
SAS® 9.4 Companion for
UNIX Environments, Sixth
Edition

SAS® Documentation
July 21, 2023

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS® 9.4 Companion for UNIX Environments, Sixth
Edition. Cary, NC: SAS Institute Inc.

SAS® 9.4 Companion for UNIX Environments, Sixth Edition

Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you
acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those
set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

July 2023

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P10:hostunx

Contents

About This Book . ix
What's New in the SAS 9.4 Companion for UNIX Environments xv

PART 1 Running SAS Software under UNIX 1

Chapter 1 / Getting Started with SAS in UNIX Environments . 3
Starting SAS Sessions in UNIX Environments . 4
Running SAS in a Foreground or Background Process . 7
Selecting a Method of Running SAS in UNIX Environments . 7
SAS Windowing Environment in UNIX Environments . 8
Interactive Line Mode in UNIX Environments . 10
Noninteractive and Batch Modes in UNIX Environments . 12
Running SAS on a Remote Host in UNIX Environments . 14
X Command Line Options . 16
Executing Operating System Commands from Your SAS Session 18
Customizing Your SAS Registry Files . 22
Customizing Your SAS Session By Using System Options . 22
Customizing Your SAS Session By Using Configuration and Autoexec Files 26
Determining the Completion Status of a SAS Job in UNIX Environments 31
Exiting or Interrupting Your SAS Session in UNIX Environments 32
Ending a Process That Is Running as a SAS Server . 37
Interrupting a SAS Process and the Underlying DBMS Process 38

Chapter 2 / Connecting to the CAS Server . 39
Overview of Connecting to the CAS Server . 39
How to Connect to the CAS Server . 39
Comparison of Batch Modes and Interactive Modes . 41

Chapter 3 / Using SAS Files . 43
Introduction to SAS Files, Libraries, and Engines in UNIX Environments 45
Common Types of SAS Files in UNIX Environments . 46
File Extensions and Member Types in UNIX Environments . 48
How File Extension Delimiters Are Handled . 49
Using Direct I/O . 50
Holding a File in Memory: The SASFILE Statement . 51
Sharing SAS Files in a UNIX Environment . 52
Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments . 57
Creating a SAS File to Use with an Earlier Release . 58
Reading SAS Files from Previous Releases or from Other Hosts 58
Referring to SAS Files By Using Librefs in UNIX Environments 61
Specifying Pathnames in UNIX Environments . 65
Assigning a Libref to Several Directories (Concatenating Directories) in UNIX . . . 66
Using Multiple Engines for a Library in UNIX Environments . 68

Using Environment Variables as Librefs in UNIX Environments 69
Librefs Assigned by SAS in UNIX Environments . 69
Sasuser Library . 70
Work Library . 74
Multiple Work Directories . 74
Using One-Level Names to Access Permanent Files (User Library) 75
Accessing Disk-Format Libraries in UNIX Environments . 76
Accessing Sequential-Format Libraries in UNIX Environments 77
Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments 78
Support for Links in UNIX Environments . 84

Chapter 4 / Using External Files and Devices . 85
Introduction to External Files and Devices in UNIX Environments 86
Accessing an External File or Device in UNIX Environments 87
Specifying Pathnames in UNIX Environments . 88
Assigning Filerefs to External Files or Devices with the FILENAME Statement . . . 92
Concatenating Filenames in UNIX Environments . 94
Assigning a Fileref to a Directory (Using Aggregate Syntax) 95
Using Environment Variables to Assign Filerefs in UNIX Environments 97
Filerefs Assigned by SAS in UNIX Environments . 98
Reserved Filerefs in UNIX Environments . 99
Sharing External Files in a UNIX Environment . 100
Reading from and Writing to UNIX Commands (PIPE) . 101
Sending Electronic Mail Using the FILENAME Statement (EMAIL) 104
Running External Lua Files . 110

Chapter 5 / Printing and Routing Output . 113
Overview of Printing Output in UNIX Environments . 114
Previewing Output in UNIX Environments . 114
The Default Routings for the SAS Log and Procedure Output in

UNIX Environments . 115
Changing the Default Routings in UNIX Environments . 116
Routing SAS Logging Facility Messages to SYSLOGD . 118
Using the Print Dialog Box in UNIX Environments . 119
Using Commands to Print in UNIX Environments . 121
Using the PRINTTO Procedure in UNIX Environments . 125
Using SAS System Options to Route Output . 127
Printing Large Files with the PIPE Device Type in UNIX Environments 128
Changing the Default Print Destination in UNIX Environments 128
Changing the Default Print Command in UNIX Environments 129
Controlling the Content and Appearance of Output in UNIX Environments 129

Chapter 6 / Accessing Shared Executable Libraries from SAS . 133
Overview of Shared Libraries in SAS . 134
The SASCBTBL Attribute Table . 135
Special Considerations When Using Shared Libraries . 141
Examples of Accessing Shared Executable Libraries . 155

Chapter 7 / Viewing Output and Help in the SAS Remote Browser . 163
What Is Remote Browsing? . 163
Using Remote Browsing with ODS Output . 164
Installing the Remote Browser Server . 164
System Options for Remote Browsing . 165
Setting Up the SAS Remote Browser . 165
Remote Browsing and Firewalls . 166

iv Contents

Chapter 8 / Performance Considerations under UNIX . 169
Configure Your Environment Based on SAS Tuning Guidelines 169
Measure the I/O Throughput of a File System . 170

PART 2 SAS Windowing Environment

Chapter 9 / Working in the SAS Windowing Environment . 173
Definition of the SAS Windowing Environment . 174
Description of SAS in the X Environment . 175
The SAS Session Manager (motifxsassm) in UNIX . 177
Displaying Function Key Definitions in UNIX Environments 181
The SAS ToolBox in UNIX Environments . 183
Opening Files in UNIX Environments . 187
Changing Your Working Directory in UNIX Environments . 189
Selecting (Marking) Text in UNIX Environments . 191
Copying or Cutting and Pasting Selected Text in UNIX Environments 193
Using Drag and Drop in UNIX Environments . 195
Searching for and Replacing Text Strings in UNIX Environments 196
Sending Mail from within Your SAS Session in UNIX Environments 197
Configuring SAS for Host Editor Support in UNIX Environments 200
Getting Help in UNIX Environments . 202

Chapter 10 / Customizing the SAS Windowing Environment . 203
Overview of Customizing SAS in X Environment . 204
Overview of X Resources . 204
Methods for Customizing X Resources . 205
Modifying X Resources through the Preferences Dialog Box 207
Setting X Resources with the Resource Helper . 213
Customizing Toolboxes and Toolsets in UNIX Environments 220
Customizing Key Definitions in UNIX Environments . 228
Customizing Fonts in UNIX Environments . 237
Customizing Colors in UNIX Environments . 242
Controlling Drop-down Menus in UNIX Environments . 250
Customizing Cut and Paste in UNIX Environments . 250
Customizing Session Workspace, Session Gravity, and Window

Sizes in UNIX Environments . 252
Specifying User-Defined Icons in UNIX Environments . 254
Miscellaneous Resources in UNIX Environments . 256
Summary of X Resources for SAS in UNIX Environments . 258

PART 3 Data Considerations

Chapter 11 / Data Representation . 263
Numeric Variable Length and Precision in UNIX Environments 263
Missing Values in UNIX Environments . 264
Reading and Writing Binary Data in UNIX Environments . 265
Converting a UNIX Datetime Value to a SAS Datetime Value 265

Contents v

PART 4 Host-Specific Features of the SAS Language

Chapter 12 / Commands under UNIX . 269
SAS Commands under UNIX . 270
Dictionary . 270

Chapter 13 / Data Set Options under UNIX . 297
SAS Data Set Options under UNIX . 297
Summary of SAS Data Set Options in UNIX Environments 298
Dictionary . 301

Chapter 14 / Environment Variables under UNIX . 309
Defining Environment Variables in UNIX Environments . 309
Dictionary . 311

Chapter 15 / Formats under UNIX . 315
SAS Formats under UNIX . 315
Dictionary . 316

Chapter 16 / Functions and CALL Routines under UNIX . 323
SAS Functions and CALL Routines under UNIX . 324
Dictionary . 324

Chapter 17 / Informats under UNIX . 355
SAS Informats under UNIX . 355
Dictionary . 355

Chapter 18 / Macro Facility under UNIX . 365
About the Macro Facility under UNIX . 365
Automatic Macro Variables in UNIX Environments . 366
Macro Statements in UNIX Environments . 367
Macro Functions in UNIX Environments . 368
SAS System Options Used by the Macro Facility in UNIX Environments 368
Using Autocall Libraries in UNIX Environments . 369

Chapter 19 / Statements under UNIX . 371
SAS Statements under UNIX . 371
Dictionary . 372

Chapter 20 / System Options under UNIX . 407
SAS System Options under UNIX . 409
Determining How a SAS System Option Was Set . 410
Restricted System Options . 411
Dictionary . 412

PART 5 Procedures under UNIX

Chapter 21 / Overview . 513
SAS Procedures under UNIX . 513

vi Contents

Chapter 22 / CATALOG Procedure: UNIX . 515
Overview: CATALOG Procedure: UNIX . 515
Syntax: CATALOG Procedure: UNIX . 516

Chapter 23 / CIMPORT Procedure: UNIX . 517
Overview: CIMPORT Procedure: UNIX . 517
Syntax: CIMPORT Procedure: UNIX . 518
Examples: CIMPORT Procedure: UNIX . 519

Chapter 24 / CONTENTS Procedure: UNIX . 521
Overview: CONTENTS Procedure: UNIX . 521
Syntax: CONTENTS Procedure: UNIX . 522
Examples: CONTENTS Procedure: UNIX . 522

Chapter 25 / CONVERT Procedure: UNIX . 525
Overview: CONVERT Procedure: UNIX . 525
Concepts: CONVERT Procedure: UNIX . 526
Syntax: CONVERT Procedure: UNIX . 528
Examples: CONVERT Procedure: UNIX . 529

Chapter 26 / CPORT Procedure: UNIX . 531
Overview: CPORT Procedure: UNIX . 531
Syntax: CPORT Procedure: UNIX . 532
Examples: CPORT Procedure: UNIX . 533

Chapter 27 / DATASETS Procedure: UNIX . 535
Overview: DATASETS Procedure: UNIX . 535
Syntax: DATASETS Procedure: UNIX . 536
Examples: DATASETS Procedure: UNIX . 537

Chapter 28 / OPTIONS Procedure: UNIX . 541
Overview: OPTIONS Procedure: UNIX . 541
Syntax: OPTIONS Procedure: UNIX . 542
Usage: OPTIONS Procedure: UNIX . 543

Chapter 29 / PMENU Procedure: UNIX . 545
Overview: PMENU Procedure: UNIX . 545
Syntax: PMENU Procedure: UNIX . 546

Chapter 30 / PRINTTO Procedure: UNIX . 547
Overview: PRINTTO Procedure: UNIX . 547
Syntax: PRINTTO Procedure: UNIX . 548
Usage: PRINTTO Procedure: UNIX . 549

Chapter 31 / SORT Procedure: UNIX . 551
Overview: SORT Procedure: UNIX . 551
Concepts: SORT Procedure: UNIX . 552
Syntax: SORT Procedure: UNIX . 561
Examples: SORT Procedure: UNIX . 562

Contents vii

PART 6 Appendixes

Appendix 1 / The !SASROOT Directory . 567
Introduction to the !SASROOT Directory . 567
Contents of the !SASROOT Directory . 568

Appendix 2 / Tools for the System Administrator . 573
The Utilities Directory in UNIX Environments . 573
Installing Manual Pages . 574
Utilities in the /utilities/bin Directory . 574
SAS Usage Utilities: cleanwork . 576
Authentication Utilities . 578
SAS Version Utilities . 586

Appendix 3 / Text-Editing Commands . 591
Text-Editing Commands for SAS Windowing Environment 592

Appendix 4 / Using EBCDIC Data on ASCII Systems . 643
About EBCDIC and ASCII Data . 643
Moving Data from EBCDIC to ASCII Systems . 646
Moving Data from ASCII to EBCDIC Systems . 654

viii Contents

About This Book

Syntax Conventions for the SAS
Language

Overview of Syntax Conventions for the SAS
Language

Overview of Syntax Conventions for the
SAS Language
SAS uses standard conventions in the documentation of syntax for SAS language
elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

n syntax components

n style conventions

n special characters

n references to SAS libraries and external files

Syntax Components

Syntax Components
The components of the syntax for most language elements include a keyword and
arguments. For some language elements, only a keyword is necessary. For other

ix

language elements, the keyword is followed by an equal sign (=). The syntax for
arguments has multiple forms in order to demonstrate the syntax of multiple
arguments, with and without punctuation.

keyword
specifies the name of the SAS language element that you use when you write
your program. Keyword is a literal that is usually the first word in the syntax. In a
CALL routine, the first two words are keywords.

In these examples of SAS syntax, the keywords are bold:

CHAR (string, position)
CALL RANBIN (seed, n, p, x);
ALTER (alter-password)
BEST w.
REMOVE <data-set-name>

In this example, the first two words of the CALL routine are the keywords:

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without
arguments:

DO;
... SAS code ...
END;

Some system options require that one of two keyword values be specified:

DUPLEX | NODUPLEX

Some procedure statements have multiple keywords throughout the statement
syntax:

CREATE <UNIQUE> INDEX index-name ON table-name (column-1 <,
column-2, …>)

argument
specifies a numeric or character constant, variable, or expression. Arguments
follow the keyword or an equal sign after the keyword. The arguments are used
by SAS to process the language element. Arguments can be required or
optional. In the syntax, optional arguments are enclosed in angle brackets (<
>).

In this example, string and position follow the keyword CHAR. These arguments
are required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In this example of SAS code, the argument string
has a value of 'summer', and the argument position has a value of 4:

x=char('summer', 4);

In this example, string and substring are required arguments, whereas modifiers
and startpos are optional.

FIND(string, substring <, modifiers> <, startpos>

argument(s)
specifies that one argument is required and that multiple arguments are allowed.
Separate arguments with a space. Punctuation, such as a comma (,) is not
required between arguments.

x About This Book

The MISSING statement is an example of this form of multiple arguments:

MISSING character(s);

<LITERAL_ARGUMENT> argument-1 <<LITERAL_ARGUMENT> argument-2 ... >
specifies that one argument is required and that a literal argument can be
associated with the argument. You can specify multiple literals and argument
pairs. No punctuation is required between the literal and argument pairs. The
ellipsis (...) indicates that additional literals and arguments are allowed.

The BY statement is an example of this argument:

BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …>;

argument-1 <options> <argument-2 <options> ...>
specifies that one argument is required and that one or more options can be
associated with the argument. You can specify multiple arguments and
associated options. No punctuation is required between the argument and the
option. The ellipsis (...) indicates that additional arguments with an associated
option are allowed.

The FORMAT procedure PICTURE statement is an example of this form of
multiple arguments:

PICTURE name <(format-options)>
<value-range-set-1 <(picture-1-options)>
<value-range-set-2 <(picture-2-options)> …>>;

argument-1=value-1 <argument-2=value-2 ...>
specifies that the argument must be assigned a value and that you can specify
multiple arguments. The ellipsis (...) indicates that additional arguments are
allowed. No punctuation is required between arguments.

The LABEL statement is an example of this form of multiple arguments:

LABEL variable-1=label-1 <variable-2=label-2 …>;

argument-1 <, argument-2, ...>
specifies that one argument is required and that you can specify multiple
arguments that are separated by a comma or other punctuation. The ellipsis (...)
indicates a continuation of the arguments, separated by a comma. Both forms
are used in the SAS documentation.

Here are examples of this form of multiple arguments:

AUTHPROVIDERDOMAIN (provider-1:domain-1 <, provider-2:domain-2, …>
INTO :macro-variable-specification-1 <, :macro-variable-specification-2, …>

Note: In most cases, example code in SAS documentation is written in lowercase
with a monospace font. You can use uppercase, lowercase, or mixed case in the
code that you write.

Syntax Conventions for the SAS Language xi

Style Conventions

Style Conventions
The style conventions that are used in documenting SAS syntax include uppercase
bold, uppercase, and italic:

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In this
example, the keyword ERROR is written in uppercase bold:

ERROR <message>;

UPPERCASE
identifies arguments that are literals.

In this example of the CMPMODEL= system option, the literals include BOTH,
CATALOG, and XML:

CMPMODEL=BOTH | CATALOG | XML |

italic
identifies arguments or values that you supply. Items in italic represent user-
supplied values that are either one of the following:

n nonliteral arguments. In this example of the LINK statement, the argument
label is a user-supplied value and therefore appears in italic:

LINK label;

n nonliteral values that are assigned to an argument.

In this example of the FORMAT statement, the argument DEFAULT is
assigned the variable default-format:

FORMAT variable(s) <format > <DEFAULT = default-format>;

Special Characters

Special Characters
The syntax of SAS language elements can contain the following special characters:

=
an equal sign identifies a value for a literal in some language elements such as
system options.

In this example of the MAPS system option, the equal sign sets the value of
MAPS:

xii About This Book

MAPS=location-of-maps

< >
angle brackets identify optional arguments. A required argument is not enclosed
in angle brackets.

In this example of the CAT function, at least one item is required:

CAT (item-1 <, item-2, …>)

|
a vertical bar indicates that you can choose one value from a group of values.
Values that are separated by the vertical bar are mutually exclusive.

In this example of the CMPMODEL= system option, you can choose only one of
the arguments:

CMPMODEL=BOTH | CATALOG | XML

...
an ellipsis indicates that the argument can be repeated. If an argument and the
ellipsis are enclosed in angle brackets, then the argument is optional. The
repeated argument must contain punctuation if it appears before or after the
argument.

In this example of the CAT function, multiple item arguments are allowed, and
they must be separated by a comma:

CAT (item-1 <, item-2, …>)

'value' or "value"
indicates that an argument that is enclosed in single or double quotation marks
must have a value that is also enclosed in single or double quotation marks.

In this example of the FOOTNOTE statement, the argument text is enclosed in
quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | "text">;

;
a semicolon indicates the end of a statement or CALL routine.

In this example, each statement ends with a semicolon:

data namegame;
 length color name $8;
 color = 'black';
 name = 'jack';
 game = trim(color) || name;
run;

Syntax Conventions for the SAS Language xiii

References to SAS Libraries and External Files

References to SAS Libraries and External
Files
Many SAS statements and other language elements refer to SAS libraries and
external files. You can choose whether to make the reference through a logical
name (a libref or fileref) or use the physical filename enclosed in quotation marks.

If you use a logical name, you typically have a choice of using a SAS statement
(LIBNAME or FILENAME) or the operating environment's control language to make
the reference. Several methods of referring to SAS libraries and external files are
available, and some of these methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized
phrase file-specification. In the examples that use SAS libraries, SAS
documentation uses the italicized phrase SAS-library enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

xiv About This Book

What's New in the SAS 9.4
Companion for UNIX
Environments

Overview
The following categories list the areas of change for SAS in UNIX environments:

n “Accessing SAS Viya” on page xv

n “Platform Support” on page xvi

n “Default Updates” on page xvi

n “SAS Command” on page xvii

n “SAS Procedures” on page xvii

n “SAS Statements” on page xviii

n “SAS System Options” on page xix

n “System Performance and Maintenance” on page xxi

n “Documentation Enhancements” on page xxi

Accessing SAS Viya
Beginning in SAS 9.4M5, if you have SAS Viya on your system, you can begin a
CAS session from your SAS 9.4 interface. For more information, see Chapter 2,
“Connecting to the CAS Server,” on page 39.

Information about whether features are included in SAS Viya has been added
throughout the book.

xv

Platform Support
Beginning in SAS 9.4M8, the HP-UX platform is no longer supported. Documenation
that references HP-UX remains for customers who have not upgraded to SAS
9.4M8 or later.

Default Updates

Default for LRECL= Option Is Now 32,767
The default value for LRECL= has changed from 256 to 32,767. If you are using
fixed length records (RECFM=F), the default value for LRECL= is 256.

Default for MEMSIZE System Option Is Now 2G
In SAS 9.4, the default value for the MEMSIZE system option has changed from
512M to 2G. In addition, when you specify -MEMSIZE MAX during invocation, the
value of MEMSIZE is adjusted accordingly based on both page size and virtual
memory limit that is available for processes.

Default for SORTSIZE System Option Is Now 1G
The default value for the SORTSIZE= system option has changed from 256M to 1G.
The default value for the SORTSIZE= option for the SORT procedure is based on
the value of the SORTSIZE= system option.

xvi What's New in the SAS 9.4 Companion for UNIX Environments

SAS Command

SETENV | UNSETENV
The SETENV | UNSETENV command is new. You can use the SETENV command
to define an environment variable by providing a variable name, a variable value, or
both. You can use the UNSETENV command to delete an environment variable by
specifying a variable name.

Run Lua Files from the SAS Command Line
You can run an external Lua script (*.lua or *.luc file) from the SAS command line
using the -SYSIN option. You can also run an external Lua script in a SAS session
using an %INCLUDE statement. Support for running external Lua files was added in
SAS 9.4M3.

SAS Procedures

BMDP Procedure
In SAS 9.4M2, the BMDP procedure has been deprecated. If you call the BMDP
procedure, SAS does not attempt to run BMDP software. However, the BMDP
engine, which enables SAS to convert to and from BMDP files, is still available.

CONTENTS Procedure
In SAS 9.4M3, the CONTENTS procedure for UNIX displays the size of a file in KB,
MB, or GB, as appropriate, labeled as File Size. This value is an approximation. If
you need to know the exact size of a file, the value File Size (bytes) is still provided
in the output for the CONTENTS procedure as well.

SAS Procedures xvii

SORT Procedure
In SAS 9.4M8, the SORT procedure no longer supports using the host utility
syncsort. As a result, the following system options are not used: SORTANOM,
SORTCUT, SORTCUTP, SORTDEV, SORTPARM, and SORTPGM. If you specify
one or more of these options, SAS writes a note to the SAS log that the SAS sort is
used instead of the host sort utility.

SAS Statements

FILE and FILENAME Statements: PERMISSION=
Option

In SAS 9.4M2, a new option is available for the FILE and FILENAME statements.
The PERMISSION= option enables you to specify Read, Write, and Execute
permissions for the specified fileref. You also specify whether the permissions that
you set apply to you, to the group owner of the file, and to other users.

FILENAME Statement: Access Methods
The FILENAME statement has the following new access methods:

DATAURL
enables you to read data from user-specified text.

HADOOP
enables you to access files on a Hadoop Distributed File System (HDFS) whose
location is specified in a configuration file.

ZIP
enables you to access ZIP files.

In SAS 9.4M1, the following access methods are new:

ACTIVEMQ
enables SAS programs to send messages to and receive messages from an
ActiveMQ message broker through the HTTP protocol.

JMS
enables SAS programs to send messages to and receive messages from any
JMS API-compliant message service.

xviii What's New in the SAS 9.4 Companion for UNIX Environments

In SAS 9.4M1, a processing restriction for a SAS server in a locked-down state was
implemented. In SAS 9.4M2, the following FILENAME statement access methods
are not accessible (enabled) when SAS is in a locked-down state: EMAIL, FTP,
HADOOP, SOCKET, and URL. However, your SAS server administrator can re-
enable one or more of these access methods so that they are accessible when SAS
is in the locked-down state.

SAS System Options

System Option Enhancement
In SAS 9.4M5, you can specify the following system options using KB, MB, or GB
syntax notation:

BUFNO MVARSIZE
BUFSIZE OBS
CATCACHE REALMEMSIZE
MAXMEMQUERY SORTCUT
MEMSIZE SORTCUTP
MSYMTABMAX SORTSIZE

For example, you can specify the value of BUFSIZE as 2MB in either of the
following ways:

-bufsize=2M
-bufsize=2MB

ALIGNSASIOFILES System Option
The new ALIGNSASIOFILES system option aligns the pages of data in a SAS data
set to improve performance.

FILELOCKWAIT= System Option
The new FILELOCKWAIT system option sets the number of seconds that SAS waits
for a locked file to become available.

SAS System Options xix

HOSTINFOLONG System Option
The new HOSTINFOLONG system option specifies to write additional operating
environment information in the SAS log when SAS starts.

MVARSIZE System Option
In SAS 9.4M3, the default for the MVARSIZE system option changed from 32K to
65534.

OPLIST System Option Enhancement
In SAS 9.4M2, the OPLIST system option automatically masks any password values
that are specified when invoking SAS. Only the masked values appear in the SAS
log.

RTRACE System Option Argument
The RTRACE system option, which produces a list of resources that are read or
loaded during a SAS session, has a new argument called VER. This argument
writes the version number and other trace information for each module that SAS
reads or loads.

RTRACELOC System Option Enhancement
In SAS 9.4M2, you can expand the filename that is generated by the RTRACELOC
system option to include the process ID, date, and system time. Include %p, %d, or
%t, respectively, to include these values in the filename (for example,
mytrace.%d.%t.%p).

xx What's New in the SAS 9.4 Companion for UNIX Environments

SAS Environment Variable: AUTHINFO
In SAS 9.4M5, support for a new environment variable, AUTHINFO, was added.
Use this environment variable to specify the location of the authinfo file that you use
to authenticate to a CAS server.

System Performance and Maintenance

Measuring System Performance
In SAS 9.4M1, documentation of the iotest.sh tool for measuring system
performance was added. A new chapter, “Performance Considerations under UNIX,”
explains the use of this tool.

Cleanwork Utility
In SAS 9.4M4, two new options were added to the cleanwork utility. These options
are -V to produce verbose output and -LOG logfile to save the output of the
cleanwork command to a log file.

Documentation Enhancements

How File Extension Delimiters Are Handled
A section about how file extension delimiters are handled was added. This section
explains the use of periods as delimiters.

Documentation Enhancements xxi

Supported File Extensions
In SAS 9.4M4, the table that lists file extensions for SAS file types has been
updated to include SAS Scalable Performance Data Engine component files and
SAS Scalable Performance Data Server files. These files end with the file
extension .spds9. For more information, see Table 3.1 on page 48.

End-of-Line Delimiters
In SAS 9.4M3, either a line feed alone or a carriage return and a line feed are
recognized as an end-of-line delimiter. If you need to explicitly define the end-of-line
delimiter, use the TERMSTR= host option for FILE, FILENAME, and INFILE
statements.

Spaces within a System Option
If the value of a system option includes a space, you must enclose the value in
quotation marks. For example, here is how you would specify a value for BUFSIZE
that includes a space: -bufsize='3 k';.

Spaces within the SYSPARM= Macro Variable
Value

When you invoke the SYSPARM= macro variable on the SAS command line for a
value that includes a space, you must invoke it as follows:

sas --sysparm "my value"

Distributing Multiple Utility Files to Different
Destinations

In the SORT procedure, you can distribute multiple utility files that are written by one
threaded procedure to different locations. Each location that is specified for the
UTILLOC option identifies a single location at which utility files can be distributed. If
multiple locations are specified, then the locations are used on a rotating basis by
SAS applications as utility files are required.

xxii What's New in the SAS 9.4 Companion for UNIX Environments

Environment Variables under UNIX
In SAS 9.4M2, a new chapter was added to explain environment variables that are
used under UNIX environments. This chapter includes the SASV9_CONFIG,
SASV9_OPTIONS, and the PATHENCODING environment variables.

In SAS 9.4M2, any path that you provide in a SAS program must include characters
that are recognized by both the PATHENCODING environment variable and by the
SAS session encoding. Specifically, to specify a PATHENCODING value of UTF-8 in
a SAS session that uses English (LANG=EN), you must specify a SAS session
encoding of UTF-8 or SAS_U8.

Processing Restriction for Server in a Locked-Down
State

In SAS 9.4M1, a processing restriction for a SAS server in a locked-down state is
new. If you are running in a client/server environment (for example, if you are
running SAS Enterprise Guide), the SAS server administrator can create an
environment where your SAS client has access to a set of directories and files. All
other directories and files are inaccessible or locked down. When a SAS server is in
a locked-down state, these SAS functions and CALL routines are not available:

ADDR PEEK
ADDRLONG PEEKC
CALL MODULE PEEKCLONG
CALL POKE PEEKLONG
CALL POKELONG

Note: Only the CALL MODULE routine and PEEKLONG function are listed in this
document. The CALL MODULE routine and PEEKLONG function have properties
that are specific to UNIX.

Function Key Definitions
In SAS 9.4M5, a table that lists the default key definitions has been added to the
information about displaying function key definitions.

Documentation Enhancements xxiii

Administration Utilities That Are Available under
UNIX

In SAS 9.4M3, a new chapter was added that described useful administration
utilities that are available. These utilities assist in verifying user authentication and
identifying key descriptive information about SAS images.

In SAS 9.4M5, these authentication and image description utilities were moved into
Appendix 2, “Tools for the System Administrator,” on page 573 so that all system
administrator utilities can be found in the same place.

Results of the SASUMGMT Utility
For SAS 9.4M5, a list of return codes and their meanings was added to the
documentation for the SASUMGMT utility.

Accessing EBCDIC Data
In SAS 9.4M2, a new appendix, Appendix 4, “Using EBCDIC Data on ASCII
Systems,” on page 643 was added. This appendix provides background about
EBCDIC and ASCII data representation. This appendix includes examples of
different methods of using EBCDIC data on an ASCII machine.

xxiv What's New in the SAS 9.4 Companion for UNIX Environments

PART 1

Running SAS Software under UNIX

Chapter 1
Getting Started with SAS in UNIX Environments . 3

Chapter 2
Connecting to the CAS Server . 39

Chapter 3
Using SAS Files . 43

Chapter 4
Using External Files and Devices . 85

Chapter 5
Printing and Routing Output . 113

Chapter 6
Accessing Shared Executable Libraries from SAS 133

Chapter 7
Viewing Output and Help in the SAS Remote Browser 163

Chapter 8
Performance Considerations under UNIX . 169

1

2

1
Getting Started with SAS in
UNIX Environments

Starting SAS Sessions in UNIX Environments . 4
Invoking SAS . 4
SAS Invocation Scripts . 5
SAS Configuration Files . 5
Syntax of the SAS Command . 5
Example: Invoke an Interactive SAS Session . 6
What If SAS Does Not Start? . 6

Running SAS in a Foreground or Background Process . 7

Selecting a Method of Running SAS in UNIX Environments . 7

SAS Windowing Environment in UNIX Environments . 8
Introduction to the SAS Windowing Environment . 8
Invoking SAS in the Windowing Environment . 9
Exiting SAS in the Windowing Environment . 10

Interactive Line Mode in UNIX Environments . 10
Introduction to Interactive Line Mode . 10
Invoking SAS in Interactive Line Mode . 11
Exiting SAS in Interactive Line Mode . 11

Noninteractive and Batch Modes in UNIX Environments . 12
Introduction to Running SAS in Noninteractive or Batch Mode 12
Invoking SAS in Noninteractive or Batch Mode . 12
Submitting a Program to the Batch Queue . 13
Writing Data from an External File Using UNIX Pipes . 13

Running SAS on a Remote Host in UNIX Environments . 14
Introduction to Running SAS on a Remote Host . 14
Steps for Running SAS on a Remote Host . 14
Preventing SAS from Attempting to Connect to the X Server . 15
Troubleshooting Connection Problems . 15

X Command Line Options . 16
How to Specify X Window System Options . 16
Supported X Command Line Options . 16
Unsupported X Command Line Options . 17

3

Executing Operating System Commands from Your SAS Session 18
Deciding Whether to Run an Asynchronous or Synchronous Task 18
Executing a Single UNIX Command . 18
Executing Several UNIX Commands . 20
Changing the File Permissions for Your SAS Session . 21
Executing X Statements in Noninteractive or Batch Mode . 21

Customizing Your SAS Registry Files . 22

Customizing Your SAS Session By Using System Options . 22
Ways to Customize Your SAS Session . 22
Ways to Specify a SAS System Option . 22
Overriding the Default Value for a System Option . 23
When the Value of a System Option Includes a Space . 24
How SAS Processes System Options That Are Set More Than Once 25
How SAS Processes System Options That Are Set in Multiple Places 25

Customizing Your SAS Session By Using Configuration and Autoexec Files 26
Customizing Your SAS Session . 26
Introduction to Configuration and Autoexec Files . 27
Creating a Configuration File . 29
Order of Precedence for Processing SAS Configuration Files . 29
Specifying a Configuration File for SAS to Use . 30

Determining the Completion Status of a SAS Job in UNIX Environments 31

Exiting or Interrupting Your SAS Session in UNIX Environments 32
Methods for Exiting SAS . 32
Methods for Interrupting or Terminating SAS . 32
Messages in the Console Log (STDOUT) . 37

Ending a Process That Is Running as a SAS Server . 37

Interrupting a SAS Process and the Underlying DBMS Process 38

Starting SAS Sessions in UNIX
Environments

Invoking SAS
A SAS session is invoked using a link within the !SASROOT directory. (The !SASROOT
directory is a term that represents the name of the directory or folder in which SAS
is installed at your site or on your computer.) Your UNIX administrator typically adds
this link to the list of commands for your operating environment. For more
information about the !SASROOT directory, see “Introduction to the !SASROOT
Directory” on page 567.

Ask your system administrator for the command that invokes SAS at your site. At
many sites, the command to invoke SAS is sas, but a different command might

4 Chapter 1 / Getting Started with SAS in UNIX Environments

have been defined during the SAS installation process at your site. This
documentation assumes that SAS is invoked by the sas command.

Note: Before you start your SAS session, review the different techniques for
interrupting and terminating your SAS session. For more information, see “Exiting or
Interrupting Your SAS Session in UNIX Environments” on page 32. Also, if you
cannot stop your SAS session, contact your system administrator.

SAS Invocation Scripts
SAS is invoked by scripts that are located under the !SASROOT directory. Your
system administrator typically defines a link or alias that you can use to invoke SAS.
You can use that link or alias without specifying the full path to the SAS executable.

For SAS 9, a SAS invocation script is created for each language that is installed. An
invocation script is named using the language code of the installed language. For
example, sas_en invokes the English version of SAS. All languages are installed in
all locations. The typical path to the SAS invocation script is /usr/local/sas.

For SAS Viya, the SAS invocation script is typically located in /opt/sas/spre/
home/bin/sas, and the executable is sas_u8.

For more information about setting up SAS, see the installation documentation for
the UNIX environment.

SAS Configuration Files
SAS creates a separate configuration file for each language that is installed. The
language-specific configuration files have the form !SASROOT/nls/<language>/
sasv9.cfg for each language. An additional configuration file that is language
independent is !SASROOT/sasv9.cfg. This master configuration file
in !SASROOT/nls/<language>/ is used by all languages in addition to the language-
specific files in !SASROOT/nls/<language>/. You can modify these configuration
files to meet your needs. For information about how to customize SAS configuration
files, see “Customizing Your SAS Session By Using Configuration and Autoexec
Files” on page 26.

Syntax of the SAS Command
The general form of the SAS command is as follows:

sas <-option1…-option-n> <filename>
sas –sysin filename

You can use these arguments with the SAS command:

Starting SAS Sessions in UNIX Environments 5

-option1 ... -option-n
specifies SAS system options to configure your session or X command line
options. For more information, see “SAS System Options under UNIX” on page
409 and “X Command Line Options” on page 16. If you omit any options (either
on the command line or in the configuration file), the SAS (or site-specific)
default options are in effect.

filename
specifies the name of the file containing the SAS program to be executed.
Specifying a filename on the SAS command invokes a batch SAS session. Omit
the filename to begin an interactive session.

If the file is not in the current directory, specify its full pathname. A .sas extension
is inferred if the full pathname is not given.

Note: This command can fail in cases where an option does not recognize
filename. In this case, -sysin filename is required.

Example: Invoke an Interactive SAS Session
To invoke an interactive SAS session, without specifying any SAS system options,
enter

sas

The execution mode depends on your default settings. For more information, see
“Selecting a Method of Running SAS in UNIX Environments” on page 7.

To specify the WORK and MEMSIZE system options when you invoke SAS, you
might enter this command:

sas -work /saswork -memsize 4G

What If SAS Does Not Start?
There are several reasons why SAS might not start. Some common reasons are
listed here:

n SAS does not start if you specify an autoexec file that does not exist. An error
message appears in the SAS log stating that the physical file does not exist.

n SAS does not start if the configuration file cannot be found. This error normally
indicates an installation problem.

n SAS does not start if the Work directory cannot be found. You can specify a
Work directory using the WORK system option.

n SAS does not start if you specify invalid options, such as a misspelled
option: ./sas —nodms —stimerr (stimer is misspelled).

If SAS does not start, the SAS log might contain error messages that explain the
failure. However, error messages that SAS issues before the SAS log is initialized
are written to the console log. With the addition of better error handling, a failure
could cause information to be written to standard output as well.

6 Chapter 1 / Getting Started with SAS in UNIX Environments

If the system is not patched correctly, SAS can generate an error such as NLS
Extension Failure. This and other types of error messages indicate that the
installation did not set up the search rules correctly.

Under UNIX, the STDOUT fileref specifies the location of the console log.

Running SAS in a Foreground or
Background Process

UNIX is a multiprocessing operating system, so you can run multiple processes at
the same time. For example, you can have one process running in the foreground
and three in the background.

A foreground process executes while you wait for the prompt. That is, you cannot
execute additional commands while the current command is being executed. After
you enter a command, the shell starts a process to execute the command. After the
system executes the command, the shell displays the prompt and you can enter
additional commands. Here is an example of SAS executing as a foreground
process:

sas

Running in the foreground enables you to access standard input and output.

A background process executes independently of the shell. After you enter a
command, the shell starts a process to execute the command, and then issues the
system prompt. You can enter other commands or start other background processes
without waiting for your initial command to execute. Here is an example of the
command that is used to execute a background process:

sas&

Note: Both the C shell and the Korn shell include commands that enable you to
move jobs among three possible states: running in the foreground, running in the
background, and suspended. If you run SAS in –nodms mode, the process stops
waiting for input. In dms mode, control of standard output and input is retained by
the shell.

Selecting a Method of Running SAS in
UNIX Environments

You can run SAS in the SAS windowing environment, in SAS Studio, in interactive
line mode, or in noninteractive or batch mode:

n “Invoking SAS in the Windowing Environment” on page 9

Selecting a Method of Running SAS in UNIX Environments 7

n Using SAS Studio in SAS Studio: User’s Guide. Your site administrator provides
the URL to access SAS Studio.

n “Interactive Line Mode in UNIX Environments” on page 10

n “Noninteractive and Batch Modes in UNIX Environments” on page 12

Ask your UNIX system administrator which interface or mode of operation is the
default at your site.

SAS Windowing Environment in UNIX
Environments

Introduction to the SAS Windowing Environment

SAS Windows
You interact with SAS through windows using the keyboard, mouse, menus, and
icons. The windowing environment includes, but is not limited to, the Explorer,
Program Editor, Output, Log, and Results windows. The following display shows the
Explorer, Output, Log, and Program Editor windows. The ToolBox window is also
displayed.

Figure 1.1 Windows in the SAS Windowing Environment

8 Chapter 1 / Getting Started with SAS in UNIX Environments

http://documentation.sas.com/?cdcId=webeditorcdc&cdcVersion=3.71&docsetId=webeditorug&docsetTarget=p092daf4a5ypjcn138maiooc8wsn.htm

Your SAS session might default to the windowing environment interface. (You can
change the default by using the config files.) If you want to use the windowing
environment, you can start your SAS session as a foreground process, or as a
background process by adding an ampersand (&) to your SAS command line. See
“Running SAS in a Foreground or Background Process” on page 7 for an example
of these SAS commands.

For more information about using the windowing environment, see “Definition of the
SAS Windowing Environment” on page 174.

Note: If you are not using an X display, then you can invoke SAS in interactive line
mode by using the NODMS system option. For more information, see “Interactive
Line Mode in UNIX Environments” on page 10.

What Is the Explorer Window?
Explorer is a windowing environment for managing basic SAS software tasks such
as viewing and managing data sets, libraries, members, applications, and output.
The SAS Explorer is a central access point from which you can do the following:

n manipulate SAS data through a graphical interface

n access the Program Editor, Output, and Log windows (as well as other windows)

n view the results of SAS procedure output in the Results window

n import files into SAS

What Are the Program Editor, Output, and
Log Windows?
The Program Editor, Output, and Log windows enable you to edit and execute SAS
programs and display output. For more information about these windows, see the
online SAS Help and Documentation.

Invoking SAS in the Windowing Environment
You can use the following commands to specify which windows open when a SAS
session starts.

n You can open the Program Editor, Output, and Log windows by specifying the
DMS system option:

sas -dms

n You can open the Program Editor, Output, Log, and Results windows, as well as
the Explorer window, by specifying the DMSEXP system option:

sas -dmsexp

SAS Windowing Environment in UNIX Environments 9

n You can open only the Explorer window by specifying the EXPLORER system
option:

sas -explorer

Figure 1.2 SAS Explorer Window

The default specification for invoking SAS is sas -dmsexp. This command displays
the Program Editor, Output, Log, and Results windows as well as the Explorer
window. If you invoke SAS without the -dmsexp option, the Explorer window is not
displayed.

SAS also opens a toolbox from which you can open additional SAS windows. For
more information about the toolbox, see Chapter 9, “Working in the SAS Windowing
Environment,” on page 173.

Exiting SAS in the Windowing Environment
To end your SAS session, enter the BYE or ENDSAS command in the command
window, or select File ð Exit from the menu of the SAS session that you want to
end.

Interactive Line Mode in UNIX
Environments

Introduction to Interactive Line Mode
If you are not using an X display, you can invoke SAS in interactive line mode by
using the NODMS system option.

You enter SAS statements line by line in response to prompts issued by SAS. SAS
reads the source statements from the terminal as you enter them. DATA and PROC
steps execute when one of the following occurs:

10 Chapter 1 / Getting Started with SAS in UNIX Environments

n a RUN, QUIT, or DATALINES statement is entered

n another DATA or PROC statement is entered

n the ENDSAS statement is entered

To use interactive line mode, you must run SAS in the foreground.

Invoking SAS in Interactive Line Mode
To start an interactive line mode session, invoke SAS with the NODMS or
NODMSEXP system option:

sas -nodms

sas -nodmsexp

By default, SAS log and procedure output (if any) appear on your display as each
step executes.

You can also invoke SAS in interactive line mode and pass parameters to it:

sas -sysparm 'A B C'

The value A B C is assigned to the SYSPARM macro variable. You can include a
program name, such as progparm.sas in the Program Editor or from the SAS
command prompt, if you invoked SAS in line mode by using the –nodms option.

Note: NODMS is the default system option value.

After you invoke SAS, the 1? prompt appears, and you can begin entering SAS
statements. After you enter each statement, a line number prompt appears.

Exiting SAS in Interactive Line Mode
You can end the session by pressing the EOF key, usually Ctrl-D (see “Using
Control Keys” on page 35) or by issuing the ENDSAS statement:

endsas;

The session ends after all SAS statements have executed.

Interactive Line Mode in UNIX Environments 11

Noninteractive and Batch Modes in UNIX
Environments

Introduction to Running SAS in Noninteractive or
Batch Mode

To run SAS in noninteractive or batch mode, you specify your SAS program name in
the SAS invocation command. In either of these modes, the program runs to
completion, and you can view the *.log and *.lst files after the program finishes. You
can run a SAS program in the foreground (noninteractive mode), in the background
by specifying an ampersand at the end of the SAS command (batch mode), or
submit your application to the batch queue by using the batch, at, nohup, or cron
UNIX commands. (For more information, see the UNIX man pages for the batch,
at, nohup, or cron commands.) If you start your application with one of these UNIX
commands and you log off from your system, then your application completes
execution. If your application contains statements that start an interactive procedure
such as FSEDIT, then you need to run your application in the foreground or you
need to specify the –noterminal option.

Invoking SAS in Noninteractive or Batch Mode
To invoke SAS in noninteractive mode or in batch mode, you must specify a
filename in the SAS command. Noninteractive mode invokes a SAS program for
immediate processing in the foreground. When you run a program in batch mode, it
runs in the background. For example, suppose that weekly.sas is a file that
contains SAS statements to be executed, and suppose that you want to specify the
NODATE and LINESIZE system options. To run in noninteractive mode, enter the
following command:

sas weekly.sas -nodate -linesize 90

The command runs the program in the foreground. If you want to run the program in
the background (batch mode), add the ampersand to the end of the command:

sas weekly.sas -nodate -linesize 90 &

SAS creates a .log file and a .lst file in the current directory that contains the log and
procedure output.

12 Chapter 1 / Getting Started with SAS in UNIX Environments

Submitting a Program to the Batch Queue
To submit your program to the batch queue, you can use the batch, at, nohup, or
cron commands. For example, you could submit weekly.sas from your shell prompt
as follows:

$ at 2am
sas weekly.sas
<control-D>
warning: commands will be executed using /usr/bin/sh
job 8400.a at Wed Mar 16 02:00:00 2011
$

If you create a file that contains the SAS command (for example, cmdfile.sh) that
is necessary to run your program, then you can enter the following command at your
shell prompt:

at 2am < cmdfile.sh

SAS sends the output to a file that has the same name as the program. The output
file has an extension of .lst. The log file writes to a file with an extension of .log. Both
of these files are written to your current directory. See the UNIX man pages for
these commands for more information about submitting jobs to the batch queue. For
more information about routing output, see Chapter 5, “Printing and Routing
Output,” on page 113.

If you submit a file in batch mode, then a line that is greater than 256 bytes is
truncated. An explicit message about this truncation is written to the SAS log.

Note: If your program contains statements that start an interactive procedure, such
as the FSEDIT procedure, CATALOG procedure, or the REPORT procedure, you
need to run your program as a foreground process, or use the –noterminal option.

Writing Data from an External File Using UNIX
Pipes

You can use a UNIX pipe to write data from an external file to a SAS program. For
example, suppose that your data resides in the external file mydata and your SAS
program myprog.sas includes this statement:

infile stdin;

Issue this command to run myprog.sas, which reads data from the external file
mydata:

cat mydata | sas myprog.sas

For information about using external files, see Chapter 4, “Using External Files and
Devices,” on page 85. For information about another way to have a SAS program
read data from an external file, see “File Descriptors in the Bourne and Korn Shells”
on page 99.

Noninteractive and Batch Modes in UNIX Environments 13

Running SAS on a Remote Host in UNIX
Environments

Introduction to Running SAS on a Remote Host
When you invoke SAS in an interactive mode, you can run SAS on your local host.
Alternatively, you can run SAS on a remote host and interact with the session
through an X server that runs on your workstation. The server provides the display
services that are needed for the X Window System.

Most of the time, the server name is derived from the computer's name. For
example, if your computer is named green, the name of the server is green:0.0. In
most cases, the X server will already be running when you log on. If you need to
start your server manually, consult the documentation that is provided with your X
Window System software.

To run SAS on a remote host, you must tell SAS which display to use by either
setting the DISPLAY environment variable or specifying the -display X command
line option.

Steps for Running SAS on a Remote Host
To run SAS on a remote host, you must tell SAS which display to use by either
setting the DISPLAY environment variable before invoking SAS or by specifying the
–display x as a SAS command line option. Then follow these steps:

1 Make sure that the clients running on the remote host have permission to
connect to your server. With most X servers, authorization is controlled by using
an .Xauthority file that is located in the user's home directory. In addition, the
xhost command can be used to circumvent authority. To use the xhost client to
permit all remote hosts to connect to your server, enter the following command at
the system prompt on the system that is running your X server:

xhost +

If your system does not control access with the xhost client, consult your system
documentation for information about allowing remote access.

For information about editing and displaying authorization information, see the
UNIX man page for xauth.

2 Log on to the remote system, or use a remote shell.

3 Identify your server as the target display for X clients that are run on the remote
host. You can identify your server in one of two ways:

14 Chapter 1 / Getting Started with SAS in UNIX Environments

a Set the DISPLAY environment variable. In the Bourne and Korn shells, you
can set the DISPLAY variable as follows:

DISPLAY=green:0.0
export DISPLAY

In the Korn shell, you can combine these two commands:

export DISPLAY=green:0.0

In the C shell, you must use the UNIX setenv command:

setenv DISPLAY green:0.0

The DISPLAY variable is used by all X clients on the system.

Note: To determine the shell for your current system, type ps at the UNIX
command prompt or check the value of the SHELL environment variable.

b Use the DISPLAY system option. For example:

sas -display green:0.0

If you have trouble establishing a connection, you can try using an IP address
instead of a display name, for example:

-display 10.22.1.1:0.0

Note: This option is a command line option for the X Window System, not for
SAS. Specifying this option in a SAS configuration file or in the
SASV9_OPTIONS environment variable might cause problems when you are
running other interfaces.

Preventing SAS from Attempting to Connect to the
X Server

To prevent SAS from attempting to connect to the X server, unset the DISPLAY
environment variable and use the -noterminal SAS option on the command line.
The -noterminal option specifies that you do not want to display the SAS session.
You must specify this option to generate a graph in noninteractive or batch mode.
You must also specify this option when you use PROC IMPORT and PROC
EXPORT. For more information, see "Running SAS/GRAPH Programs" in
SAS/GRAPH: Reference.

Troubleshooting Connection Problems
If SAS cannot establish a connection to your display, it prints a message that
indicates the nature of the problem and then terminates. An example of a message
that you might receive is the following:

Running SAS on a Remote Host in UNIX Environments 15

ERROR: The connection to the X display server could not be made.
 Verify that the X display name is correct, and that you have
 access authorization. See the online Help for more information
 about connecting to an X display server.

Make sure that you have brought up the SAS session correctly. You might need to
use the xhost client (enter xhost +) or some other method to change display
permissions. You can also specify the NODMS system option when you invoke SAS
to bring your session up in line mode.

If you are unable to invoke SAS, try running another application such as xclock. If
you cannot run the application, you should contact your UNIX system administrator
for assistance.

X Command Line Options

How to Specify X Window System Options
When you invoke some X clients, such as SAS, you can use command line options
that are passed to the X Window System. In general, you should specify X Window
System options after SAS options on the command line.

Supported X Command Line Options
The following list describes the X command line options that are available when you
invoke a SAS session from the command prompt.

-display host:server.screen
specifies the name or IP address of the terminal on which you want to display
the SAS session. For example, if your display node is wizard whose IP address
is 10.22.1.1:0.0, you might enter this code:

-display wizard:0.0

Or you might enter this code:

-display 10.22.1.1:0.0

-name instance-name
reads the resources in your SAS resource file that begin with instance-name. For
example, -name MYSAS reads the resources that begin with MYSAS:

MYSAS.dmsfont: Cour14

MYSAS.defaultToolbox: True

-title string
specifies a title for your SAS session window. Titles can contain up to 64
characters. Window titles are displayed in the case in which they are entered,
which can be lowercase, mixed case, or uppercase. To use multiple words in the

16 Chapter 1 / Getting Started with SAS in UNIX Environments

title, enclose the words in single or double quotation marks. For example,
-title MYSAS produces MYSAS:Explorer in the title bar of the Explorer window.

-xrm string
specifies a resource to override any defaults. For example, the following
resource turns off the Confirm dialog box when you exit SAS:

-xrm 'SAS.confirmSASExit: False'

Unsupported X Command Line Options
SAS does not support the following X command line options because their
functionality is not applicable to SAS or is provided by SAS resources. For more
information about SAS resources, see “Overview of X Resources” on page 204.

-geometry
Window geometry is specified by the SAS.windowHeight, SAS.windowWidth,
SAS.maxWindowHeight, and SAS.maxWindowWidth resources.

-background, -bg
These options are ignored.

-bordercolor, -bd
These options are ignored. For a description of specifying the color of window
borders, see “Defining Colors and Attributes for Window Elements (CPARMS)”
on page 246.

-borderwidth, -bw
These options are ignored. The width of window borders is set by SAS.

-foreground, -fg
These options are ignored.

-font, -fn
SAS fonts are specified by the SAS.DMSFont, SAS.DMSboldFont, and
SAS.DMSfontPattern resources.

-iconic
This option is ignored.

-reverse, -rv, +rv
These options are ignored. For more information about a description for
specifying reverse video, see “Defining Colors and Attributes for Window
Elements (CPARMS)” on page 246.

-selectionTimeout
Time-out length is specified by the SAS.selectTimeout resource.

-synchronous, +synchronous
The XSYNC command toggles synchronous communication between SAS and
the X server.

-xn1language
This option is ignored.

X Command Line Options 17

Executing Operating System Commands
from Your SAS Session

Deciding Whether to Run an Asynchronous or
Synchronous Task

You can execute UNIX commands from your SAS session either asynchronously or
synchronously. When you run a command as an asynchronous task, the command
executes independently of all other tasks that are currently running. To run a
command asynchronously, you must use the SYSTASK statement. See “SYSTASK
Statement: UNIX” on page 399 for information about executing commands
asynchronously.

When you execute one or more UNIX commands synchronously, you must wait for
those commands to finish executing before you can continue working in your SAS
session. You can use the CALL SYSTEM routine, %SYSEXEC macro program
statement, X statement, and X command to execute UNIX commands
synchronously. The CALL SYSTEM routine can be executed with a DATA step. The
%SYSEXEC macro statement can be used inside macro definitions, and the X
statement can be used outside of DATA steps and macro definitions. You can enter
the X command on any SAS command line. For more information, see “CALL
SYSTEM Routine: UNIX” on page 328 and “Macro Statements in UNIX
Environments” on page 367.

Executing a Single UNIX Command

Single Commands
To execute only one UNIX command, you can enter the X command, X statement,
CALL SYSTEM routine, or %SYSEXEC macro statement as follows:

X command
X command;
CALL SYSTEM ('command');
%SYSEXEC command;

Note: When you use the %SYSEXEC macro statement, if the UNIX command that
you specify includes a semicolon, you must enclose the UNIX command in a macro

18 Chapter 1 / Getting Started with SAS in UNIX Environments

quoting function. For more information about quoting functions, see SAS Macro
Language: Reference.

Example 1: Executing a UNIX Command
By Using the X Statement
You can use the X statement to execute the ls UNIX command (in a child shell) as
follows:

x ls -l;

Example 2: Executing a UNIX Command
By Using the CALL SYSTEM Routine
Inside a DATA step, you can use the CALL SYSTEM routine to execute a cd
command, which changes the current directory of your SAS session:

data _null_;
call system ('cd /users/smith/report');
run;

The search for any relative (partial) filenames during the SAS session now begins in
the /users/smith/report directory. When you end the session, your current
directory is the directory in which you started your SAS session.

For more information about the CALL SYSTEM routine, see “CALL SYSTEM
Routine: UNIX” on page 328.

How SAS Processes a Single UNIX
Command
When you specify only one command, SAS checks to see whether the command is
cd, pwd, setenv, or umask and, if so, executes the SAS equivalent of these
commands. The SAS cd and pwd commands are equivalent to their Bourne shell
counterparts. The SAS setenv command is equivalent to its C shell namesake. The
SAS umask command is equivalent to the numeric mode of the umask command
supported by the Bourne, Korn, and C shells. These four commands are built into
SAS because they affect the environment of the current SAS session. When
executed by SAS software, they affect only the SAS environment and the
environment of any shell programs started by the SAS session. They do not affect
the environment of the shell program that began your SAS session.

If the command is not cd, pwd, or setenv, SAS starts a shell in which it executes the
command that you specified. The shell that is used depends on the SHELL
environment variable. If the command is umask, but you do not specify a mask, then
SAS passes the command to the shell in which the current SAS session was

Executing Operating System Commands from Your SAS Session 19

started. For more information about the umask command, see “Changing the File
Permissions for Your SAS Session” on page 21.

Executing Several UNIX Commands

Executing UNIX Commands
You can also use the X command, X statement, CALL SYSTEM routine, and
%SYSEXEC macro statement to execute several UNIX commands:

X 'command-1;...command-n'
X 'command-1;...command-n';
CALL SYSTEM ('command-1;...command-n');
%SYSEXEC quoting-function(command-1;...command-n);

Separate each UNIX command with a semicolon (;).

Note: When you use the %SYSEXEC macro statement to execute several UNIX
commands, because the list of commands uses semicolons as separators, you must
enclose the string of UNIX commands in a macro quoting function. For more
information about quoting functions, see SAS Macro Language: Reference.

Example: Executing Several Commands
Using the %SYSEXEC Macro
The following code defines and executes a macro called pwdls that executes the
pwd and ls -l UNIX commands:

%macro pwdls;
%sysexec %str(pwd;ls -l);
%mend pwdls;
%pwdls;

This example uses %str as the macro quoting function.

How SAS Processes Several UNIX
Commands
When you specify more than one UNIX command (as a list of commands separated
by semicolons), SAS passes the entire list to the shell. SAS does not check for the
cd, pwd, setenv, or umask commands as it does when a command is specified by
itself (and not in a list separated by semicolons).

20 Chapter 1 / Getting Started with SAS in UNIX Environments

For more information about how SAS processes the cd, pwd, setenv, or umask
commands, see “How SAS Processes a Single UNIX Command” on page 19.

Changing the File Permissions for Your SAS
Session

At invocation, a SAS session inherits the file permissions from the parent shell. Any
file that you create inherits these permissions. If you want to change or remove file
permissions from within SAS, issue the following command in the X statement:
umask. The umask command applies a new "mask" to a file, that is, it sets new file
permissions for any new file that you create. In this way, the umask command can
provide file security by restricting access to new files and directories for the current
process.

The default value for umask varies. Some systems, like Secure Linux, use
mandatory access control, and the umask default is the same with or without Secure
Linux enabled. Other systems use 022 as the default. System administrators can set
their own default value, and you can check your default and change it in your
own .kshrc, .cshrc, or .profile files. These values affect all child processes that are
executed in the shell. Any subsequent file that you create during the current SAS
session inherits the permissions that you specified. The permissions of a file created
under a given mask are calculated in octal representation.

Note: The value of a mask can be either numeric or symbolic. For more information
about this command, see the UNIX man page for umask.

In addition, you can use the PERMISSION= option in the FILE or FILENAME
statement to control the permissions for individual output files. For more information,
see “FILE Statement: UNIX” on page 373 or “FILENAME Statement: UNIX” on page
377.

Executing X Statements in Noninteractive or Batch
Mode

If you run your SAS program in noninteractive or batch mode and if your operating
system supports job control, the program is suspended when an X statement within
the program needs input from the terminal.

If you run your SAS program from the batch queue by submitting it with the at or
batch commands, SAS processes any X statements as follows:

n If the X statement does not specify a command, SAS ignores the statement.

n If any UNIX command in the X statement attempts to get input, it receives an
end-of-file (standard input is set to /dev/null).

n If any UNIX command in the X statement writes to standard output or standard
error, the output is mailed to you unless it was previously redirected.

Executing Operating System Commands from Your SAS Session 21

Customizing Your SAS Registry Files
SAS registry files store information about the SAS session. The SAS registry is the
central storage area for configuration data for SAS. The following list identifies some
of the data that is stored in the registry:

n the libraries and file shortcuts that SAS assigns at start–up. These shortcuts
could include secure information, such as your password.

n the printers that are defined for use and their print setup.

n configuration data for various SAS products.

Note: SAS registry files pertain only to SAS 9.4. They are not used by SAS Viya.

The Sasuser registry file (called regstry.sas7bitm) contains your user defaults.
These registry entries can be customized by using the SAS Registry Editor or by
using PROC REGISTRY. For more information, see “The SAS Registry” in SAS
Programmer’s Guide: Essentials..

CAUTION
For experienced users only. Registry customization is generally performed by
experienced SAS users and system administrators.

Customizing Your SAS Session By Using
System Options

Ways to Customize Your SAS Session
You can customize your SAS environment in several ways. One way is through the
use of SAS system options. For information about other ways to customize a SAS
session, see “Overview of Customizing SAS in X Environment” on page 204.

Ways to Specify a SAS System Option
SAS options can be specified in one or more ways:

n in a configuration file

22 Chapter 1 / Getting Started with SAS in UNIX Environments

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ljywa7os0gqgn1gj5lp8lds8o7.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ljywa7os0gqgn1gj5lp8lds8o7.htm&locale=en

n in the SASV9_OPTIONS environment variable

n in the SAS command

n in an OPTIONS statement (either in a SAS program or an autoexec file) (An
autoexec file contains SAS statements that are executed automatically when
SAS is invoked. The autoexec file can be used to specify some SAS system
options, as well as to assign librefs and filerefs to data sources that are used
frequently.)

n in the System Options window

Any options that do not affect the initialization of SAS, such as CENTER and
NOCENTER, can be specified and changed at any time.

Some options can be specified only in a configuration file, in the SASV9_OPTIONS
variable, or in the SAS command. These options determine how SAS initializes its
interfaces with the operating system and the hardware; they are often called
configuration options. After you start a SAS session, these options cannot be
changed. Usually, configuration files specify options that you would not change very
often. In those cases when you need to change an option just for one job, specify
the change in the SAS command.

Overriding the Default Value for a System Option
The default values for SAS system options will be appropriate for many of your SAS
programs. However, you can override a default setting using one or more of the
following methods:

configuration file
Modify your current configuration file (see “Order of Precedence for Processing
SAS Configuration Files” on page 29) or create a new configuration file.
Specify SAS system options in the file by preceding each with a hyphen. For ON
or OFF options, just list the keyword corresponding to the appropriate setting.
For options that accept values, list the keyword identifying the option followed by
the option value. All SAS system options can appear in a configuration file.

For example, a configuration file might contain these option specifications:

-nocenter

-verbose

-linesize 64

SASV9_OPTIONS environment variable
Specify SAS system options in the SASV9_OPTIONS environment variable
before you invoke SAS. See “Defining Environment Variables in UNIX
Environments” on page 309.

Settings that you specify in the SASV9_OPTIONS environment variable affect
SAS sessions that are started when the variable is defined.

For example, in the Korn shell, you would use the following code:

export SASV9_OPTIONS='-fullstimer -nodate'

SAS command
Specify SAS system options in the SAS command. Precede each option with a
hyphen:

Customizing Your SAS Session By Using System Options 23

sas -option1 -option2...

For ON or OFF options, list the keyword corresponding to the appropriate
setting. For options that accept values, list the keyword that identifies the option,
followed by the option value. Here is an example:

sas -nodate -work mywork

In general, settings that you specify in the SAS command last for the duration of
the SAS session. For options that can be changed within the session, command-
line settings last until you change them. All options can be specified in the SAS
command.

OPTIONS statement within a SAS session
Specify SAS system options in an OPTIONS statement at any point within a SAS
session. The options are set for the duration of the SAS session or until you
change them. When you specify an option in the OPTIONS statement, do not
precede its name with a hyphen (-). If the option has an argument, use = after
the option name. Here is an example:

options nodate linesize=72;
options editcmd='/usr/bin/xterm -e vi';

For more information about the OPTIONS statement, see “OPTIONS Statement”
in SAS Global Statements: Reference. Not all options can be specified in the
OPTIONS statement.

OPTIONS statement in an autoexec file
Specify SAS system options in an OPTIONS statement in an autoexec file. An
autoexec file contains SAS statements that are executed automatically when
SAS is invoked. The autoexec file can be used to specify some SAS system
options, as well as to assign librefs and filerefs to data sources that are used
frequently. For example, your autoexec file could contain the following
statements:

options nodate pagesize=80;
filename rpt '/users/myid/data/report';

System Options window
Change the SAS system options from within the System Options window.

In general, use quotation marks to enclose filenames and pathnames specified in
the OPTIONS statement or the System Options window. Do not use quotation
marks otherwise. Any exceptions are discussed under the individual option. To
shorten filenames and pathnames that you specify, you can use the abbreviations
listed in Table 3.3 on page 66.

When the Value of a System Option Includes a
Space

If the value of a system option includes a space, you must enclose the value in
quotation marks on the command line or in a config file. The following examples
show the correct syntax:

-bufsize '3 k';
-bottommargin '2 in';

24 Chapter 1 / Getting Started with SAS in UNIX Environments

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en

If the value of a system option does not include a space, you do not need to enclose
the value in quotation marks:

-bufsize 3k;
-bottommargin 2in;

How SAS Processes System Options That Are Set
More Than Once

If the same system option is set more than once in the SAS command, in a
configuration file, or in the SASV9_OPTIONS environment variable, only the most
recent specification is used. The other specifications are ignored. For example, the
DMS option is ignored in the following SAS command:

sas -dms -nodms

The DMS option is ignored in the following configuration file:

-dms
-linesize 80
-nodms

By default, if you specify the HELPLOC, MAPS, MSG, SAMPLOC, SASAUTOS, or
SASHELP system option more than once, the most recent specification is the value
that SAS uses. If you want to add additional pathnames to the pathnames already
specified by one of these options, you must use the APPEND or INSERT system
option. For more information, see the “APPEND System Option: UNIX” on page 415
and “INSERT System Option: UNIX” on page 448.

How SAS Processes System Options That Are Set
in Multiple Places

System Options Set in Multiple Places
If the same system option is set in more than one place, only the most recent
specification is the value that SAS uses. The following places are listed in order of
precedence. For example, a setting made in the System Options window or in the
OPTIONS statement overrides any other setting. However, if you set a system
option using the SASV9_OPTIONS environment variable, this setting overrides only
the setting for the same system option in your configuration file.

Customizing Your SAS Session By Using System Options 25

Order of Precedence When System
Options Are Processed
The order of precedence when system options are processed is as follows:

1 System Options window or OPTIONS statement (from a SAS session or job).

2 An autoexec file that contains an OPTIONS statement (after SAS initializes). (An
autoexec file contains SAS statements that are executed automatically when
SAS is invoked. The autoexec file can be used to specify some SAS system
options, as well as to assign librefs and filerefs to data sources that are used
frequently.)

3 SAS command.

4 SASV9_OPTIONS environment variable.

5 Configuration files (before SAS initializes). For more information, see “Order of
Precedence for Processing SAS Configuration Files” on page 29.

Note: If you create a configuration file in your home directory and the
NOUSERCONFIG system option is set, the configuration file in your home
directory is skipped.

For example, if a configuration file specifies NOSTIMER, you can override the
setting in the SAS command by specifying –FULLSTIMER.

By default, if you specify the HELPLOC, MAPS, MSG, SAMPLOC, SASAUTOS, or
SASHELP system option more than one time, the most recent value that is specified
is the value that SAS uses. If you want to add pathnames to those that are already
specified by one of these options, use the APPEND or INSERT system options to
add the new pathnames. For more information, see the “APPEND System Option:
UNIX” on page 415 and “INSERT System Option: UNIX” on page 448.

Customizing Your SAS Session By Using
Configuration and Autoexec Files

Customizing Your SAS Session
You can customize your SAS environment in several ways. To customize your SAS
environment at the point of invocation, you can use configuration and autoexec files.
For information about how to customize a SAS session using the windowing
environment, see “Overview of Customizing SAS in X Environment” on page 204.

26 Chapter 1 / Getting Started with SAS in UNIX Environments

Introduction to Configuration and Autoexec Files

Defining Configuration and Autoexec Files
You can customize your SAS session by defining configuration and autoexec files.
You can use these files to specify system options and to execute SAS statements
automatically whenever you start a SAS session. SAS system options control many
aspects of your SAS session, including output destinations, the efficiency of
program execution, and the attributes of SAS files and libraries. For a complete
description of SAS system options, see SAS System Options: Reference.

For SAS 9.4, the configuration file is typically named sasv9.cfg, and the autoexec
file is named autoexec.sas. These files typically reside in the directory where SAS
was installed. By default, this directory is the !SASROOT directory.

Note: You generally store configuration files on multiple SAS servers. The options
that are specified pertain to the specific SAS server on which a configuration file is
stored. For example, if the WORK option is defined in a configuration file on the
workspace server, then the assigned Work directory must be valid on that
workspace server.

You can have customized configuration and autoexec files in your user home
directory. If you do, then SAS uses the customizations specified in these files when
you start a SAS session. For more information about the order of precedence SAS
uses when processing configuration files, see “Order of Precedence for Processing
SAS Configuration Files” on page 29.

SAS system options can be restricted by a UNIX system administrator, so that once
they are set by the administrator, they cannot be changed by a user. A system
option can be restricted globally, by group, and by user. For more information, see
the configuration guide for the UNIX environment on the SAS Support site, and see
“Restricted Options” in SAS System Options: Reference.

Using the AUTOEXEC System Option
The AUTOEXEC system option specifies the autoexec file. The autoexec file
contains SAS statements that are executed automatically when you invoke SAS, or
when you start another SAS process. The autoexec file can contain any SAS
statements. For example, your autoexec file can contain LIBNAME statements for
SAS libraries that you access routinely in SAS sessions.

SAS looks for the AUTOEXEC system option in the following places. It uses the first
AUTOEXEC system option that it finds.

n in the command line

n in the SASV9_OPTIONS environment variable

n in the configuration file

Customizing Your SAS Session By Using Configuration and Autoexec Files 27

http://support.sas.com
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

If neither the AUTOEXEC nor NOAUTOEXEC system option is found, SAS looks for
the autoexec file in three directories in the following order:

1 your current directory

2 your home directory

3 the !SASROOT directory (for more information, see Appendix 1, “The !SASROOT
Directory,” on page 567)

SAS uses the first autoexec file that it finds to initialize the SAS session. If you want
to see the contents of the autoexec file for your session, use the ECHOAUTO
system option when you invoke SAS.

Inserting and Appending Autoexec Files
You can concatenate files in your autoexec file by using the following system
options with the AUTOEXEC system option: “INSERT System Option: UNIX” on
page 448 and “APPEND System Option: UNIX” on page 415. The autoexec file is
always a text file. If your filename contains embedded blanks or special characters,
you must enclose the filename in quotation marks. Otherwise, quotation marks are
optional when one or more filenames are specified.

You can use the following syntax to concatenate autoexec files:

-autoexec "(/path1/autoexec.sas /path2/autoexec.sas /path3/
autoexec.sas)"

You can use the following syntax with the INSERT system option:

-insert autoexec "a.sas" –insert autoexec "b.sas"

You can use the following syntax with the APPEND system option:

-append autoexec "a.sas" –append autoexec "b.sas"

If any file in a concatenated autoexec list does not exist or cannot be opened (for
example, if you are not authorized for Read access), SAS issues error messages to
the log. SAS terminates without executing any of the files in the list. The final SAS
exit code is 103, which indicates system start-up failure.

Differences between Configuration and
Autoexec Files
The differences between configuration files and autoexec files are as follows:

n Configuration files can contain only SAS system option settings. Autoexec files
can contain any valid SAS statement. For example, you might want to create an
autoexec file that includes an OPTIONS statement to change the default values
of various system options. The autoexec file can also contain LIBNAME and
FILENAME statements for the SAS libraries and external files that you use most
often.

n Configuration files are processed before SAS initializes while autoexec files are
processed immediately after SAS initializes but before it processes any source

28 Chapter 1 / Getting Started with SAS in UNIX Environments

statements. An OPTIONS statement in an autoexec file is equivalent to
submitting an OPTIONS statement as the first statement of your SAS session.

Creating a Configuration File
To create a configuration file, follow these steps:

1 Use a text editor to write the SAS system options into a UNIX file. Save the file
as either sasv9.cfg or .sasv9.cfg. (For more information, see “Order of
Precedence for Processing SAS Configuration Files” on page 29.)

2 Specify one or more system options on each line. Use the same syntax that you
would use for specifying system options with the SAS command, but do not
include the SAS command itself. For example, a configuration file might contain
the following lines:

-nocenter
-verbose
-linesize 64
-work /users/myid/tmp

3 Save and close the configuration file.

Order of Precedence for Processing SAS
Configuration Files

SAS is shipped with a default configuration file in the !SASROOT directory. Your on-
site SAS personnel can edit this configuration file so that it contains whichever
options are appropriate to your site.

You can also create one or more of your own configuration files. SAS reads option
settings from each of these files in the order listed below.

Note: If you create a configuration file in your home directory and the
NOUSERCONFIG system option is set, the configuration file in your home directory
is skipped.

1 sasv9.cfg in the !SASROOT directory. (See “Contents of the !SASROOT Directory”
on page 568.)

2 sasv9_local.cfg in the !SASROOT directory. (See “Contents of the !SASROOT
Directory” on page 568.)

3 .sasv9.cfg in your home directory. (Notice the leading period.)

4 sasv9.cfg in your home directory.

5 sasv9.cfg in your current directory.

Customizing Your SAS Session By Using Configuration and Autoexec Files 29

6 any restricted configuration files. Restricted configuration files contain system
options that are set by the site administrator and cannot be changed by the user.
Options can be restricted globally, by group, or by user. For more information
about restricted configuration files, see the configuration guide for the UNIX
environment.

For future releases of SAS, the names of these files will change accordingly.

For each system option, SAS uses the last setting that it encounters. Any other
settings are ignored. For example, if the WORKPERMS system option is specified in
sasv9.cfg in the !SASROOT directory and in sasv9.cfg in your current directory, SAS
uses the value specified in sasv9.cfg in your current directory.

Specifying a Configuration File for SAS to Use
When you specify a configuration file for SAS to use, you bypass the search of the
configuration files listed in “Order of Precedence for Processing SAS Configuration
Files” on page 29.

Note: SAS still processes any restricted configuration files that exist. The settings in
these files take precedence over the settings in the configuration file that you
specify.

If you set both SASV9_OPTIONS and SASV9_CONFIG, SAS always uses
SASV9_OPTIONS. SASV9_CONFIG is used only if you do not use –config in the
command line.

To specify a configuration file, complete one of the following steps:

n specify a configuration file with the CONFIG system option in the SAS command:

sas -config filename

n specify a configuration file in the SASV9_OPTIONS environment variable. See
“Defining Environment Variables in UNIX Environments” on page 309. For
example, in the Korn shell, you would use the following:

export SASV9_OPTIONS='-config filename'

n define the environment variable SASV9_CONFIG. See “Defining Environment
Variables in UNIX Environments” on page 309. For example, in the Korn shell,
you would use the following:

export SASV9_CONFIG=filename

filename is the name of a file that contains SAS system options.

If you have specified a configuration file in the SASV9_OPTIONS or
SASV9_CONFIG environment variables, you can prevent SAS from using that file
by specifying NOCONFIG in the SAS command.

If SAS cannot find SASV9_OPTIONS, the following message is written to the SAS
log:

ERROR: Cannot open [/fullpath/filename]: No such
 file or directory.

30 Chapter 1 / Getting Started with SAS in UNIX Environments

Determining the Completion Status of a
SAS Job in UNIX Environments

The exit status for the completion of a SAS job is returned in $STATUS for the C
shell, and in $? for the Bourne and Korn shells. A value of 0 indicates normal
termination. You can affect the exit status code by using the ABORT statement. The
ABORT statement takes an optional integer argument, n, which can range from 0 to
255.

Note: Return codes of 0–6 and return codes greater than 977 are reserved for use
by SAS.

The following table summarizes the values of the exit status code.

Table 1.1 Exit Status Code Values

Condition Exit Status Code

All steps terminated normally 0

SAS issued warnings 1

SAS issued errors 2

User issued ABORT statement 3

User issued ABORT RETURN statement 4

User issued ABORT ABEND statement 5

SAS could not initialize because of a severe error 6

User issued ABORT RETURN - n statement n

User issued ABORT ABEND - n statement n

If you specify the ERRORABEND SAS system option on the command line, and the
job has errors, the exit status code is set to 5.

UNIX exit status codes are in the range 0-255. Numbers greater than 255 might not
print what you expect because the code is interpreted as a signed byte.

Determining the Completion Status of a SAS Job in UNIX Environments 31

Exiting or Interrupting Your SAS Session
in UNIX Environments

Methods for Exiting SAS
Use one of the following methods to exit a SAS session:

n Select File ð Exit if you are using SAS in the windowing environment.

n Use endsas;.

n Enter BYE in the ToolBox if you are using SAS in the windowing environment.

n Use Ctrl+D if this control key sequence is your EOF command and if you are
using SAS in interactive line mode.

Methods for Interrupting or Terminating SAS

Interrupting or Terminating SAS
In addition to the methods for exiting SAS, SAS provides methods for interrupting or
terminating a SAS session. SAS does not recommend that you use these methods
until you have tried to exit SAS by one of the methods listed in “Methods for Exiting
SAS” on page 32.

You can interrupt or terminate SAS in the following ways:

n Press the interrupt or quit control key. Interrupt displays a dialog box while quit
forces a shutdown. Using the quit control key is not recommended.

n Use the SAS: Session Management window.

n Enter the UNIX kill command. Use this command when all other methods of
exiting SAS have failed. By default, the kill command is kill –15 (SIGTERM).

Using the UNIX kill —9 command on a SAS process that is running might
corrupt data sets that are open for Write or Update access.

32 Chapter 1 / Getting Started with SAS in UNIX Environments

Interrupting a SAS Process
The method that you use to interrupt a SAS process depends on how you invoke
SAS.

n If you are running SAS in interactive line mode or in noninteractive mode in the
foreground, then you can use either of the following methods to interrupt SAS:

o Press the control key sequence that is set to interrupt in the shell that invoked
SAS. In most cases, this control key sequence is Ctrl+C. See the man page
for the stty command to determine the appropriate control key sequence for
your environment.

o Use the -SIGINT option in the kill command. For more information, see
“Using the UNIX kill Command” on page 36.

n If you are running the SAS windowing environment in the foreground, then click
Interrupt in the SAS: Session Management window.

Note: You can access the SAS Session Manager by invoking SAS with the -
DMS or -DMSEXP option. Select SAS: Session Management from the menu.

n If you are running SAS in noninteractive mode, you must use control keys to
interrupt the SAS process. A SAS: Session Management window is not
available.

The interrupt signal sends a request to the supervisor to handle an interrupt. The
interrupt signal is not handled until a safe point in the code is reached. A safe point
is one that allows the interrupt handler to be run safely. The supervisor responds as
soon as possible with a prompt or window that requests what type of interrupt action
you want to take. During this time, normal processing of a DATA step or PROC step
is suspended.

For example, when you interrupt a DATA step or PROC step, a Tasking Manager
window, similar to the following, appears:

Exiting or Interrupting Your SAS Session in UNIX Environments 33

The following table explains each of the options in the window:

Table 1.2 Options in the Tasking Manager Window

Option Description What This Option Does

1 Cancel submitted
statements

Selecting this option terminates the current DATA
step or PROC step. Outstanding source code that is
waiting to execute is flushed from the system. In
interactive line mode, you return to the command
prompt.

2 Halt DATA step or
PROC DATASTEP

Selecting this option sends an interrupt signal to the
DATA step or PROC step. The default behavior is for
the DATA step or PROC step to terminate, and to
execute the next statement.

A procedure might specify its own handler to process
the interrupt. In this case, the procedure might
request more input from you. For example, SAS
webAF has a different interrupt menu than PROC
SQL.

Note: If you are using a relational database, the
interrupt signal might be handled differently,
depending on which relational database you are
using.

C Cancel the dialog
box

Selecting this option cancels the interrupt, and you
return to normal processing.

T Terminate SAS Selecting this option causes the DATA step or PROC
step to be terminated. Outstanding source code that
is waiting to execute is flushed from the system. SAS
exits as cleanly as possible.

34 Chapter 1 / Getting Started with SAS in UNIX Environments

Terminating a SAS Process
If you are running the SAS windowing environment in the foreground, click
Terminate in the SAS: Session Management window. If you are running a SAS
process in interactive line mode in the background, use control keys to terminate the
SAS process, or use the kill command.

If you click Terminate in the SAS: Session Management window, a dialog box
appears, confirming that you want to end the session. If you click OK, then the SAS
session and any queries that are currently running are terminated. If you click
Cancel, you are returned to the SAS session.

Using Control Keys
Control keys enable you to interrupt or terminate your session by pressing the
interrupt or quit key sequence. However, control keys can be used only when your
SAS program is running in interactive line mode or in noninteractive mode in the
foreground. You cannot use control keys to stop a background job.

Note: You cannot use control keys to stop a batch job that has been submitted with
the batch, at, nohup, or cron command.

Because control keys vary from system to system, issue the UNIX stty command
to determine which key sends which signal. The stty command varies considerably
among UNIX operating environments, so check the UNIX man page for stty before
using the command. Usually, one of these forms of the command prints all of the
current terminal settings:

stty

stty -a

stty everything

The output should contain lines similar to these:

intr = ^C; quit = ^\; erase = ^H;
kill = ^U; eof = ^D; eol = ^@

The caret (^) represents the Ctrl key. In this example, Ctrl+C is the interrupt key and
Ctrl+\ is the quit key. Quit is a more forceful termination and might result in data
corruption. If you use –SIGTERM, SAS attempts to shut down the system correctly.

Using the SAS Session Manager
If you invoke SAS in the windowing environment, you can use the SAS session
manager to interrupt or terminate your SAS session. The SAS session manager is
automatically minimized when you start SAS. To interrupt or terminate your SAS

Exiting or Interrupting Your SAS Session in UNIX Environments 35

session, open the SAS: Session Management window and click Interrupt or
Terminate:

If asynchronous SAS/CONNECT tasks are running when you terminate a SAS
session, these tasks are terminated and no warning message is displayed.
Generally, it is better to exit from the file menu or toolbox.

Note: Clicking Interrupt is equivalent to specifying the -SIGINT option on the kill
command. Clicking Terminate is equivalent to specifying the -SIGTERM option on
the kill command.

For more information about the SAS Session Manager, see “The SAS Session
Manager (motifxsassm) in UNIX” on page 177.

Using the UNIX kill Command
Note: Use the kill command only after you have tried all other methods to exit
your SAS session.

The kill command sends an interrupt or terminate signal to SAS, depending on
which signal you specify. You can use the kill command to interrupt or terminate a
SAS session running in any mode. The kill command cannot be issued from within
a SAS session. You must issue it from another terminal or from another window (if
your terminal permits it).

The format of the kill command is:

kill <-signal-name> pid

To send the interrupt signal, specify -SIGINT. To send the terminate signal, specify
-SIGTERM. Use the ps command and its options to determine the process
identification number (pid) of the SAS session that you want to interrupt or
terminate.

The results of using the ps command differ in different operating environments. See
the UNIX man page for your operating environment for specific information about
the ps command and its options. Adding options helps determine which process you
want to kill if you have more than one SAS process running. Also, servers
(metadata, OLAP, and so on) leave a process identification number in their start-up
directories. You can use this number with the kill command.

The following table lists some of the important kill signals.

36 Chapter 1 / Getting Started with SAS in UNIX Environments

Table 1.3 Description of Important Kill Signals

Signal Option Description

0 SIGNULL Checks access to process
identifier.

1 SIGHUP Causes SAS to terminate.

2 SIGINT Causes SAS to interrupt
the session. SIGINT is
very similar to SIGQUIT.

3 SIGQUIT Causes a more forceful
shutdown than SIGTERM.
It does not cause a core
dump.

9 SIGKILL Brings down SAS. Use this
option only after all
attempts to exit SAS have
failed. Using SIGKILL can
cause data corruption.

15 SIGTERM Causes SAS to terminate.

For more information, see the UNIX man pages for the ps and kill commands.

Messages in the Console Log (STDOUT)
If SAS encounters an error or warning condition when the SAS log is not available,
then any messages that SAS issues are written to the console log. Normally, the
SAS log is unavailable only early in SAS initialization and late in SAS termination.

If you are using the -STDIO option, the log is displayed in stderr, and the listing is
displayed in stdout.

Ending a Process That Is Running as a
SAS Server

If you need to end a process that is running as a SAS server, use one of the
following methods:

n If you are using the SAS Metadata Server, use the SAS Management Console to
end a process.

Ending a Process That Is Running as a SAS Server 37

n If you are using another SAS server, use the UNIX scripts that shipped with the
servers to stop the process. You can also use these scripts to start (or restart) a
server, as well as determine whether the server is already running. For more
information about these scripts, contact your site administrator.

Note: If the server does not respond to the UNIX script, then you can use the
kill command to end the server process. For more information, see “Using the
UNIX kill Command” on page 36.

Interrupting a SAS Process and the
Underlying DBMS Process

CAUTION
Interrupting a SAS process and the underlying DBMS process might kill all
jobs that are running on your DBMS. Interrupting a SAS or DBMS process should
be an exception. Use care when you construct your queries. For example, if SAS sends
SQL to an RDBMS, there is no way to interrupt the SQL statements because SAS no
longer has control of them. The statements are running in the RDBMS.

When you interrupt a SAS process, you might terminate the current query. If you are
using the current query to create a new data set, then the data set is still created
even if the query is terminated. If you are using the current query to overwrite a data
set, then the data set is not overwritten if the query is terminated. In most cases, you
do not receive a warning that the query did not complete.

Note: In this section, SAS process refers to a series of events. It is not the process
on the operating system. When you interrupt or terminate a SAS process, the
process on the operating system might still be running.

In many cases (such as using Oracle in UNIX environments), when you interrupt or
terminate a query on a server, the following processes stop:

n Processing of current extractions. For example, if you forgot to include a
WHERE clause in your SQL query and are now extracting one billion rows into
SAS, issuing an interrupt stops the SAS process and the extract step in the
DBMS.

n Processing of queries that are in progress on the server. For example, you might
have a very complex extract query that runs for a long time before producing a
result. Issuing an interrupt stops the SAS and DBMS processes. As a result, the
complex extract query running on your DBMS server is interrupted and
terminated.

n Processing an update, delete, or insert. For example, you are updating, deleting,
or inserting many rows in your DBMS. An interrupt stops the SAS and DBMS
processes.

38 Chapter 1 / Getting Started with SAS in UNIX Environments

2
Connecting to the CAS Server

Overview of Connecting to the CAS Server . 39

How to Connect to the CAS Server . 39
Requirements to Connect to the CAS Server . 39
Example Program That Connects to the CAS Server . 40

Comparison of Batch Modes and Interactive Modes . 41

Overview of Connecting to the CAS
Server

The following topics explain how to connect to the CAS server if you have both SAS
9.4 and SAS Viya on your system. There are some requirements that must be met
before you can connect to the server from your SAS 9.4 session. These
requirements also apply when you run a SAS program from the command line, such
as when you run a program in batch mode or when you submit SAS commands in
interactive line mode.

How to Connect to the CAS Server

Requirements to Connect to the CAS Server
Before you can submit a program that connects to the server, you must have
permission to access the server. Your system administrator manages users and
permissions.

39

In addition, the server must be running before your program can connect to it. Your
system administrator typically manages the servers that are used by SAS.

To submit a program that connects to the server from the command line:

n If you attempt to connect to the CAS server, and you receive an error that the
certificate is not trusted, then contact your SAS administrator. For information
about obtaining and configuring certificates, see “Configure SAS 9.4 Clients to
Work with SAS Viya”.

n Create an authinfo file. You must have an authinfo file that provides your user ID
and password for connecting to the server. For more information, see "Client
Authentication Using an Authinfo File".

Note: The actual filename of the authinfo file is .authinfo in a UNIX environment.

n Specify the CAS server. You can provide this value with the HOST value in the
authinfo file, or you can use the CASHOST= option in the OPTIONS statement.

Note: In SAS Studio for SAS Viya, the CAS server is set automatically and does
not need to be specified. If you are running SAS 9.4, specify the CASHOST=
option.

n Specify the server port value. The default value for the server port is 5570. You
can provide this value with the PORT value in the authinfo file, or you can use
the CASPORT= option in the OPTIONS statement.

Note: In SAS Studio for SAS Viya, the CAS server port value is set
automatically and does not need to be specified. If you are running SAS 9.4,
specify the CASPORT= option.

n Specify a “CAS Statement” in SAS Cloud Analytic Services: User’s Guide in your
program to start your CAS session.

n As a best practice, at the end of the program, specify the TERMINATE option in
a CAS statement. For example, this statement ends the CAS session called
mysess:

cas mysess terminate;

When you submit a program from the command line, such as when you submit a
program at a scheduled time overnight, specify the CAS server value and CAS
server port value. Otherwise, your program does not connect to the CAS server.

