.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0oaql83drile0n141pdacojq97s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0114gachtut3nn1and4ap8ke9nf.htm&locale=en

data weight;
 input PatientID $ Week1 Week8 Week16;
 loss=Week1-Week16;
 datalines4;
24;77 195 177 163
24;31 220 213 198
24;56 173 166 155
24;12 135 125 116
;;;;

Reading Raw Data with the DATA Step (INPUT
Statement)

The SAS DATA step reads raw data from instream data lines or from external files.
The INPUT statement in the DATA step reads the data from these sources into a
SAS data set.

Choosing an Input Style

When you read raw data with a DATA step, you can use a combination of the INPUT
statement, DATALINES statement, and INFILE statement. You can use the
following different input styles, depending on the layout of data values in the
records:

n List input

n Formatted input

n Column input

n Named input

You can also combine styles of input in a single INPUT statement. For details about
the styles of input, see the INPUT statement.

List Input

List input uses a scanning method for locating data values. Data values are not
required to be aligned in columns but must be separated by at least one blank (or
other defined delimiter). List input requires only that you specify the variable
names and a dollar sign ($), if defining a character variable. You do not have to
specify the location of the data fields.

An example of reading raw instream data using list input follows:

data scores;
 length name $ 12;
 input name $ score1 score2;

356 Chapter 15 / Raw Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0oaql83drile0n141pdacojq97s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0oaql83drile0n141pdacojq97s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0114gachtut3nn1and4ap8ke9nf.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0lrz3gb7m9e4rn137op544ddg0v.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0f9yk6pd4znukn1rlw6hzkg1url.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n13ejk9swz5vrbn0z34iazfrp0wp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1jjrvmzmybdeqn1gt8gj1r0ed0u.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0oaql83drile0n141pdacojq97s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0lrz3gb7m9e4rn137op544ddg0v.htm&locale=en

datalines;
Riley 1132 1187
Henderson 1015 1102
;

For more examples, see “Reading Unaligned Data with Simple List Input” in SAS
DATA Step Statements: Reference.

List input has several restrictions on the type of data that it can read:

n Input values must be separated by at least one blank (the default delimiter) or
by the delimiter specified with the DLM= or DLMSTR= option in the INFILE
statement. If you want SAS to read consecutive delimiters as if there is a
missing value between them, specify the DSD option in the INFILE statement.

n Blanks cannot represent missing values. A real value, such as a period, must be
used instead.

n To read and store a character value that is longer than 8 bytes, you must
explicitly define its length. You can define a variable’s length by using either the
LENGTH statement, the INFORMAT statement, or the ATTRIB statement. When
you define a character variable using either of these statements, you must place
the statement that defines the variable’s length first in the DATA step, before
any other references to that variable. You can also specify the variable’s length
by using modified list input, which consists of an informat and the colon
modifier in the INPUT statement.

n Character values cannot contain embedded blanks when the file is delimited by
blanks.

n Fields must be read in order.

n Data must be in standard numeric or character format.

Note: Nonstandard numeric values, such as packed decimal data, must use the
formatted style of input. For more information, see “Formatted Input” on page 359 .

Modified List Input

A more flexible version of list input, called modified list input, includes format
modifiers. The following format modifiers enable you to use list input to read
nonstandard data by using SAS informats:

n & (ampersand) format modifier enables you to read character values that
contain one or more embedded blanks with list input and to specify a character
informat. SAS reads until it encounters two consecutive blanks, the defined
length of the variable, or the end of the input line, whichever comes first.

n : (colon) format modifier enables you to use list input but also to specify an
informat after a variable name, whether character or numeric. SAS reads until it
encounters a blank column, the defined length of the variable (character only),
or the end of the data line, whichever comes first.

Reading Raw Data 357

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0lrz3gb7m9e4rn137op544ddg0v.htm&docsetTargetAnchor=p1gixr8xdy0ou2n1o1t3ndt23ehg&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0lrz3gb7m9e4rn137op544ddg0v.htm&docsetTargetAnchor=p1gixr8xdy0ou2n1o1t3ndt23ehg&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p164164hob450kn1agkpcosya669.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1wxb7p9jkxycin16lz2db7idbnt.htm&locale=en

n ~ (tilde) format modifier enables you to read and retain single quotation marks,
double quotation marks, and delimiters within character values.

Here is an example of the : and ~ format modifiers. You must use the DSD option in
the INFILE statement. Otherwise, the INPUT statement ignores the ~ format
modifier. This example reads raw instream data using modified list input:

data scores;
 infile datalines dsd;
 input Name : $9. Score1-Score3 Team ~ $25. Div $;

datalines;
Smith,12,22,46,"Green Hornets, Atlanta",AAA
Mitchel,23,19,25,"High Volts, Portland",AAA
Jones,09,17,54,"Vulcans, Las Vegas",AA
;
proc print data=scores;

Output 15.1 Output from Example with Format Modifiers

For another example, see Reading Delimited Data with Modified List Input.

Column Input

Column input enables you to read standard data values that are aligned in columns
in the data records. Specify the variable name, followed by a dollar sign ($) if it is a
character variable, and specify the columns in which the data values are located in
each record:

data scores;
 infile datalines truncover;
 input name $ 1-12 score2 17-20 score1 27-30;

datalines;
Riley 1132 987
Henderson 1015 1102
;

For more examples, see “Read Input Records with Column Input” in SAS DATA Step
Statements: Reference.

358 Chapter 15 / Raw Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0lrz3gb7m9e4rn137op544ddg0v.htm&docsetTargetAnchor=n0na9kqpg19hlsn0z3t39ssabwln&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n13ejk9swz5vrbn0z34iazfrp0wp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n13ejk9swz5vrbn0z34iazfrp0wp.htm&docsetTargetAnchor=n029ew08idajw3n1c9xpyycuqhn6&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n13ejk9swz5vrbn0z34iazfrp0wp.htm&docsetTargetAnchor=n029ew08idajw3n1c9xpyycuqhn6&locale=en

Note: Use the TRUNCOVER option in the INFILE statement to ensure that SAS
handles data values of varying lengths appropriately.

To use column input, data values must be:

n in the same field on all the input lines

n in standard numeric or character form

Note: You cannot use an informat with column input.

Here are some features of column input:

n Character values can contain embedded blanks.

n Character values can be from 1 to 32,767 characters long.

n Placeholders, such as a single period (.), are not required for missing data.

n Input values can be read in any order, regardless of their position in the record.

n Values or parts of values can be reread.

n Both leading and trailing blanks within the field are ignored.

n Values do not need to be separated by blanks or other delimiters.

CAUTION
If you insert tabs while entering data in the DATALINES statement in column
format, you might get unexpected results. This issue exists when you use the
SAS Enhanced Editor or SAS Program Editor. To avoid the issue, do one of
the following actions:

n Replace all tabs in the data with single spaces using another editor outside of
SAS.

n Specify the %INCLUDE statement from the SAS editor to submit your code.

n If you are using the SAS Enhanced Editor, select Tools ð Options ð Enhanced
Editor to change the tab size from 4 to 1.

Formatted Input

Formatted input combines the flexibility of using informats with many of the
features of column input. By using formatted input, you can read nonstandard data
for which SAS requires additional instructions. Formatted input is typically used
with pointer controls that enable you to control the position of the input pointer in
the input buffer when you read data.

The INPUT statement in the following DATA step uses formatted input and pointer
controls to read the raw, instream data listed in the DATALINES statement.

Note that $12. and COMMA5. are informats; +4 and +6 are column pointer controls.

data scores;

Reading Raw Data 359

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1w53eurb5rzvsn1sf102hn7ticw&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p1s3uhhqtscz2sn1otiatbovfn1t.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0f9yk6pd4znukn1rlw6hzkg1url.htm&locale=en

 input name $12. +4 score1 comma5. +6 score2 comma5.;

datalines;
Riley 1,132 1,187
Henderson 1,015 1,102
;

For more examples, see “Formatted Input with Pointer Controls” in SAS DATA Step
Statements: Reference.

Note: You can also use informats to read data that is not aligned in columns. See
“Modified List Input” in SAS Language Reference: Concepts for more information.

Here are some features of formatted input:

n Characters values can contain embedded blanks.

n Character values can be from 1 to 32,767 characters long.

n Placeholders, such as a single period (.) are not required for missing data.

n With the use of pointer controls to position the pointer, input values can be read
in any order, regardless of their positions in the record.

n Values or parts of values can be reread.

n Formatted input enables you to read data stored in nonstandard form, such as
packed decimal or numbers with commas.

Named Input

Named input enables you to read records in which data values are preceded by the
name of the variable and an equal sign (=). The following INPUT statement reads
the data lines containing equal signs.

data games;
 input name=$ score1= score2=;

datalines;
name=riley score1=1132 score2=1187
;

For more examples, see “Using List and Named Input” in SAS DATA Step
Statements: Reference.

Note: When an equal sign follows a variable in an INPUT statement, SAS expects
that data remaining on the input line contains only named input values. You cannot
switch to another form of input in the same INPUT statement after using named
input. Also, note that any variable that exists in the input data but is not defined in
the INPUT statement generates a note in the SAS log indicating a missing field.

360 Chapter 15 / Raw Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0f9yk6pd4znukn1rlw6hzkg1url.htm&docsetTargetAnchor=p0hemeft1epo9mn1qqi75g0ihfmy&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0f9yk6pd4znukn1rlw6hzkg1url.htm&docsetTargetAnchor=p0hemeft1epo9mn1qqi75g0ihfmy&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n1w749t788cgi2n1txpuccsuqtro.htm&docsetTargetAnchor=p19r0eepedgwzxn1kj9tnd3rbap1&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1jjrvmzmybdeqn1gt8gj1r0ed0u.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1jjrvmzmybdeqn1gt8gj1r0ed0u.htm&docsetTargetAnchor=p0bj1u9rp3n45in1j19p677jp6ik&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1jjrvmzmybdeqn1gt8gj1r0ed0u.htm&docsetTargetAnchor=p0bj1u9rp3n45in1j19p677jp6ik&locale=en

Additional Data-Reading Features

In addition to different styles of input, there are many tools to meet the needs of
different data-reading situations. You can use options in the INFILE statement in
combination with the INPUT statement to give you additional control over the
reading of data records. The following table lists common data-reading tasks and
the appropriate features available in the INPUT and INFILE statements.

Table 15.1 Additional Data-Reading Features

Input Goal Use

multiple records create a single
observation

#n or / line pointer control in the
INPUT statement, with a DO
loop

a single record create multiple
observations

trailing @@ in the INPUT
statement,

trailing @ with multiple INPUT
and OUTPUT statements

(Example)

variable-length data fields
and records

read delimited data list input with or without a
format modifier in the INPUT
statement and the TRUNCOVER,
DLM=, DLMSTR=, or , or DSD
options in the INFILE statement

(Examples)

read non-delimited
data

$VARYINGw. informat in the
INPUT statement and the
LENGTH= and TRUNCOVER
options in the INFILE statement

(Example)

a file with varying record
layouts

IF-THEN statements with
multiple INPUT statements,
using trailing @ or @@ as
necessary

hierarchical files IF-THEN statements with
multiple INPUT statements,
using trailing @ as necessary

Reading Raw Data 361

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0oaql83drile0n141pdacojq97s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0oaql83drile0n141pdacojq97s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0oaql83drile0n141pdacojq97s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0f9yk6pd4znukn1rlw6hzkg1url.htm&docsetTargetAnchor=p0hemeft1epo9mn1qqi75g0ihfmy&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1w53eurb5rzvsn1sf102hn7ticw&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1010u4pgvxo7qn1dik2w1wn284g&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n10jzr9z76e1ghn12i7ie8514fjv&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n0fa7kq7teis7cn0znh84wga9e0t&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p01zokes5bb2s3n1np4ywc54e3zm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1w53eurb5rzvsn1sf102hn7ticw&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n1df7db374axngn15peogrsovzm5&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1j60arf27ll4nn1ejavv3nby4pa.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1j60arf27ll4nn1ejavv3nby4pa.htm&locale=en

Input Goal Use

more than one input file or
to control the program
flow at EOF

EOF= option or END= option in
an INFILE statement

(Example)

multiple INFILE and INPUT
statements

FILEVAR= in an INFILE
statement.

(Example)

FILENAME statement with
concatenation, wildcard, or
piping

only part of each record LINESIZE= option in an INFILE
statement

some but not all records in
the file

FIRSTOBS= and OBS= options in
an INFILE statement;
FIRSTOBS= and OBS= system
options; #n line pointer control

(Example)

instream data lines control the reading
with

special options

INFILE statement with
DATALINES and appropriate
options

starting at a particular
column

@ column pointer controls

leading blanks maintain them $CHARw. informat in an INPUT
statement

a delimiter other than
blanks (with list input or

modified list input with
the colon modifier)

DLM= option or the DSD option

both the DLM= option and the
DSD option in an INFILE
statement

the standard tab character DLM= or in an INFILE statement

both the DLM= and the
DLMSTR= options EXPANDTABS
option in an INFILE statement

missing values (with list
input or

create observations
without
compromising data
integrity

TRUNCOVER option in an INFILE
statement

DLM=, DLMSTR=, or , or DSD
might also be needed

362 Chapter 15 / Raw Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p07e0pcmalha21n150e511bdo67f&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1bbiuoq3a4vrvn1s2bykkuugh8i&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n1x9joj5qbfkjyn1kqtm7joru0qb&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1co5raf64hklwn1m40ecoo3e76e&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n1x9joj5qbfkjyn1kqtm7joru0qb&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n0ii5bc0frxvs5n1dzjet0dtrf2n&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n1rkzrc9xhipnhn1i8dvg70bg3vs&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n0p6f6luvqu1e7n13ipy07fvr36o&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1fdplt6c1zlbnn1k5mddpy7q6mv&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1010u4pgvxo7qn1dik2w1wn284g&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1010u4pgvxo7qn1dik2w1wn284g&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1bmuozusfmvd2n1sfd5ym1uytqj&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1bmuozusfmvd2n1sfd5ym1uytqj&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1w53eurb5rzvsn1sf102hn7ticw&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1010u4pgvxo7qn1dik2w1wn284g&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n10jzr9z76e1ghn12i7ie8514fjv&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n0fa7kq7teis7cn0znh84wga9e0t&locale=en

Input Goal Use

modified list input with
the colon modifier)

protect data
integrity by
overriding the
default behavior

For more information about data-reading features, see the INPUT and INFILE
statements in SAS DATA Step Statements: Reference.

Types of Raw Data

Definitions for Types of Raw Data

data values
are character or numeric values.

numeric value
contains only numbers, and sometimes a decimal point, a minus sign, or both.
When they are read into a SAS data set, numeric values are stored in the
floating-point format native to the operating environment. Nonstandard
numeric values can contain other characters as numbers; you can use formatted
input to enable SAS to read them.

character value
is a sequence of characters.

standard data
are character or numeric values that can be read with list, column, formatted, or
named input. Examples of standard data include:

n ARKANSAS

n 1166.42

nonstandard data
is data that can be read only with the aid of informats. Examples of nonstandard
data include numeric values that contain commas, dollar signs, or blanks; date
and time values; and hexadecimal and binary values.

Numeric Data

Numeric data can be represented in several ways. SAS can read standard numeric
values without any special instructions. To read nonstandard values, SAS requires
special instructions in the form of informats. “Reading Nonstandard Numeric Data”
in SAS Language Reference: Concepts shows standard, nonstandard, and invalid
numeric data values and the special tools, if any, that are required to read them. For

Reading Raw Data 363

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0mv35tgvon6nln13rrovh657luv.htm&docsetTargetAnchor=n1ojdvbborcku5n1rl490qn5mr1g&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0mv35tgvon6nln13rrovh657luv.htm&docsetTargetAnchor=n1ojdvbborcku5n1rl490qn5mr1g&locale=en

complete descriptions of all SAS informats, see SAS Formats and Informats:
Reference.

Table 15.2 Reading Standard Numeric Data

Data Description Solution

23 input right aligned None needed

23 input not aligned None needed

23 input left aligned None needed

00023 input with leading zeros None needed

23.0 input with decimal point None needed

2.3E1 in E notation, 2.30 (ss1) None needed

230E-1 in E notation, 230x10 (ss-1) None needed

-23 minus sign for negative numbers None needed

Table 15.3 Reading Nonstandard Numeric Data

Data Description Solution

2 3 embedded blank COMMA. or BZ.
informat

- 23 embedded blank COMMA. or BZ.
informat

2,341 comma COMMA. informat

(23) parentheses COMMA. informat

C4A2 hexadecimal value HEX. informat

1MAR90 date value DATE. informat

Table 15.4 Reading Invalid Numeric Data

Data Description Solution

23 - minus sign follows
number

Put minus sign before number or solve
programmatically. It might be possible to use the

364 Chapter 15 / Raw Data

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Data Description Solution

S370FZDTw.d informat, but positive values require the
trailing plus sign (+).

.. double instead of
single periods

Code missing values as a single period or use the ??
modifier in the INPUT statement to code any invalid
input value as a missing value.

J23 not a number Read as a character value, or edit the raw data to change
it to a valid number.

Remember the following rules for reading numeric data:

n Parentheses or a minus sign preceding the number (without an intervening
blank) indicates a negative value.

n Leading zeros and the placement of a value in the input field do not affect the
value assigned to the variable. Leading zeros and leading and trailing blanks are
not stored with the value. Unlike some languages, SAS does not read trailing
blanks as zeros by default. To cause trailing blanks to be read as zeros, use the
BZ. informat described in SAS Formats and Informats: Reference.

n Numeric data can have leading and trailing blanks but cannot have embedded
blanks (unless they are read with a COMMA. or BZ. informat).

n To read decimal values from input lines that do not contain explicit decimal
points, indicate where the decimal point belongs by using a decimal parameter
with column input or an informat with formatted input. See the full description
of the INPUT statement in SAS Formats and Informats: Reference for more
information. An explicit decimal point in the input data overrides any decimal
specification in the INPUT statement.

Character Data

A value that is read with an INPUT statement is assumed to be a character value if
one of the following conditions is true:

n A dollar sign ($) follows the variable name in the INPUT statement.

n A character informat is used.

n The variable has been previously defined as character. For example, a value is
assumed to be a character value if the variable has been previously defined as
character in a LENGTH statement, in the RETAIN statement, by an assignment
statement, or in an expression.

Input data that you want to store in a character variable can include any character.
Use the guidelines in the following table when your raw data includes leading
blanks and semicolons.

Reading Raw Data 365

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Table 15.5 Reading Instream Data and External Files Containing Leading Blanks and
Semicolons

Characters in the Data What to Use Reason

leading or trailing blanks that
you want to preserve

formatted input and the
$CHARw. informat

List input trims leading
and trailing blanks from
a character value
before the value is
assigned to a variable.

semicolons in instream data DATALINES4 or CARDS4
statements and four
semicolons (;;;;) to mark
the end of the data

With the normal
DATALINES and
CARDS statements, a
semicolon in the data
prematurely signals the
end of the data.

delimiters, blank characters,
or quoted strings

DSD option, with DLM= or
DLMSTR= option in the
INFILE statement

These options enable
SAS to read a character
value that contains a
delimiter within a
quoted string; these
options can also treat
two consecutive
delimiters as a missing
value and remove
quotation marks from
character values.

Remember the following facts when reading character data:

n In a DATA step, when you place a dollar sign ($) after a variable name in the
INPUT statement, character data that is read from data lines remains in its
original case. If you want SAS to read data from data lines as uppercase, use the
CAPS system option or the $UPCASE informat.

n If the value is shorter than the length of the variable, SAS adds blanks to the
end of the value to give the value the specified length. This process is known as
padding the value with blanks.

How SAS Handles Invalid Data
An input value is invalid if it has any of the following characteristics:

n It requires an informat that is not specified.

n It does not conform to the informat specified.

366 Chapter 15 / Raw Data

n It does not match the input style used. An example is if it is read as standard
numeric data (no dollar sign or informat) but it does not conform to the rules for
standard SAS numbers.

n It is out of range (too large or too small).

Operating Environment Information: The range for numeric values is operating
environment-specific. See “Operating Environment Information” on page 15 for
information about operating system documentation.

If SAS reads a data value that is incompatible with the type specified for that
variable, SAS tries to convert the value to the specified type. If conversion is not
possible, an error occurs, and SAS performs the following actions:

n sets the value of the variable being read to missing or to the value specified
with the INVALIDDATA= system option.

n prints an invalid data note in the SAS log.

n sets the automatic variable _ERROR_ to 1 for the current observation.

n prints the input line and column number containing the invalid value in the SAS
log. If a line contains unprintable characters, it is printed in hexadecimal form. A
scale is printed above the input line to help determine column numbers.

How SAS Handles Missing Values

Representing Missing Values in Input Data

Many collections of data contain some missing values. SAS can recognize these
values as missing when it reads them. You use the following characters to represent
missing values when reading raw data:

numeric missing values
are represented by a single decimal point (.). All input styles except list input
also allow a blank to represent a missing numeric value.

character missing values
are represented by a blank, with one exception: list input requires that you use a
period (.) to represent a missing value.

special numeric missing values
are represented by two characters: a decimal point (.) followed by either a letter
or an underscore (_).

For more information about missing values, see “Reading Column-Binary Data” on
page 377.

Reading Raw Data 367

Special Missing Values in Numeric Input Data

SAS enables you to differentiate among classes of missing values in numeric data.
For numeric variables, you can designate up to 27 special missing values by using
the letters A through Z, in either uppercase or lowercase, and the underscore
character (_).

The following example shows how to code missing values by using a MISSING
statement in a DATA step:

data test_results;
 missing a b c;
 input name $8. Answer1 Answer2 Answer3;

datalines;
Smith 2 5 9
Jones 4 b 8
Carter a 4 7
Reed 3 5 c
;

Note that you must use a period when you specify a special missing numeric value
in an expression or assignment statement, as in the following:

x=.d;

However, you do not need to specify each special missing numeric data value with
a period in your input data. For example, the following DATA step, which uses
periods in the input data for special missing values, produces the same result as the
input data without periods:

data test_results;
 missing a b c;
 input name $8. Answer1 Answer2 Answer3;
 datalines;
Smith 2 5 9
Jones 4 .b 8
Carter .a 4 7
Reed 3 5 .c
;

proc print;
run;

368 Chapter 15 / Raw Data

Output 15.2 Output of Data with Special Missing Numeric Values

Note: SAS is displayed and prints special missing values that use letters in
uppercase.

Definitions for External Files
binary data

numeric data that is stored in binary form in an external file. Binary numbers
have a base of two and are represented with the digits 0 and 1.

column-binary data storage
an older form of data storage that is no longer widely used and is not needed by
most SAS users. Column-binary data storage compresses data so that more
than 80 items of data can be stored on a single “virtual” punched card. The
advantage is that this method enables you to store more data in the same
amount of space. Because card-image data sets remain in existence, SAS
provides informats for reading column-binary data. See “Reading Column-Binary
Data” on page 377 for a more information about column-binary data storage.

external files
files that are managed and maintained by your operating system, not by SAS.
They contain data or text as input to SAS jobs, or they are

External files as input to a SAS session include the following:

n records of raw data in external files that you want to read into SAS as input,
including data in the form of plain ASCII text files and binary files.

n programming statements in external files that you want to submit to SAS for
execution.

External files as output from a SAS session include the following:

n files in which you want to store data or text, including data written out as
records in plain ASCII text files or data written out in binary form.

Definitions for External Files 369

n files created as the result of running a SAS program, including SAS log files
and results from SAS procedures. For example, the PRINTTO procedure
enables you to direct procedure output to an external file. Every SAS job
creates at least one external file, the SAS log. SAS catalog files and ODS
output destinations are also examples of external files.

packed decimal data
binary decimal numbers that are encoded by using each byte to represent two
decimal digits. Packed decimal representation stores decimal data with exact
precision; the fractional part of the number must be determined by using an
informat or format because there is no separate mantissa and exponent.

zoned decimal data
binary decimal numbers that are encoded so that each digit requires one byte of
storage. The last byte contains the number's sign as well as the last digit. Zoned
decimal data produces a printable representation.

Operating Environment Information: Using external files with your SAS jobs
entails significant operating-environment-specific information.

See “Operating Environment Information” on page 15 for information about
operating system documentation specific to your operating environment.

Note: External files do not include database management system (DBMS) files or
PC files. DBMS and PC files are a special category of files that can be read with
SAS/ACCESS software.

n For information about DBMS files, see Chapter 16, “Database and PC Files,” on
page 385 and SAS/ACCESS for Relational Databases: Reference.

n For information about access to PC files, see Chapter 16, “Database and PC
Files,” on page 385 and SAS/ACCESS Interface to PC Files: Reference

Reading External Files

Reading an External File Using the DATA Step
The following example shows how to read in raw data from an external file using
the INFILE and INPUT statements. This example is similar to formatted input
example in that it uses formatted input with a SAS informat to read in the raw data.
But, for this example, notice how the INFILE statement is required instead of the
DATALINES statement because the source data is in an external text file.

data weight;
 infile <fileref> or <path-name>;
 input PatientID $ Week1 Week8 Week16;
 loss=Week1-Week16;

370 Chapter 15 / Raw Data

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p08blwp6gwk25mn1hypjjrncx3bn.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0sxxeg3uxl796n13zn9cwzqjhlq.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p1n357e2fq6kjkn1ijsu3w97lxl1.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p1n357e2fq6kjkn1ijsu3w97lxl1.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0oaql83drile0n141pdacojq97s.htm&locale=en

run;

Reading and Writing to External Files Directly
To reference a file directly in a SAS statement or command, specify in quotation
marks its physical name. This is the name by which the operating environment
recognizes it, as shown in the following table:

Table 15.6 Reading Data from an External File Directly

Task Language Element Example

Specify the file that
contains input data.

INFILE statement data weight;
 infile '/path/weight.csv';
 input idno $ week1 week16;
 loss=week1-week16;
run;

Table 15.7 Writing Data to an External File Directly

Task Language Element Example

Identify the file that the
PUT statement writes to.

FILE statement file 'mydata.txt';
if loss ge 5 and loss le 9 then
 put idno loss 'AWARD STATUS=3';
 else if loss ge 10 and loss le 14 then
 put idno loss 'AWARD STATUS=2';
 else if loss ge 15 then
 put idno loss 'AWARD STATUS=1';
run;

Table 15.8 Including an External File That Contains Programming Statements

Task Language Element Example

Bring statements or raw
data from another file into
your SAS job and execute
them.

%INCLUDE statement %include 'myprogram.txt';

Reading External Files 371

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n15o12lpyoe4gfn1y1vcp6xs6966.htm&locale=en

Referencing External Files Indirectly By Using a
Fileref

If you want to reference a file in only one place in a program so that you can easily
change it for another job or a later run, you can reference a filename indirectly. Use
a FILENAME statement, the FILENAME function, or an appropriate operating
system command to assign a fileref or nickname to a file.1 Note that you can assign
a fileref to a SAS catalog that is an external file, or to an output device, as shown in
the following table.

Table 15.9 Referencing External By Using a Fileref

Task Language Element Example

Assign a fileref to an
external file that
contains input data.

FILENAME statement /* Using PROC IMPORT */
filename myinput 'c:\Users\sasuser\lake.txt';
proc import
 datafile=myinput
 out=lake
 dbms=dlm replace;
 delimiter=' ';
run;

/* Using the DATA step */
filename myinput 'c:\Users\sasuser\lake.txt';
data lake;
 infile myinput;
 input Width Length Depth;
run;

Assign a fileref to an
external file for output
data.

FILENAME statement filename myoutput 'c:\Users\sasuser\lake.txt';
data _null_; set sashelp.lake;
 file myoutput;
 put Width Length Depth;
run;

Assign a fileref to an
external file that
contains program
statements.

FILENAME statement filename mypgm 'c:\Users\sasuser\myprogram.txt';

Assign a fileref to an
output device.

FILENAME statement filename myprinter <device-type>
 <host-options>;

Specify the file that
contains input data.

INFILE statement filename myinput 'c:\Users\sasuser\lake.txt';
data lake;
 infile myinput;
 input Width Length Depth;

1. In some operating environments, you can also use the command '&' to assign a fileref.

372 Chapter 15 / Raw Data

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n15scht124hr4nn1g296cqg2kqfa.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&locale=en

Task Language Element Example

run;

Specify the file that the
PUT statement writes
values to.

FILE statement filename myoutput 'c:\Users\sasuser\lake.txt';
data _null_; set sashelp.lake;
 file myoutput;
 put Width Length Depth;
run;

Bring statements or raw
data from another file
into your SAS job and
execute them.

%INCLUDE statement %include mypgm;

Referencing Many External Files Efficiently
When you use many files from a single aggregate storage location, such as a
directory or partitioned data set (PDS or MACLIB), you can use a single fileref,
followed by a filename enclosed in parentheses, to access the individual files. This
saves time by eliminating the need to enter a long file storage location name
repeatedly. It also makes changing the program easier later if you change the file
storage location. The following table shows an example of assigning a fileref to an
aggregate storage location:

Table 15.10 Referencing Many Files Efficiently

Task Language Element Example

Assign a fileref to aggregate storage
location.

FILENAME statement filename mydir 'directory-name';

“Reading from Multiple Input Files” in SAS DATA Step Statements: Reference

“Reading from Multiple Input Files” in SAS DATA Step Statements: Reference

Referencing External Files with Other Access
Methods

You can assign filerefs to external files that you access with the following
FILENAME access methods:

Reading External Files 373

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n15o12lpyoe4gfn1y1vcp6xs6966.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p1s3uhhqtscz2sn1otiatbovfn1t.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n1x9joj5qbfkjyn1kqtm7joru0qb&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n0g3t7x97fxphwn1eb8rwu5vwgv5&locale=en

Table 15.11 Referencing External Files with Other Access Methods

Task Language Element Example

Assign a fileref
to a SAS
catalog that is
an aggregate
storage
location.

FILENAME
statement with
CATALOG specifier

filename mycat catalog 'catalog'
 <catalog-options>;

Assign a fileref
to an external
file accessed
by a data URL.

FILENAME
statement with
DATAURL specifier

filename myfile dataurl 'external-file'
 <dataurl-options>;

Assign a fileref
to an external
file accessed
with FTP.

FILENAME
statement with FTP
specifier

filename myfile FTP 'external-file'
 <ftp-options>;

Assign a fileref
to an external
file accessed
on a Hadoop
Distributed
File System.

FILENAME
statement with
Hadoop specifier

filename myfile hadoop 'external-file'
 <hadoop-options>;

Assign a fileref
to an external
file accessed
with SFTP.

FILENAME
statement with
SFTP specifier

filename myfile SFTP 'external-file'
 <sftp-options>;

Assign a fileref
to an external
file accessed
by TCP/IP
SOCKET in
either client or
server mode.

FILENAME
statement with
SOCKET specifier

filename myfile SOCKET 'hostname: portno'
 <tcpip-options>;

or

filename myfile SOCKET ':portno' SERVER
 <tcpip-options>;

Assign a fileref
to an external
file accessed
by URL.

FILENAME
statement with URL
specifier

filename myfile URL 'external-file'
 <url-options>;

Assign a fileref
to an external
file accessed

FILENAME
statement with
WebDAV specifier

filename myfile WEBDAV 'external-file'
 <webdav-options>;

374 Chapter 15 / Raw Data

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0e720f80cp61wn1mplyz2xy2aeu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p1ndnmptyw8uo4n1uqibu1ybwtkk.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p0v0ijxl1k6d4bn16cshtic7u4i3.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p0we15v9bcy9qon1a14alwu1hdlh.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0xln1fiwsr340n1xxf4mkmfxp6f.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05zmmen6g0n0wn1heom8cixi2dy.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p103pi2vrzn6qhn1e8alrs01jrb7.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0l1vivxo238din1jt3sip83eugu.htm&locale=en

Task Language Element Example

on a WebDAV
server.

Assign a fileref
to a ZIP file
accessed by
using Zlib
services.

FILENAME
statement with ZIP
specifier

filename myfile ZIP 'external-file'
 <zip-options>;

See SAS DATA Step Statements: Reference for detailed information about each of
these statements.

Reading Binary Data

Reading Binary Data Using SAS Informats

SAS can read binary data with the special instructions supplied by SAS informats.
You can use formatted input and specify the informat in the INPUT statement. The
informat that you choose is determined by the following factors:

n the type of number being read: binary, packed decimal, zoned decimal, or a
variation of one of these

n the type of system on which the data was created

n the type of system that you use to read the data

Different computer platforms store numeric binary data in different forms. The
ordering of bytes differs by platforms that are referred to as either “big endian” or
“little endian.” For more information, see “Byte Ordering for Integer Binary Data on
Big Endian and Little Endian Platforms” in SAS Formats and Informats: Reference.

SAS provides a number of informats for reading binary data and corresponding
formats for writing binary data. Some of these informats read data in native mode,
that is, by using the byte-ordering system that is standard for the system on which
SAS is running. Other informats force the data to be read by the IBM 370 standard,
regardless of the native mode of the system on which SAS is running. The informats
that read in native or IBM 370 mode are listed in the following table.

Table 15.12 Informats for Native or IBM 370 Mode

Description Native Mode Informats
IBM 370 Mode
Informats

ASCII Character $w. $ASCIIw.

Reading External Files 375

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1dn0f61yfyzton1l2ngsa1clllr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p1wlkw56ki253qn105yt3gtizjll.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p1wlkw56ki253qn105yt3gtizjll.htm&locale=en

Description Native Mode Informats
IBM 370 Mode
Informats

ASCII Numeric w.d $ASCIIw.

EBCDIC Character $w. $EBCDICw.

EBCDIC Numeric (Standard) w.d S370FFw.d

Integer Binary IBw.d S370FIBw.d

Positive Integer Binary PIBw.d S370FPIBw.d

Real Binary RBw.d S370FRBw.d

Unsigned Integer Binary PIBw.d S370FIBUw.d,
S370FPIBw.d

Packed Decimal PDw.d S370FPDw.d

Unsigned Packed Decimal PKw.d S370FPDUw.d or PKw.d

Zoned Decimal ZDw.d S370FZDw.d

Zoned Decimal Leading Sign S370FZDLw.d S370FZDLw.d

Zoned Decimal Separate
Leading Sign

S370FZDSw.d S370FZDSw.d

Zoned Decimal Separate
Trailing Sign

S370FZDTw.d S370FZDTw.d

Unsigned Zoned Decimal ZDw.d S370FZDUw.d

If you write a SAS program that reads binary data and that is run on only one type
of system, you can use the native mode informats and formats. However, if you
want to write SAS programs that can be run on multiple systems that use different
byte-storage systems, use the IBM 370 informats. The IBM 370 informats enable
you to write SAS programs that can read data in this format and that can be run in
any SAS environment, regardless of the standard for storing numeric data.

For example, using the IBM 370 informats, you could download data that contain
binary integers from a mainframe to a PC and then use the S370FIB informats to
read the data.

Note: Anytime a text file originates from anywhere other than the local encoding
environment, it might be necessary to specify the ENCODING= option on either
EBCDIC or ASCII systems. When you read an EBCDIC text file on an ASCII
platform, it is recommended that you specify the ENCODING= option in the

376 Chapter 15 / Raw Data

FILENAME or INFILE statement. However, if you use the DSD and the DLM= or
DLMSTR= options in the INFILE statement, the ENCODING= option is a
requirement because these options require certain characters in the session
encoding (such as quotation marks, commas, and blanks). Reserve encoding-
specific informats for use with true binary files that contain both character and
non-character fields.

For complete descriptions of all SAS formats and informats, including how numeric
binary data is written, see SAS Formats and Informats: Reference.

Reading Column-Binary Data

To read column-binary data with SAS, you need to know:

n how to select the appropriate SAS column-binary informat

n how to set the RECFM= and LRECL= options in the INFILE statement

n how to use pointer controls

The following table lists and describes SAS column-binary informats.

Table 15.13 SAS Informats for Reading Column-Binary Data

Informat Name Description

$CBw. reads standard character data from column-binary files

CBw. reads standard numeric data from column-binary files

PUNCH.d reads whether a row is punched

ROWw.d reads a column-binary field down a card column

To read column-binary data, you must set two options in the INFILE statement:

n Set RECFM= to F for fixed.

n Set the LRECL= to 160, because each card column of column-binary data is
expanded to two bytes before the fields are read.

For example, to read column-binary data from a file, use an INFILE statement in the
following form before the INPUT statement that reads the data:

data out;
 infile file-specification or path-name recfm=f lrecl=160;
 input var1;
run;

Note: The expansion of each column of column-binary data into two bytes does
not affect the position of the column pointer. You use the absolute column pointer
control @, as usual, because the informats automatically compute the true location

Reading External Files 377

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

on the doubled record. If a value is in column 23, use the pointer control @23 to
move the pointer there.

Examples: Read External Files Using
PROC IMPORT

Example: Read a Comma-Delimited File

Example Code

In this example, the IMPORT procedure imports a file that contains comma-
separated values.

filename chol temp; /* 1 */
proc http /* 2 */
 url="http://support.sas.com/documentation/onlinedoc/viya/
exampledatasets/cholesterol.csv"
 out=chol;
quit;
proc import datafile=chol /* 3 */
 out=work.mycholesterol
 dbms=csv
 replace;
run;
proc print data=work.mycholesterol; /* 4 */
run;

1 The FILENAME statement assigns the chol fileref. The TEMP option specifies
that the file is temporary, so a path name is not necessary.

2 The HTTP procedure specifies the URL of the cholesterol.csv input file. The
data is written to the chol fileref.

3 PROC IMPORT reads the comma-delimited data and creates the mycholesterol
data set.

4 The PRINT procedure prints the data set. The output shows that the file was
imported correctly, including the column names.

The output shows that the file was imported correctly, including the column names.

378 Chapter 15 / Raw Data

Output 15.3 PROC PRINT of work.mycholesterol

Key Ideas

n Base SAS software can import and export some external text files without using a
SAS/ACCESS engine. These files are usually referred to as raw data or delimited
data. The DATA step or PROC IMPORT can read data from a text file and provide
that data to the V9 engine for output to a SAS data set.

n If you want Base SAS to read or write a Microsoft Excel file, the file must have
a .csv extension. To import a file that has an Excel file extension of .xls or .xlsx,
you must have a license to SAS/ACCESS Interface to PC Files. In Excel, you can
save an Excel file as a .csv file.

n If you create a SAS data set from an Excel file, the data is static and does not
change to reflect the underlying Excel data. If you want to keep data in Excel as an
ongoing data store that you can query from SAS, then use the XLSX or EXCEL
engine. You must have a license to SAS/ACCESS Interface to PC Files.

See Also

n “Default Base SAS Engine (V9 Engine)” on page 294

n Chapter 15, “Raw Data,” on page 353

n “IMPORT Procedure” in Base SAS Procedures Guide

n “Comparing SAS LIBNAME Engines for PC Files Data” in SAS/ACCESS Interface
to PC Files: Reference

Examples: Read External Files Using PROC IMPORT 379

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1qn5sclnu2l9dn1w61ifw8wqhts.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n1t1gvr8q2u9xjn1bm1rpej2wkw9.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n1t1gvr8q2u9xjn1bm1rpej2wkw9.htm&locale=en

Example: Read and Write a Space-delimited File

Example Code

The following example shows how to write data from a Sashelp data set to an
external, space-delimited text file. It then reads the data from the external text file
into a SAS data set named air.

proc export data=sashelp.air
 outfile="c:\Users\sasuser\air.txt" /* 1 */
 dbms=' ' /* 2 */
 replace; /* 3 */
run;

/* read the file into a SAS data set */
proc import datafile='C\Users\sasuser\txt\air.txt /* 4 */
 out=air /* 5 */
 dbms=dlm /* 6 */
 replace;
 delimiter=' ';
run;

proc print data=cholesterol; /* 7 */
run;

1 Write the contents of the Sashelp.air data set to an external, space-delimited
text file named air.txt. Specify the name and where to store the file. Include
the full path and file name quotation marks in the OUTFILE= option in PROC
EXPORT.

2 Specify how the file is to be delimited by specifying dlm in the DBMS= option in
PROC EXPORT.

3 Replace the file if it already exists by specifying the REPLACE option.

4 Read the external file back into SAS by specifying the IMPORT procedure.

5 Specify the name of the output data set (air) in the OUT= option.

6 Specify how the file is to be delimited by specifying dlm in the DBMS= option in
PROC EXPORT.

7 Replace the file if it already exists by specifying the REPLACE option.

PROC IMPORT builds a DATA step to read the external file and writes the DATA
step code to the SAS log:

380 Chapter 15 / Raw Data

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0ku4pxzx3d2len10ozjgyjbrpl9.htm&docsetTargetAnchor=n16ze6lo48sqy0n1qnrrgljq82d1&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0ku4pxzx3d2len10ozjgyjbrpl9.htm&docsetTargetAnchor=n0c8p40v4f1756n194p08qq64vbk&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n18jyszn33umngn14czw2qfw7thc.htm&docsetTargetAnchor=p0vmpjv3tx1daon1eoiu15ulajxv&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n18jyszn33umngn14czw2qfw7thc.htm&docsetTargetAnchor=p1qw3arc0vsfbtn1b6u4lbumup8g&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0ku4pxzx3d2len10ozjgyjbrpl9.htm&docsetTargetAnchor=n0c8p40v4f1756n194p08qq64vbk&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n18jyszn33umngn14czw2qfw7thc.htm&docsetTargetAnchor=p0vmpjv3tx1daon1eoiu15ulajxv&locale=en

Output 15.4 Partial PROC PRINT Output for Reading a Space-Delimited Text File
Using PROC IMPORT

Examples: Read External Files Using PROC IMPORT 381

Output 15.5 Log Output for Reading a Space-Delimited Text File Using PROC
IMPORT

1430 /**
1431 * PRODUCT: SAS
1432 * VERSION: 9.4
1433 * CREATOR: External File Interface
1434 * DATE: 17OCT19
1435 * DESC: Generated SAS Datastep Code
1436 * TEMPLATE SOURCE: (None Specified.)
1437 ***/
1438 data WORK.AIR; 1

1439 %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
1440 infile 'c:\Users\sasuser\txt\air.txt' delimiter = ' '
 MISSOVER 2

 DSD 3

 lrecl=32767
1440! firstobs=2; 4

1441 informat DATE MONYY7.; 5

1442 informat AIR best32. ;
1443 format DATE MONYY7. ; 6

1444 format AIR best12. ;
1445 input 7

1446 DATE
1447 AIR
1448 ;
1449 if _ERROR_ then call symputx('_EFIERR_',1); /* set ERROR detection
macro variable */
1450 run;
54

1 PROC IMPORT automatically generates this DATA step and prints the step to
the SAS Log.

2 The MISSOVER option prevents the INPUT statement from reading a new input
data record if it does not find values in the current input line for all the variables
in the statement.

3 The DSD option specifies that when data values are enclosed in quotation
marks, delimiters within the value are treated as character data.

4 FIRSTOBS= data set option specifies the first observation to be processed in
the data set.

5 MONYYw. informat reads month and year date values in the form monyy.

6 The MMYYxw. format writes date values in the form mm<yy>yy or mm-<yy>yy,
where the x in the format name is a character that represents the special
character that separates the month and the year.

7 The INPUT statement assigns input values to the corresponding SAS variables.

382 Chapter 15 / Raw Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n1sr4to5u81m4yn1648e5a0wdd0b&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=n0fa7kq7teis7cn0znh84wga9e0t&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0wjxoxrco6dsgn1ls5n3mbybcng.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0720b1ks40htdn1s09vs9a0kr6m.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n19j5sob71nsa0n1lw9h53q3tfex.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0oaql83drile0n141pdacojq97s.htm&locale=en

Key Ideas

n You can use the DATAROW statement to specify which row to begin reading data
from. For example, you specify DATAROW=1 for external files that do not contain
column names.

See Also

n “PROC IMPORT Statement” in Base SAS Procedures Guide

n “DELIMITER Statement” in Base SAS Procedures Guide

n “Importing a Tab-Delimited File” in Base SAS Procedures Guide

Examples: Read External Files Using PROC IMPORT 383

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p08ss3c3xtt2qzn1fsma45gyz333.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n18jyszn33umngn14czw2qfw7thc.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0k757c8q63cfun1n3k3ha2pqmdz.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1w1xy48wd290bn1mqalitn7wy13.htm&docsetTargetAnchor=n1w1xy48wd290bn1mqalitn7wy13&locale=en

384 Chapter 15 / Raw Data

16
Database and PC Files

Definition of SAS/ACCESS Software . 385

Dynamic LIBNAME Engine . 386
SAS/ACCESS LIBNAME Statement . 386
Using Data Set Options with SAS/ACCESS Librefs . 386
Embedding a SAS/ACCESS LIBNAME Statement in a PROC SQL View 387

SQL Procedure Pass-Through Facility . 387

ACCESS Procedure and Interface View Engine . 389

DBLOAD Procedure . 390

Interface DATA Step Engine . 390

Definition of SAS/ACCESS Software
SAS/ACCESS software

enables you to read and write data to and from other vendors' database
management systems (DBMS), as well as from some PC file formats. Depending
on your DBMS, a SAS/ACCESS product might provide one or more of the
following:

n a dynamic LIBNAME engine

n the SQL pass-through facility

n the ACCESS procedure and interface view engine

n the DBLOAD procedure

n an interface DATA step engine

These interfaces are described in this section. Each SAS/ACCESS product
provides one or more of these interfaces for each supported DBMS. See Chapter
13, “SAS Engines,” on page 289 for more information about SAS engines.

385

Note: To use the SAS/ACCESS features described in this section, you must license
SAS/ACCESS software. See the SAS/ACCESS documentation for your DBMS for
full documentation of the features described in this section.

Dynamic LIBNAME Engine

SAS/ACCESS LIBNAME Statement
Beginning in SAS 7, you can associate a SAS libref directly with a database, schema,
server, or group of tables and SAS views, depending on your DBMS. To assign a
libref to DBMS data, you must use the SAS/ACCESS LIBNAME statement, which
has syntax and options that are different from the Base SAS LIBNAME statement.
For example, to connect to an ORACLE database, you might use the following
SAS/ACCESS LIBNAME statement:

libname mydblib oracle user=smith password=secret path='myoracleserver';

This LIBNAME statement connects to ORACLE by specifying the ORACLE
connection options: USER=, PASSWORD=, and PATH=. In addition to the
connection options, you can specify SAS/ACCESS LIBNAME options that control
the type of database connection that is made. You can use additional options to
control how your data is processed.

You can use a DATA step, SAS procedures, or the Explorer window to view and
update the DBMS data associated with the libref, or use the DATASETS and
CONTENTS procedures to view information about the DBMS objects.

See your SAS/ACCESS documentation for a full listing of the SAS/ACCESS
LIBNAME options that can be used with librefs that refer to DBMS data.

Using Data Set Options with SAS/ACCESS Librefs
After you have assigned a libref to your DBMS data, you can use SAS/ACCESS data
set options, and some of the Base SAS data set options, on the data. The following
example associates a libref with DB2 data and uses the SQL procedure to query the
data:

libname mydb2lib db2;

proc sql;
 select *
 from mydb2lib.employees(drop=salary)
 where dept='Accounting';
quit;

386 Chapter 16 / Database and PC Files

The LIBNAME statement connects to DB2. You can reference a DBMS object, in
this case, a DB2 table, by specifying a two-level name that consists of the libref and
the DBMS object name. The DROP= data set option causes the SALARY column of
the EMPLOYEES table on DB2 to be excluded from the data that is returned by the
query.

See your SAS/ACCESS documentation for a full listing of the SAS/ACCESS data
set options and the Base SAS data set options that can be used on data sets that
refer to DBMS data.

Embedding a SAS/ACCESS LIBNAME Statement in
a PROC SQL View

You can issue a SAS/ACCESS LIBNAME statement by itself, as shown in the
previous examples, or as part of a CREATE VIEW statement in PROC SQL. The
USING clause of the CREATE VIEW statement enables you to store DBMS
connection information in a SAS view by embedding a SAS/ACCESS LIBNAME
statement inside the SAS view. The following example uses an embedded
SAS/ACCESS LIBNAME statement:

libname viewlib 'SAS-library';

proc sql;
 create view viewlib.emp_view as
 select *
 from mydblib.employees
 using libname mydblib oracle user=smith password=secret
 path='myoraclepath';
quit;

When PROC SQL executes the SAS view, the SELECT statement assigns the libref
and establishes the connection to the DBMS. The scope of the libref is local to the
SAS view and does not conflict with identically named librefs that might exist in
the SAS session. When the query finishes, the connection is terminated and the
libref is unassigned.

Note: You can also embed a Base SAS LIBNAME statement in a PROC SQL view.

SQL Procedure Pass-Through Facility
The SQL Procedure pass-through facility is an extension of the SQL procedure that
enables you to send DBMS-specific statements to a DBMS and to retrieve DBMS
data. You specify DBMS SQL syntax instead of SAS SQL syntax when you use the

SQL Procedure Pass-Through Facility 387

pass-through facility. You can use pass-through facility statements in a PROC SQL
query or store them in a PROC SQL view.

The pass-through facility consists of three statements and one component:

n The CONNECT statement establishes a connection to the DBMS.

n The EXECUTE statement sends dynamic, non-query DBMS-specific SQL
statements to the DBMS.

n The CONNECTION TO component in the FROM clause of a PROC SQL SELECT
statement retrieves data directly from a DBMS.

n The DISCONNECT statement terminates the connection to the DBMS.

The following pass-through facility example sends a query to an ORACLE database
for processing:

proc sql;
 connect to oracle as myconn (user=smith password=secret
 path='myoracleserver');

 select *
 from connection to myconn
 (select empid, lastname, firstname, salary
 from employees
 where salary>75000);

 disconnect from myconn;
quit;

The example uses the pass-through CONNECT statement to establish a connection
with an ORACLE database with the specified values for the USER=, PASSWORD=,
and PATH= arguments. The CONNECTION TO component in the FROM clause of
the SELECT statement enables data to be retrieved from the database. The DBMS-
specific statement that is sent to ORACLE is enclosed in parentheses. The
DISCONNECT statement terminates the connection to ORACLE.

To store the same query in an SQL procedure, use the CREATE VIEW statement:

libname viewlib
'SAS-library';

proc sql;
 connect to oracle as myconn (user=smith password=secret
 path='myoracleserver');

 create view viewlib.salary as
 select *
 from connection to myconn
 (select empid, lastname, firstname, salary
 from employees
 where salary>75000);

 disconnect from myconn;
quit;

388 Chapter 16 / Database and PC Files

ACCESS Procedure and Interface View
Engine

The ACCESS procedure enables you to create access descriptors, which are SAS
files of member type ACCESS. They describe data that is stored in a DBMS in a
format that SAS can understand. Access descriptors enable you to create
SAS/ACCESS views, called view descriptors. View descriptors are files of member
type VIEW that function in the same way as SAS views that are created with PROC
SQL, as described in “SAS Views” in SAS V9 LIBNAME Engine: Reference.

Note: If a dynamic LIBNAME engine is available for your DBMS, it is recommended
that you use the SAS/ACCESS LIBNAME statement to access your DBMS data
instead of access descriptors and view descriptors. However, descriptors continue
to work in SAS software if they were available for your DBMS in SAS 6. Some new
SAS features, such as long variable names, are not supported when you use
descriptors.

The following example creates an access descriptor and a view descriptor in the
same PROC step to retrieve data from a DB2 table:

libname adlib 'SAS-library';
libname vlib 'SAS -library';

proc access dbms=db2;
 create adlib.order.access;
 table=sasdemo.orders;
 assign=no;
 list all;

 create vlib.custord.view;
 select ordernum stocknum shipto;
 format ordernum 5.
 stocknum 4.;
run;

proc print data=vlib.custord;
run;

When you want to use access descriptors and view descriptors, both types of
descriptors must be created before you can retrieve your DBMS data. The first step,
creating the access descriptor, enables SAS to store information about the specific
DBMS table that you want to query.

After you have created the access descriptor, the second step is to create one or
more view descriptors to retrieve some or all of the DBMS data described by the
access descriptor. In the view descriptor, you select variables and apply formats to

ACCESS Procedure and Interface View Engine 389

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p03xrihh99de3rn1lcmreflkm8fa.htm&locale=en

manipulate the data for viewing, printing, or storing in SAS. You use only the view
descriptors, and not the access descriptors, in your SAS programs.

The interface view engine enables you to reference your SAS view with a two-level
SAS name in a DATA or PROC step, such as the PROC PRINT step in the example.

See “SAS Views” in SAS V9 LIBNAME Engine: Reference for more information about
SAS views. See the SAS/ACCESS documentation for your DBMS for more detailed
information about creating and using access descriptors and SAS/ACCESS views.

DBLOAD Procedure
The DBLOAD procedure enables you to create and load data into a DBMS table
from a SAS data set, data file, SAS view, or another DBMS table, or to append rows
to an existing table. It also enables you to submit non-query DBMS-specific SQL
statements to the DBMS from your SAS session.

Note: If a dynamic LIBNAME engine is available for your DBMS, it is recommended
that you use the SAS/ACCESS LIBNAME statement to create your DBMS data
instead of the DBLOAD procedure. However, DBLOAD continues to work in SAS
software if it was available for your DBMS in SAS 6. Some new SAS features, such
as long variable names, are not supported when you use the DBLOAD procedure.

The following example appends data from a previously created SAS data set named
INVDATA into a table in an ORACLE database named INVOICE:

proc dbload dbms=oracle data=invdata append;
 user=smith;
 password=secret;
 path='myoracleserver';
 table=invoice;
 load;
run;

See the SAS/ACCESS documentation for your DBMS for more detailed information
about the DBLOAD procedure.

Interface DATA Step Engine
Some SAS/ACCESS software products support a DATA step interface. This support
enables you to read data from your DBMS by using DATA step programs. Some
products support both reading and writing in the DATA step interface.

The DATA step interface consists of the following four statements:

390 Chapter 16 / Database and PC Files

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p03xrihh99de3rn1lcmreflkm8fa.htm&locale=en

n The INFILE statement identifies the database or message queue to be accessed.

n The INPUT statement is used with the INFILE statement to issue a GET call to
retrieve DBMS data.

n The FILE statement identifies the database or message queue to be updated, if
writing to the DBMS is supported.

n The PUT statement is used with the FILE statement to issue an UPDATE call, if
writing to the DBMS is supported.

The following example updates data in an IMS database by using the FILE and
INFILE statements in a DATA step. The statements generate calls to the database
in the IMS native language, DL/I. The DATA step reads Bank.Customer, an existing
SAS data set that contains information about new customers, and then it updates
the ACCOUNT database with the data in the SAS data set.

data _null_;
 set bank.customer;
 length ssa1 $9;
 infile accupdt dli call=func dbname=db ssa=ssa1;
 file accupdt dli;
 func = 'isrt';
 db = 'account';
 ssa1 = 'customer';
 put @1 ssnumber $char11.
 @12 custname $char40.
 @52 addr1 $char30.
 @82 addr2 $char30.
 @112 custcity $char28.
 @140 custstat $char2.
 @142 custland $char20.
 @162 custzip $char10.
 @172 h_phone $char12.
 @184 o_phone $char12.;
 if _error_ = 1 then
 abort abend 888;
run;

In SAS/ACCESS products that provide a DATA step interface, the INFILE statement
has special DBMS-specific options that enable you to specify DBMS variable
values and to format calls to the DBMS appropriately. See the SAS/ACCESS
documentation for your DBMS for a full listing of the DBMS-specific INFILE
statement options and the Base SAS INFILE statement options that can be used
with your DBMS.

Interface DATA Step Engine 391

392 Chapter 16 / Database and PC Files

17
SAS Views

Definitions for SAS Views . 393

Definitions for SAS Views
A SAS view is a virtual data set that extracts data values from other files in order to
provide a customized and dynamic representation of the data.

n A view contains no data, but rather references data that is stored elsewhere.

n In most cases, you can use a SAS view as if it were a SAS data set.

Here are the types of SAS views:

DATA step view
is a stored DATA step program.

PROC SQL view
is a stored query expression that is created in PROC SQL. See also “Creating and
Using PROC SQL Views” in SAS SQL Procedure User’s Guide.

SAS views are supported by the V9 engine. SAS views can also reference DBMS
data if the appropriate SAS/ACCESS engine is licensed. SAS views are not
supported by the CAS engine or the SPD Engine. SAS V9 LIBNAME Engine:
Reference

393

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p1c2yap6eiwukin18hid2r3h2n4h.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p1c2yap6eiwukin18hid2r3h2n4h.htm&locale=en

394 Chapter 17 / SAS Views

18
SAS Dictionary Tables

Definition of a DICTIONARY Table . 395

How to View DICTIONARY Tables . 396
About Dictionary Tables . 396
How to View a DICTIONARY Table . 396
How to View a Summary of a DICTIONARY Table . 396
How to View a Subset of a DICTIONARY Table . 397
DICTIONARY Tables and Performance . 398

Definition of a DICTIONARY Table
A DICTIONARY table is a read-only SAS view that contains information about SAS
libraries, SAS data sets, SAS macros, and external files that are in use or available
in the current SAS session. A DICTIONARY table also contains the settings for SAS
system options that are currently in effect.

When you access a DICTIONARY table, SAS determines the current state of the
SAS session and returns the desired information accordingly. This process is
performed each time a DICTIONARY table is accessed, so that you always have
current information.

DICTIONARY tables can be accessed by a SAS program by using either of these
methods:

n run a PROC SQL query against the table, using the DICTIONARY libref

n use any SAS procedure or the DATA step, referring to the PROC SQL view of the
table in the Sashelp library

For more information about DICTIONARY tables, including a list of available
DICTIONARY tables and their associated Sashelp views, see “What Are
DICTIONARY Tables?” in SAS SQL Procedure User’s Guide.

395

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n02s19q65mw08gn140bwfdh7spx7.htm&docsetTargetAnchor=n0ts7s3wzdpu1gn18faqdg9d6s5e&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n02s19q65mw08gn140bwfdh7spx7.htm&docsetTargetAnchor=n0ts7s3wzdpu1gn18faqdg9d6s5e&locale=en

How to View DICTIONARY Tables

About Dictionary Tables
You might want to view the contents of DICTIONARY tables in order to see
information about your current SAS session, before actually using the table in a
DATA step or a SAS procedure.

Some DICTIONARY tables can become quite large. In this case, you might want to
view a part of a DICTIONARY table that contains only the data that you are
interested in. The best way to view part of a DICTIONARY table is to subset the
table using a PROC SQL WHERE clause.

How to View a DICTIONARY Table
Each DICTIONARY table has an associated PROC SQL view in the Sashelp library.
You can see the entire contents of a DICTIONARY table by opening its Sashelp
view with the VIEWTABLE or FSVIEW utilities. This method provides more detail
than you receive in the output of the DESCRIBE TABLE statement, as shown in
“How to View a Summary of a DICTIONARY Table” on page 396.

The following steps describe how to use the VIEWTABLE or FSVIEW utilities to
view a DICTIONARY table in a windowing environment.

1 Invoke the Explorer window in your SAS session.

2 Select the Sashelp library. A list of members in the Sashelp library appears.

3 Select a SAS view with a name that starts with V (for example, VMEMBER).

A VIEWTABLE window appears that contains its contents. (For z/OS, type the
letter 'O' in the command field for the desired member and press Enter. The
FSVIEW window appears with the contents of the view.)

In the VIEWTABLE window the column headings are labels. To see the column
names, select View ð Column Names.

How to View a Summary of a DICTIONARY Table
The DESCRIBE TABLE statement in PROC SQL produces a summary of the
contents of a DICTIONARY table. The following example uses the DESCRIBE

396 Chapter 18 / SAS Dictionary Tables

TABLE statement in order to generate a summary for the table
DICTIONARY.INDEXES. (The Sashelp view for this table is Sashelp.VINDEX).

 proc sql;
 describe table dictionary.indexes;

The result of the DESCRIBE TABLE statement appears in the SAS log:

NOTE: SQL table DICTIONARY.INDEXES was created like:

create table DICTIONARY.INDEXES
 (
 libname char(8) label='Library Name',
 memname char(32) label='Member Name',
 memtype char(8) label='Member Type',
 name char(32) label='Column Name',
 idxusage char(9) label='Column Index Type',
 indxname char(32) label='Index Name',
 indxpos num label='Position of Column in Concatenated Key',
 nomiss char(3) label='Nomiss Option',
 unique char(3) label='Unique Option
);

n The first word on each line is the column (or variable) name. You need to use
this name when you write a SAS statement that refers to the column (or
variable).

n Following the column name is the specification for the type of variable and the
width of the column.

n The name that follows label= is the column (or variable) label.

After you know how a table is defined, you can use the processing ability of the
PROC SQL WHERE clause in a PROC SQL step to extract a portion of a SAS view.

How to View a Subset of a DICTIONARY Table
When you know that you are accessing a large DICTIONARY and you need to use
only a portion of it, use a PROC SQL WHERE clause in order to extract a subset of
the original. The following PROC SQL statement demonstrates the use of a PROC
SQL WHERE clause in order to extract lines from DICTIONARY.INDEXES.

proc sql;
 title 'Subset of the DICTIONARY.INDEX View';
 title2 'Rows with Column Name equal to STATE';
 select libname, memname, name
 from dictionary.indexes
 where name = 'STATE';
quit;

The results are shown in the following output:

How to View DICTIONARY Tables 397

Output 18.1 Result of the PROC SQL Subsetting WHERE Statement

Note that many character values in the DICTIONARY tables are stored as all-
uppercase characters; you should design your queries accordingly.

CAUTION
Do not confuse the GENNUM variable value in CONTENTS OUT= data set with
the GEN variable value from DICTIONARY tables. GENNUM from a CONTENTS
procedure or statement refers to a specific generation of a data set. GEN from
DICTIONARY tables refers to the total number of generations for a data set.

DICTIONARY Tables and Performance
When you query a DICTIONARY table, SAS gathers information that is pertinent to
that table. Depending on the DICTIONARY table that is being queried, this process
can include searching libraries, opening tables, and executing SAS views. Unlike
other SAS procedures and the DATA step, PROC SQL can improve this process by
optimizing the query before the select process is launched. Therefore, although it is
possible to access DICTIONARY table information with SAS procedures or using
the DATA step to access Sashelp views, it is often more efficient to use PROC SQL.

For example, the following programs both produce the same result, but the PROC
SQL step runs much faster because the WHERE clause is processed before opening
the tables used by Sashelp.VCOLUMN view:

data mytable;
 set sashelp.vcolumn;
 where libname='WORK' and memname='SALES';
run;

398 Chapter 18 / SAS Dictionary Tables

proc sql;
 create table mytable as
 select * from sashelp.vcolumn
 where libname='WORK' and memname='SALES';
quit;

Note: SAS does not maintain DICTIONARY table information between queries.
Each query of a DICTIONARY table launches a new discovery process.

If you are querying the same DICTIONARY table several times in a row, you can get
even faster performance by creating a temporary SAS data set and running your
query against that data set. You can create the temporary data set by using the
DATA step SET statement or PROC SQL CREATE TABLE AS statement.

How to View DICTIONARY Tables 399

400 Chapter 18 / SAS Dictionary Tables

PART 4

Manipulating Data

Chapter 19
Grouping Data . 403

Chapter 20
Loops and Conditionals . 421

Chapter 21
Combining Data . 473

Chapter 22
Using Indexes . 571

Chapter 23
Using Arrays . 573

Chapter 24
Debugging Errors . 595

Chapter 25
Optimizing System Performance . 635

Chapter 26
Using Parallel Processing . 651

401

402

19
Grouping Data

Definitions for BY-Group Processing . 404

Syntax . 405
Syntax . 405
FIRST. and LAST. Automatic DATA Step Variables . 405

Understanding BY Groups . 405
BY Groups with a Single BY Variable . 405
BY Groups with Multiple BY Variables . 407

Invoking BY-Group Processing . 408

Determining Whether the Data Requires Preprocessing for BY-Group Processing 409

Preprocessing Input Data for BY-Group Processing . 409
Sorting Observations for BY-Group Processing . 409
Indexing for BY-Group Processing . 410

FIRST. and LAST. DATA Step Variables . 410
How the DATA Step Identifies BY Groups . 410
How SAS Determines FIRST.variable and LAST.variable . 411
Using a Name Literal as the FIRST. and LAST. Variable . 411
Example 1: Grouping Observations by State, City, and ZIP Code . 412
Example 2: Grouping Observations by City, State, and ZIP Code 413
Example 3: A Change Affecting the FIRST. variable . 414

Processing BY-Groups in the DATA Step . 415
Overview . 415
Processing BY-Groups Conditionally . 416
Data Not in Alphabetic or Numeric Order . 417
Data Grouped by Formatted Values . 418
Example 1: Using GROUPFORMAT with Formats . 418
Example 2: Using GROUPFORMAT with Formats . 419

403

Definitions for BY-Group Processing
BY-group processing

is a method of processing observations from one or more SAS data sets that are
grouped or ordered by values of one or more common variables. The most
common use of BY-group processing in the DATA step is to combine two or
more SAS data sets. To do this, you use the BY statement with a SET, MERGE,
MODIFY, or UPDATE statement.

BY variable
names a variable or variables by which the data set is sorted or indexed. All data
sets must be ordered or indexed on the values of the BY variable if you use the
SET, MERGE, or UPDATE statements. If you use MODIFY, data does not need to
be ordered. However, your program might run more efficiently with ordered
data. All data sets that are being combined must include one or more BY
variables. The position of the BY variable in the observations does not matter.

BY value
is the value or formatted value of the BY variable.

BY group
includes all observations with the same BY value. If you use more than one
variable in a BY statement, a BY group is a group of observations with the same
combination of values for these variables. Each BY group has a unique
combination of values for the variables.

FIRST.variable and LAST.variable
are variables that SAS creates for each BY variable. SAS sets FIRST.variable
when it is processing the first observation in a BY group, and sets LAST.variable
when it is processing the last observation in a BY group. These assignments
enable you to take different actions, based on whether processing is starting for
a new BY group or ending for a BY group. For more information, see “FIRST. and
LAST. DATA Step Variables” in SAS Language Reference: Concepts.

For more information about BY-Group processing, see “Reading, Combining, and
Modifying SAS Data Sets” in SAS Language Reference: Concepts. See also
Combining and Modifying SAS Data Sets: Examples.

404 Chapter 19 / Grouping Data

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n01a08zkzy5igbn173zjz82zsi1s.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n01a08zkzy5igbn173zjz82zsi1s.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0sz8gq6nvzcojn13pcqe3twvg1d.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0sz8gq6nvzcojn13pcqe3twvg1d.htm&locale=en

Syntax

Syntax
DATA step BY-groups are created and managed using the BY statement in SAS. See
“BY Statement” in SAS DATA Step Statements: Reference for complete syntax
information.

FIRST. and LAST. Automatic DATA Step Variables
In the DATA step, SAS identifies the beginning and end of each BY group by
creating two temporary variables for each BY variable. See How the DATA Step
Identifies BY Groups “FIRST. and LAST. DATA Step Variables” on page 410 for more
information about how you can use the FIRST. and LAST. variable with BY groups.

Understanding BY Groups

BY Groups with a Single BY Variable
The following figure represents the results of using a single BY variable, zipCode, in
a DATA step. The input data set, zip contains street names, cities, states, and ZIP
codes. The groups are created by specifying the variable zipCode in the BY
statement. The DATA step arranges the zipcodes that have the same values into
groups.

The figure shows five BY groups that are created from the examples “Create the Zip
Data Set” in SAS Language Reference: Concepts and “Sort and Group the zipCode
Data Set by a Single Variable” in SAS Language Reference: Concepts..

The first BY group contains all observations with the smallest value for the BY
variable zipCode. The second BY group contains all observations with the next
smallest value for the BY variable, and so on.

Understanding BY Groups 405

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0xu93fy5eemkyn1p6mj5elses7j.htm&docsetTargetAnchor=p1ur8memo3mokin1n14gj4sp869s&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0xu93fy5eemkyn1p6mj5elses7j.htm&docsetTargetAnchor=p1ur8memo3mokin1n14gj4sp869s&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0xu93fy5eemkyn1p6mj5elses7j.htm&docsetTargetAnchor=n0abnqn4x2li19n1afvmh2snlpx1&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0xu93fy5eemkyn1p6mj5elses7j.htm&docsetTargetAnchor=n0abnqn4x2li19n1afvmh2snlpx1&locale=en

Figure 19.1 BY Group Using a Single BY Variable (ZipCode)

Example Code 19.1 Create the Zip Data Set

data zip;
input zipCode State $ City $ Street $20-29;
datalines;
85730 AZ Tucson Domenic Ln
85730 AZ Tucson Gleeson Pl
33133 FL Miami Rice St
33133 FL Miami Thomas Ave
33133 FL Miami Surrey Dr
33133 FL Miami Trade Ave
33146 FL Miami Nervia St
33146 FL Miami Corsica St
33801 FL Lakeland French Ave
33809 FL Lakeland Egret Dr
;

You can then specify the BY variable in the DATA step using the following code:

Example Code 19.2 Sort and Group the zipCode Data Set by a Single Variable

proc sort data=zip;
 by zipcode;
run;

data zip;
 set zip; by zipcode;
run;

proc print data=zip noobs;
 title 'BY-Group Uing a Single Variable: ZipCode';
run;

406 Chapter 19 / Grouping Data

BY Groups with Multiple BY Variables
The following figure represents the results of processing the zip data set with two
BY variables, State and City. This example uses the same data set as in “Create the
Zip Data Set” in SAS Language Reference: Concepts, and is arranged in an order that
you can use with the following BY statement:

by State City;

The figure shows three BY groups. The data set is shown with the BY variables
State and City printed on the left for easy reading. The position of the BY variables
in the observations does not affect how the values are grouped and ordered.

The observations are arranged so that the observations for Arizona occur first. The
observations within each value of State are arranged in order of the value of City.
Each BY group has a unique combination of values for the variables State and City.
For example, the BY value of the first BY group is AZ Tucson, and the BY value of
the second BY group is FL Lakeland.

Figure 19.2 BY Groups with Multiple BY Variables (State and City)

Here is the code for creating the output shown in the figure “BY Groups with
Multiple BY Variables” on page 407 :

Example Code 19.3 Create the Zip Data Set

/* BY Groups with Multiple BY Variables */
data zip;
input State $ City $ Street $13-22 ZipCode ;
datalines;
FL Miami Nervia St 33146
FL Miami Rice St 33133
FL Miami Corsica St 33146
FL Miami Thomas Ave 33133

Understanding BY Groups 407

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0xu93fy5eemkyn1p6mj5elses7j.htm&docsetTargetAnchor=p1ur8memo3mokin1n14gj4sp869s&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0xu93fy5eemkyn1p6mj5elses7j.htm&docsetTargetAnchor=p1ur8memo3mokin1n14gj4sp869s&locale=en

FL Miami Surrey Dr 33133
FL Miami Trade Ave 33133
FL Lakeland French Ave 33801
FL Lakeland Egret Dr 33809
AZ Tucson Domenic Ln 85730
AZ Tucson Gleeson Pl 85730
;

Example Code 19.4 Sort and Group the zipCode Data Set by Multiple BY Variables

proc sort data=zip;
 by State City;
run;

data zip;
 set zip;
 by State City;
run;
proc print data=zip noobs;
 title 'BY Groups with Multiple BY Variables: State City';
run;

Invoking BY-Group Processing
To create BY groups, you use the BY statement in one of two ways:

n DATA step

n PROC step (For information about BY-group processing with procedures, see
“Creating Titles That Contain BY-Group Information ” in Base SAS Procedures
Guide.)

The following DATA step program uses the SET statement to combine observations
from three SAS data sets by interleaving the files. The data is ordered by State City
and Zip.

data all_sales;
 set region1 region2 region3;
 by State City Zip;
 … more SAS statements …
run;

408 Chapter 19 / Grouping Data

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0n5mm9l2pmpevn1lsjqccmgp8tx.htm&docsetTargetAnchor=p1ugijs68wdji3n17rn5guiocyrn&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0n5mm9l2pmpevn1lsjqccmgp8tx.htm&docsetTargetAnchor=p1ugijs68wdji3n17rn5guiocyrn&locale=en

Determining Whether the Data Requires
Preprocessing for BY-Group Processing

Before you perform BY-group processing on multiple data sets using the SET,
MERGE, and UPDATE statements, you must check the data to determine whether it
requires preprocessing. They require no preprocessing if the observations in all of
the data sets occur in one of the following patterns:

n ascending or descending numeric order

n ascending or descending character order

n not alphabetically or numerically ordered, but grouped in some way, such as by
calendar month or by a formatted value

If the observations are not in the order that you want, you must either sort the data
set or create an index for it before using BY-group processing.

If you use the MODIFY statement in BY-group processing, you do not need to
presort the input data. Presorting, however, can make processing more efficient and
less costly.

You can use PROC SQL views in BY-group processing. For complete information,
see SAS SQL Procedure User’s Guide.

Note: SAS/ACCESS Users: If you use SAS views or librefs, see SAS/ACCESS for
Relational Databases: Reference for information about using BY groups in your SAS
programs.

Preprocessing Input Data for BY-Group
Processing

Sorting Observations for BY-Group Processing
You can use the SORT procedure to change the physical order of the observations
in the data set. You can either replace the original data set, or create a new, sorted
data set by using the OUT= option of the SORT procedure. In this example, PROC
SORT rearranges the observations in the data set INFORMATION based on

Preprocessing Input Data for BY-Group Processing 409

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

ascending values of the variables State and ZipCode, and replaces the original data
set.

proc sort data=information;
 by State ZipCode;
run;

As a general rule, specify the variables in the PROC SORT BY statement in the
same order that you specify them in the DATA step BY statement. For a detailed
description of the default sorting orders for numeric and character variables, see
the SORT procedure in Base SAS Procedures Guide.

Note: The BY statement honors the linguistic collation of sorted data when you
use the SORT procedure with the SORTSEQ=LINGUISTIC option.

Indexing for BY-Group Processing
You can also ensure that observations are processed in ascending order by creating
an index based on one or more variables in the data set. If you specify a BY
statement in a DATA step, SAS looks for an appropriate index. If it finds the index,
SAS automatically retrieves the observations from the data set in indexed order.

Note: Because creating and maintaining indexes require additional resources, you
should determine whether using them significantly improves performance.
Depending on the nature of the data in your SAS data set, using PROC SORT to
order data values can be more advantageous than indexing. For an overview of
indexes, see “Understanding SAS Indexes” in SAS Language Reference: Concepts.

FIRST. and LAST. DATA Step Variables

How the DATA Step Identifies BY Groups
In the DATA step, SAS identifies the beginning and end of each BY group by
creating the following two temporary variables for each BY variable:

n FIRST.variable

n LAST.variable

For example, if the DATA step specifies the variable state in the BY statement,
then SAS creates the temporary variables FIRST.state and LAST.state.

410 Chapter 19 / Grouping Data

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n06cy7dznbx6gen1q9mat8de6rdq.htm&locale=en

These temporary variables are available for DATA step programming but are not
added to the output data set. Their values indicate whether an observation is one
of the following positions:

n the first one in a BY group

n the last one in a BY group

n neither the first nor the last one in a BY group

n both first and last, as is the case when there is only one observation in a BY
group

You can take actions conditionally, based on whether you are processing the first or
the last observation in a BY group. See “Processing BY-Groups Conditionally” on
page 416 for more information.

How SAS Determines FIRST.variable and
LAST.variable

n When an observation is the first in a BY group, SAS sets the value of the
FIRST.variable to 1. This happens when the value of the variable changed from
the previous observation.

n For all other observations in the BY group, the value of FIRST.variable is 0.

n When an observation is the last in a BY group, SAS sets the value of
LAST.variable to 1. This happens when the value of the variable changes in the
next observation.

n For all other observations in the BY group, the value of LAST.variable is 0.

n For the last observation in a data set, the value of all LAST.variable variables are
set to 1.

Using a Name Literal as the FIRST. and LAST.
Variable

When you designate a name literal as the BY variable in BY-group processing and
you want to refer to the corresponding FIRST. or LAST. temporary variables, you
must include the FIRST. or LAST. portion of the two-level variable name within
quotation marks. Here is an example:

data sedanTypes;
 set cars;
 by 'Sedan Types'n;
 if 'first.Sedan Types'n then type=1;
run;

FIRST. and LAST. DATA Step Variables 411

For more information about BY-Group Processing and how SAS creates the
temporary variables, FIRST and LAST, see “How SAS Determines FIRST.variable
and LAST.variable” in SAS Language Reference: Concepts and “How SAS Identifies
the Beginning and End of a BY Group” in SAS DATA Step Statements: Reference.

Example 1: Grouping Observations by State, City,
and ZIP Code

This example shows how SAS uses the FIRST.variable and LAST.variable to flag the
beginning and end of BY groups. Note the following:

n FIRST and LAST variables are created automatically by SAS.

n FIRST and LAST variables are referenced in the DATA step but they are not part
of the output data set. Also, fixed output image.

n Six temporary variables are created for each BY variable: FIRST.State,
LAST.State, FIRST.City, LAST.City, FIRST.ZipCode, and LAST.ZipCode.

data zip;
input State $ City $ ZipCode Street $20-29;
datalines;
FL Miami 33133 Rice St
FL Miami 33133 Thomas Ave
FL Miami 33133 Surrey Dr
FL Miami 33133 Trade Ave
FL Miami 33146 Nervia St
FL Miami 33146 Corsica St
FL Lakeland 33801 French Ave
FL Lakeland 33809 Egret Dr
AZ Tucson 85730 Domenic Ln
AZ Tucson 85730 Gleeson Pl
;
proc sort data=zip; by State City ZipCode; run;
data zip2;
 set zip;
 by State City ZipCode;
 put _n_= City State ZipCode
 first.city= last.city=
 first.state= last.state=
 first.ZipCode= last.ZipCode= ;
run;

412 Chapter 19 / Grouping Data

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n01a08zkzy5igbn173zjz82zsi1s.htm&docsetTargetAnchor=n135t95kb0v5omn1wnw7ucjsx7al&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n01a08zkzy5igbn173zjz82zsi1s.htm&docsetTargetAnchor=n135t95kb0v5omn1wnw7ucjsx7al&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&docsetTargetAnchor=p0z2v37ykk47i8n171lzad8fyrvg&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&docsetTargetAnchor=p0z2v37ykk47i8n171lzad8fyrvg&locale=en

Example Code 19.1 Grouping Observations by State, City, and ZIP Code

N=1 AZ Tucson 85730 FIRST.State=1 LAST.State=0 FIRST.City=1 LAST.City=0
FIRST.ZipCode=1 LAST.ZipCode=0
N=2 AZ Tucson 85730 FIRST.State=0 LAST.State=1 FIRST.City=0 LAST.City=1
FIRST.ZipCode=0 LAST.ZipCode=1
N=3 FL Lakeland 33801 FIRST.State=1 LAST.State=0 FIRST.City=1 LAST.City=0
FIRST.ZipCode=1 LAST.ZipCode=1
N=4 FL Lakeland 33809 FIRST.State=0 LAST.State=0 FIRST.City=0 LAST.City=1
FIRST.ZipCode=1 LAST.ZipCode=1
N=5 FL Miami 33133 FIRST.State=0 LAST.State=0 FIRST.City=1 LAST.City=0
FIRST.ZipCode=1 LAST.ZipCode=0
N=6 FL Miami 33133 FIRST.State=0 LAST.State=0 FIRST.City=0 LAST.City=0
FIRST.ZipCode=0 LAST.ZipCode=0
N=7 FL Miami 33133 FIRST.State=0 LAST.State=0 FIRST.City=0 LAST.City=0
FIRST.ZipCode=0 LAST.ZipCode=0
N=8 FL Miami 33133 FIRST.State=0 LAST.State=0 FIRST.City=0 LAST.City=0
FIRST.ZipCode=0 LAST.ZipCode=1
N=9 FL Miami 33146 FIRST.State=0 LAST.State=0 FIRST.City=0 LAST.City=0
FIRST.ZipCode=1 LAST.ZipCode=0
N=10 FL Miami 33146 FIRST.State=0 LAST.State=1 FIRST.City=0 LAST.City=1
FIRST.ZipCode=0 LAST.ZipCode=1

Figure 19.3 BY Groups for State, City, and Zipcode

Note: This is a chart used to display the contents of the log more clearly. It is not
the output data set.

Example 2: Grouping Observations by City, State,
and ZIP Code

This example is similar to “Example 1: Grouping Observations by State, City, and ZIP
Code” in SAS Language Reference: Concepts except that the observations are
grouped by City first and then by State and ZipCode.

data zip;

FIRST. and LAST. DATA Step Variables 413

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n01a08zkzy5igbn173zjz82zsi1s.htm&docsetTargetAnchor=p0lh5cw3q0vitpn1ak05s577tk5r&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n01a08zkzy5igbn173zjz82zsi1s.htm&docsetTargetAnchor=p0lh5cw3q0vitpn1ak05s577tk5r&locale=en

input State $ City $ ZipCode Street $20-29;
datalines;
FL Miami 33133 Rice St
FL Miami 33133 Thomas Ave
FL Miami 33133 Surrey Dr
FL Miami 33133 Trade Ave
FL Miami 33146 Nervia St
FL Miami 33146 Corsica St
FL Lakeland 33801 French Ave
FL Lakeland 33809 Egret Dr
AZ Tucson 85730 Domenic Ln
AZ Tucson 85730 Gleeson Pl
;
proc sort data=zip; by City State ZipCode; run;
data zip2;
 set zip;
 by City State ZipCode;
 put _n_= City State ZipCode
 first.city= last.city=
 first.state= last.state=
 first.ZipCode= last.ZipCode=;
run;
proc print data=zip2; title 'By City, State, Zip'; run;

Example Code 19.2 Grouping Observations by City, State, and ZIP Code

N=1 Lakeland FL 33801 FIRST.City=1 LAST.City=0 FIRST.State=1 LAST.State=0
FIRST.ZipCode=1 LAST.ZipCode=1
N=2 Lakeland FL 33809 FIRST.City=0 LAST.City=1 FIRST.State=0 LAST.State=1
FIRST.ZipCode=1 LAST.ZipCode=1
N=3 Miami FL 33133 FIRST.City=1 LAST.City=0 FIRST.State=1 LAST.State=0
FIRST.ZipCode=1 LAST.ZipCode=0
N=4 Miami FL 33133 FIRST.City=0 LAST.City=0 FIRST.State=0 LAST.State=0
FIRST.ZipCode=0 LAST.ZipCode=0
N=5 Miami FL 33133 FIRST.City=0 LAST.City=0 FIRST.State=0 LAST.State=0
FIRST.ZipCode=0 LAST.ZipCode=0
N=6 Miami FL 33133 FIRST.City=0 LAST.City=0 FIRST.State=0 LAST.State=0
FIRST.ZipCode=0 LAST.ZipCode=1
N=7 Miami FL 33146 FIRST.City=0 LAST.City=0 FIRST.State=0 LAST.State=0
FIRST.ZipCode=1 LAST.ZipCode=0
N=8 Miami FL 33146 FIRST.City=0 LAST.City=1 FIRST.State=0 LAST.State=1
FIRST.ZipCode=0 LAST.ZipCode=1
N=9 Tucson AZ 85730 FIRST.City=1 LAST.City=0 FIRST.State=1 LAST.State=0
FIRST.ZipCode=1 LAST.ZipCode=0
N=10 Tucson AZ 85730 FIRST.City=0 LAST.City=1 FIRST.State=0 LAST.State=1
FIRST.ZipCode=0 LAST.ZipCode=1

Example 3: A Change Affecting the FIRST. variable
The value of FIRST.variable can be affected by a change in a previous value, even if
the current value of the variable remains the same.

In this example, the values of FIRST.variable and LAST.variable are dependent on
sort order, and not just by the value of the BY variable. For observation 3, the value

414 Chapter 19 / Grouping Data

of FIRST.Y is set to 1 because BLUEBERRY is a new value for Y. This change in Y
causes FIRST.Z to be set to 1 as well, even though the value of Z did not change.

data fruit;
 input x $ y $ 10-18 z $ 21-29;
 datalines;
apple banana coconut
apple banana coconut
apple blueberry citron
apricot blueberry citron
;

data _null_;
 set fruit; by x y z;
 if _N_=1 then put 'Grouped by X Y Z';
 put _N_= x= first.x= last.x= first.y= last.y= first.z= last.z= ;
run;

data _null_;
 set fruit; by y x z;
 if _N_=1 then put 'Grouped by Y X Z';
 put _N_= first.y= last.y= first.x= last.x= first.z= last.z= ;
run;

Grouped by X Y Z
N=1 FIRST.x=1 LAST.x=0 FIRST.y=1 LAST.y=0 FIRST.z=1 LAST.z=0
N=2 FIRST.x=0 LAST.x=0 FIRST.y=0 LAST.y=1 FIRST.z=0 LAST.z=1
N=3 FIRST.x=0 LAST.x=1 FIRST.y=1 LAST.y=1 FIRST.z=1 LAST.z=1
N=4 FIRST.x=1 LAST.x=1 FIRST.y=1 LAST.y=1 FIRST.z=1 LAST.z=1

Grouped by Y X Z
N=1 FIRST.y=1 LAST.y=0 FIRST.x=1 LAST.x=0 FIRST.z=1 LAST.z=0
N=2 FIRST.y=0 LAST.y=1 FIRST.x=0 LAST.x=1 FIRST.z=0 LAST.z=1
N=3 FIRST.y=1 LAST.y=0 FIRST.x=1 LAST.x=1 FIRST.z=1 LAST.z=1
N=4 FIRST.y=0 LAST.y=1 FIRST.x=1 LAST.x=1 FIRST.z=1 LAST.z=1

Processing BY-Groups in the DATA Step

Overview
The most common use of BY-group processing is to combine data sets by using the
BY statement with the SET, MERGE, MODIFY, or UPDATE statements. (If you use a
SET, MERGE, or UPDATE statement with the BY statement, your observations
must be grouped or ordered.) When processing these statements, SAS reads one
observation at a time into the program data vector. With BY-group processing, SAS
selects the observations from the data sets according to the values of the BY
variable or variables. After processing all the observations from one BY group, SAS
expects the next observation to be from the next BY group.

Processing BY-Groups in the DATA Step 415

The BY statement modifies the action of the SET, MERGE, MODIFY, or UPDATE
statement by controlling when the values in the program data vector are set to
missing. During BY-group processing, SAS retains the values of variables until it has
copied the last observation that it finds for that BY group in any of the data sets.
Without the BY statement, the SET statement sets variables to missing when it
reads the last observation. The MERGE statement does not set variables to missing
after the DATA step starts reading observations into the program data vector.

Processing BY-Groups Conditionally
You can process observations conditionally by using the subsetting IF or IF-THEN
statements, or the SELECT statement, with the temporary variables FIRST.variable
and LAST.variable (set up during BY-group processing). For example, you can use
the IF or IF THEN statements to perform calculations for each BY group and to
write an observation when the first or the last observation of a BY group has been
read into the program data vector.

The following example computes annual payroll by department. It uses IF-THEN
statements and the values of FIRST.variable and LAST.variable automatic variables
to reset the value of PAYROLL to 0 at the beginning of each BY group and to write
an observation after the last observation in a BY group is processed.

data salaries;
 input Department $ Name $ WageCategory $ WageRate;
 datalines;
BAD Carol Salaried 20000
BAD Elizabeth Salaried 5000
BAD Linda Salaried 7000
BAD Thomas Salaried 9000
BAD Lynne Hourly 230
DDG Jason Hourly 200
DDG Paul Salaried 4000
PPD Kevin Salaried 5500
PPD Amber Hourly 150
PPD Tina Salaried 13000
STD Helen Hourly 200
STD Jim Salaried 8000
;

proc print data=salaries;
run;

proc sort data=salaries out=temp; by Department; run;

data budget (keep=Department Payroll);
 set temp;
 by Department;
 if WageCategory='Salaried' then YearlyWage=WageRate*12;
 else if WageCategory='Hourly' then YearlyWage=WageRate*2000;
 /* SAS sets FIRST.variable to 1 if this is a new */
 /* department in the BY group. */
 if first.Department then Payroll=0;
 Payroll+YearlyWage;

416 Chapter 19 / Grouping Data

 /* SAS sets LAST.variable to 1 if this is the last */
 /* department in the current BY group. */
 if last.Department;
run;

proc print data=budget;
 format Payroll dollar10.;
 title 'Annual Payroll by Department';
run;

Output 19.1 Output from Conditional BY-Group Processing

Data Not in Alphabetic or Numeric Order
In BY-group processing, you can use data that is arranged in an order other than
alphabetic or numeric, such as by calendar month or by category. To do this, use the
NOTSORTED option in a BY statement when you use a SET statement. The
NOTSORTED option in the BY statement tells SAS that the data is not in
alphabetic or numeric order, but that it is arranged in groups by the values of the BY
variable. You cannot use the NOTSORTED option with the MERGE statement, the
UPDATE statement, or when the SET statement lists more than one data set.

This example assumes that the data is grouped by the character variable MONTH.
The subsetting IF statement conditionally writes an observation, based on the
value of LAST.month. This DATA step writes an observation only after processing
the last observation in each BY group.

data sales;
 input month

data total_sale(drop=sales);
 set region.sales
 by month notsorted;
 total+sales;
 if last.month;
run;

Processing BY-Groups in the DATA Step 417

Data Grouped by Formatted Values
Use the GROUPFORMAT option in the BY statement to ensure that

n formatted values are used to group observations when a FORMAT statement
and a BY statement are used together in a DATA step

n the FIRST.variable and LAST.variable are assigned by the formatted values of
the variable

The GROUPFORMAT option is valid only in the DATA step that creates the SAS
data set. It is particularly useful with user-defined formats. The following examples
illustrate the use of the GROUPFORMAT option.

Example 1: Using GROUPFORMAT with Formats
proc format;
 value range
 low -55 = 'Under 55'
 55-60 = '55 to 60'
 60-65 = '60 to 65'
 65-70 = '65 to 70'
 other = 'Over 70';
run;

proc sort data=class out=sorted_class;
 by height;
run;

data _null_;
 format height range.;
 set sorted_class;
 by height groupformat;
 if first.height then
 put 'Shortest in ' height 'measures ' height:best12.;
run;

SAS writes the following output to the log:

Example Code 19.3 SAS Log Output Using the BY Statement GROUPFORMAT Option

Shortest
in Under 55 measures 51.3
Shortest in 55 to 60 measures 56.3
Shortest in 60 to 65 measures 62.5
Shortest in 65 to 70 measures 65.3
Shortest in Over 70 measures 72

418 Chapter 19 / Grouping Data

Example 2: Using GROUPFORMAT with Formats

options
linesize=80 pagesize=60;

 /* Create SAS data set test */
data test;
 infile datalines;
 input name $ Score;
datalines;
Jon 1
Anthony 3
Miguel 3
Joseph 4
Ian 5
Jan 6
;
 /* Create a user-defined format */
proc format;
 value Range 1-2='Low'
 3-4='Medium'
 5-6='High';
run;

 /* Create the SAS data set newtest */
data newtest;
 set test;
 by groupformat Score;
 format Score Range.;
run;

 /* Print using formatted values */
proc print data=newtest;
 title 'Score Categories';
 var Name Score;
 by Score;
run;

Processing BY-Groups in the DATA Step 419

Output 19.2 SAS Output Using the BY Statement GROUPFORMAT Option

420 Chapter 19 / Grouping Data

20
Loops and Conditionals

Definitions for Loops and Conditionals . 422

Summary of Statements for Conditional Processing in SAS . 423

DO Loops . 425
Types of DO Loops . 425
Forms of the Iterative DO Loop . 427

WHERE Expressions . 428
WHERE Statement . 428
Variables in WHERE Expressions . 428
Functions in WHERE Expressions . 429
Constants in WHERE Expressions . 431
Operators in WHERE Expressions . 432
Indexes and WHERE Expressions . 442
Data Set and System Options with WHERE Expressions . 443

IF Statements . 444
Types of IF Statements . 444
Subsetting IF Statement versus the WHERE Statement . 444

SELECT WHEN Statement . 446
See Also . 447

Other Control Flow Statements . 447

Examples: DO Loops . 449
Example: Use a Simple Iterative DO Loop . 449
Example: Use a Nested Iterative DO Loop . 450
Example: Use DOLIST Syntax to Iterate over a List of Values . 452
Example: Use Iterative DO TO Syntax to Iterate a Specific Number of Times 453
Example: Use the Iterative DO TO BY Syntax to Iterate a Specific

Number of Times by a Specific Interval . 454
Example: Use the Iterative DO WHILE and DO UNTIL Statements

to Execute a Group of Statements Repetitively . 455

Examples: WHERE Processing . 457
Example: Conditionally Select Rows Using the WHERE Statement 457
Example: Conditionally Select Rows Using a Compound WHERE Expression 459
Example: Conditionally Select Rows Based on Multiple Conditions 460
Example: Conditionally Select Rows Using the WHERE= Data Set Option 463
Example: Use an Index to Improve Performance of WHERE Processing 463

Examples: IF Statements . 464

421

Example: Subset Data Using the Subsetting IF Statement . 464
Example: Conditionally Select Specific Rows Using the IF Statement 466

Example: SELECT WHEN Statement . 467
Example Code . 467
See Also . 469

Example: Data Set Options . 469
Example Code . 469
See Also . 471

Definitions for Loops and Conditionals
The following terms are related to conditional and iterative programming in SAS:

Conditional processing
statements or expressions in SAS that perform different computations or
actions depending on whether a programmer-specified condition is true or false.
For a list of these statements, see “Summary of Statements for Conditional
Processing in SAS” on page 423.

Control flow
programming constructs in SAS that control the sequence and flow of program
execution. For example, conditional processing statements and DO loops are
types of control flow statements. For a list of additional control flow
statements in SAS, see “Other Control Flow Statements” on page 447.

For more information, see “Altering the Flow for a Given Observation” on page
874.

DO group
a group of SAS DATA step statements that begins with the DO statement and
ends with the END statement. DO group statements are executed as a unit. A
DO group can consist of an iterative DO statement (also known as a DO loop),
or it can consist of a simple DO statement. Simple DO statements are often
used with conditional IF-THEN/ELSE statements.

DO loop
instructions that are continually repeated until a certain condition is reached.
The iterative DO statement enables you to create DO loops. For more
information, see “Types of DO Loops” on page 425.

DOLIST syntax
a type of syntax that is based on the iterative DO loop, in which the loop
iterates over the elements of a list. The list serves as the start-value in the DO
statement and the items in the list are separated by commas. DOLIST syntax
can also be specified in the iterative DO WHILE and DO UNTIL statements. For
more information, see “Types of DO Loops” on page 425.

422 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0el0y2a02ab1ln1pks3gbac1en3.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0el0y2a02ab1ln1pks3gbac1en3.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0el0y2a02ab1ln1pks3gbac1en3.htm&locale=en

WHERE expression
a WHERE expression is a type of SAS expression that defines a condition for
selecting rows to be processed in a SAS data set. The following WHERE
statement defines a single condition for selecting rows:

where sales > 600000;

A compound WHERE expression consists of multiple conditions that are joined
by logical operators:

 where sales > 600000 and salary < 100000;

WHERE expression processing can improve efficiency of a request. For example,
when you use a WHERE expression with a SAS index, then it is not necessary
for SAS to read all rows in the data set in order to perform the request.