Example Program That Connects to the CAS
Server

The following code connects to the CAS server:

/* These options must be included to connect to the CAS server in
noninteractive */
/* mode or in batch mode */
options cashost=’host-name’ casport=xxxxx;

40 Chapter 2 / Connecting to the CAS Server

http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calencryptmotion&docsetTarget=n1xdqv1sezyrahn17erzcunxwix9.htm#p11x7tc5wa1oein1jcnkjg0zf6ve
http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calencryptmotion&docsetTarget=n1xdqv1sezyrahn17erzcunxwix9.htm#p11x7tc5wa1oein1jcnkjg0zf6ve
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=authinfo&docsetTarget=n0xo6z7e98y63dn1fj0g9l2j7oyq.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=authinfo&docsetTarget=n0xo6z7e98y63dn1fj0g9l2j7oyq.htm
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n0z3r80fjqpobvn1lvegno9gefni.htm&locale=en

cas casauto;
caslib _all_ assign;

proc cas;
 session casauto;

 /* Load source data (Cars) into a table in CAS */
 table.loadTable result=r /
 caslib="hps"
 path="carssashelp.sashdat"
 casOut={name="cars",replace=true};

 /* View variable information */
 table.columnInfo / table="cars";

 /* View table. The TO= parameter is similar to OBS=. */
 table.fetch /
 format=true
 sortby={
 {name="make",order="descending"},
 {name="model",order="descending"}
 }
 table="cars.sashdat"
 to=10;
run;
quit;

cas casauto terminate;

Comparison of Batch Modes and
Interactive Modes

There are two methods of running a program from the command line. One method
is to submit a program from the command line without viewing it in an interface
(noninteractive mode or batch mode). The other is to submit the program from SAS
Studio as a background submission. To do this, right-click on the program, and
submit it without first opening it in the code editor.

Table 2.1 Comparison of Running SAS Noninteractively from the Command Line or in SAS
Studio

Method Description

From the command line (noninteractive
mode or batch mode)

Invoke the SAS command, and specify the
program to submit. To submit the program
mySASprog.sas from the command line,
issue this command:
sas mySASprog

Comparison of Batch Modes and Interactive Modes 41

Method Description

You can specify options in the invocation
command:
sas -errors 10 mySASprog

The log and results are in separate files that
begin with the name of the program that
you are submitting. For example, if you
submit the program mySASprog.sas, then
the log and results are in the files
mySASprog.log and mySASprog.lst,
respectively.

In SAS Studio (as a background
submission)

Right-click on the program in the navigation
pane, and submit it to run in the
background. This runs the program in SAS
Studio without first opening it in the code
editor.

The log and results appear in SAS Studio.

For more information, see Using the
Background Submit Feature in SAS Studio:
User’s Guide.

Table 2.2 Comparison of Interactive Mode from the Command Line or in SAS Studio

Method Description

From the command line Invoke the SAS command without
specifying a program to submit. Specify
options in the invocation command:
sas -errors 10

This begins the interactive session. For
more information, see “Introduction to
Interactive Line Mode” on page 10.

In SAS Studio
Click the interactive icon . When this
icon is active, you can run selected sections
of code within a SAS program.

42 Chapter 2 / Connecting to the CAS Server

http://documentation.sas.com/?cdcId=webeditorcdc&cdcVersion=3.8&docsetId=webeditorug&docsetTarget=n0t5b6xetubfnzn1mhjyfg1heypq.htm&docsetVersion=3.8#n0is8x2njxf9gxn1pod0bg8y5xgv
http://documentation.sas.com/?cdcId=webeditorcdc&cdcVersion=3.8&docsetId=webeditorug&docsetTarget=n0t5b6xetubfnzn1mhjyfg1heypq.htm&docsetVersion=3.8#n0is8x2njxf9gxn1pod0bg8y5xgv

3
Using SAS Files

Introduction to SAS Files, Libraries, and Engines in UNIX Environments 45
SAS Files . 45
SAS Libraries and Librefs . 45
Engines . 46
Additional Resources . 46

Common Types of SAS Files in UNIX Environments . 46
SAS Data Sets . 46
SAS Catalogs (Member Type CATALOG) . 47
Stored Program Files . 48

File Extensions and Member Types in UNIX Environments . 48

How File Extension Delimiters Are Handled . 49

Using Direct I/O . 50
Introduction to Direct I/O . 50
Turning On Direct I/O . 51

Holding a File in Memory: The SASFILE Statement . 51

Sharing SAS Files in a UNIX Environment . 52
Sharing SAS Files . 52
Options to Use for File Locking: SAS Files . 52
File Locking for SAS Files: The FILELOCKS Statement Option 53
File Locking for SAS Files: The FILELOCKS System Option . 53
Waiting to Use a Locked File . 54
Conditions to Check When FILELOCKS=NONE . 54
When FILELOCKS=CONTINUE . 55
Sharing Files over a Network . 55

Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments . 57
What Is File Migration? . 57
Benefits of Migrating SAS Files . 57
How to Migrate a SAS Library in a Linux Environment . 57

Creating a SAS File to Use with an Earlier Release . 58

Reading SAS Files from Previous Releases or from Other Hosts 58
Reading Version 6 Files . 58
Reading Version 8 or Later Files from Compatible Computer Types 59
Reading Version 8 or Later Files from Incompatible Computer Types 59

43

Referring to SAS Files By Using Librefs in UNIX Environments 61
Techniques for Referring to a SAS File . 61
What Is a Libref? . 61
Assigning Librefs . 62
Permanently Assigning a Libref . 64
Accessing a Permanent SAS Library By Using a Libref . 64

Specifying Pathnames in UNIX Environments . 65
Rules for Specifying Directory and Pathnames . 65
Example 1: Access a File That Is Not in the Current Directory 65
Example 2: Access a File in the Current Directory . 65
Valid Character Substitutions in Pathnames . 66

Assigning a Libref to Several Directories (Concatenating Directories) in UNIX . . 66
Introduction to Concatenating Directories . 66
How SAS Accesses Concatenated Libraries . 67
Accessing Files for Input and Update . 67
Accessing Files for Output . 67
Accessing Data Sets with the Same Name . 68

Using Multiple Engines for a Library in UNIX Environments . 68

Using Environment Variables as Librefs in UNIX Environments 69

Librefs Assigned by SAS in UNIX Environments . 69

Sasuser Library . 70
What Is the Sasuser Library? . 70
Contents of the Sasuser Library . 71
Sasuser.Profile Catalog . 71
Sasuser.Registry Catalog . 73
Sasuser.Prefs File . 73

Work Library . 74

Multiple Work Directories . 74

Using One-Level Names to Access Permanent Files (User Library) 75
Introduction to One-Level Names . 75
Techniques for Assigning the User Libref . 75

Accessing Disk-Format Libraries in UNIX Environments . 76

Accessing Sequential-Format Libraries in UNIX Environments 77
Benefits and Limitations of Sequential Engines . 77
Writing Sequential Data Sets to Named Pipes . 77

Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments 78
Introduction to the BMDP, OSIRIS, and SPSS Files . 78
The BMDP Engine . 79
The OSIRIS Engine . 80
The SPSS Engine . 82

Support for Links in UNIX Environments . 84

44 Chapter 3 / Using SAS Files

Introduction to SAS Files, Libraries, and
Engines in UNIX Environments

SAS Files

What Is a SAS File?
Your data can reside in different types of files, including SAS files and files that are
formatted by other software products, such as database management systems.
Under UNIX, a SAS file is a specially structured UNIX file. Although the UNIX
operating environment manages the file for SAS by storing it, the operating system
cannot process it because of the structure built into the file by SAS. For example,
you can list the filename with the ls command, but you cannot use the vi editor to
edit the file. A SAS file can be permanent or temporary.

Case Sensitivity in Data Set Names
In UNIX operating environments, SAS data set names are written in all lowercase
characters. Because of this requirement, SAS reads only data set names that are
written in all lowercase characters.

If you use the UNIX utilities mv or cp to rename SAS data set names with uppercase
or mixed-case characters, SAS can no longer read the data set names.

SAS Libraries and Librefs
SAS files are stored in SAS libraries. A SAS library is a collection of SAS files within
a UNIX directory. Any UNIX directory can be used as a SAS library. (The directory
can also contain files called external files that are not managed by SAS. See
Chapter 4, “Using External Files and Devices,” on page 85 for how to access
external files.) SAS stores temporary SAS files in a Work library, which is
automatically defined for you. You must specify a library for each permanent SAS
file. For more information, see “Work Library” on page 74.

SAS libraries can be identified with librefs. A libref is a name by which you reference
the directory in your application. For more information about how to assign a libref,
see “Referring to SAS Files By Using Librefs in UNIX Environments” on page 61.

Introduction to SAS Files, Libraries, and Engines in UNIX Environments 45

Engines
SAS files and SAS libraries are accessed through engines. An engine is a set of
routines that SAS must use to access the files in the library. SAS can read from and,
in some cases, write to the file by using the engine that is appropriate for that file
type. For some file types, you need to tell SAS which engine to use. For others, SAS
automatically chooses the appropriate engine. The engine that is used to create a
SAS data set determines the format of the file.

Additional Resources
For more information about SAS files, libraries, and engines, see SAS
Programmer’s Guide: Essentials.

Common Types of SAS Files in UNIX
Environments

SAS Data Sets

What Are SAS Data Sets?
SAS data sets fall into two categories:

n “SAS Data Sets (Member Type DATA)” on page 47

n “SAS Views (Member Type VIEW)” on page 47

Descriptor Information and Data Values
Data sets consist of descriptor information and data values organized as a table of
rows and columns that can be processed by one of the SAS engines. The descriptor
information includes data set type, data set label, the names and labels of the
columns in the data set, and so on. A SAS data set can also include indexes for one
or more columns.

SAS data sets are implemented in two forms:

46 Chapter 3 / Using SAS Files

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

n If the data values and the data set's descriptor information are stored in a file,
then the file is a SAS data set.

n If the file contains information about where to obtain a data set's data values and
descriptor information, then the file is a SAS view.

The default SAS engine processes the data set as if the data file or data view and
the indexes were a single entity.

For more information, see “SAS Data Sets (Member Type DATA)” on page 47 and
“SAS Views (Member Type VIEW)” on page 47.

SAS Data Sets (Member Type DATA)
The SAS data set is probably the most frequently used type of data file. These files
have the extension .sas7bdat. SAS data sets are created in the DATA step and by
some SAS procedures. SAS data sets store data values and their descriptor
information in files formatted by SAS.

SAS data sets are created by the default SAS engine, and they can be indexed. An
index is an auxiliary file created in addition to the data set it indexes. The index
provides fast access to observations within a SAS data set by a variable or key.
Under UNIX, indexes are stored as separate files, but are treated by SAS as an
integral part of the SAS data set.

CAUTION
Do not remove index files using UNIX commands. Removing the index file can
damage your SAS data set. Also, do not change its name or move it to a different
directory. Use the DATASETS procedure to manage indexes.

SAS Views (Member Type VIEW)
A SAS view contains only the information needed to derive the data values and the
descriptor information. SAS views contain information about data in one or more
SAS data sets or SAS views. A SAS view is created with the SQL procedure or
DATA step.

SAS Catalogs (Member Type CATALOG)
Catalogs are a special type of SAS file that can contain multiple entries. Many
different types of entries can be kept in the same SAS catalog. For example,
catalogs can contain entries created by SAS/AF and SAS/FSP software, windowing
applications, key definitions, SAS/GRAPH graphs, and so on.

Catalogs have the SAS member type of CATALOG.

Note: Catalogs are not included in SAS Viya.

Common Types of SAS Files in UNIX Environments 47

Stored Program Files
Stored program files are compiled DATA steps, and have the SAS member type of
PROGRAM. For more information, see “Stored, Compiled DATA Step Programs” in
SAS V9 LIBNAME Engine: Reference.

File Extensions and Member Types in
UNIX Environments

Because SAS needs to distinguish between the different file types, it automatically
assigns an extension to each file when it creates the file. Also, because each SAS
file is a member of a library, SAS assigns each file a member type.

The following table lists the file extensions and their corresponding SAS member
types.

CAUTION
Do not change the file extensions of SAS files. File extensions determine how
SAS accesses files; changing them can cause unpredictable results.

Table 3.1 File Extensions for SAS File Types

SAS 9

Random Access
Files

Sequential Access
Files SAS Member Type Description

.sas .sas .sas SAS program

.lst .lst .lst Procedure output

.log .log .log SAS log file

.sas7bdat .sas7sdat DATA SAS data set

.sas7bndx .sas7sndx INDEX Data file index; not treated by
the SAS system as a separate
file

.sas7bcat .sas7scat CATALOG SAS catalog1

.sas7bpgm .sas7spgm PROGRAM Stored program (DATA step)

48 Chapter 3 / Using SAS Files

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1h8ok8rj6uzqkn18tpnp1lb4lp9.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1h8ok8rj6uzqkn18tpnp1lb4lp9.htm&locale=en

SAS 9

Random Access
Files

Sequential Access
Files SAS Member Type Description

.sas7bvew .sas7svew VIEW SAS view

.sas7baud .sas7saud AUDIT Audit file

.sas7bfdb .sas7sfdb FDB Consolidation database

.sas7bmdb .sas7smdb MDDB Multidimensional database

.sas7bods .sas7sods SASODS Output delivery system file

.sas7bdmd .sas7sdmd DMDB Data mining database

.sas7bitm .sas7sitm ITEMSTOR Item store file

.sas7butl .sas7sutl UTILITY Utility file

.sas7bput .sas7sput PUTILITY Permanent utility file

.sas7bbak .sas7sbak BACKUP Backup file

.spds9 .spds9 multiple SAS SPD Engine component
files and SAS SPD Server
files

1 This file type is not included in SAS Viya.

A UNIX directory can store a variety of files, but you might find it more practical to
store files in separate directories according to their use. Also, you can keep libraries
that are accessed by different engines in the same directory, but this is not
recommended. For more information, see “Using Multiple Engines for a Library in
UNIX Environments” on page 68.

How File Extension Delimiters Are
Handled

If you reference a SAS file directly by its physical name, the final embedded period
is an extension delimiter, regardless of the VALIDMEMNAME setting. Consequently,
if you use the EXTEND option with VALIDMEMNAME= and the member name itself
contains a period, then the full extension must be specified as part of the reference.
For more information, see “VALIDMEMNAME= System Option” in SAS System
Options: Reference.

How File Extension Delimiters Are Handled 49

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en

The following example illustrates this concept. The comments in the example are
from the SAS log:

options validmemname=extend;
libname mylib './saslib';
 /* NOTE: Libref MYLIB was successfully assigned as follows: */
 /* Engine: V9 */
 /* Physical Name: SAS-library */

data mylib."my.member"n;
 x=1;
run;
 /* NOTE: The data set MYLIB.'MY.MEMBER'n has 1 observations */
 /* and 1 variables. */

data _null_;
 set './saslib/my.member.sas7bdat';
run;
 /* NOTE: There were 1 observations read from the data set */
 /* ./saslib/my.member.sas7bdat. */

data _null_;
 set './saslib/my.member';
run;
 /* ERROR: Extension for physical file name "./saslib/my.member" */
 /* does not correspond to a valid member type. */
 /* NOTE: The SAS System stopped processing this step because of */
 /* errors. */

Using Direct I/O

Introduction to Direct I/O
Direct I/O is a method for processing input and output files and is used in file
handling. Direct I/O enables SAS to read files from and write files directly to storage
devices without first going through the UNIX operating environment's read and write
caches. You can use direct I/O for SAS files. Using direct I/O might improve system
performance, depending on the number and types of jobs that you are running.

SAS uses three related options that affect direct I/O:

n ENABLEDIRECTIO statement option

n USEDIRECTIO= statement option

n USEDIRECTIO= data set option

The ENABLEDIRECTIO option in the LIBNAME statement makes direct I/O
processing available for data sets that are listed in the DATA statement. The libref
that points to the data sets must have been defined in a LIBNAME statement that

50 Chapter 3 / Using SAS Files

uses the ENABLEDIRECTIO option. Using ENABLEDIRECTIO itself does not turn
on direct I/O.

A libref that is assigned to a directory with the ENABLEDIRECTIO option will not
match another libref that is assigned to the same directory without the
ENABLEDIRECTIO option. The two librefs point to the same directory, but the files
that are opened using the libref with ENABLEDIRECTIO can be read from and
written to using direct I/O. Files that are opened using the other libref are read from
and written to using the regular disk I/O calls.

The USEDIRECTIO= data set option in the DATA statement or the USEDIRECTIO=
statement option in the LIBNAME statement turns on direct I/O for data sets in
which the ENABLEDIRECTIO statement option has been applied. Using
USEDIRECTIO= without first applying the ENABLEDIRECTIO option has no effect
on direct I/O in a data set.

Note:

Do use direct I/O with a metadata-bound library.

Turning On Direct I/O
You can turn on direct I/O in two ways:

n Use both the ENABLEDIRECTIO and USEDIRECTIO= options in the LIBNAME
statement.

This method opens for direct I/O all of the files that are referenced by the libref in
the LIBNAME statement.

n Use the ENABLEDIRECTIO option in the LIBNAME statement to render direct
I/O available, and use the USEDIRECTIO= data set option in a DATA statement
to turn on direct I/O functionality.

This method opens for direct I/O only the data set where the option is used. The
data set must be referenced by the libref in the LIBNAME statement.

For more information about these options and how they are used, see:

n ENABLEDIRECTIO in “Engine and Host Options” on page 395

n USEDIRECTIO= in “Engine and Host Options” on page 395

n “USEDIRECTIO= Data Set Option: UNIX” on page 305

Holding a File in Memory: The SASFILE
Statement

You can use the SASFILE statement to open a SAS data set. SAS attempts to
allocate enough buffers to hold the entire data set in memory. If enough memory is

Holding a File in Memory: The SASFILE Statement 51

available, then the entire data set is kept in memory until the data set is closed. If
enough memory is not available, then SAS allocates as many buffers as it can. If
your file is very large or if SAS is already using a large amount of memory, then
using the SASFILE statement does not help.

Note: The SASFILE statement is not supported on the CAS server.

When the SASFILE statement executes the first time, SAS opens the file.
Subsequent DATA and PROC steps use the file without having to open it again
because the file remains in memory. The file remains open until a second SASFILE
statement closes it, or until the program or session ends. For more information, see
“SASFILE Statement” in SAS Global Statements: Reference.

Sharing SAS Files in a UNIX
Environment

Sharing SAS Files
If more than one SAS process has Write access to a SAS file and both processes
attempt to update the file at the same time, then the file is likely to be corrupted. For
this reason, SAS locks the file to prevent more than one user from having Write
access to a file. When one SAS process opens a file with Write access, other
processes are blocked from Write access until the first process closes the file. SAS
provides statement and system options to override this file protection. However, in
almost all cases, you should leave file protection turned on.

Be aware that SAS uses the cooperative file locking mechanism that is provided by
the operating system. This means that you can place a Write lock on a file in a SAS
session. However, an external user can still modify or delete the file via a command
in the operating system if the command does not honor cooperative locking.

Options to Use for File Locking: SAS Files
You can turn off file locking for SAS files in the following ways:

n Use the FILELOCKS option in the LIBNAME statement.

n Use the FILELOCKS system option.

52 Chapter 3 / Using SAS Files

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0osyhi338pfaan1plin9ioilduk.htm&locale=en

File Locking for SAS Files: The FILELOCKS
Statement Option

By default, SAS restricts Write access to one user. The FILELOCKS option in the
LIBNAME statement overrides the default and allows multiple users to have Write
access to a file. SAS files that are opened under the libref in the LIBNAME
statement are the files that are locked. Multiple users have Read access to files.

CAUTION
Setting FILELOCKS=NONE in a LIBNAME statement can result in data
corruption. If multiple users have Write access to a file, then simultaneous updates to
the file can generate unpredictable results.

The FILELOCKS statement option applies to most (but not all) of the SAS I/O files
(for example, data sets and catalogs) that are opened under the libref in the
LIBNAME statement.

For more information, see “LIBNAME Statement: UNIX” on page 391.

File Locking for SAS Files: The FILELOCKS
System Option

By default, SAS restricts Write access to one user. The FILELOCKS system option
overrides this default for both SAS files and external files and allows multiple users
to have Write access to a file. The FILELOCKS system option enables you to apply
a behavior globally to individual files that are opened.

CAUTION
Setting FILELOCKS=NONE in a LIBNAME statement can result in data
corruption. If multiple users have Write access to a file, then simultaneous updates to
the file can generate unpredictable results.

You can use the FILELOCKS system option at start-up, in the OPTIONS statement,
or in the command line. You can specify multiple instances of the FILELOCKS
system option. Each instance is added to an internal table of paths and settings.
The FILELOCKS system option applies to most (but not all) of the SAS I/O files (for
example, data sets and catalogs) that are opened under the libref in the LIBNAME
statement. For more information, see “FILELOCKS System Option: UNIX” on page
431 and “LIBNAME Statement: UNIX” on page 391.

Sharing SAS Files in a UNIX Environment 53

Waiting to Use a Locked File
If you want to use a SAS file that is locked by another process, you can use the
FILELOCKWAIT option in the LIBNAME statement to specify how long SAS waits
for the locked file to become available. The FILELOCKWAIT statement option
affects only those files that are opened under the libref in a LIBNAME statement.
For more information, see “LIBNAME Statement: UNIX” on page 391.

Conditions to Check When FILELOCKS=NONE
When file locking is turned off (FILELOCKS=NONE), SAS attempts to open a file
without checking for an existing lock on the file. These files are not protected from
shared Update access.

CAUTION
SAS recommends that you do not use the FILELOCKS=NONE option. If multiple
users open the same file for Write access, then the file might become corrupted. The
FILELOCKS=NONE option is used primarily to determine whether a job failed because
of a locked file.

If the FILELOCKS system option is set to NONE, then you should perform one of
the following tasks:

n Make sure that your sasuser directory is unique for each SAS session. Typically,
the system administrator assigns this directory in the system configuration file.
The specification in that file or in your personal configuration file helps ensure
that the directory is unique as long as you run only one SAS session at a time.

If you run two or more SAS sessions simultaneously, you can guarantee unique
user files by specifying different sasuser directories for each session. In the first
session, you can invoke SAS with this option and value:

 -sasuser ~/sasuser

In the nth session, you can invoke SAS with this option and value:

 -sasuser ~/sasusern

For more information, see “Order of Precedence for Processing SAS
Configuration Files” on page 29 and “RSASUSER System Option: UNIX” on
page 473. The RSASUSER option can be used to control modifications to the
Sasuser library when it is shared by several users (see “RSASUSER System
Option: UNIX” on page 473.)

n If you run two or more SAS sessions simultaneously, and you use the same
Sasuser.Profile catalog, do not perform any actions within a SAS session to
change the Sasuser.Profile catalog. This is because both SAS sessions can use
the same catalog.

You can run two or more SAS sessions either by using the X statement or by
invoking SAS from two different windows.

54 Chapter 3 / Using SAS Files

Actions such as using the WSAVE command or changing key assignments
modify the Sasuser.Profile catalog.

n Multiple users can read the same data sets at the same time. However, only one
user at a time should write to or update a data set so that data is not overwritten
or corrupted.

When FILELOCKS=CONTINUE
By default, SAS restricts Write access to one user. When you use the
FILELOCKS=CONTINUE option, SAS fails to open a file if that file is locked by
another user, and writes an error message to the log. However, if SAS returns a
message that identifies some other error, then SAS disregards the lock on the file,
opens the file, and continues to execute the job.

Sharing Files over a Network

Introduction to Sharing Files on Multiple
Workstations
SAS can be licensed to run on one or more workstations in a network of similar
computers. The license specifically lists the workstations on which SAS can run.
Unlicensed workstations in the network might have access to the SAS executable
files, but they might not be able to run SAS.

If the licensed workstations are connected through NFS mounts so that they share a
file system, they can all share a single copy of the SAS executable files. However,
sharing of a single copy is not necessary. They can also share SAS files. In
contrast, if a SAS session opens a data set or catalog for update, it must obtain an
exclusive file lock on that file to prevent other SAS sessions from accessing that file.
Other SAS sessions are blocked from access as long as the file is open.

If SAS is installed on different types of workstations that are connected through
NFS, then each type of workstation must have its own copy of the SAS executable
files.

Accessing Files on Different Networks
You can access a file on a different type of workstation if the two computers are
connected to the same file system. You can access external files that were created
under a different operating environment.

Suppose that you create a data set or catalog and save it to a directory, and you
later want to access the file from another computer on a different network. You have
several methods available to work with that file:

Sharing SAS Files in a UNIX Environment 55

n You can log on to a computer remotely and perform the work there if you rarely
use the file.

n You can log on to a computer remotely and perform the work there if the file
changes often. This alternative ensures that you are accessing the most current
version of the file. If you use PROC CPORT to copy the file to your computer, the
original file might have changed between the time it was copied and the time it
was read.

n You can log on to a computer remotely rather than transfer the file to your
computer if you want to use the file once. It might not be efficient to use PROC
CPORT, or you might not have enough disk space for PROC CPORT to run
locally.

n You can use the File Transfer Protocol (FTP) or the Routing Control Processor
(RCP) to transfer the file from the remote computer to your computer.

n You can do part of your work on your computer and part of your work on a
remote computer. One example of this alternative is to run a set of statements on
a small test case on the local computer, and then submit the real work to be
done on the remote computer. Similarly, you can subset a large data set on
another computer and then do local analysis on that subset. You can accomplish
this task by using SAS/CONNECT software. For more information about Remote
Library Services, see SAS/CONNECT User’s Guide.

Troubleshooting: Accessing Data over
NFS Mounts
SAS might hang when accessing data over NFS mounts if the FILELOCKS option is
set to FAIL or CONTINUE. To alleviate the problem, ensure that all NFS file locking
daemons are running on both computers (usually statd and lockd). Your UNIX
system administrator can assist with starting statd and lockd.

Note: To test whether there is a problem with file locking, you can set the
FILELOCKS system option to NONE temporarily. If setting FILELOCKS to NONE
resolves the problem, then you know that there probably is a problem with the statd
and lockd daemons. It is recommended that you do not set FILELOCKS to NONE
permanently because it might cause data corruption or unpredictable results.

56 Chapter 3 / Using SAS Files

http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Migrating 32-Bit SAS Files to 64-Bit in
UNIX Environments

What Is File Migration?
File migration moves libraries forward to a new release of SAS. In many cases, SAS
files from previous releases or from other hosts are compatible with SAS 9.4. If the
files are not compatible, you can use Cross-Environment Data Access (CEDA) to
migrate your files and libraries. You can use PROC MIGRATE, a utility procedure, to
streamline the process of moving files and libraries forward. When you migrate your
files and libraries, consider the release of SAS in which your data currently resides,
what member types exist in your libraries, and whether you must move members
from 32-bit libraries to 64-bit libraries.

For information about using CEDA, see “Cross-Environment Data Access” in SAS
Programmer’s Guide: Essentials. For information about using the MIGRATE
procedure, see “MIGRATE Procedure” in Base SAS Procedures Guide. For more
information, see the SAS Technical Support site.

Benefits of Migrating SAS Files
Migrating SAS files enables you to do the following:

n have Update access to unsupported data files

n have access to indexes, integrity constraints, and other features

n use long names for formats and informats

n use more than 32,767 variables

n use suppressed transcoding of a specified variable

n avoid the overhead of reading or writing to 32-bit files in a 64-bit SAS session

How to Migrate a SAS Library in a Linux
Environment

To migrate a SAS library, use the MIGRATE procedure. If you are migrating from a
32-bit Linux environment to a 64-bit Linux environment and catalogs exist in the
library, you must have access to a 32-bit Release 9 SAS/CONNECT or SAS/SHARE
server.

Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments 57

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1kv04orx2cy03n1urntor37gzkz.htm&locale=en
https://support.sas.com/en/technical-support.html

For information about using the MIGRATE procedure, see “MIGRATE Procedure” in
Base SAS Procedures Guide. For more information, see the SAS Technical Support
site.

Creating a SAS File to Use with an
Earlier Release

The V9 engine differs slightly from previous SAS engines. The V9 engine supports
longer format and informat names than previous SAS engines. For a discussion
about how to ensure compatibility between releases, see “Migration and Cross-
Version Compatibility (SAS 6 through SAS 9.4)” in SAS/SHARE User’s Guide. For
more information, see the SAS Technical Support site.

Reading SAS Files from Previous
Releases or from Other Hosts

Reading Version 6 Files
Using the V6 Read-Only engine, SAS can read Release 6 data sets that were
created by compatible computer types. In most cases, SAS invokes the V6 engine
automatically, and you do not have to specify it. The following examples
demonstrate how you can use the V6 engine:

n If you are running SAS 9.4 on Linux, you can use the V6 engine to read Release
6 data sets that were created with any Intel ABI release of SAS, such as SCO
UNIX.

n If you are running SAS 9.4 on HP-UX, you can use the V6 engine to read
Release 6 data sets that were created on HP-UX, Solaris, AIX, or IRIX.

Note: Beginning in SAS 9.4M8, the HP-UX platform is no longer supported.

n For more information about the compatibility of Release 6 files, see “Migration
and Cross-Version Compatibility (SAS 6 through SAS 9.4)” in SAS/SHARE
User’s Guide.

58 Chapter 3 / Using SAS Files

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1kv04orx2cy03n1urntor37gzkz.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1kv04orx2cy03n1urntor37gzkz.htm&locale=en
https://support.sas.com/en/technical-support.html
https://support.sas.com/en/technical-support.html
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=p18fbbtmtkvkcsn1ur8p4kvsk3pv.htm&locale=en
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=p18fbbtmtkvkcsn1ur8p4kvsk3pv.htm&locale=en
https://support.sas.com/en/technical-support.html
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=p18fbbtmtkvkcsn1ur8p4kvsk3pv.htm&locale=en
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=p18fbbtmtkvkcsn1ur8p4kvsk3pv.htm&locale=en
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=p18fbbtmtkvkcsn1ur8p4kvsk3pv.htm&locale=en

Reading Version 8 or Later Files from Compatible
Computer Types

If your files were created in 64-bit SAS, they are compatible with SAS 9.4. You do
not need to use CEDA to read your files.

Reading Version 8 or Later Files from Incompatible
Computer Types

Compatibility of Existing SAS Files with
SAS 9.4
In SAS 9, SAS for AIX, HP-UX, and Solaris environments is 64-bit only. Some SAS
files that were created in 32-bit releases of SAS cannot be read by the V9 engine.

Note: Beginning in SAS 9.4M8, the HP-UX platform is no longer supported.

SAS automatically tries to use CEDA to read data sets. If you use CEDA to read a
data set and include msglevel=i in your code, then SAS writes a note to the log.

The following table lists processing that is supported for each SAS file with CEDA.

Table 3.2 Supported Processing for Release 8 32-Bit Files in SAS 9

File Type Support

SAS files Input processing and output processing.
(In SAS 9, if you create a new data file
from the 32-bit file, the new file is
generally 64-bit. For more information
about CEDA, see “Cross-Environment
Data Access” in SAS Programmer’s
Guide: Essentials. For more information,
see the SAS Technical Support site.)

MDDB file Input processing.

PROC SQL view Input processing.

SAS/ACCESS view for Oracle or Sybase Input processing.

Reading SAS Files from Previous Releases or from Other Hosts 59

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
https://support.sas.com/en/technical-support.html

File Type Support

SAS/ACCESS view other than for Oracle
or Sybase

No support.

SAS catalog No support.

Stored compiled DATA step program No support.

DATA step view No support.

Item store No support.

Note: In SAS 9, if you create a new data file from a 32-bit file, the new file is
generally 64-bit. For information about CEDA, see “Cross-Environment Data
Access” in SAS Programmer’s Guide: Essentials. For more information, see the
SAS Technical Support site.

Accessing Version 8 or Later Files with
CEDA
CEDA enables a SAS data set that was created in Version 8 or later in any
directory-based operating environment (such as UNIX and Windows) to be read by
a SAS session that is running in another directory-based environment. In SAS 9.4, if
you try to access a data set that was created in a previous release, then SAS
automatically uses CEDA to process the file. For example, if you are running SAS
9.4 on Linux, SAS uses CEDA to process a data set that was created in Release 8
on a 64-bit Solaris host. With CEDA, you have Read and Write access to these files.
However, the file cannot be updated. For more information, see the SAS Technical
Support site.

For best system performance, it is better to use data sets that are in the native
format. Otherwise, CEDA might require additional CPU resources and might reduce
system performance.

If you need to access 32-bit SAS data sets, SAS/ACCESS views from Oracle or
Sybase, SQL views, or MDDB files from a 64-bit SAS session, then you can access
these files using CEDA. CEDA provides Read and Write access to these files.
However, CEDA does not support Update processing. CEDA consumes additional
resources each time you read or write to these files. For more information about
CEDA, see “Cross-Environment Data Access” in SAS Programmer’s Guide:
Essentials.

Catalogs and other SAS files (not including SAS data sets) contain data structures
that are known only to the application that created them. These catalogs and files
might contain data objects other than character or numeric objects and therefore
cannot be shared between 64-bit SAS and earlier 32-bit releases of SAS.

60 Chapter 3 / Using SAS Files

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
https://support.sas.com/en/technical-support.html
https://support.sas.com/en/technical-support.html
https://support.sas.com/en/technical-support.html
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en

Referring to SAS Files By Using Librefs
in UNIX Environments

Techniques for Referring to a SAS File
If you want to read or write to a permanent SAS file, you can refer to the SAS file in
one of two ways:

n Refer to the data file directly by using its pathname in the appropriate statements
(such as DATA, SET, MERGE, UPDATE, OUTPUT, and PROC).

n Assign a libref to the SAS library (directory) that contains the data file and use
the libref as the first level of a two-level filename.

What Is a Libref?
A libref is an alias that you can use to refer to the library during a SAS session or
job. You will probably want to use a libref when one of the following is true:

n The data file pathname is long and must be specified several times within a
program.

n The pathname might change. If the pathname changes, you need to change only
the statement assigning the libref, not every reference to the file.

n Your application will be used on other platforms. Using librefs makes it easier to
port an application to other operating environments.

n You need to concatenate libraries. For more information, see “Assigning a Libref
to Several Directories (Concatenating Directories) in UNIX” on page 66.

For information about assigning librefs, see “Rules for Most SAS Names” in SAS
Programmer’s Guide: Essentials.

Librefs can be stored in the SAS registry. For more information, see “Customizing
Your SAS Registry Files” on page 22.

Referring to SAS Files By Using Librefs in UNIX Environments 61

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&docsetTargetAnchor=p0bjsity6vyjegn12zg7raqgmroz&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&docsetTargetAnchor=p0bjsity6vyjegn12zg7raqgmroz&locale=en

Assigning Librefs

Methods for Assigning Librefs
You can use any of the following items to assign a SAS libref:

n LIBNAME statement

n LIBNAME function

n DMLIBASSIGN command in the SAS windowing environment

n LIBNAME window in the SAS windowing environment

n SAS Explorer window in the SAS windowing environment

A libref assignment remains in effect for the duration of the SAS job, session, or
process unless you clear the libref or use the same libref in another LIBNAME
statement or LIBNAME function.

If you assign a libref from a SAS process, that libref is valid only within that SAS
process. If you clear a libref from within a SAS process, that libref is not cleared
from other SAS processes.

Using the LIBNAME Statement
The LIBNAME statement identifies a SAS library to SAS, associates an engine with
the library, enables you to specify options for the library, and assigns a libref to it.
For information about LIBNAME statement syntax, see “LIBNAME Statement: UNIX”
on page 391.

Using the LIBNAME Function
The LIBNAME function takes the same arguments and options as the LIBNAME
statement. For more information about the LIBNAME function, see “LIBNAME
Function” in SAS Functions and CALL Routines: Reference.

Using the DMLIBASSIGN Command
Note: This method does not support adding a CAS libref.

Perform the following steps to assign a libref using the DMLIBASSIGN command in
the SAS windowing environment:

62 Chapter 3 / Using SAS Files

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en

1 Issue the DMLIBASSIGN command in the command window.

The New Library dialog box appears.

2 Specify the libref in the Name field.

3 Specify an engine for the libref in the Engine field by selecting the default engine
or another engine from the menu. Depending on the engine that you select, the
fields in the Library Information area might change.

4 Click Enable at startup to assign this libref when you invoke SAS.

5 Specify the necessary information for the SAS library in the Library Information
area. Depending on the engine that you select, there might not be a Path field
available for input.

6 Specify LIBNAME options in the Options field. These options can be specific to
your host or engine, including options that are specific to a SAS engine that
accesses another software vendor's relational database system.

7 Click OK.

Using the LIBNAME Window
Note: This method does not support adding a CAS libref.

Perform the following steps to assign a libref from the LIBNAME window in SAS
windowing environment:

1 Issue the LIBNAME command in the command window.

The LIBNAME window appears.

2 From the File menu, select New.

The New Library dialog box appears.

3 Complete the fields in the New Library dialog box as described in “Using the
DMLIBASSIGN Command” on page 62.

4 Click OK.

Using the SAS Explorer Window
Note: This method does not support adding a libref to the CAS engine.

Perform the following steps to assign a libref from the SAS Explorer window in the
SAS windowing environment:

1 From the File menu, select New when the Libraries node in the tree structure is
active.

Referring to SAS Files By Using Librefs in UNIX Environments 63

The New dialog box appears.

2 Select Library, and then click OK.

The New Library dialog box appears.

3 Complete the fields in the New Library dialog box as described in “Using the
DMLIBASSIGN Command” on page 62.

4 Click OK.

Permanently Assigning a Libref
You might want to save a libref so that it is valid between SAS sessions. You can
assign a libref permanently by using one of the following methods:

n Specify the LIBNAME statement or LIBNAME function in an autoexec file. For
more information, see “LIBNAME Function” in SAS Functions and CALL
Routines: Reference or “LIBNAME Statement: UNIX” on page 391.

n Select Enable at startup when you assign a libref using the DMLIBASSIGN
command, LIBNAME window, or SAS Explorer window. Selecting this option
saves the libref in the SAS registry. For more information about these methods,
see “Assigning Librefs” on page 62.

n Use environment variables as librefs. Include these environment variables in
your start-up files so that these variables are set when SAS is invoked.

Accessing a Permanent SAS Library By Using a
Libref

After you have defined a libref, you can use the libref in one of two ways to access a
permanent SAS library:

n as the first level of a two-level SAS filename:

libref.member-name

Here libref is the first-level name referring to the directory where the file is stored,
and member-name is the name of the file being read or created.

n as the value of the USER= option. (For more information, see “Using One-Level
Names to Access Permanent Files (User Library)” on page 75.)

For example, these SAS statements access the data file Final.sas7bdat in the Sales
library that is stored in the /users/myid/mydir directory:

libname sales '/users/myid/mydir';
data sales.final;

64 Chapter 3 / Using SAS Files

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en

Specifying Pathnames in UNIX
Environments

Rules for Specifying Directory and Pathnames
Whether you specify a data filename directly in the various SAS statements or you
specify the library name in a LIBNAME statement, the same rules apply for
specifying UNIX directory and file pathnames.

Specify directory and file pathnames in quotation marks. The level of specification
depends on your current directory.

Example 1: Access a File That Is Not in the Current
Directory

If /u/2011/budgets is not your current directory, then to access the data file named
May, you must specify the entire pathname:

data '/u/2011/budgets/may';

If you wanted to use a libref, you might specify these statements:

libname budgets '/u/2011/budgets';
data budgets.may;

Example 2: Access a File in the Current Directory
If /u/2011/budgets is your current directory, you could specify only the filenames:

data 'quarter1';
 merge 'jan' 'feb' 'mar';
run;

Note: If you omit the quotation marks, then SAS assumes that these data sets are
stored in the Work directory.

If you wanted to use a libref, then you might specify these statements:

libname budgets '.';
data budgets.quarter1;
 merge budgets.jan budgets.feb budgets.mar;

Specifying Pathnames in UNIX Environments 65

run;

Valid Character Substitutions in Pathnames
You can use the character substitutions in the following table to specify pathnames.

Table 3.3 Character Substitutions in Pathnames

Characters Meaning

~/ $HOME/

Can be used only at the beginning of a pathname.

~name/ name's home directory (taken from file /etc/passwd). Can be
used only at the beginning of a pathname.

!sasroot name of sasroot directory (see Appendix 1, “The !SASROOT
Directory,” on page 567.) Specified only at the beginning of a
pathname.

. current working directory.

.. parent of current working directory.

$VARIABLE environment variable VARIABLE.

Assigning a Libref to Several Directories
(Concatenating Directories) in UNIX

Introduction to Concatenating Directories
You can use the LIBNAME statement to assign librefs and engines to one or more
directories, including the Work directory.

If you have SAS data sets located in multiple directories, you can treat these
directories as a single SAS library by specifying a single libref and concatenating the
directory locations. Here is an example:

libname income ('/u/2011/revenue', '/u/2011/costs');

This statement indicates that the two directories, /u/2011/revenue and /u/2011/
costs, are to be treated as a single SAS library.

66 Chapter 3 / Using SAS Files

If you have already assigned librefs to your SAS libraries, you can use these librefs
to indicate that you want to concatenate the libraries, as in this example:

libname income ('/u/2011/corpsale', '/u/2011/retail');
libname costs ('/u/2011/salaries', '/u/2011/expenses');
libname profits (income, costs, '/u/2011/capgain');

This statement indicates that the five
directories, /u/2011/corpsale, /u/2011/retail, /u/2011/salaries,
/u/2011/expenses, and /u/2011/capgain, are to be treated as a single SAS
library.

How SAS Accesses Concatenated Libraries
When you concatenate SAS libraries, SAS uses a protocol for accessing the
libraries, which depends on whether you are accessing the libraries for read, write,
or update.

SAS uses the protocol in the following sections to determine which directory is
accessed. The protocol illustrated by these examples applies to all SAS statements
and procedures that access SAS files. These include the DATA, UPDATE, and
MODIFY statements in the DATA step and the SQL and APPEND procedures.

Accessing Files for Input and Update
When a SAS data set is accessed for input or update, the first SAS data set that is
found by that name is the one that is accessed. For example, if you submit the
following statements and the data set old.species exists in both directories, the
one in the mysasdir directory is the one that is printed:

libname old ('mysasdir','saslib');
proc print data=old.species;
run;

The same would be true if you opened old.species for update with the FSEDIT
procedure.

Accessing Files for Output
If the data set is accessed for output, it is always written to the first directory,
provided that the directory exists. If the directory does not exist, an error message is
displayed. For example, if you submit the following statements, SAS writes the
old.species data set to the first directory (mysasdir), and replaces any existing
data set with the same name:

libname old ('mysasdir','saslib');
data old.species;
 x=1;
 y=2;
run;

Assigning a Libref to Several Directories (Concatenating Directories) in UNIX 67

If a copy of the old.species data set exists in the second directory, it is not
replaced.

Accessing Data Sets with the Same Name
If you use the DATA and SET statements to access data sets with the same name,
the DATA statement uses the output rules and the SET statement uses the input
rules. When you execute the following statements, assume that test.species
originally exists only in the second directory, mysasdir. Execute the following
statements:

libname test ('sas','mysasdir');
data test.species;
 set test.species;
 if value1='y' then
 value2=3;
run;

The DATA statement opens test.species for output according to the output rules.
That is, SAS opens a data set in the first of the concatenated libraries (sas). The
SET statement opens the existing test.species data set in the second directory
(mysasdir), according to the input rules. Therefore, the original test.species data
set is not updated. After the DATA step executes, two test.species data sets exist,
one in each directory.

Using Multiple Engines for a Library in
UNIX Environments

You can assign multiple librefs to a single directory, and specify a different engine
with each libref. For example, after the following statements are executed, data sets
that are referenced by one are created and accessed using the default engine. Data
sets that are referenced by two are created and accessed using the sequential
engine:

libname one v9 '/users/myid/educ';
libname two v8 '/users/myid/educ';

Note: Keeping different types of libraries in one directory is not recommended
because you must remember the appropriate engine for accessing each library.
SAS cannot determine the right engine for accessing libraries in a directory that
contains libraries of different types. For more information, see “Omitting Engine
Names from the LIBNAME Statement” on page 395.

68 Chapter 3 / Using SAS Files

Using Environment Variables as Librefs
in UNIX Environments

An environment variable can be used as a libref. The variable name must be in all
uppercase characters, and the variable value must be the full pathname of the
directory. That is, the name of the directory must begin with a slash.

Note: SAS on UNIX does not support the assignment of the User libref using the
USER environment variable.

Supposed that you want to use the library in /users/mydir/educ, and you want to
refer to it with the EDUC environment variable. You can define the variable at the
following times:

n Before you invoke SAS. See “Defining Environment Variables in UNIX
Environments” on page 309. For example, in the Korn shell, you might use this
command:

export EDUC=/users/mydir/educ

n After you invoke SAS. You can use the X statement (see “Executing Operating
System Commands from Your SAS Session” on page 18) and the SAS setenv
command:

x setenv EDUC /users/mydir/educ;

You cannot specify an engine when you define a libref as an environment variable,
so SAS determines which engine to use as described in “Omitting Engine Names
from the LIBNAME Statement” on page 395.

After the libref is defined, you can use it to access data sets stored in the library:

proc print data=educ.class;
run;

Note: If a variable and a libref have the same name, but refer to different libraries,
SAS uses the libref.

Librefs Assigned by SAS in UNIX
Environments

SAS automatically defines three librefs:

Librefs Assigned by SAS in UNIX Environments 69

Sashelp
contains a group of catalogs that contain information that is used to control
various aspects of your SAS session. The Sashelp library is in the !SASROOT
directory. For more information, see Appendix 1, “The !SASROOT Directory,” on
page 567.

Sasuser
contains SAS catalogs that enable you to customize features of SAS (such as
window size, font settings, and printer entries) for your needs. If the defaults in
the Sashelp library are not suitable for your applications, you can modify them
and store your personalized defaults in your Sasuser library.

Work
is the temporary, or scratch, library automatically defined by SAS at the
beginning of each SAS session or job. The Work library stores two types of
temporary files: those files that you create, and those files that are created
internally by SAS as part of normal processing.

These librefs and the library libref are reserved librefs. If your site also has
SAS/GRAPH software, the maps libref might be automatically defined. For more
information about all of these libraries, see “SAS Default Libraries” in SAS
Programmer’s Guide: Essentials. Sasuser and Work have operating system
dependencies.

Sasuser Library

What Is the Sasuser Library?
The Sasuser library contains the customizations (such as window size and
positioning, colors, fonts, and printer entries) that you specified for your SAS
session. When you invoke SAS, it looks for the Sasuser directory to find these
customizations. If this directory does not exist, SAS uses the SASUSER system
option to create it. The default directory is set in the system configuration file
(sasv9.cfg) and is usually similar to the following:

-sasuser ~/sasuser.v94

This specification tells SAS to create a directory for the Sasuser libref in your home
directory. To determine the value of this directory for your system, use PROC
OPTIONS or libname sasuser LIST.

You can permit Read-Only access to the Sasuser library by using the RSASUSER
system option. For information about the SASUSER and RSASUSER system
options, see “SASUSER System Option: UNIX” on page 481 and “RSASUSER
System Option: UNIX” on page 473.

After the Sasuser library has been created, SAS automatically assigns the same
Sasuser libref to it each time you start a SAS session. It cannot be cleared or
reassigned during a SAS session. If you delete the library, SAS re-creates it the next
time you start a session. Because SAS assigns the libref for you, you do not need to
use a LIBNAME statement before referencing this library.

70 Chapter 3 / Using SAS Files

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0gp1b7qxwuzg0n1n0574z3s9sts.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0gp1b7qxwuzg0n1n0574z3s9sts.htm&locale=en

Contents of the Sasuser Library
Your customizations are stored in one of the following locations in the Sasuser
library:

n “Sasuser.Profile Catalog” on page 71

n “Sasuser.Registry Catalog” on page 73

n “Sasuser.Prefs File ” on page 73

Sasuser.Profile Catalog

Overview of the Sasuser.Profile Catalog
The Sasuser.Profile catalog is the profile.sas7bcat file in your Sasuser library. This
catalog enables you to customize how you work with SAS. SAS uses this catalog to
store function key definitions, fonts for graphics applications, window attributes, and
other information from interactive windowing procedures. SAS saves changes that
you make to function key definitions, window attributes (such as size, color, and
position), PMENU settings, and so on, in the Sasuser.Profile catalog. The
information in the Sasuser.Profile catalog is accessed automatically by SAS when
you need it for processing.

Note: The Sasuser.Profile catalog is not included in SAS Viya.

How SAS Accesses the Sasuser.Profile
Catalog
SAS creates the Sasuser.Profile catalog the first time it tries to find it and it does not
exist. If you are using an interactive windowing environment, then creating the
Sasuser.Profile catalog occurs during system initialization in your first SAS session.
If you are using one of the other modes of execution, the Sasuser.Profile catalog is
created the first time you execute a SAS procedure that requires it.

Sasuser Library 71

When the Sasuser.Profile Catalog Does
Not Exist
If the Sasuser.Profile catalog does not exist, then, at invocation, SAS checks for the
Sashelp.Profile catalog. (This catalog exists only if you have copied your
Sasuser.Profile catalog to the Sashelp library.) If the Sashelp.Profile catalog exists,
then SAS copies it to the Sasuser library, and this catalog becomes your new
Sasuser.Profile catalog. If the Sashelp.Profile catalog does not exist, then SAS
creates Sasuser.Profile using the default settings for a SAS session. The default
settings for your SAS session are stored in several catalogs in the Sashelp library. If
you make changes to key settings or other options, then the new information is
stored in your Sasuser.Profile catalog. To restore the original default settings to the
Sasuser.Profile catalog, use the CATALOG procedure or the CATALOG window to
delete entries from your Sasuser.Profile catalog. By default, SAS then uses the
corresponding entry from the Sashelp library.

Checking for an Uncorrupted
Sasuser.Profile Catalog
When you invoke SAS, SAS checks for an existing, uncorrupted Sasuser.Profile
catalog. If the catalog is found, SAS copies the Sasuser.Profile catalog to
Sasuser.Profbak. This backup catalog is used if Sasuser.Profile becomes corrupted.

If you invoke SAS and determine that your customizations have been lost, then your
Sasuser.Profile catalog is either corrupted or locked by another SAS session that
was started with the same user ID. If either of these conditions are true, then SAS
uses Sashelp.Profile or Sasuser.Profbak to replace the locked or corrupted
Sasuser.Profile catalog.

If Your Sasuser.Profile Catalog Is Locked
or Corrupted
If your Sasuser.Profile catalog is locked, then SAS checks for Sashelp.Profile. If
Sashelp.Profile exists, SAS copies it to Work.Profile, and then saves the
customizations to the Work.Profile catalog instead of the Sasuser.Profile catalog.
This Work.Profile catalog is used for the duration of the SAS session. Because the
contents of the Work directory are temporary, any customizations that you save to
the Work.Profile catalog are lost at the end of the SAS session.

If your Sasuser.Profile catalog is corrupted, SAS copies the corrupted catalog to
Sasuser.Badpro.SAS, and then checks for Sasuser.Profbak. If Sasuser.Profbak
exists, then SAS copies it to Sasuser.Profile. Any changes that you made to the
Sasuser.Profile catalog during the previous session are lost. If your Sasuser.Profile
catalog is being used by multiple SAS sessions, then you can specify the
RSASUSER system option to permit Read-Only access to the Sasuser library.

72 Chapter 3 / Using SAS Files

Because this permission is Read-Only, you will not be able to save any
customizations to your Sasuser.Profile catalog during that SAS session.

For more information about the Sasuser.Profile catalog and its related catalogs, as
well as information about recovering locked or corrupted profile catalogs, see
“Managing SAS Catalogs” in SAS Programmer’s Guide: Essentials.

Sasuser.Registry Catalog

Overview of the Sasuser.Registry Catalog
The Sasuser.Registry catalog is the regstry.sas7bitm file in your Sasuser library. If
you change any Universal Printing entries or libref assignments during a SAS
session, then SAS saves the changes in the Sasuser.Registry catalog.

How SAS Accesses the Sasuser.Registry
Catalog
At invocation, SAS looks in the Sasuser directory to see whether it can write to the
Sasuser.Registry catalog. If SAS cannot write to this catalog, then the following
warning appears in the SAS log:

WARNING: Unable to open SASUSER.REGISTRY. WORK.REGISTRY will be used instead.
NOTE: All registry changes will be lost at the end of the session.

If SAS can read the Sasuser.Registry catalog, then SAS copies the
Sasuser.Registry catalog to create a Work.Registry catalog (in the Work library).
This Work.Registry catalog is used for the duration of the SAS session. Because the
contents of the Work library are temporary, then any customizations that you save to
the Work.Registry catalog are lost at the end of the SAS session. However, the
customizations saved in the Sasuser.Registry catalog still exist.

If SAS cannot read the Sasuser.Registry catalog, then SAS creates the
Work.Registry catalog using the default settings for a SAS session. In this case,
SAS issues an additional warning to the SAS log:

WARNING: Unable to copy SASUSER.REGISTRY to WORK.REGISTRY.

Sasuser.Prefs File
The settings that you specify in the Preferences dialog box (with the exception of
resources on the General tab) are saved in the Sasuser.Prefs file. For more

Sasuser Library 73

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1ma7iw5zyrhunn1p1nw6bw2fgte.htm&locale=en

information about these resources, see “Modifying X Resources through the
Preferences Dialog Box” on page 207.

Note: The Sasuser.Prefs file is not valid in SAS Viya.

Work Library
The Work library is the temporary library that is automatically defined by SAS at the
beginning of each SAS session or job. The Work library stores temporary SAS files
that you create, as well as files created internally by SAS.

To access files in the Work library, specify a one-level name for the file. The libref
Work is automatically assigned to these files unless you have assigned the User
libref.

When you invoke SAS, it assigns the Work libref to a subdirectory of the directory
specified in the WORK system option described in “WORK System Option: UNIX”
on page 503. This subdirectory is usually named SAS_workcode_nodename, and has
the following characteristics:

workcode
is a 12-character code. The first four characters are randomly generated
numbers. The next eight characters are based on the hexadecimal process
identification number of the SAS session.

nodename
is the name of the UNIX computer where the SAS process is running.

This libref cannot be cleared or reassigned during a SAS session.

The WORKINIT and WORKTERM system options control the creation and deletion
of the Work library. For more information, see “WORKINIT System Option” in SAS
System Options: Reference and “WORKTERM System Option” in SAS System
Options: Reference.

Note: If a SAS session is terminated improperly (for example, with the kill —9
command), SAS does not delete the SAS_workcode_nodename directory. You might
want to use the cleanwork command to delete the directories.

Multiple Work Directories
SAS can make the distribution of Work libraries dynamic by distributing Work
libraries across several directories. This functionality eliminates the potential
problem of filling up a single volume with all of the Work directories.

74 Chapter 3 / Using SAS Files

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p09alrx4a9rop4n13xu3jpu37v3y.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p09alrx4a9rop4n13xu3jpu37v3y.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p182lylgccdsgin14sgkqd4heyiz.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p182lylgccdsgin14sgkqd4heyiz.htm&locale=en

The WORK system option contains the PATHNAME argument, which can be a
directory, or a file that contains a list of directories, that SAS can use for allocating
Work libraries. Individual Work libraries still reside in a single directory. You can use
the WORK system option in a configuration file or in the command line.

When the argument to WORK is a list of directories in a file, you can specify a
method for choosing which directory to use for WORK. If you specify
METHOD=RANDOM, then SAS chooses at random a directory from the list of
available directories. If you choose METHOD=SPACE, then SAS chooses the
directory that has the most available space.

For more information, see “WORK System Option: UNIX” on page 503.

Using One-Level Names to Access
Permanent Files (User Library)

Introduction to One-Level Names
SAS data sets are referenced with a one- or two-level name. The two-level name
has the form libref.member-name, where libref refers to the SAS library in which the
data set resides, and member-name refers to the particular member within that
library. The one-level name has the form member-name (without a libref). In this
case, SAS stores the files in the temporary Work library. To override this action and
store files with one-level names in a permanent library, you must first assign the
User libref to an existing directory. To refer to temporary SAS files while User is
assigned, use a two-level name with WORK as the libref.

Techniques for Assigning the User Libref
You have three ways to assign the User libref:

n Assign the User libref directly using the LIBNAME statement:

libname user '/users/myid/mydir';

n Specify the USER= system option before you start the SAS session. For
example, you can assign the User libref when you invoke SAS:

sas -user /users/myid/mydir

n Specify the USER= system option after you start the SAS session. First, assign
a libref to the permanent library. Then, use the USER= system option in an
OPTIONS statement to equate that libref to User. For example, these statements
assign the libref User to the directory with libref mine:

libname mine '/users/myid/mydir';
options user=mine;

Using One-Level Names to Access Permanent Files (User Library) 75

For information about the USER system option, see “USER System Option: UNIX”
on page 501.

Note: SAS on UNIX does not support the assignment of the User libref using the
USER environment variable.

Accessing Disk-Format Libraries in UNIX
Environments

You probably create and access libraries on disk more than any other type of library.
The default engine and the compatibility engines allow Read, Write, and Update
access to SAS files on disk. They also support indexing and compression of
observations.

In the following example, the In libref is assigned to a directory that contains the
Stats1 data set:

libname in '/users/myid/myappl';
proc print data=in.stats1;
run;

Remember, either a SAS-data-library must exist or you must specify the
DLCREATEDIR system option before SAS can read from or write to this directory. If
DLCREATEDIR is specified and you refer to a directory that does not exist, SAS
creates the directory. If DLCREATEDIR is not specified, then you first need to create
the directory. For example, to create the SAS data set Orders in a new directory,
use the X statement to issue the mkdir UNIX command. Then, you can use the
LIBNAME statement to associate the libref with the new directory:

x mkdir /users/publish/books;
libname books '/users/publish/books';
data books.orders;
 ... more SAS statements ...
run;

By default, the LIBNAME statement associates the V9 engine with the directory.

76 Chapter 3 / Using SAS Files

Accessing Sequential-Format Libraries in
UNIX Environments

Benefits and Limitations of Sequential Engines
The sequential engines enable you to access libraries in sequential format on disk.
The sequential engines do not support indexing and compression of observations.

Note: Before using sequential engines, read the information about sequential
libraries in “Engine Characteristics” in SAS Programmer’s Guide: Essentials.

Writing Sequential Data Sets to Named Pipes

Why Use Named Pipes?
You can send output to and read input from the operating environment by using
named pipes. For example, you might want to compress a data set or send it to a
sequential access management system without creating intermediate files.

Syntax of the LIBNAME Statement
You can read from and write to named pipes from within your SAS session by
specifying the pipe name in the LIBNAME statement:

LIBNAME libref 'pipename';

Because you cannot position a pipe file, SAS uses a sequential engine to ensure
sequential access. You do not have to specify the engine name.

Accessing Sequential-Format Libraries in UNIX Environments 77

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0qxjkao2a08rpn0ztduhz1reezb.htm&locale=en

Example: Creating a SAS Data Set Using
a Named Pipe
To create a SAS data set and compress the data set without creating an
intermediate, uncompressed data set, create a named pipe (such as mypipe) and
enter the compress command:

mkfifo mypipe; compress <mypipe >sasds.Z

In your SAS session, assign a libref to the pipe and begin writing to the data set:

libname x 'mypipe';
data x.a;
 ...more SAS statements...
output;
run;

The data is sent to mypipe and then compressed and written to the data set. When
SAS closes the data set, compression finishes, and you have a compressed,
sequential data set in sasds.Z.

If you begin writing to a named pipe before the task on the other end (in this case,
the compress command) begins reading, then your SAS session is suspended until
the task begins to read.

Accessing BMDP, OSIRIS, or SPSS Files
in UNIX Environments

Introduction to the BMDP, OSIRIS, and SPSS Files
SAS includes three interface library engines, BMDP, OSIRIS, and SPSS, that
enable you to access external data directly from a SAS program. All of these
engines are read-only.

Because they are sequential, these engines cannot be used with the POINT= option
in the SET statement, or with the FSBROWSE, FSEDIT, or FSVIEW procedures.
You can use PROC COPY, PROC DATASETS, or a DATA step to copy a BMDP or
OSIRIS system file or an SPSS export file to a SAS data set. Also, some
procedures (such as PROC PRINT) give a warning message about the engine
being sequential.

With these engines, the physical filename that is associated with a libref is an actual
filename, not a directory. This association is an exception to the rules concerning
librefs.

78 Chapter 3 / Using SAS Files

You can use the CONVERT procedure to convert BMDP, OSIRIS, and SPSS files to
SAS files. For more information, see Chapter 25, “CONVERT Procedure,” on page
525.

The BMDP Engine

What Is the BMDP Engine?
The BMDP interface library engine enables you to read BMDP files from the BMDP
statistical software application directly from a SAS program. The BMDP engine is a
read-only engine. The following discussion assumes that you are familiar with the
BMDP save file terminology. For more information, see the documentation that is
provided by BMDP Statistical Solutions on the website.

Note: This engine is available for AIX, HP-UX, and Solaris platforms. However,
beginning in SAS 9.4M8, the HP-UX platform is no longer supported.

Syntax for Accessing BMDP Save Files
To read a BMDP save file, issue a LIBNAME statement that explicitly specifies the
BMDP engine. In this case, the LIBNAME statement has the following form:

LIBNAME libref BMDP 'filename';

This is a description of the arguments:

libref
specifies a SAS libref.

filename
specifies a BMDP physical filename.

Note: If the libref appears previously as a fileref, omit filename because SAS uses
the physical filename that is associated with the fileref.

This engine can read save files that are created only on UNIX.

Because a single physical file can contain multiple save files, you reference the
CODE= value as the member name of the data set within the SAS language. For
example, if the save file contains CODE=ABC and CODE=DEF, and the libref is
MyLib, you reference the files as MyLib.ABC and MyLib.DEF. All CONTENT types
are treated the same. Even if member DEF has the value CONTENT=CORR, it is
treated as if the value was CONTENT=DATA.

If you know that you want to access the first save file in the physical file or if there is
only one save file, refer to the member name as _FIRST_. This reference is
convenient if you do not know the CODE= value.

Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments 79

Example: BMDP Engine
Assume that the physical file mybmdp.dat contains the save file ABC. The following
SAS code associates the libref Mylib with the BMDP physical file and executes the
CONTENTS and PRINT procedures on the save file:

libname mylib bmdp 'mybmdp.dat';
proc contents data=mylib.abc;
run;

proc print data=mylib.abc;
run;

The following example uses the LIBNAME statement to associate the libref mylib2
with the BMDP physical file. Then, it writes the data for the first save file in the
physical file:

libname mylib2 bmdp 'mybmdp.dat';
proc print data=mylib2._first_;
run;

The OSIRIS Engine

What Is the OSIRIS Engine?
The Inter-University Consortium for Political and Social Research (ICPSR) uses the
OSIRIS file format for distribution of its data files. SAS provides the OSIRIS
interface library engine to support the many users of the ICPSR data and to be
compatible with PROC CONVERT.

With the OSIRIS engine, you can read OSIRIS data and dictionary files directly from
a SAS program. The following discussion assumes that you are familiar with the
OSIRIS file terminology and structure. If you are not familiar with OSIRIS, see the
documentation provided by ICPSR.

Notes about the OSIRIS Data Dictionary
Files
Because OSIRIS software does not run outside the z/OS environment, the layout of
an OSIRIS data dictionary is consistent across operating environments. However,
the OSIRIS engine is designed to accept a data dictionary from any other operating
environment on which SAS runs. It is important that the dictionary and data files not
be converted from EBCDIC to ASCII; the engine expects EBCDIC data.

80 Chapter 3 / Using SAS Files

The dictionary file should consist of fixed-length records of length 80. The data file
should contain records that are large enough to hold the data that is described in
the dictionary.

Syntax for Accessing an OSIRIS File
To read an OSIRIS file, issue a LIBNAME statement that explicitly specifies the
OSIRIS engine. In this case, the syntax of the LIBNAME statement has the following
form:

LIBNAME libref OSIRIS 'data-filename' DICT='dictionary-filename';

This is a description of the arguments:

libref
specifies a SAS libref.

'data-filename'
specifies the physical filename of the data file.

If the libref appears also as a fileref, omit data-filename.

DICT='dictionary-filename'
specifies the physical filename of the dictionary file. If dictionary-filename is an
environment variable or a fileref, do not enclose it in quotation marks. The DICT=
option is required.

OSIRIS data files do not have member names. Therefore, use whatever member
name you want.

To use the same dictionary file with different data files, use a separate LIBNAME
statement for each one.

Example: OSIRIS Engine
In the following example, the data file is /users/myid/osr/dat, and the dictionary
file is /users/myid/osr/dic. The example associates the libref Mylib with the
OSIRIS files, and executes the CONTENTS procedure and the PRINT procedure:

libname mylib osiris '/users/myid/osr/dat'
 dict='/users/myid/osr/dic';
proc contents data=mylib._first_;
run;
proc print data=mylib._first_;
run;

Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments 81

The SPSS Engine

What Is the SPSS Engine?
The SPSS engine is a read-only engine. With the SPSS interface library engine, you
can read only SPSS export files. This engine does not read SPSS-X native files.

Syntax for Accessing an SPSS Export File
To read an SPSS export file, issue a LIBNAME statement that explicitly specifies the
SPSS engine. In this case, the syntax of the LIBNAME statement has the following
form:

LIBNAME libref SPSS 'filename';

This is a description of the arguments:

libref
specifies a SAS libref.

'filename'
specifies the physical filename.

Note: If the libref appears also as a fileref, omit filename because SAS uses the
physical filename that is associated with the fileref.

Export files must be created by the SPSS EXPORT command and can originate
from any operating environment. Export files must be transported to and from your
operating environment in ASCII format. If they are transported in binary format,
other operating environments are not able to read them.

Because SPSS-X files do not have internal names, refer to them by any member
name that you like. A common extension for export files is .por, but this extension is
not required.

SPSS can have system-missing and user-defined missing data. When you use the
SPSS engine or PROC CONVERT, the missing values (user-defined or system-
missing) are converted to system-missing values. User-defined missing values have
to be recoded as valid values. When the data set is converted, you can use PROC
FORMAT to make the translation (for example, -1 to .A and -2 to .B).

Reformatting SPSS Files
SAS cannot use an SPSS file that contains a variable with a numeric format that has
a larger number of decimal places than the width of the entire variable. For example,
if an SPSS file has a variable with a width of 17 and has 35 decimal places, SAS

82 Chapter 3 / Using SAS Files

returns errors when you try to run a DATA step on the file or view it with the table
viewer. To use the SPSS file with SAS, you have to reformat the variable.

You can reformat the variable by reducing the number of decimal spaces to a value
that fits within the width of the variable. In the following example, the statement
revision=cat(format,formatl,'.2'); converts the number of decimal spaces to
2. This value reduces the number of decimal spaces so that the number is not
greater than the width of the variable.

libname abc spss 'FILENAME.POR';
proc contents data=abc._all_ out=new;
run;

filename sascode temp;
data _null_;
 set new;
 file sascode
 if formatd > formatl then do;
 revision=cat(format,formatl,'.2');
 put 'format' +1 name +1 revision ';' ;
 end;
run;

data temp;
 set abc._all_;
 %inc sascode/source2;
run;

Note: The OPTIONS NOFMTERR statement does not allow SAS to use a data set
with a DATA step or the table viewer. You have to reformat numeric variables that
have a larger decimal value than their width before you can use a DATA step or the
table viewer.

Example: SPSS Engine
The following example associates the libref Mylib with the physical
file /users/myid/mydir/myspssx.por to execute the CONTENTS and PRINT
procedures on the export file:

libname mylib spss '/users/myid/mydir/myspssx.por';
proc contents data=mylib._first_;
proc print data=mylib._first_;
run;

In the next example, the FILENAME statement associates the fileref mylib2 with
the /users/myid/mydir/aspssx.por SPSS physical file, and the LIBNAME
statement associates the libref with the SPSS engine. The PRINT procedure writes
the data from the portable file.

filename mylib2 '/users/myid/mydir/aspssx.por';
libname mylib2 spss;
proc print data=mylib2._first_;
run;

Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments 83

Support for Links in UNIX Environments
SAS provides limited support for hard links and symbolic links in UNIX
environments. You can create links that point to a SAS data set or SAS catalog. If
you reference the link in a SAS program, SAS follows the link to find the data set or
catalog.

For example, you can create a symbolic link in the /tmp directory to
the /home/user/mydata.sas7bdat data set by entering the following command at
the UNIX prompt:

ln -s /home/user/mydata.sas7bdat /tmp/mydata.sas7bdat

The following SAS code uses the symbolic link in the /tmp directory to find the
mydata.sas7bdat data set. This code does not change the symbolic link, but it does
sort the data in the data set.

libname tmp '/tmp';

proc sort data=tmp.mydata;
 by myvariable;
run;

If you are running in the SAS windowing environment, you can use the SAS
Explorer window to view the symbolic links that are stored within a specific directory.
Any symbolic link that points to a nonexistent SAS file has a file size of 0.0KB and a
modified date of 31DEC59:19:00:00.

Note: SAS does not support links for a version data set or for a data set that has an
index.

84 Chapter 3 / Using SAS Files

4
Using External Files and Devices

Introduction to External Files and Devices in UNIX Environments 86

Accessing an External File or Device in UNIX Environments . 87
Specifying a Pathname or a Fileref . 87
What Is a Fileref? . 87

Specifying Pathnames in UNIX Environments . 88
Rules for Specifying Pathnames . 88
Omitting Quotation Marks in a Filename . 88
Working with Mixed Case or Uppercase Filenames . 89
Interpreting the Messages in the SAS Log . 89
Using Wildcards in Pathnames (Input Only) . 90

Assigning Filerefs to External Files or Devices with the FILENAME Statement . . 92
Introduction to the FILENAME Statement . 92
Accessing DISK Files . 92
Debugging Code with DUMMY Devices . 92
Sending Output to PRINTER Devices . 93
Using Temporary Files (TEMP Device Type) . 93
Accessing TERMINAL Devices Directly . 93
Assigning Filerefs to Files on Other Systems (FTP, SFTP, and

SOCKET Access Types) . 94

Concatenating Filenames in UNIX Environments . 94

Assigning a Fileref to a Directory (Using Aggregate Syntax) . 95
Introduction to Aggregate Syntax . 95
Assigning a Fileref to Several Directories . 96

Using Environment Variables to Assign Filerefs in UNIX Environments 97
Requirements for Variable Names . 97
Reading a Data File . 97
Writing to an External File . 98

Filerefs Assigned by SAS in UNIX Environments . 98
Filerefs for Standard Input, Standard Output, and Standard Error 98
File Descriptors . 98

Reserved Filerefs in UNIX Environments . 99

Sharing External Files in a UNIX Environment . 100
Sharing External Files . 100

85

Options to Use for File Locking: External Files . 100
File Locking for External Files: The LOCKINTERNAL Statement Option 100
File Locking for External Files: The FILELOCKS System Option 101

Reading from and Writing to UNIX Commands (PIPE) . 101
What Are Pipes? . 101
Syntax of the FILENAME Statement to Assign a Fileref to a Pipe 101
Using the Fileref for Reading . 102
Using the Fileref for Writing . 103

Sending Electronic Mail Using the FILENAME Statement (EMAIL) 104
Advantages of Sending Electronic Mail from within SAS . 104
Initializing Electronic Mail . 104
Components of the DATA Step or SCL Code Used to Send Email 105
Syntax of the FILENAME Statement for Electronic Mail . 105
Specifying Email Options in the FILE Statement . 106
Defining the Body of the Message . 107
Specifying Email Directives in the PUT Statement . 107
Example: Sending Email from the DATA Step . 108
Example: Sending Email Using SCL Code . 109

Running External Lua Files . 110

Introduction to External Files and
Devices in UNIX Environments

At times during a SAS session, you might want to use external files. That is, you
might want to use files that contain data or text, or files in which you want to store
data or text. These files are created and maintained by other applications or by
SAS. You can create, read, write, and delete external files from within SAS.

You can use external files in a SAS session to perform the following functions:

n hold raw data to be read with the INPUT statements

n store printed reports created by a SAS procedure

n submit a file containing SAS statements for processing

n store data written with PUT statements

For SAS, external files and devices can serve both as sources of input and as
receivers of output. The input can be either raw data to be read in a DATA step or
SAS statements to be processed by SAS. The output can be one of the following:

n the SAS log, which contains notes and messages produced by the program

n the formatted output of SAS procedures

n data written with PUT statements in a DATA step

You might also want to use peripheral devices such as a printer, plotter, or your own
terminal. UNIX treats these I/O devices as if they were files. Each device is
associated with a file, called a special file, which is treated as an ordinary disk file.
When you write to a special file, the associated device is automatically activated. All
special files reside in the dev directory or its subdirectories. Although there are

86 Chapter 4 / Using External Files and Devices

some differences in how you use the various devices, the basic concept is the same
for them all.

UNIX also enables you to use pipes to send data to and from operating system
commands as if they were I/O devices.

If you need to access an external file containing a transport data library, see Moving
and Accessing SAS Files.

Accessing an External File or Device in
UNIX Environments

Specifying a Pathname or a Fileref
To access an external file or device, you need to specify its pathname or fileref in
the appropriate SAS statements:

FILE
specifies the current output file for PUT statements.

%INCLUDE
includes a file that contains SAS source statements that are executed when you
submit a program from the Program Editor.

TIP If you use %INCLUDE, the line limit is 6000 bytes.

INFILE
identifies an external file that you want to read with an INPUT statement.

In the SAS statement, refer to the file or device in one of two ways:

n Specify the pathnames for the external files. For more information, see
“Specifying Pathnames in UNIX Environments” on page 88.

n Assign a fileref to a device, one or more files, or a directory, and use the fileref
when you want to refer to the file, directory, or device.

In most cases, you should use a fileref.

What Is a Fileref?
A fileref is nickname that you assign to a file or device. You assign the fileref once,
and then use it as needed. Filerefs are especially useful under the following
conditions:

n The pathname is long and has to be specified several times within a program.

Accessing an External File or Device in UNIX Environments 87

http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

n The pathname might change. If the pathname changes, you need to change only
the statement that assigns the fileref, not every reference to the file.

You can assign filerefs in the File Shortcuts window of the Explorer, with the
FILENAME statement, with the FILENAME function, or by defining the fileref as an
environment variable.

Note: For complete descriptions of the FILENAME function and the FILENAME
statement, see “FILENAME Statement” in SAS Global Statements: Reference and
“FILENAME Function” in SAS Functions and CALL Routines: Reference. For
information about defining filerefs, see “Rules for Most SAS Names” in SAS
Programmer’s Guide: Essentials.

Specifying Pathnames in UNIX
Environments

Rules for Specifying Pathnames
You can reference an external file directly by specifying its pathname in the FILE,
INFILE, or %INCLUDE statements. You can reference the file indirectly by
specifying a fileref and a pathname in the FILENAME statement and then using the
fileref in the FILE, INFILE, or %INCLUDE statements.

Whether you reference a file directly or indirectly, you need to specify its pathname
in the appropriate statement. In most cases, you must enclose the name in
quotation marks. For example, the following INFILE statement refers to the
file /users/pat/cars:

infile '/users/pat/cars';

The following FILE statement directs output to a specified special device file:

file '/dev/ttyp1';

Note: If a filename has leading blanks, then the blanks are trimmed.

The level of specification depends on your current directory. You can use the
character substitutions shown in Table 3.3 on page 66 to specify the pathname. You
can also use wildcards as described in “Using Wildcards in Pathnames (Input Only)”
on page 90.

Omitting Quotation Marks in a Filename
You can omit the quotation marks in a filename if one of the following is true:

88 Chapter 4 / Using External Files and Devices

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n15scht124hr4nn1g296cqg2kqfa.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&docsetTargetAnchor=p0bjsity6vyjegn12zg7raqgmroz&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&docsetTargetAnchor=p0bjsity6vyjegn12zg7raqgmroz&locale=en

n There is not already a fileref defined with that filename.

n The file has the file extension that is expected by the statement that you are
using to refer to the file. If you do not enclose a filename in quotation marks, the
FILE and INFILE statements assume a file extension of ‘.dat’. The %INCLUDE
statement assumes a file extension of ‘.sas’.

n The file is located in the current directory.

n The filename is written with all lowercase characters.

For example, if the current directory is /users/mkt/report and it includes file
qtr.sas, you can reference qtr.sas in any of the following statements:

%include '/users/mkt/report/qtr.sas';
%include 'qtr.sas';
file 'qtr.sas';

If there is no qtr fileref already defined, you can omit the quotation marks and the
file extension in the %INCLUDE statement:

%include qtr;

Working with Mixed Case or Uppercase Filenames
Filenames in the UNIX operating system are case sensitive. This means that a file
named PROGRAM is not the same as a file named program. When you reference the
name of a file that is written in mixed case or uppercase, and that filename is not
enclosed in quotation marks, SAS converts the filename to lowercase. If the
filename does not have a file extension, SAS adds the missing file extension.

For example, if you specify %include code(PROGRAM); in your program, SAS
converts the filename PROGRAM to lowercase, and adds an extension of .sas to
the filename. PROGRAM becomes program.sas.

Interpreting the Messages in the SAS Log
When you execute the following program, SAS converts TEMP to temp, and adds an
extension of .sas to the filename:

filename inc_code 'your-directory';
%include inc_code(TEMP);

SAS writes the following messages to the SAS log:

WARNING: Physical file does not exist, A.../your-directory/TEMP.sas.
ERROR: Cannot %INCLUDE member TEMP in the aggregate INC_CODE.

The warning message shows only the original filename (TEMP.sas), and not the
lowercase conversion (temp.sas). This situation might cause confusion if a file
named TEMP.sas does exist.

To avoid this confusion, include the file extension with the filename if the filename
contains an extension. Enclose a mixed case or uppercase filename in quotation
marks if the filename does not have an extension. For example:

Specifying Pathnames in UNIX Environments 89

%include code(TEMP.sas);
%include code("TEMP");

In both of these cases, SAS does not convert TEMP to lowercase.

Using Wildcards in Pathnames (Input Only)

Descriptions of the Valid Wildcards
You can use the *, ?, and [] wildcards to specify pathnames in the FILENAME,
INFILE, and %INCLUDE statements and in the INCLUDE command.

Note: You can use these wildcard characters in the FILENAME statement only if
you are using a fileref for input.

*
matches one or more characters, except for the period at the beginning of
filenames.

?
matches any single character.

[]
matches any single character from the set of characters defined within the
brackets. You can specify a range of characters by specifying the starting
character and ending character separated by a hyphen.

Wildcards are supported for input only. You cannot use wildcards in the FILE
statement.

Example 1: Selecting Files By Including a
Wildcard in a String
The following example reads input from every file in the current directory that begins
with the string wild and ends with .dat:

filename wild 'wild*.dat';
data;
 infile wild;
 input;
run;

90 Chapter 4 / Using External Files and Devices

Example 2: Reading Each File in the
Current Directory
The following example reads input from every file in every subdirectory of the
current working directory:

filename subfiles '*/*';
data;
 infile subfiles;
 input;
run;

If new files are added to any of the subdirectories, they can be accessed with the
Subfiles fileref without changing the FILENAME statement.

Example 3: Wildcards in Filenames When
Using Aggregate Syntax
You can also use wildcards in filenames, but not in directory names, when you use
aggregate syntax:

filename curdir ".";
data;
 infile curdir('wild*');
 input;
run;

In the example above, the period in the FILENAME statement refers to the current
directory.

See “Valid Character Substitutions in Pathnames” on page 66 for information about
character substitutions available in UNIX.

Example 4: Associating a Fileref with
Multiple Files
The following statement associates the fileref MyRef with all files that begin with
alphabetic characters. Files beginning with numbers or other characters such as the
period or tilde are excluded.

filename myref '[a-zA-Z]*.dat';

The following statement associates MyRef with any file beginning with Sales (in
either uppercase, lowercase, or mixed case) and a year between 2010 and 2019:

filename myref '[Ss][Aa][Ll][Ee][Ss]201[0-9].dat';

Specifying Pathnames in UNIX Environments 91

Assigning Filerefs to External Files or
Devices with the FILENAME Statement

Introduction to the FILENAME Statement
The most common way to assign a fileref to an external file or device is with the
FILENAME statement. There are several forms of the FILENAME statement,
depending on the type of device that you want to access. For more information, see
“FILENAME Statement: UNIX” on page 377.

Accessing DISK Files
The most common use of the FILENAME statement is to access DISK files. The
FILENAME syntax for a DISK file is the following:

FILENAME fileref <DISK> 'pathname' <options>;

The following FILENAME statement associates the fileref myfile with the external
file /users/mydir/myfile, which is stored on a disk device:

filename myfile disk '/users/mydir/myfile';

The following FILENAME statement assigns a fileref of prices to the
file /users/pat/cars. The FILE statement then refers to the file using the fileref:

filename prices '/users/pat/cars';
data current.list;
 file prices;
 ...PUT statements...
run;

For more information about using DISK files, see “Concatenating Filenames in UNIX
Environments” on page 94.

Note: If a filename has leading blanks, then blanks are trimmed.

Debugging Code with DUMMY Devices
You can substitute the DUMMY device type for any of the other device types. This
device type serves as a tool for debugging your SAS code without actually reading
or writing to the device. After debugging is complete, replace the DUMMY device

92 Chapter 4 / Using External Files and Devices

name with the proper device type, and your program will access the specified device
type.

Here is the FILENAME syntax for a DUMMY file:

FILENAME fileref DUMMY 'pathname' <options>;

Output to DUMMY devices is discarded.

Sending Output to PRINTER Devices
The PRINTER device type enables you to send output directly to a printer. Here is
the FILENAME syntax to direct a file to a PRINTER:

FILENAME fileref PRINTER '<printer> <printer-options>' <options>;

For example, this SAS program sends the output file to the BLDG3 printer:

filename myfile printer 'bldg3';

data test;
 file myfile;
 put 'This will appear in bldg3 .';
run;

For more information, see “Printing the Contents of a Window” on page 122 and
“Using the PRINTTO Procedure in UNIX Environments” on page 125.

Using Temporary Files (TEMP Device Type)
The TEMP device type associates a fileref with a temporary file stored in the same
directory as the Work library. (See “Work Library” on page 74.) Using the TEMP
device type enables you to create a file that lasts only as long as the SAS session.

Here is the FILENAME syntax for a TEMP file:

FILENAME fileref TEMP <options>;

For example, this FILENAME statement associates Tmp1 with a temporary file:

filename tmp1 temp;

Accessing TERMINAL Devices Directly
To access a terminal directly, use the TERMINAL device type. Here is the
FILENAME syntax to associate a file with a terminal:

FILENAME fileref TERMINAL <'terminal-pathname'> <options>;

The terminal-pathname must be a pathname of the special file associated with the
terminal. Check with your UNIX system administrator for information. Enclose the
name in quotation marks. If you omit the terminal pathname, the fileref is assigned
to your terminal.

Assigning Filerefs to External Files or Devices with the FILENAME Statement 93

For example, this FILENAME statement associates the fileref here with your
terminal:

filename here terminal;

The following FILENAME statement associates the fileref thatfile with another
terminal:

filename thatfile terminal '/dev/tty3';

Assigning Filerefs to Files on Other Systems (FTP,
SFTP, and SOCKET Access Types)

You can access files on other systems in your network by using the FTP, SFTP, and
SOCKET access methods. Here are the forms of the FILENAME statement:

FILENAME fileref FTP 'external-file' <ftp-options>;
FILENAME fileref SFTP 'external-file' <sftp-options>;
FILENAME fileref SOCKET 'external-file' <tcpip-options>;
FILENAME fileref SOCKET ':portno' SERVER <tcpip-options>;

These access methods are documented in SAS DATA Step Statements: Reference.
Under UNIX, the FTP access method supports an additional option:

MACH='machine'
identifies which entry in the .netrc file should be used to get the user name and
password. The .netrc file resides on the host on which the SAS program is
running. See the UNIX man page for more information about the .netrc file. You
cannot specify the MACH option together with the HOST option in the
FILENAME statement.

If you are transferring a file to UNIX from the z/OS operating environment and you
want to use either the S370V or S370VB format to access that file, then the file must
be of type RECFM=U and BLKSIZE=32760 before you transfer it.

CAUTION
When you use the FTP access method to create a remote file, the UNIX
permissions for that file are set to -rw-rw-rw-, which makes the file world-
readable and world-writable. See the UNIX man page for chmod for information about
changing file permissions.

Concatenating Filenames in UNIX
Environments

You can concatenate filenames in the FILENAME, %INCLUDE, and INFILE
statements. Concatenating filenames enables you to read those files sequentially.

94 Chapter 4 / Using External Files and Devices

FILENAME fileref ("pathname-1" ... "pathname-n");
%INCLUDE '("filename-1" ... "filename-n")';
%INCLUDE "('filename-1' ... 'filename-n')";
INFILE '("filename-1" ... "filename-n")';
INFILE "('filename-1' ... 'filename-n')";

You can enclose the pathnames in single or double quotation marks and separate
them with commas or blank spaces. You can use the characters shown in Table 3.3
on page 66 and the wildcards described in “Using Wildcards in Pathnames (Input
Only)” on page 90 to specify the pathnames.

Assigning a Fileref to a Directory (Using
Aggregate Syntax)

Introduction to Aggregate Syntax

Aggregate Syntax
Aggregate syntax enables you to assign a fileref to a directory and then work with
any file in that directory by specifying its filename in parentheses after the fileref.

FILENAME fileref directory-name;

Aggregate syntax is especially useful when you have to refer to several files in one
directory.

Example 1: Referring to a File Using
Aggregate Syntax
To refer to a file in the directory, specify the fileref followed by the individual filename
in parentheses. For example, you can refer to the file cars.dat in the
directory /users/pat as shown in this example:

filename prices '/users/pat';
data current.list;
 file prices(cars);
 ...other SAS statements...
run;

Assigning a Fileref to a Directory (Using Aggregate Syntax) 95

Example 2: Using Aggregate Syntax with
Filerefs Defined by Environment Variables
You can also use aggregate syntax with filerefs that have been defined using
environment variables. (See “Using Environment Variables to Assign Filerefs in
UNIX Environments” on page 97.) For example:

x setenv PRICES /users/pat;
data current.list;
 file prices(cars);
 ...other SAS statements...
run;

Assigning a Fileref to Several Directories
In the FILENAME statement, you can concatenate directory names and use the
fileref to refer to any file within those directories:

FILENAME fileref ("directory-1" ... "directory-n");

When you concatenate directory names, you can use aggregate syntax to refer to a
file in one of the directories. For example, assume that the Report.sas file resides in
the directory associated with the MYPROGS environment variable. When SAS
executes the following code, it searches for Report.sas in the pathnames that are
specified in the FILENAME statement and it executes the program.

filename progs ("$MYPROGS" "/users/mkt/progs");
%inc progs(report);

SAS searches the pathnames in the order specified in the FILENAME statement
until one of these situations occurs:

n it finds the first file with the specified name. Even if you use wildcards (see
“Using Wildcards in Pathnames (Input Only)” on page 90) in the filename, SAS
matches only one file.

n it encounters a filename in the list of pathnames that you specified in the
FILENAME statement.

96 Chapter 4 / Using External Files and Devices

Using Environment Variables to Assign
Filerefs in UNIX Environments

Requirements for Variable Names
An environment variable can also be used as a fileref to refer to DISK files. The
variable name must be in all uppercase characters, and the variable value must be
the full pathname of the external file. That is, the filename must begin with a slash.

Note: If a variable and a fileref have the same name but refer to different files, SAS
uses the fileref. For example, the %INCLUDE statement below refers to file /users/
myid/this_one.

filename ABC '/users/myid/this_one';
x setenv ABC /users/myid/that_one;
%include ABC;

Reading a Data File
If you want to read the data file /users/myid/educ.dat, but you want to refer to it
with the INED environment variable, you can define the variable at two times:

n Before you invoke SAS, see “Defining Environment Variables in UNIX
Environments” on page 309. For example, in the Korn shell, you use the
following:

export INED=/users/myid/educ.dat

n After you invoke SAS by using the X statement (see “Executing Operating
System Commands from Your SAS Session” on page 18) and the SAS setenv
command:

x setenv INED /users/myid/educ.dat;

After INED is associated with the file /users/myid/educ.dat, you can use ined as
a fileref to refer to the file in the INFILE statement:

infile ined;

Using Environment Variables to Assign Filerefs in UNIX Environments 97

Writing to an External File
The same method applies if you want to write to an external file. For example, you
can define OUTFILE before you invoke SAS:

OUTFILE=/users/myid/scores.dat
export OUTFILE

Then, use the environment variable name as a fileref to refer to the file:

file OUTFILE;

Filerefs Assigned by SAS in UNIX
Environments

Filerefs for Standard Input, Standard Output, and
Standard Error

Often a command's arguments or options tell the command what to use for input
and output. If they do not, the shell supplies you with three standard files: one for
input (standard input), one for output (standard output), and one for error messages
(standard error). By default, these files are all associated with your terminal:
standard input with your keyboard, and both standard output and standard error with
your terminal's display. When you invoke SAS, it assigns a fileref to each file that it
opens, including the three standard files. SAS assigns the filerefs Stdin, Stdout, and
Stderr to standard input, standard output, and standard error, respectively.

File Descriptors

What Is a File Descriptor?
Each file has an assigned internal file descriptor. By default, 0 is the file descriptor
for standard input, 1 is the file descriptor for standard output, and 2 is the file
descriptor for standard error. As other files are opened, they get other file
descriptors. In the Bourne shell and in the Korn shell, you can specify that data be
written to or be read from a file using the file descriptor. (See below.)

98 Chapter 4 / Using External Files and Devices

File Descriptors in the Bourne and Korn
Shells
If you are using the Bourne shell or the Korn shell, SAS assigns filerefs of the
following form to files that have a file descriptor larger than 2.

FILDESnumber

number is a two-digit representation of the file descriptor. You can use these filerefs
in your SAS applications.

For example, if you invoke SAS with the following command, then the operating
environment opens the file sales_data and assigns file descriptor 4 to it:

sas salespgm 4< sales_data

SAS assigns the fileref FILDES04 to the file and executes the application salespgm.
When the application reads input from FILDES04, it reads the file sales_data. Using
file descriptors as filerefs enables you to use the same application to process data
from different files without changing the application to refer to each file. In the
command that you use to invoke the application, you assign the appropriate file
descriptor to the file to be processed.

Reserved Filerefs in UNIX Environments
The following filerefs are reserved.

DATALINES fileref in the INFILE statement
specifies that input data immediately follow a DATALINES statement. You need
to use INFILE DATALINES only when you want to specify options in the INFILE
statement to read instream data.

LOG fileref in the FILE statement
specifies that output lines produced by PUT statements be written to the SAS
log. LOG is the default destination for output lines.

PRINT fileref in the FILE statement
specifies that output lines produced by PUT statements be written to the same
print file as output produced by SAS procedures.

Reserved Filerefs in UNIX Environments 99

Sharing External Files in a UNIX
Environment

Sharing External Files
If more than one user has simultaneous Write access to an external file, or if a
single user has Write access to the same file from different SAS sessions, the
results of sharing the file can be unpredictable. To remedy this situation, you can
use a statement option or a system option to restrict Write access to one user, while
allowing multiple users Read access. For more information, see “Sharing SAS Files”
on page 52.

Options to Use for File Locking: External Files
File locking applies to all files that are opened. You can turn off file locking for
external files in the following ways:

n Use the LOCKINTERNAL option in the FILENAME statement.

n Use the FILELOCKS system option.

File Locking for External Files: The
LOCKINTERNAL Statement Option

You can control file locking for external files by using the LOCKINTERNAL option in
the FILENAME statement. The AUTO option value locks a file exclusively for Write
access, or non-exclusively for Read access. For example, if a file is opened for
update or output, then all other access from internal processes are blocked. If a file
is opened for input, then other users can also open the file for input. In this case,
opening the file for update and output is blocked. The SHARED option value allows
for all of the behavior of the AUTO option, except that the file can be shared by one
writer and multiple readers. The external file that is associated with the fileref is the
file that is locked. By default, multiple users can simultaneously read an external file.
For more information, see “FILENAME Statement: UNIX” on page 377.

100 Chapter 4 / Using External Files and Devices

File Locking for External Files: The FILELOCKS
System Option

You can control file locking for external files (as well as for SAS files) by using the
FILELOCKS system option. This option enables you to apply a behavior globally to
individual files or directories. Using FILELOCKS restricts writer access to one user.
With file locking turned on, multiple SAS sessions are able to simultaneously read
the same file. You can use FILELOCKS at start-up, in the OPTIONS statement, or in
the command line. You can specify multiple instances of the FILELOCKS option.
Each instance is added to an internal table of paths and settings. For more
information, see “FILELOCKS System Option: UNIX” on page 431.

Reading from and Writing to UNIX
Commands (PIPE)

What Are Pipes?
Pipes enable your SAS application to receive input from any UNIX command that
writes to standard output and to route output to any UNIX command that reads from
standard input. In UNIX commands, the pipe is represented by a vertical bar (|). For
example, to find the number of files in your directory, you could redirect the output of
the ls command through a pipe to the wc (word count) command:

ls | wc -w

Syntax of the FILENAME Statement to Assign a
Fileref to a Pipe

Under UNIX, you can use the FILENAME statement to assign filerefs not only to
external files and I/O devices, but also to a pipe. Here is the syntax of the
FILENAME statement:

FILENAME fileref PIPE 'UNIX-command' <options>;

fileref
is the name by which you reference the pipe from SAS.

PIPE
identifies the device-type as a UNIX pipe.

Reading from and Writing to UNIX Commands (PIPE) 101

'UNIX-command'
is the name of a UNIX command, executable program, or shell script to which
you want to route output or from which you want to read input. The commands
must be enclosed in either double or single quotation marks.

options
control how the external file is processed. For an explanation of these options,
see “FILENAME Statement: UNIX” on page 377.

Whether you are using the command as input or output depends on whether you
use the fileref in a reading or writing operation. For example, if the fileref is used in
an INFILE statement, then SAS assumes that the input comes from a UNIX
command. If the fileref is used in a FILE statement, then SAS assumes that the
output goes to a UNIX command.

Using the Fileref for Reading

Specifying a Fileref for Reading
When the fileref is used for reading, the specified UNIX command executes, and
any output sent to its standard output or standard error is read through the fileref. In
this case, the standard input of the command is connected to /dev/null.

Example 1: Sending the Output of the
Process Command to a SAS DATA Step
The following SAS program uses the PIPE device-type keyword to send the output
of the ps (process) command to a SAS DATA step. The resulting SAS data set
contains data about every process currently running SAS:

filename ps_list pipe "ps -e|grep 'sas'";
data sasjobs;
 infile ps_list;
 length process $ 80;
 input process $ char80.;
run;
proc print data=sasjobs;
run;

The ps -e command produces a listing of all active processes in the system,
including the name of the command that started the task. In BSD-based UNIX
systems, you use the ps -ax command.

The operating environment uses pipes to send the output from ps to the grep
command, which searches for every occurrence of the string 'sas'. The FILENAME
statement connects the output of the grep command to the fileref ps_list. The
DATA step then creates a data set named sasjobs from the INFILE statement that
points to the input source. The INPUT statement reads the first 80 characters on
each input line.

102 Chapter 4 / Using External Files and Devices

Example 2: Using the Stdin Fileref to Read
Input
In the next example, the Stdin fileref is used to read input through a pipe into the
SAS command, which, in turn, executes the SAS program. By placing the piping
operation outside the SAS program, the program becomes more general. The
program in the previous example has been changed and stored in file ps.sas:

data sasjobs;
 infile stdin;
 length process $ 80;
 input process $ char80.;
run;
proc print data=sasjobs;
run;

To run the program, use pipes to send the output of ps to grep and from grep into
the SAS command:

ps -e|grep 'sas'|sas ps.sas &

The output is stored in ps.lst, and the log is stored in ps.log, as described in “The
Default Routings for the SAS Log and Procedure Output in UNIX Environments” on
page 115.

Using the Fileref for Writing

Specifying a Fileref for Writing
When the fileref is used for writing, the output from SAS is read in by the specified
UNIX command, which then executes.

Example 1: Sending Mail Using Pipes
In this example, any data sent to the mail fileref are piped to the mail command
and sent to user PAT:

filename mail pipe 'mail pat';

Reading from and Writing to UNIX Commands (PIPE) 103

Example 2: Starting a Remote Shell and
Printing Output
Consider this FILENAME statement:

filename letterq pipe 'remsh alpha lp -dbldga3';

Any data sent to the letterq fileref is passed to the UNIX command, which starts a
remote shell on the computer named Alpha. Note that the form of the command that
starts a remote shell varies among the various UNIX operating systems. The shell
then prints the letterq output on the printer identified by the destination BLDGA3.
Any messages that are produced by the lp command are sent to the SAS log.

Sending Electronic Mail Using the
FILENAME Statement (EMAIL)

Advantages of Sending Electronic Mail from within
SAS

SAS lets you send electronic mail using SAS functions in a DATA step or in SCL.
Sending email from within SAS enables you to do the following:

n Use the logic of the DATA step or SCL to subset email distribution based on a
large data set of email addresses.

n Send email automatically upon completion of a SAS program that you submitted
for batch processing.

n Direct output through email based on the results of processing.

n Send email messages from within a SAS/AF frame application, customizing the
user interface.

Initializing Electronic Mail
By default, SAS uses SMTP (Simple Mail Transfer Protocol) to send email. SMTP,
unlike some external scripts, supports attachments. This default is specified by the
EMAILSYS system option. For information about how to change the email protocol,
see “EMAILSYS System Option: UNIX” on page 429.

104 Chapter 4 / Using External Files and Devices

Before you can send email from within SAS, your system administrator might need
to set the EMAILHOST system option to point to the SMTP server. For more
information, see “EMAILHOST= System Option” in SAS System Options:
Reference.

Components of the DATA Step or SCL Code Used
to Send Email

In general, a DATA step or SCL code that sends electronic mail has the following
components:

n a FILENAME statement with the EMAIL device-type keyword

n options specified in the FILENAME or FILE statements indicating the email
recipients, subject, and any attached files

n PUT statements that contain the body of the message

n PUT statements that contain special email directives (of the form !EM_directive!)
that can override the email attributes (TO, CC, BCC, SUBJECT, ATTACH) or
perform actions (such as SEND, ABORT, and start a NEWMSG)

Syntax of the FILENAME Statement for Electronic
Mail

To send electronic mail from a DATA step or SCL, issue a FILENAME statement of
the following form:

FILENAME fileref EMAIL 'address' <email-options>;

The FILENAME statement accepts the following options:

fileref
is a valid fileref.

address
is the destination email address of the user to which you want to send email. You
must specify an address here, but you can override its value with the TO email
option.

email-options
can be any of the following:

TO=to-address
specifies the primary recipients of the electronic mail. If an address contains
more than one word, enclose it in quotation marks. To specify more than one
address, enclose the group of addresses in parentheses, enclose each
address in quotation marks, and separate each address with a space. For
example, to='joe@someplace.org' and
to=("joe@smplc.org" "jane@diffplc.org") are valid TO values.

Sending Electronic Mail Using the FILENAME Statement (EMAIL) 105

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1v9dr6zep9p9en1prhl6tdy3igx.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1v9dr6zep9p9en1prhl6tdy3igx.htm&locale=en

Note: You can send an email without specifying a recipient in the TO= option
as long as you specify a recipient in either the CC= or BCC= option.

CC=cc-address
specifies the recipients that you want to receive a copy of the electronic mail.
If an address contains more than one word, enclose it in quotation marks. To
specify more than one address, enclose the group of addresses in
parentheses, enclose each address in quotation marks, and separate each
address with a space. For example, cc='joe@someplace.org' and
cc=("joe@smplc.org" "jane@diffplc.org") are valid CC values.

BCC=bcc-address
specifies the recipients that you want to receive a blind copy of the electronic
mail. Individuals listed in the bcc field receive a copy of the email. The BCC
field does not appear in the email header, so that these email addresses
cannot be viewed by other recipients.

If a BCC address contains more than one word, enclose it in quotation marks.
To specify more than one address, enclose the group of addresses in
parentheses, enclose each address in quotation marks, and separate each
address with a space. For example, bcc='joe@someplace.org' and
bcc=("joe@smplc.org" "jane@diffplc.org") are valid BCC values.

SUBJECT='subject'
specifies the subject of the message. If the subject text is longer than one
word (that is, it contains at least one blank space), you must enclose it in
quotation marks. You also must use quotation marks if the subject contains
any special characters. For example, subject=Sales and subject='June
Report' are valid subjects. Any subject not enclosed in quotation marks is
converted to uppercase.

ATTACH='filename.ext' | ATTACH= ('filename.ext' <attachment-options>)
specifies the physical names of the files to be attached to the message and
any options to modify attachment specifications. Enclose filename.ext in
quotation marks. To attach more than one file, enclose the group of filenames
in parentheses. For example, attach='/u/userid/opinion.txt' and
attach=("june11.txt" "july11.txt") are valid file attachments.

By default, an SMTP email attachment has the same value as the default
value of LRECL, which is 32K. To send a longer attachment, you can specify
the LRECL= and RECFM= options from the FILENAME statement as
attachment-options. For more information about the LRECL= and RECFM=
options, see “FILENAME Statement: UNIX” on page 377.

For more information about the options that are valid when you are using SMTP, see
“FILENAME Statement: EMAIL (SMTP) Access Method” in SAS Global Statements:
Reference.

Specifying Email Options in the FILE Statement
You can also specify the email-options in the FILE statement inside the DATA step.
Options that you specify in the FILE statement override any corresponding options
that you specified in the FILENAME statement.

106 Chapter 4 / Using External Files and Devices

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0ig2krarrz6vtn1aw9zzvtez4qo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0ig2krarrz6vtn1aw9zzvtez4qo.htm&locale=en

Defining the Body of the Message
In your DATA step, after using the FILE statement to define your email fileref as the
output destination, use PUT statements to define the body of the message.

Specifying Email Directives in the PUT Statement
You can also use PUT statements to specify email directives that change the
attributes of your electronic message or perform actions with it. Specify only one
directive in each PUT statement; each PUT statement can contain only the text
associated with the directive that it specifies.

Here are the directives that change the attributes of your message:

!EM_TO! addresses
Replace the current primary recipient addresses with addresses. In the PUT
statement, specify addresses without single quotation marks.

!EM_CC! addresses
Replace the current copied recipient addresses with addresses. In the PUT
statement, specify addresses without single quotation marks.

!EM_BCC! addresses
Replace the current blind copied recipient addresses with addresses. In the PUT
statement, specify addresses without single quotation marks.

!EM_SUBJECT! subject
Replace the current subject of the message with subject.

!EM_ATTACH! pathname
Replace the names of any attached files with pathname.

Here are the directives that perform actions:

!EM_SEND!
Sends the message with the current attributes. By default, SAS sends a
message when the fileref is closed. The fileref closes when the next FILE
statement is encountered or the DATA step ends. If you use this directive, SAS
sends the message when it encounters the directive, and again at the end of the
DATA step.

!EM_ABORT!
Aborts the current message. You can use this directive to stop SAS from
automatically sending the message at the end of the DATA step.

!EM_NEWMSG!
Clears all attributes of the current message, including TO, CC, SUBJECT,
ATTACH, and the message body.

Sending Electronic Mail Using the FILENAME Statement (EMAIL) 107

Example: Sending Email from the DATA Step
Suppose that you want to share a copy of your config.sas file with your coworker
Jim, whose user ID is JBrown. If your email program handles alias names and
attachments, you could send it by submitting the following DATA step:

filename mymail email 'JBrown'
 subject='My CONFIG.SAS file'
 attach='config.sas';

data _null_;
 file mymail;
 put 'Jim,';
 put 'This is my CONFIG.SAS file.';
 put 'I think you might like the
 new options I added.';
run;

The following example sends a message and two attached files to multiple
recipients. It specifies the email options in the FILE statement instead of the
FILENAME statement:

filename outbox email 'ron@acme.com';

data _null_;
 file outbox

 /* Overrides value in filename statement */
 to=('ron@acme.com' 'lisa@acme.com')
 cc=('margaret@yourcomp.com'
 'lenny@laverne.abc.com')
 subject='My SAS output'
 attach=('results.out' 'code.sas')
 ;
 put 'Folks,';
 put 'Attached is my output from the
 SAS program I ran last night.';
 put 'It worked well!';
run;

You can use conditional logic in the DATA step to send multiple messages and
control which recipients get which message. For example, suppose you want to
send customized reports to members of two different departments. If your email
program handles alias names and attachments, your DATA step might look like the
following:

filename reports email 'Jim';

data _null_;
 file reports;
 infile cards eof=lastobs;
 length name dept $ 21;
 input name dept;

 /* Assign the TO attribute */

108 Chapter 4 / Using External Files and Devices

 put '!EM_TO!' name;

 /* Assign the SUBJECT attribute */
 put '!EM_SUBJECT! Report for ' dept;

 put name ',';
 put 'Here is the latest report for ' dept '.';

 /* ATTACH the appropriate report */
 if dept='marketing' then
 put '!EM_ATTACH! mktrept.txt';
 else

 put '!EM_ATTACH! devrept.txt';

 /* Send the message */
 put '!EM_SEND!';

 /* Clear the message attributes */
 put '!EM_NEWMSG!';

 return;

 /* Abort the message before the */
 /* RUN statement causes it to */
 /* be sent again. */
lastobs: put '!EM_ABORT!';

 datalines;
Susan marketing
Jim marketing
Rita development
Herb development
;
run;

The resulting email message and its attachments are dependent on the department
to which the recipient belongs.

Note: You must use the !EM_NEWMSG! directive to clear the message attributes
between recipients. The !EM_ABORT! directive prevents the message from being
automatically sent at the end of the DATA step.

Example: Sending Email Using SCL Code
The following example is the SCL code behind a frame entry design for email. The
frame entry includes several text entry fields that let the user enter information:

mailto
the user ID to send mail to

copyto
the user ID to copy (CC) the mail to

Sending Electronic Mail Using the FILENAME Statement (EMAIL) 109

attach
the name of a file to attach

subject
the subject of the mail

line1
the text of the message

The frame entry also contains a button named SEND that causes this SCL code
(marked by the send: label) to execute.

send:

 /* set up a fileref */
rc = filename('mailit','userid','email');

 /* if the fileref was successfully set up
 open the file to write to */
if rc = 0 then do;
 fid = fopen('mailit','o');
 if fid > 0 then do;

 /* fput statements are used to
 implement writing the
 mail and the components such as
 subject, who to mail to, and so on. */
 fputrc1 = fput(fid,line1);
 rc = fwrite(fid);

 fputrc2 = fput(fid,'!EM_TO! '||mailto);
 rc = fwrite(fid);
 fputrc3 = fput(fid,'!EM_CC! '||copyto);
 rc = fwrite(fid);

 fputrc4 = fput(fid,'!EM_ATTACH! '||attach);
 rc = fwrite(fid);
 fputrc5 = fput(fid,'!EM_SUBJECT! '||subject);
 rc = fwrite(fid);

 closerc = fclose(fid);
 end;
 end;
return;

cancel:
 call execcmd('end');
return;

Running External Lua Files
You can run external scripts written in the Lua programming language from the SAS
command line. You can run both uncompiled Lua scripts (*.lua files) or precompiled

110 Chapter 4 / Using External Files and Devices

Lua scripts (*.luc files). Support for running external Lua files was added in SAS
9.4M3.

To run the files, use the -SYSIN option on the SAS command line. For example, to
run the file abc.lua, submit this command:

sas -sysin abc.lua

You can also run external Lua scripts (*.lua or *.luc files) using the %INCLUDE
statement in a SAS session. For example, to run the Lua script abc.luc, enter the
following line in your SAS program:

%include "./tmp/abc.luc";

Running External Lua Files 111

112 Chapter 4 / Using External Files and Devices

5
Printing and Routing Output

Overview of Printing Output in UNIX Environments . 114

Previewing Output in UNIX Environments . 114
Previewing Output Using Universal Printing . 114
Previewing Output from within SAS/AF Applications . 114

The Default Routings for the SAS Log and Procedure Output in
UNIX Environments . 115

Changing the Default Routings in UNIX Environments . 116
Techniques for Routing Output . 116
Determining Which Technique to Use When Changing the Routing 116

Routing SAS Logging Facility Messages to SYSLOGD . 118

Using the Print Dialog Box in UNIX Environments . 119
Printing from Text Windows . 119
Printing from GRAPH Windows . 120

Using Commands to Print in UNIX Environments . 121
Differences between the PRTFILE, PRINT, and FILE Commands 121
Sending Output to a UNIX Command . 122
Specifying the Print File . 122
Printing the Contents of a Window . 122
Using the FILE Command . 124

Using the PRINTTO Procedure in UNIX Environments . 125
Important Note about the PRINTTO Procedure . 125
Using the LOG= and PRINT= Options . 125
Routing Output to a Universal Printer . 125
Routing Output to a Printer . 126
Piping Output to a UNIX Command . 126
Routing Output to a Terminal . 126

Using SAS System Options to Route Output . 127
Changing the Output Destination Using the LOG, PRINT, ALTLOG,

and ALTPRINT System Options . 127

Printing Large Files with the PIPE Device Type in UNIX Environments 128

Changing the Default Print Destination in UNIX Environments 128

Changing the Default Print Command in UNIX Environments 129

113

Controlling the Content and Appearance of Output in UNIX Environments 129
Overview of Controlling the Content and Appearance of Output 129
SAS Log Options . 130
Procedure Output Options . 130

Overview of Printing Output in UNIX
Environments

When you print text or graphics, SAS needs to know where the output should go,
how it should be written, and how the output should look. Universal Printing is the
default printing mechanism in UNIX. Universal Printing supports PostScript, PCL,
GIF, PNG, SVG, EMF, and PDF files in all environments. For more information about
Universal Printing, see “Universal Printing” in SAS Programmer’s Guide: Essentials.

If you are printing graphics, the output is controlled by native SAS/GRAPH drivers.
See the online Help for SAS/GRAPH for information about native SAS/GRAPH
drivers.

Previewing Output in UNIX Environments

Previewing Output Using Universal Printing
With Universal Printing, you can preview your output before you send it to a printer,
plotter, or external file. To preview your output, you first need to define a previewer
for your system. For more information, see “Universal Printing” in SAS
Programmer’s Guide: Essentials.

Previewing Output from within SAS/AF Applications
To preview output from within a SAS/AF application, use the DMPRTMODE and
DMPRTPREVIEW commands to turn on preview mode, print the output, open the
Print Preview dialog box, and then turn preview mode off. For example, the following
code prints the GRAPH1 object using the host drivers and displays it in the Preview
dialog box:

/* Turn on preview mode. */
CALL EXECCMDI ("DMPRTMODE PREVIEW");

/* Print the graph */
GRAPH1._PRINT_();

114 Chapter 5 / Printing and Routing Output

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1dux3w63ku2wdn16vw3deeg9tqn.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1dux3w63ku2wdn16vw3deeg9tqn.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1dux3w63ku2wdn16vw3deeg9tqn.htm&locale=en

/* Open the Preview dialog box */
CALL EXECCMDI ("DMPRTPREVIEW");

/* Turn off preview mode */
CALL EXECCMDI ("DMPRTMODE NORMAL");

The Default Routings for the SAS Log
and Procedure Output in UNIX
Environments

For each SAS job or session, SAS automatically creates two types of output:

SAS log
contains information about the processing of SAS statements. As each program
step executes, notes are written to the SAS log along with any applicable error or
warning messages.

SAS output
is also called the procedure output file or print file. Whenever a SAS program
executes a PROC step or a DATA step that produces printed output, SAS sends
the output to the SAS output file. The default destination for SAS output is
HTML.

The following table shows the default routings of the SAS log and output files.

Table 5.1 Default Routings of the SAS Log and Output Files

Processing Mode SAS Log File SAS Output File

batch filename.log filename.lst

windowing environment Log window HTML

interactive line terminal terminal

By default, both the log file and the output file are written to your current directory.
Your system administrator might have changed these default routings.

The Default Routings for the SAS Log and Procedure Output in UNIX Environments
115

Changing the Default Routings in UNIX
Environments

Techniques for Routing Output
Here are the primary methods for routing your output:

n Using the default HTML destination.

n Using the Print dialog box. The Print dialog box is available when you are using
the SAS windowing environment.

n Issuing windowing environment commands. The PRTFILE, PRINT, and FILE
commands can be issued from any command line. You can use these
commands to send output to external files or to other devices defined with the
FILENAME statement.

n Using the PRINTTO procedure. You can use the PRINTTO procedure in any
mode. Using the FILENAME statement with the PRINTTO procedure is the most
flexible way of routing your output.

n Using SAS system options, such as PRINT, LOG, ALTPRINT, or ALTLOG, to
specify alternate destinations.

Determining Which Technique to Use When
Changing the Routing

Use the following table to help you decide which method you should choose to
change the routing.

Table 5.2 Decision Table: Changing the Default Destination

Output destination
for your SAS log or
procedure output

Processing
mode Method See

a printer any mode FILENAME statement
(UPRINTER or PRINTER device
type) and PRINTTO procedure

“Using the PRINTTO
Procedure in UNIX
Environments” on page 125

windowing
environment

DMPRINT command “Using the Print Dialog Box in
UNIX Environments” on page
119

116 Chapter 5 / Printing and Routing Output

Output destination
for your SAS log or
procedure output

Processing
mode Method See

Print dialog box “Using the Print Dialog Box in
UNIX Environments” on page
119

FILENAME statement and
PRTFILE, PRINT, and FILE
commands

“Printing the Contents of a
Window” on page 122

an external file any mode PRINTTO procedure and
FILENAME statement

“Using the PRINTTO
Procedure in UNIX
Environments” on page 125

windowing
environment

Print dialog box “Using the Print Dialog Box in
UNIX Environments” on page
119

FILENAME statement and
PRTFILE, PRINT, and FILE
commands

“Printing the Contents of a
Window” on page 122

batch LOG and PRINT system options “Using SAS System Options
to Route Output” on page
127

a UNIX command
(pipe)

any mode FILENAME statement and
PRINTTO procedure

“Using the PRINTTO
Procedure in UNIX
Environments” on page 125

windowing
environment

FILENAME statement and
PRTFILE and PRINT commands

“Printing the Contents of a
Window” on page 122

its usual location
and to an external
file

any mode ALTLOG and ALTPRINT system
options

“Using SAS System Options
to Route Output” on page
127

windowing
environment

FILE command “Using the FILE Command ”
on page 124

Print dialog box “Using the Print Dialog Box in
UNIX Environments” on page
119

a terminal batch FILENAME statement and
PRINTTO procedure

“Routing Output to a
Terminal ” on page 126

Changing the Default Routings in UNIX Environments 117

Routing SAS Logging Facility Messages
to SYSLOGD

The SAS logging facility enables the categorization and collection of log event
messages, and then writes them to a variety of output devices. The logging facility
supports problem diagnosis and resolution, performance and capacity management,
and auditing and regulatory compliance. The following features are provided:

n Log events are categorized using a hierarchical naming system that enables you
to configure logging at a broad or a fine-grained level.

n Log events can be directed to multiple output destinations, including files,
operating system facilities, databases, and client applications. For each output
destination, you can specify these items:

o the categories and levels of log events to report

o the message layout, including the types of data to be included, the order of
the data, and the format of the data

o filters based on criteria such as diagnostic levels and message content

n Logging diagnostic levels can be adjusted dynamically without starting and
stopping processes.

n Performance-related log events can be generated for processing by an
Application Response Measurement (ARM) 4.0 server.

The logging facility is used by most SAS server processes. You can also use the
logging facility within SAS programs.

In the UNIX operating environment, logging facility messages can be written to
SYSLOGD.

For information about using the logging facility in the UNIX operating environment,
see the SAS Logging: Configuration and Programming Reference.

118 Chapter 5 / Printing and Routing Output

http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Using the Print Dialog Box in UNIX
Environments

Printing from Text Windows

Open the Print Dialog Box from a Text
Window
To print part or all of the contents of a window:

1 Click in the window to make it the active window. If you want to mark and print
only selected lines of text, mark the text before you open the Print dialog box.

2 Issue the DMPRINT command or select File ð Print to open the Print dialog
box.

Figure 5.1 Print Dialog Box

Using the Print Dialog Box in UNIX Environments 119

Default Printing Mode
In UNIX, the default printing mode is Universal Printing. For more information about
how to use Universal Printing, click Help on the Print dialog box.

Troubleshooting Print Server Errors
After clicking OK, if SAS displays a clock icon for a long time and you are sending
output to a network printer, your printer server might be down. If so, you eventually
see a message in the shell where you invoked your SAS session that indicates that
the server is down.

Printing from GRAPH Windows

Open the Print Dialog Box from the
GRAPH Window
With Universal Printing, you can use the Print dialog box to print the contents of a
SAS/GRAPH window. Click in the window to make it the active window, and then
issue the DMPRINT command or select File ð Print to open the Print dialog box.

Figure 5.2 Print Dialog Box for Graphs

120 Chapter 5 / Printing and Routing Output

Note: In most cases, fonts set through the Print dialog box have no effect when you
print from GRAPH windows. However, some SAS/GRAPH drivers use Universal
Printing and can be affected by the fonts set in the dialog box. Make sure that you
specify the correct options in a GOPTIONS statement.

Specifics for SAS/GRAPH Drivers
To print output using a SAS/GRAPH driver, select Use SAS/GRAPH Drivers. Select
the down arrow beside the Driver field to display the available drivers. Make sure
that your printer destination has been set inside the device using the GDEVICE
procedure or the GOPTIONS statement. For complete information about printing
from GRAPH windows, see SAS/GRAPH: Reference and the online Help for
SAS/GRAPH.

Troubleshooting Print Server Errors
After clicking OK, if SAS displays a clock icon for a long time and you are sending
output to a network printer, your printer server might be down. If so, you eventually
see a message in the shell where you invoked your SAS session that indicates that
the server is down.

Using Commands to Print in UNIX
Environments

Differences between the PRTFILE, PRINT, and
FILE Commands

In the SAS windowing environment, you can use the PRTFILE, PRINT, and FILE
commands to send the contents of the active window to an output device.

The following table lists the results of each of these commands.

Table 5.3 Routing Output Commands

Command Action Performed

PRTFILE specifies the filename or fileref for your output.

Using Commands to Print in UNIX Environments 121

Command Action Performed

FILE sends the contents of the active window to the filename or fileref that
you specify.

PRINT sends the contents of the active window either:

n to your default printer when issued from the command line of the
window.

n to the location specified with the PRTFILE command.

Sending Output to a UNIX Command
If you want to send your output to a UNIX command, you can use the FILENAME
statement. The FILENAME statement enables you to create filerefs that point to
printers, plotters, or external files or filerefs that pipe to a UNIX command. For more
information, see “FILENAME Statement: UNIX” on page 377.

Specifying the Print File
When you issue the PRINT command, SAS sends your output to your default
printer, unless you specify a print file. You can specify a print file by entering the
PRTFILE command (for example, PRTFILE file-spec CLEAR | APPEND |
REPLACE). The file-spec argument can be either a fileref or a filename.

If you are using forms printing, and you select File ð Print, a window appears that
enables you to select file options. When you select Print to File, the Save As
window appears. Enter the location to which you want your file saved. This option is
available only when Universal Printing is turned off.

Printing the Contents of a Window

Using PRTFILE and PRINT with a Fileref
You can use the PRTFILE command, followed by the PRINT command, to print the
contents of windows. PRTFILE establishes the destination, and PRINT sends the
contents of the window to that destination. If you do not specify a destination with
the PRTFILE command, PRINT automatically sends the window contents to your
default printer.

122 Chapter 5 / Printing and Routing Output

Steps for Sending Output Directly to a
Printer
If you want to send output directly to a printer, you must first submit the FILENAME
statement to assign a fileref to the PRINTER or PIPE device. For example, to print
the contents of your Output window, complete the steps in the following table.

Table 5.4 Printing the Contents of Your Output Window

Step Action Example

1 Submit a FILENAME statement or
FILENAME function to associate a
fileref with a system printer (PRINTER
device type) or a UNIX command
(PIPE device type). Enclose the printer
name or UNIX command in either
single or double quotation marks.

filename myrpt printer 'bldga2';

or
filename ascout pipe 'lp -dmyljet';

For more information, see
“Examples of FILENAME
Statements Using PRINTER and
PIPE ” on page 124.

2 Issue the PRTFILE command as
described in “Specifying the Print File”
on page 122 . Specify the fileref from
your FILENAME statement or
FILENAME function.

prtfile myrpt

3 Issue the PRINT command from the
command line of the windows whose
contents you want to print. If you are
sending output to a system printer or if
you are using forms-based printing,
then you can print the contents of
more than one window.

4 Enter A in the dialog box that warns
you that the destination file already
exists. The A value tells SAS to
append the window contents to the
destination file.

5 Submit a FILENAME statement or
FILENAME function to clear
(deassign) the fileref.

filename myrpt clear;

To clear the print file setting, issue the PRTFILE CLEAR command.

Using Commands to Print in UNIX Environments 123

Examples of FILENAME Statements Using
PRINTER and PIPE
The following statement associates MyRpt with the system printer named BldgA2
and specifies two copies of every printout:

filename myrpt printer 'bldga2 -n2';

(See the documentation for your print command for information about other options
that you can specify.)

The following statement enables you to print output using the lp command on the
printer named Myljet:

filename ascout pipe 'lp -dmyljet';

The following statement sends output to the lp command and redirects any error
messages produced by this command to the LpError file in your home directory:

filename myrpt pipe 'lp 2>$HOME/lperror';

Note: Redirecting standard error is allowed only in the Bourne and Korn shells.

If you frequently use the same print command and destination, you can add the
appropriate FILENAME statement to your autoexec file. For more information, see
“Customizing Your SAS Session By Using System Options” on page 22.

Using the FILE Command
You can use the FILE command to copy the contents of many different windows to
external files. Issue the FILE command on the command line of the window whose
contents you want to copy. For example, to copy the contents of the Log window
to /u/myid/log/app1, issue the following command on the command line of the Log
window:

file '/u/myid/log/app1'

If the file does not exist, SAS creates it. If the file already exists, a dialog box asks
you whether you want to replace it or to append data to the existing data.

If you have already associated a fileref with your external file, you can use the fileref
instead of the filename:

file myref

If you use the FILE command to save your output, carriage-control information is not
saved (that is, page breaks are removed from the output). You might want to use the
PRINT command with the FILE option instead:

PRINT FILE=fileref | 'pathname'

124 Chapter 5 / Printing and Routing Output

Using the PRINTTO Procedure in UNIX
Environments

Important Note about the PRINTTO Procedure
Anytime you use PROC PRINTTO to route output, you must close the output device
before PROC PRINTTO will release the output or log and send it to the destination
that you have specified. To close the output device, issue PROC PRINTTO without
any parameters:

proc printto;
run;

Issuing PROC PRINTTO without any parameters closes the output device,
generates output, and reroutes the log and procedure output to their default
destinations. For a list of the default destinations, see Table 5.1 on page 115.

For more information, see Chapter 30, “PRINTTO Procedure,” on page 547 and
“PRINTTO Procedure” in Base SAS Procedures Guide.

Using the LOG= and PRINT= Options
When you use the PRINTTO procedure with its LOG= and PRINT= options, you can
route the SAS log or SAS procedure output to an external file or a fileref from any
mode. Specify the external file or the fileref in the PROC PRINTTO statement. The
following example routes procedure output to /u/myid/output/prog1:

proc printto print='/u/myid/output/prog1' new;
run;

The NEW option causes any existing information in the file to be cleared. If you omit
the NEW option from the PROC PRINTTO statement, the SAS log or procedure
output is appended to the existing file.

If you plan to specify the same destination several times in your SAS program, you
can assign a fileref to the file using a FILENAME statement. (For information and
examples, see “Assigning Filerefs to External Files or Devices with the FILENAME
Statement” on page 92.)

Routing Output to a Universal Printer
You can direct output directly to your Universal Printer by using the UPRINTER
device type:

Using the PRINTTO Procedure in UNIX Environments 125

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p08blwp6gwk25mn1hypjjrncx3bn.htm&locale=en

filename myoutput uprinter;
proc printto print=myoutput;
run;

Output is sent to your default Universal Printer. This output is in PostScript or PCL
format.

Routing Output to a Printer
You can direct output directly to your system printer by using the PRINTER device
type:

filename myoutput printer;
proc printto print=myoutput;
run;

Output is sent to your default system printer or, if you have specified the SYSPRINT
system option, to the printer specified with that option. This method produces output
in ASCII format.

Piping Output to a UNIX Command
You can also use the PIPE device type to send output to a UNIX command. When
you specify the print command, you might also want to specify a destination for any
error messages that are produced by the print command. Enclose the UNIX
command in either single or double quotation marks. The following example
associates the fileref MyOutput with the print command lp, which sends output to
the printer named Myljet:

filename myoutput pipe 'lp -dmyljet';
proc printto print=myoutput;
run;

You can send the SAS log to the same printer by using the LOG= option:

filename mylog pipe 'lp -dmyljet';
proc printto log=mylog;
run;

The log and procedure output continue to be routed to the designated external file
until another PROC PRINTTO statement reroutes them.

Routing Output to a Terminal
In noninteractive or batch mode, you can direct output to a terminal by associating a
fileref with a terminal and then using PROC PRINTTO to send output to that fileref.
In the FILENAME statement, specify the TERMINAL device-type and the special file
associated with the terminal. For example, the following statements send the SAS
log to the terminal that is associated with the /dev/tty3 special file:

filename term terminal '/dev/tty3';

126 Chapter 5 / Printing and Routing Output

proc printto log=term;
run;

Using SAS System Options to Route
Output

Changing the Output Destination Using the LOG,
PRINT, ALTLOG, and ALTPRINT System Options

You can use SAS system options to change the destination of the SAS log and
procedure output. The options that you use depend on which task you want to
accomplish:

n To route your SAS log or procedure output to an external file instead of to their
default destinations, use the LOG and PRINT system options.

n To route the log or output to an external file in addition to their default
destinations, use the ALTLOG and ALTPRINT system options. This method
works in all modes of running SAS.

LOG and PRINT are normally used in batch and interactive line modes. These
system options have no effect in the windowing environment. If you are running in
the windowing environment, use the ALTLOG and ALTPRINT system options.

You can specify these options in the following locations:

n the SAS command

n a configuration file

n the SASV9_OPTIONS environment variable

For example, you could specify these options in the SAS command as follows:

sas -log '/u/myid/log' -print '/u/myid/prt'

sas -altlog '/u/myid/log' -altprint '/u/myid/prt'

For more information, see “Ways to Specify a SAS System Option” on page 22.

Using SAS System Options to Route Output 127

Printing Large Files with the PIPE Device
Type in UNIX Environments

When you print a file with the lp command, a symbolic link is created from the file to
the /usr/spool directory. When you pipe output to the lp command, the output is
copied under the /usr/spool directory.

If you experience problems printing large files using the PIPE device type, you can
circumvent the problem in either of the following ways:

n save the print file to a disk file and then print it with the lp command. Issue the
PRINT command from the Output or Log window:

print file='bigfile'

Exit your SAS session and print the file, or use the SAS X command to print the
file from within your SAS session:

x 'lp -dmylsrjt bigfile'

n create a fileref using the PIPE device type that can handle large files. For
example, the following fileref saves the print file to disk, prints the saved file, and
then removes the file:

filename myfile pipe 'cat >bigfile;lp -dmylsrlt bigfile;rm bigfile;';

Changing the Default Print Destination in
UNIX Environments

When you print a file, SAS looks in the following locations to determine where to
send output. The locations are listed in order of precedence:

1 The destination specified in Universal Printing or the form printer device that you
are using. See Universal Printing in SAS Programmer’s Guide: Essentials for
more information.

2 The value specified in the SYSPRINT system option. You can use the
SYSPRINT option to set your default print destination. Use the SYSPRINT
system option to specify the destination option that is used with your print
command. For example, if your print command is lp, you can set the default
destination to the printer named Myljet by entering the following OPTIONS
statement:

options sysprint='-dmyljet';

3 The value of the $LPDEST environment variable. For more information, see
“Defining Environment Variables in UNIX Environments” on page 309 .

128 Chapter 5 / Printing and Routing Output

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

SAS uses the first destination that it finds. If you specify a destination in all three
locations, SAS uses the destination specified by Universal Printing.

Changing the Default Print Command in
UNIX Environments

UNIX uses lp as the default print command. You can use the PRINTCMD system
option to specify a different print command. For example, you can change your
default print command to lpr by entering the following at SAS invocation:

sas -printcmd "lpr"

You can also customize your default print command in your SAS configuration file. If
you use this method, then you will not have to change the default print command
every time you invoke SAS. For more information, see “PRINTCMD System Option:
UNIX” on page 470.

Controlling the Content and Appearance
of Output in UNIX Environments

Overview of Controlling the Content and
Appearance of Output

Some of the attributes of the SAS log and procedure output depend on the
destination to which they are being sent. For example, if the log and output are
being sent to your display, the default line and page size are derived from your
display. If one or both of these files are sent to the system printer or written to a file,
the default line size and page size depend on your printer and page setup. The line
size and page size for your current settings can be seen in the Print dialog box.

Some of the attributes of the SAS log and procedure output depend on the mode in
which you are running. For example, if you are running in interactive line mode, SAS
source statements are not echoed to the SAS log. If you are using the SAS
windowing environment, all source statements are written to the log as they are
submitted. In noninteractive mode or in batch mode, the log and procedure output
are formatted for a standard system printer.

For more information about specifying system options, see “Customizing Your SAS
Session By Using System Options” on page 22.

Controlling the Content and Appearance of Output in UNIX Environments 129

SAS Log Options
Use the following options to control the contents of the log. For more information
about specifying options, see “SAS System Options under UNIX” on page 409.

FULLSTIMER | NOFULLSTIMER
controls whether a list of resources (such as I/O performed, page faults, elapsed
time, and CPU time) used for each PROC or DATA step is written to the log.
NOFULLSTIMER is the default.

LINESIZE=width
controls the line length used. Width can be any value from 64 to 256.

NEWS | NONEWS
controls whether messages are written to the SAS log. NEWS is the default.

NOTES | NONOTES
controls printing of NOTES on the log. NOTES is the default setting for all
execution modes. Specify NOTES unless your SAS program is completely
debugged.

PAGESIZE=n
controls the number of lines that are printed on each page. N can be any number
from 15 to 32767.

SOURCE | NOSOURCE
controls whether SAS source statements are written to the log. NOSOURCE is
the default setting in interactive line mode. Otherwise, SOURCE is the default.

SOURCE2 | NOSOURCE2
controls whether SAS statements that are included with %INCLUDE statements
are written to the log. NOSOURCE2 is the default setting for all execution
modes.

STIMER | NOSTIMER
controls whether user CPU time and elapsed time are written to the log. STIMER
is the default.

Procedure Output Options
Use these system options to control the contents of the procedure output for the
LISTING destination:

CENTER | NOCENTER
controls whether the printed results are centered or left-aligned on the procedure
output page. CENTER is the default.

DATE | NODATE
controls whether the date is written at the top of each procedure output page.
DATE is the default.

LINESIZE=width
controls the line length used. Width can be any value from 64 to 256.

130 Chapter 5 / Printing and Routing Output

NUMBER | NONUMBER
controls whether the output page number is written on each procedure output
page. NUMBER is the default.

PAGENO=n
resets the current page number in the print file. The default page number at the
beginning of the SAS session is 1. The pages are numbered sequentially
throughout the SAS session unless the PAGENO option is specified in an
OPTIONS statement during the session.

PAGESIZE=n
controls the number of lines that are printed on each page. The value of n can
be any number from 15 to 32,767.

Controlling the Content and Appearance of Output in UNIX Environments 131

132 Chapter 5 / Printing and Routing Output

6
Accessing Shared Executable
Libraries from SAS

Overview of Shared Libraries in SAS . 134
What Is a Shared Library? . 134
Invoking Shared Libraries from within SAS . 134
Steps for Accessing an External Shared Library . 134

The SASCBTBL Attribute Table . 135
Introduction to the SASCBTBL Attribute Table . 135
What Is the SASCBTBL Attribute Table? . 135
Syntax of the Attribute Table . 136
The Importance of the Attribute Table . 140

Special Considerations When Using Shared Libraries . 141
32-Bit and 64-Bit Considerations . 141
Naming Considerations When Using Shared Libraries . 143
Using PEEKLONG Functions to Access Character String Arguments 143
Accessing Shared Libraries Efficiently . 144
Grouping SAS Variables as Structure Arguments . 145
Using Constants and Expressions as Arguments to the MODULE Function 147
Specifying Formats and Informats to Use with MODULE Arguments 148
Understanding MODULE Log Messages . 153

Examples of Accessing Shared Executable Libraries . 155
Example 1: Updating a Character String Argument . 155
Example 2: Passing Arguments by Value . 156
Example 3: Using PEEKCLONG to Access a Returned Pointer 157
Example 4: Using Structures . 158
Example 5: Invoking a Shared Library Routine . 160

133

Overview of Shared Libraries in SAS

What Is a Shared Library?
Shared libraries in UNIX are libraries that contain executable programs that are
written in any of several programming languages. In UNIX, the names of these
programs typically end with a .so or .sl extension. However, they are not constrained
to this naming convention.

Shared libraries are a mechanism for storing useful routines that might be needed
by multiple applications. When an application needs a routine that resides in an
external shared library, it loads the shared library, invokes the routine, and unloads
the shared library upon completion.

Invoking Shared Libraries from within SAS
SAS provides routines and functions that let you invoke these external routines from
within SAS. You can access the shared library routines from the DATA step, the IML
procedure, and SCL code. You use the MODULE family of SAS CALL routines and
functions (including MODULE, MODULEN, and MODULEC), as well as the
SAS/IML CALL routines and functions (including MODULEIC, MODULEIN, and
MODULEI), to invoke a routine that resides in a shared library. This documentation
refers to the MODULE family of CALL routines and functions generically as the
MODULE function.

For more information, see “CALL MODULE Routine” in SAS Functions and CALL
Routines: Reference, “MODULEC Function” in SAS Functions and CALL Routines:
Reference, and “MODULEN Function” in SAS Functions and CALL Routines:
Reference. For information about MODULEIC, MODULEIN, and MODULEI, see
SAS/IML 12.3 User's Guide .

Steps for Accessing an External Shared Library
Use the following steps to access an external shared library routine:

1 Create a text file that describes the shared library routine that you want to
access, including the arguments that it expects and the values that it returns (if
any). This attribute file must be in a special format, as described in “The
SASCBTBL Attribute Table” on page 135.

2 Use the FILENAME statement to assign the SASCBTBL fileref to the attribute file
that you created.

134 Chapter 6 / Accessing Shared Executable Libraries from SAS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0g0t4qe5q9jqcn15ovkk41ga6wl.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0g0t4qe5q9jqcn15ovkk41ga6wl.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1c7xirwnpygden18b5vhhou79az.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1c7xirwnpygden18b5vhhou79az.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0d84o1pjgm0akn129atp8njpj77.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0d84o1pjgm0akn129atp8njpj77.htm&locale=en

3 In a DATA step or SCL code, use the CALL MODULE routine, or the MODULEN
or MODULEC functions to invoke the shared library routine. The specific CALL
routine or function that you use depends on the type of expected return value
(none, numeric, or character). (You can also use MODULEI, MODULEIN, or
MODULEIC within a PROC IML step.) The MODULE functions are described in
“CALL MODULE Routine: UNIX” on page 325.

CAUTION
Only experienced programmers should access external routines in shared
libraries. By accessing a function in a shared library, you transfer processing control to
the external function. If done improperly, or if the external function is not reliable, you
might lose data, get unreliable results, or receive severe errors.

The SASCBTBL Attribute Table

Introduction to the SASCBTBL Attribute Table
Because the MODULE function invokes an external routine that SAS knows nothing
about, provide information about the routine's arguments. This enables the
MODULE function to validate the arguments and convert them, if necessary. For
example, suppose you want to invoke a routine that requires an integer as an
argument. Because SAS uses floating-point values for all of its numeric arguments,
the floating-point value must be converted to an integer before you invoke the
external routine. The MODULE function looks for this attribute information in an
attribute table that is referred to by the SASCBTBL fileref.

What Is the SASCBTBL Attribute Table?
The attribute table is a sequential text file that contains descriptions of the routines
that you can invoke with the MODULE function. The table defines how the MODULE
function should interpret supplied arguments when it builds a parameter list to pass
to the called routine.

The MODULE function locates the table by opening the file that is referenced by the
SASCBTBL fileref. If you do not define this fileref, the MODULE function simply calls
the requested shared library routine without altering the arguments.

CAUTION
Using the MODULE function without defining an attribute table can cause SAS
to crash, produce unexpected results, or result in severe errors. You need to
use an attribute table for all external functions that you want to invoke.

The SASCBTBL Attribute Table 135

Syntax of the Attribute Table

The Attribute Table
The attribute table should contain the following items:

n a description in a ROUTINE statement for each shared library routine that you
intend to call

n descriptions in ARG statements for each argument that is associated with the
routine that you intend to call

At any point in the attribute table file, you can create a comment using an asterisk
(*) as the first non-blank character of a line or after the end of a statement (following
the semicolon). You must end the comment with a semicolon.

ROUTINE Statement
Here is the syntax of the ROUTINE statement:

ROUTINE name MINARG=minarg MAXARG=maxarg
<CALLSEQ=BYVALUE | BYADDR>
<TRANSPOSE=YES | NO> <MODULE=shared-library-name>
<RETURNS=DBLPTR | CHAR<n> | DOUBLE | LONG | PTR | SHORT |

[U]INT32
| [U]INT64 | ULONG | USHORT>;

The following are descriptions of the ROUTINE statement attributes:

ROUTINE
starts the ROUTINE statement. You need a ROUTINE statement for every
shared library function that you intend to call.

name
specifies the routine name. The value for name must match the routine name or
ordinal that you specified as part of the module argument in the MODULE
function. The module argument is the name of the shared library (if it is not
specified by the MODULE attribute) and the routine name or ordinal. For
example, in order to specify libc,getcwd in the MODULE function call, set
name to getcwd.

The name argument is case sensitive, and is required for the ROUTINE
statement.

MINARG=minarg
specifies the minimum number of arguments to expect for the shared library
routine. In most cases, this value is the same as MAXARG; but some routines do
allow a varying number of arguments. This attribute is required.

136 Chapter 6 / Accessing Shared Executable Libraries from SAS

MAXARG=maxarg
specifies the maximum number of arguments to expect for the shared library
routine. This attribute is required.

CALLSEQ=BYVALUE | BYADDR
indicates the calling sequence method used by the shared library routine.
Specify BYVALUE for call-by-value and BYADDR for call-by-address. The
default value is BYADDR.

Fortran and COBOL are call-by-address languages. C is usually call-by-value,
although a specific routine might be implemented as call-by-address.

The MODULE function does not require that all arguments use the same calling
method. You can identify any exceptions by using the BYVALUE and BYADDR
options in the ARG statement.

TRANSPOSE=YES | NO
specifies whether SAS transposes matrices that have both more than one row
and more than one column before it calls the shared library routine. This attribute
applies only to routines called from within PROC IML with MODULEI,
MODULEIC, and MODULEIN.

TRANSPOSE=YES is necessary when you are calling a routine that is written in
a language that does not use row-major order to store matrices. (For example,
Fortran uses column-major order.)

For example, consider this matrix with three columns and two rows:

 columns
 1 2 3

 rows 1 | 10 11 12
 2 | 13 14 15

PROC IML stores this matrix in memory sequentially as 10, 11, 12, 13, 14, 15.
However, Fortran routines expect this matrix as 10, 13, 11, 14, 12, 15.

The default value is NO.

MODULE=shared-library-name
names the executable module (the shared library) in which the routine resides.
You do not need to specify this attribute if the name of the shared library is the
same name as the routine. If you specify the MODULE attribute in the ROUTINE
statement, then you do not need to specify the module name in the module
argument in the MODULE function. However, if the shared library routine name
that you are calling is not unique in the attribute table, then you must specify this
attribute. The MODULE routine is described in “CALL MODULE Routine: UNIX”
on page 325.

You can have multiple ROUTINE statements that use the same MODULE name.
You can also have duplicate routine names that reside in different shared
libraries.

The MODULE function searches the directories that are defined in each
operating system's library path environment variable when it attempts to load the
shared library argument provided in the MODULE attribute. The following table
lists this environment variable for each UNIX operating system that SAS
supports.

The SASCBTBL Attribute Table 137

Table 6.1 Shared Library Environment Variable Name

Operating Environment Environment Variable Name

Solaris $LD_LIBRARY_PATH

AIX/R $LIBPATH

HP-UX $LD_LIBRARY_PATH or $SHLIB_PATH

Note: Beginning in SAS 9.4M8, the
HP-UX platform is no longer supported.

Linux $LD_LIBRARY_PATH

Note: For more information about these environment variables, see the man
pages for your operating environment.

You can also use the PATH system option to point to the directory that contains
the shared library specified in the MODULE= option. Using the PATH system
option overrides your system's environment variable when you load the shared
library. For more information, see “PATH System Option: UNIX” on page 468.

RETURNS=DBLPTR | CHAR<n> | DOUBLE | LONG | PTR | SHORT | [U]INT32 |
[U]INT64 | ULONG | USHORT

specifies the type of value that the shared library routine returns. This value is
converted as appropriate, depending on whether you use MODULEC (which
returns a character) or MODULEN (which returns a number). Here are the
possible return value types:

DBLPTR
pointer to a double-precision floating point number (instead of using a
floating-point register). See the documentation for your shared library routine
to determine how it handles double-precision floating-point values.

CHAR<n>
pointer to a character string up to n bytes long. The string is expected to be
null-terminated and is blank-padded or truncated as appropriate. If you do not
specify n, the MODULE function uses the maximum length of the receiving
SAS character variable.

DOUBLE
double-precision floating-point number.

LONG
long integer.

PTR
character string being returned.

SHORT
short integer.

[U]INT32
32–bit unsigned integer.

[U]INT64
64-bit unsigned integer.

138 Chapter 6 / Accessing Shared Executable Libraries from SAS

ULONG
unsigned long integer.

USHORT
unsigned short integer.

If you do not specify the RETURNS attribute, you should invoke the routine with
only the MODULE and MODULEI CALL routines. You will get unpredictable
values if you omit the RETURNS attribute and invoke the routine using the
MODULEN and MODULEIN functions or the MODULEC and MODULEIC
functions.

ARG Statement
The ROUTINE statement must be followed by as many ARG statements as you
specified in the MAXARG= option. The ARG statements must appear in the order in
which the arguments will be specified within the MODULE function.

Here is the syntax for each ARG statement:

ARG argnum NUM | CHAR <INPUT | OUTPUT | UPDATE> <NOTREQD |
REQUIRED>

<BYADDR | BYVALUE> <FDSTART> <FORMAT=format>;

Here are the descriptions of the ARG statement attributes:

argnum
defines the argument number. This is a required attribute. Define the arguments
in ascending order, starting with the first routine argument (ARG 1).

NUM | CHAR
defines the argument as numeric or character. This attribute is required.

If you specify NUM here but pass the routine a character argument, the
argument is converted using the standard numeric informat. If you specify CHAR
here but pass the routine a numeric argument, the argument is converted using
the BEST12. informat.

INPUT | OUTPUT | UPDATE
indicates the argument is either input to a routine, an output argument, or both. If
you specify INPUT, the argument is converted and passed to the shared library
routine. If you specify OUTPUT, the argument is not converted, but is updated
with an outgoing value from the shared library routine. If you specify UPDATE,
the argument is converted, passed to the shared library routine, and updated
with an outgoing value from the routine.

You can specify OUTPUT and UPDATE only with variable arguments (that is, no
constants or expressions are allowed).

NOTREQD | REQUIRED
indicates whether the argument is required. If you specify NOTREQD, then the
MODULE function can omit the argument. If other arguments follow the omitted
argument, identify the omitted argument by including an extra comma as a
placeholder. For example, to omit the second argument to routine XYZ, you
would specify this code:

call module('XYZ',1,,3);

CAUTION

The SASCBTBL Attribute Table 139

Be careful when using NOTREQD; the shared library routine must not
attempt to access the argument if it is not supplied in the call to MODULE.
If the routine does attempt to access it, you might receive unexpected
results or severe errors.

The REQUIRED attribute indicates that the argument is required and cannot be
omitted. REQUIRED is the default value.

BYADDR | BYVALUE
indicates whether the argument is passed by reference or by value.

BYADDR is the default value unless CALLSEQ=BYVALUE was specified in the
ROUTINE statement. In that case, BYVALUE is the default. Specify BYADDR
when you are using a call-by-value routine that also has arguments to be passed
by address.

FDSTART
indicates that the argument begins a block of values that are grouped into a
structure whose pointer is passed as a single argument. Note that all subsequent
arguments are treated as part of that structure until the MODULE function
encounters another FDSTART argument.

FORMAT=format
names the format that presents the argument to the shared library routine. Any
formats supplied by SAS, PROC FORMAT style formats, or SAS/TOOLKIT
formats are valid. Note that this format must have a corresponding valid informat
if you specified the UPDATE or OUTPUT attribute for the argument.

The FORMAT= attribute is not required, but is recommended because format
specification is the primary purpose of the ARG statements in the attribute table.

CAUTION
Using an incorrect format can produce invalid results, cause SAS to crash,
or result in serious errors.

The Importance of the Attribute Table
The MODULE function relies heavily on the accuracy of the information in the
attribute table. If this information is incorrect, unpredictable results can occur
(including a system crash).

Consider an example routine xyz that expects two arguments: an integer and a
pointer. The integer is a code indicating what action takes place. For example,
action 1 means that a 20-byte character string is written into the area that is pointed
to by the second argument, the pointer.

Suppose you call xyz using the MODULE function, but you indicate in the attribute
table that the receiving character argument is only 10 characters long:

routine xyz minarg=2 maxarg=2;
arg 1 input num byvalue format=ib4.;
arg 2 output char format=$char10.;

Regardless of the value given by the LENGTH statement for the second argument
to MODULE, MODULE passes a pointer to a 10-byte area to the xyz routine. If xyz

140 Chapter 6 / Accessing Shared Executable Libraries from SAS

writes 20 bytes at that location, the 10 bytes of memory following the string provided
by MODULE are overwritten, causing unpredictable results:

data _null_;
 length x $20;
 call module('xyz',1,x);
run;

The call might work fine, depending on which 10 bytes were overwritten. However,
overwriting can cause you to lose data or cause your system to crash.

Also, note that the PEEKLONG and PEEKCLONG functions rely on the validity of
the pointers that you supply. If the pointers are invalid, it is possible that severe
errors will result. For example, this code causes an error:

data _null_;
 length c $10;
 /* trying to copy from address 0!!!*/
 c = peekclong(0,10);
run;

Special Considerations When Using
Shared Libraries

32-Bit and 64-Bit Considerations

Compatibility between Your Shared
Libraries and SAS
Starting in SAS 9, SAS is a 64-bit application that runs on all supported UNIX
environments that are 64-bit enabled. When you call external routines in shared
libraries, the shared library needs to be compatible with SAS.

For example, suppose that you are running SAS 9 on Solaris, which calls routines in
the shared library libc.so. The compatible version of this shared library must be 64-
bit for SAS 9 to load the library. A 64-bit application cannot load a 32-bit library.

To determine whether a vendor-supplied library is 32-bit or 64-bit, you can use the
FILE command. The following output shows the results of using the FILE command
on Solaris for a 32-bit and 64-bit library:

Special Considerations When Using Shared Libraries 141

$ file libc-2.12.so
libc-2.12.so: ELF 64–bit LSB shared object, x86-64, version 1 (GNU/Linux),
dynamically linked (uses shared libs), for GNU/Linux 2.6.18,not stripped

$ file ./libc.so
./libc.so: ELF 64–bit MSB dynamic lib SPARCV9 Version 1, dynamically linked,
not stripped

If you have difficulty loading a SAS module that is linked to a vendor-supplied
library, check your LD_LIBRARY_PATH environment variable to make sure that it is
set up correctly. The environment variable should point to the 64-bit directory of
libraries, rather than the 32-bit directory.

Allocated by the Shared Library
When specifying your SAS format and informat for each routine argument in the
FORMAT attribute of the ARG statement, you need to consider the amount of
memory the shared library allocates for the parameters that it receives and returns.
To determine how much storage is being reserved for the input and return
parameters of the routine in the external shared library, you can use the SIZEOF C
function.

The following table lists the typical memory allocations for C data types for 64-bit
systems:

Table 6.2 Memory Allocations for C Data Types

Type
64-Bit System Size
(Bytes) 64-Bit System Size (Bits)

CHAR 1 8

SHORT 2 16

INT 4 32

LONG 8 64

LONG LONG 8 64

FLOAT 4 32

DOUBLE 8 64

POINTER 8 64

For information about the SAS formats to use for your data types, see “Specifying
Formats and Informats to Use with MODULE Arguments” on page 148.

142 Chapter 6 / Accessing Shared Executable Libraries from SAS

Naming Considerations When Using Shared
Libraries

Naming Constraints
SAS loads external shared libraries that meet the following naming constraints:

n The name is eight characters or less.

n The name does not contain a period.

If the name of your external shared library is greater than eight characters or
contains a period, then you can create a symbolic link to point to the destination of
the shared library. Once the link is created, you can add the name of the symbolic
link to the MODULE statement in the SASCBTBL attribute table. When you are
ready to execute your SAS program, use the PATH system option to point to the
directory that contains the symbolic link.

Example of Creating a Symbolic Link
The Hewlett-Packard shared library libc.sl that is installed in the /usr/lib/hpux64
directory contains a period in the name. Before SAS loads this shared library, you
need to create a symbolic link that meets the naming convention of eight characters
or less and no period. The symbolic link shown in the following example points to
the target location of libc.sl:

$ ln -s /usr/lib/hpux64/libc.so /tmp/libclnk

After the symbolic link is created, you can update the MODULE= option in the
SASCBTBL attribute table, as shown in the following code:

routine name minarg=2 maxarg=2 returns=short module=libclnk;
arg 1 char output byaddr fdstart format=$cstr9.;
arg 2 char output format=$cstr9.;

To load the shared library during your invocation of SAS, enter the following
command:

/usr/local/sasv94/sas -path /tmp module.sas

Using PEEKLONG Functions to Access Character
String Arguments

Because the SAS language does not provide pointers as data types, you can use
the SAS PEEKLONG functions to access the data stored at these address values.

Special Considerations When Using Shared Libraries 143

For example, the following program demonstrates how the address of a pointer is
supplied and how it can set the pointer to the address of a static table containing the
contiguous integers 1, 2, and 3. It also calls the useptr routine in the useptr shared
library on a 64-bit operating system.

static struct MYTABLE {
int value1;
int value2;
int value3;
} mytable = {1,2,3};

useptr(toset)
char **toset;
{
 *toset = (char *)&mytable
}

Here is the SASCBTBL attribute table entry:

routine useptr minarg=1 maxarg=1;
arg 1 char update format=$char20.;

Here is the SAS code:

data _null_;
 length ptrval $20 thedata $12;
 call module('*i','useptr',ptrval);
 thedata=peekclong(ptrval,12);

 /* Converts hexadecimal data to character data */
 put thedata=$hex24.;

 /* Converts hexadecimal positive binary values to fixed or floating
point value */
 ptrval=hex40.;
run;

SAS writes the following output to the log.

Output 6.1 Log Output for Accessing Character Strings with the PEEKCLONG Function

thedata=000000010000000200000003 ptrval=800003FFFF0C

In this example, the PEEKCLONG function is given two arguments, a pointer via a
numeric variable and a length in bytes. PEEKCLONG returns a character string of
the specified length containing the characters at the pointer location.

For more information about the PEEKLONG functions, see “PEEKLONG Function:
UNIX” on page 350.

Accessing Shared Libraries Efficiently
The MODULE function reads the attribute table that is referenced by the
SASCBTBL fileref once per step (DATA step, PROC IML step, or SCL step). It
parses the table and stores the attribute information for future use during the step.

144 Chapter 6 / Accessing Shared Executable Libraries from SAS

When you use the MODULE function, SAS searches the stored attribute information
for the matching routine and module names. The first time you access a shared
library during a step, SAS loads the shared library, and determines the address of
the requested routine. Each shared library that you invoke stays loaded for the
duration of the step, and is not reloaded in subsequent calls. All modules and
routines are unloaded at the end of the step.

In the following example, the attribute table has the following basic form:

* routines XYZ and BBB in FIRST.Shared Library;
routine XYZ minarg=1 maxarg=1 module=FIRST;
arg 1 num input;
routine BBB minarg=1 maxarg=1 module=FIRST;
arg 1 num input;
* routines ABC and DDD in SECOND.Shared Library;
routine ABC minarg=1 maxarg=1 module=SECOND;
arg 1 num input;
routine DDD minarg=1 maxarg=1 module=SECOND;
arg 1 num input;

The DATA step code looks like the following:

filename sascbtbl 'myattr.tbl';
data _null_;
 do i=1 to 50;
 /* FIRST.Shared Library is loaded only once */
 value = modulen('XYZ',i);
 /* SECOND.Shared Library is loaded only once */
 value2 = modulen('ABC',value);
 put i= value= value2=;
 end;
run;

In this example, MODULEN parses the attribute table during DATA step compilation.
In the first loop iteration (i=1), FIRST.Shared Library is loaded and the XYZ routine
is accessed when MODULEN calls for it. Next, SECOND.Shared Library is loaded
and the ABC routine is accessed. For subsequent loop iterations (starting when
i=2), FIRST.Shared Library and SECOND.Shared Library remain loaded, so the
MODULEN function simply accesses the XYZ and ABC routines. SAS unloads both
shared libraries at the end of the DATA step.

Note that the attribute table can contain any number of descriptions for routines that
are not accessed for a given step. The presence of the attribute table does not
cause any additional overhead (apart from a few bytes of internal memory to hold
the attribute descriptions). In the above example, BBB and DDD are in the attribute
table but are not accessed by the DATA step.

Grouping SAS Variables as Structure Arguments

Passing an Argument to a Structure
A common need when calling external routines is to pass a pointer to a structure.
Some parts of the structure might be used as input to the routine. Other parts might
be replaced or filled in by the routine. Even though SAS does not have structures in

Special Considerations When Using Shared Libraries 145

its language, you can indicate to the MODULE function that you want a particular
set of arguments grouped into a single structure. You indicate this grouping by using
the FDSTART option of the ARG statement to flag the argument that begins the
structure in the attribute table. SAS gathers that argument and the subsequent
arguments (until it encounters another FDSTART option) into a single contiguous
block. SAS then passes a pointer to the block as an argument to the shared library
routine.

Example: Grouping Your System
Information as Structure Arguments
This example uses the uname routine, which is part of
the /usr/lib/hpux64/libc.so shared library in the HP-UX operating environment.
This routine returns the following information about your computer system:

Note: Beginning in SAS 9.4M8, the HP-UX platform is no longer supported.

n The node name on which you are executing SAS.

n The version of the operating system.

n The vendor of the operating system.

n The computer identification number.

n The model type of your computer.

n The unique identification number of your class of hardware. This value could be
a serial number.

Here is the C prototype for this routine:

int uname(struct utsname *name);

In C, the utsname structure is defined with the following members:

#define UTSLEN 9
#define SNLEN 15

char sysname[UTSLEN];
char nodename[UTSLEN];
char release[UTSLEN];
char version[UTSLEN];
char machine[UTSLEN];
char idnumber[SNLEN];

Each of the above structure members are null-terminated strings.

To call this routine using the MODULE function, you use the following attribute table
entries:

* attribute table entry;
routine uname minarg=6 maxarg=6 returns=short module=libc;
arg 1 char output byaddr fdstart format=$cstr9.;
arg 2 char output format=$cstr9.;
arg 3 char output format=$cstr9.;
arg 4 char output format=$cstr9.;
arg 5 char output format=$cstr9.;

146 Chapter 6 / Accessing Shared Executable Libraries from SAS

arg 6 char output format=$cstr15.;

The following example shows the SAS source code to call the uname routine from
within the DATA step:

x 'if [! -L ./libc]; then ln -s /usr/lib/hpux64/libc.so ./libc ;
fi' ;
x 'setenv LD_LIBRARY_PATH .:/usr/lib:/lib:/usr/lib/hpux64'

data _null_;
 length sysname $9 nodename $9 release $9 version $9 machine $9
idnumber $15.
 retain sysname nodename release version machine idnumber “ “;
 rc=modulen('uname', sysname, nodename, release, version, machine,
idnumber)
 put rc = ;
 put sysname = ;
 put nodename = ;
 put release = ;
 put version = ;
 put machine = ;
 put idnumber = ;
run;

SAS writes the following output to the log:

Example Code 6.1 Grouping SAS Variables as a Structure

rc=0
sysname=HP-UX
nodename=garage
release=B.11.31
version=u
machine=ia64
idnumber=103901537

Using Constants and Expressions as Arguments to
the MODULE Function

You can pass any type of expression as an argument to the MODULE function. The
attribute table indicates whether the argument is for input, output, or update.

You can specify input arguments as constants and arithmetic expressions. However,
because output and update arguments must be able to be modified and returned,
you can pass only a variable for them. If you specify a constant or expression where
a value that can be updated is expected, SAS issues a warning message pointing
out the error. Processing continues, but the MODULE function cannot perform the
update (meaning that the value of the argument that you wanted to update is lost).

Consider these examples. Here is the attribute table:

* attribute table entry for ABC;
routine abc minarg=2 maxarg=2;
arg 1 input format=ib4.;
arg 2 output format=ib4.;

Special Considerations When Using Shared Libraries 147

Here is the DATA step with the MODULE calls:

data _null_;
 x=5;
 /* passing a variable as the */
 /* second argument - OK */
 call module('abc',1,x);

 /* passing a constant as the */
 /* second argument - INVALID */
 call module('abc',1,2);

 /* passing an expression as the */
 /* second argument - INVALID */
 call module('abc',1,x+1);
run;

In the above example, the first call to MODULE is correct because x is updated by
the value that the abc routine returns for the second argument. The second call to
MODULE is not correct because a constant is passed. MODULE issues a warning
indicating you have passed a constant, and passes a temporary area instead. The
third call to MODULE is not correct because an arithmetic expression is passed.
Passing an arithmetic expression causes a temporary location from the DATA step
to be used and the returned value to be lost.

Specifying Formats and Informats to Use with
MODULE Arguments

Using the FORMAT Attribute in the ARG
Statement
You specify the SAS format and informat for each shared library routine argument
by specifying the FORMAT attribute in the ARG statement. The format indicates
how numeric and character values should be passed to the shared library routine
and how they should be read back upon completion of the routine.

Usually, the format that you use corresponds to a variable type for a given
programming language. The following sections describe the proper formats that
correspond to different variable types in various programming languages.

C Language Formats

148 Chapter 6 / Accessing Shared Executable Libraries from SAS

Table 6.3 C Language Formats

C Type
SAS Format or Informat for 64-Bit
Systems

DOUBLE RB8.

FLOAT FLOAT4.

SIGNED INT IB4.

SIGNED SHORT IB2.

SIGNED LONG IB8.

CHAR * IB8.

UNSIGNED INT PIB4.

UNSIGNED SHORT PIB2.

UNSIGNED LONG PIB8.

CHAR[w] $CHARw. or $CSTRw. (see “$CSTRw.
Format” on page 151)

Note: For information about passing character data other than as pointers to
character strings, see “$BYVALw. Format” on page 152.

Fortran Language Formats

Table 6.4 Fortran Language Formats

Fortran Type SAS Format or Informat

integer*2 IB2.

integer*4 IB4.

real*4 RB4.

real*8 RB8.

character*w $CHARw.

Special Considerations When Using Shared Libraries 149

The MODULE function can support Fortran character arguments only if they are not
expected to be passed by a descriptor.

PL/I Language Formats

Table 6.5 PL/I Language Formats

PL/I Type SAS Format or Informat

FIXED BIN(15) IB2.

FIXED BIN(31) IB4.

FLOAT BIN(21) RB4.

FLOAT BIN(31) RB8.

CHARACTER(w) $CHARw.

The PL/I descriptions are added here for completeness. These descriptions do not
guarantee that you will be able to invoke PL/I routines.

COBOL Language Formats

Table 6.6 COBOL Language Formats

COBOL Format SAS Format or Informat Description

PIC Sxxxx BINARY IBw. integer binary

COMP-2 RB8. double-precision
floating point

COMP-1 RB4. single-precision
floating point

PIC xxxx or Sxxxx Fw. printable numeric

PIC yyyy $CHARw. character

The following COBOL specifications might not match properly with the formats
supplied by SAS because zoned and packed decimal are not truly defined for
systems based on Intel architecture.

150 Chapter 6 / Accessing Shared Executable Libraries from SAS

Table 6.7 COBOL Specifications and SAS Formats and Informats

COBOL Format SAS Format or Informat Description

PIC Sxxxx DISPLAY ZDw. zoned decimal

PIC Sxxxx PACKED-DECIMAL PDw. packed decimal

The following COBOL specifications do not have true native equivalents and are
usable only in conjunction with the corresponding S370Fxxx format and informat.
The S370Fxxx format and informat enable IBM mainframe-style representations to
be read and written in the UNIX environment.

Table 6.8 COBOL Specifications Used with the S370Fxxx Group of Formats and Informats

COBOL Format
SAS Format or
Informat Description

PIC xxxx DISPLAY S370FZDUw. zoned decimal
unsigned

PIC Sxxxx DISPLAY SIGN
LEADING

S370FZDLw. zoned decimal
leading sign

PIC Sxxxx DISPLAY SIGN
LEADING SEPARATE

S370FZDSw. zoned decimal
leading sign separate

PIC Sxxxx DISPLAY SIGN
TRAILING SEPARATE

S370FZDTw. zoned decimal
trailing sign separate

PIC xxxx BINARY S370FIBUw. integer binary
unsigned

PIC xxxx PACKED-DECIMAL S370FPDUw. packed decimal
unsigned

$CSTRw. Format
If you pass a character argument as a null-terminated string, use the $CSTRw.
format. This format looks for the last non-blank character of your character
argument and passes a copy of the string with a null terminator after the last non-
blank character. For example, consider the following attribute table entry:

* attribute table entry;
routine abc minarg=1 maxarg=1;
arg 1 input char format=$cstr10.;

With this entry, you can use the following DATA step:

data _null_;

Special Considerations When Using Shared Libraries 151

 rc = module('abc','my string');
 run;

The $CSTR format adds a null terminator to the character string my string before
passing it to the abc routine. Adding a null terminator to the character string and
then passing the string to the abc routine is equivalent to the following attribute
entry:

* attribute table entry;
routine abc minarg=1 maxarg=1;
arg 1 input char format=$char10.;

The entry would have the following DATA step:

data _null_;
 rc = module('abc','my string'||'00'x);
run;

The first example is easier to understand and easier to use when using variable or
expression arguments.

The $CSTR informat converts a null-terminated string into a blank-padded string of
the specified length. If the shared library routine is supposed to update a character
argument, use the $CSTR informat in the argument attribute.

$BYVALw. Format
When you use a MODULE function to pass a single character by value, the
argument is automatically promoted to an integer. If you want to use a character
expression in the MODULE call, you must use the special format or informat called
$BYVALw. The $BYVALw. format and informat expects a single character and
produces a numeric value, the size of which depends on w. $BYVAL2. produces a
short, $BYVAL4. produces a long, and $BYVAL8. produces a double. Consider this
example using the C language:

long xyz(a,b)
 long a; double b;
 {
 static char c = 'Y';
 if (a == 'X')
 return(1);
 else if (b == c)
 return(2);
 else return(3);
 }

In this example, the xyz routine expects two arguments, a long and a double. If the
long is an x, the actual value of the long is 88 in decimal. This result happens
because an ASCII X is stored as hexadecimal 58, and this value is promoted to a
long, represented as 0x00000058 (or 88 decimal). If the value of a is x, or 88, then a
1 is returned. If the second argument, a double, is y (which is interpreted as 89),
then 2 is returned.

If you want to pass characters as the arguments to xyz, then in the C language, you
would invoke them as follows:

x = xyz('X',(double)'Z');
y = xyz('Q',(double)'Y');

152 Chapter 6 / Accessing Shared Executable Libraries from SAS

The characters are invoked in this way because the x and Q values are
automatically promoted to integers. (Integers are the same as longs in this
example.) The integer values corresponding to Z and Y are cast to doubles.

To call xyz using the MODULEN function, your attribute table must reflect the fact
that you want to pass characters:

routine xyz minarg=2 maxarg=2 returns=long;
arg 1 input char byvalue format=$byval4.;
arg 2 input char byvalue format=$byval8.;

Note that it is important that the BYVALUE option appears in the ARG statement as
well. Otherwise, MODULEN assumes that you want to pass a pointer to the routine,
instead of a value.

Here is the DATA step that invokes MODULEN and passes it characters:

data _null_;
 x = modulen('xyz','X','Z');
 put x= ' (should be 1)';
 y = modulen('xyz','Q','Y');
 put y= ' (should be 2)';
run;

Understanding MODULE Log Messages
If you specify i in the control string parameter to MODULE, SAS prints several
informational messages to the log. You can use these messages to determine
whether you have passed incorrect arguments or coded the attribute table
incorrectly.

Consider this example that uses MODULEIN from within the IML procedure. It uses
the MODULEIN function to invoke the changi routine (which is stored in theoretical
TRYMOD.so). In the example, MODULEIN passes the constant 6 and the matrix x2,
which is a 4x5 matrix to be converted to an integer matrix. The attribute table for
changi is as follows:

routine changi module=trymod returns=long;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;

The following IML step invokes MODULEIN:

proc iml;
 x1 = J(4,5,0);
 do i=1 to 4;
 do j=1 to 5;
 x1[i,j] = i*10+j+3;
 end;
 end;
 y1= x1;
 x2 = x1;
 y2 = y1;
 rc = modulein('*i','changi',6,x2);

The '*i' control string causes the lines shown in the following output to be written
in the log.

Special Considerations When Using Shared Libraries 153

Example Code 6.2 MODULEIN Log

---PARM LIST FOR MODULEIN ROUTINE--- CHR PARM 1 885E0AA8 2A69 (*i)
CHR PARM 2 885E0AD0 6368616E6769 (changi)
NUM PARM 3 885E0AE0 0000000000001840
NUM PARM 4 885E07F0
0000000000002C400000000000002E40000000000000304000000000000031400000000000003240
000000000000384000000000000039400000000000003A400000000000003B400000000000003C40
0000000000004140000000000080414000000000
---ROUTINE changi LOADED AT ADDRESS 886119B8 (PARMLIST AT 886033A0)--- PARM 1
06000000 <CALL-BY-VALUE>
PARM 2 88604720
0E0000000F00000010000000110000001200000018000000190000001A0000001B0000001C000000
22000000230000002400000025000000260000002C0000002D0000002E0000002F00000030000000
---VALUES UPON RETURN FROM changi ROUTINE--- PARM 1 06000000 <CALL-BY-VALUE>
PARM 2 88604720
140000001F0000002A0000003500000040000000820000008D00000098000000A3000000AE000000
F0000000FB00000006010000110100001C0100005E01000069010000740100007F0100008A010000
---VALUES UPON RETURN FROM MODULEIN ROUTINE--- NUM PARM 3 885E0AE00000000000001840
NUM PARM 4 885E07F0
00000000000034400000000000003F4000000000000045400000000000804A400000000000005040
00000000004060400000000000A06140000000000000634000000000006064400000000000C06540
0000000000006E400000000000606F4000000000

The output is divided into four sections:

n The first section describes the arguments passed to MODULEIN.

The CHR PARM n portion indicates that character parameter n was passed. In
the example, 885E0AA8 is the actual address of the first character parameter to
MODULEIN. The value at the address is hexadecimal 2A69, and the ASCII
representation of that value ('*i') is in parentheses after the hexadecimal value.
The second parameter is printed similarly. The ASCII equivalents are printed for
only these first two arguments because other arguments might contain
unreadable binary data.

The remaining parameters appear with only hexadecimal representations of their
values (NUM PARM 3 and NUM PARM 4 in the example).

The third parameter to MODULEIN is numeric, and it is at address 885E0AE0.
The hexadecimal representation of the floating-point number 6 is shown. The
fourth parameter is at address 885E07F0, which points to an area containing all
the values for the 4x5 matrix. The *i option prints the entire argument. Be
careful if you use this option with large matrices, because the log might become
quite large.

n The second section of the log lists the arguments that are to be passed to the
requested routine and, in this case, changed. This section is important for
determining whether the arguments are being passed to the routine correctly.
The first line of this section contains the name of the routine and its address in
memory. It also contains the address of the location of the parameter block that
MODULEIN created.

The log contains the status of each argument as it is passed. For example, the
first parameter in the example is call-by-value (as indicated in the log). The
second parameter is the address of the matrix. The log shows the address,
along with the data to which it points.

Note that all the values in the first parameter and in the matrix are long integers
because the attribute table states that the format is IB4.

154 Chapter 6 / Accessing Shared Executable Libraries from SAS

n In the third section, the log contains the argument values upon return from
changi. The call-by-value argument is unchanged, but the other argument (the
matrix) contains different values.

n The last section of the log output contains the values of the arguments as they
are returned to the MODULEIN CALL routine.

Examples of Accessing Shared
Executable Libraries

Example 1: Updating a Character String Argument
This example uses the tmpnam routine in the shared library provided by Solaris,
libc.so, which is installed in the /usr/lib/64 directory. The tmpnam routine
generates a unique filename that can be used safely as a temporary filename. The
temporary filename is typically placed in the /var/tmp directory.

Here is the C prototype for this routine:

char * tmpnam(char *s);

The attribute table for this prototype would be the following:

routine tmpnam minarg=1 maxarg=1 returns=char255. module=libc;
arg 1 char output byaddr format=$cstr255;

The SAS source code would be the following:

x 'if [! -L ./libc] ; then ln -s /usr/lib/64/libc.so.1 ./libc ; fi' ;
x 'setenv LD_LIBRARY_PATH .:/usr/lib/64/usr/lib:/lib';

data _null_;
 length tempname $255 tname $255;
 retain tempname tname “ “;
 tname = modulec ('tmpnam', tempname);
 put tempname = ;
 put tname = ;
run;

The SAS log would display the following information:

Example Code 6.3 Updating a Character String Argument

tempname=/var/tmp/aaaKraydG
tname=/var/tmp/aaaKraydG

The POSIX standard for the maximum number of characters in a pathname is
defined in /usr/include/limits.h as 255 characters. This example uses 254 as
the length of the generated filename (tempname) with one character reserved for the
null terminator. The $CSTR255. informat ensures that the null terminator and all

Examples of Accessing Shared Executable Libraries 155

subsequent characters are replaced by trailing blanks when control returns to the
DATA step.

Example 2: Passing Arguments by Value
This example calls the access routine that is supplied by most UNIX vendors. This
particular access routine is in the Hewlett-Packard shared library, libc.sl, which is
installed in the /usr/lib/hpux64 directory.

Here is the C prototype for this routine:

int access(char *path, int amode);

The access routine checks the file that is referenced by the accessibility path
according to the bit pattern contained in amode. You can use the following integer
values for amode that correspond to the types of permission for which you are
testing:

4 Read access
2 Write access
1 Execute (search) access
0 Check existence of file

A return value of 0 indicates a successful completion, and the requested access is
permitted. A return value of -1 indicates a failure, and the requested access is not
permitted.

Because the amode argument is a pass-by-value, this example includes the
BYVALUE specification for arg 2 in the attribute table. If both arguments were pass-
by-values, one could use the CALLSEQ=BYVALUE attribute in the ROUTINE
statement, and it would not be necessary to specify the BYVALUE option in arg 2.

The attribute table would be the following:

routine access minarg=2 maxarg=2 returns=short module=libc;
arg 1 char input byaddr format=$cstr200.;
arg 2 num input byvalue format=ib4.;

The SAS source code would be the following:

x 'if [! -L ./libc] ; then ln -s /usr/lib/hpux64/libc.so ; fi' ;
x 'setenv LD_LIBRARY_PATH .:/usr/lib/hpux64:/usr/lib:/lib' ;

data _null_;
 length path $200.;
 path='/dev';

 /* A non-root user is testing for write permission in the /dev
directory */
 rc = modulen("*ie",'access',path,2);
 put rc = ;
run;

The SAS log output would be the following:

Example Code 6.4 Results If Request Access Is Permitted

rc=-1

156 Chapter 6 / Accessing Shared Executable Libraries from SAS

If you changed the SAS source code to check for a Write permission in the user’s
$HOME directory, the output would be different:

data _null_;
 length homedir $200.;
 homedir=sysget('HOME');

 /* A user is testing for write permissions in their $HOME directory
*/
 rc = modulen(“*ie”,'access',homedir,2);
 put rc = ;
run;

In this case, the SAS log output would be the following:

Example Code 6.5 Results for Successful Completion (Access Permitted)

rc=0

Example 3: Using PEEKCLONG to Access a
Returned Pointer

This example uses the strcat routine, which is part of the Red Hat Linux shared
library libc-2.12.so. This library is typically installed in the /lib64 directory. This
routine concatenates two strings and returns a pointer to the newly concatenated
string.

Here is the C prototype for this routine:

char *strcat(char, *dest, const char *src);

The proper SASCBTBL attribute table would be the following:

routine strcat minarg=2 maxarg=2 returns=ulong module=libc;
arg 1 char input format=$cstr200.;
arg 2 char input format=$cstr200.;

The following example shows the SAS code:

filenamesascbtbl './sascbtbl.txt';

data _null_;
 file sascbtbl;
 put "routine strcat minarg=2 maxarg=2 returns=ulong module=libc;";
 put "arg 1 char input format=$cstr200.;";
 put "arg 2 char input format=$cstr200.;";
run;

data _null_;
 length string1 string2 newstring $200;
 length chptr $20;
 string1='This is string one and';
 string2=' this is string two.';
 chptr=modulec('strcat', string1, string2);
 newstring=peekclong(chptr,200);

Examples of Accessing Shared Executable Libraries 157

 put newstring=;
run;

SAS writes the following output to the log:

Example Code 6.6 Results from Using PEEKCLONG to Access a Returned Pointer

newstring=This is string one and this is string two.

For more information about the PEEKLONG and PEEKCLONG functions, see
“PEEKLONG Function: UNIX” on page 350 and “PEEKCLONG Function” in SAS
Functions and CALL Routines: Reference.

Example 4: Using Structures
“Grouping SAS Variables as Structure Arguments” on page 145 describes how to
use the FDSTART attribute to pass several arguments as one structure argument to
a shared library routine. The passing of several arguments as one structure is
another example of using structures with another routine in an external shared
library.

The statvfs routine that is available under most UNIX operating systems retrieves
file system information. This example uses the statvfs routine that is in the Solaris
libc.so.1 shared library and typically installed in the /usr/lib/sparcv9 directory.

Here is the C prototype for this routine:

int statvfs(const char *path, struct statvfs *buf);

The statvfs routine returns a 0 if the routine completes successfully and –1 if there
is a failure.