Summary of Statements for Conditional
Processing in SAS
Table 20.1 Conditionally Selecting Data Using SAS

Language Element Description Example

CASE WHEN
expression in PROC
SQL

selects result values
that satisfy
specified conditions.

proc sql;
 select Title, length,
 case
 when length<120 then 'Short'
 when length>=120 then 'Long'
 else 'No Length'
 end as m_length from movies;
quit;

DO loop executes
statements between
a DO and an END
statement
repetitively.,

data simple_do;
 years=5;
 if years>0 then
 do;
 months=years*12;
 output;
 end;

IF statement in the
DATA step

conditionally
executes
statements based
on whether a
condition is true.

data if_ex;
 set sashelp.class;
 if age>14;
 output;
run;

SELECT WHEN
statement in the
DATA step

conditionally
executes

data class;
 set sashelp.class;
 select (Name);
 when ('Philip');

Summary of Statements for Conditional Processing in SAS 423

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n0a85s0ijz65irn1h3jtariooea5.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n0a85s0ijz65irn1h3jtariooea5.htm&locale=en

Language Element Description Example

statements when a
condition is true.

 otherwise delete;
 end;
run;

WHERE statement in
the DATA step

conditionally selects
rows so that SAS
processes only the
rows that meet
specified conditions.

data class;
 set sashelp.class;
 where Age>14;
run;

WHERE statement in
the PROC step

conditionally selects
rows so that the
SAS procedure
processes only the
rows that meet
specified conditions.

More information

proc print data=sashelp.class;
 where age > 14;
run;

proc means data=prdsale;
 where region = 'EAST';
run;

WHERE= data set
option in the DATA
step.

conditionally selects
rows to read in from
an input data set or
to write out to an
output data set.

data class(where=(age>14));
 set sashelp.class;
run;

data class;
 set sashelp.class(where=(age>14));
run;

WHERE= data set
option in the PROC
step

conditionally selects
rows so that SAS
prints only the rows
that meet specified
conditions.

More information

proc freq
 data=sashelp.cars(where=(weight>6000));
 tables make * model;
run; quit;

CASE expression in
the PROC SQL step

conditionally selects
rows that meet
specified conditions.

proc sql;
 select Name, case
 when Continent = 'North America' then 'Group A'
 else 'Need to assign'
 end as Region
 from states;
run; quit;

WHERE clause in the
PROC SQL step

conditionally selects
rows that meet
specified conditions.

proc sql; select state from crime where murder > 7;
run; quit;

DATA step view,
PROC SQL view, and
SAS/ACCESS that is
stored with the
definition

from a view,
conditionally selects
rows that meet
specified conditions.

proc sql;
 create view stat as
 select * from crime
 where murder > 7;
run; quit;

424 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0ny9o8t8hc5zen1qn3ft9dhtsxx.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0ny9o8t8hc5zen1qn3ft9dhtsxx.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0ny9o8t8hc5zen1qn3ft9dhtsxx.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0ny9o8t8hc5zen1qn3ft9dhtsxx.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0f499g9w3oyxwn17uas8f8ook5q.htm&docsetTargetAnchor=n090owu67nuqoon1j82hg34yix6a&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n0a85s0ijz65irn1h3jtariooea5.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n117kov8xnm98rn192nhjrpol85l.htm&locale=en

Language Element Description Example

More information

Table 20.2 Base SAS Procedures That Support WHERE Expression Processing

APPEND procedure REPORT procedure

COMPARE procedure SORT procedure

DATASETS procedure STANDARD procedure

FCMP procedure SUMMARY procedure

MEANS procedure TABULATE procedure

PRINT procedure TRANSPOSE procedure

RANK procedure

DO Loops

Types of DO Loops
In programming, you might need to execute the same set of statements repeatedly
or execute the same set of statements for a specific number of times. This type of
processing requires the use of loops. In SAS, you create loops by specifying the DO
statement. There are four basic DO loops used in SAS programming:

Table 20.3 Types of DO Loops

Type Description Example

DO
statement

n executes statements between the DO and END
statements as a unit.

n often used with IF-THEN/ELSE statements,
where the statements in the DO group are
executed depending on whether the value of the
IF statement condition is true or false.

data example;
 x=1;
 if x>0 then
 do;
 x=x*10;
 put x=;
 end;
run;

DO Loops 425

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1bjrbc5esr90on12o8vs7gyv8ue.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0bqogcics9o4xn17yvt2qjbgdpi.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1nwxbchh5hpu1n1h28kmici2awd.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hmips60w5w3yn1hj9klna7aplw.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1baz760758nn2n1arzklv8yrbhw.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p10b4qouzgi6sqn154ipglazix2q.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0aq3hsvflztfzn1xa2wt6s35oy6.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0f0fjpjeuco4gn1ri963f683mi4.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n00yutbvvckjwrn1ldg5xkvjy1pu.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p10qiuo2yicr4qn17rav8kptnjpu.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1xno5xgs39b70n0zydov0owajj8.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0le3p5ngj1zlbn1mh3tistq9t76.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0el0y2a02ab1ln1pks3gbac1en3.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0el0y2a02ab1ln1pks3gbac1en3.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0el0y2a02ab1ln1pks3gbac1en3.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0el0y2a02ab1ln1pks3gbac1en3.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1hzww1k9y2xwun1ndd9xd2qwkv5.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1j60arf27ll4nn1ejavv3nby4pa.htm&locale=en

Type Description Example

Example: Use a Simple Iterative
DO Loop

Iterative DO
statement

n executes statements between the DO and END
statements repetitively, based on the value of an
index variable.

n There are different forms of the iterative DO
statement.

data example;
 x=0;
 do i=1 to 3;
 x=x+1;
 put x=;
 end;
run;

Log output

x=1 i=1
x=2 i=2
x=3 i=3

Example: Use Iterative DO TO
Syntax to Iterate a Specific
Number of Times

Conditional
DO WHILE
statement

n executes statements in the DO loop repetitively
while a condition is true

n evaluates the condition at the top of the loop so
that the DO WHILE loop never executes if the
condition is false.

data do_while;
x=7;
 do while(x < 10);
 x=x+1;
 put x=;
 end;
run;

Log output

x=8
x=9
x=10

Conditional
DO UNTIL
statement

n executes statements in the DO loop repetitively
until a condition is true

n evaluates the condition at the bottom of the
loop so that the DO UNTIL loop always
executes at least once, even if the condition is
false.

data do_until;
 x=7;
 do until(x > 10);
 x=x+1;
 put x=;
 end;
run;

Log output

x=8
x=9
x=10
x=11

Example: Use the Iterative DO
WHILE and DO UNTIL
Statements to Execute a Group
of Statements Repetitively

426 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0el0y2a02ab1ln1pks3gbac1en3.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1hzww1k9y2xwun1ndd9xd2qwkv5.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p02so7o86anedyn1wy3a2obvquru&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1awxgleif5wlen1pja0nrn6yi6i.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1awxgleif5wlen1pja0nrn6yi6i.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1awxgleif5wlen1pja0nrn6yi6i.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1awxgleif5wlen1pja0nrn6yi6i.htm&locale=en

Forms of the Iterative DO Loop
As listed in the previous table, one of the forms of the DO loop in SAS is the
iterative DO loop. There are several forms of the iterative DO loop:

Table 20.4 Forms of the Iterative DO Statement

Syntax Description Example

DO index-variable = start-value; Simple DO loop syntax

The start-value is the
initial value of the index-
variable and it is a number
or an expression that
evaluates to a number.

data simple_do;
 x = 5;
 do i= x*2;
 end;
run;

Example: Use a Simple
Iterative DO Loop

DO index-variable = start-value
TO stop-value;

DO start-value TO stop-
value syntax

The start-value and stop-
value are numbers or
expressions that evaluate
to numbers.

data do_to;
 x = 5;
 do i=(x+1) to (x*2);
 x=x+1;
 output;
 end;
run;

Example: Use Iterative DO
TO Syntax to Iterate a
Specific Number of Times

DO index-variable = start-value
TO stop-valueBY increment-value;

BY-increment syntax

The start-value and the
stop-value are numbers or
expressions that evaluate
to numbers.

data do_to_by;
 x = 1;
 do i=0 to 10 by (x*2);
 x=x+1;
 output;
 end;
run;

Example: Use the Iterative
DO TO BY Syntax to Iterate
a Specific Number of Times
by a Specific Interval

DO index-variable =
start-value-1,< start-value-2>,
<start-value-n>;

DOLIST syntax

The start-value is a list of
values separated by
commas. The values in the
list can be individual
numbers or expressions
that evaluate to numbers.

data do_list;
 do i=5, 10, 20+1;
 output;
 end;
run;

Example: Use DOLIST
Syntax to Iterate over a List
of Values

DO Loops 427

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=n1nie2b13msa57n11v9xzcg9rjgx&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p02so7o86anedyn1wy3a2obvquru&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p02so7o86anedyn1wy3a2obvquru&locale=en

WHERE Expressions

WHERE Statement
You can use the WHERE statement in SAS to select rows from a SAS data set that
meet a particular condition.

data cars;
 set sashelp.cars;
 where weight>6000;
run;

For complete syntax information, see “WHERE Statement” in SAS DATA Step
Statements: Reference.

Note: By default, a WHERE expression does not evaluate added and modified
rows. To specify whether a WHERE expression should evaluate updates, you can
specify the WHEREUP= data set option. See the “WHEREUP= Data Set Option” in
SAS Data Set Options: Reference.

See Also
“Example: Conditionally Select Rows Using the WHERE Statement” on page 457

Variables in WHERE Expressions

Variable Types and WHERE Expressions

A variable is a name that refers to a column of data in a SAS data set. Each SAS
variable has attributes, such as its name and its data type. The variable's data type
determines how operations are performed in the WHERE expression. For example,
the WHERE expression in the DATA step below selects rows in which sales are
greater than 550. Because sales is a numeric variable, the comparison operator
(greater than) compares numeric values in the WHERE expression.

data retail;
 set sashelp.retail;
 where sales > 550;
run;

428 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1j47kr375rq2dn1qcbyccxx30md.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1j47kr375rq2dn1qcbyccxx30md.htm&locale=en

This example creates a SAS data set that selects only rows in which the date is
later than January 1, 1953. This value is an example of a SAS date constant and it is
also used with the comparison operator, greater than (>) to perform a comparison
of date values.

data air;
 set sashelp.air;
 where date>'01jan1953'd;
run;

Automatic DATA Step Variables and WHERE
Expressions

You cannot use automatic DATA step variables in WHERE expressions. For
example, you cannot use the FIRST.variable, LAST.variable, _N_ variable, or
variables created in assignment statements in WHERE expressions. Variables in the
WHERE expression must exist in the source data set that is being read or created.

Stand-Alone Variables and WHERE Expressions

As with other SAS expressions, the names of numeric variables can stand alone.
SAS treats numeric values of 0 or missing as false and all other values as true.

For example, in the following DATA step, the WHERE expression returns all rows
from the sashelp.heart data set in which the numeric values for AgeCHDdiag are
not missing or zero and the character values for DeathCause are not blank or
missing:

data heart;
 set sashelp.heart;
 where AgeCHDdiag and DeathCause;
run;

Functions in WHERE Expressions
A SAS function returns a value from a computation or system manipulation. You
can use a SAS function in a WHERE expression.

The following DATA step uses the SUBSTR function to produce a SAS data set that
contains only rows in which name begins with Jan:

data class; set sashelp.class; run;

data J_class;
 set class;
 where substr (name,1,3) = 'Jan';
run;
proc print data=J_class;

WHERE Expressions 429

 run;

Output 20.1 PROC PRINT Output Showing the SUBSTR Function Used in a WHERE
Statement

The following SAS functions are commonly used with WHERE expressions:

n SUBSTRN function to extract a substring.

n TODAY function to return the current date.

n PUT function returns a given value using a given format.

IMPORTANT You cannot use WHERE expressions with functions that
contain the OF operator.

OF syntax is permitted in some SAS functions. For example, in the following DATA
step, OF is used with the RANGE function to return the difference between the
largest and smallest values in the list d1–d3. This is permitted as long as the
function containing the OF operator is not specified in a WHERE expression.

data test;
 n1=1;
 n2=2;
 n3=3;
 num = range(of n1-n3);
run;

If you specify this same function with OF in a WHERE expression, SAS returns an
error to the log:

ERROR: Syntax error while parsing WHERE clause.

Instead of using an OF in a WHERE clause, you can enumerate all the variables
from the OF list:

 where num < range(n1,n2,n3);

Note: You can use the TRIM function and the SUBSTR function in a WHERE
expression to improve performance on indexed data. For more information, see
“Indexes and WHERE Expressions” on page 442.

See Also

n “The OF Operator with Functions and Variable Lists” on page 100

n SAS Functions and CALL Routines: Reference

430 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0wqoixcwtx2jqn1ovqf06kart0o.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0hm9egy8s7mokn1mz0yxng80ax5.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0mlfb88dkhbmun1x08qbh5xbs7e.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1io938ofitwnzn18e1hzel3u9ut.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0uev77ebdwy90n1rsd7hwjd2qc3.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Constants in WHERE Expressions
A constant is a fixed value such as a number or quoted character string. You can
specify SAS constants in WHERE expressions to find a particular value in a SAS
data set. The constant values are created within the WHERE expression itself.
Constants are also called literals.

A constant can be a numeric value, a character string, or a datetime value. The
following table lists the different types of constants:

Table 20.5 SAS Constants That Can Be Specified in WHERE Expressions

Constant
Type Description Example

Numeric
constants

do not enclose the value in
quotation marks.

where price > 200;

Character
constants

enclose the value in either
single or double quotation
marks.

ensure that quoted values are
exact matches, including case.

use single quotation marks
when double quotation marks
appear in the value, or use
double quotation marks when
single quotation marks appear
in the value.

where lastname eq 'Martin';

where item = '6" decorative pot';

where name = "D'Amico";

“Date, Time,
and Datetime
Constants”

enclose the value in either
single or double quotation
marks.

after the closing quotation
mark, specify the letter d for
date constants, the letter t for
time constants, or the letters
dt for datetime constants.

where birthday = '24sep1975'd;

where time>'9:25:19pm't

where year='2018-05-17T09:15:30'dt;

WHERE Expressions 431

Operators in WHERE Expressions

Arithmetic Operators

Arithmetic operators enable you to perform a mathematical operation. The
arithmetic operators include the following:

Table 20.6 Arithmetic Operators

Operator
Symbol Description Example

* multiplication where bonus = salary * .10;

/ division where f = g / h;

+ addition where c = a+b;

- subtraction where f = g-h;

** exponentiation where y = a**2;

Comparison Operators

Comparison operators (also called binary operators) compare a variable with a
value or another variable.

Comparison operators propose a relationship and ask SAS to determine whether
that relationship holds.

For example, the following WHERE expression accesses only those rows that have
the value 78753 for the numeric variable zipcode:

where zipcode eq 78753;

The following table lists the comparison operators used in SAS:

Table 20.7 Comparison Operators

Symbol Alias Definition Example

= EQ equal to where empnum eq 3374;

432 Chapter 20 / Loops and Conditionals

Symbol Alias Definition Example

^= or ~=
or ¬= or
<>

NE not equal to where status ne full-time;

> GT greater than where hiredate gt '01jun1982'd;

< LT less than where empnum < 2000;

>= GE greater than or
equal to

where empnum >= 3374;

<= LE less than or equal to where empnum <= 3374;

IN equal to one from a
list of values

where state in ('NC','TX');

When you do character comparisons, you can use the colon (:) modifier to compare
only a specified prefix of a character string. For example, in the following WHERE
expression, the colon modifier, used after the equal sign, tells SAS to look at only
the first character in the values for variable LastName and to select the rows with
names beginning with the letter S:

where lastname=: 'S';

Note that in the SQL procedure, the colon modifier that is used in conjunction with
an operator is not supported. You can use the LIKE operator instead.

Logical Operators

You can combine or modify WHERE expressions by using the Boolean logical
operators AND, OR, and NOT. The basic syntax of a compound WHERE expression
is as follows:

WHERE where-expression-1 AND | OR | NOT where-expression-n

The logical operators and their equivalent symbols are shown in the following
table:

Table 20.8 Logical (Boolean) Operators

Symbol
Mnemonic
Equivalent Description Example

& AND combines two or more
expressions and finds
rows that satisfy all
conditions.

 where skill eq 'java' and
 years eq 4;

WHERE Expressions 433

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1djze3bpsa1zen1wx8eh5zwulao.htm&locale=en

Symbol
Mnemonic
Equivalent Description Example

! or | or ¦ OR combines two or more
expressions and finds
rows that satisfy either of
the conditions or all of
them.

where skill eq 'java' or
 years eq 4;

^ or ~ or
¬

NOT modifies a condition by
finding the complement
of the specified criteria.
You can use the NOT
logical operator in
combination with any
SAS and WHERE
expression operator. And
you can combine the NOT
operator with AND and
OR.

where skill not eq 'java' or
 years not eq 4;

Order of Evaluation for Compound Expressions

When SAS encounters a compound WHERE expression (multiple conditions), the
software follows rules to determine the order in which to evaluate each expression.
When WHERE expressions are combined, SAS processes the conditions in the
following order:

1 NOT – processed first.

2 AND – processed next.

3 OR – processed last.

Using Parentheses to Control the Order of
Evaluation

You can control the order of evaluation of a SAS expression by placing the
expression in parentheses. The expression within the innermost set of parentheses
is processed first, followed by the next, outer parentheses, moving outward until all
expressions in parentheses have been processed.

For example, suppose that you want a list of all the Canadian sites that have either
SAS/GRAPH or SAS/STAT software. You issue the following expression without
using parentheses:

434 Chapter 20 / Loops and Conditionals

where product='GRAPH' or product='STAT' and country='Canada';

The result, however, includes all sites that license SAS/GRAPH software along with
the Canadian sites that license SAS/STAT software. To obtain the correct results,
you can use parentheses, which causes SAS to evaluate the comparisons within the
parentheses first, providing a list of sites with either product licenses, then the
result is used for the remaining condition:

where (product='GRAPH' or product='STAT') and country='Canada';

IN Operator

The IN operator is also a comparison operator. It searches for character and
numeric values that are equal to one of the values from a list of values. The list of
values must be in parentheses, with each character value in quotation marks and
separated by either a comma or blank.

For example, suppose that you want all sites that are in North Carolina or Texas.
You could specify:

where state = 'NC' or state = 'TX';

However, it is easier to use the IN operator, which selects any state in the list:

where state in ('NC','TX');

In addition, you can use the NOT logical operator to exclude a list:

where state not in ('CA', 'TN', 'MA');

You can use a shorthand notation to specify a range of sequential integers to
search. The range is specified by using the syntax M:N as a value in the list to
search, where M is the lower bound and N is the upper bound. M and N must be
integers, and M, N, and all the integers between M and N are included in the range.

For example, the following statements are equivalent:

n y = x in (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

n y = x in (1:10);

See Also
“Types of Variable Lists” on page 99

Interval Comparisons

An interval comparison (or, fully bounded range condition) consists of a variable
between two comparison operators, specifying both an upper and lower limit. For
example, the following expression returns the employee numbers that fall within
the range of 500 to 1000. In this case, since the comparison operator, less than (<)
is accompanied by an equal sign, this comparison is considered an inclusive
interval:

WHERE Expressions 435

where 500 <= empnum <= 1000;

Note that the previous range condition expression is equivalent to the following:

where empnum >= 500 and empnum <= 1000;

You can combine the NOT logical operator with a fully bounded range condition to
select rows that fall outside the range. Note that parentheses are required:

where not (500 <= empnum <= 1000);

BETWEEN-AND Operator

The BETWEEN-AND operator is also considered a fully bounded range condition
that selects rows in which the value of a variable falls within an inclusive range of
values.

You can specify the limits of the range as constants or expressions. Any range that
you specify is an inclusive range, so that a value equal to one of the limits of the
range is within the range. The general syntax for using BETWEEN-AND is as
follows:

WHERE variable BETWEEN value AND value;

For example:

where empnum between 500 and 1000;
where taxes between salary*0.30 and salary*0.50;

You can combine the NOT logical operator with the BETWEEN-AND operator to
select rows that fall outside the range:

where empnum not between 500 and 1000;

Note: The BETWEEN-AND operator and a fully bounded range condition produce
the same results. That is, the following WHERE expressions are equivalent:

where 500 <= empnum <= 1000;
where empnum between 500 and 1000;

CONTAINS Operator

The most common usage of the CONTAINS (?) operator is to select rows by
searching for a specified set of characters within the values of a character variable.
The position of the string within the variable's values does not matter. However, the
operator is case sensitive when making comparisons.

The following examples select rows that have the values Mobay and Brisbayne for
the variable Company, but they do not select rows that contain Bayview:

where company contains 'bay';
where company ? 'bay';

436 Chapter 20 / Loops and Conditionals

You can combine the NOT logical operator with the CONTAINS operator to select
rows that are not included in a specified string:

where company not contains 'bay';

You can also use the CONTAINS operator with two variables to determine whether
one variable is contained in another. When you specify two variables, keep in mind
the possibility of trailing spaces, which can be resolved using the TRIM function.

proc sql;
 select *
 from table1 as a, table2 as b
 where a.fullname contains trim(b.lastname) and
 a.fullname contains trim(b.firstname);

In addition, the TRIM function is helpful when you search on a macro variable.

proc print;
 where fullname contains trim("&lname");
run;

IS NULL or IS MISSING Operator

The IS NULL or IS MISSING operator selects rows in which the value of a variable is
missing. The operator selects rows with both regular or special missing value
characters and can be used for both character and numeric variables.

where idnum is missing;
where name is null;

The following are equivalent for character data:

where name is null;
where name = ' ';

And the following is equivalent for numeric data. This statement differentiates
missing values with special missing value characters:

where idnum <= .Z;

You can combine the NOT logical operator with IS NULL or IS MISSING to select
nonmissing values, as follows:

where salary is not missing;

LIKE Operator

The LIKE operator selects rows by pattern matching; that is, it selects rows by
comparing the values of a character variable to a specified pattern.

The LIKE operator is case sensitive and it uses two special characters for specifying
a pattern:

WHERE Expressions 437

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1io938ofitwnzn18e1hzel3u9ut.htm&locale=en

percent sign (%)
specifies that any number of characters can occupy that position. For example,
the following WHERE expression selects all employees with a name that starts
with the letter N. The names can be of any length.

where lastname like 'N%';

underscore (_)
matches just one character in the value for each underscore character. You can
specify more than one consecutive underscore character in a pattern, and you
can specify a percent sign and an underscore in the same pattern. For example,
you can use different forms of the LIKE operator to select character values from
this list of first names:

n Diana

n Diane

n Dianna

n Dianthus

n Dyan

The following table shows which of these names is selected by using various forms
of the LIKE operator:

Table 20.9 Names Selected by Using the LIKE Operator

Pattern Name Selected

where frstname like 'D_an' Dyan

where frstname like 'D_an_' Diana, Diane

where frstname like 'D_an__' Diana

where frstname like 'D_an%' all names from list

You can use a SAS character expression to specify a pattern, but you cannot use a
SAS character expression that uses a SAS function.

You can combine the NOT logical operator with LIKE to select values that do not
have the specified pattern, such as the following:

where frstname not like 'D_an%';

The % and _ characters have a special meaning for the LIKE operator. When
searching for patterns that contain the % and _ characters, you must use an escape
character.

An escape character is a single character that, in a sequence of characters, signifies
that which follows takes an alternative meaning. For the LIKE operator, an escape
character signifies to search for literal instances of the % and _ characters in the
variable's values instead of performing the special-character function.

438 Chapter 20 / Loops and Conditionals

For example, if the variable X contains the values abc, a_b, and axb, the following
LIKE operator with an escape character selects only the value a_b. The escape
character (/) specifies that the pattern searches for a literal ' _' that is surrounded
by the characters a and b. The escape character (/) is not part of the search.

where x like 'a/_b' escape '/';

Without an escape character, the following LIKE operator selects the values a_b
and axb. The underscore in the search pattern matches any single b character,
including the value with the underscore:

where x like 'a_b';

To specify an escape character, include the escape character in the pattern-
matching expression, and then the keyword ESCAPE followed by the escape-
character expression.

LIKE 'pattern-matching-expression' ESCAPE 'escape-character-expression'

WHERE x LIKE a/_b ESCAPE '/';

When including an escape character with the LIKE operator in a WHERE
expression, note the following points:

n the pattern-matching expression must be a character string that is enclosed in
quotation marks.

n the pattern-matching expression cannot contain a column name.

n the escape-character expression must be a character string that evaluates to a
single character.

n if the escape-character expression is a single character, enclose it in quotation
marks.

Sounds-like Operator

The sounds-like (=*) operator selects rows that contain a spelling variation of a
specified word or words. The operator uses the Soundex algorithm to compare the
variable value and the operand. For more information, see the SOUNDEX function
in SAS Functions and CALL Routines: Reference.

Note: The SOUNDEX algorithm is English-biased, and is less useful for languages
other than English.

Although the sounds-like operator is useful, it does not always select all possible
values. For example, consider that you want to select rows from the following list
of names that sound like Smith:

n Schmitt

n Smith

n Smithson

n Smitt

WHERE Expressions 439

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

n Smythe

The following WHERE expression selects all the names from this list except
Smithson:

where lastname=* 'Smith';

You can combine the NOT logical operator with the sounds-like operator to select
values that do not contain a spelling variation of a specified word or words. Here is
an example of what you cannot do:

where lastname not =* 'Smith';

Note: The sounds-like operator cannot be optimized with an index.

SAME-AND Operator

Use the SAME-AND operator to add more conditions to an existing WHERE
expression later in the program without retyping the original conditions. This
capability is useful with the following:

n interactive SAS procedures

n full-screen SAS procedures that enable you to enter a WHERE expression on
the command line

n any type of RUN-group processing

Use the SAME-AND operator with a WHERE expression when you want to insert
additional conditions. The SAME-AND operator has the following form:

n where-expression-1;

n SAS statements...

n WHERE SAME AND where-expression-2;

n SAS statements...

n WHERE SAME AND where-expression-n;

SAS selects rows that satisfy the conditions after the SAME-AND operator, in
addition to any previously defined conditions. SAS treats all of the existing
conditions as if they were conditions separated by AND operators in a single
WHERE expression.

The following example shows how to use the SAME-AND operator within RUN
groups in the GPLOT procedure. The SAS data set YEARS has three variables and
contains quarterly data for the 2009–2011 period:

proc gplot data=years;
 plot unit*quar=year;
run;
 where year > '01jan2009'd;
run;
 where same and year < '01jan2012'd;
run;

440 Chapter 20 / Loops and Conditionals

The following WHERE expression is equivalent to the preceding code:

where year > ''01jan2009'd and year < '01jan2012'd;

MIN and MAX Operators

Use the MIN or MAX operators to find the minimum or maximum value of two
quantities. Surround the operators with the two quantities whose minimum or
maximum value you want to know.

n The MIN operator returns the lower of the two values.

n The MAX operator returns the higher of the two values.

For example, if A is less than B, then the following would return the value of A:

where x = (a min b);

Note: The symbol representation >< is not supported, and <> is interpreted as “not
equal to.”

Concatenation Operator

The concatenation operator concatenates character values. You indicate the
concatenation operator as follows:

n || (two OR symbols)

n !! (two exclamation marks)

n ¦¦ (two broken vertical bars).

For example:

where name = 'John'||'Smith';

Prefix Operators

The plus sign (+) and the minus sign (–) can be either prefix operators or arithmetic
operators. They are prefix operators when they appear at the beginning of an
expression or immediately preceding an open parenthesis. A prefix operator is
applied to the variable, constant, SAS function, or parenthetic expression.

where z = −(x + y);

Note: The NOT operator is also considered a prefix operator.

WHERE Expressions 441

Guidelines for Writing Efficient WHERE Expressions

In addition to creating indexes for the data set, here are some guidelines for writing
efficient WHERE expressions:

Table 20.10 Constructing Efficient WHERE Expressions

Guideline Efficient Inefficient

Avoid using the LIKE
operator that begins with
% or _.

where country like 'A%INA'; where country like '%INA';

Avoid using arithmetic
expressions that contain
only constants.

where salary > 48000; where salary > 12*4000;

Indexes and WHERE Expressions
An index is an optional file that provides direct access to specific rows without SAS
having to read every row sequentially. An index enables SAS to locate an
observation by value. Indexing a SAS data set can significantly improve the
performance of WHERE processing.

For example, the following DATA step creates an index on the sashelp.prdsal2
data set that is optimized for selecting rows based on the values of the variable
Actual:

data prdIndx(index=(Actual));
 set sashelp.prdsal2;
run;
proc print data=myindex(where=(Actual<10));
run;

Assume that the data set sashelp.prdsal2, which has over 23,000 rows, is sorted
by the variable Actual, without an index. To process the expression where
Actual<10, SAS starts reading rows sequentially, beginning with the first row in the
data set, and stops reading rows only after it finds a row that is greater than 10.
SAS can determine when to stop reading rows, but without an index, there is no
indication of where to begin. So, SAS begins with the first row. This can require
reading a lot of rows.

Having an index enables SAS to determine which rows satisfy the criteria. This is
called optimizing the WHERE expression.

442 Chapter 20 / Loops and Conditionals

Note: However, by default, SAS decides whether to use the index or to read the
entire data set sequentially.

For information about SAS indexes, see “Using an Index for WHERE Processing” in
SAS V9 LIBNAME Engine: Reference.

Data Set and System Options with WHERE
Expressions

When you conditionally select a subset of observations with a WHERE expression,
you can further subset the data by specifying the FIRSTOBS= and OBS= data set
options or the FIRSTOBS= and OBS= system options.

The following example uses the FIRSTOBS= and OBS= data set options in the
PROC PRINT statement to print a subset of the data returned by the WHERE
statement.

data shoes;
 set sashelp.shoes;
 keep Product Sales;
run;
proc print data=shoes(firstobs=2 obs=5);
 title 'Subset of Shoes WHERE Sales<800';
 title2 'Print rows 2 - 5';
 where Sales<800;
run;

Note: Notice that the values for the data set options are 2 and 5 and not 176 and
297. This is because the PRINT output preserves the physical numbers from the
original Shoes input data set. The data set option numbers represent the logical row
numbers from the filtered data set and not the physical row numbers.

If you are processing a SAS view that is a view of another view (nested views),
applying OBS= and FIRSTOBS= to a subset of data might produce unexpected
results. For nested views, OBS= and FIRSTOBS= processing is applied to each SAS
view, starting with the root (lowest-level) view, and then filtering rows for each
SAS view. The result might be that no rows meet the criteria.

WHERE Expressions 443

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0qemm40wpdbdfn0zjbk9x2dizcc.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n0qemm40wpdbdfn0zjbk9x2dizcc.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0wjxoxrco6dsgn1ls5n3mbybcng.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0c2av6mvf2zsrn1b48go7vk6bro.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n06qlo77ayax2kn1xobou72cdz20.htm&locale=en

See Also
“Example: Data Set Options” on page 469

IF Statements
IF statements execute code only if a condition is satisfied. The subsetting IF and
the WHERE statements both test a condition to determine whether SAS should
process a row. However, the two statements are not equivalent.

For a comparison of these two statements, see “Subsetting IF Statement versus the
WHERE Statement” on page 444.

Types of IF Statements
There are two types of IF statements in SAS:

Table 20.11 Types of IF Statements

Statement
Type Description Example

Subsetting IF
statement

Continues processing
only those rows that
meet the condition of
the specified
expression.

data if_example;
 set sashelp.class;
 if age>14 and weight<115;
 output;
run;

IF-THEN/ELSE
statement

Executes a SAS
statement for rows that
meet specific
conditions.

data if_then;
 set sashelp.class;
 if age>14 and weight<115 then output;
 else delete;
run;

Subsetting IF Statement versus the WHERE
Statement

To conditionally select rows from a SAS data set, you can use either a WHERE
expression or a subsetting IF statement. Often, you can use either one of the
statements to perform the same task. However, for some tasks, a specific

444 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1j60arf27ll4nn1ejavv3nby4pa.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1j60arf27ll4nn1ejavv3nby4pa.htm&locale=en

statement is required. The following table provides tasks that require you to use
either one of the statements.

Table 20.12 Tasks Requiring Either a WHERE Expression or a Subsetting IF
Statement

Task Statement to Use

Make the selection in a procedure without using a
preceding DATA step.

WHERE statement

Take advantage of the efficiency available with an
indexed data set.

WHERE statement

Use one of a group of special operators, such as
BETWEEN-AND, CONTAINS, IS MISSING or IS NULL,
LIKE, SAME-AND, and Sounds-Like.

WHERE statement

Base the selection on anything other than a variable
value that already exists in a SAS data set. For example,
you can select a value that is read from raw data, or a
value that is calculated or assigned during the course of
the DATA step.

subsetting IF statement

Make the selection at some point during a DATA step
rather than at the beginning.

subsetting IF statement

Execute the selection conditionally subsetting IF statement

Table 20.13 Comparison of Behavior between IF Statements and WHERE
Expressions

WHERE expressions Subsetting IF statements

WHERE expressions can be used in a
DATA step, a SAS procedure, or as a
data set option.

Subsetting IF statements can be used only in
a DATA step.

WHERE expressions test the
condition before a row is read into the
Program Data Vector.

A subsetting IF statement tests the
condition after a row is read into the
Program Data Vector.

If the condition is true, SAS reads the
row into the PDV and processes the
row.

If the condition is false, SAS does not
read the row into the PDV and
continues processing with the next
row.

If the condition is true, SAS processes the
row.

If the condition is false, SAS removes the
row from the PDV and continues processing
with the next row.

IF Statements 445

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&locale=en

WHERE expressions Subsetting IF statements

Testing the condition before the row is
read can yield substantial savings
when rows contain many variables or
very long character variables (up to
32K bytes).

Not testing the condition before the row is
read can be expensive, especially when rows
contain many variables or very long
character variables.

If the data set contains rows with very few
variables or short character variables,
moving data to the PDV is likely to be fast.
However, a variable containing 32K bytes of
character data takes longer to move even
though the data is contained in only one
variable. In this case, a WHERE expression is
generally more efficient because it avoids
reading unnecessary data to the PDV.

WHERE expressions can be optimized
with an index.

WHERE expressions can be used with
operators, such as LIKE and
CONTAINS.

See Also

n “Examples: IF Statements” on page 464

n “Other Control Flow Statements” on page 447

n “Creating the Input Buffer and the Program Buffer” on page 867.

SELECT WHEN Statement
The SELECT statement executes one of several statements or groups of
statements. The following DATA step uses a SELECT statement to select only
those rows in sashelp.holiday for which the holiday name contains the specified
values:

data holiday;
 set sashelp.holiday;
 keep Name Cat;
 select (Name);
 when ('CHRISTMAS') Cat=1;
 when ('MEMORIAL') Cat=2;
 when ('MLK') Cat=3;

446 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p09213s9jc2t99n1vx0omk2rh9ps.htm&locale=en

 otherwise delete;
end;
run;
proc print;

See Also
“Example: SELECT WHEN Statement” on page 467

Other Control Flow Statements
In addition to the SAS language elements specified in “Summary of Statements for
Conditional Processing in SAS” on page 423, the following statements also control
the flow of program execution.

Table 20.14 Other SAS Control Flow Statements

Statement Description

ABORT statement stops the execution of the
current DATA step and resumes
processing of the next DATA or
PROC step. It can also stop
executing a SAS program
altogether, depending on the
options that are specified in the
ABORT statement and on the
method of operation.

CONTINUE statement stops the execution the current
DO-loop iteration (based on a
condition) and resumes
execution of the next iteration
of the DO-loop based on a
condition.

Other Control Flow Statements 447

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0hp2evpgqvfsfn1u223hh9ubv3g.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0vupy1vhs8gosn1tjd3zg8dtf76.htm&locale=en

DELETE statement stops the execution of the
current row (deletes the row)
and resumes execution of the
next iteration of the DATA step.

EOF= option in the INFILE statement directs the execution of the
SAS program immediately to
the statements that follow the
label specified in EOF= when
the end of the input file is
reached.

END statement stops the execution of DO
group or SELECT group
processing.

ENDSAS statement stops the execution of the SAS
program and terminates the
SAS session as soon as the
statement is encountered in a
SAS program.

GOTO statement directs the execution of the
SAS program immediately to
the statement label that is
specified in the GO TO
statement. If followed by a
RETURN statement, GO TO
returns execution to the
beginning of the DATA step.

HEADER= option in the FILE statement whenever a PUT statement
causes a new page of output to
begin, executes statements
that follow the label specified
in the HEADER= option until a
RETURN statement is
encountered. When a RETURN
statement is encountered, SAS
returns control to the point
from which the HEADER=
option was activated.

LEAVE statement stops the execution of the
current DO-loop or SELECT
group and resumes with the
next statement in the DATA
step that is outside of the DO-
loop or SELECT group.

448 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p068vr83ld69mrn1fpvs67k5l5as.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p07e0pcmalha21n150e511bdo67f&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1hzww1k9y2xwun1ndd9xd2qwkv5.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n03wnjww9jjpm8n1q16exvgtoae9.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n03wnjww9jjpm8n1q16exvgtoae9.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n15o12lpyoe4gfn1y1vcp6xs6966.htm&docsetTargetAnchor=p1fx6x5h9en1psn14q51n2tnlybs&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n03wnjww9jjpm8n1q16exvgtoae9.htm&locale=en

LINK statement directs the execution of the
SAS program immediately to
the statement label that is
specified in the LINK
statement. If followed by a
RETURN statement, returns
execution to the statement that
follows the LINK statement.

RETURN statement stops the execution of
statements at a specific point
in the DATA step and returns to
a predetermined point in the
step.

STOP statement stops the execution of the
current DATA step and resumes
processing of any statements
that follow the current DATA
step.

Examples: DO Loops

Example: Use a Simple Iterative DO Loop

Example Code

This example uses an iterative DO statement to repeatedly decrement the values
for the variable balance and write these values to the output data set.

data loan;
 balance=10000;
 do payment_number=1 to 10;
 balance=balance-1000;
 output;
 end;
run;
proc print data=loan;
run;

Examples: DO Loops 449

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n132s7tapddkc8n1my90ekgo4v0q.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0t9xi85l04wjtn1j31cx4j4kry7.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n03wnjww9jjpm8n1q16exvgtoae9.htm&locale=en

Output 20.2 PROC PRINT Output Showing Balance Decrease in a SAS Data Set
Using an Iterative DO Loop

Key Ideas

n The iterative DO statement enables you to execute a group of
statements between DO and END repetitively based on the value of an
index variable.

n There are multiple forms of the iterative DO loop.

n The DO UNTIL and DO WHILE statements enable you to conditionally
select data from a SAS data set.

See Also
“DO Statement: Iterative” in SAS DATA Step Statements: Reference

Example: Use a Nested Iterative DO Loop

Example Code

The following example shows how you can place one DO loop within another to
compute the value of a one-year investment that earns 7.5% annual interest,
compounded monthly.

data earn;
 Capital=2000;
 do Year=1 to 10;
 do Month=1 to 12;
 Interest=Capital*(.075/12);
 Capital+Interest;
 output;
 end;

450 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p02so7o86anedyn1wy3a2obvquru&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1021qt3a3n8m2n1vh11ggzhu57n.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1awxgleif5wlen1pja0nrn6yi6i.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en

 end;
run;
proc print data=earn; run;

Output 20.3 Partial PROC PRINT Output Showing Compound Interest Earned Using
Nested DO Loops

Key Ideas

n Iterative DO statements can be executed within a DO loop. Putting a DO
loop within a DO loop is called nesting.

n Nested loops are useful when, for each pass through the data in the outer
loop, you need to repeat some action on the data in the inner loop.

For example, you might need to read a file line-by-line and count how
many times a particular word appears in each line. The outer loop reads
the lines and the inner loop searches for the word by looping through the
words in the line.

n The iterative DO statement enables you to execute a group of
statements between DO and END repetitively based on the value of an
index variable.

n There are multiple forms of the iterative DO loop.

Examples: DO Loops 451

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p02so7o86anedyn1wy3a2obvquru&locale=en

See Also
“DO Statement: Iterative” in SAS DATA Step Statements: Reference

Example: Use DOLIST Syntax to Iterate over a List
of Values

Example Code

This example uses DOLIST syntax to iterate over a list of values.

data do_list;
 x=-5;
 do i=5, /*a single value*/
 5, 4, /*multiple values*/
 x + 10, /*an expression*/
 80 to 90 by 5, /*a sequence*/
 60 to 40 by x; /*a sequence with a variable*/
 output;
 end;
run;
proc print data=do_list; run;

Output 20.4 PROC PRINT Output Showing DOLIST Syntax Output

Key Ideas

n A DOLIST is a type of syntax that is based on the iterative DO loop, in
which the loop iterates over the elements of a list. The list serves as the
start-value in the DO statement and the items in the list are separated by
commas.

452 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0el0y2a02ab1ln1pks3gbac1en3.htm&locale=en

n The iterative DO statement enables you to execute a group of
statements between DO and END repetitively based on the value of an
index variable.

See Also

n “Types of DO Loops” on page 425.

n “DO Statement: Iterative” in SAS DATA Step Statements: Reference

Example: Use Iterative DO TO Syntax to Iterate a
Specific Number of Times

Example Code

This example uses the iterative DO TO-value syntax to repeatedly increment the
values of x. The loop also specifies the OUTPUT statement to write each
incremented value of x to the output data set.

data do_to;
 x=0;
 do i=0 to 10;
 x=x+1;
 output;
 end;
run;
proc print data=do_to;
run;

Output 20.5 PROC PRINT Output Showing Iterative DO TO-value Syntax

Examples: DO Loops 453

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p02so7o86anedyn1wy3a2obvquru&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&locale=en

Key Ideas

n With DO TO-value syntax, the TO value specifies the ending value for the
index-variable in an iterative DO loop.

See Also

n “DO Statement: Iterative” in SAS DATA Step Statements: Reference

n “Using Various Forms of the Iterative DO Statement” in SAS DATA Step
Statements: Reference

Example: Use the Iterative DO TO BY Syntax to
Iterate a Specific Number of Times by a Specific
Interval

Example Code

This example uses the iterative DO TO-value BY-increment syntax to repeatedly
increment values of x by 1. The BY-increment value specifies that the index variable
increments by 2 each time that the loop executes.

The loop also specifies that the OUTPUT statement writes each incremented value
of x to the output data set.

data do_to_by;
 x=0;
 do i=0 to 10 by 2;
 x=x+1;
 output;
 end;
run;
proc print data=do_to_by;
run;

454 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p0b8d5gbcpv6s1n19dgjf5suoc16&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p02so7o86anedyn1wy3a2obvquru&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p05ao4i3o1sxa7n1fdm955epkzev&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p05ao4i3o1sxa7n1fdm955epkzev&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&locale=en

Output 20.6 PROC PRINT Output Showing Iterative DO TO BY Syntax

Key Ideas

n With DO TO-value BY-increment syntax, the BY increment value
specifies a positive or negative number (or an expression that yields a
number) to control how the index-variable is incremented in an iterative
DO loop.

n The iterative DO statement enables you to execute a group of
statements between DO and END repetitively based on the value of an
index variable.

See Also

n “DO Statement: Iterative” in SAS DATA Step Statements: Reference

n “Using Various Forms of the Iterative DO Statement” in SAS DATA Step
Statements: Reference

Example: Use the Iterative DO WHILE and DO
UNTIL Statements to Execute a Group of
Statements Repetitively

Example Code

This example uses a DO loop to execute a group of statements repetitively while a
condition is true. The program calculates the number of payments that must be
made for a specified loan amount by iterating repeatedly to decrement Balance
while the balance is greater than zero.

data loan;
 balance=10000;
 payment=0;

Examples: DO Loops 455

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p0b8d5gbcpv6s1n19dgjf5suoc16&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p02so7o86anedyn1wy3a2obvquru&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p02so7o86anedyn1wy3a2obvquru&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p05ao4i3o1sxa7n1fdm955epkzev&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&docsetTargetAnchor=p05ao4i3o1sxa7n1fdm955epkzev&locale=en

 do while (balance>0);
 balance=balance-1000;
 payment=payment+1;
 output;
 end;
run;
proc print data=loan;
run;

Output 20.7 PROC PRINT Output Showing Balance Decrease in a SAS Data Set
Using a DO WHILE Statement

Key Ideas

n The DO UNTIL statement enables you to execute statements in a DO
loop repetitively until a condition is true.

n The DO WHILE statement enables you to execute statements in a DO
loop repetitively while a condition is true.

See Also

n “DO UNTIL Statement” in SAS DATA Step Statements: Reference

n “DO WHILE Statement” in SAS DATA Step Statements: Reference

n “DO Statement: Iterative” in SAS DATA Step Statements: Reference

456 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1021qt3a3n8m2n1vh11ggzhu57n.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1awxgleif5wlen1pja0nrn6yi6i.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1021qt3a3n8m2n1vh11ggzhu57n.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1awxgleif5wlen1pja0nrn6yi6i.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cydk5fq0u4bfn1xfbjt7w1c7lu.htm&locale=en

Examples: WHERE Processing

Example: Conditionally Select Rows Using the
WHERE Statement

Example Code

This example uses the WHERE statement to conditionally select rows from the
sashelp.class data set and writes the selected rows to the SAS data set, shoes.

The first DATA step runs in SAS and subsets the data, selecting only the rows in
which Sales are greater than $500,000. The filtered data is loaded to shoes.

The second DATA step runs on the shoes data set to further subset the data. This
DATA step selects only the rows in which the values for the variable Region is
Canada. The selected rows are then written to the output SAS data set shoes2.

data shoes;
 set sashelp.shoes;
 where Sales>=500000;
run;
proc print data=shoes;
 var Region Product Sales;
 run;

data shoes2;
 set shoes;
 where Region="Canada";
run;

proc print data=shoes2;
 var Region Product Sales;
run;

Examples: WHERE Processing 457

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en

Output 20.8 PROC Print Output for the shoes Table in Which Sales Are Greater
Than $500,000

Output 20.9 PROC Print Output for the shoes2 Table in Which Region Is Canada

Key Ideas

n A WHERE expression is a type of SAS expression that defines a condition
for selecting rows to be processed in a SAS data set.

n When the WHERE statement is specified in a DATA step, SAS does not
have to read all of the rows from the input data set. Therefore, the
WHERE statement can improve the performance of your SAS programs.
Using the WHERE statement can improve the efficiency of your SAS
programs because SAS is not required to read all rows from the input
data set.

n You cannot use the WHERE statement as part of an IF-THEN statement.

n WHERE statements can contain multiple WHERE expressions that are
joined by logical operators. These expressions are called compound
WHERE expressions.

See Also
“WHERE Statement” in SAS DATA Step Statements: Reference

458 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en

Example: Conditionally Select Rows Using a
Compound WHERE Expression

Example Code

This example uses a compound WHERE expression to select a subset of data from
the SAS data set sashelp.shoes.

The DATA step conditionally select rows in which Sales are greater than $500,000
and Region is Canada. The compound WHERE expression consists of two WHERE
expressions that are joined by the AND operator.

data shoes;
 set sashelp.shoes;
 where Sales>=500000 and Region="Canada";
 keep Region Product Sales;
run;

proc print data=shoes; run;

Output 20.10 PROC PRINT Output for Conditionally Selecting Rows Using a
Compound WHERE Expression

Key Ideas

n A compound WHERE expression consists of multiple conditions joined by
logical operators.

n When SAS encounters a WHERE expression that contains multiple
conditions, it processes the conditions in the following order:

1 NOT expressions first.

2 AND expressions next.

3 OR expressions last.

Examples: WHERE Processing 459

See Also

n “WHERE Statement” in SAS DATA Step Statements: Reference

n compound WHERE expression

Example: Conditionally Select Rows Based on
Multiple Conditions

Example Code

In the following example, the AND operator is used in the WHERE statement to
find rows based on conditions for Age and Sex.

data class;
 set sashelp.class;
 where sex="M" and age >= 15;
run;
proc print data=class;
run;

The output data set contains information about Males who are 15 years or older:

Output 20.11 PROC PRINT Output for Conditionally Selecting Rows Based on
Multiple Conditions

In the following example, OR finds rows that satisfy either condition.

data class;
 set sashelp.class;
 where sex="M" or age>=15;
run;
proc print data=class;
 title 'OR finds all Males and Anyone 15 Years or Older';
run;

460 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en

Output 20.12 PROC PRINT Output for Conditionally Selecting Rows Based on
Multiple Conditions

In the following example, the less than symbol (<) finds rows that satisfy the
criteria for age and sex.

data class;
 set sashelp.class;
 where age < 15 and sex NE "M";
run;
proc print data=class;
 title 'Finds Females
 Older less than 15 Years';
run;

Output 20.13 PROC PRINT Output for Conditionally Selecting Rows Based on
Multiple Conditions

The order in which SAS processes expressions that are joined by Boolean operators
affects the output. The default order of operations is to process the NOT
expressions first, the AND expressions next, and the OR expressions last:

data class;
 set sashelp.class;
 where age>15 or height<60 and sex="F";
run;
proc print data=class;
 title 'age > 15 OR height < 60 AND sex = F';
run;

Examples: WHERE Processing 461

Output 20.14 PROC PRINT Output for Conditionally Selecting Rows Based on
Multiple Conditions Using Multiple Boolean Operators

To control the order of evaluation, you use parentheses. Here is the same example
except parentheses are used to specify that the OR expression is evaluated first
and then the AND expression.

data class;
 set sashelp.class;
 where (age>15 or height<60) and sex="F";
run;
proc print data=class;
 title '(age > 15 OR height < 60) AND sex = F';
run;

Output 20.15 PROC PRINT Output for Conditionally Selecting Rows and Controlling
the Order of Operations

Key Ideas

n To conditionally select rows based on multiple conditions, use the
Boolean operators AND, OR, and NOT.

n When SAS encounters a WHERE expression that contains multiple
conditions, it processes the conditions in the following order:

1 NOT expressions first.

2 AND expressions next.

3 OR expressions last.

462 Chapter 20 / Loops and Conditionals

Example: Conditionally Select Rows Using the
WHERE= Data Set Option

Example Code

This example uses the WHERE= data set option to conditionally select rows from
the sashelp.shoes data set.

data sales;
 set sashelp.shoes(where=(Region="Canada" and Sales<2000));
run;
proc print data=sales; run;

Key Ideas

n The WHERE= data set option cannot be used with the POINT= option in
the SET and MODIFY statements.

See Also

n “WHERE= Data Set Option” in SAS Data Set Options: Reference

Example: Use an Index to Improve Performance of
WHERE Processing

Example Code

In the following example, the first DATA step creates an output data set,
mybaseball, and the index= option adds a simple index to the team variable. The

Examples: WHERE Processing 463

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0ny9o8t8hc5zen1qn3ft9dhtsxx.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0ny9o8t8hc5zen1qn3ft9dhtsxx.htm&locale=en

second DATA step reads the data set and selects for processing only those rows in
which the team name is Atlanta.

data mybaseball(index=(team));
 set sashelp.baseball;
run;

data mybaseball;
 set sashelp.baseball;
 where Team="Atlanta";
 keep Name Team Position;
run;
proc print data=mybaseball; run;

Key Ideas

n Indexing a SAS data set can significantly improve the performance of
WHERE processing. An index is an optional file that you can create for a
SAS data set in order to provide direct access to specific rows.

n To create indexes in a DATA step when you create the data set, use the
INDEX= data set option.

See Also
“Indexes” in SAS V9 LIBNAME Engine: Reference

Examples: IF Statements

Example: Subset Data Using the Subsetting IF
Statement

Example Code

This example shows how to use a subsetting IF statement to subset data from an
input SAS data set and write out the rows to an output data set. The DATA step
executes the SET statement on a row if the condition Age=13 is true. Therefore, the
program selects only the 3 rows in which Age equals 13.

data class;
 set sashelp.class;

464 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n13je192njez2on1g6l65w1yxs6r.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&locale=en

 if Age = 13;
run;
proc print data=class; run;

Output 20.16 PROC PRINT Output Showing How to Filter Data Using a Subsetting
IF Statement

The following DATA step executes the SET statement on the rows in which the
value for the variable Age is missing. Since the input data does not contain any
missing data for Age, SAS evaluates the IF statement to false and no rows are
written to the output data set.

data class;
 set sashelp.class;
 if Age = .;
run;
proc print data=class; run;

Example Code 20.1 Log Output for Using the Subsetting IF Statement to Subset Data

82 proc print data=class; run;
NOTE: No observations in data set WORK.CLASS.

Key Ideas

n The subsetting IF statement filters data from an input SAS data source
and writes out only the rows that satisfy a specified condition.

n If the expression is false (its value is 0 or missing), no further statements
are processed for that row, the current row is not written to the output,
and the remaining program statements in the DATA step are not
executed.

See Also

n subsetting IF statement.

n “IF-THEN/ELSE Statement” in SAS DATA Step Statements: Reference

Examples: IF Statements 465

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1j60arf27ll4nn1ejavv3nby4pa.htm&locale=en

Example: Conditionally Select Specific Rows Using
the IF Statement

Example Code

This example shows how to use an IF-THEN/ELSE statement to conditionally
select rows in which Region is Canada and Product is Slipper.

data slipper;
 set sashelp.shoes;
 format commission comma6.;
 if Region = "Canada" and Product="Slipper"
 then commission = (Sales - Returns) * .10;
 else delete;
 keep Region Product Sales Returns Commission;
run;
proc print data=slipper;

Output 20.17 PROC PRINT Output Showing How to Conditionally Select Data Using
an IF-THEN/ELSE Statement

Key Ideas

n The IF-THEN/ELSE statement executes a SAS statement for
observations that meet specific conditions. An optional ELSE statement
gives an alternative action if the THEN clause is not executed.

n SAS evaluates the expression in an IF-THEN statement to produce a
result that is either nonzero, zero, or missing.

n A nonzero and nonmissing result causes the expression to be true; a
result of zero or missing causes the expression to be false.

n Use a SELECT WHEN statement rather than a series of IF-THEN
statements when you have a long series of mutually exclusive conditions.

466 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1j60arf27ll4nn1ejavv3nby4pa.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p09213s9jc2t99n1vx0omk2rh9ps.htm&locale=en

n Use subsetting IF statements, without a THEN clause, to continue
processing only those observations or records that meet the condition
that is specified in the IF clause.

See Also

n subsetting IF statement

n “IF-THEN/ELSE Statement” in SAS DATA Step Statements: Reference

n “SELECT Statement” in SAS DATA Step Statements: Reference

Example: SELECT WHEN Statement

Example Code
This example shows how to use the DATA step SELECT statement to subset a SAS
data set.

data shoes;
 set sashelp.shoes(where=(Region='Canada' or Region='Pacific' or
Region='Asia'));
 keep Region Sales Product;
 select(Region);
 when('Canada') sales = sales * .10;
 when('Pacific') sales = sales * .09;
 when('Asia') sales = sales * .07;
 end;
run;
proc print data=shoes; run;

Example: SELECT WHEN Statement 467

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1j60arf27ll4nn1ejavv3nby4pa.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p09213s9jc2t99n1vx0omk2rh9ps.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p09213s9jc2t99n1vx0omk2rh9ps.htm&locale=en

Output 20.18 Partial PROC PRINT Output Showing How to Use the SELECT
Statement to Conditionally Select Rows from a SAS Data Set

Key Ideas

n The SELECT WHEN statement enables you to conditionally process one
or more statements in a group of statements based on the value of a
single categorical variable.

n A group of statements between the SELECT and END statements is
called a SELECT group. SELECT groups contain WHEN statements that
identify SAS statements that are executed when a particular condition is
true.

n The END statement and at least one WHEN statement is required when
specifying the SELECT statement.

n Using a SELECT group is more efficient than using a series of IF-THEN
statements when you have a long series of mutually exclusive conditions.

n Large numbers of conditions make a SELECT group more efficient than
IF-THEN/ELSE statements because CPU time is reduced. SELECT groups
also make the program easier to read and debug.

n An optional OTHERWISE statement specifies a statement to be
executed if no WHEN condition is met. For example, if your data contains
missing or invalid data.

468 Chapter 20 / Loops and Conditionals

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p09213s9jc2t99n1vx0omk2rh9ps.htm&locale=en

n In null statements that are used in an OTHERWISE statement, the
SELECT WHEN statement prevents SAS from issuing an error message.

See Also
n “SELECT Statement” in SAS DATA Step Statements: Reference

n subsetting IF statement

n “IF-THEN/ELSE Statement” in SAS DATA Step Statements: Reference

Example: Data Set Options

Example Code
The following example shows how to use the FIRSTOBS= and OBS= data set
options with the WHERE statement to specify a segment of data to process
conditionally.

In this example, the DATA step creates a data set named Example that contains 10
rows and two variables: i and x.:

data example;
 do i=1 to 10;
 x=i + 1;
 output;
 end;
run;

proc print data=example; run;

Example: Data Set Options 469

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p09213s9jc2t99n1vx0omk2rh9ps.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p09213s9jc2t99n1vx0omk2rh9ps.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1cxl8ifdt8u0gn12wqbji8o5fq1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1j60arf27ll4nn1ejavv3nby4pa.htm&locale=en

Output 20.19 PROC PRINT Output Showing the Data to Be Subset

The following PROC step contains two separate subsetting actions: the WHERE
statement and the data set options FIRSTOBS= and OBS=. The WHERE statement
is processed first on the original input data set example, and then the two data set
options are processed on the results of the WHERE statement.

WHERE i > 5 tells SAS to select only the rows in which i is greater than 5 from
the original input data set. This is a subset of the original data set containing only 5
rows, which are rows 6 through 10 of the original input data set.

SAS then processes the data set options, FIRSTOBS=2 and OBS=4, on the resulting 5
rows and prints the 2nd through 4th rows of the WHERE results. The PRINT
procedure prints rows 7, 8, and 9 from the original input data set.

proc print data=example (firstobs=2 obs=4);
 where i > 5;
run;

Output 20.20 PROC PRINT Selects Rows Where i>5 and Then from That Subset,
Rows 2 through 4

The result of PROC PRINT is rows 7, 8, and 9.

470 Chapter 20 / Loops and Conditionals

Output 20.21 PROC PRINT Output Showing Data Set Example Containing Rows 7,
8, and 9

Key Ideas

n FIRSTOBS= specifies the first observation that SAS processes in a SAS
data set and OBS= specifies the last observation that SAS processes in a
data set.

n When used in the DATA step, these options are valid for input (read)
processing only; that is, they are valid in the SET statement and in the
INFILE statement.

n When used with a WHERE expression, the values specified for OBS= and
FIRSTOBS= are not the physical observation number in the data set, but
a logical number in the subset. For example, obs=3 does not mean the
third observation number in the data set. Instead, it means the third
observation in the subset of data selected by the WHERE expression.

See Also
n “FIRSTOBS= Data Set Option” in SAS Data Set Options: Reference

n “OBS= Data Set Option” in SAS Data Set Options: Reference

Example: Data Set Options 471

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0wjxoxrco6dsgn1ls5n3mbybcng.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en

472 Chapter 20 / Loops and Conditionals

21
Combining Data

Overview of Combining Data . 474
Definition of Combining Data . 474
Terms . 474
Data Relationships . 476
Summary of Ways to Combine SAS Data Sets . 478
Concatenating . 479
Interleaving . 480
Match-Merging . 481
One-to-One Merging . 482
One-to-One Reading . 483
Hash Table Merging . 484
Updating . 485
Modifying . 487

Comparing Methods . 488
PROC SQL versus Match-Merging . 488
Updating and Modifying Comparison . 489
One-to-One Reading versus One-to-One Merging . 491
Comparison of SAS Language Elements for Combining Data Sets 492

Examples: Prepare Data . 495
Example: Examine the Data to Be Combined . 495
Example: Find the Common Variables in Multiple Input Data Sets 498
Example: Creating Unique BY Values When Data Contains Duplicate BY Values 499
Example: Prepare Data in Which Common Variables Have Different Data Types . 501
Example: Prepare Data in Which Common Variables Have Different Lengths 504
Example: Prepare Data in Which Common Variables Have

Different Formats and Labels . 506
Example: Prepare Data in Which Common Variables Represent Different Data . . 509

Examples: Concatenate Data . 510
Example: Concatenate Using the SET Statement . 510
Example: Concatenate Using PROC SQL . 512
Example: Append Files Using PROC APPEND . 513
Example: Add a Message to the Log When Variables Are Missing

from Input Data Sets . 515

Examples: Interleave Data . 518
Example: Interleave Data Sets . 518
Example: Interleave with Duplicate Values of the BY Variable . 520
Example: Interleave with Different Values of the Common BY Variable 523

473

Examples: Match-Merge Data . 525
Example: Match-Merge Observations Based on a BY Variable . 525
Example: Match-Merge Observations with Common Variables

That Are Not the BY Variables . 527
Example: Match-Merge Observations with Duplicate Values of the BY Variable . 530
Example: Match-Merge Observations with Different Values of the BY Variable . . 532
Example: Match-Merge and Remove Unmatched Observations 534
Example: Match-Merge Data Sets with Duplicate Values in More

Than One Data Set . 536
Example: Match-Merge One-to-Many with Missing Values in Common Variables 539

Examples: Merge Data One-to-One . 542
Example: Merge Data Sets with an Equal Number of Observations 542
Example: Merge Data Sets with an Unequal Number of Observations 544
Example: Merge Data Sets with Duplicate Values of Common Variables 546
Example: Merge Data Sets with Different Values for the Common Variables 548

Examples: Combine Data One-to-One . 550
Example: Combine Data Sets That Contain an Equal Number of Observations . . . 550

Example: Merge Data Using a Hash Table . 552
Example: Use a Hash Table to Merge Data Sets One-to-Many or Many-to-Many 552

Examples: Update Data . 556
Example: Update Data Using the UPDATE Statement . 556
Example: Update Data Sets with Duplicate Values of the BY Variable 558
Example: Update a Data Set with Missing and Different Values for

the BY Variables . 560

Example: Modify Data . 563
Example: Modify a Data Set by Adding an Observation . 563

Overview of Combining Data

Definition of Combining Data
To combine SAS data sets means to read data from multiple input data sets and to
combine them using one of the methods outlined in this section. For information
about how to read SAS data sets, see “Ways to Read and Create SAS Data Sets” on
page 323.

Terms
The following terms are used throughout this chapter and are defined here in the
context of combining data:

474 Chapter 21 / Combining Data

common variable
a variable that is present in all of the input data sets that are being combined. A
common variable can be specified as the BY variable, but it does not have to be.
Variables are recognized as the same, or common to multiple data sets if they
have the same name regardless of the use of upper or lowercase letters in the
name. For example, SAS considers the variable name in one data set to be
identical to the variable NAME in another data set. In addition to having the same
name, common variables must also have the same data type. See “Example:
Prepare Data in Which Common Variables Have Different Data Types” on page
501 for more information.

BY variable
a variable (or variables) whose values serve as the basis for how rows are
merged when you combine multiple data sets into one. BY variables are
specified in the BY statement in SAS. BY variables are always common variables
in the context of combining data. The BY variables are the variables named in
the BY statement of the MERGE, UPDATE, SET, or MODIFY statements when
combining data. See “Example: Examine the Data to Be Combined” on page 495
and “Example: Creating Unique BY Values When Data Contains Duplicate BY
Values ” on page 499 for more information.

BY value
the value that a BY variable has in a particular row or observation.

BY group
a group of rows that have the same value for a variable that is specified in a BY
statement. If more than one variable is specified in a BY statement, then the BY
group is a group of rows that have a unique combination of values for those
variables.

data relationships
associations between data sets or tables that exist in one of three ways: one-
to-one, one-to-many (or, many-to-one), and many-to-many. The data sets are
associated by common data, either at the physical or logical level. For example,
in a business database, employee data and department data could be related
through an Employee_ID variable that shares common values. Another data set
could contain a numeric sequence of numbers whose partial values logically
relate it to a separate data set by row number. See “Data Relationships” for
more information about data relationships and how they relate to combining
data.

matched rows
rows in input data sets that are selected for output when the values match the
selected criteria. The matching criteria can be based on row number (or position
within the data set) or it can be based on the values of variables that are
specified by the user in a BY statement.

unmatched rows
rows in input data sets that are not selected for output because the values do
not match the specified criteria. The matching criteria can be based on row
number (or position within the data set) or it can be based on the values of
variables that you specify in a BY statement.

Overview of Combining Data 475

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en

Data Relationships
The following four categories are characterized by how rows relate among the data
sets. All related data fall into one of these categories. You must be able to identify
the existing relationships in your data, because this knowledge is crucial to
understanding how input data can be processed to produce desired results.

One-to-One Relationship

In a one-to-one relationship, a single row in one data set is related to only one row
in a second data set, and a single row in the second data set is related to only one
row in the first data set. The relationship is based on the values of one or more
selected variables. A one-to-one relationship implies that there are no duplicate
values of the selected variable in each data set. When you work with multiple
selected variables, this relationship implies that each combination of values occurs
no more than once in each data set.

In the figure, rows in data sets Animal and Plant are related by matching values for
the variable Common. The values for the variable Common are unique in both data sets.

One-to-Many Relationship

A one-to-many relationship between input data sets implies that one data set has
at most one row with a specific value of the selected variable, but the other input
data set can have more than one, or duplicates, of each value. When you work with
multiple selected variables, this relationship implies that each combination of
values occurs no more than once in one data set. The combination can occur more
than once in the other data set. The order in which the input data sets are
processed determines whether the relationship is one-to-many or many-to-one.

476 Chapter 21 / Combining Data

In the figure, rows in data sets Animal and Plant are related by common values for
the variable Common. Values for the variable Common are unique in the data set
Animal but not in data set Plant

One-to-Many and Many-to-One Relationships

A one-to-many or many-to-one relationship between input data sets implies that
one data set has at most one row with a specific value of the selected variable, but
the other input data set can have more than one occurrence of each value. When
you work with multiple selected variables, this relationship implies that each
combination of values occurs no more than once in one data set. However, the
combination can occur more than once in the other data set. The order in which the
input data sets are processed determines whether the relationship is one-to-many
or many-to-one.

In the figure, rows in data sets Animal, Plant, and Mineral are related by common
values for the variable Common. Values for Common are unique in data sets Animal
and Mineral but not in Plant. A one-to-many relationship exists between rows in
data sets Animal and Plant and a many-to-one relationship exists between rows in
data sets Plant and Mineral.

Overview of Combining Data 477

Many-to-Many Relationship

The many-to-many category implies that multiple rows from each input data set
can be related based on the values of one or more common variables.

In the figure, rows in data sets Animal and Plant are related by common values for
the variable Common. Values for the variable Common are not unique in either data set.
A many-to-many relationship exists between rows in these data sets for values a
and c.

Summary of Ways to Combine SAS Data Sets
Table 21.1 Summary of Ways to Combine Data Sets

Type Method
Statement or
Procedure Simplified Example Code

Concatena
te

Concatenating Using the
SET Statement

SET statement data concat;
set data1 data2;
run;

Concatenating using
PROC SQL

SQL Procedure proc sql;
select * from data1
union all corresponding
select * from data2;
quit;

Appending using PROC
APPEND

APPEND
procedure

proc append base=data1 data=data2;
run;

Interleave Interleaving SET statement
with BY statement

data interleav;
set data1 data2; by year;
run;

478 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n1oihmdy7om5rmn1aorxui3kxizl.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1bjrbc5esr90on12o8vs7gyv8ue.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1bjrbc5esr90on12o8vs7gyv8ue.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en

Type Method
Statement or
Procedure Simplified Example Code

Merge Match-Merging MERGE statement
with BY statement

data matchmerged;
merge data1 data2; by year;
run;

One-to-One Merging MERGE statement data merged;
merge data1 data2;
run;

One-to-One Reading SET statement data merged;
set data1; set data2;
run;

Hash Table Merging HASH object with
FIND method

declare hash h(dataset:'data1');
rc = h.definekey('key');
rc = h.definedata('data1');
h.definedone();
set data2;
h.find();
run;

SQL procedure PROC SQL
Statement

proc sql;
select
* from data1, data2; by year;
where data1.key=data2.key;
run;

Update Updating UPDATE
statement with BY
statement

data master;
update master trans; by year;
run;

Modifying MODIFY
statement with BY
statement

data master;
modify master trans; by year;
run;

Hash Table Updating HASH object with
REPLACE method

declare hash h(dataset:'data1');
rc = h.definekey('key');
rc = h.definedata('data1');
h.definedone();
set data2;
rc = h.find();
if rc = 0 then h.replace();
run;

Concatenating

Definition Concatenating Two Data Sets

Overview of Combining Data 479

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=p00ilfw5pzcjvtn1nfya9863fozd.htm&locale=en
http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=p0v7y0he52atdan1iwtpwryes1dw.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n1r5d2j8962os6n1how8t5mj3ut5.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p12ohgh32ffm6un13s7l2d5p9c8y.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p12ohgh32ffm6un13s7l2d5p9c8y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en
http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=p00ilfw5pzcjvtn1nfya9863fozd.htm&locale=en
http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=p0zjo5imt7rb9rn1npxm1rsl58b3.htm&locale=en

Concatenating combines two or
more SAS data sets, one after the
other, into a single, new output
data set.

Syntax

SET <data-set-1> <data-set-2><…
data-set-n>;

In the figure, the rows from Data2 are appended to the rows from
Data1.

Details

n Concatenating using the SET statement processes the input data sets
sequentially, in the order in which they are listed in the SET statement.

n Concatenating does not require that input data sets contain the same variables.

n Concatenating creates output that contains all the rows from all the input data
sets and all the columns from all the input data sets.

n Concatenating sets the values of variables that do not exist in all input data
sets to missing.

See Also

n “Examples: Concatenate Data” on page 510

n “Concatenating SAS Data Sets” in SAS DATA Step Statements: Reference

Interleaving

Definition

Interleaving combines two or more SAS data sets
into a single data set by interspersing their rows
with one another based on the values of common
BY variables. In some programming languages, the
term merge means to interleave rows. However,
rows that are interleaved in SAS data sets are not
merged; they are copied from the original data sets
in the order of the values of the BY variable.

Syntax

Interleaving Two Data Sets

480 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p053z7b0z9agv7n1iu4843ypc6j2&locale=en

SET <data-set-1> <data-set-2><…data-set-n>;

BY variable-1 <…variable-n>;

In the figure, rows from Data2 are interspersed
between rows from Data1.

Details

n Interleaving requires the SET statement together with the BY statement, which
specifies one or more common variables by which rows are matched.

n The input data sets must be indexed on or sorted by the BY variables.

n Interleaving returns rows that are ordered within each BY group by their
positions in the original input data set.

See Also

n “Examples: Interleave Data” on page 518

n “Interleaving SAS Data Sets” in SAS DATA Step Statements: Reference

Match-Merging

Definition

Match-Merging combines rows
from two or more input data sets
into a single row in an output data
set based on the values of the BY
variable.

Syntax

MERGE data-set-1 <data-
set-2><…data-set-n>;

BY variable-1 <…variable-n>;

Match–Merging Two Data Sets

Overview of Combining Data 481

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=n0t5l64wg4mem3n1lvso5p3o5tlf&locale=en

y52015

Data2

y1

y2

y3

y4

Y

2014

2013

2012

2011
Year

data Combined;
 merge Data1 Data2;
 by Year;
run;

+ =

Combined

x1

x2

x3

x4

X

2014

2013

2012

2011
Year

Data1

x52015

y1

y2

y3

y4

Y
x1

x2

x3

x4

X

2014

2013

2012

2011
Year

y5x52015

In the figure, rows from Data2 are merged with rows from Data1
based on the values of the BY variable, Year.

Details

n Match-merging requires the MERGE statement together with the BY statement,
which specifies one or more common variables by which rows are matched.

n Match-merging requires that input data sets contain indexes or that they are
sorted by the values of the BY variables.

n The variables in the BY statement must be common to all input data sets.

n Only one BY statement can accompany each MERGE statement in a DATA step.

n The MERGE, UPDATE, and MODIFY statements can be used to combine and
update rows in SAS data sets. For a comparison of these methods, see
“Updating and Modifying Comparison” on page 489

See Also

n “Examples: Match-Merge Data” on page 525

n “Match-Merging” in SAS DATA Step Statements: Reference

One-to-One Merging

Definition

Merging data one-to-one combines
rows from multiple input data sets
into a single row in a new output
data set. Rows are combined based
on their positions in the input data
sets. The first row in the first input
data set is combined with the first
row in the second input data set,
and so on.

One-to-One Merging of Two Data Sets

482 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&docsetTargetAnchor=p1rfsa0978il4yn1q7s3rknmzfyr&locale=en

Syntax

MERGE data-set-1 <data-set-2><…
data-set-n>;

data Combined;
 merge Data1 Data2 ;
run ;

y5

y4

y3

y2

y1
Y

x3

x2

x1
X

Combined

=

y5

y4
y3

y2

y1
Y

Data2

+
x3

x2

x1
X

Data1

In the figure, rows from Data2 are merged with rows from Data1
based on row number.

Details

n One-to-one merging requires the MERGE statement without the BY statement.
There is no key variable on which to base the merge. Instead, rows are merged
implicitly by row number.

n If the input data sets contain common variables, SAS replaces the values from
the first data set that is read with values from the last data set that is read.

n SAS does not stop reading rows until it has read all rows from all input data
sets. Compare this to one-to-one reading, in which SAS stops reading rows
when it has read the last row from the smallest input data set.

n The output data set contains all variables from all input data sets. The number
of rows in the output data set equals the number of rows in the largest input
data set.

See Also

n “Examples: Merge Data One-to-One” on page 542

n “One-to-One Merging” in SAS DATA Step Statements: Reference

n Example 1: One-to-One Merging

n “One-to-One Reading versus One-to-One Merging” on page 491

One-to-One Reading

Definition

One-to-one reading combines rows
from multiple input data sets into a
single row in a new data set. Rows are
matched based on their positions in
the data sets. The first row in the first

One-to-One Reading of Two Data Sets

Overview of Combining Data 483

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&docsetTargetAnchor=p1kxvoud1g4juvn1x3ga5kkk8org&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&docsetTargetAnchor=p0tza24xjx0dgrn1junlgn0bowu9&locale=en

data set is combined with the first row
in the second data set, and so on.

Syntax

SET <data-set-1>;
SET <data-set-2>;

data Combined;
 set Data1
set Data2 ;
run ;

y3

y2

y1
Y

x3

x2

x1
X

Combined

=

y5

y4
y3

y2

y1
Y

Data2

+
x3

x2

x1
X

Data1

In the figure, rows from Data2 are merged with rows from
Data1 based on row number.

Details

n One-to-one reading requires multiple SET statements without a BY statement.
There is no key BY variable on which to merge the data sets. Like One-to-One
Merging, rows are merged implicitly by row number rather than by the value of a
BY variable.

n If the input data sets contain common variables, SAS replaces the values of the
common variables from the first data set that is read with values from the last
data set that is read. There is no key BY variable on which to merge rows, so
they are combined implicitly by row number.

n SAS stops reading rows from input data sets after it has read the last row from
the smallest input data set. Compare this to One-to-One Merging, in which SAS
does not stop reading until it has read all rows from all input data sets.

n The output data set contains all variables from all input data sets. The number
of rows in the output data set equals the number of rows in the smallest input
data set.

See Also

n “Examples: Combine Data One-to-One” on page 550

n “Performing a Table Lookup When the Master File Contains Duplicate
Observations” in SAS DATA Step Statements: Reference

n “Performing a Table Lookup” in SAS DATA Step Statements: Reference

n “One-to-One Reading versus One-to-One Merging” on page 491

Hash Table Merging

Definition Hash Table Merging of Two Data Sets

484 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p1ur1282lqwtjwn15ihpgba5u4ph&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p1ur1282lqwtjwn15ihpgba5u4ph&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=n0mf5ckobz31ssn1u8dye37phqr9&locale=en

The DATA step hash object is a
temporary, in-memory data structure
that enables you to efficiently store,
search, and retrieve data based on
lookup keys. Hash objects are only
available for the duration of the
DATA step. Hash objects are
initialized through the DECLARE
statement. Methods such as FIND,
ADD, and OUTPUT operate on hash
objects. The contents of the hash
object can be written to a data table
by using the hash OUTPUT method.
In-memory processing with hash
tables is usually faster than other
DATA step methods.

Syntax

DECLARE object hash-table-name

data HashCombined(drop=rc);
 length y $2;
 if _n_ = 1 then do;
 declare hash h(dataset: ‘data2’);
 rc = h.definekey(’year’);
 rc = h.definedata(’y’);
 rc = h.definedone();
 end;
 set data1;
 rc = h.find();
run ;

y5

y4

y3

y2

y1
Y

x3

x2

x1
X

HashCombined

=

y5

y4
y3

y2

y1
Y

Data2

+
x3

x2

x1
X

Data1

In this example, the data set written by the DATA statement
contains the observations from the data set that is being read,
along with the data variables enumerated in the DEFINEDATA
method for those observations that have matched on the key
variable or variables.

Details

n Hash objects are available only for the duration of the DATA step.

n You can output the contents of a hash object to a data table by using the
OUTPUT method.

n The data set that is written by the DATA statement contains the observations
from the data set that is being read, along with the data variables named in the
DEFINEDATA method for those observations that match the key variable or
variables.

n Sorting is not required when using hash tables to merge data sets.

n Hash-table merging enables fast processing on large tables, as long as the hash
table can be held in memory.

n The same variable name does not have to be used for the key or keys in both
data sets. The match can be done on different variables.

See Also

n “Example: Merge Data Using a Hash Table” on page 552

n SAS Component Objects: Reference

Updating

Definition Updating a Master Data Set from a Transaction Data Set

Overview of Combining Data 485

http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=p00ilfw5pzcjvtn1nfya9863fozd.htm&locale=en
http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=p00ilfw5pzcjvtn1nfya9863fozd.htm&locale=en
http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=p00ilfw5pzcjvtn1nfya9863fozd.htm&docsetTargetAnchor=p1pi9106p299wwn1kj5mhgm37p0y&locale=en
http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

The UPDATE statement creates a
new, updated data set by using rows
from a transaction data set to change
the values of corresponding rows in a
master data set. The master data set
contains the original information, and
the transaction data set contains the
new information that needs to be
applied to the master data set.

Syntax

UPDATE master-data-set transaction-
data-set <(data-set-options)>

BY by-variable;

data Combined;
 update Master Trans;
 by Year;
run;

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y
X1

X1

X1

X1

X1

X1

X1

X1

X1

X1

X

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005
Year

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y2

Y2

Y1

Y
X1

X1

X1

X1

X1

X1

X2

X2

X2

X1

X

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005
Year

X22015 Y2

Y2

Y2

Y2

Y
X2

X2

X2

X2

X

2015

2013

2013

2012

2011
Year

+

Master

=

Trans

Combined

In the figure, a new output data set, Combined, is created by
updating rows in the Master data set based on values in the
Trans data set.

Details

n The UPDATE statement requires a BY statement that specifies one or more
common variables by which rows are matched.

n The input data sets must be indexed on or sorted by the BY variables.

n Values of the BY variable must be unique for each observation in the master
data set. If the master data set contains multiple rows with the same value of
the BY variable, the first observation is updated and the remaining observations
in the BY group are ignored. SAS writes a warning message to the log when the
DATA step executes.

n The transaction data set can contain more than one observation with the same
BY value. Multiple transaction rows are all applied to the master observation
before it is written to the output file.

n Updating creates a new output data set. It does not update the existing master
input data set the way that modifying does.

n Usually, the master data set and the transaction data set contain the same
variables. However, to reduce processing time, you can create a transaction data
set that contains only those variables that are being updated. The transaction
data set can also contain new variables to be added to the output data set.

n The MERGE, UPDATE, and MODIFY statements can be used to combine and
update rows in SAS data sets. For a comparison of these methods, see
“Updating and Modifying Comparison” on page 489

See Also

n “Example: Update Data Using the UPDATE Statement” on page 556

n Table 21.2 on page 489

n Updating a Table with Values from Another Table Using PROC SQL

486 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0z9p6hclwnhxin1mrewxhdz5f26.htm&locale=en

Modifying

Definition

The MODIFY statement matches the
values of one or more BY variables in
a master data set against the same
variables in a transaction data set. The
existing master data set is modified. A
new data set is not created.

Syntax

MODIFY master-data-set transaction-
data-set <(data-set-options)>

BY by-variable;

Modifying a Master Data Set from a Transaction Data Set

data Master;
 modify Master Trans;
 by Year;
run;

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y
X1

X1

X1

X1

X1

X1

X1

X1

X1

X1

X

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005
Year

Y1

Y1

Y1

Y1

Y1

Y1

Y1

Y2

Y2

Y1

Y
X1

X1

X1

X1

X1

X1

X2

X2

X2

X1

X

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005
Year

X22015 Y2

Y2

Y2

Y2

Y
X2

X2

X2

X2

X

2015

2013

2013

2012

2011
Year

+

Master

=

Trans

Master

In the figure, rows in the Master data set are modified based
on the values of the specified BY variable Year in the Trans
data set.

Details

n The MODIFY statement requires that the input data sets share a common
variable that is specified in a BY statement.

n Modifying does not require that the input data sets are sorted or indexed.

n Both the master data set and the transaction data set can have rows with
duplicate values of the BY variables.

n If duplicate values of the BY variable exist in the master data set, only the first
occurrence is updated.

n If duplicate values of the BY variable exist in the transaction data set, the
duplicates are applied one on top of another so that only the value in the last
transaction appears in the master observation.

n Modifying does not permit you to create new variables or change variable
attributes.

n The MERGE, UPDATE, and MODIFY statements can all be used to combine and
update rows in SAS data sets. For a comparison of these methods, see
“Updating and Modifying Comparison” on page 489

See Also

n “Example: Modify a Data Set by Adding an Observation” on page 563

Overview of Combining Data 487

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en

n “Updating and Modifying Comparison” on page 489

Comparing Methods

PROC SQL versus Match-Merging
You can create and modify tables by using either the MERGE statement with the BY
statement in the DATA step or by using the SQL procedure. For more information
about DATA step match-merging versus PROC SQL, see “Creating and Updating
Tables and Views” in SAS SQL Procedure User’s Guide.

When values of the common variables are different between data sets that are
being merged, they are often referred to as “unmatched rows” or “unmatched
records.” Missing values also result in unmatched rows.

The DATA step and PROC SQL treat unmatched rows differently.

PROC SQL inner join:

proc sql number;
 select *
 from inventory, Sales
 where inventory.PartNumber=
 Sales.PartNumber;
quit;

Includes only the matching rows in the
output by default.

DATA step match-merge:

data merged;
 merge Inventory Sales; by PartNumber;
run;

Includes both the matching and the non-matching
rows in the output by default.

The yellow highlights in the match-merge indicate the un-matched rows, which are not
included in the SQL output. For another example that compares the DATA step with PROC
SQL, see “Comparing PROC SQL with the SAS DATA Step” in SAS SQL Procedure User’s Guide.

488 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n0suerxfcdj8lnn1oudqyqz61k2b.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n0suerxfcdj8lnn1oudqyqz61k2b.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p015vwpsg8pas3n135iy1t43o1mc.htm&locale=en

Updating and Modifying Comparison
Table 21.2 Comparing Updating a Table with Modifying a Table

Characteristic Updating Modifying

Syntax UPDATE statement

data <output-data-set>;
 UPDATE master-data-set;
 trans-data-set
 BY variable-name;

Form 1: MODIFY statement (matching access)

data <output-data-set>;
 MODIFY master-data-set;
 trans-data-set
 BY variable-name;

When to use n You have a master data set that
needs to be changed or updated
based on the values of a
transaction data set.

n You want to process most of the
data in the master data set.

n You want to change the master data set
based on the values of another data set
without creating an additional, new output
data set. MODIFY creates an updated
version of the original master data set.

n You want to process or change only a small
portion of the master data set.

Number of
data sets that
can be
processed

UPDATE and MODIFY when
specified with the BY statement can
combine rows from exactly two data
sets.

UPDATE and MODIFY when specified with
the BY statement can combine rows from
exactly two data sets.

Disk space “Updating” requires more disk space
because it produces an updated copy
of the data set.

“Modifying” saves disk space because it
updates the existing table without creating a
new table.

BY statement
requirements

The BY statement is required. The BY statement is required when using the
MODIFY statement to update a master data
based on values in a separate, transaction
data set when the input data sets are related
in some way by one or more common
variables. *

Unique BY or
key value
requirements

n Duplicate values for BY variables
are allowed in the transaction data
set. Multiple transaction rows are
all applied to the master
observation before it is written to
the output file.

n Unique values for BY variables are
required in the master data set. If
duplicate values for the BY
variable exist in the master data

n Duplicate values for BY variables are
allowed in either the master data set or the
transaction data set.

n If duplicates exist in the master data set,
only the first occurrence is updated
because the generated WHERE statement
always finds the first occurrence in the
master data set.

n If duplicates exist in the transaction data
set, the duplicates are applied one on top

Comparing Methods 489

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n11m2m64sofcd7n1tyam4089e86f&locale=en

Characteristic Updating Modifying

set, then only the first observation
with that value in the BY group is
updated and SAS issues a warning.

of another unless you write an
accumulation statement to add all of them
to the master observation. Without the
accumulation statement, the values in the
duplicates overwrite each other so that
only the value in the last transaction is the
result in the master observation.

Sort or index
requirements

n Sorting or indexing is required on
input data sets.

n If an index exists on the input data
set, then the UPDATE statement
does not maintain it on the
updated data set. You must
rebuild the index.

n Sorting or indexing is not required for any
data set.

n Neither the master data set nor the
transaction data set require sorting or
indexing because the BY statement, when
used with the MODIFY statement, triggers
dynamic WHERE processing.

n If an index exists on the input data set,
then the MODIFY statement maintains it
on the updated data set.

Treatment of
missing values
in the input
data sets or
master data
set

n MODIFY and UPDATE do not overwrite values in the master data set with missing
ones in the transaction data set by default.

n To cause missing values in the transaction data set to replace existing values in the
master data set, specify NOMISSINGCHECK in the UPDATEMODE= option. For an
example, see Example: Update a Data Set with Missing Values on page 560

Changes to
variables
permitted

Yes.

You can add new variables, delete
variables, change variables, and
perform any other change that
affects the descriptor information of
the data set.

No.

You cannot add new variables, delete
variables, change variables, or perform any
change that affects the descriptor
information of the data set.

Error-checking
capabilities

No.

Updating does not need error
checking because transactions
without a corresponding master
record are added to the data set by
default.

Yes.

Error-checking capabilities include using the
automatic variable _IORC_ and the SYSRC
autocall macro. For more information, see
“Automatic Variable _IORC_ and the SYSRC
Autocall Macro” in SAS DATA Step
Statements: Reference.

Data set
integrity

No data loss occurs because the
UPDATE statement works on a copy
of the data.

Data might be only partially updated due to
an abnormal task termination.

* The MODIFY statement, unlike the UPDATE statement, can be used in its other
forms to make changes to a single input data set. In these cases, syntax Forms 2

490 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=p04641oadoqzp0n125008disrs3a&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=p04641oadoqzp0n125008disrs3a&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=p04641oadoqzp0n125008disrs3a&locale=en

through 4 and a BY statement are not required. However, for the purposes of this
topic (combining data), the MODIFY statement requires the Form 1 version of its
syntax, which does require the BY statement.

One-to-One Reading versus One-to-One Merging
Table 21.3 One-to-One Reading versus One-to-One Merging

Characteris
tic One-to-One Reading One-to-One Merging

Syntax SET statement (DATA step)

data <output-data-set>;
 SET input-data-set-1;
 SET input-data-set-2;

MERGE statement (DATA step)

data <output-data-set>;
 MERGE input-data-set-1
 input-data-set-2;

How rows
are
matched

Rows are matched by row number for both one-to-one reading and one-to-one merging.
For example, row 1 of data set 1 is matched with row 1 of data set 2, row 2 of data set 1 is
matched with row 2 of data set 2, and so on.

Treatment
of
“unmatched
rows”

Only matched rows are selected for output.
That is, only rows that have the identical
row number values in both data sets are
included in the merged output. This means
that merging data sets with different
numbers of rows result in a merged data set
that has the same number of rows as the
smallest input data set.

Both matched and unmatched rows are
selected for output. That is, all rows from
all data sets are included in the output
even when the input data sets have a
different number of rows.

Treatment
of common
variables

Values of common variables are overwritten. That is, values of common variables in the
last data set that is named in the SET or MERGE statement overwrite the values in the
previous data sets. This is true for both one-to-one reading and one-to-one merging of
data sets.

Sort
requirement
s

None. There are no sort requirements for either of these methods.

Comparing Methods 491

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en

Figure 21.1 One-to-One Reading versus One-to-One Merging

Comparison of SAS Language Elements for
Combining Data Sets
Table 21.4 Comparison of SAS Language Elements for Combining Data Sets

Language Element Purpose

Access Method
Use with BY
statementSequential Direct

BY n The BY statement
controls the operation of
MERGE, MODIFY, SET,
and UPDATE statements
and creates and orders
groups.

n The BY statement
enables you to process
rows that contain
variables with equal
values.

NA NA NA

492 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en

Language Element Purpose

Access Method
Use with BY
statementSequential Direct

MERGE statement n The MERGE statement
reads rows from two or
more data sets and joins
them into a single row.

n When used with the BY
statement, this type of
merging is known as
match-merging.

n When used without the
BY statement, this type
of merging is known as
one-to-one merging.

n When the MERGE
statement is used with
the BY statement, data
must be sorted or
indexed based on the
values of the BY
variable.

X X

MODIFY n Modifying processes
rows in a SAS data set
by updating the existing
master data set rather
than creating a new data
set (as opposed to
updating, which creates
a new data set).

n Sorting is not required
but is recommended for
performance.

X X X

SET n The SET statement
reads any row from one
or more SAS data sets.

n Interleaving of data set
rows is achieved when a
single SET statement is
used with the BY
statement and multiple
input data sets are
specified in the SET
statement.

n Concatenating
(appending) of data sets

X X X

Comparing Methods 493

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en

Language Element Purpose

Access Method
Use with BY
statementSequential Direct

is achieved in the same
way that interleaving is
achieved, except that no
BY statement is used. A
single SET statement is
specified and multiple
data sets are specified.

n One-to-one reading is
achieved when multiple
SET statements are
used, one for each input
data set, and no BY
statement is used.

n The KEY= option and the
POINT= option can be
specified in the SET
statement. They enable
you to directly select
specific rows for output.

UPDATE n “Updating” applies
transactions to rows in a
master data set.

n Updating does not
update rows by changing
the existing master data
set. It produces an
updated copy of the
existing master data set.

n Updating requires that
the data in both the
master and transaction
data sets are indexed or
sorted by the values of
the BY variables.

X X

PROC APPEND n PROC APPEND adds
rows from one SAS data
set to the end of another
SAS data set.

X

PROC SQL n PROC SQL reads any
row from one or more
SAS data sets.

n PROC SQL reads rows
from up to 32 SAS data

X X X

494 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=n0bef2ksq08u9yn1a0hj5zoetvzm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p0u2yq8x2b1fu4n1m0d5hzam9hjv&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1bjrbc5esr90on12o8vs7gyv8ue.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p07h5bmiljefenn1qmibhfcbx5c9.htm&locale=en

Language Element Purpose

Access Method
Use with BY
statementSequential Direct

sets and joins them into
single rows.

n PROC SQL manipulates
rows in an existing SAS
data set without
creating a new data set.

n PROC SQL can produce
a Cartesian product of
the variables in the input
data sets. The access
method is chosen by the
internal optimizer.

Hash Table n Hash table merging
combines data sets
when values of the
variable in the data sets
match the value of the
key in the hash table.

X X

Examples: Prepare Data

Example: Examine the Data to Be Combined

Example Code

In this example, the CONTENTS, SORT, and PRINT procedures are used to examine
the data in three data sets before combining them.

The following table shows the three input data sets to be combined: Inventory,
Sales, and Sales2019.

 Inventory

 Part Part
 Number Name

 Sales

 Part Part Sales
 Number Name Person

 Sales2019

 Part LastSoldDate
 Number

Examples: Prepare Data 495

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p10qiuo2yicr4qn17rav8kptnjpu.htm&locale=en

 K89R seal
 M4J7 sander
 LK43 filter
 MN21 brace
 BC85 clamp
 NCF3 valve
 KJ66 cutter
 UYN7 rod
 JD03 switch
 BV1E timer

 NCF3 valve JN
 BV1E timer JN
 LK43 filter KM
 K89R seal SJ
 LK43 filter JN
 M4J7 sander KM
 BV1E timer KM

 BC85 10/15/2019
 BV1E 10/23/2019
 KJ66 11/11/2019
 LK43 09/12/2019
 MN21 09/13/2019
 NCF3 07/24/2019
 UYN7 12/11/2019

proc contents data=Inventory; run; /* 1 */
proc contents data=Sales; run;
proc contents data=Sales2019; run;
quit;
proc sort data=inventory; by PartNumber; run; /* 2 */
proc sort data=Sales; by PartNumber; run;
proc sort data=Sales2019; by PartNumber; run;

proc print data=inventory; run /* 3 */;
proc print data=Sales; run;
proc print data=Sales2019; run;

1 View the descriptive information about the input data sets to determine
whether they share any common variables. In the PROC CONTENTS output,
ensure that the common variable, PartNumber, has the same attributes and
represents the same data in each of the input data sets.

2 Sort the input data sets by the values of the common variable. Because the
variable partNumber is common to all three input data sets, it can be used as a
BY variable for merging the data.

3 Print the data sets to examine the values of the common variable and to
determine the relationship between the data sets. The PROC PRINT output
shows that there is a one-to-many relationship between the data sets
Inventory and Sales, a many-to-one relationship between the data sets Sales
and Sales2019, and a one-to-one relationship between the data sets Inventory
and Sales2019.

Figure 21.2 Partial PROC CONTENTS Output Comparing the Inventory, Sales, and Sales2019 Data
Sets

496 Chapter 21 / Combining Data

Figure 21.3 PROC PRINT Output for the Inventory, Sales, and Sales2019 Data Sets Showing One-to-
Many and Many-to-One Relationships

Note: There are BY variable values that exist in the Inventory data set that do not
exist in the Sales2019 data set. For example, in the Inventory data set,
PartNumber JD03 does not exist in the Sales2019 data set. When the values of the
BY variables are different between data sets that are being merged, they are often
referred to as “unmatched observations” or “unmatched records.” Missing values are
also considered unmatched observations. Different merge methods treat
unmatched observations differently. See “Comparing Methods” on page 488 and
“PROC SQL versus Match-Merging” on page 488 for more information.

Key Ideas

n The PRINT procedure lets you examine the structure and the contents of the data
sets to be combined.

n The CONTENTS procedure displays descriptive information about data sets,
including variable information, formats, number of observations, file size, and
other summary information about the data.

n When merging data sets that have a one-to-many or a many-to-one relationship,
you can use PROC SQL, a DATA step MERGE BY (match-merge) on page 530, the
MODIFY or UPDATE statements, or a hash-table merge on page 552.

n When combining data sets using the DATA step SET, MERGE, MODIFY, and
UPDATE statements, attributes of common variables must match. See, “Example:
Prepare Data in Which Common Variables Have Different Data Types” on page 501
“Example: Prepare Data in Which Common Variables Have Different Lengths” on
page 504, and “Example: Prepare Data in Which Common Variables Have Different
Formats and Labels” on page 506 for more information.