The statvfs structure is defined with the following members:

unsigned long f_bsize; /* preferred file system block size */
unsigned long f_frsize; /* fundamental file system block */
unsigned long f_blocks; /* total number of blocks on file
system in units */
unsigned long f_bfree; /* total number of free blocks */
unsigned long f_bavail; /* number of free blocks available to
non-superuser */
unsigned long f_files; /* total number of file nodes (inodes)
*/
unsigned long f_ffree; /* total number of free file nodes */
unsigned long f_favail; /* number of inodes available to non-
superuser */
unsigned long f_fsid; /* file system id (dev for now) */
char f_basetype[16]; /* target fs type name, null-
terminated */
unsigned long f_flag; /* bit mask of flags */
unsigned long g f_namemax; /* maximum filename length */
char f_fstr[32]; /* file system specific string */

The SASCBTBL attribute table would be the following:

routine statvfs
 minarg=14
 maxarg=14

158 Chapter 6 / Accessing Shared Executable Libraries from SAS

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0f3dmjwzwbsaqn1wfxvxgfxbe4q.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0f3dmjwzwbsaqn1wfxvxgfxbe4q.htm&locale=en

 returns=short
 module=libc;
arg 1 char input byaddr format=$char256.;
arg 2 num output byaddr fdstart format=pib8.;
arg 3 num output format=pib8.;
arg 4 num output format=pib8.;
arg 5 num output format=pib8.;
arg 6 num output format=pib8.;
arg 7 num output format=pib8.;
arg 8 num output format=pib8.;
arg 9 num output format=pib8.;
arg 10 num output format=pib8.;
arg 11 char output format=$cstr16.;
arg 12 num output format=pib8.;
arg 13 num output format=pib8.;
arg 14 char output format=$cstr32.;

The SAS source code to call the statvfs routine from within the DATA step would
be the following:

x 'if [! -L ./libc]; then ln -s /usr/lib/sparcv9/libc.so.1 ./libc ;
fi' ;
x 'setenv LD_LIBRARY_PATH .:/usr/lib/sparcv9:/usr/lib:/lib';

data _null_;
 length f_basetype $16. f_fstr $32.;
 retain f_bsize f_frsize f_blocks f_bfree f_bavail f_files f_ffree
f_favail
 f_fsid f_flag f_namemax 0;
 retain f_basetype f_fstr ' ';
 rc=modulen ('statvfs' , '/tmp', f_bsize, f_frsize, f_blocks,
f_bfree, f_bavail,
 f_files, f_ffree, f_favail, f_fsid, f_basetype, f_flag,
 f_namemax, f_fstr);
 put rc = ;
 put f_bsize = ;
 put f_frsize = ;
 put f_blocks = ;
 put f_bfree = ;
 put f_bavail = ;
 put f_files = ;
 put f_ffree = ;
 put f_favail = ;
 put f_fsid = ;
 put f_basetype = ;
 put f_flag = ;
 put f_namemax = ;
 /* Determining the total bytes available in the file system and
then dividing the
 total number of bytes by the number of bytes in a gigabyte */
 gigsfree = ((f_bavail * f_bsize)/1073741824);
 put 'The total amount of space available in /tmp is 'gigsfree 4.2'
Gigabytes.';
run;

The SAS log output would be the following:

Examples of Accessing Shared Executable Libraries 159

Example Code 6.7 Log Output for Using Structures

rc=0
f_bsize=8192
f_frsize=8192
f_blocks=196608
f_bfree=173020
f_bavail=173020
f_files=884732
f_ffree=877184
f_favail=877184
f_fsid=2
f_basetype=tmpfs
f_flag=4
f_namemax=255

The total amount of space available in /tmp is 1.32 Gigabytes.

Example 5: Invoking a Shared Library Routine
This example shows how to pass a matrix as an argument within PROC IML. The
example creates a 4x5 matrix. Each cell is set to 10x+y+3, where x is the row
number and y is the column number. For example, the cell at row 1 column 2 is set
to (10*1)+2+3, or 15.

The example invokes several routines from the theoretical TRYMOD shared library.
It uses the changd routine to add 100x+10y to each element, where x is the C row
number (0 through 3) and y is the C column number (0 through 4). The first
argument to changd specifies the extra amount to sum. The changdx routine works
just like changd, except that it expects a transposed matrix. The changi routine
works like changd except that it expects a matrix of integers. The changix routine
works like changdx except that integers are expected.

Note: A maximum of three arguments can be sent when invoking a shared library
routine from PROC IML.

In this example, all four matrices x1, x2, y1, and y2 should become set to the same
values after their respective MODULEIN calls. Here are the attribute table entries:

routine changd module=trymod returns=long;
arg 1 input num format=rb8. byvalue;
arg 2 update num format=rb8.;
routine changdx module=trymod returns=long
 transpose=yes;
arg 1 input num format=rb8. byvalue;
arg 2 update num format=rb8.;
routine changi module=trymod returns=long;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;
routine changix module=trymod returns=long
 transpose=yes;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;

Here is the PROC IML step:

160 Chapter 6 / Accessing Shared Executable Libraries from SAS

proc iml;
 x1 = J(4,5,0);
 do i=1 to 4;
 do j=1 to 5;
 x1[i,j] = i*10+j+3;
 end;
 end;
 y1= x1; x2 = x1; y2 = y1;
 rc = modulein('changd',6,x1);
 rc = modulein('changdx',6,x2);
 rc = modulein('changi',6,y1);
 rc = modulein('changix',6,y2);
 print x1 x2 y1 y2;
run;

Here are the results of the PRINT statement:

Output 6.2 Invoking a Shared Library Routine from PROC IML

X1
 20 31 42 53 64
130 141 152 163 174
240 251 262 273 284
350 361 372 383 394
 X2
 20 31 42 53 64
130 141 152 163 174
240 251 262 273 284
350 361 372 383 394
 Y1
 20 31 42 53 64
130 141 152 163 174
240 251 262 273 284
350 361 372 383 394
 Y2
 20 31 42 53 64
130 141 152 163 174
240 251 262 273 284
350 361 372 383 394

Examples of Accessing Shared Executable Libraries 161

162 Chapter 6 / Accessing Shared Executable Libraries from SAS

7
Viewing Output and Help in the
SAS Remote Browser

What Is Remote Browsing? . 163

Using Remote Browsing with ODS Output . 164

Installing the Remote Browser Server . 164

System Options for Remote Browsing . 165

Setting Up the SAS Remote Browser . 165
Setting Up the SAS Remote Browser at SAS Invocation . 165
Setting Up the SAS Remote Browser during a SAS Session 166

Remote Browsing and Firewalls . 166
For General Users . 166
For System Administrators . 166

What Is Remote Browsing?
Remote browsing enables you to view SAS documentation, URLs that are specified
in the WBROWSE command, and ODS output in the web browser on your local
computer. In the past, all web documentation was displayed by executing your
browser on the SAS server. By displaying this documentation locally, you have
faster access to the documentation and you free up resources on the SAS server
that were used by your browser.

A small software agent called the remote browser server runs on your local
computer. When SAS needs to display HTML content, it connects to the remote
browser server and sends the URL that references the content. The remote browser
server then passes the URL to a browser for display. If the remote browser server is
not running on your computer, SAS displays a dialog box that contains the URL that
you need to use to download the remote browser server.

Two system options are provided to configure remote browsing: HELPHOST and
HELPPORT. These options specify the host name and port number of the computer

163

where HTML content is to be displayed. In most cases, these options do not need to
be set. HELPHOST defaults to the host name that is specified in the X11 DISPLAY
environment variable. Alternatively, if the client connects to the UNIX host by using
SSH with X11 forwarding enabled, HELPHOST defaults to the IP address that is
specified in the SSH_CLIENT environment variable. HELPPORT defaults to the
standard port for the remote browser server.

Using Remote Browsing with ODS
Output

The SAS Output Delivery System (ODS) can be used to generate graphical reports
of your SAS data. Remote browsing enables you to view your output directly from a
SAS session as the output is generated or on demand from the Results window.

Remote browsing displays ODS output in many formats. If your browser does not
have the appropriate plug-in for output that is not HTML, the browser displays a
dialog box rather than the output. This dialog box enables you to download your
output to your computer and view it using a local program such as Excel for an XSL
file.

The automatic display of ODS output (HTML, PDF, and RTF only) is turned off by
default. You can turn on the automatic display of ODS output by issuing the
AUTONAVIGATE command in the Results window or by selecting View results as
they are generated from the Results tab of the Preferences dialog box.

Installing the Remote Browser Server
You can install the remote browser server directly from your SAS session. If SAS is
unable to make a connection for remote browsing, SAS displays a dialog box that
contains the URL that you need to download the installer. Use this URL to download
and install the remote browser server. Do not exit SAS. To install the remote
browser server, follow these steps:

1 Type the URL that appears in the dialog box into your browser and press Enter,
or use the Copy URL button in the dialog box to copy the URL, and then paste it
into your browser.

2 After the download page is displayed, download the installer that is appropriate
for your computer.

3 Run the installer.

n In the Windows environment, the remote browser server is added to your
start-up items, so that the server starts whenever you log on. An icon is
displayed in your system tray to indicate that the remote browser server is
running.

164 Chapter 7 / Viewing Output and Help in the SAS Remote Browser

n In the Linux environment, manually add the command rbrowser to the start-
up script for your windowing environment. The remote browser server will
initially run minimized.

System Options for Remote Browsing
After the remote browser server is running on your computer, you can run the
remote browsing system by specifying the HELPHOST and HELPPORT system
options.

n The HELPHOST system option specifies the name of your host computer where
the remote browsing system is to be displayed. If you do not specify this option,
then the host name specified in the X display name is used. For more
information, see “HELPHOST System Option: UNIX” on page 441.

n The HELPPORT system option specifies the port number for the remote browser
server that is installed on your computer. Under UNIX, you can use the default
value for this option. For more information, see “HELPPORT= System Option” in
SAS System Options: Reference.

You can set these options in your configuration file, at SAS invocation, or during
your SAS session in the OPTIONS statement or in the SAS System Options
window.

Setting Up the SAS Remote Browser

Setting Up the SAS Remote Browser at SAS
Invocation

The following syntax is specific for UNIX operating environments and shows how
you might set up the SAS Remote Browser if your remote browser server is using
network port 12000:

sas94 -helpport 12000

Because you did not specify the HELPHOST system option, SAS uses the host
name that is specified in the X display name.

Setting Up the SAS Remote Browser 165

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0yu1cr572z0yon1tt928pimzmyd.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0yu1cr572z0yon1tt928pimzmyd.htm&locale=en

Setting Up the SAS Remote Browser during a SAS
Session

The syntax in this example applies to UNIX environments.

You can set up the remote browsing system during a SAS session by using the
OPTIONS statement or the SAS System Options window. The following example
uses the OPTIONS statement to change the value of the HELPPORT system
option:

options helpport=12000;

Because you did not specify the HELPHOST system option, its value remains
unchanged.

Remote Browsing and Firewalls

For General Users
If your network has a firewall between desktop computers and the computer that is
hosting SAS, web browsers cannot display web pages from your SAS session.
Usually, this problem is indicated by a time-out or connection error from the web
browser. If you receive a time-out or connection error, contact your system
administrator.

For System Administrators
To enable the display of web pages when a firewall exists between desktop
computers and the computer that is hosting SAS, a firewall rule that allows a web
browser to connect to SAS must be added. The firewall rule specifies a range of
network ports for which SAS remote browsing connections are allowed. Contact the
appropriate system administrator who can select and configure a range of network
ports for remote browsing. The range depends on the number of simultaneous SAS
users. A value of approximately three times the number of simultaneous SAS users
should reserve a sufficient number of network ports.

After the firewall rule is added, SAS must be configured to listen for network
connections in the network port range. Normally, SAS selects any free network port,
but the HTTPSERVERPORTMIN and the HTTPSERVERPORTMAX system options
limit the network ports that SAS can select. Add these system options to your SAS
configuration file. Set HTTPSERVERPORTMIN to the lowest port in the network
range. Set HTTPSERVERPORTMAX to the highest port in the network range. For

166 Chapter 7 / Viewing Output and Help in the SAS Remote Browser

example, if the system administrator defined a network port range of 8000 to 8200,
the system options would be the following:

httpserverportmin=8000
httpserverportmax=8200

After these system options are set, desktop computers can display web pages. If
there is an insufficient number of network ports, or the system options are specified
incorrectly, a message appears in the SAS log.

For more information about these system options, see “HTTPSERVERPORTMIN=
System Option” in SAS System Options: Reference and
“HTTPSERVERPORTMAX= System Option” in SAS System Options: Reference.

Remote Browsing and Firewalls 167

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1nhc5ttouwwx5n0zzctwxf82f3a.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1nhc5ttouwwx5n0zzctwxf82f3a.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0ic4hpidalimpn1a3jxmt0xvc0l.htm&locale=en

168 Chapter 7 / Viewing Output and Help in the SAS Remote Browser

8
Performance Considerations
under UNIX

Configure Your Environment Based on SAS Tuning Guidelines 169
SAS System Option Guidelines . 169
Operating System Tuning Guidelines . 169
Guidelines for the SAS Middle Tier and SAS Web Application Server 170

Measure the I/O Throughput of a File System . 170

Configure Your Environment Based on
SAS Tuning Guidelines

SAS System Option Guidelines
For the best performance in a UNIX environment, verify that SAS system options
are set based on SAS tuning guidelines. You can find these guidelines in Usage
Note 46954. This usage note is updated as needed. Typically, these setting
recommendations are the default settings for SAS system options.

Operating System Tuning Guidelines
You can achieve better performance by following SAS recommendations for UNIX
operating systems. Usage Note 53873 contains the current operating system tuning
guidelines. This usage note is updated as needed.

169

http://support.sas.com/kb/46/954.html
http://support.sas.com/kb/46/954.html
http://support.sas.com/kb/53/873.html

Guidelines for the SAS Middle Tier and SAS Web
Application Server

For information about tuning values for the SAS middle tier and SAS Web
Application Server, see SAS Web Applications: Tuning for Performance and
Scalability in the SAS Intelligence Platform documentation.

Measure the I/O Throughput of a File
System

When troubleshooting performance problems, be aware that SAS processes place
different demands on file systems and I/O throughput than traditional databases or
simple query processes. For that reason, you need to be able to determine the I/O
throughput rates of any file system that SAS uses.

SAS has a shell script, iotest.sh, that system administrators and IT teams can use to
test I/O throughput. For information about usage and I/O throughput targets, see
Usage Note 53876.

170 Chapter 8 / Performance Considerations under UNIX

http://documentation.sas.com/?cdcId=bicdc&cdcVersion=9.4&docsetId=appsrvtuning&docsetTarget=titlepage.htm
http://documentation.sas.com/?cdcId=bicdc&cdcVersion=9.4&docsetId=appsrvtuning&docsetTarget=titlepage.htm
http://support.sas.com/kb/53/876.html

PART 2

SAS Windowing Environment

Chapter 9
Working in the SAS Windowing Environment . 173

Chapter 10
Customizing the SAS Windowing Environment . 203

171

172

9
Working in the SAS Windowing
Environment

Definition of the SAS Windowing Environment . 174

Description of SAS in the X Environment . 175
Definition of X Window System . 175
X Window Managers . 175
SAS Window Session ID . 175
Workspace and Gravity in a SAS Session . 176
Window Types . 176

The SAS Session Manager (motifxsassm) in UNIX . 177
What Is the SAS Session Manager? . 177
Features of the SAS Session Manager . 178
Interrupting a SAS Session . 178
Using the Host Editor from within Your SAS Session . 180
Closing the SAS Session Manager . 180
Disabling the SAS Session Manager . 180

Displaying Function Key Definitions in UNIX Environments 181
Benefits of Assigning Function Key Definitions . 181
How to Display Function Key Definitions . 181

The SAS ToolBox in UNIX Environments . 183
Introduction to the SAS ToolBox . 183
Customizing the Default SAS ToolBox . 184
Default Configuration for the Command Window and the Toolbar 184
Opening and Closing the Command Window and the Toolbar 185
Executing Commands . 186

Opening Files in UNIX Environments . 187
Opening the Open Dialog Box . 187
Using Regular Expressions in Filenames . 189

Changing Your Working Directory in UNIX Environments . 189
What Is Your Working Directory? . 189
Changing Your Working Directory . 189
The Change Working Directory Dialog Box . 190

Selecting (Marking) Text in UNIX Environments . 191

173

Difference between Marking Character Strings and Blocks . 191
Techniques for Selecting Text . 192

Copying or Cutting and Pasting Selected Text in UNIX Environments 193
Techniques for Copying or Cutting and Pasting Selected Text 193
How SAS Uses the Automatic Paste Buffer . 194
Disabling the Automatic Paste Buffer . 194
Copying and Pasting Text between SAS and Other X Clients 194

Using Drag and Drop in UNIX Environments . 195
Difference between Default and Non-Default Drag and Drop 195
Limitations of Drag and Drop in UNIX . 195
How to Drag and Drop Text . 195

Searching for and Replacing Text Strings in UNIX Environments 196
What Are the Find and Replace Dialog Boxes? . 196
Opening the Find Dialog Box . 196
Description of the Find Dialog Box Options . 196
Opening the Replace Dialog Box . 196
Description of the Replace Dialog Box Options . 197

Sending Mail from within Your SAS Session in UNIX Environments 197
Default Email Protocol in SAS . 197
What Is the Send Mail Dialog Box? . 198
Sending Email By Using the Send Mail Dialog Box . 198
Sending the Contents of a Text Window . 199
Sending the Contents of a Non-Text Window . 199
Changing the Default File Type . 200

Configuring SAS for Host Editor Support in UNIX Environments 200
Requirements for Using a Host Editor . 200
Invoking and Using Your Host Editor . 200
Troubleshooting the Transfer of Text Attributes . 201

Getting Help in UNIX Environments . 202

Definition of the SAS Windowing
Environment

The SAS windowing environment refers to the windows that open when you invoke
SAS. These windows include: the Program Editor, Log, Output, Explorer, and
Results. These windows appear when you start SAS from your X workstation or
through an X emulator. For more information about these windows, see the online
SAS Help and Documentation.

The SAS windowing environment supports the use of X-based graphical user
interfaces (GUIs). In UNIX environments, SAS provides an X Window System
interface that is based on the Motif style.

Many features of the SAS windowing environment are controlled by X resources.
For example, colors, window sizes, the appearance of the SAS ToolBox, and key
definitions are all controlled through X resources. Chapter 10, “Customizing the SAS
Windowing Environment,” on page 203 provides general information about

174 Chapter 9 / Working in the SAS Windowing Environment

resources, such as how to specify resources, and describes all of the resources that
you can use to customize the interface.

Description of SAS in the X Environment

Definition of X Window System
The X Window System is a networked windowing system. If several computers are
on a network, you can run an X server that, in turn, serves X applications (as clients)
from all the other computers in the network.

X Window Managers
In UNIX environments, SAS features an X Window System interface that is based
on Motif. This interface uses the window manager on your system to manage the
windows on your display. Any window manager that is compliant with the Inter-Client
Communication Conventions Manual (ICCCM) can be used with the Motif interface
to SAS. Vendors provide at least one window manager with the X Window System
environment. A common window manager is the GNOME. KDE is an alternative
window manager. You should read the documentation that is supplied by the vendor
for the window manager that you are using.

All window managers perform the same basic functions, but they differ in their style
and in their advanced functions. The appearance and function of the interface to
SAS depends to some extent on your X window manager. Most window managers
provide some type of frame around a window. The window manager also governs
the placement, sizing, stacking, and appearance of windows, as well as their
interaction with the keyboard. The basics of interacting with SAS are the same for all
window managers: opening menus, moving windows, responding to dialog boxes,
dragging text, and so on.

SAS Window Session ID
When you run SAS on an X workstation, SAS shares the display with other X
applications, including other SAS sessions. To distinguish between different
applications and SAS sessions, SAS generates a SAS window session ID for each
session by appending a number to the application name. The default application
name is SAS. This session ID appears in the window title bar for each SAS window
and in the window icon title. The SAS sessions are assigned sequentially. Your first
SAS session is not assigned a number, so the session ID is SAS; your second SAS
session is assigned the session ID SAS2, and so on. Although the default application
name is SAS, you can use the -name X option or the -title X option to change the
instance name. The instance name can be up to 64 characters long and is

Description of SAS in the X Environment 175

displayed in the case in which it was entered, which can be lowercase, mixed case,
or uppercase.

Workspace and Gravity in a SAS Session
When you use SAS on an X workstation, the display might be shared by many
concurrent applications. When SAS windows from different sessions and windows
from other applications appear on the display, the display can become cluttered. To
help alleviate this problem, the windows for a SAS session first appear within an
application workspace (AWS). The AWS defines a rectangular region that
represents a virtual display in which SAS windows are initially created. SAS
attempts to position the AWS in relation to the upper left corner of your display. In
other words, the workspace gravitates toward a certain direction (session gravity) on
the display. Some window manager configurations might override the placement
that SAS has chosen for a window.

If you issue windowing commands or execute SAS procedures that create new SAS
windows, the same rules of initial position and size apply to these windows: they are
initially placed in the SAS AWS. You can use the WSAVE command to save the
current window positions (or geometry). For more information, see “Customizing
Session Workspace, Session Gravity, and Window Sizes in UNIX Environments” on
page 252.

Window Types

Top-Level Windows
SAS uses primary and interior windows. Some SAS applications consist of one or
more primary windows controlled by the X window manager, in addition to the
interior windows controlled by SAS. The SAS windowing environment primary
windows, as well as most SAS application windows, initially appear as top-level
windows. Top-level windows interact directly with the X window manager. They have
a full title bar along with other window manager decorations. You can manipulate
them individually after they appear on the display.

Interior Windows
Interior windows behave differently from primary windows. SAS/ASSIST software is
an application with interior windows. Interior windows are contained within container
windows, which might not be primary windows. The following display shows an
interior window in SAS/ASSIST software.

176 Chapter 9 / Working in the SAS Windowing Environment

Figure 9.1 Sample Interior Window

SAS provides some degree of window management for interior windows.
Specifically, interior windows have the following sizing and movement capabilities:

n You can move interior windows by clicking the interior window title bar and
dragging the window to the desired location. If the destination of the interior
window is outside the bounds of the container window, the container window
changes according to the value of the SAS.awsResizePolicy resource. (The
space within the container window is the application workspace, which is
described in “Workspace and Gravity in a SAS Session” on page 176.) For more
information, see “Overview of X Resources” on page 204.

n Interior windows cannot be minimized individually. Clicking on the container
window icon button minimizes the container window and its interior windows.

n A push-to-back button (the small overlapping squares in the upper right corner)
is available with interior windows. However, you cannot push an active window
behind an inactive window.

The SAS Session Manager
(motifxsassm) in UNIX

What Is the SAS Session Manager?
The SAS Session Manager for X (motifxsassm) is an X client that is run by SAS
when you use the SAS windowing environment. The SAS Session Manager is
automatically minimized when you start SAS. The SAS: Session Management
dialog box for the SAS Session Manager appears as shown in the following display:

The SAS Session Manager (motifxsassm) in UNIX 177

Figure 9.2 SAS: Session Management Dialog Box

The SAS: Session Management dialog box lists the following information:

n which SAS session it controls

n the host computer from which the SAS session was invoked

n the UNIX process identifier of the SAS session

Features of the SAS Session Manager
The buttons in the SAS: Session Management dialog box enable you to do the
following tasks:

Minimize
maps and minimizes all windows of the SAS session. This function is performed
with standard X library calls and works with most X window managers.

Restore
restores all of the windows that are open in the SAS session that is controlled by
that SAS Session Manager. This function is performed with standard X library
calls and works with most X window managers.

Interrupt
sends a UNIX signal to SAS. When SAS receives the signal, it displays the
Tasking Manager dialog box. (See “Interrupting a SAS Session” on page 178).

Terminate
displays a dialog box that asks you to confirm whether you want to terminate the
SAS session.

Help
provides Help for the SAS: Session Management dialog box.

Interrupting a SAS Session
When you click Interrupt in the SAS: Session Management dialog box, and if no
PROC or DATA step is executing, the following Tasking Manager dialog box
appears:

178 Chapter 9 / Working in the SAS Windowing Environment

Figure 9.3 Tasking Manager Dialog Box

If a PROC or DATA step is executing, the following Tasking Manager dialog box
appears:

Figure 9.4 Tasking Manager Dialog Box: DATA Step or PROC Step Executing

Click one of the following buttons in the Tasking Manager dialog box:

1
causes the current PROC or DATA step statements to be deleted.

2
causes the current PROC or DATA step to receive a request to interrupt
processing. You are prompted to confirm this action.

C
closes the dialog box without affecting SAS processing.

T
forces SAS to terminate the SAS session. You are prompted to confirm
termination.

The following Confirm Termination dialog box appears:

Figure 9.5 Confirm Termination Dialog Box

The SAS Session Manager (motifxsassm) in UNIX 179

If you click OK, the SAS Session Manager sends a UNIX signal to the SAS session
that forces the session to terminate.

CAUTION
Terminating your SAS session might result in data loss or data corruption.
Before terminating your SAS session, you should attempt to end SAS using one of the
methods described in “Methods for Exiting SAS” on page 32.

Using the Host Editor from within Your SAS Session
When you issue the HOSTEDIT command, SAS passes the request to the SAS
Session Manager, which then invokes your host editor. The SAS Session Manager
must be running for the HOSTEDIT command to take effect. When you issue the
HOSTEDIT command, SAS creates a temporary file that contains the data from the
active SAS window and passes this file to your host editor. (These temporary files
are stored in the directory specified by the SAS WORK option.) When you save your
file in the host editor, the file is copied back into the SAS window if the window is
able to be written to. The temporary files are deleted when the SAS session ends.
For more information, see “Configuring SAS for Host Editor Support in UNIX
Environments” on page 200.

Closing the SAS Session Manager
If you close the SAS: Session Management dialog box, you cannot retrieve the SAS
Session Manager. To display the SAS Session Manager again, you can
reinvoke !SASROOT/utilities/bin/motifxsassm with the -pid or the -sessionid
arguments. Execute these commands at the UNIX prompt or use them with the X
statement:

!SASROOT/utilities/bin/motifxsassm -pid pid

!SASROOT/utilities/bin/motifxsassm -sessionid integer

Disabling the SAS Session Manager
You can disable the SAS Session Manager in the following ways:

n Select Tools ð Options ð Preferences.

On the General tab, deselect the Start Session manager check box.

n Specify the following X resource, in lowercase, on the SAS command line at
invocation:

 sas -xrm 'SAS.startSessionManager: False'

Specifying the sas.startSessionManager X resource deselects the Start
Session manager check box in the Preferences dialog box.

180 Chapter 9 / Working in the SAS Windowing Environment

Note: SAS saves the settings in the Preferences dialog box when it exits. If you
have disabled the SAS Session Manager during your session, then the next time
you invoke SAS, the SAS Session Manager will not run. To start the SAS Session
Manager, select the Start Session manager check box in the Preferences dialog
box. Alternatively, specify the following command in lowercase on the SAS
command line at invocation:

sas -xrm 'SAS.startSessionManager: True'

Displaying Function Key Definitions in
UNIX Environments

Benefits of Assigning Function Key Definitions
Function keys provide quick access to commands. They enable you to issue
commands, insert text strings, and insert commands in programs. Function key
definitions can be different on different terminals. These definitions can be fully
customized.

How to Display Function Key Definitions
You can open the KEYS (DMKEYS) window to display all of your function key
definitions in one of the following ways:

n Press F2.

n Issue the KEYS command.

n Select Tools ð Options ð Keys.

To view a single key definition without bringing up the KEYS window, use the
KEYDEF command and specify the key definition that you want to view. For
example, the following command displays the definition for key F4:

keydef f4

Table 9.1 Default Key Definitions

Key or Key Combination Definition

F1 Help

F2 Keys (SAS: KEYS <DMKEYS> window)

Displaying Function Key Definitions in UNIX Environments 181

Key or Key Combination Definition

F3 submit

F4 pgm; recall

F5 rfind

F6 rchange

F7 Backward

F8 Forward

F10 Scroll left

F11 Scroll right

Shift + F2 Keys

Shift + F9 Command prompt (toggles with Program menus)

Shift + right arrow Scroll right

Shift + left arrow Scroll left

Ctrl + A Next window

Ctrl + B Previous window

Ctrl + E clear

Ctrl + F Mark

Ctrl + H Unmark

Ctrl + K Cut

Ctrl + L Log

Ctrl + N Undo

Ctrl + O Output window

Ctrl + P Program window

Ctrl + R Store

Ctrl + T Paste

182 Chapter 9 / Working in the SAS Windowing Environment

Key or Key Combination Definition

Ctrl + U Home

Ctrl + W Command window

Ctrl + Y Command prompt (toggles with Program menus)

For information about customizing key definitions, see “Customizing Key Definitions
in UNIX Environments” on page 228. For information about the Keys window and
the KEYDEF command, see the online SAS Help and Documentation.

The SAS ToolBox in UNIX Environments

Introduction to the SAS ToolBox
The SAS ToolBox has two parts as illustrated in the following display:

Figure 9.6 The SAS ToolBox

n A command window that enables you to quickly enter any command in the active
SAS window. For information about commands that are available under UNIX,
see “SAS Commands under UNIX” on page 270 and the SAS commands section
in the Base SAS section in the online SAS Help and Documentation.

n A toolbar that contains several tool icons. When you select a tool icon, SAS
immediately executes the command that is associated with that icon. You can
customize both the toolbar and the tool icons. For more information, see “Using
the Tool Editor” on page 221.

The name of the active window is displayed in the title bar of the SAS ToolBox. For
example, if the Log window were active, the title bar would say SAS ToolBox: Log
instead of SAS ToolBox: Program Editor.

Under UNIX, the default SAS ToolBox automatically appears at the bottom of the
SAS windows stack by default. To control its configuration, you use the Preferences
dialog box. (See “Modifying the SAS ToolBox Settings ” on page 212.)

The SAS ToolBox in UNIX Environments 183

Customizing the Default SAS ToolBox
The default SAS ToolBox is automatically copied to your
Sasuser.Profile.Dms.Toolbox regardless of whether you customize the ToolBox. If
you invoke an application that does not have an associated PMENU entry, the
default toolbox is displayed for that application. If you then customize the toolbox for
that application, the customized toolbox is stored in Sasuser.Profile.Default.Toolbox.
In Sasuser.Profile.Default.Toolbox, DEFAULT is the same entry name as the
PMENU entry for the window or application.

You can customize the default SAS ToolBox, create multiple toolboxes and switch
between them, and create application-specific toolboxes (such as with SAS/AF
applications) that are automatically loaded when the application is loaded. Only one
toolbox is displayed at a time, and the tools in the toolbox change as you move
between applications. For more information, see “Customizing Toolboxes and
Toolsets in UNIX Environments” on page 220.

Default Configuration for the Command Window
and the Toolbar

By default, the toolbar and the command window are joined and are automatically
displayed when SAS initializes unless one of the following conditions applies:

n You executed your SAS job in a non-windowing environment mode.

n The SAS.defaultToolBox or SAS.defaultCommandWindow resource is set to
False. The default value is True. For more information about the resources that
control the toolbox, see “X Resources That Control Toolbox Behavior” on page
220.

n You deselect Display tools window, Display command window, or Combine
windows from the ToolBox tab in the Preferences dialog box.

The following display shows the command window and the toolbar in their default
configuration.

Figure 9.7 Default Configuration for Command Window and Toolbar

184 Chapter 9 / Working in the SAS Windowing Environment

Opening and Closing the Command Window and
the Toolbar

The following table lists the steps that you can use to open and close the command
window and toolbar.

Table 9.2 Steps for Opening and Closing the Command Window and the Toolbar

Window How to Open How to Close

Command
Window and
Toolbar

To open both windows, complete
any of the following steps:

n Issue the COMMAND
WINDOW command.

n Issue the TOOLLOAD
command. For more
information, see “TOOLLOAD
Command: UNIX” on page
290.

n Select Tools ð Options ð
Toolbox.

To close these windows,
complete any of the following
steps:

n Select Close from the
ToolBox window menu.

n Enter the TOOLCLOSE
command as described in
“TOOLCLOSE Command:
UNIX” on page 289.

n Select Tools ð Options ð
Toolbox so that ToolBox is
deselected.

Command
Window

To open only the command
window, deselect Combine
Windows on the tab of the
Preferences dialog box, and
complete any of the following
steps:

n Select Display command
window in the ToolBox tab
of the Preferences dialog box.

n Issue the COMMAND
WINDOWS command.

To close only the command
window, complete the following
steps:

n Deselect Display command
window on the ToolBox tab
of the Preferences dialog box.

n Select Close from the window
menu.

Toolbar To open only the toolbar,
deselect Combine windows on
the ToolBox tab of the
Preferences dialog box, and
complete any of the following
steps:

n Select Display tools window
on the ToolBox tab of the
Preferences dialog box.

n Issue the TOOLLOAD
command. See “TOOLLOAD
Command: UNIX” on page
290.

To close only the toolbar,
deselect Combine windows on
the ToolBox tab of the
Preferences dialog box, and
complete any of the following
steps:

n Deselect Display tools
window on the ToolBox tab
of the Preferences dialog box.

n Issue the TOOLCLOSE
command as described in
“TOOLCLOSE Command:
UNIX” on page 289.

The SAS ToolBox in UNIX Environments 185

Window How to Open How to Close

n Select Tools ð Options ð
Toolbox.

n Select Tools ð Options ð
Toolbox so that Toolbox is
deselected.

Executing Commands
You can execute commands from either the command window or the toolbar. The
following table gives more details about how to execute commands.

Table 9.3 Executing Commands in the Command Window and the Toolbar

Location Execution

Command Window To execute a command, complete the following steps:

1 Click in the command window.

2 Enter the command.

3 Press Enter or click the check mark.

The command is executed in the active SAS window. You can
use the up and down arrow keys to scroll through previously
entered commands, or you can select a previous command
from the drop-down list. Use the left mouse button to select a
command from the drop-down list. Use the right mouse button
to select and execute a command from the list.

Toolbar To execute a command, click a tool icon in the toolbar to
execute the command or commands that are associated with
that icon. If you place the cursor over an icon for the amount of
time specified by the SAS.toolBoxTipDelay resource, a pop-up
window displays text that describes the command for that icon.

186 Chapter 9 / Working in the SAS Windowing Environment

Opening Files in UNIX Environments

Opening the Open Dialog Box

Opening the Dialog Box
The Open dialog box enables you to select files from the host file system. To open
this dialog box, select File ð Open.

Figure 9.8 Open Dialog Box

Description of the Open Dialog Box
Options
The following table describes the options found in the Open dialog box.

Opening Files in UNIX Environments 187

Table 9.4 Options in the Open Dialog Box

Option Description

Enter directory, name or filter is where you can enter the name of the directory,
file, or file filter (file type) that you want to open.

The directory shown in the Filter field is the
currently selected directory. You can change this
directory either by selecting a name from the Page
of Directories list or by entering the new name
directly into the field. The dialog box displays non-
readable directories with a different icon.

To display a list of all the files in a directory, enter
the asterisk (*) wildcard in the Filter field or select
All Files; * as the file type.

Page of Directories contains the names of the directories specified in
the Filter and Page fields.

Files contains the files in the selected directory that
match the filter specified.

Page enables you to change the directories that are listed
in the Page of Directories list. A new page is
defined when the number of entries in the Page of
Directories list exceeds twice the screen height. To
change pages, use the right or left arrows next to
the Page field.

File type enables you to select the type or types of files to be
shown in the Files list. You can display a list of
possible file filters by selecting the down arrow next
to the field. Click on a file filter to select it.

Ignore Case specifies that both uppercase and lowercase names
be included in the display. (If you select All Files; *
as the filter, both uppercase and lowercase names
are displayed if you select Ignore Case.)

Include hidden includes or excludes hidden files and directories
from the graphical display.

Specifying the Initial Filter and Directory
Using SAS Resources
You can specify the initial filter in the File type field by assigning a value to the
SAS.pattern resource. However, the Open dialog box retains its filter between
invocations, so the SAS.pattern resource applies only to the first invocation of the

188 Chapter 9 / Working in the SAS Windowing Environment

Open dialog box. You can also use the SAS.directory resource to specify the
directory that you want when you first invoke the Open dialog box.

For more information about specifying SAS resources, see “Overview of X
Resources” on page 204.

Using Regular Expressions in Filenames
Everything that you enter into the Open dialog box is treated as a regular
expression. When you are opening or saving a file and you want to use a regular
expression special character as part of the filename, precede the character with a
backslash (\). For example, to write to a file named $Jan, enter \$Jan as the
filename.

For more information about regular expressions, see UNIX man page 5 for regexp:

man 5 regexp

Changing Your Working Directory in
UNIX Environments

What Is Your Working Directory?
The working directory is the operating system directory to which many SAS
commands and actions apply. By default, SAS uses the current directory as the
working directory when you begin your SAS session.

Changing Your Working Directory
You can change the working directory during your SAS session. You can use the
Change Working Directory dialog box to select a new directory, or you can use the X
command, the X statement, the CALL SYSTEM routine, or the %SYSEXEC macro
statement to issue the change directory (cd) command. For information about the X
command and statement, the CALL SYSTEM routine, and the %SYSEXEC macro
statement, see “Executing Operating System Commands from Your SAS Session”
on page 18.

Changing Your Working Directory in UNIX Environments 189

The Change Working Directory Dialog Box
To open the Change Working Directory dialog box, issue the DLGCDIR command or
select Tools ð Options ð Change Directory.

Figure 9.9 The Change Working Directory Dialog Box

The Change Working Directory dialog box works exactly the same as the Open
dialog box, except that you cannot select a file from the list. For an explanation of
the options in the Change Working Directory dialog box, see “Description of the
Open Dialog Box Options” on page 187.

190 Chapter 9 / Working in the SAS Windowing Environment

Selecting (Marking) Text in UNIX
Environments

Difference between Marking Character Strings and
Blocks

When you select text in a SAS window, you can select character strings or blocks.
Character strings include the text in successive columns of one or more rows, as
shown in the following display. Blocks are rectangular blocks that include the same
columns from successive rows, as shown in Figure 9.11 on page 192.

Figure 9.10 Program Editor Window with Strings That Are Marked

Selecting (Marking) Text in UNIX Environments 191

Figure 9.11 Program Editor Window with Blocks That Are Marked

Techniques for Selecting Text

Select Text with the Mouse
To select your text, complete the following steps:

1 Position the cursor at the beginning of the text that you want to mark.

2 Press and hold the left mouse button. If you want to select a block instead of a
string, press and hold the Ctrl key before you press the left mouse button.

3 Drag the mouse pointer over the text that you want to mark.

4 Press and hold down the Alt key (or Extend Char key or Meta key, depending on
your keyboard) while you release the mouse button. The marks that are
generated by the mouse are called drag marks.

To extend an area of marked text, press and hold the Shift key, and use the left
mouse button and the Alt key (and the Ctrl key, if you are marking a block) to mark
the new ending position. To unmark the selected text, press the mouse button
anywhere in the window.

Select Text with the MARK Command
You can issue the MARK command from the command line, or you can assign it to a
function key. With the MARK command, you can select more than one area of text
in the same window at the same time. For more information about the MARK
command, see the online SAS Help and Documentation.

192 Chapter 9 / Working in the SAS Windowing Environment

To select your text, complete the following steps:

1 Position the cursor at the beginning of the text that you want to mark.

2 Issue the MARK command. If you want to select a block instead of a string, add
the BLOCK argument to the MARK command.

3 Move the cursor to the end of the text that you want to mark.

4 Issue the MARK command a second time.

To unmark the selected text, issue the UNMARK command.

Select Text By Using the Edit Menu
To select your text using the Edit menu, complete the following steps:

1 Position the cursor at the beginning of the text that you want to mark.

2 Select Edit ð Select.

3 Position the cursor at the end of the text that you want to mark.

4 Press the left mouse button.

To unmark the selected text, select Edit ð Deselect.

Copying or Cutting and Pasting Selected
Text in UNIX Environments

Techniques for Copying or Cutting and Pasting
Selected Text

After you have marked text, you can copy or cut the text and paste it in another
location.

n To copy text, select the Copy icon from the ToolBox, issue the STORE or
WCOPY command, or select Edit ð Copy.

n To cut text, select the Cut icon from the ToolBox, issue the CUT or WCUT
command, or select Edit ð Cut.

n To paste the cut or copied text, select the Paste icon from the ToolBox, issue the
PASTE or WPASTE command, or select Edit ð Paste.

For more information about the CUT, PASTE, and STORE commands, see online
SAS Help and Documentation.

Copying or Cutting and Pasting Selected Text in UNIX Environments 193

How SAS Uses the Automatic Paste Buffer
When you end a drag mark by releasing the mouse button without holding down the
Alt key, SAS performs an end-of-mark action that might automatically generate a
STORE command to save the contents of the mark into a SAS paste buffer. If the
STORE command is generated automatically, you do not have to explicitly copy the
text before you paste it.

Disabling the Automatic Paste Buffer
You can disable the automatic paste buffer in the following ways:

n Set the SAS.markPasteBuffer resource.

n Deselect Automatically store selection on the Editing tab in the Preferences
dialog box: Tools ð Options ð Preferences.

For more information, see “Customizing Cut and Paste in UNIX Environments” on
page 250.

Copying and Pasting Text between SAS and Other
X Clients

You can cut or copy and paste text between X clients if you associate the default
SAS paste buffer with a paste buffer specific to X. For example, if you associate the
default SAS paste buffer with the paste buffer, you can copy and paste text between
xterm windows and SAS windowing environment. To associate the SAS buffer with
an X buffer, specify the SAS.defaultPasteBuffer resource:

SAS.defaultPasteBuffer: XTERM

For more information about using paste buffers, see “Customizing Cut and Paste in
UNIX Environments” on page 250.

194 Chapter 9 / Working in the SAS Windowing Environment

Using Drag and Drop in UNIX
Environments

Difference between Default and Non-Default Drag
and Drop

The SAS windowing environment on UNIX offers two types of drag and drop: default
and non-default. Default drag and drop enables you to move text from one place to
another. Non-default drag and drop enables you to choose whether to move or copy
the text, submit the text if you are dragging SAS code, or cancel the drag and drop
operation. With default drag and drop, you can drag text between SAS windows in
different SAS sessions and between SAS windows and other Motif applications that
support drag and drop. Non-default drag and drop is available only between
windows in the same SAS session.

Limitations of Drag and Drop in UNIX
Under UNIX, you cannot drag and drop files or RTF (Rich Text Format) text.

How to Drag and Drop Text
To drag and drop text, first mark the text in one of the ways described in “Selecting
(Marking) Text in UNIX Environments” on page 191. To use default drag and drop,
use the middle mouse button to drag the text where you want it. To use non-default
drag and drop, press and hold the Alt (or EXTEND CHAR) key before you release
the mouse button.

Using Drag and Drop in UNIX Environments 195

Searching for and Replacing Text Strings
in UNIX Environments

What Are the Find and Replace Dialog Boxes?
The Find and Replace dialog boxes enable you to search for and replace strings in
SAS text editor windows such as the Program Editor, the SCL editor, or NOTEPAD.

Opening the Find Dialog Box
To search for a string, open the Find dialog box by issuing the DLGFIND command
or by selecting Edit ð Find.

Description of the Find Dialog Box Options
The Find dialog box works like the Replace dialog box, except it does not have the
Replace field or the Replace and Replace All buttons.

For a description of the options in the Find dialog box, see “Description of the
Replace Dialog Box Options ” on page 197.

Opening the Replace Dialog Box
To replace one text string with another, open the Replace dialog box by issuing the
DLGREPLACE command or by selecting Edit ð Replace.

196 Chapter 9 / Working in the SAS Windowing Environment

Figure 9.12 Replace Dialog Box

Description of the Replace Dialog Box Options
To find a character string, enter the string in the Find field, and click Find. To
change a character string, enter the string in the Find field, enter its replacement in
the Replace field, and click Replace. To change every occurrence of the string to its
replacement string, click Replace All.

You can customize your find or replace operation using the following buttons:

Match Case
tells the search to match the uppercase and lowercase characters exactly as you
entered them.

Match Word
searches for the specified string delimited by space, end-of-line, or end-of-file
characters.

Previous
searches from the current cursor position toward the beginning of the file.

Next
searches from the current cursor position toward the end of the file.

Sending Mail from within Your SAS
Session in UNIX Environments

Default Email Protocol in SAS
By default, SAS uses SMTP (Simple Mail Transfer Protocol) to send email from
within your SAS session. You can use the EMAILSYS system option to specify

Sending Mail from within Your SAS Session in UNIX Environments 197

which script or protocol you want to use for sending electronic mail. For more
information, see “EMAILSYS System Option: UNIX” on page 429.

For more information about the SMTP email interface, see SAS Programmer’s
Guide: Essentials.

What Is the Send Mail Dialog Box?
The Send Mail dialog box enables you to send email without leaving your current
SAS session. To invoke the dialog box, issue the DLGSMAIL command or select
File ð Send Mail.

Figure 9.13 Send Mail Dialog Box

Sending Email By Using the Send Mail Dialog Box
To send email, complete the following steps as needed:

1 Enter the IDs of the email recipients in the To, Cc, and Bcc fields. Separate
multiple addresses with either spaces or commas.

198 Chapter 9 / Working in the SAS Windowing Environment

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

2 Edit the entry in the Subject field as needed.

3 Enter the name of the file that you want to send in the Attach field. Separate
multiple filenames with spaces. You can also use Browse to select a file.

Note: Some external scripts do not support sending email attachments.

4 Enter your message in the message area or edit the contents grabbed from the
active SAS text window.

5 Click Send.

To cancel a message, click Cancel.

Sending the Contents of a Text Window
You can email the contents of an active SAS text window (such as the Program
Editor or the Log) by using the Send mail dialog box. To open the Send mail dialog
box, select File ð Send Mail. SAS automatically copies the contents of the active
SAS window and includes the text in the body of your email. You can change or add
to the email message in the Send mail dialog box.

If you do not want to include the contents of the active SAS window in your
message, select Edit ð Clear All before invoking the Send mail dialog box.

Sending the Contents of a Non-Text Window
To send the contents of a non-text window (such as a graph generated by
SAS/GRAPH or an image from your PROC REPORT output), select File ð Send
Mail from the active SAS window. SAS automatically copies the image data to a
temporary file and enters that filename into the Attach field of the Send mail dialog
box. To change the default file type for this temporary file, see “Changing the Default
File Type” on page 200 .

SAS copies only the portion of the image that is visible in the active window, along
with the window frame and title. This behavior is similar to using the DLGSCRDUMP
command. For more information, see “DLGSCRDUMP Command: UNIX” on page
278.

If you do not want to attach this image to your email, clear the contents of the
Attach field.

Note: Some external scripts do not support sending email attachments.

Sending Mail from within Your SAS Session in UNIX Environments 199

Changing the Default File Type
You can change the default file type for the temporary file that SAS creates by using
the Preferences dialog box. To open the Preferences dialog box, follow these steps:

1 Select Tools ð Options ð Preferences.

2 On the DMS tab in the Image type for Email attachments box, select one of
the following file types:

n Portable Network Graphics (.png)

n Graphics Interchange Format (.gif)

n Tagged Image File Format (.tif)

Configuring SAS for Host Editor Support
in UNIX Environments

Requirements for Using a Host Editor
SAS supports the use of a host text editor with the Motif interface, so you can use
an editor such as vi or Emacs with your SAS session. There is no host editor set as
the default host editor, so you must specify one to use this feature. Host editor
support requires the use of the motifxsassm client. For more information, see “The
SAS Session Manager (motifxsassm) in UNIX” on page 177.

Invoking and Using Your Host Editor

How to Open and Use the Host Editor
To use your host text editor with SAS, complete the following steps:

1 Specify the command required to invoke your editor with the EDITCMD system
option.

2 Invoke the editor as needed with the HOSTEDIT command.

200 Chapter 9 / Working in the SAS Windowing Environment

The HOSTEDIT command passes data from a SAS window to the host editor. When
you save data in the host editor, the data is copied back into the SAS window if the
window can be written to.

After you return to the SAS text editor window, you can issue the UNDO command
to undo all of the changes that you made with your host editor. You must issue the
UNDO command a second time to return to the state of the window before the
HOSTEDIT command was issued. If you issue the HOSTEDIT command in a read-
only window, you can save your editing changes to an external file, but the SAS text
editor window remains unchanged.

For more information, see “EDITCMD System Option: UNIX” on page 428 and
“HOSTEDIT Command: UNIX” on page 284.

Example 1: Invoking SAS to Use xedit with
the HOSTEDIT Command
An X-based editor, called xedit, is installed on some systems. If you want to use
xedit with the HOSTEDIT command, you can invoke SAS with the following
command:

sas -editcmd '/usr/local/bin/xedit'

Example 2: Invoking SAS to Use vi
The vi editor is a terminal-based editor that requires a terminal window. The xterm
client's -e option runs a program when the xterm client is invoked. To use the
EDITCMD option to display an xterm client in conjunction with vi, invoke SAS as
follows:

sas -editcmd '/usr/bin/X11/xterm -e /usr/bin/vi'

Troubleshooting the Transfer of Text Attributes
Text attributes, such as color and highlighting, are not transferred between a host
editor window and a SAS text editor window. Issue the HEATTR ON command to
display a dialog box that warns you if you are editing text with highlighting and color
attributes that will be removed by the host editor. This dialog box prompts you to
continue or stop the HOSTEDIT command. Specify HEATTR OFF to suppress this
dialog box.

Configuring SAS for Host Editor Support in UNIX Environments 201

Getting Help in UNIX Environments
The Help menu is always available within your SAS session. Here are descriptions
of the Help topics that are available from the Help menu:

Using This Window
provides help information that is relevant to the active window. You can access
the same information by clicking the Help button or pressing the F1 key.

SAS Help and Documentation
provides tutorials and sample programs to help you learn how to use SAS,
comprehensive documentation for all products installed at your site, and
information about contacting SAS for additional support.

Note: If you set the block unrequested pop-up windows option in your browser's
Preferences dialog box, then the online SAS Help and Documentation might not
be displayed.

Getting Started with SAS Software
opens a tutorial that helps you get started with SAS.

SAS on the Web
provides links to useful areas on the SAS website, including the customer
support center, frequently asked questions, sending feedback to SAS, and the
SAS home page. (See the SAS Technical Support site.)

About SAS 9
opens the About SAS 9 dialog box, which provides information about SAS
software, your operating environment, and Motif.

202 Chapter 9 / Working in the SAS Windowing Environment

https://support.sas.com/en/technical-support.html

10
Customizing the SAS Windowing
Environment

Overview of Customizing SAS in X Environment . 204

Overview of X Resources . 204
Introduction to X Resources . 204
Syntax for Specifying X Resources . 205

Methods for Customizing X Resources . 205

Modifying X Resources through the Preferences Dialog Box 207
What Is the Preferences Dialog Box? . 207
Opening the Preferences Dialog Box . 207
Description of the Options in the Preferences Dialog Box . 208

Setting X Resources with the Resource Helper . 213
Introduction to the Resource Helper . 213
How to Start the Resource Helper . 213
Defining Keys with the Resource Helper . 214
Modifying the Color of a SAS Window Using the Resource Helper 216
How the Resource Helper Searches for X Resources . 218

Customizing Toolboxes and Toolsets in UNIX Environments 220
Techniques for Customizing Toolboxes . 220
X Resources That Control Toolbox Behavior . 220
Using the Tool Editor . 221
Creating a New Toolbox . 226
Create or Customize an Application- or Window-Specific Toolbox 227
Create or Customize an Application- or Window-Specific Toolset 227

Customizing Key Definitions in UNIX Environments . 228
Techniques for Customizing Your Key Definitions . 228
Defining Key Translations . 229

Customizing Fonts in UNIX Environments . 237
Difference between the System Font and Fonts That Are Used in

the Windowing Environment . 237
How SAS Determines Which Font to Use . 237
Customizing Fonts By Using the Fonts Dialog Box . 238
Specifying Font Resources . 239

203

Specifying Font Aliases . 240

Customizing Colors in UNIX Environments . 242
Methods for Customizing the Color Settings in Your SAS Session 242
Customizing Colors By Using the SASCOLOR Window . 242
Syntax of the COLOR Command . 243
Defining Color Resources . 244

Controlling Drop-down Menus in UNIX Environments . 250

Customizing Cut and Paste in UNIX Environments . 250
Instructions for Cutting and Pasting Text . 250
Types of Paste Buffers . 250
Selecting a Paste Buffer . 251
Manipulating Text Using a Paste Buffer . 251
Notes about Preserving Text and Attribute Information . 252

Customizing Session Workspace, Session Gravity, and Window
Sizes in UNIX Environments . 252

Specifying User-Defined Icons in UNIX Environments . 254
Why Specify User-Defined Icons? . 254
How SAS Locates a User-Defined Icon . 254
X Resources for Specifying User-Defined Icons . 255

Miscellaneous Resources in UNIX Environments . 256

Summary of X Resources for SAS in UNIX Environments . 258

Overview of Customizing SAS in X
Environment

The SAS windowing environment supports the use of X-based graphical user
interfaces (GUIs). In UNIX environments, SAS provides an X Window System
interface that is based on the Motif style. For more information about SAS in the X
environment, see “Description of SAS in the X Environment” on page 175.

You can customize your working environment by using X resources.

Overview of X Resources

Introduction to X Resources
X clients usually have characteristics that can be customized; these properties are
known as X resources. Because SAS functions as an X client, many aspects of the
appearance and behavior of the SAS windowing environment are controlled by X

204 Chapter 10 / Customizing the SAS Windowing Environment

resources. For example, X resources can be used to define a font, a background
color, or a window size. The resources for an application, such as SAS, are placed
in a resource database.

SAS functions correctly without any modifications to the resource database.
However, you might want to change the default behavior or appearance of the
interface. There are several ways to specify your customizations. Some methods
modify all SAS sessions displayed on a particular X server. Some methods affect all
SAS sessions run on a particular host. Other methods affect only a single SAS
session.

If you need more information about X Window System clients and X resources, see
the documentation provided by your vendor.

Syntax for Specifying X Resources
A resource specification has the following format:

resource-string: value

The resource string usually contains two identifiers and a separator. The first
identifier is the client or application name (SAS), the separator is a period (.) or
asterisk (*) character, and the second identifier is the name of the specific resource.
The value given can be a Boolean value (True or False), a number, or a character
string, depending on the resource type.

The application name and resource name can both specify an instance value or a
class value. A specification for a class applies to a larger scope than a single
instance.

The following are sample resource specifications:

SAS.startSessionManager: True
SAS.maxWindowHeight: 100
SAS.awsResizePolicy: grow

See your X Window System documentation for more information about resource
specifications.

Methods for Customizing X Resources
The following list describes the methods that you can use to customize X resources.

n Use the Font dialog box, the Preferences dialog box, or the Resource Helper to
customize your SAS session. All of these tools write X resource definitions out to
a location that SAS will read the next time you start a SAS session. For more
information about these tools, see “Modifying X Resources through the
Preferences Dialog Box” on page 207, “Setting X Resources with the Resource
Helper” on page 213, and “Customizing Fonts in UNIX Environments” on page
237.

Methods for Customizing X Resources 205

Note: The settings that you specify in the Preferences dialog box override any
command line settings.

n Specify session-specific resources by using the -xrm option on the command
line for each invocation of SAS. For example, the following command specifies
that SAS will not display the Confirm dialog box when you exit your SAS session:

sas -xrm 'SAS.confirmSASExit: False'

You can specify the -xrm option as many times as needed. You must specify the
-xrm option for each resource.

Note: If you normally invoke SAS with a shell script, you should protect the
quotation marks from the shell with the backslash (\) character:

sasscript -xrm \'SAS.confirmSASExit: False\'

n Add resource definitions to a file in your home directory. If you place resources in
a file that X Toolkit normally searches for when applications are invoked, these
resources are loaded when you invoke SAS. For information about where the X
Toolkit searches for resources, see the documentation for the X Window System.

You can also add resources to the resource database after SAS has initialized
by running the xrdb utility. For example, the following command merges the
definitions in the MyResources file into the resource database:

xrdb -merge myresources

n Create a subdirectory for storing resource definitions. (This subdirectory is
usually named app-defaults.) Set the XUSERFILESEARCHPATH environment
variable to the pathname of this subdirectory. You can use %N to substitute an
application class name for a file when specifying the XUSERFILESEARCHPATH
environment variable. Specify the definition for this environment variable in the
initialization file for your shell (for example, the $HOME/.login, $HOME/.cshrc, or
$HOME/.profile files). This action ensures that the XUSERFILESEARCHPATH
environment variable is defined for each shell that is started.

Create a file called SAS in the subdirectory identified by
XUSERFILESEARCHPATH. Include your resource definitions in this file.

Note: Alternatively, you could set the XAPPLRESDIR environment variable to
the pathname of the subdirectory that stores your resource definitions. The
XAPPLRESDIR and XUSERFILESEARCHPATH environment variables use a
slightly different syntax to specify the location of your resource definitions. The
location specified by the XUSERFILESEARCH environment variable takes
precedence over the location specified by the XAPPLRESDIR variable. For more
information, see the UNIX X man page.

n If you want the customized resource definitions to be used for all users on a
particular host, create a file called SAS to contain your customized resource
definitions. Store this file in the system app-defaults directory.

For more information about X resources, see the X Window System documentation
supplied by your vendor or other documentation about the X Window System.

206 Chapter 10 / Customizing the SAS Windowing Environment

Modifying X Resources through the
Preferences Dialog Box

What Is the Preferences Dialog Box?
The Preferences dialog box enables you to control the settings of certain X
resources. Changes that are made through the Preferences dialog box (with the
exception of changes to resources on the General tab) become effective
immediately. The settings are saved in the SasuserPrefs file in your Sasuser
directory.

Note: The settings that you specify in the Preferences dialog box override any
command line settings for the current session.

Opening the Preferences Dialog Box
You can open the Preferences dialog box by issuing the DLGPREF command or by
selecting Tools ð Options ð Preferences.

Modifying X Resources through the Preferences Dialog Box 207

Figure 10.1 Preferences Dialog Box

Description of the Options in the Preferences Dialog
Box

Modifying the General Settings
To modify the General settings, select the General tab in the Preferences dialog
box, and then select from the items in the window:

Start Session manager
specifies whether you want the SAS Session Manager to be started
automatically when you start your SAS session. If you want to use your host
editor in your SAS session, the SAS Session Manager must be running. The
SAS Session Manager enables you to interrupt or terminate your SAS session
and minimize and restore all of the windows in a SAS session. See “The SAS
Session Manager (motifxsassm) in UNIX” on page 177 and “Configuring SAS for
Host Editor Support in UNIX Environments” on page 200 for more information.
Clicking the Start Session manager box sets the SAS.startSessionManager
resource.

208 Chapter 10 / Customizing the SAS Windowing Environment

Startup Logo
specifies whether you want SAS to display an XPM file while your SAS session
is being initialized and, if so, which file.

If you select Use Default Logo, SAS uses the default file for your site. If you
select No Logo, then no file is displayed. If you select Use Custom Logo, then
you can either enter the XPM filename directly in the text field or click Select to
open the File Selection dialog box. Selecting this box sets the SAS.startupLogo
resource.

Use application workspace
confines all windows displayed by an application to a single application
workspace. Selecting this box sets the SAS.noAWS resource. You must exit and
reopen the windows for changes to this resource to take effect.

Note: In the UNIX operating environment, the application workspace (AWS) is
turned on by default. If you are using the EFI window, and you want the window
to remember its exact position and size, then you must turn off the AWS. To do
this, select Tools ð Options ð Preferences, and deselect Use application
workspace. Be sure to return the AWS to its default setting when your work in
the EFI window is completed.

AWS Resize Policy
controls the policy for resizing AWS windows as interior windows are added and
removed. (For more information, see “Workspace and Gravity in a SAS Session”
on page 176 and “Window Types” on page 176.)

Grow
The AWS window attempts to grow anytime an interior window is grown or
moved (to make all of its interior windows visible). It does not shrink to
remove unused areas.

Fixed
The AWS window attempts to size itself to the size of the first interior window
and does not attempt any further size changes.

Selecting this box sets the SAS.awsResizePolicy resource.

Modifying the DMS Settings
To modify the DMS settings, select the DMS tab in the Preferences dialog box, and
then select from the items in the window:

Use menu access keys
activates menu mnemonics. When mnemonics are turned on, you can select
menu items by entering the single, underlined letter in the item. Selecting this
box sets the SAS.usePmenuMnemonics resource.

Confirm exit
displays the Exit dialog box when you exit your SAS session. Selecting this box
sets the SAS.confirmSASExit resource.

Save Settings on Exit
tells SAS to issue the WSAVE ALL command when you exit your SAS session.
This command saves the global settings, such as window color and window
position, that are in effect for all windows that are currently open. These settings

Modifying X Resources through the Preferences Dialog Box 209

are saved in your Sasuser.Profile catalog. Selecting this box sets the
SAS.wsaveAllExit resource.

Note: For the WSAVE command to work, your window manager must support
explicit window placement. See the documentation for your window manager to
determine how to configure your window manager. For example, if you are
running Exceed, open the Screen Definition Settings dialog box and deselect
Cascade Windows.

Backup Documents
enables you to specify whether you want SAS to automatically save (at the
interval specified by the SAS.autoSaveInterval resource) the documents that
you currently have open. Selecting this box sets the SAS.autoSaveOn resource.

Image type for Email attachments
specifies the default file type for the temporary file that SAS creates when
sending the contents of a non-text window via email. Examples of non-text
windows include a graph generated by SAS/GRAPH or an image from your
PROC REPORT output. For more information, see “Sending the Contents of a
Non-Text Window” on page 199.

Modifying the Editing Settings
To modify the Editing settings, select the Editing tab in the Preferences dialog box,
and then select from the items in the window:

Default paste buffer
defines an alias for the default SAS buffer. The following list describes the paste
buffer alias names and the X buffer with which each name is associated.

XPRIMARY
X primary selection (PRIMARY)

XSCNDARY
X secondary selection (SECONDARY)

XCLIPBRD
X clipboard (CLIPBOARD)

XTERM
exchange protocol used by the xterm client

XCUTn
X cut buffer where n is between 0 and 7, inclusive

Selecting this box sets the SAS.defaultPasteBuffer resource. See
“Controlling Drop-down Menus in UNIX Environments” on page 250 for more
information about cut-and-paste buffers.

Automatically store selection
generates a STORE command every time you mark a region of text with the
mouse. Selecting this box sets the SAS.markPasteBuffer resource.

Cursor
controls the editing mode in SAS text editor windows. Selecting the Insert and
Overtype boxes sets the SAS.insertModeOn resource to True and False,
respectively.

210 Chapter 10 / Customizing the SAS Windowing Environment

Modifying the Results Settings
To modify the results settings, click the Results tab in the Preferences dialog box.
The items on the Results tab affect output that is produced through ODS. (For a
complete description of ODS, see the SAS Output Delivery System: User’s Guide.)
Select from the items in this dialog box:

Create Listing
opens the ODS LISTING destination, which produces monospace output.
Selecting this box is equivalent to entering the ODS LISTING SELECT ALL
statement.

Create HTML
opens the ODS HTML destination, which produces output that is formatted in
HTML. HTML is the default output type.

Folder
specifies a destination directory for HTML files. Specifying a directory in this field
is equivalent to specifying a directory with the PATH option in the ODS HTML
statement.

Use WORK Folder
tells ODS to send all HTML files to your Work directory. Selecting this box is
equivalent to specifying the pathname of your Work directory with the PATH
option in the ODS HTML statement.

Style
specifies the style template to use for HTML output. The style template controls
such aspects as color, font name, and font size. Specifying a style in this field is
equivalent to specifying a style with the STYLE option in the ODS HTML
statement. You can specify any style that is defined in the
\ODS\PREFERENCES\STYLES key in the SAS registry. You can open the SAS
registry by issuing the REGEDIT command, or by selecting Solutions ð
Accessories ð Registry Editor.

The default style is HTMLBlue.

View results as they are generated
tells SAS to automatically display results when they are generated. If you select
this box, make sure that Password protect HTML file browsing is deselected.

Password protect HTML file browsing
tells SAS to prompt you for your password before sending HTML files to your
browser. If you select this box, make sure that View results as they are
generated is deselected. Selecting this box sets the SAS.htmlUsePassword
resource.

Use ODS Graphics
enables you to automatically generate graphs when running procedures that
support ODS graphics. Use ODS Graphics is turned on by default.

Modifying X Resources through the Preferences Dialog Box 211

Modifying the SAS ToolBox Settings
The items on the ToolBox tab of the Preferences dialog box affect both the ToolBox
and the command window. To modify these settings, select the ToolBox tab in the
Preferences dialog box:

Display tools window
determines whether to display the default toolbox. Selecting this check box sets
the SAS.defaultToolBox resource.

Display command window
determines whether to display the command window. Selecting this check box
sets the SAS.defaultCommandWindow resource.

Auto Complete Commands
specifies whether SAS automatically fills in the remaining characters of a
command as you enter a command in the command window. SAS completes the
command with a command that you have previously entered that begins with the
same characters. If both this box and Save Commands are selected, then SAS
can automatically fill in commands that were entered in previous sessions.
Selecting this check box sets the SAS.autoComplete resource.

Save Commands
specifies whether SAS saves the commands that you enter in the command
window and how many commands are saved. You can specify a number from 0
to 50. If you specify 0, no commands are saved. If you specify 1 or more, that
number of commands is saved in the file commands.hist in your Sasuser
directory. If this box is selected, then SAS automatically fills in (see Auto
Complete Commands) commands that were entered in previous sessions.
Selecting this field sets the SAS.commandsSaved resource.

Combine windows
combines the ToolBox and command window into one window. The ToolBox and
command window are combined by default. Selecting this check box sets the
SAS.useCommandToolBoxCombo resource.

Use arrow decorations
adds arrows to both ends of the combined ToolBox and command window.
Selecting this check box sets the SAS.useShowHideDecorations resource.

Always on top
keeps the ToolBox or the combined ToolBox and command window on top of the
window stack. This check box is selected by default, which might cause
problems with window managers and other applications that want to be on top of
the window stack. If you have such a situation, turn off this feature. Selecting this
check box sets the SAS.toolBoxAlwaysOnTop resource.

Toolbox Persistent
specifies whether the ToolBox that is associated with the Program Editor window
stays open when you close the Program Editor. By default, the Program Editor
ToolBox stays open whenever you close the Program Editor window. If you
deselect this box, then the ToolBox closes if you close the Program Editor.
Selecting this check box sets the SAS.isToolBoxPersistent resource.

The items in the Tools area affect the individual tools in the ToolBox.

212 Chapter 10 / Customizing the SAS Windowing Environment

Use large tools
controls whether tool icons are displayed as 24x24 or 48x48 pixels. The default
is 24x24. Selecting this check box sets the SAS.useLargeToolBox resource.

Use tip text
specifies whether the ToolTip text is displayed when you position your cursor
over a tool in the toolbox. Some window managers might place the toolbox tip
behind the toolbox. If the toolbox tip is placed behind the toolbox in your
environment, deselect this box. Selecting this check box sets the
SAS.useToolBoxTips resource.

delay
controls the delay in milliseconds before popping up the toolbox tip. Selecting
this check box sets the SAS.toolBoxTipDelay resource. You can enter a value
directly into the field or use the arrows to the right of the field to change the
value.

Setting X Resources with the Resource
Helper

Introduction to the Resource Helper
With Resource Helper, you can customize the key definitions and the colors of the
SAS interactive interface. Resource Helper creates SAS resource definitions and
stores them in a location where the Resource Manager can find them. See “How the
Resource Helper Searches for X Resources ” on page 218 for a list of the locations
that Resource Helper searches for resource definitions. Resource settings that are
saved with Resource Helper will take effect the next time you start a SAS session.

You can start Resource Helper from within a SAS session or from your shell prompt.

How to Start the Resource Helper

Start the Resource Helper from a SAS
Session
Start the SAS Resource Helper from a SAS window by entering the following
command on the command line in the command window:

reshelper

Setting X Resources with the Resource Helper 213

Figure 10.2 Main Window for Resource Helper

Start the Resource Helper from a Shell
Prompt
Resource Helper is installed in the /utilities/bin subdirectory in the directory
where SAS is installed (!SASROOT). The name of the executable module is
reshelper. For example, if SAS is installed in /usr/local/sas94, you start
Resource Helper by entering the following command:

/usr/local/sas94/utilities/bin/reshelper &

Defining Keys with the Resource Helper

How to Define a Key
To define a key, follow these steps:

1 Start the Resource Helper (see “How to Start the Resource Helper” on page
213) and select the Keys icon.

Figure 10.3 Keys Window for Resource Helper

214 Chapter 10 / Customizing the SAS Windowing Environment

Key definitions are divided into several Action Categories:

n Move By Cursor

n Move By Field

n Edit

n Miscellaneous

n All Actions

2 Select Click here and press the keys you want to define.

3 Press the key or combination of keys that you want to assign an action to. For
example, press F12. If a default SAS translation has already been assigned to
the key combination, Resource Helper displays the default translation.

4 Select the action category menu button to open a list of action categories. Select
the action category that you want. For example, if you want to define a key to
delete the current field, select Edit as your Action Category. Resource Helper
displays a list of actions in that category.

5 Select an action from the list (for example, Delete current field). Resource
Helper can assign only one action to a translation. If the action that you select
requires an argument (such as sas-action-routine), Resource Helper prompts
you for the argument.

Resource Helper displays the key combination and its new definition:

None<Key>F12: sas-delete()

Note: If you select the sas-action-routine sas-function-key action routine,
then the key definition is automatically displayed in the Keys window. If you
choose another action routine and if you want the definition to appear in the
Keys window, you need to define a window label for the key. For information
about defining labels in the Keys window, see “Syntax of the
SAS.keysWindowLabels Resource” on page 232.

6 Select the right arrow to add this key translation to the list of User-Defined
Keys.

7 Click OK to exit the Keys window after you have finished defining key
translations.

8 To save your translations permanently, from the Resource Helper drop-down
menus, select File ð Save Resources.

To modify a key definition that is already in the User-Defined Keys list, select the
definition, select the left arrow to remove the definition from the list, and edit the
definition.

To delete a definition from User-Defined Keys, select it and click Delete.

Clear clears the key definition edit window.

Default Defined Keys displays the default key definitions for your system.

Setting X Resources with the Resource Helper 215

Troubleshooting Incorrect Key Definitions
In most cases, using Resource Helper is much easier and faster than defining the
resources yourself. However, the X Window System searches for resources in
several places, so it is possible for Resource Helper to pick up the wrong key
symbol for the key that you are trying to define. If you get unexpected results while
using Resource Helper, you might need to define your key resources yourself. For
more information, see “Defining Key Translations” on page 229.

Modifying the Color of a SAS Window Using the
Resource Helper

How to Use the Color Window
You can modify the color of part of a SAS window as follows:

1 Start Resource Helper and select the Colors icon.

Figure 10.4 Colors Window for Resource Helper

2 Select a category from the Category area.

3 Click a color or attribute in the Colors and Attributes window, or double-click a
color to open the Customize Colors area, shown in the following display.

You can also change the attributes of some categories of SAS windows. The
attributes options are HIGHLIGHT, UNDERLINE, or REVERSE.

216 Chapter 10 / Customizing the SAS Windowing Environment

Figure 10.5 Customize Colors Window for Resource Helper

You can customize a color by doing the following:

n selecting a new Alias

n moving the Red, Blue, or Green sliders

n selecting Grab and clicking a color anywhere on your screen

4 Click OK to exit the Customize Colors window after you have finished defining
your color settings.

The result is displayed in the Sample Window. The hexadecimal value of the color is
displayed at the bottom of the window.

Example: Change the Color of a SAS
Window
The following example shows how to change the color of a SAS window.

1 Double-click Red in the Customize Colors window.

The From: display shows the red currently used by the SAS windowing
environment.

2 Click Aquamarine under Aliases and observe the change in the To: display.

3 Move the Red, Green, and Blue sliders with your mouse and note the changes
in the color of the To: display.

Setting X Resources with the Resource Helper 217

4 Click Apply and note the difference in the color displayed as Red in the Colors
area.

5 Click OK to save your changes.

Return to the Default Settings
Click Defaults to restore your color settings to their default values.

Permanently Save Your Color Settings
To save your color settings permanently, from the Resource Helper drop-down
menus, select File ð Save Resources.

How the Resource Helper Searches for X
Resources

The following list describes the locations where the Resource Helper searches for
resource definitions and the order in which it searches these locations.

1 Resource Helper loads the resources in the file pointed to by the
XENVIRONMENT environment variable. If XENVIRONMENT is not set,
Resource Helper loads the resources in the ~/.Xdefaults-hostname file, where
hostname is the name of the server on which Resource Helper is running.

2 Resource Helper loads the resources defined in the RESOURCE_MANAGER
property. If the RESOURCE_MANAGER property is the first location in which
Resource Helper finds resources, the RESOURCE_MANAGER property
overrides any resources that you generate with Resource Helper.

To determine whether any resources have been defined in your
RESOURCE_MANAGER property, issue the following command:

xrdb -q | more

If no listing is returned, the RESOURCE_MANAGER property does not exist. In
this case, Resource Helper loads the resources defined in the ~/.Xdefaults file.

3 Resource Helper loads the resources in the file pointed to by the
XUSERFILESEARCHPATH environment variable.

You can use %N to substitute an application class name for a file when specifying
the XUSERFILESEARCHPATH environment variable. For example, to point
to /usr/local/resources as the location of all the resources for any application,
issue the following command in the Bourne or Korn shells:

export XUSERFILESEARCHPATH=\
/usr/local/resources/%N

In the C shell, the command is the following:

218 Chapter 10 / Customizing the SAS Windowing Environment

setenv XUSERFILESEARCHPATH \
/usr/local/resources/%N

As a result, when SAS is invoked, the file pointed to by
XUSERFILESEARCHPATH is the following:

/usr/local/resources/SAS

SAS is the application class name for SAS.

4 Resource Helper loads the resources in the file specified by the XAPPLRESDIR
environment variable. The application's class name is appended to the
XAPPLRESDIR environment variable and the resulting string is used to search
for resources. For example, you can issue the following command in the Bourne
or Korn shells:

export XAPPLRESDIR=/usr/local/app-defaults

If you do this, then at the next invocation of SAS, the application's class name is
appended to the path:

/usr/local/app-defaults/SAS

In the C shell, the command is the following:

setenv XAPPLRESDIR /usr/local/app-defaults

5 Resource Helper loads the resources in the file named ~/SAS.

6 Resource Helper loads the resources in the file or substitution specified by the
XFILESEARCHPATH environment variable.

Note: To determine whether an environment variable has been set, you can
issue the following command:

env|grep <environment_variable>

7 Resource Helper loads the resources defined in the /usr/lib/X11/app-
defaults file. Resource Helper does not need to have Write access to this file.
However, it must be able to read the file and add SAS resources to a resource
file to which it has Write access. Resource Helper does not generate a warning
message if the file is not present or if it cannot read the file.

8 Resource Helper loads the fallback resources that are defined in the SAS code.

Except for the /usr/lib/X11/app-defaults file, Resource Helper tries to write the
new resources to the same directory and file where it first found SAS resources.
This location must be a file that has Write access and a directory that has Write
access. If Resource Helper cannot write to the file, the SAS resources in that file
remain in effect and any new or modified resources generated by Resource Helper
do not take effect. If this situation happens, Resource Helper displays an error
dialog box that contains the file or directory and suggests a way to fix the problem.

Setting X Resources with the Resource Helper 219

Customizing Toolboxes and Toolsets in
UNIX Environments

Techniques for Customizing Toolboxes
You can customize toolboxes in the following ways:

n Through the Preferences dialog box. The Preferences dialog box enables you to
customize the appearance and behavior of toolboxes. For information about
using the Preferences dialog box, see “Modifying X Resources through the
Preferences Dialog Box” on page 207 and “Modifying the SAS ToolBox Settings ”
on page 212.

n By specifying SAS resources in your resource file. For a description of the SAS
resources that affect toolboxes, see “X Resources That Control Toolbox
Behavior” on page 220.

n Through the Tool Editor. The Tool Editor enables you to customize the individual
tools in a toolbox. For more information, see “Using the Tool Editor” on page 221.

X Resources That Control Toolbox Behavior
You can control the behavior of toolboxes with the following SAS resources:

SAS.autoComplete: True | False
specifies whether SAS automatically fills in the remaining characters of a
command as you enter a command in the command window. SAS completes the
command with a command that you have previously entered that begins with the
same characters. The default value is True.

SAS.commandsSaved: number-of-commands-saved
specifies whether SAS saves the commands that you enter in the command
window and how many commands are saved. You can specify a number from 0
to 50. If you specify 0, no commands are saved. If you specify 1 or more, that
number of commands is saved in the file commands.hist in your Sasuser
directory. If you specify 1 or more for this resource and SAS.autoComplete is
True, then SAS can automatically fill in commands that were entered in previous
sessions. The default value is 25.

SAS.defaultToolBox: True | False
controls opening the default toolbox when SAS is invoked. The default is True.

SAS.isToolBoxPersistent: True | False
controls whether the toolbox that is associated with the Program Editor stays
open when you close the Program Editor. The default value is True.

220 Chapter 10 / Customizing the SAS Windowing Environment

SAS.toolBoxAlwaysOnTop: True | False
controls whether the toolbox is always on top of the window stack. The default
value, True, might cause problems with window managers that are not Motif
interface window managers or with applications that want to be on top of the
window stack. If you have such a situation, set this resource to False.

SAS.toolBoxTipDelay: delay-in-milliseconds
sets the delay in milliseconds before displaying the toolbox tip. The default is
750.

SAS.useCommandToolBoxCombo: True | False
controls whether the command window and toolbox are joined or separated. The
SAS.defaultToolBox and SAS.defaultCommandWindow resources control
whether the toolbox and command window are displayed. If both are displayed,
this resource controls whether they are joined or separated. The default value is
True.

SAS.useLargeToolBox: True | False
controls whether tool icons in the toolbox are displayed as 24x24 pixels or 48x48
pixels. The default is False (24x24 pixels).

SAS.useShowHideDecorations: True | False
controls whether the combined command window and toolbox window has
arrows at the left and right. You can use these arrows to hide or show portions of
the window as they are needed. The default value is False.

SAS.useToolBoxTips: True | False
determines whether toolbox tip text is displayed. Some window managers might
place the toolbox tip behind the toolbox. If the toolbox tip is placed behind the
toolbox in your environment, set this resource to False. The default is True.

Using the Tool Editor

What Is a Toolset?
The Tool Editor enables you to create custom toolsets for your SAS applications. A
toolset is a set of predefined tools that is associated with an application. Toolsets
make it easier for individual users to customize their application toolboxes. If you
create a toolset for an application, you can select Actions in the Tool Editor and
choose the tools that you want to appear in the toolboxes. You do not have to define
the icons, commands, tip text, and IDs for those tools.

For example, you can define a default toolbox for your application that includes tools
for opening files, cutting, copying, and pasting text, and saving files. You can define
a toolset that includes those tools and tools for opening the Preferences dialog box,
opening the Replace dialog box, and entering the RECALL command. These
additional tools do not appear in your toolboxes unless you add them to your
toolboxes with the Tool Editor. For more information, see “Changing the Attributes of
an Existing Tool” on page 223 and “Create or Customize an Application- or Window-
Specific Toolset” on page 227.

Customizing Toolboxes and Toolsets in UNIX Environments 221

Invoking the Tool Editor
You can change the appearance and contents of a toolbox using the Tool Editor. To
invoke the Tool Editor, select Tools ð Options ð Edit Toolbox. Alternatively, you
can issue the TOOLEDIT command as described in “TOOLEDIT Command: UNIX”
on page 289.

The following display shows an example of a Tool Editor dialog box that was opened
from the Tools menu in the Program Editor window:

Figure 10.6 Tool Editor Dialog Box

By default, the Tool Editor enables you to edit the current toolbox. To edit a different
toolbox, click the Open button in the Tool Editor dialog box. Specify a library,
catalog, and entry name for the toolbox that you want to edit. The following display
shows the Open dialog box:

Figure 10.7 The Open Dialog Box

222 Chapter 10 / Customizing the SAS Windowing Environment

After You Invoke the Tool Editor
After you invoke the Tool Editor, the toolbox is displayed in preview mode. In
preview mode, clicking a tool icon to select a tool makes that icon the current icon.
Its associated commands are displayed in the Command field. Attributes in the
Help Text, Tip Text, and ID fields might also be displayed, depending on whether
this information was added when the tool was created or updated. For more
information about the fields and buttons in the Tool Editor dialog box, click the Help
button.

Changing the Appearance of the Entire
Toolbox
The items in the ToolBox area of the Tool Editor affect the entire toolbox:

Name
displays the catalog entry that you are editing. The default toolbox is named
Sasuser.Profile.Dms.Toolbox.

Max tools per row
specifies how the icons in the toolbox are arranged. The default value creates a
horizontal toolbox. One tool per row creates a vertical toolbox.

Changing the Attributes of an Existing Tool
When you open the Tool Editor, the first tool in the toolset is selected, and the
attributes for this tool appear in the Button area of the Tool Editor dialog box. If you
click another icon in the toolset, the Tool Editor displays the attributes of that tool.

Alternatively, you can select a tool from the toolset that is displayed when you click
the Actions button. When you click OK after you select a tool, the attributes in the
Button area of the Tool Editor are updated to correspond to the new tool.

Note: Clicking the Actions button displays a toolset only if a toolset is associated
with (has the same entry name as) the toolbox that you are editing. For more
information, see “Saving Changes to the Toolbox or Toolset” on page 226.

When you have selected the tool that you want to change, you can then select an
attribute field in the Tool Editor and enter the changes that you want to make.

To modify the attributes of a tool, follow these steps:

1 From the toolset, select the tool that you want to change.

2 In the Button area, select an attribute field associated with a button and change
the text as appropriate:

Customizing Toolboxes and Toolsets in UNIX Environments 223

Command
specifies the command or commands that you want executed when you click
the icon. You can use any windowing environment command that is available
under UNIX. For information about commands that are valid in all operating
environments, see SAS Help and Documentation. Separate commands with
a semicolon (;). For example, you could create an icon to open the Change
Working Directory dialog box by using the DLGCDIR command.

Help Text
is used for applications that are designed to be run under Windows. The Help
text is displayed in the AWS status bar on Windows when a toolbox is ported
to and loaded on those windows.

Tip Text
specifies the text that is displayed when you position the cursor over the icon.

ID
is useful if you are creating toolboxes for SAS/AF applications. The ID is the
identifier of the corresponding menu item in the application. This number is
the value assigned to the item in the ID option of the ITEM statement in
PROC PMENU. If you specify an ID, then the application can set the state of
the PMENU item to match the state of the tool in the toolbox. It can make the
PMENU item active or inactive to match whether the tool in the toolbox is
active or inactive. If you do not specify an ID, the ID defaults to 0.

3 Change the icon if necessary.

a Click the Icon button or double-click an icon in the preview toolbox. The Tool
Editor opens the Select a pixmap dialog box, which displays the icons that
are provided with SAS. These icons are divided into several categories such
as SAS windows, data, analysis, numbers and symbols, files, folders, and
reports, and so on. To change categories, select the arrow to the right of the
Icon Category field and select a new category.

b Select the icon that you want to use, and then select OK.

The following display shows the Select a pixmap dialog box:

4 Save your changes as described in “Saving Changes to the Toolbox or Toolset”
on page 226.

224 Chapter 10 / Customizing the SAS Windowing Environment

Adding Tools to the Toolbox
To add a tool to the toolbox, follow these steps:

1 Select the icon next to where you want to add the new tool.

2 Select Add before or Add after. The Tool Editor adds a new icon to the toolbox
and clears the Button fields.

3 Enter the appropriate information in the Button fields as described in “Changing
the Attributes of an Existing Tool” on page 223.

4 Change the attributes of the icon, if necessary, as described in “Changing the
Attributes of an Existing Tool” on page 223.

5 Save your changes as described in “Saving Changes to the Toolbox or Toolset”
on page 226.

Change the Order of the Tools in the
Toolbox
To change the position of a tool in the toolbox, select the tool icon, and then click the
left or right arrows to move the tool.

Deleting Tools from the Toolbox
To delete a tool from the toolbox, follow these steps:

1 Select the tool that you want to delete.

2 Click Delete.

3 Save your changes as described in “Saving Changes to the Toolbox or Toolset”
on page 226.

Returning to the Default Settings
To return all tools in the current Toolbox to their default settings, click Defaults. The
Tool Editor asks you to verify your request. Click Yes, No, or Cancel.

Customizing Toolboxes and Toolsets in UNIX Environments 225

Saving Changes to the Toolbox or Toolset
You can save the changes to the catalog entry shown in the Name field or create a
new toolbox with a different name.

If you are customizing a window- or application-specific toolbox or toolset for your
own use, you should save the customized toolbox or toolset in your Sasuser.Profile
catalog. Use the same entry name as the PMENU entry for the window or
application. SAS searches for toolboxes and toolsets first in the Sasuser.Profile
catalog, and then in the application catalog.

If you are a SAS/AF application developer or site administrator and you are editing a
window- or application-specific toolbox that you want to be accessible to all users,
you must save the TOOLBOX entry with the same library, catalog, and entry name
as the PMENU entry for the window or application. To associate a toolset with a
specific toolbox, save the TOOLSET entry with the same library, catalog, and entry
name as the TOOLBOX entry. You must have Write permission to the appropriate
location. For example, to store a customized toolbox for the graphics editor, the site
administrator needs to store the toolbox in SASHELP.GI.GEDIT.TOOLBOX.

Clicking the Save button saves the toolbox information to the catalog entry shown in
the Name field. Clicking the Save As button prompts you to enter a different library,
catalog, and entry name. You can also choose to save the toolbox as a toolset. If
you save the toolbox as a toolset, the entry type is TOOLSET. Otherwise, the entry
type is always TOOLBOX. (Saving a set of tools as a TOOLSET does not change
your TOOLBOX entry.) For more information about toolsets, see “Customizing
Toolboxes and Toolsets in UNIX Environments” on page 220 and “Create or
Customize an Application- or Window-Specific Toolset” on page 227.

If you click the Close button or the Open button without first saving your changes,
the Tool Editor prompts you to save the changes to the current toolbox or toolset
before continuing.

After you save the toolbox or toolset, the Tool Editor remains open for additional
editing. The Name field changes to the name of the new entry (if you entered a new
entry).

Creating a New Toolbox
To create an entirely new toolbox, choose from the following methods:

n Edit an existing toolbox using the Tool Editor and then save the toolbox by
clicking the Save as button as described in “Saving Changes to the Toolbox or
Toolset” on page 226.

n Open the Sasuser.Profile catalog in the Explorer window and add a new toolbox
by selecting File ð New ð Toolbox.

226 Chapter 10 / Customizing the SAS Windowing Environment

Create or Customize an Application- or Window-
Specific Toolbox

If you are an application developer and want to create or edit an existing application
toolbox, follow these steps:

1 Delete any existing TOOLBOX entry in your Sasuser.Profile for the window or
application that you want to customize.

Deleting the copy of the toolbox in your Sasuser.Profile enables you to pick up a
copy of the toolbox that is supplied with SAS when you invoke the Tool Editor.

2 Create or edit the application toolbox as described in “Creating a New Toolbox”
on page 226 or “Using the Tool Editor” on page 221.

3 Save the edited toolbox as described in “Saving Changes to the Toolbox or
Toolset” on page 226.

4 Inform your users that you have changed the window or application toolbox.

If users want to use the new toolbox, they must delete the corresponding
TOOLBOX entry from their Sasuser.Profile. The new toolbox is then
automatically loaded when the window or application is invoked. If a user does
not delete the corresponding TOOLBOX entry from their Sasuser.Profile, that
copy of the toolbox is loaded instead of the new toolbox.

The TOOLLOAD and TOOLCLOSE commands are most useful when you are
developing SAS/AF applications. You can use the EXECCMDI routine with these
commands to enable your application to open and close the toolbox and to give
users of your applications access to several toolboxes during the course of their
work. For a description of the EXECCMDI routine, see SAS Component Language:
Reference.

Create or Customize an Application- or Window-
Specific Toolset

You define application- or window-specific toolsets in the same way that you create
an application- or window-specific toolbox. There are only two differences:

n To create a new toolset, start by defining a toolbox as described in “Creating a
New Toolbox” on page 226.

n After you have defined the toolbox, save it as a TOOLSET entry, not as a
TOOLBOX entry.

Note: If you are an application developer, ensure that you delete any existing
TOOLSET entry for your application as described in “Create or Customize an
Application- or Window-Specific Toolbox” on page 227 before you modify your
application's toolset.

Customizing Toolboxes and Toolsets in UNIX Environments 227

Customizing Key Definitions in UNIX
Environments

Techniques for Customizing Your Key Definitions
There are four ways to customize your key definitions:

n through the Keys window

To open the Keys window, issue the KEYS command or select Tools ð Options
ð Keys. If you change any key definitions through the Keys window for the
primary SAS windowing environment windows, the definitions are stored in the
Sasuser.Profile catalog in the entry DMKEYS.KEYS. Key definitions for other
SAS windows are stored in catalog entries named BUILD.KEYS, FSEDIT.KEYS,
and so on.

See the online SAS Help and Documentation for more information about the
KEYS command and the Keys window.

n with the KEYDEF command

The KEYDEF command enables you to redefine individual function keys:

keydef keyname <command|~text-string>

For example, if you specify keydef F8 dlgpref, then the F8 key opens the
Preferences dialog box.

For more information about the KEYDEF command, see the Base SAS section
in the online SAS Help and Documentation.

n through the Resource Helper (reshelper)

Resource Helper generates SAS resource specifications based on keys and
functions that you select. You can use Resource Helper to change the function of
any key that is listed in the Keys window. For more information about the
Resource Helper, see “Setting X Resources with the Resource Helper” on page
213 and “Defining Keys with the Resource Helper” on page 214.

In most cases, Resource Helper is much easier and faster than defining the
resources yourself. However, because the X Window System searches for
resources in several places, it is possible for Resource Helper to pick up the
wrong key symbol for the key that you are trying to define. Also, unless the
action routine that you assign to your keys is the sas-function-key routine,
Resource Helper does not provide a way to change the key labels in the Keys
window. In both of these cases, you need to define your key resources yourself.

n by defining the SAS.keyboardTranslations and SAS.keysWindowLabels
resources in your resources file as described in “Defining Key Translations” on
page 229.

You can define most of the keys on your keyboard. However, a few keys have
functions that are previously defined for them. For example, the mouse buttons are

228 Chapter 10 / Customizing the SAS Windowing Environment

dedicated to the cursor and cut-and-paste operations and are not available for user
customization.

Defining Key Translations

What Is a Key Translation?
Key customization for the X Window System consists of defining a key sequence
and an action to be executed when that key sequence is typed on the keyboard.
This customization is known as binding keys to actions; together they are referred to
as a translation.

What Is the SAS.keyboardTranslations
Resource?
The SAS.keyboardTranslations resource specifies the set of key bindings that
SAS uses in all SAS windows. The default value for the
SAS.keyboardTranslations resource is determined at run time based on the
vendor identification string reported by the X server that you are using as the
display. These defaults are listed in the files contained
in !SASROOT/X11/resource_files. To modify the default bindings that are supplied
by SAS, you must modify the SAS.keyboardTranslations resource.

Note: The X Toolkit Intrinsics translations that are specified in this resource apply to
both the user area and the command line of all SAS windows that are affected by
this resource. This resource does not affect windows that are controlled by Motif
interface resources. These windows include the Command window, the Open or
Import dialog boxes, and some other drop-down menu dialog boxes.

Steps for Creating a Key Definition
To create a key definition, follow these steps:

1 Determine the keysyms for the keys that you want to define.

Keysyms are the symbols that are recognized by the X Window System for each
key on a keyboard. For more information, see “Determining Keysyms” on page
230.

2 Modify or add the SAS.keyboardTranslations resource in your resource file to
include the definitions of the keys that you want to define.

Use a keyboard action routine to define which action you want the key to
perform. The definition in the right column in the Keys window no longer controls

Customizing Key Definitions in UNIX Environments 229

the function of any keys that are defined with a keyboard action routine other
than sas-function-key. The definitions of those keys in the Keys window
become labels that have no effect. For more information, see “Syntax of the
SAS.keyboardTranslations Resource” on page 231.

3 Modify or add the SAS.keysWindowLabels resource in your resource file.

The SAS.keysWindowLabels resource specifies the set of valid labels that
appear in the Keys window. Modify this resource only if you want to add new
labels or modify existing labels in the left column in the Keys window.

The SAS.keysWindowLabels resource defines only the mnemonics used in the
Keys window. For a specific key to perform an action, you must specify a
SAS.keyboardTranslations definition for the key. For more information, see
“Syntax of the SAS.keysWindowLabels Resource” on page 232.

4 Start a SAS session and open the Keys window.

5 In the right column in the Keys window, enter a command name or other
description of each key that you have defined.

For examples of key definitions, see “Examples: Defining Keys Using SAS
Resources” on page 236.

Determining Keysyms
You can use the xev utility to determine the keysyms that are associated with the
keys on your keyboard. The xev utility is distributed with most UNIX operating
systems. If xev is not installed in your operating environment, contact your UNIX
system administrator for information about other methods that are available in your
operating environment. The xev utility writes a message for each X event that
occurs. The KeyPress event specifies the keysym for each key that is pressed.

To define keys, follow these steps:

1 Start the xev utility on the X server for which you want to define keys.

The xev client displays a small Event Tester window that lists the X events that
occur. (The xev client generates a large amount of output, so you might want to
save the output to a file for later review. You can issue the UNIX script
command to save the output to a file.)

2 Give keyboard focus to the Event Tester window by clicking the mouse pointer
on the window, if necessary.

3 Press the key that you want to define, and watch for the KeyPress event to be
listed.

The listing contains a number of items that are separated by commas. One of
the fields in the KeyPress event lists the keysym name that is associated with the
key that was pressed.

For example, when the 0 key on the keypad of a Dell PC 105 keyboard is
pressed, and the NumLock modifier is toggled on, it generates the following
output:

230 Chapter 10 / Customizing the SAS Windowing Environment

KeyPress event, serial 32, synthetic NO,
 window 0x1a00001, root 0x5d, subw 0x1a00002,
 time 600120687, (37,41), root:(240,458),
 state 0x10, keycode 90 (keysym 0xffb0, KP_0),
 same_screen YES,
 XLookupString gives 1 bytes: (30) "0"
 XmbLookupString gives 1 bytes: (30) "0"
 XFilterEvent returns: False

In this example, the keysym name is KP_0.

Note: SAS defines a set of virtual keysyms with the SAS.defaultVirtualBindings
resource. Virtual keysyms all begin with osf, such as osfPageDown, osfClear, and
osfPrimaryPaste. If you remap these virtual bindings instead of using the defaults
supplied by SAS, you might get unexpected results. If you specify a key translation
that does not work, you might be trying to redefine a key that is bound to a virtual
keysym. In this case, you must specify the virtual keysym in the
SAS.keyboardTranslations resource instead of the keysym that is displayed by the
xev utility. To determine the virtual keysym that is bound to a key, you can start the
Resource Helper, click Keys, and press the key or key combination that you want to
define. Resource Helper displays the virtual keysym name. You can also refer to the
key definition files in /Xll/resource_files in the directory where SAS is installed
(!SASROOT) and to the UNIX man pages for VirtualBinding or xmbind.

Syntax of the SAS.keyboardTranslations
Resource

Note: Most SAS documentation uses angle brackets (<>) to indicate optional
syntax. However, in this topic, optional syntax is shown with square brackets ([]).
The angle brackets that are shown in this topic are part of the syntax and should be
entered exactly as shown.

Here is the syntax of the SAS.keyboardTranslations resource:

SAS.keyboardTranslations: #override \
[modifier] <Key>keysym : action-routine \n\
[modifier] <Key>keysym : action-routine

#override
indicates that this definition should override any existing bindings for the specific
keys that you define without affecting any other keys. If you omit the #override
directive, the new bindings replace all of the default bindings, and none of the
other keys on the keyboard will be available.

Note: For information about the #augment and #replace directives, see the
documentation for the X Window System.

modifier
can be one of the following:

Customizing Key Definitions in UNIX Environments 231

n Alt

n Ctrl

n Meta

n Shift

n Lock

n Mod1

n Mod2

n Mod3

n Mod4

n Mod5

n None

n blank space

The list of valid modifiers varies depending on your keyboard. To display a list of
valid modifiers for your keyboard, enter the xmodmap UNIX command. For more
information, see the UNIX man page for xmodmap.

<Key>
is required. It signals the beginning of the keysym.

keysym
is the key symbol recognized by X for the key that you are defining. For more
information, see “Determining Keysyms” on page 230.

action-routine
is what you want the key to do. You can specify any action routine described in
“SAS Keyboard Action Names” on page 233.

\n
enables the X translation manager to determine where one translation sequence
ends and the next one begins. Do not enter \n after the end of the last
translation.

\
prevents the newline character at the end of the line from being interpreted as
part of the definition. Using this character is a stylistic convention that allows
each translation to be listed on a separate line. Do not enter a backslash after
the end of the last translation.

Note: SAS does not prevent you from specifying invalid keys in the
SAS.keyboardTranslations resource. In some cases, invalid keys produce
warnings in the shell window.

Syntax of the SAS.keysWindowLabels
Resource

232 Chapter 10 / Customizing the SAS Windowing Environment

Note: The square brackets ([]) in the following syntax indicate that
(InternalKeyName) is optional.

Here is the syntax of the SAS.keysWindowLabels resource:

SAS.keyWindowLabels: \
KeyWindowLabel [(InternalKeyName)] \n\
KeyWindowLabel [(InternalKeyName)]

KeyWindowLabel
is the label (1 to 8 characters) that you want to appear in the Keys window.

InternalKeyName
is the character string that is passed to the sas-function-key action routine in
the corresponding SAS.keyboardTranslations key binding. (InternalKeyName
is used by SAS to correlate Keys window entries to key definitions in the KEYS
modules loaded from SAS catalogs or defined in the SAS Keys window.) If the
InternalKeyName is not specified, SAS uses the KeyWindowLabel as the
InternalKeyName.

\n and \
serves the same purpose as in the SAS.keyboardTranslations resource. For
more information, see “Syntax of the SAS.keyboardTranslations Resource” on
page 231.

SAS Keyboard Action Names

Note: Most SAS documentation uses angle brackets (<>) to indicate optional
syntax. However, in this topic optional syntax is shown with square brackets ([]). The
angle brackets that are shown in this topic are part of the syntax and should be
entered exactly as shown.

SAS declares a set of keyboard actions during X initialization. You can think of these
keyboard actions as simple functions. When the actions are executed, they act on
the window that currently has keyboard input focus.

The following list of keyboard actions represents action routines registered by the
Motif interface for use with X Toolkit keyboard event translations.

sas-cursor-down()
moves the cursor down one line in the SAS window. The cursor does not wrap
when it reaches the bottom of the SAS window interior.

sas-cursor-left()
moves the cursor left one character in the SAS window. The cursor does not
wrap when it reaches the left side of the SAS window interior.

sas-cursor-right()
moves the cursor right one character in the SAS window. The cursor does not
wrap when it reaches the right side of the SAS window interior.

sas-cursor-up()
moves the cursor up one line in the SAS window. The cursor does not wrap
when it reaches the top of the SAS window interior.

Customizing Key Definitions in UNIX Environments 233

sas-delete()
deletes all text in the current field.

sas-delete-begin()
deletes text from the current cursor position to the beginning of the current text
field.

sas-delete-char()
deletes the character under the text cursor and leaves the cursor in place.

sas-delete-end()
deletes text from the current cursor position to the end of the current text field.

sas-delete-prev-chr()
deletes the character to the left of the text cursor and moves the cursor back one
space.

sas-delete-prev-word()
deletes text to the start of the previous word from the current cursor position. If
the cursor is in the interior of a word when the action is invoked, the text from the
cursor position to the start of the word is deleted.

sas-delete-word()
deletes text from the current cursor position to the end of the current or next
word.

sas-do-command()
accepts one or more text string parameters that are interpreted as SAS
commands to be executed when the action is invoked. The action might be
invoked with multiple parameters. The parameters are concatenated with
semicolon delimiters supplied by the sas-do-command action between the
parameters. The assembled SAS command string is then submitted for
execution. For example, the following translation syntax can be used to define a
HOME, SUBMIT key sequence for all SAS windowing environment windows:

<Key>KP_F3: sas-do-command(HOME;SUBMIT)

sas-function-key("InternalKeyName")
invokes the SAS commands associated with the function key identified by the
InternalKeyName label. InternalKeyName is the character string (1 to 8
characters long) that is passed to the keysWindowLabels resource. Enclose
InternalKeyName in quotation marks. For a description of internal key names,
see “Defining Key Translations” on page 229.

sas-home-cursor()
is the equivalent of the HOME command. It is provided for convenience so that
the HOME action could be defined for all SAS windowing environment windows.

sas-insert-char(["InsertionString"])
inserts or overwrites the character entered into the input field under the text
cursor. Insert or overstrike behavior is determined by the sas-toggle-insert
action, which has a mode that is reflected by the text cursor style displayed; the
block cursor indicates overstrike mode, and the underline cursor indicates Insert
mode. Normally, sas-insert-char translates the XKeyEvent into the
appropriate character and inserts it at the SAS text cursor location. If you specify
the parameter, the text string represented by this parameter is inserted at the
SAS text cursor location. White space in the string is interpreted by the X Toolkit
as a parameter delimiter unless you enclose the string in double quotation
marks. See your X Window System documentation for information about
embedding quotation marks in the string parameter. To include an escaped
quotation mark, use the following syntax:

234 Chapter 10 / Customizing the SAS Windowing Environment

Shift<Key>KP_1: sas-insert-char("One\\"1\\"")

This syntax produces the text string One"1" at the SAS text cursor location.

sas-kp-application()
sets the workstation's numeric keypad to allow function key translations to be
reinstated. This action works only for those keypad keys that are bound to
sas-function-key() actions. Keypad bindings to other actions are not affected
by this translation.

sas-kp-numeric()
sets the workstation's keypad to generate numeric characters instead of its
previous function key assignment. This action works only for keypad keys that
are bound to sas-function-key() actions. Keypad bindings to other actions are
not affected by this translation.

sas-move-begin()
moves the cursor to the beginning of the current text field.

sas-move-end()
moves the cursor to the end of the current text field.

sas-new-line()
generates an end-of-line event when invoked. This action is context sensitive. If
the action is entered on the SAS command line, the text entered is submitted for
execution. If invoked in the SAS application client area, the action depends on
the attributes of the text area under the text cursor. In simplest terms, this action
is the general line terminator for an input field.

sas-next-field()
advances the SAS application to the next field in the SAS window client area.

sas-next-word()
skips the text cursor forward to the beginning of the next word in the current text
field. If sas-next-word does not find the beginning of a word in the current text
field, it advances to the next SAS application field. If you are typing in the SAS
command line area of the window, the cursor does not wrap into the SAS
window client area.

sas-page-down()
scrolls the current window contents forward by one page.

sas-page-end()
moves the text cursor to the end of the current page.

sas-page-top()
moves the text cursor to the top of the current page.

sas-page-up()
scrolls the window contents backward by one page.

sas-prev-field()
returns the SAS application to the previous field in the SAS window client area.

sas-prev-word()
skips the text cursor backward to the beginning of the previous word in the
current text field. If sas-prev-word does not find the beginning of a previous
word in the current text field, it returns to the end of the previous SAS application
field. If you are typing in the SAS command line area of the window, the cursor
does not wrap into the SAS window client area.

sas-to-bottom()
moves the text cursor to the absolute bottom of the window's text range.

Customizing Key Definitions in UNIX Environments 235

sas-to-top()
moves the text cursor to the absolute top of the window's text range.

sas-toggle-insert()
switches the associated window line-editing behavior between insert and
overstrike modes. This switching applies only to the SAS command line and the
SAS window client area. The current mode is indicated by the cursor style in
use. The block cursor indicates overstrike mode, and the underline cursor
indicates Insert mode.

sas-xattr-key(<KeyType>[,<KeyParam>])
processes SAS extended attribute keys. The KeyType parameter must be one of
the following values: XACOLOR, XAATTR, XACLEAR. For KeyType XACOLOR,
the 12 DMS color names are valid parameters; for KeyType XAATTR, the valid
values are HIGHLIGHT, REVERSE, BLINK, and UNDERLINE; for XACLEAR, no
parameter is required. The BLINK attribute is not supported in the Motif interface.
However, if you specify the BLINK attribute, it is displayed when the catalog is
ported to other operating environments.

Examples: Defining Keys Using SAS
Resources
Note: Most SAS documentation uses angle brackets (<>) to indicate optional
syntax. However, in these examples, optional syntax is shown with square brackets
([]). The angle brackets that are shown in these examples are part of the syntax and
should be entered exactly as shown.

In the following example, the sas-do-command action routine specifies that the
COMMAND command is to override any existing definition for KP_0.

SAS.keyboardTranslations: #override \n\
 None<Key>KP_0: sas-do-command(COMMAND)

All other keys retain their current definitions.

The following example binds the key sequence Ctrl-K to the KEYS command and
specifies that Ctrl-D deletes the character under the cursor. Commands entered in
the Keys window for Ctrl-K and Ctrl-D have no effect.

SAS.keyboardTranslations: #override\
 Ctrl<Key>k: sas-do-command(keys)\n\
 Ctrl<Key>d: sas-delete-char()

The following example specifies that the key associated with the keysym
hpClearLine performs the command entered beside the MyClrLn label in the Keys
window.

SAS.keyboardTranslations: #override \
 <Key>hpClearLine : sas-function-key("ClearLn")
SAS.keysWindowLabels: MyClrLn(ClearLn)

The character string that appears inside the parentheses in the
SAS.keysWindowLabels resource must match the string entered as the parameter to
the sas-function-key routine. The label (MyClrLn) can be any character string,
and the keysym hpClearLine must be a valid keysym for your keyboard.

236 Chapter 10 / Customizing the SAS Windowing Environment

Customizing Fonts in UNIX
Environments

Difference between the System Font and Fonts
That Are Used in the Windowing Environment

SAS uses two main types of fonts:

n The system font is used in most dialog boxes and menus. SAS inherits the
system font defined by the CDE *.systemFont resource. If this resource is not
defined, SAS uses a Helvetica font.

n DMS fonts are used in SAS windows. You can change the SAS font either
through the Fonts dialog box or by specifying the resources in your resources
file. The font must be a fixed or monospace font.

Note: It is best to change fonts before invoking any applications. Changing fonts
while applications are running might result in unexpected behavior.

How SAS Determines Which Font to Use
SAS determines the normal (not bold) default font as follows:

1 If you saved a font in Sasuser.Profile.Dmsfont.Unxprefsthrough the Font dialog
box, this font is used as the default normal font.

2 If you did not save a font through the Font dialog box, but you set the
SAS.DMSFont resource, SAS uses the font specified by this resource as the
default font.

3 If you did not set the SAS.DMSFont resource, SAS uses any font that matches the
pattern *Font, which might be defined or inherited.

4 If you did not specify or inherit any resources matching *Font, but you did set the
SAS.DMSFontPattern resource, SAS uses this resource to determine which font
to use. The SAS.DMSfontPattern resource has no effect if any resources
matching *Font are inherited or defined.

5 If no resources were set, SAS chooses a font from the fonts that are available on
your X server.

If you did not specify a value for the SAS.DMSboldFont resource, SAS uses the
default normal font to determine the default bold font. If an XLFD name is

Customizing Fonts in UNIX Environments 237

associated with the normal SAS.DMSFont , then SAS selects the matching bold font
and loads it. If SAS cannot automatically select or load a bold font, the normal font is
also used for the bold font.

In many cases, font names are given aliases so that a shorter name can be used to
refer to a font for which an XLFD name is associated. The name used in
determining a bold font is based on the XA_FONT font property for the normal font.

Customizing Fonts By Using the Fonts Dialog Box

Introduction to the Fonts Dialog Box
The Fonts dialog box enables you to change the windowing environment font for the
entire SAS session. If you change the font, the font that you select is stored in
SASUSER.PROFILE.DMSFONT.UNXPREFS and will be used in future SAS
sessions.

How to Change the Default Font
You can change the default font by opening the Fonts dialog box. To open the Fonts
dialog box, use one of the following methods:

n Issue the DLGFONT command in the command window.

n Select Tools ð Options ð Fonts.

238 Chapter 10 / Customizing the SAS Windowing Environment

Figure 10.8 Fonts Dialog Box

n Select a font name and, if desired, a size, weight, and slant. (Not all fonts are
available in all sizes, weights, or slants.) The Sample field shows what the
selected font looks like.

n Click OK to change the existing font to the selected font.

To return to the default font, click Default.

To cancel any changes and exit the Fonts dialog box, click Cancel.

Specifying Font Resources
You can customize the fonts that are used in the SAS windowing environment with
the following resources:

SAS.DMSFont: font-name
specifies the font that you want to be used as the default normal font. The
default normal font is Courier.

SAS.DMSboldFont: font-name
specifies the font that you want to be used as the default bold font.

SAS.DMSDBfont: font-name
specifies the multi-byte normal character set font used by the SAS windowing
system for operating environments that support multi-byte character sets.

SAS.DMSDBboldFont: font-name
specifies the multi-byte bold character set font used by the SAS windowing
system for operating environments that support multi-byte character sets.

Customizing Fonts in UNIX Environments 239

SAS.DMSfontPattern: XLFD-pattern
specifies an X Logical Font Description, or XLFD pattern that you want SAS to
use to determine the windowing environment font. Most fonts in the X Window
System are associated with an XLFD, which contains a number of different fields
delimited by a hyphen (–) character. The fields in the XLFD indicate properties
such as the font family name, weight, size, resolution, and whether the font is
proportional or monospaced. See your X Window System documentation for
more information about the XLFD and font names used with X.

The XLFD-pattern that you specify for SAS.DMSfontPattern must contain the
same number of fields as an XLFD. An asterisk (*) character means that any
value is acceptable for that particular field. For example, the following pattern
matches any font that has a regular slant, is not bold, is monospaced, and is an
iso8859 font:

SAS.DMSFontPattern: -*-*-*-r-*--*-*-*-*-m-*-iso8859-1

SAS uses the XLFD-pattern to choose a font as follows:

n SAS queries the X server for the list of fonts that match the
SAS.DMSfontPattern resource.

n SAS excludes all fonts that have X and Y resolution values different from the
current X display. SAS also excludes all fonts that have variable character
cell size (such as proportional fonts) and all fonts that have point sizes
smaller than 8 points or larger than 15 points. If this step results in an empty
list, SAS chooses a generic, usually fixed, font.

n The font with the largest point size is chosen from the remaining list.

SAS.fontPattern: XLFD-pattern
specifies an XLFD font pattern that describes the candidate fonts used to resolve
SAS graphics font requests. Using this pattern allows the user to optimize or
control the use of X fonts within the context of various SAS graphics
applications. The default value of * usually does not affect performance to a
significant degree. You might want to restrict the font search if you are running
SAS on a server with an excessive number of fonts or that is operating in
performance-limited environment.

SAS.systemFont: font-name
specifies the system font. The SAS font is used in SAS windows. The system
font is used in most dialog boxes and menus. SAS typically inherits the system
font from the font resources set by the X window environment, such as the
Common Desktop Environment (CDE), or K Desktop Environment (KDE). If the
*.systemFont resource, SAS uses a 12-point Helvetica font.

Specifying Font Aliases

Font Aliases
If your server does not provide fonts to match all of the fonts that are supplied by
SAS, you can use font alias resources to substitute the fonts that are available on
your system. (Ask your system administrator about the fonts that are available.) Use
the following syntax to specify font aliases in your resource file:

240 Chapter 10 / Customizing the SAS Windowing Environment

SAS.supplied-fontAlias: substitute-family

supplied-font is the name of the font supplied by SAS. substitute-family is the family
name of the font that you want to substitute.

CAUTION
Do not specify a SAS font as a font alias. There might be a conflict if you specify a
font supplied by SAS as a font alias. Assigning this value to a font alias prevents the
selection of any symbol fonts through the font selection dialog box, because they are
specified as the Times Roman alias.

The following table lists SAS font alias resource names.

Table 10.1 SAS Font Alias Resources

Resource Name Class Name

SAS.timesRomanAlias TimesRomanAlias

SAS.helveticaAlias HelveticaAlias

SAS.courierAlias CourierAlias

SAS.symbolAlias SymbolAlias

SAS.avantGardeAlias AvantGardeAlias

SAS.bookmanAlias BookmanAlias

SAS.newCenturySchoolbookAlias NewCenturySchoolbookAlias

SAS.palatinoAlias PalatinoAlias

SAS.zapfChanceryAlias ZapfChanceryAlias

SAS.zapfDingbatsAlias ZapfDingbatsAlias

Example: Substitute the Lucida Font for
Palatino
Suppose that your system does not have a Palatino font, but has the following
Lucida font:

b&h-lucida-bold-r-normal-sans-
 10-100-75-75-p-66-iso8859-1

To substitute Lucida for Palatino, include the following line in your resource file:

SAS.palatinoAlias: lucida

Customizing Fonts in UNIX Environments 241

Customizing Colors in UNIX
Environments

Methods for Customizing the Color Settings in Your
SAS Session

SAS provides a default set of colors and attribute settings for the elements of all
SAS windows. You can customize the colors in your SAS session in the following
ways:

n through Resource Helper (reshelper).

Resource Helper enables you to customize any color. For more information, see
“Setting X Resources with the Resource Helper” on page 213 and “Modifying the
Color of a SAS Window Using the Resource Helper” on page 216.

n through the SASCOLOR window, as described in “Customizing Colors By Using
the SASCOLOR Window” on page 242.

You can customize any window element for most SAS windows with the
SASCOLOR window.

n with the COLOR command as described in “Syntax of the COLOR Command”
on page 243.

The COLOR command affects only the specified element of the active window.
Changes made with the COLOR command override changes entered through
any of the other methods described here.

n by entering the color resource specifications yourself.

You can enter specific RGB values or color names for any of the X resources
that control color. For more information, see “Defining Color Resources” on page
244.

Customizing Colors By Using the SASCOLOR
Window

You can use the SASCOLOR window to change the color and highlighting of
specific elements of SAS windows. To open the SASCOLOR window, issue the
SASCOLOR command or select Tools ð Options ð Colors:

242 Chapter 10 / Customizing the SAS Windowing Environment

Figure 10.9 SASCOLOR Window

To change a color for a window element, select the element name, and then select
color and attribute that you want assigned to the element.

The BLINK attribute is not supported. The HIGHLIGHT attribute causes text to be
displayed in bold font.

When you click Save, your changes are saved to the catalog entry
Sasuser.Profile.Sas.Cparms.

Note: Close and reopen any active windows for new color settings to take effect.

For more information about the SASCOLOR window, see the online SAS Help and
Documentation.

Syntax of the COLOR Command
You can use the COLOR command to set the color for specific elements of the
active window:

color field-type <color|NEXT <highlight>>

field-type
specifies an area of the window such as background, command, border,
message, and so on.

color
specifies a color such as blue (B), red (R), green (G), cyan (C), pink (P), yellow
(Y), white (W), black (K), magenta (M), gray (A), brown (B), or orange (O).

NEXT
changes the color to the next available color.

highlight
can be H (which causes text to be displayed in a bold font), U (underlined), or R
(reverse video). The BLINK attribute is not supported.

To save your changes, issue the WSAVE command. The changes are saved to
Sasuser.Profile.Window.Wsave.

Customizing Colors in UNIX Environments 243

Note: The WSAVE command is not available for all SAS windows. For example,
with SAS/FSP, changes are saved either through the EDPARMS window or the
PARMS window. (To determine whether WSAVE is available for a SAS window, see
the product documentation.)

For more information about the COLOR and WSAVE commands, see the online
SAS Help and Documentation.

Defining Color Resources

Types of Color Resources
Color resources fall into two categories:

n foreground and background definitions

These resources enable you to customize the RGB values that are used to
define the 12 DMS colors. Because each color could be used as either a
background color or a foreground color, you can specify different RGB values or
color names for each color for each usage. For example, you can specify that
when blue is used as a foreground color, color #0046ED is used, and when blue
is used as a background color, CornflowerBlue is used.

n window element definitions

These resources, which are referred to as CPARMS resources, enable you to
specify which of the 12 DMS colors you want to use for each window element.
For example, you can specify that message text is displayed in magenta.

These two types of resources work together. The CPARMS color values use the
current foreground and background definitions. For example, the following
resources specify that the background of your primary windows is CornflowerBlue:

SAS.blueBackgroundColor: CornflowerBlue
SAS.cparmBackground: DmBlue

Specifying RGB Values or Color Names for
Foreground and Background Resources
SAS uses SAS.systemBackground, SAS.systemForeground, and the resources
listed in the following table to determine the colors to be used in its windows.

SAS.systemForeground: color
specifies the color for the foreground system color in the SASCOLOR window.

SAS.systemBackground: color
specifies the color for the background system color in the SASCOLOR window.

244 Chapter 10 / Customizing the SAS Windowing Environment

SAS.systemSecondaryBackground: color
sets the system secondary background color and specifies the color for the
secondary background system color in the SASCOLOR window.

You can specify color names such as MediumVioletRed or RGB values such as
#0000FF for all of the foreground and background resources. See your X Window
System documentation for information about RGB color values.

The following table lists all of the foreground and background color resources and
their class names. All of these resources are of the type String.

Table 10.2 Foreground and Background Color Resources

Resource Name Class Name

SAS.systemForeground SystemForeground

SAS.systemBackground SystemBackground

SAS.systemSecondaryBackground Background

SAS.blackForegroundColor BlackForegroundColor

SAS.blueForegroundColor BlueForegroundColor

SAS.brownForegroundColor BrownForegroundColor

SAS.cyanForegroundColor CyanForegroundColor

SAS.grayForegroundColor GrayForegroundColor

SAS.greenForegroundColor GreenForegroundColor

SAS.magentaForegroundColor MagentaForegroundColor

SAS.orangeForegroundColor OrangeForegroundColor

SAS.pinkForegroundColor PinkForegroundColor

SAS.redForegroundColor RedForegroundColor

SAS.whiteForegroundColor WhiteForegroundColor

SAS.yellowForegroundColor YellowForegroundColor

SAS.blackBackgroundColor BlackBackgroundColor

SAS.blueBackgroundColor BlueBackgroundColor

SAS.brownBackgroundColor BrownBackgroundColor

SAS.cyanBackgroundColor CyanBackgroundColor

Customizing Colors in UNIX Environments 245

Resource Name Class Name

SAS.grayBackgroundColor GrayBackgroundColor

SAS.greenBackgroundColor GreenBackgroundColor

SAS.magentaBackgroundColor MagentaBackgroundColor

SAS.orangeBackgroundColor OrangeBackgroundColor

SAS.pinkBackgroundColor PinkBackgroundColor

SAS.redBackgroundColor RedBackgroundColor

SAS.whiteBackgroundColor WhiteBackgroundColor

SAS.yellowBackgroundColor YellowBackgroundColor

Defining Colors and Attributes for Window
Elements (CPARMS)
You can define the colors and attributes for specific window elements by assigning
values to SAS resources known as CPARMS. Each CPARMS resource defines the
color and attribute of a specific window element, such as the background in a
secondary window or the border of a primary window.

You can specify multiple color and attribute names in the same resource definition,
but only the final color and attribute are used:

SAS.cparmResource: DmColorName|DmAttrName\
<+DmColorName|DmAttrName>

Resource can be any of the CPARMS resources listed in the following table. All of
these resources are of type DmColor, and their default values are dynamic–that is,
the default values are determined at run time.

Table 10.3 SAS CPARMS Resources

Resource Name
Color and attribute
settings Class Name Default Color

SAS.cparmBackground for backgrounds within all
primary windows
displayed in a SAS
session.

CparmBackground DmWhite

SAS.cparmBanner for a banner within a
window.

CparmForeground DmBlack

246 Chapter 10 / Customizing the SAS Windowing Environment

Resource Name
Color and attribute
settings Class Name Default Color

SAS.cparmBorder for the border of a primary
window.

CparmBackground DmBlack

SAS.cparmByline for BY lines written to the
Output window.

CparmForeground DmBlue

SAS.cparmColumn for text labels for column
information. You can use
this resource within the
SAS editor to identify
editing lines and in
spreadsheet windows to
label spreadsheets.

CparmForeground DmBlue/
Underline

SAS.cparmCommand for the command data
entry field when menus
are disabled.

CparmForeground DmBlack

SAS.cparmData for general lines written to
the Log window or the
Output window.

CparmForeground DmBlack

SAS.cparmError for ERROR lines that are
written to the Log window
or Output window.

CparmForeground DmRed

SAS.cparmFootnote for FOOTNOTE lines
written to the Output
window.

CparmForeground DmBlue

SAS.cparmForeground for all text fields within a
SAS windowing
environment window that
can be edited.

CparmBackground DmBlack

SAS.cparmHeader for HEADER lines written
to the Output window.

CparmForeground DmBlue

SAS.cparmHelpLink for links to additional
levels of information in the
Help system.

CparmForeground DmGreen/
Underline

SAS.cparmHelpMainTopic for topic words or phrases
in the Help system.

CparmForeground DmBlack

SAS.cparmHelpSubTopic for topic words or phrases
in the Help system.

CparmForeground DmBlack

Customizing Colors in UNIX Environments 247

Resource Name
Color and attribute
settings Class Name Default Color

SAS.cparmInfo for text that is displayed in
a window as an aid to the
user. For example:
Press Enter to continue

CparmForeground DmBlack

SAS.cparmLabel for text that precedes a
widget. For example, the
text Name: in the following
example is a label:
Name: _______________

CparmForeground DmBlack

SAS.cparmMark for areas that have been
selected for operations
such as FIND, CUT, and
COPY.

CparmForeground DmBlack/
DmReverse

SAS.cparmMessage for the message field. CparmForeground DmRed

SAS.cparmNote for NOTE lines that are
written to the Log window
or the Output window.

CparmForeground DmBlue

SAS.cparmSecondaryBackgroun
d

for backgrounds in
secondary windows.

CparmForeground DmGray

SAS.cparmSecondaryBorder for the border of a
secondary window.

CparmForeground DmBlack

SAS.cparmSource for SAS source lines that
are written to the Log
window.

CparmForeground DmBlack

SAS.cparmText for text labels for row
information. You can use
this resource within the
SAS editor to identify
editing lines and in
spreadsheet windows to
label spreadsheet rows.

CparmForeground DmBlue

SAS.cparmTitle for TITLE lines written to
the Output window.

CparmForeground DmBlue

SAS.cparmWarning for WARNING lines
written to the Log window
or the Output window.

CparmForeground DmGreen

DmColorName can be any one of the following colors:

n DmBLUE

248 Chapter 10 / Customizing the SAS Windowing Environment

n DmRED

n DmPINK

n DmGREEN

n DmCYAN

n DmYELLOW

n DmWHITE

n DmORANGE

n DmBLACK

n DmMAGENTA

n DmGRAY

n DmBROWN

DmAttrName can be any one of the following attributes:

n DmHIGHLIGHT

n DmUNDERLINE

n DmREVERSE

For example, the following resources specify that all background colors are gray and
all foreground colors are black:

SAS.cparmBackground: DmGRAY
SAS.cparmForeground: DmBLACK

These resources specify that errors should be displayed in red with reverse video,
and warnings should be displayed in yellow with reverse video and a bold font:

SAS.cparmError: DmRED + DmREVERSE
SAS.cparmWarning: DmHIGHLIGHT + DmYELLOW + DmREVERSE

SAS looks for default CPARMS resources in two places:

n If your on-site SAS support personnel entered color and attribute settings in the
SASHELP.BASE.SAS.CPARMS catalog entry, then these settings become the
default for your site.

n If you saved settings in Sasuser.Profile.Sas.Cparms, then these settings override
the settings specified for your site.

Controlling Contrast
In some color combinations, text fields, buttons, check boxes, and other foreground
categories might not be visible. The SAS.dmsContrastCheck resource makes these
categories legible.

SAS.dmsContrastCheck: True | False
controls whether contrast mapping is applied to non-graphic foreground colors in
a SAS window. The default value is False. A value of True specifies that DMS
foreground colors are remapped if necessary to produce a contrast. Some color
usage based on graphic operations are not affected by this resource.

Customizing Colors in UNIX Environments 249

Controlling Drop-down Menus in UNIX
Environments

Drop-down menus are controlled by the following resources:

SAS.pmenuOn: True | False
forces the global PMENU state on regardless of the information stored by the
WSAVE command. The WSAVE state of an individual window takes precedence
over the global state. The default is True. (You can also use the PMENU ON and
PMENU OFF commands to turn drop-down menus on and off.)

SAS.usePmenuMnemonics: True | False
specifies whether mnemonics are attached to the drop-down menus for the
current SAS session. The default is True.

Customizing Cut and Paste in UNIX
Environments

Instructions for Cutting and Pasting Text
For instructions about cutting and pasting text, see “Selecting (Marking) Text in
UNIX Environments” on page 191 and “Copying or Cutting and Pasting Selected
Text in UNIX Environments” on page 193.

Types of Paste Buffers
There are four SAS paste buffers. Each SAS paste buffer is associated with an X
paste buffer:

XPRIMARY
is associated with X primary selection (PRIMARY).

XSCNDARY
is associated with the X secondary selection (SECONDARY).

XCLIPBRD
is associated with the X clipboard selection (CLIPBOARD). This paste buffer
enables you to use the MIT X Consortium xclipboard client with SAS.

250 Chapter 10 / Customizing the SAS Windowing Environment

XTERM
is associated with the paste buffer used by the xterm client. XTERM is the
default buffer. DEFAULT is an alias for XTERM. If you copy or cut text into the
XTERM buffer, the text is actually copied or cut into all four of the paste buffers.
When you paste text from the XTERM buffer, the text is pasted from the
XPRIMARY buffer.

XCUTn
is associated with X cut buffern where 0 <= n <= 7.

Selecting a Paste Buffer
If you are not sure which X data exchange protocols your other X clients are using,
you should use the XTERM paste buffer. You can specify your default paste buffer
with the SAS.defaultPasteBuffer resource:

SAS.defaultPasteBuffer: XTERM

If you know that the X clients in your workstation environment all use the X
PRIMARY selections to exchange data, you should use the XPRIMARY paste
buffer:

SAS.defaultPasteBuffer: XPRIMARY

This specification uses both SAS and X resources more efficiently and provides for
the on-demand transfer of data between clients.

Solaris OpenWindows desktop clients use the CLIPBOARD selection as the basis
for their copy-and-paste operations. If you use the SAS XCLIPBRD paste buffer, you
can exchange text directly with these clients.

You can also use the SAS XCLIPBRD paste buffer to interact with Motif clients that
use the Motif clipboard mechanism for text exchanges. This clipboard mechanism
makes it unnecessary to have a dedicated client such as xclipboard. For example,
you can use XCLIPBRD to exchange text directly with the Motif xmeditor application
when you select the Cut, Copy, or Paste items from the xmeditor Edit drop-down
menu.

The Motif quick-copy data exchange and Motif clipboard data exchange
mechanisms are specific to the Motif interface toolkit and are not currently
supported as SAS paste buffers. However, some dialog boxes, such as the File
Selection dialog box, use Motif interface text widgets. In these dialog boxes, the
Motif quick copy and clipboard data exchange mechanisms are available.

Manipulating Text Using a Paste Buffer
If you want SAS to automatically copy selected text into your paste buffer every time
you select text, specify your paste buffer name in the SAS.markPasteBuffer
resource:

SAS.markPasteBuffer: XTERM

Alternatively, because DEFAULT is an alias for XTERM, you could specify the
following:

Customizing Cut and Paste in UNIX Environments 251

SAS.markPasteBuffer: DEFAULT

The SAS.markPasteBuffer definition causes SAS to automatically issue a STORE
command whenever you select text.

The STORE command, as well as the CUT and PASTE commands, support a
BUFFER= option that specifies which buffer to use. When these commands are
issued from function keys or drop-down menus whose definitions do not include the
BUFFER= option, if the SAS.markPasteBuffer resource is not defined, these
commands use BUFFER=DEFAULT. If this resource is defined, these commands
use BUFFER=buffer-name.

You can customize your normal cut, copy, or paste keys to issue any of these
commands with the BUFFER= option. For example, you can override the
SAS.keyboardTranslations definition for the osfCopy and osfPaste keys with the
following specifications:

SAS.keyboardTranslations: #override \
 <Key>osfCopy: sas-do-command(\"STORE BUFFER=XCLIPBRD\") \n\
 <Key>osfPaste: sas-do-command(\"PASTE BUFFER=XCLIPBRD\")

For more information about customizing keys, see “Customizing Key Definitions in
UNIX Environments” on page 228.

Notes about Preserving Text and Attribute
Information

When you cut or copy and paste text between SAS sessions using the XTERM,
XPRIMARY, or XSCNDARY paste buffers, the color and attribute information is
preserved. However, if you copy and paste the same text into an xterm window
while using the vi editor, the color and attribute information is lost. If you change the
definition for SAS.defaultPasteBuffer and SAS.markPasteBuffer to XCUT0, then
the text and color attributes are not retained when you copy and paste text between
two SAS sessions.

When you use the xclipboard client, SAS text attributes are not preserved in
exchanges made between SAS sessions. However, when you use the XCLIPBRD
paste buffer without a clipboard manager such as the xclipboard client, SAS text
attributes are preserved in exchanges between SAS sessions.

Customizing Session Workspace,
Session Gravity, and Window Sizes in
UNIX Environments

SAS uses the following resources to determine the size of the session workspace,
the gravity of the workspace, and the size of the windows. The default values for
these resources are listed in Table 10.4 on page 258.

252 Chapter 10 / Customizing the SAS Windowing Environment

SAS.awsResizePolicy: grow | fixed
controls the policy for resizing AWS windows as interior windows are added and
removed. The following values are valid:

grow
the AWS window attempts to grow anytime an interior window is grown or
moved, in order to show all interior windows, but it does not shrink to remove
dead areas.

fixed
the AWS window attempts to size itself to the size of the first interior window
and does not attempt any further size changes.

SAS.maxWindowHeight: units
specifies the number of units for the maximum height of a window. The unit is
specified by the SAS.windowUnitType resource.

SAS.maxWindowWidth: units
specifies the number of units for the maximum width of a window. The unit is
specified by the SAS.windowUnitType resource.

SAS.noAWS: True | False
controls whether each of your application's windows appears in its own native
window rather than in an application workspace (AWS). The default is True; each
application runs in its own native window.

SAS.scrollBarSize: pixels
specifies the default size of the scroll bar in pixels.

SAS.sessionGravity: value
controls the region of the screen where SAS attempt to place its windows. This
resource might be ignored by some window manager configurations. Possible
values include the following:

n CenterGravity

n EastGravity

n WestGravity

n SouthGravity

n NorthGravity

n SouthEastGravity

n NorthEastGravity

n SouthWestGravity

n NorthWestGravity

SAS.sessionGravityXOffset: offset
specifies an x offset to be added when SAS attempts to place a window in the
gravity region.

SAS.sessionGravityYOffset: offset
specifies a y offset to be added when SAS attempts to place a window in the
gravity region.

SAS.windowHeight: units
specifies the number of units for the default height of a window. The unit is
specified by the SAS.windowUnitType resource.

Customizing Session Workspace, Session Gravity, and Window Sizes in UNIX
Environments 253

SAS.windowUnitType: character | pixel | percentage
specifies the unit type for SAS.windowWidth, SAS.windowHeight,
SAS.maxWindowWidth, and SAS.maxWindowHeight. Possible values include the
following:

character
units specify the number of rows and columns.

pixel
units specify the number of pixels.

percentage
units specify the percentage of the screen.

SAS.windowWidth: units
specifies the number of units for the default width of a window. The unit is
specified by the SAS.windowUnitType resource.

Specifying User-Defined Icons in UNIX
Environments

Why Specify User-Defined Icons?
You can add your own icons to those icons that are supplied with SAS. For
example, if you want to use your own color icons in the toolbox, define the
SAS.colorUiconPath, SAS.colorUiconCount, and SAS.sasUiconx resources. Then,
when you are defining tools in the Tool Editor, the Tool Editor includes your icons in
the display of icons that you can choose for each tool.

How SAS Locates a User-Defined Icon
The resource name that is used to locate the icon bitmap filename for user icon
number x is SAS.sasUiconx. For example, the following resource defines the
filename myicon for the user icon 1:

SAS.sasUicon1: myicon

If the resource name is not defined, SAS generates a filename of the form
sasuinnn.xbm or sasuinnn.xpm. The path elements from the SAS.uiconPath or
SAS.colorUiconpath resource are searched in sequence until the icon file is found
or until the search path is exhausted.

For example, the following set of X resources defines a collection of color icons:

SAS.colorUiconPath: /users/jackaroe/pixmaps/
SAS.colorUiconCount: 7
SAS.sasUicon1: adsetup
SAS.sasUicon2: adverse

254 Chapter 10 / Customizing the SAS Windowing Environment

SAS.sasUicon3: altmenu
SAS.sasUicon4: batch
SAS.sasUicon5: is
SAS.sasUicon6: patgrps
SAS.sasUicon7: pctchg

The Motif interface searches for icon sasUicon1 in a file named /users/jackaroe/
pixmaps/adsetup.xpm.

X Resources for Specifying User-Defined Icons
SAS uses the following resources to determine the number of user-defined icons
that are available and their location.

SAS.colorUiconPath: search-path
specifies the file search path for locating user-defined color icon files. This string
resource specifies the directory paths to be searched for an icon file. These files
should be in X Pixmap (xpm) format. Use a comma to separate individual
directory pathnames. For example, the following string first searches for icon
files in the /usr/lib/X11/pixmaps directory and then in
the /usr/lib/X11/pixmaps/SAS directory:

SAS.colorUiconPath : /usr/lib/X11/pixmaps, \
/usr/lib/X11/pixmaps/SAS

SAS.colorUiconCount: num-icons
specifies the number of user-defined color icons that are available for SAS to
use.

SAS.uiconCount: num-icons
specifies the number of user-defined icons that are available for use in the SAS
session.

SAS.uiconPath: search-path
specifies the file search path for locating user-defined icon bitmap files. This
string resource specifies the directory paths to be searched for an icon file.
These files should be in X Bitmap (xbm) format. Use a comma to separate
individual directory pathnames. For example, the following string will first search
for bitmap files in the /usr/lib/X11/bitmaps directory and then in
the /usr/lib/X11/bitmaps/SAS directory:

SAS.uiconPath : /usr/lib/X11/bitmaps,\
/usr/lib/X11/bitmaps/SAS

SAS.sasUiconx: name
associates a value with the filename of an X Bitmap or Pixmap file. x is a number
assigned to the file. A file extension of .xbm or .xpm is automatically supplied.

Specifying User-Defined Icons in UNIX Environments 255

Miscellaneous Resources in UNIX
Environments

You can also customize the following resources:

SAS.altVisualId: ID
specifies a visual type ID.

SAS.autoSaveInterval: minutes
specifies how often (in number of minutes) that the data from the Program Editor
window should be saved.

SAS.autoSaveOn: True | False
specifies that data from the Program Editor window should be saved to a file at
intervals specified by the SAS.autoSaveInterval resource.

SAS.confirmSASExit: True | False
controls whether SAS displays the Exit dialog box when you enter the
DLGENDR command or select File ð Exit. The default is True.

SAS.defaultCommandWindow: True | False
specifies whether the command window is invoked when you start your SAS
session. The default is True.

SAS.directory: directory-pathname
specifies the directory that you want when you first invoke the Open dialog box.
By default, the Open dialog box uses the current directory.

SAS.helpBrowser: pathname
specifies the pathname of the World Wide Web browser to use for viewing the
online Help or when the WBROWSE command is issued.

SAS.htmlUsePassword: True | False
specifies whether SAS prompts you to enter your password before sending
HTML files to your browser. The default value is True.

SAS.insertModeOn: True | False
controls the editing mode in SAS editor windows. The default is False (overtype).

SAS.noDoCommandRecall: True | False
controls whether SAS commands that are submitted through the
sas-do-command() action routine are recorded in the command recall buffer. The
default value of True causes commands to be omitted from the command recall
buffer; a value of False causes them to be recorded.

SAS.pattern: default-pattern
specifies the default pattern that you want to be used as the file filter when you
first invoke the Open and Import Image dialog boxes. This pattern is displayed in
the text field at the top of the dialog box. By default, the dialog box uses the first
filter in the File type list. The pattern resource has no effect on the File type field.

SAS.selectTimeout: seconds
specifies the X Toolkit selection conversion time-out value in units of seconds.
This time-out value determines the amount of time that SAS waits for a request

256 Chapter 10 / Customizing the SAS Windowing Environment

to convert an X Toolkit selection to complete. The default value should be
adequate in most cases.

SAS.startupLogo: xpm-filename | None | ""
specifies the XPM file that you want SAS to display when it is initialized. If the
string is empty, SAS uses the default logo.

SAS.startSessionManager: True | False
specifies whether SAS automatically starts the SAS Session Manager when a
new SAS session is started. Using your own host editor with SAS requires that
the SAS Session Manager be running. The default is True.

SAS.suppressMenuIcons: True | False
specifies whether SAS displays any menu icons other than the check box and
toggle button icons in cascade or pop-up menus. Suppressing the icons reduces
memory usage and improves how quickly the menus are displayed on slower X
servers. The default is False.

SAS.suppressTutorialDialog: True | False
specifies whether SAS displays the Getting Started Tutorial dialog box at the
start of your SAS session. True suppresses the dialog box. You might want to
suppress this dialog box if you have previously used SAS. The default is False.

SAS.useNativeXmTextTranslations: True | False
specifies whether any XmText widget translations are inherited by all instances
of the Text, Combo Box, and Spin Box widgets used by the SAS X Motif user
interface. When the value is False, the SAS keys windows translations
supersede any user or system-supplied XmText translations. The default value is
True.

The following example shows SAS XmText translations:

SAS*XmText*translations: #override \n\
Ctrl<Key>e:end-of-line()\n\
Ctrl<Key>u:delete-to-start-of-line()\n\
Ctrl<Key>k:delete-to-end-of-line()\n\
Ctrl<Key>f:forward-character()\n\
Ctrl<Key>b:backward-character()\n\
Ctrl<Key>a:beginning-of-line()\n\
Ctrl<Key>c:copy-clipboard()\n\
Ctrl<Key>v:paste-clipboard()\n\

SAS.wsaveAllExit: True | False
specifies whether SAS should issue the WSAVE ALL command when you end
your session. This command saves the global settings, such as window color
and window position, that are in effect for all windows that are currently open.
The default is False.

Note: For the WSAVE command to work, your window manager must support
explicit window placement. See the documentation for your window manager to
determine how to configure your window manager. For example, if you are
running Exceed, open the Screen Definition Settings dialog box and deselect
Cascade Windows.

Miscellaneous Resources in UNIX Environments 257

Summary of X Resources for SAS in
UNIX Environments

The following table lists the instance and class names, type, and default values for
many of the SAS resources. See the following sections for additional resources of
specific types:

n “Specifying Font Aliases” on page 240

n “Defining Color Resources” on page 244

n “Defining Colors and Attributes for Window Elements (CPARMS)” on page 246

Table 10.4 SAS Resources

Resource Name Class Name Type Default

SAS.altVisualId AltVisualId Integer NULL

SAS.autoComplete AutoComplete Boolean True

SAS.autoSaveInterval AutoSaveInterval Integer 10

SAS.autoSaveOn AutoSaveOn Boolean True

SAS.awsResizePolicy AWSResizePolicy String grow

SAS.colorUiconCount UiconCount Integer 0

SAS.colorUiconPath UiconPath String NULL

SAS.commandsSaved CommandsSaved Integer 25

SAS.confirmSASExit ConfirmSASExit Boolean True

SAS.defaultCommandWindow DefaultCommandWindow Boolean True

SAS.defaultPasteBuffer DefaultPasteBuffer String XTERM

SAS.defaultToolBox DefaultToolBox Boolean True

SAS.directory Directory String NULL

SAS.dmsContrastCheck DmsContrastCheck Boolean False

SAS.DMSDBFont Font String dynamic

258 Chapter 10 / Customizing the SAS Windowing Environment

Resource Name Class Name Type Default

SAS.DMSDBboldFont Font String dynamic

SAS.DMSboldFont Font String dynamic

SAS.DMSFont Font String dynamic

SAS.DMSfontPattern DMSFontPattern String -*-*-*-r-*--*-*-*-*-
m-*-iso8859-1

SAS.fontPattern FontPattern String *

SAS.helpBrowser HelpBrowser String Your default
browser

SAS.htmlUsePassword HtmlUsePassword Boolean True

SAS.insertModeOn InsertModeOn Boolean False

SAS.isToolBoxPersistent IsToolBoxPersistent Boolean True

SAS.keyboardTranslations KeyboardTranslations Translation dynamic

SAS.keysWindowLabels KeysWindowLabels String dynamic

SAS.markPasteBuffer MarkPasteBuffer String XTERM

SAS.maxWindowHeight WindowHeight Dimension 95

SAS.maxWindowWidth WindowWidth Dimension 95

SAS.noAWS NoAWS Boolean True

SAS.noDoCommandRecall NoDoCommandRecall Boolean True

SAS.pattern Pattern String NULL

SAS.pmenuOn PmenuOn Boolean True

SAS.sasUicon SasUicon String NULL

SAS.scrollBarSize ScrollBarSize Dimension 17

SAS.selectTimeout SelectTimeout Integer 60

SAS.sessionGravity SASGravity String NorthWestGravit
y

SAS.sessionGravityXOffset SASGravityOffset Integer 0

Summary of X Resources for SAS in UNIX Environments 259

Resource Name Class Name Type Default

SAS.sessionGravityYOffset SASGravityOffset Integer 0

SAS.startSessionManager StartSessionManager Boolean True

SAS.startupLogo StartUpLogo String NULL

SAS.suppressMenuIcons SuppressMenuIcons Boolean False

SAS.suppressTutorialDialog SuppressTutorialDialog Boolean False

SAS.systemFont SystemFont String “-adobe-
helvetica-
medium-r-
normal--12−*−*
−*−*−*−*−*”

SAS.toolBoxAlwaysOnTop ToolBoxAlwaysOnTop Boolean True

SAS.toolBoxTipDelay ToolBoxTipDelay Integer 750

SAS.uiconCount UiconCount Integer 0

SAS.uiconPath UiconPath String NULL

SAS.useCommandToolBoxCombo UseCommandToolBoxCombo Boolean True

SAS.useLargeToolBox UseLargeToolBox Boolean False

SAS.useNativeXmTextTranslations UseNativeXmTextTranslations Boolean False

SAS.usePmenuMnemonics UsePmenuMnemonics Boolean True

SAS.useShowHideDecorations UseShowHideDecorations Boolean False

SAS.useToolBoxTips UseToolBoxTips Boolean True

SAS.wsaveAllExit WsaveAllExit Boolean False

SAS.windowHeight WindowHeight Dimension 50

SAS.windowWidth WindowWidth Dimension 67

SAS.windowUnitType WindowUnitType String percentage

260 Chapter 10 / Customizing the SAS Windowing Environment

PART 3

Data Considerations

Chapter 11
Data Representation . 263

261

262

11
Data Representation

Numeric Variable Length and Precision in UNIX Environments 263

Missing Values in UNIX Environments . 264

Reading and Writing Binary Data in UNIX Environments . 265

Converting a UNIX Datetime Value to a SAS Datetime Value 265

Numeric Variable Length and Precision in
UNIX Environments

The default length of numeric variables in SAS data sets is 8 bytes. (You can control
the length of SAS numeric variables with the LENGTH or ATTRIB statements in the
DATA step.)

The issue of numeric precision affects the return values of almost all SAS math
functions and many numeric values returned from SAS procedures. Numeric values
in SAS for UNIX are represented as IEEE double-precision floating-point numbers.
The decimal precision of a full 8-byte number is effectively 15 decimal digits.

The following table specifies the significant digits and largest integer that can be
stored exactly in SAS numeric variables.

Table 11.1 Significant Digits and Largest Integer by Length for SAS Variables under UNIX

Length in Bytes

Significant Digits

Retained

Largest Integer

Represented Exactly

3 3 8,192

4 6 2,097,152

263

Length in Bytes

Significant Digits

Retained

Largest Integer

Represented Exactly

5 8 536,870,912

6 11 137,438,953,472

7 13 35,184,372,088,832

8 15 9,007,199,254,740,992

When you are specifying variable lengths, keep in mind that the length of a variable
affects both the amount of disk space used and the number of I/O operations
required to read and write the data set.

If you know that the value of a numeric variable will be an integer between -8192
and 8192 inclusive, you can use a length of 3 to store the number and thus save
space in your data set. For example:

data mydata;
 length num 3;
 ...more SAS statements...
run;

Numeric dummy variables (variables whose only purpose is to hold 0 or 1) can be
stored in a variable whose length is 3 bytes.

CAUTION
Use the LENGTH statement to reduce length only for variables whose values
are always integers. Fractional numbers lose precision if they are truncated. In
addition, you must ensure that the values of your variable are always represented
exactly in the number of bytes that you specify. You can do this programmatically in a
DATA step with the TRUNC function. No warnings or errors are issued when the length
that you specify in the LENGTH statement results in the truncation of data.

For more information about specifying variable lengths and optimizing system
performance, see SAS Programmer’s Guide: Essentials.

Missing Values in UNIX Environments
In SAS on UNIX, missing values are represented by IEEE Not-a-Number values. An
IEEE Not-a-Number value is an IEEE floating-point bit pattern that represents
something other than a valid numeric value. These numbers are not computationally
derivable.

264 Chapter 11 / Data Representation

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Reading and Writing Binary Data in UNIX
Environments

Different computers store numeric binary data in different forms. If you try to move
binary data in flat files across systems that are incompatible, problems will occur. A
safer way to move data is by using SAS data sets.

SAS provides several sets of informats and formats for handling binary data. Some
of these informats and formats are host dependent. For example, the IBw.d, PDw.d,
PIBw.d, and RBw.d informats and formats read and write data in native mode. That
is, they use the byte-ordering system that is standard for the computer.

For more information about all of the informats and formats, see SAS Formats and
Informats: Reference.

Converting a UNIX Datetime Value to a
SAS Datetime Value

A UNIX datetime value is stored as the number of seconds since January 1, 1970. A
SAS datetime value is stored as the number of seconds since January 1, 1960. To
convert a UNIX datetime value to a SAS datetime value, you must add 10 years in
seconds to the UNIX datetime value.

The DHMS function converts a UNIX datetime value to a SAS datetime value, as
shown in the example below:

data UNIX_to_SAS;
 input UNIX_datetime;
 SAS_datetime = dhms('01jan1970'd, 0,0, UNIX_datetime);
 format SAS_datetime datetime20.;
datalines;
1285560000
1313518500
1328414200
;
proc print data=UNIX_to_SAS;
run;

The following output displays the results.

Converting a UNIX Datetime Value to a SAS Datetime Value 265

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Figure 11.1 Conversion of a UNIX Datetime Value to a SAS Datetime Value

For more information, see “DHMS Function” in SAS Functions and CALL Routines:
Reference.

266 Chapter 11 / Data Representation

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1b9d1kbo0czoxn1ouj1kcxwqzn1.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1b9d1kbo0czoxn1ouj1kcxwqzn1.htm&locale=en

PART 4

Host-Specific Features of the SAS
Language

Chapter 12
Commands under UNIX . 269

Chapter 13
Data Set Options under UNIX . 297

Chapter 14
Environment Variables under UNIX . 309

Chapter 15
Formats under UNIX . 315

Chapter 16
Functions and CALL Routines under UNIX . 323

Chapter 17
Informats under UNIX . 355

Chapter 18
Macro Facility under UNIX . 365

Chapter 19
Statements under UNIX . 371

Chapter 20
System Options under UNIX . 407

267

268

12
Commands under UNIX

SAS Commands under UNIX . 270

Dictionary . 270
AUTOSCROLL Command: UNIX . 270
CAPS Command: UNIX . 271
COLOR Command: UNIX . 271
DLGABOUT Command: UNIX . 272
DLGCDIR Command: UNIX . 273
DLGENDR Command: UNIX . 273
DLGFIND Command: UNIX . 274
DLGFONT Command: UNIX . 274
DLGOPEN Command: UNIX . 275
DLGPREF Command: UNIX . 276
DLGREPLACE Command: UNIX . 277
DLGSAVE Command: UNIX . 277
DLGSCRDUMP Command: UNIX . 278
DLGSMAIL Command: UNIX . 279
FILE Command: UNIX . 280
FILL Command: UNIX . 282
FONTLIST Command: UNIX . 282
GSUBMIT Command: UNIX . 283
HOME Command: UNIX . 283
HOSTEDIT Command: UNIX . 284
INCLUDE Command: UNIX . 285
SETAUTOSAVE Command: UNIX . 286
SETDMSFONT Command: UNIX . 287
SETENV Command: UNIX . 288
TOOLCLOSE Command: UNIX . 289
TOOLEDIT Command: UNIX . 289
TOOLLARGE Command: UNIX . 290
TOOLLOAD Command: UNIX . 290
TOOLTIPS Command: UNIX . 291
WBROWSE Command: UNIX . 292
WCOPY Command: UNIX . 293
WCUT Command: UNIX . 293
WDEF Command: UNIX . 294
WPASTE Command: UNIX . 294
WUNDO Command: UNIX . 295

269

X Command: UNIX . 295
XSYNC Command: UNIX . 296

SAS Commands under UNIX
This section describes commands that you can enter on the command line in the
windowing environment of SAS. The commands that are described here have
behavior or syntax that is specific to UNIX environments. Each command
description includes a brief "UNIX specifics" section that explains which aspect of
the command is specific to UNIX. If the information under "UNIX specifics" says
"all," then the command applies to the UNIX operating environment and is described
only in this document.

The following commands are not supported in UNIX environments:

CASCADE RESIZE WGROW
DCALC SCROLLBAR WMOVE
ICON SMARK WSHRINK
PCLEAR TILE ZOOM

Dictionary

AUTOSCROLL Command: UNIX
Specifies how often the Log and Output windows scroll to display output.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: valid arguments and default values

Syntax
AUTOSCROLL<n>

Optional Argument
n

specifies the number of lines that the window should scroll when it receives a
line of data that cannot fit.

270 Chapter 12 / Commands under UNIX

Details
The AUTOSCROLL command controls the scrolling of lines as they are written to
the Log and Output windows. The default value for AUTOSCROLL in the Log and
Output windows is 1. Processing is slower when AUTOSCROLL displays one line at
a time. To expedite processing, you can specify a greater AUTOSCROLL value in
your autoexec.sas file. Specifying a value of 0 optimizes processing and results in
the fastest scrolling (similar to jump scrolling in xterm windows). To add the
AUTOSCROLL command to your autoexec.sas file, you must use the DM
command. The following example maximizes scrolling in both the Log and Output
windows:

dm 'output; autoscroll 0; log; autoscroll 0; pgm;';

CAPS Command: UNIX
Changes the default case of text.

Category: Text Editing

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
CAPS <ON | OFF>

Optional Arguments
ON

turns capitalization on.

OFF
turns capitalization off.

COLOR Command: UNIX
Specifies the color and highlighting of selected portions of a window.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: valid field types and attributes

COLOR Command: UNIX 271

Syntax
COLOR field-type color | NEXT <highlight>

Required Arguments
field-type

specifies an area of the window such as background, command, border,
message, and so on.

color
specifies a color such as blue (B), red (R), green (G), cyan (C), pink (P), yellow
(Y), white (W), black (K), magenta (M), gray (A), brown (B), or orange (O).

NEXT
changes the color to the next available color.

Optional Argument
highlight

can be H (which causes text to be displayed in a bold font), U (underlined), or R
(reverse video). The BLINK attribute is not supported.

Details
Under UNIX, you cannot use the COLOR command to change the colors in these
field types: BORDER, MENU, MENUBORDER, SCROLLBAR, or TITLE. Also, the H
(HIGHLIGHT) and B (BLINK) attributes are not supported. For more information
about the COLOR command, see the online Help for the Program Editor window.

DLGABOUT Command: UNIX
Opens the About SAS dialog box.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
DLGABOUT

272 Chapter 12 / Commands under UNIX

Details
The About SAS dialog box displays information about SAS software. This includes
the release of SAS that you are running, your site number, the operating system, the
version of Motif that you are using, and the color information from your PC.

To access this dialog box from the menu, select Help ð About SAS 9.

DLGCDIR Command: UNIX
Opens the Change Working Directory dialog box.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
DLGCDIR

Details
The Change Working Directory dialog box enables you to select a new working
directory. To access this dialog box from the menu, select Tools ð Options ð
Change Directory.

DLGENDR Command: UNIX
Opens the Exit dialog box.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
DLGENDR

DLGENDR Command: UNIX 273

Details
The Exit dialog box prompts you to confirm that you want to exit SAS. If you choose
OK, the SAS session ends. If you have set the SAS.confirmSASExit resource to
False, this command becomes equivalent to the BYE command. To access this
dialog box from the menu, select File ð Exit.

See Also
“Miscellaneous Resources in UNIX Environments” on page 256

DLGFIND Command: UNIX
Opens the Find dialog box.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
DLGFIND

Details
The Find dialog box enables you to search for text strings. To access this dialog box
from the menu, select Edit ð Find.

See Also
Commands:

n “DLGREPLACE Command: UNIX” on page 277

DLGFONT Command: UNIX
Opens the Fonts dialog box.

274 Chapter 12 / Commands under UNIX

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
DLGFONT

Details
The Font dialog box enables you to dynamically change the SAS font. To access
this dialog box from the menu, select Tools ð Options ð Fonts.

See Also
Commands:

n “SETDMSFONT Command: UNIX” on page 287

Other References:

n “Customizing Fonts in UNIX Environments” on page 237

DLGOPEN Command: UNIX
Opens the Open dialog box.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
DLGOPEN <FILTERS='filters'> <IMPORT> <SUBMIT | NOSUBMIT> <VERIFY>

DLGOPEN Command: UNIX 275

Optional Arguments
FILTERS='filters'

specifies one or more file filters to use as search criteria when displaying files.
For example, the following command displays all files in the current directory that
have a .sas extension and adds *.txt to the File type box in the dialog box:

DLGOPEN FILTERS="*.sas *.txt"

You can specify multiple filters; they all appear in the box. If you do not specify
any filters, the dialog box displays a default list. See the description of the
SAS.pattern resource in “Miscellaneous Resources in UNIX Environments” on
page 256 for information about specifying a default file pattern.

IMPORT
invokes the Import Image dialog box, which enables you to import graphic files to
SAS/GRAPH applications.

SUBMIT | NOSUBMIT
specifies whether the SUBMIT command is pushed after the file is opened. The
default value is NOSUBMIT.

VERIFY
checks whether the DLGOPEN command is appropriate for the active window.

Details
The Open and Import Image dialog boxes enable you to select a file to read into the
active window. If the active window is a SAS/GRAPH window, then the Import Image
dialog box is displayed. Otherwise, the Open dialog box is displayed. To access
these dialog boxes from the menu, select File ð Open or File ð Import Image.

For more information, see “Adding Images to SAS/GRAPH Output” in SAS/GRAPH:
Reference.

DLGPREF Command: UNIX
Opens the Preferences dialog box.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
DLGPREF

276 Chapter 12 / Commands under UNIX

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19zerwwhegwjon1r1n1qhsut8tu.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19zerwwhegwjon1r1n1qhsut8tu.htm&locale=en

Details
The Preferences dialog box enables you to dynamically change certain resource
settings. To access this dialog box from the menu, select Tools ð Options ð
Preferences.

See Also
“Modifying X Resources through the Preferences Dialog Box” on page 207

DLGREPLACE Command: UNIX
Opens the Change dialog box.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
DLGREPLACE

Details
The Change dialog box enables you to search for and replace text strings. To
access this dialog box from the menu, select Edit ð Replace.

See Also
Commands:

n “DLGFIND Command: UNIX” on page 274

DLGSAVE Command: UNIX
Opens the Save As or Export dialog box.

Category: SAS Windowing Environment

DLGSAVE Command: UNIX 277

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
DLGSAVE <FILTERS='filters'> <EXPORT> <VERIFY>

Optional Arguments
FILTERS='filters'

specifies one or more file filters to use as search criteria when displaying files.
For example, the following command displays all files in the current directory that
have a .sas extension and adds *.txt to the File type box in the dialog box:

DLGSAVE FILTERS="*.sas *.txt"

You can specify multiple filters; they all appear in the dialog box. If you do not
specify any filters, the dialog box displays a default list.

EXPORT
invokes the Export dialog box, enabling you to export graphic files in your SAS
session.

VERIFY
checks whether the DLGSAVE command is appropriate for the active window.

Details
To access this dialog box from the menu, select File ð Save as or File ð Export as
Image.

DLGSCRDUMP Command: UNIX
Saves the active SAS/GRAPH window as an image file using the filename and file type that you specify.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
DLGSCRDUMP <'filename.ext' 'FORMAT=file-type'>

278 Chapter 12 / Commands under UNIX

Details
DLGSCRDUMP saves the active SAS/GRAPH window as an image file by using the
filename and file type that you specify. If you do not specify arguments,
DLGSCRDUMP opens the Export dialog box and enables you to choose a filename
and file type. You can save displays in any image format that is supported by
SAS/GRAPH. For details about specifying images, see “Adding Images to
SAS/GRAPH Output” in SAS/GRAPH: Reference.

DLGSMAIL Command: UNIX
Opens the Send Mail dialog box.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
DLGSMAIL

Details
The Send Mail dialog box enables you to send electronic mail while working in SAS.
To access this dialog box from the menu, select File ð Send mail.

See Also
System Options:

n “EMAILSYS System Option: UNIX” on page 429

Other References:

n “Sending Electronic Mail Using the FILENAME Statement (EMAIL)” on page 104

n “Sending Mail from within Your SAS Session in UNIX Environments” on page
197

DLGSMAIL Command: UNIX 279

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19zerwwhegwjon1r1n1qhsut8tu.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19zerwwhegwjon1r1n1qhsut8tu.htm&locale=en

FILE Command: UNIX
Writes the contents of the current window to an external file.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: valid values for encoding-value and host-options

Syntax
FILE <file-specification> <ENCODING='encoding-value'> <portable-options> <host-
options>

Optional Arguments
file-specification

can be any of the following:

single filename
SAS writes the file in the current directory. If you enclose the filename in
quotation marks, SAS uses the filename exactly as you specify it. If you do
not enclose the filename in quotation marks and if you do not specify a file
extension, SAS uses .sas, .log, or .lst, depending on whether you issue the
command from the Program Editor, Log, or Output window.

entire pathname
SAS does not assume any file extensions, even if you do not enclose the
pathname in quotation marks.

fileref
SAS specifies a fileref to assign to an external file.

ENCODING='encoding-value'
specifies the encoding to use when writing to the output file. The value for
ENCODING= indicates that the output file has a different encoding from the
current session encoding.

When you write data to the output file, SAS transcodes the data from the session
encoding to the specified encoding.

For valid encoding values, see “Overview to SAS Language Elements That Use
Encoding Values” in SAS National Language Support (NLS): Reference Guide.

portable-options
are options for the FILE command that are valid in all operating environments.
For more information about these options, see SAS System Options: Reference.

host-options
are specific to UNIX environments. These options can be any of the following:

BLKSIZE=BLK=
specifies the number of bytes that are physically written in one I/O operation.
The default is 8K. The maximum is 1G–1.

280 Chapter 12 / Commands under UNIX

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en

LRECL=
specifies the logical record length. Its value depends on the record format in
effect (RECFM). In SAS 9.4, the default value for LRECL= is 32,767. If you
are using fixed length records (RECFM=F), the default value for LRECL= is
256. The maximum record length is 1G.

n If RECFM=F, then the value for the LRECL= option determines the length
of each output record. The output record is truncated or padded with
spaces to fit the specified size.

n If RECFM=N, then the value for the LRECL= option must be at least 256.

n If RECFM=V, then the value for the LRECL= option determines the
maximum record length. Records that are longer than the specified length
are truncated.

NEW
OLD

indicates that a new file is to be opened for output. If the file already exists,
then it is deleted and re-created. This is the default action.

RECFM=
specifies the record format. Values for the RECFM= option are listed below:

D default format (same as variable).

F fixed format. That is, each record has the same length. Do
not use RECFM=F for external files that contain carriage-
control characters.

N binary format. The file consists of a stream of bytes with no
record boundaries.

P print format. SAS writes carriage-control characters.

V variable format. Each record ends with a newline character.

S370V variable S370 record format (V).

S370VB variable block S370 record format (VB).

S370VBS variable block with spanned records S370 record format
(VBS).

UNBUF
tells SAS not to perform buffered writes to the file on any subsequent FILE
statement. This option applies especially when you are writing to a data
collection device.

Details
If you do not enter a file specification, SAS uses the filename from the previous FILE
or INCLUDE command. In this case, SAS first asks whether you want to overwrite
the file. If you have not issued any FILE or INCLUDE commands, you receive an
error message that indicates that no default file exists.

FILE Command: UNIX 281

FILL Command: UNIX
Specifies the fill character.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: default character

Syntax
FILL <fill-character>

Optional Argument
fill-character

specifies the character to be used to fill out a line.

Under UNIX, the default fill character is an underscore (_).

FONTLIST Command: UNIX
Opens the Select Font window, which lists available software fonts.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
FONTLIST

Details
The FONTLIST command opens windows that list all of the software fonts that are
available in your operating environment. This feature is useful if you want to choose
a font to use in a SAS program, typically with a FONT= or FTEXT= option.

Issuing the FONTLIST command from the SAS command line opens the Select
Font window, which contains two buttons, Copy and System. Clicking System
opens the Fonts window, from which you can select and preview all available

282 Chapter 12 / Commands under UNIX

system fonts. After you select the desired font and font attributes, click OK. The
Select Font window reopens with your selected font name displayed. Clicking Copy
places the font name in the copy buffer so that you can paste the selected font
name into your SAS program.

GSUBMIT Command: UNIX
Submits SAS code stored in a paste buffer.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: valid buffer names

Syntax
GSUBMIT BUF=buffer-name | "statement-1; statement-n...;"

Required Arguments
buffer-name

can be XPRIMARY, XSCNDARY, XCLIPBRD, XTERM, or XCUTn where
0<=n<=7. For more information, see “Customizing Cut and Paste in UNIX
Environments” on page 250.

statement
can be any SAS statement.

HOME Command: UNIX
Toggles the cursor position between the current position and the command line.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: keyboard equivalent

Syntax
HOME

HOME Command: UNIX 283

Details
Keyboards vary among the different UNIX operating environments. To determine
which key is assigned to the HOME command, look in the Keys window. To open
the Keys window, issue the KEYS command.

See Also
“Customizing Key Definitions in UNIX Environments” on page 228

HOSTEDIT Command: UNIX
Starts the UNIX editor, specified by the EDITCMD system option, in the current window.

Category: SAS Windowing Environment

Alias: HED

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
HOSTEDIT

Details
When you issue the HOSTEDIT command from a SAS text editor window, the
contents of the buffer for that window are written to a temporary file in the /tmp
directory. A command invoking the host editor that was specified in the EDITCMD
system option is passed to the SAS Session Manager. The SAS Session Manager
issues the command to the operating environment to invoke the editor for the
temporary file.

The X display that is used with the HOSTEDIT command is the same one that is
used with your SAS session.

See Also
System Options:

n “EDITCMD System Option: UNIX” on page 428

284 Chapter 12 / Commands under UNIX

Other References:

n “Configuring SAS for Host Editor Support in UNIX Environments” on page 200

INCLUDE Command: UNIX
Copies the entire contents of an external file into the current window.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: valid values for encoding-value and portable-options

Syntax
INCLUDE <file-specification> <ENCODING='encoding-value'> <portable-options>
<host-options>

Optional Arguments
file-specification

can be any of the following:

n a single filename. SAS searches for the file in the current directory. If you
enclose the filename in quotation marks, then SAS uses the filename exactly
as you specify it. If you do not enclose the filename in quotation marks and if
you do not specify a file extension, then SAS searches for .sas.

n an entire pathname. SAS does not assume any file extensions, even if you
do not enclose the pathname in quotation marks.

n a fileref.

ENCODING='encoding-value'
specifies the encoding to use when reading from the external file. The value for
ENCODING= indicates that the external file has a different encoding from the
current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding.

For valid encoding values, see “Overview to SAS Language Elements That Use
Encoding Values” in SAS National Language Support (NLS): Reference Guide.

portable-options
are options for the INCLUDE command that are valid in all operating
environments. See SAS System Options: Reference for information about these
options.

host-options
are specific to UNIX environments. These options can be any of the following:

INCLUDE Command: UNIX 285

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en

BLKSIZE=
BLK=

specifies the number of bytes that are physically read in one I/O operation.
The default is 8K. The maximum is 1G–1.

LRECL=
specifies the logical record length. Its value depends on the record format in
effect (RECFM). In SAS 9.4, the default value for LRECL= is 32,767. If you
are using fixed length records, (RECFM=F), the default value for LRECL= is
256. The maximum record length is 1G.

n If RECFM=F, then the value for the LRECL= option determines the
number of bytes to be read as one record.

n If RECFM=N, then the value for the LRECL= option must be at least 256.

n If RECFM=V, then the value for the LRECL= option determines the
maximum record length. Records that are longer than the specified length
are truncated.

RECFM=
specifies the record format. Values for the RECFM= option are listed below:

D default format (same as variable).

F fixed format. That is, each record has the same length.

N binary format. The file consists of a stream of bytes with no record
boundaries.

P print format.

V variable format. Each record ends with a newline character.

Details
If you do not enter a file specification, then SAS uses the filename from the previous
FILE or INCLUDE command. In this case, SAS first asks whether you want to
overwrite the file. If you have not issued any FILE or INCLUDE commands, then you
receive an error message to indicate that no default file exists.

SETAUTOSAVE Command: UNIX
Turns autosave on and off.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
SETAUTOSAVE <ON | OFF>

286 Chapter 12 / Commands under UNIX

Details
The SETAUTOSAVE command turns autosave on or off for the Program Editor.
However, the value set for autosave in the Preferences dialog box has precedence.
To open the Preferences dialog box, select Tools ð Options ð Preferences.
Autosave is controlled by the Backup Documents check box on the DMS tab. On
this tab, there is also a field in which you can specify the interval for these backups.

If you enable autosave using the SETAUTOSAVE command and the Backup
Documents check box is selected, then SAS automatically saves the contents of
the Program Editor into a file named pgm.asv. This file is saved to your current
directory at the interval specified on the DMS tab.

If you issue this command but do not specify ON or OFF, SAS displays the current
autosave setting.

See Also
n “Miscellaneous Resources in UNIX Environments” on page 256

n “Modifying the DMS Settings” on page 209

SETDMSFONT Command: UNIX
Specifies a windowing environment font for the current session.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
SETDMSFONT "font-specification"

Required Argument
font-specification

specifies an X Logical Font Description (XLFD) pattern that you want SAS to use
in order to determine the windowing environment font.

Details
Most fonts in the X Window System are associated with an XLFD, which contains a
number of different fields that are delimited by a hyphen (-) character. The fields in

SETDMSFONT Command: UNIX 287

the XLFD indicate properties such as the font family name, weight, size, resolution,
and whether the font is proportional or monospaced. See your X Window system
documentation for more information about the XLFD and font names that are used
with the X Window System.

See Also
Commands:

n “DLGFONT Command: UNIX” on page 274

SETENV Command: UNIX
Defines an environment variable and assigns a value to it.

Categories: Environment
CAS

Syntax
SETENV <variable-name> <variable-value>

UNSETENV variable-name

Required Argument
variable-name

specifies a UNIX environment variable that you can set. This value is required
when you use the UNSETENV command.

Optional Argument
variable-value

specifies the value of a UNIX environment variable.

Details
The SETENV command can be used to define an environment variable and assign
a value to it. The value of an environment variable can be retrieved from within the
SAS session using the SYSGET function during autoexec processing. The
command x setenv a/tmp; sets a=/tmp. The command x echo $a; results in the
value /tmp.

288 Chapter 12 / Commands under UNIX

The UNSETENV command removes an environment variable. The memory for the
entry and the environment variable is released.

TOOLCLOSE Command: UNIX
Closes the toolbox.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
TOOLCLOSE

Details
The TOOLCLOSE command closes the toolbox.

See Also
Commands:

n “TOOLLOAD Command: UNIX” on page 290

TOOLEDIT Command: UNIX
Opens the Tool Editor on the specified toolbox.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
TOOLEDIT <library.catalog.entry>

TOOLEDIT Command: UNIX 289

Details
If you do not specify an entry name, the Tool Editor edits the toolbox for the active
window.

TOOLLARGE Command: UNIX
Toggles the size of the SAS ToolBox window.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
TOOLLARGE <ON | OFF>

Required Arguments
ON

sets the size of the icons in the SAS ToolBox to 48x48.

OFF
sets the size of the icons in the SAS ToolBox to 24x24.

Details
If you do not specify ON or OFF, the TOOLLARGE command toggles the size of the
SAS ToolBox. The size of the SAS ToolBox changes for your current session only;
the new size is not saved.

You can also use the menu to change the size of the SAS ToolBox through the
Preferences dialog box. Select Tools ð Options ð Preferences. Select the
ToolBox tab, and then select Use large tools. If you change the size of the SAS
ToolBox through the Preferences dialog box, the new size is saved, and SAS
displays the large toolbox in subsequent sessions.

TOOLLOAD Command: UNIX
Loads a specific toolbox.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

290 Chapter 12 / Commands under UNIX

UNIX specifics: all

Syntax
TOOLLOAD <library.catalog.entry>

Details
If you do not specify an entry name, TOOLLOAD loads the toolbox for the active
window.

See Also
Commands:

n “TOOLCLOSE Command: UNIX” on page 289

TOOLTIPS Command: UNIX
Toggles the ToolTip text for an icon in the toolbox.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
TOOLTIPS <ON | OFF>

Required Arguments
ON

specifies that the ToolTip text is displayed when you move the cursor over an
icon in the toolbox.

OFF
specifies that the ToolTip text is not displayed.

TOOLTIPS Command: UNIX 291

Details
If you do not specify ON or OFF, the TOOLTIPS command turns the ToolTip text on
or off, depending on the current setting.

You can also use the Preferences dialog box to specify whether ToolTip text is
displayed by selecting Tools ð Options ð Preferences. Select the ToolBox tab,
and then select Use tip text .

See Also
“Changing the Attributes of an Existing Tool” on page 223

WBROWSE Command: UNIX
Opens a World Wide Web (WWW) browser.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
WBROWSE <"url">

Details
WBROWSE invokes the web browser that is specified by the resource
SAS.helpBrowser. If you specify a URL, the document that the URL identifies is
automatically displayed. If you do not specify a URL, the SAS home page is
displayed.

See Also
“Miscellaneous Resources in UNIX Environments” on page 256

292 Chapter 12 / Commands under UNIX

WCOPY Command: UNIX
Copies the marked contents of the active window to the default buffer.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
WCOPY

Details
In SAS Windowing Environment, this command executes the STORE command.
For more information, see SAS Help and Documentation.

WCUT Command: UNIX
Moves the marked contents of the active window to the default buffer.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
WCUT

Details
In SAS Windowing Environment, this command executes the CUT command.

This command is valid only when the active window is a text editor window, such as
Program Editor or Notepad.

For information about the CUT command, see online SAS Help and Documentation.

WCUT Command: UNIX 293

WDEF Command: UNIX
Redefines the active window.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: behavior is controlled by the SAS.awsResizePolicy resource

Syntax
WDEF starting-row starting-column number-rows number-columns

Details
The WDEF command operates in the application workspace assigned to the SAS
session. The WDEF command does not operate in the AWS container window,
except when the container window needs to be enlarged so that you can view a
SAS window contained in it. AWS resize behavior is controlled by the
SAS.awsResizePolicy resource.

See Also
n “Miscellaneous Resources in UNIX Environments” on page 256

n “X Window Managers” on page 175

WPASTE Command: UNIX
Pastes the contents of the default buffer into the active window.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
WPASTE

294 Chapter 12 / Commands under UNIX

Details
In SAS Windowing Environment, this command executes the PASTE command. For
information about the PASTE and command, see online SAS Help and
Documentation.

WUNDO Command: UNIX
Undoes one line of text entry, or undoes the last cut, copy, or paste action.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
WUNDO

Details
In SAS Windowing Environment, this command executes the UNDO command. In
SAS/GRAPH windows, WUNDO is invalid.

One execution of the WUNDO command undoes text entry for only one line at a
time. If you issue the WUNDO command again, the previous line of text is undone.

If you use the CC command to copy and paste a block of text, and then issue the
WUNDO command, the block of text that you copied is deleted. If you use the DD
command to delete a block of text, and then issue the WUNDO command, the block
of text that you deleted is restored.

Note: The WUNDO command cannot replace lines that the SUBMIT command
removes. It cannot reverse the effects of submitted SAS statements.

X Command: UNIX
Enables you to enter UNIX commands without ending the SAS session.

Categories: Environment
CAS

UNIX specifics: all

X Command: UNIX 295

Syntax
X command

X 'command-1; command-2....<; command-n>'

Required Argument
command

specifies a UNIX command.

Details
When you enter the X command, SAS starts a shell to execute the commands that
you specified. The commands that you enter are processed differently, depending
on whether you enter one command or more than one command.

See Also
“Executing Operating System Commands from Your SAS Session” on page 18

XSYNC Command: UNIX
Changes X synchronization during a SAS session.

Category: SAS Windowing Environment

Restriction: This command is not included in SAS Viya.

UNIX specifics: all

Syntax
XSYNC <ON | OFF>

Details
This command turns off the buffering that is normally done by the X Window
System. X synchronization is off by default. Turning it on is useful when you are
debugging applications, although it drastically reduces performance.

If you do not specify ON or OFF, XSYNC toggles the synchronization. The XSYNC
command is valid from any SAS window.

296 Chapter 12 / Commands under UNIX

13
Data Set Options under UNIX

SAS Data Set Options under UNIX . 297

Summary of SAS Data Set Options in UNIX Environments . 298

Dictionary . 301
ALTER= Data Set Option: UNIX . 301
BUFNO= Data Set Option: UNIX . 302
BUFSIZE= Data Set Option: UNIX . 303
PW= Data Set Option: UNIX . 304
USEDIRECTIO= Data Set Option: UNIX . 305

SAS Data Set Options under UNIX
This section describes SAS data set options that exist only in the UNIX
environment, as well as options whose behavior or syntax is specific to UNIX. Each
data set option description includes a brief “UNIX specifics” section that explains
which aspect of the data set option is specific to UNIX. For data set options that
have behavior or syntax specific to UNIX, see SAS Data Set Options: Reference for
a complete description of the option.

Specify data set options following the data set name in SAS statements as follows:

...data-set-name(option-1=value-1 option-2=value-2, …)

A few data set options are also SAS system options (for example, BUFSIZE=). If the
same option is specified both as a system option and as a data set option, SAS
uses the value given with the data set option. For more information about SAS
system options, see “Customizing Your SAS Session By Using System Options” on
page 22 and “SAS System Options under UNIX” on page 409.

To view a table of all of the data set options available under UNIX, see “Summary of
SAS Data Set Options in UNIX Environments” on page 298.

297

Summary of SAS Data Set Options in
UNIX Environments

SAS data set options are listed in the following table. The table lists the name of
each option, a brief description, whether the option can be used for a data set
opened for input, output, or update, and a list of engines for which the option is
valid. The See column tells you where to look for more information about an option.
Use the following legend to locate the additional information.

COMP
See the description of the data set option in this section.

DS
See SAS Data Set Options: Reference.

NLS
See SAS National Language Support (NLS): Reference Guide.