Examples: Prepare Data 497

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p10qiuo2yicr4qn17rav8kptnjpu.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&locale=en

See Also

n “COMPARE Procedure” in Base SAS Procedures Guide

n “Example: Find the Common Variables in Multiple Input Data Sets” on page 498

Example: Find the Common Variables in Multiple
Input Data Sets

Example Code

In this example, PROC SQL uses the metadata in SAS session Dictionary tables to
determine variables that are in common to three input data sets: Inventory, Sales,
and Sales2019.

proc sql;
 title "Variables Common to Inventory, Sales, and Sales2019";
 create table commonvars as /*
1 */
 select memname, upcase(name) as name
 from dictionary.columns
 where libname='WORK' and
 memname in ('INVENTORY', 'SALES', 'SALES2019');
 select name /*
2 */
 from commonvars
 group by name
 having count(*)=(select count(distinct(memname)) from
commonvars);
quit;

1 Create the table, commonvars, that contains the variables from
work.inventory, work.sales, and work.sales2019.

2 Identify the unique variable names from the commonvars table.

498 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1nwxbchh5hpu1n1h28kmici2awd.htm&locale=en

Key Ideas

n You can also use the COMPARE procedure to compare up to two data sets.

n Identifying common variables across data sets is useful when you want to merge
data based on matching values rather than concatenating or appending data.
PROC COMPARE and PROC SQL can be used to identify common variables
between two data sets. PROC SQL can be used to identify common variables
across multiple data sets.

See Also

n “COMPARE Procedure”

Example: Creating Unique BY Values When Data
Contains Duplicate BY Values

Example Code

This example uses the FREQ procedure on the sales data set to check for duplicate
values of the variable partNumber in the Sales data set. It then uses the _N_ DATA
step automatic variable with the CATX function to create a unique row ID for the
duplicate values.

proc sort data=sales; /* 1 */
 by partNumber;
run;
proc print data=sales; run;

proc freq data = Sales noprint; /* 2 */
 tables partNumber / out = SalesDupes
 (keep = partNumber Count
 where = (Count > 1));
run;

proc print data=SalesDupes;run;

data SalesUnique; /* 3 */
 set Sales;
 uniqueID = catx('.',partNumber,_n_);

Examples: Prepare Data 499

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1nwxbchh5hpu1n1h28kmici2awd.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1nwxbchh5hpu1n1h28kmici2awd.htm&locale=en

run;

proc print data=SalesUnique; /* 4 */
 var uniqueID partNumber partName salesPerson;
run;

1 Sort the data by the variable, partNumber, which is used as the BY variable.

2 Use PROC FREQ to determine whether there are any duplicate values for
partNumber. Create a data set, SalesDupes, which includes only the BY variable,
partNumber, and Count. Count is a variable that is automatically generated by
PROC FREQ and represents the frequency of each value of partNumber in the
Sales data set. The value of partNumber is written to SalesDupes only if the
value appears more than once in Sales (Count > 1).

3 Create a data set to contain the unique values of the BY variable partNumber.
Modify the value of partNumber to create unique values by appending a unique
number to each value. The CATX function appends the value of _N_ to each
value of partNumber and stores the new value in uniqueID.

4 PROC PRINT shows the values of SalesUnique.

Output 21.1 Output of PROC FREQ That Shows Duplicate Values for the Common
Variable, PartNumber, Found in the Sales Data Set

Output 21.2 PROC PRINT Output Showing a New Variable Containing Unique
Values for the Common Variable PartNumber

Key Ideas

n See “Comparing Methods” on page 488 for a comparison of different combining
methods and for information about which methods require unique BY values.

500 Chapter 21 / Combining Data

See Also

n For more information about the _N_ automatic variable, see “Automatic
Variables” on page 96

n For more information about the CATX function, see “CATX Function” in SAS
Functions and CALL Routines: Reference

n “Data Relationships” on page 476

n “Overview of Combining Data” on page 474

n Table 21.2 on page 489

n For more information about automatic variables that are generated by PROC
FREQ, see Output Data Sets in the FREQ procedure documentation.

Example: Prepare Data in Which Common
Variables Have Different Data Types

Example Code

In this example, the two data sets contain a common variable that has different
data types.

This example uses the following input data sets: CarsSmall and a subset of the
Sashelp.Cars data set.

data cars; /* 1 */
 set sashelp.cars;
run;

proc contents data=cars; run; /* 2 */
proc contents data=CarsSmall; run;

data combineCars;
 merge cars CarsSmallNum; /* 3 */
 by make model;
 keep Make DriveTrain Model MakeModelDrive Weight;
run;

1 Create some input data for the example from the Sashelp.Cars data set.

2 Display descriptive information about each of the input data sets to identify
common variables. The CONTENTS procedure output shows that the common
variable, Weight, is a CHAR type variable in the CarsSmall data set and it is a
NUMERIC type variable in the Cars data set.

Examples: Prepare Data 501

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0p7wxtk0hvn83n1pveisbcp2ae9.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0p7wxtk0hvn83n1pveisbcp2ae9.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=procstat&docsetTarget=procstat_freq_details112.htm&locale=en#procstat_freq018867

3 Merge the data set by the values of the common variable, Weight. Because the
type attribute is different in each of the input data sets, SAS prints an error
message in the log stating that the variable type is incompatible.

Figure 21.4 Comparing PROC CONTENTS Output for the Data Sets Vehicles and VehiclesSmall
Showing Different Data Types for the Common Variable

Example Code 21.1 Log Error Showing that the Type Attribute of the BY Variable is Different
in the Input Data Sets

ERROR: Variable WeightLBS has been defined as both character and numeric.
1274 run;

To fix the problem, re-create the common variable, Weight, in the carsSmall data
set by using the INPUT function in a new DATA step.

data CarsSmallNum; /* 1 */
 set CarsSmall;
 weightNum=input(weight, 8.);
 drop weight;
 rename WeightNum=weight;
run;

proc sort data=cars; by make model; run; /* 2 */
proc sort data=CarsSmallNum; by Make Model; run;

data combineCars;
 merge cars CarsSmallNum; /* 3 */
 by make model;
 keep Make DriveTrain Model MakeModelDrive Weight;
run;
proc contents data=combineCars; run; /* 4 */
proc print data=combineCars; run;

1 The INPUT function converts the variable, Weight, into a numeric data type and
stores the value in a new variable WeightNum. The original Weight character
variable in CarsSmall is dropped, and the new numeric variable WeightNum is

502 Chapter 21 / Combining Data

renamed to Weight. Renaming the variable ensures that the Cars and CarsSmall
data sets have a common variable to merge the data sets.

2 The Cars and the CarsSmallNum data sets are sorted by the same variables so
that they can be merged.

3 The Cars and the CarsSmallNum data sets are merged by make and model.
Because the data type for the Weight variable in each data set matches, the
data sets merge successfully to create the combineCars data set.

4 Only a portion of the CarsSmall data set is shown in Figure 21.5.

Figure 21.5 Partial PROC PRINT Output for Match-Merged Data Sets after Normalizing the Common
Variable’s Type Attribute

Key Ideas

n When combining data sets, variables in the input data sets that have the same
name are referred to as common variables. The common variable in one input data
set does not always share the same attributes as the same variable in another data
set.

n Common variables with the same data but different attributes can cause problems
when the data sets are combined.

n If the type attribute is different, SAS stops processing the DATA step and issues an
error message stating that the variables are incompatible. To correct this error, you
must use a DATA step to re-create the variables.

n If the length attribute is different, SAS takes the length from the first data set that
is specified in the SET, MERGE, or UPDATE statement.

Examples: Prepare Data 503

See Also

n “Converting Character Values to Numeric Values” in SAS Functions and CALL
Routines: Reference

n “Converting Numeric Values to Character Value” in SAS Functions and CALL
Routines: Reference

Example: Prepare Data in Which Common
Variables Have Different Lengths

Example Code

In this example, the data sets quarter1, quarter2, quarter3, and quarter4 are
match-merged into one output data set using the MERGE statement with the BY
statement. The data sets are pre-sorted and merged on the common variable
account.

This example uses the Quarter1, Quarter 2, Quarter3, Quarter4 data sets.

proc print data=quarter1; run; /* 1 */
proc print data=quarter2; run;
proc print data=quarter3; run;
proc print data=quarter4; run;

data yearly;
 merge quarter1 quarter2 quarter3 quarter4; /* 2 */
 by Account;
run;

data yearly; /* 3 */
 length Mileage 6;
 merge quarter1 quarter2 quarter3 quarter4;
 by Account;
run;
proc contents data=yearly; run; /* 4 */

1 View the descriptive information about the input data sets to compare whether
the attributes of the common variables are the same in each of the input data
sets. The PROC CONTENTS output shows that the length of the common
variable, mileage, is four bytes in the quarter1 data set, eight bytes in the
quarter2 data set, and six bytes in the quarter3 and quarter4 data sets.

2 Merge the data sets by the common variable, mileage. Notice that SAS issues a
nonzero return code and prints a warning in the log output.

504 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p19en16vskd2vhn1vwmxpxnglxxs.htm&docsetTargetAnchor=n1fx2ev3yrz3ozn1709clrieapqe&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p19en16vskd2vhn1vwmxpxnglxxs.htm&docsetTargetAnchor=n1fx2ev3yrz3ozn1709clrieapqe&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0mlfb88dkhbmun1x08qbh5xbs7e.htm&docsetTargetAnchor=p1e094fmmq3ue9n1qz70c9d17i5w&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0mlfb88dkhbmun1x08qbh5xbs7e.htm&docsetTargetAnchor=p1e094fmmq3ue9n1qz70c9d17i5w&locale=en

3 Change the length of the mileage variable by specifying the appropriate length
in the LENGTH statement before specifying the MERGE statement. The
LENGTH statement must also come before the SET, MERGE, and UPDATE
statements if they are used.

4 View the descriptive information for the merged output data set.

Example Code 21.2 Log Output for Match-Merge of Data Sets Containing Variables with
Different Lengths

WARNING: Multiple lengths were specified for the variable mileage by input data
set(s).
This can cause truncation of data.

You can also use the ATTRIB statement to change the length attribute on the
variable:

data yearly;
 merge quarter1 quarter2 quarter3 quarter4;
 by Account;
 attrib Mileage

Examples: Prepare Data 505

 length = 6;
run;

If you expect truncation of data (for example, when removing insignificant blanks
from the end of character values), the warning is expected and you do not want
SAS to issue a nonzero return code. In this case, you can turn this warning off by
setting the VARLENCHK= system option to NOWARN.

Key Ideas

n When combining data sets, variables in the input data sets that have the same
name are referred to as common variables. The common variable in one input data
set does not always share the same attributes as the same variable in another data
set.

n Common variables with the same data but different attributes can cause problems
when the data sets are combined.

n When combining data sets, if the length of the common variable is different, SAS
takes the length from the first data set that is specified in the SET, MERGE, or
UPDATE statement, and then prints a warning message on page 505 in the SAS
log.

See Also

n “LENGTH Statement” in SAS DATA Step Statements: Reference

Example: Prepare Data in Which Common
Variables Have Different Formats and Labels

Example Code

In this example, the data sets class and classfit are match-merged using the
MERGE statement with the BY variable, Name.

The ATTRIB statement is used to control the length, label, and format of the
common variable in the final output data set.

This example uses the Class and Classfit data sets.

506 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0xwcm523zbueln17krhgsbupntq.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0xwcm523zbueln17krhgsbupntq.htm&docsetTargetAnchor=n13wdx39ibz1don1n85t0g2jd1ck&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en

Before merging the data sets, PROC CONTENTS is run on each data set to identify
the common variable and to look for any differences between the attributes of the
common variables.

proc contents data=class; run; /* 1 */
proc contents data=classfit; run;

proc sort data=class; by name; run; /* 2 */
proc sort data=classfit; by name; run;

data merged;
 merge class classfit; by Name;
 attrib Weight
 label = "Weight";
 attrib Height Weight Predict format=comma8.2; /* 3 */
run;
proc print data=merged; /* 4 */
run;
proc contents data=merged; run;

1 View the descriptive information about the input data sets to determine
whether they share any common variables and to compare their attributes. The
PROC CONTENTS output shows that the common variables Height and Weight
have different labels in each of the input data sets.

2 Sort the input data sets by the values of the BY variable.

3 Change the attributes by specifying the ATTRIB statement:

4 Print the descriptor information for the merged output data set.

Output 21.3 PROC CONTENTS Output for the Data Sets Class and Classfit Showing
the Differences in Formats and Labels

Examples: Prepare Data 507

Output 21.4 PROC CONTENTS Output for the Default Behavior When Formats and
Labels Are Different in the Merged Data Sets

Output 21.5 PROC CONTENTS Output Showing How the ATTRIB Statement
Changes the Format and Label on the Merged Output Data Set

Key Ideas

n If the label, format, or informat attributes of the common variable in the input data
sets are different, SAS takes the attribute from the first data set that is listed in
the SET, MERGE, MODIFY, or UPDATE statement.

n Any label, format, or informat that you explicitly specify overrides the default. If
all data sets contain explicitly specified attributes, the one specified in the first
data set listed in the SET or MERGE statement overrides the others.

n You can ensure that the new output data set has the attributes that you want by
using the ATTRIB statement in the DATA step.

n You can also use VLABEL and VLABELX functions to modify attributes on
variables.

508 Chapter 21 / Combining Data

See Also

n “ATTRIB Statement” in SAS DATA Step Statements: Reference

n “VLABEL Function” in SAS Functions and CALL Routines: Reference

n “VLABELX Function” in SAS Functions and CALL Routines: Reference

Example: Prepare Data in Which Common
Variables Represent Different Data

Example Code

In this example, the data sets to be merged contain variables that have the same
name but they represent completely different data. In this sense, they are not
meant to be common variables.

To resolve this problem, rename one of the variables in one of the input data sets.
Here, the RENAME= data set option is used to rename the variable Weight in the
CarsSmall input data set:

data vehicles(rename=(weight=weightLBS));
 set vehicles;
run;

Key Ideas

n If the label, format, or informat attributes of the common variable in the input data
sets are different, SAS takes the attribute from the first data set that is listed in
the SET, MERGE, MODIFY, or UPDATE statement.

n Any label, format, or informat that you explicitly specify overrides the default. If
all data sets contain explicitly specified attributes, the one specified in the first
data set listed in the SET or MERGE statement overrides the others.

n You can ensure that the new output data set has the attributes that you want by
using the ATTRIB statement in the DATA step.

n You can also use the “VLABEL Function” in SAS Functions and CALL Routines:
Reference and the “VLABELX Function” in SAS Functions and CALL Routines:
Reference to modify attributes on variables.

Examples: Prepare Data 509

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1wxb7p9jkxycin16lz2db7idbnt.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0yyb3bsubs6lcn1mi8rlxmh47om.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0j5lbpcfhuuo5n1rrlbo7e3n4a7.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p09ikb01zz9knnn16y401utyq4un.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0yyb3bsubs6lcn1mi8rlxmh47om.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0yyb3bsubs6lcn1mi8rlxmh47om.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0j5lbpcfhuuo5n1rrlbo7e3n4a7.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0j5lbpcfhuuo5n1rrlbo7e3n4a7.htm&locale=en

See Also

n “RENAME Statement” in SAS DATA Step Statements: Reference

Examples: Concatenate Data

Example: Concatenate Using the SET Statement

Example Code

In this example, the SET statement is used to concatenate two data sets into a
single output data set. The input data sets share one common variable (common).
Concatenation does not require that the data sets share any variables or that the
data is related in anyway since it simply involves the placing of one intact data set
after the other.

The following table shows the input data sets that are used in this example: animal
and plant.

 animal

OBS common animal
 1 a Ant
 2 b Bird
 3 c Cat
 4 d Dog
 5 e Eagle
 6 f Frog

 plant

OBS common plant
 1 a Apple
 2 b Banana
 3 c Coconut
 4 d Dewberry
 5 e Eggplant
 6 f Fig

data concatenate;
 set animal plant; /* 1 */
run;
proc print data=concatenate; /* 2 */
run;

1 The SET statement reads all of the observations sequentially from both input
data sets, and it then appends the observations from the first data set that is
read to the second data set that is read. The results are stored in a new output
data set named concatenate. As a result, observations from the animal data set

510 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0x16kvqkxxdx5n1t04voifvo8wo.htm&locale=en

are displayed first in the output, followed by the observations from the plant
data set.

2 Print the results (Output 21.6 on page 511).

Output 21.6 PROC PRINT Output Showing Concatenated Data Sets Using the SET
Statement

Notice that the number of observations in the output data set is 12, which is the
sum of the observations from both input data sets.

Key Ideas

n Concatenation is the combining of two or more data sets, one after the other, into
a single data set.

n In the output data set, observations from the data set that is listed first in the SET
statement are followed by observations from the data set that is listed second in
the SET statement, and so on.

n The output data set contains all of the variables from both input data sets. Values
of variables that are found in one data set but not in another are set to missing.

n Generally, you concatenate SAS data sets that have the same variables.

See Also

n Concatenating on page 479 data sets

n “SET Statement” in SAS DATA Step Statements: Reference

Examples: Concatenate Data 511

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en

Example: Concatenate Using PROC SQL

Example Code

In this example, the SQL procedure is used to concatenate two data sets together
into a new output SAS data set and an SQL table. During the concatenation, SQL
reads all the rows from both input data sets and creates a new output data set
named combined.

The following table shows the input data sets that are used in this example: animal
and plant:

 animal

OBS common animal
 1 a Ant
 2 b Bird
 3 c Cat
 4 d Dog
 5 e Eagle
 6 f Frog

 plant

OBS common plant
 1 a Apple
 2 b Banana
 3 c Coconut
 4 d Dewberry
 5 e Eggplant
 6 f Fig

proc sql;
 create table combined as /* 1 */
 select * from animal /* 2 */
 outer union corresponding /* 3 */
 select * from plant; /* 4 */
quit;

1 Use the Create statement to create the table, combined.

2 Include all variables from animal.

3 Use an OUTER UNION CORRESPONDING statement to include all rows from
both tables and to overlay the common variables.

4 Include all variables from plant.

512 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n1oihmdy7om5rmn1aorxui3kxizl.htm&locale=en

Output 21.7 Concatenated animal and plant Data Sets Using PROC SQL

The resulting output consists of a SAS data set and an SQL table. Both tables have
12 rows (observations) each. The total number of rows in the output is equal to the
sum of the rows from the combined data sets. Values of variables that are found in
one data set but not in another are set to missing.

In the output data set, the observations from the plant data set are appended to
the observations from the animal data set. Because the animal data set is first in
the SET statement, it appears first in the output. The output data set contains all
the variables from both input data sets.

See Also

n “Concatenating Query Results (OUTER UNION)” in SAS SQL Procedure User’s
Guide

n “Union Joins” in SAS SQL Procedure User’s Guide

n “OUTER UNION” in SAS SQL Procedure User’s Guide

n “Comparing PROC SQL with the SAS DATA Step” in SAS SQL Procedure User’s
Guide

Example: Append Files Using PROC APPEND

Example Code

In this example, the APPEND procedure is used to add observations from the Year2
data set to the end of the Year1 data set. During the processing, the procedure
reads only the rows from the Year2 data set. The procedure then updates the Year1
data set by appending the observations from the Year2 data set to it. The

Examples: Concatenate Data 513

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n0vo2lglyrnexwn14emi8m0jqvrj.htm&docsetTargetAnchor=p0wx2rzvreep08n1h87if6u0gn82&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n0vo2lglyrnexwn14emi8m0jqvrj.htm&docsetTargetAnchor=p0wx2rzvreep08n1h87if6u0gn82&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p1bk7i6jqseje7n1lifcip8kzhpp.htm&docsetTargetAnchor=p13lvbyvtplv99n1uy0f56qv2d5d&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p1o6k7t8y56hobn1mup90vpf4ye6.htm&docsetTargetAnchor=p0zdxzb1hc01gun15ytm1ncp405d&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p015vwpsg8pas3n135iy1t43o1mc.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p015vwpsg8pas3n135iy1t43o1mc.htm&locale=en

procedure does not generate a new output data set. It simply updates the existing
Year1 data set.

The following table shows the input data sets that are used in this example: Year1
and Year2:

Table 21.5 Input Data to be Combined

 Year1

OBS Date

 1 2009
 2 2010
 3 2011
 4 2012

 Year2

 OBS Date

 1 2010
 2 2011
 3 2012
 4 2013
 5 2014

proc append base=Year1 data=Year2;
run;
proc print data=Year1;
 title "Year1";
run;

Output 21.8 Concatenated Tables (PROC APPEND)

The Year1 data set contains all the observations from both data sets.

Note: You cannot use PROC APPEND to add observations to a SAS data set in a
sequential library.

Key Ideas

n When you concatenate data sets using the SET statement, SAS reads every row of
all input data sets and creates a new output data set. When you use the APPEND
procedure, SAS reads only the rows in the data set specified in the DATA= option
and it does not create a new data set. See “Choosing between the SET Statement

514 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=n12n72dkq943czn1dmfo7u3ehd3p&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=p1143j5r9ecbv3n1iauc574njo8y&locale=en

and the APPEND Statement” in Base SAS Procedures Guide for more information
about choosing between the two methods.

n If the DATA= data set contains variables that are not in the BASE= data set, you
must specify the FORCE option in the APPEND statement. See “Appending to
Data Sets with Different Variables” in Base SAS Procedures Guide for more
information.

n If no additional processing is necessary, using PROC APPEND or the APPEND
statement in PROC DATASETS is more efficient than using a DATA step to
concatenate data sets.

n Generally, you concatenate SAS data sets that share one or more common
variables.

See Also

n “Concatenating Two SAS Data Sets” in Base SAS Procedures Guide

n “APPEND Procedure” in Base SAS Procedures Guide

n “APPEND Statement” in Base SAS Procedures Guide

n “Appending to Data Sets That Contain Variables with Different Attributes” in
Base SAS Procedures Guide

n “Concatenating a CAS Table to a SAS Data Set” in Base SAS Procedures Guide

Example: Add a Message to the Log When
Variables Are Missing from Input Data Sets

Example Code

In this example, the OPEN=DEFER option in the DATA statement causes a note to
be written to the SAS log when variables in one or more of the input data sets are
not present in the first input data set that is read.

The following table shows the input data sets that are used in this example. Notice
how the variables predict and lowermean, which are defined in Table2, are not
present in Table1.

When you concatenate the data sets without specifying the OPEN=DEFER option
and you print the results, the output shows a typical concatenation in which the
values for the variables that are not in all input data sets appear as missing:

data concat;
 set table1 table2;

Examples: Concatenate Data 515

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=p1143j5r9ecbv3n1iauc574njo8y&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=n038h2uiajghepn1diwi0r61ihqq&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=n038h2uiajghepn1diwi0r61ihqq&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1pyryfvsrne2kn1cv2diraku41o.htm&docsetTargetAnchor=p1pyryfvsrne2kn1cv2diraku41o&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1bjrbc5esr90on12o8vs7gyv8ue.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=p0tfhd0289oeein1wqcfvqugjroi&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=p0tfhd0289oeein1wqcfvqugjroi&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nsf83py3a9k0n1lns79ttlldtn.htm&docsetTargetAnchor=p1nsf83py3a9k0n1lns79ttlldtn&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p0j93jw6pn211en1bw9nxndw2wy8&locale=en

run;
proc print data=concat;
 title "Concatenate Table1 and Table2";
run;

Compare this output to when you use the OPEN=DEFER option. Notice how only
the variables from the data set that are listed in the first SET statement appear in
the final output data set.

data concat2;
 set table1 table2 open=defer;
run;
proc print data=concat2;
 title "Concatenate with OPEN=DEFER";
run;

The following message appears in the log:

516 Chapter 21 / Combining Data

Output 21.9 Partial Log Output Showing Missing Variables When Using
OPEN=DEFER

NOTE: There were 4 observations read from the data set WORK.TABLE1.
NOTE: For OPEN=DEFER processing, all variables processed should be specified by
the first data
 set listed in the SET statement.
NOTE: Variable predict, found on WORK.TABLE2, is being ignored.
NOTE: Variable lowermean, found on WORK.TABLE2, is being ignored.
NOTE: There were 4 observations read from the data set WORK.TABLE2.
NOTE: The data set WORK.CONCAT2 has 8 observations and 5 variables.

Key Ideas

n In most cases, if the set of variables defined by any subsequent data set differs
from the variables defined by the first data set, SAS prints a warning message to
the log but does not stop execution.

n When you concatenate data sets using the SET statement, SAS reads every row of
all input data sets and creates a new output data set. When you use the APPEND
procedure, SAS reads only the rows in the data set specified in the DATA= option
and it does not create a new data set. See “Choosing between the SET Statement
and the APPEND Statement” in Base SAS Procedures Guide for more information
about choosing between the two methods.

n If the DATA= data set contains variables that are not in the BASE= data set, you
must specify the FORCE option in the APPEND statement. See “Appending to
Data Sets with Different Variables” in Base SAS Procedures Guide for more
information.

n If no additional processing is necessary, using PROC APPEND or the APPEND
statement in PROC DATASETS is more efficient than using a DATA step to
concatenate data sets.

n Generally, you concatenate SAS data sets that have the same variables.

See Also

n “SET Statement” in SAS DATA Step Statements: Reference

n “Concatenating Two SAS Data Sets” in Base SAS Procedures Guide

n “APPEND Procedure” in Base SAS Procedures Guide

n FORCE option

n “Appending to Data Sets That Contain Variables with Different Attributes” in
Base SAS Procedures Guide

n “Concatenating a CAS Table to a SAS Data Set” in Base SAS Procedures Guide

Examples: Concatenate Data 517

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=n12n72dkq943czn1dmfo7u3ehd3p&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=p1143j5r9ecbv3n1iauc574njo8y&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=p1143j5r9ecbv3n1iauc574njo8y&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=n038h2uiajghepn1diwi0r61ihqq&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=n038h2uiajghepn1diwi0r61ihqq&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1pyryfvsrne2kn1cv2diraku41o.htm&docsetTargetAnchor=p1pyryfvsrne2kn1cv2diraku41o&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1bjrbc5esr90on12o8vs7gyv8ue.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=p0tfhd0289oeein1wqcfvqugjroi&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n19kwc3onglzh2n1l2k4e39edv3x.htm&docsetTargetAnchor=p0tfhd0289oeein1wqcfvqugjroi&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nsf83py3a9k0n1lns79ttlldtn.htm&docsetTargetAnchor=p1nsf83py3a9k0n1lns79ttlldtn&locale=en

Examples: Interleave Data

Example: Interleave Data Sets

Example Code

The following program creates the input data sets, sorts each of the data sets by
their common variable, interleaves the data sets, and then prints the results. The
common variable, common, is specified as the BY variable.

The following input data sets, animal and plant are used in this example:

 animal

OBS common animal
 1 a Ant
 2 b Bird
 3 c Cat
 4 d Dog
 5 e Eagle
 6 f Frog

 plant

OBS common plant
 1 a Apple
 2 b Banana
 3 c Coconut
 4 d Dewberry
 5 e Eggplant
 6 f Fig

The following program first sorts both input data sets using the SORT procedure,
interleaves the data sets, and then prints the results.

proc sort data=animal; by common; run;
proc sort data=plant; by common; run;

data interleave;
 set animal plant;
 by common;
run;
proc print data=interleave; run;

Notice that the input data sets are sorted by the same variable that is specified in
the DATA step BY statement.

The output data set contains all the variables from all data sets, as well as
variables created by the DATA step. Values of variables that are found in one data
set but not in another are set to missing. The number of observations in the output
data set is 12, which is the sum of the observations from both data sets.

518 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en

Output 21.10 PROC PRINT Output for Interleaved Data Sets

Key Ideas

n Input data sets must first be indexed or sorted by the values of the BY variables.

n The observations in the interleaved data sets are not combined; they are copied
from the original data sets in the order of the values of the BY variable.

n Input data sets are processed sequentially, in the order in which they are listed in
the SET statement.

n Observations in the output data set are arranged by the values of the BY variable.

See Also

n “Interleaving” on page 480 data sets

n “SET Statement” in SAS DATA Step Statements: Reference

n “BY Statement” in SAS DATA Step Statements: Reference

n “Combining SAS Data Sets” in SAS DATA Step Statements: Reference

Examples: Interleave Data 519

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p0mq0egdjy8ambn1hxil77ayqkp9&locale=en

Example: Interleave with Duplicate Values of the
BY Variable

Example Code

The following program creates the input data sets, sorts each of the data sets by its
common variable, interleaves the data sets, and then prints the results.

The program first sorts the input data sets using the SORT procedure, which groups
and sorts the rows in each data set by the values of the common variable, common.
Notice that there are duplicate values for the shared BY variable in both input data
sets.

The following table shows the input data sets animalDupes and plantDupes, with
the duplicate values highlighted in each data set:

 animalDupes

OBS common animal

 1 a Ant
 2 a Ape
 3 b Bird
 4 c Cat
 5 d Dog
 6 e Eagle

 plantDupes

 OBS common plant

 1 a Apple
 2 b Banana
 3 c Coconut
 4 c Celery
 5 d Dewberry
 6 e Eggplant

proc sort data=animalDupes; by common; run;
proc sort data=plantDupes; by common; run;

data interleave;
 set animalDupes plantDupes;
 by common;
run;

proc print data=interleave; run;

The output data set contains all the variables from both input data sets. Values of
variables that are found in one data set but not in another are set to missing. The
number of observations in the output data set is 12, which is the sum of the
observations from the input data sets. The observations are written to the output
data set in the order in which they occur in the original data sets.

520 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en

Output 21.11 PROC PRINT Output for Interleaved Data Sets with Duplicate Values
of the BY Variable

Notice that observations from the input data set animalDupes are listed first,
followed by observations from the second input data set, plantDupes. This is
because the DATA step processes data sets sequentially, in the order in which they
are listed in the SET statement. For example, if you change the order of the input
data sets so that the data set plantDupes is listed first in the SET statement, the
observations from plantDupes would be listed first in the output data set.

data interleave;
 set plantDupes animalDupes; by common;
run;
proc print data=interleave; run;

Examples: Interleave Data 521

Output 21.12 PROC PRINT Output for Interleaved Data Sets with the SET
Statement Order Changed

Key Ideas

n Input data sets must first be indexed or sorted by the values of the BY variables.

n The observations in the interleaved data sets are not combined; they are copied
from the original data sets in the order of the values of the BY variable.

n Input data sets are processed sequentially, in the order in which they are listed in
the SET statement.

n Observations in the output data set are arranged by the values of the BY variable.

See Also

n “Interleaving” on page 480

n “SET Statement” in SAS DATA Step Statements: Reference

n “Combining SAS Data Sets” in SAS DATA Step Statements: Reference

522 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p0mq0egdjy8ambn1hxil77ayqkp9&locale=en

Example: Interleave with Different Values of the
Common BY Variable

Example Code

The following program creates the input data sets, sorts each of the data sets by
the common variable, interleaves the data sets, and then prints the results.

The following table shows the input data sets used in this example: animalDupes
and plantMissing2 with the different BY values highlighted:

 animalDupes

OBS common animal

 1 a Ant
 2 a Ape
 3 b Bird
 4 c Cat
 5 d Dog
 6 e Eagle

 plantMissing2

OBS common plant

1 a Apple
2 b Banana
3 c Coconut
4 e Eggplant
5 f Fig

Both input data sets contain values for the variable common that are not present in
the other data set. For example, the value “d” in the animalDupes data set is not
present in the plantMissing2 data set. The value “f” in the plantMissing2 data set
is not present in the animalDupes data set.

proc sort data=animalDupes; by common; run; /* 1 */
proc sort data=plantMissing2; by common; run;

data interleave; /* 2 */
 set animalDupes plantMissing2;
 by common;
run;

proc print data=interleave; run;

1 Create the input data sets, animalDupes and plantMissing2. Each input data
set contains the variable common, and the SORT procedure sorts observations in
order of the values of the BY variable, common.

2 The DATA step interleaves the data sets based on the values of common.

The output data set contains all the variables from both input data sets. Values of
variables that are found in one data set but not in another are set to missing. The
number of observations in the output data set is 11, which is the sum of the
observations from the input data sets. The observations are written to the output
data set in the order in which they occur in the original data sets.

Examples: Interleave Data 523

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en

Output 21.13 PROC PRINT Output for Interleaved Data Sets with Different Values
for the BY Values

Key Ideas

n Input data sets must first be indexed or sorted by the values of the BY variables.

n The observations in the interleaved data sets are not combined; they are copied
from the original data sets in the order of the values of the BY variable.

n Input data sets are processed sequentially, in the order in which they are listed in
the SET statement.

n Observations in the output data set are arranged by the values of the BY variable.

See Also

n “Interleaving” on page 480 data sets

n “SET Statement” in SAS DATA Step Statements: Reference

n “BY Statement” in SAS DATA Step Statements: Reference

n “Combining SAS Data Sets” in SAS DATA Step Statements: Reference

524 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p0mq0egdjy8ambn1hxil77ayqkp9&locale=en

Examples: Match-Merge Data

Example: Match-Merge Observations Based on a
BY Variable

Example Code

In this example, the MERGE statement is used with the BY statement to merge two
data sets. The observations from the first data set are merged with the
observations from the second data set based on the values of a common BY
variable.

The input data sets animal and plant both contain the variable common, which is
specified as the BY variable in this example.

This example shows a one-to-one merge because there are no duplicate values for
the BY variable in either of the input data sets.

The following table shows the input data sets that are used in this example: animal
and plant:

Table 21.6 Input Data Sets

 animal

OBS common animal

 1 a Ant
 2 b Bird
 3 c Cat
 4 d Dog
 5 e Eagle
 6 f Frog

 plant

 OBS common plant

 1 a Apple
 2 b Banana
 3 c Coconut
 4 d Dewberry
 5 e Eggplant
 6 f Fig

The following program first sorts both input data sets using the SORT procedure,
and then match-merges the data sets by the common BY variable, common. PROC
PRINT is used to print the results:

proc sort data=animal; by common; run;
proc sort data=plant; by common; run;

data matchmerge;
 merge animal plant;

Examples: Match-Merge Data 525

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en

 by common;
run;
proc print data=matchmerge; run;

Output 21.14 PROC PRINT Output for Match-Merge Observations Based on a BY
Variable

Key Ideas

n Match-merging is used for merging data sets that have one or more common
variables and you want to merge the data sets based on the values of the common
variables.

n Input data sets must be indexed or sorted on the BY variable prior to merging.

n A match-merge in SAS is comparable to an inner join in PROC SQL when all of the
values of the BY variable match and there are no duplicate BY variables. See “Inner
Joins” in SAS SQL Procedure User’s Guide for more information.

n SAS retains the values of all variables in the program data vector even if the value
is missing (or unmatched).

n When SAS reads the last observation from a BY group in one data set, SAS retains
its values in the program data vector for all variables that are unique to that data
set until all observations for that BY group have been read from all data sets. The
total number of observations in the final data set is the sum of the maximum
number of observations in a BY group from either data set.

See Also

n “Match-Merging” on page 481 data sets

n “MERGE Statement” in SAS DATA Step Statements: Reference

n “Data Relationships” on page 476

n “Comparing DATA Step Match-Merges with PROC SQL Joins” in SAS SQL
Procedure User’s Guide

526 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en

Example: Match-Merge Observations with
Common Variables That Are Not the BY Variables

Example Code

In this example, the MERGE statement is used with the BY statement to merge two
data sets in a one-to-many merge. The observations from the first data set are
merged with the observations from the second data set based on the values of a
common BY variable. Because there are duplicate values for the BY variable in one
of the input data sets, this is a one-to-many merge.

This example shows what happens to the values of a common variable when it is
not specified as the BY variable.

The input data sets that are used in this example, one and many, both contain the
variables ID and state. The variable ID is the BY variable and its values are unique
within the one data set. However, its values are not unique within the many data set.
There are multiple observations for values of ID in the many data set. The variable
state is common to both input data sets, but it is not specified as a BY variable.

The purpose for the merge is to replace the incorrect abbreviations for state in the
many data set with the correct, two–letter abbreviations shown in the data set one.

The following table shows the one and many data sets that are used in this example:

Table 21.7 Input Data Sets

 one

 ID state

 1 AZ
 2 MA
 3 WA
 4 WI

 many
 ID city state

 1 Phoenix Ariz
 2 Boston Mass
 2 Foxboro Mass
 3 Olympia Mass
 3 Seattle Wash
 3 Spokane Wash
 4 Madison Wis
 4 Milwaukee Wis
 4 Madison Wis
 4 Hurley Wis

Examples: Match-Merge Data 527

Output 21.15 PROC PRINT Output Showing Input Data Sets That Contain a
Common BY Variable and a Common Non-BY Variable

When these data sets are merged, the value of the common variable in data set one
overwrites the values from data set many because the one data set is listed second
in the MERGE statement. However, on subsequent iterations of the MERGE
statement for the same BY group, the one data set is not read again. Therefore, the
values from the one data set do not replace the remaining values in the BY group.
This means that the first value in each BY group is replaced but the remaining
values are not.

data three;
 merge many one;
 by ID;
run;
proc print data=three noobs; run;
title;

Output 21.16 PROC PRINT Output for Match Merging Observations with a Common
Variable That is Not the BY Variable

528 Chapter 21 / Combining Data

To replace the values for state for all observations within the BY group, the
common (non-BY) variable from the many data set must be dropped or renamed:

data solution;
 merge many(drop=state) one;
 by ID;
run;
proc print data=solution noobs; run;

Output 21.17 PROC PRINT Output for Solution to One-to-many Merge with
Common Variables That Are Not the BY Variables

SAS reads the value from data set one on the first iteration of the merge. Because
variables that are read from data sets are automatically retained throughout a BY
group, all observations for the BY group, state, contain the values from data set
one.

Key Ideas

n For the first matching observation in a one-to-many match-merge, the value of the
common variable in the last data set specified in the MERGE statement overwrites
the values from the previous data sets. However, on subsequent iterations of the
MERGE statement for the same BY group, the first data set is not read again. So,
the remaining values of the common BY variable come from the originating data
set rather than from the last data set read.

n Match-merging is used for merging data sets that have one or more common
variables and you want to merge the data sets based on the values of the common
variables.

n Input data sets must be indexed or sorted on the BY variable prior to merging.

n A match-merge in SAS is comparable to an inner join in PROC SQL when all of the
values of the BY variable match and there are no duplicate BY variables. See “Inner
Joins” in SAS SQL Procedure User’s Guide for more information.

Examples: Match-Merge Data 529

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en

n SAS retains the values of all variables in the program data vector even if the value
is missing (or unmatched).

See Also

n “Match-Merging” on page 481 data sets

n “MERGE Statement” in SAS DATA Step Statements: Reference

n “Data Relationships” on page 476

n “Comparing DATA Step Match-Merges with PROC SQL Joins” in SAS SQL
Procedure User’s Guide

Example: Match-Merge Observations with
Duplicate Values of the BY Variable

Example Code

In this example, the MERGE statement is used with the BY statement to merge two
data sets. The observations from the first data set are merged with the
observations from the second data set based on the values of a common BY
variable. The input data sets contain duplicate values of the BY variable (common),
so this is an example of a many-to-one merge.

The following table shows the input data sets that are used in this example:
animalDupes and plantDupes:

 animalDupes

OBS common animal1

 1 a Ant
 2 a Ape
 3 b Bird
 4 c Cat
 5 d Dog
 6 e Eagle

 plantDupes

 OBS common plant1

 1 a Apple
 2 b Banana
 3 c Coconut
 4 c Celery
 5 d Dewberry
 6 e Eggplant

The following program first sorts both input data sets using the SORT procedure,
and then match-merges the data sets by the common variable, common. PROC
PRINT is used to print the results:

proc sort data=animalDupes; by common; run;
proc sort data=plantDupes; by common; run;

530 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en

data matchmerge;
 merge animalDupes plantDupes;
 by common;
run;
proc print data=matchmerge; run;

Output 21.18 Match-Merge Observations with Duplicate Values of the BY Variable

Key Ideas

n Match-merging is used for merging data sets that have one or more common
variables and you want to merge the data sets based on the values of the common
variables.

n Input data sets must be indexed or sorted on the BY variable prior to merging.

n A match-merge in SAS is comparable to an inner join in PROC SQL when all of the
values of the BY variable match and there are no duplicate BY variables. See “Inner
Joins” in SAS SQL Procedure User’s Guide for more information.

n SAS retains the values of all variables in the program data vector even if the value
is missing (or unmatched).

n When SAS reads the last observation from a BY group in one data set, SAS retains
its values in the program data vector for all variables that are unique to that data
set until all observations for that BY group have been read from all data sets. The
total number of observations in the final data set is the sum of the maximum
number of observations in a BY group from either data set.

n When there are unequal members of observations in a data set, the common
variables get their values from the data set contributing those values. Any unique
variables to data sets retain their values until the end of the BY group.

Examples: Match-Merge Data 531

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en

See Also

n “Match-Merging” on page 481 data sets

n “MERGE Statement” in SAS DATA Step Statements: Reference

n “Data Relationships” on page 476

n “Comparing DATA Step Match-Merges with PROC SQL Joins” in SAS SQL
Procedure User’s Guide

Example: Match-Merge Observations with
Different Values of the BY Variable

Example Code

In this example, the MERGE statement is used with the BY statement to perform a
match-merge on two input data sets. The observations from one data set are
merged together with the observations from another data set by a common
variable.

The two input data sets have different values for their common variables resulting
in unmatched observations. Unmatched observations means that an observation in
one input data set does not contain the same value for the BY variable in the other
input data set.

The following table shows the input data sets that are used in this example:
animalMissing and plantMissing2:

 animalMissing

OBS common animal1

1 a Ant
2 c Cat
3 d Dog
4 e Eagle

 plantMissing2

 OBS common plant

 1 a Apple
 2 b Banana
 3 c Coconut
 4 e Eggplant
 5 f Fig

In the input data sets, data set animalMissing does not contain a value of “b” or “f”
for the common variable, but data set plantMissing2 does. Data set
plantMissing2 does not contain the value “d” for the common variable, but data
set animalMissing does.

532 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en

The following program first sorts both input data sets using the SORT procedure,
and then match-merges the data sets by the common variable, common. PROC
PRINT is used to print the results:

proc sort data=animalMissing; by common; run;
proc sort data=plantMissing2; by common; run;

data matchmerge;
 merge animalMissing plantMissing2;
 by common;
run;

proc print data=matchmerge; run;

Notice how SAS retains the values of all variables from both input data sets in the
final output, even if the value is missing in one data set.

Output 21.19 PROC PRINT Output for Match-Merge with Unmatched Observations

Key Ideas

n Match-merging is used for merging data sets that have one or more common
variables and you want to merge the data sets based on the values of the common
variables.

n Input data sets must be indexed or sorted on the BY variable prior to merging.

n A match-merge in SAS is comparable to an inner join in PROC SQL when all of the
values of the BY variable match and there are no duplicate BY variables. See “Inner
Joins” in SAS SQL Procedure User’s Guide for more information.

n SAS retains the values of all variables in the program data vector even if the value
is missing (or unmatched).

n When SAS reads the last observation from a BY group in one data set, SAS retains
its values in the program data vector for all variables that are unique to that data
set until all observations for that BY group have been read from all data sets. The
total number of observations in the final data set is the sum of the maximum
number of observations in a BY group from either data set.

Examples: Match-Merge Data 533

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en

See Also

n “Match-Merging” on page 481 data sets

n “MERGE Statement” in SAS DATA Step Statements: Reference

n “Data Relationships” on page 476

n “Comparing DATA Step Match-Merges with PROC SQL Joins” in SAS SQL
Procedure User’s Guide

Example: Match-Merge and Remove Unmatched
Observations

Example Code

In this example, the MERGE statement is used with the BY statement to merge two
data sets. The observations from the first data set are merged with the
observations from the second data set based on the values of a common variable.

The following example uses the MERGE and BY statements to combine two data
sets that have unmatched observations. This example is identical to “Example:
Match-Merge Observations with Different Values of the BY Variable” on page 532
except that in this example, the IN= data set option is used to remove the
unmatched observations from the output data set. Unmatched observations refers
to observations in which the values for the shared BY variable are not equal in both
input data sets.

The following table shows the input data sets that are used in this example:
animalMissing and plantMissing2:

 animalMissing

OBS common animal

 1 a Ant
 2 c Cat
 3 d Dog
 4 e Eagle

 plantMissing2

OBS common plant

 1 a Apple
 2 b Banana
 3 c Coconut
 4 e Eggplant
 5 f Fig

In the input data sets, data set animalMissing does not contain the value b or f for
the common variable, but data set plant does. Data set plantMissing2 does not
contain the value d for the common variable, but data set animal does.

534 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n1p1o2dsuc465nn198ovwdrj9mvy.htm&locale=en

The data sets animalMissing and plantMissing2 do not contain all values of the
BY variable common.

The following program first sorts both input data sets using the SORT procedure,
and then match-merges the data sets by the common variable, common. PROC
PRINT is used to print the results:

proc sort data=animalMissing; by common; run;
proc sort data=plantMissing2; by common; run;

data matchmerge;
 merge animalMissing plantMissing2;
 by common;
run;
proc print data=matchmerge; run;

Output 21.20 Match-Merge with Unmatched Observations

In the next example, the program match-merges the two data sets and uses the IN=
data set option on the input data sets to remove the unmatched observations from
the output data set.

The IN= data set option is a Boolean value variable, which has a value of 1 if the
data set contributes to the current observation in the output and a value of 0 if the
data set does not contribute to the current observation in the output.

data matchmerge2;
 merge animalMissing(in=i) plantMissing2(in=j);
 by common;
 if (i=1) and (j=1);
run;
proc print data=matchmerge2; run;

Output 21.21 PROC PRINT Output for Match-Merge Using the IN= Data Set Option
to Remove Unmatched Observations

Examples: Match-Merge Data 535

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n1p1o2dsuc465nn198ovwdrj9mvy.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n1p1o2dsuc465nn198ovwdrj9mvy.htm&locale=en

Key Ideas

n Match-merging is used for merging data sets that have one or more common
variables and you want to merge the data sets based on the values of the common
variables.

n Input data sets must be indexed or sorted on the BY variable prior to merging.

n A match-merge in SAS is comparable to an inner join in PROC SQL when all of the
values of the BY variable match and there are no duplicate BY variables. See “Inner
Joins” in SAS SQL Procedure User’s Guide for more information.

n SAS retains the values of all variables in the program data vector even if the value
is missing (or unmatched).

n When SAS reads the last observation from a BY group in one data set, SAS retains
its values in the program data vector for all variables that are unique to that data
set until all observations for that BY group have been read from all data sets. The
total number of observations in the final data set is the sum of the maximum
number of observations in a BY group from either data set.

See Also

n “Match-Merging” on page 481 data sets

n “MERGE Statement” in SAS DATA Step Statements: Reference

n “Data Relationships” on page 476

n “Comparing DATA Step Match-Merges with PROC SQL Joins” in SAS SQL
Procedure User’s Guide

Example: Match-Merge Data Sets with Duplicate
Values in More Than One Data Set

Example Code

In this example, the MERGE statement is used with the BY statement to perform a
match-merge on two input data sets. The observations from one data set are
merged with observations from another data set based on a common BY variable.

536 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en

The data set fruit is merged with the data set color based on the values of the
common variable, ID.

 fruit

OBS ID fruit

 1 a apple
 2 c apricot
 3 d banana
 4 e bluebarry
 5 c cantaloupe
 6 c coconut
 7 c cherry
 8 c crabapple
 9 c cranberry

 color

OBS ID color

 1 a amber
 2 b brown
 3 b blue
 4 b black
 5 b beige
 6 b bronze
 7 c cocoa
 8 c cream

Notice that the data set fruit has duplicate values, a and c for ID. The data set
color has duplicate values, b and c for ID.

Note: In this example, it is assumed that the data sets are pre-sorted or indexed on
the BY variable, ID.

proc print data=fruit; title 'Fruit'; run;
proc print data=fruit; title 'Color'; run;

data merged;
 merge fruit color;
 by id;
run;

proc print data=merged;
 title 'Merged by ID';
run;

Examples: Match-Merge Data 537

Output 21.22 PROC PRINT Output for Merging Observations by a Common Variable
When Duplicates Exist in More Than One Input Data Set

Notice the different values for the variable fruit for the BY group c. The value
cocoa is overwritten in the PDV with cream when the second observation in the BY
group is read from the data set color. The value cream carries down the rest of the
BY group. The value is carried down because when a BY statement is used with the
MERGE statement, variables do not reinitialize to missing until the BY group
changes.

Key Ideas

n Match-merging is intended for merging data sets that have one or more common
variables and you want to merge the data sets based the values of the common
variables.

n Input data sets must be indexed or sorted on the BY variable prior to merging.

n A match-merge in SAS is comparable to an inner join in PROC SQL when all of the
values of the BY variable match and there are no duplicate BY variables. See “Inner
Joins” in SAS SQL Procedure User’s Guide for more information.

n SAS retains the values of all variables in the program data vector even if the value
is missing (or unmatched).

n When SAS reads the last observation from a BY group in one data set, SAS retains
its values in the program data vector for all variables that are unique to that data
set until all observations for that BY group have been read from all data sets. The
total number of observations in the final data set is the sum of the maximum
number of observations in a BY group from either data set.

538 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en

See Also

n “Match-Merging” on page 481 data sets

n “MERGE Statement” in SAS DATA Step Statements: Reference

n “Data Relationships” on page 476

n “Comparing DATA Step Match-Merges with PROC SQL Joins” in SAS SQL
Procedure User’s Guide

Example: Match-Merge One-to-Many with Missing
Values in Common Variables

Example Code

In this example, the MERGE statement is used with the BY statement to perform a
match-merge on two input data sets when one data set contains missing data. The
example shows how missing values are treated the same as nonmissing values.

The following table shows the input data sets that are used in this example. Note
that data set one has missing values for age after the first value for each ID.

 one

OBS ID age score

 1 1 8 90
 2 1 . 100
 3 1 . 95
 4 2 9 80
 5 2 . 100

 two

OBS ID name age

 1 1 Sarah 11
 2 2 John 10

Doing a simple merge of these two data sets by ID results in missing values for the
variable age in the merged output data set:

proc print data=one; title 'One'; run;
proc print data=two; title 'Two'; run;

data merge1;
 merge one two;
 by id;
run;
proc print data=merge1; title 'Merged by ID'; run;

Examples: Match-Merge Data 539

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en

After the first observation from each data set is combined, SAS reads data set one
for the next observation for the BY group. It overwrites the values in the PDV with
those values, including the missing value for age. It does not read from data set two
again since the BY group is complete. Therefore, the next observation contains a
missing value for age.

To get the values for age in data set two to replace the missing values, you can use
the IF statement to check for missing values. If the value for age is missing, a
temporary variable, temp_age, is created to contain the last nonmissing value for
the BY group. The value for temp_age is then used as the value for age if age is
missing.

data merge2 (drop=temp_age);
 merge one two;
 by id;
 retain temp_age;
 if first.id then temp_age = .;
 if age = . then age = temp_age;
 else temp_age = age;
run;
proc print; title 'Merged by ID with Age Retained'; run;

540 Chapter 21 / Combining Data

Key Ideas

n Match-merging is intended for merging data sets that have one or more common
variables and you want to merge the data sets based the values of the common
variables.

n Input data sets must be indexed or sorted on the BY variable prior to merging.

n A match-merge in SAS is comparable to an inner join in PROC SQL when all of the
values of the BY variable match and there are no duplicate BY variables. See “Inner
Joins” in SAS SQL Procedure User’s Guide for more information.

n SAS retains the values of all variables in the program data vector even if the value
is missing (or unmatched).

n When SAS reads the last observation from a BY group in one data set, SAS retains
its values in the program data vector for all variables that are unique to that data
set until all observations for that BY group have been read from all data sets. The
total number of observations in the final data set is the sum of the maximum
number of observations in a BY group from either data set.

See Also

n “Match-Merging” on page 481 data sets

n “MERGE Statement” in SAS DATA Step Statements: Reference

n “Data Relationships” on page 476

n “Comparing DATA Step Match-Merges with PROC SQL Joins” in SAS SQL
Procedure User’s Guide

Examples: Match-Merge Data 541

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=p0z9uznj030m1wn1x7wrb9isyn4p&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p0o4a5ac71mcchn1kc1zhxdnm139.htm&docsetTargetAnchor=n0pess5znhf9fdn1tej6r0gff0vo&locale=en

Examples: Merge Data One-to-One

Example: Merge Data Sets with an Equal Number
of Observations

Example Code

In this example, the MERGE statement is used without a BY statement to perform a
one-to-one merge of two data sets that have an equal number of rows. The input
data sets animal and plantG contain a common variable, named common. The values
for the shared variable are equal except in row 6, where the value is f in the animal
data set and g in the plantG data set.

The following table shows the input data sets that are used in this example: animal
and plantG:

 animal

OBS common animal

 1 a Ant
 2 b Bird
 3 c Cat
 4 d Dog
 5 e Eagle
 6 f Frog

 plantG

OBS common plant

 1 a Apple
 2 b Banana
 3 c Coconut
 4 d Dewberry
 5 e Eggplant
 6 g Fig

The following program merges these data sets and prints the results:

data merged;
 merge animal plantG;
run;

proc print data=merged; run;

542 Chapter 21 / Combining Data

Output 21.23 PROC PRINT Output for One-to-One Merge of Data Sets with an
Equal Number of Observations

The output data set contains all the variables from both input data sets. Notice
that the value for the variable common in observation 6 in the output data set is g.
The values for the common variable, common, in the data set plantG replace the
values for common in the animal data set.

Key Ideas

n The MERGE statement recognizes common variables in the input data sets, but,
without a BY statement, it does not merge observations based on variable values.
Rather, it matches observations implicitly based on row number, regardless of the
variable values.

n If the column names in the input data sets are the same and no BY statement is
specified, then the merge overwrites the values of the common columns. The
values of the common variables in the data set specified last in the MERGE
statement overwrite the values in the previously specified data sets. Column
names (variables) that are not shared by all the input data sets are added as new
columns.

n The DATA step reads the first observation from the first data set and then reads
the first observation from the second data set, and so on.

n The resulting output data set contains all the observations from all the input data
sets, regardless of whether they have the same number of observations.

n You can use the MERGENOBY system option to control log messaging when
performing a one-to-one merge.

See Also

n “MERGE Statement” in SAS DATA Step Statements: Reference

n “Data Relationships” on page 476

Examples: Merge Data One-to-One 543

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0hlv62ubu3fa6n1co02ezotijyo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en

Example: Merge Data Sets with an Unequal
Number of Observations

Example Code

In this example, the MERGE statement is used without a BY statement to perform a
one-to-one merge of two data sets that have an unequal number of rows.

The following table shows the input data sets that are used in this example:animal
and plantMissing:

 animal

OBS common animal

 1 a Ant
 2 b Bird
 3 c Cat
 4 d Dog
 5 e Eagle
 6 f Frog

 plantMissing

OBS common plant

 1 a Apple
 2 b Banana
 3 c Coconut

The data sets animal and plantmissing both contain the variable common, and the
observations are arranged by the values of common. The plantmissing data set has
fewer observations than the animal data set.

The following program merges these unequal data sets and prints the results:

data animal;
input common $ animal $;
datalines;
a Ant
b Bird
c Cat
d Dog
e Eagle
f Frog
;

data plantMissing;
input common $ plant $;
datalines;
a Apple
b Banana
c Coconut
;

data merged;
 merge animal plantmissing;

544 Chapter 21 / Combining Data

run;
proc print data=merged; run;

Output 21.24 PROC PRINT Output for Merging Data Sets with an Unequal Number
of Observations

Compare the program above to the one-to-one reading of the same data sets using
the SET statement:

data combine;
 set animal;
 set plantMissing;
run;
proc print data=combine; run;

Output 21.25 PROC PRINT Output for Combining Data Sets with an Unequal
Number of Observations Using the SET Statement

The DATA step stops selecting observations for output after it reads the last
observation in the data set with the least number of observations. Therefore, the
number of observations in the resulting output data set is the number of
observations in the smallest original data set. In this example, the DATA step stops
selecting observations when it reads the last observation in plantMissing.

Key Ideas

n The MERGE statement recognizes common variables in the input data sets, but,
without a BY statement, it does not merge observations based on variable values.
Rather, it matches observations implicitly based on row number, regardless of the
variable values.

n If the column names in the input data sets are the same and no BY statement is
specified, then the merge overwrites the values of the common columns. The

Examples: Merge Data One-to-One 545

values of the common variables in the data set specified last in the MERGE
statement overwrite the values in the previously specified data sets. Column
names (variables) that are not shared by all the input data sets are added as new
columns.

n The DATA step reads the first observation from the first data set and then reads
the first observation from the second data set, and so on.

n The resulting output data set contains all the observations from all the input data
sets, regardless of whether they have the same number of observations.

n You can use the MERGENOBY system option to control log messaging when
performing a one-to-one merge.

See Also

n “MERGE Statement” in SAS DATA Step Statements: Reference

n “MERGE Statement” in SAS DATA Step Statements: Reference

n “Data Relationships” on page 476

Example: Merge Data Sets with Duplicate Values of
Common Variables

Example Code

The following example shows how you can get undesirable results when you merge
data sets that contain duplicate values of common variables. In this case, the
merging is done without specifying a BY variable. This type of merging should be
reserved for data sets that have a one-to-one relationship. The input data sets in
this example do not have a one-to-one relationship.

The following table shows the input data sets that are used in this example:
animalDupes and plantDupes:

 animalDupes

OBS common animal

 1 a Ant
 2 a Ape
 3 b Bird
 4 c Cat
 5 d Dog
 6 e Eagle

 plantDupes

OBS common plant

 1 a Apple
 2 b Banana
 3 c Coconut
 4 c Celery
 5 d Dewberry
 6 e Eggplant

546 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0hlv62ubu3fa6n1co02ezotijyo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en

The data sets animalDupes and plantDupes contain the variable common, and each
data set contains observations with duplicate values of common.

The following program merges the data sets and prints the results.

/* This program illustrates undesirable results. */
data animalDupes;
input common $ animal $;
datalines;
a Ant
a Ape
b Bird
c Cat
d Dog
e Eagle
;

data plantDupes;
input common $ plant $;
datalines;
a Apple
b Banana
c Coconut
c Celery
d Dewberry
e Eggplant
;

data merged;
 merge animalDupes plantDupes;
run;
proc print data=merged; run;

Output 21.26 PROC PRINT Output for Undesirable Results When Merging Data Sets
That Have Duplicate Values of Common Variables

This method works as expected on data that has a one-to-one relationship. Since
the relationship of the data in this example has both a one-to-many and many-to-
one relationship, you might get unwanted results

Examples: Merge Data One-to-One 547

Key Ideas

n The MERGE statement recognizes common variables in the input data sets, but,
without a BY statement, it does not merge observations based on variable values.
Rather, it matches observations implicitly based on row number, regardless of the
variable values.

n If the column names in the input data sets are the same and no BY statement is
specified, then the merge overwrites the values of the common columns. The
values of the common variables in the data set specified last in the MERGE
statement overwrite the values in the previously specified data sets. Column
names (variables) that are not shared by all the input data sets are added as new
columns.

n The DATA step reads the first observation from the first data set and then reads
the first observation from the second data set, and so on.

n The resulting output data set contains all the observations from all the input data
sets, regardless of whether they have the same number of observations.

n You can use the MERGENOBY system option to control log messaging when
performing a one-to-one merge.

See Also

n “MERGE Statement” in SAS DATA Step Statements: Reference

n “Data Relationships” on page 476

Example: Merge Data Sets with Different Values
for the Common Variables

Example Code

The following example shows the undesirable results obtained from using the one-
to-one merge to combine data sets that have different values for their common
variable.

In this example, the data sets animalMissing and plantMissing2 have different
values for the variable common.

548 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0hlv62ubu3fa6n1co02ezotijyo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en

The following table shows the input data sets that are used in this example:
animalMissing and plantMissing2:

 animalMissing

OBS common animal

 1 a Ant
 2 c Cat
 3 d Dog
 4 e Eagle

 plantMissing2

OBS common plant

 1 a Apple
 2 b Banana
 3 c Coconut
 4 e Eggplant
 5 f Fig

The following program produces the data set merged and prints the results:

data merged;
 merge animalMissing plantMissing2;
run;
proc print data=merged; run;

Output 21.27 PROC PRINT Output Showing Undesirable Results with a One-to-One
Merge of Data Sets with Different Values for the Common Variable

Key Ideas

n The MERGE statement recognizes common variables in the input data sets, but,
without a BY statement, it does not merge observations based on variable values.
Rather, it matches observations implicitly based on row number, regardless of the
variable values.

n If the column names in the input data sets are the same and no BY statement is
specified, then the merge overwrites the values of the common columns. The
values of the common variables in the data set specified last in the MERGE
statement overwrite the values in the previously specified data sets. Column
names (variables) that are not shared by all the input data sets are added as new
columns.

n The DATA step reads the first observation from the first data set and then reads
the first observation from the second data set, and so on.

Examples: Merge Data One-to-One 549

n The resulting output data set contains all the observations from all the input data
sets, regardless of whether they have the same number of observations.

n You can use the MERGENOBY system option to control log messaging when
performing a one-to-one merge.

See Also

n “MERGE Statement” in SAS DATA Step Statements: Reference

n “Data Relationships” on page 476

Examples: Combine Data One-to-One

Example: Combine Data Sets That Contain an
Equal Number of Observations

Example Code

In this example, two SET statements are used to combine observations from one
data set together with the observations from another data set. The input data sets
animal and plantG contain a common variable, named common. The values for the
shared variable are equal except in row 6, where the value is f in the animal data
set and g in the plantG data set.

The following table shows the input data sets that are used in this example: animal
and plantG:

 animal

OBS common animal

 1 a Ant
 2 b Bird
 3 c Cat
 4 d Dog
 5 e Eagle
 6 f Frog

 plantG

 OBS common plant

 1 a Apple
 2 b Banana
 3 c Coconut
 4 d Dewberry
 5 e Eggplant
 6 g Fig

550 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0hlv62ubu3fa6n1co02ezotijyo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en

The following program combines the data sets and prints the results:

data combine;
 set animal;
 set plantG;
run;

proc print data=combine; run;

Output 21.28 PROC PRINT Output for Combine Data Sets That Contain an Equal
Number of Observations Using the SET Statement

Because the SET statement does not merge observations by matching the values of
a common variable, using this method on data sets that have different values for
the like-named variables can cause undesired results.

In this example, the animal data set has a value of f for the like-named variable,
common, in row 6. The plantG data set has a value of g for common in row 6. The data
set plantG is specified in the last SET statement, so the values for common in the
plantG data set overwrite the values for common in the animal data set.

Key Ideas

n The values of common variables from the data set specified last in the SET
statement replace the values of the common variables from previous data sets.

n The DATA step reads the first observation from the first data set and then reads
the first observation from the second data set, and so on.

n The resulting output data set contains all the variables from all the input data sets.

n The DATA step stops selecting observations for output after it reads the last
observation in the data set with the least number of observations. Therefore, the
number of observations in the resulting output data set is the number of
observations in the smallest original data set.

n To use the SET statement to combine data sets that have an unequal number of
observations, you can use the POINT= option to directly access and match the
observations by a common variable.

Examples: Combine Data One-to-One 551

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p1ur1282lqwtjwn15ihpgba5u4ph&locale=en

See Also

n KEY= data set option

n “Combining One Observation with Many” in SAS DATA Step Statements:
Reference

n “Performing a Table Lookup When the Master File Contains Duplicate
Observations” in SAS DATA Step Statements: Reference

Example: Merge Data Using a Hash Table

Example: Use a Hash Table to Merge Data Sets
One-to-Many or Many-to-Many

Example Code

In this example, a hash table is used to merge two sets of data that have a common
variable. The hash table is created from a SAS data set that is loaded into memory
and is available for use by the DATA step that created it. The common variable in
the hash table is unique and is used as a key that provides very fast lookup into the
internal memory table.

The second data set is used as the base data set. The DATA step reads
observations from the base data set and uses the common variable to find a match
in the hash table. Matching observations are written out to the output data set
named in the DATA statement.

The following tables show the input data sets product_list and supplier, with the
common variable Supplier_ID highlighted in each of the data sets:

 product_list

Product_Id Product_Name Supplier_ID
240200100101 Grandslam Staff Tour Mhl Golf Gloves 3808
210200100017 Sweatshirt Children's O-Neck 3298
240400200022 Aftm 95 Vf Long Bg-65 White 1280
230100100017 Men's Jacket Rem 50
210200300006 Fleece Cuff Pant Kid'S 1303
210200500002 Children's Mitten 772
210200700016 Strap Pants BBO 798

552 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=n0bef2ksq08u9yn1a0hj5zoetvzm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=n04ehsymk2ozf5n1sbo00t64ogdp&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=n04ehsymk2ozf5n1sbo00t64ogdp&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p1ur1282lqwtjwn15ihpgba5u4ph&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&docsetTargetAnchor=p1ur1282lqwtjwn15ihpgba5u4ph&locale=en

210201000050 Kid Children's T-Shirt 2963
210200100009 Kids Sweat Round Neck,Large Logo 3298
210201000067 Logo Coord.Children's Sweatshirt 2963
220100100019 Fit Racing Cap 1303
220100100025 Knit Hat 1303
220100300001 Fleece Jacket Compass 772
220200200036 Soft Astro Men's Running Shoes 1747
230100100015 Men's Jacket Caians 50
230100500004 Backpack Flag, 6,5x9 Cm. 316
210200500006 Rain Suit, Plain w/backpack Jacket 772
230100500006 Collapsible Water Can 316
224040020000 Bat 5-Ply 3808
220200200035 Soft Alta Plus Women's Indoor Shoes 1747
240400200066 Memhis 350,Yellow Medium, 6-pack 1280
240200100081 Extreme Distance 90 3-pack 3808

 supplier

Supplier_ID Supplier_Name Supplier_Address Country
50 Scandinavian Clothing A/S Kr. Augusts Gate 13 NO
316 Prime Sports Ltd 9 Carlisle Place GB
755 Top Sports Jernbanegade 45 DK
772 AllSeasons Outdoor Clothing 553 Cliffview Dr US
798 Sportico C. Barquillo 1 ES
1280 British Sports Ltd 85 Station Street GB
1303 Eclipse Inc 1218 Carriole Ct US
1684 Magnifico Sports Rua Costa Pinto 2 PT
1747 Pro Sportswear Inc 2434 Edgebrook Dr US
3298 A Team Sports 2687 Julie Ann Ct US
3808 Carolina Sports 3860 Grand Ave US

In this program, the product_list data set is used as the base data set. The
DECLARE statement names the in-memory location of the supplier data set. The
DEFINEKEY method identifies the unique key variable that is used to join the data
sets. The DEFINEDATA method lists additional variables that we want loaded into
memory.

Note: The base data set contains duplicates of the key. The observations are read
and processed one at a time, and the duplicate values do not affect processing.

data supplier_info;
 drop rc;
 length Supplier_Name $40 Supplier_Address $ 45 Country $
2; /* 1 */
 if _N_=1 then do;
 declare hash
S(dataset:'work.supplier'); /* 2 */
 S.definekey('Supplier_ID');
 S.definedata('Supplier_Name',
 'Supplier_Address','Country');
 S.definedone();
 call missing(Supplier_Name,

Example: Merge Data Using a Hash Table 553

Supplier_Address,Country); /* 3 */
 end;
 set
work.product_list; /* 4 */

rc=S.find(); /*
5 */
run;
proc print data=supplier_info;
 var Product_ID Supplier_ID Supplier_Name
 Supplier_Address Country;
 title "Product Information";
run;
title;

1 Include a LENGTH statement to ensure that the Supplier_Name,
Supplier_Address, and Country are defined in the PDV.

2 In the first iteration of the DATA step, declare the hash object, S. Assign
Supplier_ID as the hash object key. Include the values of Supplier_Name,
Supplier_Address, and Country from the work.supplier data set.

3 Because Supplier_Name, Supplier_Address, and Country are not explicitly
assigned initial values, SAS writes a NOTE to the log that the variables are not
initialized. CALL MISSING suppresses the NOTE that is written to the log.

4 Read an observation from the product_list data set.

5 The FIND method is called to see if the Supplier_ID from product_list
matches the Supplier_ID key for one of the records in the hash object. If there
is a match (rc=0), the observation is written to the supplier_info data set.

554 Chapter 21 / Combining Data

Key Ideas

n A SAS hash table contains rows (hash entries) and columns (hash variables)

n Each hash entry must have at least one key column and one data column. Values
can be hardcoded or loaded from a SAS data set.

n A hash table resides completely in memory, making its operations fast. The data
does not need to be pre-sorted.

n A hash table is temporary: once the DATA step has stopped execution, it ceases to
exist. Thus, it cannot be reused in any subsequent step. However, its content can
be saved in a SAS data set or external database.

n The hash object is sized dynamically.

Example: Merge Data Using a Hash Table 555

See Also

n “OUTPUT Method” in SAS Component Objects: Reference

n Fundamentals of The SAS® Hash Object

n Using the SAS® Hash Object with Duplicate Key Entries

Examples: Update Data

Example: Update Data Using the UPDATE
Statement

Example Code

In this example, the UPDATE statement is used to update a master data set based
on new values in a transaction data set. The data set, master, contains the original
values of the shared variables common and plant. The transaction data set,
plantNew, contains the new values for the shared variable plant. The goal is to
update the master data set with the new values for plant. Specifically, the value
Eggplant for plant in row 5 should be replaced with the value Escarole from the
plantNew data set.

The following table shows the input data set, master, and the transaction data set,
plantNew.

 master

OBS common animal plant

 1 a Ant Apple
 2 b Bird Banana
 3 c Cat Coconut
 4 d Dog Dewberry
 5 e Eagle Eggplant
 6 f Frog Fig

 plantNew

 OBS common plant

 1 a Apricot
 2 b Barley
 3 c Cactus
 4 d Date
 5 e Escarole
 6 f Fennel

The program first creates the two input data sets, then updates the master data set
based on the values of the BY variable, common. The PRINT procedure prints the
results:

556 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=n01gpmciy3z1cxn1g0wgwqufwou1.htm&locale=en
https://analytics.ncsu.edu/sesug/2016/HOW-195_Final_PDF.pdf
https://support.sas.com/resources/papers/proceedings16/10200-2016.pdf

data master2;
 update master plantNew;
 by common;
run;
proc print data=master2; run;

Output 21.29 PROC PRINT Output for Using the UPDATE Statement to Update
Data

Key Ideas

n The UPDATE statement enables you to update values in one data set (the master
data set) based on the values in another data set (transaction data set). The
UPDATE statement creates a new output data set.

n The BY statement is required and the input data sets must contain an index or be
sorted by the values of the BY variables.

n Because the UPDATE statement creates a new file when it generates output, you
can add, delete, or rename variables when you perform an update.

n By default, missing values in the transaction data set do not replace existing
values in the master data set. You can change this behavior so that missing values
in the transaction data set replace values in the master data set by specifying
NOMISSINGCHECK in the UPDATEMODE= option.

n If the transaction data set contains duplicate values of the BY variable, then the
values from the transaction data set replace the values in the master data set.

n If an observation in the transaction data set does not have a corresponding
observation in the master data set, then SAS adds an observation to the master
output data set. Observations are matched based on the value of the BY variable.

n If no changes need to be made to an observation in the master data set, then that
observation does not need to be included in the transaction data set.

Examples: Update Data 557

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&docsetTargetAnchor=p1jxghfm3bli72n1tn0lu47v0e6h&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&docsetTargetAnchor=p0f17ijdjn9wuzn1xup7mq3ragng&locale=en

See Also

n “Updating” on page 485

n Table 21.2 on page 489

n “UPDATE Statement” in SAS DATA Step Statements: Reference

n “SORT Procedure” in Base SAS Procedures Guide

n UPDATEMODE= in SAS DATA Step Statements: Reference

n “Error Checking When Using Indexes to Randomly Access or Update Data” on
page 615

Example: Update Data Sets with Duplicate Values
of the BY Variable

Example Code

In this example, the UPDATE statement is used to update a master data set based
on new values in a transaction data set. The transaction data set contains duplicate
values of the common variable in observations 4 and 5. The data sets also share the
common variable plant. This example shows what happens to common variables
that are not the BY variable when there are duplicate values for the BY variable.

The following table shows the master input data set, master, and the transaction
data set, plantNewDupes:

 master

Obs common animal plant

 1 a Ant Apple
 2 b Bird Banana
 3 c Cat Coconut
 4 d Dog Dewberry
 5 e Eagle Eggplant
 6 f Frog Fig

 plantNewDupes

 Obs common plant

 1 a Apricot
 2 b Barley
 3 c Cactus
 4 d Date
 5 d Dill
 6 e Escarole
 7 f Fennel

The following program first creates the two input data sets, then updates the
master data set based on the values of the BY variable, common. Because the
transaction data set contains duplicate values for the BY variable, common. Because

558 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&docsetTargetAnchor=p0f17ijdjn9wuzn1xup7mq3ragng&locale=en

it was not specified as a BY variable, the values for the other common variable,
plant, are replaced by the values in the transaction data set. The value Dewberry in
the master data set is replaced by Dill, which is the last value for plant in the
transaction data set. The PRINT procedure prints the results:

data master;
 update master plantNewDupes;
 by common;
run;
proc print data=master; run;

CAUTION
Values of the BY variable must be unique for each observation in the master data set. If
the master data set contains duplicate values for the BY variable, then only the first
observation containing the variable is updated and subsequent observations containing
the variable are ignored. SAS writes a warning message to the log when the DATA step
executes.

Output 21.30 PROC PRINT Output for Update Data Sets with Duplicate Values of
the BY Variable

Key Ideas

n The UPDATE statement enables you to update values in one data set (the master
data set) based on the values in another data set (transaction data set). The
UPDATE statement creates a new output data set.

n The BY statement is required and the input data sets must contain an index or be
sorted by the values of the BY variables.

n Because the UPDATE statement creates a new file when it generates output, you
can add, delete, or rename variables when you perform an update.

n By default, missing values in the transaction data set do not replace existing
values in the master data set. You can change this behavior so that missing values
in the transaction data set replace values in the master data set by specifying
NOMISSINGCHECK in the UPDATEMODE= option.

n If the transaction data set contains duplicate values of the BY variable, then the
values from the transaction data set replace the values in the master data set.

Examples: Update Data 559

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&docsetTargetAnchor=p1jxghfm3bli72n1tn0lu47v0e6h&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&docsetTargetAnchor=p0f17ijdjn9wuzn1xup7mq3ragng&locale=en

n If an observation in the transaction data set does not have a corresponding
observation in the master data set, then SAS adds an observation to the master
output data set. Observations are matched based on the value of the BY variable.

n If no changes need to be made to an observation in the master data set, then that
observation does not need to be included in the transaction data set.

See Also

n “Updating” on page 485

n Table 21.2 on page 489

n “UPDATE Statement” in SAS DATA Step Statements: Reference

n “SORT Procedure” in Base SAS Procedures Guide

n UPDATEMODE= in SAS DATA Step Statements: Reference

n “Error Checking When Using Indexes to Randomly Access or Update Data” on
page 615

Example: Update a Data Set with Missing and
Different Values for the BY Variables

Example Code

In this example, the UPDATE statement is used with the BY statement to update a
master data set based on new values in a transaction data set.

The master data set, master, contains a missing value for the variable plant in the
first observation. Not all of the values of the common BY variable (common) are
included.

The transaction data set, minerals, contains a new variable (mineral), a new value
for the BY variable, common, and missing values for several observations.

The following table shows the input data sets, master and minerals:

 master

OBS common animal plant

 1 a Ant .
 2 c Cat Coconut
 3 d Dog Dewberry

 minerals

 OBS common plant mineral

 1 a Apricot Amethyst
 2 b Barley Beryl
 3 c Cactus .

560 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&docsetTargetAnchor=p0f17ijdjn9wuzn1xup7mq3ragng&locale=en

 4 e Eagle Eggplant
 5 f Frog Fig

 4 e . .
 5 f Fennel .
 6 g Grape Garnet

The following program updates the master data set based on the values in the
minerals data set and prints the results:

data master;
 update master minerals;
 by common;
run;

proc print data=master; run;

Output 21.31 PROC PRINT Output for Using UPDATE for Processing Unmatched
Observations, Missing Values, and New Variables

Note the following points about the updated master data set:

n The variable mineral was added to the master output data set and is set to
missing for some observations.

n Values in observations 2 and 6 in the transaction data set do not have
corresponding values in the master data set. They are added to the master data
set as new observations.

n The value for plant in observation 4 is not changed to missing even though it is
missing in the transaction data set.

n Three observations in the new data set have updated values for the variable
plant.

If you want the values that are missing in the transaction data set to be updated as
missing in the master output data set, then specify the UPDATEMODE= option in
the UPDATE statement:

data master;
 update master minerals updatemode=nomissingcheck;
 by common;
run;
proc print data=master;
 title "Updated Data Set master";

Examples: Update Data 561

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&docsetTargetAnchor=p0f17ijdjn9wuzn1xup7mq3ragng&locale=en

 title2 "With Values Updated to Missing";
run;

In the following PROC PRINT output, the value of plant in observation 5 is set to
missing because it is missing in the transaction data set and the
UPDATEMODE=NOMISSINGCHECK option is in effect.

Output 21.32 PROC PRINT Output for the Updated Master Data Set with Values
Updated to Missing

Key Ideas

n The UPDATE statement enables you to update values in one data set (the master
data set) based on the values in another data set (transaction data set). The
UPDATE statement creates a new output data set.

n The BY statement is required and the input data sets must contain an index or be
sorted by the values of the BY variables.

n Because the UPDATE statement creates a new file when it generates output, you
can add, delete, or rename variables when you perform an update.

n By default, missing values in the transaction data set do not replace existing
values in the master data set. You can change this behavior so that missing values
in the transaction data set replace values in the master data set by specifying
NOMISSINGCHECK in the UPDATEMODE= option.

n If the transaction data set contains duplicate values of the BY variable, then the
values from the transaction data set replace the values in the master data set.

n If an observation in the transaction data set does not have a corresponding
observation in the master data set, then SAS adds an observation to the master
output data set. Observations are matched based on the value of the BY variable.

n If no changes need to be made to an observation in the master data set, then that
observation does not need to be included in the transaction data set.

562 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&docsetTargetAnchor=p1jxghfm3bli72n1tn0lu47v0e6h&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&docsetTargetAnchor=p0f17ijdjn9wuzn1xup7mq3ragng&locale=en

See Also

n “Updating” on page 485

n Table 21.2 on page 489

n “UPDATE Statement” in SAS DATA Step Statements: Reference

n “SORT Procedure” in Base SAS Procedures Guide

n UPDATEMODE= in SAS DATA Step Statements: Reference

n “Error Checking When Using Indexes to Randomly Access or Update Data” on
page 615

Example: Modify Data

Example: Modify a Data Set by Adding an
Observation

Example Code

In this example, the MODIFY statement is used to update a master data set based
on values contained in a transaction data set. The observations in the transaction
data set are matched to the observations in the master data set by matching the
values of the common variable, partNumber.

The data in this example represents inventory for a warehouse that stores tools
and hardware. Each tool is uniquely identified by its part number. The master data
set, Inventory, holds a record of the warehouse’s inventory. It is updated to reflect
changes when a warehouse receives a new shipment of items. The InventoryAdd
data set is the transaction data set. The transaction data set contains information
about new items that are being added to the inventory (new kinds of tools). The
transaction data set also adds inventory (newStock) to existing items and changes
the price (newPrice) for existing items.

The following table shows the master input data set, Inventory, and the transaction
data set, InventoryAdd:

 Inventory

 partNumber partName stock price receivedDate

Example: Modify Data 563

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&docsetTargetAnchor=p0f17ijdjn9wuzn1xup7mq3ragng&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en

 K89R seal 34 245.00 07jul2015
 M4J7 sander 98 45.88 20jun2015
 LK43 filter 121 10.99 19may2016
 MN21 brace 43 27.87 10aug2016
 BC85 clamp 80 9.55 16aug2016
 NCF3 valve 198 24.50 20mar2016
 KJ66 cutter 6 19.77 18jun2016
 UYN7 rod 211 11.55 09sep2016
 JD03 switch 383 13.99 09jan2017
 BV1E timer 26 34.50 03aug2017

 InventoryAdd

partNumber partName newStock newPrice
 AA11 hammer 55 32.26
 BB22 wrench 21 17.35
 BV1E timer 30 36.50
 CC33 socket 7 22.19
 K89R seal 6 247.50
 KJ66 cutter 10 24.50

To begin this example, first sort and print the Inventory and InventoryAdd data
sets for comparison.

proc sort data=Inventory; by partNumber; run;
proc sort data=InventoryAdd; by partNumber; run;
proc print data=Inventory; title "Inventory"; run;
proc print data=InventoryAdd; title "InventoryAdd"; run;

Note: The SORT procedure is not required when modifying a data set using the
MODIFY statement. The data sets in this example are sorted to better show the
differences between the two data sets.

564 Chapter 21 / Combining Data

Output 21.33 PROC PRINT Output for the Master Inventory Data Set Sorted by
partNumber

Output 21.34 PROC PRINT Output for the Transaction Data Set InventoryAdd
Sorted by partNumber

Notice that observations 1, 2, and 4 in the transaction data set, InventoryAdd, do
not exist in the master data set, Inventory. Also, notice that values for the
variables newStock and newPrice in the transaction data set contain new values.

Now, modify the master data set based on the new information in the transaction
data set, matching the observations by the unique values of the variable
partNumber:

data Inventory;
 modify Inventory InventoryAdd; /*
1 */
 by partNumber;
 select (_iorc_); /*
2 */

Example: Modify Data 565

 /*** The observation exists in the master data set */
 when (%sysrc(_sok))do; /*
3 */
 stock = stock + newStock;
 price=newPrice;
 receivedDate = today();
 replace; /*
4 */
 end;
 /*** The observation does not exist in the master data set*/
 when (%sysrc(_dsenmr)) do; /*
5 */
 stock=newStock;
 price=newPrice;
 receivedDate=today();
 output; /*
6 */
 error=0;
 end;
 otherwise do; /*
7 */
 put "An unexpected I/O error has occurred."
 error = 0;
 stop;
 end;
 end;
run;
proc sort data=Inventory;
 by partNumber;
run;
proc print data=Inventory;
 title "Modified Inventory Data Set Sorted by partNumber";
run;
quit;

1 The MODIFY statement loads the data from the master and transaction data
sets. The BY statement matches observations from each data set based on the
unique values of the variable partNumber.

2 If matches for partNumber from the transaction data set are found for
partNumber in the master data set, then the _IORC_ automatic variable is
automatically set to a code of _SOK.

3 The %SYSRC autocall macro checks to see whether the value of _IORC_ is
_SOK. If the value is _SOK, then the SELECT statement executes the first DO
statement block. Because the observation in the transaction data set matches
the observation in the master data set, the values in the observation can be
updated by being replaced.

4 The REPLACE statement updates the master data set by replacing its
observation with the observation from the transaction data set. The REPLACE
statement updates observations 4, 7, and 8, (highlighted in blue in the output)
with new values for stock and price. The stock values are updated based on
the values for newStock in the transaction data set. The price values are
updated based on the values for newPrice in the transaction data set. The
receivedDate values for these observations are not updated because these are
existing items that were received in the past.

566 Chapter 21 / Combining Data

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=p04641oadoqzp0n125008disrs3a&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n1exbj4v17dndpn1402cwa93cnfx.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p09213s9jc2t99n1vx0omk2rh9ps.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0el0y2a02ab1ln1pks3gbac1en3.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0el0y2a02ab1ln1pks3gbac1en3.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p103b0p9akdcmhn1xbik9hbuo760.htm&locale=en

5 If no matches for partNumber in the transaction data set are found for
partNumber in the master data set, then the _IORC_ automatic variable is
automatically set to a code of _DSENMR, which means that no match was
found. The %SYSRC autocall macro checks to see whether the value of _IORC_
is _DSENMR. If the value is _DSENMR, then the SELECT statement executes the
second DO block. Because the observation in the transaction data set does not
exist in the master data set, the values cannot simply be replaced. An entire
observation is created and added to the master data set.

6 The OUTPUT statement writes the new observation to the master data set. The
OUTPUT statement adds observations 1, 2, and 5 to the master data set (see
the observations highlighted in yellow in the output). The receivedDate values
for these observations are updated based on the returned value for the TODAY
function.

7 If neither condition is met, the OTHERWISE statement executes the last DO
block and the PUT statement writes an error message to the log.

In the output below, the transaction data set contains three new items: hammer,
wrench, and socket. Because some observations do not exist in the master data set
and are being added from the transaction data set, an explicit OUTPUT statement
is needed. For those observations that already exist in the master data set, the
REPLACE statement is needed to update the values for these observations.

The program uses the OUTPUT statement to add observations 1, 2, and 5 to the
master data set, and it uses the REPLACE statement to update observations 4, 7,
and 8 with new values for stock and price.

Example: Modify Data 567

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n1exbj4v17dndpn1402cwa93cnfx.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0hm9egy8s7mokn1mz0yxng80ax5.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0hm9egy8s7mokn1mz0yxng80ax5.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1spe7nmkmi7ywn175002rof97fv.htm&locale=en

Output 21.35 PROC PRINT Output for the Modified Inventory Master Data Set
Sorted by partNumber

Note: Using OUTPUT or REPLACE in a DATA step overrides the default
replacement of observations. If you use these statements in a DATA step, then you
must explicitly program each action that you want to take.

Key Ideas

n The MODIFY statement updates the existing data set without creating a new
output data set. Unlike the MODIFY statement, the SET, MERGE, and UPDATE
statements create a new output data set. For more information, see Table 21.2 on
page 489 and Table 21.4 on page 492.

n With MODIFY, you cannot add, delete, rename, or change variables.

n Both the master data set and the transaction data set can have observations with
duplicate values of the BY variables. MODIFY treats the duplicates as follows:

o If duplicate values exist in the master data set, only the first occurrence is
updated.

o If duplicates exist in the transaction data set, the last value of the duplicated
variable overwrites the previous duplicated value. If you specify an

568 Chapter 21 / Combining Data

accumulation statement to add all of the duplicated variables to the master
observation, then the duplicated value is not overwritten.

See Also

n “Modifying” on page 487

n Table 21.2 on page 489

n “%SYSRC Autocall Macro” in SAS Macro Language: Reference

n “SELECT Statement” in SAS DATA Step Statements: Reference

n “REPLACE Statement” in SAS DATA Step Statements: Reference

n “OUTPUT Statement” in SAS DATA Step Statements: Reference

Example: Modify Data 569

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n1exbj4v17dndpn1402cwa93cnfx.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p09213s9jc2t99n1vx0omk2rh9ps.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p103b0p9akdcmhn1xbik9hbuo760.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&locale=en

570 Chapter 21 / Combining Data

22
Using Indexes

Indexes in SAS . 571

Indexes in SAS
A SAS index is an optional component of a SAS data set that enables SAS to access
observations in the SAS data set quickly and efficiently. The purpose of SAS
indexes is to optimize WHERE-clause processing and to facilitate BY-group
processing.

For information about SAS indexes, see the documents that are listed in the
following table.

Table 22.1 Indexes in SAS Engines

Engine Documentation Usage Notes

V9 engine “Indexes” in SAS V9
LIBNAME Engine:
Reference

Examples in the linked document show how
to create SAS indexes.

You can use an index to optimize WHERE or
BY processing.

SPD Engine “Features That Boost
Processing
Performance” in SAS
Scalable Performance
Data Engine:
Reference

You can use the same language elements as
with the V9 engine to create or use SAS
indexes.

Indexes are stored differently than with the
V9 engine. Additional language elements
for the SPD Engine enable more control
over index usage. In addition, the engine
provides an automatic sort for BY
processing, so an unsorted data set does
not require an index.

571

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n13je192njez2on1g6l65w1yxs6r.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n13je192njez2on1g6l65w1yxs6r.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n13je192njez2on1g6l65w1yxs6r.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p1v7e3hawrjj6on1akkbhtl09kuw.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p1v7e3hawrjj6on1akkbhtl09kuw.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p1v7e3hawrjj6on1akkbhtl09kuw.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p1v7e3hawrjj6on1akkbhtl09kuw.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p1v7e3hawrjj6on1akkbhtl09kuw.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p1v7e3hawrjj6on1akkbhtl09kuw.htm&locale=en

Engine Documentation Usage Notes

CAS engine “Indexing” in SAS
Cloud Analytic
Services:
Fundamentals

You can use one of several CAS actions to
create an index. The syntax is different
from the V9 engine.

You can use an index to improve WHERE
processing, especially on very large tables.

SAS/ACCESS
engines

SAS/ACCESS
software
documentation on
support.sas.com

SAS/ACCESS engines do not create or use
SAS indexes. You can request for the engine
to use an existing DBMS index, or to use a
DBMS column as a key variable. If an
appropriate DBMS index is found, then the
join WHERE clause is passed down to the
DBMS, which is very efficient. If the index is
not found or is not appropriate, then all
data is transferred to SAS for the join
process.

572 Chapter 22 / Using Indexes

http://documentation.sas.com/?docsetId=casfun&docsetVersion=3.5&docsetTarget=n09ssmi0ko8uyfn1022ezo2hv0pm.htm&docsetTargetAnchor=p114o8ue5gndamn10z6x728nfnag&locale=en
http://documentation.sas.com/?docsetId=casfun&docsetVersion=3.5&docsetTarget=n09ssmi0ko8uyfn1022ezo2hv0pm.htm&docsetTargetAnchor=p114o8ue5gndamn10z6x728nfnag&locale=en
http://documentation.sas.com/?docsetId=casfun&docsetVersion=3.5&docsetTarget=n09ssmi0ko8uyfn1022ezo2hv0pm.htm&docsetTargetAnchor=p114o8ue5gndamn10z6x728nfnag&locale=en
http://documentation.sas.com/?docsetId=casfun&docsetVersion=3.5&docsetTarget=n09ssmi0ko8uyfn1022ezo2hv0pm.htm&docsetTargetAnchor=p114o8ue5gndamn10z6x728nfnag&locale=en
https://support.sas.com/en/software/sas-access.html#documentation

23
Using Arrays

Definitions for Array Processing . 574

Rules for Referencing Arrays . 575
Rules for Referencing Arrays . 575

A Conceptual View of Arrays . 576
One-Dimensional Array . 576
Two-Dimensional Array . 576

Syntax for Defining and Referencing an Array . 577

Processing Simple Arrays . 578
Grouping Variables in a Simple Array . 578
Using a DO Loop to Repeat an Action . 579
Using a DO Loop to Process Selected Elements in an Array . 580
Selecting the Current Variable . 580
Defining the Number of Elements in an Array . 581
Rules for Referencing Arrays . 582

Variations on Basic Array Processing . 583
Determining the Number of Elements in an Array Efficiently . 583
DO WHILE and DO UNTIL Expressions . 583
Using Variable Lists to Define an Array Quickly . 584

Multidimensional Arrays: Creating and Processing . 584
Grouping Variables in a Multidimensional Array . 584
Using Nested DO Loops . 585

Specifying Array Bounds . 587
Identifying Upper and Lower Bounds . 587
Determining Array Bounds: LBOUND and HBOUND Functions . 588
When to Use the HBOUND Function Instead of the DIM Function 588
Specifying Bounds in a Two-Dimensional Array . 589

Examples . 590
Example: Using Character Variables in an Array . 590
Example: Assigning Initial Values to the Elements of an Array . 591
Example: Creating an Array for Temporary Use in the Current DATA Step 592
Example: Performing an Action on All Numeric Variables . 593

573

Definitions for Array Processing

array
is a temporary grouping of SAS variables that are arranged in a particular order
and identified by an array-name. The array exists only for the duration of the
current DATA step. The array-name distinguishes it from any other arrays in the
same DATA step; it is not a variable.

Note: Arrays in SAS are different from those in many other programming
languages. In SAS, an array is not a data structure. An array is just a convenient
way of temporarily identifying a group of variables.

array processing
is a method that enables you to perform the same tasks for a series of related
variables.

array reference
is a method to reference the elements of an array.

one-dimensional array
is a simple grouping of variables that, when processed, results in output that can
be represented in simple row format.

multidimensional array
is a more complex grouping of variables that, when processed, results in output
that could have two or more dimensions, such as columns and rows.

Basic array processing involves the following steps:

n grouping variables into arrays

n selecting a current variable for an action

n repeating an action

574 Chapter 23 / Using Arrays

Rules for Referencing Arrays

Rules for Referencing Arrays
Before you make any references to an array, an ARRAY statement must appear in
the same DATA step that you used to create the array. Once you have created the
array, you can perform the following tasks:

n Use an array reference anywhere that you can write a SAS expression.

n Use an array reference as the arguments of some SAS functions.

n Use a subscript enclosed in braces, brackets, or parentheses to reference an
array.

n Use the special array subscript asterisk (*) to refer to all variables in an array in
an INPUT or PUT statement or in the argument of a function.

Note: You cannot use the asterisk with _TEMPORARY_ arrays.

An array definition is in effect only for the duration of the DATA step. If you want to
use the same array in several DATA steps, you must redefine the array in each step.
You can, however, redefine the array with the same variables in a later DATA step
by using a macro variable. A macro variable is useful for storing the variable names
that you need, as shown in this example:

%let list=NC SC GA VA;

data one;
 array state{*} &list;
 … more SAS statements …
run;

data two;
 array state{*} &list;
 … more SAS statements …
run;

Rules for Referencing Arrays 575

A Conceptual View of Arrays

One-Dimensional Array
The following figure is a conceptual representation of two one-dimensional arrays,
Misc and Mday.

Figure 23.1 One-Dimensional Array

Variables

1

mi s c 1

Arrays

MI SC

2

mi s c 2

3

mi s c 3

4

mi s c 4

5

mi s c 5

6

mi s c 6

7

mi s c 7

8

mi s c 8

1

md a y 1MDAY

2

md a y 2

3

md a y 3

4

md a y 4

5

md a y 5

6

md a y 6

7

md a y 7

Misc contains eight elements, the variables Misc1 through Misc8. To reference the
data in these variables, use the form Misc{n}, where n is the element number in the
array. For example, Misc{6} is the sixth element in the array.

Mday contains seven elements, the variables Mday1 through Mday7. Mday{3} is the
third element in the array.

Two-Dimensional Array
The following figure is a conceptual representation of the two-dimensional array
Expenses.

576 Chapter 23 / Using Arrays

Figure 23.2 Example of a Two-Dimensional Array

Ho t e l

Ph o n e

Pe r s . Au t o

Re n t a l Ca r

A i r f a r e

Du e s

Re g i s t r a t i o n
 F e e s
Ot h e r

T i p s (n o n - me a l)

Me a l s

1

h o t e l 1

p h o n e 1

p e r a u t 1

c a r r n t 1

a i r l i n 1

d u e s 1

r e g f e e 1

o t h e r 1

t i p s 1

me a l s 1

2

h o t e l 2

p h o n e 2

p e r a u t 2

c a r r n t 2

a i r l i n 2

d u e s 2

r e g f e e 2

o t h e r 2

t i p s 2

me a l s 2

3

h o t e l 3

p h o n e 3

p e r a u t 3

c a r r n t 3

a i r l i n 3

d u e s 3

r e g f e e 3

o t h e r 3

t i p s 3

me a l s 3

4

h o t e l 4

p h o n e 4

p e r a u t 4

c a r r n t 4

a i r l i n 4

d u e s 4

r e g f e e 4

o t h e r 4

t i p s 4

me a l s 4

5

h o t e l 5

p h o n e 5

p e r a u t 5

c a r r n t 5

a i r l i n 5

d u e s 5

r e g f e e 5

o t h e r 5

t i p s 5

me a l s 5

6

h o t e l 6

p h o n e 6

p e r a u t 6

c a r r n t 6

a i r l i n 6

d u e s 6

r e g f e e 6

o t h e r 6

t i p s 6

me a l s 6

7

h o t e l 7

p h o n e 7

p e r a u t 7

c a r r n t 7

a i r l i n 7

d u e s 7

r e g f e e 7

o t h e r 7

t i p s 7

me a l s 7

8

h o t e l 8

p h o n e 8

p e r a u t 8

c a r r n t 8

a i r l i n 8

d u e s 8

r e g f e e 8

o t h e r 8

t i p s 8

me a l s 8

1

2

3

4

5

6

7

8

9

10

First
Dimension

Expense
Categories

Second
Dimension

Days of the Week Total

The Expenses array contains ten groups of eight variables each. The ten groups
(expense categories) comprise the first dimension of the array, and the eight
variables (days of the week) comprise the second dimension. To reference the data
in the array variables, use the form Expenses{m,n}, where m is the element number
in the first dimension of the array, and n is the element number in the second
dimension of the array. Expenses{6,4} references the value of dues for the fourth
day (the variable is Dues4).

Syntax for Defining and Referencing an
Array

To define a simple or a multidimensional array, use the ARRAY statement. The
ARRAY statement has the following form:

ARRAY array-name {number-of-elements} <$> <length> <array-elements> <(initial-
value-list)>;

where

array-name
is a SAS name that identifies the group of variables.

number-of-elements
is the number of variables in the group. You must enclose this value in either
parentheses (), braces {}, or brackets [].

Syntax for Defining and Referencing an Array 577

$
specifies that the elements in the array are character elements.

length
specifies the length of the elements in the array that have not been previously
assigned a length.

array-elements
is a list of the names of the variables in the group. All variables that are defined
in a given array must be of the same type, either all character or all numeric.

initial-value-list
is a list of the initial values for the corresponding elements in the array.

For complete information, see the “ARRAY Statement” in SAS DATA Step
Statements: Reference.

To reference an array that was previously defined in the same DATA step, use an
Array Reference statement. An array reference has the following form:

array-name {subscript}

where

array-name
is the name of an array that was previously defined with an ARRAY statement in
the same DATA step.

subscript
specifies the subscript, which can be a numeric constant, the name of a variable
whose value is the number, a SAS numeric expression, or an asterisk (*).

Note: Subscripts in SAS are 1-based by default, and not 0-based as they are in
some other programming languages.

For complete information, see the Array Reference statement in the SAS DATA Step
Statements: Reference.

Processing Simple Arrays

Grouping Variables in a Simple Array
The following ARRAY statement creates an array named Books that contains the
three variables Reference, Usage, and Introduction:

array books{3} Reference Usage Introduction;

When you define an array, SAS assigns each array element an array reference with
the form array-name{subscript}, where subscript is the position of the variable in the

578 Chapter 23 / Using Arrays

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p08do6szetrxe2n136ush727sbuo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p08do6szetrxe2n136ush727sbuo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

list. The following table lists the array reference assignments for the previous
ARRAY statement:

Table 23.1 Array Reference Assignments for Array Books

Variable Array Reference

Reference books{1}

Usage books{2}

Introduction books{3}

Later in the DATA step, when you want to process the variables in the array, you
can refer to a variable by either its name or its array reference. For example, the
names Reference and Books{1} are equivalent.

Using a DO Loop to Repeat an Action
To perform the same action several times, use an iterative DO loop. A simple
iterative DO loop that processes an array has the following form:

DO index-variable=1 TO number-of-elements-in-array;
… more SAS statements …

END;

The loop is processed repeatedly (iterates) according to the instructions in the
iterative DO statement. The iterative DO statement contains an index-variable
whose name you specify and whose value changes at each iteration of the loop.

To execute the loop as many times as there are variables in the array, specify that
the values of index-variable are 1 TO number-of-elements-in-array. SAS increases
the value of index-variable by 1 before each new iteration of the loop. When the
value exceeds the number-of-elements-in-array, SAS stops processing the loop. By
default, SAS automatically includes index-variable in the output data set. Use a
DROP statement or the DROP= data set option to prevent the index variable from
being written to your output data set.

An iterative DO loop that executes three times and has an index variable named
count has the following form:

do count=1 to 3;
 … more SAS statements …
end;

The first time that the loop processes, the value of count is 1; the second time, 2;
and the third time, 3. At the beginning of the fourth iteration, the value of count is
4, which exceeds the specified range and causes SAS to stop processing the loop.

Processing Simple Arrays 579

Using a DO Loop to Process Selected Elements in
an Array

To process particular elements of an array, specify those elements as the range of
the iterative DO statement. For example, the following statement creates an array
Days that contains seven elements:

array days{7} D1-D7;

The following DO statements process selected elements of the array Days:

Table 23.2 DO Statement Processing

DO Statement Description

do i=2 to 4; processes elements 2 through 4

do i=1 to 7 by 2; processes elements 1, 3, 5, and 7

do i=3,5; processes elements 3 and 5

Selecting the Current Variable
You must tell SAS which variable in the array to use in each iteration of the loop.
Recall that you identify variables in an array by their array references and that you
use a variable name, a number, or an expression as the subscript of the reference.
Therefore, you can write programming statements so that the index variable of the
DO loop is the subscript of the array reference (for example, array-name{index-
variable}). When the value of the index variable changes, the subscript of the array
reference (and therefore the variable that is referenced) also changes.

The following example uses the index variable count as the subscript of array
references inside a DO loop:

array books{3} Reference Usage Introduction;
do count=1 to 3;
 if books{count}=. then books{count}=0;
end;

When the value of count is 1, SAS reads the array reference as Books{1} and
processes the IF-THEN statement on Books{1}, which is the variable Reference.
When count is 2, SAS processes the statement on Books{2}, which is the variable
Usage. When count is 3, SAS processes the statement on Books{3}, which is the
variable Introduction.

580 Chapter 23 / Using Arrays

The statements in the example tell SAS to

n perform the actions in the loop three times

n replace the array subscript count with the current value of count for each
iteration of the IF-THEN statement

n locate the variable with that array reference and process the IF-THEN
statement on it

n replace missing values with zero if the condition is true.

The following DATA step defines the array Book and processes it with a DO loop.

options linesize=80 pagesize=60;

data changed(drop=count);
 input Reference Usage Introduction;
 array book{3} Reference Usage Introduction;
 do count=1 to 3;
 if book{count}=. then book{count}=0;
 end;
 datalines;
45 63 113
. 75 150
62 . 98
;

proc print data=changed;
 title 'Number of Books Sold';
run;

The following output shows the CHANGED data set.

Output 23.1 Using an Array Statement to Process Missing Data Values

Defining the Number of Elements in an Array
When you define the number of elements in an array, you can either use an asterisk
enclosed in braces ({*}), brackets ([*]), or parentheses ((*)) to count the number of
elements or to specify the number of elements. You must list each array element if

Processing Simple Arrays 581

you use the asterisk to designate the number of elements. In the following example,
the array C1Temp references five variables with temperature measures.

array c1temp{*} c1t1 c1t2 c1t3 c1t4 c1t5;

If you specify the number of elements explicitly, you can omit the names of the
variables or array elements in the ARRAY statement. SAS then creates variable
names by concatenating the array name with the numbers 1, 2, 3, and so on. If a
variable name in the series already exists, SAS uses that variable instead of
creating a new one. In the following example, the array c1t references five variables:
c1t1, c1t2, c1t3, c1t4, and c1t5.

array c1t{5};

Rules for Referencing Arrays
Before you make any references to an array, an ARRAY statement must appear in
the same DATA step that you used to create the array. Once you have created the
array, you can perform the following tasks:

n Use an array reference anywhere that you can write a SAS expression.

n Use an array reference as the arguments of some SAS functions.

n Use a subscript enclosed in braces, brackets, or parentheses to reference an
array.

n Use the special array subscript asterisk (*) to refer to all variables in an array in
an INPUT or PUT statement or in the argument of a function.

Note: You cannot use the asterisk with _TEMPORARY_ arrays.

An array definition is in effect only for the duration of the DATA step. If you want to
use the same array in several DATA steps, you must redefine the array in each step.
You can, however, redefine the array with the same variables in a later DATA step
by using a macro variable. A macro variable is useful for storing the variable names
that you need, as shown in this example:

%let list=NC SC GA VA;

data one;
 array state{*} &list;
 … more SAS statements …
run;

data two;
 array state{*} &list;
 … more SAS statements …
run;

582 Chapter 23 / Using Arrays

Variations on Basic Array Processing

Determining the Number of Elements in an Array
Efficiently

The DIM function in the iterative DO statement returns the number of elements in a
one-dimensional array or the number of elements in a specified dimension of a
multidimensional array, when the lower bound of the dimension is 1. Use the DIM
function to avoid changing the upper bound of an iterative DO group each time you
change the number of elements in the array.

The form of the DIM function is as follows:

DIMn(array-name)

where n is the specified dimension that has a default value of 1.

You can also use the DIM function when you specify the number of elements in the
array with an asterisk. Here are some examples of the DIM function:

n do i=1 to dim(days);

n do i=1 to dim4(days) by 2;

DO WHILE and DO UNTIL Expressions
Arrays are often processed in iterative DO loops that use the array reference in a
DO WHILE or DO UNTIL expression. In this example, the iterative DO loop
processes the elements of the array named Trend.

data test;
 array trend{5} x1-x5;
 input x1-x5 y;
 do i=1 to 5 while(trend{i}<y);
 … more SAS statements …
 end;
 datalines;
… data lines …
;

Variations on Basic Array Processing 583

Using Variable Lists to Define an Array Quickly
SAS reserves the following three names for use as variable list names:

n _CHARACTER_

n _NUMERIC_

n _ALL_

You can use these variable list names to reference variables that have been
previously defined in the same DATA step. The _CHARACTER_ variable lists
character values only. The _NUMERIC_ variable lists numeric values only. The
ALL variable lists either all character or all numeric values, depending on how you
previously defined the variables.

For example, the following INPUT statement reads in variables X1 through X3 as
character values using the $8. informat, and variables X4 through X5 as numeric
variables. The following ARRAY statement uses the variable list _CHARACTER_ to
include only the character variables in the array. The asterisk indicates that SAS
determines the subscript by counting the variables in the array.

input (X1-X3) ($8.) X4-X5;
array item {*} _character_;

You can use the _NUMERIC_ variable in your program (for example, you need to
convert currency). In this application, you do not need to know the variable names.
You need only to convert all values to the new currency.

For more information about variable lists, see the “ARRAY Statement” in SAS DATA
Step Statements: Reference.

Multidimensional Arrays: Creating and
Processing

Grouping Variables in a Multidimensional Array
To create a multidimensional array, place the number of elements in each
dimension after the array name in the form {n, … } where n is required for each
dimension of a multidimensional array.

From right to left, the rightmost dimension represents columns; the next dimension
represents rows. Each position farther left represents a higher dimension. The
following ARRAY statement defines a two-dimensional array with two rows and

584 Chapter 23 / Using Arrays

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p08do6szetrxe2n136ush727sbuo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p08do6szetrxe2n136ush727sbuo.htm&locale=en

five columns. The array contains ten variables: five temperature measures (t1
through t5) from two cities (c1 and c2):

array temprg{2,5} c1t1-c1t5 c2t1-c2t5;

SAS places variables into a multidimensional array by filling all rows in order,
beginning at the upper left corner of the array (known as row-major order). You can
think of the variables as having the following arrangement:

c1t1 c1t2 c1t3 c1t4 c1t5
c2t1 c2t2 c2t3 c2t4 c2t5

To refer to the elements of the array later with an array reference, you can use the
array name and subscripts. The following table lists some of the array references
for the previous example:

Table 23.3 Array References for Array TEMPRG

Variable Array Reference

c1t1 temprg{1,1}

c1t2 temprg{1,2}

c2t2 temprg{2,2}

c2t5 temprg{2,5}

Using Nested DO Loops
Multidimensional arrays are usually processed inside nested DO loops. For
example, the following is one form that processes a two-dimensional array:

DO index-variable-1=1 TO number-of-rows;

DO index-variable-2=1 TO number-of-columns;

... more SAS statements ...

END;

END;

An array reference can use two or more index variables as the subscript to refer to
two or more dimensions of an array. Use the following form:

array-name {index-variable-1, …,index-variable-n}

The following example creates an array that contains ten variables- five
temperature measures (t1 through t5) from two cities (c1 and c2). The DATA step
contains two DO loops.

n The outer DO loop (DO I=1 TO 2) processes the inner DO loop twice.

Multidimensional Arrays: Creating and Processing 585

n The inner DO loop (DO J=1 TO 5) applies the ROUND function to all the
variables in one row.

For each iteration of the DO loops, SAS substitutes the value of the array element
corresponding to the current values of I and J.

options linesize=80 pagesize=60;

data temps;
 array temprg{2,5} c1t1-c1t5 c2t1-c2t5;
 input c1t1-c1t5 /
 c2t1-c2t5;
 do i=1 to 2;
 do j=1 to 5;
 temprg{i,j}=round(temprg{i,j});
 end;
 end;
 datalines;
89.5 65.4 75.3 77.7 89.3
73.7 87.3 89.9 98.2 35.6
75.8 82.1 98.2 93.5 67.7
101.3 86.5 59.2 35.6 75.7
;

proc print data=temps;
 title 'Temperature Measures for Two Cities';
run;

The following data set Temps contains the values of the variables rounded to the
nearest whole number.

Output 23.2 Using a Multidimensional Array

The previous example can also use the DIM function to produce the same result:

do
i=1 to dim1(temprg);
 do j=1 to dim2(temprg);
 temprg{i,j}=round(temprg{i,j});
 end;
end;

The value of DIM1(TEMPRG) is 2; the value of DIM2(TEMPRG) is 5.

586 Chapter 23 / Using Arrays

Specifying Array Bounds

Identifying Upper and Lower Bounds
Typically, in an ARRAY statement, the subscript in each dimension of the array
ranges from 1 to n, where n is the number of elements in that dimension. Thus, 1 is
the lower bound and n is the upper bound of that dimension of the array. For
example, in the following array, the lower bound is 1 and the upper bound is 4:

array new{4} Jackson Poulenc Andrew Parson;

In the following ARRAY statement, the bounds of the first dimension are 1 and 2
and those of the second dimension are 1 and 5:

array test{2,5} test1-test10;

Bounded array dimensions have the following form:

{<lower-1:>upper-1<,…<lower-n:>upper-n>}

Therefore, you can also write the previous ARRAY statements as follows:

array new{1:4} Jackson Poulenc Andrew Parson;
array test{1:2,1:5} test1-test10;

For most arrays, 1 is a convenient lower bound, so you do not need to specify the
lower bound. However, specifying both the lower and the upper bounds is useful
when the array dimensions have beginning points other than 1.

In the following example, ten variables are named Year76 through Year85. The
following ARRAY statements place the variables into two arrays named First and
Second:

array first{10} Year76-Year85;
array second{76:85} Year76-Year85;

In the first ARRAY statement, the element first{4} is variable Year79, first{7} is
Year82, and so on. In the second ARRAY statement, element second{79} is Year79
and second{82} is Year82.

To process the array names Second in a DO group, make sure that the range of the
DO loop matches the range of the array as follows:

do i=76 to 85;
 if second{i}=9 then second{i}=.;
end;

Specifying Array Bounds 587

Determining Array Bounds: LBOUND and HBOUND
Functions

You can use the LBOUND and HBOUND functions to determine array bounds. The
LBOUND function returns the lower bound of a one-dimensional array or the lower
bound of a specified dimension of a multidimensional array. The HBOUND function
returns the upper bound of a one-dimensional array or the upper bound of a
specified dimension of a multidimensional array.

The form of the LBOUND and HBOUND functions is as follows:

LBOUNDn(array-name)

HBOUNDn(array-name)

where

n
is the specified dimension and has a default value of 1.

You can use the LBOUND and HBOUND functions to specify the starting and
ending values of the iterative DO loop to process the elements of the array named
Second:

do i=lbound{second} to hbound{second};
 if second{i}=9 then second{i}=.;
end;

In this example, the index variable in the iterative DO statement ranges from 76 to
85.

When to Use the HBOUND Function Instead of the
DIM Function

The following ARRAY statement defines an array containing a total of five
elements, a lower bound of 72, and an upper bound of 76. It represents the calendar
years 1972 through 1976:

array years{72:76} first second third fourth fifth;

To process the array named YEARS in an iterative DO loop, make sure that the
range of the DO loop matches the range of the array as follows:

do i=lbound(years) to hbound(years);
 if years{i}=99 then years{i}=.;
end;

The value of LBOUND(YEARS) is 72; the value of HBOUND(YEARS) is 76.

588 Chapter 23 / Using Arrays

For this example, the DIM function would return a value of 5, the total count of
elements in the array YEARS. Therefore, if you used the DIM function instead of the
HBOUND function for the upper bound of the array, the statements inside the DO
loop would not have executed.

Specifying Bounds in a Two-Dimensional Array
The following list contains 40 variables named X60 through X99. They represent
the years 1960 through 1999.

X60 X61 X62 X63 X64 X65 X66 X67 X68 X69
X70 X71 X72 X73 X74 X75 X76 X77 X78 X79
X80 X81 X82 X83 X84 X85 X86 X87 X88 X89
X90 X91 X92 X93 X94 X95 X96 X97 X98 X99

The following ARRAY statement arranges the variables in an array by decades. The
rows range from 6 through 9, and the columns range from 0 through 9.

array X{6:9,0:9} X60-X99;

In array X, variable X63 is element X{6,3} and variable X89 is element X{8,9}. To
process array X with iterative DO loops, use one of these methods:

n Method 1:

do i=6 to 9;
 do j=0 to 9;
 if X{i,j}=0 then X{i,j}=.;
 end;
end;

n Method 2:

do i=lbound1(X) to hbound1(X);
 do j=lbound2(X) to hbound2(X);
 if X{i,j}=0 then X{i,j}=.;
 end;
end;

Both examples change all values of 0 in variables X60 through X99 to missing. The
first example sets the range of the DO groups explicitly. The second example uses
the LBOUND and HBOUND functions to return the bounds of each dimension of
the array.

Specifying Array Bounds 589

Examples

Example: Using Character Variables in an Array
You can specify character variables and their lengths in ARRAY statements. The
following example groups variables into two arrays, NAMES and CAPITALS.

options linesize=80 pagesize=60;

data text;
 array names{*} $ n1-n5; /* 1 */
 array capitals{*} $ c1-c5;
 input names{*}; /* 2 */
 do i=1 to 5;
 capitals{i}=upcase(names{i}); /* 3 */
 end;
 datalines;
smithers michaels gonzalez hurth frank
;

proc print data=text;
 title 'Names Changed from Lowercase to Uppercase';
run;

1 The dollar sign ($) tells SAS to create the elements as character variables. If the
variables have already been declared as character variables, a dollar sign in the
array is not necessary.

2 The INPUT statement reads all the variables in array NAMES.

3 The statement inside the DO loop uses the UPCASE function to change the
values of the variables in array NAMES to uppercase. The statement then stores
the uppercase values in the variables in the CAPITALS array.

The following output shows the TEXT data set.

Output 23.3 Using Character Variables in an Array

590 Chapter 23 / Using Arrays

Example: Assigning Initial Values to the Elements
of an Array

This example creates variables in the array Test and assigns them the initial values
90, 80, and 70. It reads values into another array named Score and compares each
element of Score to the corresponding element of Test.

options linesize=80 pagesize=60;

data score1(drop=i);
 array test{3} t1-t3 (90 80 70); /* 1 */
 array score{3} s1-s3;
 input id score{*}; /* 2 */
 do i=1 to 3;
 if score{i}>=test{i} then /* 3 */
 do;
 NewScore=score{i};
 output; /* 4 */
 end;
 end;
 datalines;
1234 99 60 82
5678 80 85 75
;

proc print noobs data=score1;
 title 'Data Set SCORE1';
run;

1 Assign the initial values 90, 80, and 70 to the Test array and assign the variables
s1, s2, and s3 to the Score array.

2 The INPUT statement reads a value for the variable named ID and then reads
values for all the variables in the Score array.

3 If the value of the element in Score is greater than or equal to the value of the
element in Test, the variable NewScore is assigned the value in the element
Score.

4 The OUTPUT statement writes the observation to the SAS data set.

The following output shows the Score1 data set.

Examples 591

Output 23.4 Assigning Initial Values to the Elements of an Array

Example: Creating an Array for Temporary Use in
the Current DATA Step

When elements of an array are constants that are needed only for the duration of
the DATA step, you can omit variables from an array group and instead use
temporary array elements. You refer to temporary data elements by the array name
and dimension. Although they behave like variables, temporary array elements do
not have names, and they do not appear in the output data set. Temporary array
elements are automatically retained, instead of being reset to missing at the
beginning of the next iteration of the DATA step.

To create a temporary array, use the _TEMPORARY_ argument. The following
example creates a temporary array named Test:

options linesize=80 pagesize=60;

data score2(drop=i);
 array test{3} _temporary_ (90 80 70);
 array score{3} s1-s3;
 input id score{*};
 do i=1 to 3;
 if score{i}>=test{i} then
 do;
 NewScore=score{i};
 output;
 end;
 end;
 datalines;
 1234 99 60 82
 5678 80 85 75
 ;

 proc print noobs data=score2;
 title 'Data Set SCORE2';
 run;

592 Chapter 23 / Using Arrays

The following output shows the Score2 data set.

Output 23.5 Using _TEMPORARY_ Arrays

Example: Performing an Action on All Numeric
Variables

This example multiplies all of the numeric variables in array Test by 3.

options nodate pageno=1 linesize=80 pagesize=60;

data sales;
 infile datalines;
 input Value1 Value2 Value3 Value4;
 datalines;
11 56 58 61
22 51 57 61
22 49 53 58
;
data convert(drop=i);
 set sales;
 array test{*} _numeric_;
 do i=1 to dim(test);
 test{i} = (test{i}*3);
 end;
run;

proc print data=convert;
 title 'Data Set CONVERT';
run;

The following output shows the CONVERT data set.

Examples 593

Output 23.6 Output from Using a _NUMERIC_ Variable List

594 Chapter 23 / Using Arrays

24
Debugging Errors

Definitions of Error Types in SAS . 595
Summary of Types of Errors That SAS Recognizes . 595
Syntax Errors . 596
Semantic Errors . 598
Execution-Time Errors . 600
Data Errors . 604
Macro-related Errors . 606

Error Processing in SAS . 606
Syntax Check Mode . 606
Checkpoint Mode and Restart Mode . 607
Using System Options to Control Error Handling . 612
Using Return Codes . 614
Other Error-Checking Options . 614

Error Checking When Using Indexes to Randomly Access or Update Data 615
The Importance of Error Checking . 615
Error-Checking Tools . 615
Example 1: Routing Execution When an Unexpected Condition Occurs 617
Example 2: Using Error Checking on All Statements That Use KEY= 620

Examples . 625
Example: Use the Debugger Tool to Debug Logic Errors in the DATA Step 625
Example: Route Execution When an Unexpected Condition Occurs 626
Example: Use Error Checking on All Statements That Use KEY= 628
Example: Process Multiple Errors . 633

Definitions of Error Types in SAS

Summary of Types of Errors That SAS Recognizes
SAS performs error processing during both the compilation and the execution
phases of SAS processing. You can debug SAS programs by understanding

595

processing messages in the SAS log and then fixing your code. You can use the
DATA Step Debugger to detect logic errors in a DATA step during execution.

SAS recognizes five types of errors.

Table 24.1 Types of Errors

Type of Error When This Error Occurs
When the Error Is
Detected

syntax when programming
statements do not conform to
the rules of the SAS language

compile time

semantic when the language element is
correct, but the element might
not be valid for a particular
usage

compile or execution
time

execution-time when SAS attempts to
execute a program and
execution fails

execution time

data when data values are invalid execution time

macro-related when you use the macro
facility incorrectly

macro compile time or
execution time, DATA,
or PROC step compile
time or execution time

Syntax Errors
Syntax errors occur when program statements do not conform to the rules of the
SAS language. Here are some examples of syntax errors:

n misspelled SAS keyword

n unmatched quotation marks

n missing a semicolon

n invalid statement option

n invalid data set option

When SAS encounters a syntax error, it attempts to correct the error by
interpreting the intent of the code. Then SAS continues processing your program
based on these assumptions. If SAS cannot correct the error, it prints an error
message to the log. If you do not want SAS to correct syntax errors, you can set the

596 Chapter 24 / Debugging Errors

NOAUTOCORRECT system option. For more information, see “AUTOCORRECT
System Option” in SAS System Options: Reference.

In the following example, the DATA statement is misspelled, and SAS prints a
warning message to the log. Because SAS could interpret the misspelled word, the
program runs and produces output.

date temp; /* 1 */
 x=1;
run;

proc print data=temp;
run;

1 data is misspelled as date.

Example Code 24.1 SAS Log: Syntax Error (Misspelled Key Word)

39 date temp;

 14
WARNING 14-169: Assuming the symbol DATA was misspelled as date.

40 x=1;
41 run;
NOTE: The data set WORK.TEMP has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

42
43 proc print data=temp;
44 run;
NOTE: There were 1 observations read from the data set WORK.TEMP.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

45 proc printto; run;

Some errors are explained fully by the message that SAS prints in the log. Other
error messages are not as easy to interpret because SAS is not always able to
detect exactly where the error occurred. For example, when you fail to end a SAS
statement with a semicolon, SAS does not always detect the error at the point
where it occurs. The free-format nature of SAS statements (they can begin and end
anywhere) can cause this issue. In the following example, the semicolon at the end
of the DATA statement is missing. SAS prints the word ERROR in the log, identifies
the possible location of the error, prints an explanation of the error, and stops
processing the DATA step.

data temp
 x=1;
run;

proc print data=temp;
run;

Definitions of Error Types in SAS 597

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0mzulmnthqs2bn1cuqm5eqlvgi8.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0mzulmnthqs2bn1cuqm5eqlvgi8.htm&locale=en

Example Code 24.2 SAS Log: Syntax Error (Missing Semicolon)

67 data temp
68 x=1;
 -
 22
 76
ERROR 22-322: Syntax error, expecting one of the following: a name,
 a quoted string, (, /, ;, _DATA_, _LAST_, _NULL_.

ERROR 76-322: Syntax error, statement will be ignored.

69 run;
NOTE: The SAS System stopped processing this step because of errors.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

70
71 proc print data=temp;
72 run;
NOTE: There were 1 observations read from the data set WORK.TEMP.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

73 proc printto; run;

Whether subsequent steps are executed depends on which method you use to run
SAS, as well as your operating environment.

Note: You can add these lines to your code to fix unmatched comment tags,
unmatched quotation marks, and missing semicolons:

/* '; * "; */;
quit;
run;

Semantic Errors
Semantic errors occur when the form of the elements in a SAS statement is correct,
but the elements are not valid for that usage. Semantic errors are detected at
compile time and can cause SAS to enter syntax check mode. (For a description of
syntax check mode, see “Syntax Check Mode” on page 606.)

Examples of semantic errors include the following:

n specifying the wrong number of arguments for a function

n using a numeric variable name where only a character variable is valid

n using invalid references to an array

n a variable is not initialized

598 Chapter 24 / Debugging Errors

In the following example, SAS detects an invalid reference to the array all at
compile time.

data _null_;
 array all{*} x1-x5;
 all=3;
 datalines;
1 1.5
. 3
2 4.5
3 2 7
3 . .
;

run;

Example Code 24.3 SAS Log: Semantic Error (invalid Reference to an Array)

81 data _null_;
82 array all{*} x1-x5;
ERROR: invalid reference to the array all.
83 all=3;
84 datalines;
NOTE: The SAS System stopped processing this step because of errors.
NOTE: DATA statement used (Total process time):
 real time 0.15 seconds
 cpu time 0.01 seconds

90 ;
91
92 run;
93 proc printto; run;

Here is another example of a semantic error that occurs at compile time. In this
DATA step, the libref SomeLib has not been previously assigned in a LIBNAME
statement.

data test;
 set somelib.old;
run;

Example Code 24.4 SAS Log: Semantic Error (Libref Not Previously Assigned)

101 data test;
ERROR: Libname SomeLib is not assigned.
102 set somelib.old;
103 run;
NOTE: The SAS System stopped processing this step because of errors.
WARNING: The data set WORK.TEST may be incomplete. When this step was
 stopped there were 0 observations and 0 variables.

SAS writes a message like "NOTE: SAS went to a new line when input statement
reached past the end of a line." when a semantic error occurs at execution time.
This note is written to the SAS log when FLOWOVER is used and all the variables in
the INPUT statement cannot be fully read.

The detection of a variable that is not initialized is another semantic error. By
default, SAS does not report an error, but writes a note to the SAS log. If a variable

Definitions of Error Types in SAS 599

is not initialized and the system option VARINITCHK=ERROR has been issued, SAS
stops processing a DATA step and writes an error message to the SAS log.

Execution-Time Errors

Definition

Execution-time errors occur when SAS executes a program that processes data
values. Most execution-time errors produce warning messages or notes in the SAS
log but allow the program to continue executing. The location of an execution-time
error is usually given as line and column numbers in a note or error message.

Note: When you run SAS in noninteractive mode, more serious errors can cause
SAS to enter syntax check mode and stop processing the program.

Common execution-time errors include the following:

n invalid arguments to functions

n invalid mathematical operations (for example, division by 0)

n observations in the wrong order for BY-group processing

n reference to a nonexistent member of an array (occurs when the array's
subscript is out of range)

n open and close errors on SAS data sets and other files in INFILE and FILE
statements

n INPUT statements that do not match the data lines (for example, an INPUT
statement in which you list the wrong columns for a variable or fail to indicate
that the variable is a character variable)

Out-of-Resources Condition

An execution-time error can also occur when you encounter an out-of-resources
condition, such as a full disk, or insufficient memory for a SAS procedure to
complete. When these conditions occur, SAS attempts to find resources for current
use. For example, SAS might ask the user for permission to perform these actions in
out-of-resource conditions:

n Delete temporary data sets that might no longer be needed.

n Free the memory in which macro variables are stored.

When an out-of-resources condition occurs in a windowing environment, you can
use the SAS CLEANUP system option to display a requestor panel. The requestor
panel enables you to choose how to resolve the error. When you run SAS in batch,
noninteractive, or interactive line mode, the operation of CLEANUP depends on

600 Chapter 24 / Debugging Errors

your operating environment. For more information, see “CLEANUP System Option”
in SAS System Options: Reference and in the SAS documentation for your operating
system.

Examples

In the following example, an execution-time error occurs when SAS uses data
values from the second observation to perform the division operation in the
assignment statement. Division by 0 is an invalid mathematical operation and
causes an execution-time error.

data inventory;
 input Item $ 1-14 TotalCost 15-20
 UnitsOnHand 21-23;
 UnitCost=TotalCost/UnitsOnHand;
 datalines;
Hammers 440 55
Nylon cord 35 0
Ceiling fans 1155 30
;

proc print data=inventory;
 format TotalCost dollar8.2 UnitCost dollar8.2;
run;

Definitions of Error Types in SAS 601

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0i494n8ucv8qcn1shaqia15jugk.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0i494n8ucv8qcn1shaqia15jugk.htm&locale=en

Example Code 24.5 SAS Log: Execution-Time Error (division by 0)

115 data inventory;
116 input Item $ 1-14 TotalCost 15-20
117 UnitsOnHand 21-23;
118 UnitCost=TotalCost/UnitsOnHand;
119 datalines;
NOTE: Division by zero detected at line 118 column 22.
RULE: ----+----1----+----2----+----3----+----4----+----5---
121 Nylon cord 35 0
Item=Nylon cord TotalCost=35 UnitsOnHand=0 UnitCost=. _ERROR_=1
N=2
NOTE: Mathematical operations could not be performed at the
 following places. The results of the operations have been
 set to missing values.
 Each place is given by:
 (Number of times) at (Line):(Column).
 1 at 118:22
NOTE: The data set WORK.INVENTORY has 3 observations and 4
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.03 seconds
 cpu time 0.00 seconds

123 ;
124
125 proc print data=inventory;
126 format TotalCost dollar8.2 UnitCost dollar8.2;
127 run;

NOTE: Writing HTML Body file: sashtml1.htm
NOTE: There were 3 observations read from the data set
 WORK.INVENTORY.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.56 seconds
 cpu time 0.01 seconds

Output 24.1 SAS Output: Execution-Time Error (division by 0)

SAS executes the entire step, assigns a missing value for the variable UnitCost in
the output, and writes the following to the SAS log:

n a note that describes the error

n the values that are stored in the input buffer

n the contents of the program data vector when the error occurred

n a note explaining the error

602 Chapter 24 / Debugging Errors

Note that the values that are listed in the program data vector include the _N_ and
ERROR automatic variables. These automatic variables are assigned temporarily
to each observation and are not stored with the data set.

In the following example of an execution-time error, the program processes an array
and SAS encounters a value of the array's subscript that is out of range. SAS prints
an error message to the log and stops processing.

data test;
 array all{*} x1-x3;
 input I measure;
 if measure > 0 then
 all{I} = measure;
 datalines;
1 1.5
. 3
2 4.5
;

proc print data=test;
run;

Example Code 24.6 SAS Log: Execution-Time Error (Subscript Out of Range)

163 data test;
164 array all{*} x1-x3;
165 input I measure;
166 if measure > 0 then
167 all{I} = measure;
168 datalines;
ERROR: Array subscript out of range at line 167 column 7.
RULE: ----+----1----+----2----+----3----+----4----+----5---
170 . 3
x1=. x2=. x3=. I=. measure=3 _ERROR_=1 _N_=2
NOTE: The SAS System stopped processing this step because of
 errors.
WARNING: The data set WORK.TEST may be incomplete. When this
 step was stopped there were 1 observations and 5
 variables.
WARNING: Data set WORK.TEST was not replaced because this step
 was stopped.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

172 ;
173
174 proc print data=test;
175 run;
NOTE: No variables in data set WORK.TEST.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

176 proc printto; run;

Definitions of Error Types in SAS 603

Data Errors

Definition

Data errors occur when some data values are not appropriate for the SAS
statements that you have specified in the program. For example, if you define a
variable as numeric, but the data value is actually character, SAS generates a data
error. SAS detects data errors during program execution and continues to execute
the program, and does the following:

n writes an invalid data note to the SAS log.

n prints the input line and column numbers that contain the invalid value in the
SAS log. Unprintable characters appear in hexadecimal. To help determine
column numbers, SAS prints a rule line above the input line.

n prints the observation under the rule line.

n sets the automatic variable _ERROR_ to 1 for the current observation.

In this example, a character value in the Number variable results in a data error
during program execution:

data age;
 input Name $ Number;
 datalines;
Sue 35
Joe xx
Steve 22
;

proc print data=age;
run;

The SAS log shows that there is an error in line 8, position 5–6 of the program.

604 Chapter 24 / Debugging Errors

Example Code 24.7 SAS Log: Data Error

234 data age;
235 input Name $ Number;
236 datalines;
NOTE: Invalid data for Number in line 238 5-6.
RULE: ----+----1----+----2----+----3----+----4----+----5---
238 Joe xx
Name=Joe Number=. _ERROR_=1 _N_=2
NOTE: The data set WORK.AGE has 3 observations and 2 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

240 ;
241
242 proc print data=age;
243 run;

NOTE: Writing HTML Body file: sashtml2.htm
NOTE: There were 3 observations read from the data set WORK.AGE.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.07 seconds
 cpu time 0.04 seconds

Output 24.2 SAS Output: Data Error

You can also use the INVALIDDATA= system option to assign a value to a variable
when your program encounters invalid data. For more information, see the
INVALIDDATA= system option in SAS System Options: Reference.

Format Modifiers for Error Reporting

The INPUT statement uses the ? and the ?? format modifiers for error reporting.
The format modifiers control the amount of information that is written to the SAS
log. Both the ? and the ?? modifiers suppress the invalid data message. However,
the ?? modifier also sets the automatic variable _ERROR_ to 0. For example, these
two sets of statements are equivalent:

n input x ?? 10-12;

n input x ? 10-12;
 error=0;

In either case, SAS sets the invalid values of X to missing values.

Definitions of Error Types in SAS 605

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Macro-related Errors
Several types of macro-related errors exist:

n macro compile time and macro execution-time errors, generated when you use
the macro facility itself

n errors in the SAS code produced by the macro facility

For more information about macros, see SAS Macro Language: Reference.

Error Processing in SAS

Syntax Check Mode

Overview of Syntax Check Mode

Syntax check mode enables SAS to flag syntax errors or stop processing when it
encounters a DATA step that has a syntax error. SAS can enter syntax check mode
only if your program creates a data set. For example, if you use the DATA _NULL_
statement, then SAS cannot enter syntax check mode because it does not create a
data set.

In syntax check mode, SAS internally sets the OBS= option to 0 and the REPLACE/
NOREPLACE option to NOREPLACE. When these options are in effect, SAS acts as
follows:

n reads the remaining statements in the DATA step or PROC step

n checks that statements are valid SAS statements

n executes global statements

n writes errors to the SAS log

n creates the descriptor portion of any output data sets that are specified in
program statements

n does not write any observations to new data sets that SAS creates

n does not execute most of the subsequent DATA steps or procedures in the
program (exceptions include PROC DATASETS and PROC CONTENTS)

606 Chapter 24 / Debugging Errors

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Note: Any data sets that are created after SAS has entered syntax check mode do
not replace existing data sets with the same name.

When syntax checking is enabled, SAS underlines the point where it detects a
syntax or semantic error in a DATA step and identifies the error by number. SAS
then enters syntax check mode and remains in this mode until the program finishes
executing. When SAS enters syntax check mode, all DATA step statements and
PROC step statements are validated.

Enabling Syntax Check Mode

Use these methods to enable SAS to enter syntax check mode.

n Set the “DMSSYNCHK System Option” in SAS System Options: Reference
system option in the windowing environment.

n Set the “SYNTAXCHECK System Option” in SAS System Options: Reference
system option in batch or non-interactive mode.

Note: SYNTTAXCHECK is the default value in batch or non-interactive mode.

To disable syntax check mode, use the NOSYNTAXCHECK and NODMSSYNCHK
system options.

You can place an OPTIONS statement that contains the SYNTAXCHECK system
option or the DMSSYNCHK system option before the step that you want to apply it
to. If you place the OPTIONS statement inside a step, then SYNTAXCHECK or
DMSSYNCHK does not take effect until the beginning of the next step.

Checkpoint Mode and Restart Mode

Overview of Checkpoint Mode and Restart Mode

When used together, checkpoint mode and restart mode create an environment
where batch programs that terminate before completing can be resubmitted
without rerunning steps or labeled code sections that have already completed.
Execution resumes with either the DATA or PROC step or the labeled code section
that was executing when the failure occurred.

A labeled code section is the SAS code that begins with label: outside of a DATA or
PROC step and ends with the RUN statement that precedes the next label: that is
outside of a DATA or PROC step,. Labels must be unique. Consider using labeled
code sections when you want to group DATA or PROC steps that might need to be
grouped together because the data for one is dependent on the other.

Error Processing in SAS 607

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n104v9mm24uyi0n1pzq2jf0baqf1.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n014qbvh3po8w5n1qlqbzr22vtg0.htm&locale=en

The following example program has two labeled code sections. The first labeled
code section begins with the label readSortData: and ends with the run;
statement for proc sort data=mylib.mydata;. The second labeled code section
starts with the label report: and ends with the run; statements for proc report
data=mylib.mydata;.

readSortData:
data mylib.mydata;
...more sas code...
run;

proc sort data=mylib.mydata;
...more sas code...
run;

report:
proc report data=mylib.mydata;
...more sas code...;
run;
endReadSortReport:

Note: The use of label: in checkpoint mode and restart mode is valid only outside
of a DATA or PROC statement. Checkpoint mode and restart mode for labeled code
sections are not valid for labels within a DATA step or macros.

Checkpoint mode and restart mode can be enabled for either DATA and PROC
steps or for labeled code sections, but not both simultaneously. To use checkpoint
mode and restart mode on a step-by-step basis, use the step checkpoint mode and
the step restart mode. To use checkpoint mode and restart mode based on groups
of code sections, use the label checkpoint mode and the label restart mode. Each
group of code is identified by a unique label. If you use labels, all steps in a SAS
program must belong to a labeled code section.

When checkpoint mode is enabled, SAS records information about DATA and PROC
steps or labeled code sections in a checkpoint library. When a batch program
terminates prematurely, you can resubmit the program in restart mode to complete
execution. In restart mode, global statements are re-executed, macro definitions
are recompiled, and macros are re-executed.. SAS reads the data in the checkpoint
library to determine which steps or labeled code sections completed. Program
execution resumes with the step or the label that was executing when the failure
occurred.

The checkpoint-restart data contains information only about the DATA and PROC
steps or the labeled code sections that completed and the step or labeled code
sections that did not complete. The checkpoint-restart data does not contain the
following information:

n information about macro variables and macro definitions

n information about SAS data sets

n information that might have been processed in the step or labeled code section
that did not complete

608 Chapter 24 / Debugging Errors

Note: Checkpoint mode is not valid for batch programs that contain the DM
statement to submit commands to SAS. If checkpoint mode is enabled and SAS
encounters a DM statement, checkpoint mode is disabled and the checkpoint
catalog entry is deleted.

As a best practice, if you use labeled code sections, add a label at the end of your
program. When the program completes successfully, the label is recorded in the
checkpoint-restart data. If the program is submitted again in restart mode, SAS
knows that the program has already completed successfully.

If a DATA or PROC step must be re-executed, you can add the global statement
CHECKPOINT EXECUTE_ALWAYS immediately before the step. This statement
tells SAS to always execute the following step without considering the checkpoint-
restart data. It is applicable only to the step that follows the statement. For more
information, see “CHECKPOINT EXECUTE_ALWAYS Statement” in SAS Global
Statements: Reference.

You enable checkpoint mode and restart mode for DATA and PROC steps by using
system options when you start the batch program in SAS.

n STEPCHKPT system option enables checkpoint mode, which indicates to SAS
to record checkpoint-restart data

n STEPCHKPTLIB system option identifies a user-specified checkpoint-restart
library

n STEPRESTART system option enables restart mode, ensuring that execution
resumes with the DATA or PROC step indicated by the checkpoint-restart
library.

You enable checkpoint mode and the restart mode for labeled code sections by
using these system options when you start the batch program in SAS:

n LABELCHKPT system option enables checkpoint mode for labeled code
sections, which indicates to SAS to record checkpoint-restart data.

n LABELCHKPTLIB system option identifies a user-specified checkpoint-restart
library

n LABELRESTART system option enables restart mode, ensuring that execution
resumes with the labeled code section indicated by the checkpoint-restart
library.

If you use the Work library as your checkpoint-restart library, you can use the
CHKPTCLEAN system option to have the files in the Work library erased after a
successful execution of your batch program.

For information, see the following system options in SAS System Options:
Reference:

n “STEPCHKPT System Option” in SAS System Options: Reference

n “STEPCHKPTLIB= System Option” in SAS System Options: Reference

n “STEPRESTART System Option” in SAS System Options: Reference

n “LABELCHKPT System Option” in SAS System Options: Reference

n “LABELCHKPTLIB= System Option” in SAS System Options: Reference

Error Processing in SAS 609

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p1ttkn030d2pyzn1490p22d75nbl.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p1ttkn030d2pyzn1490p22d75nbl.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n04szwnn2n131pn111blufwcpq4q.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0rdyp3hnqofhnn1c9796j7ucjlu.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p19n2m0z6wfm8rn1czx1vcb20m8u.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n028ohz6vrrrw3n1s9fzbnak99dp.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1dv16nxc21d61n1r56h8q1da67u.htm&locale=en

n “LABELRESTART System Option” in SAS System Options: Reference

n “CHKPTCLEAN System Option” in SAS System Options: Reference

Requirements for Using Checkpoint Mode and
Restart Mode

In order for checkpoint mode and restart mode to work successfully, the number
and order of the DATA and PROC steps or labeled code sections in the batch
program must not change between SAS invocations. By specifying the
ERRORABEND and ERRORCHECK system options when SAS starts, SAS
terminates for most error conditions in order to maintain valid checkpoint-restart
data.

The checkpoint-restart library can be a user-specified library or, if no library is
specified, the checkpoint-restart data is saved to the Work library. Always start
SAS with the NOWORKTERM and NOWORKINIT system options regardless of
whether the checkpoint-restart data is saved to a user-specified library or to the
Work library. SAS writes the name of the Work library to the SAS log.

Operating Environment Information: Under UNIX and z/OS operating
environments, consider always assigning a checkpoint-restart library when you use
the STEPCHKPT option or the LABELCHKPT option. If your site sets the
CLEANWORK utility to run at regular intervals, data in the Work library might be
lost. Under z/OS, it might not be practical for your site to reuse the Work library in
a batch session.

The labels for labeled code sections must be unique. If SAS enters restart mode for
a label that is a duplicate label, SAS starts at the first label. The code between the
duplicate labels might rerun needlessly.

Setting Up and Executing Checkpoint Mode and
Restart Mode

To set up checkpoint mode and restart mode, make the following modifications to
your batch program:

n Add the CHECKPOINT EXECUTE_ALWAYS statement before any DATA and
PROC steps that you want to execute each time the batch program is
submitted.

n If your checkpoint-restart library is a user-defined library, you must add the
LIBNAME statement that defines the checkpoint-restart libref as the first
statement in the batch program. If you use the Work library as your checkpoint
library, no LIBNAME statement is necessary.

Once the batch program has been modified, you start the program using the
appropriate system options:

610 Chapter 24 / Debugging Errors

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0wxiz5brkfzrun18ddrn5rvi974.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n17pilbiczto7in1o4qh96lcvkv1.htm&locale=en

n For checkpoint-restart data that is saved in the Work library, start a batch SAS
session that specifies these system options:

o SYSIN, if required in your operating environment, names the batch program.

o STEPCHKPT or LABELCHKPT enables checkpoint mode.

o NOWORKTERM saves the Work library when SAS ends.

o NOWORKINIT does not initialize the Work library when SAS starts.

o ERRORCHECK STRICT puts SAS in syntax-check mode when an error occurs
in the LIBNAME, FILENAME, %INCLUDE, and LOCK statements.

o ERRORABEND specifies whether SAS terminates for most errors.

o CHKPTCLEAN specifies whether to erase files in the Work library and delete
the Work library if the batch program runs successfully.

In the Windows operating environment, the following SAS command starts a
batch program in checkpoint mode using the Work library as the checkpoint-
restart library:

sas -sysin 'c:\mysas\myprogram.sas'-stepchkpt -noworkterm -noworkinit
 -errorcheck strict -errorabend -chkptclean

n For checkpoint-restart data that is saved in a user-specified library, start a
batch SAS session that includes these system options:

o SYSIN, if required in your operating environment, names the batch program.

o STEPCHKPT or LABELCHKPT enables checkpoint mode.

o STEPCHKPTLIB or LABELCHKPTLIB specifies the libref of the library where
SAS saves the checkpoint-restart data.

o NOWORKTERM saves the Work library when SAS ends.

o NOWORKINIT does not initialize the Work library when SAS starts.

o ERRORCHECK STRICT puts SAS in syntax-check mode when an error occurs
in the LIBNAME, FILENAME, %INCLUDE, and LOCK statements.

o ERRORABEND specifies whether SAS terminates for most errors.

In the Windows operating environment, the following SAS command starts a
batch program in checkpoint mode using a user-specified checkpoint-restart
library:

sas -sysin 'c:\mysas\myprogram.sas' -labelchkpt -labelchkptlib mylibref
 -noworkterm -noworkinit -errorcheck strict -errorabbend

In this case, the first statement in MyProgram.sas is the LIBNAME statement
that defines the MyLibref libref.

Restarting Batch Programs

To resubmit a batch SAS session using the checkpoint-restart data that is saved in
the Work library, include these system options when SAS starts:

n SYSIN, if required in your operating environment, names the batch program.

Error Processing in SAS 611

n STEPCHKPT or LABELCHKPT continues checkpoint mode.

n STEPRESTART or LABELRESTART enables restart mode, indicating to SAS to
use the checkpoint-restart data.

n NOWORKINIT starts SAS using the Work library from the previous SAS session.

n NOWORKTERM saves the Work library when SAS ends.

n ERRORCHECK STRICT puts SAS in syntax-check mode when an error occurs in
the LIBNAME, FILENAME, %INCLUDE, and LOCK statements.

n ERRORABEND specifies whether SAS terminates for most errors.

n CHKPTCLEAN specifies whether to erase files in the Work library if the batch
program runs successfully.

In the Windows operating environment, the following SAS command resubmits a
batch program whose checkpoint-restart data was saved to the Work library:

sas -sysin 'c:\mysas\mysasprogram.sas' -stepchkpt -steprestart -noworkinit
 -noworkterm -errorcheck strict -errorabend -chkptclean

By specifying the NOWORKTERM system options and either the STEPCHKPT or
LABELCHKPT system option, checkpoint mode continues to be enabled once the
batch program restarts.

To resubmit a batch SAS session using the checkpoint-restart data that is saved in
a user-specified library, include these system options when SAS starts:

n SYSIN, if required in you operating environment, names the batch program.

n STEPCHKPT or LABELCHKPT continues checkpoint mode.

n STEPRESTART or LABELRESTART enables restart mode, indicating to SAS to
use the checkpoint-restart data.

n STEPCHKPTLIB or LABELCHKPTLIB specifies the libref of the checkpoint-
restart library.

n NOWORKTERM saves the Work library when SAS ends.

n NOWORKINIT does not initialize the Work library when SAS starts.

n ERRORCHECK STRICT puts SAS in syntax-check mode when an error occurs in
the LIBNAME, FILENAME, %INCLUDE, and LOCK statements.

n ERRORABEND specifies whether SAS terminates for most errors.

In the Windows operating environment, the following SAS command resubmits a
batch program whose checkpoint-restart data was saved to a user-specified library:

sas -sysin 'c:\mysas\mysasprogram.sas' -labelchkpt -labelrestart -labelchklib
 -noworkterm -noworkinit mylibref -errorcheck strict -errorabend

Using System Options to Control Error Handling
You can use the following system options to control error handling (resolve errors)
in your program:

612 Chapter 24 / Debugging Errors

BYERR
specifies whether SAS produces errors when the SORT procedure attempts to
process a _NULL_ data set.

CHKPTCLEAN
in checkpoint mode or reset mode, specifies whether to erase files in the Work
directory if a batch program executes successfully.

DKRICOND=
specifies the level of error detection to report when a variable is missing from
an input data set during the processing of a DROP=, KEEP=, and RENAME= data
set option.

DKROCOND=
specifies the level of error detection to report when a variable is missing from
an output data set during the processing of a DROP=, KEEP=, and RENAME=
data set option.

DSNFERR
when a SAS data set cannot be found, specifies whether SAS issues an error
message.

ERRORABEND
specifies whether SAS responds to errors by terminating.

ERRORCHECK=
specifies whether SAS enters syntax-check mode when errors are found in the
LIBNAME, FILENAME, %INCLUDE, and LOCK statements.

ERRORS=
specifies the maximum number of observations for which SAS issues complete
error messages.

FMTERR
when a variable format cannot be found, specifies whether SAS generates an
error or continues processing.

INVALIDDATA=
specifies the value that SAS assigns to a variable when invalid numeric data is
encountered.

LABELCHKPT
specifies whether SAS checkpoint-restart data is to be recorded for a batch
program that contains labeled code sections.

LABELCHKPTLIB
specifies the libref of the library where checkpoint-restart data is saved for
labeled code sections.

LABELRESTART
specifies whether to execute a batch program by using checkpoint-restart data
for labeled code sections.

MERROR
specifies whether SAS issues a warning message when a macro-like name does
not match a macro keyword.

QUOTELENMAX
if a quoted string exceeds the maximum length allowed, specifies whether SAS
writes a warning message to the SAS log.

Error Processing in SAS 613

SERROR
specifies whether SAS issues a warning message when a macro variable
reference does not match a macro variable.

STEPCHKPT
specifies whether checkpoint-restart data is to be recorded for a batch program.

STEPCHKPTLIB=
specifies the libref of the library where checkpoint-restart data is saved.

STEPRESTART
specifies whether to execute a batch program by using checkpoint-restart data.

VARINITCHK=
specifies whether to stop or continue processing a DATA step when a variable is
not initialized. You can also specify the type of message that is written to the
SAS log.

VNFERR
specifies whether SAS issues an error or warning when a BY variable exists in
one data set but not another data set. SAS issues only these errors or warnings
when processing the SET, MERGE, UPDATE, or MODIFY statements.

For more information about SAS system options, see SAS System Options:
Reference.

Using Return Codes
In some operating environments, SAS passes a return code to the system, but the
way in which return codes are accessed is specific to your operating environment.
See Return Codes and Completion Status in SAS 9.4 Companion for Windows for
more information.

Operating Environment Information: For more information about return codes,
see the SAS documentation for your operating environment.

Other Error-Checking Options
To help determine your programming errors, you can use the following methods:

n the _IORC_ automatic variable that SAS creates (and the associated IORCMSG
function) when you use the MODIFY statement or the KEY= data set option in
the SET statement

n the ERRORS= system option to limit the number of identical errors that SAS
writes to the log

n the SYSRC and SYSMSG functions to return information when a data set or
external-files access function encounters an error condition

n the SYSRC automatic macro variable to receive return codes

614 Chapter 24 / Debugging Errors

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://support.sas.com/documentation/cdl/en/hostwin/63285/HTML/default/viewer.htm#rccs.htm

n the SYSERR automatic macro variable to detect major system errors, such as
out of memory or failure of the component system

n log control options:

MSGLEVEL=
controls the level of detail in messages that are written to the SAS log.

PRINTMSGLIST
controls the printing of extended lists of messages to the SAS log.

SOURCE
controls whether SAS writes source statements to the SAS log.

SOURCE2
controls whether SAS writes source statements included by %INCLUDE to
the SAS log.

Error Checking When Using Indexes to
Randomly Access or Update Data

The Importance of Error Checking
When reading observations with the SET statement and KEY= option or with the
MODIFY statement, error checking is imperative for several reasons. The most
important reason is that these tools use nonsequential access methods. Therefore,
there is no guarantee that an observation will be located that satisfies the request.
Error checking enables you to direct execution to specific code paths, depending on
the outcome of the I/O operation. Your program continues execution for expected
conditions and terminate execution when unexpected results occur.

Error-Checking Tools
Two tools have been created to make error checking easier when you use the
MODIFY statement or the SET statement with the KEY= option to process SAS
data sets:

n _IORC_ automatic variable

n SYSRC autocall macro

IORC is created automatically when you use the MODIFY statement or the SET
statement with KEY=. The value of _IORC_ is a numeric return code that indicates
the status of the I/O operation from the most recently executed MODIFY or SET
statement with KEY=. Checking the value of this variable enables you to detect

Error Checking When Using Indexes to Randomly Access or Update Data 615

abnormal I/O conditions and to direct execution down specific code paths instead
of having the application terminate abnormally. For example, if the KEY= variable
value does match between two observations, you might want to combine them and
output an observation. If they do not match, however, you might want to only write
a note to the log.

Because the values of the _IORC_ automatic variable are internal and subject to
change, the SYSRC macro was created to enable you to test for specific I/O
conditions while protecting your code from future changes in _IORC_ values. When
you use SYSRC, you can check the value of _IORC_ by specifying one of the
mnemonics listed in the following table.

Table 24.2 Most Common Mnemonic Values of _IORC_ for DATA Step Processing

Mnemonic Value Meaning of Return Code When Return Code Occurs

_DSENMR The Transaction data set
observation does not exist in
the Master data set.

MODIFY with BY is used and
no match occurs.

_DSEMTR Multiple Transaction data set
observations with the same
BY variable value do not exist
in the Master data set.

MODIFY with BY is used and
consecutive observations with
the same BY values do not
find a match in the first data
set. In this situation, the first
observation that fails to find a
match returns _DSENMR. The
subsequent observations
return _DSEMTR.

_DSENOM No matching observation was
found in the Master data set.

SET or MODIFY with KEY=
finds no match.

_SENOCHN The output operation was
unsuccessful.

the KEY= option in a MODIFY
statement contains duplicate
values.

_SOK The I/O operation was
successful.

a match is found.

616 Chapter 24 / Debugging Errors

Example 1: Routing Execution When an Unexpected
Condition Occurs

Overview

This example shows how to prevent an unexpected condition from terminating the
DATA step. The goal is to update a master data set with new information from a
transaction data set. This application assumes that there are no duplicate values
for the common variable in either data set.

Note: This program works as expected only if the master and transaction data sets
contain no consecutive observations with the same value for the common variable.
For an explanation of the behavior of MODIFY with KEY= when duplicates exist,
see the MODIFY statement in SAS DATA Step Statements: Reference.

Input Data Sets

The Transaction data set contains three observations: two updates to information
in Master and a new observation about PartNumber value 6 that needs to be
added. Master is indexed on PartNumber. There are no duplicate values of
PartNumber in Master or Transaction. The following shows the Master and the
Transaction input data sets:

 Master Transaction

OBS PartNumber Quantity OBS PartNumber AddQuantity

 1 1 10 1 4 14
 2 2 20 2 6 16
 3 3 30 3 2 12
 4 4 40
 5 5 50

Original Program

The objective is to update the Master data set with information from the
Transaction data set. The program reads Transaction sequentially. Master is read
directly, not sequentially, using the MODIFY statement and the KEY= option. Only
observations with matching values for PartNumber, which is the KEY= variable, are
read from Master.

Error Checking When Using Indexes to Randomly Access or Update Data 617

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

data master; 1
 set transaction; 2
 modify master key=PartNumber; 3
 Quantity = Quantity + AddQuantity; 4
run;

1 Open the Master data set for update.

2 Read an observation from the Transaction data set.

3 Match observations from the Master data set based on the values of
PartNumber.

4 Update the information about Quantity by adding the new values from the
Transaction data set.

Resulting Log

This program has correctly updated one observation but it stopped when it could
not find a match for PartNumber value 6. The following lines are written to the SAS
log:

 ERROR: No matching observation was found in Master data set.
 PartNumber=6 AddQuantity=16 Quantity=70 _ERROR_=1
 IORC=1230015 _N_=2
 NOTE: The SAS System stopped processing this step because
 of errors.
 NOTE: The data set WORK.MASTER has been updated. There were
 1 observations rewritten, 0 observations added and 0
 observations deleted.

Resulting Data Set

The Master file was incorrectly updated. The updated master has five observations.
One observation was updated correctly, a new one was not added, and a second
update was not made. The following shows the incorrectly updated Master data
set:

 Master

OBS PartNumber Quantity
 1 1 10
 2 2 20
 3 3 30
 4 4 54
 5 5 50

618 Chapter 24 / Debugging Errors

Revised Program

The objective is to apply two updates and one addition to Master. This action
prevents the DATA step from stopping when it does not find a match in Master for
the PartNumber value 6 in Transaction. By adding error checking, this DATA step is
allowed to complete normally and produce a correctly revised version of Master.
This program uses the _IORC_ automatic variable and the SYSRC autocall macro in
a SELECT group to check the value of the _IORC_ variable. If a match is found, the
program executes the appropriate code.

data master; 1

 set transaction; 2
 modify master key=PartNumber; 3

select(_iorc_); 4

 when(%sysrc(_sok)) do;
 Quantity = Quantity + AddQuantity;
 replace;
 end;
 when(%sysrc(_dsenom)) do;
 Quantity = AddQuantity;
 error = 0;
 output;
 end;
 otherwise do;
 put 'ERROR: Unexpected value for _IORC_= ' _iorc_;
 put 'Program terminating. DATA step iteration # ' _n_;
 put _all_;
 stop;
 end;
 end;
run;

1 Open the Master data set for update.

2 Read an observation from the Transaction data set.

3 Match observations from the Master data set based on the value of
PartNumber.

4 Take the correct course of action based on whether a matching value for
PartNumber is found in Master. Update Quantity by adding the new values from
Transaction. The SELECT group directs execution to the correct code. When a
match occurs (_SOK), update Quantity and replace the original observation in
Master. When there is no match (_DSENOM), set Quantity equal to the
AddQuantity amount from Transaction, and append a new observation.
ERROR is reset to 0 to prevent an error condition that would write the
contents of the program data vector to the SAS log. When an unexpected
condition occurs, write messages and the contents of the program data vector
to the log, and stop the DATA step.

Error Checking When Using Indexes to Randomly Access or Update Data 619

Resulting Log

The DATA step executed without error and observations were appropriately
updated and added. The following lines are written to the SAS log:

 NOTE: The data set WORK.MASTER has been updated. There were
 2 observations rewritten, 1 observations added and 0
 observations deleted.

Correctly Updated Master Data Set

Master contains updated quantities for PartNumber values 2 and 4 and a new
observation for PartNumber value 6. The following shows the correctly updated
Master data set:

 Master

OBS PartNumber Quantity
 1 1 10
 2 2 32
 3 3 30
 4 4 54
 5 5 50
 6 6 16

Example 2: Using Error Checking on All Statements
That Use KEY=

Overview

This example shows how important it is to use error checking on all statements
that use the KEY= option when reading data.

Input Data Sets

The Master and Description data sets are both indexed on PartNumber. The Order
data set contains values for all parts in a single order. Only Order contains the
PartNumber value 8. The following shows the Master, Order, and Description input
data sets:

620 Chapter 24 / Debugging Errors

Master ORDER

 OBS PartNumber Quantity OBS PartNumber

 1 1 10 1 2
 2 2 20 2 4
 3 3 30 3 1
 4 4 40 4 3
 5 5 50 5 8
 6 5
 7 6
 Description

 OBS PartNumber PartDescription

 1 4 Nuts
 2 3 Bolts
 3 2 Screws
 4 6 Washers

Original Program with Logic Error

The objective is to create a data set that contains the description and number in
stock for each part in a single order, except for the parts that are not found in either
of the two input data sets, Master and Description. A transaction data set contains
the part numbers of all parts in a single order. One data set is read to retrieve the
description of the part and another is read to retrieve the quantity that is in stock.

The program reads the Order data set sequentially and then uses SET with the
KEY= option to read the Master and Description data sets directly. This reading is
based on the key value of PartNumber. When a match occurs, an observation that
contains all the necessary information for each value of PartNumber in Order is
written. This first attempt at a solution uses error checking for only one of the two
SET statements that use KEY= to read a data set.

data combine; 1

 length PartDescription $ 15;
 set order; 2
 set description key=PartNumber; 2
 set master key=PartNumber; 2
 select(_iorc_); 3

 when(%sysrc(_sok)) do;
 output;
 end;
 when(%sysrc(_dsenom)) do;
 PartDescription = 'No description';
 error = 0;
 output;
 end;
 otherwise do;
 put 'ERROR: Unexpected value for _IORC_= ' _iorc_;
 put 'Program terminating.';

Error Checking When Using Indexes to Randomly Access or Update Data 621

 put _all_;
 stop;
 end;
 end;
run;

1 Create the Combine data set.

2 Read an observation from the Order data set. Read an observation from the
Description and the Master data sets based on a matching value for
PartNumber, the key variable. Note that no error checking occurs after an
observation is read from Description.

3 Take the correct course of action, based on whether a matching value for
PartNumber is found in Master or Description. (This logic is based on the
erroneous assumption that this SELECT group performs error checking for both
of the preceding SET statements that contain the KEY= option. It actually
performs error checking for only the most recent one.) The SELECT group
directs execution to the correct code. When a match occurs (_SOK), the value of
PartNumber in the observation that is being read from Master matches the
current PartNumber value from Order. So, output an observation. When there is
no match (_DSENOM), no observations in Master contain the current value of
PartNumber, so set the value of PartDescription appropriately and output an
observation. _ERROR_ is reset to 0 to prevent an error condition that would
write the contents of the program data vector to the SAS log. When an
unexpected condition occurs, write messages and the contents of the program
data vector to the log, and stop the DATA step.

Resulting Log

This program creates an output data set but executes with one error. The following
lines are written to the SAS log:

 PartNumber=1 PartDescription=Nuts Quantity=10 _ERROR_=1
 IORC=0 _N_=3
 PartNumber=5 PartDescription=No description Quantity=50
 ERROR=1 _IORC_=0 _N_=6
 NOTE: The data set WORK.COMBINE has 7 observations and 3 variables.

Resulting Data Set

The following shows the incorrectly created Combine data set. Observation 5
should not be in this data set. PartNumber value 8 does not exist in either Master
or Description, so no Quantity should be listed for it. Also, observations 3 and 7
contain descriptions from observations 2 and 6, respectively.

 Combine

OBS PartNumber PartDescription Quantity
 1 2 Screws 20

622 Chapter 24 / Debugging Errors

 2 4 Nuts 40
 3 1 Nuts 10
 4 3 Bolts 30
 5 8 No description 30
 6 5 No description 50
 7 6 No description 50

Revised Program

To create an accurate output data set, this example performs error checking on
both SET statements that use the KEY= option:

data combine(drop=Foundes); 1
 length PartDescription $ 15;
 set order; 2
 Foundes = 0; 3
 set description key=PartNumber; 4

 select(_iorc_); 5

 when(%sysrc(_sok)) do;
 Foundes = 1;
 end;
 when(%sysrc(_dsenom)) do;
 PartDescription = 'No description';
 error = 0;
 end;
 otherwise do;
 put 'ERROR: Unexpected value for _IORC_= ' _iorc_;
 put 'Program terminating. Data set accessed is Description';
 put _all_;
 error = 0;
 stop;
 end;
 end;
set master key=PartNumber; 6
select(_iorc_); 7
 when(%sysrc(_sok)) do;
 output;
 end;
 when(%sysrc(_dsenom)) do;
 if not Foundes then do;
 error = 0;
 put 'WARNING: PartNumber ' PartNumber 'is not in'
 ' Description or Master.';
 end;
 else do;
 Quantity = 0;
 error = 0;
 output;
 end;
 end;
 otherwise do;
 put 'ERROR: Unexpected value for _IORC_= ' _iorc_;
 put 'Program terminating. Data set accessed is Master';
 put _all_;

Error Checking When Using Indexes to Randomly Access or Update Data 623

 error = 0;
 stop;
 end;
 end; /* ends the SELECT group */
run;

1 Create the Combine data set.

2 Read an observation from the Order data set.

3 Create the variable Foundes so that its value can be used later to indicate when
a PartNumber value has a match in the Description data set.

4 Read an observation from the Description data set, using PartNumber as the key
variable.

5 Take the correct course of action based on whether a matching value for
PartNumber is found in Description. The SELECT group directs execution to the
correct code based on the value of _IORC_. When a match occurs (_SOK), the
value of PartNumber in the observation that is being read from Description
matches the current value from Order. Foundes is set to 1 to indicate that
Description contributed to the current observation. When there is no match
(_DSENOM), no observations in Description contain the current value of
PartNumber, so the description is set appropriately. _ERROR_ is reset to 0 to
prevent an error condition that would write the contents of the program data
vector to the SAS log. Any other _IORC_ value indicates that an unexpected
condition has been met, so messages are written to the log and the DATA step is
stopped.

6 Read an observation from the Master data set, using PartNumber as a key
variable.

7 Take the correct course of action based on whether a matching value for
PartNumber is found in Master. When a match is found (_SOK) between the
current PartNumber value from Order and from Master, write an observation.
When a match is not found (_DSENOM) in Master, test the value of Foundes. If
Foundes is not true, then a value was not found in Description either, so write a
message to the log but do not write an observation. If Foundes is true, however,
the value is in Description but not Master. So write an observation but set
Quantity to 0. Again, if an unexpected condition occurs, write a message and
stop the DATA step.

Resulting Log

The DATA step executed without error. Six observations were correctly created and
the following message was written to the log:

 WARNING: PartNumber 8 is not in Description or Master.
 NOTE: The data set WORK.COMBINE has 6 observations
 and 3 variables.

624 Chapter 24 / Debugging Errors

Correctly Created Combine Data Set

The following shows the correctly updated Combine data set. Note that Combine
does not contain an observation with the PartNumber value 8. This value does not
occur in either Master or Description.

 Combine

OBS PartNumber PartDescription Quantity

 1 2 Screws 20
 2 4 Nuts 40
 3 1 No description 10
 4 3 Bolts 30
 5 5 No description 50
 6 6 Washers 0

Examples

Example: Use the Debugger Tool to Debug Logic
Errors in the DATA Step

Example Code

The following example shows how to invoke the DATA step debugger. The DEBUG
option is specified in the DATA statement after the font slash (/).

data mydata2 / debug;
 set mydata1;
run;

Key Ideas

n The DATA step debugger is a set of commands that enables you to debug logic
errors in the SAS DATA step.

n To use the DATA step debugger, specify the DEBUG option in the DATA statement

n You can use the DATA step debugger to debug logic errors in the SAS DATA step.

Examples 625

http://documentation.sas.com/?docsetId=basess&docsetVersion=9.4&docsetTarget=n1lhw9fnpo7lnjn1vfhs4buawdsb.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&docsetTargetAnchor=n0mef47onx46d0n1iqbtv6aeqe0h&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en

n The DATA step debugger enables you to issue commands to execute DATA step
statements one by one and then pause to display the resulting variables' values in
a window.

n The DATA step debugger is not supported for a DATA step that is running in CAS.

See Also

n Using the DATA Step Debugger: Examples

n DEBUG option

n DATA statement

n Base SAS Utilities: Reference

Example: Route Execution When an Unexpected
Condition Occurs

Example Code

This example shows how to prevent an unexpected condition from terminating the
DATA step. The goal is to update a master data set with new information from a
transaction data set. This application assumes that there are no duplicate values
for the common variable in either data set.

Note: This program works as expected only if the master and transaction data sets
contain no consecutive observations with the same value for the common variable.
For an explanation of the behavior of MODIFY with KEY= when duplicates exist,
see the MODIFY statement in SAS DATA Step Statements: Reference.

The Transaction data set contains three observations: two updates to information
in Master and a new observation about PartNumber value 6 that needs to be
added. Master is indexed on PartNumber. There are no duplicate values of
PartNumber in Master or Transaction. The following shows the Master and the
Transaction input data sets:

 Master Transaction

OBS PartNumber Quantity OBS PartNumber AddQuantity

 1 1 10 1 4 14
 2 2 20 2 6 16
 3 3 30 3 2 12

626 Chapter 24 / Debugging Errors

http://documentation.sas.com/?docsetId=basess&docsetVersion=9.4&docsetTarget=n0kyppv6edlp8un1nuf62mjzuroh.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

 4 4 40
 5 5 50

The objective is to update the Master data set with information from the
Transaction data set. The program reads Transaction sequentially. Master is read
directly, not sequentially, using the MODIFY statement and the KEY= option. Only
observations with matching values for PartNumber, which is the KEY= variable, are
read from Master.

data master; /* 1 */
 set transaction; /* 2 */
 modify master key=PartNumber; /* 3 */
 Quantity = Quantity + AddQuantity; /* 4 */
run;

1 Open the Master data set for update.

2 Read an observation from the Transaction data set.

3 Match observations from the Master data set based on the values of
PartNumber.

4 Update the information about Quantity by adding the new values from the
Transaction data set.

This program has correctly updated one observation but it stopped when it could
not find a match for PartNumber value 6. The following lines are written to the SAS
log:

 ERROR: No matching observation was found in Master data set.
 PartNumber=6 AddQuantity=16 Quantity=70 _ERROR_=1
 IORC=1230015 _N_=2
 NOTE: The SAS System stopped processing this step because
 of errors.
 NOTE: The data set WORK.MASTER has been updated. There were
 1 observations rewritten, 0 observations added and 0
 observations deleted.

Resulting Data Set: The Master file was incorrectly updated. The updated master
has five observations. One observation was updated correctly, a new one was not
added, and a second update was not made. The following shows the incorrectly
updated Master data set:

 Master

OBS PartNumber Quantity
 1 1 10
 2 2 20
 3 3 30
 4 4 54
 5 5 50

The objective is to apply two updates and one addition to Master. This action
prevents the DATA step from stopping when it does not find a match in Master for
the PartNumber value 6 in Transaction. By adding error checking, this DATA step is
allowed to complete normally and produce a correctly revised version of Master.
This program uses the _IORC_ automatic variable and the SYSRC autocall macro in
a SELECT group to check the value of the _IORC_ variable. If a match is found, the
program executes the appropriate code.

Examples 627

data master; /* 1 */
 set transaction; /* 2 */
 modify master key=PartNumber; /* 3 */

select(_iorc_); /* 4 */
 when(%sysrc(_sok)) do;
 Quantity = Quantity + AddQuantity;
 replace;
 end;
 when(%sysrc(_dsenom)) do;
 Quantity = AddQuantity;
 error = 0;
 output;
 end;
 otherwise do;
 put 'ERROR: Unexpected value for _IORC_= ' _iorc_;
 put 'Program terminating. DATA step iteration # ' _n_;
 put _all_;
 stop;
 end;
 end;
run;

1 Open the Master data set for update.

2 Read an observation from the Transaction data set.

3 Match observations from the Master data set based on the value of
PartNumber.

4 Take the correct course of action based on whether a matching value for
PartNumber is found in Master. Update Quantity by adding the new values from
Transaction. The SELECT group directs execution to the correct code. When a
match occurs (_SOK), update Quantity and replace the original observation in
Master. When there is no match (_DSENOM), set Quantity equal to the
AddQuantity amount from Transaction, and append a new observation.
ERROR is reset to 0 to prevent an error condition that would write the
contents of the program data vector to the SAS log. When an unexpected
condition occurs, write messages and the contents of the program data vector
to the log, and stop the DATA step.

Example: Use Error Checking on All Statements
That Use KEY=

Overview

It is important it is to use error checking on all statements that use the KEY= option
when reading data.

628 Chapter 24 / Debugging Errors

Input Data Sets

The Master and Description data sets are both indexed on PartNumber. The Order
data set contains values for all parts in a single order. Only Order contains the
PartNumber value 8. The following shows the Master, Order, and Description input
data sets:

Master ORDER

 OBS PartNumber Quantity OBS PartNumber

 1 1 10 1 2
 2 2 20 2 4
 3 3 30 3 1
 4 4 40 4 3
 5 5 50 5 8
 6 5
 7 6
 Description

 OBS PartNumber PartDescription

 1 4 Nuts
 2 3 Bolts
 3 2 Screws
 4 6 Washers

Original Program with Logic Error

The objective is to create a data set that contains the description and number in
stock for each part in a single order, except for the parts that are not found in either
of the two input data sets, Master and Description. A transaction data set contains
the part numbers of all parts in a single order. One data set is read to retrieve the
description of the part and another is read to retrieve the quantity that is in stock.

The program reads the Order data set sequentially and then uses SET with the
KEY= option to read the Master and Description data sets directly. This reading is
based on the key value of PartNumber. When a match occurs, an observation that
contains all the necessary information for each value of PartNumber in Order is
written. This first attempt at a solution uses error checking for only one of the two
SET statements that use KEY= to read a data set.

data combine; /* 1 */
 length PartDescription $ 15;
 set order; /* 2 */
 set description key=PartNumber; /* 2 */
 set master key=PartNumber; /* 2 */
 select(_iorc_); /* 3 */
 when(%sysrc(_sok)) do;

Examples 629

 output;
 end;
 when(%sysrc(_dsenom)) do;
 PartDescription = 'No description';
 error = 0;
 output;
 end;
 otherwise do;
 put 'ERROR: Unexpected value for _IORC_= ' _iorc_;
 put 'Program terminating.';
 put _all_;
 stop;
 end;
 end;
run;

1 Create the Combine data set.

2 Read an observation from the Order data set. Read an observation from the
Description and the Master data sets based on a matching value for
PartNumber, the key variable. Note that no error checking occurs after an
observation is read from Description.

3 Take the correct course of action, based on whether a matching value for
PartNumber is found in Master or Description. (This logic is based on the
erroneous assumption that this SELECT group performs error checking for both
of the preceding SET statements that contain the KEY= option. It actually
performs error checking for only the most recent one.) The SELECT group
directs execution to the correct code. When a match occurs (_SOK), the value of
PartNumber in the observation that is being read from Master matches the
current PartNumber value from Order. So, output an observation. When there is
no match (_DSENOM), no observations in Master contain the current value of
PartNumber, so set the value of PartDescription appropriately and output an
observation. _ERROR_ is reset to 0 to prevent an error condition that would
write the contents of the program data vector to the SAS log. When an
unexpected condition occurs, write messages and the contents of the program
data vector to the log, and stop the DATA step.

Resulting Log

This program creates an output data set but executes with one error. The following
lines are written to the SAS log:

 PartNumber=1 PartDescription=Nuts Quantity=10 _ERROR_=1
 IORC=0 _N_=3
 PartNumber=5 PartDescription=No description Quantity=50
 ERROR=1 _IORC_=0 _N_=6
 NOTE: The data set WORK.COMBINE has 7 observations and 3 variables.

630 Chapter 24 / Debugging Errors

Resulting Data Set

The following shows the incorrectly created Combine data set. Observation 5
should not be in this data set. PartNumber value 8 does not exist in either Master
or Description, so no Quantity should be listed for it. Also, observations 3 and 7
contain descriptions from observations 2 and 6, respectively.

 Combine

OBS PartNumber PartDescription Quantity
 1 2 Screws 20
 2 4 Nuts 40
 3 1 Nuts 10
 4 3 Bolts 30
 5 8 No description 30
 6 5 No description 50
 7 6 No description 50

Revised Program

To create an accurate output data set, this example performs error checking on
both SET statements that use the KEY= option:

data combine(drop=Foundes); /* 1 */
 length PartDescription $ 15;
 set order; /* 2 */
 Foundes = 0; /* 3 */
 set description key=PartNumber; /* 4 */
 select(_iorc_); /* 5 */
 when(%sysrc(_sok)) do;
 Foundes = 1;
 end;
 when(%sysrc(_dsenom)) do;
 PartDescription = 'No description';
 error = 0;
 end;
 otherwise do;
 put 'ERROR: Unexpected value for _IORC_= ' _iorc_;
 put 'Program terminating. Data set accessed is Description';
 put _all_;
 error = 0;
 stop;
 end;
 end;
set master key=PartNumber; /* 6 */
select(_iorc_); /* 7 */
 when(%sysrc(_sok)) do;
 output;
 end;
 when(%sysrc(_dsenom)) do;

Examples 631

 if not Foundes then do;
 error = 0;
 put 'WARNING: PartNumber ' PartNumber 'is not in'
 ' Description or Master.';
 end;
 else do;
 Quantity = 0;
 error = 0;
 output;
 end;
 end;
 otherwise do;
 put 'ERROR: Unexpected value for _IORC_= ' _iorc_;
 put 'Program terminating. Data set accessed is Master';
 put _all_;
 error = 0;
 stop;
 end;
 end; /* ends the SELECT group */
run;

1 Create the Combine data set.

2 Read an observation from the Order data set.

3 Create the variable Foundes so that its value can be used later to indicate when
a PartNumber value has a match in the Description data set.

4 Read an observation from the Description data set, using PartNumber as the key
variable.

5 Take the correct course of action based on whether a matching value for
PartNumber is found in Description. The SELECT group directs execution to the
correct code based on the value of _IORC_. When a match occurs (_SOK), the
value of PartNumber in the observation that is being read from Description
matches the current value from Order. Foundes is set to 1 to indicate that
Description contributed to the current observation. When there is no match
(_DSENOM), no observations in Description contain the current value of
PartNumber, so the description is set appropriately. _ERROR_ is reset to 0 to
prevent an error condition that would write the contents of the program data
vector to the SAS log. Any other _IORC_ value indicates that an unexpected
condition has been met, so messages are written to the log and the DATA step is
stopped.

6 Read an observation from the Master data set, using PartNumber as a key
variable.

7 Take the correct course of action based on whether a matching value for
PartNumber is found in Master. When a match is found (_SOK) between the
current PartNumber value from Order and from Master, write an observation.
When a match is not found (_DSENOM) in Master, test the value of Foundes. If
Foundes is not true, then a value was not found in Description either, so write a
message to the log but do not write an observation. If Foundes is true, however,
the value is in Description but not Master. So write an observation but set
Quantity to 0. Again, if an unexpected condition occurs, write a message and
stop the DATA step.

632 Chapter 24 / Debugging Errors

Resulting Log

The DATA step executed without error. Six observations were correctly created and
the following message was written to the log:

 WARNING: PartNumber 8 is not in Description or Master.
 NOTE: The data set WORK.COMBINE has 6 observations
 and 3 variables.

Correctly Created Combine Data Set

The following shows the correctly updated Combine data set. Note that Combine
does not contain an observation with the PartNumber value 8. This value does not
occur in either Master or Description.

 Combine

OBS PartNumber PartDescription Quantity

 1 2 Screws 20
 2 4 Nuts 40
 3 1 No description 10
 4 3 Bolts 30
 5 5 No description 50
 6 6 Washers 0

Example: Process Multiple Errors

Example Code

Depending on the type and severity of the error, the method that you use to run
SAS, and your operating environment, SAS either stops program processing or flags
errors and continues processing. SAS continues to check individual statements in
procedures after it finds certain types of errors. In some cases SAS can detect
multiple errors in a single statement and might issue more error messages for a
given situation. This is likely to occur if the statement containing the error creates
an output SAS data set.

data temporary;
 Item1=4;
run;

proc print data=temporary;

Examples 633

 var Item1 Item2 Item3;
run;

Example Code 24.8 SAS Log: Multiple Program Errors

273 data temporary;
274 Item1=4;
275 run;
NOTE: The data set WORK.TEMPORARY has 1 observations and 1
 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds

276
277 proc print data=temporary;
ERROR: Variable ITEM2 not found.
ERROR: Variable ITEM3 not found.
278 var Item1 Item2 Item3;
279 run;
NOTE: The SAS System stopped processing this step because of
 errors.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.52 seconds
 cpu time 0.00 seconds

280 proc printto; run;

SAS displays two error messages, one for the variable Item2 and one for the
variable Item3.

634 Chapter 24 / Debugging Errors

25
Optimizing System Performance

Definitions for Optimizing System Performance . 636

Collecting and Interpreting Performance Statistics . 636
Using the FULLSTIMER and STIMER System Options . 636
Interpreting FULLSTIMER and STIMER Statistics . 637

Techniques for Optimizing I/O . 638
Overview of Techniques for Optimizing I/O . 638
Using WHERE Processing . 639
Using DROP and KEEP Statements . 639
Using LENGTH Statements . 640
Using the OBS= and FIRSTOBS= Data Set Options . 640
Creating SAS Data Sets . 640
Using Indexes . 640
Accessing Data through SAS Views . 641
Using Engines Efficiently . 641
Setting System Options to Improve I/O Performance . 642
Setting VBUFSIZE= and OBSBUF= for SAS DATA Step Views . 644
Using the SASFILE Statement . 645
Using the DATASETS Procedure to Modify Attributes . 645
Storing Variables as Characters . 645

Techniques for Optimizing Memory Usage . 646
System Options . 646
Using the BY Statement with PROC MEANS . 646

Techniques for Optimizing CPU Performance . 647
Reducing CPU Time By Using More Memory or Reducing I/O . 647
Storing a Compiled Program for Computation-Intensive DATA Steps 647
Reducing Search Time for SAS Executable Files . 647
Specifying Variable Lengths . 648
Using Parallel Processing . 648
Reducing CPU Time By Modifying Program Compilation Optimization 648

Calculating Data Set Size . 649

635

Definitions for Optimizing System
Performance

performance statistics
are measurements of the total input and output operations (I/O), memory, and
CPU time used to process individual DATA steps or PROC steps. You can obtain
these statistics by using SAS system options that can help you to measure your
job's initial performance and to determine how to improve performance.

system performance
is measured by the overall amount of I/O, memory, and CPU time that your
system uses to process SAS programs. By using the techniques discussed in the
following sections, you can reduce or reallocate your usage of these three
critical resources to improve system performance. You might not be able to take
advantage of every technique for every situation, but you can choose the ones
that are most appropriate for a particular situation.

Collecting and Interpreting Performance
Statistics

Using the FULLSTIMER and STIMER System
Options

The FULLSTIMER and STIMER system options control the printing of performance
statistics in the SAS log. These options produce different results, depending on
your operating environment. See the SAS documentation for your operating
environment for details about the output that SAS generates for these options.

The following output shows an example of the FULLSTIMER output in the SAS log,
as produced in a UNIX operating environment.

636 Chapter 25 / Optimizing System Performance

Example Code 25.1 Sample Results of Using the FULLSTIMER Option in a UNIX Operating
Environment

 NOTE: DATA statement used:
 real time 0.19 seconds
 user cpu time 0.06 seconds
 system cpu time 0.01 seconds
 Memory 460k
 Semaphores exclusive 194 shared 9 contended 0
 SAS Task context switches 1 splits 0

The STIMER option reports a subset of the FULLSTIMER statistics. The following
example shows STIMER output in the SAS log.

Example Code 25.2 Sample Results of Using the STIMER Option in a UNIX Operating
Environment

 NOTE: DATA statement used:
 real time 1.16 seconds
 cpu time 0.09 seconds

Operating Environment Information: See the documentation for your operating
environment for information about how STIMER differs from FULLSTIMER in your
operating environment. The information that these options display varies
depending on your operating environment, so statistics that you see might differ
from the ones shown.

Interpreting FULLSTIMER and STIMER Statistics
Several types of resource usage statistics are reported by the STIMER and
FULLSTIMER options, including real time (elapsed time) and CPU time. Real time
represents the clock time it took to execute a job or step; it is heavily dependent on
the capacity of the system and the current load. As more users share a particular
resource, less of that resource is available to you. CPU time represents the actual
processing time required by the CPU to execute the job, exclusive of capacity and
load factors. If you must wait longer for a resource, your CPU time does not
increase, but your real-time increases. It is not advisable to use real time as the only
criterion for the efficiency of your program. The reason is that you cannot always
control the capacity and load demands on your system. A more accurate
assessment of system performance is CPU time, which decreases more predictably
as you modify your program to become more efficient.

The statistics reported by FULLSTIMER relate to the three critical computer
resources: I/O, memory, and CPU time. Under many circumstances, reducing the
use of any of these three resources usually results in better throughput of a
particular job and a reduction of real time used. However, there are exceptions, as
described in the following sections.

Collecting and Interpreting Performance Statistics 637

Techniques for Optimizing I/O

Overview of Techniques for Optimizing I/O
I/O is one of the most important factors for optimizing performance. Most SAS jobs
consist of repeated cycles of reading a particular set of data to perform various
data analysis and data manipulation tasks. To improve the performance of a SAS
job, you must reduce the number of times SAS accesses disk or tape devices.

To do this, you can modify your SAS programs to process only the necessary
variables and observations by:

n using WHERE processing

n using DROP and KEEP statements

n using LENGTH statements

n using the OBS= and FIRSTOBS= data set options

You can also modify your programs to reduce the number of times it processes the
data internally by:

n creating SAS data sets

n using indexes

n accessing data through SAS views

n using engines efficiently

n using PROC DATASETS when modifying variable attributes

n storing numeric values as characters

n using techniques to optimize memory usage

You can reduce the number of data accesses by processing more data each time a
device is accessed by:

n setting the ALIGNSASIOFILES, BUFNO=, BUFSIZE=, CATCACHE=,
COMPRESS= , DATAPAGESIZE=. STRIPESIZE=, UBUFNO=, and UBUFSIZE=
system options

n using the SASFILE global statement to open a SAS data set and allocate enough
buffers to hold the entire data set in memory

When using SAS DATA step views, you can improve performance by:

n specifying the VBUFSIZE= system option

n specifying the OBSBUF= data set option

638 Chapter 25 / Optimizing System Performance

Note: Sometimes you might be able to use more than one method, making your
SAS job even more efficient.

Using WHERE Processing
You might be able to use a WHERE statement in a procedure to perform the same
task as a DATA step with a subsetting IF statement. The WHERE statement can
eliminate extra DATA step processing when performing certain analyses because
unneeded observations are not processed.

For example, the following DATA step creates the data set Seatbelt. This data set
contains only those observations from the Auto.Survey data set for which the value
of Seatbelt is YES. The new data set is then printed.

libname auto 'SAS-library';
data seatbelt;
 set auto.survey;
 if seatbelt='yes';
run;

proc print data=seatbelt;
run;

However, you can get the same output from the PROC PRINT step without creating
a data set if you use a WHERE statement in the PRINT procedure, as in the
following example:

proc print data=auto.survey;
 where seatbelt='yes';
run;

The WHERE statement can save resources by eliminating the number of times that
you process the data. In this example, you might be able to use less time and
memory by eliminating the DATA step. Also, you use less I/O because there is no
intermediate data set. Note that you cannot use a WHERE statement in a DATA
step that reads raw data.

The extent of savings that you can achieve depends on many factors, including the
size of the data set. It is recommended that you test your programs to determine
the most efficient solution. For more information, see “WHERE Expressions” on
page 428.

Using DROP and KEEP Statements
Another way to improve efficiency is to use DROP and KEEP statements to reduce
the size of your observations. When you create a temporary data set and include
only the variables that you need, you can reduce the number of I/O operations that
are required to process the data. For more information, see “DROP Statement” in

Techniques for Optimizing I/O 639

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1capr0s7tilbvn1lypdshkgpaip.htm&locale=en

SAS DATA Step Statements: Reference and “KEEP Statement” in SAS DATA Step
Statements: Reference.

Using LENGTH Statements
You can also use LENGTH statements to reduce the size of your observations.
When you include only the necessary storage space for each variable, you can
reduce the number of I/O operations that are required to process the data. Before
you change the length of a numeric variable, however, see “LENGTH Statement” in
SAS DATA Step Statements: Reference. For more information, see “LENGTH
Statement” in SAS DATA Step Statements: Reference.

Using the OBS= and FIRSTOBS= Data Set Options
You can also use the OBS= and FIRSTOBS= data set options to reduce the number
of observations processed. When you create a temporary data set and include only
the necessary observations, you can reduce the number of I/O operations that are
required to process the data. See “FIRSTOBS= Data Set Option” in SAS Data Set
Options: Reference and “OBS= Data Set Option” in SAS Data Set Options: Reference
for more information.

Creating SAS Data Sets
If you process the same raw data repeatedly, it is usually more efficient to create a
SAS data set. SAS can process SAS data sets more efficiently than it can process
raw data files.

Another consideration involves whether you are using data sets created with
previous releases of SAS. If you frequently process data sets created with previous
releases, it is sometimes more efficient to convert that data set to a new one by
creating it in the most recent version of SAS. See “Cross-Release Compatibility and
Migration” in SAS Language Reference: Concepts for more information.

Using Indexes
An index is an optional file that you can create for a SAS data file to provide direct
access to specific observations. The index stores values in ascending value order
for a specific variable or variables and includes information as to the location of
those values within observations in the data file. In other words, an index enables
you to locate an observation by the value of the indexed variable.

640 Chapter 25 / Optimizing System Performance

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1capr0s7tilbvn1lypdshkgpaip.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1nnrzzsw6rzrjn1p2jfky6pdv23.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1nnrzzsw6rzrjn1p2jfky6pdv23.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0wjxoxrco6dsgn1ls5n3mbybcng.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0wjxoxrco6dsgn1ls5n3mbybcng.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p174h9l3fdl6xon1e56s34dr5ydy.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p174h9l3fdl6xon1e56s34dr5ydy.htm&locale=en

Without an index, SAS accesses observations sequentially in the order in which
they are stored in the data file. With an index, SAS accesses the observation
directly. Therefore, by creating and using an index, you can access an observation
faster.

In general, SAS can use an index to improve performance in these situations:

n For WHERE processing, an index can provide faster and more efficient access to
a subset of data.

n For BY processing, an index returns observations in the index order, which is in
ascending value order, without using the SORT procedure.

n For the SET and MODIFY statements, the KEY= option enables you to specify
an index in a DATA step to retrieve particular observations in a data file.

Note: An index exists to improve performance. However, an index conserves some
resources at the expense of others. Therefore, you must consider costs associated
with creating, using, and maintaining an index. See Chapter 22, “Using Indexes” for
more information about indexes and deciding whether to create one.

Accessing Data through SAS Views
You can use the SQL procedure or a DATA step to create SAS views of your data. A
SAS view is a stored set of instructions that subsets your data with fewer
statements. Also, you can use a SAS view to group data from several data sets
without creating a new one, saving both processing time and disk space. For more
information, see Chapter 17, “SAS Views” and the Base SAS Procedures Guide.

For information about optimizing system performance with SAS views, see “Setting
VBUFSIZE= and OBSBUF= for SAS DATA Step Views” on page 644.

Using Engines Efficiently
If you do not specify an engine in a LIBNAME statement, SAS must perform extra
processing steps in order to determine which engine to associate with the SAS
library. SAS must look at all of the files in the directory until it has enough
information to determine which engine to use. For example, the following
statement is efficient because it explicitly tells SAS to use a specific engine for the
libref Fruits:

/* Engine specified. */

libname fruits v9 'SAS-library';

The following statement does not explicitly specify an engine. In the output, notice
the Note about mixed engine types that is generated:

/* Engine not specified. */

Techniques for Optimizing I/O 641

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

libname fruits 'SAS-library';

Example Code 25.3 SAS Log Output from the LIBNAME Statement

NOTE: Directory for library FRUITS contains files of mixed engine types.
NOTE: Libref FRUITS was successfully assigned as follows:
 Engine: V9
 Physical Name: SAS-library

z/OS Specifics: In the z/OS operating environment, you do not need to specify an
engine for certain types of libraries.

See Chapter 13, “SAS Engines” for more information about SAS engines.

Setting System Options to Improve I/O
Performance

The following SAS system options can help you reduce the number of disk accesses
that are needed for SAS files, though they might increase memory usage and the
SAS data set size:

ALIGNSASIOFILES
A SAS data set consists of a header that is followed by one or more pages of
data. Normally, the header is 1K on Windows and 8K on UNIX. The
ALIGNSASIOFILES system option forces the header to be the same size as the
data pages so that the data pages are aligned to boundaries that allow for more
efficient I/O. The page size is set using the BUFSIZE= option.

For more information, see “ALIGNSASIOFILES System Option” in SAS System
Options: Reference and the SAS documentation for your operating environment.

BUFNO=
SAS uses the BUFNO= option to adjust the number of open page buffers when it
processes a SAS data set. Increasing this option's value can improve your
application's performance by allowing SAS to read more data with fewer passes;
however, your memory usage increases. Experiment with different values for
this option to determine the optimal value for your needs.

Note: You can also use the CBUFNO= system option to control the number of
extra page buffers to allocate for each open SAS catalog.

For more information, see “BUFNO= System Option” in SAS System Options:
Reference and the SAS documentation for your operating environment.

BUFSIZE=
When the BASE engine creates a data set, it uses the BUFSIZE= option to set
the permanent page size for the data set. The page size is the amount of data
that can be transferred for an I/O operation to one buffer. The default value for
BUFSIZE= is determined by your operating environment. Note that the default is

642 Chapter 25 / Optimizing System Performance

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0yjkj0io37mc1n1c1flsx697o2e.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0yjkj0io37mc1n1c1flsx697o2e.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1dvhxsxcilbwon0zl48630qkpeb.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1dvhxsxcilbwon0zl48630qkpeb.htm&locale=en

set to optimize the sequential access method. To improve performance for
direct (random) access, you should change the value for BUFSIZE=.