Table 13.1 Summary of SAS Data Set Options

Option Name Description When Used Engines See

ALTER= specifies a password for a SAS file
that prevents users from replacing
or deleting the file, but permits
Read and Write access.

output, update V9, V8,
V6

DS, COMP

BUFNO= specifies the number of buffers to
be allocated for processing a SAS
data set.

input, output,
update

V9, V8,
V6

DS, COMP

BUFSIZE= specifies the size of a permanent
buffer page for an output SAS data
set.

output V9, V8 DS, COMP

CNTLLEV= specifies the level of shared
access to SAS data sets.

input, update V9, V8 DS

COMPRESS= controls the compression of
observations in a new output SAS
data set.

output V9, V8,
V6

CAS

DS

DLDMGACTION= specifies the action to take when a
SAS data set in a SAS library is
detected as damaged.

input, output,
update

V9, V8 DS

DROP= for an input data set, excludes the
specified variables from
processing; for an output data set,

input, output,
update

All DS

298 Chapter 13 / Data Set Options under UNIX

Option Name Description When Used Engines See

excludes the specified variables
from being written to the data set.

ENCODING= overrides the encoding for the
input or output SAS data set.

input, output V9, V8 NLS

ENCRYPT= specifies whether to encrypt an
output SAS data set.

output All
except
CAS

DS

FIRSTOBS= specifies the first observation that
SAS processes in a SAS data set.

input, update All
except
CAS

DS

GENMAX= requests generations for a SAS
data set, and specifies the
maximum number of versions.

output, update V9, V8 DS

GENNUM= specifies a particular generation of
a SAS data set.

input, output,
update

V9, V8 DS

IDXNAME= directs SAS to use a specific index
to meet the conditions of a
WHERE expression.

input, update V9, V8,
V6

DS

IDXWHERE= specifies whether SAS uses an
index or uses a sequential search,
to match the conditions of a
WHERE expression.

input, update V9, V8,
V6

DS

IN= creates a Boolean variable that
indicates whether the data set
contributed data to the current
observation.

input, update All DS

INDEX= defines an index for a new output
SAS data set.

output V9, V8,
V6

DS

KEEP= for an input data set, specifies the
variables to process; for an output
data set, specifies the variables to
write to the data set.

input, output,
update

All DS

LABEL= specifies a label for a SAS data
set.

input, output,
update

All DS

OBS= specifies the last observation that
SAS processes in a data set.

input, update All
except
CAS

DS

OBSBUF= determines the size of the view
buffer for processing a DATA step
view.

input V9, V8 DS

Summary of SAS Data Set Options in UNIX Environments 299

Option Name Description When Used Engines See

OUTREP= specifies the data representation
for the output SAS data set.

output V9, V8 DS,

NLS

POINTOBS= controls whether to process a
compressed SAS data set by
observation number or by
sequential access.

output V9, V8 DS

PW= assigns a READ, WRITE, or
ALTER password to a SAS file and
enables access to a password-
protected file.

input, output,
update

V9, V8,
V6

DS,

COMP

PWREQ= specifies whether to display a
dialog box for a SAS data set
password.

input, output,
update

V9, V8,
V6

DS

READ= assigns a password to a SAS file
and enables access to a Read-
protected SAS file.

input, output,
update

V9, V8,
V6

DS

RENAME= changes the name of a variable. input, output,
update

All DS

REPEMPTY= specifies whether a new, empty
data set can overwrite an existing
SAS data set that has the same
name.

output V9, V8 DS

REPLACE= specifies whether a new SAS data
set that contains data can
overwrite an existing data set that
has the same name.

output All DS

REUSE= specifies whether new
observations can be written to
freed space in compressed SAS
data sets.

output V9, V8,
V6

DS

SORTEDBY= indicates how the SAS data set is
currently sorted.

input, output,
update

V9, V8,
V6

DS

SPILL= specifies whether to create a spill
file for non-sequential processing
of a DATA step view.

output V9, V8 DS

TOBSNO= 1 specifies the number of
observations to send in a client/
server transfer.

input, output,
update

V9, V8 DS

TYPE= specifies the data set type for a
speciAlly structured SAS data set.

input, output,
update

All
except
CAS

DS

300 Chapter 13 / Data Set Options under UNIX

Option Name Description When Used Engines See

USEDIRECTIO= turns on direct file I/O for the file
that you specify. To use this data
set option, you must specify the
ENABLEDIRECTIO statement
option in the LIBNAME statement
where the libref was assigned.

input, output,
update

V9, V8 COMP

WHERE= selects observations in a SAS data
set that match the specified
conditions.

input, output,
update

All DS

WHEREUP= specifies whether to evaluate new
observations and updated
observations against a WHERE
expression.

output, update V9, V8,
V6

DS

WRITE= assigns a WRITE password to a
SAS data set and enables access
to a Write-protected SAS file.

output, update V9, V8,
V6

DS

1 The TOBSNO= option is valid only for data sets that are accessed through a SAS server from the REMOTE engine.

Dictionary

ALTER= Data Set Option: UNIX
Specifies a password for a SAS file that prevents users from replacing or deleting the file, but permits Read
and Write access.

Valid in: DATA step and PROC steps

Category: Data Set Control

Default: none

Restriction: This data set option is not valid in a DATA step that runs on CAS.

Engine: V9, V8, V6

See: “ALTER= Data Set Option” in SAS Data Set Options: Reference

Syntax
ALTER=alter-password

ALTER= Data Set Option: UNIX 301

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1ipgcz8vs3mhzn132e7nsmiqtip.htm&locale=en

Required Argument
alter-password

must be a valid SAS name. See “SAS Words” in SAS Programmer’s Guide:
Essentials.

Details
The ALTER= option applies to all types of SAS files except catalogs. You can use
this option to assign an alter-password to a SAS file or to access a Read-protected,
Write-protected, or Alter-protected SAS file.

BUFNO= Data Set Option: UNIX
Specifies the number of buffers to be allocated for processing a SAS data set.

Valid in: DATA step and PROC steps

Category: Data Set Control

Default: 1

Restriction: This data set option is not valid in a DATA step that runs on CAS.

Engine: V9, V8, V6

UNIX specifics: default value

See: “BUFNO= Data Set Option” in SAS Data Set Options: Reference

Syntax
BUFNO=n | nK | hexX | MIN | MAX

Required Arguments
n | nK

specifies the number of buffers in multiples of 1 (bytes); 1,024 (kilobytes). For
example, a value of 8 specifies 8 buffers, and a value of 1k specifies 1024
buffers.

hexX
specifies the number of buffers as a hexadecimal value. You must specify the
value beginning with a number (0–9), followed by hexadecimal characters (0–9,
A–F), and then followed by an X. For example, the value 2dx specifies 45
buffers.

MIN
sets the minimum number of buffers to 0, which causes SAS to use the minimum
optimal value for the operating environment.

302 Chapter 13 / Data Set Options under UNIX

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1skkzk96hv6wfn1jvwaph1ibpa8.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1skkzk96hv6wfn1jvwaph1ibpa8.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n01nz6qxgpcwykn1bi1ihjh5vh8q.htm&locale=en

MAX
sets the number of buffers to the maximum possible number in your operating
environment, up to the largest four-byte signed integer, which is 231–1, or
approximately 2 billion.

Details
The buffer number is not a permanent attribute of the data set; it is valid only for the
current SAS step. BUFNO= applies to SAS data sets that are opened for input,
output, or update.

See Also
Data Set Options:

n “BUFSIZE= Data Set Option: UNIX” on page 303

System Options:

n “BUFNO System Option: UNIX” on page 420

BUFSIZE= Data Set Option: UNIX
Specifies the size of a permanent buffer page for an output SAS data set.

Valid in: DATA step and PROC steps

Category: Data Set Control

Default: 0

Restriction: This data set option is not valid in a DATA step that runs on CAS.

Engine: V9, V8

UNIX specifics: valid range

See: “BUFSIZE= Data Set Option” in SAS Data Set Options: Reference

Syntax
BUFSIZE=n | nK | nM | nG | hexX | MAX

BUFSIZE= Data Set Option: UNIX 303

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0pw7cnugsttken1voc6qo0ye3cg.htm&locale=en

Required Arguments
n | nK | nM | nG

specifies the buffer size in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); or 1,073,741,824 (gigabytes). For example, a value of 8 specifies 8
bytes, and a value of 3m specifies 3,145,728 bytes.

The buffer size can range from 1K to 2G–1. For values greater than 1G, use the
nM option.

hexX
specifies the page size as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hexadecimal characters (0–9, A–F),
and then followed by an X. For example, 2dx sets the page size to 45 bytes.

MAX
sets the buffer page size to the maximum possible number in your operating
environment, up to the largest four-byte, signed integer, which is 231–1, or
approximately 2 billion bytes.

Details
The BUFSIZE= data set option specifies the buffer size for data sets that you are
creating. This option is valid only for output data sets.

If you use the default value (0) when you create a SAS data set, the engine
calculates a buffer size to optimize CPU and I/O use. This size is the smallest
multiple of 8K that can hold 80 observations, but is not larger than 64K.

If you specify a nonzero value when you create a SAS data set, the engine uses
that value. If that value cannot hold at least one observation or is not a valid buffer
size, the engine rounds the value up to a multiple of 1K.

See Also
System Options:

n “BUFSIZE System Option: UNIX” on page 421

PW= Data Set Option: UNIX
Assigns a READ, WRITE, or ALTER password to a SAS file, and enables access to a password-protected
SAS file.

Valid in: DATA step and PROC steps

Category: Data Set Control

Default: none

Restriction: This data set option is not valid in a DATA step that runs on CAS.

304 Chapter 13 / Data Set Options under UNIX

Engine: V9, V8, V6

See: “PW= Data Set Option” in SAS Data Set Options: Reference

Syntax
PW=password

Required Argument
password

must be a valid SAS name. See “SAS Words” in SAS Programmer’s Guide:
Essentials.

Details
The PW= option applies to all types of SAS files except catalogs. You can use this
option to assign a password to a SAS file or to access a password-protected SAS
file.

USEDIRECTIO= Data Set Option: UNIX
Turns on direct file I/O for a library that contains the file to which the ENABLEDIRECTIO option has been
applied.

Valid in: DATA step

Category: Data Set Control

Default: Off

Restrictions: This data set option is not valid in a DATA step that runs on CAS.
This data set option is not valid for a data set in a metadata-bound library.

Engine: V9, V8

UNIX specifics: To use this option, you must also use the ENABLEDIRECTIO option in the LIBNAME
statement where the libref was assigned.

Syntax
USEDIRECTIO=YES | NO

USEDIRECTIO= Data Set Option: UNIX 305

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0tbic7ghccskln1xxjs8d9ni8o5.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1skkzk96hv6wfn1jvwaph1ibpa8.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1skkzk96hv6wfn1jvwaph1ibpa8.htm&locale=en

Required Argument
YES | NO

specifies whether to turn on the USEDIRECTIO= option.

Details
The USEDIRECTIO= data set option turns on direct file I/O for a data set that is
listed in a DATA statement. The associated libref must have been defined with the
ENABLEDIRECTIO option in the LIBNAME statement.

Using ENABLEDIRECTIO in a LIBNAME statement makes direct file I/O possible for
data sets in that library. Direct I/O itself is not turned on. You must use the
USEDIRECTIO= option to produce direct file I/O.

You can turn on direct file I/O in two ways:

n Use both the ENABLEDIRECTIO and USEDIRECTIO= options in the LIBNAME
statement:

libname libref-name '.' ENABLEDIRECTIO USEDIRECTIO=yes;

In this case, SAS uses direct file I/O on all SAS I/O data sets that are opened
using the libref libref-name.

n Use ENABLEDIRECTIO in the LIBNAME statement and use USEDIRECTIO= in
a DATA statement:

libname libref-name '.' ENABLEDIRECTIO;
data libref-name.data-set-name (USEDIRECTIO=yes);

In this case, libref-name.data-set-name is opened for direct file I/O. Other SAS
I/O data sets referenced by libref-name will not use direct file I/O.

USEDIRECTIO= by itself has no effect. Neither of the following statements open a
data set for direct file I/O:

libname libref-name '.' USEDIRECTIO=yes;
data libref-name.data-set-name (USEDIRECTIO=yes);

Example
The following example uses the ENABLEDIRECTIO LIBNAME option to enable files
that are associated with the libref test to be opened for direct I/O. The
USEDIRECTIO= data set option opens test.file1 for direct I/O. test.file2 is not
opened for direct I/O.

LIBNAME test'.'ENABLEDIRECTIO;
data test.file1(USEDIRECTIO=yes);
 ... more SAS statements ...
run;
data test.file2;
 ... more SAS statements ...
run;

306 Chapter 13 / Data Set Options under UNIX

See Also
Statements:

n “LIBNAME Statement: UNIX” on page 391

USEDIRECTIO= Data Set Option: UNIX 307

308 Chapter 13 / Data Set Options under UNIX

14
Environment Variables under
UNIX

Defining Environment Variables in UNIX Environments . 309
What Is a UNIX Environment Variable? . 309
How to Define an Environment Variable for Your Shell . 309
Use the OPTIONS Statement and SET System Option . 309
Displaying the Value of an Environment Variable . 309

Dictionary . 311
AUTHINFO Environment Variable . 311
PATHENCODING Environment Variable: UNIX . 312
SASV9_CONFIG Environment Variable: UNIX . 313
SASV9_OPTIONS Environment Variable: UNIX . 313

Defining Environment Variables in UNIX
Environments

What Is a UNIX Environment Variable?
UNIX environment variables are variables that apply to both the current shell and to
any subshells that it creates (for example, when you send a job to the background
or execute a script). If you change the value of an environment variable, the change
is passed forward to subsequent shells, but not backward to the parent shell.

In a SAS session, you can use the SASV9_OPTIONS environment variable to
specify system options and the SASV9_CONFIG environment variable to specify a
configuration file. Any changes that you make to an environment variable after
initialization of a SAS session are not recognized.

309

You can also use environment variables as filerefs and librefs in various statements
and commands. Filerefs and librefs consist of uppercase letters, digits, and the
underscore character in environment variable names. Other characters are not
recognized by SAS. For more information, see “Using Environment Variables as
Librefs in UNIX Environments” on page 69 or “Using Environment Variables to
Assign Filerefs in UNIX Environments” on page 97.

Note: A SAS/ACCESS product initializes the environment variables that it needs
when loading. For more information, see the documentation for your SAS/ACCESS
product.

How to Define an Environment Variable for Your
Shell

Defining Environmental Variables
The way in which you define an environment variable depends on the shell that you
are running. (To determine which shell you are running, type ps at the command
prompt or echo $SHELL to see the current value of the SHELL environment
variable.)

Bourne and Korn Shells
In the Bourne shell and in the Korn shell, use the export command to export one or
more variables to the environment. For example, these commands make the value
of the variable scname available to all subsequent shell scripts:

$ scname=phonelist
$ export scname

In the Korn shell, you can combine these commands into one command:

$ export scname=phonelist

If you change the value of scname, then the new value affects both the shell variable
and the environment variable. If you do not export a variable, only the shell script in
which you define has access to its value.

C Shell
In the C shell (csh and tcsh), you set (define and export) environment variables with
the setenv (set environment) command. For example, this command is equivalent
to the commands shown previously:

% setenv scname phonelist

310 Chapter 14 / Environment Variables under UNIX

Use the OPTIONS Statement and SET System
Option

You can use the SET system option to set environment variables during a SAS
session. However, you cannot use this option to set environment variables that are
checked during SAS start-up. Here is an example that sets the LUA_PATH
environment variable:

options set=LUA_PATH="/usr/local/lua/?.lua";

Displaying the Value of an Environment Variable
To display the values of individual environment variables, use the echo command
and parameter substitution. An example is echo $SHELL, which returns the current
value of the SHELL environment variable. Use the env (or printenv) command to
display all environment variables and their current values.

Dictionary

AUTHINFO Environment Variable
Specifies the location of the file in which a user ID and password are kept for authentication, typically called
the authinfo file.

Categories: Environment Control
CAS

Default: None

Restriction: This environment variable is used to authenticate to the CAS server only.

Details
Use the AUTHINFO environment variable to specify the location of the authinfo file
on your system. This variable can be set to the location of one or more files. Use a
semicolon to separate multiple filenames. Set the value of the AUTHINFO
environment variable using the instructions in “How to Define an Environment
Variable for Your Shell” on page 310.

AUTHINFO Environment Variable 311

The value that you specify typically includes the path and filename for the authinfo
file on your system. For example, when working in a C shell, you might specify the
AUTHINFO environment variable as follows:

setenv authinfo '~/authInfo-file'

If the AUTHINFO= system option is set in a program that you run in noninteractive
mode or in batch mode, the system option value overrides the value that is set for
the AUTHINFO= environment variable.

For more information, see "Client Authentication Using an Authinfo File".

PATHENCODING Environment Variable: UNIX
Specifies the encoding for external file references and directory references when the encoding is different
from the SAS session encoding.

Categories: Environment Control
CAS

Default: None

Requirement: The characters in a pathname must contain characters that are recognized by both the
session encoding and the encoding that is specified by PATHENCODING.

UNIX specifics: All

Details
Set the value of the PATHENCODING environment variable using the instructions in
“How to Define an Environment Variable for Your Shell” on page 310.

The encoding value that you assign specifies the encoding for external file
references and directory references that are accessed from within a SAS program.
Specify a value for this environment variable when external file encoding and
directory encoding are different from the SAS session encoding. SAS uses the
default session encoding when referencing external files and directories. The
PATHENCODING environment variable provides an alternative encoding for
external file and directory references. PATHENCODING is valid only for files that are
located on disk. When the PATHENCODING environment variable has a valid
encoding value, SAS transcodes the pathname from the SAS session encoding into
the specified encoding.

For a list of valid encoding values on UNIX, see “UNIX Encoding Values” in SAS
National Language Support (NLS): Reference Guide.

The pathnames that you specify within a SAS program must be entered in the SAS
session encoding. Do not specify pathnames in the encoding that you specify for the
PATHENCODING environment variable.

To specify a PATHENCODING value of UTF-8 in a SAS session that uses English,
the characters in a pathname must contain characters that are recognized by both
the session encoding and the encoding that is specified by PATHENCODING. As a
result, to specify a PATHENCODING value of UTF-8 in a SAS session that uses
English (LANG=EN), you must specify a SAS session encoding of UTF-8 or
SAS_U8.

312 Chapter 14 / Environment Variables under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0h1bsorqfye7un1g8jrwgn7s305.htm&locale=en
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=authinfo&docsetTarget=n0xo6z7e98y63dn1fj0g9l2j7oyq.htm
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1da1dsz4i55jpn1teype4ykws7w.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1da1dsz4i55jpn1teype4ykws7w.htm&locale=en

SASV9_CONFIG Environment Variable: UNIX
Specifies the configuration file that is referenced when you start a SAS session.

Categories: Environment Control
CAS

Default: None

UNIX specifics: All

Details
Set the value of the SASV9_CONFIG environment variable using the instructions in
“How to Define an Environment Variable for Your Shell” on page 310.

The file specification that you assign to SASV9_CONFIG specifies the path and
name of the configuration file that the SAS session uses. This configuration file
contains all of the SAS system options that you want to use in a SAS session. For
example, in a Korn shell, you might assign the custom.cfg file in your home directory
to SASV9_CONFIG as follows:

> export sasv9_config=/u/<user_id>/custom.cfg

SASV9_OPTIONS Environment Variable: UNIX
Specifies the list of SAS system options that are automatically used when you start a SAS session.

Categories: Environment Control
CAS

Default: None

UNIX specifics: All

Details
Use the SASV9_OPTIONS environment variable to specify a list of SAS system
options that are automatically used when you start a SAS session. This is useful if
you typically set the same SAS system options each time you work with SAS.

SASV9_OPTIONS Environment Variable: UNIX 313

314 Chapter 14 / Environment Variables under UNIX

15
Formats under UNIX

SAS Formats under UNIX . 315

Dictionary . 316
HEX Format: UNIX . 316
$HEX Format: UNIX . 317
IB Format: UNIX . 317
PD Format: UNIX . 318
PIB Format: UNIX . 319
RB Format: UNIX . 320
ZD Format: UNIX . 321

SAS Formats under UNIX
This section describes SAS formats that have behavior or syntax that is specific to
UNIX environments. Each format description includes a brief "UNIX specifics"
section that explains which aspect of the data set option is specific to UNIX. Each
format is described in this documentation and in SAS Formats and Informats:
Reference.

Be aware that names for user-defined formats cannot end in a number. For more
information, see “User-Defined Formats” in SAS Formats and Informats: Reference
and “Rules for Most SAS Names” in SAS Programmer’s Guide: Essentials.

315

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0ivpbwvkfwguqn12eew51gtu7y1.htm&docsetTargetAnchor=p078g62hu7v2n5n1s9oqhezbvq5s&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&docsetTargetAnchor=p0bjsity6vyjegn12zg7raqgmroz&locale=en

Dictionary

HEX Format: UNIX
Converts real binary (floating-point) numbers to hexadecimal representation.

Categories: Numeric
CAS

Alignment: Left

UNIX specifics: Floating-point representation

See: “HEXw. Format” in SAS Formats and Informats: Reference

Syntax
HEXw.

Syntax Description
w

specifies the width of the output field.

Default 8

Range 1–16

Tip If w < 16, the HEXw. format converts real binary numbers to fixed-point
integers before writing them as hexadecimal characters. It also writes
negative numbers in two’s complement notation, and right aligns digits.
If w is 16, HEXw. displays floating-point values in their hexadecimal
form.

Details
The HEXw. format converts a real (floating-point) binary number to its hexadecimal
representation. When you specify a width value of 1 through 15, the real binary
number is truncated to a fixed-point integer before being converted to a
hexadecimal number. When you specify 16 for the width, SAS writes the floating-
point value of the number, but does not truncate it.

316 Chapter 15 / Formats under UNIX

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0ueabv26pr2fwn19uxk2f4bf10y.htm&locale=en

Note: UNIX systems vary widely in their floating-point representation. For more
information, see “Reading and Writing Binary Data in UNIX Environments” on page
265.

$HEX Format: UNIX
Converts character values to hexadecimal representation.

Categories: Character
CAS

Alignment: Left

UNIX specifics: Produces ASCII codes

See: “$HEXw. Format” in SAS Formats and Informats: Reference

Syntax
$HEXw.

Syntax Description
w

specifies the width of the output field.

Default 2

Range 1–32767

Details
Under UNIX, the $HEXw. format produces hexadecimal representations of ASCII
codes for characters. Each byte requires two columns. Therefore, you need twice as
many columns to print a value with the $HEXw. format.

IB Format: UNIX
Writes integer binary (fixed-point) values.

Category: Numeric

Alignment: Left

Restriction: This format is not supported on the CAS server.

IB Format: UNIX 317

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p1h8xtl50tpzthn1u8kp0sji8f60.htm&locale=en

UNIX specifics: Byte order

See: “IBw.d Format” in SAS Formats and Informats: Reference

Syntax
IBw.d

Syntax Description
w

specifies the width of the output field.

Default 4

Range 1–8

d
specifies to multiply the number of 10d. This argument is optional.

Default 0

Range 0–10

Details
The IBw.d format writes integer binary (fixed-point) values. Integers are stored in
integer-binary, or fixed-point, form. For example, the number 2 is stored as
00000002. If the format includes a d value, the data value is multiplied by 10d.

For more information, see “Reading and Writing Binary Data in UNIX Environments”
on page 265.

PD Format: UNIX
Writes data in packed decimal format.

Category: Numeric

Alignment: Left

Restriction: This format is not supported on the CAS server.

UNIX specifics: Data representation

See: “PDw.d Format” in SAS Formats and Informats: Reference

318 Chapter 15 / Formats under UNIX

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0w4extd05hkmen10hs914bqgve8.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n17qnht5p8e7s9n13vm43awr9iqm.htm&locale=en

Syntax
PDw.d

Syntax Description
w

specifies the width of the output field. The w value specifies the number of bytes,
not the number of digits. (In packed decimal data, each bytes contains two
digits.)

Default 1

Range 1–16

d
specifies to multiply the number by 10d. This argument is optional.

Default 0

Range 0–31

Details
The PDw.d format writes values in packed decimal format. In packed decimal data,
each byte contains two digits. The w value represents the number of bytes, not the
number of digits. The value's sign is the first byte. Because the entire first byte is
used for the sign, you should specify at least a width of 2.

The PDw.d format writes missing numerical data as –0. When the PDw.d informat
reads a value of –0, the result is a value of 0.

For more information, see “Reading and Writing Binary Data in UNIX Environments”
on page 265.

PIB Format: UNIX
Writes positive integer binary (fixed-point) values.

Category: Numeric

Alignment: Left

Restriction: This format is not supported on the CAS server.

UNIX specifics: byte order

See: “PIBw.d Format” in SAS Formats and Informats: Reference

PIB Format: UNIX 319

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p07gz026yfpj6sn1xma7o21hs28f.htm&locale=en

Syntax
PIBw.d

Syntax Description
w

specifies the width of the output field.

Default 1

Range 1–8

d
specifies to multiply the number by 10d. This argument is optional.

Default 0

Range 0–10

Details
The PIBw.d format writes fixed-point binary values, treating all values as positive.
Thus, the high-order bit is part of the value, rather than the value's sign. If a d value
is specified, the data value is multiplied by 10d.

For more information, see “Reading and Writing Binary Data in UNIX Environments”
on page 265.

RB Format: UNIX
Writes real binary (floating-point) data in real binary format.

Category: Numeric

Alignment: Left

Restriction: This format is not supported on the CAS server.

UNIX specifics: floating-point representation

See: “RBw.d Format” in SAS Formats and Informats: Reference

Syntax
RBw.d

320 Chapter 15 / Formats under UNIX

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0wtjwwxjsi49gn1qyyesl008w97.htm&locale=en

Syntax Description
w

specifies the width of the output field.

Default 4

Range 2–8

d
specifies to multiply the number by 10d. This argument is optional.

Default 0

Range 0–10

Details
The RBw.d format writes numeric data in real binary (floating-point) notation. SAS
stores all numeric values in floating-point.

Real binary is the most efficient format for representing numeric values because
SAS already represents numbers this way and no conversion is needed.

For more information, see “RB Informat: UNIX” on page 360 and “Reading and
Writing Binary Data in UNIX Environments” on page 265.

ZD Format: UNIX
Writes numeric data in zoned decimal format.

Category: Numeric

Alignment: Left

Restriction: This format is not supported on the CAS server.

UNIX specifics: Data representation

See: “ZDw.d Format” in SAS Formats and Informats: Reference

Syntax
ZDw.d

Syntax Description
w

specifies the width of the output field.

ZD Format: UNIX 321

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n1ggc7rp9p44lan1oiaykja23g60.htm&locale=en

Default 1

Range 1–32

d
specifies to multiply the number by 10d. This argument is optional.

Default 0

Range 0–31

Details
The ZDw.d format writes zoned decimal data. This format is also known as overprint
trailing numeric format. Under UNIX, the last byte of the field includes the sign with
the last digit. The conversion table for the last byte is as follows:

Table 15.1 Conversion Table

Digit ASCII Character Digit ASCII Character

0 { –0 }

1 A –1 J

2 B –2 K

3 C –3 L

4 D –4 M

5 E –5 N

6 F –6 O

7 G –7 P

8 H –8 Q

9 I –9 R

For more information, see “ZD Informat: UNIX” on page 361 and “Reading and
Writing Binary Data in UNIX Environments” on page 265.

322 Chapter 15 / Formats under UNIX

16
Functions and CALL Routines
under UNIX

SAS Functions and CALL Routines under UNIX . 324

Dictionary . 324
BYTE Function: UNIX . 324
CALL MODULE Routine: UNIX . 325
CALL SLEEP Routine: UNIX . 327
CALL SYSTEM Routine: UNIX . 328
COLLATE Function: UNIX . 329
DINFO Function: UNIX . 331
DOPEN Function: UNIX . 334
DOPTNAME Function: UNIX . 335
DOPTNUM Function: UNIX . 337
FDELETE Function: UNIX . 338
FEXIST Function: UNIX . 339
FILEEXIST Function: UNIX . 339
FILENAME Function: UNIX . 340
FILEREF Function: UNIX . 342
FINFO Function: UNIX . 343
FOPTNAME Function: UNIX . 344
FOPTNUM Function: UNIX . 346
MODEXIST Function: UNIX . 347
MOPEN Function: UNIX . 348
PATHNAME Function: UNIX . 349
PEEKLONG Function: UNIX . 350
RANK Function: UNIX . 351
SYSGET Function: UNIX . 351
TRANSLATE Function: UNIX . 352

323

SAS Functions and CALL Routines
under UNIX

This section describes SAS functions and CALL routines whose behavior is specific
to UNIX environments. Each function and CALL routine description includes a brief
"UNIX specifics" section that explains which aspect of the function and CALL routine
is specific to UNIX. For more information about all of these functions and CALL
routines, see SAS Functions and CALL Routines: Reference.

Dictionary

BYTE Function: UNIX
Returns one character in the ASCII collating sequence.

Categories: Character
CAS

UNIX specifics: Uses the ASCII collating sequence

See: “BYTE Function” in SAS Functions and CALL Routines: Reference

Syntax
BYTE(n)

Required Argument
n

specifies an integer that represents a specific ASCII character. The value of n
can range from 0 to 255.

Details
If the BYTE function returns a value to a variable that has not yet been assigned a
length, by default the variable is assigned a length of 1.

324 Chapter 16 / Functions and CALL Routines under UNIX

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1jfxetjdn0nxan1w4e64c7rouz9.htm&locale=en

CALL MODULE Routine: UNIX
Calls a specific routine or module that resides in a shared executable library.

Category: External Files

Restriction: This function is not supported on the CAS server.

Interaction: When a SAS server is in a locked-down state, the CALL MODULE routine does not
execute. For more information, see “SAS Processing Restrictions for Servers in a
Locked-Down State” in SAS Programmer’s Guide: Essentials.

UNIX specifics: All

See: “CALL MODULE Routine” in SAS Functions and CALL Routines: Reference

Syntax
CALL MODULE(<control>, module, argument-1, argument-2 …, argument-n);

number=MODULEN(<control>, module, argument-1, argument-2 …, argument-n);

character=MODULEC(<control>, module, argument-1 …, argument-2, argument-n);

CALL MODULEI(<control>, module, argument-1, argument-2 …, argument-n);

number=MODULEIN(<control>, module, argument-1, argument-2 …, argument-n);

character=MODULEIC(<control>, module, argument-1, argument-2 …, argument-
n);

Required Arguments
module

specifies the name of the external module to use. The module can be specified
as a shared library with the routine name or ordinal value, separated by a
comma. You do not need to specify the shared library name if you specified the
MODULE attribute for the routine in the SASCBTBL attribute table. This is true
as long as the routine name is unique (that is, no other routine has the same
name in the attribute file). For more information, see “The SASCBTBL Attribute
Table” on page 135.

The module must reside in a shared library, and the module must be able to be
called externally. The shared library name is not case sensitive. However, the
routine name is based on the restraints of the routine’s implementation
language, so the routine name is case sensitive.

If the shared library supports ordinal-value naming, you can provide the shared
library name followed by a decimal number, such as 'XYZ,30'.

You can specify module as a SAS character expression instead of as a constant.
Most often, it is passed as a constant.

CALL MODULE Routine: UNIX 325

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0g0t4qe5q9jqcn15ovkk41ga6wl.htm&locale=en

argument-1, argument-2, ..., argument-n
specifies the arguments to pass to the requested routine. Use the proper
attributes for the arguments (that is, numeric arguments for numeric attributes
and character arguments for character attributes).

CAUTION
Be sure to use the correct arguments and attributes. If you use incorrect
arguments or attributes for a shared library function, you can cause SAS to crash or
you might see unexpected results.

Optional Argument
control

is an optional control string whose first character must be an asterisk (*),
followed by any combination of the following characters:

I prints the hexadecimal representations of all arguments to the
MODULE function and to the requested shared library routine before
and after the shared library routine is called. You can use this option to
help diagnose problems that are caused by incorrect arguments or
attribute tables. If you specify the I option, the E option is implied.

E prints detailed error messages. Without the E option (or the I option,
which supersedes it), the only error message that the MODULE
function generates is "Invalid argument to function." This is usually not
enough information to determine the cause of the error.

Sx uses x as a separator character to separate field definitions. You can
then specify x in the argument list as its own character argument to
serve as a delimiter for a list of arguments that you want to group
together as a single structure. Use this option only if you do not supply
an entry in the SASCBTBL attribute table. If you do supply an entry for
this module in the SASCBTBL attribute table, you should use the
FDSTART option in the ARG statement in the table to separate
structure definitions.

H provides brief help information about the syntax of the MODULE
routines, the attribute file format, and the suggested SAS formats and
informats.

For example, the control string '*IS/' specifies that parameter lists be printed and
that the string '/' is to be treated as a separator character in the argument list.

Details
The following functions permit vector and matrix arguments. You can use them only
within the IML procedure:

n CALL MODULEI

n MODULEIN

n MODULEIC

For more information, see the SAS/IML Studio: User's Guide.

326 Chapter 16 / Functions and CALL Routines under UNIX

The MODULE functions execute a routine module that resides in an external
(outside SAS) shared library with the specified arguments argument-1 through
argument-n.

The CALL MODULE routine does not return a value. The MODULEN and
MODULEC functions return a number or a character value, respectively. Which
routine you use depends on the expected return value of the shared library function
that you want to execute.

MODULEI, MODULEIC, and MODULEIN are special versions of the MODULE
functions that permit vector and matrix arguments. Their return values are still
scalar. You can invoke these functions only from PROC IML.

Other than this name difference, the syntax for all six routines is the same.

The MODULE function builds a parameter list by using the information in
argument-1 to argument-n and by using a routine description and argument attribute
table that you define in a separate file. Before you invoke the MODULE routine, you
must define the fileref of SASCBTBL to point to this external file. You can name the
file whatever you want when you create it.

If you define this table, then you can use SAS variables and formats as arguments
in the MODULE function. In this way, you ensure that these arguments are properly
converted before being passed to the shared library routine.

CAUTION
Using the MODULE function without defining an attribute table can cause SAS
to crash, produce unexpected results, or result in severe errors. You need to
use an attribute table for all external functions that you want to invoke.

See Also
Functions:

n “PEEKLONG Function: UNIX” on page 350

Other References:

n “The SASCBTBL Attribute Table” on page 135

CALL SLEEP Routine: UNIX
For a specified period of time, suspends the execution of a program that invokes this CALL routine.

Categories: Special
CAS

UNIX specifics: All

See: “CALL SLEEP Routine” in SAS Functions and CALL Routines: Reference

CALL SLEEP Routine: UNIX 327

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n12ppys43orawkn1q0oxep4cmdk6.htm&locale=en

Syntax
CALL SLEEP(n <, unit>);

Required Argument
n

is a numeric constant that specifies the number of units of time for which you
want to suspend execution of a program.

Optional Argument
unit

specifies the unit of time in seconds, which is applied to n. For example, 1
corresponds to 1 second, .001 corresponds to 1 millisecond, and 5 corresponds
to 5 seconds.

Default .001

Details
CALL SLEEP puts the DATA step in which it is invoked into a nonactive wait state,
using no CPU time and performing no input or output. If you are running multiple
SAS processes, each process can execute CALL SLEEP independently without
affecting the other processes.

Note: Extended sleep periods can trigger automatic host session termination based
on time-out values set at your site. Contact your host system administrator to
determine the time-out values that are used at your site.

CALL SYSTEM Routine: UNIX
Submits an operating environment command for execution.

Category: Special

Restriction: This function is not supported on the CAS server.

UNIX specifics: Command must evaluate to a valid UNIX command

See: “CALL SYSTEM Routine” in SAS Functions and CALL Routines: Reference

Syntax
CALL SYSTEM(command);

328 Chapter 16 / Functions and CALL Routines under UNIX

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p089n536m1spv9n1cpuo8u34hw5m.htm&locale=en

Required Argument
command

specifies any of the following:

n a UNIX command enclosed in quotation marks

n an expression whose value is a UNIX command

n the name of a character variable whose value is a UNIX command

Details
The CALL SYSTEM routine issues operating system commands. The output of the
command appears in the window from which you invoked SAS.

The value of the XSYNC system option affects how the CALL SYSTEM routine
works.

Note: The CALL SYSTEM routine can be executed within a DATA step. However,
neither the X statement nor the %SYSEXEC macro program statement is intended
for use during the execution of a DATA step.

In the following example, for each record in answer.week, if the resp variable is y,
the CALL SYSTEM routine mails a message:

data _null_;
 set answer.week;
 if resp='y' then
 do;
 call system('mail mgr < $HOME/msg');
 end;
 run;

See Also
“Executing Operating System Commands from Your SAS Session” on page 18

COLLATE Function: UNIX
Returns a character string in an ASCII collating sequence.

Categories: Character
CAS

UNIX specifics: Uses ASCII collating sequence

See: “COLLATE Function” in SAS Functions and CALL Routines: Reference

COLLATE Function: UNIX 329

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1k9dtbhesk4lgn1dwbj5xfudwft.htm&locale=en

Syntax
COLLATE(start-position <, end-position>) | (start-position <, , length>)

Required Argument
start-position

specifies the numeric position in the collating sequence of the first character to
be returned.

Optional Arguments
end-position

specifies the numeric position in the collating sequence of the last character to
be returned.

length
specifies the number of characters in the collating sequence.

Details
The COLLATE function returns a string of ASCII characters. The ASCII collating
sequence contains 256 positions, referenced with the numbers 0 through 255.
Characters above 127 correspond to characters used in European languages as
defined in the ISO 8859 character set.

Unless you assign the return value of the COLLATE function to a variable with a
defined length less than 200, the ASCII collating sequence string is padded with
spaces to a length of 200. If the ASCII collating sequence is greater than 200
characters, you must specify the length for the return string in a LENGTH statement.
Otherwise, the returned string is truncated to a length of 200 characters. For more
information, see the following examples.

Examples

Example 1: Truncating the Variable Length to 200
Characters
Because the following code does not include a LENGTH statement, the length
attribute for the ADDRESS variable is truncated to 200 characters:

data sales;
 Address=collate(1, 241);
run;
proc contents;
run;

330 Chapter 16 / Functions and CALL Routines under UNIX

Output 16.1 Portion of PROC CONTENTS Output

Alphabetic List of Variables and Attributes
Variable Type Len
1 Address Char 200

Because length of ADDRESS is limited to 200 characters, the returned string from
the COLLATE function is limited to 200 characters.

Example 2: Specifying a Length Greater Than 200
Characters
To specify a length greater than 200 characters for a specific variable, you can use
the LENGTH statement. In the following code, the length of ADDRESS is specified
as 240 characters:

data sales;
 length Address $240;
 Address=collate(1, 241);
run;
proc contents;
run;

Output 16.2 Portion of PROC CONTENTS Output

Alphabetic List of Variables and Attributes
Variable Type Len
1 Address Char 240

Because the length of ADDRESS is set to 240 characters, the returned string from
the COLLATE function contains 240 characters.

See Also
Statements:

n “LENGTH Statement: UNIX” on page 390

DINFO Function: UNIX
Returns information about a directory.

Category: External Files

Restriction: This function is not supported on the CAS server.

UNIX specifics: Directory pathname, owner, group, permissions, and the time last modified information
items are available

DINFO Function: UNIX 331

Syntax
DINFO(directory-id, information-item)

Required Arguments
directory-id

is a numeric variable that specifies the identifier that was assigned when the
directory was opened by the DOPEN function.

information-item
is a character constant, variable, or expression that specifies the information
item to be retrieved. DINFO returns a blank if the value of the information-item
argument is invalid. The information available varies according to the operating
environment.

Details
Directories that are opened with the DOPEN function are identified by a directory-id
value. Use the DOPTNAME function to determine the names of the available
system-dependent directory information items. Use the DOPTNUM function to
determine the number of directory information items that are available.

If directory-id points to a list of concatenated directories, then the directory is the list
of concatenated directory names.

The information items that are available include directory pathname (the pathname
of the directory-id), owner, group, permissions, and the time last modified.

Examples

Example 1: Using DINFO to Return Information
about a Directory
This example opens the directory MYDIR, determines the number of directory
information items available, and retrieves the value of the last one:

%let filrf=MYDIR;
%let rc=%sysfunc(filename(filrf, "physical-name"));
%let did=%sysfunc(dopen(&filrf));
%let numopts=%sysfunc(doptnum(&did));
%let foption=%sysfunc(doptname(&did, &numopts));
%let charval=%sysfunc(dinfo(&did, &foption));
%let rc=%sysfunc(dclose(&did));

332 Chapter 16 / Functions and CALL Routines under UNIX

Example 2: Using DINFO within a DATA Step
This example creates a data set that contains the name and value of each directory
information item:

data diropts;
 length optname $ 32 optval $ 40;
 rc=filename("mydir", "physical-name");
 put "rc = 0 if the directory exists: " rc=;
 did=dopen("mydir");
 numopts=doptnum(did);
 do i=1 to numopts;
 optname=doptname(did, i);
 put i= optname=;
 optval=dinfo(did, foption);
 put optval=;
 end;
run;

Output 16.3 Sample SAS Log

12 data diropts;
13 length optname $ 32 optval $ 40;
14 rc=filename("mydir", "/u");
15 put "rc = 0 if the directory exists: " rc=;
16 did=dopen("mydir");
17 numopts=doptnum(did);
18 do i=1 to numopts;
19 optname=doptname(did, i);
20 put i= optname=;
21 optval=dinfo(did, foption);
22 put optval=;
23 end;
24 run;

rc = 0 if the directory exists: rc=0
i=1 optname=Directory
optval=
i=2 optname=Owner Name
optval=
i=3 optname=Group Name
optval=
i=4 optname=Access Permission
optval=
i=5 optname=Last Modified
optval=
NOTE: The data set WORK.DIROPTS has 1 observations and 7 variables.
NOTE: DATA statement used (Total process time):
 real time 0.07 seconds
 cpu time 0.04 seconds

See Also
Functions:

n “DOPEN Function: UNIX” on page 334

n “DOPTNAME Function: UNIX” on page 335

DINFO Function: UNIX 333

n “DOPTNUM Function: UNIX” on page 337

DOPEN Function: UNIX
Opens a directory, and returns a directory identifier value.

Category: External Files

Restrictions: You must associate a fileref with the directory before calling DOPEN.
This function is not supported on the CAS server.

See: FILENAME Function: UNIX

Syntax
DOPEN(fileref)

Required Argument
fileref

is a character constant, variable, or expression that specifies the fileref assigned
to the directory. In a DATA step, fileref can be a character expression, a string
enclosed in quotation marks, or a DATA step variable whose value contains the
fileref. In macro code, fileref can be any expression.

Details
DOPEN opens a directory and returns a directory identifier value (a number greater
than 0) that is used to identify the open directory in other SAS external file access
functions. If the directory cannot be opened, DOPEN returns 0, and you can obtain
the error message by calling the SYSMSG function. The directory to be opened
must be identified by a fileref. You can assign filerefs using the FILENAME
statement or the FILENAME external file access function. Under some operating
environments, you can also assign filerefs using system commands.

If you call the DOPEN function from a macro, then the result of the call is valid only
when the result is passed to functions in a macro. If you call the DOPEN function
from the DATA step, then the result is valid only when the result is passed to
functions in the same DATA step.

334 Chapter 16 / Functions and CALL Routines under UNIX

Examples

Example 1: Using DOPEN to Open a Directory
This example assigns the fileref MYDIR to a directory. It uses DOPEN to open the
directory. DOPTNUM determines the number of system-dependent directory
information items available, and DCLOSE closes the directory:

%let filrf=MYDIR;
%let rc=%sysfunc(filename(filrf, physical-name));
%let did=%sysfunc(dopen(&filrf));
%let infocnt=%sysfunc(doptnum(&did));
%let rc=%sysfunc(dclose(&did));

Example 2: Using DOPEN within a DATA Step
This example opens a directory for processing within a DATA step.

data _null_;
 drop rc did;
 rc=filename("mydir", "physical-name");
 did=dopen("mydir");
 if did > 0 then do;
 ...more SAS statements...
 end;
 else do;
 msg=sysmsg();
 put msg;
 end;
run;

DOPTNAME Function: UNIX
Returns directory attribute information.

Category: External Files

Restriction: This function is not supported on the CAS server.

UNIX specifics: Directory pathname, owner, group, permissions, and time last modified information items
are available

Syntax
DOPTNAME(directory-id, nval)

DOPTNAME Function: UNIX 335

Required Arguments
directory-id

is a numeric variable that specifies the identifier that was assigned when the
directory was opened by the DOPEN function.

nval
is a numeric constant, variable, or expression that specifies the sequence
number of the information item.

Details
The DOPTNAME function returns the name of the specified information item
number for a directory that was previously opened with the DOPEN function. If
directory-id points to a list of concatenated directories, then Directory is the list of
concatenated directory names.

The information items that are available include directory pathname (the pathname
of the directory-id), owner, group, permissions, and the time last modified.

Examples

Example 1: Using DOPTNAME to Retrieve Directory
Attribute Information
This example opens the directory with the fileref MYDIR, retrieves all system-
dependent directory information items, writes them to the SAS log, and closes the
directory:

%let filrf=mydir;
%let rc=%sysfunc(filename(filrf, physical-name));
%let did=%sysfunc(dopen(&filrf));
%let infocnt=%sysfunc(doptnum(&did));
%do j=1 %to &infocnt;
 %let opt=%sysfunc(doptname(&did, &j));
 %put Directory information=&opt;
%end;
%let rc=%sysfunc(dclose(&did));

Example 2: Using DOPTNAME within a DATA Step
This example creates a data set that contains the name and value of each directory
information item:

data diropts;
 length optname $ 12 optval $ 40;
 keep optname optval;
 rc=filename("mydir", "physical-name");
 did=dopen("mydir");
 numopts=doptnum(did);

336 Chapter 16 / Functions and CALL Routines under UNIX

 do i=1 to numopts;
 optname=doptname(did, i);
 optval=dinfo(did, optname);
 output;
 end;
 run;

DOPTNUM Function: UNIX
Returns the number of information items that are available for a directory.

Category: External Files

Restriction: This function is not supported on the CAS server.

UNIX specifics: Directory pathname, owner, group, permissions, and time last modified information items
are available

Syntax
DOPTNUM(directory-id)

Required Argument
directory-id

is a numeric variable that specifies the identifier that was assigned when the
directory was opened by the DOPEN function.

Details
The information items that are available for a directory include directory pathname
(the pathname of the directory-id), owner, group, permissions, and the time last
modified. Therefore, this function returns a value of 5.

Examples

Example 1: Retrieving the Number of Information
Items
This example retrieves the number of system-dependent directory information items
that are available for the directory MYDIR and closes the directory:

%let filrf=mydir;
%let rc=%sysfunc(filename(filrf, physical-name));

DOPTNUM Function: UNIX 337

%let did=%sysfunc(dopen(&filrf));
%let infocnt=%sysfunc(doptnum(&did));
%let rc=%sysfunc(dclose(&did));

Example 2: Using DOPTNUM within a DATA Step
This example creates a data set that retrieves the number of system-dependent
information items that are available for the MYDIR directory:

data _null_;
 rc=filename("mydir", "physical-name");
 did=dopen("mydir");
 infocnt=doptnum(did);
 rc=dclose(did);
run;

FDELETE Function: UNIX
Deletes an external file or an empty directory.

Category: External Files

Restriction: This function is not supported on the CAS server.

See: FILENAME Function: UNIX

Syntax
FDELETE(<">fileref<">)

Required Argument
fileref

specifies the fileref that is assigned to the external file or directory. The fileref
cannot be associated with a list of concatenated filenames or directories. If the
fileref is associated with a directory, the directory must be empty. You must have
permission to delete the file. See the UNIX manual page for chmod for more
information about permissions.

In the DATA step, fileref must be enclosed in double quotation marks. In macro
code, fileref must not be enclosed in quotation marks.

You can assign filerefs using the FILENAME statement or the FILENAME
function. Under UNIX, fileref can also be an environment variable.

Details
FDELETE returns 0 if the operation was successful, or a nonzero number if it was
not successful.

338 Chapter 16 / Functions and CALL Routines under UNIX

FEXIST Function: UNIX
Verifies the existence of an external file that is associated with a fileref.

Category: External Files

Restriction: This function is not supported on the CAS server.

See: “FEXIST Function” in SAS Functions and CALL Routines: Reference, FILENAME
Function: UNIX

Syntax
FEXIST(<">fileref<">)

Required Argument
fileref

specifies the fileref assigned to the external file or directory. In a DATA step,
fileref can be a character expression, a string enclosed in quotation marks, or a
DATA step variable whose value contains the fileref. In macro code, fileref can
be any expression.

You can assign filerefs using the FILENAME statement or the FILENAME
external file access function. Under UNIX, fileref can also be an environment
variable.

In a DATA step, fileref must be enclosed in double quotation marks. In macro
code, fileref must not be enclosed in double quotation marks.

Details
The FEXIST function returns a value of 1 if the external file that is associated with
fileref exists, and a value of 0 if the file does not exist.

FILEEXIST Function: UNIX
Verifies the existence of an external file by its physical filename.

Category: External Files

Restrictions: If you call the FILEEXIST function in a SAS session that is in a locked-down state, and
the specified filename in the function has not been added to the lockdown path list, then
the function fails. A file access error related to the locked-down data is not generated in
the SAS log unless you specify the SYSMSG function.
This function is not supported on the CAS server.

FILEEXIST Function: UNIX 339

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0gh473azqo3han1edlhbyt04gxa.htm&locale=en

See: “FILEEXIST Function” in SAS Functions and CALL Routines: Reference

Syntax
FILEEXIST(<">filename<">)

Required Argument
filename

specifies a fully qualified physical filename of the external file. In a DATA step,
filename can be a character expression, a string enclosed in quotation marks, or
a DATA step variable. In macro code, filename can be any expression.

Under UNIX, filename can also be an environment variable.

Details
FILEEXIST returns 1 if the external file exists, and 0 if the external file does not
exist.

You can check for the existence of a directory by using FILEEXIST.

FILENAME Function: UNIX
Assigns or deassigns a fileref for an external file, directory, or output device.

Category: External Files

Restrictions: If the SAS session in which you are specifying the FILENAME function is in a locked-
down state and the filename specified in the function has not been added to the
lockdown path list, then the function fails. A file access error related to the locked-down
data is not generated in the SAS log unless you specify the SYSMSG function.
This function is not supported on the CAS server.

UNIX specifics: fileref can be assigned with an environment variable; valid values of device-type and
host-options

See: “FILENAME Function” in SAS Functions and CALL Routines: Reference

Syntax
FILENAME(<">fileref<">, <">filename<"> <, device-type <, "host-options" <,
directory-reference>>>)

340 Chapter 16 / Functions and CALL Routines under UNIX

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n06xm8hwk0t0axn10gj16lfiri43.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n15scht124hr4nn1g296cqg2kqfa.htm&locale=en

Required Arguments
fileref

specifies the fileref to assign to an external file. In a DATA step, fileref can be a
character expression, a string enclosed in quotation marks, or a DATA step
variable whose value contains the fileref. In macro code, fileref is the name of a
macro variable (without an ampersand) whose value contains the fileref to
assign to the external file. For more information, see “FILENAME Function” in
SAS Functions and CALL Routines: Reference.

Under UNIX, the fileref can be a UNIX environment variable. The fileref or
environment variable that you specify must be enclosed in double quotation
marks.

filename
specifies the external file. Specifying a blank filename (" ") deassigns a fileref
that was previously assigned.

Under UNIX, the filename differs according to the device type. For more
information that is appropriate for each device, see “Device Information in the
FILENAME Statement” on page 382. Remember that UNIX filenames are case
sensitive.

In a DATA step, filename can be a character expression, a string enclosed in
quotation marks, or a DATA step variable whose value contains the filename. In
macro code, filename can be any expression.

Optional Arguments
device-type

specifies the type of device or the access method that is used if the fileref points
to an input or output device or location that is not a physical file. It can be any
one of the devices listed in “Device Information in the FILENAME Statement” on
page 382. DISK is the default device type.

host-options
are options that are specific to UNIX. You can use any of the options that are
available in the FILENAME statement. See “FILENAME Statement: UNIX” on
page 377 for a description of the host options.

Requirement Enclose host options in quotation marks. If you have multiple host
options, then all of the host options must be enclosed in one set of
quotation marks. The following example shows the syntax:

rc=filename("try", "MISCHL.FLAT.FILE1", "ftp",
 'user="mischl1", host="sdcunx", prompt');

directory-reference
specifies the fileref that is assigned to the directory in which the external file
resides.

Details
FILENAME returns a 0 if the operation is successful, and a nonzero number if it was
not successful.

FILENAME Function: UNIX 341

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n15scht124hr4nn1g296cqg2kqfa.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n15scht124hr4nn1g296cqg2kqfa.htm&locale=en

If you use the FTP access method to communicate with a remote system, SAS
might return the following error message:

ERROR: Physical file does not exist.

This error is likely to occur when the fully qualified data set name is specified within
single quotation marks. For example:

FILENAME fileref FTP 'system.dataset.name' USER='username'
 PASS='password' HOST='ip_address';

By default, SAS appends the profile prefix to the beginning of the data set name. To
prevent the profile prefix from being appended, enclose the data set name with both
double and single quotation marks:

FILENAME fileref FTP "'external_file'" USER='username'
 PASS='password' HOST='ip_address';

FILEREF Function: UNIX
Verifies whether a fileref has been assigned for the current SAS session.

Category: External Files

Restriction: This function is not supported on the CAS server.

See: “FILEREF Function” in SAS Functions and CALL Routines: Reference, FILENAME
Function: UNIX

Syntax
FILEREF(<">fileref<">)

Required Argument
fileref

specifies the fileref to be validated. In a DATA step, fileref can be a character
expression, a string enclosed in quotation marks, or a DATA step variable whose
value contains the fileref. In macro code, fileref can be any expression.

In the DATA step, fileref must be enclosed in double quotation marks. In macro
code, fileref must not be enclosed in quotation marks.

You can assign filerefs using the FILENAME statement or the FILENAME
function. Under UNIX, fileref can also be an environment variable.

342 Chapter 16 / Functions and CALL Routines under UNIX

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0b6qacxrmnzc4n145t9jps0yzdc.htm&locale=en

Details
A negative return code indicates that the fileref exists, but the physical file
associated with the fileref does not exist. A positive value indicates that the fileref is
not assigned. A value of zero indicates that the fileref and external file both exist.

FINFO Function: UNIX
Returns the value of a file information item for an external file.

Category: External Files

Restriction: This function is not supported on the CAS server.

UNIX specifics: information-item is available

See: “FINFO Function” in SAS Functions and CALL Routines: Reference, “FOPEN Function”
in SAS Functions and CALL Routines: Reference

Syntax
FINFO(file-id, <">information-item<">)

Required Arguments
file-id

specifies the identifier that was assigned when the file was opened, generally by
the FOPEN function.

information-item
specifies the name of the file information item to be retrieved. This value is a
character value. Information-item is either a variable containing a valid value or
the valid value in quotation marks.

Under UNIX, information-item for files can have one of the following values:

n Filename

n Owner Name

n Group Name

n Access Permission

n File Size (bytes)

If you concatenate filenames, then an additional information-item, File List, is
available.

If you are using pipe files, then the only valid value for information-item is the
PIPE command.

FINFO Function: UNIX 343

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0cpuq4ew0dxipn1vtravlludjm7.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1fr3ny0ek8sr9n1pujj2om3bia7.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1fr3ny0ek8sr9n1pujj2om3bia7.htm&locale=en

Details
The FINFO function returns the value of a system-dependent information item for an
external file that was previously opened and assigned a file-id by the FOPEN
function. FINFO returns a blank if the value given for information-item is invalid.

For an example of how to use the FINFO function, see “Example: File Attributes
When Using the Pipe Device Type” on page 345.

FOPTNAME Function: UNIX
Returns the name of an item of information about an external file.

Category: External Files

Restriction: This function is not supported on the CAS server.

UNIX specifics: Information items available

See: “FOPTNAME Function” in SAS Functions and CALL Routines: Reference

Syntax
FOPTNAME(file-id, nval)

Required Arguments
file-id

specifies the identifier that was assigned when the file was opened, generally by
the FOPEN function.

nval
specifies the number of the file information item to be retrieved. The following
table shows the values that nval can have in UNIX operating environments for
single, pipe, and concatenated files:

Table 16.1 Possible Values for nval for the FOPTNAME Function

File Information Items

nval Single File Pipe Files Concatenated Files

1 Filename PIPE Command Filename

2 Owner Name File List

3 Group Name Owner Name

4 Access Permission Group Name

344 Chapter 16 / Functions and CALL Routines under UNIX

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1ocdzkn9uhsa7n1qv3wwp4d3dot.htm&locale=en

File Information Items

nval Single File Pipe Files Concatenated Files

5 File Size (bytes) Access Permission

6 File Size (bytes)

Details
FOPTNAME returns a missing or null value if an invalid argument to FOPTNAME is
used.

Example: File Attributes When Using the
Pipe Device Type
The following example creates a data set that contains the NAME and VALUE
attributes returned by the FOPTNAME function when you are using pipes:

data fileatt;
 length name $ 20 value $ 40;
 drop fid j infonum;
 filename mypipe pipe 'UNIX-command';
 fid=fopen("mypipe", "s");
 infonum=foptnum(fid);
 do j=1 to infonum;
 name=foptname(fid, j);
 value=finfo(fid, name);
 put 'File attribute' name 'has a value of ' value;
 output;
 end;
run;

The following statement appears in the SAS log.

Example Code 16.1 SAS Log

File attribute Pipe Command has a value of UNIX-command

Unix-command is the UNIX command or program where you are piping your output
or where you are reading your input. This command or program must be either fully
qualified or defined in your PATH environment variable.

FOPTNAME Function: UNIX 345

See Also
Functions:

n “FINFO Function: UNIX” on page 343

n “FOPEN Function” in SAS Functions and CALL Routines: Reference

n “FOPTNUM Function: UNIX” on page 346

FOPTNUM Function: UNIX
Returns the number of information items that are available for an external file.

Category: External Files

Restriction: This function is not supported on the CAS server.

UNIX specifics: Information items available

See: “FOPTNUM Function” in SAS Functions and CALL Routines: Reference

Syntax
FOPTNUM(file-id)

Required Argument
file-id

specifies the identifier that was assigned when the file was opened, generally by
the FOPEN function.

Details
Under UNIX, five information items are available for all types of files:

n Filename

n Owner Name

n Group Name

n Access Permission

n File Size (bytes)

If you concatenate filenames, then an additional information item, File List, is
available. If you are using piped files, then the only information item that is available
is the PIPE command.

The open-mode specified in the FOPEN function determines the value that
FOPTNUM returns.

346 Chapter 16 / Functions and CALL Routines under UNIX

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1fr3ny0ek8sr9n1pujj2om3bia7.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0obx7o9ceaq31n1xwpddcub8d7f.htm&locale=en

Table 16.2 Open Mode and FOPTNUM Values

Open Mode FOPTNUM Value Information Items Available

Append

Input

Update

6 for concatenated
files

5 for single files

All information items available.

Output 5 for concatenated
files

4 for single files

Because the file is open for output,
the File Size information type is
unavailable.

Sequential

(using Pipe Device Type)

1 The only information item available
is PIPE command.

For an example of how to use the FOPTNUM function, see “Example: File Attributes
When Using the Pipe Device Type” on page 345.

See Also
Functions:

n “FINFO Function: UNIX” on page 343

n “FOPEN Function” in SAS Functions and CALL Routines: Reference

n “FOPTNAME Function: UNIX” on page 344

MODEXIST Function: UNIX
Determines whether a product image exists in the release of SAS that you have installed.

Category: Numeric

Restriction: This function is not supported on the CAS server.

UNIX specifics: pathname is available

See: “MODEXIST Function” in SAS Functions and CALL Routines: Reference

Syntax
MODEXIST('product-name' | 'pathname')

MODEXIST Function: UNIX 347

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1fr3ny0ek8sr9n1pujj2om3bia7.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n11bxtz4it9q29n1skrqxfzl02r4.htm&locale=en

Required Arguments
product-name

specifies a character constant, variable, or expression that is the name of the
product image that you are checking.

pathname
specifies the pathname for the product image that you are checking.

Details
The MODEXIST function searches the directories that are listed in the pathname
argument for an executable module. The name of the executable module is passed
to MODEXIST. MODEXIST returns 1 if the module is found, and 0 if the module is
not found.

MOPEN Function: UNIX
Opens a file by directory ID and member name, and returns either the file identifier or a 0.

Category: External Files

Restriction: This function is not supported on the CAS server.

UNIX specifics: OPEN modes

See: “MOPEN Function” in SAS Functions and CALL Routines: Reference

Syntax
MOPEN(directory-id, member-name <, open-mode <, record-length <, record-
format>>>)

Required Argument
open-mode

specifies the type of access to the file:

A APPEND mode allows writing new records after the current end of the
file.

I INPUT mode allows reading only (default).

O OUTPUT mode defaults to the OPEN mode specified in the host option
in the FILENAME statement or function. If no host option is specified, it
allows writing new records at the beginning of the file.

S Sequential input mode is used for pipes and other sequential devices
such as hardware ports.

U UPDATE mode allows both reading and writing.

348 Chapter 16 / Functions and CALL Routines under UNIX

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p023sn4hgjgvpjn19ozlet62e0up.htm&locale=en

W Sequential Update mode is used for pipes and other sequential devices
such as ports.

Details
Note: This version is a simplified version of the MOPEN function syntax. For the
complete syntax and its explanation, see “MOPEN Function” in SAS Functions and
CALL Routines: Reference .

MOPEN returns the identifier for the file, or 0 if the file could not be opened.

PATHNAME Function: UNIX
Returns the physical name of a SAS library or an external file, or returns a blank.

Category: SAS File I/O

Restriction: This function is not supported on the CAS server.

See: “PATHNAME Function” in SAS Functions and CALL Routines: Reference

Syntax
PATHNAME((fileref | libref) <, search-reference>)

Required Arguments
fileref

specifies the fileref that is assigned to the external file. In a DATA step, fileref can
be a character expression, a string enclosed in quotation marks, or a DATA step
variable whose value contains the fileref. In macro code, fileref can be any
expression.

The value of fileref can be a UNIX environment variable.

libref
specifies the libref that is assigned to a SAS library. In a DATA step, libref can be
a character expression, a string enclosed in quotation marks, or a DATA step
variable whose value contains the libref. In macro code, libref can be any
expression.

The value of libref can be a UNIX environment variable.

Optional Argument
search-reference

specifies whether to search for a fileref or a libref.

PATHNAME Function: UNIX 349

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p023sn4hgjgvpjn19ozlet62e0up.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p023sn4hgjgvpjn19ozlet62e0up.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0sycvpqwxea06n1klcseze1mdak.htm&locale=en

F specifies a search for a fileref.

L specifies a search for a libref.

Details
PATHNAME returns the physical name of an external file or SAS library.
PATHNAME returns a blank if fileref or libref is invalid.

For more information about using a UNIX environment variable for fileref or libref,
see “FILENAME Function: UNIX” on page 340.

PEEKLONG Function: UNIX
Stores the contents of a memory address in a numeric variable on 32-bit and 64-bit platforms.

Category: Special

Restriction: This function is not supported on the CAS server.

Interaction: When a SAS server is in a locked-down state, the PEEKLONG function does not
execute. For more information, see “SAS Processing Restrictions for Servers in a
Locked-Down State” in SAS Programmer’s Guide: Essentials.

UNIX specifics: All

See: “PEEKLONG Function” in SAS Functions and CALL Routines: Reference

Syntax
PEEKCLONG(address, length)

PEEKLONG(address, length)

Required Arguments
address

specifies the character string that is the memory address.

length
specifies the data length.

Details
CAUTION
Use the PEEKLONG functions only to access information returned by one of
the MODULE functions.

350 Chapter 16 / Functions and CALL Routines under UNIX

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0tsllz3xjk0u7n1v8lh6a5t2bee.htm&locale=en

The PEEKLONG function returns a value of length that contains the data that starts
at the memory address.

Here are the variations of the PEEKLONG functions:

PEEKCLONG
accesses character strings.

PEEKLONG
accesses numeric values.

Usually, when you need to use one of the PEEKLONG functions, you use
PEEKCLONG to access a character string. The PEEKLONG function is mentioned
for completeness.

RANK Function: UNIX
Returns the position of a character in the ASCII collating sequence.

Categories: Character
CAS

UNIX specifics: Uses ASCII collating sequence

See: “RANK Function” in SAS Functions and CALL Routines: Reference

Syntax
RANK(x)

Required Argument
x

specifies a character constant, variable, or expression that contains a character
in the ASCII collating sequence. If the length of x is greater than 1, you receive
the rank of the first character in the string.

Details
Because UNIX uses the ASCII character set, the RANK function returns an integer
that represents the position of a character in the ASCII collating sequence.

SYSGET Function: UNIX
Returns the value of the specified operating environment variable.

Category: Special

SYSGET Function: UNIX 351

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0m5k2s76pmv9pn1n1lu3vfyq8s4.htm&locale=en

Restriction: This function is not supported on the CAS server.

UNIX specifics: environment-variable is a UNIX environment variable

See: “SYSGET Function” in SAS Functions and CALL Routines: Reference

Syntax
SYSGET('environment-variable')

Required Argument
environment-variable

is the name of a UNIX environment variable.

Details
The SYSGET function returns the value of an environment variable as a character
string. For example, this statement returns the value of the HOME environment
variable:

here=sysget('HOME');

The environment variable name is case-specific on UNIX. Specify the name of the
environment variable as it is stored in your UNIX environment.

TRANSLATE Function: UNIX
Replaces specific characters in a character expression.

Categories: Character
CAS

UNIX specifics: to and from arguments are required

See: “TRANSLATE Function” in SAS Functions and CALL Routines: Reference “TRANWRD
Function” in SAS Functions and CALL Routines: Reference

Syntax
TRANSLATE(source, to-1, from-1 <, …to-n, from-n>)

352 Chapter 16 / Functions and CALL Routines under UNIX

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p14ppks96uz65an1l5uq3elm0m3y.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p05ww22zp7lcg3n1bjk7v93tscyo.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0pgemqcslm9uen1tvr5gcrusgrw.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0pgemqcslm9uen1tvr5gcrusgrw.htm&locale=en

Required Arguments
source

specifies a constant, variable, or expression that contains the original character
value.

to
specifies the characters that you want TRANSLATE to use as substitutes.
Enclose character values in quotation marks.

from
specifies the characters that you want TRANSLATE to change. Enclose
character values in quotation marks.

Details
Under UNIX, you must specify pairs of to and from arguments or you can use a
comma as a placeholder. Values of to and from correspond on a character-by-
character basis. TRANSLATE changes the first character of from to the first
character of to, and so on. If to has fewer characters than from, TRANSLATE
changes the extra characters to blanks. If to has more characters than from,
TRANSLATE ignores the extra characters. There is no functional difference
between using several pairs of short arguments or fewer pairs of longer arguments.

In a DATA step, if the TRANSLATE function returns a value to a variable that has
not been assigned a length, then that variable is assigned the length of the first
argument.

Comparisons
The TRANWRD function differs from TRANSLATE in that it scans for words (or
patterns of characters) and replaces a word with a second word (or pattern of
characters). For more information about the TRANWRD function, see SAS
Functions and CALL Routines: Reference.

TRANSLATE Function: UNIX 353

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

354 Chapter 16 / Functions and CALL Routines under UNIX

17
Informats under UNIX

SAS Informats under UNIX . 355

Dictionary . 355
HEX Informat: UNIX . 355
$HEX Informat: UNIX . 356
IB Informat: UNIX . 357
PD Informat: UNIX . 358
PIB Informat: UNIX . 359
RB Informat: UNIX . 360
ZD Informat: UNIX . 361

SAS Informats under UNIX
This section describes SAS informats that have behavior or syntax that is specific to
UNIX environments. Each informat description includes a brief “UNIX specifics”
section that explains which aspect of the informat is specific to UNIX. All of these
informats are described in this documentation and in SAS Formats and Informats:
Reference.

Dictionary

HEX Informat: UNIX
Converts hexadecimal positive binary values to either fixed-point or floating-point binary values.

Categories: Numeric
CAS

355

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

UNIX specifics: Floating-point representation

See: “HEXw. Informat” in SAS Formats and Informats: Reference

Syntax
HEXw.

Syntax Description
w

specifies the field width of the input value and also specifies whether the final
value is fixed-point or floating-point.

If w<16, HEXw. converts the input value to positive integer binary values,
treating all input values as positive (unsigned). If w is 16, HEXw. converts the
input value to real binary (floating-point) values, including negative values.

Default 8

Range 1–16

Details
The HEXw. informat converts the hexadecimal representation of positive binary
numbers to real floating-point binary values. The width value of the HEXw. informat
determines whether the input represents an integer (fixed-point) or real (floating-
point) binary number. When you specify a width of 1 through 15, the informat
interprets the input hexadecimal as an integer binary number. When you specify 16
for the width value, the informat interprets the input hexadecimal as a floating-point
value.

For more information, see “Reading and Writing Binary Data in UNIX Environments”
on page 265.

$HEX Informat: UNIX
Converts hexadecimal data to character data.

Categories: Character
CAS

UNIX specifics: Values are interpreted as ASCII values

See: “$HEXw. Informat” in SAS Formats and Informats: Reference

356 Chapter 17 / Informats under UNIX

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0vmi0vnlacdocn1oxuu8dpsdztb.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p1bol4tujnx1w7n1g2jg6pimf0hk.htm&locale=en

Syntax
$HEXw.

Syntax Description
w

specifies the number of digits of hexadecimal data.

If w=1, $HEXw. pads a trailing hexadecimal 0. If w is an odd number greater
than 1, then $HEXw. reads w-1 hexadecimal characters.

Default 2

Range 1–32767

Details
The $HEXw. informat converts every two digits of hexadecimal data into one byte of
character data. Use the $HEXw. informat to encode hexadecimal values into a
character variable when your input data is limited to printable characters. SAS under
UNIX interprets values that are read with this informat as ASCII values.

IB Informat: UNIX
Reads integer binary (fixed-point) values.

Categories: Numeric
CAS

UNIX specifics: Byte values

See: “IBw.d Informat” in SAS Formats and Informats: Reference

Syntax
IBw.d

Syntax Description
w

specifies the width of the input field.

Default 4

Range 1–8

IB Informat: UNIX 357

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p01ngee1h9zdr7n1j99qiyigocab.htm&locale=en

d
specifies the power of 10 by which to divide the value. This argument is optional.

Range 0–10

Details
The IBw.d informat reads fixed-point binary values. For integer binary data, the high-
order bit is the value's sign: 0 for positive values, 1 for negative. Negative values are
represented in two's-complement notation. If the informat includes a d value, the
data value is divided by 10d.

For more information, see “Reading and Writing Binary Data in UNIX Environments”
on page 265.

PD Informat: UNIX
Reads data that is stored in packed decimal format.

Categories: Numeric
CAS

UNIX specifics: data representation

See: “PDw.d Informat” in SAS Formats and Informats: Reference

Syntax
PDw.d

Syntax Description
w

specifies the width of the input field.

Default 1

Range 1–16

d
specifies the power of 10 by which to divide the value. This argument is optional.

Range 0–31

358 Chapter 17 / Informats under UNIX

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n0xnvrbp96w34un1j7fgbfqgz4x5.htm&locale=en

Details
The PDw.d informat reads packed decimal data. Although it is usually impossible to
enter packed decimal data directly from a console, many programs write packed
decimal data.

Each byte contains two digits in packed decimal data. The value's sign is the first
byte. Because the entire first byte is used for the sign, you should specify at least a
width of 2.

The PDw.d format writes missing numerical data as –0. When the PDw.d informat
reads a value of –0, the result is a value of 0.

For more information, see “Reading and Writing Binary Data in UNIX Environments”
on page 265.

PIB Informat: UNIX
Reads positive integer binary (fixed-point) values.

Categories: Numeric
CAS

UNIX specifics: Byte order

See: “PIBw.d Informat” in SAS Formats and Informats: Reference

Syntax
PIBw.d

Syntax Description
w

specifies the width of the input field.

Default 1

Range 1–8

d
specifies the power of 10 by which to divide the value. This argument is optional.

Range 0–10

Details
The PIBw.d informat reads integer binary (fixed-point) values. Positive integer binary
values are the same as integer binary (see “IB Informat: UNIX” on page 357),

PIB Informat: UNIX 359

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0lznvk1zzayz0n185r67wa06wlo.htm&locale=en

except that all values are treated as positive. Thus, the high-order bit is part of the
value rather than the value's sign. If the informat includes a d value, the data value
is divided by 10d.

For more information, see “Reading and Writing Binary Data in UNIX Environments”
on page 265.

RB Informat: UNIX
Reads numeric data that is stored in real binary (floating-point) notation.

Categories: Numeric
CAS

UNIX specifics: Floating-point representation; supports single-precision numbers only for those
applications that truncate numeric data

See: “RBw.d Informat” in SAS Formats and Informats: Reference

Syntax
RBw.d

Syntax Description
w

specifies the width of the input field.

Default 4

Range 2–8

d
specifies the power of 10 by which to divide the value. This argument is optional.

Range 0–10

Details
The RBw.d informat reads numeric data that is stored in real binary (floating-point)
notation. SAS stores all numeric values in floating-point.

It is usually impossible to enter floating-point binary data directly from a console, but
many programs write floating-point binary data. Use caution if you are using the
RBw.d informat to read floating-point data created by programs other than SAS
because the RBw.d informat is designed to read only double-precision data.

All UNIX systems that are currently supported by SAS use the IEEE standard for
floating-point representation. This representation supports both single-precision and
double-precision floating-point numbers. Double-precision representation has more

360 Chapter 17 / Informats under UNIX

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0fn7uh8wo2onkn1iwgj06p9326k.htm&locale=en

bytes of precision, and the data within the representation is interpreted differently.
For example, for single-precision, the value of 1 in hexadecimal representation is
3F800000. For double-precision, the hexadecimal representation of 1 is
3FF0000000000000.

The RBw.d informat is designed to read only double-precision data. It supports
widths less than 8 only for applications that truncate numeric data for space-saving
purposes. RB4. does not expect a single-precision floating-point number; it expects
a double-precision number truncated to four bytes. Using the example of 1 above,
RB4. expects 3FF00000 to be the hexadecimal representation of the four bytes of
data to be interpreted as 1. If given 3F800000, the single-precision value of 1, a
different number results.

External programs such as those programs that are written in the C and Fortran
languages can produce only single-precision or double-precision floating-point
numbers. No length other than four or eight bytes is allowed. RBw.d allows a length
of 3 through 8, depending on the storage that you need to save.

The FLOAT4. informat has been created to read a single-precision floating-point
number. If you read 3F800000 with the FLOAT4. informat, the result is a value of 1.

To read data created by a C or Fortran program, you need to decide on the proper
informat to use. If the floating-point numbers require an eight-byte width, you should
use the RB8. informat. If the floating point numbers require a four-byte width, you
should use FLOAT4.

Consider the following C example:

#include <stdio.h>
main() {
FILE *fp;
float x[3];
fp = fopen("test.dat","wb");
x[0] = 1; x[1] = 2; x[2] = 3;
fwrite((char *)x,sizeof(float),3,fp);
fclose(fp);
}

The file test.dat contains 3f8000004000000040400000 in hexadecimal
representation.

The following statements read test.dat correctly:

 data _null_;
 infile 'test.dat';
 input (x y z) (float4.);
 run;

Also available is the IEEEw.d informat, which reads IEEE floating-point data. On
UNIX systems, IEEE8. is equivalent to RB8., and IEEE4. is equivalent to FLOAT4.
IEEEw.d can be used on any platform, as long as the original IEEE binary data
originated on a platform that uses the IEEE representation.

For more information, see “Reading and Writing Binary Data in UNIX Environments”
on page 265.

ZD Informat: UNIX
Reads zoned decimal data.

ZD Informat: UNIX 361

Categories: Numeric
CAS

UNIX specifics: Last byte includes the sign; data representation

See: “ZDw.d Informat” in SAS Formats and Informats: Reference

Syntax
ZDw.d

Syntax Description
w

specifies the width of the input field.

Default 1

Range 1–32

d
specifies the power of 10 by which to divide the value. This argument is optional.

Range 0–31

Details
The ZDw.d informat reads zoned decimal data; it is also known as overprint trailing
numeric format. Under UNIX, the last byte of the field includes the sign along with
the last digit. The conversion table for the last byte is as follows:

Table 17.1 Meaning of the Last Byte for the ZDw.d Informat

Digit ASCII Character Digit ASCII Character

0 { –0 }

1 A –1 J

2 B –2 K

3 C –3 L

4 D -4 M

5 E –5 N

6 F -6 O

362 Chapter 17 / Informats under UNIX

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p15zzcwdrbo708n1owjn1oscogx1.htm&locale=en

7 G –7 P

8 H –8 Q

9 I –9 R

For more information, see “ZD Format: UNIX” on page 321 and “Reading and
Writing Binary Data in UNIX Environments” on page 265.

ZD Informat: UNIX 363

364 Chapter 17 / Informats under UNIX

18
Macro Facility under UNIX

About the Macro Facility under UNIX . 365

Automatic Macro Variables in UNIX Environments . 366

Macro Statements in UNIX Environments . 367

Macro Functions in UNIX Environments . 368

SAS System Options Used by the Macro Facility in UNIX Environments 368

Using Autocall Libraries in UNIX Environments . 369
What Is an Autocall Library? . 369
Available Autocall Macros . 369
Guidelines for Naming Macro Files . 369
The SASAUTOS System Option . 369
Example: Setting Up and Testing a Macro in an Autocall Library 370

About the Macro Facility under UNIX
Most features of the SAS macro facility are valid in all operating environments. This
documentation discusses only those components of the macro facility that depend
on the UNIX environment. For more information, see the following documentation:

n SAS Macro Language: Reference

n SAS Macro Facility Tips and Techniques

n the online Help for the macro facility

365

Automatic Macro Variables in UNIX
Environments

The following automatic macro variables are valid in all operating environments, but
their values are determined by the operating environment. All of the macro variables
listed below apply to SAS 9.4 and to SAS Viya:

SYSCC
contains the current SAS condition code. Upon exit, SAS translates this
condition code to a return code that has a meaningful value for the operating
environment.

Note: The value of SYSCC might not match the return code returned by the
operating system.

Note: When ERRORCHECK=NORMAL, the return code is 0, even if an error
exists in a LIBNAME or FILENAME statement, or in a LOCK statement in
SAS/SHARE software. Also, the SAS job or session does not end abnormally
when the %INCLUDE statement fails due to a nonexistent file. For more
information, see the “ERRORCHECK= System Option” in SAS System Options:
Reference.

SYSDEVIC
contains the name of the current graphics device. The current graphics device is
determined by the DEVICE system option. Contact your on-site SAS support
personnel to determine which graphics devices are available at your site. For
information, see “DEVICE System Option: UNIX” on page 426 and “DEVICE=
System Option” in SAS/GRAPH: Reference.

SYSENV
reports whether SAS is running interactively. Values for SYSENV are FORE when
the TERMINAL system option is in effect, and BACK when the NOTERMINAL
system option is in effect.

SYSJOBID
lists the process identification number (PID) of the process that is executing SAS
(for example, 00024).

SYSMAXLONG
returns the maximum long integer value allowed under UNIX, which is
9,007,199,254,740,992. On 32-bit systems, the maximum is 2,147,483,647.

SYSRC
holds the decimal value of the exit status code that is returned by the last UNIX
command executed from your SAS session. The following output shows an
interactive line mode SAS session that shows two sample SYSRC values:

366 Chapter 18 / Macro Facility under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n074sx2hkq8dzpn1ptoydcmzfspt.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n074sx2hkq8dzpn1ptoydcmzfspt.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n0sfduua0e145gn1d8ez4qs8lcu9.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n0sfduua0e145gn1d8ez4qs8lcu9.htm&locale=en

Output 18.1 Sample SYSRC Values

1? x 'data';
/bin/ksh: data: not found
2? %put UNIX exit status code is &sysrc;
UNIX exit status code is 256
3? x 'date';
Tue Mar 15 09:41:27 CST 2011
4? %put UNIX exit status code is now &sysrc;
UNIX exit status code is now 0

SYSSCP
returns the abbreviation for your processor architecture, such as HP IPF, SUN 64,
or AIX 64.

SYSSCPL
returns the name of the specific UNIX environment that you are using, such as
SunOS or AIX. This variable returns the same value that is returned by the UNIX
command uname.

Macro Statements in UNIX Environments
The arguments that can be entered with the following statements depend on the
operating environment:

%SYSEXEC
executes UNIX commands. It is similar to the X statement described in
“Executing Operating System Commands from Your SAS Session” on page 18.
The %SYSEXEC statement enables you to execute operating environment
commands immediately and, if necessary, determine whether they executed
successfully by examining the value of the automatic macro variable SYSRC.
You can use the %SYSEXEC statement inside a macro or in open code. The
form of the %SYSEXEC statement is as follows, where command can be any
UNIX command:

%SYSEXEC <command>;

For example, the following code writes the status of the default printer to your
UNIX shell:

%sysexec lpstat;

Entering %SYSEXEC without a UNIX command starts a new shell, except under
the X interface to SAS. For more information, see “Executing Operating System
Commands from Your SAS Session” on page 18.

Macro Statements in UNIX Environments 367

Macro Functions in UNIX Environments
The following functions have operating environment dependencies:

%SCAN
searches for a word that is specified by its position in a string. Here is the form of
the %SCAN function:

%SCAN(argument,n,<delimiters>);

On ASCII systems, the default delimiters are the following:

blank . < (+ & ! $ *) ; ^ - / , % |

%SYSGET
returns the character string that is the value of the environment variable passed
as the argument. Both UNIX and SAS environment variables can be translated
using the %SYSGET function. A warning message is written if the global variable
does not exist. Here is the form of the %SYSGET function:

%SYSGET(environment-variable);

For example, the following code writes the value of the HOME environment
variable to the SAS log:

%let var1=%sysget(HOME); %put &var1;

SAS System Options Used by the Macro
Facility in UNIX Environments

The following system options have operating environment dependencies:

MSYMTABMAX
specifies the maximum amount of memory available to all symbol tables (global
and local, combined). Under UNIX, the default value for this option is 4M.

MVARSIZE
specifies the maximum number of bytes for any macro variable stored in
memory. In SAS 9.4M3, the default value for this option became 65534.

SASAUTOS
specifies the AUTOCALL library. For more information, see “The SASAUTOS
System Option” on page 369.

368 Chapter 18 / Macro Facility under UNIX

Using Autocall Libraries in UNIX
Environments

What Is an Autocall Library?
An autocall library contains files that define SAS macros. The following sections
discuss aspects of autocall libraries that are dependent on the operating
environment. For more information, see SAS Macro Language: Reference.

Available Autocall Macros
There are two types of autocall macros, those macros that are provided by SAS,
and those macros that you define yourself. To use the autocall facility, you must
have the MAUTOSOURCE system option set.

When SAS is installed, the SASAUTOS system option is defined in the configuration
file to refer to the location of the default macros supplied by SAS. The products
licensed at your site determine the autocall macros that you have available. You can
also define your own autocall macros and store them in one or more directories.
SAS does not recognize autocall macros if their filenames are written in uppercase
or in mixed case. Use only filenames that are lowercase.

Guidelines for Naming Macro Files
Macro names in SAS are case insensitive, but they all map to a lowercase filename.
If you store autocall macros in a UNIX directory, the file extension must be .sas,
and the filename must be entirely in lowercase. In the UNIX environment, each
macro file in the directory must contain a macro definition with a macro name that
matches the filename. For example, a file named prtdata.sas should define a
macro named prtdata.

The SASAUTOS System Option
To use your own autocall macros in your SAS program, specify their directories with
the SASAUTOS system option. For more information, see “SASAUTOS System
Option: UNIX” on page 477.

Using Autocall Libraries in UNIX Environments 369

Note: The SASAUTOS system option under UNIX does not recognize filenames
that are in uppercase or mixed case.

You can set the SASAUTOS system option when you start SAS, or you can use it in
an OPTIONS statement during your SAS session. However, autocall libraries
specified with the OPTIONS statement override any previous specification.

If you use the CONFIG system option to specify a configuration file, add your
autocall library to the library concatenation supplied by SAS. If you use the default
configuration files (sasv9.cfg), specify your autocall library there.

Autocall libraries are searched in the order in which you specify them.

Example: Setting Up and Testing a Macro in an
Autocall Library

This example shows how to set up and test a macro in an autocall library.

The following output shows the results of executing two UNIX (cat) commands to
display the contents of two files, and a SAS command to run the autocall.sas
program:

Output 18.2 AUTOCALL Library Example

$ cat maclib/testauto.sas
%macro testauto;
x echo 'Autocall library is working.';
%mend testauto;
$ cat source/autocall.sas
filename sysautos ('!SASROOT/sasautos' '$HOME/test/sasautos');
options mautosource sasautos=(sysautos '$HOME/macros/maclib');
%testauto
%TestAuto
%TESTAUTO
$ sas source/autocall.sas
Autocall library is working.
Autocall library is working.
Autocall library is working.

370 Chapter 18 / Macro Facility under UNIX

19
Statements under UNIX

SAS Statements under UNIX . 371

Dictionary . 372
ABORT Statement: UNIX . 372
ATTRIB Statement: UNIX . 372
FILE Statement: UNIX . 373
FILENAME Statement: UNIX . 377
FOOTNOTE Statement: UNIX . 385
%INCLUDE Macro Statement: UNIX . 386
INFILE Statement: UNIX . 388
LENGTH Statement: UNIX . 390
LIBNAME Statement: UNIX . 391
SYSTASK Statement: UNIX . 399
TITLE Statement: UNIX . 402
WAITFOR Statement: UNIX . 403
X Statement: UNIX . 405

SAS Statements under UNIX
This section describes SAS statements that exhibit behavior or syntax that is
specific to UNIX environments. Each statement description includes a brief "UNIX
specifics" section that explains which aspect of the statement is specific to UNIX. If
the information under "UNIX specifics" says "all", then the statement is described
only in this documentation. Otherwise, the statement is described in this
documentation and in SAS DATA Step Statements: Reference.

371

Dictionary

ABORT Statement: UNIX
Stops executing the current DATA step, SAS job, or SAS session.

Valid in: DATA step

Category: Action

Restriction: This statement is not supported on the CAS server.

UNIX specifics: Values of n

See: “ABORT Statement” in SAS DATA Step Statements: Reference

Syntax
ABORT <ABEND | RETURN> <n>;

Details
The n option enables you to specify the value of the exit status code that SAS
returns to the shell when it stops executing. The value of n can range from 0 to 255.
Normally, a return code of 0 is used to indicate that the program ran with no errors.
Return codes greater than 0 are used to indicate progressively more serious error
conditions. Return codes of 0–6 and those codes that are greater than 977 are
reserved for use by SAS.

For information about additional options, see “ABORT Statement” in SAS DATA
Step Statements: Reference.

See Also
“Determining the Completion Status of a SAS Job in UNIX Environments” on page
31

ATTRIB Statement: UNIX
Associates a format, informat, label, or length with one or more variables.

372 Chapter 19 / Statements under UNIX

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0hp2evpgqvfsfn1u223hh9ubv3g.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0hp2evpgqvfsfn1u223hh9ubv3g.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0hp2evpgqvfsfn1u223hh9ubv3g.htm&locale=en

Valid in: DATA step

Category: DATA step

Restriction: This statement is not supported on the CAS server.

UNIX specifics: Length specification

See: “ATTRIB Statement” in SAS DATA Step Statements: Reference

Syntax
ATTRIB variable-list-1 attribute-list-1 <...variable-list-n attribute-list-n>;

Required Argument
attribute-list

LENGTH=<$>length
specifies the length of the variables in variable-list. The minimum length that
you can specify for a numeric variable depends on the floating-point format
used by your system. Because most systems use the IEEE floating-point
format, the minimum is 3 bytes.

Details
For information about additional options, see “ATTRIB Statement” in SAS DATA
Step Statements: Reference.