Whether you use your operating environment's default value or specify a value,
the engine always writes complete pages regardless of how full or empty those
pages are.

If you know that the total amount of data is going to be small, you can set a
small page size with the BUFSIZE= option, so that the total data set size
remains small and you minimize the amount of wasted space on a page. In
contrast, if you know that you are going to have many observations in a data
set, you should optimize BUFSIZE= so that as little overhead as possible is
needed. Note that each page requires some additional overhead.

Large data sets that are accessed sequentially benefit from larger page sizes
because sequential access reduces the number of system calls that are required
to read the data set. Note that because observations cannot span pages,
typically there is unused space on a page.

“Calculating Data Set Size” on page 649 discusses how to estimate data set
size.

For more information, see “BUFSIZE= System Option” in SAS System Options:
Reference and the SAS documentation for your operating environment.

CATCACHE=
SAS uses this option to determine the number of SAS catalogs to keep open at
one time. Increasing its value can use more memory, although this might be
warranted if your application uses catalogs that are needed relatively soon by
other applications. (The catalogs closed by the first application are cached and
can be accessed more efficiently by subsequent applications.)

For more information, see “CATCACHE= System Option” in SAS System Options:
Reference and the SAS documentation for your operating environment.

COMPRESS=
One further technique that can reduce I/O processing is to store your data as
compressed data sets by using the COMPRESS= data set option. However,
storing your data this way means that more CPU time is needed to decompress
the observations as they are made available to SAS. But if your concern is I/O
and not CPU usage, compressing your data might improve the I/O performance
of your application.

For more information, see “COMPRESS= System Option” in SAS System Options:
Reference.

DATAPAGESIZE=
Beginning with SAS 9.4, the optimal buffer page size is increased to improve I/O
performance. The increase in page size might increase the size of the data set or
utility file. If you find that the current optimization processes are not ideal for
your SAS session, you can use DATAPAGESIZE=COMPAT93 to use the
optimization processes that were used prior to SAS 9.4.

For more information, see “DATAPAGESIZE= System Option” in SAS System
Options: Reference.

Techniques for Optimizing I/O 643

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1d8hx95jb53wqn0zzvawxw94nvi.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1d8hx95jb53wqn0zzvawxw94nvi.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p18wjy2w9vlu9ln1rg5s5j1oliil.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p18wjy2w9vlu9ln1rg5s5j1oliil.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0uhpz2l79vy0qn12x3ifcvjzsyt.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0uhpz2l79vy0qn12x3ifcvjzsyt.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1jpuzeln5ri1xn1xh7xkrvco9ku.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1jpuzeln5ri1xn1xh7xkrvco9ku.htm&locale=en

STRIPESIZE=
When data is stored in a RAID (Redundant Array of Independent Disks) device,
you can use the STRIPESIZE= system option to set the I/O buffer size for a
directory to be the size of a RAID stripe. SAS data sets or utility files that are
created in the directory have a page size that matches the RAID stripe size.
Using this option can improve the performance of individual disk.

For more information, see “STRIPESIZE= System Option” in SAS System Options:
Reference.

UBUFNO=
The UBUFNO= system option sets the number of utility buffers that SAS uses
to process data sets.

For more information, see “UBUFNO= System Option” in SAS System Options:
Reference.

UBUFSIZE=
The UBUFSIZE= option sets the page size for utility files that SAS uses to
process data sets. You can improve the number of disk accesses when values of
the UBUFSIZE= option and the BUFSIZE= option are the same.

For more information, see “UBUFSIZE= System Option” in SAS System Options:
Reference.

VBUFSIZE=
The VBUFSIZE= option set the size of the view buffer. View performance can be
improved by setting the size of the view buffer large enough to hold more
generated observations. For more information, see “VBUFSIZE= System Option”
in SAS System Options: Reference and “Setting VBUFSIZE= and OBSBUF= for
SAS DATA Step Views” on page 644.

Setting VBUFSIZE= and OBSBUF= for SAS DATA
Step Views

When working with SAS DATA step views, specifying either the OBSBUF= data set
option or the VBUSIZE= system option can improve processing efficiency by
reducing task switching. The VBUFSIZE= system option enables you to specify the
size of the view buffer based on number of bytes. The default buffer size is 65536.
The OBSBUF= data set option sets the view buffer size based on a specified
number of observations. In either case, setting the view buffer so that it can hold
more generated observations speeds up execution time by reducing task switching.

For more information about the VBUFSIZE= system option, see “VBUFSIZE=
System Option” in SAS System Options: Reference. For more information about the
OBSBUF= data set option, see “OBSBUF= Data Set Option” in SAS Data Set
Options: Reference.

644 Chapter 25 / Optimizing System Performance

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0e4bdfj5qa5r4n1byty91t7wtiw.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0e4bdfj5qa5r4n1byty91t7wtiw.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n12mugp7qkqgein1nb2zidy3sals.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n12mugp7qkqgein1nb2zidy3sals.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1538e31bh0bkhn1ehsdtwst8wbv.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1538e31bh0bkhn1ehsdtwst8wbv.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0r851czwyym1qn18sl79j7oafve.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0r851czwyym1qn18sl79j7oafve.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0r851czwyym1qn18sl79j7oafve.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0r851czwyym1qn18sl79j7oafve.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1mefe1o8xyn5xn1dk6p7s8r08nf.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1mefe1o8xyn5xn1dk6p7s8r08nf.htm&locale=en

Using the SASFILE Statement
The SASFILE global statement opens a SAS data set and allocates enough buffers
to hold the entire data set in memory. Once it is read, data is held in memory,
available to subsequent DATA and PROC steps, until either a second SASFILE
statement closes the file and frees the buffers or the program ends, which
automatically closes the file and frees the buffers.

Using the SASFILE statement can improve performance by

n reducing multiple open and close operations (including allocation and freeing of
memory for buffers) to process a SAS data set to one open and close operation

n reducing I/O processing by holding the data in memory

If your SAS program consists of steps that read a SAS data set multiple times and
you have an adequate amount of memory so that the entire file can be held in real
memory, the program should benefit from using the SASFILE statement. Also,
SASFILE is especially useful as part of a program that starts a SAS server such as a
SAS/SHARE server. For more information about the SASFILE global statement, see
the SAS DATA Step Statements: Reference.

Using the DATASETS Procedure to Modify
Attributes

Using the DATASETS procedure to modify variable attributes is more efficient than
using a DATA step, as long as this task is the only one PROC DATASETS has to
perform. The DATASETS procedure processes only the data descriptor information
of a data set. A DATA step processes an entire data set. For more information, see
“DATASETS Procedure” in Base SAS Procedures Guide.

Storing Variables as Characters

SAS uses eight bytes of storage for each numeric value processed in the DATA step
and one byte for each character. If you are not going to perform calculations on a
variable that contains numbers, you can save storage by defining the variable as a
character variable. When you reduce the amount of storage that is necessary for
each variable, you reduce the number of I/O operations.

Techniques for Optimizing I/O 645

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hmips60w5w3yn1hj9klna7aplw.htm&locale=en

Techniques for Optimizing Memory
Usage

System Options
If memory is a critical resource, several techniques can reduce your dependence on
increased memory. However, most of them also increase I/O processing or CPU
usage.

You can use the MEMSIZE= system option to increase the amount of memory
available to SAS and therefore decrease processing time. By increasing memory,
you reduce processing time because the amount of time spent on paging, or reading
pages of data into memory, is reduced.

The SORTSIZE= and SUMSIZE= system options enable you to limit the amount of
memory that is available to sorting and summarization procedures.

You can also make tradeoffs between memory and other resources, as discussed in
“Reducing CPU Time By Modifying Program Compilation Optimization” on page
648. To use the I/O subsystem most effectively, you must use more and larger
buffers. However, these buffers share space with the other memory demands of
your SAS session.

Operating Environment Information: The MEMSIZE= system option is not
available in some operating environments. If MEMSIZE= is available in your
operating environment, it might not increase memory. See the documentation for
your operating environment for more information.

Using the BY Statement with PROC MEANS
When you use the CLASS statement and class variables in PROC MEANS, the
memory requirements can be substantial. SAS keeps a copy of unique values of
each class variable in memory. If PROC MEANS encounters insufficient memory for
the summarization of all class variables, you can save memory by using the CLASS
and BY statement together to analyze the data by classes.

For more information, see “Comparison of the BY and CLASS Statements” in Base
SAS Procedures Guide.

646 Chapter 25 / Optimizing System Performance

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0gpxoqczfzcyln13ma53kpq38lo.htm&docsetTargetAnchor=n1jcpopd5d8sx1n1k8g5wcmjgnt6&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0gpxoqczfzcyln13ma53kpq38lo.htm&docsetTargetAnchor=n1jcpopd5d8sx1n1k8g5wcmjgnt6&locale=en

Techniques for Optimizing CPU
Performance

Reducing CPU Time By Using More Memory or
Reducing I/O

Executing a single stream of code takes approximately the same amount of CPU
time each time that code is executed. Optimizing CPU performance in these
instances is usually a tradeoff. For example, you can reduce CPU time by using
more memory. This allows more information to be read and stored in one operation.
However, less memory is available to other processes.

Also, because the CPU performs all the processing that is needed to perform an I/O
operation, an option or technique that reduces the number of I/O operations can
also have a positive effect on CPU usage.

Storing a Compiled Program for Computation-
Intensive DATA Steps

Another technique that can improve CPU performance is to store a DATA step that
is executed repeatedly as a compiled program rather than as SAS statements. This
is especially true for large DATA step jobs that are not I/O-intensive. For more
information about storing compiled DATA steps, see “Stored Compiled DATA Step
Programs”.

Reducing Search Time for SAS Executable Files
The PATH= system option specifies the list of directories (or libraries, in some
operating environments) that contain SAS executable files. Your default
configuration file specifies a certain order for these directories. You can rearrange
the directory specifications in the PATH= option so that the most commonly
accessed directories are listed first. Place the least commonly accessed directories
last.

Techniques for Optimizing CPU Performance 647

Operating Environment Information: The PATH= system option is not available in
some operating environments. See the documentation for your operating
environment for more information.

Specifying Variable Lengths
When SAS processes the program data vector, it typically moves the data in one
large operation rather than by individual variables. When data is properly aligned
(in 8-byte boundaries), data movement can occur in as little as two clock cycles (a
single load followed by a single store). SAS moves unaligned data by more complex
means, at worst, a single byte at a time. This would be at least eight times slower
for an 8-byte variable.

Many high-performance RISC (Reduced Instruction Set Computer) processors pay
a very large performance penalty for movement of unaligned data. When possible,
leave numeric data at full width (eight bytes). Note that SAS must widen short
numeric data for any arithmetic operation. On the other hand, short numeric data
can save both memory and I/O. You must determine which method is most
advantageous for your operating environment and situation.

Note: Alignment can be especially important when you process a data set by
selecting only specific variables or when you use WHERE processing.

Using Parallel Processing
SAS System 9 supports a new wave of SAS functionality related to parallel
processing. Parallel processing means that processing is handled by multiple CPUs
simultaneously. This technology takes advantage of SMP computers and provides
performance gains for two types of SAS processes: threaded I/O and threaded
application processing.

For information, see Chapter 26, “Using Parallel Processing”.

Reducing CPU Time By Modifying Program
Compilation Optimization

When SAS compiles a program, the code is optimized to remove redundant
instructions, missing value checks, and repetitive computations for array
subscripts. The code detects patterns of instruction and replaces them with more
efficient sequences, and also performs optimizations that pertain to the SAS
register. In most cases, performing the code-generation optimization is preferable.

648 Chapter 25 / Optimizing System Performance

If you have a large DATA step program, performing code generation optimization
can result in a significant increase in compilation time and overall execution time.

You can reduce or turn off the code generation optimization by using the
CGOPTIMIZE= system option. Set the code generation optimization that you want
SAS to perform using these CGOPTIMIZE= system option values:

0 performs no optimization during code compilation.

1 specifies to perform stage 1 optimization. Stage 1 optimization removes
redundant instructions, missing value checks, and repetitive computations
for array subscripts; detects patterns of instructions and replaces them
with more efficient sequences.

2 specifies to perform stage 2 optimization. Stage 2 performs optimizations
that pertain to the SAS register. Performing stage 2 optimization on large
DATA step programs can result in a significant increase in compilation time.

3 specifies to perform full optimization, which is a combination of stages 1
and 2. This is the default value.

For more information, see “CGOPTIMIZE= System Option” in SAS System Options:
Reference.

Calculating Data Set Size
If you have already applied optimization techniques but still experience lengthy
processing times or excessive memory usage, the size of your data sets might be
very large. In that case, further improvement might not be possible.

You can estimate the size of a data set by creating a dummy data set that contains
the same variables as your data set. Run the CONTENTS procedure, which shows
the size of each observation. Multiply the size by the number of observations in
your data set to obtain the total number of bytes that must be processed. You can
compare processing statistics with smaller data sets to determine whether the
performance of the large data sets is in proportion to their size. If not, further
optimization might still be possible.

Note: When you use this technique to calculate the size of a data set, you obtain
only an estimate. Internal requirements, such as the storage of variable names,
might cause the actual data set size to be slightly different.

Calculating Data Set Size 649

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0m5u2waj9ttsxn1d1g7jl2sryoq.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0m5u2waj9ttsxn1d1g7jl2sryoq.htm&locale=en

650 Chapter 25 / Optimizing System Performance

26
Using Parallel Processing

Overview . 651

What Is Threading Technology in SAS? . 652

How Is Threading Controlled in SAS? . 653

Threading in Base SAS . 654

SAS/ACCESS Engines . 657

SAS Scalable Performance Data Server . 657

SAS Intelligence Platform . 658

SAS High-Performance Analytics Portfolio of Products . 659

SAS Grid Manager . 660

SAS In-Database Technology . 661

SAS In-Memory Analytics Technology . 661

SAS High-Performance Analytics Product Integration . 663

SAS Viya . 665

Overview
SAS introduced threading technology starting in SAS 9 with the introduction of
several Base SAS procedures that had been enhanced to execute, in part, in
multiple threads. SAS has continued to develop and enhance products and
components that take advantage of the threaded processing capabilities provided
by proprietary internal subsystems. Threading is available on a variety of platforms
from a local desktop with multiple CPUs to high-performance platform servers.
These high-performance servers include large multi-core symmetric multi-processor
(SMP) systems and massively parallel processing (MPP) appliances typically
configured as a distributed cluster. Many SAS components that execute on these
platforms take advantage of threading technology.

With SAS 9.4M5, when you license SAS Viya, you can access SAS Cloud Analytic
Services (CAS), a distributed server environment that supports multithreaded, in-

651

memory processing. See “What is SAS Cloud Analytic Services?” for more
information.

Previous releases of Base SAS 9.4 support programs written in the SAS DS2
programming language or the SAS Federated SQL language. These languages can
take advantage of threading. Many other SAS products also use threading
technology. For example, the SAS High-Performance Analytics procedures, SAS
Stored Processes, and SAS Embedded Process either execute or generate code that
executes in high-performance distributed computing environments.

What Is Threading Technology in SAS?
Threading technology provides multiple paths of execution within an operating
environment. Each path of execution is called a thread, and each thread can handle
a program task or data transfer. The result is multiple program tasks and data I/O
operations performed at the same time, in parallel. A thread requires a context (like
a register set and a program counter), a segment of code to execute, and some
amount of memory to use in the process. A threading operating environment might
have multiple CPUs but only one core per CPU. Other more high-performance
configurations might include multiple CPUs with multiple cores per CPU and even
multiple threads per core. In situations in which each CPU might execute only one
thread at a time, the CPU’s ability to quickly switch between threads provides near-
simultaneous execution.

Threaded execution in SAS software includes one or both of these two general
techniques.

n Threaded I/O means that data (frequently in very high volume) is delivered to an
application in threads so that the application is continually processing, not
waiting on data. In Base SAS and SAS/STAT, several procedures take advantage
of threaded reads. Also Base SAS includes the SPD engine that reads from a
data set that is partitioned to optimize for threaded input to the application. The
SAS High-Performance Analytics procedures require very rapid data delivery.
They require threaded reads from data distributed across a computing cluster to
deliver huge amounts of data to the application (which is also processing on the
cluster) and then write the data in parallel to the data storage appliance. SAS
9.4M5 includes access to SAS Viya, which supports distributed, in-memory,
multithreaded processing. See “What is SAS Cloud Analytic Services?” in SAS
Language Reference: Concepts for more information about SAS Cloud Analytic
Services with SAS Viya.

n Threaded application processing means that the application itself is structured
to perform certain tasks in parallel on multiple-CPU machines. Threaded
application processing enables the application to process large amounts of data
to be processed more quickly because multiple threads execute on smaller
segments of data. Applications can be designed to take advantage of machines
with multiple CPUs whether it is a local four-way desktop or a server-class
machine. The SAS High-Performance Analytics Server executes on appliances

652 Chapter 26 / Using Parallel Processing

https://www.sas.com/en_us/software/viya.html
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0bc1qjcm0ieegn15og9lfelk7pm.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0bc1qjcm0ieegn15og9lfelk7pm.htm&locale=en

that distribute both the data and copies of the application across the appliance
nodes so that the data is co-located with the application processing

With SAS 9.4 and SAS Analytics 12.1, customers can access a wide variety of
products and components that use threading to support ever-increasing amounts of
data as well as computationally intensive algorithms and models. Base SAS and
Foundation SAS threading technologies support all of these.

How Is Threading Controlled in SAS?
Many SAS components take advantage of threading technologies automatically.
Mechanisms within SAS can detect certain environment variables and either use or
not use threading depending on the application’s likely performance. Some
environment variables and system options can be configured by the administrator.
Data set options, where available, can also be specified to affect I/O or application
processing in threads. Because many components might be using threads
automatically, it is likely that thread usage would continue, even if the specific
options to control threading were turned off.

The system options THREADS, NOTHREADS, and CPUCOUNT influence threading
throughout SAS where threading is not automatic. Some products have additional
options for controlling threading such as DBSLICE in SAS/ACCESS. The system
option THREADS is the default in all products so that threading can occur wherever
use of threading is possible and performance is improved. NOTHREADS disables
threading in Base SAS or SAS clients and in products that execute in a symmetric
multi-processor environment. Procedure statement options are provided to
override the system options when necessary.

Certain procedures in SAS products such as SAS/STAT, SAS/OR, SAS/ETS, SAS
Enterprise Miner, and SAS High-Performance Analytics Server procedures can
execute in either SMP mode on a SAS client, or in massively parallel processing
mode in the distributed computing environment. In SMP mode, NOTHREADS is
honored, if set; if THREADS is set, CPUCOUNT defaults to the number of threads
available for processing on the client, but can be adjusted. In MPP mode, threads
are always assumed. NOTHREADS is ignored and threading is always enabled
(unless you execute from the client SAS session or SAS Enterprise Miner).
However, in MPP mode, NOTHREADS has no effect. In most of these products,
thread controls and execution mode are specified in the PERFORMANCE
statement. Refer to the SAS System Options: Reference along with the specific SAS
product documentation for information about the threading technologies used in
that product or component.

How Is Threading Controlled in SAS? 653

Threading in Base SAS
Some threading is automatic in Base SAS. In addition, the THREADS option is the
default for all Base SAS components that support threaded reads or threaded
application processing.

Base Language
SAS uses threading technology to build indexes on SAS data files. An index can
speed performance in SAS Language WHERE processing, BY-group processing,
SET and MODIFY statements, and ARRAY processing in a DO loop. The sorting
algorithm in Base SAS, which is used in building an index, is thread-enabled by
default but can be disabled with NOTHREADS. For more information, see SAS
System Options: Reference along with the specific SAS product documentation
for information about the threading technologies used in that product or
component.

Thread-Enabled Base SAS Procedures
Certain Base SAS procedures have algorithms that can take advantage of
threaded processing. These procedures are thread-enabled to split parts of the
procedure algorithm so that it executes some parts of the algorithm in threads.
For example, the SORT procedure is thread-enabled so that the sorting takes
place in available threads and each thread sorts a part of the data. The
procedure then quickly generates the data set in sorted order from the multiple
threads. These procedures can also read data in threads.

The number of threads and CPUs available to the procedures is specified by
system or procedure options CPUCOUNT and THREADS|NOTHREADS.
NOTHREADS specifies not to use threaded processing for running SAS
applications that support it. THREADS is the default. When NOTHREADS is in
effect, CPUCOUNT is ignored. Base SAS thread-enabled procedures are the
following:

n MEANS

n REPORT

n SORT

n SUMMARY

n TABULATE

n SQL

For details, see “Threaded Processing for Base SAS Procedures” in Base SAS
Procedures Guide. For details of the thread-enabled SQL procedure, see the SAS
SQL Procedure User’s Guide. Details of SAS System Options, see the SAS System
Options: Reference.

Some procedures in SAS/STAT software are also thread-enabled and most of
them can run in either SMP or MPP mode. In SMP mode, NOTHREADS and
CPUCOUNT are honored. In MPP mode, the PERFORMANCE statement

654 Chapter 26 / Using Parallel Processing

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0n5mm9l2pmpevn1lsjqccmgp8tx.htm&docsetTargetAnchor=p0fbq4inzwf57bn1xrcss87xxj8t&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0n5mm9l2pmpevn1lsjqccmgp8tx.htm&docsetTargetAnchor=p0fbq4inzwf57bn1xrcss87xxj8t&locale=en

provides the options to control threading. These are the thread-enabled
SAS/STAT procedures:

n ADAPTIVEREG

n FMM

n GLM

n GLMSELECT

n LOESS

n MIXED

n QUANTLIFE

n QUANTREG

n QUANTSELECT

n ROBUSTREG

See the SAS/STAT Procedures Guide for details for each procedure.

SAS Scalable Performance Data Engine
The SAS Scalable Performance Data Engine, which is included in Base SAS, is
engineered to exploit SMP hardware capabilities. The SAS Scalable
Performance Data Engine uses partitioned data sets that are optimized for
reading data in threads. The partition size can be configured with the SAS
Scalable Performance Data Engine PARTSIZE option. THREADNUM and
SPDEMAXTHREADS control threading for optimum threaded reads. The Base
SAS NOTHREADS and CPUCOUNT system options have no effect on SPD
Engine threaded reads. They remain in effect for the SAS thread-enabled
procedures executing on the SPD Engine data set. SPD Engine indexes are also
created in threads in parallel automatically without regard to NOTHREADS, if
set. You can use SPDEINDEXSORTSIZE= to optimize threaded index creation.
The SPD Engine is described in the SAS Scalable Performance Data Engine:
Reference.

SAS FedSQL Language
SAS FedSQL is a SAS proprietary SQL implementation based on the ANSI
SQL:1999 standard. It provides support for ANSI SQL data types and other ANSI
compliance features. The core strength of SAS FedSQL is its ability to execute
federated queries across a heterogeneous database environment and return a
single result set. FedSQL queries are automatically optimized with multi-
threaded algorithms in order to resolve large-scale operations. In addition,
FedSQL can execute outside of a SAS session, for example in the SAS
Federation Server and SAS Scalable Performance Data Server environments.
The NOTHREADS and CPUCOUNT options have no effect on FedSQL
processing.

The FedSQL procedure, which submits FedSQL programs for execution, is
included. See the SAS FedSQL Language Reference for complete information.

SAS DS2 Programming Language
DS2 is a SAS proprietary programming language that is appropriate for
advanced data manipulation and data modeling applications. DS2 is included
with Base SAS and intersects with the SAS DATA step but also supports
additional data types, ANSI SQL types, programming structure elements, user-

Threading in Base SAS 655

defined methods, and packages. The DS2 SET statement accepts embedded
FedSQL syntax and the runtime-generated queries can exchange data
interactively between DS2 and any supported database. This allows SQL
preprocessing of input tables which effectively combines the power of the two
languages.

DS2 programs are thread-enabled by using the THREAD statement on a
program coded for parallel execution. The NOTHREADS and CPUCOUNT
options have no effect. See the SAS 9.4 DS2 Language Reference for details
about whether your DATA step programs would benefit from being converted to
DS2.

The DS2 procedure, which submits thread-enabled DS2 programs to the SAS
Embedded Process for execution is also included. A high-performance version
of the DS2 procedure, PROC HPDS2, submits DS2 language statements to the
separately licensed High-Performance Analytics Server for processing. See the
SAS High-Performance Analytics Server Usage Guide for documentation on this
and other high-performance versions of certain SAS procedures.

DS2 can execute outside of a SAS session. For example:

n SAS Federation Server

n SAS Scalable Performance Data Server

n MPP computing environments such as the SAS In-Database Scoring
Accelerator, the SAS Embedded Process environment, and SAS High-
Performance Analytics Server distributed environment

SAS Logging
The SAS Logging Facility ignores the NOTHREADS and CPUCOUNT options. It
handles all incoming logging events in threads. The client identity that is
associated with the current thread or task is reported in the log. The logging
facility supports many SAS products and components, but it is included with
Base SAS. See the SAS Logging: Configuration and Programming Reference.

SAS Code Analyzer
The SAS Code Analyzer (SCAPROC procedure) runs an existing SAS program
(executing the program as usual) when generating metadata about the SAS job
that are recorded comments. PROC SCAPROC captures information about the
job step, I/O information such as file dependencies, and macro symbol usage
information from a running SAS job. The output is a SAS program containing
comments with the dependencies described in the comments. An application
can read this text and create SAS metadata or determine a process flow based
on these dependencies. For example, developers for SAS Data Integration
Studio can use the information emitted by the SAS Code Analyzer to reverse
engineer legacy SAS jobs. It can also be used with SAS Grid Manager. When the
saved job is run on the grid, SAS Grid Manager automatically assigns the
identified subtasks to a grid node. For more information, see the SCAPROC
procedure documentation in the Base SAS Procedures Guide.

656 Chapter 26 / Using Parallel Processing

SAS/ACCESS Engines
SAS/ACCESS engines are LIBNAME engines that provide Read, Write, and Update
access to more than 60 relational and nonrelational databases, PC files, data
warehouse appliances, and distributed file systems. These engines are not part of
Base SAS but they depend on Base SAS. They are licensed separately or are
included in many product bundles such as SAS BI Server or SAS Activity-Based
Management. Many bundles offer the customer a choice of two out of the many
SAS/ACCESS engines available.

SAS/ACCESS engines enable SAS programs to connect to a DBMS as if it were a
SAS data set. This takes advantage of performance-related DBMS features and
benefits including bulk load support, temporary table support, and native SQL
support with Explicit Pass-Through. If the DBMS is a parallel server, the engine
accesses the DBMS data in parallel by using multiple threads to connect to the
DBMS server. If your SAS program is executing a thread-enabled SAS procedure
with these SAS/ACCESS engines, even greater gains in performance are likely.

In SAS/ACCESS, threaded reads partition the result set across multiple threads.
Unlike threaded processing in Base SAS procedures, threaded reads in
SAS/ACCESS are not dependent on the number of processors on a machine.
Instead, the result set is retrieved on multiple connections between SAS and the
DBMS. SAS causes the DBMS to partition the result set by appending a WHERE
clause to the SQL statement. When this happens, a single SQL statement becomes
multiple SQL statements, one on each thread. The DBMS reads the partitions one
per thread also.

The amount of scalability that is provided with the SAS/ACCESS engines depends
on the efficiency of parallelization implemented in the DBMS itself. However,
SAS/ACCESS engines have options available in the LIBNAME statement that
enable tuning of the threaded implementation within the SAS/ACCESS engines.
The options that control threaded reads in SAS/ACCESS are DBSLICE,
DBSLICEPARM, THREADS|NOTHREADS, and whether BY, OBS, or KEY options are
used in a PROC or DATA step. Refer to the SAS/ACCESS for Relational Databases
documentation for more information.

SAS Scalable Performance Data Server
SAS Scalable Performance Data Server is a multi-user parallel-processing data
server with a comprehensive security infrastructure, backup and restore utilities,
and administrative and tuning options. SPD Server supports native SQL, FedSQL,
and DS2 languages. Options specific to the SPD Server control threaded
processing. The NOTHREADS and CPUCOUNT options have no effect. See the SAS

SAS Scalable Performance Data Server 657

Scalable Performance Data Server: Administrator’s Guide and SAS Scalable
Performance Data Server: User’s Guide for information.

SAS Intelligence Platform
The SAS Intelligence Platform is an infrastructure for creating, managing, and
distributing enterprise intelligence. This infrastructure supports SAS solutions for
industries such as financial services, life sciences, health care, retail, and
manufacturing. The SAS Intelligence Platform is not part of Base SAS but instead it
relies on SAS Foundation, which includes Base SAS and these components:

n SAS Management Console for defining metadata

n SAS Business Intelligence Server and SAS Data Integration Server technologies

n SAS Integration Technologies, which provides the following:

o the SAS servers and supporting services such as SAS Stored Process Servers

o application messaging

o SAS BI Web Services

o publishing framework

o SAS Foundation Services

The SAS Intelligence Platform Overview discusses individual components and
references a wide spectrum of related SAS Intelligence Platform documentation.

These are the SAS servers in the Intelligence Platform:

n SAS Workspace Server

n SAS Stored Process Server

n SAS Pooled Workspace Server

n SAS OLAP Server

n SAS Metadata Server

Each server is initiated with a pool of active threads. These threads are controlled
by the server and are used by server processes (for example, handling incoming
requests). If the NOTHREADS and CPUCOUNT options are specified, they are
ignored, except during the execution of submitted code that includes a SAS
procedure that honors these options.

For the SAS Metadata Server, thread usage is controlled by default settings for the
object server parameters (THREADSMAX and THREADSMIN) and for the
metadata server configuration option, MACACTIVETHREADS. Administrators can
override these settings in order to fine-tune performance. See the SAS Intelligence
Platform: System Administrator’s Guide for details and examples. The THREADMAX
and THREADMIN object server parameters are rarely used for servers other than
the SAS Metadata Server.

658 Chapter 26 / Using Parallel Processing

In the intelligent platform middle tier (which is an infrastructure for web
applications), incoming requests are processed on threads. These threads are
defined using the job execution service. The threads are not constrained by the
NOTHREADS or CPUCOUNT options. Both the number of job queue threads and
number of job execution threads can be specified. Refer to the SAS Intelligence
Platform: Middle-Tier Administration Guide.

SAS MP CONNECT is a part of SAS/CONNECT software that is bundled with the
intelligence platform. It supports parallel processing by establishing a connection
between multiple SAS sessions and enabling each of the sessions to
asynchronously execute tasks in parallel. By establishing connections to processes
on the same local computer, the application can use network resources to process
in parallel and coordinate all the results into the client SAS session. Many SAS
processes use multiple processors on an SMP computer, but they can also be
executed on multiple remote single or multiprocessor computers on a network.
Threads are always assumed to be available.

Some SAS High-Performance Analytics products can execute on the SAS
Intelligence Platform if it is configured as an MPP environment. For example, SAS
Grid Manager (discussed in the next section) handles workload management for
SAS applications that execute in SMP configurations. It can also manage
applications that are coded for parallel execution and distributed across the nodes
of the SAS High-Performance Analytics Server.

SAS Visual Analytics is a web-based suite of high-performance analytics
applications that executes on the SAS Intelligence Platform if it is configured as an
MPP environment. This execution environment for SAS Visual Analytics is
documented in the SAS Intelligence Platform: Middle-Tier Administration Guide.
(SAS Visual Analytics is discussed further in the next section. See “SAS High-
Performance Analytics Portfolio of Products” on page 659.)

SAS High-Performance Analytics
Portfolio of Products

SAS High-Performance Analytics products are engineered to make high use of
threads. These products are not part of Base SAS or SAS Foundation. However,
they rely on and extend Base SAS functionality to provide capabilities that support
rapid analysis of huge volumes of data.

Some SAS High-Performance Analytics products can work in concert with, or are
directly integrated with, other SAS applications and solutions. For example, you can
configure SAS Grid Manager to distribute the workload from SAS Enterprise Guide
executing on the SAS Intelligence Platform. The SAS Grid Manager can be used to
manage the workload of SAS jobs on the SAS High-Performance Analytic Server
running on a DBMS appliance such as EMC Greenplum or Teradata. And SAS Visual
Analytics can be used to explore data that is consumed by SAS Enterprise Miner
executing in a SAS Grid environment.

SAS High-Performance Analytics Portfolio of Products 659

SAS High-Performance Analytics technologies include the following:

n SAS Grid Manager

n SAS In-Database

n SAS In-Memory Analytics technologies, which include:

o SAS High-Performance Analytics Server

o SAS Visual Analytics

o SAS High-Performance Risk Management

o other SAS high-performance products and solutions

SAS Grid Manager
SAS Grid Manager provides scalable workload management and prioritization, high-
availability processing, and optimized performance across various SAS processes
and services that execute in threads on a grid of configured servers. By coordinating
the resources of separate servers into a centrally managed SAS environment, SAS
Grid Manager can provide accelerated processing for SAS jobs.

SAS programs, that are grid-enabled to run in multiple independent steps within the
overall program flow, execute in threads. The threaded execution typically occurs
at the DATA step or procedure boundaries. Because the programs are specifically
written to execute in threads, it is assumed that the THREADS option is set and the
CPUCOUNT option is greater than one. SAS Grid Manager enables subtasks of
individual SAS jobs to run in parallel on different parts of the grid and share a pool
of resources. The threaded subtasks can further benefit from threaded processing
performed by any of the thread-enabled procedures executed from within the code.
Programs that have been analyzed for parallel processing using the SAS Code
Analyzer can be run on the grid with SAS Grid Manager. This automatically assigns
the identified subtasks to a grid node.

Many SAS products, such as SAS Enterprise Guide, SAS Enterprise Miner, SAS Data
Integration Studio, SAS Web Report Studio, SAS Marketing Automation, and SAS
Marketing Optimization are integrated with SAS Grid Manager. An option within the
application or in the SAS Metadata enables the integration. SAS Data Integration
Studio and SAS Enterprise Miner have code generation engines that can recognize
opportunities for parallelization and generate the appropriate code to submit to
SAS Grid Manager to execute in parallel across the grid.

Other SAS components, such as the SAS Intelligence Platform, use SAS Grid
Manager to determine the optimal SAS server for processing by distributing server
workloads across multiple computers on a network. SAS Grid Manager divides jobs
into separate processes that run in parallel across multiple servers. SAS Grid
Manager is documented in Grid Computing for SAS.

660 Chapter 26 / Using Parallel Processing

SAS In-Database Technology
SAS In-Database technology provides faster execution of commands and functions
by sending them to execute inside the databases by SAS applications. This process
avoids data movement and conversion but also takes advantage of the threading
capabilities of the host database.

SAS In-Database runs on a variety of threaded DBMS and hardware or software
appliance architectures such as Teradata, Greenplum, Aster Data, Netezza, and
DB2. Because the threading is controlled by the database, NOTHREADS and
CPUCOUNT options have no effect.

In-Database processes are divided into multiple parallel tasks within the database,
each working with small subsets of the overall data to be processed. As the results
of the smaller subsets are derived, they are consolidated and returned to the SAS
application. Typically, th execution times are much shorter than if the data were
transferred to the SAS server.

In-Database technology uses existing database functionality and standard SAS
functionality to extend that SAS functionality into the database. For example, Base
SAS procedures such as SORT or SUMMARY can be executed within the database
environment with the inclusion of simple options to the procedure’s code. These
procedures are “translated” into native database functions for execution within the
database environment. As an example of extending SAS functionality into the
database, scoring code generated by SAS Enterprise Miner can be exported as
functions. Once exported, these functions can be executed by either SAS processes
or called from third-party or database-specific applications using standard SQL
statements.

SAS In-Database technology is described in the SAS In-Database Products:
Administrators Guide and SAS In-Database Products: User’s Guide. SAS In-Database
components include scoring and analytic accelerators for most of the supported
databases.

SAS In-Memory Analytics Technology
SAS In-Memory Analytics technology takes advantage of the large number of
threads and high level of memory that is available in some specially configured
DBMS appliances such as Teradata and EMC Greenplum and on commodity
hardware using Hadoop Distributed File System (HDFS). The Teradata and EMC
Greenplum appliances are assembled as computing clusters using specific
massively parallel processing (MPP) techniques. With SAS In-Memory Analytics
technology, all of the data to be processed is distributed across the cluster and

SAS In-Memory Analytics Technology 661

loaded into memory before the analytic procedure begins. This is in distinct
contrast to traditional processing where data is loaded in blocks as they are
needed. In addition, SAS High-Performance Analytics procedures are engineered to
execute on hundreds of threads and each thread is responsible for a small subset of
the overall data to be processed. Faster analysis of large data sets results in greater
refinement of analytic models.

Several members of the SAS High-Performance Analytics family of products are
based on SAS In-Memory Analytics technology, including the SAS High-
Performance Analytics Server, SAS Visual Analytics, and SAS High-Performance
Risk. For more detail on the array of SAS In-Memory Analytics components, please
see the In-Memory Analytics website: Products & Solutions/In-Memory Analytics.

SAS High-Performance Analytics Server
The SAS High-Performance Analytics Server is engineered to run in threads and
provides high-performance analytic procedures that focus on predictive model
development with computationally intensive calculations. These procedures are
drawn from the libraries of SAS/STAT, SAS/QC, and SAS/ETS. The procedures
execute in the MPP computing environment provided by EMC Greenplum and
Teradata appliances and Hadoop clusters. High-performance MPP
configurations typically have a minimum 1.5TB of memory and upward of 192
cores with multiple threads per core.

The SAS High-Performance Analytics procedures are invoked on the requesting
SAS client where a Base SAS session is executing. This can be the traditional
Display Manager System, SAS Enterprise Guide, or through the SAS High-
Performance Data Mining tab in SAS Enterprise Miner. In the MPP environment,
the SAS client communicates with the SAS High-Performance Analytics Server
nodes where a thin SAS environment executes a copy of the requested SAS
procedure or DS2 code. Once completed, the analytic results are returned to the
requesting application on the SAS client.

The PERFORMANCE statement in the SAS High-Performance Analytics
procedures enables you to specify parameters to control threading and the
mode of processing, SMP (client mode) or MPP (distributed mode). In SMP
mode (which is a SAS session on the client machine), the CPUCOUNT default is
the number of CPUs on the client machine. CPUCOUNT and NOTHREADS
options can override the SAS system options. In this environment, if the
procedure executes in MPP mode, then the CPUCOUNT option default is that
the number of threads is determined by the number of CPUs on the appliance
nodes. The NTHREADS option available only in the PERFORMANCE statement
throttles the number of threads.

The SAS High-Performance Analytics Server and procedures are documented in
the SAS High-Performance Server Administration Guide. The SAS High-
Performance Analytics Server relies on the SAS LASR Analytic Server to
provide a highly scalable and reliable analytics infrastructure that is optimized
for large volumes of data and complex computations.

SAS Visual Analytics
SAS Visual Analytics runs on SAS High-Performance Analytics Server and on a
SAS Intelligence Platform if it is configured as an MPP environment. SAS Visual
Analytics provides the ability for business users and business analysts to
perform a wide variety of tasks using visualizations specifically designed for
exploring big data and deriving value. This enables you to go beyond descriptive

662 Chapter 26 / Using Parallel Processing

http://www.sas.com/software/high-performance-analytics/in-memory-analytics/index.html

statistics and use more specialized analytics in a very scalable way. This
provides more accurate insights into the future and aids decision making. For
example, users can visually explore data, execute analytic correlations on
billions of rows of data in just seconds, and visually present results. This helps
quickly identify patterns, trends, and relationships in data that were not evident
before.

SAS Visual Analytics can be combined with the SAS High-Performance
Analytics Server and SAS In-Database to provide a high-performance model
lifecycle. For example, use SAS Visual Analytics to explore the data and decide
which information to use. Use SAS High-Performance Analytics Server to build
your models, and then use SAS In-Database to push the models into an
appropriate database for scoring.

SAS Visual Analytics requires a dedicated and specialized configuration of
blade hardware such as Teradata or EMC Greenplum appliances or Hadoop
HDFS configured as an MPP cluster. This environment is always threaded. SAS
options CPUCOUNT and NOTHREADS have no effect. Instead, the NTHREADS
option in the PERFORMANCE statement provides a way to throttle thread
usage. See the the SAS Visual Analytics: User’s Guide for product information.

SAS Visual Analytics relies on the SAS LASR Analytic Server to provide a highly
scalable analytics infrastructure that is optimized for large volumes of data and
complex computations.

SAS LASR Analytic Server
The SAS LASR Analytic Server is an analytic platform that provides a secure
environment for concurrent access to data. It loads the data into memory across
the computing nodes of a SAS High-Performance Analytics Server. The SAS
LASR Analytic Server executes on the SAS High-Performance Analytics Server
root node with worker nodes across the appliance that read data into memory in
parallel very fast. If the data is not from a co-located data provider, then the
data is read from the DBMS appliance or Hadoop cluster and transferred to the
root node of the SAS High-Performance Analytics Server. Then, it is loaded into
the memory of the worker nodes. The SAS LASR Analytic Server is not
influenced by CPUCOUNT or NOTHREADS. Instead, the NTHREADSoption in
the PERFORMANCE statement throttles thread usage. Refer to the SAS LASR
Analytic Server: Administration Guide for details.

For more SAS In-Memory Analytics products, see Products & Solutions/In-Memory
Analytics.

SAS High-Performance Analytics
Product Integration

The SAS High-Performance Analytics portfolio supports many SAS solutions and
products. Some SAS products are integrated with SAS Grid Manager and (to some

SAS High-Performance Analytics Product Integration 663

http://www.sas.com/software/high-performance-analytics/in-memory-analytics/index.html
http://www.sas.com/software/high-performance-analytics/in-memory-analytics/index.html

extent) other high-performance analytics products in order to take advantage of
parallel processing.

SAS Enterprise Guide:
SAS Enterprise Guide executes as a SAS client and provides a front end to SAS
servers to execute SAS programs. Users create programs that take advantage of
the parallel processing capabilities in Base SAS (for example, thread-enabled
procedures and stored processes). SAS Enterprise Guide can detect whether
SAS Grid Manager is managing the environment to provide workload balancing,
resource assignment, and job prioritization. SAS Enterprise Guide can run
Process Flow branches in parallel on different grid nodes. It enables parallel
execution of tasks on the same server, and you can run tasks at the project or
individual level in a SAS Grid Manager environment. See the SAS Enterprise
Guide for details.

SAS Data Integration Studio
SAS Data Integration Studio runs on the SAS Data Integration Server and
automatically takes advantage of grid computing if SAS Grid Manager is
installed. SAS Data Integration Studio 3.4 was enhanced to automatically
generate SAS applications that are enabled to execute on a SAS Grid Manager
managed grid. Users can produce grid-enabled SAS applications without any
programming knowledge or knowledge of the underlying grid infrastructure.

These SAS applications detect the existence of a SAS Grid Manager
environment at run time and distribute the execution accordingly. These grid-
enabled applications can be saved as SAS stored processes and subsequently
executed by the SAS Intelligence Platform components including SAS Web
Report Studio, SAS Information Map Studio, and the SAS Add-In for Microsoft
Office. (These applications need SAS BI or SAS Enterprise BI servers, which
depend on SAS Foundation).

SAS Data Integration Studio can execute with in-memory products SAS High-
Performance Analytics Server and SAS Visual Analytics Server configured with
the SAS Intelligence Platform as an MPP environment, which is always
threaded. SAS Data Integration Studio provides High-Performance Analytics
transformations for SAS LASR Analytic Servers or HDFS. NOTHREADS and
CPUCOUNT options have no effect. See the SAS Data Integration Studio: User’s
Guide for details. The SAS Data Integration Server is administered as part of the
SAS Intelligence Platform.

SAS Risk Dimensions
The iterative workflow in SAS Risk Dimensions is similar to that in SAS Data
Integration Studio; they both execute the same analysis over different subsets
of the data. This workflow makes them ideal for taking advantage of SAS Grid
Manager to distribute the processing across the grid. For more information, see
SAS Risk Dimensions User’s Guide.

SAS Enterprise Miner
SAS Enterprise Miner can automatically generate SAS applications that are
enabled to execute on a SAS Grid Manager grid. These SAS applications detect
the presence of a SAS Grid Manager environment at run time and distribute the
execution accordingly. The applications can also be saved as SAS stored
processes and subsequently executed by the SAS Business Intelligence
components such as SAS Web Report Studio. The DMINE, DMREG, and DMDB

664 Chapter 26 / Using Parallel Processing

procedures are thread-enabled with THREADS as the default. NOTHREADS
disables multithreaded computation.

SAS Enterprise Miner includes a key set of high-performance statistical and
data mining procedures for tasks such as data binning, imputation, scoring, and
transformations, and others. These procedures execute in the highly threaded
SAS High-Performance Analytics Server. In MPP mode, SAS Enterprise Miner
distributes data, memory, and computation across the server nodes to build
predictive models. If the SAS High-Performance Analytics Server is installed
and specific Hadoop HPDM code is enabled, an HPDM tab is available in SAS
Enterprise Miner that permits execution on the server nodes. Scoring code from
Enterprise Miner can be run inside the database using SAS In-Database
technology. For more information, see SAS Enterprise Miner: Administration and
Configuration.

SAS Viya
With SAS 9.4M5, you can license SAS Viya, software that offers a variety of high
performance products and access to SAS Cloud Analytic Services. For more
information, see An Introduction to SAS Viya Programming.

SAS Viya 665

http://documentation.sas.com/?docsetId=pgmdiff&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en

666 Chapter 26 / Using Parallel Processing

PART 5

Creating Output

Chapter 27
Output . 669

Chapter 28
Printing . 697

667

668

27
Output

Definitions for SAS Output . 670

Default Output Destination . 671

Change the Output Destination . 672

Customize Output . 674
Making Output Descriptive . 674
Using ODS to Customize the Style and Structure of Output . 676
Reformatting Values in Output . 676
Printing Missing Values . 677

The SAS Log . 677
Structure of the Log . 677
The SAS Log in Batch, Line, or Objectserver Modes . 679
Writing to the Log in All Modes . 681
Customizing the Log . 682

Examples: Manage Output Destinations . 686
Example: Create Default HTML Output . 686
Example: Use ODS Statements to Change the Output Destination 687

Examples: Rolling Over the SAS Log . 688
Example : Use Directives to Name the SAS Log . 688
Example: Automatically Roll Over the SAS Log When Directives Change 689
Example: Roll Over the SAS Log by SAS Session . 690
Example: Roll Over the SAS Log by the Log Size . 691

Examples: Suppress Output to the SAS Log . 692
Example: Suppress the Printing of the Source Program to the SAS

Log Using the NOSOURCE System Option . 692
Example: Suppress the Printing of Variable Data to the SAS Log

Using the NOLIST Option . 694
Example: Suppress the Printing of All Notes to the SAS Log Using

the NONOTES System Option . 695

669

Definitions for SAS Output
SAS output is the result of executing SAS programs. Most SAS procedures and
some DATA step programs produce output. A SAS program can produce some or all
of the following types of output:

destination
a designation within a SAS program that the Output Delivery System (ODS)
uses to generate a specific type of output. Or, simply put, it is how and where
ODS routes your output. For example, ODS can route your output to a browser
as HTML, to a file, or to your terminal or display as a simple list report. For more
information, see “Overview of How ODS Works” in SAS Output Delivery System:
Procedures Guide . The destination of your output depends on the following:

n your operating environment

n your mode of running SAS

n your version of SAS

program results
contain the programmatic results from SAS procedures and SAS DATA step
applications. These results can be sent to a file or printed as a report. There are
a variety of options, formats, statements, and commands available in SAS to
customize your output. The Output Delivery System enables you to specify
output destinations to control how your output is stored, table definitions to
control how your output is structured, and style templates to control the
stylistic elements of your output. For more information, see SAS Output
Delivery System: User’s Guide.

Here are a few examples of the types of output that you can get from running
SAS programs:

n a SAS data set

n an HTML file for web viewing

n a simple listing report

n RTF output suitable for viewing in Microsoft Word

n SVG output suitable for viewing by mobile devices

n an ODS Document for specifying multiple destinations at one time

n output that is formatted for a high-resolution printer such as PostScript and
PDF

n output formatted in various markup languages (in addition to HTML)

SAS log output
SAS log

contains a description of the SAS session and lists the lines of source code
that were executed.

670 Chapter 27 / Output

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p027b3wsp0yg9yn1tfqekatdtn85.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p027b3wsp0yg9yn1tfqekatdtn85.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

You can write specific information to the SAS log (such as variable values or
text strings) by using the SAS statements that are described in “Writing to
the Log in All Modes” on page 681.

The log is also used by some of the SAS procedures that perform utility
functions, for example, the DATASETS and OPTIONS procedures. See the
Base SAS Procedures Guide.

Because the SAS log provides a journal of program processing, it is an
essential debugging tool. However, certain system options must be in effect
to make the log effective for debugging your SAS programs. “Customizing
the Log” on page 682 describes several SAS system options that you can use.

SAS console log
created when the regular SAS log is not active, for recording information,
warnings, and error messages. When the SAS log is active, the SAS console
log is used only for fatal system initialization errors or late termination
messages.

Note: For more information about the destination of the SAS console log,
see the SAS documentation for your operating environment.

SAS logging facility output
contains log messages that you create using the SAS logging facility. The SAS
logging facility is optional. Logging facility messages can be created within SAS
programs or they can be created by SAS for logging SAS server messages.
Logging facility log messages are based on message categories such as
authentication, administration, performance, or customized message categories
in SAS programs. In SAS programs, you use logging facility functions, autocall
macros, or DATA step component objects to create the logging facility
environment.

Appenders are defined for the duration of a macro program or a DATA step.
Loggers are defined for the duration of the SAS session.

For more information, see SAS Logging: Configuration and Programming
Reference.

Default Output Destination
The default destination is dependent on the SAS version and mode of running SAS.

The following table shows the default destinations for each method of operation
based on SAS version:

Default Output Destination 671

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Table 27.1 Comparison of Default Destinations for Output

SAS Version
Mode of Running
SAS Viewer ODS Destination

SAS 9.3 and later SAS Windowing
Environment

SAS Results Viewer or
browser window

HTML

SAS Studio Results tab or browser
window

HTML5

Enterprise Guide Project pane, process
flow, or browser
window

HTML5

batch mode Depends on operating environment

Operating Environment Information: The default destination for SAS output is
specific to your operating environment. Your configuration file and registry settings
also affect where your output is sent. For specific information about the default
output destination, see the SAS documentation for your operating environment:

n UNIX: “The Default Routings for the SAS Log and Procedure Output in UNIX
Environments” in SAS Companion for UNIX Environments

n z/OS: “Destinations of SAS Output Files” in SAS Companion for z/OS

n Windows: “Managing SAS Output under Windows” in SAS Companion for
Windows

For more information about the new defaults and ODS destinations, see the SAS
Output Delivery System: User’s Guide.

Change the Output Destination
With SAS, there are many ways to control where your log, procedure, and DATA
step output are sent. The method that you use depends on your operating system
and the mode in which you are running SAS.

The following list describes some of the commonly used ODS statements and other
SAS language elements that are used for routing output.

Table 27.2 Ways to Change the Output Destination

Method to Use Output Result

PRINTTO procedure routes DATA step, log, or procedure output
from the system default destinations to the

672 Chapter 27 / Output

http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p1jsi4udv8flpbn1gbc4kbjlgvj5.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p1jsi4udv8flpbn1gbc4kbjlgvj5.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p0z43am12t5wltn1jhqi1jiascxe.htm&docsetTargetAnchor=n18xn5ousloumvn1x9348489rq4h&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n04hqj0mo0i89xn1qfytta63kr9y.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n04hqj0mo0i89xn1qfytta63kr9y.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p08blwp6gwk25mn1hypjjrncx3bn.htm&locale=en

Method to Use Output Result

destination that you choose. The PRINTTO
procedure defines non-ODS destinations.

FILENAME statement associates a fileref with an external file or
output device and enables you to specify file
and device attributes

FILE command: Windows stores the contents of the LOG or OUTPUT
windows in files that you specify, when the
command is issued from within the windowing
environment.

ODS LISTING statement opens, manages, or closes the LISTING
destination.

ODS OUTPUT statement produces a SAS data set from an output
object and manages the selection and
exclusion lists for the OUTPUT destination.

ODS DOCUMENT statement produces an ODS document that enables you
to restructure, navigate, and replay your data
in different ways. It also enables you to
specify multiple destinations without needing
to rerun your analysis or repeat your database
query.

ODS HTML statement opens, manages, or closes the HTML
destination, which produces HTML 4.0 output
that contains embedded style sheets.

ODS MARKUP statement opens, manages, or closes the MARKUP
destination, which produces SAS output that
is formatted using one of many different
markup languages.

ODS PRINTER statement opens, manages, or closes the PDF
destination, which produces PDF output, a
form of output that is read by Adobe Acrobat
and other applications.

ODS RTF statement opens, manages, or closes the RTF
destination, which produces output written in
Rich Text Format for use with Microsoft Word
2002.

SAS system options redefine the destination of log and output for
an entire SAS program. These system options
are specified when you invoke SAS. The
system options used to route output are the

Change the Output Destination 673

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p1msyyi1rcjhgvn1liw5xkxktvzj.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n1lyhxs0ue101in1snowd4cdd15q.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0oxrbinw6fjuwn1x23qam6dntyd.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n0nz6m09jrb7jsn1h8rngbvzk65u.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n0f5s1zezthhbrn1u0z71mh3wx64.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n0onpp2holuauhn1gyb7lzx6knr7.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0ed1ivbk3a2kln1p6s4qxqxbr3t.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p1vvsv8ucnjzjnn1wq5wrlp74mdb.htm&locale=en

Method to Use Output Result

ALTLOG=, ALTPRINT=, LOG=, and PRINT=
options.

For conceptual information about global ODS statements, see the following
resources:

n “Destination Category Table” in SAS Output Delivery System: User’s Guide.

n “Types of ODS Statements” in SAS Output Delivery System: User’s Guide.

Operating Environment Information:

For information about changing the default output location for the z/OS and UNIX
operating environments, see the following resources:

n z/OS: “Directing SAS Log and SAS Procedure Output” in SAS Companion for
z/OS. and “Changing the Default Destination” in SAS Companion for z/OS

n UNIX: “Changing the Default Routings in UNIX Environments” in SAS Companion
for UNIX Environments

Customize Output

Making Output Descriptive
There are many statements and system options available in SAS that enable you to
customize your output. You can add informative titles, footnotes, and labels to
customize your output and control how the information is laid out on the page.

The following list describes some of the statements and SAS system options that
you can use:

Table 27.3 Methods for Customizing Output

SAS Language Element Function

CENTER | NOCENTER system
option

controls whether output is centered. By
default, SAS centers titles and procedure
output on the page and on the personal
computer display.

DATE | NODATE system option controls printing of date and time values.
When this option is enabled, SAS prints on the

674 Chapter 27 / Output

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p1n357e2fq6kjkn1ijsu3w97lxl1.htm&docsetTargetAnchor=p1g64ce3i0746vn1cad1artjfloq&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0km5hb8txc8ern1rvoxohe2u6fy.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n0nxd4t2obqstln12itjno35gywb.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n0nxd4t2obqstln12itjno35gywb.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p0z43am12t5wltn1jhqi1jiascxe.htm&docsetTargetAnchor=p1ams2y0fl1dn1n1k5qz860qwlh5&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n0ieiwmsqnd5fen1nempfaeyk0x5.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n0ieiwmsqnd5fen1nempfaeyk0x5.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n017xso4bnme1zn127nct3t8ornv.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n017xso4bnme1zn127nct3t8ornv.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0dfjdeat9ablan1xhf1n58d5sfw.htm&locale=en

SAS Language Element Function

top of each page of output the date and time
the SAS job started.

FOOTNOTE statement prints footnotes at the bottom of each output
page. You can also use the FOOTNOTES
window for this purpose.

You can also use the null footnote statement
(footnote; to suppress a FOOTNOTE
statement.

FORMCHAR= system option specifies the default output formatting
characters for some procedures such as
CALENDAR, FREQ, REPORT, and TABULATE.
This system option affects only the traditional
LISTING output.

FORMDLIM= system option specifies a character to delimit page breaks in
SAS output for the LISTING destination.

LABEL statement associates descriptive labels with variables.
With most procedure output, SAS writes the
label rather than the variable name.

The LABEL statement also provides
descriptive labels when it is used with certain
SAS procedures. See Base SAS Procedures
Guide for information about using the LABEL
statement with a specific procedure.

LINESIZE= and PAGESIZE= system
options

changes the default number of lines per page
(page size) and characters per line (line size)
for printed output. The default depends on the
method of running SAS and the settings of
certain SAS system options. Specify new page
and line sizes in the OPTIONS statement or
OPTIONS window. You can also specify line
and page size for DATA step output in the
FILE statement.

The values that you use for the LINESIZE=
and PAGESIZE= system options can
significantly affect the appearance of the
output that is produced by some SAS
procedures.

NUMBER | NONUMBER and
PAGENO= system options

controls page numbering. The NUMBER
system option controls whether the page
number is printed on the first title line of each
page of printed output. You can also specify a
beginning page number for the next page of

Customize Output 675

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0wh407rnaleinn1rqyudxuzhkhu.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0b0m78j9u41s6n1t6t217rkq4sk.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0vr78nr6afoxzn158j8cj5g224s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1r8ub0jx34xfsn1ppcjfe0u16pc.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1quv1ypgn8bojn1q4s7nfagkfwu.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n02ek00ir5ihs8n1rewzb5obh1p7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n05f7gfmt2vy5tn0z4x36run57gm.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1go1ykegve5rkn1hfr4m2hqw5lc.htm&locale=en

SAS Language Element Function

output produced by SAS by using the
PAGENO= system option.

TITLE statement prints titles at the top of each output page. In
the windowing environment, SAS prints the
following title by default: The SAS System

You can use the TITLE statement or TITLES
window to replace the default title or specify
other descriptive titles for SAS programs. You
can use the null title statement (title;) to
suppress a TITLE statement.

Using ODS to Customize the Style and Structure of
Output

ODS does more than just enable you to control output destinations. It also enables
you to customize the structure and style of your output. Since ODS uses table and
style templates (definitions) to display procedure and DATA step results, you can
control these results by creating customized table and style templates. You can also
modify existing style and table definitions if you do not want to create the
definitions from scratch.

For information about the Output Delivery System, see SAS Output Delivery
System: User’s Guide.

Reformatting Values in Output
Certain SAS statements, procedures, and options enable you to print values using
specified formats. In a windowing environment, you can use the Properties window
to control how values are displayed. You can apply or change formats with the
FORMAT and ATTRIB statements, or with the Properties window in a windowing
environment.

The FORMAT procedure enables you to design your own formats and informats,
giving you added flexibility in displaying values. See “FORMAT Procedure” in Base
SAS Procedures Guide for more information about the FORMAT procedure, and SAS
System Options: Reference for information about all other SAS system options.

676 Chapter 27 / Output

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p10gcmrmf83iaxn1ilrx4pra969n.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1xidhqypi0fnwn1if8opjpqpbmn.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1xidhqypi0fnwn1if8opjpqpbmn.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Printing Missing Values
SAS represents ordinary missing numeric values in a SAS listing as a single period
and missing character values as a blank space. If you specify special missing values
for numeric variables, SAS writes the letter or the underscore. For character
variables, SAS writes a series of blanks equal to the length of the variable.

The MISSING= system option enables you to specify a character to print in place of
the period for ordinary missing numeric values. For more information, see the
“MISSING= System Option” in SAS System Options: Reference.

The SAS Log

Structure of the Log
The SAS log is a record of everything that you do in your SAS session or with your
SAS program. Depending on the setting of SAS system options, the method of
running SAS, and the program statements that you specify, the log can include the
following types of information:

n program statements

n names of data sets created by the program

n notes, warnings, or error messages encountered during program execution

n the number of variables and observations each data set contains

n processing time required for each step

Operating Environment Information: The SAS log appears differently depending
on your operating environment. See the SAS documentation for your operating
environment.

The SAS Log 677

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0qamf3yfjtwzhn1ran6xwblnlea.htm&locale=en

Example Code 27.1 Sample SAS Log

NOTE: Copyright (c) 2016 by SAS Institute Inc., Cary, NC, USA. 1

NOTE: SAS (r) Proprietary Software 9.4 (TS1B0) 2 Licensed to SAS Institute
Inc., Site 1. 3

NOTE: This session is executing on the W32_7PRO platform. 4

NOTE: SAS initialization used:
 real time 4.19 seconds
 cpu time 0.85 seconds
1 options pagesize=24
2 linesize=64 pageno=1 nodate; 5

3 data logsample; 6

5 infile
5 ! '\\myserver\my-directory-path\sampledata.dat'; 7

6 input LastName $ ID $ Gender $ Birth : date7. score1
6 ! score2 score3 score4 score5 score6 score7 score8;
7 format Birth mmddyy8.;
8 run;
NOTE: The infile
 '\\myserver\my-directory-path\sampledata.dat' is: 8

 Filename=\\myserver\my-directory-path\sampledata.dat,
 RECFM=V,LRECL=256,File Size (bytes)=296,
 Last Modified=08Jun2009:15:42:26,
 Create Time=08Jun2009:15:42:26
NOTE: 5 records were read from the infile 9

 '\\myserver\my-directory-path\sampledata.dat'.
 The minimum record length was 58.
 The maximum record length was 59.
NOTE: The data set WORK.LOGSAMPLE has 5 observations and 12
 variables. 10

NOTE: DATA statement used (Total process time):
 real time 0.21 seconds 11

 cpu time 0.03 seconds
9
10 proc sort data=logsample; 12

11 by LastName;
12 run;
NOTE: There were 5 observations read from the data set
 WORK.LOGSAMPLE.
NOTE: The data set WORK.LOGSAMPLE has 5 observations and 12
 variables. 13

NOTE: PROCEDURE SORT used (Total process time):
 real time 0.01 seconds
 cpu time 0.01 seconds
13
14 proc print data=logsample; 14

15 by LastName;
16 run;
NOTE: There were 5 observations read from the data set
 WORK.LOGSAMPLE.
NOTE: PROCEDURE PRINT used (Total process time):
 real time 0.03 seconds
 cpu time 0.03 seconds

The following list corresponds to the circled numbers in the SAS log shown above:

1 copyright information

2 SAS release used to run this program

3 name and site number of the computer installation where the program ran

4 platform used to run the program

678 Chapter 27 / Output

Note: Copyright information, licensing and site information, and the number of
observations and variables in the data set can be suppressed using the NOTES |
NONOTES System Option

5 The OPTIONS statement sets a page size of 24, a line size of 64, sets the SAS
output to page 1, and suppresses the date in the output.

6 SAS statements that make up the program (if the SAS system option SOURCE
is enabled)

7 long statement continued to the next line. Note that the continuation line is
preceded by an exclamation point (!), and that the line number does not change.

8 input file information-notes or warning messages about the raw data and where
they were obtained (if the SAS system option NOTES is enabled)

9 the number and record length of records read from the input file (if the SAS
system option NOTES is enabled)

10 SAS data set that your program created; notes that contain the number of
observations and variables for each data set created (if the SAS system option
NOTES is enabled)

11 reported performance statistics when the STIMER option or the FULLSTIMER
option is set

12 procedure that sorts your data set

13 note about the sorted SAS data set

14 procedure that prints your data set

The SAS Log in Batch, Line, or Objectserver Modes
If the LOGCONFIGLOC= system option is not specified when SAS starts, you can
configure the SAS log by using the LOG= system option or the LOGPARM= system
option. These options can be specified in batch mode, line mode, or objectserver
mode. If the LOGCONFIGLOC= system option is specified, logging is performed by
the SAS logging facility and the LOGPARM= option is ignored. The LOG= option is
honored only when the %S{App.Log} conversion character is specified in the
logging configuration file. For information about these log system options, see
“LOGPARM= System Option” in SAS System Options: Reference in the
documentation for your operating environment: For information about the SAS
logging facility, see SAS Logging: Configuration and Programming Reference.

The following sections discuss the log options that you can configure using the
LOGPARM= system option and how you would name the SAS log for those options
when the logging facility has not been initiated. The LOG= system option names the
SAS log. The LOGPARM= system option enables you to append to or replace the
SAS log, determine when to write to the SAS log, and start a new SAS log under
certain conditions.

The SAS Log 679

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1n9y0vee2emq9n1gotajyxubz3x.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1n9y0vee2emq9n1gotajyxubz3x.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en
http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Appending to or Replacing the SAS Log

If you specify a destination for the SAS log in the LOG= system option, SAS verifies
if a SAS log already exists. If the log does exist, you can specify how content is
written to the SAS log by using the OPEN= option of the LOGPARM= system
option.

In the following SAS command, both the LOG= and LOGPARM= system options are
specified in order to replace an existing SAS log that is more than one day old:

sas -sysin "my-batch-program" -log "c:\sas\SASlogs\mylog"
 -logparm open=replaceold

The OPEN= option is ignored when the ROLLOVER= option of the LOGPARM=
system option is set to a specific size, n.

Specifying When to Write to the SAS Log

Content can be written to the SAS log either as the log content is produced or it can
be buffered and written when the buffer is full. By default, SAS writes to the log
when the log buffer is full. By buffering the log content, SAS performs more
efficiently by writing to the log file periodically instead of writing one line at a time.

Windows Specifics: Under Windows, the buffered log contents are written
periodically, using an interval specified by SAS.

You use the WRITE= option of the LOGPARM= system option to configure when
the SAS log contents are written. Set LOGPARM=“WRITE=IMMEDIATE” for the log
content to be written as it is produced and set LOGPARM=“WRITE=BUFFERED” for
the log content to be written when the buffer is full.

Rolling Over the SAS Log

The SAS log can get very large for long running servers and for batch jobs. By using
the LOGPARM= system option and the LOG system options together, you can
specify to roll over the SAS log to a new SAS log. When SAS rolls over the log, it
closes the log and opens a new log.

The LOGPARM= system option controls when log files are opened and closed and
the LOG= system option names the SAS log file. Logs can be rolled over
automatically, when a SAS session starts, when the log has reached a specific size,
or not at all. By using formatting directives in the SAS log name, each SAS log can
be named with unique identifiers. For more information about how to roll over the
SAS log, see the following examples:

n “Example : Use Directives to Name the SAS Log” on page 688

n “Example: Automatically Roll Over the SAS Log When Directives Change” on
page 689

680 Chapter 27 / Output

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en

n “Example: Roll Over the SAS Log by SAS Session” on page 690

n “Example: Roll Over the SAS Log by the Log Size” on page 691

To not roll over the log at all, specify the LOGPARM= “ROLLOVER=NONE” option
when SAS starts. Directives are not resolved and no rollover occurs. For example, if
LOG=“March#b.log”, the directive #b does not resolve and the log name is
March#b.log.

Writing to the Log in All Modes
In all modes, you can instruct SAS to write additional information to the log by
using the following statements:

Table 27.4 Other Statements That Write Information to the SAS Log

Statements Descriptions Examples

DATA
Statement
with /NESTING
Option

Specifies that a note is printed to the
SAS log for the beginning and end of
each DO-END and SELECT-END
nesting level. This option enables you
to debug mismatched DO-END and
SELECT-END statements and is
particularly useful in large programs
where the nesting level is not obvious.

“DATA Statement” in
SAS DATA Step
Statements: Reference

ERROR
Statement

Sets _ERROR_ to 1. A message written
to the SAS log is optional.

“ERROR Statement” in
SAS DATA Step
Statements: Reference

LIST Statement Writes to the SAS log the input data
record for the observation that is being
processed.

“LIST Statement” in
SAS DATA Step
Statements: Reference

PUT Statement Writes lines to the SAS log, to the SAS
output window, or to an external
location that is specified in the most
recent FILE statement.

“PUT Statement” in
SAS DATA Step
Statements: Reference

%PUT
Statement

Writes text or macro variable
information to the SAS log.

“%PUT Macro
Statement” in SAS
Macro Language:
Reference

PUTLOG
Statement

Writes a message to the SAS log. “PUTLOG Statement” in
SAS DATA Step
Statements: Reference

The SAS Log 681

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0404um2m3l8n0n1kpygoyclarne.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0404um2m3l8n0n1kpygoyclarne.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0404um2m3l8n0n1kpygoyclarne.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0404um2m3l8n0n1kpygoyclarne.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0404um2m3l8n0n1kpygoyclarne.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0drxaqb7f0w0tn18viaj8dtjwud.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0drxaqb7f0w0tn18viaj8dtjwud.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0drxaqb7f0w0tn18viaj8dtjwud.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0drxaqb7f0w0tn18viaj8dtjwud.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1spe7nmkmi7ywn175002rof97fv.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1spe7nmkmi7ywn175002rof97fv.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1spe7nmkmi7ywn175002rof97fv.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1spe7nmkmi7ywn175002rof97fv.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n189qvy83pmkt6n1bq2mmwtyb4oe.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n189qvy83pmkt6n1bq2mmwtyb4oe.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n189qvy83pmkt6n1bq2mmwtyb4oe.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n189qvy83pmkt6n1bq2mmwtyb4oe.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n189qvy83pmkt6n1bq2mmwtyb4oe.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n189qvy83pmkt6n1bq2mmwtyb4oe.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n05jha8tsrpanyn19m05ss7ltv6e.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n05jha8tsrpanyn19m05ss7ltv6e.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n05jha8tsrpanyn19m05ss7ltv6e.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n05jha8tsrpanyn19m05ss7ltv6e.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n05jha8tsrpanyn19m05ss7ltv6e.htm&locale=en

Use the PUT, PUTLOG, LIST, DATA, and ERROR statements in combination with
conditional processing to debug DATA steps by writing selected information to the
log.

Customizing the Log

Suppress the Contents of the Log

When you have large SAS production programs or an application that you run on a
regular basis without changes, you might want to suppress part of the log. SAS
system options enable you to suppress SAS statements and system messages, as
well as to limit the number of error messages. All SAS system options remain in
effect for the duration of your session or until you change the options. You should
not suppress log messages until you have successfully executed the program
without errors.

The following list describes some of the SAS system options that you can use to
alter the contents of the log. For examples of how some of these options can be
used, see “Examples: Suppress Output to the SAS Log” .

Table 27.5 Ways to Customize the Log

SAS System Options Descriptions

CPUID | NOCPUID Specifies whether the CPU identification number is
written to the SAS log.

ECHO: Windows and UNIX Specifies a message to be written to the SAS log
while SAS initializes. The ECHO system option is
valid only under the Windows and UNIX operating
environments.

ECHOAUTO |
NOECHOAUTO

Specifies whether autoexec code in an input file is
written to the log.

ERRORS= Specifies the maximum number of observations for
which SAS issues complete error messages.

FULLSTATS: z/OS Writes expanded statistics to the SAS log. The
FULLSTATS system option is valid only under z/OS.

FULLSTIMER: Windows
FULLSTIMER: UNIX

Writes a subset of system performance statistics to
the SAS log.

682 Chapter 27 / Output

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0188g8w4pguhkn1ehp9b2wlyf2u.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p1cnm53g4ky8h3n1k8n3d7m80t6r.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1lr2ge6wrwt15n1bwqqwi8xnj5n.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0aeqd6gt2adqhn19f4qpg37kksr.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0aeqd6gt2adqhn19f4qpg37kksr.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1vs7brycysl6ln1n3ucjf46fdo2.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1nsqghrjrc4eln1xxya1hoihk8n.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p07iiwnf85r6lwn1xg9zl58ouvw1.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n0k7vnqt9p9o91n1jsl23a08l13e.htm&locale=en

ISPNOTES: z/OS Specifies whether ISPF error messages are written to
the SAS log. The ISPNOTES system option is valid
only under the z/OS operating environment.

HOSTINFOLONG Writes additional operating environment information
to the SAS log when SAS starts.

LOGPARM "OPEN=APPEND
| REPLACE |
REPLACEHOLD"

When a log file already exists and SAS is opening the
log, the LOGPARM option specifies whether to
append to the existing log or to replace the existing
log. The REPLACEHOLD option specifies to replace
logs that are more than one day old.

MEMRPT: z/OS Specifies whether memory usage statistics are
written to the SAS log for each step. The MEMRPT
system option is valid only under the z/OS operating
environment.

MLOGIC Writes macro execution trace information to the SAS
log.

MLOGICNEST Specifies whether to display the macro nesting
information in the MLOGIC output in the SAS log.

MPRINT | NOMPRINT Specifies whether SAS statements that are generated
by macro execution are written to the SAS log.

MPRINTNEST Specifies whether to display the macro nesting
information in the MPRINT output in the SAS log.

MSGLEVEL= Specifies the level of detail in messages that are
written to the SAS log.

NEWS= Specifies whether news information that is
maintained at your site is written to the SAS log.

NOTE | NONOTES Specifies whether notes (messages beginning with
NOTE) are written to the SAS log. NONOTES does
not suppress error or warning messages.

OPLIST: Windows OPLIST:
z/OS OPLIST: UNIX

Specifies whether the settings of the SAS system
options are written to the SAS log.

OVP | NOOVP Specifies whether overprinting of error messages to
make them bold, is enabled.

PAGEBREAKINITIAL Specifies whether the SAS log and the listing file
begin on a new page.

The SAS Log 683

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p0zg2a1az5nndfn1fvta09r710y0.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p01lgsbjy5n06fn1sb7yzg3z8ui2.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n12otbtet6fslvn10snr35fl9khy.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n0xmqcv92coq2tn1k0z0q6fl2dew.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p0tn2ue6pjpv9kn1fbtwun9shjsv.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p1dhqw0i5yj2m8n15opapnwteqra.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p09skykl2erwkyn1xh90vqmmcrgy.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p17071zptzpruyn1a5hirqyle3r3.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0d0jd0zl1wbrtn1k6zaai1d8ckh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1n9y0vee2emq9n1gotajyxubz3x.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n1nq92rqoe8p9kn1veewc7i76mwb.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n01djp2lzx9fa4n1l55bazj3hye0.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n01djp2lzx9fa4n1l55bazj3hye0.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n0csz1dinpqi91n1lhtp3titj2g9.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1efwbztkr5j57n1irea9a6liqj8.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n042c35kwrf23un1aofxpi8ba05g.htm&locale=en

PRINTMSGLIST |
NOPRINTMSGLIST

Specifies whether extended lists of messages are
written to the SAS log.

RTRACE: Windows RTRACE:
UNIX

Produces a list of resources that are read or loaded
during a SAS session and writes them to the SAS log
if a location is not specified for the RTRACELOC=
system option. The RTRACE system option is valid
only for the Windows and UNIX operating
environments.

SOURCE | NOSOURCE Specifies whether SAS writes source statements to
the SAS log.

SOURCE2 | NOSOURCE2 Specifies whether SAS writes secondary source
statements from files included by %INCLUDE
statements to the SAS log.

SYMBOLGEN |
NOSYMBOLGEN

Specifies whether the results of resolving macro
variable references are written to the SAS log

VERBOSE: Windows
VERBOSE: z/OS VERBOSE:
UNIX

Specifies whether SAS writes to the batch log or to
the computer monitor the values of the system
options that are specified in the configuration file.

See SAS System Options: Reference for more information about how to use these
and other SAS system options.

Customizing the Appearance of the Log

The following SAS statements and SAS system options enable you to customize
the log. Customizing the log is helpful when you use the log for report writing or for
creating a permanent record.

Table 27.6 SAS Statements and System Options to Customize the Log

DETAILS system option Specifies whether to include additional information
when files are listed in a SAS library.

DMSLOGSIZE= system
option

Specifies the maximum number of rows to display in
the SAS log window.

DTRESET system option Specifies whether to update the date and time in the
SAS log and in the listing file.

FILE statement Enables you to write the results of PUT statements to
an external file. You can use LINESIZE= and

684 Chapter 27 / Output

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1l0qc149cp4con1djgg3z4rli7u.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1l0qc149cp4con1djgg3z4rli7u.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p1stv3c5bpfplsn1g2ob6645u436.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p0lyguqz566hbxn1t6y2aqyr4g2n.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p0lyguqz566hbxn1t6y2aqyr4g2n.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0gnz7tqcszvbpn1umls21zdkw62.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0dk0dc3yeff1hn1murknwao75bb.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n0lh4tuknkdkf2n1d4qi7utpyf5n.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n0lh4tuknkdkf2n1d4qi7utpyf5n.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n001pt9knbdfdgn0z9oz0jn8esm8.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1mywasix5fwrfn129wi0hkznb6c.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1h3syazdy7i73n1uh2gqu75602w.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1h3syazdy7i73n1uh2gqu75602w.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0v54tw1kqg4qsn1e00e60wy4s10.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p12fpngfj47y9rn171c024mwx7nt.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p12fpngfj47y9rn171c024mwx7nt.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n04garu7xnh3ppn1swye15i8s0fx.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n15o12lpyoe4gfn1y1vcp6xs6966.htm&locale=en

PAGESIZE= options in the FILE statement to customize
your report.

LINESIZE= system option Specifies the line size (printer line width) for the SAS
log and SAS output that are used by the DATA step and
procedures.

MSGCASE system option:
Windows MSGCASE
system option: UNIX
MSGCASE system option:
z/OS

Specifies whether to display notes, warning, and error
messages in uppercase letters or lowercase letters.

MISSING= system option Specifies the character to be printed for missing
numeric variable values.

NUMBER system option Controls whether the page number is printed on the
first title line of each page of printed output.

PAGE statement Skips a specified number of lines in the SAS log.

PAGESIZE= system option Specifies the number of lines that you can print per
page of SAS output.

SKIP statement Skips a specified number of lines in the SAS log.

STIMEFMT system option:
Windows STIMEFMT
system option: UNIX

Specifies the format to use for displaying the read and
CPU processing times when the STIMER system option
is set. The STIMEFMT system option is valid under
Windows and UNIX operating environments.

Operating Environment Information: The range of values for the FILE statement
and for SAS system options depends on your operating environment. See the SAS
documentation for your operating environment for more information.

Other System Options That Affect the SAS Log

The following system options pertain to the SAS log other than by the content and
appearance of the SAS log:

Table 27.7 Other SAS System Options That Affect the SAS Log

ALTLOG system option: Windows ALTLOG
system option: UNIX ALTLOG system
option: z/OS

Specifies the destination for a copy of
the SAS log.

The SAS Log 685

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1quv1ypgn8bojn1q4s7nfagkfwu.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n0ueog1qj5reo2n1bs2ddlretphv.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n0ueog1qj5reo2n1bs2ddlretphv.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p0o7ip4m2lviijn1kkp0y8s60o4z.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p0o7ip4m2lviijn1kkp0y8s60o4z.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p02lj7drhq064jn1mqunumtndk85.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p02lj7drhq064jn1mqunumtndk85.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0qamf3yfjtwzhn1ran6xwblnlea.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n05f7gfmt2vy5tn0z4x36run57gm.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p097onlmum27pgn1er7gup245gs0.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n02ek00ir5ihs8n1rewzb5obh1p7.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n1ntd5bhj24w4hn14tlm0k4crj2e.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n1qpvan2y4ke45n1lrgixiti2ub5.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n1qpvan2y4ke45n1lrgixiti2ub5.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p1xnpub3oq3nlun1efyzsy5ms3u9.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p1xnpub3oq3nlun1efyzsy5ms3u9.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n02cl0iq0k1fmxn11p83yirplodk.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p10cborm89irzdn1m5y3o4hfw1g6.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p10cborm89irzdn1m5y3o4hfw1g6.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p0dr65fkuele0pn1w58ysqvt9hdy.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p0dr65fkuele0pn1w58ysqvt9hdy.htm&locale=en

LOG system option: Windows LOG system
option: UNIX LOG= system option: z/OS

Specifies the destination for the SAS
log when SAS is run in batch mode.

LOGAPPLNAME= system option Specifies a SAS session name that can
be used for SAS logging.

Examples: Manage Output Destinations

Example: Create Default HTML Output

Example Code

The default output destination is HTML when running SAS programs. In SAS Studio,
the results are displayed in the Results window.

title 'Student Weight';
 proc print data=sashelp.class;
 where weight>100;
 run;

Output 27.1 Default HTML Output

Note: If you previously closed the HTML destination, then your output is sent to
the WORK directory by default. If you close the HTML destination and reopen it in

686 Chapter 27 / Output

http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n0u77ujp4vk4wvn1p5e8g6jmjkx7.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1csawccqbra9wn1c7tbyrkqv2t0.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1csawccqbra9wn1c7tbyrkqv2t0.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p12z6hainh1pzyn1bqn0f27idvx5.htm&locale=en
http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=p1l6743dq8nxm9n18jtrf1ldik8k.htm&locale=en

the same SAS session, then all output goes to the current directory. You do not
have to specify ods html close; to view your output.

Key Ideas

n HTML is the default destination for output.

n The destination of your output depends on your operating environment, your mode
of running SAS, and your version of SAS.

Example: Use ODS Statements to Change the
Output Destination

Example Code

If you want to send your output to the LISTING destination, you can use ODS
statements in your SAS programs to change the destination.

In this example, the output destination is changed from HTML to LISTING by
specifying the ODS LISTING and ODS HTML CLOSE statements. By changing the
output destination to LISTING, the output is automatically displayed as a list report
in the SAS Output Window.

ods html close;
ods listing;
options nodate;

title 'Students';
 proc print data=sashelp.class;
 where weight>100;
 run;
ods html;
ods listing close;

Examples: Manage Output Destinations 687

Output 27.2 Listing Output in the Windowing Environment

Key Ideas

n If you want a more permanent solution, you can change your settings so that every
time you run SAS, your output is sent to the LISTING destination by default.

See Also

n “Understanding ODS Destinations” in SAS Output Delivery System: User’s Guide

Examples: Rolling Over the SAS Log

Example : Use Directives to Name the SAS Log

Example Code

The following example shows how to use directives in the LOG= system option to
include the year, the month, and the day in the SAS log name:

-log "c:\saslog\#Y#b#dsas.log

When the SAS log is created on February 2, 2019, the name of the log is
2019Feb02sas.log.

688 Chapter 27 / Output

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p1n357e2fq6kjkn1ijsu3w97lxl1.htm&locale=en

Key Ideas

n Directives enable you to add information to the SAS log name such as the day, the
hour, the system node name, or a unique identifier. You can include one or more
directives in the name of the SAS log when you specify the log name in the LOG
system option.

n A directive is a processing instruction that is used to uniquely name the SAS log.

n Directives resolve only when the value of the ROLLOVER= option of the
LOGPARM= system option is set to AUTO or SESSION.

n If directives are specified in the log name and the value of the ROLLOVER option is
NONE or a specific size, n, the directive characters, such as #b or #Y, become part
of the log name.

n Using the example above for the LOG system option, if the LOGPARM= system
option specifies ROLLOVER=NONE, the name of the SAS log is #Y#b#dsas.log.

See Also

n For a complete list of directives, see “LOGPARM= System Option” in SAS
System Options: Reference

Example: Automatically Roll Over the SAS Log
When Directives Change

Example Code

When the SAS log name contains one or more directives and the ROLLOVER=
option of the LOGPARM= system option is set to AUTO, SAS closes the log and
opens a new log when the directive values change. The new SAS log name contains
the new directive values.

The table below shows some of the log names that are created when SAS is started
on the second of the month at 6:15 AM, using this SAS command:

sas -objectserver -log "london#n#d#%H.log"
-logparm
"rollover=auto"

Examples: Rolling Over the SAS Log 689

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en

Key Ideas

n The directive #n inserts the system node name into the log name. #d adds the day
of the month to the log name. #H adds the hour to the log name. The node name
for this example is Thames

n Under the Windows and UNIX operating environments, you can begin directives
with either the % symbol or the # symbol, and use both symbols in the same
directive.

n The log for this SAS session rolls over when the hour changes and when the day
changes.

Table 27.8 Log Names for Rolled Over Logs

Rollover Time Log Name

SAS initialization londonThames0206.log

First rollover londonThames0207.log

Last log of the day londonThames0223.log

First log past midnight londonThames0300.log

See Also

n For a complete list of directives, see “LOGPARM= System Option” in SAS
System Options: Reference

Example: Roll Over the SAS Log by SAS Session

Example Code

To roll over the log at the start of a SAS session, specify the
LOGPARM=“ROLLOVER=SESSION” option when SAS starts. The example below
creates a log filename that contains the user name that started the SAS session.

sas -log "%l.log"

690 Chapter 27 / Output

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en

-logparm "rollover=session"

Key Ideas

n SAS resolves the system-specific directives that are specified in the LOG= system
option and uses the resolved value to name the new log file.

n Under the Windows and UNIX operating environments, you can begin directives
with either the % symbol or the # symbol, and use both symbols in the same
directive.

n No roll over occurs during the SAS session, and the log file is closed at the end of
the SAS session.

See Also

n “LOGPARM= System Option” in SAS System Options: Reference

Example: Roll Over the SAS Log by the Log Size

Example Code

To roll over the log when the log reaches a specific size, specify the
LOGPARM=“ROLLOVER=n” option when SAS starts.

sas -log "test%H%M.log"
-logparm "rollover=80"

Key Ideas

n n is the maximum size of the log, in bytes, and it cannot be smaller than 10K
(10,240) bytes.

n Under the Windows and UNIX operating environments, you can begin directives
with either the % symbol or the # symbol, and use both symbols in the same
directive.

n When the log reaches the specified size, SAS closes the log and appends the text
“old” to the filename (for example, londonold.log). SAS opens a new log using the
value of the LOG= option for the log name and ignores the OPEN= option
statement in the LOGPARM system option.

Examples: Rolling Over the SAS Log 691

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en

n This is useful so that SAS never writes over an existing log file. Directives in log
names are ignored for logs that roll over based on log size.

n To ensure unique log filenames between servers, SAS creates a lock file that is
based on the log filename. The lock filename is logname.lck, where logname is the
value of the LOG= option.

n If a lock file exists for a server log and another server specifies the same log name,
a number is appended to the log and lock filenames for the second server. The
numbers begin with 2 and increment by 1 for subsequent requests for the same log
filename. For example, if a lock exists for the log file london.log, the second server
log would be london2.log and the lock file would be london2.lck.

See Also

n “LOGPARM= System Option” in SAS System Options: Reference

Examples: Suppress Output to the SAS
Log

Example: Suppress the Printing of the Source
Program to the SAS Log Using the NOSOURCE
System Option

Example Code

In this example, the first DATA step prints the source code to the SAS log. The
source code in this case contains a password, which is displayed in the SAS log
when the DATA step executes:

data mytable;
 password="ABC123";
 x = 1;
run;

692 Chapter 27 / Output

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en

Example Code 27.2 SAS Log output that shows how the password is printed to the SAS log
in the source code

 73 data mytable;
 74 password="ABC123";
 75 x = 1;
 76 run;

You can suppress the printing of the source program to the log by using the
NOSOURCE system option.

options nosource;
data mytable;
 password="ABC123";
run;

Example Code 27.3 SAS Log output that shows how the source code is suppressed from
printing to the log

 114 options nosource;

 NOTE: The data set WORK.MYTABLE has 1 observations and 1 variables.
 NOTE: DATA statement used (Total process time):
 real time 0.02 seconds
 cpu time 0.01 seconds

Key Ideas

n The SOURCE | NOSOURCE System Option specifies whether SAS writes source
statements to the SAS log.

n The NOSOURCE System Option does not write SAS source statements to the SAS
log.

See Also

n “SOURCE System Option” in SAS System Options: Reference

Examples: Suppress Output to the SAS Log 693

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0gnz7tqcszvbpn1umls21zdkw62.htm&locale=en

Example: Suppress the Printing of Variable Data to
the SAS Log Using the NOLIST Option

Example Code

In this example, the NOSOURCE option suppresses the printing of the source
program to the SAS log. However, because the second DATA step generates an
error, the password data is printed to the SAS log in the log note.

options nosource;
data mytable;
 password="123ABC";
 run;
 data mytable2;
 set mytable;
 password=input(password,datetime.);
 run;

Example Code 27.4 Log output that shows how the password is printed to the SAS log in the
NOTE

NOTE: The data set WORK.MYTABLE has 1 observations and 1 variables.
 NOTE: DATA statement used (Total process time):
 real time 0.02 seconds
 cpu time 0.03 seconds

 NOTE: Numeric values have been converted to character values at the places given
by:
 (Line):(Column).
 123:14
 NOTE: Invalid argument to function INPUT at line 123 column 14.
 password=. _ERROR_=1 _N_=1
 NOTE: Mathematical operations could not be performed at the following places. The
results of the
 operations have been set to missing values.
 Each place is given by: (Number of times) at (Line):(Column).
 1 at 123:14
 NOTE: There were 1 observations read from the data set WORK.MYTABLE.
 NOTE: The data set WORK.MYTABLE2 has 1 observations and 1 variables.
 NOTE: DATA statement used (Total process time):
 real time 0.03 seconds
 cpu time 0.00 seconds

You can suppress the printing variable data when there is an error by specifying the
NOLIST option in the DATA statement.

data mytable2 / NOLIST;
 set mytable;
 password=input(password,datetime.);
 run;

694 Chapter 27 / Output

Example Code 27.5 Log output that shows how the NOLIST option suppresses the printing
of variable data to the SAS log when there is an error

NOTE: Numeric values have been converted to character values at the places given by:
 (Line):(Column).
 127:14
 NOTE: Invalid argument to function INPUT at line 127 column 14.
 NOTE: NOLIST option on the DATA statement suppressed output of variable listing.
 NOTE: Mathematical operations could not be performed at the following places. The
results of the
 operations have been set to missing values.
 Each place is given by: (Number of times) at (Line):(Column).
 1 at 127:14
 NOTE: There were 1 observations read from the data set WORK.MYTABLE.
 NOTE: The data set WORK.MYTABLE2 has 1 observations and 1 variables.
 NOTE: DATA statement used (Total process time):
 real time 0.02 seconds
 cpu time 0.00 seconds

Key Ideas

n The NOLIST DATA statement option suppresses the output of all variables to the
SAS log when the value of _ERROR_ is 1.

n NOLIST must be the last option in the DATA statement.

See Also

n “DATA Statement” in SAS DATA Step Statements: Reference

Example: Suppress the Printing of All Notes to the
SAS Log Using the NONOTES System Option

Example Code

These examples uses the NONOTES system option to suppress the printing of
notes to the SAS log.

data example;
 password="ABC123";
run;

Examples: Suppress Output to the SAS Log 695

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en

Example Code 27.6 Log output showing how notes are printed to the SAS log

17 data example;
 18 password="ABC123";
 19 run;

 NOTE: The data set WORK.EXAMPLE has 1 observations and 1 variables.
 NOTE: DATA statement used (Total process time):
 real time 0.02 seconds
 cpu time 0.01 seconds

You can suppress the printing of notes by using the NONOTES system option.

options NONOTES;
data example;
 password="ABC123";
run;

Example Code 27.7 Log output showing how notes are suppressed in the SAS log

20 options NONOTES;
 21 data example;
 22 password="ABC123";
 23 run;

Key Ideas

n The NOTES system option specifies whether notes are written to the SAS log.

n NONOTES specifies that SAS does not write notes to the SAS log.

See Also

n “NOTES System Option” in SAS System Options: Reference

696 Chapter 27 / Output

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1n9y0vee2emq9n1gotajyxubz3x.htm&locale=en

28
Printing

Universal Printing . 697
Definition of Universal Printing . 697

Universal Printing

Definition of Universal Printing
Universal Printing is a system that enables you to create a variety of document and
graphic output formats. For example, you can use Universal Printing to create
HTML files or PDF and RTF documents.

You can define printers with Universal Printing, and set options to control the
printed output. In addition to creating the various document and graphic output
types, you can send output to a printer.

SAS routes all printing through Universal Printing services. All Universal Printing
features are controlled by system options, thereby enabling you to control many
print features, even in batch mode.

See SAS 9.4 Universal Printing for details.

697

http://documentation.sas.com/?docsetId=uprint&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en

698 Chapter 28 / Printing

PART 6

Managing Files

Chapter 29
Protecting Files . 701

Chapter 30
Repairing SAS Files . 719

Chapter 31
Compressing SAS Data Sets . 733

Chapter 32
Moving SAS Files . 735

Chapter 33
Cross-Environment Data Access . 737

Chapter 34
Managing SAS Catalogs . 757

699

700

29
Protecting Files

Definition of a Password . 702

Assigning Passwords . 703
Syntax . 703
Assigning a Password with a DATA Step . 703
Assigning a Password to an Existing Data Set . 704
Assigning a Password with a Procedure . 704
Assigning a Password with the SAS Windowing Environment . 705
Assigning a Password outside of SAS . 705

Removing or Changing Passwords . 705

Using Password-Protected SAS Files in DATA and PROC Steps . 705

How SAS Handles Incorrect Passwords . 706

Assigning Complete Protection with the PW= Data Set Option . 707

Encoded Passwords . 708

Using Passwords with Views . 708
Levels of Protection . 708
PROC SQL Views . 710
SAS/ACCESS Views . 710
DATA Step Views . 710

SAS Data File Encryption . 711
About Encryption on SAS Data Files . 711
SAS Proprietary Encryption . 712
AES Encryption . 713
AES Encryption and Referential Integrity Constraints . 715
Passwords and Encryption with Generation Data Sets, Audit

Trails, Indexes, and Copies . 715

Blotting Passwords and Encryption Key Values . 716
Check the SAS Log . 716
Examples of Passwords and Encryption Keys That Are Not Blotted 716
Using Macros . 717
Length of Passwords . 718

Metadata-Bound Libraries . 718

701

Definition of a Password
SAS software enables you to restrict access to members of SAS libraries by
assigning passwords to the members. You can assign passwords to all member
types except catalogs. You can specify three levels of protection: Read, Write, and
Alter. When a password is assigned, it appears as uppercase Xs in the log.

Note: This document uses the terms SAS data file and SAS view to distinguish
between the two types of SAS data sets. Passwords work differently for type VIEW
than they do for type DATA. The term “SAS data set” is used when the distinction is
not necessary.

read
protects against reading the file.

write
protects against changing the data in the file. For SAS data files, write
protection prevents adding, modifying, or deleting observations.

alter
protects against deleting or replacing the entire file. For SAS data files, alter
protection also prevents modifying variable attributes and creating or deleting
indexes.

Alter protection does not require a password for Read or Write access; write
protection does not require a password for Read access. For example, you can read
an alter-protected or write-protected SAS data file without knowing the Alter or
Write password. Conversely, read and write protection do not prevent any
operation that requires alter protection. For example, you can delete a SAS data set
that is read- or write-protected only without knowing the Read or Write password.

To protect a file from being read, written to, deleted, or replaced by anyone who
does not have the proper authority, assign read, write, and alter protection. To allow
others to read the file without knowing the password, but not change its data or
delete it, assign just write and alter protection. To completely protect a file with
one password, use the PW= data set option. For more information, see “Assigning
Complete Protection with the PW= Data Set Option” on page 707.

Note: Because of how SAS opens files, you must specify the Read password to
update a SAS data set that is only read-protected.

Note: The levels of protection differ somewhat for the member type VIEW. See
“Using Passwords with Views” on page 708.

702 Chapter 29 / Protecting Files

Assigning Passwords

Syntax
To set a password, first specify a SAS data set in one of the following:

n a DATA statement

n the MODIFY statement of the DATASETS procedure

n an OUT= option in some procedures

n the CREATE VIEW statement in PROC SQL

n the ToolBox

Then assign one or more password types to the data set. The data set might
already exist, or the data set might be one that you create. The following is an
example of syntax:

(password-type=password ... password-type=password>)

where password is a valid eight-character SAS name and password-type can be one
of the following SAS data set options:

n ALTER=

n PW=

n READ=

n WRITE=

TIP Each password option must be coded on a separate line to ensure that
they are properly blotted in the SAS log.

CAUTION
Keep a record of any passwords that you assign! If you forget or do not know the
password, you cannot get the password from SAS.

Assigning a Password with a DATA Step
You can use data set options to assign passwords to unprotected members in the
DATA step when you create a new SAS data file.

Assigning Passwords 703

This example prevents deletion or modification of the data set without a password.

 /* assign a write and an alter password to MYLIB.STUDENTS */
data mylib.students(write=yellow alter=red);
 input name $ sex $ age;
 datalines;
Amy f 25
… more data lines …
;

This example prevents reading or deleting a stored program without a password
and also prevents changing the source program.

 /* assign a read and an alter password to the SAS view ROSTER */
data mylib.roster(read=green alter=red) / view=mylib.roster;
 set mylib.students;
run;

libname stored 'SAS-library-2';

 /* assign a read and alter password to the program file SOURCE */
data mylib.schedule / pgm=stored.source(read=green alter=red);
 … DATA step statements …
run;

Note: When you replace a SAS data set that is alter-protected, the new data set
inherits the Alter password. To change the Alter password for the new data set, use
the MODIFY statement in the DATASETS procedure.

Assigning a Password to an Existing Data Set
You can use the MODIFY statement in the DATASETS procedure to assign
passwords to unprotected members if the SAS data file already exists.

 /* assign an alter password to STUDENTS */
proc datasets library=mylib;
 modify students(alter=red);
run;

Assigning a Password with a Procedure
You can assign a password after an OUT= data set specification in some
procedures.

 /* assign a write and an alter password to SCORE */
proc sort data=mylib.math
 out=mylib.score(write=yellow alter=red);
 by number;
run;

704 Chapter 29 / Protecting Files

You can assign a password in a CREATE TABLE or a CREATE VIEW statement in
PROC SQL.

 /* assign an alter password to the SAS view BDAY */
proc sql;
 create view mylib.bday(alter=red) as
 query-expression;

Assigning a Password with the SAS Windowing
Environment

You can create or change passwords for any data file using the Password Window
in the SAS windowing environment. To invoke the Password Window from the
ToolBox, use the global command SETPASSWORD followed by the filename. This
opens the password window for the specified data file.

Assigning a Password outside of SAS
A SAS password does not control access to a SAS file beyond the SAS system. You
should use the operating system-supplied utilities and file-system security controls
in order to control access to SAS files outside of SAS.

Removing or Changing Passwords
To remove or change a password, use the MODIFY statement in the DATASETS
procedure. For more information, see “DATASETS Procedure” in Base SAS
Procedures Guide.

Using Password-Protected SAS Files in
DATA and PROC Steps

To access password-protected files, use the same data set options that you use to
assign protection.

n /* Assign a read and alter password to the stored program file*/
/*STORED.SOURCE */

Using Password-Protected SAS Files in DATA and PROC Steps 705

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hmips60w5w3yn1hj9klna7aplw.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hmips60w5w3yn1hj9klna7aplw.htm&locale=en

data mylib.schedule / pgm=stored.source
 (read=green alter=red);
 <… more DATA step statements …>
run;

 /*Access password-protected file*/
proc sort data=mylib.score(write=yellow alter=red);
 by number;
run;

n /* Print read-protected data set MYLIB.AUTOS */
proc print data=mylib.autos(read=green);
run;

n /* Append ANIMALS to the write-protected data set ZOO */
proc append base=mylib.zoo(write=yellow) data=mylib.animals;
run;

n /* Delete alter-protected data set MYLIB.BOTANY */
proc datasets library=mylib;
 delete botany(alter=red);
run;

Passwords are hierarchical in terms of gaining access. For example, specifying the
ALTER password gives you Read and Write access. The following example creates
the data set States, with three different passwords, and then reads the data set to
produce a plot:

data mylib.states(read=green write=yellow alter=red);
 input density crime name $;
 datalines;
151.4 6451.3 Colorado
… more data lines …
;

proc plot data=mylib.states(alter=red);
 plot crime*density;
run;

How SAS Handles Incorrect Passwords
If you are using the SAS windowing environment and you try to access a password-
protected member without specifying the correct password, you receive a dialog
box that prompts you for the appropriate password. The text that you enter in this
window is not displayed. You can use the PWREQ= data set option to control
whether a dialog box appears after a user enters a missing or incorrect password.
PWREQ= is most useful in SCL applications.

If you are using batch or noninteractive mode, you receive an error message in the
SAS log if you try to access a password-protected member without specifying the
correct password.

706 Chapter 29 / Protecting Files

If you are using interactive line mode, you are also prompted for the password if
you do not specify the correct password. When you enter the password and press
the Enter key, processing continues. If you cannot give the correct password, you
receive an error message in the SAS log.

Assigning Complete Protection with the
PW= Data Set Option

The PW= data set option assigns the same password for each level of protection.
This data set option is convenient for thoroughly protecting a member with just one
password. If you use the PW= data set option, those who have access need to
remember only one password for total access.

n To access a member whose password is assigned using the PW= data set option,
use the PW= data set option. You can also use the data set option that equates
to the specific level of access that you need:

 /* create a data set using PW=, then use READ= to print the data set */
data mylib.states(pw=orange);
 input density crime name $;
 datalines;
151.4 6451.3 Colorado
… more data lines …
;

proc print data=mylib.states(read=orange);
run;

n PW= can be an alias for other password options:

 /* Use PW= as an alias for ALTER=. */
data mylib.college(alter=red);
 input name $ 1-10 location $ 12-25;
 datalines;
Vanderbilt Nashville
Rice Houston
Duke Durham
Tulane New Orleans
… more data lines …
;

proc datasets library=mylib;
 delete college(pw=red);
run;

Assigning Complete Protection with the PW= Data Set Option 707

Encoded Passwords
Encoding a password enables you to write SAS programs without having to specify
a password in plain text. The PWENCODE procedure uses encoding to disguise
passwords. With encoding, one character set is translated to another character set
through some form of table lookup. An encoded password is intended to prevent
casual, non-malicious viewing of passwords. You should not depend on encoded
passwords for all your data security needs; a determined and knowledgeable
attacker can decode the encoded passwords.

When an encoded password is used, the syntax parser decodes the password and
accesses the file. The encoded password is never written in plain text to the SAS
log. SAS does not accept passwords longer than eight characters. If an encoded
password is decoded and is longer than eight characters, SAS reads it as an
incorrect password and sends an error message to the SAS log. For more
information, see “PWENCODE Procedure” in Base SAS Procedures Guide.

Using Passwords with Views

Levels of Protection
The levels of protection for SAS views and stored programs are similar to the levels
of protection for other types of SAS files. However, with SAS views, passwords
affect not only the underlying data, but also the view’s definition (or source
statements).

You can specify three levels of protection for SAS views: Read, Write, and Alter.
The following section describes how these data set options affect the underlying
data as well as the view’s descriptor information. Unless otherwise noted, the term
“view” refers to any type of SAS view and the term “underlying data” refers to the
data that is accessed by the SAS view:

Read
n protects against reading of the SAS view's underlying data

n prevents the display of source statements in the SAS log when using
DESCRIBE

n allows replacement of the SAS view

708 Chapter 29 / Protecting Files

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1vzmasf0tdebfn1xec0k1tevq7q.htm&locale=en

Write
n protects the underlying data associated with a SAS view by insisting that a

Write password is given

n prevents the display of source statements in the SAS log when using
DESCRIBE

n allows replacement of the SAS view

Alter
n prevents the display of source statements in the SAS log when using

DESCRIBE

n protects against replacement of the SAS view

For example, to DESCRIBE a view that has both Read and Write protection, you
must specify its Write password. Similarly, to DESCRIBE a view that has both Read
and Alter protection, you must specify its Alter password (since Alter is the more
restrictive of the two).

The following program shows how to use the DESCRIBE statement to view the
descriptor information for a Read-protected and Alter-protected view:

 /*create a view with read and alter protection*/
data exam / view=exam(read=read alter=alter);
 set grades;
run;
 /*describe the view by specifying the most restrictive password */
data view=exam(alter=alter);
 describe;
run;

Example Code 29.1 Password-protected View

NOTE: DATA step view WORK.EXAM is defined as:

data exam / view=exam(read=XXX alter=XXXXX);
 set grades;
run;

NOTE: DATA statement used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

For more information, see “DESCRIBE Statement” in SAS DATA Step Statements:
Reference and “DATA Statement” in SAS DATA Step Statements: Reference.

In most DATA and PROC steps, the way you use password-protected views is
consistent with how you use other types of password-protected SAS files. For
example, the following PROC PRINT prints a Read-protected view:

proc print data=mylib.grade(read=green);
run;

Note: You might experience unexpected results when you place protection on a
SAS view if some type of protection is already placed on the underlying data set.

Using Passwords with Views 709

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p102rm8qsbdsrdn1ut74dkc8a5kk.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p102rm8qsbdsrdn1ut74dkc8a5kk.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1kh25to5o0wmvn1o4n4hsl3yyww.htm&locale=en

PROC SQL Views
Typically, when you create a PROC SQL view from a password-protected SAS data
set, you specify the password in the FROM clause in the CREATE VIEW statement
using a data set option. In this way, you can access the underlying data without re-
specifying the password when you use the view later. For example, the following
statements create a PROC SQL view from a Read-protected SAS data set, and drop
a sensitive variable:

proc sql;
 create view mylib.emp as
 select * from mylib.employee(pw=orange drop=salary);
quit;

Note: You can create a PROC SQL view from password-protected SAS data sets
without specifying their passwords. Use the view that you are prompted for the
passwords of the SAS data sets named in the FROM clause. If you are running SAS
in batch or noninteractive mode, you receive an error message.

SAS/ACCESS Views
SAS/ACCESS software enables you to edit View descriptors and, in some
interfaces, the underlying data. To prevent someone from editing or reading
(browsing) the View descriptor, assign Alter protection to the view. To prevent
someone from updating the underlying data, assign Write protection to the view.
For more information, see the SAS/ACCESS documentation for your DBMS.

DATA Step Views
When you create a DATA step view using a password-protected SAS data set,
specify the password in the View definition. In this way, when you use the view, you
can access the underlying data without respecifying the password.

The following statements create a DATA step view using a password-protected
SAS data set, and drop a sensitive variable:

data mylib.emp / view=mylib.emp;
 set mylib.employee(pw=orange drop=salary);
run;

Note that you can use the SAS view without a password, but access to the
underlying data requires a password. This is one way to protect a particular column

710 Chapter 29 / Protecting Files

of data. In the above example, proc print data=mylib.emp; executes, but proc
print data=mylib.employee; fails without the password.

SAS Data File Encryption

About Encryption on SAS Data Files
SAS passwords and metadata-bound data sets restrict access to SAS data sets
within SAS. But neither can prevent SAS data sets from being viewed at the
operating environment system level or from being read by an external program.
Encryption provides security of your SAS data outside of SAS by writing to disk the
encrypted data that represents the SAS data. The data is decrypted by the SAS
system as it is read from the disk, but is not decrypted when read at the operating
system level or by external programs.

Encryption does not affect file access. However, SAS recognizes all host security
mechanisms that control file access and can extend host security mechanisms by
binding the data sets to metadata. You can use encryption and those security
mechanisms together.

There are three types of algorithms that SAS uses for encrypting data files:

n SAS Proprietary Encryption on page 712 is implemented with the
ENCRYPT=YES data set option.

n AES (Advanced Encryption Standard) encryption on page 713 is implemented
with the ENCRYPT=AES or ENCRYPT=AES2 data set option.

Beginning in SAS 9.4M1, a metadata-bound library administrator can require that all
data files in the bound library be encrypted with one of the three algorithms. For
more information, see “Requiring Encryption for Metadata-Bound Data Sets” in
Base SAS Procedures Guide and SAS Guide to Metadata-Bound Libraries.

Table 29.1 Encryption Features

Features ENCRYPT=YES ENCRYPT=AES ENCRYPT=AES2

License required No No No

Encryption level Medium High Highest

Algorithm supported SAS Proprietary
(within Base SAS
software)

AES AES2

SAS Data File Encryption 711

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1rdnr9ti88ilqn0zbu9hhtkf24i.htm&docsetTargetAnchor=p16ij07e3sa1j3n0z412x3bxa1cn&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1rdnr9ti88ilqn0zbu9hhtkf24i.htm&docsetTargetAnchor=p16ij07e3sa1j3n0z412x3bxa1cn&locale=en

Features ENCRYPT=YES ENCRYPT=AES ENCRYPT=AES2

Installation required No (part of Base
SAS software)

No SAS/SECURE
(delivered with
Base SAS
software)

No SAS/SECURE
(delivered with
Base SAS
software)

Operating
environments
supported

UNIX

Windows

z/OS

UNIX

Windows

z/OS

UNIX

Windows

z/OS

SAS version support 8 and later 9.4 and later 9.4m5 and later

See Also
“AUTHLIB Procedure” in Base SAS Procedures Guide

SAS Proprietary Encryption
SAS Proprietary Encryption is licensed with Base SAS software and is available in
all deployments. There are two types of SAS Proprietary Encryption.

n A 32-bit rolling-key encryption technique that is used for SAS data set
encryption with passwords.

This encryption technique for SAS data sets uses parts of the passwords that
are stored in the SAS data set as part of the 32-bit rolling key encoding of the
data. This encryption provides a medium level of security. Users must supply
the appropriate passwords to authorize their access to the data, but with the
speed of today’s computers, it could be subjected to a brute force attack on the
2,563,160,682,591 possible combinations of valid password values. Many of
which must produce the same 32-bit key. SAS/SECURE and data set support of
AES, which is also shipped with Base SAS software, provides a higher level of
security.

n A 32-bit fixed-key encryption routine used for communications, such as
passwords for login objects, passwords in configuration files, login passwords,
internal account passwords, and so on.

SAS Proprietary Encryption for SAS data sets is implemented with the ENCRYPT=
data set option. You can use the ENCRYPT= data set option only when you are
creating a SAS data file. You must also assign a password when encrypting a data
file with SAS Proprietary Encryption. At a minimum, you must specify the READ=
data set option or the PW= data set option at the same time you specify
ENCRYPT=YES. Because passwords are used in this encryption technique, you
cannot change any password on an encrypted data set without re-creating the data
set.

712 Chapter 29 / Protecting Files

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1o558u7g5ll5jn17l3q7a41eixg.htm&locale=en

The following rules apply to data file encryption:

n To copy an encrypted SAS data file, the output engine must support encryption.
Otherwise, the data file is not copied.

n Encrypted files work only in Release 6.11 or in later releases of SAS.

n You cannot encrypt SAS data views, because they contain no data.

n If the data file is encrypted, all associated indexes are also encrypted.

n Encryption requires approximately the same amount of CPU resources as
compression.

n You cannot use PROC CPORT on encrypted SAS data files.

The following example creates an SAS data set with SAS Proprietary Encryption:

data salary(encrypt=yes read=green);
 input name $ yrsal bonuspct;
 datalines;
Muriel 34567 3.2
Bjorn 74644 2.5
Freda 38755 4.1
Benny 29855 3.5
Agnetha 70998 4.1
;

To print this data set, specify the Read password:

proc print data=salary(read=green);
run;
quit;

TIP Each password option must be coded on a separate line to ensure that
they are properly blotted in the SAS log.

See Also
“AUTHLIB Procedure” in Base SAS Procedures Guide

AES Encryption
In SAS 9.4 release, AES encryption of data sets is available. You specify
ENCRYPT=AES when creating a data set. AES produces a strong encryption by
using a key value that can be up to 64 characters long. Beginning in SAS 9.4M5
release, a stronger AES key generation algorithm is available. You use
ENCRYPT=AES2 data set option. Instead of passwords that are stored in the data
set (SAS Proprietary encryption), AES and AES2 uses a key value that is not stored
in the data set. The key value is created using the ENCRYPTKEY= data set option
when the data set is created. You cannot change the ENCRYPTKEY= key value on
an AES encrypted data set without re-creating the data set or using PROC

SAS Data File Encryption 713

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1o558u7g5ll5jn17l3q7a41eixg.htm&locale=en

AUTHLIB MODIFY to change the recorded key of a metadata-bound library. For
more information, see “AUTHLIB Procedure” in Base SAS Procedures Guide.

The following rules apply to AES and AES2 encryption of data sets:

n You use SAS/SECURE software, which is licensed with Base SAS software and
is available in all deployments.

n You must use the ENCRYPTKEY= data set option when creating or accessing an
AES encrypted data set unless the metadata-bound library administrator has
securely recorded the encryption key in metadata to which the data set is
bound. For more information, see “AUTHLIB Procedure” in Base SAS Procedures
Guide and SAS Guide to Metadata-Bound Libraries.

n To copy an AES-encrypted data file, the output engine must support AES
encryption. Otherwise, the data file is not copied.

n Releases before SAS 9.4 cannot use an AES-encrypted data file.

n Releases before SAS 9.4M5 cannot use an AES encrypted file that uses AES2
key generation algorithm.

n SAS Viya cannot access data sets created with ENCRYPT=AES2.

n You cannot encrypt SAS views, because they contain no data.

n If two or more data files are referentially related and any of them are AES
encrypted, then all must be AES encrypted. The encryption key for all of the
files must be the same unless the files are bound to metadata with the key
securely recorded in the metadata. For more information about metadata-bound
libraries, see “Metadata-Bound Library” in Base SAS Procedures Guide.

n If the data file has AES encryption, all associated indexes have AES encryption.

n You cannot use PROC CPORT on AES encrypted data files.

The ENCRYPTKEY= data set option does not protect the AES encrypted file from
deletion or replacement. AES encrypted data sets can be deleted by using either of
the following scenarios without having to specify an encrypt key value:

n the KILL option in PROC DATASETS

n the DROP statement in PROC SQL

The encrypt key only prevents access to the contents of the file. To protect the file
from unauthorized deletion or replacement with the SAS system, the file must also
contain an ALTER= password or be bound to metadata.

The following example creates an encrypted data set using AES encryption:

data salary(encrypt=aes encryptkey=green);
 input name $ yrsal bonuspct;
 datalines;
Muriel 34567 3.2
Bjorn 74644 2.5
Freda 38755 4.1
Benny 29855 3.5
Agnetha 70998 4.1
;

To print this data set, specify the ENCRYPTKEY= key value:

proc print data=salary(encryptkey=green);

714 Chapter 29 / Protecting Files

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1o558u7g5ll5jn17l3q7a41eixg.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1o558u7g5ll5jn17l3q7a41eixg.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1o558u7g5ll5jn17l3q7a41eixg.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1rdnr9ti88ilqn0zbu9hhtkf24i.htm&docsetTargetAnchor=n0kowdki6p1exbn1lqhhuujpxsfk&locale=en

run;
quit;

TIP Each password and encryption key option must be coded on a separate
line to ensure that they are properly blotted in the SAS log.

If you omit the ENCRYPTKEY= key value when accessing an AES secured data set,
a dialog box appears and prompts you to add the ENCRYPTKEY= key value. If the
data set is metadata-bound and the key has been stored in the metadata for the
library, the dialog box does not appear.

Figure 29.1 Dialog Box for ENCRYPTKEY=

See Also
“AUTHLIB Procedure” in Base SAS Procedures Guide

AES Encryption and Referential Integrity
Constraints

Data files with referential integrity constraints can use AES encryption. All primary
key and foreign key data files must use the same encryption key that opens all
referencing foreign key and primary key data files.

Passwords and Encryption with Generation Data
Sets, Audit Trails, Indexes, and Copies

SAS extends password protection, SAS Proprietary encryption, and AES encryption
to other files associated with the original protected file. This includes generation
data sets, indexes, audit trails, and copies. You can access protected or encrypted
generation data sets, indexes, audit trails, and copies of the original file. The same
rules, syntax, and behavior for invoking the original password protected or
encrypted files apply. SAS views cannot have generation data sets, indexes, or
audit trails. For more information about encryption, see “SAS Proprietary
Encryption” on page 712 and “AES Encryption” on page 713.

SAS Data File Encryption 715

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1o558u7g5ll5jn17l3q7a41eixg.htm&locale=en

Blotting Passwords and Encryption Key
Values

Check the SAS Log
You need to check the SAS log to ensure that any password value or encryption key
value is blotted out. This applies to the READ=, WRITE=, ALTER=, PW=, and
ENCRYPTKEY= options.

In most cases, placing the password=value pair on a separate line blots the value:

data &ds(
read=secret
encrypt=aes
encryptkey=evenmoreso
);
x=1;
run;

Examples of Passwords and Encryption Keys That
Are Not Blotted

The following examples are password values and encryption-key values that are
not blotted in the SAS log:

n Do not use a macro variable for the libref or data set in a DATA statement:

%let ds=dataset;

data &ds(read=secret);
 x=1
;
run;

The following is written to the SAS log:

111 %let ds=dataset;
112 data &ds(alter=secret);
113 x=1;
114 run;

716 Chapter 29 / Protecting Files

NOTE: The data set WORK.DATASET has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

n Using an incorrect password for a data set in certain procedures causes
passwords in the log:

proc append base=here(PW=XXXXXXX) data=more(READ=secret2);
run;

n Typing errors cause the following passwords to show in the SAS log:

proc print data=lubrary.abc(READ=secret);
run;

or

proc print data=library.abc(ERAD=secret);
run;

n If the code causes an ERROR message, the password is not blotted. For
example, in the following code the libref is misspelled causing SAS to issue the
message: "ERROR: Libref MYLUB is not assigned." and the password is not
blotted.

libname mylib 'c:\';
 data mylub.abc(
 read=secret
);
 x=1;
 run;

The following output is written to the SAS log:

636 libname mylib 'c:\';
NOTE: Libref MYLIB was successfully assigned as follows:
 Engine: V9
 Physical Name: c:\
637 data mylub.abc(
638 read=secret
639);
ERROR: Libref MYLUB is not assigned.
640 x=1;
641 run;

NOTE: The SAS System stopped processing this step because of errors.

Using Macros
When a password is assigned within a macro, the password is not blotted in the
SAS log when the macro executes. To prevent the password from being revealed in
the SAS log, you can redirect the SAS log to a file. For more information, see
“PRINTTO Procedure” in Base SAS Procedures Guide.

Blotting Passwords and Encryption Key Values 717

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p08blwp6gwk25mn1hypjjrncx3bn.htm&locale=en

Length of Passwords
In some cases, the length of the displayed password is fixed at eight blotted
characters. In other cases, the number of blotted characters is the length of the
password. Output from the OPTIONS procedure, VERBOSE option, and OPLIST
option have a fixed length of eight.

When a password value is being reported, its length is fixed at eight. But when a
password value is simply being echoed from an input statement, it retains its input
length. This example shows the length of the passwords:

options pdfpassword=(open=a owner=b);
proc options option=pdfpassword;
run;

The following is written to the SAS log:

634 options pdfpassword=XXXXXXX XXXXXXX X;
635 proc options option=pdfpassword;run;

 SAS (r) Proprietary Software Release 9.4 TS1M0

 PDFPASSWORD=XXXXXXXX
 Specifies the password to use to open a PDF document and the
 password used by a PDF document owner.
NOTE: PROCEDURE OPTIONS used (Total process time):
 real time 0.04 seconds
 cpu time 0.00 seconds

Metadata-Bound Libraries
A metadata-bound library is a physical library that is tied to a corresponding
metadata secured table object. Each physical table within a metadata-bound
library has information in its header that points to a specific metadata object. The
pointer creates a security binding between the physical table and the metadata
object. The binding ensures that SAS universally enforces metadata-layer access
requirements for the physical table—regardless of how a user requests access from
SAS. For more information, see SAS Guide to Metadata-Bound Libraries.

The AUTHLIB procedure is used to create, access, and modify metadata-bound
libraries. This procedure is intended for use by SAS administrators. Users who lack
sufficient privileges in either the metadata layer or the host layer cannot use this
procedure. For more information, see “AUTHLIB Procedure” in Base SAS Procedures
Guide.

718 Chapter 29 / Protecting Files

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1o558u7g5ll5jn17l3q7a41eixg.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1o558u7g5ll5jn17l3q7a41eixg.htm&locale=en

30
Repairing SAS Files

Repairing Damage to SAS Data Sets and Catalogs . 719
Overview . 719
Understanding Damage That Can Be Repaired with SAS . 721
Understanding the Repair Tools . 721
Recommended Tasks for Repairing SAS Data Sets and Catalogs with SAS 722

Examples . 724
Example: Determine the Default Repair Action for Your SAS Session 724
Example: Change the DLDMGACTION= System Option . 725
Example: Repair a SAS Data Set with the REPAIR Statement . 726
Example: Override the Default Repair Action with the

DLDMGACTION= Data Set Option . 727
Example: Rebuild a Damaged SAS Data Set with the REBUILD Statement 729
Example: Determine How Many Times a Data Set Was Repaired 730

Repairing Damage to SAS Data Sets and
Catalogs

Overview
SAS can repair structural damage to SAS data sets and SAS catalogs resulting from
certain system errors. It can also rebuild simple indexes and integrity constraints
that were inadvertently deleted or damaged by using operating system commands.
These repairs can be made with the DLDMGACTION= system option, the
DLDMGACTION= data set option, or the PROC DATASETS REPAIR statement. For
more information about the damage that SAS can repair and how, see
“Understanding Damage That Can Be Repaired with SAS” on page 721.

SAS cannot repair the following:

n truncated SAS data sets

719

n data sets whose audit files are damaged or have been deleted

n data sets and catalogs that are on a damaged storage device

n SAS views

n stored compiled DATA step programs

n complex indexes

n indexes copied by using a DATA step

n indexes that were deleted when using the FORCE option in the SORT procedure.
The FORCE option overwrites the original file.

For these situations, take the action recommended in the table that follows.

Table 30.1 Recommended Action by File or Damage Type

SAS File Type or Damage Type Solution

DATA step views and PROC SQL views Re-create the file.

Stored compiled DATA step programs

Truncated SAS data sets, or SAS data sets
whose audit file is damaged or deleted

Recover from a backup device.1

SAS data sets and catalogs that are on a
damaged storage device

Catalogs that cannot be repaired by the
DLDMGACTION= system option or data set
option, or by using the PROC DATASETS
REPAIR statement

Complex indexes Repair the data set without indexes,
and then re-create the index using the
PROC DATASETS “INDEX CREATE
Statement” in Base SAS Procedures
Guide. Or, recover the data set from a
backup device.

Indexes copied by using a DATA step

Indexes that were deleted when using the
FORCE option in the SORT procedure.

1 When an audit file is damaged or accidentally deleted, recover the data set, its index, and the audit
file.

720 Chapter 30 / Repairing SAS Files

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p03h320ajtd062n1d05vyoqso4yo.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p03h320ajtd062n1d05vyoqso4yo.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p03h320ajtd062n1d05vyoqso4yo.htm&locale=en

Understanding Damage That Can Be Repaired with
SAS

SAS can recover and repair SAS data sets (including indexes and integrity
constraints) and SAS catalogs when one of the following events occurs:

n A system failure occurs while the data set or catalog is being updated.

n The disk where the data set (including the index file) or catalog is stored
becomes full before the file is completely written to it.

n An input/output error occurs while writing to the data set, index file, or catalog.

n An index is accidentally deleted with operating system commands.

n A data set is damaged by using operating system commands to copy or rename
the data set, but not its associated index.

SAS repairs the structure of a data set by copying and re-creating the data set. A
data set’s indexes and integrity constraints are reconstructed from metadata in the
data set header. SAS attempts to restore the data in the data set, but in cases
where the disk is full before the data is written to it, the data set might not contain
the last several updates that occurred before the system failed. When this occurs,
it is recommended that you recover the data set from a backup device.

SAS repairs damaged catalogs as follows. SAS checks the catalog to see which
entries are damaged. If there is an error reading an entry, the entry is copied. If an
error occurs during the copy process, then the entry is automatically deleted. For
severe damage, the entire catalog is copied to a new catalog.

Understanding the Repair Tools
The DLDMGACTION= system option enables you to program a proactive repair
response when damage to a data set or catalog is detected. Set the
DLDMGACTION= system option to perform the action that you want to apply to
the majority of data set and catalog damage cases in your SAS session. For
example, for an interactive session, you might set the DLDMGACTION= system
option to PROMPT to show the menu of repair options on the spot. Or you might
set the system option to FAIL and pursue all repairs with the DLDMGACTION=
data set option and the PROC DATASETS REPAIR statement.

The DLDMGACTION=NOINDEX and REPAIR options should be used only when you
have seen an actual problem and are trying to rectify it. DLDMGACTION=REPAIR
repairs the data set and all of its indexes to the extent that it can. When
DLDMGACTION=REPAIR is set as a system option, damaged data sets and
catalogs are automatically repaired the next time that the data set or catalog is
accessed. This can prevent you from examining a data set for lost observations.
DLDMGACTION=REPAIR also does not distinguish between regular data sets and

Repairing Damage to SAS Data Sets and Catalogs 721

generation data sets. Repairing a generation data set can be tricky. An automated
repair is not appropriate. For information to repair generation data sets, see
“Generation Data Sets” in SAS V9 LIBNAME Engine: Reference.

Differences between the DLDMGACTION=data set option and the PROC
DATASETS REPAIR statement are as follows:

n The PROC DATASETS REPAIR statement can repair one or multiple data sets or
catalogs at once. A MEMTYPE= option enables you to limit repairs to only files
of type DATA or CATALOG. The DLDMGACTION= data set option operates on a
single data set or catalog.

n The DLDMGACTION= data set option enables you to repair a data set with or
without its indexes and integrity constraints by specifying a NOINDEX option.
The PROC DATASETS REPAIR statement always repairs all indexes. The
NOINDEX option automatically repairs the data set without the indexes and
integrity constraints, deletes the index file, updates the data set to reflect the
disabled indexes and integrity constraints, and limits the data set to be opened
in INPUT mode. A warning is written to the SAS log instructing you to execute
the “REBUILD Statement” in Base SAS Procedures Guide to correct or delete the
disabled indexes and integrity constraints.

Some SAS applications have a shipped default DLDMGACTION= system option
setting; others do not. It is a good idea to check the DLDMGACTION= system
option setting to ensure that it is set to a value with which you are comfortable.

A damage log is maintained for every SAS data set that indicates how many times
the data set has been repaired and the date of the last repair. You can view the
repair log with PROC CONTENTS. See “Example: Determine How Many Times a
Data Set Was Repaired” on page 730.

There is no damage log for catalogs.

Recommended Tasks for Repairing SAS Data Sets
and Catalogs with SAS
Table 30.2 Tasks and Tools for Repairing Files with SAS

Task Code Description Example

Determine the
DLDMGACTION=
system option setting
for your SAS session

proc options
option=dldmgaction value;
run;

Prints the setting of the
DLDMGACTION=
system option to the
SAS log.

“Example: Determine
the Default Repair
Action for Your SAS
Session” on page 724.

Change how SAS
responds when it
detects damaged files
(optional)

options dldmgaction=value;Enables you to change
or configure a repair
response for the SAS
session.

“Example: Rebuild a
Damaged SAS Data Set
with the REBUILD
Statement” on page
729

722 Chapter 30 / Repairing SAS Files

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1p1kvqi2bgonzn1bafoh7kjnvay.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Task Code Description Example

Actively repair
damaged files yourself

(dldmgaction=value) Enables you to specify
a repair action for a
specific SAS data set or
catalog.

“Example: Override the
Default Repair Action
with the
DLDMGACTION= Data
Set Option” on page
727.

proc datasets;
 repair filename;
run;

Attempts to repair a
damaged SAS data set
or catalog.

“Example: Repair a SAS
Data Set with the
REPAIR Statement” on
page 726

proc datasets;
 rebuild filename;
run;

Specifies whether to
restore or delete
indexes and integrity
constraints that were
disabled by the
DLDMGACTION=NOIN
DEX option.

“Example: Rebuild a
Damaged SAS Data Set
with the REBUILD
Statement” on page
729

View a data set’s repair
history

proc contents
 data=filename;
run;

Lists information about
a SAS data set. Check
the “Number of Data
Set Repairs” and “Last
Repaired” entries in the
Engine/Host
Dependent Information
section of the output.

“Example: Determine
How Many Times a
Data Set Was Repaired”
on page 730

Repairing Damage to SAS Data Sets and Catalogs 723

Examples

Example: Determine the Default Repair Action for
Your SAS Session

Example Code

The DLDMGACTION= system option controls the default repair action for your SAS
session. You can determine the setting of the DLDMGACTION= system option by
using PROC OPTIONS.

proc options option=dldmgaction value;
run;

SAS returns information that is similar to the following to the log:

Example Code 30.1 Log Output from the OPTIONS Procedure

Option Value Information For SAS Option DLDMGACTION
 Value: REPAIR
 Scope: Default
 How option value set: Shipped Default

Key Ideas

n Most SAS sessions return the value DLDMGACTION=REPAIR, unless an
administrator has configured a different value in a configuration file. See
“DLDMGACTION= System Option” in SAS System Options: Reference for
information about other DLDMGACTION= values.

n You can change the default repair response by changing the setting of the
DLDMGACTION= system option. Or you can override the system option setting for
specific data sets and catalogs by using the DLDMGACTION= data set option.

n There are many items that DLDMGACTION=REPAIR cannot repair. For information
about what can and cannot be repaired, see “Understanding Damage That Can Be
Repaired with SAS” on page 721. The DLDMGACTION= system option is not a
replacement for having a current backup.

724 Chapter 30 / Repairing SAS Files

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0tmodc2gpo5bpn11bmq0lihyp9z.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1kwrbpvinbd5bn1cpha9brh92eg.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0tmodc2gpo5bpn11bmq0lihyp9z.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n06xrist2xcfy8n12udt49g1z9d9.htm&locale=en

See Also

n “OPTIONS Procedure”

n “DLDMGACTION= System Option” in SAS System Options: Reference

n “DLDMGACTION= Data Set Option” in SAS Data Set Options: Reference

n “Example: Repair a SAS Data Set with the REPAIR Statement” on page 726.

n “Example: Override the Default Repair Action with the DLDMGACTION= Data
Set Option” on page 727.

Example: Change the DLDMGACTION= System
Option

Example Code

The following code sets the DLDMGACTION= system option to PROMPT and
verifies the setting with PROC OPTIONS.

options dldmgaction=prompt;

proc options option=dldmgaction value;
run;

Output 30.1 Log Output from PROC OPTIONS

 73 options dldmgaction=prompt;
 74
 75 proc options option=dldmgaction value;
 76 run;

 SAS (r) Proprietary Software Release 9.4 TS1M6

 Option Value Information For SAS Option DLDMGACTION
 Value: PROMPT
 Scope: Default
 How option value set: OPTIONS Statement

Key Ideas

n The OPTIONS statement changes the repair setting for all interactions in the
current SAS session. The system option can also be specified at SAS invocation, in

Examples 725

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1kwrbpvinbd5bn1cpha9brh92eg.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0tmodc2gpo5bpn11bmq0lihyp9z.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n06xrist2xcfy8n12udt49g1z9d9.htm&locale=en

the SAS System Options window and in the SASV9_OPTIONS environment
variable (UNIX only in SAS 9.4; Linux only in SAS Viya).

n The PROMPT setting instructs SAS to display a dialog box that lets the user make
the repair decision for any given SAS data set or catalog.

n To override the default setting for a specific SAS data set or catalog, use the
DLDMGACTION= data set option.

See Also

n “OPTIONS Statement” in SAS Global Statements: Reference

n “DLDMGACTION= System Option” in SAS System Options: Reference

Example: Repair a SAS Data Set with the REPAIR
Statement

Example Code

The following code specifies to repair a damaged SAS data set named
mylib.myfile that is encrypted. The PROC DATASETS REPAIR statement is used
to repair the data set.

libname mylib "C:\dldmgactiontest";

proc datasets lib=mylib;
 repair myfile /encryptkey=secret;
run;
quit;

After the process completes, the following message is written to the log:

Example Code 30.2 Log Message from the PROC DATASETS REPAIR Statement

NOTE: Repairing MYLIB.MYFILE (memtype=DATA).
NOTE: File MYLIB.MYFILE.DATA is damaged.
NOTE: Data set MYLIB.MYFILE contained no structural errors, however some
changes during last update may not have been written to disk.
NOTE: Indexes recreated:
 1 Simple indexes

726 Chapter 30 / Repairing SAS Files

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n06xrist2xcfy8n12udt49g1z9d9.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0tmodc2gpo5bpn11bmq0lihyp9z.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0ve5g6x5vtjrkn1llarizdwfe6e.htm&locale=en

Key Ideas

n The functionality of the PROC DATASETS REPAIR statement is similar to that of
DLDMGACTION=REPAIR. The statement attempts to restore damaged SAS data
sets and catalogs to a usable condition. It repairs a data set’s simple indexes and
integrity constraints.

n The REPAIR statement can be used to repair SAS data sets that are used by SAS
programming languages that do not support the DLDMGACTION= system option.
The SAS FedSQL and SAS DS2 languages are examples of programming languages
that do not support SAS system options or data set options.

n Like DLDMGACTION=REPAIR, the REPAIR statement is not a replacement for
having a current backup. If you have extensive damage to your data set, the
REPAIR statement will not correct it. You might need to recover the data set from
a system backup.

n To repair a damaged catalog, you must use a version of SAS that runs in the same
host operating environment as the one in which the catalog was created. There is
no CEDA access for catalogs.

See Also

n “REPAIR Statement” in Base SAS Procedures Guide.

Example: Override the Default Repair Action with
the DLDMGACTION= Data Set Option

Example Code

The following request sets the DLDMGACTION= data set option for a request on
damaged data set mylib.myfile. For this example, the default action for the SAS
session is DLDMGACTION=REPAIR. The data set option specifies the NOINDEX
option for a PROC PRINT request on the data set using the DLDMGACTION= data
set option.

proc print data=mylib.myfile(dldmgaction=noindex);
run;

SAS returns information that is similar to the following to the log:

Examples 727

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0ve5g6x5vtjrkn1llarizdwfe6e.htm&locale=en

Example Code 30.3 Log Message Returned for a Data Set Repaired with the
DLDMGACTION=NOINDEX Option

100 proc print data=mylib.myfile(dldmgaction=noindex);
NOTE: File MYLIB.MYFILE.DATA is damaged.
NOTE: Data set MYLIB.MYFILE contained no structural errors, however some changes
during last
 update may not have been written to disk.
WARNING: SAS data file MYLIB.MYFILE.DATA was damaged and has been partially
repaired. To
 complete the repair, execute the DATASETS procedure REBUILD statement.
101 run;

Key Ideas

n The DLDMGACTION= data set option must be specified on an existing data set.
The option is not valid in statements that create a data set, except for the SET
statement.

n The NOINDEX option specifies to repair a damaged data set without the indexes
and integrity constraints. The repair also deletes the index file and updates the
data set to reflect the disabled indexes and integrity constraints. If the data set is
not damaged, the data set option has no effect.

n Because this data set is damaged, a warning is written to the SAS log instructing
you to execute the PROC DATASETS REBUILD statement to correct or delete the
disabled indexes and integrity constraints. The data set can be opened only in
input mode until you make the change.

n When used in the SET statement, the DLDMGACTION= data set option simply
omits indexes from the new data set.

See Also

n “DLDMGACTION= Data Set Option” in SAS Data Set Options: Reference

n “Example: Rebuild a Damaged SAS Data Set with the REBUILD Statement” on
page 729

728 Chapter 30 / Repairing SAS Files

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n06xrist2xcfy8n12udt49g1z9d9.htm&locale=en

Example: Rebuild a Damaged SAS Data Set with
the REBUILD Statement

Example Code

The following code rebuilds data set indexes and integrity constraints that were
disabled by the DLDMGACTION=NOINDEX data set option. The request rebuilds
indexes and integrity constraints that were removed in “Example: Override the
Default Repair Action with the DLDMGACTION= Data Set Option” on page 727.

proc datasets library=mylib;
rebuild myfile;
run;
quit;

SAS returns information that is similar to the following to the log:

Example Code 30.4 Log Messages Written by the PROC DATASETS REBUILD Statement

NOTE: Rebuilding MYLIB.MYFILE (memtype=DATA).
NOTE: Indexes recreated:
 2 Simple indexes

Key Ideas

n The PROC DATASETS REBUILD statement enables you specify whether to restore
or delete the indexes and integrity constraints that were disabled with the
DLDMGACTION=NOINDEX option.

n The REBUILD statement restores disabled indexes and integrity constraints by
default (shown here). To delete the indexes and integrity constraints from the data
set, specify the NOINDEX option.

See Also

n “PROC DATASETS REBUILD Statement”

n “Example: Determine How Many Times a Data Set Was Repaired” on page 730.

Examples 729

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0b5kad6a45tpnn1964zh8pgtkpu.htm&locale=en

Example: Determine How Many Times a Data Set
Was Repaired

Example Code

To determine how many times a data set has been repaired, use the CONTENTS
procedure. This example shows how many times data set mylib.myfile has been
repaired.

proc contents data=mylib.myfile;
run;

The number of repairs is reported in the Engine/Host Dependent Information
section of the CONTENTS procedure output.

Output 30.2 The Engine/Host Dependent Information Section of the CONTENTS
Procedure Output

730 Chapter 30 / Repairing SAS Files

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

Key Ideas

n The CONTENTS procedure has two fields that report information about repairs:

o Number of Data Set Repairs

o Last Repair

See Also

"CONTENTS Procedure"

Examples 731

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

732 Chapter 30 / Repairing SAS Files

31
Compressing SAS Data Sets

Compression in SAS . 733

Compression in SAS
Compressing a SAS data set is a process that reduces the number of bytes required
to represent each observation. In a compressed data set, each observation is a
varying-length record, while in an uncompressed data set, each observation is a
fixed-length record.

Advantages of compression include the following:

n reduced storage requirements for the file

n less I/O operations necessary to read from or write to the data during
processing

Disadvantages of compression include the following:

n increased CPU resource requirements to read a compressed file because of the
overhead of uncompressing each observation and, if updating, compressing
again when written to disk

n situations when the resulting file size can increase rather than decrease

If conserving space is a primary concern, then testing is recommended. For
information about compression, see the documents that are listed in the following
table.

Table 31.1 Compression in SAS Engines

Engine Documentation Usage Notes

V9 engine “Compression” in SAS V9 LIBNAME
Engine: Reference

Supports COMPRESS=NO | CHAR
| BINARY.

733

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p1mguippriqin6n1xuycx0gl3kae.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p1mguippriqin6n1xuycx0gl3kae.htm&locale=en

Engine Documentation Usage Notes

SPD
Engine

“Updates to a Compressed SPD
Engine Data Set” in SAS Scalable
Performance Data Engine: Reference

Supports COMPRESS=NO | CHAR
| BINARY.

Additional language elements for
the SPD Engine enable more
control over compression.

CAS
engine

“Data Compression” in SAS Cloud
Analytic Services: User’s Guide

Supports COMPRESS=YES | NO.

734 Chapter 31 / Compressing SAS Data Sets

http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p105hqo7v82qqhn14lluyztuj3gh.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p105hqo7v82qqhn14lluyztuj3gh.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p105hqo7v82qqhn14lluyztuj3gh.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=v_002&docsetTarget=p1mj007d8jq6swn1kwfysjl72fxh.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=v_002&docsetTarget=p1mj007d8jq6swn1kwfysjl72fxh.htm&locale=en

32
Moving SAS Files

Moving Files between Operating Environments . 735

Moving Files between Operating
Environments

The procedures for moving SAS files from one operating environment to another
vary according to your operating environment, the member type and version of the
SAS files that you want to move, and the methods that you have available for
moving the files.

For details about this subject, see Moving and Accessing SAS Files.

735

http://documentation.sas.com/?docsetId=movefile&docsetVersion=v_001&docsetTarget=titlepage.htm&locale=en

736 Chapter 32 / Moving SAS Files

33
Cross-Environment Data Access

Definitions for Cross-Environment Data Access (CEDA) . 737

Advantages of CEDA . 738

SAS File Processing with CEDA . 739
Conditions That Invoke CEDA . 739
Restrictions for CEDA . 740
Compatible Data Representations . 741
Compatible Encodings . 743
How Output Processing Affects Encoding and Data Representation 743

Alternatives to Using CEDA . 744

Examples: CEDA . 745
Example: Understand Log Messages about CEDA . 745
Example: Understand Log Messages about Truncation . 746
Example: Specify a Data Representation to Avoid CEDA . 748
Example: Specify an Encoding to Avoid CEDA . 750
Example: Specify a Data Representation and UTF-8 Encoding . 752
Example: Determine the Encoding and Data Representation of a

SAS Session or a Data Set . 754

Definitions for Cross-Environment Data
Access (CEDA)

This documentation explains the restrictions, benefits, and behavior of CEDA
processing. Here are a few useful concepts:

Cross-Environment Data Access (CEDA)
enables a SAS file that was created in a directory-based operating environment
(for example, UNIX or Windows) to be processed in an incompatible
environment or under an incompatible session encoding. With CEDA, the
processing is automatic and transparent. You do not need to create a transport
file, use SAS procedures that convert the file, or change your SAS program.

737

CEDA supports files that were created with SAS 7 and later releases. CEDA is a
Base SAS feature.

data representation
is the form in which data is stored in a particular operating environment.
Different operating environments use different standards or conventions for
storing data. (See “Compatible Data Representations” on page 741.)

n Floating-point numbers can be represented in IEEE floating-point format or
IBM floating-point format.

n Data alignment can be on a 1-byte, 4-byte, or 8-byte boundary, depending on
data type requirements for the operating environment.

n Data type lengths can be 8 bits or more for a character data type, 16 bit, 32
bit, or 64 bit for an integer data type, 32 bit for a single-precision floating-
point data type, and 64 bit for a double-precision floating-point data type.

n The ordering of bytes can be big Endian or little Endian.

encoding
is a set of characters (letters, logograms, digits, punctuation, symbols, control
characters, and so on) that have been mapped to numeric values (called code
points) that can be used by computers. The code points are assigned to the
characters in the character set by applying an encoding method. Some examples
of encodings are Wlatin1 and Danish EBCDIC. (See “Encoding Combinations
That Do Not Need CEDA Processing for Transcoding” in SAS National Language
Support (NLS): Reference Guide.)

incompatible
describes a file that has a different data representation or encoding than the
current SAS session. CEDA enables access to many types of incompatible files.

Advantages of CEDA
CEDA offers these advantages:

n You can transparently process a supported SAS file with no knowledge of the
file's data representation or encoding.

n No transport files are created. CEDA requires a single translation to the current
session's data representation, rather than multiple translations from the source
representation to the transport file to the target representation.

n CEDA eliminates the need to perform multiple steps in order to process the file.

n CEDA does not require a sign-on as is needed in SAS/CONNECT or a dedicated
server as is needed in SAS/SHARE.

738 Chapter 33 / Cross-Environment Data Access

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n04275wmuchnqjn1hfx0yzpopw5a.htm&docsetTargetAnchor=n1n4jvd68iue2xn1r2rz1edp3115&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n04275wmuchnqjn1hfx0yzpopw5a.htm&docsetTargetAnchor=n1n4jvd68iue2xn1r2rz1edp3115&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n04275wmuchnqjn1hfx0yzpopw5a.htm&docsetTargetAnchor=n1n4jvd68iue2xn1r2rz1edp3115&locale=en

SAS File Processing with CEDA

Conditions That Invoke CEDA
CEDA is used in these situations:

n when the encoding of character values for the SAS file is incompatible with the
currently executing SAS session encoding.

n when the data representation of the SAS file is incompatible with the data
representation of the currently executing SAS session. For example, an
incompatibility can occur if you move a file from an operating environment like
Windows to an operating environment like UNIX, or if you have upgraded to 64-
bit UNIX from 32-bit UNIX. See “Compatible Data Representations” on page
741.

CEDA supports SAS 7 and later SAS files that are created in directory-based
operating environments like UNIX and Windows. CEDA provides the following SAS
file processing for these SAS engines:

BASE
shipped default Base SAS engine and alias for the V9 engine in SAS 9, V8 in SAS
8, and V7 in SAS 7. Referred to as the V9 engine in the CEDA topics.

SASESOCK
TCP/IP port engine for SAS/CONNECT software.

SPDE
SAS Scalable Performance Data Engine, with some exceptions. For more
information, see “Accessing SPD Engine Files on Another Host” in SAS Scalable
Performance Data Engine: Reference. (Support was added in SAS 9.4M5.)

TAPE
sequential engine and alias for V9TAPE in SAS 9 , V8TAPE in SAS 8, V7TAPE in
SAS 7.

Table 33.1 SAS File Processing Provided by CEDA

SAS File Type Engine Supported Processing

SAS data set V9, SASESOCK, SPDE,
TAPE

input and output1

PROC SQL view

(DATA step view is not
supported)

V9 input

SAS File Processing with CEDA 739

http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p0q85acphllz0yn15n6yz743z6lz.htm&docsetTargetAnchor=n0oadc9hvsciyln10emuyd8i6066&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=p0q85acphllz0yn15n6yz743z6lz.htm&docsetTargetAnchor=n0oadc9hvsciyln10emuyd8i6066&locale=en

SAS File Type Engine Supported Processing

SAS/ACCESS view for
Oracle or SAP

V9 input

MDDB file2 V9 input

1 For output processing that replaces an existing SAS data set, there are behavioral differences. For
more information, see “How Output Processing Affects Encoding and Data Representation” on page
743.

2 CEDA supports SAS 8 and later MDDB files.

Restrictions for CEDA
CEDA has the following restrictions:

n SAS catalogs are not supported. Catalog entries could include formats, stored
compiled macros, SAS/AF applications, SAS/GRAPH output, SAS code, SCL
code, data, and other entry types that are specific to various SAS procedures.

n Update processing is not supported.

n Integrity constraints cannot be read or updated.

n An audit trail file cannot be updated, but it can be read.

n Indexes are not supported. Therefore, WHERE optimization with an index is not
supported.

n Extended attributes cannot be updated, but they can be read.

n Other files that are not supported include DATA step views, SAS/ACCESS views
that are not for SAS/ACCESS for Oracle or SAP, stored compiled DATA step
programs, item stores, DMDB files, FDB files, or any SAS file that was created
prior to SAS 7.

n On z/OS, members of UNIX file system libraries can be created using any SAS
data representation. However, when bound libraries are created, they are
assigned the data representation of the SAS session that creates the library.
SAS does not allow the creation of bound library members with a data
representation that differs (except for the encoding) from the data
representation of the library. For example, if you create a bound library with 31-
bit SAS on z/OS, the library has a data representation of MVS_32 for the
duration of its existence, and you cannot use the OUTREP option of the
LIBNAME statement to create a member in the library with a data
representation other than MVS_32. For more information about library
implementation types for V9 and sequential engines on z/OS, see SAS
Companion for z/OS.

n SAS translates between data representations or transcodes between encodings
as the data is read. When you use multiple procedures, SAS must translate or
transcode the data multiple times, which can affect system performance.

740 Chapter 33 / Cross-Environment Data Access

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

n If a data set is damaged, CEDA cannot process the file in order to repair it. CEDA
does not support update processing, which is required in order to repair a
damaged data set. To repair the file, you must move it back to the environment
where it was created or to a compatible environment that does not invoke
CEDA processing. For information about how to repair a damaged data set, see
the REPAIR statement in the DATASETS procedure in Base SAS Procedures
Guide.

n Transcoding could result in character data loss when encodings are
incompatible. See “Transcoding Considerations” in SAS National Language
Support (NLS): Reference Guide.

n Loss of precision can occur in numeric variables when you move data between
operating environments. If a numeric variable is defined with a short length, you
can try increasing the length of the variable. Full-size numeric variables are less
likely to encounter a loss of precision with CEDA. For more information, see
“Numeric Precision” on page 107.

n Numeric variables have a minimum length of either 2 or 3 bytes, depending on
the operating environment. In an operating environment that supports a
minimum of 3 bytes (such as Windows or UNIX), CEDA cannot process a
numeric variable that was created with a length of 2 bytes (for example, in
z/OS). If you encounter this restriction, then use the XPORT engine or the
CPORT and CIMPORT procedures instead of CEDA.

Note: If you encounter these restrictions because your files were created under a
previous version of SAS, consider using the MIGRATE procedure, which is
documented in the Base SAS Procedures Guide. PROC MIGRATE retains many
features, such as integrity constraints, indexes, and audit trails.

Compatible Data Representations
In the following table, operating environments are grouped by compatibility. CEDA
is not used if you process the file under a data representation of the same group.
For example, a SOLARIS_X86_64 data set is compatible in a LINUX_POWER_64
session. (The current release of SAS does not run on some of these environments,
but they are included here for completeness.)

Table 33.2 Compatibility across Environments

Data Representation Value and
Environment Name Notes

ALPHA_TRU64 (Tru64 UNIX)

LINUX_IA64 (Linux for Itanium-based
systems)

LINUX_X86_64 (Linux for x64)

SOLARIS_X86_64 (Solaris for x64)

Although all of the environments in this group are
compatible, catalogs are an exception. Catalogs are
compatible between Tru64 UNIX and Linux for Itanium.
Catalogs are compatible between Linux for x64, Solaris
for x64, and Linux on the Power Architecture.

SAS File Processing with CEDA 741

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p03nl2a94puseon1n81moy12rh3u.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p03nl2a94puseon1n81moy12rh3u.htm&locale=en

Data Representation Value and
Environment Name Notes

LINUX_POWER_64 (Linux on the Power
Architecture)

Linux on the Power Architecture is added in SAS Viya
3.5 and is not supported in SAS 9.

ALPHA_VMS_32 (OpenVMS Alpha)

ALPHA_VMS_64 (OpenVMS Alpha)

VMS_IA64 (OpenVMS on HP Integrity)

Although the 32-bit and 64-bit OpenVMS environments
have different data representations for some compiler
types, SAS data sets that are created by the V9 engine
do not store the data types that are different. Therefore,
if the encoding is compatible, CEDA is not used between
these environments. However, note that SAS 9 does not
support SAS 8 catalogs from OpenVMS. You can
migrate the catalogs with the MIGRATE procedure. For
more information, see the Base SAS Procedures Guide.

HP_IA64 (HP-UX for the Itanium Processor
Family Architecture)

HP_UX_64 (HP-UX for PA-RISC, 64-bit)

RS_6000_AIX_64 (AIX)

SOLARIS_64 (Solaris for SPARC)

All of the environments in this group are compatible.

HP_UX_32 (HP-UX for PA-RISC)

MIPS_ABI (MIPS ABI)

RS_6000_AIX_32 (AIX)

SOLARIS_32 (Solaris for SPARC)

All of the environments in this group are compatible.

LINUX_32 (Linux for Intel architecture)

INTEL_ABI (ABI for Intel architecture)

All of the environments in this group are compatible.

MVS_32 (31-bit SAS on z/OS) No other environments are compatible.

MVS_64_BFP (64-bit SAS on z/OS) No other environments are compatible.

OS2 (OS/2 for Intel) No other environments are compatible.

VAX_VMS (OpenVMS VAX) No other environments are compatible.

WINDOWS_32 (32-bit SAS on Microsoft
Windows)

WINDOWS_64 (64-bit SAS on Microsoft
Windows, for both Itanium-based systems
and x64)

SAS data sets are compatible in these Windows
environments. Other file types such as catalogs are not
compatible between 32-bit and 64-bit SAS for
Windows.

742 Chapter 33 / Cross-Environment Data Access

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Compatible Encodings
Compatible encodings do not require CEDA processing for transcoding. See
“Encoding Combinations That Do Not Need CEDA Processing for Transcoding” in
SAS National Language Support (NLS): Reference Guide.

However, even when encodings are compatible, CEDA processing could be invoked
by an incompatible data representation.

In addition, some Microsoft Word characters such as smart quotation marks could
cause truncation errors. The characters require more than one byte in UTF-8
encoding.

If the data contains 7-bit ASCII characters (U.S. English) only, then the data is
compatible in any other ASCII session, including UTF-8. Other ASCII encodings use
the high-order bit for different national characters.

How Output Processing Affects Encoding and Data
Representation

For output processing that replaces an existing SAS data set, the engines behave
differently regarding the following attributes:

encoding
n The V9 engine uses the encoding of the file from the source library. That is,

the encoding is cloned.

n The TAPE engine uses the current SAS session encoding, except with PROC
COPY.

n For both the V9 and TAPE engines, by default PROC COPY uses the
encoding of the file from the source library. If, instead, you want to use the
encoding of the current SAS session, specify the NOCLONE option. If you
want to use a different encoding, specify the NOCLONE option and the
ENCODING= option. When you use PROC COPY with SAS/SHARE or
SAS/CONNECT, the default behavior is to use the encoding of the client
session (not the server session).

n The SPD Engine uses the current SAS session encoding. The CLONE option
of PROC COPY is not supported.

data representation
n The V9 and TAPE engines use the data representation of the current SAS

session, except with PROC COPY.

n For both the V9 and TAPE engines, by default PROC COPY uses the data
representation of the file from the source library. If, instead, you want to use
the data representation of the current SAS session, specify the NOCLONE
option. If you want to use a different data representation, specify the

SAS File Processing with CEDA 743

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n04275wmuchnqjn1hfx0yzpopw5a.htm&docsetTargetAnchor=n1n4jvd68iue2xn1r2rz1edp3115&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n04275wmuchnqjn1hfx0yzpopw5a.htm&docsetTargetAnchor=n1n4jvd68iue2xn1r2rz1edp3115&locale=en

NOCLONE option and the OUTREP= option. When you use PROC COPY
with SAS/SHARE or SAS/CONNECT, the default behavior is to use the data
representation of the client session (not the server session).

n The SPD Engine uses the data representation of the current SAS session.
The CLONE option of PROC COPY is not supported.

Alternatives to Using CEDA
Because of the restrictions, it might not be feasible to use CEDA. You can use the
following methods in order to move files across operating environments:

MIGRATE procedure
PROC MIGRATE is usually the best way to migrate members in a SAS library to
the current SAS release. PROC MIGRATE is a one-step copy procedure that
retains the data attributes that most users want in a data migration. A
SAS/CONNECT or SAS/SHARE server is required in some cases. See
“Examples: Migrate SAS Libraries” in SAS V9 LIBNAME Engine: Reference.

CPORT and CIMPORT procedures
In the source environment, PROC CPORT writes data sets or catalogs to
transport format. In the target environment, PROC CIMPORT translates the
transport file into the target environment's format. If truncation occurs, you
must expand variable lengths. You can either use the CVP engine with PROC
CPORT or use the EXTENDVAR= option with PROC CIMPORT.

Data transfer services in SAS/CONNECT software
Data transfer services is a bulk data transfer mechanism that transfers a copy of
the data and performs the necessary conversion of the data from one
environment's representation to another's, as well as any necessary conversion
between SAS releases. You must establish a connection between the two SAS
sessions by using the SIGNON command and then executing either PROC
UPLOAD or PROC DOWNLOAD to move the data.

Remote library services in both SAS/CONNECT software and SAS/SHARE
software

Remote library services gives you transparent access to remote data through
the use of the LIBNAME statement.

XPORT engine with the DATA step or PROC COPY
In the source environment, the LIBNAME statement with the XPORT engine and
either the DATA step or PROC COPY creates a transport file from a SAS data
set. In the target environment, the same method translates the transport file
into the target environment's format. Note that the XPORT engine does not
support SAS 7 and later features, such as file and variable names that are
greater than 8 bytes.

The XPORT engine converts data representations but does not perform
transcoding. Use the XPORT engine to transport data sets between single-byte
encodings only. The XPORT engine expects that the bytes in a character
variable are single-byte, and emits them to the transport file as is if on an ASCII

744 Chapter 33 / Cross-Environment Data Access

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&locale=en

system, and it converts them to ASCII if on an EBCDIC system. A character
variable that contains UTF-8 data would need to be transcoded to a single-byte
encoding (by using the KCVT function) before writing to transport.

XML engine with the DATA step or PROC COPY
In the source environment, the LIBNAME statement with the XML engine and
either the DATA step or PROC COPY creates an XML document from a SAS
data set. In the target environment, the same method translates the XML
document into the target environment's format.

Examples: CEDA

Example: Understand Log Messages about CEDA

Example Code

The following PRINT procedure generates a CEDA note because the SAS session
has a different data representation than that of the data set. The mytest data set
was created on Linux in “Example: Specify a Data Representation to Avoid CEDA”
on page 748.

libname myfiles v9 'c:\examples';
proc print data=myfiles.mytest;
run;

Here is the CEDA note in the SAS log. The note does not indicate an error.

Example Code 33.1 Log Output Showing CEDA Informational Note

NOTE: Data file MYFILES.MYTEST.DATA is in a format that is native
 to another host, or the file encoding does not match the session
 encoding. Cross Environment Data Access will be used, which might
 require additional CPU resources and might reduce performance.

The following SQL procedure attempts to update the mytest data set.

proc sql;
 insert into myfiles.mytest
 values ('other data string');
quit;

As shown by the following error message, CEDA does not support update
processing. The update fails.

Examples: CEDA 745

Example Code 33.2 Log Output Showing CEDA Update Error

ERROR: File MYFILES.MYTEST cannot be updated because its encoding
 does not match the session encoding or the file is in a format
 native to another host, such as SOLARIS_X86_64, LINUX_X86_64,
 ALPHA_TRU64, LINUX_IA64.

Key Ideas

n CEDA processing is transparent and automatic, but most users want to know when
CEDA processing occurs. CEDA has several restrictions. For example, update
processing is not supported.

n Compatible encodings do not require CEDA processing for transcoding.

When SAS writes a CEDA note to the log, this note is informational. The note does
not indicate an error.

However, transcoding could result in character data loss when encodings are
incompatible. For example, a code point in one encoding could represent a
different character in another encoding. Therefore, always check your output when
you process a data set under a different encoding.

See Also

n “Restrictions for CEDA” on page 740

n “Transcoding Considerations” in SAS National Language Support (NLS):
Reference Guide

n “Compatibility and Migration” in SAS V9 LIBNAME Engine: Reference

Example: Understand Log Messages about
Truncation

Example Code

This example creates the mytrunctest data set in a double-byte character set
(DBCS) session of SAS. The session encoding is SHIFT-JIS. The length of the a
variable is 22 bytes.

libname myfiles v9 'c:\examples';

746 Chapter 33 / Cross-Environment Data Access

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p03nl2a94puseon1n81moy12rh3u.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p03nl2a94puseon1n81moy12rh3u.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0xntq65hjj4jkn1nrryzly5fm7u.htm&locale=en

data myfiles.mytrunctest;
 a='サンプルテキスト文字列';
run;
proc print data=myfiles.mytrunctest;
run;

A Unicode SAS session is started. The session encoding is UTF-8. In this session,
the PROC PRINT output is truncated.

libname myfiles v9 'c:\examples';
proc print data=myfiles.mytrunctest;
run;

Here is the truncation warning in the SAS log.

Example Code 33.3 Log Output Showing Truncation Warning

WARNING: Some character data was lost during transcoding in the dataset
 MYFILES.MYTRUNCTEST. Either the data contains characters that are not
 representable in the new encoding or truncation occurred during transcoding.

The truncation occurs because the a variable requires more bytes in UTF-8
encoding than in SHIFT-JIS encoding. To prevent truncation, use the CVP engine to
expand the variable length. See “Example: Avoid Truncation When Copying a SAS
Library” in SAS V9 LIBNAME Engine: Reference and “Example: Avoid Truncation
When Migrating a SAS Library by Using a Two-Step Process” in SAS V9 LIBNAME
Engine: Reference.

Output 33.1 PROC PRINT Output Showing Truncated Data

Key Ideas

n CEDA processing is transparent and automatic. However, transcoding could result
in character data loss when encodings are incompatible.

n When SAS writes an error or warning to the log about transcoding, you are advised
to carefully check the output. The most common reason for a transcoding error is
truncation.

When you process a file in an encoding that uses more bytes to represent the
characters, truncation could occur if the column length does not accommodate the
larger character size. For example, a character might be represented in wlatin1
encoding as one byte but in UTF-8 as two bytes. Truncation can also cause
"garbage" characters or incorrect characters in output.

Some Microsoft Word characters such as smart quotation marks can also cause
truncation. Those characters require more than one byte in UTF-8 encoding.

n To prevent truncation, use the CVP engine to expand the variable length.

Examples: CEDA 747

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=p1h93331e3aoean1f4pa1fcf20z6&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=p1h93331e3aoean1f4pa1fcf20z6&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=n15b0bl4gwdvz3n1wljwvybvb4f9&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=n15b0bl4gwdvz3n1wljwvybvb4f9&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=n15b0bl4gwdvz3n1wljwvybvb4f9&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=p1h93331e3aoean1f4pa1fcf20z6&locale=en

See Also

n “Restrictions for CEDA” on page 740

n “Transcoding Considerations” in SAS National Language Support (NLS):
Reference Guide

Example: Specify a Data Representation to Avoid
CEDA

Example Code

In this example, the user is running 64-bit SAS on Microsoft Windows, which has a
data representation of WINDOWS_64. The following DATA step uses the OUTREP=
data set option to create a data set that has a data representation of LINUX_X86_64.

libname myfiles v9 'c:\examples';
data myfiles.mytest (outrep=linux_x86_64);
 a='sample data string';
run;
proc contents data=myfiles.mytest;
run;

The SAS log displays the following message when the data set is created. The
message indicates that CEDA is invoked to create the data set. However, CEDA is
not invoked when the mytest data set is accessed in a SAS session on 64-bit Linux.
(CEDA is invoked if the encoding is not compatible.)

NOTE: Data file MYFILES.MYTEST.DATA is in a format that is native
 to another host, or the file encoding does not match the session
 encoding. Cross Environment Data Access will be used, which might
 require additional CPU resources and might reduce performance.

The CEDA message is written in the log again when the CONTENTS procedure
runs. Below is the output from PROC CONTENTS, showing LINUX_X86_64 as the
data representation.

Also, notice that SAS assigns the encoding latin1 Western (ISO). Without an
OUTREP= specification, the user’s session would assign wlatin1 Western
(Windows).

748 Chapter 33 / Cross-Environment Data Access

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p03nl2a94puseon1n81moy12rh3u.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p03nl2a94puseon1n81moy12rh3u.htm&locale=en

Output 33.2 Portion of PROC CONTENTS Output

Key Ideas

n SAS automatically invokes CEDA processing when a file’s data representation or
encoding is different from the data representation or encoding of the current
session.

n CEDA processing can reduce performance. Therefore, when you create a data set
to be accessed in a different operating environment, you might want to specify
that data representation when you create the data set.

n Use the OUTREP= data set option or LIBNAME statement option to specify the
data representation of the target environment. CEDA is invoked in the current
session when the data set is created.

n When you use the OUTREP= option to specify a data representation, the current
SAS session encoding is ignored and a default encoding is assigned instead. This
default encoding is based on the locale of the current session and the operating
environment that is represented by the OUTREP= option, not the encoding of the
current session.

n To change the data representation of an existing file, use the COPY procedure (or
the COPY statement in the DATASETS procedure). Specify the NOCLONE option
for COPY and specify OUTREP= in the LIBNAME statement.

See Also

n “OUTREP= Data Set Option” in SAS Data Set Options: Reference

n “OUTREP= LIBNAME Statement Option” in SAS V9 LIBNAME Engine: Reference

Examples: CEDA 749

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0p1yuyzltd52jn1dubaao0dlk2m.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0opwmanq5ahy7n1tv655lldjz5w.htm&locale=en

n “Compatible Data Representations” on page 741

n “Compatibility and Migration” in SAS V9 LIBNAME Engine: Reference

Example: Specify an Encoding to Avoid CEDA

Example Code

In this example, the user is running SAS on Linux for x64. The session encoding is
latin1 Western (ISO). The following DATA step uses the ENCODING= data set
option to create a data set that has a UTF-8 encoding.

libname mylnx v9 '/mydata';
data mylnx.mytest (encoding=utf8);
 a='sample data string';
run;
proc contents data=mylnx.mytest;
run;

The SAS log displays the following message when the data set is created. The
message indicates that CEDA is invoked to create the data set. However, CEDA is
not invoked when the mytest data set is accessed in a UTF-8 session encoding.
(CEDA is invoked if the operating environment is not compatible.)

NOTE: Data file MYLNX.MYTEST.DATA is in a format that is native
 to another host, or the file encoding does not match the session
 encoding. Cross Environment Data Access will be used, which might
 require additional CPU resources and might reduce performance.

The CEDA message is written in the log again when the CONTENTS procedure
runs. Below is the output from PROC CONTENTS, showing utf-8 Unicode
(UTF-8) as the encoding.

750 Chapter 33 / Cross-Environment Data Access

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0xntq65hjj4jkn1nrryzly5fm7u.htm&locale=en

Output 33.3 Portion of PROC CONTENTS Output

Key Ideas

n SAS automatically invokes CEDA processing when a file’s data representation or
encoding is different from the data representation or encoding of the current
session.

n CEDA processing can reduce performance. Therefore, when you create a data set
to be accessed in a different session encoding, you might want to specify that
encoding when you create the data set.

n Use the ENCODING= data set option or the OUTENCODING= LIBNAME
statement option to specify the encoding of the target environment. CEDA is
invoked in the current session when the data set is created.

See Also

n “ENCODING= Data Set Option” in SAS National Language Support (NLS):
Reference Guide

n “INENCODING=, OUTENCODING= LIBNAME Statement Options” in SAS V9
LIBNAME Engine: Reference

n “Encoding for NLS” in SAS National Language Support (NLS): Reference Guide

Examples: CEDA 751

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n0kzmrsdx5evkxn1ihs24h8ljg2b.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n0kzmrsdx5evkxn1ihs24h8ljg2b.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0btoajnt0sueqn16b3wlnyu0zsa.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0btoajnt0sueqn16b3wlnyu0zsa.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ega4mblktma0n1th1jkh60p1ea.htm&locale=en

Example: Specify a Data Representation and UTF-8
Encoding

Example Code

This example shows the correct way to specify a nondefault encoding such as
UTF-8 when you use the OUTREP= data set option or LIBNAME statement option.
When you specify the OUTREP= option, SAS ignores your session encoding and
assigns a default encoding. If you do not want the default encoding, you must
specify an encoding option.

In this example, the user is running SAS for Windows, and they want to create a
data set for a target session that is on Linux for x64. The user’s encoding and the
target encoding are both set to UTF-8 in their SAS configuration files. As noted
above, however, the user’s UTF-8 session encoding is ignored when they specify the
OUTREP= option. Therefore, the ENCODING=UTF8 option is needed below.

The following DATA step specifies both data representation and encoding for the
target environment.

libname myfiles 'C:\examples';
data myfiles.test (outrep=linux_x86_64 encoding=utf8);
 x=1;
run;
proc contents data=myfiles.test;
run;

The SAS log displays the CEDA message when the data set is created and when the
CONTENTS procedure runs:

NOTE: Data file MYFILES.TEST.DATA is in a format that is native
 to another host, or the file encoding does not match the session
 encoding. Cross Environment Data Access will be used, which might
 require additional CPU resources and might reduce performance.

The PROC CONTENTS output shows that the data representation and encoding are
correctly assigned. Now the user can transport the data set to the target
environment, where it will not invoke CEDA.

752 Chapter 33 / Cross-Environment Data Access

Output 33.4 Portion of PROC CONTENTS Output

Key Ideas

n SAS has a default session encoding that is based on the following two values:

o the operating environment of the current session

o the locale of the current session

n Many sites use the ENCODING system option to specify a nondefault session
encoding. The ENCODING system option is valid in a configuration file or at SAS
invocation.

n As a best practice, when you specify the OUTREP= option to create a data set in a
different data representation, also specify an encoding option. Use the
ENCODING= data set option or the OUTENCODING= LIBNAME statement option.

If you do not specify an encoding option, the current SAS session encoding is
ignored and a default encoding is assigned instead. This default encoding is based
on the following two values:

o the operating environment that is represented by the OUTREP= option

o the locale of the current session

n The default behavior also occurs with the OVERRIDE=(OUTREP=data-rep-value)
syntax in the COPY procedure or COPY statement of the DATASETS procedure. If
you want a nondefault encoding value, then specify OVERRIDE=(OUTREP= data-
rep-value ENCODING=encoding-value)).

Examples: CEDA 753

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0yctvkmmbdwl2n1k87qd1nv1nu3.htm&docsetTargetAnchor=n11ixckskq5db0n146b494q3nv8g&locale=en

See Also

n “Default Values for DFLANG, DATESTYLE, and PAPERSIZE System Options
Based on the LOCALE= System Option” in SAS National Language Support
(NLS): Reference Guide

n “ENCODING System Option: UNIX, Windows, and z/OS” in SAS National
Language Support (NLS): Reference Guide

n “ENCODING= Data Set Option” in SAS National Language Support (NLS):
Reference Guide

n “INENCODING=, OUTENCODING= LIBNAME Statement Options” in SAS V9
LIBNAME Engine: Reference

n “Compatibility and Migration” in SAS V9 LIBNAME Engine: Reference

Example: Determine the Encoding and Data
Representation of a SAS Session or a Data Set

Example Code

The following statements return the session encoding and locale:

%put %sysfunc(getoption(encoding));
%put %sysfunc(getoption(locale));

Here is an example of the information that is written in the SAS log. The session
encoding is wlatin1, and the locale is en_us.

1 %put %sysfunc(getoption(encoding));
WLATIN1
2 %put %sysfunc(getoption(locale));
EN_US

The OPTIONS procedure is another way to check the session encoding and locale:

proc options option=(encoding locale) define value;
run;

PROC OPTIONS returns detailed information about the option settings. Many lines
in the example output below are omitted to highlight the relevant lines.

754 Chapter 33 / Cross-Environment Data Access

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0yctvkmmbdwl2n1k87qd1nv1nu3.htm&docsetTargetAnchor=n11ixckskq5db0n146b494q3nv8g&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0yctvkmmbdwl2n1k87qd1nv1nu3.htm&docsetTargetAnchor=n11ixckskq5db0n146b494q3nv8g&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0yctvkmmbdwl2n1k87qd1nv1nu3.htm&docsetTargetAnchor=n11ixckskq5db0n146b494q3nv8g&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p19gwvr0theecpn15p4x8vjww0zm.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p19gwvr0theecpn15p4x8vjww0zm.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n0kzmrsdx5evkxn1ihs24h8ljg2b.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n0kzmrsdx5evkxn1ihs24h8ljg2b.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0btoajnt0sueqn16b3wlnyu0zsa.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0btoajnt0sueqn16b3wlnyu0zsa.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0xntq65hjj4jkn1nrryzly5fm7u.htm&locale=en

Option Value Information For SAS Option ENCODING
 Value: WLATIN1
.
.
.
Option Value Information For SAS Option LOCALE
 Value: EN_US

To determine the data representation for your session, create a temporary data set
and submit the CONTENTS procedure or the CONTENTS statement of the
DATASETS procedure.

data sessiontest;
 x=1;
run;
proc contents data=sessiontest;
run;

The sessiontest data set is created in the temporary Work library. Below is a
portion of the PROC CONTENTS output. The OUTREP= option was not specified
when the data set was created, so sessiontest has the data representation of the
session. The output also shows the session encoding.

Output 33.5 Portion of PROC CONTENTS Output to Learn the Session Encoding
and Data Representation

Key Ideas

n When you share data among different environments, you might need to check the
encoding and data representation of the SAS session. Knowing the locale can also
be useful.

n Use PROC OPTIONS or the GETOPTION function to query the session encoding.

Examples: CEDA 755

n Use PROC CONTENTS (or the CONTENTS statement of PROC DATASETS) to see
the data representation and encoding of a data set.

n You cannot use PROC OPTIONS or the GETOPTION function to query the
session’s data representation value, because the OUTREP= option is not available
as a system option. Instead, create a temporary data set, without using OUTREP=
or ENCODING= options, so that the temporary data set has the session’s data
representation and encoding. Submit PROC CONTENTS (or the CONTENTS
statement of the DATASETS procedure). For an example that uses PROC SQL, see
Sample 55054.

n In the output of PROC CONTENTS (or the CONTENTS statement of PROC
DATASETS), for some operating environments, several data representations are
listed. In this case, the operating environments are compatible and do not invoke
CEDA processing. However, under some compatible environments, catalogs are
not compatible. See “Compatible Data Representations” on page 741.

n The information that is returned by PROC CONTENTS (or the CONTENTS
statement of PROC DATASETS) varies according to the operating environment
and the engine.

n When you share data sets across environments, another attribute that could be
helpful is Host Created, which is reported in the Engine/Host Dependent
Information portion of PROC CONTENTS output.

See Also

n “GETOPTION Function” in SAS System Options: Reference

n “OPTIONS Procedure” in SAS System Options: Reference

n “CONTENTS Procedure” in Base SAS Procedures Guide

756 Chapter 33 / Cross-Environment Data Access

http://support.sas.com/techsup/notes/v8/55/054.html
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n096vc8shtf7mzn1rlvx6003ayho.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1kwrbpvinbd5bn1cpha9brh92eg.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

34
Managing SAS Catalogs

Definition of a SAS Catalog . 757

Definition of a SAS Catalog
SAS catalogs are special SAS files that store many different types of information in
smaller units called catalog entries. Each entry has an entry type that identifies its
purpose to SAS. A single SAS catalog can contain several types of catalog entries.
Some catalog entries contain system information such as key definitions. Other
catalog entries contain application information such as window definitions, help
windows, formats, informats, macros, or graphics output. You can list the contents
of a catalog using various SAS features, such as SAS Explorer and PROC CATALOG.

For more information, see “Catalogs” in SAS V9 LIBNAME Engine: Reference.

757

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=p0sxxeg3uxl796n13zn9cwzqjhlq.htm&locale=en

758 Chapter 34 / Managing SAS Catalogs

PART 7

SAS System Features

Chapter 35
The SAS Registry . 761

Chapter 36
The SAS Windowing Environment . 781

Chapter 37
Cloud Analytic Services . 831

Chapter 38
Industry Protocols Used in SAS . 835

759

760

35
The SAS Registry

Introduction to the SAS Registry . 761
What Is the SAS Registry? . 761
Who Should Use the SAS Registry? . 762
Where the SAS Registry Is Stored . 762
How Do I Display the SAS Registry? . 763
Definitions for the SAS Registry . 763

Managing the SAS Registry . 765
Primary Concerns about Managing the SAS Registry . 765
Backing Up the Sasuser Registry . 765
Recovering from Registry Failure . 768
Using the SAS Registry to Control Color . 769
Using the Registry Editor . 770

Configuring Your Registry . 776
Configuring Universal Printing . 776
Configuring SAS Explorer . 776
Configuring Libraries and File Shortcuts with the SAS Registry . 777
Fixing Library Reference (Libref) Problems with the SAS Registry 779

Introduction to the SAS Registry

What Is the SAS Registry?
The SAS registry is the central storage area for configuration data for SAS. For
example, the registry stores the following:

n the libraries and file shortcuts that SAS assigns at startup

n the menu definitions for Explorer pop-up menus

n the printers that are defined for use

n configuration data for various SAS products

761

This configuration data is stored in a hierarchical form. The form works in a manner
similar to how directory-based file structures work under the operating
environments in UNIX and Windows, and under the z/OS UNIX System Services
(USS).

Note: Host printers are not referenced in the SAS registry.

Who Should Use the SAS Registry?
The SAS registry is designed for use by system administrators and experienced SAS
users. This section provides an overview of registry tools, and describes how to
import and export portions of the registry.

CAUTION
If you make a mistake when you edit the registry, your system might become
unstable or unusable.

Wherever possible, use the administrative tools, such as the New Library window,
the PRTDEF procedure, Universal Print windows, and the Explorer Options window,
to make configuration changes, rather than editing the registry directly. Using the
administrative tools ensures that values are stored properly in the registry when
you change the configuration.

CAUTION
If you use the Registry Editor to change values, you are not warned if any
entry is incorrect. Incorrect entries can cause errors, and can even prevent you from
starting a SAS session.

Where the SAS Registry Is Stored

Registry Files in the Sasuser and the Sashelp
Libraries

Although the SAS registry is logically one data store, physically it consists of two
different files located in both the Sasuser and Sashelp libraries. The physical
filename for the registry is regstry.sas7bitm. By default, these registry files are
hidden in the SAS Explorer views of the Sashelp and Sasuser libraries.

n The Sashelp library registry file contains the site defaults. The system
administrator usually configures the printers that a site uses, the global file

762 Chapter 35 / The SAS Registry

shortcuts or libraries that are assigned at start-up, and any other configuration
defaults for your site.

n The Sasuser library registry file contains the user defaults. When you change
your configuration information through a specialized window such as the Print
Setup window or the Explorer Options window, the settings are stored in the
Sasuser library.

How to Restore the Site Defaults

If you want to restore the original site defaults to your SAS session, delete the
regstry.sas7bitm file from your Sasuser library and restart your SAS session.

How Do I Display the SAS Registry?
You can use one of the following three methods to view the SAS registry:

n Issue the REGEDIT command. This opens the SAS Registry Editor.

n Select Solutions ð Accessories ð Registry Editor.

n Submit the following line of code:

proc registry list;
run;

This method prints the registry to the SAS log, and it produces a large list that
contains all registry entries, including subkeys. Because of the large size, it
might take a few minutes to display the registry using this method.

For more information about how to view the SAS registry, see the REGISTRY
PROCEDURE in “REGISTRY Procedure” in Base SAS Procedures Guide. Base SAS
Procedures Guide.

Definitions for the SAS Registry
The SAS registry uses keys and subkeys as the basis for its structure, instead of
using directories and subdirectories like the file systems in DOS or UNIX. These
terms and several others described here are frequently used when discussing the
SAS Registry:

key
An entry in the registry file that refers to a particular aspect of SAS. Each entry
in the registry file consists of a key name, followed on the next line by one or
more values. Key names are entered on a single line between square brackets
([and]).

The key can be a place holder without values or subkeys associated with it, or it
can have many subkeys with associated values. Subkeys are delimited with a

Introduction to the SAS Registry 763

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p0dakeryjykv6rn1x83x60323cz3.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

backslash (\). The length of a single key name or a sequence of key names
cannot exceed 255 characters (including the square brackets and the
backslash). Key names can contain any character except the backslash and are
not case sensitive.

The SAS Registry contains only one top-level key, called SAS_REGISTRY. All the
keys under SAS_REGISTRY are subkeys.

subkey
A key inside another key. Subkeys are delimited with a backslash (\). Subkey
names are not case-sensitive. The following key contains one root key and two
subkeys:[SAS_REGISTRY\HKEY_USER_ROOT\CORE]

SAS_REGISTRY
is the root key.

HKEY_USER_ROOT
is a subkey of SAS_REGISTRY. In the SAS registry, there is one other subkey
at this level it is HKEY_SYSTEM_ROOT.

CORE
is a subkey of HKEY_USER_ROOT, containing many default attributes for
printers, windowing, and so on.

link
a value whose contents reference a key. Links are designed for internal SAS use
only. These values always begin with the word “link:”.

value
the names and content associated with a key or subkey. There are two
components to a value, the value name and the value content, also known as a
value datum.

Figure 35.1 Section of the Registry Editor Showing Value Names and Value Data for
the Subkey 'HTML'

.SASXREG file
a text file with the file extension .SASXREG that contains the text
representation of the actual binary SAS Registry file.

764 Chapter 35 / The SAS Registry

Managing the SAS Registry

Primary Concerns about Managing the SAS
Registry

CAUTION
If you make a mistake when you edit the registry, your system might become
unstable or unusable. Whenever possible, use the administrative tools, such as the
New Library window, the PRTDEF procedure, Universal Print windows, and the Explorer
Options window, to make configuration changes, rather than editing the registry. This is
to ensure that values are stored properly in the registry when changing the configuration.

CAUTION
If you use the Registry Editor to change values, you are not warned if any
entry is incorrect. Incorrect entries can cause errors, and can even prevent you from
starting a SAS session.

Backing Up the Sasuser Registry

Why Back Up the Sasuser Registry?

The Sasuser1 part of the registry contains personal settings. It is a good idea to
back up the Sasuser part of the registry if you have made substantial
customizations to your SAS session. Substantial customizations include the
following:

n installing new printers

n modifying printer settings from the default printer settings that your system
administrator provides for you

n changing localization settings

n altering translation tables with TRANTAB

1. The Sashelp part of the registry contains settings that are common to all users at your site. Sashelp is Write protected, and
can be updated only by a system administrator.

Managing the SAS Registry 765

When SAS Resets to the Default Settings

When SAS starts up, it automatically scans the registry file. SAS restores the
registry to its original settings under two conditions:

n If SAS detects that the registry is corrupted, then SAS rebuilds the file.

n If you delete the registry file called regstry.sas7bitm, which is located in the
Sasuser library, then SAS restores the Sasuser registry to its default settings.

CAUTION
Do not delete the registry file that is located in Sashelp; this prevents SAS
from starting.

Ways to Back Up the Registry

There are two methods for backing up the registry and each achieves different
results:

Method 1: Save a copy of the Sasuser registry file called regstry.sas7bitm.
The result is an exact copy of the registry at the moment that you copied it. If
you need to use that copy of the registry to restore a broken copy of the registry,
then any changes to the registry after the copy date are lost. However, it is
probably better to have this backup file than to revert to the original default
registry.

Method 2: Use the Registry Editor or PROC REGISTRY to back up the parts of the
Sasuser registry that have changed.

The result is a concatenated copy of the registry, which can be restored from the
backup file. When you create the backup file using the EXPORT= statement in
PROC REGISTRY, or by using the Export Registry File utility in the Registry
Editor, SAS saves any portions of the registry that have been changed. When
SAS restores this backup file to the registry, the backup file is concatenated
with the current registry in the following way:

n Any completely new keys, subkeys, or values that were added to the Sasuser
registry after the backup date are retained in the new registry.

n Any existing keys, subkeys, or values that were changed after SAS was
initially installed, then changed again after the backup, are overwritten and
revert to the backup file values after the restore.

n Any existing keys or subkeys (or values that retain the original default
values) will have the default values after the restore.

766 Chapter 35 / The SAS Registry

Using the Explorer to Back Up the SAS Registry

To use the Explorer to back up the SAS Registry:

1 Start SAS Explorer with the EXPLORER command, or select View ð Explorer.

2 Select Tools ð Options ð Explorer.

The Explorer Options window appears.

3 Select the Members tab.

4 Select ITEMSTOR in the Type list.

5 Click Unhide.

If there is no icon associated with ITEMSTOR in the Type list, then you are
prompted to select an icon.

6 Open the Sasuser library in the Explorer window.

7 Right-click the Regstry.Itemstor file.

8 Select Copy from the pop-up menu and copy the Regstry file. SAS assigns the
name Regstry_copy to the file.

Operating Environment Information: You can also use a copy command from
your operating environment to make a copy of your registry file for backup
purposes. When viewed from outside SAS Explorer, the filename is
regstry.sas7bitm. Under z/OS, you cannot use the environment copy
command to copy your registry file unless your Sasuser library is assigned to an
HFS directory.

Using the Registry Editor to Back Up the SAS
Registry

Using the Registry Editor to back up the SAS registry is generally the preferred
backup method, because it retains any new keys or values in case you must restore
the registry from the backup.

To use the Registry Editor to back up the SAS Registry:

1 Open the Registry Editor with the REGEDIT command.

2 Select the top-level key in the left pane of the registry window.

3 From the Registry Editor, select File ð Export Registry File.

A Save As window appears.

4 Enter a name for your registry backup file in the filename field. (SAS applies the
proper file extension name for your operating system.)

Managing the SAS Registry 767

5 Click Save.

This saves the registry backup file in Sasuser. You can control the location of your
registry backup file by specifying a different location in the Save As window.

Recovering from Registry Failure
This section gives instructions for restoring the registry with a backup file, and
shows you how to repair a corrupt registry file.

To install the registry backup file that was created using SAS Explorer or an
operating system copy command:

1 Change the name of your corrupt registry file to something else.

2 Rename your backup file to regstry.sas7bitm, which is the name of your registry
file.

3 Copy your renamed registry file to the Sasuser location where your previous
registry file was located.

4 Restart your SAS session.

To restore a registry backup file created with the Registry Editor:

1 Open the Registry Editor with the REGEDIT command.

2 Select File ð Import Registry File.

3 Select the registry file that you previously exported.

4 Click Open.

5 Restart SAS.

To restore a registry backup file created with PROC REGISTRY:

1 Open the Program editor and submit the following program to import the
registry file that you created previously.

 proc registry import=<registry file specification>;
 run;

This imports the registry file to the Sasuser library.

2 If the file is not already properly named, then use Explorer to rename the
registry file to regstry.sas7bitm:

3 Restart SAS.

To attempt to repair a damaged registry:

1 Rename the damaged registry file to something other than “registry” (for
example, temp).

2 Start your SAS session.

768 Chapter 35 / The SAS Registry

3 Define a library pointing to the location of the temp registry.

libname here '.'

4 Run the REGISTRY procedure and redefine the Sasuser registry:

 proc registry setsasuser="here.temp";
 run;

5 Start the Registry Editor with the REGEDIT command. Select Solutions ð
Accessories ð Registry Editor ð View All.

6 Edit any damaged fields under the HKEY_USER_ROOT key.

7 Close your SAS session and rename the modified registry back to the original
name.

8 Open a new SAS session to see whether the changes fixed the problem.

Using the SAS Registry to Control Color

Overview of Colors and the SAS Registry

The SAS registry contains the RGB values for color names that are common to
most web browsers. These colors can be used for ODS and GRAPH output. The
RGB value is a triplet (Red, Green, Blue), and each component has a range of 00 to
FF (0 to 255).

The registry values for color are located in the COLORNAMES\HTML subkey.

Adding Colors Using the Registry Editor

You can create your own new color values by adding them to the registry in the
COLORNAMES\HTML subkey:

1 Open the SAS Registry Editor using the REGEDIT command.

2 Select the COLORNAMES\HTML subkey.

3 Select Edit ð New Binary Value. A pop-up menu appears.

4 Enter the color name in the Value Name field and the RGB value in the Value
Data field.

5 Click OK.

Managing the SAS Registry 769

Adding Colors Programmatically

You can create your own new color values by adding them to the registry in the
COLORNAMES\HTML subkey, using SAS code.

The easiest way is to first write the color values to a file in the layout that the
REGISTRY procedure expects. Then you import the file by using the REGISTRY
procedure. In this example, Spanish color names are added to the registry.

filename mycolors temp;
data _null_;
 file "mycolors";
 put "[colornames\html]";
 put ' "rojo"=hex:ff,00,00';
 put ' "verde"=hex:00,ff,00';
 put ' "azul"=hex:00,00,ff';
 put ' "blanco"=hex:ff,ff,ff';
 put ' "negro"=hex:00,00,00';
 put ' "anaranjado"=hex:ff,a5,00';
run;

proc registry import="mycolornames";
run;

After you add these colors to the registry, you can use these color names anywhere
that you use the color names supplied by SAS. For example, you could use the color
name in the GOPTIONS statement as shown in the following code:

goptions cback=anaranjado;
proc gtestit;
run;

Using the Registry Editor

When to Use the Registry Editor

The best way to view the contents of the registry is using the Registry Editor. The
Registry Editor is a graphical alternative to PROC REGISTRY, an experienced SAS
user might use the Registry Editor to do the following:

n View the contents of the registry. The registry shows keys and values stored in
keys.

n Add, modify, and delete keys and values stored in the registry.

n Import registry files into the registry, starting at any key.

n Export the contents of the registry to a file, starting at any key.

770 Chapter 35 / The SAS Registry

n Uninstall a registry file.

n Compare a registry file to the SAS registry.

Many of the windows in the SAS windowing environment update the registry for
you when you make changes to such items as your printer setting or your color
preferences. Because these windows update the registry using the correct syntax
and semantics, it is often best to use these alternatives when making adjustments
to SAS.

Starting the Registry Editor

To run the Registry Editor, issue the REGEDIT command on a SAS command line. You
can also open the registry window by selecting Solutions ð Accessories ð Registry
Editor.

Finding Specific Data in the Registry

In the Registry Editor window, double-click a folder icon that contains a registry
key. This displays the contents of that key.

Another way to find things is to use the Find utility.

1 From the Registry Editor, select Edit ð Find.

2 Enter all or part of the text string that you want to find, and click Options to
specify whether you want to find a key name, a value name, or data.

3 Click Find.

Managing the SAS Registry 771

Figure 35.2 The Registry Editor Find Utility

Changing a Value in the SAS Registry

CAUTION
Before modifying registry values, always back up the regstry.sas7bitm file
from Sasuser.

1 In the left pane of the Registry Editor window, click the key that you want to
change. The values contained in the key appear in the right pane.

2 Double-click the value.

The Registry Editor displays several types of windows, depending on the type of
value that you are changing.

772 Chapter 35 / The SAS Registry

Figure 35.3 Example Window for Changing a Value in the SAS Registry

Adding a New Value or Key to the SAS Registry

1 In the SAS Registry Editor, right-click the key that you want to add the value to.

2 From the pop-up menu, select the New menu item with the type that you want
to create.

3 Enter the values for the new key or value in the window that is displayed.

Managing the SAS Registry 773

Figure 35.4 Registry Editor with Pop-up Menu for Adding New Keys and Values

Deleting an Item from the SAS Registry

From the SAS Registry Editor:

1 Right-click the item that you want to delete.

2 Select Delete from the pop-up menu.

3 Confirm the deletion.

Renaming an Item in the SAS Registry

From the SAS Registry Editor:

1 Right-click the item that you want to rename.

2 Select Rename from the pop-up menu and enter the new name.

3 Click OK.

774 Chapter 35 / The SAS Registry

Displaying the Sasuser and Sashelp Registry Items
Separately

After you open the Registry Editor, you can change your view from the default. The
default view shows the registry contents without regard to the storage location.
The other registry view displays both Sasuser and Sashelp items in separate trees
in the Registry Editor's left pane.

1 Select TOOLS ð Options ð Registry Editor This opens the Select Registry
View group box.

2 Select View All to display the Sasuser and Sashelp items separately in the
Registry Editor's left pane.

n The Sashelp portion of the registry is listed under the HKEY_SYSTEM_ROOT
folder in the left pane.

n The Sasuser portion of the registry is listed under the HKEY_USER_ROOT
folder in the left pane.

Figure 35.5 The Registry Editor in View Overlay Mode

Importing a Registry File

You usually import a registry file or SASXREG file when you are restoring a backup
registry file. A registry file can contain a complete registry or just part of a registry.

To import a registry file using the SAS Registry Editor:

1 Select File ð Import Registry File.

Managing the SAS Registry 775

2 In the Open window, select the SASXREG file to import.

Note: In order to first create the backup registry file, you can use the REGISTRY
Procedure or the Export Registry File menu choice in the Registry Editor.

Exporting a Registry File

You usually export a registry file or SASXREG file, when you are preparing a backup
registry file. You can export a complete registry or just part of a registry.

To export a registry file using the SAS Registry Editor:

1 In the left pane of the Registry Editor, select the key that you want to export to
a SASXREG file.

To export the entire registry, select the top key.