See Also
“Numeric Variable Length and Precision in UNIX Environments” on page 263

FILE Statement: UNIX
Specifies the current output file for PUT statements.

Valid in: DATA step

Categories: File-Handling
CAS

Restrictions: The FILE statement cannot override or modify the device type that was set by a
preceding FILENAME statement.
LOG is the only file-specification available on the CAS server.
The device-type argument is not available on the CAS server.

UNIX specifics: Valid values for file-specification, host-options, and encoding-value

FILE Statement: UNIX 373

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1wxb7p9jkxycin16lz2db7idbnt.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1wxb7p9jkxycin16lz2db7idbnt.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1wxb7p9jkxycin16lz2db7idbnt.htm&locale=en

See: “FILE Statement” in SAS DATA Step Statements: Reference

Syntax
FILE file-specification <device-type> <PERMISSION='permission-value'>
<ENCODING='encoding-value' > <options> <host-options>;

Required Argument
file-specification

can be any of the file specification forms that are discussed in “Accessing an
External File or Device in UNIX Environments” on page 87.

Optional Arguments
device-type

specifies the type of device or the access method that is used if the fileref points
to an input device or output device or to a location that is not a physical file. For
the complete list of device type values, see “FILE Statement” in SAS DATA Step
Statements: Reference.

PERMISSION='permission-value'
specifies permissions to set for the specified fileref. To specify more than one set
of permission values, separate them with a comma within quotation marks.

Provide the permission-value in the following format:

A::<trustee_type>::<permissions>

The ‘A’ indicates that these are access permissions. No other values are
currently supported.

The trustee_type can take the following values:

u user
g group (group owner of the file)
o other (all other users)

The permission value takes the letters r (Read), w (Write), and x (Execute), in
that order. If you do not want to grant one of these permissions, enter a ‘-’ in its
place (for example, r-x or rw-).

Suppose that you want to have Read, Write, and Execute permission for a fileref.
You also want to specify Read and Execute permission for the group owner of
the file. Finally, you want to allow all other users to have only Read permission
for the file. You can specify these options as follows:

permission='A::u::rwx,A::g::r-x,A::o::r--'

Supply a permission value for all three trustee types. Any trustee type that you
omit from the list of permission values is denied all access to the specified fileref.
For example, suppose you used the following permission values:

permission='A::u::rwx,A::g::r-x'

374 Chapter 19 / Statements under UNIX

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n15o12lpyoe4gfn1y1vcp6xs6966.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n15o12lpyoe4gfn1y1vcp6xs6966.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n15o12lpyoe4gfn1y1vcp6xs6966.htm&locale=en

In this case, only the owner and the group owner would have access to the
specified file. Any user other than the owner or group owner is denied all access
to the file.

ENCODING='encoding-value'
specifies the encoding to use when writing to the output file. The value for
ENCODING= indicates that the output file has a different encoding from the
current session encoding.

When you write data to the output file, SAS transcodes the data from the session
encoding to the specified encoding.

For valid encoding values, see “Overview to SAS Language Elements That Use
Encoding Values” in SAS National Language Support (NLS): Reference Guide.

options
can be any of the options for the FILE statement that are valid in all operating
environments. For a description of these options, see “FILE Statement” in SAS
DATA Step Statements: Reference.

host-options
are specific to UNIX environments. These options can be any of the following:

BLKSIZE=
BLK=

specifies the number of bytes that are physically written in one I/O operation.
The default is 8K. The maximum is 1G–1.

TERMSTR=
controls the end-of-line delimiter in files that are formatted by UNIX. By
default, either a line feed alone or a carriage return and a line feed indicate
the end of a line. To explicitly define the end-of-line delimiter, specify one of
the following values:

CR Carriage return.

CRLF Carriage return line feed.

LF Line feed. This parameter is used to read files that are formatted
by UNIX.

LRECL=
specifies the logical record length. Its value depends on the record format in
effect (RECFM). In SAS 9.4, the default value for LRECL= is 32,767. If you
are using fixed length records (RECFM=F), the default value for LRECL= is
256. The maximum record length is 1G.

n If RECFM=F, then the value for the LRECL= option determines the length
of each output record. The output record is truncated or padded with
blanks to fit the specified size.

Note: When RECFM=F, LRECL= must be set to 256 when SAS 9.4 is
communicating with a previous version of SAS.

n If RECFM=N, then the value for the LRECL= option must be at least 256.

n If RECFM=V, then the value for the LRECL= option determines the
maximum record length. Records that are longer than the specified length
are divided into multiple records.

MOD
indicates that data written to the file should be appended to the file.

FILE Statement: UNIX 375

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n15o12lpyoe4gfn1y1vcp6xs6966.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n15o12lpyoe4gfn1y1vcp6xs6966.htm&locale=en

NEW
OLD

specifies whether a new file or an existing file is used for output. If you
specify NEW, a new file is to be opened for output. If the file already exists, it
is deleted and re-created. If you specify OLD, the previous contents of the file
are replaced. NEW is the default.

RECFM=
specifies the record format. Values for the RECFM= option are the following:

D default format (same as variable).

F fixed format. That is, each record has the same length. Do
not use RECFM=F for external files that contain carriage-
control characters.

N binary format. The file consists of a stream of bytes with no
record boundaries.

P print format. SAS writes carriage-control characters.

V variable format. Each record ends with a newline character.

S370V variable S370 record format (V).

S370VB variable block S370 record format (VB).

S370VBS variable block with spanned records S370 record format
(VBS).

UNBUF
tells SAS not to perform buffered Writes to the file on any subsequent FILE
statement. This option applies especially when you are writing to a data
collection device.

Details
The ENCODING= option is valid only when the FILE statement includes a file
specification that is not a reserved fileref. If the FILE statement includes the
ENCODING= argument and the reserved filerefs Log or Print as the file-
specification, then SAS issues an error message. The ENCODING= value in the
FILE statement overrides the value of the ENCODING= system option.

You can set the permissions of the output file by issuing the umask command from
within the SAS session. For more information, see “Executing Operating System
Commands from Your SAS Session” on page 18.

See Also
Chapter 4, “Using External Files and Devices,” on page 85

376 Chapter 19 / Statements under UNIX

FILENAME Statement: UNIX
Associates a SAS fileref with an external file or output device; disassociates a fileref and external file; lists
attributes of external files.

Valid in: Anywhere

Category: Data Access

Restrictions: When SAS is in a locked-down state, the following FILENAME statement access
methods are not accessible (enabled) in UNIX: EMAIL, FTP, HADOOP, SOCKET, and
URL. Your SAS server administrator can re-enable one or more of these access
methods so that they are accessible when SAS is in the locked-down state. For more
information, see “SAS Processing Restrictions for Servers in a Locked-Down State” in
SAS Programmer’s Guide: Essentials.
This statement is not supported on the CAS server.

UNIX specifics: device-type, external-file, host-options, and encoding-value

See: “FILENAME Statement” in SAS Global Statements: Reference

Syntax
FILENAME fileref <device-type> 'external-file' <PERMISSION='permission-value'>
<ENCODING='encoding-value'> <'host-options'> <LOCKINTERNAL= AUTO |
SHARED>;

FILENAME fileref device-type<'external-file'> <ENCODING='encoding-value'>
<'host-options'> <LOCKINTERNAL= AUTO | SHARED>;

FILENAME fileref ('pathname-1' … 'pathname-n') <ENCODING='encoding-value'>
<'host-options'> <LOCKINTERNAL= AUTO | SHARED>;

FILENAME fileref directory-name <ENCODING='encoding-value'>
<LOCKINTERNAL= AUTO | SHARED>;

FILENAME fileref <access-method> 'external-file' access-information;

FILENAME fileref CLEAR | _ALL_ CLEAR;

FILENAME fileref LIST | _ALL_ LIST;

Required Arguments
fileref

is the name by which you reference the file. Under UNIX, the value of fileref can
be an environment variable.

Note: You cannot clear a fileref that is defined by an environment variable.
Filerefs that are defined by an environment variable are assigned for the entire
SAS session.

FILENAME Statement: UNIX 377

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en

For more information, see “Using Environment Variables to Assign Filerefs in
UNIX Environments” on page 97.

'external-file'
differs according to device type. “Device Information in the FILENAME
Statement” on page 382 shows the information appropriate to each device.
Remember that UNIX filenames are case sensitive. For more information, see
“Specifying Pathnames in UNIX Environments” on page 88.

Note: If a filename has leading blanks, then the blanks are trimmed.

Optional Arguments
device-type

specifies a device for the output, such as a disk, terminal, printer, pipe, and so
on. The device-type keyword must follow fileref and precede pathname. “Device
Information in the FILENAME Statement” on page 382 describes the valid device
types. DISK is the default device type. If you are associating the fileref with a
DISK file, then you do not need to specify the device type.

PERMISSION='permission-value'
specifies permissions to set for the specified fileref. To specify more than one set
of permission values, separate them with a comma within quotation marks.

Provide the permission-value in the following format:

A::<trustee_type>::<permissions>

The ‘A’ indicates that these are access permissions. No other values are
currently supported.

The trustee_type can take the following values:

u user
g group (group owner of the file)
o other (all other users)

The permission value takes the letters r (Read), w (Write), and x (Execute), in
that order. If you do not want to grant one of these permissions, enter a ‘-’ in its
place (for example, r-x or rw-).

Suppose that you want to have Read, Write, and Execute permission for a fileref.
You also want to specify Read and Execute permission for the group owner of
the file. Finally, you want to allow all other users to have only Read permission
for the file. You can specify these options as follows:

permission='A::u::rwx,A::g::r-x,A::o::r--'

Supply a permission value for all three trustee types. Any trustee type that you
omit from the list of permission values is denied all access to the specified fileref.
For example, suppose you used the following permission values:

permission='A::u::rwx,A::g::r-x'

In this case, only the owner and the group owner would have access to the
specified file. Any user other than the owner or group owner is denied all access
to the file.

378 Chapter 19 / Statements under UNIX

ENCODING='encoding-value'
specifies the encoding to use when reading from or writing to the external file.
The value for ENCODING= indicates that the external file has a different
encoding from the current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding. When you write data to an external
file, SAS transcodes the data from the session encoding to the specified
encoding.

Note: The UPRINTER device type does not support the ENCODING option.

For valid encoding values, see “Overview to SAS Language Elements That Use
Encoding Values” in SAS National Language Support (NLS): Reference Guide.

'host-options'
are specific to UNIX environments. These options can be any of the following:

BLKSIZE=
BLK=

specifies the number of bytes that are physically written or read in one I/O
operation. The default is 64K. The maximum is 1G-1. If you specify
RECFM=S370VBS, then you should specify BLKSIZE=32,760 to avoid errors
with records longer than 255 characters.

TERMSTR=
controls the end-of-line delimiter in files that are formatted by UNIX. By
default, either a line feed alone or a carriage return and a line feed indicate
the end of a line. To explicitly define the end-of-line delimiter, specify one of
the following values:

CR Carriage return.

CRLF Carriage return line feed. Use this value to read files that are
formatted by a PC. CRLF is the default.

LF Line feed.

If you are writing a file that is read on UNIX, specify TERMSTR=LF.

LRECL=
specifies the logical record length. Its value depends on the record format in
effect (RECFM). In SAS 9.4, the default value for LRECL= is 32,767. If you
are using fixed length records (RECFM=F), the default value for LRECL= is
256. The maximum length is 1G.

n If RECFM=F, then the value for the LRECL= option determines either the
number of bytes to be read as one record or the length of each output
record. The output record is truncated or padded with blanks to fit the
specified size.

Note: When RECFM=F, LRECL= must be set to 256 when you are
reading fixed length records that were created using the default value in a
previous version of SAS.

n If RECFM=N, then the value for the LRECL= option must be at least 256.

n If RECFM=V, then the value for the LRECL= option determines the
maximum record length. Records that are longer than the specified length
are divided into multiple records on output and truncated on input.

FILENAME Statement: UNIX 379

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en

n If RECFM=S370VBS, then you should specify LRECL=32,760 to avoid
errors with records longer than 255 characters.

MOD
indicates that data written to the file should be appended to the file.

NEW
OLD

specifies whether a new or existing file is used for output. If you specify NEW,
a new file is to be opened for output. If the file already exists, it is deleted and
re-created. If you specify OLD, the previous contents of the file are replaced.
NEW is the default.

RECFM=
specifies the record format. Values for the RECFM= option are the following:

D default format (same as variable).

F fixed format. That is, each record has the same length. Do
not use RECFM=F for external files that contain carriage-
control characters.

N binary format. The file consists of a stream of bytes with no
record boundaries. N is not valid for the PIPE device type. If
you do not specify the LRECL option, then by default SAS
reads 256 bytes at a time from the file.

P print format. On output, SAS writes carriage-control
characters.

V variable format. Each record ends with a newline character.

S370V variable S370 record format (V).

S370VB variable block S370 record format (VB).

S370VBS variable block with spanned records S370 record format
(VBS). If you specify RECFM=S3270VBS, then you should
specify BLKSIZE=32,760 and LRECL=32,760 to avoid errors
with records longer than 255 characters.

The RECFM= option is used for both input and output.

LOCKINTERNAL=AUTO | SHARED
specifies the SAS system locking that is to be used for the files that are listed
in a FILENAME statement. LOCKINTERNAL can have one of the following
values:

AUTO
locks a file so that in a SAS session, if a user has Write access to a file,
then no other users can have Read or Write access to the file. If a user
has Read access to a file, no other user can have Write access to the file,
but multiple users can have Read access.

SHARED
locks a file so that in a SAS session, two users do not have simultaneous
Write access to the file. The file can be shared simultaneously by one
user who has Write access and multiple users who have Read access.

Default AUTO

UNBUF
tells SAS not to perform buffered Writes to the file on any subsequent FILE
statement. This option applies especially when you are reading from or

380 Chapter 19 / Statements under UNIX

writing to a data collection device. As explained in SAS DATA Step
Statements: Reference, it also prevents buffered Reads on INFILE
statements.

'pathname-1' ... 'pathname-n'
are pathnames for the files that you want to access with the same fileref. Use
this form of the FILENAME statement when you want to concatenate filenames.
Concatenation of filenames is available only for DISK files, so you do not have to
specify the device-type. Separate the pathnames with either commas or blank
spaces. Enclose each pathname in quotation marks. Table 3.3 on page 66
shows character substitutions that you can use when specifying a pathname. If
the fileref that you are defining is to be used for input, then you can also use
wildcards as described in “Using Wildcards in Pathnames (Input Only)” on page
90. Remember that UNIX filenames are case-sensitive.

directory-name
specifies the directory that contains the files that you want to access. For more
information, see “Assigning a Fileref to a Directory (Using Aggregate Syntax)” on
page 95.

access-method
specifies the access method or device type that is used if the fileref points to an
input or output device or location that is not a physical file. “Device Information in
the FILENAME Statement” on page 382 describes the information that is
expected by the access method.

access-information
differs according to the access method. “Device Information in the FILENAME
Statement” on page 382 shows the information appropriate to each access
method.

CLEAR
clears the specified fileref or, if you specify _ALL_, clears all filerefs that are
currently defined.

Note: You cannot clear a fileref that is defined by an environment variable.
Filerefs that are defined by environment variables are assigned for the entire
SAS session.

ALL
refers to all filerefs currently defined. You can use this keyword when you are
listing or clearing filerefs.

LIST
writes to the SAS log the pathname of the specified fileref or, if you specify
ALL, lists the definition for all filerefs that are currently defined. Filerefs defined
as environment variables appear only if you have already used those filerefs in a
SAS statement. If you are using the Bourne shell or the Korn shell, SAS cannot
determine the name of a pre-opened file, so it displays the following string
instead of a filename:

<File Descriptor number>

For more information, see “Using Environment Variables to Assign Filerefs in
UNIX Environments” on page 97.

FILENAME Statement: UNIX 381

Details

File Locking
File locking of external files is controlled at the FILENAME statement level by the
LOCKINTERNAL option. If you use the AUTO (default) value for LOCKINTERNAL,
then SAS locks a file exclusively for one user who has Write access. SAS locks a
file non-exclusively for multiple users who have Read access. For example, if a file
is opened in UPDATE or OUTPUT mode, then all other access from internal
processes are blocked. If a file is opened in INPUT mode, then multiple users can
read the file, but UPDATE and OUTPUT functions are blocked.

If you use the SHARED value for LOCKINTERNAL, then SAS allows one user Write
access to a file as well as allowing multiple users to read the file.

Device Information in the FILENAME Statement
The following table lists the relationship between device type or access method and
the related external file.

Table 19.1 Device Information in the FILENAME Statement

Device or
Access
Method Function External File

ACTIVEMQ enables SAS
programs to send
messages to and
receive messages
from an ActiveMQ
message broker
through the HTTP
protocol.

is accessed through a URL using the ActiveMQ
RESTful API. The ActiveMQ MessageServlet
handles the integration between the HTTP
requests and the ActiveMQ message
dispatcher. For more information, see
Application Messaging with SAS.

CATALOG references a SAS
catalog as an
external file.

is a valid two-, three-, or four-part SAS catalog
name followed by catalog options (if needed).
See SAS Programmer’s Guide: Essentials for
more information.

DATAURL enables you to read
data from user-
specified text using
the DATAURL
access method.

is accessed directly from a data URL
specification instead of a network location. For
more information, see “FILENAME Statement:
DATAURL Access Method” in SAS Global
Statements: Reference.

DISK associates the fileref
with a DISK file.

is either the pathname for a single file or, if you
are concatenating filenames, a list of
pathnames separated by spaces or commas
and enclosed in parentheses. The level of
specification depends on your location in the
file system. Table 3.3 on page 66 shows

382 Chapter 19 / Statements under UNIX

http://documentation.sas.com/?docsetId=appmsgdg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p1ndnmptyw8uo4n1uqibu1ybwtkk.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p1ndnmptyw8uo4n1uqibu1ybwtkk.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p1ndnmptyw8uo4n1uqibu1ybwtkk.htm&locale=en

Device or
Access
Method Function External File

character substitutions that you can use when
specifying a UNIX pathname.

DUMMY associates a fileref
with a null device.

None. DUMMY enables you to debug your
application without reading from or writing to a
device. Output to this device is discarded.

EMAIL1 sends electronic
mail to an address.

is an address and email options. For more
information, see “Sending Electronic Mail Using
the FILENAME Statement (EMAIL)” on page
104.

FTP1 reads from or writes
to a file from any
computer on a
network that is
running an FTP
server.

is the pathname of the external file on the
remote computer followed by FTP options. See
SAS Programmer’s Guide: Essentials, and
“Assigning Filerefs to Files on Other Systems
(FTP, SFTP, and SOCKET Access Types)” on
page 94 for more information.

If you are transferring a file to UNIX from the
z/OS operating environment and you want to
use either the S370V or S370VB format to
access that file, then the file must be of type
RECFM=U and BLKSIZE=32,760 before you
transfer it. If you FTP to a z/OS computer, only
one member of a z/OS PDS can be written to at
a time. If you need to write to multiple members
at the same time, a z/OS PDSE or a UNIX
System Services directory should be used.

Hadoop1 enables you to
access files on a
Hadoop Distributed
File System (HDFS)
whose location is
specified in a
configuration file.

is the pathname of the external file in an HDFS
followed by Hadoop options. For more
information, see “FILENAME Statement:
Hadoop Access Method” in SAS Global
Statements: Reference.

JMS enables SAS
programs to send
messages to and
receive messages
from any JMS API-
compliant message
service.

is accessed through the third-party Message-
Oriented Middleware vendor’s JMS provider,
which implements the JMS API specification.
The specification must be found in the
classpath. For more information, see
Application Messaging with SAS.

Note: This access method is not supported in
a DATA step that runs in CAS.

PIPE reads input from or
writes output to a
UNIX command.

is a UNIX command. For more information, see
Chapter 5, “Printing and Routing Output,” on
page 113.

FILENAME Statement: UNIX 383

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p0we15v9bcy9qon1a14alwu1hdlh.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p0we15v9bcy9qon1a14alwu1hdlh.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p0we15v9bcy9qon1a14alwu1hdlh.htm&locale=en
http://documentation.sas.com/?docsetId=appmsgdg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Device or
Access
Method Function External File

PLOTTER sends output to a
plotter.

is a device name and plotter options. For more
information, see “Printing the Contents of a
Window” on page 122, and “Using the
PRINTTO Procedure in UNIX Environments” on
page 125.

PRINTER sends output to a
printer.

is a device name and printer option. For more
information, see “Printing the Contents of a
Window” on page 122, and “Using the
PRINTTO Procedure in UNIX Environments” on
page 125.

SFTP reads from or writes
to a file from any
host computer that
you can connect to
on a network with
an SSHD server
running.

is the pathname of the external file on the
remote computer, followed by SFTP options.
For more information, see “FILENAME
Statement: SFTP Access Method” in SAS
Global Statements: Reference, and “Assigning
Filerefs to Files on Other Systems (FTP, SFTP,
and SOCKET Access Types)” on page 94.

SOCKET1 reads and writes
information over a
TCP/IP socket.

depends on whether the SAS application is a
server application or a client application. In a
client application, external-file is the name or IP
address of the host and the TCP/IP port
number to connect to, followed by any TCP/IP
options. In a server application, external-file is
the port number to create for listening, followed
by the SERVER keyword, and then any TCP/IP
options. See SAS DATA Step Statements:
Reference for more information.

TEMP associates a fileref
with an external file
stored in the Work
library.

None

TERMINAL associates a fileref
with a terminal.

is the pathname of a terminal.

UPRINTER sends output to the
default printer that
was set up through
the Printer Setup
dialog box.

None

URL1 enables you to use
the URL of a file to
access it remotely.

is the name of the file that you want to read
from or write to on a URL server. The URL
must be in one of these forms:
http://hostname/file

384 Chapter 19 / Statements under UNIX

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p0xln1fiwsr340n1xxf4mkmfxp6f.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p0xln1fiwsr340n1xxf4mkmfxp6f.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p0xln1fiwsr340n1xxf4mkmfxp6f.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Device or
Access
Method Function External File

http://hostname:portno/file

WebDAV enables you to use
WebDAV (Web
Distributed
Authoring and
Versioning) to read
from or write to a file
from any host
machine that you
can connect to on a
network with a
WebDAV server
running.

is the name of the file that you want to read
from or write to a WebDAV server. The external
file must be in one of these forms:
http://hostname/path-to-the-file
https://hostname/path-to-the-file
http://hostname:port/path-to-the-file
https://hostname:port/path-to-the-file

ZIP enables you to
access ZIP files.

is the pathname of the ZIP file that enables ZIP
zlib services to read from or write to a UNIX
machine that supports zlib. For more
information, see “FILENAME Statement: ZIP
Access Method” in SAS Global Statements:
Reference.

1 This access method is not accessible (enabled) when SAS is in a locked-down state unless your
system administrator has re-enabled it. For more information, see “SAS Processing Restrictions for
Servers in a Locked-Down State” in SAS Programmer’s Guide: Essentials.

See Also
n Chapter 5, “Printing and Routing Output,” on page 113

n Chapter 4, “Using External Files and Devices,” on page 85

FOOTNOTE Statement: UNIX
Writes up to 10 lines of text at the bottom of the procedure or DATA step output.

Valid in: Anywhere

Category: Output Control

Restriction: This statement is not supported on the CAS server.

UNIX specifics: Maximum length of footnote

See: “FOOTNOTE Statement” in SAS Global Statements: Reference

FOOTNOTE Statement: UNIX 385

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1dn0f61yfyzton1l2ngsa1clllr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1dn0f61yfyzton1l2ngsa1clllr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1dn0f61yfyzton1l2ngsa1clllr.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0wh407rnaleinn1rqyudxuzhkhu.htm&locale=en

Syntax
FOOTNOTE <n> <'text' | "text">;

Arguments
n

specifies the relative line for the footnote.

text
specifies the footnote text.

The maximum footnote length is 255 characters. If the length of the specified
footnote is greater than the value of the LINESIZE option, SAS truncates the
footnote to the line size.

%INCLUDE Macro Statement: UNIX
Brings a SAS programming statement, data lines, or both into a current SAS program.

Valid in: Anywhere

Category: Program Control

Restriction: This statement is not supported on the CAS server.

UNIX specifics: source, if a file specification is used; valid values for encoding-value

See: “%INCLUDE Statement” in SAS Global Statements: Reference

Syntax
%INCLUDE source-1 <... source-n> </<SOURCE2> <S2=length>
<ENCODING='encoding-value'> <host-options>>;

Required Argument
source

describes the location that you want to access with the %INCLUDE statement.
The three possible sources are a file specification, internal lines, or keyboard
entry. The file specification can be any of the file specification forms that are
discussed in “Accessing an External File or Device in UNIX Environments” on
page 87.

Note When using aggregate syntax, if the member name contains a leading
digit, enclose the member name in quotation marks. If the member name
contains a macro variable reference, use double quotation marks.

386 Chapter 19 / Statements under UNIX

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p1s3uhhqtscz2sn1otiatbovfn1t.htm&locale=en

Optional Arguments
ENCODING='encoding-value'

specifies the encoding to use when reading from the specified source. The value
for ENCODING= indicates that the specified source has a different encoding
from the current session encoding.

When you read data from the specified source, SAS transcodes the data from
the specified encoding to the session encoding.

For valid encoding values, see “Overview to SAS Language Elements That Use
Encoding Values” in SAS National Language Support (NLS): Reference Guide.

host-options
consists of statement options that are valid under UNIX. The following options
are available:

BLKSIZE=block-size
BLK=block-size

specifies the number of bytes that are physically read or written in an I/O
operation. The default is 8K. The maximum is 1M.

LRECL=record-length
specifies the logical record length (in bytes). In SAS 9.4, the default value for
LRECL= is 32,767. If you are using fixed length records (RECFM=F), the
default value for LRECL= is 256. The value of record-length can range from 1
to 1,048,576 (1 MB).

RECFM=record-format
specifies the record format. The following values are valid under UNIX:

D default format (same as variable).

F fixed format. That is, each record has the same length.

N binary format. The file consists of a stream of bytes with no
record boundaries.

P print format.

V variable format. Each record ends with a newline character.

S370V variable S370 record format (V).

S370VB variable block S370 record format (VB).

S370VBS variable block with spanned records S370 record format
(VBS).

The S370 values are valid with files laid out as z/OS files only. That is, files
are binary, have variable-length records, and are in EBCDIC format. If you
want to use a fixed-format z/OS file, first copy it to a variable-length, binary
z/OS file.

Details
If you specify any options in the %INCLUDE statement, remember to precede the
options list with a forward slash (/).

For information about additional options, see “%INCLUDE Statement” in SAS Global
Statements: Reference.

%INCLUDE Macro Statement: UNIX 387

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p1s3uhhqtscz2sn1otiatbovfn1t.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p1s3uhhqtscz2sn1otiatbovfn1t.htm&locale=en

See Also
“Introduction to External Files and Devices in UNIX Environments” on page 86

INFILE Statement: UNIX
Identifies an external file to read with an INPUT statement.

Valid in: DATA step

Category: File-Handling

Restrictions: This statement is not supported on the CAS server.
The INFILE statement cannot override or modify the device type that was set by a
preceding FILENAME statement.
You cannot read binary files using the INPUT statement without arguments.

UNIX specifics: Valid values for encoding-value, file-specification, and host-options

See: “INFILE Statement” in SAS DATA Step Statements: Reference

Syntax
INFILE file-specification <ENCODING='encoding-value'> <options> <host-options>;

Required Argument
file-specification

can be any of the file specification forms that are discussed in the “Accessing an
External File or Device in UNIX Environments” on page 87.

Optional Arguments
ENCODING='encoding-value'

specifies the encoding to use when reading from the external file. The value for
ENCODING= indicates that the external file has a different encoding from the
current session encoding.

When you read data from an external file, SAS transcodes the data from the
specified encoding to the session encoding.

For valid encoding values, see “Overview to SAS Language Elements That Use
Encoding Values” in SAS National Language Support (NLS): Reference Guide.

host-options
are specific to UNIX environments. These options can be any of the following:

BLKSIZE=
BLK=

specifies the number of bytes that are physically read in one I/O operation.
The default is 8K. The maximum is 1G–1.

388 Chapter 19 / Statements under UNIX

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ifsi6vh17imrn1qnzyeb177xih.htm&locale=en

TERMSTR=
controls the end-of-line delimiter in files that are formatted by UNIX. By
default, either a line feed alone or a carriage return and a line feed indicate
the end of a line. To explicitly define the end-of-line delimiter, specify one of
the following values:

CR Carriage return.

CRLF Carriage return line feed.

LF Line feed. This parameter is used to read files that are formatted
by UNIX.

LRECL=
specifies the logical record length. Its value depends on the record format in
effect (RECFM). In SAS 9.4, the default value for LRECL= is 32,767. If you
are using fixed length records (RECFM=F), the default value for LRECL= is
256. The maximum length is 1G.

n If RECFM=F, then the value for the LRECL= option determines the
number of bytes to be read as one record.

Note: When RECFM=F, LRECL= must be set to 256 when SAS 9.4 is
communicating with a previous version of SAS.

n If RECFM=N, then the value for the LRECL= option must be at least 256.

n If RECFM=V, then the value for the LRECL= option determines the
maximum record length. Records that are longer than the specified length
are truncated.

RECFM=
specifies the record format. The following values are valid under UNIX:

D default format (same as variable).

F fixed format. That is, each record has the same length.

N binary format. The file consists of a stream of bytes with no
record boundaries. If you do not specify the LRECL option,
then, by default, SAS reads 256 bytes at a time from the file.

P print format.

V variable format. Each record ends with a newline character.

S370V variable S370 record format (V).

S370VB variable block S370 record format (VB).

S370VBS variable block with spanned records S370 record format
(VBS).

Details
The ENCODING= option is valid only when the INFILE statement includes a file
specification that is not a reserved fileref. If the INFILE statement includes the
ENCODING= argument and the reserved filerefs DATALINES or DATALINES4 as a

INFILE Statement: UNIX 389

file-specification, then SAS issues an error message. The ENCODING= value in the
INFILE statement overrides the value of the ENCODING= system option.

For information about additional options, see “INFILE Statement” in SAS DATA Step
Statements: Reference.

See Also
Chapter 4, “Using External Files and Devices,” on page 85

LENGTH Statement: UNIX
Specifies the number of bytes for storing variables.

Valid in: DATA step

Categories: Information
CAS

Restriction: In CAS, numeric variables shorter than 8 bytes are treated as 8 bytes.

UNIX specifics: Valid numeric variable lengths

See: “LENGTH Statement” in SAS DATA Step Statements: Reference

Syntax
LENGTH <variable-1> <...variable-n> <$> length <DEFAULT=n>;

Required Arguments
length

can range from 3 to 8 for numeric variables under UNIX. The minimum length
that you can specify for a numeric variable depends on the floating-point format
used by your system. Because most systems use the IEEE floating-point format,
the minimum is 3 bytes.

Restriction In CAS, numeric variables shorter than 8 bytes are treated as 8
bytes.

DEFAULT=n
changes the default number of bytes that are used for storing the values of newly
created numeric variables from 8 to the value of n. Under UNIX, n can range
from 3 to 8.

390 Chapter 19 / Statements under UNIX

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en

Details
For information about additional options, see “LENGTH Statement” in SAS DATA
Step Statements: Reference.

See Also
Chapter 11, “Data Representation,” on page 263

LIBNAME Statement: UNIX
Associates or disassociates a SAS library with a libref (a shortcut name); clears one or all librefs; lists the
characteristics of a SAS library; concatenates SAS libraries; implicitly concatenates SAS catalogs; turns off
file locking.

Valid in: Anywhere

Category: Data Access

Restriction: When SAS is in a locked-down state, the LIBNAME statement is not available for files
that are not in the lockdown path list.

UNIX specifics: engine, library, and engine/host-options

See: “LIBNAME Statement” in SAS Global Statements: Reference

Syntax
LIBNAME libref <engine> 'SAS-library' <options> <engine/host-options>;

LIBNAME libref <engine> ('library-1' <, ... 'library-n'>) <options>;

LIBNAME libref ('library-1' | libref-1, ..., 'library-n' | libref-n);

LIBNAME libref CLEAR | _ALL _ CLEAR;

LIBNAME libref LIST | _ALL _ LIST;

Required Argument
libref

is any valid libref as documented in “LIBNAME Statement” in SAS Global
Statements: Reference. SAS reserves some librefs for special system libraries.
For more information about reserved librefs, see “Librefs Assigned by SAS in
UNIX Environments” on page 69.

LIBNAME Statement: UNIX 391

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p1hgqgmxm3dpqcn1d4w5za5qbz0d.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en

Optional Arguments
engine

is one of the library engines supported under UNIX. For a description of the
engines, see “Details” on page 393. If no engine name is specified, SAS
determines which engine to use as described in “Omitting Engine Names from
the LIBNAME Statement” on page 395.

'SAS-library'
differs based on the engine that you specify and based on your current working
directory. Table 19.36 on page 393 describes what each engine expects for this
argument. Specify directory pathnames as described in “Specifying Pathnames
in UNIX Environments” on page 65. You cannot create directories with the
LIBNAME statement. The directory that you specify must already exist, and you
must have permissions to it. Enclose the library name in quotation marks.
Remember that UNIX pathnames are cases sensitive.

'library-n' | libref-n
are pathnames or librefs (that have been assigned) for the libraries that you want
to access with one libref. Use these forms of the LIBNAME statement when you
want to concatenate libraries. Separate the pathnames with either commas or
blank spaces. Enclose library pathnames in quotation marks. Do not enclose
librefs in quotation marks.For more information about concatenating libraries,
see “Assigning a Libref to Several Directories (Concatenating Directories) in
UNIX” on page 66.

options
are LIBNAME statement options that are available in all operating environments.
For information about these options, see “LIBNAME Statement” in SAS Global
Statements: Reference.

engine/host-options
can be any of the options described in “Engine and Host Options” on page 395.

ALL
refers to all librefs currently defined. You can use this keyword when you are
listing or clearing librefs.

CLEAR
clears the specified libref, or, if you specify _ALL_, clears all librefs that are
currently defined. Sasuser, Sashelp, and Work remain assigned.

Note: When you clear a libref defined by an environment variable, the variable
remains defined, but it is no longer considered a libref. You can still reuse it,
either as a libref or a fileref. For more information, see “Using Environment
Variables as Librefs in UNIX Environments” on page 69.

SAS automatically clears the association between librefs and their respective
libraries at the end of your job or session. If you want to associate an existing
libref with a different SAS library during the current session, you do not have to
end the session or clear the libref. SAS automatically reassigns the libref when
you issue a LIBNAME statement for the new SAS library.

LIST
writes to the SAS log the engine, pathname, file format, access permissions, and
so on, that are associated with the specified libref. If you specify _ALL_, LIST
prints this information for all librefs that are currently defined. Librefs defined as
environment variables appear only if you have already used those librefs in a
SAS statement.

392 Chapter 19 / Statements under UNIX

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en

NOSETPERM
specifies that permission settings are not inherited from one library member to
another when the library members are opened with the same libref. If you have
two assignments to a path, one with the NOSETPERM option and the other
without, the two assignments are treated as if the paths do not match. The
LIBNAME statement with the NOSETPERM option does not inherit permission
settings.

Once the NOSETPERM option is used to turn off permission settings for a libref,
the option is in effect whenever you use the libref. There is no option that turns
off the NOSETPERM option. To turn off the NOSETPERM option, submit the
following statement:

libname libref clear;

Details

Types of Engines
There are two main types of engines:

View engines
enable SAS to read SAS views that are described by SAS/ACCESS software,
the SQL procedure, and DATA step views. The use of SAS view engines is
automatic because the name of the view engine is stored as part of the
descriptor portion of the SAS data set.

Library engines
control access at the SAS library level. Every SAS library has an associated
library engine, and the files in that library can be accessed only through that
engine. There are two types of library engines:

native engines
access SAS files created and maintained by SAS. See the following table for
a description of these engines.

interface engines
treat other vendors' files as if they were SAS files. For more information, see
the following table and “Accessing BMDP, OSIRIS, or SPSS Files in UNIX
Environments” on page 78.

Table 19.2 Engine Names and Descriptions

Engine
Type

Name
(Alias) Description SAS Library

default V9 (BASE)

V8

enables you to create new SAS
data sets and to access existing
SAS data sets that were created
with Version 8 or SAS 9. The V8
and V9 engines are identical.
This engine enables Read
access to data files that were
created with some earlier
releases of SAS, but this engine

is the pathname of
the directory
containing the library.

LIBNAME Statement: UNIX 393

Engine
Type

Name
(Alias) Description SAS Library

is the only one that supports SAS
9 catalogs. This engine allows for
data set indexing and
compression, and is also
documented in SAS
Programmer’s Guide: Essentials.

compatibility V6 accesses any data file that was
created by Releases 6.09
through 6.12. This engine is
read-only.

is the pathname of
the directory
containing the library.

servers SPD
Server

enables communication between
a client session and a data
server. You must have a license
for the SAS Scalable
Performance Data Server on
your client computer to use this
engine. See the SAS Scalable
Performance Data Server: User's
Guide for more information.

is the logical
LIBNAME domain
name for a SAS
Scalable
Performance Data
Server (SPD Server)
library on the server.
The name server
resolves the domain
name into the
physical path for the
library.

MDDB enables communication between
a client session and an MDDB
server. SAS/MDDB Server must
be licensed on your client
computer or on your server to
use this engine.

transport XPORT accesses transport data sets.
This engine creates computer-
independent SAS transport files
that can be used under all hosts
running Release 6.06 or later of
SAS. This engine is documented
in Moving and Accessing SAS
Files.

is the pathname of
either a sequential
device or a disk file.

XML XML generates (writes) and processes
(reads) any XML document,
which is an application- and
computer-independent file.

is the pathname of
the XML document.

interface BMDP provides Read-Only access to
BMDP files. This engine is
available only on AIX, HP-UX,
and Solaris.

is the pathname of
the data file.

394 Chapter 19 / Statements under UNIX

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Engine
Type

Name
(Alias) Description SAS Library

Note: Beginning in SAS 9.4M8,
the HP-UX platform is no longer
supported.

OSIRIS provides Read-Only access to
OSIRIS files.

is the pathname of
the data file.

SPSS provides Read-Only access to
SPSS files.

is the pathname of
the data file.

Omitting Engine Names from the LIBNAME
Statement
It is always more efficient to specify the engine name than have SAS determine the
correct engine. However, if you omit an engine name in the LIBNAME statement or
if you define an environment variable to serve as a libref, SAS determines the
appropriate engine.

If you have specified the ENGINE= system option, SAS uses the engine name that
you specified. For a discussion of the ENGINE= system option, see “ENGINE=
System Option: UNIX” on page 430.

Note: The ENGINE= system option specifies the default engine for libraries on disk
only.

If you did not specify the ENGINE= system option, SAS looks at the extensions of
the files in the given directory and uses these rules to determine an engine:

n If all the SAS data sets in the library were created by the same engine, the libref
is assigned using that engine.

Note: If the engine used to create the data sets is not the same as the default
engine, then you are not able to create a view or stored program. For more
information, see “Using Multiple Engines for a Library in UNIX Environments” on
page 68.

n If there are no SAS data sets in the given directory, the libref is assigned using
the default engine.

n If there are SAS data sets from more than one engine, the system issues a
message about finding mixed engine types and assigns the libref using the
default engine.

Engine and Host Options
The LIBNAME statement accepts the following options:

LIBNAME Statement: UNIX 395

ENABLEDIRECTIO
specifies that direct I/O can be available for all files that are opened in the library
that is identified in the LIBNAME statement.

Note: ENABLEDIRECTIO cannot be used with the Work directory.

A libref that is assigned to a directory with the ENABLEDIRECTIO option does
not match another libref that is assigned to the same directory without the
ENABLEDIRECTIO. The two librefs can point to the same directory, but the files
that are opened using one libref are read from and written to using direct I/O.
Files that are opened using the other libref are read from and written to using the
regular disk I/O calls.

You must use the ENABLEDIRECTIO option with the USEDIRECTIO= option to
turn on direct I/O for the file or files whose libref is listed in the LIBNAME
statement. The following example uses the ENABLEDIRECTIO and
USEDIRECTIO= LIBNAME options. In this case, all files that are referenced with
libref test are opened for direct I/O:

LIBNAME test '.' ENABLEDIRECTIO USEDIRECTIO=yes;

TIP The following example uses the ENABLEDIRECTIO LIBNAME
option to enable files that are associated with the libref test to be opened
for direct I/O. The USEDIRECTIO= data set option opens test.file1 for
direct I/O. test.file2 is not opened for direct I/O, although it is enabled for
direct I/O.

LIBNAME test'.'ENABLEDIRECTIO;
data test.file1(USEDIRECTIO=yes);
 ... more SAS statements ...
run;
data test.file2;
 ... more SAS statements ...
run;

FILELOCKS=NONE | FAIL | CONTINUE
specifies whether file locking is turned on or off for the files that are opened
under the libref in the LIBNAME statement. The FILELOCKS statement option
works like the FILELOCKS system option, except that it applies only to the files
that are associated with the libref. The following values for the FILELOCKS
statement option are available:

NONE
turns file locking off. NONE specifies that SAS attempts to open the file
without checking for an existing lock on the file. NONE does not place an
operating system lock on the file. These files are not protected from shared
Update access.

FAIL
turns file locking on. FAIL specifies that SAS attempts to place an operating
system lock on the file. Access to the file is denied if the file is already locked,
or if it cannot be locked.

396 Chapter 19 / Statements under UNIX

CONTINUE
turns file locking on. CONTINUE specifies that SAS attempts to place an
operating system lock on the file. If the file is already locked by someone
else, an attempt to open it fails. If the file cannot be locked for some other
reason, the file is opened and a warning message is sent to the log. For
example, you cannot lock a file if the file system does not support locking.

The FILELOCKS option in the LIBNAME statement applies to most of the
SAS I/O files, such as data sets and catalogs, that are opened under the
libref that is listed in the LIBNAME statement.

For the FILELOCKS statement option, RESET is not a valid value as it is
when you use the FILELOCKS system option.

Use the FILELOCKS system option instead of the FILELOCKS statement
option to set the locking behavior for your files. (The FILELOCKS statement
option will be deprecated in a future release of SAS.) Note that the
FILELOCK option in the LIBNAME statement overrides the LIBNAME system
option. For more information, see the FILELOCKS system option in the UNIX
operating environment. You can also specify any of the options supported by
the Scalable Performance Data Server. See the Scalable Performance Data
Server: User's Guide at the SAS Technical Support site for a description of
these options.

FILELOCKWAIT=n
specifies the number of seconds SAS waits for a locked file to become available
to another process.

If the locked file is released before the number of seconds specified by n, then
SAS locks the file for the current process and continues. If the file is still locked
when the number of seconds has been reached, then SAS writes a locked-file
error to the log and the DATA step fails.

The valid values range from 0 to 600. The default value is 0.

Specifying the FILELOCKWAIT= option can have an adverse effect on one or
more SAS/SHARE server and client sessions that are waiting for the release of a
SAS file that is locked by another process. One or more wait conditions could
lead to failed processes for a SAS/SHARE server and clients.

To prevent the possibility of a failed SAS/SHARE process, you can set
FILELOCKWAIT=0, which cancels the amount of time that a SAS/SHARE server
and clients would wait for the release of a locked file. Canceling the wait time
would prevent a failed process. For more information, see the
FILELOCKWAITMAX= system option. See also the FILELOCKWAITMAX=
system option in the section about predefining a server library by using the
LIBNAME statement in the SAS/SHARE User’s Guide.

TRANSFERSIZE=nK | nM
specifies the size of a large block of data that is read from a file that is opened.

n
specifies an integer value.

K
specifies the size of the block in kilobytes.

M
specifies the size of the block in megabytes.

To use the TRANSFERSIZE option, you must have files open for direct I/O.
That is, both the ENABLEDIRECTIO and USEDIRECTIO= options must be in

LIBNAME Statement: UNIX 397

http://support.sas.com

effect. If you use TRANSFERSIZE without the ENABLEDIRECTIO and
USEDIRECTIO= options, the option is accepted, but it has no effect.

In the following example, 128k blocks of data are read from the test.file1
because this file is opened for direct I/O. test.file2 is not open for direct I/O,
and the TRANSFERSIZE option has no effect on this file:

LIBNAME test'.'ENABLEDIRECTIO TRANSFERSIZE=128k;
data test.file1(USEDIRECTIO=yes);
 ... more SAS statements ...
run;
data test.file2;
 ... more SAS statements ...
run;

In the following example, all the files that are listed in the DATA statements
read 128k blocks of data. This is because all the files are affected by the
ENABLEDIRECTIO, USEDIRECTIO=, and TRANSFERSIZE options:

LIBNAME test'.'ENABLEDIRECTIO USEDIRECTIO=yes TRANSFERSIZE=128k;
data test.file1;
 ... more SAS statements ...
run;
data test.file2;
 ... more SAS statements ...
run;
data test.file3;
 ... more SAS statements ...
run;

USEDIRECTIO= YES | NO
if used with the ENABLEDIRECTIO statement option, turns on or turns off direct
file I/O for all the files associated with the libref listed in the LIBNAME statement.
You must use a permanent library, rather than a Work library, with
USEDIRECTIO. Do not use USEDIRECTIO with a metadata-bound library.

Note: USEDIRECTIO cannot be used with the Work directory.

For more information, see “Engine and Host Options” on page 395.

Requirement
Use USEDIRECTIO= with the ENABLEDIRECTIO statement option to turn
on direct file I/O.

See Also
System Options:

n “FILELOCKS System Option: UNIX” on page 431

Other References:

n “Introduction to SAS Files, Libraries, and Engines in UNIX Environments” on
page 45

398 Chapter 19 / Statements under UNIX

SYSTASK Statement: UNIX
Executes asynchronous tasks.

Valid in: Anywhere

Category: Operating Environment

Restriction: This statement is not supported on the CAS server.

UNIX specifics: All

Syntax
SYSTASK COMMAND "operating-environment-command" <WAIT | NOWAIT>
<TASKNAME=taskname> <MNAME=name-variable> <STATUS=status-variable>
<SHELL="shell-command"> <CLEANUP>;

SYSTASK LIST<taskname> <STATE> <STATVAR>;

SYSTASK KILL taskname <taskname...>;

Required Arguments
COMMAND

executes the operating–environment-command.

LIST
lists either a specific active task or all of the active tasks in the system. A task is
active if it is running or if it has completed and has not been waited for using the
WAITFOR statement.

KILL
forces the termination of the specified tasks.

operating-environment-command
specifies the name of a UNIX command (including any command-specific
options) or the name of an X window system application. Enclose the command
in either single or double quotation marks. If the command-specific options
require quotation marks, repeat them for each option. For example:

SYSTASK COMMAND "xdialog -m ""There was an error."" -t ""Error"" -o";

Note: If the command name is a shell alias, or if you use the shell special
characters tilde (~) and asterisk (*) in a pathname within a command, you need
to specify the SHELL option so that the shell processes the alias or special
characters:

SYSTASK COMMAND "mv ~usr/file.txt /tmp/file.txt" shell;

In this example, by using the SHELL option, the ~usr path is expanded on
execution and is not executed directly.

SYSTASK Statement: UNIX 399

Note: The operating-environment-command that you specify cannot require
input from the keyboard.

TIP If using a shell alias results in an error even though the SHELL
option is used, then the shell is not processing your shell initialization files.
Use the actual SHELL command instead of the SHELL alias.

Optional Arguments
WAIT | NOWAIT

determines whether SYSTASK COMMAND suspends execution of the current
SAS session until the task has completed. NOWAIT is the default. For tasks that
start with the NOWAIT option, you can use the WAITFOR statement when
necessary to suspend execution of the SAS session until the task has finished.
For more information, see “WAITFOR Statement: UNIX” on page 403.

TASKNAME=taskname
specifies a name that identifies the task. Task names must be unique among all
active tasks. A task is active if it is running or if it has completed and has not
been waited for using the WAITFOR statement. Duplicate task names generate
an error in the SAS log. If you do not specify a task name, SYSTASK
automatically generates a name. If the task name contains a blank character,
enclose it in quotation marks.

Task names cannot be reused, even if the task has completed, unless you either
issue the WAITFOR statement for the task or you specify the CLEANUP option.

MNAME=name-variable
specifies a macro variable in which you want SYSTASK to store the task name
that it automatically generated for the task. If you specify both the TASKNAME
option and the MNAME option, SYSTASK copies the name that you specified
with TASKNAME into the variable that you specified with MNAME.

STATUS=status-variable
specifies a macro variable in which you want SYSTASK to store the status of the
task. Status variable names must be unique among all active tasks.

SHELL="shell-command"
specifies that the operating-environment-command should be executed with the
operating system shell command. The shell expands shell special characters
that are contained in the operating-environment-command. If you specify a shell-
command, SYSTASK uses the shell command that you specify to invoke the
shell. Otherwise, SYSTASK uses the default shell. Enclose the shell command in
quotation marks.

Note: The SHELL option assumes that the SHELL command that you specify
uses the -i option to pass statements. Usually, your shell command is sh, csh,
ksh, or bash.

CLEANUP
specifies that the task should be removed from the LISTTASK output when the
task completes. Once the task is removed, you can reuse the task name without
issuing the WAITFOR statement.

400 Chapter 19 / Statements under UNIX

If you have long-running jobs that use the SYSTASK command multiple times,
use the WAITFOR statement or the CLEANUP option in the SYSTASK
command to clear the memory. The WAITFOR statement releases memory by
removing the information for all completed processes that were started by the
SYSTASK command. The CLEANUP option clears memory when a specific job
completes, and releases memory for further use. If you use the WAITFOR
statement after a job has completed, the statement is ineffective because the job
has already been cleaned up by the CLEANUP option.

Details
The SYSTASK statement enables you to execute host-specific commands from
within your SAS session or application. Unlike the X statement, the SYSTASK
statement runs these commands as asynchronous tasks, which means that these
tasks execute independently of all other tasks that are currently running.
Asynchronous tasks run in the background, so you can perform additional tasks
while the asynchronous task is still running.

For example, to start a new shell and execute the UNIX cp command in that shell,
you might use this statement:

systask command "cp /tmp/sas* ~/archive/" taskname="copyjob1"
 status=copysts1 shell;

The return code from the cp command is saved in the macro variable COPYSTS1.

The output from the command is displayed in the SAS log.

Because the syntax between UNIX and a PC can be different, converting PC SAS
jobs to run on UNIX might result in an error in the conversion process. For example,
entering the following command results in an error:

systask command "md directory-name" taskname="mytask";

An error occurs because md is a “make directory” command on a PC, but has no
meaning in UNIX. In the conversion process, md becomes mkdir. You must use the
SHELL option in the SYSTASK statement because mkdir is built into the UNIX
shell, and it is not a separate command as it is on a PC.

SAS writes the error message to the log.

Note: Program steps that follow the SYSTASK statements in SAS applications
usually depend on the successful execution of the SYSTASK statements. Therefore,
syntax errors in some SYSTASK statements can cause your SAS application to end
abnormally.

There are two types of asynchronous processes that can be started from SAS:

Task
All tasks started with SYSTASK COMMAND are of type Task. For these tasks, if
you do not specify STATVAR or STATE, then SYSTASK LIST displays the task
name, type, and state, and the name of the status macro variable. You can use
SYSTASK KILL to kill only tasks of type Task.

SAS/CONNECT Process
Tasks started from SAS/CONNECT with the SIGNON statement or command
and RSUBMIT statement are of type SAS/CONNECT Process. To display
SAS/CONNECT processes, use the LISTTASK statement to displays the task

SYSTASK Statement: UNIX 401

name, type, and state. To terminate a SAS/CONNECT process, use the
KILLTASK statement. For information about SAS/CONNECT processes, see the
SAS/CONNECT User’s Guide.

Note: The preferred method for displaying any task (not just SAS/CONNECT
processes) is to use the LISTTASK statement instead of SYSTASK LIST. The
preferred method for ending a task is using the KILLTASK statement instead of
SYSTASK KILL.

The SYSRC macro variable contains the return code for the SYSTASK statement.
The status variable that you specify with the STATUS option contains the return
code of the process started with SYSTASK COMMAND. To ensure that a task
executes successfully, you should monitor both the status of the SYSTASK
statement and the status of the process that is started by the SYSTASK statement.

If a SYSTASK statement cannot execute successfully, the SYSRC macro variable
contains a nonzero value. For example, there might be insufficient resources to
complete a task or the SYSTASK statement might contain syntax errors. With the
SYSTASK KILL statement, if one or more of the processes cannot be killed, SYSRC
is set to a nonzero value.

When a task is started, its status variable is set to NULL. You can use the status
variables for each task to determine which tasks failed to complete. Any task whose
status variable is NULL did not complete execution. If a task terminates abnormally,
then its status variable is set to –1. For more information about the status variables,
see “WAITFOR Statement: UNIX” on page 403.

Unlike the X statement, you cannot use the SYSTASK statement to start a new
interactive session.

See Also
Statements:

n “WAITFOR Statement: UNIX” on page 403

n “X Statement: UNIX” on page 405

Other References:

n “Executing Operating System Commands from Your SAS Session” on page 18

TITLE Statement: UNIX
Specifies title lines for SAS output.

Valid in: Anywhere

Category: Output Control

Restriction: This statement is not supported on the CAS server.

UNIX specifics: Maximum length of title

402 Chapter 19 / Statements under UNIX

See: “TITLE Statement” in SAS Global Statements: Reference

Syntax
TITLE <n> <'text' | "text">;

Arguments
n

specifies the relative line for the title.

text
specifies the title text.

In interactive modes, the maximum title length is 254 characters. Otherwise, the
maximum length is 200 characters. If the length of the specified title is greater
than the value of the LINESIZE option, the title is truncated to the line size.

WAITFOR Statement: UNIX
Suspends execution of the current SAS session until the specified tasks finish executing.

Valid in: Anywhere

Category: Operating Environment

Restriction: This statement is not supported on the CAS server.

UNIX specifics: All

Syntax
WAITFOR <_ANY_ | _ALL_> taskname <taskname...> <TIMEOUT=seconds>;

Required Argument
taskname

specifies the name of the tasks that you want to wait for. For information about
task names, see “SYSTASK Statement: UNIX” on page 399. The task names
that you specify must match exactly the task names assigned through the
SYSTASK COMMAND statement. You cannot use wildcards to specify task
names.

WAITFOR Statement: UNIX 403

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p10gcmrmf83iaxn1ilrx4pra969n.htm&locale=en

Optional Arguments
ANY | _ALL_

suspends execution of the current SAS session until either one or all of the
specified tasks finishes executing. The default setting is _ANY_, which means
that as soon as one of the specified tasks completes executing, the WAITFOR
statement then finishes executing.

TIMEOUT=seconds
specifies the maximum number of seconds that WAITFOR should suspend the
current SAS session. If you do not specify the TIMEOUT option, WAITFOR
suspends execution of the SAS session indefinitely.

Details
The WAITFOR statement suspends execution of the current SAS session until the
specified tasks finish executing or until the TIMEOUT= interval has elapsed. If the
specified task was started with the WAIT option, then the WAITFOR statement
ignores that task. For a description of the WAIT option, see “SYSTASK Statement:
UNIX” on page 399.

For example, the following statements start three different X client programs and
waits for them to complete:

systask command "xv" taskname=pgm1;
systask command "xterm" taskname=pgm2;
systask command "xcalc" taskname=pgm3;
waitfor _all_ pgm1 pgm2 pgm3;

The WAITFOR statement can be used to execute multiple concurrent SAS
sessions. The following statements start three different SAS jobs and suspend the
execution of the current SAS session until those three jobs have finished executing:

systask command "sas myprog1.sas" taskname=sas1;
systask command "sas myprog2.sas" taskname=sas2;
systask command "sas myprog3.sas" taskname=sas3;
waitfor _all_ sas1 sas2 sas3;

Note: In this method, SAS terminates after each command, which can result in
reduced performance. SAS/CONNECT can also be used for executing parallel SAS
sessions. See the SAS/CONNECT User’s Guide for more information.

If you have long-running jobs that use the SYSTASK command multiple times, use
the WAITFOR statement or the CLEANUP option in the SYSTASK command to
clear the memory. The WAITFOR statement releases memory by removing the
information for all completed processes that were started by the SYSTASK
command. The CLEANUP option clears memory when a specific job completes, and
releases memory for further use. If you use the WAITFOR statement after a job has
completed, the statement is ineffective because the job has already been cleaned
up by the CLEANUP option.

The SYSRC macro variable contains the return code for the WAITFOR statement. If
a WAITFOR statement cannot execute successfully, the SYSRC macro variable
contains a nonzero value. For example, the WAITFOR statement might contain
syntax errors. If the number of seconds specified with the TIMEOUT option elapses,

404 Chapter 19 / Statements under UNIX

then the WAITFOR statement finishes executing, and SYSRC is set to a nonzero
value if one of the following occurs:

n you specify a single task that does not finish executing

n you specify more than one task and the _ANY_ option (which is the default
setting), but none of the tasks finishes executing

n you specify more than one task and the _ALL_ option, and any one of the tasks
does not finish executing

Any task whose status variable is still NULL after the WAITFOR statement has
executed did not complete execution. For a description of status variables for
individual tasks, see “SYSTASK Statement: UNIX” on page 399.

See Also
Statements:

n “SYSTASK Statement: UNIX” on page 399

n “X Statement: UNIX” on page 405

Other References:

n SAS/CONNECT User’s Guide

n “Executing Operating System Commands from Your SAS Session” on page 18

X Statement: UNIX
Issues an operating environment command from within a SAS session.

Valid in: Anywhere

Category: Operating Environment

Restriction: This statement is not supported on the CAS server.

UNIX specifics: Valid operating system command

See: “X Statement” in SAS Global Statements: Reference

Syntax
X <'>operating-system-command<'>;

X Statement: UNIX 405

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p11ba12uypvfazn1jk7acffuzlbl.htm&locale=en

Required Argument
operating-system-command

specifies the UNIX command. If you specify only one UNIX command, you do
not need to enclose it in quotation marks. Also, if you are running SAS from the
Korn shell, you cannot use aliases.

Details
The X statement issues a UNIX command from within a SAS session. SAS
executes the X statement immediately.

Neither the X statement nor the %SYSEXEC macro program statement is intended
for use during the execution of a DATA step. The CALL SYSTEM routine, however,
can be executed within a DATA step. For an example, see “CALL SYSTEM Routine:
UNIX” on page 328.

Note: The X statement is not supported without arguments under the X Window
System.

See Also
“Executing Operating System Commands from Your SAS Session” on page 18

406 Chapter 19 / Statements under UNIX

20
System Options under UNIX

SAS System Options under UNIX . 409
Behavior or Syntax That Is Specific to UNIX Environments . 409
When You Use Parentheses in a Command Line . 409
When the Value of a System Option Includes a Space . 409

Determining How a SAS System Option Was Set . 410

Restricted System Options . 411

Dictionary . 412
ALIGNSASIOFILES System Option: UNIX . 412
ALTLOG System Option: UNIX . 413
ALTPRINT System Option: UNIX . 414
APPEND System Option: UNIX . 415
AUTOEXEC System Option: UNIX . 417
AUTOSAVELOC System Option: UNIX . 419
BUFNO System Option: UNIX . 420
BUFSIZE System Option: UNIX . 421
CATCACHE System Option: UNIX . 422
CLEANUP System Option: UNIX . 423
CONFIG System Option: UNIX . 425
DEVICE System Option: UNIX . 426
ECHO System Option: UNIX . 427
EDITCMD System Option: UNIX . 428
EMAILSYS System Option: UNIX . 429
ENGINE= System Option: UNIX . 430
FILELOCKS System Option: UNIX . 431
FILELOCKWAIT= System Option: UNIX . 434
FILELOCKWAITMAX= System Option: UNIX . 435
FMTSEARCH System Option: UNIX . 436
FONTSLOC System Option: UNIX . 438
FULLSTIMER System Option: UNIX . 438
HELPHOST System Option: UNIX . 441
HELPINDEX System Option: UNIX . 443
HELPLOC System Option: UNIX . 444
HELPTOC System Option: UNIX . 445
HOSTINFOLONG System Option: UNIX . 447
INSERT System Option: UNIX . 448
JREOPTIONS System Option: UNIX . 449

407

LINESIZE System Option: UNIX . 450
LOG System Option: UNIX . 451
LPTYPE System Option: UNIX . 453
MAPS System Option: UNIX . 454
MAXMEMQUERY System Option: UNIX . 455
MEMSIZE System Option: UNIX . 457
MSG System Option: UNIX . 459
MSGCASE System Option: UNIX . 460
MSYMTABMAX System Option: UNIX . 461
MVARSIZE System Option: UNIX . 462
NEWS System Option: UNIX . 463
OBS= System Option: UNIX . 464
OPLIST System Option: UNIX . 465
PAGESIZE= System Option: UNIX . 467
PATH System Option: UNIX . 468
PRINT System Option: UNIX . 469
PRINTCMD System Option: UNIX . 470
REALMEMSIZE System Option: UNIX . 471
RSASUSER System Option: UNIX . 473
RTRACE System Option: UNIX . 474
RTRACELOC System Option: UNIX . 475
SASAUTOS System Option: UNIX . 477
SASHELP System Option: UNIX . 479
SASSCRIPT System Option: UNIX . 480
SASUSER System Option: UNIX . 481
SET System Option: UNIX . 482
SORTANOM System Option: UNIX . 483
SORTCUT System Option: UNIX . 484
SORTCUTP System Option: UNIX . 485
SORTDEV System Option: UNIX . 487
SORTNAME System Option: UNIX . 488
SORTPARM System Option: UNIX . 488
SORTPGM System Option: UNIX . 489
SORTSIZE System Option: UNIX . 490
STDIO System Option: UNIX . 492
STIMEFMT System Option: UNIX . 493
STIMER System Option: UNIX . 497
SYSIN System Option: UNIX . 499
SYSPRINT System Option: UNIX . 500
USER System Option: UNIX . 501
VERBOSE System Option: UNIX . 502
WORK System Option: UNIX . 503
WORKINIT System Option: UNIX . 505
WORKPERMS System Option: UNIX . 507
XCMD System Option: UNIX . 507

408 Chapter 20 / System Options under UNIX

SAS System Options under UNIX

Behavior or Syntax That Is Specific to UNIX
Environments

This section describes SAS system options that have behavior or syntax that is
specific to UNIX environments. Each system option description includes a brief
"UNIX specifics" section that explains which aspect of the system option is specific
to UNIX. If the information under "UNIX specifics" is "all," then the system option is
described only in this documentation.

Additional information about most system options is located in SAS System Options:
Reference. However, some system options are specific to topics that are covered in
other books. For example, system options that are related to security are
documented in Encryption in SAS. For more information, see “SAS System Options
Documented in Other SAS Publications” in SAS System Options: Reference.

When You Use Parentheses in a Command Line
On a command line, if arguments are enclosed in quotation marks, then you must
use a backslash before the open parenthesis and close parenthesis. This enables
UNIX to interpret the arguments correctly.

When the Value of a System Option Includes a
Space

If the value of a system option includes a space, you must enclose the value in
quotation marks on the command line or in a config file. The following examples
show the correct syntax:

-bufsize='3 k'

-bottommargin='2 in'

If the value of a system option does not include a space, you do not need to enclose
the value in quotation marks:

-bufsize=3k

-bottommargin=2in

SAS System Options under UNIX 409

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0aujuqjldgs7wn16xor1xqv9dld.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0aujuqjldgs7wn16xor1xqv9dld.htm&locale=en

Determining How a SAS System Option
Was Set

Interactions between SAS options can lead to unintended consequences. For
example, if you set both the FULLSTIMER system option and the NONOTES
system option, the result is that no FULLSTIMER information is written to the SAS
log. Because it is possible to set one option in a configuration file and the other
option in an OPTIONS statement, the reason for such a problem might not be
readily apparent.

When you issue a PROC OPTIONS statement with the VALUE option to query the
value of an option, the value of the option appears in the SAS log. The method or
location that was used to set that option also appears in the log. If the option was
set in a configuration file, then the Config filename field lists the name of the file.
For example, the following output is displayed in the SAS log when you query the
value of the MEMSIZE system option:

proc options option=memsize value;
run;

Option Value Information for SAS Option MEMSIZE
 Value: 100663296
 Scope: SAS Session
 How option value set: Config file
 Config filename: /usr/local/SAS/SASFoundation/9.4/sasv9_local.cfg

You can issue a PROC OPTIONS statement to query the value of the WORK
system option. The WORK value can be set from a server configuration file, an
environment setting, or a command line setting. The WORK path is generated by
combining the initial server-specified WORK path with a host-specific value and an
executive suffix. The following example shows the information that is written to the
SAS log:

proc options option=WORK value;
run;

Option Value Information for SAS Option WORK
 Value: /sastemp/SAS_workA1234567_bcd89
 Scope: SAS Session
 How option value set: Config file
 Config filename: /usr/local/SAS/SASFoundation/9.4/sasv9_local.cfg

410 Chapter 20 / System Options under UNIX

Restricted System Options
Restricted options are system options whose values are determined by the site
administrator. If they are restricted by your site administrator, then you cannot
override them. The site administrator can create a restricted options table that
specifies the option values that are restricted when SAS starts. Any attempt to
modify a system option that is listed in the restricted options table results in a
message to the SAS log. The message indicates that the system option has been
restricted by the site administrator and cannot be updated.

The following system options can be restricted by a site administrator in a UNIX
environment:

AUTHPROVIDERDOMAIN OPLIST
AUTOSAVELOC PATH
BUFNO PRIMARYPROVIDERDOMAIN=
BUFSIZE PRINTCMD
CATCACHE REALMEMSIZE
CLEANUP RSASUSER
DEVICE RTRACE
ECHO RTRACELOC
EDITCMD SASAUTOS
EMAILSYS SASHELP
FILELOCKS SASSCRIPT
FILELOCKWAIT= SET
FMTSEARCH SORTANOM
FONTSLOC SORTCUT
FULLSTIMER SORTCUTP
HELPHOST SORTDEV
HELPINDEX SORTNAME
HELPLOC SORTPARM
HELPTOC SORTPGM
HOSTINFOLONG SORTSIZE
JREOPTIONS STDIO
LPTYPE STIMEFMT
MAPS STIMER
MAXMEMQUERY SYSPRINT
MEMSIZE VERBOSE
MSG WORK
MSGCASE WORKINIT
NEWS WORKPERMS
OBS= XCMD

For more information, see these resources:

Restricted System Options 411

n “Restricted Options” in SAS System Options: Reference

n Chapter 2, “Restricted Options” in Configuration Guide for SAS® 9.4 Foundation
for UNIX Environments

Dictionary

ALIGNSASIOFILES System Option: UNIX
Aligns the pages of data in a SAS data set.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: Input Control: Data Processing

PROC
OPTIONS
GROUP=

PERFORMANCE
SASFILES

Default: ALIGNSASIOFILES

UNIX specifics: all

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
–ALIGNSASIOFILES | –NOALIGNSASIOFILES

Without Arguments
There are no required arguments.

Details
A SAS data set consists of a header followed by one or more pages of data.
Normally, the header size is 8K in the UNIX operating environment.
ALIGNSASIOFILES forces the header to be the same size as the data page,
enabling the pages to align to boundaries that allow for more efficient I/O.

412 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://support.sas.com/documentation/installcenter/en/ikfdtnunxcg/66380/PDF/default/config.pdf
http://support.sas.com/documentation/installcenter/en/ikfdtnunxcg/66380/PDF/default/config.pdf
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

ALTLOG System Option: UNIX
Specifies the destination for a copy of the SAS log when SAS is running from the command line.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Not included

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: NOALTLOG

UNIX specifics: all

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
–ALTLOG file-specification | –NOALTLOG

Required Arguments
-ALTLOG file-specification

specifies the location where an alternate SAS log is to be written. The
file-specification argument can be any valid UNIX path to a directory, a filename,
or an environment variable that is associated with a path. If you specify only the
path to a directory, the SAS log is placed in a file in the specified directory. The
name of the file is filename.log, where filename is the name of your SAS job. If
you are running SAS interactively and specify only the path to a directory, the log
is written to a file named sas.log within that path.

-NOALTLOG
specifies that the SAS log is not copied.

Details

ALTLOG Basics
The ALTLOG system option specifies a destination to which a copy of the SAS log is
written. All messages that are written to the SAS log are also written to the location
specified in file-specification. You can use this option to capture log output for
printing.

ALTLOG System Option: UNIX 413

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Note: You can use the LOG option in the PRINTTO procedure to redirect any
portion of the log to an external file. The code for PROC PRINTTO does not appear
in the SAS log for the current session, but it does appear in the SAS log that you
created with the ALTLOG system option.

Note: When SAS is started with the OBJECTSERVER and NOTERMINAL system
options and no log is specified, SAS discards all log and alternate log messages.

Using Directives with ALTLOG
Using directives in the ALTLOG system option enables you to control when log
copies are open and closed, and how they are named, based on real-time events
such as time, month, and day of week. For a list of directives, see “LOGPARM=
System Option” in SAS System Options: Reference.

See Also
Options:

n “ALTPRINT System Option: UNIX” on page 414

n Chapter 30, “PRINTTO Procedure,” on page 547

Other References:

n “The SAS Log” in SAS Programmer’s Guide: Essentials

n “Using SAS System Options to Route Output” on page 127

ALTPRINT System Option: UNIX
Specifies the destination for the output files from SAS procedures when SAS is running from the command
line.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Not included

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: NOALTPRINT

UNIX specifics: all

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

414 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p119kau8rt2ebgn1bzaipafu6jp3.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Syntax
-ALTPRINT file-specification | -NOALTPRINT

Required Arguments
-ALTPRINT file-specification

specifies the location for copies of procedure output to be written. The
file-specification argument can be any valid UNIX path to a directory, a filename,
or an environment variable that is associated with a path. If you specify only the
path to a directory, the copy is placed in a file in the specified directory. The
name of the file is filename.lst, where filename is the name of your SAS job. If
you are running SAS interactively and specify only the path to a directory, the
output is written to a file named sas.lst.

-NOALTPRINT
causes any previous ALTPRINT specifications to be ignored.

Details
The ALTPRINT system option specifies a destination to which copies of the SAS
procedure output file are written. All messages that are written to the SAS procedure
output file are also written to the location specified in file-specification. You can use
this option to capture the procedure output for printing.

See Also
System Options:

n “ALTLOG System Option: UNIX” on page 413

Other References:

n “Using SAS System Options to Route Output” on page 127

APPEND System Option: UNIX
Used when SAS starts; appends the specified value to the existing value at the end of the specified system
option.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable, SAS Viya: Configuration file, SAS
invocation, OPTIONS statement, SASV9_OPTIONS environment variable

Category: Environment Control: Files

APPEND System Option: UNIX 415

PROC
OPTIONS
GROUP=

ENVFILES

Default: None

UNIX specifics: Configuration file, SAS command syntax

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “APPEND= System Option” in SAS System Options: Reference

Syntax
-APPEND system-option new-option-value

Required Arguments
system-option

can be AUTOEXEC, CMPLIB, FMTSEARCH, HELPLOC, MAPS, MAPSGFK,
MSG, SASAUTOS, SASHELP, SASSCRIPT, or SET.

new-option-value
is the new value that you want to append to the current value of system-option.
This value can be any value that you could specify for system-option if system-
option is set using the OPTIONS statement.

Restriction The value for the FMTSEARCH system option applies only to
format catalogs. It does not apply to CAS format libraries. For
information about CAS format library search order, see “CAS
Statement” in SAS Cloud Analytic Services: User’s Guide.

Details
By default, if you specify the AUTOEXEC, CMPLIB, FMTSEARCH, HELPLOC,
MAPS, MSG, SASAUTOS, SASHELP, SASSCRIPT, or SET system option more
than one time, the last value that is specified is the value that SAS uses. If you want
to add additional pathnames to the pathnames already specified by one of these
options, you must use the APPEND system option to add the additional pathnames.
For example, if you enter the following SAS command, the only location in which
SAS looks for help files is /apps/help. The output of PROC OPTIONS shows
only /apps/help:

sas -helploc /sas/help -helploc /apps/help

If you want SAS to look first in /sas/help, and then in /apps/help, use the
APPEND option.

sas -helploc /sas/help -append helploc /apps/help

For the value of the HELPLOC option, PROC OPTIONS now shows the following:

('/sas/help' '/apps/help')

416 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n0z3r80fjqpobvn1lvegno9gefni.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n0z3r80fjqpobvn1lvegno9gefni.htm&locale=en

See Also
System Options:

n “APPEND= System Option” in SAS System Options: Reference

n “INSERT System Option: UNIX” on page 448

AUTOEXEC System Option: UNIX
Specifies the location of the SAS autoexec file.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: autoexec.sas (see “Details” on page 418)

UNIX specifics: all

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-AUTOEXEC file-specification | -NOAUTOEXEC

-AUTOEXEC \(file-specification-1 <...file-specification-n>\)

Required Arguments
file-specification

specifies the SAS autoexec file to be used instead of the default autoexec.sas
file. The file-specification argument can be a valid filename or an environment
variable that is associated with a pathname. For more information, see
“Customizing Your SAS Session By Using Configuration and Autoexec Files” on
page 26.

-NOAUTOEXEC
specifies that SAS is not to process any autoexec files.

AUTOEXEC System Option: UNIX 417

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Details

The Autoexec File
The AUTOEXEC system option specifies the autoexec file. The autoexec file
contains SAS statements that are executed automatically when you invoke SAS or
when you start another SAS process. The autoexec file can contain any SAS
statements. For example, your autoexec file can contain LIBNAME statements for
SAS libraries that you access routinely in SAS sessions. You can override the
default autoexec file using the AUTOEXEC system option.

SAS looks for the AUTOEXEC system option in the following order. It uses the first
AUTOEXEC system option that it finds:

1 in the command line

2 in the SASV9_OPTIONS environment variable

3 in the configuration file

SAS uses the first AUTOEXEC option that it encounters and ignores all others.

If neither the AUTOEXEC nor NOAUTOEXEC system option is found, SAS looks for
the autoexec file in three directories in the following order:

1 your current directory

2 your home directory

3 the !SASROOT directory (For more information, see Appendix 1, “The !SASROOT
Directory,” on page 567.)

SAS uses the first autoexec file that it finds to initialize the SAS session.

If you want to see the contents of the autoexec file for your session, use the
ECHOAUTO system option when you invoke SAS. If you want to identify the data
sources that the autoexec file is using, use the PROC OPTIONS statement:

proc options option=autoexec value;
run;

Inserting and Appending Autoexec Files
INSERT adds files to be executed before the autoexec file, and APPEND adds files
to be executed after the autoexec file. You can concatenate files in your autoexec
file by using the following system options with the AUTOEXEC system option:
INSERT on page 448 and APPEND on page 415. The autoexec file is always a
UNIX file. If your filename contains embedded blanks or special characters, you
must enclose the filename in quotation marks. Otherwise, quotation marks are
optional when one or more filenames are specified.

You can use the following syntax to concatenate autoexec files:

-autoexec "(/path1/autoexec.sas /path2/autoexec.sas /path3/
autoexec.sas)"

You can use the following syntax with the INSERT system option:

-insert autoexec "a.sas" –insert autoexec "b.sas"

418 Chapter 20 / System Options under UNIX

You can use the following syntax with the APPEND system option:

-append autoexec "a.sas" –append autoexec "b.sas"

See Also
System Options:

n “APPEND System Option: UNIX” on page 415

n “INSERT System Option: UNIX” on page 448

Other References:

n “Customizing Your SAS Session By Using System Options” on page 22

AUTOSAVELOC System Option: UNIX
Specifies the location of the Program Editor autosave file.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Not included

Category: Environment Control: Display

PROC
OPTIONS
GROUP=

ENVDISPLAY

Default: None

UNIX specifics: valid values of pathname

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “AUTOSAVELOC= System Option” in SAS System Options: Reference

Syntax
-AUTOSAVELOC fileref | pathname

AUTOSAVELOC fileref | pathname

Required Arguments
fileref

specifies a fileref to the location where the autosave file is saved.

pathname
specifies the pathname, including the filename, of the autosave file. The
pathname must be a valid UNIX pathname.

AUTOSAVELOC System Option: UNIX 419

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n128xkpdyvwv4ln10fg47w21okee.htm&locale=en

Details
By default, SAS saves the Program Editor autosave file, pgm.asv, in the open folder.
You can use the AUTOSAVELOC system option to specify a different location for
the autosave file.

See Also
Commands:

n “SETAUTOSAVE Command: UNIX” on page 286

BUFNO System Option: UNIX
Specifies the number of buffers to be allocated for processing a SAS data set.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable, SAS Viya: Configuration file, SAS
invocation, OPTIONS statement, SASV9_OPTIONS environment variable

Category: Files: SAS Files

PROC
OPTIONS
GROUP=

SASFILES, PERFORMANCE

Default: 1

UNIX specifics: default value

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “BUFNO= System Option” in SAS System Options: Reference

Syntax
-BUFNO n | nK | nM | nG | hexX | MIN | MAX

BUFNO=n | nK | nM | nG | hexX | MIN | MAX

Required Arguments
n | nK | nM | nG

specifies the number of buffers in multiples of 1 (bytes); 1,024 (kilobytes);
1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can specify decimal
values for the number of kilobytes, megabytes, or gigabytes. For example, a
value of 8 specifies 8 buffers, a value of .782k specifies 801 buffers, and a value
of 3m specifies 3,145,728 buffers.

420 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1dvhxsxcilbwon0zl48630qkpeb.htm&locale=en

Note: You can also specify the KB, MB, or GB syntax notations.

hexX
specifies the number of buffers as a hexadecimal value. You must specify the
value beginning with a number (0–9), followed by hexadecimal characters (0–9,
A–F), and then followed by an X. For example, 2dx specifies 45 buffers.

MIN
sets the number of buffers to 0, and requires SAS to use the default value of 1.

MAX
sets the number of buffers to 2,147,483,647.

Details
The number of buffers is not a permanent attribute of the data set; it is valid only for
the current SAS session or job.

BUFNO= applies to SAS data sets that are opened for input, output, or update.

Using BUFNO= can improve execution time by limiting the number of input/output
operations that are required for a particular SAS data set. The improvement in
execution time, however, comes at the expense of increased memory consumption.

Under UNIX, the maximum number of buffers that you can allocate is determined by
the amount of memory available.

BUFSIZE System Option: UNIX
Specifies the size of a permanent buffer page for an output SAS data set.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable, SAS Viya: Configuration file, SAS
invocation, OPTIONS statement, SASV9_OPTIONS environment variable

Categories: Files: SAS Files
System Administration: Performance

PROC
OPTIONS
GROUP=

SASFILES, PERFORMANCE

Default: 0

UNIX specifics: valid range

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “BUFSIZE= System Option” in SAS System Options: Reference

BUFSIZE System Option: UNIX 421

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1d8hx95jb53wqn0zzvawxw94nvi.htm&locale=en

Syntax
-BUFSIZE n | nK | nM | nG | hexX | MAX

BUFSIZE=n | nK | nM | nG | hexX | MAX

Required Arguments
n | nK | nM | nG

specifies the buffer page size in multiples of 1 (bytes); 1,024 (kilobytes);
1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can specify decimal
values for the number of kilobytes, megabytes, or gigabytes. For example, a
value of 8 specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of
3m specifies 3,145,728 bytes.

Note: You can also specify the KB, MB, or GB syntax notations.

hexX
specifies the buffer page size as a hexadecimal value. You must specify the
value beginning with a number (0–9), followed by hexadecimal characters (0–9,
A–F), and then followed by an X. For example, 2dx sets the buffer page size to
45 bytes.

MAX
sets the buffer page size to 2,147,483,647.

Details
The buffer page size can range from 1K to 2G–1.

If you specify a nonzero value when you create a SAS data set, the BASE engine
uses that value. If that value cannot hold at least one observation or is not a multiple
of 1K, the engine rounds the value up to a multiple of 1K.

CATCACHE System Option: UNIX
Specifies the number of SAS catalogs to keep open in cache memory.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Files: SAS Files

PROC
OPTIONS
GROUP=

SASFILES

Default: 0

UNIX specifics: Valid values for n

422 Chapter 20 / System Options under UNIX

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “CATCACHE= System Option” in SAS System Options: Reference

Syntax
-CATCACHE n | nK | MIN | MAX

Required Arguments
n | nK

specifies the number of open-file descriptors to keep in cache memory in
multiples of 1 (n) or 1,024 (nK). You can specify decimal values for the number
of kilobytes. For example, a value of 8 specifies 8 open-file descriptors, a value
of .782k specifies 801 open-file descriptors, and a value of 3k specifies 3,072
open-file descriptors.

If n > 0, SAS places up to that number of open-file descriptors in cache memory,
instead of closing the catalogs.

Note: You can also specify the KB syntax notation.

MIN
sets the number of open-file descriptors that are kept in cache memory to 0.

MAX
sets the number of open-file descriptors that are kept in cache memory to
32,767.

Details
By using the CATCACHE system option to specify the number of SAS catalogs to
keep open, you can avoid repeatedly opening and closing the same catalogs.

See Also
“Definitions for Optimizing System Performance” in SAS Programmer’s Guide:
Essentials

CLEANUP System Option: UNIX
Specifies how to handle out-of-resource conditions.

CLEANUP System Option: UNIX 423

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p18wjy2w9vlu9ln1rg5s5j1oliil.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p10mqsasqy8asrn1me9vhlpxtx5l.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p10mqsasqy8asrn1me9vhlpxtx5l.htm&locale=en

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable, SAS Viya: Configuration file, SAS
invocation, OPTIONS statement, SASV9_OPTIONS environment variable ,
Configuration file, SAS command, OPTIONS statement, SASV9_OPTIONS environment
variable

Category: Environment Control: Error Handling

PROC
OPTIONS
GROUP=

ERRORHANDLING

Default: CLEANUP for interactive modes; NOCLEANUP otherwise

UNIX specifics: behavior when running in interactive line mode, noninteractive mode, and batch mode

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “CLEANUP System Option” in SAS System Options: Reference

Syntax
-CLEANUP | -NOCLEANUP

CLEANUP | NOCLEANUP

Required Arguments
CLEANUP

specifies that during the entire session, SAS attempts to perform automatic,
continuous cleanup of resources that are not essential for execution.
Nonessential resources include those resources that are not visible to the user
(for example, cache memory) and those resources that are visible to the user
(for example, the Keys window).

CLEANUP does not prompt you before SAS attempts to clean up your disk.
However, when an out-of-disk-space condition occurs and your display is
attached to the process, you are prompted with a menu selection even if the
CLEANUP option is on. If you do not want to be prompted for out-of-disk-space
conditions, use the CLEANUP option with the NOTERMINAL option.

When the CLEANUP option is on, SAS performs automatic continuous cleanup.
If not enough resources are recovered, the request for the resource fails, and an
appropriate error message is written to the SAS log.

CLEANUP is the default in noninteractive or batch mode because there is no
display attached to the process to accommodate prompting.

NOCLEANUP
specifies that SAS allows the user to choose how to handle an out-of-resource
condition. When NOCLEANUP is in effect and SAS cannot execute because of a
lack of resources, SAS automatically attempts to clean up resources that are not
visible to the user (for example, cache memory). However, resources that are
visible to the user (for example, the Keys window) are not automatically cleaned
up. Instead, SAS prompts you before attempting to clean up your disk.

424 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0i494n8ucv8qcn1shaqia15jugk.htm&locale=en

Details
The CLEANUP system option indicates whether you should be prompted with a
menu of items to be cleaned up when SAS encounters an out-of-resource condition.
In noninteractive or batch mode, SAS ignores this option, and if an out-of-resource
condition occurs, the SAS session terminates.

CONFIG System Option: UNIX
Specifies the configuration file that is used when initializing or overriding the values of SAS system options.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: sasv9.cfg (see “Order of Precedence for Processing SAS Configuration Files” on page
29)

UNIX specifics: all

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-CONFIG file-specification | –NOCONFIG

Required Arguments
-CONFIG file-specification

specifies a configuration file to be read. The file-specification must resolve to a
valid UNIX filename.

-NOCONFIG
specifies that any previous CONFIG specification should be ignored and that the
default system options should be used.

Details
Configuration files contain system option specifications that execute automatically
whenever SAS is invoked.

Specifying a configuration file disables the default configuration file list.

CONFIG System Option: UNIX 425

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

See Also
“Customizing Your SAS Session By Using System Options” on page 22

DEVICE System Option: UNIX
Specifies a device driver for graphics output for SAS/GRAPH software.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable, SAS Viya: Not included

Category: Graphics: Driver Settings

PROC
OPTIONS
GROUP=

GRAPHICS

Default: None

UNIX specifics: valid device drivers

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “DEVICE= System Option” in SAS/GRAPH: Reference

Syntax
-DEVICE device-driver-name

DEVICE=device-driver-name

Required Argument
device-driver-name

specifies the name of a device driver for graphics output. The maximum number
of characters for the device name is eight characters.

Details
To see the list of device drivers that are available under UNIX, you can use the
GDEVICE procedure. If you are using the SAS windowing environment, submit the
following statements:

proc gdevice catalog=sashelp.devices;
run;

If you are running SAS in interactive line mode, noninteractive mode, or batch
mode, submit the following statements:

proc gdevice catalog=sashelp.devices nofs;

426 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n0sfduua0e145gn1d8ez4qs8lcu9.htm&locale=en

 list _all_;
run;

See Also
SAS/GRAPH: Reference

ECHO System Option: UNIX
Specifies a message to be echoed to stdout.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Log and Procedure Output Control: SAS Log

PROC
OPTIONS
GROUP=

LOGCONTROL

Default: None

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-ECHO 'message' | -NOECHO

Required Arguments
-ECHO 'message'

specifies the text of the message to be echoed to the computer. The text must be
enclosed in single or double quotation marks if the message is more than one
word. Otherwise, the quotation marks are not needed.

-NOECHO
specifies that no messages are to be echoed to the computer.

Details
You can specify multiple ECHO options. The strings are displayed in the order in
which SAS encounters them. See “How SAS Processes System Options That Are
Set in Multiple Places” on page 25 for information about hot that order is
determined.

ECHO System Option: UNIX 427

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

For example, you can specify the following code:

-echo 'SAS 9.4 under UNIX is initializing.'

The message appears in the Log window as SAS initializes.

See Also
System Options:

n “ECHOAUTO System Option” in SAS System Options: Reference

EDITCMD System Option: UNIX
Specifies the host editor to be used with the HOSTEDIT command.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable, SAS Viya: Not included

Category: Environment Control: Display

PROC
OPTIONS
GROUP=

ENVDISPLAY

Default: None

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-EDITCMD "host-editor-pathname editor-options"

EDITCMD="host-editor-pathname editor-options"

Details
The EDITCMD system option specifies the command that is issued to the operating
environment. If you are using a terminal-based editor, such as vi, you must specify a
command that runs the editor inside a terminal emulator window.

You can define the EDITCMD option using the SASV9_OPTIONS environment
variable as part of a configuration file or on the command line to make the definition
available automatically to SAS. The option must be specified as a string in quotation
marks. You can use either single or double quotation marks. You can change the
value for the EDITCMD option during a SAS session by issuing an OPTIONS
statement.

428 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0aeqd6gt2adqhn19f4qpg37kksr.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

The host editor that you specify is used when you issue the HOSTEDIT command.
The HOSTEDIT command is valid only when you are running SAS in a windowing
environment.

If you do not specify the full pathname, SAS searches the pathnames specified in
the $PATH environment variable. For example, to use vi, you would specify the
following:

sas -editcmd "/usr/bin/X11/xterm -e /usr/bin/vi"

See Also
“Configuring SAS for Host Editor Support in UNIX Environments” on page 200

EMAILSYS System Option: UNIX
Specifies the email protocol to use for sending electronic mail.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable, SAS Viya: Not included

Category: Communications: E-mail

PROC
OPTIONS
GROUP=

EMAIL

Default: SMTP

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-EMAILSYS SMTP | name-of-script

EMAILSYS=SMTP | name-of-script

Required Arguments
SMTP

specifies the Simple Mail Transfer Protocol (SMTP) electronic mail interface.

name-of-script
specifies which script to use for sending electronic mail from within SAS. Some
external scripts do not support sending email attachments. These scripts are not
supported by SAS.