2 Select File ð Export Registry File.

3 In the Save As window, give the export file a name.

4 Click Save.

Configuring Your Registry

Configuring Universal Printing
Universal Printers should be configured by using either the PRTDEF procedure or
the Print Setup window. The REGISTRY procedure can be used to back up a printer
definition and to restore a printer definition from a SASXREG file. Any other direct
modification of the registry values should be done only under the guidance of SAS
Technical Support.

Configuring SAS Explorer
Use the Explorer Options window to configure your Explorer settings. You can also
use the Registry Editor to view the current Explorer settings in the SAS registry.
The Explorer Options Window is available from the TOOLS ð Options ð Explorer
menu when you click on the SAS Explorer window. All the Explorer configuration

776 Chapter 35 / The SAS Registry

data is stored in the registry under CORE\Explorer. The following table outlines the
location of the most commonly used Explorer configuration data.

Table 35.1 Registry Locations for Commonly Used Explorer Configuration Data

Registry Key
What portion of the Explorer it
configures

CORE\EXPLORER\CONFIGURATION the portions of the Explorer get
initialized at startup.

CORE\EXPLORER\MENUS the pop-up menus that are displayed in
the Explorer.

CORE\EXPLORER\KEYEVENTS the valid key events for the 3270
interface. This key is used only on the
mainframe platforms.

CORE\EXPLORER\ICONS Which icons to display in the Explorer. If
the icon value is –1, this causes the icon
to be hidden in the Explorer.

CORE\EXPLORER\NEW This subkey controls what types of
objects are available from the File ð
New menu in the Explorer.

Configuring Libraries and File Shortcuts with the
SAS Registry

When you use the New Library window or the File Shortcut Assignment window to
create a library reference (libref) or a file reference (fileref), you can click the
Enable at startup check box to save the libref or fileref for future use.

When you do this, they are stored in the SAS registry, where it is possible to modify
or delete them, as follows:

Deleting an “Enable at startup” library reference
You can use the Registry Editor to delete an “Enable at startup” library reference
by deleting the corresponding key under CORE\OPTIONS\LIBNAMES\“your
libref”. However, it is best to delete your library reference by using the SAS
Explorer. This removes this key from the registry when you delete the library
reference.

Deleting an “Enable at startup” file shortcut
You can use the Registry Editor to delete an “Enable at startup” file shortcut by
deleting the corresponding key under CORE\OPTIONS\FILEREFS\your fileref.

Configuring Your Registry 777

However, it is best to delete your library reference by using the SAS Explorer.
This removes this key automatically when you delete the file shortcut.

Creating an “Enable at startup” File Shortcut as a site default
A site administrator might want to create a file shortcut that is available to all
users at a site. To do this, you first create a version of the file shortcut definition
in the Sasuser registry. Then you modify it so that it can be used in the Sashelp
registry.

Note: You need special permission to write to the Sashelp part of the SAS
registry.

1 Enter the DMFILEASSIGN command.

This opens the File Shortcut Assignment window.

2 Create the file shortcut that you want to use.

3 Check Enable at startup.

4 Click OK.

5 Verify that the file shortcut was created successfully and enter the REGEDIT
command.

6 Find and select the key CORE\OPTIONS\FILEREFS\your fileref.

7 Select File ð Export Registry File and export the file.

8 Edit the exported file and replace all instances of HKEY_USER_ROOT with
HKEY_SYSTEM_ROOT.

9 To apply your changes to the site's Sashelp, use PROC REGISTRY.

The following code imports the file:

 proc registry import="yourfile.sasxreg" usesashelp;
 run;

Creating an “Enable at startup” library as a site default
A site administrator might want to create a library that is available to all users
at a site. To do this, the Sasuser version of the library definition needs to be
migrated to Sashelp.

Note: You need special permission to write to the Sashelp part of the SAS
registry.

1 Enter the dmlibassign command.

This opens the New Library window.

2 Create the library reference that you want to use.

3 Select Enable at startup.

4 Select Enable at startup.

778 Chapter 35 / The SAS Registry

5 Click OK.

6 Issue the REGEDIT command after verifying that the library was created
successfully.

7 Find and select the registry key CORE\OPTIONS\LIBNAMES\your libref.

8 Select File ð Export Registry File.

The Save As window appears.

9 Select a location to store your registry file.

10 Enter a filename for your registry file in the Filename field.

11 Click Save to export the file.

12 Right-click the file and select Edit in NOTEPAD to edit the file.

13 Edit the exported file and replace all instances of “HKEY_USER_ROOT” with
“HKEY_SYSTEM_ROOT”.

14 To apply your changes to the site's Sashelp use PROC REGISTRY. The
following code imports the file:

proc registry import="yourfile.sasxreg" usesashelp;
run;

Fixing Library Reference (Libref) Problems with the
SAS Registry

Library references (librefs) are stored in the SAS Registry. You might encounter a
situation where a libref fails after it had previously worked. In some situations,
editing the registry is the fastest way to fix the problem. This section describes
what is involved in repairing a missing or failed libref.

If any permanent libref that is stored in the SAS Registry fails at startup, then the
following note appears in the SAS Log:

NOTE: One or more library startup assignments were not restored.

The following errors are common causes of library assignment problems:

n Required field values for libref assignment in the SAS Registry are missing.

n Required field values for libref assignment in the SAS Registry are invalid. For
example, library names are limited to eight characters, and engine values must
match actual engine names.

n Encrypted password data for a libref has changed in the SAS Registry.

Note: You can also use the New Library window to add librefs. You can open this
window by typing DMLIBASSIGN in the toolbar, or selecting File ð New from the
Explorer window.

Configuring Your Registry 779

CAUTION
You can correct many libref assignment errors in the SAS Registry Editor. If
you are unfamiliar with librefs or the SAS Registry Editor, then ask for technical support.
Errors can be made easily in the SAS Registry Editor, and they can prevent your
libraries from being assigned at startup.

To correct a libref assignment error using the SAS Registry Editor:

1 Select Solutions ð Accessories ð Registry Editor or issue the REGEDIT
command to open the Registry Editor.

2 Select one of the following paths, depending on your operating environment,
and then make modifications to keys and key values as needed:

CORE\OPTIONS\LIBNAMES

or

CORE\OPTIONS\LIBNAMES\CONCATENATED

Note: These corrections are possible only for permanent librefs. That is, those that
are created at startup by using the New Library or File Shortcut Assignment
window.

For example, if you determine that a key for a permanent, concatenated library has
been renamed to something other than a positive whole number, then you can
rename that key again so that it is in compliance. Select the key, and then select
Rename from the pop-up menu to begin the process.

780 Chapter 35 / The SAS Registry

36
The SAS Windowing
Environment

What Is the SAS Windowing Environment? . 782

Main Windows in the SAS Windowing Environment . 782
Overview of SAS Windows . 782
SAS Explorer Window . 784
Enhanced Editor Window . 785
Log Window . 786
Results Window . 787
Output Window . 788

Navigating in the SAS Windowing Environment . 792
Overview of SAS Navigation . 792
Menus in SAS . 792
Toolbars in SAS . 796
The Command Line . 797

Getting Help in SAS . 797
Type Help in the Command Line . 797
Open the Help Menu from the Toolbar . 798
Click Help in Individual SAS Windows . 799

List of SAS Windows and Window Commands . 799

Introduction to Managing Your Data in the SAS Windowing Environment 804

Managing Data with SAS Explorer . 804
Introduction to Managing Data with SAS Explorer . 804
Viewing Libraries and Data Sets . 805
Assign File Shortcuts . 806
Rename a SAS Data Set . 807
Copy or Duplicate a SAS Data Set . 807
Sorting Data Sets in a Library . 808
View the Properties of a SAS Data Set . 808

Working with VIEWTABLE . 809
Overview of VIEWTABLE . 809
Opening a SAS Data Set in a VIEWTABLE Window . 810
Displaying Table Headers as Names or Labels . 811
Customizing SAS Explorer for Opening the VIEWTABLE Window 812
Order of Precedence for How Column Headings Are Displayed . 814

781

Mapping the VIEWTABLE Command to a Function Key . 815
Temporarily Change Column Headings . 815
Move Columns in a Table . 817
Sort by Values of a Column . 817
Edit Cell Values . 819

Subsetting Data By Using the WHERE Expression . 820
Subset Rows of a Table . 820
Clear the WHERE Expression . 823

Exporting a Subset of Data . 824
Overview of Exporting Data . 824
Export Data . 824

Importing Data into a Table . 827
Overview of Importing Data . 827
Import a Standard File . 827
Import a Nonstandard File . 829

What Is the SAS Windowing
Environment?

SAS provides a graphical user interface that makes SAS easier to use. Collectively,
all the windows in SAS are called the SAS windowing environment.

The SAS windowing environment contains the windows that you use to create SAS
programs. However, you also find other windows that enable you to manipulate
data or change your SAS settings without writing a single line of code.

You might find the SAS windowing environment a convenient alternative to writing
a SAS program when you want to work with a SAS data set, or control some aspect
of your SAS session.

Main Windows in the SAS Windowing
Environment

Overview of SAS Windows
SAS windows have several features that operate in a similar manner across all
operating environments: menus, toolbars, and online Help. You can customize many

782 Chapter 36 / The SAS Windowing Environment

features of the SAS windowing environment, including toolbars, icons, menus, and
so on.

The five main windows in the SAS windowing environment are the Explorer,
Results, Enhanced Editor, Log, and Output windows.

Note: The arrangement of your SAS windows depends on your operating
environment. For example, in the Microsoft Windows operating environment, the
Enhanced Editor window appears instead of the Program Editor.

When you first invoke SAS, the Enhanced Editor, Log, Output, and Explorer
windows are displayed. When you execute a SAS program, the default output
(HTML) is displayed in the Results window. If you use a PUT statement in your
program, then output is written to the SAS Log by default.

Note: The Microsoft Windows operating environment was used to create the
examples in this section. Menus and toolbars in other operating environments have
a similar appearance and behavior.

Windows Specifics: If you are using Microsoft Windows, the active window
determines which items are available on the main menu bar.

The following display shows one example of the arrangement of SAS windows. The
Explorer window shows active libraries.

Figure 36.1 Windows in the SAS Windowing Environment

Main Windows in the SAS Windowing Environment 783

SAS Explorer Window

Uses of the SAS Explorer Window

The Explorer window enables you to manage your files in the windowing
environment. You can use the SAS Explorer to perform the following tasks:

n View lists of your SAS files.

n Create new SAS files.

n View, add, or delete libraries.

n Create shortcuts to external files.

n Open any SAS file and view its contents.

n Move, copy, and delete files.

n Open related windows, such as the New Library window.

Open the SAS Explorer Window

You can open SAS Explorer in the following ways:

Command:
Enter EXPLORER in the command line and press Enter.

Menu:
Select View ð Explorer.

Display SAS Explorer with and without a Tree View

You can display the Explorer window with or without a tree view of its contents.
Displaying the Explorer with a tree view enables you to view the hierarchy of the
files. To display the tree view, select Show Tree from the View menu. To turn tree
view off, deselect Show Tree in the menu.

Note: You can resize the Explorer window by dragging an edge or a corner of the
window. You can resize the left and right panes of the Explorer window by clicking
the split bar between the two panes and dragging it to the right or left.

784 Chapter 36 / The SAS Windowing Environment

Enhanced Editor Window

Uses of the Enhanced Editor Window

The Enhanced Editor window enables you to enter, edit, submit, and save SAS
programs.

Open the Enhanced Editor Window

To open the Enhanced Editor window select View ð Enhanced Editor from the
main menu.

Note: To open your SAS programs in the SAS windowing environment, you can
drag and drop them onto the Enhanced Editor window.

View a Program in the Enhanced Editor Window

The following example shows a SAS program in the Enhanced Editor window:

Figure 36.2 Example of the Enhanced Editor Window

Note: In the Microsoft Windows operating environment, the Enhanced Editor
window appears by default instead of the Program Editor Window. To open the

Main Windows in the SAS Windowing Environment 785

Program Editor window, follow the same steps for opening the Enhanced Editor
window, except select View ð Program Editor from the main menu. Alternatively,
you can enter PROGRAM or PGM in the command line and press Enter.

Log Window

Uses of the Log Window

The Log window enables you to view messages about your SAS session and your
SAS programs. If the program that you submit has unexpected results, then the log
helps you identify the error. You can also use a PUT statement to write program
output to the Log.

Note: To keep the lines of your log from wrapping when your window is maximized,
use the LINESIZE= system option.

Open the Log Window

You can open the Log window in the following ways:

Command:
Enter LOG in the command line and press Enter.

Menu:
Select View ð Log.

View Log Output

The following is an example of Log output.

786 Chapter 36 / The SAS Windowing Environment

Figure 36.3 Example of Output in the Log Window

Results Window

Uses of the Results Window

The Results window enables you to view HTML output from a SAS program. HTML
is the default output type, and HTMLBlue is the default output style. The Results
window uses a tree structure to list various types of output that might be available
after you run SAS. You can view, save, or print individual files. The Results window
is empty until you execute a SAS program and produce output. When you submit a
SAS program, the output is displayed in the Results Viewer and the file is listed in
the Results window.

Open the Results Window

You can open the Results window in the following ways:

Command:
Enter ODSRESULTS in the command line and press Enter.

Main Windows in the SAS Windowing Environment 787

Menu:
Select View ð Results.

View Output in the Results Window

The left pane of the following display shows the Results window, and the right pane
shows the Results Viewer where the default HTML output is displayed. The Results
window lists the files that were created when the SAS program executed.

Figure 36.4 Results Window and Results Viewer

Output Window

Uses of the Output Window

The Output window enables you to view LISTING output from your SAS programs.
By default, the Output window is positioned behind the other windows. When you
create LISTING output, the Output window automatically moves to the front of
your display.

788 Chapter 36 / The SAS Windowing Environment

Note: To keep the lines of your output from wrapping when your window is
maximized, use the LINESIZE= system option.

Open the Output Window

You can open the Output window in the following ways:

Command:
n Enter OUTPUT or OUT in the command line and press Enter.

n Enter LISTING or LST in the command line and press Enter.

Menu:
Select View ð Output.

Create and View LISTING Output

Because LISTING output is not the default output type, you must use ODS
statements to open the LISTING destination. Along with LISTING output, HTML
output is also generated.

The following example shows a program that produces LISTING output. There is an
ODS statement before the DATA statement and after the RUN statement:

Figure 36.5 Example of a Program That Produces Listing Output

Main Windows in the SAS Windowing Environment 789

SAS creates the following LISTING output:

Figure 36.6 Example of Listing Output in the Output Window

Using the Preferences Dialog Box to Select Output
Types

You can use the Preferences dialog box to select output types and set system
preferences. Each tab in the Preferences dialog box holds a related group of items.
To access the Preferences dialog box, select Tools ð Options ð Preferences.

The following is an example of the Preferences dialog box, with the Results tab
selected:

790 Chapter 36 / The SAS Windowing Environment

Figure 36.7 Example of the Preferences Dialog Box

Several default values are selected in the Results tab. Under HTML, Create HTML
is the default output type, and HTMLBlue is the default output style. Use ODS
Graphics is also selected by default. When the Use ODS Graphics box is checked,
you are able to automatically generate graphs when running procedures that
support ODS graphics. Checking or unchecking this box enables you to turn on or
turn off ODS graphics when you invoke SAS.

To produce LISTING output, check the Create listing box under Listing. If you
deselect Create HTML and leave the Create listing box checked, your program
produces listing output only.

Main Windows in the SAS Windowing Environment 791

Navigating in the SAS Windowing
Environment

Overview of SAS Navigation
SAS windows have several features that work in a similar manner across all
operating environments: menus, toolbars, and online Help. You can customize many
of these features by selecting Tools ð Customize from the menu. For specific
information about these features, see the documentation for your operating
environment.

Menus in SAS
Menus contain lists of options that you can select.

The following example shows the menu options that are available when you select
Help from the menu bar:

792 Chapter 36 / The SAS Windowing Environment

Figure 36.8 The Help Menu

Menu choices change as you change the windows that you are using. For example, if
you select Explorer from the View menu, and then select View again, the menu
lists the View options that are available when the Explorer window is active.

The following display shows the View menu when the Explorer window is active:

Navigating in the SAS Windowing Environment 793

Figure 36.9 View Options When the Explorer Window Is Active

If you select Program Editor from the View menu, and then select View again, the
menu lists the View options that are available when the Program Editor window is
active.

The following display shows the View menu when the Program Editor window is
active:

794 Chapter 36 / The SAS Windowing Environment

Figure 36.10 View Options When the Program Editor Window Is Active

You can also access menus when you right-click an item. For example, when you
select View ð Explorer and then right-click Libraries in the Explorer window, the
following menu appears:

Navigating in the SAS Windowing Environment 795

Figure 36.11 Another Example of a Menu

The menu remains visible until you make a selection from the menu or until you
click an area outside of the menu area.

Toolbars in SAS
A toolbar displays a block of window buttons or icons. When you click items in the
toolbar, a function or an action is started. For example, clicking a picture of a printer
in a toolbar starts a print process. The toolbar displays icons for many of the
actions that you perform most often in a particular window.

z/OS Specifics: SAS in the z/OS operating environment does not have a toolbar.
See SAS Companion for z/OS for more information.

The toolbar that you see depends on which window is active. For example, when
the Program Editor window is active, the following toolbar is displayed:

Figure 36.12 Example of the SAS Toolbar When the Enhanced Editor Window Is
Active

When you position your cursor at one of the items in the toolbar, a text window
appears that identifies the purpose of the icon.

796 Chapter 36 / The SAS Windowing Environment

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

The Command Line
The command line is located to the left of the toolbar. In the command line, you can
enter commands, such as those that open SAS windows and those that retrieve
help information.

The following is an example of a command that opens the SASCOLOR window:

Figure 36.13 Example of the Command Line

Figure 36.14 The SASCOLOR Window

Getting Help in SAS

Type Help in the Command Line
When you enter Help in the command line, help for the active window is displayed.
When you enter Help <item> (for example, Help footnote), you can access help

Getting Help in SAS 797

for the item that you entered. The following window is displayed when you enter
Help footnote in the command line of a SAS session:

Figure 36.15 Results of Using Help in the Command Line of a SAS Session

Related items are displayed, along with the documents that contain the
information. Click a topic to view Help for that item.

Open the Help Menu from the Toolbar
When you open the Help menu, you can select from the following choices:

Using This Window
opens a Help system window that describes the current active window.

SAS Help and Documentation
opens the SAS Help and Documentation system. Help is available for Base SAS
and other SAS products that are installed on your system. You can find
information by clicking an item in the table of contents or by searching for the
item and then clicking the results.

Getting Started with SAS Software
opens the Getting Started with SAS tutorial. This is a good way to learn the
basics of how to use SAS.

798 Chapter 36 / The SAS Windowing Environment

Learning SAS Programming
enables you to use SAS online training if you have an online training license. The
software provides 50–60 hours of instruction for beginning as well as
experienced SAS programmers.

SAS on the web
provides links to the SAS website where you can do the following:

n Contact Technical Support.

n Find information about Training Services.

n Read Frequently Asked Questions (FAQs).

n Send feedback.

n Access the Customer Support Center.

n Browse the SAS Institute home page.

About SAS®9
provides version and release information about SAS.

Click Help in Individual SAS Windows
When you open a SAS window, you can press the HELP key (usually F1) from your
keyboard to display information about that window.

List of SAS Windows and Window
Commands

The basic SAS windows consist of the Explorer, Results, Program Editor, Enhanced
Editor (Windows operating environment), Log, and Output windows. However,
there are more than 30 other windows to help you with such tasks as printing and
fine-tuning your SAS session.

Note: You can use the DM statement in SAS to submit window commands as SAS
statements when running SAS in SAS Display Manager (DM).

The following table lists all portable SAS windows, window descriptions, and the
commands that open the windows.

List of SAS Windows and Window Commands 799

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1puvpmmlcwvfqn1mvfkz3e0qvan.htm&locale=en

Table 36.1 List of SAS Windows, Descriptions, and Window Commands

Window Name Description Window Commands

Documents Displays your ODS
documents in a hierarchical
tree structure.

ODSDOCUMENTS

Edit Scheme Enables you to change the
default colors in edit
windows.

SYNCONFIG

Explorer Provides a central access
point to data such as
catalogs, libraries, data
sets, and host files.

ACCESS, BUILD,
CATALOG, DIR,
EXPLORER, FILENAME,
LIBNAME, V6CAT,
V6DIR, V6FILENAME,
V6LIBNAME

Explorer Options Enables you to add or
delete file types, change or
add pop-up menu items,
select folders that appear in
the Explorer, and display
member details.

DMEXPOPTS

File Shortcut Assignment Assigns a file shortcut to a
file using a graphical user
interface.

DMFILEASSIGN

Find Enables you to search for
an expression in a SAS
library.

EXPFIND

Select Font

(operating-environment
specific)

Enables you to select a
font, font style, and font
size.

DLGFONT

FOOTNOTES Enables you to enter,
browse, and modify
footnotes for output.

FOOTNOTES

FSBROWSE Enables you to select a data
set for browsing.

FSBROWSE

FSEDIT Enables you to select a data
set to be processed by the
FSEDIT procedure.

FSEDIT

800 Chapter 36 / The SAS Windowing Environment

Window Name Description Window Commands

FSFORM Enables you to customize a
form for sending output to
the printer.

FSFORM formname

FSLETTER Enables you to edit or
create catalog entries.

FSLETTER

FSLIST Enables you to browse
external files in a SAS
session.

FSLIST

FSVIEW Enables you to browse, edit,
or create a SAS data set,
displaying the data set as a
table with rows and
columns.

FSVIEW

HELP Displays help information
about SAS.

HELP

KEYS Enables you to browse,
alter, and save function key
settings.

KEYS

Log Displays messages and SAS
statements for the current
SAS session.

LOG

Metabase Accesses the SAS/EIS
Metabase Facility to
register data, to copy data
registrations, and to create,
delete, or edit repository
files.

METABASE

Metadata Browser Opens the Metadata Server
Configuration dialog box.

METABROWSE

(not available on z/OS)

Metafind Enables you to search for
metadata objects in
repositories by using
Uniform Resource
Identifiers (URIs).

METAFIND

Metadata Server
Connections

Enables you to import,
export, add, remove,

METACON

List of SAS Windows and Window Commands 801

Window Name Description Window Commands

reorder, and test metadata
server connections.

New Library Enables you to create a new
SAS library and assign a
libref.

DMLIBASSIGN

NOTEPAD Enables you to create and
store notepads of text.

NOTEPAD, NOTE,
FILEPAD filename

Options (SAS system
options)

Enables you to view and
change some SAS system
options.

OPTIONS

Output Displays procedure output
in listing format.

OUTPUT, OUT, LISTING,
LIST, LST

Page Setup Enables you to specify page
setup options that apply to
Universal Printing jobs.

DMPAGESETUP

Password Enables you to edit, assign,
or clear passwords for a
particular data set.

SETPASSWORD
(followed by a two-level
data set name)

Preferences

(operating-environment
specific)

Enables you to set or edit
SAS system preferences.

DLGPREF

Print Enables you to print the
content of an active SAS
window through Universal
Printing.

DMPRINT

Print Setup Enables you to change your
default printer, create or
edit a printer definition, or
delete a printer definition
for Universal Printing.

DMPRTSETUP

Program Editor Enables you to enter, edit,
and submit SAS statements
and save source files.

PROGRAM, PGM

Properties Shows details that are
associated with the current
data set.

VAR libref.SAS-data-set,
V6VAR libref.SAS-data-
set

802 Chapter 36 / The SAS Windowing Environment

Window Name Description Window Commands

SAS Registry Editor Enables you to edit the SAS
registry and to customize
aspects of the SAS
windowing environment.

REGEDIT

Results Lists the procedure output
that is produced by SAS.

ODSRESULTS

SAS/ACCESS ACCESS

SAS/AF Displays windowing
applications that are
created by SAS/AF
software.

AF, AFA

SAS/ASSIST Displays the primary menu
of SAS/ASSIST software,
which simplifies the use of
SAS.

ASSIST

SASCOLOR Enables you to change
default colors for the
different window elements
in your SAS windows.

SASCOLOR

SQL QUERY Enables you to build, run,
and save queries without
being familiar with
Structured Query Language
(SQL).

QUERY

SAS System Options Enables you to change SAS
system option settings.

OPTIONS

Templates Enables you to browse and
edit template source code.

ODSTEMPLATES

TITLES Enables you to enter,
browse, and modify titles
for output.

TITLES

VIEWTABLE Enables you to browse, edit,
or create tables (data sets).

VIEWTABLE, VT

List of SAS Windows and Window Commands 803

Note: Some additional SAS windows that are specific to your operating
environment might also be available. For more information, see the SAS
documentation for your operating environment.

Introduction to Managing Your Data in
the SAS Windowing Environment

The SAS windowing environment contains windows that enable you to perform
common data manipulation and make changes without writing code.

If you are not familiar with SAS or with writing code in the SAS language, then you
might find the windowing environment helpful. With the windowing environment,
you can open a data set, point to rows and columns in your data. Then, you can
click menu items to reorganize and perform analyses on the information.

For more information about the SAS windowing environment, select SAS Help and
Documentation from the Help menu after you invoke a SAS session.

Managing Data with SAS Explorer

Introduction to Managing Data with SAS Explorer
You can use SAS Explorer to view and manage data sets. Data sets are stored in
libraries, which are storage locations for SAS files and catalogs. By default, SAS
defines several libraries for you:

Sashelp
is a library created by SAS that stores the text for Help windows, default
function-key definitions, window definitions, and menus.

Maps
is a library created by SAS that presents graphical representations of
geographical or other areas.

Sasuser
is a permanent SAS library that is created at the beginning of your first SAS
session. This library contains a Profile catalog that stores the customized
features or settings that you specify for SAS. (You can store other SAS files in
this library.)

804 Chapter 36 / The SAS Windowing Environment

Work
is a library that is created by SAS at the beginning of each SAS session or SAS
job. Unless you have specified a User library, any newly created SAS file with a
one-level name is placed in the Work library by default. The newly created file is
deleted at the end of the current session or job.

Viewing Libraries and Data Sets
Libraries and data sets are represented in SAS by large icons, small icons, or as a
list. With the Explorer window active, you can change this representation by
selecting an option from the View menu:

n To view large icons, select Large Icons from the View menu.

n To view small icons, select Small Icons from the View menu.

n To view data sets in a list, select List from the View menu.

The following example uses large icons to show the contents of Sashelp:

Figure 36.16 Sashelp Library Represented by Large Icons

If you select the Sashelp library and then select View ð Details from the menu bar,
the contents of the Sashelp library is displayed, along with the size and type of the
data sets:

Managing Data with SAS Explorer 805

Figure 36.17 Detailed View of the Sashelp Library

If you double-click a table in this list, the data set opens. The VIEWTABLE window,
which is a SAS table viewer and editor, appears and is populated with the data from
the table.

Assign File Shortcuts
A file shortcut is also known as a file reference or fileref. Filerefs save you
programming time by enabling you to assign a nickname to a commonly used file.
You can use the FILENAME statement to create a fileref, or you can use the File
Shortcut Assignment window from SAS Explorer.

To assign a fileref to a file, follow these steps:

1 Select Tools ð New File Shortcut from the menu.

2 In the File Shortcut Assignment window that appears, enter the name of the
fileref that you want to use in the Name field.

3 Enter the full pathname for the file in the File field.

The following display shows the File Shortcut Assignment window:

806 Chapter 36 / The SAS Windowing Environment

By default, filerefs that you create are temporary and can be used in the current
SAS session only. Selecting Enable at Start-up from the File Shortcut Assignment
window, however, assigns the fileref to the file whenever you start a new SAS
session.

Rename a SAS Data Set
You can rename any data set in a SAS library as long as it is not Write protected. To
rename a data set, follow these steps:

1 Open SAS Explorer and select a library.

The contents of the library appear in the right pane.

2 Right-click the data set that you want to rename.

3 Select Rename from the menu, and enter the new name of the data set.

4 Click OK.

Copy or Duplicate a SAS Data Set
You can copy a SAS data set to another library or catalog, or you can duplicate the
data set in the same directory as the original data set. To copy or duplicate a data
set, follow these steps:

Managing Data with SAS Explorer 807

1 Open SAS Explorer and select a library.

The contents of the library appear in the right pane.

2 Right-click the data set you want to copy or duplicate.

3 From the menu that is displayed, choose Copy to copy a data set to another
library or catalog, or choose Duplicate to copy the data set to the same library
or catalog.

4 If you choose Copy, do the following:

a Click the library in the left pane of SAS Explorer to select the library or
catalog into which the data set will be copied.

b In the right pane, right-click the mouse and select Paste from the menu that
appears.

A copy of the data set now resides in the new directory.

5 If you choose Duplicate, then the Duplicate window appears. In the Duplicate
window, SAS appends _copy to the data set name (for example, data-set-
name_copy).

Do one of the following:

n Keep the name and click OK.

n Create another name for your duplicated data set and click OK.

Sorting Data Sets in a Library
Data sets in SAS Explorer are sorted automatically by name. You can change the
sort order of the data sets by size or type by clicking the Size or Type column. To
return data sets to their original order, select the Refresh option from the View
menu.

View the Properties of a SAS Data Set
You can view the properties of a data set by using the Properties window. To view
properties, follow these steps:

1 Open SAS Explorer and select a library.

The contents of the library appears in the right pane.

2 Right-click the data set that you want to view.

3 Select Properties from the menu.

The following window appears for the Air data set:

808 Chapter 36 / The SAS Windowing Environment

4 In the Description field of the General tab, you can enter a description of the
data set. To save the description, click OK.

5 Select other tabs to display additional information about the data set.

Working with VIEWTABLE

Overview of VIEWTABLE
To manipulate data interactively, you can use the SAS table editor, VIEWTABLE. In
the VIEWTABLE window, you can create a new table, and view or edit an existing
table.

Working with VIEWTABLE 809

Opening a SAS Data Set in a VIEWTABLE Window

Using the SAS Explorer Window

You can open an existing SAS data set in a VIEWTABLE window by double-clicking
on the SAS data set icon in the SAS Explorer window, or by VIEWTABLE Command
in the SAS Display Manager command line.

Here are the steps for using the SAS Explorer window to open a SAS data set in a
VIEWTABLE window:

1 Open SAS Explorer and double-click on the icon for the library that contains the
target data set.

2 Select the desired data set and double-click on its icon.

3 The VIEWTABLE window should appear, populated with data from the data set.

810 Chapter 36 / The SAS Windowing Environment

4 Use the scroll bar on the VIEWTABLE window to view all of the data.

Using the VIEWTABLE Command

You can also open a data set in a VIEWTABLE window by using the VIEWTABLE
command in the SAS Display Manager command line.

1 Specify the VIEWTABLE command in the SAS Display Manager command line
using the following syntax:

VIEWTABLE data-set-name <-options>

2 Here is an example:

 viewtable cars

Displaying Table Headers as Names or Labels
When you open a data set that contains labels in a VIEWTABLE window, SAS
automatically displays the table headers as variable labels rather than the variable
names. You can change the way SAS displays table headers by using the
VIEWTABLE pop-up menu or by using the VIEWTABLE command.

Working with VIEWTABLE 811

n Using the VIEWTABLE pop-up menu to change the way table headers are
displayed:

1 Open a data set in VIEWTABLE (to access the VIEWTABLE pop-up menu,
you must have an active VIEWTABLE window open).

2 Make sure that the VIEWTABLE window is active.

3 Select View ð Column Names or View ð Column Labels from the drop-
down View menu.

4 Once this selection is made, the opened table, and all tables that are
subsequently opened, will display table headers based on this setting in the
VIEWTABLE pop-up menu. When you exit VIEWTABLE, or exit SAS, the
preference for column labels or column names is saved. When you open
VIEWTABLE or invoke SAS again, the preference that you chose is
automatically selected.

This feature is available in SAS 9.4M1 and later releases.

n Using the VIEWTABLE command to change the way table headers are displayed
when a table is opened:

1 Specify the COLHEADING= option on the VIEWTABLE command in the SAS
command line using the following syntax.

 VIEWTABLE data-set-name -<COLHEADING>=NAMES | LABELS>

2 Here is an example:

 viewtable cars colheading=names

Customizing SAS Explorer for Opening the
VIEWTABLE Window

You can customize SAS Explorer to open a VIEWTABLE window so that column
headings are displayed as either names or labels every time that the table is

812 Chapter 36 / The SAS Windowing Environment

opened from the SAS Explorer window. To do this, add the COLHEADING= option
to the Action Command in the SAS Explorer Options dialog box.

1 With the SAS Explorer window active, select Tools ð Options ð Explorer to
open the Explorer Options window.

2 Select the Members tab.

3 Select Table in the list of registered types, and then click Edit to open the
TABLE Options dialog box.

4 Select the &Open Action Command in the list of actions, and then click Edit to
open the Edit Action dialog box.

5 In the Edit Action dialog box, add -COLHEADING=<value> to the end of the
VIEWTABLE command:

 VIEWTABLE %8b.'%s'.DATA colheading=names

Working with VIEWTABLE 813

6 When you are finished making changes, click OK three times to exit all of the
open dialog boxes. From this point on, when you use the SAS Explorer Window
to open the VIEWTABLE window, SAS displays the table headers according to
what you specified in this SAS Explorer dialog box.

Note: These steps only affect how tables are displayed when they are opened from
the SAS Explorer Window (either by double-clicking on the icon or by right-clicking
on the icon and selecting "Open"). They do not affect how tables are opened when
you use the VIEWTABLE command to open a table.

Order of Precedence for How Column Headings Are
Displayed

If you open a table using the VIEWTABLE command and you do not specify
COLHEADING= to control how column headings should be displayed, then SAS will
display column headings based on how they were last set in the VIEWTABLE pop-
up menu (View ð Column Names or View ð Column Labels).

If you open a table using the VIEWTABLE colheading=<value> command, SAS will
display the column headings according to the COLHEADING value, regardless of
how column headings are set in the VIEWTABLE pop-up menu. The setting in the
VIEWTABLE pop-up menu will reflect the COLHEADING= value. In other words,
COLHEADING= overrides the setting specified in the VIEWTABLE pop-up menu.

For information about the LABEL statement in SAS, see “LABEL Statement” in SAS
DATA Step Statements: Reference.

814 Chapter 36 / The SAS Windowing Environment

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1r8ub0jx34xfsn1ppcjfe0u16pc.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1r8ub0jx34xfsn1ppcjfe0u16pc.htm&locale=en

Mapping the VIEWTABLE Command to a Function
Key

You can map a Function Key in the Display Manager Keys window to execute the
VIEWTABLE command. To do this, follow these steps:

1 Select Tools ð Options ð Keys from the SAS menu. The Keys window will
appear.

2 In the Keys window, select the F-Key that you want to assign to the
VIEWTABLE command and place the cursor in the Definition field of the
selected F-Key.

3 Type the VIEWTABLE command with the desired option. Here is an example:

 VIEWTABLE %8b. '%s'.DATA colheading=name

4 Close the Keys window.

For more information about using VIEWTABLE, see Doing More with the SAS®
Display Manager: From Editor to ViewTable - Options and Tools You Should Know
(PDF).

Temporarily Change Column Headings
Within the VIEWTABLE window, you can temporarily change column headings. To
temporarily change column headings, follow these steps:

1 Right-click the heading for the column that you want to change, and then select
Column Attributes from the menu.

Working with VIEWTABLE 815

http://support.sas.com/resources/papers/proceedings12/151-2012.pdf
http://support.sas.com/resources/papers/proceedings12/151-2012.pdf

2 In the Label field of the Column Attributes window, enter the new name of the
column heading and then click Apply.

In this example, the Name heading is replaced by the Name of Player label.

When you press Apply, the column heading in VIEWTABLE changes to the new
name.

In this example, the label was changed to Name of Player.

3 Click Close to close the Column Attributes window.

816 Chapter 36 / The SAS Windowing Environment

Move Columns in a Table
Within the VIEWTABLE window, you can rearrange columns in your table. To move
columns in your table, follow these steps:

1 Click a column heading for the column that you want to move.

2 Drag and drop the heading onto another column heading.

In this example, if you click the heading Name, and then drag and drop Name
onto Team at the End of 1986, the Name column moves to the right of the Team
at the End of 1986 column.

Sort by Values of a Column
You can sort your table in ascending or descending order, based on the values in a
column. You can sort data permanently or create a sorted copy of your table.

To sort your table, follow these steps:

1 Right-click the heading of the column on which you want to sort, and select Sort
from the menu.

2 Select Ascending or Descending from the menu.

3 When the following warning message appears, click Yes to create a sorted copy
of the table.

Working with VIEWTABLE 817

Note: If you selected Edit Mode after opening the table and clicking a data cell,
this window does not appear. SAS updates the original table.

4 In the Sort window, enter the name of the new sorted table.

In this example, the name of the sorted table is BaseballStatisticsList.

5 Click OK.

The rows in the new table are sorted in ascending order by values of Team at
the End of 1986.

818 Chapter 36 / The SAS Windowing Environment

Edit Cell Values
By default, VIEWTABLE opens existing tables in browse mode, which protects the
table data. To edit the table, you need to switch to Edit mode. To switch to Edit
mode and edit a table cell, follow these steps:

1 With the table open, select Edit ð Edit Mode from the Edit menu.

2 Click a cell in the table, and the value in the cell is highlighted.

In this example, the third cell in the fifth row is highlighted.

3 Enter a new value in the cell and press Enter.

In this example, the cell has been updated with a new value for Times at Bat in
1986.

Working with VIEWTABLE 819

4 Select File ð Close from the File menu.

5 When prompted to save pending changes to the table, click Yes to save your
changes or No to disregard changes.

Note: If you make changes in one row and then edit cells in another row, the
changes in the first row are automatically saved. When you select File ð Close, you
are prompted to save the pending changes to the second row.

Subsetting Data By Using the WHERE
Expression

Subset Rows of a Table
In the VIEWTABLE window, you can subset the display to show only those rows
that meet one or more conditions. To subset rows of a table, follow these steps:

1 In the Explorer window, open a library and double-click the table that you want
to subset.

In this example, the Cars data table is selected.

820 Chapter 36 / The SAS Windowing Environment

2 Right-click any table cell that is not a heading and select Where from the menu.

The WHERE EXPRESSION window appears.

3 In the Available Columns list, select a column, and then select an operator from
the Operators menu.

In this example, Make is selected from the Available Columns list, and EQ
(equal to) is selected from the Operators menu. Note that the WHERE
expression is being built in the Where box at the bottom of the window.

Subsetting Data By Using the WHERE Expression 821

4 In the Available Columns list, select another value to complete the WHERE
expression.

In this example, scroll to the bottom of the Available Columns window and
select <LOOKUP distinct values>.

5 In the Lookup Distinct Values window that appears, select a value.

In this example, Honda is selected.

Note that the complete WHERE expression appears in the Where box at the
bottom of the window.

822 Chapter 36 / The SAS Windowing Environment

6 Click OK to close the WHERE EXPRESSION window.

In this example, VIEWTABLE displays only rows where the value of Make is
Honda.

Clear the WHERE Expression
You can clear the WHERE expression that you used to subset your data, and
redisplay all of the data in the table. To do this, follow these steps:

1 Right-click anywhere in the table except in a column heading.

2 Select WHERE Clear from the menu.

The VIEWTABLE window removes any existing subsets of data that were
created with the WHERE expression, and displays all of the rows of the table.

Subsetting Data By Using the WHERE Expression 823

Exporting a Subset of Data

Overview of Exporting Data
The Export Wizard reads data from a SAS data set and writes it to an external file.
You can export SAS data to a variety of formats. The formats that are available
depend on your operating environment and the SAS products that you have
installed.

Export Data
To export data, follow these steps:

1 With the Explorer window active, select File ð Export Data.

The Export Wizard - Select library and member window appears.

2 Select the SAS data set from which you want to export data.

In this example, Sashelp is selected as the library, and Cars is the member
name.

3 Click Next and the Export Wizard - Select export type window appears.

4 Select the type of data source to which you want to export files.

824 Chapter 36 / The SAS Windowing Environment

In this example, Microsoft Excel Workbook is selected. Note that Standard
data source is selected by default.

5 Click Next to display the Connect to MS Excel window.

6 In the Workbook field, enter the name of the workbook that will contain the
exported file and then click OK.

In this example, Myworkbook is entered as the name of the workbook.

7 When the Export Wizard - Select table window appears, enter a name for the
table that you are exporting.

In this example, Mytable is the table name.

Exporting a Subset of Data 825

8 Click Next.

9 If you want SAS to create a file of PROC EXPORT statements for later use, then
enter the name of the file that will contain the SAS statements.

In this example, PROC EXPORT statements are saved to the file. The Replace
file if it exists box is checked.

10 Click Finish to complete this task.

826 Chapter 36 / The SAS Windowing Environment

Importing Data into a Table

Overview of Importing Data
Whether your data is stored in a standard file format or in your own special file
format, you can use the Import Wizard to import data into a SAS table. The types of
files that you can import depend on your operating environment.

Import a Standard File
To import a standard file, follow these steps:

1 With the Explorer window active, select File ð Import data.

The Import Wizard - Select import type window appears.

2 Select the type of file that you are importing by selecting a data source from the
Select a data source menu.

Note that Standard data source is selected by default. In this example,
Microsoft Excel Workbook is selected.

3 Click Next to continue.

Importing Data into a Table 827

4 In the Connect to MS Excel window, enter the pathname of the file that you
want to export, and then click OK.

5 In the Import Wizard - Select table window, enter the name of the table that you
want to import.

6 Click Next to continue.

7 In the Import Wizard - Select library and member window, enter a location in
which to store the imported file.

In this example, Work is selected as the library, and Book1 is selected as the
member name.

828 Chapter 36 / The SAS Windowing Environment

8 Click Next to continue.

9 If you want SAS to create a file of PROC IMPORT statements for later use, then
enter the name of a file that will contain the SAS statements.

10 Click Finish to complete this task.

Import a Nonstandard File
If your data is not in standard format, you can use the External File Interface (EFI)
facility to import data. This tool enables you to define your file format and offers

Importing Data into a Table 829

you a range of format options. To use EFI, select User-defined file format in the
Import Wizard and follow the directions for describing your data file.

830 Chapter 36 / The SAS Windowing Environment

37
Cloud Analytic Services

What is SAS Cloud Analytic Services? . 831

What Does This Mean for the SAS 9 Programmer? . 831

SAS Language Elements for CAS . 832
DATA Step Processing . 832
DATA Step Language Elements for CAS . 832
SAS Procedures for CAS . 833

CAS-specific Language Elements . 834

What is SAS Cloud Analytic Services?
SAS Cloud Analytic Services (CAS) is a server that provides the cloud-based run-
time environment for data management and analytics with SAS. CAS is part of the
SAS Viya platform, an open, cloud-enabled platform that supports high-
performance analytics. A SAS Viya license is required for access to SAS Cloud
Analytic Services.

“What Does This Mean for the SAS 9 Programmer? ”

What Does This Mean for the SAS 9
Programmer?

n When you license SAS Viya, you can write programs in SAS 9.4 in your SAS 9.4
environment and submit them to CAS for processing. This means faster
processing and faster results.

n New and existing SAS 9.4 programs can be submitted to CAS from the SAS
Windowing environment (SAS Display Manager) or from SAS Studio.

831

https://www.sas.com/en_us/software/viya.html

n SAS Viya is not a replacement for SAS 9.4. It is a platform designed to work with
SAS 9.4 and other languages such as Java, Python, Lua, and R.

SAS Language Elements for CAS

DATA Step Processing
The DATA step and most of the language elements that run in the DATA step are
supported for processing in CAS. The DATA step runs in multiple threads in CAS,
which means that processing is faster.

For information about DATA step processing in CAS, see SAS Cloud Analytic
Services: DATA Step Programming.

DATA Step Language Elements for CAS
Many SAS language elements, including the new CAS engine LIBNAME statement,
have been enhanced to provide access to CAS via the SAS DATA step. The CAS
engine serves as the bridge between your SAS 9.4 programs and the CAS server.
For more information about DATA step processing in CAS, see SAS Cloud Analytic
Services: DATA Step Programming.

Not all SAS language elements are supported for DATA step processing in CAS.
Language elements that are not supported in CAS are marked in the documentation
with a “Restriction” as shown in the following image:

Figure 37.1 Example Documentation Syntax Page That Shows a “Restriction” to Indicate That the
Language Element Is Not Supported in CAS

SAS language elements that are supported in CAS display “CAS” in the Categories
field of the syntax page for the language element:

832 Chapter 37 / Cloud Analytic Services

http://documentation.sas.com/?docsetId=casdspgm&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casdspgm&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casdspgm&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casdspgm&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en

Figure 37.2 Example Documentation Syntax Page That Shows Support for CAS in the Categories Field

Each language element dictionary also contains a summary table of CAS-supported
language elements:

Figure 37.3 Example Documentation Category Page Showing CAS-Supported Language Elements

Here is a list of category tables for each of the SAS language element types:

n DATA Step Statements By Category in SAS DATA Step Statements: Reference

n Global Statements by Category in SAS Global Statements: Reference

n Functions and CALL Routines By Category in SAS Functions and CALL Routines:
Reference

n Formats By Category in SAS Formats and Informats: Reference

n Informats by Category in SAS Formats and Informats: Reference

n Data Set Options By Category in SAS Data Set Options: Reference

SAS Procedures for CAS
Like DATA step language elements, SAS procedures can interact with or run in CAS
by using the CAS LIBNAME engine. For information about the Base SAS procedures

SAS Language Elements for CAS 833

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=lestmtsref&docsetTarget=p158bgegfcdjpmn1axzf8mq2uode.htm
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=lestmtsglobal&docsetTarget=n07m1xz4g895ttn1bzqksyuncjsd.htm
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=lefunctionsref&docsetTarget=n01f5qrjoh9h4hn1olbdpb5pr2td.htm
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=leforinforref&docsetTarget=n0p2fmevfgj470n17h4k9f27qjag.htm
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=leforinforref&docsetTarget=n0verk17pchh4vn1akrrv0b5w3r0.htm
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=ledsoptsref&docsetTarget=n03k13diwk36x1n1az3mpixdfbfp.htm
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

that are supported by CAS, see SAS Viya Foundation Procedures in An Introduction
to SAS Viya Programming.

CAS-specific Language Elements
CAS-specific SAS language elements are designed specifically for interfacing with
the CAS server and can be used only in a CAS server environment.

For information about these language elements, see the following CAS
documentation:

n CAS Language Element Syntax: SAS Cloud Analytic Services: User’s Guide

n CAS Conceptual Information: SAS Cloud Analytic Services: Fundamentals

n Introduction for SAS 9 programmers: An Introduction to SAS Viya Programming

n CAS Actions in SAS Viya Actions and Action Sets by Name and Product, SAS
Viya: System Programming Guide and CAS DATA Step Action in SAS Cloud
Analytic Services: DATA Step Programming

Note: A SAS Viya Visual Analytics license is required for access to SAS Cloud
Analytic Services.

834 Chapter 37 / Cloud Analytic Services

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=pgmdiff&docsetTarget=p1e2swghnyju6fn13jr3935jpsaw.htm
http://documentation.sas.com/?docsetId=pgmdiff&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=pgmdiff&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=v_002&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfun&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=pgmdiff&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=allprodsactions&docsetTarget=titlepage.htm
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=caspg&docsetTarget=cas-datastep-TblOfActions.htm
http://documentation.sas.com/?docsetId=casdspgm&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casdspgm&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en

38
Industry Protocols Used in SAS

SAS Language Elements That Control SMTP E-Mail . 836
System Options That Control SMTP E-Mail . 836
Statements That Control SMTP E-mail . 837

How the SMTP e-Mail Interface Authenticates Users . 838

Universally Unique Identifiers and the Object Spawner . 838
What Is a Universally Unique Identifier? . 838
What Is the Object Spawner? . 839
Defining the UUID Generator Daemon . 839
Installing the UUID Generator Daemon . 840

Using SAS Language Elements to Assign UUIDs . 841
Overview of Using SAS Language Elements to Assign UUIDs . 841
UUIDGEN Function . 841
UUIDCOUNT= System Option . 842
UUIDGENDHOST System Option . 842

Overview of IPv6 . 842

IPv6 Address Format . 843

Examples of IPv6 Addresses . 843
Example of Full and Collapsed IPv6 Address . 843
Example of an IPv6 Address That Includes a Port Number . 844
Example of an IPv6 Address That Includes a URL . 844

Fully Qualified Domain Names (FQDN) . 844

835

SAS Language Elements That Control
SMTP E-Mail

System Options That Control SMTP E-Mail
Several SAS system options control SMTP e-mail. Depending on your operating
environment and whether the SMTP e-mail interface is supported at your site, you
might need to specify these options at start-up or in your SAS configuration file.

Operating Environment Information: To determine the default e-mail interface for
your operating environment and to determine the correct syntax for setting system
options, see the SAS documentation for your operating environment.

The EMAILSYS system option specifies which e-mail system to use for sending
electronic mail from within SAS. For more information about the EMAILSYS system
option, see the SAS documentation for your operating environment.

The following system options are specified only when the SMTP e-mail interface is
supported at your site:

EMAILACKWAIT=
specifies the number of seconds that SAS will wait to receive an
acknowledgment from an SMTP server. For more information, see
“EMAILACKWAIT= System Option” in SAS System Options: Reference.

EMAILAUTHPROTOCOL=
specifies the authentication protocol for SMTP E-mail. For more information,
see the “EMAILAUTHPROTOCOL= System Option” in SAS System Options:
Reference.

EMAILFROM
specifies whether the FROM e-mail option is required when sending e-mail by
using either the FILE or FILENAME statements. For more information, see the
“EMAILFROM System Option” in SAS System Options: Reference.

EMAILHOST
specifies the SMTP server that supports e-mail access for your site. For more
information, see the “EMAILHOST= System Option” in SAS System Options:
Reference.

EMAILPORT
specifies the port to which the SMTP server is attached. For more information,
see the “EMAILPORT System Option” in SAS System Options: Reference.

836 Chapter 38 / Industry Protocols Used in SAS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1s3ofo2vn63bln10wnrh4stkty2.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1hvusly6stc7an16p23om7xfem7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1hvusly6stc7an16p23om7xfem7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n019az3lkee2bun1grhii379mhw8.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1v9dr6zep9p9en1prhl6tdy3igx.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1v9dr6zep9p9en1prhl6tdy3igx.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0719qq0gsyyuln1b2vuwyk1ylu6.htm&locale=en

EMAILUTCOFFSET
specifies a UTC offset that is used in the Date: header field of the e-mail
message. For more information, see the “EMAILUTCOFFSET= System Option” in
SAS System Options: Reference.

The following system options are specified with other e-mail systems, as well as
SMTP:

EMAILID=
specifies the identity of the individual sending e-mail from within SAS. For more
information, see the “EMAILID= System Option” in SAS System Options:
Reference.

EMAILPW=
specifies your e-mail login password. For more information, see the “EMAILPW=
System Option” in SAS System Options: Reference.

Statements That Control SMTP E-mail

FILENAME Statement

In the FILENAME statement, the EMAIL (SMTP) access method enables you to
send e-mail programmatically from SAS using the SMTP e-mail interface. For more
information, see the “FILENAME Statement” in SAS Global Statements: Reference.

FILE and PUT Statements

You can specify e-mail options in the FILE statement. E-mail options that you
specify in the FILE statement override any corresponding e-mail options that you
specified in the FILENAME statement.

In the DATA step, after using the FILE statement to define your e-mail fileref as the
output destination, use PUT statements to define the body of the message. The
PUT statement directives override any other e-mail options in the FILE and
FILENAME statements.

SAS Language Elements That Control SMTP E-Mail 837

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1pfaz2mryihfpn18zr7e2mxhamm.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1pfaz2mryihfpn18zr7e2mxhamm.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0vf9ol8a0263fn121kjocth4f2g.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0vf9ol8a0263fn121kjocth4f2g.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ulfalu3hfdsxn1nct1xjl6lptv.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ulfalu3hfdsxn1nct1xjl6lptv.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=v_002&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en

How the SMTP e-Mail Interface
Authenticates Users

You can send electronic mail programmatically from SAS using the SMTP (Simple
Mail Transfer Protocol) e-mail interface. SMTP is available for all operating
environments in which SAS runs. To send SMTP e-mail with SAS e-mail support,
you must have an intranet or Internet connection that supports SMTP.

Some SMTP servers require just the user identification as the login ID while others
require the full e-mail address. The SAS SMTP e-mail interface authenticates the
user identification in the following order.

1 If the user ID is specified by the USERID= option in the EMAILHOST= system
option, the SAS SMTP e-mail interface attempts to authenticate by using this
user ID.

2 If the user ID is not specified by the USERID= option, the SAS SMTP e-mail
interface attempts to authenticate by using the user ID specified by the FROM=
option of the FILENAME= statement.

3 If the user ID is not specified in the FROM= option in the FILENAME=
statement, the SAS SMTP e-mail interface attempts to authenticate by using
the user ID specified by the EMAILID= system option.

4 If the user ID is not specified by the EMAILID= system option, the SAS SMTP e-
mail interface looks up the user ID from the operating system and attempts to
authenticate that user ID.

For more information about sending e-mail from SAS, see the SAS documentation
for your operating environment.

Universally Unique Identifiers and the
Object Spawner

What Is a Universally Unique Identifier?
A universally unique identifier (UUID) is a 128-bit identifier that consists of date
and time information, and the IEEE node address of a host. UUIDs are useful when

838 Chapter 38 / Industry Protocols Used in SAS

objects such as rows or other components of a SAS application must be uniquely
identified. For example, if SAS is running as a server and is distributing objects to
several clients concurrently, you can associate a UUID with each object. This
ensures that a particular client and SAS are referencing the same object.

What Is the Object Spawner?
The object spawner is a program that runs on the server and listens for requests.
When a request is received, the object spawner accepts the connection and
performs the action that is associated with the port or service on which the
connection was made. The object spawner can be configured to be a UUID
Generator Daemon (UUIDGEND), which creates UUIDs for the requesting SAS
session.

The UUIDGEND utility is required for non-Windows hosts that are running versions
of SAS prior to SAS 9.4M2.

The UUID Generator Daemon is not required for the following:

n SAS applications that execute on Windows

n SAS applications that execute in UNIX environments that are running SAS
version 9.4M2 (or later)

Defining the UUID Generator Daemon
The definition of UUIDGEND is contained in a setup configuration file that you
specify when you invoke the object spawner. This configuration file identifies the
port that listens for UUID requests, and (in operating environments other than
Windows) the configuration file also identifies the UUID node.

If you install UUIDGEND in an operating environment other than Windows, contact
SAS Technical Support http://support.sas.com/techsup/contact/() to obtain a
UUID node. The UUID node must be unique for each UUIDGEND installation in
order for UUIDGEND to guarantee truly unique UUIDs.

Here is an example of a UUIDGEND setup configuration file for an operating
environment other than Windows:

#
Define our UUID Generator Daemon. Since this UUIDGEND is
executing on a UNIX host, we contacted SAS Technical
Support to get the specified sasUUIDNode.
#
dn: sasSpawnercn=UUIDGEND,sascomponent=sasServer,cn=SAS,o=ABC Inc,c=US
objectClass: sasSpawner
sasSpawnercn: UUIDGEND
sasDomainName: unx.abc.com
sasMachineDNSName: medium.unx.abc.com
sasOperatorPassword: myPassword

Universally Unique Identifiers and the Object Spawner 839

http://support.sas.com/techsup/contact/

sasOperatorPort: 6340
sasUUIDNode: 0123456789ab
sasUUIDPort: 6341
description: SAS Session UUID Generator Daemon on UNIX

Here is an example of a UUIDGEND setup configuration file for Windows:

#
Define our UUID Generator Daemon. Since this UUIDGEND is
executing in a Windows operating environment, we do not need to specify
the sasUUIDNode.
#
dn: sasSpawnercn=UUIDGEND,sascomponent=sasServer,cn=SAS,o=ABC Inc,
c=US
objectClass: sasSpawner
sasSpawnercn: UUIDGEND
sasDomainName: wnt.abc.com
sasMachineDNSName: little.wnt.abc.com
sasOperatorPassword: myPassword
sasOperatorPort: 6340
sasUUIDPort: 6341
description: SAS Session UUID Generator Daemon on XP

Installing the UUID Generator Daemon
When you have created the setup configuration file, you can install UUIDGEND by
starting the object spawner program (objspawn) and specifying the setup
configuration file with the following syntax:

objspawn -configFile filename
The configFile option can be abbreviated as -cf.

filename specifies a fully qualified path to the UUIDGEND setup configuration
file. Enclose pathnames that contain embedded blanks in single or double
quotation marks. On Windows, enclose pathnames that contain embedded
blanks in double quotation marks. On z/OS, specify the configuration file as
follows:

//dsn:myid.objspawn.log for MVS files

//hfs:filename.ext for OpenEdition files

On Windows, the objspawn.exe file is installed in the SAS-installation-
directory\SASFoundation\SAS-version\ directory. For example, in a typical
Windows installation, the objspawn.exe file might be installed in the following
directory:

C:\Program Files\SASHome\SASFoundation\9.4

On UNIX, the objspawn file is installed in the utilities/bin directory in your
installed SAS directory.

In the VMS operating environment, the OBJSPAWN_STARTUP.COM file executes the
OBJSPAWN.COM file as a detached process. The OBJSPAWN.COM file runs the

840 Chapter 38 / Industry Protocols Used in SAS

object spawner. The OBJSPAWN.COM file also includes the following commands
that your site might need to perform before the object spawner is started:

n command to set the display node

n command to run the appropriate version of the spawner

n command to define a process level logical name that points to a template DCL
file (OBJSPAWN_TEMPLATE.COM)

The OBJSPAWN_TEMPLATE.COM file performs setup that is needed in order for the
client process to execute. The object spawner first checks to see whether the
logical name SAS$OBJSPAWN_TEMPLATE is defined. If it is, the commands in the
template file are executed as part of the command sequence used when starting
the client session. You do not have to define the logical name.

Using SAS Language Elements to Assign
UUIDs

Overview of Using SAS Language Elements to
Assign UUIDs

If your SAS application executes on a platform other than Windows and you have
installed UUIDGEND, you can use the following to assign UUIDs:

n UUIDGEN function

n UUIDCOUNT= system option

n UUIDGENDHOST systems option

UUIDGEN Function
The UUIDGEN function returns a UUID for each cell. For more information, see
“UUIDGEN Function” in SAS Functions and CALL Routines: Reference.

Using SAS Language Elements to Assign UUIDs 841

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0y09yghr5r11cn1b4ocojwqvrqe.htm&locale=en

UUIDCOUNT= System Option
The UUIDCOUNT= system option specifies the number of UUIDs to acquire each
time the UUID Generator Daemon is used. For more information, see
“UUIDCOUNT= System Option” in SAS System Options: Reference.

UUIDGENDHOST System Option
The UUIDGENDHOST system option identifies the operating environment and the
port of the UUID Generator Daemon. For more information, see “UUIDGENDHOST=
System Option” in SAS System Options: Reference.

Overview of IPv6
SAS 9.2 introduced support for the next generation of Internet Protocol, IPv6,
which is the successor to the current Internet Protocol, IPv4. Rather than replacing
IPv4 with IPv6, SAS supports both protocols. There is a lengthy transition period
during which the two protocols coexist.

A primary reason for the new protocol is that the limited supply of 32-bit IPv4
address spaces was being depleted. IPv6 uses a 128-bit address scheme. This
scheme provides more IP addresses than did IPv4.

IPv6 includes these benefits over IPv4:

n larger address space (128 bits rather than 32 bits)

n simplified header format

n automatic configuration

n more efficient routing

n improved quality of service and security

n compliance with regulatory requirements

n widespread use in global markets

842 Chapter 38 / Industry Protocols Used in SAS

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0pfcxyswgiyamn18shcpspr80d0.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0ypw0s3lvquqrn1barfy5q1n3wt.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0ypw0s3lvquqrn1barfy5q1n3wt.htm&locale=en

IPv6 Address Format
IPv6 and IPv4 use different address formats. The following table compares the
features of the protocols.

Table 38.1 Comparison of Features of the IPv6 and IPv4 Address Formats

Feature IPv6 IPv4

Address Space 128-bit 32-bit

Representation string integer

Length (including Field
Separators)

39 15

Field Separator colon (:) period (.)

Notation hexadecimal decimal

Example of IP Address db8:0:0:1 10.23.2.3

Examples of IPv6 Addresses

Example of Full and Collapsed IPv6 Address
Here is an example of a full IPv6 address:

FE80:0000:0000:0000:0202:B3FF:FE1E:8329

It shows a 128-bit address in eight 16-bit blocks in the format
global:subnet:interface.

Here is an example of a collapsed IPv6 address:

FE80::0202:B3FF:FE1E:8329

Examples of IPv6 Addresses 843

The :: (consecutive colons) notation can be used to represent four successive 16-bit
blocks that contain zeros. When SAS software encounters a collapsed IP address, it
reconstitutes the address to the required 128-bit address in eight 16-bit blocks.

Example of an IPv6 Address That Includes a Port
Number

Here is an example of an IP address that contains a port number:

[2001:db8:0::1]:80

The brackets are necessary only if also specifying a port number. Brackets are used
to separate the address from the port number. If no port number is used, the
brackets can be omitted.

As an alternative, the block that contains the zero can be collapsed. Here is an
example:

[2001:db8::1]:80

Example of an IPv6 Address That Includes a URL
Here is an example of an IP address that contains a URL:

http://[2001:db8:0::1]:80

The http:// prefix specifies a URL. The brackets are necessary only if also
specifying a port number. Brackets are used to separate the address from the port
number. If no port number is used, the brackets can be omitted.

Fully Qualified Domain Names (FQDN)
Because IP addresses can change easily, SAS applications that contain hardcoded
IP addresses are prone to maintenance problems.

To avoid such problems, use of an FQDN is preferred over an IP address. The name-
resolution system that is part of the TCP/IP protocol is responsible for locating the
IP address that is associated with the FQDN.

The following example restores client activity in the paused repository:

PROC METAOPERATE
 SERVER="d6292.us.company.com"
 PORT=2222
 USERID="myuserid"

844 Chapter 38 / Industry Protocols Used in SAS

 PASSWORD="mypassword"
 PROTOCOL=BRIDGE

 ACTION=RESUME
 OPTIONS=""
 NOAUTOPAUSE;

If an IP address had been used and if the IP address that was associated with the
computer node name had changed, the code would be inaccurate.

An FQDN can remain intact in the code while the underlying IP address can change
without causing unpredictable results. The TCP/IP name-resolution system
automatically resolves the FQDN to its associated IP address.

Here is an example of an FQDN that is specified in a SAS GUI application.

Figure 38.1 Example of an FQDN in a SAS Management Console Window

The full FQDN, d11076.na.apex.com, is specified in the Remote Host field of the
Connect Server Properties window in SAS Management Console.

Some SAS products impose limits on the length for computer names.

The following code is an example of an FQDN that is assigned to a SAS menu
variable:

%let sashost=hrmach1.dorg.com;
rsubmit sashost.sasport;

Because the FQDN is longer than eight characters, the FQDN must be assigned to a
SAS macro variable, which is used in the RSUBMIT statement.

Fully Qualified Domain Names (FQDN) 845

846 Chapter 38 / Industry Protocols Used in SAS

PART 8

Appendixes

Appendix 1
Data Sets Used in Examples . 849

Appendix 2
Understanding How the DATA Step Works . 863

Appendix 3
Updating Data Using the MODIFY Statement and the KEY= Option 879

847

848

Appendix 1
Data Sets Used in Examples

Data Sets Used in Examples . 850
Animal . 850
AnimalDupes . 850
AnimalMissing . 850
CarSales . 851
CarsSmall . 851
Class . 852
Classfit . 852
Inventory . 853
InventoryAdd . 853
One . 853
Many . 854
Master . 854
Minerals . 854
Plant . 855
PlantDupes . 855
PlantG . 855
PlantMissing . 855
PlantMissing2 . 856
PlantNew . 856
PlantNewDupes . 856
Product_List . 857
Quarter1, Quarter 2, Quarter3, Quarter4 . 857
Sales . 858
Sales2019 . 858
Supplier . 858
Table1 . 859
Table2 . 859
Year1 . 859
Year2 . 860

Description of Column-Binary Data Storage . 860

849

Data Sets Used in Examples

Animal
data animal;
input common $ animal $;
datalines;
a Ant
b Bird
c Cat
d Dog
e Eagle
f Frog
;

AnimalDupes
data animalDupes;
input common $ animal $;
datalines;
a Ant
a Ape
b Bird
c Cat
d Dog
e Eagle
;

AnimalMissing
data animalMissing;
input common $ animal $;
datalines;
a Ant
c Cat
d Dog
e Eagle
;

850 Appendix 1 / Data Sets Used in Examples

CarSales

data carSales;
input transID $1-9 make $11-19 model $21-38;
datalines;
CSH203073 Chevrolet Aveo 4dr
CCA460564 Chevrolet Aveo LS 4dr htc
DEB848135 Honda Civic DX 2dr
CCA762350 Honda Insight 2dr
CCA314633 Hyundai Accent 2dr hatch
CSH118553 Hyundai Accent GL 4dr
CCA295057 Hyundai Accent GT 2dr htc
CSH285627 Kia Rio 4dr auto
DEB898883 Kia Rio 4dr manual
CCA803483 Kia Rio Cinco
DEB661568 Mazda MX-5 Miata LS
CSH36345 Mazda MX-5 Miata
CCA562255 Scion xA 4dr hatch
CCA651575 Scion xB
DEB322009 Toyota Echo 2dr auto
CSH607254 Toyota Echo 2dr manual
CSH879119 Toyota Echo 4dr
CSH230940 Toyota MR2 Spyder
;

CarsSmall

data carsSmall;
input make $1-9 model $11-39 type $41-46 driveTrain $48-52 weight
$54-57 length 59-61 makeModelDrive $63-120;
datalines;
Chevrolet Aveo 4dr Sedan Front 2370 167
Chevrolet Aveo 4dr - Front wheel drive
Chevrolet Aveo LS 4dr hatch Sedan Front 2348 153
Chevrolet Aveo LS 4dr hatch - Front wheel drive
Honda Civic DX 2dr Sedan Front 2432 175 Honda
Civic DX 2dr - Front wheel drive
Honda Insight 2dr (gas/electric) Hybrid Front 1850 155 Honda
Insight 2dr (gas/electric) - Front wheel drive
Hyundai Accent 2dr hatch Sedan Front 2255 167 Hyundai
Accent 2dr hatch - Front wheel drive
Hyundai Accent GL 4dr Sedan Front 2290 167 Hyundai
Accent GL 4dr - Front wheel drive
Hyundai Accent GT 2dr hatch Sedan Front 2339 167 Hyundai
Accent GT 2dr hatch - Front wheel drive
Kia Rio 4dr auto Sedan Front 2458 167 Kia Rio
4dr auto - Front wheel drive

Data Sets Used in Examples 851

Kia Rio 4dr manual Sedan Front 2403 167 Kia Rio
4dr manual - Front wheel drive
Kia Rio Cinco Wagon Front 2447 167 Kia Rio
Cinco - Front wheel drive
Mazda MX-5 Miata LS convertible 2dr Sports Rear 2387 156 Mazda
MX-5 Miata LS convertible 2dr - Rear wheel drive
Mazda MX-5 Miata convertible 2dr Sports Rear 2387 156 Mazda
MX-5 Miata convertible 2dr - Rear wheel drive
Scion xA 4dr hatch Sedan Front 2340 154 Scion xA
4dr hatch - Front wheel drive
Scion xB Wagon Front 2425 155 Scion xB
- Front wheel drive
Toyota Echo 2dr auto Sedan Front 2085 163 Toyota
Echo 2dr auto - Front wheel drive
Toyota Echo 2dr manual Sedan Front 2035 163 Toyota
Echo 2dr manual - Front wheel drive
Toyota Echo 4dr Sedan Front 2055 163 Toyota
Echo 4dr - Front wheel drive
Toyota MR2 Spyder convertible 2dr Sports Rear 2195 153 Toyota
MR2 Spyder convertible 2dr - Rear wheel drive
;

Class
data class;
input name $ age height weight;
format weight comma8.;
format height comma8.;
datalines;
Alice 13 56.5 84.00
Barbara 13 65.3 98.00
Carol 14 62.8 102.50
Jane 12 59.8 84.50
Janet 15 62.5 112.50
Joyce 11 51.3 50.50
Judy 14 64.3 90.00
Louise 12 56.3 77.00
Mary 15 66.5 112.00
;

Classfit
data classfit;
input name $ age height weight predict;
format weight comma8.2;
format predict comma8.1;
label weight="Weight in Pounds";
datalines;
Janet 15 62.5 112.5 100.662
Mary 15 66.5 112.0 116.259

852 Appendix 1 / Data Sets Used in Examples

Philip 16 72.0 112.0 137.703
Ronald 15 67.0 133.0 118.208
William 15 66.5 150.0 116.259
;

Inventory
data Inventory;
input partNumber $ partName $;
datalines;
K89R seal
M4J7 sander
LK43 filter
MN21 brace
BC85 clamp
NCF3 valve
KJ66 cutter
UYN7 rod
JD03 switch
BV1E timer
;

InventoryAdd
data InventoryAdd;
input partNumber $ partName $ newStock newPrice;
format newPrice dollar12.2;
datalines;
K89R seal 6 247.50
AA11 hammer 55 32.26
BB22 wrench 21 17.35
KJ66 cutter 10 24.50
CC33 socket 7 22.19
BV1E timer 30 36.50
;

One
data one;
 input ID state $;
 datalines;
1 AZ
2 MA
3 WA
4 WI
;

Data Sets Used in Examples 853

Many
data many;
 input ID city $ state $;
 datalines;
1 Phoenix Ariz
2 Boston Mass
2 Foxboro Mass
3 Olympia Mass
3 Seattle Wash
3 Spokane Wash
4 Madison Wis
4 Milwaukee Wis
4 Madison Wis
4 Hurley Wis
;

Master
data master;
input common $ animal $ plant $;
datalines;
a Ant Apple
b Bird Banana
c Cat Coconut
d Dog Dewberry
e Eagle Eggplant
f Frog Fig
;

Minerals
data minerals;
input common $ plant $ mineral $;
datalines;
a Apricot Amethyst
b Barley Beryl
c Cactus .
e . .
f Fennel .
g Grape Garnet
;

854 Appendix 1 / Data Sets Used in Examples

Plant
data plant;
input common $ plant $;
datalines;
a Apple
b Banana
c Coconut
d Dewberry
e Eggplant
f Fig
;

PlantDupes
data plantDupes;
input common $ plant $;
datalines;
a Apple
b Banana
c Coconut
c Celery
d Dewberry
e Eggplant
;

PlantG
data plantG;
input common $ plant $;
datalines;
a Apple
b Banana
c Coconut
d Dewberry
e Eggplant
g Fig
;

PlantMissing
data plantMissing;

Data Sets Used in Examples 855

input common $ plant $;
datalines;
a Apple
b Banana
c Coconut
;

PlantMissing2
data plantMissing2;
input common $ plant $;
datalines;
a Apple
b Banana
c Coconut
e Eggplant
f Fig
;

PlantNew
data plantNew;
input common $ plant $;
datalines;
a Apricot
b Barley
c Cactus
d Date
e Escarole
f Fennel
;

PlantNewDupes
data plantNewDupes;
input common $ plant $;
datalines;
a Apricot
b Barley
c Cactus
d Date
d Dill
e Escarole
f Fennel
;

856 Appendix 1 / Data Sets Used in Examples

Product_List

data product_list;
input Product_Id Product_Name $14-49 Supplier_ID;
datalines;
240200100101 Grandslam Staff Tour Mhl Golf Gloves 3808
210200100017 Sweatshirt Children's O-Neck 3298
240400200022 Aftm 95 Vf Long Bg-65 White 1280
230100100017 Men's Jacket Rem 50
210200300006 Fleece Cuff Pant Kid'S 1303
210200500002 Children's Mitten 772
210200700016 Strap Pants BBO 798
210201000050 Kid Children's T-Shirt 2963
210200100009 Kids Sweat Round Neck,Large Logo 3298
210201000067 Logo Coord.Children's Sweatshirt 2963
220100100019 Fit Racing Cap 1303
220100100025 Knit Hat 1303
220100300001 Fleece Jacket Compass 772
220200200036 Soft Astro Men's Running Shoes 1747
230100100015 Men's Jacket Caians 50
230100500004 Backpack Flag, 6,5x9 Cm. 316
210200500006 Rain Suit, Plain w/backpack Jacket 772
230100500006 Collapsible Water Can 316
224040020000 Bat 5-Ply 3808
220200200035 Soft Alta Plus Women's Indoor Shoes 1747
240400200066 Memhis 350,Yellow Medium, 6-pack 1280
240200100081 Extreme Distance 90 3-pack 3808
;

Quarter1, Quarter 2, Quarter3, Quarter4
data quarter1;
length mileage 4;
input account mileage;
datalines;
1 932
2 563
;
data quarter2;
length mileage 8;
input account mileage;
datalines;
1 1288
2 1087
;
data quarter3;
length mileage 6;
input account mileage;

Data Sets Used in Examples 857

datalines;
1 2781
2 1990
;
data quarter4;
length mileage 6;
input account mileage;
datalines;
1 3278
2 2209
;

Sales
data Sales;
input partNumber $ partName $ salesPerson $;
datalines;
NCF3 valve JN
BV1E timer JN
LK43 filter KM
K89R seal SJ
LK43 filter JN
M4J7 sander KM
BV1E timer KM
;

Sales2019
data Sales2019;
input partNumber $ lastSoldDate mmddyy10.;
format lastSoldDate mmddyy10.;
datalines;
BC85 10/15/2019
BV1E 10/23/2019
KJ66 11/11/2019
LK43 09/12/2019
MN21 09/13/2019
NCF3 07/24/2019
UYN7 12/11/2019
;

Supplier

data Supplier;

858 Appendix 1 / Data Sets Used in Examples

input Supplier_ID Supplier_Name $6-32 Supplier_Address $34-52 Country
$54-55;
datalines;
50 Scandinavian Clothing A/S Kr. Augusts Gate 13 NO
316 Prime Sports Ltd 9 Carlisle Place GB
755 Top Sports Jernbanegade 45 DK
772 AllSeasons Outdoor Clothing 553 Cliffview Dr US
798 Sportico C. Barquillo 1 ES
1280 British Sports Ltd 85 Station Street GB
1303 Eclipse Inc 1218 Carriole Ct US
1684 Magnifico Sports Rua Costa Pinto 2 PT
1747 Pro Sportswear Inc 2434 Edgebrook Dr US
3298 A Team Sports 2687 Julie Ann Ct US
3808 Carolina Sports 3860 Grand Ave US
;

Table1
data Table1;
 set sashelp.class(where=(age=14));
run;

Table2
data Table2;
 set sashelp.classfit(where=(age=14));
 drop uppermean lower upper;
run;
proc sort data=Table2; by name; run;

Year1
data Year1;
input date;
datalines;
2009
2010
2011
2012
;

Data Sets Used in Examples 859

Year2
data Year2;
input date;
datalines;
2010
2011
2012
2013
2014
;

Description of Column-Binary Data
Storage

The arrangement and numbering of rows in a column on physical punched cards
originated with the Hollerith system of encoding characters and numbers. It was
based on using a pair of values to represent either a character or a numeric digit. In
the Hollerith system, each column on a card had a maximum of two punches, one
punch in the zone portion, and one in the digit portion. These punches
corresponded to a pair of values, and each pair of values corresponded to a specific
alphabetic character or sign and numeric digit.

In the zone portion of the punched card (the first three rows), the zone component
of the pair can have the values 12, 11, 0 (or 10), or not punched. In the digit portion of
the card (the fourth through the twelfth rows), the digit component of the pair can
have the values 1 through 9, or not punched.

The following figure shows the multi-punch combinations corresponding to letters
of the alphabet.

860 Appendix 1 / Data Sets Used in Examples

Figure A1.1 Columns and Rows in a Punched Card

row punch

zone
portion

digit
portion

alphabetic
character

X X X X X X X X

1
2
3
4
5
6
7
8
9

12
11
10

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

X X X X X X X X X
X X X X X X X X X

X
X

X
X

X

X
X

X
X

X
X

X
X

X

X
X

X
X

X
X

X
X

X
X

X
X

SAS stores each column of column-binary data (a “virtual” punched card) in two
bytes. Since each column has only 12 positions and since 2 bytes contain 16
positions, the 4 extra positions within the bytes are located at the beginning of
each byte. The following figure shows the correspondence between the rows of
“virtual” punched card data and the positions within 2 bytes that SAS uses to store
them. SAS stores a punched position as a binary 1 bit and an unpunched position as
a binary 0 bit.

Figure A1.2 Column-Binary Representation on a “Virtual” Punched Card

row

byte
positions

1
2
3
4
5
6
7
8
9

12
11
10 (o r 0)

not used

1 2 3 4 5 6 7 8

not used

1 2 3 4 5 6 7 8

byte 1 byte 2

Description of Column-Binary Data Storage 861

862 Appendix 1 / Data Sets Used in Examples

Appendix 2
Understanding How the DATA
Step Works

How the DATA Step Processes Data . 863
Flow of Action . 863
The Compilation Phase . 864
The Execution Phase . 865

Processing a DATA Step: A Walk-Through . 866
Sample DATA Step . 866
Creating the Input Buffer and the Program Buffer . 867
Reading a Record . 868
Writing an Observation to the SAS Data Set . 869
Reading the Next Record . 869
When the DATA Step Finishes Executing . 870

More About DATA Step Execution . 871
The Default Sequence of Execution . 871
Changing the Sequence of Execution Using Statements . 873
Changing the Sequence of Execution Using Functions . 873
Altering the Flow for a Given Observation . 874
Step Boundaries . 875
What Causes the DATA Step to Stop Executing . 877

How the DATA Step Processes Data

Flow of Action
When you submit a DATA step for execution, it is first compiled and then executed.
The following figure shows the flow of action for a typical SAS DATA step.

863

Figure A2.1 Flow of Action in the DATA Step

The Compilation Phase
When you submit a DATA step for execution, SAS checks the syntax of the SAS
statements and compiles them; that is, it automatically translates the statements
into machine code. In this phase, SAS identifies the type and length of each new
variable and determines whether a variable type conversion is necessary for each
subsequent reference to a variable. During the compilation phase, SAS creates the
following three items:

864 Appendix 2 / Understanding How the DATA Step Works

input buffer
is a logical area in memory into which SAS reads each record of raw data when
SAS executes an INPUT statement. This buffer is created only when the DATA
step reads raw data. When the DATA step reads a SAS data set, SAS reads the
data directly into the program data vector.

program data vector (PDV)
is a logical area in memory where SAS builds a data set, one observation at a
time. When a program executes, SAS reads data values from the input buffer or
creates them by executing SAS language statements. The data values are
assigned to the appropriate variables in the program data vector. From here,
SAS writes the values to a SAS data set as a single observation.

Along with data set variables and computed variables, the PDV contains two
automatic variables: _N_ and _ERROR_. The _N_ variable counts the number of
times the DATA step begins to iterate. The _ERROR_ variable signals the
occurrence of an error caused by the data during execution. The value of
ERROR is either 0 (indicating no errors exist), or 1 (indicating that one or more
errors have occurred). SAS does not write these variables to the output data
set.

descriptor information
is information that SAS creates and maintains about each SAS data set,
including data set attributes and variable attributes. For example, it contains the
name of the data set, its member type, the date and time that the data set was
created, and the number, names, and data types (character or numeric) of the
variables. The descriptor information also contains information about extended
attributes (if defined on a data set). Extended attribute descriptor information
includes the name of the attribute, the name of the variable, and the value of
the attribute.

The Execution Phase
By default, a simple DATA step iterates once for each observation that is being
created. The flow of action in the Execution Phase of a simple DATA step is
described as follows:

1 The DATA step begins with a DATA statement. Each time the DATA statement
executes, a new iteration of the DATA step begins, and the _N_ automatic
variable is incremented by 1.

2 SAS sets the newly created program variables to missing in the program data
vector (PDV).

3 SAS reads a data record from a raw data file into the input buffer, or it reads an
observation from a SAS data set directly into the program data vector. You can
use an INPUT, MERGE, SET, MODIFY, or UPDATE statement to read a record.

4 SAS executes any subsequent programming statements for the current record.

5 At the end of the statements, an output, return, and reset occur automatically.
SAS writes an observation to the SAS data set, the system automatically

How the DATA Step Processes Data 865

returns to the top of the DATA step, and the values of variables created by
INPUT and assignment statements are reset to missing in the program data
vector. Note that variables that you read with a SET, MERGE, MODIFY, or
UPDATE statement are not reset to missing here.

6 SAS counts another iteration, reads the next record or observation, and
executes the subsequent programming statements for the current observation.

7 The DATA step terminates when SAS encounters the end-of-file in a SAS data
set or a raw data file.

Note: The figure shows the default processing of the DATA step. You can place
data-reading statements (such as INPUT or SET), or data-writing statements (such
as OUTPUT), in any order in your program.

Processing a DATA Step: A Walk-
Through

Sample DATA Step
The following statements provide an example of a DATA step that reads raw data,
calculates totals, and creates a data set:

data total_points (drop=TeamName); 1

 input TeamName $ ParticipantName $ Event1 Event2 Event3; 2
 TeamTotal + (Event1 + Event2 + Event3); 3
 datalines;
Knights Sue 6 8 8
Kings Jane 9 7 8
Knights John 7 7 7
Knights Lisa 8 9 9
Knights Fran 7 6 6
Knights Walter 9 8 10
;

proc print data=total_points;
run;

1 The DROP= data set option prevents the variable TeamName from being written
to the output SAS data set called Total_Points.

2 The INPUT statement describes the data by giving a name to each variable,
identifying its data type (character or numeric), and identifying its relative
location in the data record.

866 Appendix 2 / Understanding How the DATA Step Works

3 The SUM statement accumulates the scores for three events in the variable
TeamTotal.

Creating the Input Buffer and the Program Buffer
When DATA step statements are compiled, SAS determines whether to create an
input buffer. If the input file contains raw data (as in the example above), SAS
creates an input buffer to hold the data before moving the data to the program data
vector (PDV). If the input file is a SAS data set, however, SAS does not create an
input buffer. SAS writes the input data directly to the PDV.

The PDV contains all the variables in the input data set, the variables created in
DATA step statements, and the two variables, _N_ and _ERROR_, that are
automatically generated for every DATA step. The _N_ variable represents the
number of times the DATA step has iterated. The _ERROR_ variable acts like a
binary switch whose value is 0 if no errors exist in the DATA step, or 1 if one or more
errors exist. The following figure shows the Input Buffer and the program data
vector after DATA step compilation.

Figure A2.2 Input Buffer and Program Data Vector

Input Buffer

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

1 0

Drop Drop

1 2 3 4 5

0

Variables that are created by the INPUT and the Sum statements (TeamName,
ParticipantName, Event1, Event2, Event3, and TeamTotal) are set to missing
initially. Note that in this representation, numeric variables are initialized with a
period and character variables are initialized with blanks. The automatic variable
N is set to 1; the automatic variable _ERROR_ is set to 0.

The variable TeamName is marked Drop in the PDV because of the DROP= data set
option in the DATA statement. Dropped variables are not written to the SAS data
set. The _N_ and _ERROR_ variables are dropped because automatic variables
created by the DATA step are not written to a SAS data set.See Chapter 5,
“Variables,” on page 75 for details about automatic variables.

Processing a DATA Step: A Walk-Through 867

Reading a Record
SAS reads the first data line into the input buffer. The input pointer, which SAS uses
to keep its place as it reads data from the input buffer, is positioned at the
beginning of the buffer, ready to read the data record. The following figure shows
the position of the input pointer in the input buffer before SAS reads the data.

Figure A2.3 Position of the Pointer in the Input Buffer Before SAS Reads Data

Input Buffer

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5

K n i g h t s S u e 6 8 8

The INPUT statement then reads data values from the record in the input buffer
and writes them to the PDV where they become variable values. The following
figure shows both the position of the pointer in the input buffer, and the values in
the PDV after SAS reads the first record.

Figure A2.4 Values from the First Record Are Read into the Program Data Vector

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

1 0

Drop Drop

Knights Sue 6 8 8

Input Buffer

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5

K n i g h t s S u e 6 8 8

0

After the INPUT statement reads a value for each variable, SAS executes the Sum
statement. SAS computes a value for the variable TeamTotal and writes it to the
PDV. The following figure shows the PDV with all of its values before SAS writes
the observation to the data set.

Figure A2.5 Program Data Vector with Computed Value of the Sum Statement

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

1 0

Drop Drop

Knights Sue 6 8 8 22

868 Appendix 2 / Understanding How the DATA Step Works

Writing an Observation to the SAS Data Set
When SAS executes the last statement in the DATA step, all values in the PDV,
except those marked to be dropped, are written as a single observation to the data
set Total_Points. The following figure shows the first observation in the
Total_Points data set.

Figure A2.6 The First Observation in Data Set Total_Points

Output SAS Data Set TOTAL_POINTS: 1st observation

ParticipantName Event1 TeamTotalEvent2 Event3

Sue 6 8 8 22

SAS then returns to the DATA statement to begin the next iteration. SAS resets the
values in the PDV in the following way:

n The values of variables created by the INPUT statement are set to missing.

n The value created by the Sum statement is automatically retained.

n The value of the automatic variable _N_ is incremented by 1, and the value of
ERROR is reset to 0.

The following figure shows the current values in the PDV.

Figure A2.7 Current Values in the Program Data Vector

222

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

0

Drop Drop

Reading the Next Record
SAS reads the next record into the input buffer. The INPUT statement reads the
data values from the input buffer and writes them to the PDV. The Sum statement
adds the values of Event1, Event2, and Event3 to TeamTotal. The value of 2 for
variable _N_ indicates that SAS is beginning the second iteration of the DATA step.
The following figure shows the input buffer, the PDV for the second record, and the
SAS data set with the first two observations.

Processing a DATA Step: A Walk-Through 869

Figure A2.8 Input Buffer, Program Data Vector, and First Two Observations

Program Data Vector

TeamName ParticipantName Event1 TeamTotal _N_ _ERROR_

Drop

Event2 Event3

2 0

Drop Drop

Cardinals Jane 9 7 8 46

ParticipantName Event1 TeamTotalEvent2 Event3

Sue 6 8 8 22
Jane 9 7 8 46

Output SAS Data Set TOTAL_POINTS: 1st and 2nd observations

Input Buffer

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5

C a r d i n a J a n 9 7 8l s e

As SAS continues to read records, the value in TeamTotal grows larger as more
participant scores are added to the variable. _N_ is incremented at the beginning of
each iteration of the DATA step. This process continues until SAS reaches the end
of the input file.

When the DATA Step Finishes Executing
The DATA step stops executing after it processes the last input record. You can use
PROC PRINT to print the output in the Total_Points data set:

data total_points (drop=TeamName);
 input TeamName $ ParticipantName $ Event1 Event2 Event3;
 TeamTotal + (Event1 + Event2 + Event3);
 datalines;
Knights Sue 6 8 8
Cardinals Jane 9 7 8
Knights John 7 7 7
Cardinals Lisa 8 9 9
Cardinals Fran 7 6 6
Knights Walter 9 8 10
;
proc print data=total_points;
 title 'Total Team Scores';
run;

870 Appendix 2 / Understanding How the DATA Step Works

Output A2.1 Output from the Walk-through DATA Step

More About DATA Step Execution

The Default Sequence of Execution
The following table outlines the default sequence of execution for statements in a
DATA step. The DATA statement begins the step and identifies usually one or more
SAS data sets that the step will create. (You can use the keyword _NULL_ as the
data set name if you do not want to create an output data set.) Optional
programming statements process your data. SAS then performs the default actions
at the end of processing an observation.

Table A2.1 Default Execution for Statements in a DATA Step

Structure of a DATA Step Action

DATA statement begins the step

counts iterations

Data-reading statements: 1

INPUT describes the arrangement of values in
the input data record from a raw data
source

SET reads an observation from one or more
SAS data sets

More About DATA Step Execution 871

Structure of a DATA Step Action

MERGE joins observations from two or more SAS
data sets into a single observation

MODIFY replaces, deletes, or appends
observations in an existing SAS data set
in place

UPDATE updates a master file by applying
transactions

Optional SAS programming statements,
for example:

further processes the data for the current
observation

FirstQuarter=Jan+Feb+Mar;

if RetailPrice < 500;

computes the value for FirstQuarter for
the current observation

subsets by value of variable RetailPrice
for the current observation

Default actions at the end of processing
an observation

At end of DATA step:

Automatic write, automatic
return

At top of DATA step:

Automatic reset

writes an observation to a SAS data set

returns to the DATA statement

resets values to missing in program data
vector

1 The table shows the default processing of the DATA step. You can alter the sequence of statements
in the DATA step. You can code optional programming statements, such as creating or reinitializing a
constant, before you code a data-reading statement.

Note: You can also use functions to read and process data. For information about
how statements and functions process data differently, see “Using Functions to
Manipulate Files” in SAS Functions and CALL Routines: Reference. For specific
information about SAS functions, see the SAS File I/O and External Files categories
in “SAS Functions and CALL Routines by Category” in SAS Functions and CALL
Routines: Reference.

872 Appendix 2 / Understanding How the DATA Step Works

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p07c8e0ktns1c7n1vtowjev5g724.htm&docsetTargetAnchor=n0mpsdy5ldzhepn1heb0zsodu8or&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p07c8e0ktns1c7n1vtowjev5g724.htm&docsetTargetAnchor=n0mpsdy5ldzhepn1heb0zsodu8or&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n01f5qrjoh9h4hn1olbdpb5pr2td.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n01f5qrjoh9h4hn1olbdpb5pr2td.htm&locale=en

Changing the Sequence of Execution Using
Statements

You can change the default sequence of execution to control how your program
executes. SAS language statements offer you a lot of flexibility to do this in a DATA
step. The following list shows the most common ways to control the flow of
execution in a DATA step program.

Table A2.2 Common Methods That Alter the Sequence of Execution

Task Possible Methods

Read a record merge, modify, join data sets

read multiple records to create a single observation

randomly select records for processing

read from multiple external files

read selected fields from a record by using statement
or data set options

Process data use conditional logic

retain variable values

Write an observation write to a SAS data set or to an external file

control when output is written to a data set

write to multiple files

For more information, see the individual statements in SAS DATA Step Statements:
Reference.

Changing the Sequence of Execution Using
Functions

You can also use functions to read and process data. For information about how
statements and functions process data differently, see “Using Functions to
Manipulate Files” in SAS Functions and CALL Routines: Reference..

More About DATA Step Execution 873

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p07c8e0ktns1c7n1vtowjev5g724.htm&docsetTargetAnchor=n0mpsdy5ldzhepn1heb0zsodu8or&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p07c8e0ktns1c7n1vtowjev5g724.htm&docsetTargetAnchor=n0mpsdy5ldzhepn1heb0zsodu8or&locale=en

Altering the Flow for a Given Observation
You can use statements, statement options, and data set options to alter how SAS
processes specific observations. The following table lists SAS language elements
and their effects on processing.

Table A2.3 Language Elements That Alter Programming Flow

SAS Language Element Function

subsetting IF statement stops the current iteration when a condition is
false, does not write the current observation
to the data set, and returns control to the top
of the DATA step.

IF-THEN/ELSE statement executes a SAS statement for observations
that meet the current condition and continues
with the next statement.

DO loops cause parts of the DATA step to be executed
multiple times.

LINK and RETURN statements alter the flow of control, execute statements
following the label specified, and return
control of the program to the next statement
following the LINK statement.

HEADER= option in the FILE
statement

alters the flow of control whenever a PUT
statement causes a new page of output to
begin; statements following the label
specified in the HEADER= option are
executed until a RETURN statement is
encountered, at which time control returns to
the point from which the HEADER= option
was activated.

GO TO statement alters the flow of execution by branching to
the label that is specified in the GO TO
statement. SAS executes subsequent
statements then returns control to the
beginning of the DATA step.

EOF= option in an INFILE statement alters the flow of execution when the end of
the input file is reached; statements following
the label that is specified in the EOF= option
are executed at that time.

874 Appendix 2 / Understanding How the DATA Step Works

SAS Language Element Function

N automatic variable in an IF-
THEN construct

causes parts of the DATA step to execute
only for particular iterations.

SELECT statement conditionally executes one of a group of SAS
statements.

OUTPUT statement in an IF-THEN
construct

outputs an observation before the end of the
DATA step, based on a condition; prevents
automatic output at the bottom of the DATA
step.

DELETE statement in an IF-THEN
construct

deletes an observation based on a condition
and causes a return to the top of the DATA
step.

ABORT statement in an IF-THEN
construct

stops execution of the DATA step and
instruct SAS to resume execution with the
next DATA or PROC step. It can also stop
executing a SAS program altogether,
depending on the options specified in the
ABORT statement and on the method of
operation.

WHERE statement or WHERE= data
set option

causes SAS to read certain observations
based on one or more specified criteria.

Step Boundaries
Understanding step boundaries is an important concept in SAS programming
because step boundaries determine when SAS statements take effect. SAS
executes program statements only when SAS crosses a default or a step boundary.
Consider the following DATA steps:

data _null_; 1

 set allscores(drop=score5-score7);
 title 'Student Test Scores'; 2

data employees; 3

 set employee_list;
run;

1 The DATA statement begins a DATA step and is a step boundary.

2 The TITLE statement is in effect for both DATA steps because it appears before
the boundary of the first DATA step. (The TITLE statement is a global
statement.)

More About DATA Step Execution 875

3 The DATA statement is the default boundary for the first DATA step.

The TITLE statement in this example is in effect for the first DATA step as well as
for the second because the TITLE statement appears before the boundary of the
first DATA step. This example uses the default step boundary data employees;.

The following example shows an OPTIONS statement inserted after a RUN
statement.

data scores; 1

 set allscores(drop=score5-score7);
run; 2

options firstobs=5 obs=55; 3

data test;
 set alltests;
run;

1 The DATA statement is a step boundary.

2 The RUN statement is the boundary for the first DATA step.

3 The OPTIONS statement affects the second DATA step only.

The OPTIONS statement specifies that the first observation that is read from the
input data set should be the 5th, and the last observation that is read should be the
55th. Inserting a RUN statement immediately before the OPTIONS statement
causes the first DATA step to reach its boundary (run;) before SAS encounters the
OPTIONS statement. The OPTIONS statement settings, therefore, are put into
effect for the second DATA step only.

Following the statements in a DATA step with a RUN statement is the simplest way
to make the step begin to execute, but a RUN statement is not always necessary.
SAS recognizes several step boundaries for a SAS step:

n another DATA statement

n a PROC statement

n a RUN statement

Note: For SAS programs executed in interactive mode, a RUN statement is
required to signal the step boundary for the last step that you submit.

n the semicolon (with a DATALINES or CARDS statement) or four semicolons
(with a DATALINES4 or CARDS4 statement) after data lines

n an ENDSAS statement

n in noninteractive or batch mode, the end of a program file containing SAS
programming statements

n a QUIT statement (for some procedures)

When you submit a DATA step during interactive processing, it does not begin
running until SAS encounters a step boundary. This fact enables you to submit
statements as you write them while preventing a step from executing until you
have entered all the statements.

876 Appendix 2 / Understanding How the DATA Step Works

What Causes the DATA Step to Stop Executing
DATA steps stop executing under different circumstances, depending on the type
and number of sources of input.

Table A2.4 Causes That Stop DATA Step Execution

Data Read Data Source SAS Statements DATA Step Stops

no data after only one
iteration

any data when it executes
STOP or ABORT

when the data is
exhausted

raw data instream data
lines

INPUT statement after the last data
line is read

one external file INPUT and INFILE
statements

when end-of-file
is reached

multiple external
files

INPUT and INFILE
statements

when end-of-file
is first reached on
any of the files

observations
sequentially

one SAS data set SET and MODIFY
statements

after the last
observation is
read

multiple SAS data
sets

one SET, MERGE,
MODIFY, or
UPDATE
statement

when all input
data sets are
exhausted

multiple SAS data
sets

multiple SET,
MERGE, MODIFY,
or UPDATE
statements

when end-of-file
is reached by any
of the data-
reading
statements

A DATA step that reads observations from a SAS data set with a SET statement
that uses the POINT= option has no way to detect the end of the input SAS data
set. (This method is called direct or random access.) Such a DATA step usually
requires a STOP statement.

More About DATA Step Execution 877

A DATA step also stops when it executes a STOP or an ABORT statement. Some
system options and data set options, such as OBS=, can cause a DATA step to stop
earlier than it would otherwise.

If the VARINITCHK= system option is set to ERROR, a DATA step stops processing
and writes an error to the SAS log if a variable is not initialized. For more
information, see “VARINITCHK= System Option” in SAS System Options: Reference.

878 Appendix 2 / Understanding How the DATA Step Works

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n039l39682ccgen1xswd1fsfaqk9.htm&locale=en

Appendix 3
Updating Data Using the MODIFY
Statement and the KEY= Option

Updating Data Using the MODIFY Statement and the KEY= Option . 879
Definitions . 880
Understanding the MODIFY Statement . 881
Sequential Access . 883
Matching Access Using BY Statement . 883
Comparing Matching Access to the UPDATE Statement . 885
Direct (Random) Access by Observation Number Using POINT= 887
Direct Access by Index Values Using KEY= . 887
Comparing the Matching Access Method Using the BY Statement

to the Direct Access Method Using Index Values . 888
Monitoring Update Processing . 889
Performing Automatic Updates for Like-Named Variables Using KEY= 890
Using MODIFY in a SAS/SHARE Environment . 892
Understanding the KEY= Option . 893

Updating Data Using the MODIFY
Statement and the KEY= Option

You can use the KEY= option with either the MODIFY statement or the “SET
Statement” in SAS DATA Step Statements: Reference to update SAS data sets. You
can also use the “SET Statement” in SAS DATA Step Statements: Reference, MERGE
statement, and UPDATE statement in the DATA step to modify and combine data.
The MODIFY statement used with the KEY= option provides the following benefits:

n The MODIFY statement uses less disk space than the SET, MERGE, or UPDATE
statements.

n The KEY= option in the MODIFY statement enables you to take advantage of
indexing.

879

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1i8w2bwu1fn5kn1gpxj18xttbb0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en

For more information about combining SAS data sets, see “Modifying” on page
487.

Definitions
Note the following SAS terms and definitions, which are used in this appendix:

data set
a SAS file that consists of descriptor information and data values organized as a
table of rows (SAS observations) and columns (SAS variables) that can be
processed by SAS.

IORC
an automatic variable created by SAS when you use the MODIFY statement or
the SET statement with the KEY= option. The value of _IORC_ is a numeric
return code that indicates the status of the most recent I/O operation
performed on an observation in a SAS data set. The return code indicates
whether the retrieval for matching observations was successful:

Table A3.1 _IORC_ Return Code Values

Code Value

0 successful execution

-1 end-of-file error

all other values non-match

Typically, you use _IORC_ in conjunction with the autocall macro %SYSRC,
which enables you to specify a mnemonic name that describes a potential
outcome of an I/O operation.

Note: In Version 7, the IORCMSG function returns a formatted error message
associated with the current value of _IORC_.

index
a file that is created when you define an index for a SAS data set.

program data vector (PDV)
a physical area in memory where SAS builds a data set, one observation at a
time. When a program executes, the software reads values from the input buffer
or creates them by executing SAS language statements. The values are assigned
to the appropriate variables in the PDV. From here, the software writes the
values to a SAS data set as a single observation.

%SYSRC
an autocall macro that provides a convenient way of testing for a specific I/O
error condition created by the most recently executed MODIFY statement or

880 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

SET statement with the KEY= option. %SYSRC returns a numeric value
corresponding to the mnemonic string passed to it. The mnemonic is a literal
that corresponds to a numeric value of the _IORC_ automatic variable. SAS
supplies a library of autocall macros to each site. The autocall facility enables
you to invoke a macro without having previously defined that macro in the same
SAS program. To use the autocall facility, specify the MAUTOSOURCE system
option.

Note: The DATA= option is used with the PRINT procedure to specify the
master data set. If DATA= is not specified, PROC PRINT displays the last
created data set that was opened for output. Note that the last created data set
might not be the one that was just modified.

view
contains only the information required to retrieve data values. The data is
obtained from another file. There are three types of views:

DATA step view
a compiled DATA step program that can read from one or more SAS data
sets or external files.

SAS/ACCESS view
defines data formatted by other software products. When a SAS/ACCESS
view is processed, the data that it accesses remains in its original format.

PROC SQL view
a compiled query that obtains values from one or more data files or views or
the SQL Procedure Pass-Through Facility.

Understanding the MODIFY Statement
The MODIFY statement replaces, deletes, or appends observations in an existing
data set without creating a copy of the data set. This is referred to as updating in
place. Because the MODIFY statement does not create a copy of the data set that
is open for update, the processing uses less disk space than does the MERGE, SET,
or UPDATE statements. These statements create a new data set.

If data set options such as KEEP, RENAME, or DROP are used on the modified data
set, the options are in effect only during processing. The descriptor portion of a SAS
data set opened in update mode cannot be changed.

For information about the parts of a SAS data set, including the descriptor portion,
see PDV.

The data set referenced in the MODIFY statement must also be referenced in the
DATA statement. Then, based on the DATA step logic, you can replace, delete, and
append new observations. For example, the following simple DATA step uses the
MODIFY statement to update the data set Invty.Stock by replacing the date values
in all observations for the variable Recdate with the current date:

data invty.stock;
 modify invty.stock; recdate=today();

Updating Data Using the MODIFY Statement and the KEY= Option 881

run;

When SAS processes the previous DATA step, the following occurs:

1 The MODIFY statement opens SAS data set Invty.Stock for update processing.

2 The first observation is read from the data set and the values are written into
the PDV. The variable Recdate exists in the data set Invty.Stock.

3 The value of variable Recdate is replaced with the result of the TODAY function.

4 The values in the PDV replace the values in the data set.

5 The process is repeated for each observation, using a sequential access method,
until the end-of-file marker is reached.

To further control processing, you can include the following statements in a DATA
step execution in conjunction with the MODIFY statement:

n OUTPUT statement — appends the current observation as a new observation to
the end of the data set. The data set specified in the MODIFY statement must
also be specified in the DATA statement as the output data set.

n REMOVE statement — deletes the current observation from the data set. The
deletion is either a physical or logical deletion, depending on the SAS I/O engine
maintaining the data set.

n REPLACE statement — writes the current observation to the same physical
location; that is, replaces it in the data set. An implicit REPLACE statement at
the bottom of the DATA step is the default action.

The processing of the MODIFY statement depends on whether any of those
statements are included in the DATA step:

n If a REPLACE, REMOVE, or OUTPUT statement is not specified in the DATA
step, the software writes the current observation to its original place in the data
set as if a REPLACE statement was the last statement in the DATA step. That is,
the MODIFY statement generates a REPLACE statement at the bottom of the
DATA step, which is referred to as an implicit REPLACE.

n If a REPLACE, REMOVE, or OUTPUT statement is included, it overrides the
implicit REPLACE.

The REPLACE, REMOVE, and OUTPUT statements are independent of each other.
More than one statement can apply to the same observation. Note that if both an
OUTPUT statement and a REPLACE or REMOVE statement execute on the same
observation, be sure the OUTPUT statement is executed last to keep proper
positioning in the index.

The MODIFY statement supports four different access methods:

n sequential access

n matching access using the BY statement

n direct (random) access by observation number using POINT=

n direct access by indexed values using KEY=

882 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1lltvbis7ye1an1eryo4leh2mck.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1gx8o8pxm8pgdn1q68cmf5jnorw.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p103b0p9akdcmhn1xbik9hbuo760.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n1odb9oly03phgn1n2xn8ds6muip&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n11m2m64sofcd7n1tyam4089e86f&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=p0p608sfvpjbgwn19vshnk2bxsrk&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n0jw7dhbbwc2j4n1bl1v81oq1cpn&locale=en

Sequential Access
Sequential access is the simplest form of processing using the MODIFY statement.
Sequential access provides less control than the other access methods, but it
provides the quickest method for updating all observations in a data set. The
syntax for sequential access is:

MODIFYmaster-data-set<(data-set-option(s))><NOBS=variable><END=variable>

In the following code, SAS sequentially accesses each observation in the master
data set looking for an observation that contains the value u for variable mod. When
an observation is located, the value of variable x is replaced with a 1. The execution
of the implicit REPLACE causes the observation to be rewritten with the updated
value. The variable x must exist in the master data set. The MODIFY statement
opens the data set in update mode, and the header information for a data set
opened for update cannot be modified.

data master;
 modify master;
 if mod='u' then x=1;
run;

Matching Access Using BY Statement
Matching access matches the value or values of one or more BY variables in the
master data set against the same variables in a second data set, referred to as a
transaction data set. The syntax for matching access is as follows:

MODIFY master-data-set<(data-set-options)> transaction-data-set<(data-set-
options)> <NOBS=variable> <END=variable>
<UPDATEMODE=<MISSINGCHECK>NOMISSINGCHECK>;
BY by-variables;

The BY statement is required. The specified variables must exist in both the master
data set and the transaction data set. When using MODIFY with the BY statement,
the rules that apply to the UPDATE statement also apply to MODIFY, except that
the data sets are not required to be in sorted order.

The MODIFY statement executes as follows:

1 The MODIFY statement opens the specified data set for update processing.

2 The MODIFY statement reads an observation from the transaction data set to a
temporary storage location in memory.

3 The MODIFY statement then generates a WHERE statement, specifying the
values of the BY variables (for example, partno) from the transaction
observation to locate and fetch an observation with a matching BY variable
value from the master data set. This observation is placed in the PDV.

Updating Data Using the MODIFY Statement and the KEY= Option 883

4 Values from the transaction observation in temporary storage are used to
overlay the values of like-named variables located in the PDV from the master
observation.

The following behavior applies to matching access:

n When matched on the variables specified in the BY statement, all like-named
variables in the master data set are automatically updated with the values from
the transaction data set.

n If duplicate values for the BY variables exist in the master data set, only the first
observation in that BY group is updated; observations with duplicate BY values
are ignored. This is because SAS locates the observation in the master data set
by generating a WHERE statement containing the transaction data set values
for the BY variables. The WHERE statement always returns the first occurrence
of the BY group for updating in the master data set.

n If duplicates exist in a BY group in the transaction data set, the updates are
applied one after another to the first matching observation in the master data
set. An accumulative statement must be used to increment the values from the
duplicates. Otherwise, the value from the last duplicate is applied to the
matching observation in the master data set.

n Because a WHERE statement is generated, neither the master data set nor the
transaction data set has to be sorted on the BY variables. However, sorting of
both data sets can greatly reduce the I/O to retrieve an observation from the
master data set. If the master data set is indexed for the BY variables, the
generated WHERE statement can use the index.

n Missing values from the transaction data set can update the master data set if
UPDATEMODE=MISSINGCHECK is the default behavior. If the option
UPDATEMODE=NOMISSINGCHECK is not available under your current release,
the master data set observation can be updated with a special missing value in
the transaction data set observation. For numeric data, you can differentiate
among types of missing values. That is, you can specify up to 27 characters (the
underscore (_) and the letters A through Z) to designate different types of
missing values. Another approach is to use the RENAME= data set option to
change the names of those variables in the transaction data set so that the
master data set variable can be set equal to the renamed transaction data set
variable.

The following example uses the matching access method to update the master data
set invty.stock using information from the transaction data set work.addinv as
well as to update the date on which stock was received:

data invty.stock;
 modify invty.stock addinv;
 by partno; recdate=today();
 instock=instock + nwstock;
run;

Even though you do not have to sort or index either the transaction data set or the
master data set, you can improve performance by the following:

n creating an index for the master data set on the variable used as the BY variable

n sorting both data sets by the BY variable

884 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

Comparing Matching Access to the UPDATE
Statement

The MODIFY statement for matching access is almost identical to that of the
UPDATE statement. Both require a master and a transaction data set, and both
require a BY statement. The MODIFY statement compares to the UPDATE
statement as follows:

n The MODIFY statement opens the SAS data set specified on the MODIFY and
DATA statements in update mode. However, the UPDATE statement opens the
specified SAS data set for input, and the SAS data set specified in the DATA
statement is opened for output.

n The MODIFY statement updates the SAS data set in place. With the UPDATE
statement, the original SAS data set is replaced with a copy of the updated
version.

n The MODIFY statement results in an implicit REPLACE statement being
executed at the time the that DATA step iterates. UPDATE causes an implicit
OUTPUT statement to be executed at the time the that DATA step iterates.

The difference between the implicit REPLACE and the implicit OUTPUT statements
is illustrated in the following example, which uses two data sets: master and trans.
Their DATA steps are shown below:

data master;
 input ssn : $11. nickname $;
datalines;
134-56-9094 Megan
160-58-1223 Kathryn
161-60-5881 Joshua
;

data trans;
 input ssn : $11. nickname $;
datalines;
134-56-9094 Meg
142-67-9888 Bill
160-58-1223 Kate
161-60-5881 .
;

To process the previous sorted data, you can use the UPDATE statement. The
UPDATE statement generates an implicit OUTPUT statement. The OUTPUT
statement appends the values from the current program data vector to the end of
the data set. This happens regardless of whether there is a match on the BY
variables.

data master;
 update master trans
 updatemode=nomissingcheck;
 by ssn;
run;

Updating Data Using the MODIFY Statement and the KEY= Option 885

However, if you change the UPDATE statement to a MODIFY statement as shown
below, it fails. The generated WHERE statement finds no match for ssn
142-67-9888, and the implicit REPLACE statement at the bottom of the DATA step
tries to replace an observation that it was unable to retrieve.

data master;
 modify master trans
 updatemode=nomissingcheck;
 by ssn;
run;

The SAS log reflects the value 1230013 in the automatic variable _IORC_, because a
match for the second observation in the trans data set does not exist in the master
data set. Because an error occurs, the automatic variable _ERROR_ is set to a value
of 1.

ERROR: The TransACTION data set observation does not exist on the MASTER data set.
ERROR: No matching observation was found in MASTER data set.
ssn=142-67-9888 nickname=Bill FIRST.ssn=1 LAST.ssn=1 _ERROR_=1 _IORC_=1230013 _N_=2
NOTE: TRANS data set does not exist in the MASTER data set. Because an error occurs,
the automatic variable
ERROR is set to a value of 1.he SAS System stopped processing this step because of
errors. NOTE:
There were 1 observations read from the dataset WORK.MASTER.
NOTE: The data set WORK.MASTER has been updated. There were 1 observations rewritten,
0 observations added and 0 observations deleted.
NOTE: There were 3 observations read from the dataset WORK.TRANS.

To prevent the error caused by the implicit REPLACE statement on a non-match
record, use a conditional IF statement so that data is replaced only when a match is
located. The automatic variable _IORC_ holds a value of zero on a successful I/O
operation.

data master;
 modify master trans
 updatemode=nomissingcheck;
 by ssn;
 if _iorc_=0 then replace;
run;

To prevent displaying the non-matched record in the SAS log, reset the automatic
variable _ERROR_ to zero. (Error checking is discussed later in this appendix.)

data master;
 modify master trans
 updatemode=nomissingcheck;
 by ssn;
 if _iorc_=0 then replace;
 else _error_=0;
run;

886 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

Direct (Random) Access by Observation Number
Using POINT=

Direct (random) access by observation number requires that you use POINT= to
identify the observation to be updated. POINT= specifies a variable from another
data source (not the master data set) or one that you define in the DATA step
whose value is the number of an observation that you want to modify in the master
data set. MODIFY uses the values of the POINT= variable to retrieve observations
in the data set that you want to modify. The syntax for direct (random) access by
observation number is as follows:

MODIFY master-data-set <(data-set-options)> <NOBS=variable> POINT=variable;

To illustrate direct access by observation number, assume that you have a data set
named newp. newp has variable tool_obs containing the observation number of
each tool in the tool company’s master data set invty.stock and variable
newprice containing the new price for each tool.

The following example uses the information in data set newp to update data set
invty.stock. newp is specified in the SET statement, which reads values to be
supplied for the tool_obs and newprice variables. Variable tool_obs is specified as
the value of the POINT= option. Variable newprice is specified in the assignment
statement to replace existing values of price in invty.stock. As the SET
statement executes, values of tool_obs are read from newp, placed in the PDV, and
then used by the MODIFY statement to retrieve observations directly from
invty.stock. The observation number in tool_obs is used as a key to allow direct
retrieval of observations.

data invty.stock;
 set newp;
 modify invty.stock point=tool_obs;
 price=newprice;
 recdate=today():
run;

Direct Access by Index Values Using KEY=
Direct access by index values requires that you use KEY= to specify an existing
index. The software then retrieves observations in the data set through the index
based on the index values. The syntax for direct access by index values is as
follows:

MODIFY master-data-set <(data-set-options)> KEY=index </ UNIQUE>
<NOBS=variable> <END=variable>;

Direct access by index values lets you supply a lookup value from a secondary data
source such as another SAS data set. An observation is read using a SET statement
to supply a lookup value, which is then used as a key to search the master data set

Updating Data Using the MODIFY Statement and the KEY= Option 887

to locate the observation. The search is performed through an index created for
that data set. You specify the index name with the KEY= option. Once the
observation is located, you can assign variables new values and perform other
processing on the observation prior to the implicit REPLACE. If the observation is
not located, an appropriate action such as OUTPUT is performed. The SAS data set
supplying the lookup value (specified in the SET statement) must contain the same
names as those specified in the KEY= option.

The following example uses the KEY= option to specify the index with which to
identify observations for retrieval by matching the values of variable partno from
data set work.addinv with the indexed values of variable partno in data set
invty.stock:

data invty.stock;
 set addinv;
 modify invty.stock key=partno;
 if _iorc_=0 then do;
 instock=instock+nwstock;
 recdate=today();
 replace;
 end;
 else _error_=0;
run;

Comparing the Matching Access Method Using the
BY Statement to the Direct Access Method Using
Index Values

The matching access method is a form of the MODIFY statement that uses the a BY
statement to match observations from the transaction data set with observations
in the master data set. For an example that shows the matching access method, see
“Modifying Observations Using a Transaction Data Set” in SAS DATA Step
Statements: Reference.

The direct access method is a form of the MODIFY statement that uses the KEY=
option in the MODIFY statement to name an indexed variable from the data set
that is being modified. For an example that shows the direct access method by
indexed values, see “Modifying Observations Located by an Index” in SAS DATA
Step Statements: Reference.

These two methods (which uses the BY statement) and the direct access method
by using an index (which uses the KEY= option) compare as follows:

888 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n11m2m64sofcd7n1tyam4089e86f&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=p1761ptpp69dumn13q4srao94evj&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=p1761ptpp69dumn13q4srao94evj&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n0jw7dhbbwc2j4n1bl1v81oq1cpn&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n0qeq0vwno1ktzn1wihg0gz4xnd9&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n0qeq0vwno1ktzn1wihg0gz4xnd9&locale=en

Table A3.2 Comparing the Matching Access Method Using the BY Statement to the
Direct Access Method Using Index Values

MODIFY with BY Statement MODIFY with KEY= Option

Matching observations in the
master data set are retrieved by a
generated WHERE statement.
The WHERE statement can use
an index created on the master
data set.

Matching observations in the master data set are
retrieved through the index specified with the
KEY= option.

If duplicate BY values exist in the
master data set, only the first
occurrence is updated.

If duplicate KEY= values exist in the master data
set, the duplicate values can be updated by using
a DO UNTIL loop. The DO UNTIL loop can be
written to force the execution of the KEY= option
on the master data set until a non-match
condition occurs. See “Using MODIFY with
Duplicate Key Values in the Master Data Set” on
page 897.

If duplicate BY values exist in the
transaction data set, they are
applied one after another to the
same observation in the master
data set, unless you write an
accumulation statement.
Otherwise, the last duplicate is
applied.

All consecutive duplicates in the transaction are
applied by using the UNIQUE option. . If the
UNIQUE option is not specified, only the first
consecutive duplicate is applied.

All non-consecutive duplicates are applied to the
observation in the master data set one after the
other, so only the last duplicate is applied.
See“Using MODIFY with Duplicate Key Values in
the Transaction Data Set” on page 895.

Performs automatic update of
like-named variables in the
matching observation of the
master data set.

Does not perform automatic update of like-
named variables in the matching observation of
the master data set. See “Performing Automatic
Updates for Like-Named Variables Using KEY=”
on page 890.

Monitoring Update Processing
The best way to test for values of _IORC_ is with the %SYSRC autocall macro,
which enables you to specify a mnemonic name that describes a potential outcome
of an I/O operation. The mnemonic codes provided by %SYSRC are part of the SAS
autocall macro library. Each mnemonic code represents a specific condition to
determine the success of retrieving matching observations. Below is a list of the
most common mnemonics that are available to %SYSRC:

Updating Data Using the MODIFY Statement and the KEY= Option 889

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1021qt3a3n8m2n1vh11ggzhu57n.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n0g9jfr4x5hgsfn17gtma5547lt1.htm&docsetTargetAnchor=n129l1dpc2z3myn1j3bhgi99as1l&locale=en

Table A3.3 Common Mnemonics for the %SYSRC Autocall Macro

Access Method Mnemonic Description

MODIFY with KEY=
option

_DSENOM Specifies that the master data set does not
contain the observation.

MODIFY with BY
statement

_DSENMR Specifies that the transaction data set
observation does not exist in the master data
set.

MODIFY with BY
statement

_DSEMTR Specifies that multiple transaction data set
observations with a given BY value do not
exist in the master data set.

MODIFY with KEY= or
BY statement

_SOK Specifies that the observation was located.

The complete list of mnemonics and their current, corresponding numeric values
and descriptions for _IORC_ are contained in the SYSRC member of the autocall
macro library. You can view the contents of the SYSRC member in the SAS log by
submitting the following code:

options source2;
%include sasautos(sysrc);
run;

The following example uses %SYSRC to test for successful matching of
observations. The example uses the mnemonic _SOK, which indicates that the I/O
operation was successful

data master;
modify master trans updatemode=nomissingcheck;
by ssn;
if _iorc_=%sysrc(_sok) then replace;
else _error_ =0;
run;

Note: Beginning with Version 7, the IORCMSG function returns a formatted error
message associated with the current value of _IORC_.

Performing Automatic Updates for Like-Named
Variables Using KEY=

Unlike using the BY statement, automatic updates of like-named variables does not
occur with the KEY= option. However, when you have many variables to update, it
is convenient to have this ability, which you can achieve by using the SET

890 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

statement and the POINT= option in conjunction with the MODIFY statement.
Observe the order of the following statements:

data master;
 set trans;
 modify master key=ssn;
 i+1;
 if _iorc_=%sysrc(_sok) then do;
 13
 set trans point=i;
 replace;
 end;
 else _error_=0;
run;

The SET statement loads the values of the trans variables into the PDV. Next, the
MODIFY statement is executed. The values of all like-named variables in the PDV
are overlaid with the values from the master data set when a fetch is successful. If
a REPLACE or OUTPUT statement were executed at this point, master would be
updated with the master values in the PDV for the like-named variables.

However, the above code issues a second SET statement, using the POINT= option
(with the counter i+1) to read the same observation in the trans data set. This
effectively updates the PDV with the like-named variables from the trans data set.
As discussed earlier, the POINT= option specifies a variable from another data
source whose value is the number of an observation that you want to modify in the
master data set.

If you have only a few variables to update, you can rely on the normal processing of
the KEY= option, along with explicit assignment statements. When using KEY=, the
trans data set must have variables with the same name as those key variables
used to create the index on the master data set. The trans data set is read with the
SET statement and the values for the key variables are loaded into the PDV. The
value loaded into the PDV is used against the index values of the master data set
specified by the KEY= option to fetch the matching observation.

No automatic update of the values for like-named variables occurs between the
trans and master data set. So in order to change the value of a given variable, an
explicit assignment of the master data set variable is made.

Explicit assignment of like-named variable values presents a problem, however,
because the variables you want to assign have the same name in both the master
and the trans data sets. You can use the RENAME= data set option to rename the
variables in one data set before assigning the values.

This use of the RENAME= data set option is illustrated in the following example.
Both data sets contain variables with the same name, except for the key variables.
An explicit assignment statement is used to update the variable nickname in the
master data set with the values of the variable nickname in the trans data set. To
make the explicit assignment, the RENAME= data set option is used to rename the
variable nickname to tnickname in the trans data set. The nickname variable in the
master data set is set equal to the tnickname variable in the trans data set

Table A3.4 Input Data Sets Containing Like-named Variables

data master(index=(ssn)); data trans;

Updating Data Using the MODIFY Statement and the KEY= Option 891

 input ssn : $11. nickname $;
datalines;
161-60-5881 Joshua
160-58-1223 Kathryn
134-56-9094 Megan
;

 input ssn : $11. nickname $;
datalines;
161-60-5881 Josh
160-58-1223 Kate
134-56-9094 Meg
142-67-9888 Bill
;

data master;
 set trans(rename=(nickname=tnicknam));
 modify master key=ssn;
 if _iorc_=%sysrc(_sok) then do;
 nickname=tnicknam;
 replace;
 end;
 else _error_ = 0;
run;

Using MODIFY in a SAS/SHARE Environment
In a SAS/SHARE environment, the control level for updating using the MODIFY
statement is dependent on the access method being used:

n A MODIFY statement without the POINT= option or KEY= option has a control
level of RECORD, which means that other tasks can read or update the data set
but no SAS task can open it for output.

n A MODIFY statement with the POINT= option or KEY= option has a control
level of MEMBER, which means that other tasks cannot access the data.

The differences between the MODIFY and SET statements are listed below:

Table A3.5 Comparing MODIFY to SET Statement

MODIFY Statement SET Statement

Updates the original data set
opened in update mode without
creating a copy.

Creates a temporary data set with the updates
applied. Upon successful completion of the
DATA step, the original data set is replaced
with the temporary data set if the DATA
statement and the SET statement refer to the
same data set name. If the data set name is
different, the temporary data set is renamed to
that existing in the DATA statement.

Generates an implicit REPLACE
statement at the bottom of the
DATA step.

Generates an implicit OUTPUT statement at
the bottom of the DATA step.

892 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

MODIFY Statement SET Statement

Variables cannot be added or
dropped from the modified data
set. The header information for a
data set opened for update cannot
be modified.

The output data set can contain new variables
and variables existing in the lookup and
primary data sets.

The REPLACE statement updates
the current observation of the
original data set.

The REPLACE statement is not valid since a
copy of the original observation is updated and
OUTPUT.

The original data set is updated
with missing values from the
transaction data set using the
UPDATEMODE= option.

The UPDATEMODE= option is not valid since a
copy of the original observation is updated
with missing values and OUTPUT.

Understanding the KEY= Option
Both the MODIFY and SET statements support the KEY= option, which allows
applications to specify an index in order to retrieve particular observations in a data
set based on the indexed values. Using KEY= with the MODIFY statement is
explained earlier in this appendix for the Direct Access by Index Values method.
The next topic explains using KEY= with the SET statement. Then subsequent
topics cover issues regarding KEY= for both the MODIFY and SET statements, such
as when duplicate values exist for the key variable.

Using KEY= with the SET Statement

This topic does not explain the SET statement in general but does explain using the
KEY= option in the SET statement. For more details about the SET statement, see
“SET Statement” in SAS DATA Step Statements: Reference.

The syntax for the SET statement is as follows:

SET SAS-data-sets <(data-set-options)><NOBS=variable> <END=variable>
<POINT=variable | KEY=index> </ UNIQUE> ;

KEY= provides non-sequential access to observations in a data set through an
index created for one or more variables. The index can be either simple or
composite. You cannot, however, use KEY= with the POINT= option.

As with the MODIFY statement, using the _IORC_ automatic variable in conjunction
with the %SYSRC autocall macro provides more error-handling information. When
you use the SET statement with KEY=, _IORC_ is created and set to a return code
that indicates the status of the most recent I/O operation performed on an
observation in the data set. If the KEY= value is not found in the master data set,

Updating Data Using the MODIFY Statement and the KEY= Option 893

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p00hxg3x8lwivcn1f0e9axziw57y.htm&locale=en

IORC returns a numeric value that corresponds to the %SYSRC autocall macro's
mnemonic _DSENOM and the automatic variable _ERROR_ is set to 1.

Note: When issuing multiple SET statements using the KEY= option, you must
perform separate error checking of the automatic variable _IORC_on each data set.
That is, in order to produce an accurate output data set, test the _IORC_ variable
following each SET statement using the KEY= option.

Using the SET statement with KEY= supports the concept of lookup values. The
lookup value can be provided through another SAS data set, an external file, a view,
or a FRAME entry. For Version 6, the lookup data set must be a native SAS data set.
Version 7 supports SAS/ACCESS views and the DBMS engine for the LIBNAME
statement.

data combine;
 set lookup;
 set primary key=partno;
 select(_iorc_);
 when (%sysrc(_sok)) do;
 output;
 end;
 when (%sysrc(_dsenom)) do;
 error = 0;
 end;
 otherwise;
 end;
run;

The lookup value from the lookup data source is used as a key to locate
observations in the primary or master data set. This primary data set must be
indexed (either simple or composite) and specified with the KEY= option. The
lookup values must be provided through variables named the same as the key
variables in the primary data set. For example, if the lookup data source is a SAS
data set, it must contain variables with the same name as those defined to the
index of the primary data set. Once the observation is successfully fetched from
the primary data set, an action such as OUTPUT can be performed on the
observation.

Note: If a DROP or KEEP is not specified, using the KEY= option combines all
variables on the lookup data set and the primary data set. That is, the output data
set contains not only the variables from the lookup data set, but also all the
variables in the primary data set. This does not happen with KEY= and the MODIFY
statement.

Handling Duplicate Values for Key Variable

When using the KEY= option to create an index, multiple observations might
contain the same values for the key variable in the input data sets or the data set
supplying the index values.

894 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

Using MODIFY with Duplicate Key Values in the
Transaction Data Set

Having duplicate values for the key variable in the transaction data set can affect
the results when they are applied to the master data set. In addition, whether the
duplicate values are consecutive or non-consecutive also affect the results.

For example, consider the following two programs, which are identical except for
the order of the duplicate values for the key variable ssn in the trans data set.
Notice that in Program 1, the trans data set has duplicate key values of
160-58-1223, but they are not consecutive; Program 2 also has the duplicate
values, but they are consecutive.

Table A3.6 How Ordering of Duplicate KEY= Values Affects Output

Program 1 Program 2

data master(index=(ssn));
 input ssn : $11. nickname $;
datalines;
161-60-5881 Joshua
160-58-1223 Kathryn
134-56-9094 Megan
;

data trans;
 input ssn : $11. tnicknam $;
datalines;
161-60-5881 Josh
160-58-1223 Kathy
134-56-9094 Meg
142-67-9888 Bill
160-58-1223 Kate
;

data master;
 set trans;
 modify master key=ssn;
 if _iorc_=%sysrc(_sok) then do;
 nickname=tnicknam;
 replace;
 end;
 else_error_=0;
run;

data master(index=(ssn));
 input ssn : $11. nickname $;
datalines;
161-60-5881 Joshua
160-58-1223 Kathryn
134-56-9094 Megan
;

data trans;
 input ssn : $11. tnicknam $;
datalines;
161-60-5881 Josh
160-58-1223 Kathy
160-58-1223 Kate
134-56-9094 Meg
142-67-9888 Bill
;

data master;
 set trans;
 modify master key=ssn;
 if _iorc_=%sysrc(_sok) then do;
 nickname=tnicknam;
 replace;
 end;
 else_error_=0;
run;

The following PRINT procedure shows the results of the above programs.

Note: The DATA= option is used with PROC PRINT to specify the master data set.
If DATA= is not specified, PROC PRINT displays the last created data set opened
for output, which might not be the last one you opened for update.

Updating Data Using the MODIFY Statement and the KEY= Option 895

proc print data=master;
run;

n From Program 1, the value for nickname in the resulting master data set is Kate,
which is the value of the last observation in the trans data set with the
corresponding Social Security number.

OBS SSN nickname
1 161-60-5881 Josh
2 160-58-1223 Kate
3 134-56-9094 Meg

n From Program 2, the consecutive value of is Kate for ssn in the trans data set.
That value does not update the master data set. The consecutive record of Kate
actually causes a non-match to occur, and only the first observation in trans
with the corresponding value is applied.

OBS SSN nickname
1 161-60-5881 Josh
2 160-58-1223 Kathy
3 134-56-9094 Meg

The order of duplicate key values in trans affects the results of the master data
set. When searching the index, SAS begins at the top of the index only when the
value of the key variable changes in the trans data set.

If the duplicate key values in the trans data set are not consecutive, the search
starts from the top of the index in both searches for Social Security number
160-58-1223. Therefore, the one and only matched value in the master data set is
located and updated both times, so the value in the last duplicate observation is
applied.

For consecutive duplicate key variable values in the trans data set, when the first
value of 160-58-1223 is supplied by the trans data set, the value for the key
variable changes – the index search of the master data set begins at the top and the
observation is found. The nickname variable in master is updated to Kathy. When
the consecutive value of 160-58-1223 is supplied by the trans data set, the value
does not change. Therefore, the search does not begin at the top of the master
index; rather, it begins from the current position in the index structure. The
observation is not found, and an update is not performed for the subsequent
duplicate observations. Only the value in the first duplicate is applied.

To assure the same result whether duplicates in trans are consecutive or not, you
can force the software to begin the search at the top of the index by specifying the
UNIQUE option in the MODIFY statement. The UNIQUE option specifies to search
from the top of the index, regardless of whether the key variable value changes
from one iteration to the next.

The following code uses the UNIQUE option to produce the same results for each
program. For readability purposes, the IF statement is coded as a SELECT
statement instead.

Table A3.7 Input Master and Transition Data Sets

data master(index=(ssn)); data trans;

896 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

 input ssn : $11. Nickname $;
datalines;
161-60-5881 Joshua
160-58-1223 Kathryn
134-56-9094 Megan
;

 input ssn : $11. tnicknam $;
datalines;
161-60-5881 Josh
160-58-1223 Kathy
160-58-1223 Kate
134-56-9094 Meg
142-67-9888 Bill
;

data master;
 set trans;
 modify master key=ssn/unique;
 select (_iorc_);
 when (%sysrc(_sok)) do;
 nickname=tnicknam;
 replace master;
 end;
 when (%sysrc(_dsenom)) do;
 error=0;
 end;
 otherwise;
 end;

proc print data=master;
run;

OBS SSN nickname
1 161-60-5881 Josh
2 160-58-1223 Kate
3 134-56-9094 Meg

Using MODIFY with Duplicate Key Values in the
Master Data Set

Having duplicate values for the key variable in the master data set can affect the
results if you want to update all duplicates in the master data set with a
corresponding unique value in the transaction data set.

For example, the trans data set observation with the ssn value of 161-60-5881
updates only the first corresponding observation of the ssn variable in the master
data set to the value of Josh. Notice that in the PROC PRINT results, the
highlighted record is updated.

Table A3.8 Input Data Sets Master and Trans

data master(index=(ssn));
 input ssn : $11. nickname $;
datalines;
161-60-5881 Joshua
161-60-5881 Joshua
160-58-1223 Kathryn

data trans;
 input ssn : $11. nickname $;
datalines;
161-60-5881 Josh
160-58-1223 Kathy
134-56-9094 Meg

Updating Data Using the MODIFY Statement and the KEY= Option 897

134-56-9094 Megan
;

142-67-9888 Bill
;

data master;
 set trans(rename=(nickname=tnicknam));
 modify master key=ssn;
 select (_iorc_);
 when (%sysrc(_sok)) do;
 nickname=tnicknam;
 replace master;
 end;
 when (%sysrc(_dsenom)) do;
 error=0;
 end;
 otherwise;
 end;

proc print data=master;
run;

OBS SSN nickname
1 161-60-5881 Josh
2 161-60-5881 Joshua
3 160-58-1223 Kathy
4 134-56-9094 Meg

To update variable Nickname for multiple observations in the master data set with
the unique, corresponding observation in the trans data set, force a continuous
search of the master data set’s index file using a DO UNTIL loop until a non-match
condition is encountered. Notice that the highlighted observations from the PRINT
procedure indicate that all corresponding records of the ssn value 161-60-5881 are
now updated in the master data set.

Table A3.9 Input Data Sets Master and Trans

data master(index=(ssn));
 input ssn : $11. nickname $;
datalines;
161-60-5881 Joshua
161-60-5881 Joshua
160-58-1223 Kathryn
134-56-9094 Megan
;

data trans;
 input ssn : $11. tnicknam $;
datalines;
161-60-5881 Josh
160-58-1223 Kathy
134-56-9094 Meg
142-67-9888 Bill
;

data master;
 set trans;
 do until (_iorc_=%sysrc(_dsenom));
 modify master key=ssn;
 select (_iorc_);
 when (%sysrc(_sok)) do;
 nickname=tnicknam;
 replace master;
 end;

898 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

 when (%sysrc(_dsenom)) do;
 error=0;
 end;
 otherwise;
 end;
end;

proc print data=master;
run;

OBS SSN nickname
1 161-60-5881 Josh
2 161-60-5881 Josh
3 160-58-1223 Kathy
4 134-56-9094 Meg

Using MODIFY with Duplicate Key Values in the
Master Data Set and the Transaction Data Set

If duplicate values of the key variable exist in both the master data set and the
transaction data set, updating each corresponding master observation with each
corresponding transaction observation requires additional BY processing.

When consecutive duplicate values of ssn are supplied by the transaction data set,
you have seen how the UNIQUE option forces a search to start from the top of the
index. For this situation, however, if you use the UNIQUE option, the same
observation in the master data set is located and updated. Therefore, the duplicate
observations in master are not updated.

You must force the search to start at the top of the index by changing the key
variable without using the UNIQUE option, and it must happen between each
observation of the same ssn. Because you need to change the key variable between
consecutive values of ssn in the trans data set, use BY processing to determine
whether more observations of the same ssn in the trans data set are supplied.
Therefore, the trans data set must be sorted for BY processing. To continue the
search in the index for all corresponding matches, use a DO UNTIL statement to
process until a non-match situation is encountered in master.

The following example shows how to temporarily change the key variable value to
a value that is not located in the master data set.

Table A3.10 Input Data Sets Master and Trans

data master(index=(ssn));
 input ssn : $11. nickname $;
datalines;
161-60-5881 Joshua
161-60-5881 Joshua
160-58-1223 Kathryn
160-58-1223 Kathryn
134-56-9094 Megan

data trans;
 input ssn : $11. tnicknam $;
datalines;
161-60-5881 Josh
160-58-1223 Kathy
160-58-1223 Kate
134-56-9094 Meg
142-67-9888 Bill

Updating Data Using the MODIFY Statement and the KEY= Option 899

; ;

proc sort data=trans;
 by ssn;

data master;
 set trans;
 by ssn;
 dummy=0;
 do until (_iorc_=%sysrc(_dsenom));
 if dummy then ssn=’999-99-9999’;
 modify master key=ssn;
 select (_iorc_);
 when (%sysrc(_sok)) do;
 nickname=tnicknam;
 replace master;
 end;
 when (%sysrc(_dsenom)) do;
 error=0;
 if not last.ssn and not dummy then do;
 dummy=1;
 iorc=0;
 end;
 end;
 otherwise;
 end;
 ;

proc print data=master;
run;

OBS SSN nickname
1 161-60-5881 Josh
2 161-60-5881 Josh
3 160-58-1223 Kate
4 160-58-1223 Kate
5 134-56-9094 Meg

Using SET with Duplicate Key Values in the Lookup
Data Set

Like KEY= with MODIFY, execution of the SET statement with the KEY= option
forces a search to begin at the top of the index only when the value of the KEY=
variable changes in the lookup data set between fetch operations. If duplicate
values for the key variable exist consecutively in the lookup data set, the value
does not change between executions. Therefore, to force the search to begin at the
top, use the UNIQUE option. With non-consecutive duplicate values, the search
begins at the top of the index structure.

900 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

Using SET with Duplicate Key Values in the the
Primary Data Set

Duplicate values for the key variable in the primary data set have the same effect
with SET as previously described with MODIFY. The software locates and returns
the first occurrence of the key variable in the index, unless the statement with the
KEY= option is forced to execute again using the same key value. As with MODIFY,
you can force the continuation of this search of the primary index structure with the
DO UNTIL statement. Notice that the bolded observations from the PRINT
procedure indicate that all corresponding observations for Partno A066 exist in the
output data set.

Table A3.11 Input Data Sets Lookup and Primary

data lookup;
 input partno $ quantity;
datalines;
A066 8
A220 2
A812 10
;

data primary(index=(partno));
 input partno $ desc $;
datalines;
A021 motor
A033 bolt
A043 nut
A055 radiator
A066 hose
A066 hose2
A066 hose3
A078 knob
A220 switch
A223 bridge
;

data combine;
 set lookup;
 do until(_iorc_=%sysrc(_dsenom));
 set primary key=partno;
 select(_iorc_);
 when (%sysrc(_sok)) do;
 output;
 end;
 when (%sysrc(_dsenom)) do;
 error=0;
 end;
 otherwise;
 end;
 end;

proc print data=combine;
run;

Updating Data Using the MODIFY Statement and the KEY= Option 901

OBS PARTNO QUANTITY DESC
1 A066 8 hose
2 A066 8 hose2
3 A066 8 hose3
4 A220 2 switch

Using SET with Duplicate Key Values in the Primary
Data Set and the Lookup Data Set

To combine data sets when duplicate values for a key variable exist in both the
primary data set and the lookup data set, use the same concept discussed for the
MODIFY statement. See Using MODIFY with Duplicate Key Values in master data
set and transaction data set.

Table A3.12 Input Data Sets Lookup and Primary

data lookup;
 input partno $ district;
datalines;
A066 1
A066 2
A220 2
A812 10
;

data primary(index=(partno));
 input partno $ desc $;
datalines;
A021 motor
A033 bolt
A043 nut
A055 radiator
A066 hose
A066 hose2
A066 hose3
A078 knob
A220 switch
223 bridge
;

proc sql;
 create table shiplst as
 select a.*, b.desc
 from lookup as a, primary as b
 where a.partno=b.partno;
quit;

proc print data=shiplst;
run;

OBS PARTNO DISTRICT DESC
1 A066 1 hose
2 A066 2 hose
3 A066 1 hose2
4 A066 2 hose2
5 A066 1 hose3
6 A066 2 hose3
7 A220 2 switch

902 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

Combining Data Sets with Non-Matching
Observations

Each time that the SET statement is executed, one observation is read from the
current data set opened for input into the PDV. The SET statement reads all
variables and all observations from the input data sets unless you specify to do
otherwise. You can use multiple SET statements to perform one-to-one reading
(also called one-to-one matching) of the specified data sets. The new data set
contains all the variables from all the input data sets. The number of observations
in the new data set is the number of observations in the smallest original data set.
If the data sets contain common variables, the values that are read in from the last
data set replace those read in from previous ones.

When combining SAS data sets with multiple SET statements, SAS does not
reinitialize existing variables to missing for each DATA step iteration. The
nonmissing value on the output data set is the retained value in the PDV from the
most recent match that occurred.

In the following example, the observation in the lookup data set with the value
A812 for Partno is not located in the primary data set. The DESC variable loaded in
the PDV currently holds the value switch from the last successful match for Partno
value A220. Because a match does not occur, this DESC variable value is not
overwritten in the PDV with a new value for Partno A812.

Table A3.13 Input Data Sets Lookup and Primary

data lookup;
 input partno $ quantity;
datalines;
A066 8
A220 2
A812 10
;

data primary(index=(partno));
 input partno $ desc $;
datalines;
A021 motor
A033 bolt
A043 nut
A055 radiator
A066 hose
A078 knob
A220 switch
A223 bridge
;

data combine;
 set lookup;
 set primary key=partno;
 select(_iorc_);
 when (%sysrc(_sok)) do;
 output;
 end;
 when (%sysrc(_dsenom)) do;
 error=0;
 *desc = ' ';
 output;
 end;

Updating Data Using the MODIFY Statement and the KEY= Option 903

 otherwise;
 end;

proc print data=combine;
run;

OBS PARTNO QUANTITY DESC
1 A066 8 hose
2 A220 2 switch
3 A812 10 switch

To write a missing value for DESC that does not exist in the primary data set to the
output data set, you must execute an explicit assignment statement. In the
assignment statement, set the DESC value equal to missing. This overwrites the
retained value in the PDV with the desired value of missing. In the example code
above, uncomment the DESC= code for the desired output.

Adding Variables to the Output Data Set

Using the SET statement to open a data set for output enables you to add a new
variable through an assignment statement to an output data set. When this occurs,
the new variable is reset to missing for each iteration of the DATA step. The
following example shows that the STATUS variable is automatically set to missing
without assigning a missing value, when a non-match occurs in an observation from
the primary data set.

Table A3.14 Input Data Sets Lookup and Primary

data lookup;
 input partno $ quantity;
datalines;
A066 8
A220 2
A812 10
;

data primary(index=(partno));
 input partno $ desc $;
datalines;
A021 motor
A033 bolt
A043 nut
A055 radiator
A066 hose
A078 knob
A220 switch
A223 bridge
;

data combine;
 set lookup;
 set primary key=partno;
 select(_iorc_);
 when (%sysrc(_sok)) do;
 status="available";
 output;
 end;
 when (%sysrc(_dsenom)) do;
 desc=' ';

904 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

 error=0;
 output;
 end;
 otherwise;
 end;

proc print data=combine;
run;

OBS PARTNO QUANTITY DESC STATUS
1 A066 8 hose available
2 A220 2 switch available
3 A812 10

Using SET with KEY= in a SAS/SHARE Environment

In a SAS/SHARE environment, the control level for updating using SET with KEY=
is MEMBER. This means that other tasks can read the data set, but no SAS task can
open it for update or output.

Version 7 and Version 8 Considerations

Using the DBKEY= SAS/ACCESS Data Set Option with KEY=
SAS/ACCESS software provides several data set options to improve performance
when accessing data in a DBMS. The DBKEY= data set option enables you to
specify variable names to use as an index. The software uses the specified variable
names as an index by constructing and passing a WHERE expression to the DBMS.

DBKEY= can be used to improve performance just as indexing a SAS data file can
improve performance. For example, to improve the performance, the DBKEY=
option can be used in a DATA step with the KEY= option in a SET statement. Note
that you must specify the keyword DBKEY as the value of the KEY= option.

The following DATA step creates a new data file by joining data file keyvalues with
the DBMS table mytable. The software uses the variable deptno with the DBKEY=
data set option to cause a WHERE expression to be passed to the DBMS.
Performance benefits might occur if the DBMS optimizer selects to optimize the
WHERE expression with an existing index on the DBMS table.

data sasuser.new;
 set sasuser.keyvalues;
 set dblib.mytable (dbkey=deptno) key=dbkey;
run;

Updating Data Using the MODIFY Statement and the KEY= Option 905

906 Appendix 3 / Updating Data Using the MODIFY Statement and the KEY= Option

	Contents
	About This Book
	Audience
	Syntax and Other References

	Introduction
	The SAS Language
	About the SAS System
	Definition of Base SAS Software
	Components of Base SAS Software
	Base SAS Language Definitions
	SAS Files
	External Files
	Database Management System Files
	SAS Language Elements
	Global Statements
	SAS Macro Facility
	SAS Engines
	Additional Languages

	Anatomy of a SAS Program
	Ways to Submit SAS Programs
	Customizing Your SAS Session
	Scope of This Book
	Operating Environment Information
	Using
This Book

	SAS Processing
	Definition of SAS Processing
	Types of Input to a SAS Program
	The DATA Step
	Definition of the DATA Step
	DATA Step Output

	The PROC Step
	What Does the PROC Step Do?
	PROC Step Output

	SAS Processing Restrictions for Servers in a Locked-Down State
	General Information
	z/OS Specific Information
	Restricted Features
	Disabled Features

	Specifying Functions in the Lockdown Path List

	DATA Step Processing
	Why Use a DATA Step?
	About Creating a SAS Data Set with a DATA Step
	Creating a SAS Data Set or a SAS View
	Sources of Input Data

	Reading Raw Data: Examples
	Reading External File Data
	Example Code
	Key Ideas

	Reading Instream Data Lines
	Example Code
	Key Ideas

	Reading Instream Data Lines with Missing Values
	Example Code
	Key Ideas

	Using Multiple Input Files in Instream Data
	Example Code
	Key Ideas

	Reading Data from SAS Data Sets
	Example Code
	Key Ideas

	Generating Data from Programming Statements
	Example Code
	Generating Data from Programming Statements

	Key Ideas

	DATA Step Processing Time
	Stored Compiled DATA Step Programs

	Syntax
	Words and Names
	SAS Words
	Definition of a SAS Word
	Types of Words or Tokens
	Placement and Spacing of Words

	SAS Names
	Definition of a SAS Name
	Rules for Most SAS Names
	Length Rules for Names
	Extending SAS Names

	SAS Name Literals
	Definition of SAS Name Literals
	Important Restrictions
	Using Name Literals in BY Groups
	Avoiding Errors When Using Name Literals

	Variable Names
	Rules for Variable Names
	Extended Rules for SAS Variables

	Member Names
	Rules for Member Names
	Extended Rules for SAS Member Names

	Data Set Names
	Definition of a Data Set Name
	Structure of a Data Set Name
	Levels
	One-level Names
	Two-level Names

	Special Data Set Names
	DATA Data Set
	LAST Data Set
	NULL Data Set

	Rules for Naming SAS Data Sets and Variables
	Extended Rules for Naming SAS Data Sets and Variables

	Examples: SAS Words and Names
	Example: Create a Variable Name Containing Blanks
	Example Code
	Key Ideas
	See Also

	Example: Create a SAS Data Set Name Containing a Special Character
	Example Code
	Key Ideas
	See Also

	Example: Manage Placement and Spacing of Words
	Example Code
	Key Ideas
	See Also

	Example: Specify the FIRST. and LAST. BY Variables as Name
Literals
	Example Code
	Key Ideas
	See Also

	Example: Create a One-Level Data Set Name
	Example Code
	Key Ideas
	See Also

	Example: Create a Two-Level Data Set Name
	Example Code
	Key Ideas
	See Also

	Example: Use the Automatic Naming Feature for Naming Data Sets
	Example Code
	Key Ideas
	See Also

	Example: Use the _LAST_= System Option to Specify the Default
Input Data Set
	Example Code
	Key Ideas
	See Also

	Variables
	Definition of SAS Variables
	Ways to Create Variables
	Creating a New Variable in a Formatted INPUT Statement
	Manage Variables
	Modify Variables
	Specifying a New Variable in a FORMAT or INFORMAT Statement
	Specifying a New Variable in the ATTRIB Statement
	Control Output of Variables
	Using Statements or Data Set Options
	Using the Input or Output Data Set
	Order of Application

	Variable Attributes
	Definition

	Data Types
	Definitions
	Numeric Data
	Character Data

	Variable Type Conversions
	Automatic Character-to-Numeric Conversion
	Explicit Character-to-Numeric Conversion
	Automatic Numeric-to-Character Conversion
	Explicit Numeric-to-Character Conversion

	Automatic Variables
	Automatic DATA Step Variables
	Automatic Macro Variables

	SAS Variable Lists
	Definition of a Variable List
	Types of Variable Lists
	The OF Operator with Functions and Variable Lists
	Definition

	Missing Variable Values
	Definition of Missing Values
	How to Represent Missing Values in Raw Data
	Special Missing Values
	Definition
	Tips for Special Missing Values

	Order of Missing Values
	Numeric Variables
	Character Variables

	When Variable Values Are Automatically Set to Missing by SAS
	When Reading Raw Data
	When Reading a SAS Data Set

	When Missing Values Are Generated by SAS
	Propagate Missing Values in Calculations
	Prevent Propagation of Missing Values
	Invalid Operations
	Invalid Character-to-Numeric Conversions

	Numeric Precision
	Overview
	Truncation in Binary Numbers
	How SAS Stores Numeric Values
	Maximum Integer Size
	Floating-Point Representation
	Precision versus Magnitude

	Floating-Point Representation Using the IEEE Standard
	Floating-Point Representation on Windows
	Storage Format
	Accuracy on x64 Windows Processors

	Floating-Point Representation on IBM Mainframes
	Storage Format

	Troubleshooting Errors in Precision
	Computational Considerations
	Using the LENGTH Statement When Comparing Values
	Using the TRUNC Function When Comparing Values
	Double-Precision versus Single-Precision Floating-Point Numbers

	Transferring Data between Operating Systems

	Examples: Create and Modify SAS Variables
	Example: Create a SAS Variable Using an Assignment Statement
	Example Code
	Key Ideas
	See Also

	Example: Create a Variable Using the INPUT Statement
	Example Code
	Key Ideas
	See Also

	Example: Modify a SAS Variable Using the LENGTH Statement
	Example Code
	Key Ideas
	See Also

	Example: Modify a SAS Variable Using the FORMAT and INFORMAT
Statement
	Example Code
	Key Ideas
	See Also

	Example: Modify a SAS Variable Using the ATTRIB Statement
	Example Code
	Key Ideas
	See Also

	Example: View Variable Attributes
	Example Code
	Key Ideas
	See Also

	Example: Change Variable Attributes
	Example Code
	Key Ideas
	See Also

	Examples: Control Output of Variables
	Example: Select Specific Variables for Output
	Example Code
	Key Ideas
	See Also

	Example: Select Specific Variables for Processing
	Example Code
	Key Ideas
	See Also

	Examples: Reorder and Align Variables
	Example: Reorder Variables Using the ATTRIB Statement
	Example Code
	Key Ideas
	See Also

	Example: Reorder Variables Using the LENGTH Statement
	Example Code
	Key Ideas
	See Also

	Example: Reorder Variables Using the RETAIN Statement
	Example Code
	Key Ideas
	See Also

	Example: Reorder Variables Using the FORMAT Statement
	Example Code
	Key Ideas
	See Also

	Examples: Convert Variable Types
	Example: Convert Character Variables to Numeric
	Example Code
	Key Ideas
	See Also

	Example: Convert Numeric Variables to Character
	Example Code
	Key Ideas
	See Also

	Example: Use Automatic Type Conversions
	Example Code
	Key Ideas
	See Also

	Examples: Use Automatic Variables
	Example: Use the _N_ Automatic Variable
	Example Code
	Key Ideas
	See Also

	Example: Use the _ERROR_ and _INFILE_ Automatic Variable with
the IF/THEN Statement
	Example Code
	Key Ideas
	See Also

	Examples: Use Variable Lists
	Example: Create a Variable Numbered Range List
	Example Code
	Key Ideas
	See Also

	Example: Create a Variable Name Range List
	Example Code
	Key Ideas
	See Also

	Example: Use the OF Operator with a Variable List
	Example Code
	Key Ideas
	See Also

	Example: Use the OF Operator to Create Multiple Variable Lists
	Example Code
	Key Ideas
	See Also

	Examples: Manage Missing Variable Values
	Example: Automatically Replacing Missing Values
	Example Code
	Key Ideas
	See Also

	Example: Creating Special Missing Values
	Example Code
	Key Ideas
	See Also

	Example: Preventing Propagation of Missing Values
	Example Code
	Key Ideas
	See Also

	Examples: Manage Problems Related to Precision
	Example: Compare Imprecise Values in SAS
	Example Code
	Key Ideas
	See Also

	Example: Convert a Decimal Value to a Floating Point Representation
	Example Code
	Key Ideas
	See Also

	Example: Convert a Decimal Value to a Hexadecimal Floating-Point
Representation
	Example Code
	Key Ideas
	See Also

	Example: Round Values to Avoid Computational Errors
	Example Code
	Example Code
	Key Ideas
	See Also

	Example: Use the LENGTH Statement to Compare Values
	Example Code
	Key Ideas
	See Also

	Example: Compare Values That Have Imprecise Representations
	Example Code
	Key Ideas
	See Also

	Example: Confirm Precision Errors Using Formats
	Example Code
	Example Code
	Key Ideas
	See Also

	Example: Determine How Many Bytes Are Needed to Store a Number
Accurately
	Example Code
	Key Ideas
	See Also

	Example: Generate Inaccurate Results For Large Data
	Example Code
	Key Ideas
	See Also

	Examples: Encrypt Variable Values
	Example: Create a Simple 1-Byte-to-1-Byte Swap Using the TRANSLATE
Function
	Example Code
	Key Ideas
	See Also

	Example: Use a 1-Byte-to-2-Byte Swap Using the TRANWRD Function
	Example Code
	Key Ideas
	See Also

	Example: Use Different Functions to Encrypt Numeric Values
as Character Strings
	Example Code
	Key Ideas
	See Also

	Data Types
	Data Types in SAS
	Data Types in SAS Viya
	Summary of CAS LIBNAME Engine Data Types
	VARCHAR Data Type
	Definition
	Details
	Example: Create a VARCHAR Using the LENGTH Statement
	Example: Create a VARCHAR Variable Using the ARRAY Statement
	When to Use a VARCHAR Data Type
	Range
	Setting Missing VARCHAR Variables
	VARCHAR Support for Implicit and Explicit Data Type Conversion
	PROC CONTENTS Output for VARCHAR Variables
	VARCHAR Length with Implicit Type Conversion
	VARCHAR Variable Storage
	Restrictions for the VARCHAR Data Type in the CAS Engine

	Support for Implicit Declaration of Data Types

	SAS Expressions
	SAS Expressions
	Definitions
	Use of SAS Expressions

	SAS Constants in Expressions
	SAS Variables in Expressions
	SAS Functions in Expressions
	SAS Operators in Expressions

	SAS Constants
	SAS Constants in Expressions
	Definitions
	Character Constants
	Definition
	Character Constants and Character Variables
	Apostrophes and Quotation Marks within Character Constants
	Character Constants Expressed in Hexadecimal Notation
	Avoiding a Common Error with Character Constants

	Numeric Constants
	Definition
	Numeric Constants Expressed in Standard Notation
	Numeric Constants Expressed in Scientific Notation
	Numeric Constants Expressed in Hexadecimal Notation

	Date, Time, and Datetime Constants
	Bit Testing Constants

	Examples: Expressions and Constants
	Example: Use Character Constants in Expressions
	Example Code
	Key Ideas
	See Also

	Example: Compare Character Constants with Character Variables
	Example Code
	Key Ideas
	See Also

	Example: Use Quotation Marks Within Strings
	Example Code
	Key Ideas
	See Also

	Example: Define Character Constants in Hexadecimal Notation
	Example Code
	Key Ideas
	See Also

	Example: Define Numeric Constants in Standard Notation
	Example Code
	Key Ideas
	See Also

	Example: Define Numeric Constants in Scientific Notation
	Example Code
	Key Ideas
	See Also

	Example: Define Numeric Constants in Hexadecimal Notation
	Example Code
	Key Ideas
	See Also

	Example: Define Date, Time, and Datetime Values in Date Constants
	Example Code
	Key Ideas
	See Also

	Example: Bit Test a Variable’s Value
	Example Code
	Key Ideas
	See Also

	Example: Avoiding a Common Error with Constants
	Example Code
	Key Ideas
	See Also

	Operators
	SAS Operators
	Definitions for SAS Operators
	Arithmetic Operators
	Comparison Operators
	Ways to Make Comparisons
	Numeric Comparisons
	Character Comparisons
	IN Operator
	Why Use the IN Operator?

	Logical Operators
	Ways to Use Logical Operators
	AND Operator
	OR Operator
	NOT Operator
	Logical Numeric Expressions

	MIN and MAX Operators
	Ways to Use MIN and MAX Operators Summary Table
	Comparison of MIN and MAX Operators and MIN and MAX Functions

	Concatenation Operators
	Concatenation Operator Summary Table
	Comparison of the Concatenation Operator and the Concatenation
Function

	Order of Operation in Compound Expressions
	Short-Circuit Evaluation in SAS

	Summary of Ways to Use Operators
	Summary of Ways to Use Operators Tables

	Examples: Operators
	Example: Subset Data Using a Comparison Operator
	Example Code
	Key Ideas
	See Also

	Example: Create Variables Using Comparison Operators
	Example Code
	Key Ideas
	See Also

	Example: Search an Array of Numeric Variable Values Using the
IN Operator
	Example Code
	Key Ideas
	See Also

	Example: Search an Array of Character Variable Values Using
the IN Operator
	Example Code
	Key Ideas
	See Also

	Example: Compare a Specified Prefix of a Character Expression
	Example Code
	Key Ideas
	See Also

	Example: Compare Variables Using Boolean Operators
	Example Code
	Key Ideas
	See Also

	Example: Use the NOT Operator to Reverse the Logic of a Comparison
	Example Code
	Key Ideas
	See Also

	Example: Remove Trailing Blanks Using the TRIM Function in
a Concatenation Operation
	Example Code
	Key Ideas
	See Also

	Dates and Times
	Dates, Times, and Intervals

	Component Objects
	DATA Step Component Objects

	Accessing Data
	SAS Libraries
	Definitions for SAS Libraries
	Elements of a Library Assignment
	Introduction to Assigning Libraries
	Library Name (Libref)
	Rules for Naming a Libref
	Rules for Using a Libref

	Library Engine
	Library Location
	Library Options
	Benefits of Using a Libref
	Accessing Data without Using a Libref

	Library Concatenation
	Definition of SAS Library Concatenation
	How to Concatenate Libraries
	Rules for Library Concatenation

	SAS Default Libraries
	Introduction to SAS Default Libraries
	Work Library (Temporary)
	User Library
	Sashelp Library
	Sasuser Library

	Examples: Access Data by Using a Libref
	Example: Assign a Libref by Using the LIBNAME Statement
	Example Code
	Key Ideas
	See Also

	Example: Assign a Libref by Using a Function
	Example Code
	Key Ideas
	See Also

	Example: Concatenate SAS Libraries
	Example Code
	Key Ideas
	See Also

	Example: Access a Remote SAS Library by Using SAS/CONNECT Software
	Example Code
	Key Ideas
	See Also

	Example: Access a Remote SAS Library on a WebDAV Server
	Example Code
	Key Ideas
	See Also

	Example: Access DBMS Data as a SAS Library
	Example Code
	Key Ideas
	See Also

	Example: Access DBMS Data to Create a SAS View
	Example Code
	Key Ideas
	See Also

	Example: Automatically Create a New Subdirectory for a Library
	Example Code
	Key Ideas
	See Also

	Example: Deassign (Clear) a Libref
	Example Code
	Key Ideas
	See Also

	Examples: Access Data without Using a Libref
	Example: Use the Work Library for Temporary Data
	Example Code
	Key Ideas
	See Also

	Example: Assign the User Library for Permanent Data
	Example Code
	Key Ideas
	See Also

	Example: Access a Data Set by Specifying a Path Name in Quotation
Marks
	Example Code
	Key Ideas
	See Also

	Example: Specify a Fileref for a File That Is Not a Library
Member
	Example Code
	Key Ideas
	See Also

	Examples: View Information about a Library
	Example: Print Information about a Library and Its Members
	Example Code
	Key Ideas
	See Also

	Example: Return Library Attributes by Using the LIBNAME Statement
	Example Code
	Key Ideas
	See Also

	Example: Return Library Location by Using a Function
	Example Code
	Key Ideas
	See Also

	Examples: Manage SAS Libraries
	Example: Copy a SAS Library
	Example Code
	Key Ideas
	See Also

	Example: Migrate a SAS Library
	Example Code
	Key Ideas
	See Also

	Example: Copy a SAS Library by Using a Transport File
	Example Code
	Key Ideas
	See Also

	SAS Engines
	Definitions for SAS Engines
	How Engines Work with Files
	Engine Characteristics
	Summary of SAS Engines
	Default Base SAS Engine (V9 Engine)
	Legacy Engines
	V6 Compatibility Engine
	Tape Engines
	Transport Engine
	SPSS Engine

	Access Patterns
	Levels of Locking
	Operating Environment Information

	Examples: Use a SAS Engine to Process SAS Data
	Example: Assign the V9 Engine in a LIBNAME Statement
	Example Code
	Key Ideas
	See Also

	Example: Assign the SPD Engine in a LIBNAME Statement
	Example Code
	Key Ideas
	See Also

	Example: Read and Write SAS Data in Hadoop by Using the SPD
Engine
	Example Code
	Key Ideas
	See Also

	Example: Avoid Truncation by Using the CVP Engine with the
V9 Engine
	Example Code
	Key Ideas
	See Also

	Example: Load a SAS Data Set to a CAS Server
	Example Code
	Key Ideas
	See Also

	Example: Set a Default Engine
	Example Code
	Key Ideas
	See Also

	Examples: Use a SAS Engine to Process External Data
	Example: Read a Comma-Delimited File
	Example Code
	Key Ideas
	See Also

	Example: Read Microsoft Excel Data by Using a SAS/ACCESS Engine and PROC IMPORT
	Example Code
	Key Ideas
	See Also

	Example: Create Data in a DBMS by Using a SAS/ACCESS Engine
	Example Code
	Key Ideas
	See Also

	Example: Embed a SAS/ACCESS LIBNAME Statement in a PROC SQL
View
	Example Code
	Key Ideas
	See Also

	Example: Access DBMS Data by Using the SQL Pass-Through Facility
	Example Code
	Key Ideas
	See Also

	Example: Import XML Data by Using the XMLV2 Engine
	Prerequisites
	Example Code
	Key Ideas
	See Also

	Example: Import JSON Data by Using the JSON Engine
	Example Code
	Key Ideas
	See Also

	SAS Data Sets
	Definitions for SAS Data Sets
	Definition of a SAS Data Set
	Parts of a SAS Data Set

	Managing SAS Data Sets
	Ways to Read and Create SAS Data Sets
	Ways to Manage Variables in SAS Data Sets
	Ways to Read Rows in SAS Data Sets
	Rules for Naming SAS Data Sets
	Data Set Name Lists

	Generation Data Sets
	Examples: Create and Read SAS Data Sets
	Example: Read a Single SAS Data Set
	Example Code
	Key Ideas
	See Also

	Example: Read Multiple SAS Data Sets
	Example Code
	Key Ideas
	See Also

	Example: Read a SAS Data Set from a User-defined Library
	Example Code
	Key Ideas
	See Also

	Example: Read a Permanent SAS Data Set Without Using a Libref
	Example Code
	Key Ideas
	See Also

	Examples: Control Variables and Observations in Data Sets
	Example: Keep Specific Variables in a Data Set
	Example Code
	Key Ideas
	See Also

	Example: Control Which Observations are Read Using the WHERE
Statement
	Example Code
	Key Ideas
	See Also

	Example: Read a Specific Observation First (FIRSTOBS)
	Example Code
	Key Ideas
	See Also

	Example: Read a Range of Observations (FIRSTOBS and OBS)
	Example Code
	Key Ideas
	See Also

	Example: Read an Observation Directly Using the POINT= Option
	Example Code
	Key Ideas
	See Also

	Examples: View Descriptor and Sort Information for Data Sets
	Example: View Descriptor Information for a Data Set
	Example Code
	Key Ideas
	See Also

	Example: View Sort Information for a Data Set
	Example Code
	Key Ideas
	See Also

	Raw Data
	Definitions for Raw Data
	Reading Raw Data
	Ways to Read Raw Data
	Reading Raw Instream Data
	Definition for Instream Data
	Reading Instream Data
	Reading Instream Data Containing Semicolons

	Reading Raw Data with the DATA Step (INPUT Statement)
	Choosing an Input Style
	List Input
	Modified List Input
	Column Input
	Formatted Input
	Named Input
	Additional Data-Reading Features

	Types of Raw Data
	Definitions for Types of Raw Data
	Numeric Data
	Character Data

	How SAS Handles Invalid Data
	How SAS Handles Missing Values
	Representing Missing Values in Input Data
	Special Missing Values in Numeric Input Data

	Definitions for External Files
	Reading External Files
	Reading an External File Using the DATA Step
	Reading and Writing to External Files Directly
	Referencing External Files Indirectly By Using a Fileref
	Referencing Many External Files Efficiently
	Referencing External Files with Other Access Methods
	Reading Binary Data
	Reading Binary Data Using SAS Informats
	Reading Column-Binary Data

	Examples:
Read External Files Using PROC IMPORT
	Example: Read a Comma-Delimited File
	Example Code
	Key Ideas
	See Also

	Example: Read and Write a Space-delimited File
	Example Code
	Key Ideas
	See Also

	Database and PC Files
	Definition of SAS/ACCESS Software
	Dynamic LIBNAME Engine
	SAS/ACCESS LIBNAME Statement
	Using Data Set Options with SAS/ACCESS Librefs
	Embedding a SAS/ACCESS LIBNAME Statement in a PROC SQL View

	SQL Procedure Pass-Through Facility
	ACCESS Procedure and Interface View Engine
	DBLOAD Procedure
	Interface DATA Step Engine

	SAS Views
	Definitions for SAS Views

	SAS Dictionary Tables
	Definition of a DICTIONARY Table
	How to View DICTIONARY Tables
	About Dictionary Tables
	How to View a DICTIONARY Table
	How to View a Summary of a DICTIONARY Table
	How to View a Subset of a DICTIONARY Table
	DICTIONARY Tables and Performance

	Manipulating Data
	Grouping Data
	Definitions for BY-Group Processing
	Syntax
	Syntax
	FIRST. and LAST. Automatic DATA Step Variables

	Understanding BY Groups
	BY Groups with a Single BY Variable
	BY Groups with Multiple BY Variables

	Invoking BY-Group Processing
	Determining Whether the Data Requires Preprocessing for BY-Group
Processing
	Preprocessing Input Data for BY-Group Processing
	Sorting Observations for BY-Group Processing
	Indexing for BY-Group Processing

	FIRST. and LAST. DATA Step Variables
	How the DATA Step Identifies BY Groups
	How SAS Determines FIRST.variable and
LAST.variable
	Using a Name Literal as the FIRST. and LAST. Variable
	Example 1: Grouping Observations by State, City, and ZIP Code
	Example 2: Grouping Observations by City, State, and ZIP Code
	Example 3: A Change Affecting the FIRST. variable

	Processing BY-Groups in the DATA Step
	Overview
	Processing BY-Groups Conditionally
	Data Not in Alphabetic or Numeric Order
	Data Grouped by Formatted Values
	Example 1: Using GROUPFORMAT with Formats
	Example 2: Using GROUPFORMAT with Formats

	Loops and Conditionals
	Definitions for Loops and Conditionals
	Summary of Statements for Conditional Processing in SAS
	DO Loops
	Types of DO Loops
	Forms of the Iterative DO Loop

	WHERE Expressions
	WHERE Statement
	Variables in WHERE Expressions
	Variable Types and WHERE Expressions
	Automatic DATA Step Variables and WHERE Expressions
	Stand-Alone Variables and WHERE Expressions

	Functions in WHERE Expressions
	Constants in WHERE Expressions
	Operators in WHERE Expressions
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Order of Evaluation for Compound Expressions
	Using Parentheses to Control the Order of Evaluation
	IN Operator
	Interval Comparisons
	BETWEEN-AND Operator
	CONTAINS Operator
	IS NULL or IS MISSING Operator
	LIKE Operator
	Sounds-like Operator
	SAME-AND Operator
	MIN and MAX Operators
	Concatenation Operator
	Prefix Operators
	Guidelines for Writing Efficient WHERE Expressions

	Indexes and WHERE Expressions
	Data Set and System Options with WHERE Expressions

	IF Statements
	Types of IF Statements
	Subsetting IF Statement versus the WHERE Statement

	SELECT WHEN Statement
	Other Control Flow Statements
	Examples: DO Loops
	Example: Use a Simple Iterative DO Loop
	Example Code

	Example: Use a Nested Iterative DO Loop
	Example Code

	Example: Use DOLIST Syntax to Iterate over a List of Values
	Example Code

	Example: Use Iterative DO TO Syntax to Iterate a Specific Number
of Times
	Example Code

	Example: Use the Iterative DO TO BY Syntax to Iterate a Specific
Number of Times by a Specific Interval
	Example Code

	Example: Use the Iterative DO WHILE and DO UNTIL Statements
to Execute a Group of Statements Repetitively
	Example Code

	Examples: WHERE Processing
	Example: Conditionally Select Rows Using the WHERE Statement
	Example Code

	Example: Conditionally Select Rows Using a Compound WHERE Expression
	Example Code

	Example: Conditionally Select Rows Based on Multiple Conditions
	Example Code

	Example: Conditionally Select Rows Using the WHERE= Data Set
Option
	Example Code
	See Also

	Example: Use an Index to Improve Performance of WHERE Processing
	Example Code

	Examples: IF Statements
	Example: Subset Data Using the Subsetting IF Statement
	Example Code

	Example: Conditionally Select Specific Rows Using the IF Statement
	Example Code

	Example: SELECT WHEN Statement
	Example Code

	Example: Data Set Options
	Example Code

	Combining Data
	Overview of Combining Data
	Definition of Combining Data
	Terms
	Data Relationships
	One-to-One Relationship
	One-to-Many Relationship
	One-to-Many and Many-to-One Relationships
	Many-to-Many Relationship

	Summary of Ways to Combine SAS Data Sets
	Concatenating
	Interleaving
	Match-Merging
	One-to-One Merging
	One-to-One Reading
	Hash Table Merging
	Updating
	Modifying

	Comparing Methods
	PROC SQL versus Match-Merging
	Updating and Modifying Comparison
	One-to-One Reading versus One-to-One Merging
	Comparison of SAS Language Elements for Combining Data Sets

	Examples: Prepare Data
	Example: Examine the Data to Be Combined
	Example Code
	Key Ideas
	See Also

	Example: Find the Common Variables in Multiple Input Data Sets
	Example Code
	Key Ideas
	See Also

	Example: Creating Unique BY Values When Data Contains Duplicate
BY Values
	Example Code
	Key Ideas
	See Also

	Example: Prepare Data in Which Common Variables Have Different
Data Types
	Example Code
	Key Ideas
	See Also

	Example: Prepare Data in Which Common Variables Have Different
Lengths
	Example Code
	Key Ideas
	See Also

	Example: Prepare Data in Which Common Variables Have Different
Formats and Labels
	Example Code
	Key Ideas
	See Also

	Example: Prepare Data in Which Common Variables Represent Different
Data
	Example Code
	Key Ideas
	See Also

	Examples: Concatenate Data
	Example: Concatenate Using the SET Statement
	Example Code
	Key Ideas
	See Also

	Example: Concatenate Using PROC SQL
	Example Code
	See Also

	Example: Append Files Using PROC APPEND
	Example Code
	Key Ideas
	See Also

	Example: Add a Message to the Log When Variables Are Missing
from Input Data Sets
	Example Code
	Key Ideas
	See Also

	Examples: Interleave Data
	Example: Interleave Data Sets
	Example Code
	Key Ideas
	See Also

	Example: Interleave with Duplicate Values of the BY Variable
	Example Code
	Key Ideas
	See Also

	Example: Interleave with Different Values of the Common BY
Variable
	Example Code
	Key Ideas
	See Also

	Examples: Match-Merge Data
	Example: Match-Merge Observations Based on a BY Variable
	Example Code
	Key Ideas
	See Also

	Example: Match-Merge Observations with Common Variables That
Are Not the BY Variables
	Example Code
	Key Ideas
	See Also

	Example: Match-Merge Observations with Duplicate Values of
the BY Variable
	Example Code
	Key Ideas
	See Also

	Example: Match-Merge Observations with Different Values of
the BY Variable
	Example Code
	Key Ideas
	See Also

	Example: Match-Merge and Remove Unmatched Observations
	Example Code
	Key Ideas
	See Also

	Example: Match-Merge Data Sets with Duplicate Values in More
Than One Data Set
	Example Code
	Key Ideas
	See Also

	Example: Match-Merge One-to-Many with Missing Values in Common
Variables
	Example Code
	Key Ideas
	See Also

	Examples: Merge Data One-to-One
	Example: Merge Data Sets with an Equal Number of Observations
	Example Code
	Key Ideas
	See Also

	Example: Merge Data Sets with an Unequal Number of Observations
	Example Code
	Key Ideas
	See Also

	Example: Merge Data Sets with Duplicate Values of Common Variables
	Example Code
	Key Ideas
	See Also

	Example: Merge Data Sets with Different Values for the Common
Variables
	Example Code
	Key Ideas
	See Also

	Examples: Combine Data One-to-One
	Example: Combine Data Sets That Contain an Equal Number of
Observations
	Example Code
	Key Ideas
	See Also

	Example: Merge Data Using a Hash Table
	Example: Use a Hash Table to Merge Data Sets One-to-Many or
Many-to-Many
	Example Code
	Key Ideas
	See Also

	Examples: Update Data
	Example: Update Data Using the UPDATE Statement
	Example Code
	Key Ideas
	See Also

	Example: Update Data Sets with Duplicate Values of the BY Variable
	Example Code
	Key Ideas
	See Also

	Example: Update a Data Set with Missing and Different Values
for the BY Variables
	Example Code
	Key Ideas
	See Also

	Example: Modify Data
	Example: Modify a Data Set by Adding an Observation
	Example Code
	Key Ideas
	See Also

	Using Indexes
	Indexes in SAS

	Using Arrays
	Definitions for Array Processing
	Rules for Referencing Arrays
	Rules for Referencing Arrays

	A Conceptual View of Arrays
	One-Dimensional Array
	Two-Dimensional Array

	Syntax for Defining and Referencing an Array
	Processing Simple Arrays
	Grouping Variables in a Simple Array
	Using a DO Loop to Repeat an Action
	Using a DO Loop to Process Selected Elements in an Array
	Selecting the Current Variable
	Defining the Number of Elements in an Array
	Rules for Referencing Arrays

	Variations on Basic Array Processing
	Determining the Number of Elements in an Array Efficiently
	DO WHILE and DO UNTIL Expressions
	Using Variable Lists to Define an Array Quickly

	Multidimensional Arrays: Creating and Processing
	Grouping Variables in a Multidimensional Array
	Using Nested DO Loops

	Specifying Array Bounds
	Identifying Upper and Lower Bounds
	Determining Array Bounds: LBOUND and HBOUND Functions
	When to Use the HBOUND Function Instead of the DIM Function
	Specifying Bounds in a Two-Dimensional Array

	Examples
	Example: Using Character Variables in an Array
	Example: Assigning Initial Values to the Elements of an Array
	Example: Creating an Array for Temporary Use in the Current
DATA Step
	Example: Performing an Action on All Numeric Variables

	Debugging Errors
	Definitions of Error Types in SAS
	Summary of Types of Errors That SAS Recognizes
	Syntax Errors
	Semantic Errors
	Execution-Time Errors
	Definition
	Out-of-Resources Condition
	Examples

	Data Errors
	Definition
	Format Modifiers for Error Reporting

	Macro-related Errors

	Error Processing in SAS
	Syntax Check Mode
	Overview of Syntax Check Mode
	Enabling Syntax Check Mode

	Checkpoint Mode and Restart Mode
	Overview of Checkpoint Mode and Restart Mode
	Requirements for Using Checkpoint Mode and Restart Mode
	Setting Up and Executing Checkpoint Mode and Restart Mode
	Restarting Batch Programs

	Using System Options to Control Error Handling
	Using Return Codes
	Other Error-Checking Options

	Error Checking When Using Indexes to Randomly Access or Update
Data
	The Importance of Error Checking
	Error-Checking Tools
	Example 1: Routing Execution When an Unexpected Condition Occurs
	Overview
	Input Data Sets
	Original Program
	Resulting Log
	Resulting Data Set
	Revised Program
	Resulting Log
	Correctly Updated Master Data Set

	Example 2: Using Error Checking on All Statements That Use
KEY=
	Overview
	Input Data Sets
	Original Program with Logic Error
	Resulting Log
	Resulting Data Set
	Revised Program
	Resulting Log
	Correctly Created Combine Data Set

	Examples
	Example: Use the Debugger Tool to Debug Logic Errors in the
DATA Step
	Example Code
	Key Ideas
	See Also

	Example: Route Execution When an Unexpected Condition Occurs
	Example Code

	Example: Use Error Checking on All Statements That Use KEY=
	Overview
	Input Data Sets
	Original Program with Logic Error
	Resulting Log
	Resulting Data Set
	Revised Program
	Resulting Log
	Correctly Created Combine Data Set

	Example: Process Multiple Errors
	Example Code

	Optimizing System Performance
	Definitions for Optimizing System Performance
	Collecting and Interpreting Performance Statistics
	Using the FULLSTIMER and STIMER System Options
	Interpreting FULLSTIMER and STIMER Statistics

	Techniques for Optimizing I/O
	Overview of Techniques for Optimizing I/O
	Using WHERE Processing
	Using DROP and KEEP Statements
	Using LENGTH Statements
	Using the OBS= and FIRSTOBS= Data Set Options
	Creating SAS Data Sets
	Using Indexes
	Accessing Data through SAS Views
	Using Engines Efficiently
	Setting System Options to Improve I/O Performance
	Setting VBUFSIZE= and OBSBUF= for SAS DATA Step Views
	Using the SASFILE Statement
	Using the DATASETS Procedure to Modify Attributes
	Storing Variables as Characters

	Techniques for Optimizing Memory Usage
	System Options
	Using the BY Statement with PROC MEANS

	Techniques for Optimizing CPU Performance
	Reducing CPU Time By Using More Memory or Reducing I/O
	Storing a Compiled Program for Computation-Intensive DATA Steps
	Reducing Search Time for SAS Executable Files
	Specifying Variable Lengths
	Using Parallel Processing
	Reducing CPU Time By Modifying Program Compilation Optimization

	Calculating Data Set Size

	Using Parallel Processing
	Overview
	What Is Threading Technology in SAS?
	How Is Threading Controlled in SAS?
	Threading in Base SAS
	SAS/ACCESS Engines
	SAS Scalable Performance Data Server
	SAS Intelligence Platform
	SAS High-Performance Analytics Portfolio of Products
	SAS Grid Manager
	SAS In-Database Technology
	SAS In-Memory Analytics Technology
	SAS High-Performance Analytics Product Integration
	SAS Viya

	Creating Output
	Output
	Definitions for SAS Output
	Default Output Destination
	Change the Output Destination
	Customize Output
	Making Output Descriptive
	Using ODS to Customize the Style and Structure of Output
	Reformatting Values in Output
	Printing Missing Values

	The SAS Log
	Structure of the Log
	The SAS Log in Batch, Line, or Objectserver Modes
	Appending to or Replacing the SAS Log
	Specifying When to Write to the SAS Log
	Rolling Over the SAS Log

	Writing to the Log in All Modes
	Customizing the Log
	Suppress the Contents of the Log
	Customizing the Appearance of the Log
	Other System Options That Affect the SAS Log

	Examples: Manage Output Destinations
	Example: Create Default HTML Output
	Example Code
	Key Ideas

	Example: Use ODS Statements to Change the Output Destination
	Example Code
	Key Ideas
	See Also

	Examples: Rolling Over the SAS Log
	Example : Use Directives to Name the SAS Log
	Example Code
	Key Ideas
	See Also

	Example: Automatically Roll Over the SAS Log When Directives
Change
	Example Code
	Key Ideas
	See Also

	Example: Roll Over the SAS Log by SAS Session
	Example Code
	Key Ideas
	See Also

	Example: Roll Over the SAS Log by the Log Size
	Example Code
	Key Ideas
	See Also

	Examples: Suppress Output to the SAS Log
	Example: Suppress the Printing of the Source Program to the
SAS Log Using the NOSOURCE System Option
	Example Code
	Key Ideas
	See Also

	Example: Suppress the Printing of Variable Data to the SAS
Log Using the NOLIST Option
	Example Code
	Key Ideas
	See Also

	Example: Suppress the Printing of All Notes to the SAS Log
Using the NONOTES System Option
	Example Code
	Key Ideas
	See Also

	Printing
	Universal Printing
	Definition of Universal Printing

	Managing Files
	Protecting Files
	Definition of a Password
	Assigning Passwords
	Syntax
	Assigning a Password with a DATA Step
	Assigning a Password to an Existing Data Set
	Assigning a Password with a Procedure
	Assigning a Password with the SAS Windowing Environment
	Assigning a Password outside of SAS

	Removing or Changing Passwords
	Using Password-Protected SAS Files in DATA and PROC Steps
	How SAS Handles Incorrect Passwords
	Assigning Complete Protection with the PW= Data Set Option
	Encoded Passwords
	Using Passwords with Views
	Levels of Protection
	PROC SQL Views
	SAS/ACCESS Views
	DATA Step Views

	SAS Data File Encryption
	About Encryption on SAS Data Files
	SAS Proprietary Encryption
	AES Encryption
	AES Encryption and Referential Integrity Constraints
	Passwords and Encryption with Generation Data Sets, Audit Trails,
Indexes, and Copies

	Blotting Passwords and Encryption Key Values
	Check the SAS Log
	Examples of Passwords and Encryption Keys That Are Not Blotted
	Using Macros
	Length of Passwords

	Metadata-Bound Libraries

	Repairing SAS Files
	Repairing Damage to SAS Data Sets and Catalogs
	Overview
	Understanding Damage That Can Be Repaired with SAS
	Understanding the Repair Tools
	Recommended Tasks for Repairing SAS Data Sets and Catalogs
with SAS

	Examples
	Example: Determine the Default Repair Action for Your SAS Session
	Example Code
	Key Ideas
	See Also

	Example: Change the DLDMGACTION= System Option
	Example Code
	Key Ideas
	See Also

	Example: Repair a SAS Data Set with the REPAIR Statement
	Example Code
	Key Ideas
	See Also

	Example: Override the Default Repair Action with the DLDMGACTION=
Data Set Option
	Example Code
	Key Ideas
	See Also

	Example: Rebuild a Damaged SAS Data Set with the REBUILD Statement
	Example Code
	Key Ideas
	See Also

	Example: Determine How Many Times a Data Set Was Repaired
	Example Code
	Key Ideas
	See Also

	Compressing SAS Data Sets
	Compression in SAS

	Moving SAS Files
	Moving Files between Operating Environments

	Cross-Environment Data Access
	Definitions for Cross-Environment Data Access (CEDA)
	Advantages of CEDA
	SAS File Processing with CEDA
	Conditions That Invoke CEDA
	Restrictions for CEDA
	Compatible Data Representations
	Compatible Encodings
	How Output Processing Affects Encoding and Data Representation

	Alternatives to Using CEDA
	Examples: CEDA
	Example: Understand Log Messages about CEDA
	Example Code
	Key Ideas
	See Also

	Example: Understand Log Messages about Truncation
	Example Code
	Key Ideas
	See Also

	Example: Specify a Data Representation to Avoid CEDA
	Example Code
	Key Ideas
	See Also

	Example: Specify an Encoding to Avoid CEDA
	Example Code
	Key Ideas
	See Also

	Example: Specify a Data Representation and UTF-8 Encoding
	Example Code
	Key Ideas
	See Also

	Example: Determine the Encoding and Data Representation of
a SAS Session or a Data Set
	Example Code
	Key Ideas
	See Also

	Managing SAS Catalogs
	Definition of a SAS Catalog

	SAS System Features
	The SAS Registry
	Introduction
to the SAS Registry
	What Is the SAS Registry?
	Who Should Use the SAS Registry?
	Where the SAS Registry Is Stored
	Registry Files in the Sasuser and the Sashelp Libraries
	How to Restore the Site Defaults

	How Do I Display the SAS Registry?
	Definitions for the SAS Registry

	Managing the SAS Registry
	Primary Concerns about Managing the SAS Registry
	Backing Up the Sasuser Registry
	Why Back Up the Sasuser Registry?
	When SAS Resets to the Default Settings
	Ways to Back Up the Registry
	Using the Explorer to Back Up the SAS Registry
	Using the Registry Editor to Back Up the SAS Registry

	Recovering from Registry Failure
	Using the SAS Registry to Control Color
	Overview of Colors and the SAS Registry
	Adding Colors Using the Registry Editor
	Adding Colors Programmatically

	Using the Registry Editor
	When to Use the Registry Editor
	Starting the Registry Editor
	Finding Specific Data in the Registry
	Changing a Value in the SAS Registry
	Adding a New Value or Key to the SAS Registry
	Deleting an Item from the SAS Registry
	Renaming an Item in the SAS Registry
	Displaying the Sasuser and Sashelp Registry Items Separately
	Importing a Registry File
	Exporting a Registry File

	Configuring Your Registry
	Configuring Universal Printing
	Configuring SAS Explorer
	Configuring Libraries and File Shortcuts with the SAS Registry
	Fixing Library Reference (Libref) Problems with the SAS Registry

	The SAS Windowing Environment
	What Is the SAS Windowing Environment?
	Main Windows in the SAS Windowing Environment
	Overview of SAS Windows
	SAS Explorer Window
	Uses of the SAS Explorer Window
	Open the SAS Explorer Window
	Display SAS Explorer with and without a Tree View

	Enhanced Editor Window
	Uses of the Enhanced Editor Window
	Open the Enhanced Editor Window
	View a Program in the Enhanced Editor Window

	Log Window
	Uses of the Log Window
	Open the Log Window
	View Log Output

	Results Window
	Uses of the Results Window
	Open the Results Window
	View Output in the Results Window

	Output Window
	Uses of the Output Window
	Open the Output Window
	Create and View LISTING Output
	Using the Preferences Dialog Box to Select Output Types

	Navigating in the SAS Windowing Environment
	Overview of SAS Navigation
	Menus in SAS
	Toolbars in SAS
	The Command Line

	Getting Help in SAS
	Type Help in the Command Line
	Open the Help Menu from the Toolbar
	Click Help in Individual SAS Windows

	List of SAS Windows and Window Commands
	Introduction to Managing Your Data in the SAS Windowing Environment
	Managing Data with SAS Explorer
	Introduction to Managing Data with SAS Explorer
	Viewing Libraries and Data Sets
	Assign File Shortcuts
	Rename a SAS Data Set
	Copy or Duplicate a SAS Data Set
	Sorting Data Sets in a Library
	View the Properties of a SAS Data Set

	Working with VIEWTABLE
	Overview of VIEWTABLE
	Opening a SAS Data Set in a VIEWTABLE Window
	Using the SAS Explorer Window
	Using the VIEWTABLE Command

	Displaying Table Headers as Names or Labels
	Customizing SAS Explorer for Opening the VIEWTABLE Window
	Order of Precedence for How Column Headings Are Displayed
	Mapping the VIEWTABLE Command to a Function Key
	Temporarily Change Column Headings
	Move Columns in a Table
	Sort by Values of a Column
	Edit Cell Values

	Subsetting Data By Using the WHERE Expression
	Subset Rows of a Table
	Clear the WHERE Expression

	Exporting a Subset of Data
	Overview of Exporting Data
	Export Data

	Importing Data into a Table
	Overview of Importing Data
	Import a Standard File
	Import a Nonstandard File

	Cloud Analytic Services
	What is SAS Cloud Analytic Services?
	What Does This Mean for the SAS 9 Programmer?
	SAS Language Elements for CAS
	DATA Step Processing
	DATA Step Language Elements for CAS
	SAS Procedures for CAS

	CAS-specific Language Elements

	Industry Protocols Used in SAS
	SAS Language Elements That Control SMTP E-Mail
	System Options That Control SMTP E-Mail
	Statements That Control SMTP E-mail
	FILENAME Statement
	FILE and PUT Statements

	How the SMTP e-Mail Interface Authenticates Users
	Universally Unique Identifiers and the Object Spawner
	What Is a Universally Unique Identifier?
	What Is the Object Spawner?
	Defining the UUID Generator Daemon
	Installing the UUID Generator Daemon

	Using SAS Language Elements to Assign UUIDs
	Overview of Using SAS Language Elements to Assign UUIDs
	UUIDGEN Function
	UUIDCOUNT= System Option
	UUIDGENDHOST System Option

	Overview of IPv6
	IPv6 Address Format
	Examples of IPv6 Addresses
	Example of Full and Collapsed IPv6 Address
	Example of an IPv6 Address That Includes a Port Number
	Example of an IPv6 Address That Includes a URL

	Fully Qualified Domain Names (FQDN)

	Appendixes
	Data Sets Used in Examples
	Data Sets Used in Examples
	Animal
	AnimalDupes
	AnimalMissing
	CarSales
	CarsSmall
	Class
	Classfit
	Inventory
	InventoryAdd
	One
	Many
	Master
	Minerals
	Plant
	PlantDupes
	PlantG
	PlantMissing
	PlantMissing2
	PlantNew
	PlantNewDupes
	Product_List
	Quarter1, Quarter 2, Quarter3, Quarter4
	Sales
	Sales2019
	Supplier
	Table1
	Table2
	Year1
	Year2

	Description of Column-Binary Data Storage

	Understanding How the DATA Step Works
	How the DATA Step Processes Data
	Flow of Action
	The Compilation Phase
	The Execution Phase

	Processing a DATA Step: A Walk-Through
	Sample DATA Step
	Creating the Input Buffer and the Program Buffer
	Reading a Record
	Writing an Observation to the SAS Data Set
	Reading the Next Record
	When the DATA Step Finishes Executing

	More About DATA Step Execution
	The Default Sequence of Execution
	Changing the Sequence of Execution Using Statements
	Changing the Sequence of Execution Using Functions
	Altering the Flow for a Given Observation
	Step Boundaries
	What Causes the DATA Step to Stop Executing

	Updating Data Using the MODIFY Statement and the KEY= Option
	Updating Data Using the MODIFY Statement and the KEY= Option
	Definitions
	Understanding the MODIFY Statement
	Sequential Access
	Matching Access Using BY Statement
	Comparing Matching Access to the UPDATE Statement
	Direct (Random) Access by Observation Number Using POINT=
	Direct Access by Index Values Using KEY=
	Comparing the Matching Access Method Using the BY Statement
to the Direct Access Method Using Index Values
	Monitoring Update Processing
	Performing Automatic Updates for Like-Named Variables Using
KEY=
	Using MODIFY in a SAS/SHARE Environment
	Understanding the KEY= Option
	Using KEY= with the SET Statement
	Handling Duplicate Values for Key Variable
	Using MODIFY with Duplicate Key Values in the Transaction Data
Set
	Using MODIFY with Duplicate Key Values in the Master Data Set
	Using MODIFY with Duplicate Key Values in the Master Data Set
and the Transaction Data Set
	Using SET with Duplicate Key Values in the Lookup Data Set
	Using SET with Duplicate Key Values in the the Primary Data
Set
	Using SET with Duplicate Key Values in the Primary Data Set
and the Lookup Data Set
	Combining Data Sets with Non-Matching Observations
	Adding Variables to the Output Data Set
	Using SET with KEY= in a SAS/SHARE Environment
	Version 7 and Version 8 Considerations
	Using the DBKEY= SAS/ACCESS Data Set Option with KEY=