EMAILSYS System Option: UNIX 429

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Details
The EMAILSYS system option specifies which email protocol to use for sending
electronic mail from within SAS. Specifying SMTP supports sending email
attachments on UNIX, but might require changing the values of the EMAILHOST=
and EMAILPORT= system options, depending on your site configuration.

You can set the EMAILSYS option at any time in your SAS session.

See Also
System Options:

n “EMAILHOST= System Option” in SAS System Options: Reference

n “EMAILPORT System Option” in SAS System Options: Reference

Other References:

n “How the SMTP e-Mail Interface Authenticates Users” in SAS Programmer’s
Guide: Essentials

n “Sending Electronic Mail Using the FILENAME Statement (EMAIL)” on page 104

n “Sending Mail from within Your SAS Session in UNIX Environments” on page
197

ENGINE= System Option: UNIX
Specifies the default access method to use for SAS libraries.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Not included

Category: Files: SAS Files

PROC
OPTIONS
GROUP=

SASFILES

Default: V9

UNIX specifics: valid values of engine-name

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “ENGINE= System Option” in SAS System Options: Reference

Syntax
-ENGINE engine-name

430 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1v9dr6zep9p9en1prhl6tdy3igx.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0719qq0gsyyuln1b2vuwyk1ylu6.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p03dlh56cqgaksn1to0w2w7detqd.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p03dlh56cqgaksn1to0w2w7detqd.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0z1880hy56m9gn105dlswu7e0sk.htm&locale=en

Required Argument
engine-name

can be one of the following under UNIX:

BASE
V9

specifies the default SAS engine for SAS 9 through SAS 9.4 files.

V8
specifies the SAS engine for all SAS Version 9 files.

V7
specifies the SAS engine for all Version 7 files.

V6
specifies the SAS engine for Release 6.09 through Release 6.12. This engine
is read-only.

See Also
“SAS Engines” in SAS Programmer’s Guide: Essentials

FILELOCKS System Option: UNIX
Specifies whether file locking is turned on or off and what action should be taken if a file cannot be locked.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable, SAS Viya: Configuration file, SAS
invocation, OPTIONS statement, SASV9_OPTIONS environment variable

Categories: Files: External Files
Files: SAS Files

PROC
OPTIONS
GROUP=

ENVFILES, EXTFILES, SASFILES

Default: FAIL

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-FILELOCKS settingpath | pathsetting

-FILELOCKS NONE | FAIL | CONTINUE | RESET

FILELOCKS=(settingpath | pathsetting)

FILELOCKS=NONE | FAIL | CONTINUE | RESET

FILELOCKS System Option: UNIX 431

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1ktkmsxzmn1ogn1k649d67np3t1.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Required Arguments
setting

specifies the operating environment locking value for the specified path. The
following values are valid:

n NONE

n FAIL

n CONTINUE

n RESET

path
specifies a path to a UNIX directory. Enclose the path in single or double
quotation marks.

Tip The path argument can contain an environment variable.

NONE
turns file locking off. NONE specifies that SAS attempts to open the file without
checking for an existing lock on the file. NONE does not place an operating
system lock on the file. These files are not protected from shared Update
access.

Tip NONE does not suppress internal locking.

FAIL
turns file locking on. FAIL specifies that SAS attempts to place an operating
system lock on the file. Access to the file is denied if the file is already locked, or
if it cannot be locked. FAIL is the default value for FILELOCKS.

CONTINUE
turns file locking on. CONTINUE specifies that SAS attempts to place an
operating system lock on the file. If a file is already locked by someone else, an
attempt to open it fails. If the file cannot be locked for some other reason, the file
is opened and a warning message is sent to the log. For example, a file cannot
be locked if the file system does not support locking.

Tip CONTINUE does not suppress internal locking.

RESET
specifies that all previous FILELOCKS settings are deleted, and resets the global
setting to the default value of FAIL. If you use the
FILELOCKS=(setting path|path setting) syntax, then RESET resets only
those files that are in path.

Details

The Basics of File Locking
In previous releases of SAS, the FILELOCKS system option was able to lock only
SAS files. In SAS 9.2 and later, the FILELOCKS system option is able to lock
external files as well.

432 Chapter 20 / System Options under UNIX

The FILELOCKS system option enables you to lock both external files and SAS files
based on global settings that you set in the FILELOCKS system option. External file
locking applies to all files that are opened.

You can use multiple instances of the FILELOCKS option to establish different
settings for different paths. One path can be a subdirectory of another path. In this
case, the most specific matching path currently in effect governs operating system
file locking. The following example shows how you can specify multiple instances of
the FILELOCKS option in a configuration file:

filelocks=('/u/myuserid/temp' NONE)
filelocks=('/tmp' CONTINUE)

When the value of the FILELOCKS option is a set of path and setting, the path must
be enclosed in quotation marks. If you use FILELOCKS on the command line, then
quotation marks are not needed.

Note: To prevent data corruption, setting FILELOCKS to NONE or CONTINUE is
not recommended.

Resetting Paths By Using the path and setting
Arguments
The path and setting arguments enable you to apply a setting to a particular
directory and its subtrees. If you set the value of setting to RESET, then the path
and setting values are deleted.

For example, in the following case, filelocks=('/' reset), the current values for
path and setting are deleted, and FILELOCKS resets the values to the following
default: ('/' fail).

When FILELOCKS Is Set to FAIL
When FILELOCKS is set to FAIL (the default value), the following actions occur:

n SAS prevents two sessions from simultaneously opening the same SAS file for
update or output.

n SAS prevents one session from reading a SAS file that another SAS session has
open for update or output.

n SAS prevents one session from writing to a file that another SAS session has
open in Read mode.

See Also
System Options:

n “WORKINIT System Option: UNIX” on page 505

FILELOCKS System Option: UNIX 433

FILELOCKWAIT= System Option: UNIX
Sets the number of seconds that SAS waits for a locked file to become available.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: Files: SAS Files

PROC
OPTIONS
GROUP=

SASFILES

Default: 0

Restriction: FILELOCKWAIT= does not apply to SPD Engine files.

Interactions: The maximum value for FILELOCKWAIT= is based on the value of the
FILELOCKWAITMAX= system option.
FILELOCKWAIT= is both a system option and a LIBNAME option. The system option
applies to all SAS I/O files (libraries, CATALOG, DATA, VIEW, and MDDB) and external
files. The LIBNAME option applies to the members in a library only. The LIBNAME
option overrides the system option.

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
FILELOCKWAIT=wait-time

Required Argument
wait-time

specifies the amount of time, in seconds, that SAS waits for a locked file to
become available.

Details
Normally, SAS returns an error if the file that it attempts to access is locked. With
the FILELOCKWAIT= system option, you can limit the amount of time SAS waits for
a locked SAS file to become available. When you set FILELOCKWAIT= to a value of
wait-time, SAS waits the specified amount of time for the file to become available
before failing. When the time limit is reached, SAS returns a locked-file error, and
the DATA step fails. The maximum time that you can set to wait for a locked file is
600 seconds (10 minutes). When you set FILELOCKWAIT= to 0, SAS immediately
fails.

434 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

The FILELOCKWAIT= option is used primarily by a system administrator, who can
change the maximum value of FILELOCKWAIT= using the FILELOCKWAITMAX=
system option. FILELOCKWAITMAX= sets a maximum value for the
FILELOCKWAIT= option. The default maximum value is 600 seconds (10 minutes),
but a system administrator can set the value to 300 seconds (5 minutes) or to any
other value that is less than or equal to 600. Changing the value of
FILELOCKWAITMAX= does not affect the value of FILELOCKWAIT=, it affects only
the maximum value of FILELOCKWAIT=. The FILELOCKWAIT= option can be
restricted by a system administrator.

FILELOCKWAIT= is both a system option and a LIBNAME option. The system
option applies to all SAS I/O files. The LIBNAME option applies to the members in a
library only. The LIBNAME option overrides the system option.

See Also
System Options:

n “FILELOCKS System Option: UNIX” on page 431

n “FILELOCKWAITMAX= System Option: UNIX” on page 435

FILELOCKWAITMAX= System Option: UNIX
Sets an upper limit on the time SAS waits for a locked file.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: Files: SAS Files

PROC
OPTIONS
GROUP=

SASFILES

Default: 600

UNIX specifics: all

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
FILELOCKWAITMAX=wait-time

Required Argument
wait-time

specifies the amount of time, in seconds, that SAS waits for a locked file to
become available.

FILELOCKWAITMAX= System Option: UNIX 435

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Default 600

Range 0–600

Interactions Specifying the FILELOCKWAITMAX= system option can have an
adverse effect on one or more SAS/SHARE server and client
sessions that are waiting for the release of a SAS file that is locked
by another process. One or more wait conditions could lead to
failed processes for a SAS/SHARE server and clients.

To prevent the possibility of a failed SAS/SHARE process, you can
set FILELOCKWAITMAX=0. Setting this option cancels the amount
of time that a SAS/SHARE server and clients would wait for the
release of a locked file. Canceling the wait time would prevent a
failed process.

Details
The FILELOCKWAITMAX= system option, if used with the FILELOCKWAIT=
system option, enables you to set the maximum amount of time SAS waits for a
locked file to become available before failing. If you do not use the
FILELOCKWAIT= system option, then the value of FILELOCKWAITMAX= does not
affect the wait time.

Normally, SAS returns an error if the file that it attempts to access is locked. If you
use the FILELOCKWAIT= system option, SAS waits the specified number of
seconds for the file to become available before failing. By default, the maximum
value of FILELOCKWAIT= is 600 seconds.

A system administrator can change the maximum value using the
FILELOCKWAITMAX= system option. Setting FILELOCKWAITMAX=0 effectively
turns off the FILELOCKWAIT= option.

FILELOCKWAIT= is both a system option and a LIBNAME statement option. The
system option applies to all SAS I/O files. The LIBNAME option applies to the
members in a library only. The LIBNAME option overrides the system option.
FILELOCKWAITMAX= is a system option only.

See Also
System Options:

n “FILELOCKS System Option: UNIX” on page 431

n “FILELOCKWAIT= System Option: UNIX” on page 434

FMTSEARCH System Option: UNIX
Specifies the order in which format catalogs are searched.

436 Chapter 20 / System Options under UNIX

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable, SAS Viya: Configuration file, SAS
invocation, OPTIONS statement, SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: (WORK LIBRARY)

UNIX specifics: valid values for catalog-specification

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “FMTSEARCH= System Option” in SAS System Options: Reference

Syntax
-FMTSEARCH (catalog-specification-1 ... catalog-specification-n)

FMTSEARCH=(catalog-specification-1 ... catalog-specification-n)

Required Argument
catalog-specification

specifies the order in which format catalogs are searched until the desired
member is found. The value of libref can be either libref or libref.catalog. If only
the libref is given, SAS assumes that FORMATS is the catalog name.

Note The value of libref must be in uppercase characters.

Details
To add additional catalog-specification entries, use the INSERT system option or the
APPEND system option.

See Also
System Options:

n “APPEND= System Option” in SAS System Options: Reference

n “INSERT= System Option” in SAS System Options: Reference

FMTSEARCH System Option: UNIX 437

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1fvn6rwmpf1njn1whkud1hmsc97.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0pcr99h6vex16n1lhgfwgm347wr.htm&locale=en

FONTSLOC System Option: UNIX
Specifies the location of the SAS fonts that are loaded during the SAS session.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Display

PROC
OPTIONS
GROUP=

ENVDISPLAY, ODSPRINT

Default: !SASROOT/misc/fonts

UNIX specifics: valid pathname

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “FONTSLOC= System Option” in SAS System Options: Reference

Syntax
-FONTSLOC "directory-specification"

Required Argument
"directory-specification"

specifies the directory that contains the SAS fonts that are loaded during the
SAS session. The directory-specification must be enclosed in double quotation
marks.

Details
The directory must be a valid operating environment pathname.

FULLSTIMER System Option: UNIX
Specifies whether to write all available system performance statistics and the datetime stamp to the SAS
log.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Log and Procedure Output Control: SAS Log

438 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0f8g1hh7oku8on1bhkgq8z3ljr0.htm&locale=en

PROC
OPTIONS
GROUP=

LOGCONTROL

Default: NOFULLSTIMER

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-FULLSTIMER | -NOFULLSTIMER

FULLSTIMER | NOFULLSTIMER

Required Arguments
FULLSTIMER

writes to the SAS log a list of the host-dependent resources that were used for
each step and for the entire SAS session. A datetime stamp is included in the
output.

NOFULLSTIMER
does not write to the SAS log a complete list of resources or a datetime stamp.

Details
SAS uses UNIX system calls for your operating environment to get the statistical
information from FULLSTIMER. The datetime stamp is listed in the output. You can
change the behavior and format of the statistical information by using the STIMFMT
system option.

The CPU time that is reflected in the output from FULLSTIMER does not include
CPU time from the CAS server or any CAS nodes.

Here is an example of FULLSTIMER output:

Example Code 20.1 FULLSTIMER Output

NOTE: PROCEDURE SQL used (Total process time):
 real time 0.01 seconds
 user cpu time 0.00 seconds
 system cpu time 0.00 seconds
 memory 5346.93k
 OS Memory 29868.00k
 Timestamp 10/18/2016 11:27:24 AM
 Step Count 59 Switch Count 44
 Page Faults 0
 Page Reclaims 11
 Page Swaps 0
 Voluntary Context Switches 128
 Involuntary Context Switches 0
 Block Input Operations 0
 Block Output Operations 264

FULLSTIMER System Option: UNIX 439

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Note: If both FULLSTIMER and STIMER system options are set, the FULLSTIMER
statistics are written to the log.

FULLSTIMER displays the statistics defined in the following table.

Table 20.1 Description of FULLSTIMER Statistics

Statistic Description

Real Time the amount of real time (clock time) that is spent to
process the SAS job. Real time is also referred to as
elapsed time.

User CPU Time the CPU time that is spent in the user program.

System CPU Time the CPU time that is spent to perform operating system
tasks (system overhead tasks) that support the
execution of your SAS code.

Memory the amount of memory required to run a step.

OS Memory the largest amount of operating system memory that is
available to SAS during the step.

Timestamp the date and time that a step was executed.

Step Count the count of DATA steps or procedures that run in a SAS
program.

Switch Count a count of task switches within a step—that is, within a
DATA step or procedure—in a SAS program. A task
switch occurs when a step requests service from
another process. Another task switch occurs when the
step resumes.

The number reported is for the last step that runs.

Page Faults the number of pages that SAS tried to access but were
not in main memory and required I/O activity.

Page Reclaims the number of pages that were accessed without I/O
activity.

Page Swaps the number of times a process was swapped out of main
memory.

Voluntary Context
Switches

the number of times that the SAS process had to pause
because of a resource constraint such as a disk drive.

Involuntary Context
Switches

the number of times that the operating system forced the
SAS session to pause processing to allow other process
to run.

440 Chapter 20 / System Options under UNIX

Statistic Description

Block Input Operations the number of I/O operations that are performed to read
the data into memory.

Block Output Operations the number of I/O operations that are performed to write
the data to a file.

For more information about these statistics, see the man pages for the getrusage()
and times() UNIX system calls.

Note: Starting in SAS 9, some procedures use multiple threads. On computers with
multiple CPUs, the operating system can run more than one thread simultaneously.
Consequently, CPU time might exceed real time in your FULLSTIMER output. For
example, a SAS procedure could use two threads that run on two separate CPUs
simultaneously. The value of CPU time would be calculated as the following:

CPU1 time + CPU2 time = total CPU time
1 second + 1 second = 2 seconds

Because CPU1 can run a thread at the same time that CPU2 runs a separate thread
for the same SAS process, you can theoretically consume 2 CPU seconds in 1
second of real time.

See Also
System Options:

n “STIMEFMT System Option: UNIX” on page 493

n “STIMER System Option: UNIX” on page 497

HELPHOST System Option: UNIX
Specifies the name of the host machine where the remote browser is to send Help and ODS output.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SASV9_OPTIONS environment variable, SAS Viya: Not included

Category: Environment Control: Help

PROC
OPTIONS
GROUP=

HELP

Default: NULL

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

HELPHOST System Option: UNIX 441

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

See: “HELPHOST System Option” in SAS System Options: Reference

Syntax
HELPHOST="host"
-HELPHOST "host"

Required Argument
host

specifies the name of the computer where the remote browsing system is to be
displayed. Quotation marks or parentheses are required. The maximum number
of characters is 2048.

Details
If you do not specify the HELPHOST option, the remote browsing system is
displayed on the host that is specified in the X display setting.

Examples

Example 1: SAS Invocation
The syntax for specifying the HELPHOST system option for UNIX environments is
shown in the following example:

sas94/helphost "my.computer.com"

Example 2: OPTIONS Statement: UNIX
The syntax for specifying the HELPHOST system option using the OPTIONS
statement is shown in the following example:

options helphost="my.computer.com";

See Also
“Installing the Remote Browser Server” on page 164

442 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0oh1hkh0zlcirn1d3noglknr02o.htm&locale=en

HELPINDEX System Option: UNIX
Specifies one or more index files for the online SAS Help and Documentation.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Not included

Category: Environment Control: Help

PROC
OPTIONS
GROUP=

HELP

Default: /help/common.hlp/index.txt, /help/common.hlp/keywords.htm, common.hhk

UNIX specifics: applet and HTML files must reside in the path specified by the HELPLOC option

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-HELPINDEX index-pathname-1 <index-pathname-2 <index-pathname-3>>

Required Argument
index-pathname

specifies the partial pathname for the index that is to be used by the online SAS
Help and Documentation. The index-pathname argument can be any or all of the
following:

/help/applet-index-filename
specifies the partial pathname of the index file that is to be used by the SAS
Documentation Java applet in a UNIX environment. applet-index-filename
must have a file extension of .txt, and it must reside in a path that is specified
by the HELPLOC system option. The default
is /help/common.hlp/index.txt.

See the default index file for the format that is required for an index file.

/help/accessible-index-filename
specifies the partial pathname of an accessible index file that is to be used by
the online SAS Help and Documentation in UNIX or z/OS environments. An
accessible index file is an HTML file that can be used by web browsers.
accessible-index-filename must have a file extension of .htm, and it must
reside in a path that is specified by the HELPLOC system option. The default
pathname is /help/common.hlp/keywords.htm.

See the default index file for the format that is required for an index file.

HTML-Help-index-pathname
specifies the pathname of the Microsoft HTML Help index that is to be used
by the online SAS Help and Documentation in SAS windowing environments.
The default pathname is common.hhk. For information about creating an index
for Microsoft HTML Help, see your Microsoft HTML Help documentation.

HELPINDEX System Option: UNIX 443

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Details
Use the HELPINDEX option if you have a customized index that you want to use
instead of the index that SAS supplies. If you use one configuration file to start SAS
in more than one operating environment, you can specify all of the partial
pathnames in the HELPINDEX option. The order of the pathnames is not important,
although only one pathname of each type can be specified.

When the HELPINDEX option specifies a pathname for UNIX or z/OS, SAS
determines the complete path by replacing /help/ in the partial pathname with the
pathname specified in the HELPLOC option. If the HELPLOC option contains more
than one pathname, SAS searches each path for the specified index.

For example, when the value of HELPINDEX is /help/common.hlp/myindex.htm
and the value of HELPLOC is /u/myhome/myhelp, the complete path to the index
is /u/myhome/myhelp/common.hlp/myindex.htm.

See Also
System Options:

n “HELPLOC System Option: UNIX” on page 444

HELPLOC System Option: UNIX
Specifies the location of the text and index files for the facility that is used to view the online SAS Help and
Documentation.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Not included

Category: Environment Control: Help

PROC
OPTIONS
GROUP=

HELP

Default: !SASROOT/X11/native_help/en

UNIX specifics: default pathname

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-HELPLOC (pathname <, pathname-2 …, pathname-n>)

444 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Required Argument
pathname

specifies one or more directory pathnames in which the online SAS Help and
Documentation files are located.

Details
Specifying a value for the HELPLOC system option causes SAS to insert that value
at the start of a list of concatenated values, the last of which is the default value.
This behavior enables you to access help for your site without losing access to SAS
Help and Documentation.

To add pathnames, use the INSERT or APPEND system options. For more
information, see “INSERT System Option: UNIX” on page 448, and “APPEND
System Option: UNIX” on page 415.

Example: Using the HELPLOC System
Option
The following command contains two specifications of HELPLOC:

sas -insert helploc /app2/help -insert helploc /app1/help -append

The value of the system option is the following:

/app1/help, /app2/help, !SASROOT/X11/native_help

See Also
System Options:

n “APPEND= System Option” in SAS System Options: Reference

n “INSERT= System Option” in SAS System Options: Reference

HELPTOC System Option: UNIX
Specifies the table of contents files for the online SAS Help and Documentation.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Not included

Category: Environment Control: Help

PROC
OPTIONS
GROUP=

HELP

HELPTOC System Option: UNIX 445

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0pcr99h6vex16n1lhgfwgm347wr.htm&locale=en

Default: /help/helpnav.hlp/config.txt, /help/common.hlp/toc.htm, common.hhc

UNIX specifics: applet and HTML files must reside in the path specified by the HELPLOC option

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-HELPTOC TOC-pathname-1 <TOC-pathname-2 <TOC-pathname-3>>

Required Argument
TOC-pathname

specifies a partial pathname for the table of contents that is to be used by the
online SAS Help and Documentation. TOC-pathname can be any or all of the
following:

/help/applet-TOC-filename
specifies the partial pathname of the table of contents file that is to be used
by the SAS Documentation Java applet in a UNIX environment. The
applet-TOC-filename must have a file extension of .txt, and it must reside in a
path that is specified by the HELPLOC system option. The default
is /help/helpnav.hlp/config.txt.

See the default table of contents file for the format that is required for an
index file.

/help/accessible-TOC-filename
specifies the partial pathname of an accessible table of contents file that is to
be used by the online SAS Help and Documentation in UNIX or z/OS
environments. An accessible table of contents file is an HTML file that can be
used by web browsers. The accessible-TOC-filename must have a file
extension of .htm, and it must reside in a path that is specified by the
HELPLOC system option. The default pathname
is /help/common.hlp/toc.htm.

See the default table of contents file for the format that is required for a table
of contents.

HTML-Help-TOC-pathname
specifies the complete pathname to the Microsoft HTML Help table of
contents that is to be used by the online SAS Help and Documentation in
windowing environments. The default pathname is common.hhc. For
information about creating an index for Microsoft HTML Help, see your
Microsoft HTML Help documentation.

Details
Use the HELPTOC system option if you have a customized table of contents that
you want to use, instead of the table of contents that SAS provides. If you use one
configuration file to start SAS in more than one operating environment, you can
specify all of the partial pathnames in the HELPTOC option. The order of the

446 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

pathnames is not important, although only one pathname of each type can be
specified.

When the HELPTOC option specifies a pathname for UNIX or z/OS, SAS
determines the complete path by replacing /help/ in the partial pathname with the
pathname specified in the HELPLOC option. If the HELPLOC option contains more
than one pathname, SAS searches each path for the table of contents.

For example, when HELPTOC is /help/common.hlp/mytoc.htm, and the value of
HELPLOC is /u/myhome/myhelp, the complete path to the table of contents
is /u/myhome/myhelp/common.hlp/mytoc.htm.

See Also
System Options:

n “HELPLOC System Option: UNIX” on page 444

HOSTINFOLONG System Option: UNIX
Specifies to write additional operating environment information in the SAS log when SAS starts.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: Log and Procedure Output Control: SAS Log

PROC
OPTIONS
GROUP=

LOGCONTROL

Default: HOSTINFOLONG

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
HOSTINFOLONG | NOHOSTINFOLONG

Syntax Description
HOSTINFOLONG

specifies to write additional operating environment information in the SAS log
when SAS starts.

NOHOSTINFOLONG
specifies to omit additional operating environment information in the SAS log
when SAS starts.

HOSTINFOLONG System Option: UNIX 447

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Details
When HOSTINFOLONG is specified, SAS writes additional information about the
operating environment to the SAS log.

See Also
System Options:

n “CPUID System Option” in SAS System Options: Reference

Other References:

n “Customizing the Log” in SAS Programmer’s Guide: Essentials

INSERT System Option: UNIX
Used when SAS starts; inserts the specified value at the beginning of the specified system option.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: None

UNIX specifics: Configuration file, SAS command syntax

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “INSERT= System Option” in SAS System Options: Reference

Syntax
-INSERT system-option new-option-value

Required Arguments
system-option

can be FMTSEARCH, HELPLOC, MAPS, MSG, SASAUTOS, SASHELP,
SASSCRIPT, SET, AUTOEXEC, or CMPLIB

448 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0188g8w4pguhkn1ehp9b2wlyf2u.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p119kau8rt2ebgn1bzaipafu6jp3.htm&docsetTargetAnchor=p0ir29fbd1nmvon143407nxmo2ug&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0pcr99h6vex16n1lhgfwgm347wr.htm&locale=en

new-option-value
is the new value that you want to insert at the beginning of the current value of
system-option.

Details
By default, if you specify the AUTOEXEC, CMPLIB, FMTSEARCH, HELPLOC,
MAPS, MSG, SASAUTOS, SASHELP, SASSCRIPT, or SET system option more
than one time, the last value that is specified is the value that SAS uses. If you want
to add additional pathnames to the pathnames already specified by one of these
options, use the INSERT system option to add the additional pathnames. For
example, if you enter the following SAS command, the only location in which SAS
looks for help files is /apps/help. The output of PROC OPTIONS shows only /
apps/help.

sas -helploc /apps/help

If you want SAS to look in both the current path for help files and in /sas/help,
looking first in /sas/help, then you must use the INSERT option.

sas -insert helploc /sas/help

If the current path for help files is !SASROOT/X11/native_help, then PROC
OPTIONS now shows the following for the value of the HELPLOC option:

('/sas/help' '!SASROOT/X11/native_help')

See Also
System Options:

n “APPEND System Option: UNIX” on page 415

n “APPEND= System Option” in SAS System Options: Reference

JREOPTIONS System Option: UNIX
Identifies the Java Runtime Environment (JRE) options for SAS.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Not included

Category: Environment Control: Initialization and Operation

PROC
OPTIONS
GROUP=

EXECMODES

Default: None

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

JREOPTIONS System Option: UNIX 449

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

CAUTION: Changing Java options that affect SAS could cause SAS to not work. Before you
change the settings for the JREOPTIONS option, contact SAS Technical Support to make
sure that the Java setting that you want to change will not cause SAS to fail. A best practice
is to change only the Java properties for your own Java code.

Syntax
-JREOPTIONS (-JRE-option-1 <-JRE-option-n>)

Required Argument
-JRE-option

specifies one or more JRE options.

JRE options must begin with a hyphen (-). Use a space to separate multiple JRE
options. Valid values for JRE-option depend on your installation's JRE. For
information about JRE options, see your installation's Java documentation.

Details
JRE options must be enclosed in parentheses. If you issue JREOPTIONS options
on the command line, then you must put a backslash (\) before the open parenthesis
and close parenthesis, as shown in the examples below. If you specify multiple
JREOPTIONS options, then SAS appends JRE options to JRE options that are
currently defined. Incorrect JRE options are ignored.

Example: Using JRE Options
-jreoptions \(-Dmy.java.property\)

-jreoptions \(-Xmx512m -Xms256m\)

LINESIZE System Option: UNIX
Specifies the line size of the SAS Log and Output windows.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Categories: Log and Procedure Output Control: SAS Log and Procedure Output
Log and Procedure Output Control: SAS Log
Log and Procedure Output Control: Procedure Output

450 Chapter 20 / System Options under UNIX

PROC
OPTIONS
GROUP=

LISTCONTROL, LOG_LISTCONTROL, LOGCONTROL

Default: the display width setting for interactive modes; 132 for noninteractive or batch mode

UNIX specifics: default values

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “LINESIZE= System Option” in SAS System Options: Reference

Syntax
-LINESIZE n | hexX | MIN | MAX

LINESIZE=n | hexX | MIN | MAX

Required Arguments
n

specifies the line size in characters. Valid values range between 64 and 256.

hexX
specifies the line size as a hexadecimal value. You must specify the value
beginning with a number (0–9), followed by hexadecimal characters (0–9, A–F),
and then followed by an X. For example, 2dx specifies 45 characters.

MIN
sets the line size to 64 characters.

MAX
sets the line size to 256 characters.

See Also
“Controlling the Content and Appearance of Output in UNIX Environments” on page
129

LOG System Option: UNIX
Specifies a destination for the SAS log when running in noninteractive or batch mode.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

LOG System Option: UNIX 451

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1quv1ypgn8bojn1q4s7nfagkfwu.htm&locale=en

Default: a file in the current directory with the same filename as the SAS source file and an
extension of .log

UNIX specifics: all

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-LOG file-specification | -NOLOG

Required Arguments
-LOG file-specification

specifies the destination for the SAS log. The file-specification can be any valid
UNIX path to a directory, a filename, or an environment variable that is
associated with a path. If you specify only the path to a directory, the log file is
created in the specified directory. The default name for this file is filename.log,
where filename is the name of your SAS job.

-NOLOG
suppresses the creation of the SAS log. Do not use this value unless your SAS
program is thoroughly debugged.

Details
The LOG system option specifies a destination for the SAS log when running in
noninteractive mode or in batch mode. The LOG system option is valid in
noninteractive or batch mode; it is ignored in interactive modes.

Using directives in the value of the LOG system option enables you to control when
logs are open and closed and how they are named, based on real-time events such
as time, month, day of week, and so on. For a valid list of directives, see
“LOGPARM= System Option” in SAS System Options: Reference.

If you start SAS in noninteractive mode, batch mode, or server mode and the
LOGCONFIGLOC= option is specified, logging is performed by the SAS logging
facility. The traditional SAS log option LOGPARM= is ignored. The traditional SAS
log option LOG= is honored only when the %S{App.Log} conversion character is
specified in the logging configuration file. For more information, see the SAS
Logging Facility in SAS Logging: Configuration and Programming Reference.

Note: When SAS is started with the OBJECTSERVER and NOTERMINAL system
options and no log is specified, SAS discards all log and alternate log messages.

452 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en

See Also
System Options:

n “LOGPARM= System Option” in SAS System Options: Reference

Other References:

n “The SAS Log” in SAS Programmer’s Guide: Essentials

n “Using SAS System Options to Route Output” on page 127

LPTYPE System Option: UNIX
Specifies which UNIX command and option settings are used to route files to the printer.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Log and Procedure Output Control: Procedure Output

PROC
OPTIONS
GROUP=

LISTCONTROL

Default: None

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-LPTYPE BSD | SYSV

LPTYPE=BSD | SYSV

Required Arguments
BSD

causes SAS to use the lpr command to send files to the printer. The lpr
command is usually supported on UNIX operating systems that were developed
at the University of California, Berkeley.

SYSV
causes SAS to use the lp command to send files to the printer. The lp
command is usually supported on operating systems derived from UNIX System
V, such as Solaris.

LPTYPE System Option: UNIX 453

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0fmptfnyvi1n6n148u0qu4h44a5.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p119kau8rt2ebgn1bzaipafu6jp3.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Details
The LPTYPE option determines whether SAS is to use the lpr or the lp UNIX
command to print files.

If you do not know whether to specify BSD or SYSV, check with your system
administrator.

By default, SAS uses the lpr command if your operating system is derived from
Berkeley's version. Otherwise, it uses the lp command.

See Also
System Options:

n “PRINTCMD System Option: UNIX” on page 470

MAPS System Option: UNIX
Specifies the name of the SAS library containing the SAS/GRAPH map data sets.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Not included

Category: Graphics: Driver Settings

PROC
OPTIONS
GROUP=

GRAPHICS

Default: !SASROOT/maps (set in the installed !SASROOT/sasv9.cfg file)

UNIX specifics: default value and location-of-maps

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “MAPS= System Option” in SAS/GRAPH and Base SAS: Mapping Reference

Syntax
-MAPS location-of-maps

MAPS=location-of-maps

Required Argument
location-of-maps

specifies a libref, a valid UNIX pathname, or an environment variable associated
with a pathname. Do not use a specific filename.

454 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=p1lxpubixajng3n173c1zoty1ujc.htm&locale=en

Details

The Basics
You can reassign the MAPS libref, but you cannot clear it.

Map files might have to be uncompressed before they are used. Use the
CONTENTS statement in the DATASETS procedure to determine whether they are
compressed.

Inserting and Appending Pathnames
By default, if you specify the MAPS system option more than one time, the last
option that is specified is the option value that SAS uses.

If you want to add additional pathnames to the pathnames already specified by the
MAPS system option, use the INSERT system option to add the additional
pathnames. For example, if you enter the following SAS command, the only location
in which SAS looks for help files is /apps/help. The output of PROC OPTIONS
shows only /apps/help.

sas -helploc /apps/help

If you want SAS to look in both the current path for help files, and in /sas/help, and
if you want SAS to look first in /apps/help, then you must use the INSERT option.

sas -insert helploc /apps/help

If you want SAS to look first in /sas/help, and then in /apps/help, then you must
use the APPEND option.

sas -helploc /sas/help -append helploc /apps/help

If the current path for help files is !SASROOT/X11/native_help, then PROC
OPTIONS now shows the following for the value of the HELPLOC option:

('/apps/help' '!SASROOT/X11/native_help')

See Also
System Options:

n “APPEND= System Option” in SAS System Options: Reference

n “INSERT= System Option” in SAS System Options: Reference

MAXMEMQUERY System Option: UNIX
Specifies the maximum amount of memory that can be allocated per request for certain procedures.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

MAXMEMQUERY System Option: UNIX 455

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0pcr99h6vex16n1lhgfwgm347wr.htm&locale=en

Category: System Administration: Memory

PROC
OPTIONS
GROUP=

MEMORY

Default: 256M

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-MAXMEMQUERY n | nK | nM | nG | hexX | MIN | MAX

MAXMEMQUERY=n | nK | nM | nG | hexX | MIN | MAX

Required Arguments
n | nK | nM | nG

specifies the limit in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); or 1,073,741,824 (gigabytes). You can specify decimal values for
the number of kilobytes, megabytes, or gigabytes. For example, a value of 8
specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of 3m
specifies 3,145,728 bytes.

Note: You can also specify the KB, MB, or GB syntax notations.

hexX
specifies the amount of memory as a hexadecimal value. You must specify the
value beginning with a number (0–9), followed by hexadecimal characters (0–9,
A–F), and then followed by an X. For example, 2dx sets the amount of memory
to 45 bytes.

MIN
specifies 0 bytes, which indicates that there is no limit on the total amount of
memory that can be allocated per request by each SAS procedure. These
memory allocations are limited by the value of MEMSIZE.

MAX
specifies a limit to the amount of memory that is allocated. Memory allocations
(9,007,199,254,740,992 byte limit on 64-bit machines) are limited by the value of
MEMSIZE.

Details
Some SAS procedures use the MAXMEMQUERY option to specify the largest block
of virtual memory that a procedure can request at one time. By contrast, the
MEMSIZE option places a limit on the total amount of virtual memory that SAS
dynamically allocates at any time. This virtual memory is supported by a
combination of real memory and paging space. The operating environment begins

456 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

paging when the amount of virtual memory that is required exceeds the real memory
that is available. To prevent paging and the associated performance problems, the
MAXMEMQUERY and MEMSIZE system options should be set to a subset of real
memory.

MEMSIZE System Option: UNIX
Specifies the limit on the total amount of virtual memory that can be used by a SAS session.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Categories: System Administration: Memory
System Administration: Performance

PROC
OPTIONS
GROUP=

MEMORY, PERFORMANCE

Default: 2G

Restriction: This system option is not valid for the CAS server.

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-MEMSIZE n | nK | nM | nG | nT | hexX | MAX

Required Arguments
n | nK | nM | nG | nT

specifies the limit in multiples of 1 (bytes); 1,024 (kilobytes); 1,048,576
(megabytes); 1,073,741,824 (gigabytes); or 1,099,511,627,776 (terabytes). You
can specify decimal values for the number of kilobytes, megabytes, or gigabytes
(for example, a value of .25G specifies 268,435,456 bytes).

Note: You can also specify the KB, MB, or GB syntax notations.

hexX
specifies the amount of memory as a hexadecimal value. You must specify the
value beginning with a number (0–9), followed by hexadecimal characters (0–9,
A–F), and then followed by an X. For example, 0F00000x sets the value of the
MEMSIZE option to 15,728,640 bytes. A value of 0x is equivalent to using the
MAX value.

MAX
specifies to set the memory size to the largest reasonable value depending on
the amounts of physical memory and paging space that are available when SAS
is started.

MEMSIZE System Option: UNIX 457

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Details

The Basics
The MEMSIZE system option limits the total amount of memory that is available to
each SAS session. It places an enforced limit on the amount of virtual memory that
SAS can dynamically allocate at execution. If MEMSIZE is set too low, your jobs can
fail, and errors appear in the SAS log indicating that insufficient memory was
available. By contrast, the REALMEMSIZE and MAXMEMQUERY system options,
the SORTSIZE= option in the SORT procedure, and the SUMSIZE= option in the
SUMMARY procedure all provide for procedure tuning.

When you start a SAS session, if the value of MEMSIZE is larger than the amount of
virtual memory that is available for a process, then you are notified in the SAS log. If
this occurs, adjust the value of MEMSIZE so that it is smaller than the amount of
virtual memory or use the MAX value. The MAX value automatically considers both
page size and virtual memory limit and adjusts the MEMSIZE value accordingly. You
can use the limit, ulimit —a, or ulimit —aS command to see the amount of
virtual memory that is available for your user ID.

If you specify an unreasonably small value for MEMSIZE (for example, 6K), then the
MEMSIZE value automatically increases to the minimum value that enables SAS to
start.

Numeric values in excess of 9,223,372,036,854,775,807 bytes are rejected as
invalid and prevent SAS from starting.

SAS does not automatically reserve or allocate the amount of virtual memory that
you specify in the MEMSIZE system option. SAS uses only as much memory as it
needs to complete a process. For example, a DATA step might require only 20 MB
of memory, so even though MEMSIZE is set to 500 MB, SAS uses only 20 MB of
memory. While your SAS jobs are running, you can monitor the effects of larger
memory settings by using system monitoring tools, such as VMSTAT and the top
tool. With some tools, address space might be allocated to memory, but pages
might not be assigned to that memory. These tools report a higher value than real
memory actually used. When a user invokes third-party software, such as database
vendor code that SAS loads, the memory allocations for that third-party software are
not controlled by MEMSIZE. Third-party software memory usage can be reported by
the top tool.

Setting the Size of MEMSIZE
Setting MEMSIZE=MAX sets MEMSIZE to 80% of physical memory. Setting
MEMSIZE to MAX is the same as setting MEMSIZE to 0. Setting MEMSIZE to MAX
is reasonable only if no processes that consume large amounts of memory are likely
to become active after SAS has started. For example, if multiple instances of SAS
are running concurrently, and all of the sessions were started with a MEMSIZE
value of MAX, then one or more of these sessions can encounter out-of-memory
conditions, or the operating system can run out of available paging space.
MEMSIZE=MAX calculates a value that would help prevent the system from paging
if all of the memory were allocated.

The optimal setting for this option depends on the other applications that are
running and the system resources available at your site. The amount of memory
available to SAS processes can also be limited by your system administrator.

458 Chapter 20 / System Options under UNIX

If you set MEMSIZE to the maximum amount of memory that is reasonably
attainable, some procedures scale themselves to the available memory. To
determine the limit on the total amount of memory to be used by SAS, you can issue
a PROC OPTIONS statement:

proc options option=memsize;
run;

Setting MEMSIZE to 0 is used as a test that can determine a good value to set for
MEMSIZE.

To determine the optimal setting of MEMSIZE, execute a SAS procedure or DATA
step with the FULLSTIMER option and MEMSIZE set to 0. Note the amount of
memory that is used by the process, and then set MEMSIZE to a larger amount.

Comparisons
Some SAS procedures use the REALMEMSIZE system option to specify how much
real memory the procedure can allocate and use without inducing excessive page
swapping. By contrast, the MEMSIZE system option places a limit on the total
amount of virtual memory that SAS dynamically allocates at any time. This virtual
memory is supported by a combination of real memory and paging space.

The operating environment begins paging when the amount of virtual memory that is
required exceeds the real memory that is available. To prevent paging and the
associated performance problems, the REALMEMSIZE and MEMSIZE system
options should be set to a subset of real memory.

See Also
System Options:

n “REALMEMSIZE System Option: UNIX” on page 471

Procedures:

n Chapter 31, “SORT Procedure,” on page 551

MSG System Option: UNIX
Specifies the library that contains the SAS error messages.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Alias: SASMSG

MSG System Option: UNIX 459

Default: !SASROOT/sasmsg (set in the installed !SASROOT/sasv9.cfg file)

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-MSG pathname

-MSG ('pathname' 'pathname' ...)

Required Argument
pathname

must resolve to a valid UNIX pathname. You can use an environment variable
that resolves to a valid pathname.

Details
The MSG system option specifies the library that contains the SAS error messages.
This option is set during the installation process and is not normally changed after
installation.

To add additional pathnames, use the INSERT or APPEND system options. For
more information, see “INSERT System Option: UNIX” on page 448, and “APPEND
System Option: UNIX” on page 415.

See Also
System Options:

n “APPEND= System Option” in SAS System Options: Reference

n “INSERT= System Option” in SAS System Options: Reference

MSGCASE System Option: UNIX
Specifies whether notes, warnings, and error messages that are generated by SAS are displayed in
uppercase characters.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: Log and Procedure Output Control: SAS Log

460 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0pcr99h6vex16n1lhgfwgm347wr.htm&locale=en

PROC
OPTIONS
GROUP=

LOGCONTROL

Default: NOMSGCASE

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-MSGCASE | -NOMSGCASE

Required Arguments
-MSGCASE

displays notes, warnings, and error messages in uppercase characters.

-NOMSGCASE
displays notes, warnings, and error messages in uppercase and lowercase
characters.

Details
The MSGCASE system option specifies whether notes, warnings, and error
messages that are generated by SAS are displayed in uppercase characters. User-
generated messages and source lines are not affected by the MSGCASE system
option.

MSGCASE is supported in NL formats. For information about NL formats, see SAS
National Language Support (NLS): Reference Guide.

MSYMTABMAX System Option: UNIX
Specifies the maximum amount of memory available to the macro variable symbol tables.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Macro: SAS Macro

PROC
OPTIONS
GROUP=

MACRO

Default: 4M (set in the installed !SASROOT/sasv9.cfg file)

UNIX specifics: default value

MSYMTABMAX System Option: UNIX 461

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: MSYMTABMAX= System Option in SAS Macro Language: Reference

Syntax
-MSYMTABMAX n | nK | nM | nG | hexX | MIN | MAX

MSYMTABMAX=n | nK | nM | nG | hexX | MIN | MAX

Required Arguments
n | nK | nM | nG

specifies the maximum amount of memory that is available in multiples of 1
(bytes); 1,024 (kilobytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes).
You can specify decimal values for the number of kilobytes, megabytes, or
gigabytes. For example, a value of 8 specifies 8 bytes, a value of .782k specifies
801 bytes, and a value of 3m specifies 3,145,728 bytes.

Note: You can also specify the KB, MB, or GB syntax notations.

hexX
specifies the maximum amount of memory that is available as a hexadecimal
value. You must specify the value beginning with a number (0–9), followed by
hexadecimal characters (0–9, A–F), and then followed by an X. For example,
2dx sets the maximum amount of memory to 45 bytes.

MIN
sets the amount of memory that is available to the minimum setting, which is 0
bytes. Setting the amount of memory to the minimum setting causes all macro
symbol tables to be written to disk.

MAX
sets the amount of memory that is available to the maximum setting. On 64–bit
computers, this value is 9,007,199,254,740,992 bytes.

MVARSIZE System Option: UNIX
Specifies the maximum size for in-memory macro variables.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Macro: SAS Macro

PROC
OPTIONS
GROUP=

MACRO

Default: 65534

462 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

UNIX specifics: default value

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: MVARSIZE System Option in SAS Macro Language: Reference

Syntax
-MVARSIZE n | nK | nM | nG | hexX | MIN | MAX

MVARSIZE=n | nK | nM | nG | hexX | MIN | MAX

Required Arguments
n | nK | nM | nG

specifies the maximum macro variable size in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can
specify decimal values for the number of kilobytes, megabytes, or gigabytes. For
example, a value of 8 specifies 8 bytes, a value of .782k specifies 801 bytes,
and a value of 3m specifies 3,145,728 bytes.

Note: You can also specify the KB, MB, or GB syntax notations.

hexX
specifies the maximum macro variable size as a hexadecimal value. You must
specify the value beginning with a number (0–9), followed by hexadecimal
characters (0–9, A–F), and then followed by an X. For example, 2dx sets the
maximum macro variable size to 45 bytes.

MIN
sets the macro variable size to the minimum setting, which is 0 bytes. Setting the
macro variable size to the minimum setting causes all macro variable values to
be written to disk.

MAX
sets the macro variable size to the maximum setting, which is 65,534 bytes.

NEWS System Option: UNIX
Specifies a file that contains messages to be written to the SAS log.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES, LOGCONTROL

Default: !SASROOT/misc/base/news (set in the installed !SASROOT/sasv9/cfg file)

NEWS System Option: UNIX 463

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

UNIX specifics: -NONEWS option

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “NEWS= System Option” in SAS System Options: Reference

Syntax
-NEWS file-specification | -NONEWS

Required Arguments
-NEWS file-specification

specifies an external file. This file contains the messages for the SAS log.

-NONEWS
specifies that the contents of the NEWS file are not displayed in the SAS log,
even if the file exists. This option causes any previous NEWS specifications to
be ignored.

Details
The contents of the NEWS file are displayed in the SAS log immediately after the
SAS header.

See Also
“The SAS Log” in SAS Programmer’s Guide: Essentials

OBS= System Option: UNIX
Specifies the last observation that SAS processes in a data set.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS System Options Window, SAS Viya:
Configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Files: SAS Files

PROC
OPTIONS
GROUP=

SASFILES

Default: MAX

Interaction: SAS Studio sets OBS=MAX before each code submission. For more information, see
“System Options in SAS Studio” in SAS System Options: Reference.

UNIX specifics: default value

464 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0d0jd0zl1wbrtn1k6zaai1d8ckh.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p119kau8rt2ebgn1bzaipafu6jp3.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0yzcadln7ame4n1hpr06f8a2nwl.htm&locale=en

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “OBS= System Option” in SAS System Options: Reference

Syntax
-OBS n | nK | nM | nG | nT | hexX | MIN | MAX

OBS=n | nK | nM | nG | nT | hexX | MIN | MAX

Required Arguments
n | nK | nM | nG | nT

specifies a number to indicate when to stop processing. Using one of the letter
notations results in multiplying the integer by a specific value. That is, specifying
K (kilo) multiplies the integer by 1,024, M (mega) multiplies by 1,048,576, G
(giga) multiplies by 1,073,741,824, or T (tera) multiplies by 1,099,511,627,776.
You can specify a decimal value for n when it is used to specify a K, M, G, or T
value. For example, a value of 20 specifies 20 observations or records, a value
of .782k specifies 801 observations or records, and a value of 3m specifies
3,145,728 observations or records.

Note: You can also specify the KB, MB, GB, or TB syntax notations.

hexX
specifies a number as a hexadecimal value to indicate when to stop processing.
You must specify the value beginning with a number (0–9), followed by
hexadecimal characters (0–9, A–F), and then followed by an X. For example, the
hexadecimal value F8 must be specified as 0F8x in order to specify the decimal
equivalent of 248. For example, the value 2dx specifies the decimal equivalent of
45.

MIN
sets the number to 0 to indicate when to stop processing.

If OBS=0 and the NOREPLACE option is in effect, SAS might still be able to take
certain actions. For more information, see “OBS= System Option” in SAS
System Options: Reference.

MAX
sets the number 9,223,372,036,854,775,807 to indicate when to stop
processing.

OPLIST System Option: UNIX
Specifies whether the settings of the SAS system options are written to the SAS log.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: Log and Procedure Output Control: SAS Log

OPLIST System Option: UNIX 465

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n06qlo77ayax2kn1xobou72cdz20.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n06qlo77ayax2kn1xobou72cdz20.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n06qlo77ayax2kn1xobou72cdz20.htm&locale=en

PROC
OPTIONS
GROUP=

LOGCONTROL

Default: NOOPLIST

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-OPLIST | -NOOPLIST

Details
The OPLIST system option echoes only the system options specified on the
command line. It does not echo any system options specified in the configuration file
or in the SASV9_OPTIONS environment variable. (If you want to echo the contents
of the configuration file, use the VERBOSE option.) For example, invoke SAS with
the following command:

sas -nodms -fullstimer -nonews -oplist

SAS writes this line to the SAS log:

NOTE: SAS command line: -nodms -fullstimer -nonews -oplist

Password values that are provided for system options (such as EMAILPW,
METAPASS, or PDFOPENPW) are automatically masked in the SAS log. For
example, suppose that you invoke SAS with the following command:

sas -nodms -oplist -emailpw foo -metapass xyz -pdfopenpw foobar -stimer

The command is displayed in the log as follows:

NOTE: SAS command line:
 /tdi/mva-v940m2/usrlibsas/laxno.14w28.20140430.weekly/SASFoundation/9.4/
 sasexe/sas -nodms -oplist -emailpw XXXXXXXX -metapass XXXXXXXX
 -pdfopenpw XXXXXXXX -stimer -helphost <hostname>

See Also
System Options:

n “VERBOSE System Option: UNIX” on page 502

466 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

PAGESIZE= System Option: UNIX
Specifies the number of lines that compose a page of SAS output.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Categories: Log and Procedure Output Control: SAS Log and Procedure Output
Log and Procedure Output Control: SAS Log
Log and Procedure Output Control: Procedure Output

PROC
OPTIONS
GROUP=

LISTCONTROL, LOG_LISTCONTROL, LOGCONTROL

Default: number of lines on your display for interactive modes; 60 for noninteractive or batch
mode

UNIX specifics: default values and range

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “PAGESIZE= System Option” in SAS System Options: Reference

Syntax
-PAGESIZE n | nK | hexX | MIN | MAX

PAGESIZE=n | nK | hexX | MIN | MAX

Required Arguments
n | nK

specifies the number of lines that compose a page in multiples of 1 (n) or 1,024
(nK). You can specify decimal values for the number of kilobytes. For example, a
value of 800 specifies 800 lines, a value of .782k specifies 801 lines, and a value
of 3k specifies 3,072 lines.

Note: You can also specify the KB syntax notation.

hexX
specifies the number of lines that compose a page as a hexadecimal value. You
must specify the value beginning with a number (0–9), followed by hexadecimal
characters (0–9, A-F), and then followed by an X. For example, the value 2dx
specifies 45 lines.

MIN
sets the number of lines that compose a page to the minimum setting, which is
15.

PAGESIZE= System Option: UNIX 467

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n02ek00ir5ihs8n1rewzb5obh1p7.htm&locale=en

MAX
sets the number of lines that compose a page to the maximum setting, which is
32,767.

Details
The default for interactive modes is the number of lines on your display. For
noninteractive or batch mode, the default is 60.

See Also
n “Controlling the Content and Appearance of Output in UNIX Environments” on

page 129

n “The SAS Log” in SAS Programmer’s Guide: Essentials

PATH System Option: UNIX
Specifies one or more search paths for SAS executable files.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Not included

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: !SASROOT/sasexe (set in the installed !SASROOT/sasv9/cfg file)

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-PATH directory-specification

Required Argument
directory-specification

specifies the search path for SAS executable files.

468 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p119kau8rt2ebgn1bzaipafu6jp3.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Details
The PATH system option identifies the search paths for SAS executable files. You
can specify multiple PATH options to define the search order. The paths are
searched in the order in which SAS encounters them. Therefore, specify at the
beginning of the list the paths for the products that you run most frequently. For
information about how that order is determined when you specify the PATH system
option more that once, see “How SAS Processes System Options That Are Set in
Multiple Places” on page 25.

PRINT System Option: UNIX
Specifies a destination for SAS output when running in noninteractive or batch mode.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: the SAS output from a batch SAS program is written to a file in the current directory with
the same filename as the SAS source file, with an extension of .lst

UNIX specifics: all

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-PRINT file-specification | -NOPRINT

Required Arguments
-PRINT file-specification

specifies the location for the SAS procedure output file. The file-specification can
be any valid UNIX path to a directory, a filename, or an environment variable that
is associated with a path. If you specify only the path to a directory, the
procedure output file is created in the specified directory. The default name for
this file is filename.lst, where filename is the name of your SAS job.

-NOPRINT
suppresses the creation of the SAS procedure output file.

PRINT System Option: UNIX 469

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Details
The PRINT system option specifies a destination for SAS output when running in
noninteractive or batch mode. The PRINT system option is valid in noninteractive or
batch mode; it is ignored in interactive modes.

See Also
“Using SAS System Options to Route Output” on page 127

PRINTCMD System Option: UNIX
Specifies the print command that SAS uses.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Log and Procedure Output Control: Procedure Output

PROC
OPTIONS
GROUP=

LISTCONTROL

Default: None

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-PRINTCMD "print-command"

PRINTCMD="print-command"

Required Argument
print-command

specifies the options that you can use with PRINTCMD.

470 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Details
The syntax of the options passed to the print command is controlled by the
LPTYPE system option. If LPTYPE is set to BSD, the command uses lpr command
options. If LPTYPE is set to SYSV, the command uses lp command options.

If your site uses a print command (spooler) other than lp or lpr, print-command
specifies its name. The PRINTCMD option overrides the LPTYPE setting.

When specified in an OPTIONS statement, the PRINTCMD option does not change
the print commands assigned to previously defined filenames. For example,
consider the following code:

filename pc1 printer;
proc printto print=pc1;
run;
proc print data=sales.week;
run;

options printcmd="netlp";

filename pc2 printer;
proc printto print=pc2;
run;
proc print data=sales.month;
run;

Output associated with PC2 uses the netlp command; output associated with PC1
uses the default print command.

See Also
System Options:

n “LPTYPE System Option: UNIX” on page 453

Other References:

n “Overview of Printing Output in UNIX Environments” on page 114

REALMEMSIZE System Option: UNIX
Specifies the amount of real (physical) memory SAS can expect to allocate.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: System Administration: Memory

PROC
OPTIONS
GROUP=

MEMORY

REALMEMSIZE System Option: UNIX 471

Default: 0

UNIX specifics: valid values

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-REALMEMSIZE n | nK | nM | nG | hexX | MIN | MAX

Required Arguments
n | nK | nM | nG

specifies the amount of memory to reserve in multiples of 1 (bytes); 1,024
(kilobytes); 1,048,576 (megabytes), or 1,073,741,824 (gigabytes). The value of n
can be a decimal value. For example, a value of 8 specifies 8 bytes, a value
of .782k specifies 801 bytes, and a value of 3m specifies 3,145,728 bytes.

Note: You can also specify the KB, MB, or GB syntax notations.

hexX
specifies the amount of memory as a hexadecimal value. You must specify the
value beginning with a number (0–9), followed by hexadecimal characters (0–9,
A–F), and then followed by an X. For example, the value 2dx sets the amount of
memory to 45 bytes.

MIN
specifies a value of 0, which indicates that the memory usage is determined by
SAS when SAS starts.

MAX
specifies to set the memory size to the largest permissible value. This value
depends on the system limit.

Details

The Basics
The REALMEMSIZE system option sets a recommended upper limit on real
memory for procedures that can use both real memory and utility disk space, such
as PROC SUMMARY and PROC SORT. This upper limit helps avoid virtual memory
thrashing.

The REALMEMSIZE option should never be set above the amount of real memory.
If the amount of real memory is insufficient for a job to run, then setting the
MEMSIZE option above the amount of real memory might enable the job to run
using a combination of real and virtual memory.

472 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Comparisons
Some SAS procedures use the REALMEMSIZE system option to specify how much
real memory the procedure can allocate and use without inducing excessive page
swapping. By contrast, the MEMSIZE system option places a limit on the total
amount of virtual memory that SAS dynamically allocates at any time. This virtual
memory is supported by a combination of real memory and paging space.

The operating environment begins paging when the amount of virtual memory that is
required exceeds the real memory that is available. To prevent paging and the
associated performance problems, the REALMEMSIZE and MEMSIZE system
options should be set to a subset of real memory.

See Also
System Options:

n “MEMSIZE System Option: UNIX” on page 457

Procedures:

n Chapter 31, “SORT Procedure,” on page 551

RSASUSER System Option: UNIX
Controls whether members of the Sasuser library can be opened for update or for Read-Only access.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: NORSASUSER

UNIX specifics: network considerations

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “RSASUSER System Option” in SAS System Options: Reference

Syntax
-RSASUSER | -NORSASUSER

RSASUSER System Option: UNIX 473

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0yehy4wog1ti3n1u3nnqf794fhk.htm&locale=en

Required Arguments
-RSASUSER

limits access to the Sasuser library to Read-Only access.

-NORSASUSER
prevents users from sharing members of the Sasuser library because it allows a
user to open a file in the Sasuser library for Update access. Update access
requires exclusive rights to the library member.

Details
If the Sasuser library is being shared by multiple users or the same user is running
SAS multiple times simultaneously, the Sasuser library is often shared. By default, if
one user has a member of the Sasuser library open for update, all other users are
denied access to that SAS library member. For example, if one user is writing to the
Sasuser.Profile catalog, no other user can even read data from the Profile catalog.

Specifying RSASUSER enables a group of users to share Sasuser library members
by allowing all users Read-Only access to members. In the Profile catalog example,
if RSASUSER is in effect, all users can open the Profile catalog for Read-Only
access, allowing other users to concurrently read from the Profile catalog. However,
no user can write information out to the Profile catalog; you receive an error
message if you try to do so.

Specifying RSASUSER from the command line affects only that session's access to
files. To enable a group of users to share members in the Sasuser library, the
system manager should set RSASUSER in a common SAS configuration file. This
configuration file should be shared by all users that share the Sasuser library.

If you specify RSASUSER but no Profile catalog exists in the Sasuser library, the
Profile catalog is created in the Work library.

Note: The RSASUSER option is extremely useful for sharing information (such as
the Profile catalog) stored in the Sasuser library. It is less practical when used in
conjunction with SAS/ASSIST software or other SAS modules that require Update
access to the Sasuser library.

See Also
“Sharing SAS Files in a UNIX Environment” on page 52

RTRACE System Option: UNIX
Produces a list of resources that are read or loaded during a SAS session.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Configuration file, SAS invocation, SASV9_OPTIONS environment variable

474 Chapter 20 / System Options under UNIX

Category: Log and Procedure Output Control: SAS Log

PROC
OPTIONS
GROUP=

LOGCONTROL

Default: None

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-RTRACE ALL | NONE | VER

Required Arguments
ALL

produces a list of resources that are read or loaded during a SAS session.

NONE
turns off RTRACE on all files.

VER
writes the version number and other trace information for each module that SAS
loads.

Details
The RTRACE system option produces a list of resources that are read or loaded
during the execution of SAS. If you specify -RTRACE ALL but do not specify the
RTRACELOC system option, the output is written to the SAS log.

See Also
System Options:

n “RTRACELOC System Option: UNIX” on page 475

RTRACELOC System Option: UNIX
Specifies the pathname of the file to which the list of resources that are read or loaded during a SAS
session is written.

RTRACELOC System Option: UNIX 475

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: None

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Tip: You can expand the RTRACELOC filename when %p (PID), %d (date), or %t (time) are
specified.

Syntax
-RTRACELOC pathname

RTRACELOC=pathname

Required Argument
pathname

specifies the file to which RTRACE information is written. The pathname must
include the path and the filename for the RTRACE output.

You can expand the output filename to include the process ID, date, or time in
the filename by specifying %p, %d, or %t, respectively. The system date is
included in the filename in the YYYYMMDD (year, month, day) format. The time
is included in the filename formatted as HHMMSSmmm (hours, minutes,
seconds, milliseconds). For example, to include the date, time, and process ID in
the filename, you can specify the following options:

-rtrace all -rtraceloc mytrace.%d.%t.%p

This results in a filename similar to mytrace.20140306.125510942.3808.

Details
The RTRACELOC system option specifies the pathname of the file to which
RTRACE information is written. If the pathname does not include a filename, the
output is directed to standard output. If you specify -RTRACE ALL, but do not
specify the RTRACELOC system option, the output is written to the SAS log.

476 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

See Also
System Options:

n “RTRACE System Option: UNIX” on page 474

SASAUTOS System Option: UNIX
Specifies the autocall library.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Categories: Environment Control: Files
Macro: SAS Macro

PROC
OPTIONS
GROUP=

ENVFILES
MACRO

Default: SASAUTOS fileref

UNIX specifics: syntax for specifying multiple directory-specifications

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “SASAUTOS= Macro System Option” in SAS Macro Language: Reference

Syntax
-SASAUTOS 'directory-specification' | fileref

-SASAUTOS ('directory-specification-1' | fileref-1, ..., 'directory-specification-n' |
fileref-n)

-NOSASAUTOS

SASAUTOS='directory-specification' | fileref

SASAUTOS =('directory-specification-1' | fileref-1, ..., 'directory-specification-n' |
fileref-n)

NOSASAUTOS

Required Arguments
directory-specification

specifies a pathname to an autocall macro library.

fileref
specifies a name (shorthand reference) that has been assigned to an autocall
macro library.

SASAUTOS System Option: UNIX 477

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p12b2qq72dkxpsn1e19y57emerr6.htm&locale=en

Note that the SASAUTOS option uses filerefs, not librefs.

Details
Each autocall macro library consists of files in a UNIX directory. The
directory-specification can be the pathname of a UNIX directory, a fileref, or an
environment variable.

If you specify the pathname of a directory, you must enclose the name in quotation
marks. You can omit the quotation marks only if you are specifying the name in the
configuration file, in the SAS command, or in the SASV9_OPTIONS environment
variable. And, you can omit the quotation marks only if the name cannot be
interpreted as a fileref.

If you specify a fileref, you must define it before attempting to use any of the autocall
macros. You can define the fileref in a FILENAME statement, in an environment
variable, or with the FILENAME function. See “Assigning Filerefs to External Files or
Devices with the FILENAME Statement” on page 92.

How you specify multiple directory names, filerefs, or environment variables
depends on where you specify the SASAUTOS option:

n If you specify the SASAUTOS option in the configuration file or in the
SASV9_OPTIONS environment variable, use either multiple SASAUTOS
options, or enclose the directory names in parentheses. Separate the names
with a comma or a blank space.

n If you specify the SASAUTOS option in the SAS command, use the APPEND or
INSERT system options to append to the end or insert at the beginning of the
current SASAUTOS value. For example, the following code
adds /users/userid/also to the end of the current SASAUTOS
value, /users/userid/here:

sas -sasautos /users/userid/here -append sasautos /users/userid/also

For more information, see “APPEND= System Option” in SAS System Options:
Reference, and “INSERT= System Option” in SAS System Options: Reference.

n If you specify the SASAUTOS option in the OPTIONS statement or in the SAS
System Options window, you must enclose the directory names in parentheses.
Separate the names with a comma or a blank space.

At configuration time, SAS concatenates all directories specified for SASAUTOS.
However, after the session starts, any new directories that you specify override any
current autocall libraries.

The NOSASAUTOS option causes SAS to ignore all previous SASAUTOS
specifications (whether specified in the SAS command, in the configuration file, or in
the SASV9_OPTIONS environment variable).

The default value of the SASAUTOS option is the SASAUTOS fileref. There is no
UNIX directory assigned to the fileref, so you must define the SASAUTOS fileref if
you want to use it as your autocall library.

478 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0pcr99h6vex16n1lhgfwgm347wr.htm&locale=en

Examples

Example 1: Specifying Multiple Environment
Variables in the OPTIONS Statement
The following example shows the syntax to use if you are specifying multiple
environment variables in the OPTIONS statement:

options sasautos=(AUTODIR, SASAUTOS);

The environment variables that you specify must be defined. For example, you
could define the AUTODIR environment variable at SAS command by using the
following code:

-set AUTODIR /tmp/sasautos

For more information about how to define an environment variable, see “SET
System Option: UNIX” on page 482.

Example 2: Specifying a Fileref in the OPTIONS
Statement
The fileref that you specify must be defined. For example, you could define the
AUTODIR fileref using a FILENAME statement:

filename AUTODIR '/tmp/sasautos';

Once the fileref is defined, you can use it in an OPTIONS statement to set the
autocall library.

options sasautos=autodir;

See Also
System Options:

n “APPEND= System Option” in SAS System Options: Reference

n “INSERT= System Option” in SAS System Options: Reference

n “MAUTOSOURCE Macro System Option” in SAS Macro Language: Reference

n “MRECALL Macro System Option” in SAS Macro Language: Reference

SASHELP System Option: UNIX
Specifies the locations of Sashelp libraries.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Files

SASHELP System Option: UNIX 479

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0pcr99h6vex16n1lhgfwgm347wr.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n1fbcsjdhakzywn1qg28id3gl0ph.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n0cfvf12looza7n10yaa4foizemd.htm&locale=en

PROC
OPTIONS
GROUP=

ENVFILES

Default: !SASROOT/sashelp (set in the installed !SASROOT/sasv9.cfg file)

UNIX specifics: directory-specification can also be an environment variable

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “SASHELP= System Option” in SAS System Options: Reference

Syntax
–SASHELP directory-specification

–SASHELP ('directory-specification', 'directory-specification' ...)

Details
This option is set in the installation process and is not normally changed after
installation. An environment variable can be specified as the value of SASHELP.

To add additional directory specifications, use the INSERT or APPEND system
option. For more information, see “INSERT System Option: UNIX” on page 448, and
“APPEND System Option: UNIX” on page 415.

See Also
System Options:

n “APPEND= System Option” in SAS System Options: Reference

n “INSERT= System Option” in SAS System Options: Reference

SASSCRIPT System Option: UNIX
Specifies one or more storage locations of SAS/CONNECT script files.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Not included

Category: Communications: Networking and Encryption

PROC
OPTIONS
GROUP=

COMMUNICATIONS

Default: !SASROOT/misc/connect

480 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10dxfd522hpvin181z2zftbk8h2.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0pcr99h6vex16n1lhgfwgm347wr.htm&locale=en

UNIX specifics: syntax for specifying multiple directory names

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-SASSCRIPT 'directory-name' | ('directory-name-1', …, 'directory-name-n')

SASSCRIPT='directory-name' | ('directory-name-1', …, 'directory-name-n')

Details
How you specify multiple directory names in the same SASSCRIPT option depends
on where you specify the SASSCRIPT option:

n If you specify the option in the configuration file or in the SASV9_OPTIONS
environment variable, use either multiple SASSCRIPT options, or enclose the
directory names in parentheses. Separate the names with a comma or a blank
space.

n If you specify the option in the SAS command, use multiple SASSCRIPT options
because parentheses cause syntax errors.

n If you specify the option in the OPTIONS statement or in the SAS System
Options window, you must enclose the directory names in parentheses.
Separate the names with a comma or a blank space.

See Also
System Options:

n “SASSCRIPT= System Option” in SAS/CONNECT User’s Guide

SASUSER System Option: UNIX
Specifies the name of the Sasuser library.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: ~/sasuser.v94 (set in the installed !SASROOT/sasv9.cfg file)

UNIX specifics: pathname can be an environment variable

SASUSER System Option: UNIX 481

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=n0l4punb9ymnd8n1jg1pcajcnj2p.htm&locale=en

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “SASUSER= System Option” in SAS System Options: Reference

Syntax
–SASUSER pathname

Details
The pathname identifies the directory for the Sasuser library that contains a user's
Profile catalog. You can use an environment variable to specify the pathname, for
example:

sas -sasuser $HOME

SET System Option: UNIX
Defines an environment variable.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: None

UNIX specifics: syntax

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
–SET variable-name value

SET=variable-name='value'

482 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0ekml3zuuv87bn1ktbbr9x19ybz.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Details
The SET option lets you define an environment variable that is valid within the SAS
session and any shell started from within the SAS session. Using the SET option is
similar to using the SAS setenv command. For information about executing system
commands from within your SAS session, see “Executing Operating System
Commands from Your SAS Session” on page 18.

A special use for the SET option is to specify the name of the !SASROOT directory:

-set SASROOT pathname

The pathname specified can then be used to expand !SASROOT (as shown in Table
3.3 on page 66).

After exiting your SAS session, environment variables that are set with the SET
option no longer exist.

See Also
n “Defining Environment Variables in UNIX Environments” on page 309

n “Introduction to the !SASROOT Directory” on page 567

SORTANOM System Option: UNIX
Specifies options for the host sort utility.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Sort: Procedure Options

PROC
OPTIONS
GROUP=

SORT

Default: None

Restriction: Beginning in SAS 9.4M8, this option is not used, because the syncsort utility is not
supported. If you specify this option, SAS writes a note to the SAS log that the SAS sort
is used instead.

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
SORTANOM=options

SORTANOM System Option: UNIX 483

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

–SORTANOM options

Required Argument
option

can be any one or more of the following:

B
tells SyncSort to run in multi-call mode, instead of single-call mode. (See the
documentation for syncsort for more information.)

Note This option is available for syncsort only.

T
writes to the SAS log statistics about the external sorting process.

V
writes to the SAS log all of the commands that are passed to the host sort
utility.

SORTCUT System Option: UNIX
Specifies the data size in number of observations above which SAS uses the host sort instead of the
internal SAS sort.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Sort: Procedure Options

PROC
OPTIONS
GROUP=

SORT

Default: 0

Restriction: Beginning in SAS 9.4M8, this option is not used, because the syncsort utility is not
supported. If you specify this option, SAS writes a note to the SAS log that the SAS sort
is used instead.

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-SORTCUT n | nK | nM | nG | hexX | MIN | MAX

SORTCUT=n | nK | nM | nG | hexX | MIN | MAX

484 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Required Arguments
n | nK | nM | nG

specifies the number of observations in multiples of 1 (n); 1,024 (nK); 1,048,576
(nM); or 1,073,741,824 (nG). You can specify decimal values for the number of
kilobytes, megabytes, or gigabytes. For example, a value of 800 specifies 800
observations, a value of .782k specifies 801 observations, and a value of 3m
specifies 3,145,728 observations.

Note: You can also specify the KB, MB, or GB syntax notations.

hexX
specifies the number of observations as a hexadecimal value. You must specify
the value beginning with a number (0–9), followed by hexadecimal characters
(0–9, A–F), and then followed by an X. For example, the value 2ffx specifies
767 observations.

MIN
specifies 0 observations.

MAX
specifies 9,007,199,254,740,992 observations.

Details
When you specify SORTPGM=BEST, SAS uses the value of the SORTCUT and
SORTCUTP options to determine whether to use the host sort or the SAS sort. If the
number of observations in the data set is greater than the number that you specify
with SORTCUT, the host sort is used. If both SORTCUT and SORTCUTP are either
not defined or are set to 0, the SAS sort is used. If you specify both options and
either condition is true, SAS chooses the host sort.

See Also
System Options:

n “SORTCUTP System Option: UNIX” on page 485

n “SORTPGM System Option: UNIX” on page 489

SORTCUTP System Option: UNIX
Specifies the data size in bytes above which SAS uses the host sort instead of the internal SAS sort.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Sort: Procedure Options

SORTCUTP System Option: UNIX 485

PROC
OPTIONS
GROUP=

SORT

Default: 0

Restriction: Beginning in SAS 9.4M8, this option is not used, because the syncsort utility is not
supported. If you specify this option, SAS writes a note to the SAS log that the SAS sort
is used instead.

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-SORTCUTP n | nK | nM | nG | hexX | MIN | MAX

SORTCUTP=n | nK | nM | nG | hexX | MIN | MAX

Required Arguments
n | nK | nM | nG

specifies the number of bytes in multiples of 1 (bytes); 1,024 (kilobytes);
1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can specify decimal
values for the number of kilobytes, megabytes, or gigabytes. For example, a
value of 8 specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of
3m specifies 3,145,728 bytes.

Note: You can also specify the KB, MB, or GB syntax notations.

hexX
specifies the number of bytes as a hexadecimal value. You must specify the
value beginning with a number (0–9), followed by hexadecimal characters (0–9,
A–F), and then followed by an X. For example, the value 2dx specifies 45 bytes.

MIN
specifies 0 bytes.

MAX
specifies 9,007,199,254,740,992 bytes.

Details
When you specify SORTPGM=BEST, SAS uses the value of the SORTCUT and
SORTCUTP options to determine whether to use the host sort or the SAS sort. If the
data set to be sorted is larger than the number of bytes (or kilobytes or megabytes)
that you specify with SORTCUTP, the host sort is used instead of the SAS sort. The
value that you specify must be less than or equal to 2,147,483,647 bytes. If both
SORTCUT and SORTCUTP are either not defined or are set to 0, the SAS sort is
used. If you specify both options and either condition is true, SAS chooses the host
sort.

486 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

The following equation computes the number of bytes to be sorted:

number-of-bytes=((length-of-obs)+(length-of-all-keys))*number-of-obs

See Also
System Options:

n “SORTANOM System Option: UNIX” on page 483

n “SORTCUT System Option: UNIX” on page 484

n “SORTPGM System Option: UNIX” on page 489

SORTDEV System Option: UNIX
Specifies the pathname used for temporary files created by the host sort utility.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Sort: Procedure Options

PROC
OPTIONS
GROUP=

SORT

Default: Same location as -WORK, which is set in the installed !SASROOT/sasv9.cfg file

Restriction: Beginning in SAS 9.4M8, this option is not used, because the syncsort utility is not
supported. If you specify this option, SAS writes a note to the SAS log that the SAS sort
is used instead.

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
SORTDEV='directory-specification'

-SORTDEV directory-specification

Details
The SORTDEV option specifies an alternative directory for temporary files created
by the host sort program.

SORTDEV System Option: UNIX 487

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

SORTNAME System Option: UNIX
Specifies the name of the host sort utility.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Sort: Procedure Options

PROC
OPTIONS
GROUP=

SORT

Default: None

Restriction: Beginning in SAS 9.4M8, this option is not used, because the syncsort utility is not
supported. If you specify this option, SAS writes a note to the SAS log that the SAS sort
is used instead.

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
SORTNAME='host-sort-utility-name'

-SORTNAME host-sort-utility-name

Details
The SORTNAME option specifies the name of the default host sort utility, syncsort.

See Also
System Options:

n “SORTPGM System Option: UNIX” on page 489

SORTPARM System Option: UNIX
Specifies parameters for the host sort utility.

488 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Sort: Procedure Options

PROC
OPTIONS
GROUP=

SORT

Default: None

Restriction: Beginning in SAS 9.4M8, this option is not used, because the syncsort utility is not
supported. If you specify this option, SAS writes a note to the SAS log that the SAS sort
is used instead.

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
SORTPARM='parameter(s)'

–SORTPARM 'parameter(s)'

Required Argument
parameter

specifies any parameter that you want to pass to the sort utility. For a description
of these parameters, see the documentation for the sort that you are using.

SORTPGM System Option: UNIX
Specifies whether to use the internal SAS sort utility or the host sort utility or to let SAS choose which sort
utility to use.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Sort: Procedure Options

PROC
OPTIONS
GROUP=

SORT

Default: BEST

Restriction: Beginning in SAS 9.4M8, this option is not used, because the syncsort utility is not
supported. If you specify this option, SAS writes a note to the SAS log that the SAS sort
is used instead.

UNIX specifics: all

SORTPGM System Option: UNIX 489

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-SORTPGM SAS | HOST | BEST

SORTPGM=SAS | HOST | BEST

Required Arguments
SAS

tells SAS to use the SAS sort.

HOST
tells SAS to use the sort that is specified by the SORTNAME system option.

BEST
tells SAS to use the best routine to sort the data set: the SAS sort or the host
sort that is specified by the SORTNAME system option. When set, the settings of
the SORTCUT and SORTCUTP system options determine whether SAS
chooses the SAS sort or the host sort. When SORTCUT and SORTCUTP are
not set (or when they are both 0), SAS selects the sorting algorithm based on the
following order of precedence:

n host sort utility

n SAS sort utility

See Also
System Options:

n “SORTCUT System Option: UNIX” on page 484

n “SORTCUTP System Option: UNIX” on page 485

n “SORTNAME System Option: UNIX” on page 488

n “SORTSIZE System Option: UNIX” on page 490

SORTSIZE System Option: UNIX
Specifies the amount of memory available to the SORT procedure.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Categories: Sort: Procedure Options
System Administration: Memory

490 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

System Administration: Performance

PROC
OPTIONS
GROUP=

MEMORY, PERFORMANCE, SORT

Default: 1G

UNIX specifics: value of MAX

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “SORTSIZE= System Option” in SAS System Options: Reference

Syntax
–SORTSIZE n | nK | nM | nG | hexX | MIN | MAX

SORTSIZE=n | nK | nM | nG | hexX | MIN | MAX

Required Arguments
n | nK | nM | nG

specifies the number of bytes in multiples of 1 (bytes); 1,024 (kilobytes);
1,048,576 (megabytes); or 1,073,741,824 (gigabytes). You can specify decimal
values for the number of kilobytes, megabytes, or gigabytes. For example, a
value of 8 specifies 8 bytes, a value of .782k specifies 801 bytes, and a value of
3m specifies 3,145,728 bytes.

Note: You can also specify the KB, MB, or GB syntax notations.

hexX
specifies the amount of memory as a hexadecimal value. You must specify the
value beginning with a number (0–9), followed by hexadecimal characters (0–9,
A–F), and then followed by an X. For example, the value 2dx sets the amount of
memory to 45 bytes.

MIN
specifies 0 bytes, which indicates that there is no limit except the limitation
specified by the MEMSIZE system option.

MAX
specifies the maximum addressable memory for the operating environment.

Details
The SORT procedure uses the SORTSIZE system option to limit the amount of
memory that it acquires or allocates for sorting. The amount of memory that SAS
uses for the SORT procedure also depends on the values of the MEMSIZE and
REALMEMSIZE system options. By contrast with the SORTSIZE option, the
MEMSIZE system option places a limit on the total amount of virtual memory that
SAS dynamically allocates at any time. This virtual memory is supported by a

SORTSIZE System Option: UNIX 491

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0ipa8xt1ma3h7n1wqjqr99679pg.htm&locale=en

combination of real memory and paging space. The operating environment begins
paging when the amount of virtual memory that is required exceeds the real memory
that is available. To prevent paging and the associated performance problems, the
SORTSIZE system option should be set to a subset of real memory. You can set
SORTSIZE to MAX if MEMSIZE is set to a subset of real memory. In most cases,
you can set SORTSIZE=MAX because this value limits the amount of memory that
is used by the SORT procedure.

See Also
System Options:

n “MEMSIZE System Option: UNIX” on page 457

Procedures:

n Chapter 31, “SORT Procedure,” on page 551

STDIO System Option: UNIX
Specifies whether SAS should use stdin, stdout, and stderr.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: Input Control: Data Processing

PROC
OPTIONS
GROUP=

INPUTCONTROL

Default: NOSTDIO

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
–STDIO | –NOSTDIO

Details
This option tells SAS to take its input from standard input (stdin), to write its log to
standard error (stderr), and to write its output to standard output (stdout).

492 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

This option is designed for running SAS in noninteractive or batch mode or from a
shell script. If you specify this option interactively, SAS starts a line mode session.
The STDIO option overrides the DMS, DMSEXP, and EXPLORER system options.

The STDIO option does not affect the assignment of the Stdio, Stdin, and Stderr
filerefs. For more information, see “Filerefs Assigned by SAS in UNIX Environments”
on page 98.

For example, in the following SAS command, the file myinput is used as the source
program, and files myoutput and mylog are used for the procedure output and log
respectively.

sas -stdio <myinput >myoutput 2>mylog

If you are using the C shell, you should use parentheses:

(sas -stdio <myinput >myoutput) >& output_log

See Also
“The Default Routings for the SAS Log and Procedure Output in UNIX
Environments” on page 115

STIMEFMT System Option: UNIX
Specifies the format that is used to display the time on FULLSTIMER and STIMER output.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Log and Procedure Output Control: SAS Log

PROC
OPTIONS
GROUP=

LOGCONTROL

Default: 512M

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-STIMEFMT value

STIMEFMT=value

STIMEFMT System Option: UNIX 493

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Required Argument
value

specifies the options to use with STIMEFMT. The following options are available:

Datetime Stamp options

TS specifies to always display the datetime stamp as part of
STIMER and FULLSTIMER.

TSFULL specifies to display the datetime stamp as part of
FULLSTIMER. TSFULL is the default.

TSOFF turns off the datetime stamp for STIMER and FULLSTIMER.

Memory
is normally displayed as part of FULLSTIMER. The default memory output is
displayed in kilobytes. The following options for memory are available:

MEMFULL writes memory statistics as part of FULLSTIMER, but not as
part of STIMER.

MEM writes memory statistics as part of FULLSTIMER and
STIMER.

KB writes memory in kilobytes.

MB writes memory in megabytes.

GB writes memory in gigabytes.

C adds commas to the numbers in the memory display.

NC does not add commas to the numbers in the memory
display.

Elapsed and CPU time
can be configured to display hours, minutes, seconds, or best fit in STIMER
and FULLSTIMER.

Z | H | HOURS writes the time as hours:minutes:seconds.

M | MINUTES writes the time as minutes:seconds.

S | SECONDS writes the time as seconds.

HMS writes the format leaving out leading zeros for hours
and minutes.

Counters
specifies that additional counters can be displayed as part of FULLSTIMER.

E | ENABLE enables extra counters.

D | DISABLE disables extra counters.

Help
provides two values that are used to access help for the STIMEFMT option:

FMT lists the available datetime stamp formats.

OPT lists other option values that are available.

494 Chapter 20 / System Options under UNIX

Details

STIMEFMT Basics
The STIMEFMT system enables you to customize the format of output produced by
the STIMER and FULLSTIMER system options. You can perform the following tasks
using STIMEFMT:

n list the formats that are available:

options stimefmt=fmt;

n list other options that are available:

options stimefmt=opt;

n turn the datetime stamp on or off for STIMER:

options stimefmt=tson | tsoff | tsfull;

n combine options as needed:

options stimefmt=(tson YYNNDDS);

n separate a memory value with commas:

options stimefmt=c;

n do not use commas when specifying values:

options stimefmt=nc;

n select a unit for memory:

options stimefmt=GB | MB | KB;

n turn on memory reporting for STIMER and FULLSTIMER:

options stimefmt=mem;

n set the time display in the datetime stamp:

options stimefmt=TOD | TIME | TIMEAMPM;
(TOD and TIME specify military time.)

n control the display of CPU or real time by using hours or minutes

Formats for Displaying the Datetime Stamp
The format of the datetime stamp can be set to standard formats that are supported
by SAS. These formats include the following:

ABS. (Absolute seconds since Jan. 1, 1970)

DATE. DATE9.

DDMMYY. DDMMYY10. DDMMYYB.
DDMMYYB10. DDMMYYC. DDMMYYC10.
DDMMYYD. DDMMYYD10. DDMMYYN.
DDMMYYN10. DDMMYYP. DDMMYYP10.
DDMMYYS. DDMMYYS10.

STIMEFMT System Option: UNIX 495

ISO. (ISO Standard Time)

MMDDYY. MMDDYY10. MMDDYY.
MMDDYYB10. MMDDYYC. MMDDYYC10.
MMDDYYD. MMDDYYD10. MMDDYYN.
MMDDYYN8. MMDDYYP. MMDDYYP10.
MMDDYYS. MMDDYYS10.

NLDATM. NLDATMAP.

YYMMDD. YYMMDD10. YYMMDDB.
YYMMDDB10. YYMMDDC. YYMMDDC10.
YYMMDDD. YYMMDDD10. YYMMDDN.
YYMMDDN8. YYMMDDP. YYMMDDP10.
YYMMDDS. YYMMDDS10.

TOD. (Writes time as military time.)
TIME. (Writes time as military time.)
TIMEAMPM. (Writes time as AM and PM.)

The syntax for the OPTIONS statement is listed below:

options stimefmt=fmt;

where fmt is a valid SAS format.

Using Multiple Values for the STIMEFMT Option
The STIMEFMT option can specify multiple values at the same time to enable you
to set multiple settings. Multiple values must be enclosed in parentheses. For
example:

options stimefmt=(h YYMMDD. gb c);

Displaying the Settings for the STIMEFMT Option
PROC OPTIONS always displays the current state of all settings for STIMEFMT.
The following example shows log output when you execute PROC OPTIONS:

proc options option=stimefmt;
run;

496 Chapter 20 / System Options under UNIX

Example Code 20.2 Log Output from PROC OPTIONS

 SAS (r) Proprietary Software Release 9.4

 STIMEFMT=(NLDATM2. HMS TIMEAMPM KB MEMFULL TSFULL NC)
 Specifies the format that is used to display the FULLSTIMER
 and STIMER output for timestamp, memory, CPU and elapsed time
 statistics.
NOTE: PROCEDURE OPTIONS used (Total process time):
 real time 0.00 seconds
 user cpu time 0.00 seconds
 system cpu time 0.00 seconds
 memory 21.37k
 OS Memory 11932.00k
 Timestamp 4/12/2013 01:51:52 PM
 Step Count 14 Switch Count 0
 Page Faults 0
 Page Reclaims 1
 Page Swaps 0
 Voluntary Context Switches 0
 Involuntary Context Switches 0
 Block Input Operations 0
 Block Output Operations 0

Resetting STIMEFMT to the Default Values
You can reset the settings for STIMEFMT to its default values by executing the
following OPTIONS statement:

options stimefmt=normal;

See Also
System Options:

n “FULLSTIMER System Option: UNIX” on page 438

n “STIMER System Option: UNIX” on page 497

STIMER System Option: UNIX
Specifies whether to write a subset of system performance statistics to the SAS log.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Log and Procedure Output Control: SAS Log

PROC
OPTIONS
GROUP=

LOGCONTROL

Default: STIMER

STIMER System Option: UNIX 497

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
–STIMER | –NOSTIMER

STIMER | NOSTIMER

Required Arguments
STIMER

writes only real time and CPU time to the SAS log.

NOSTIMER
does not write any statistics to the SAS log.

Details
The STIMER system option specifies whether a subset of all the performance
statistics of your system that are available to SAS are written to the SAS log. (Using
STIMEFMT can affect the output.) Here is an example of STIMER output:

Output 20.1 STIMER Output

real time 1.34 seconds
cpu time 0.04 seconds

Table 20.2 Description of STIMER Statistics

Statistic Description

real time the amount of time spent to process the SAS job. Real time is also
referred to as elapsed time.

CPU time the total time spent to execute your SAS code and to perform
system overhead tasks on behalf of the SAS process. This value
is the combination of the user CPU and system CPU statistics
from FULLSTIMER.

If both STIMER and FULLSTIMER are set, the FULLSTIMER statistics are written to
the SAS log.

Note: Starting in SAS 9, some procedures use multiple threads. On computers with
multiple CPUs, the operating system can run more than one thread simultaneously.
Consequently, CPU time might exceed real time in your STIMER output. For

498 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

example, a SAS procedure could use two threads that run on two separate CPUs
simultaneously. The value of CPU time would be calculated as the following:

CPU1 time + CPU2 time = total CPU time
1 second + 1 second = 2 seconds

Because CPU1 can run a thread at the same time that CPU2 runs a separate
thread, you can theoretically consume 2 CPU seconds in 1 second of real time.

See Also
System Options:

n “FULLSTIMER System Option: UNIX” on page 438

n “STIMEFMT System Option: UNIX” on page 493

SYSIN System Option: UNIX
Specifies the default location of SAS source code when running in noninteractive or batch mode.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: None

UNIX specifics: all

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
–SYSIN filename | -NOSYSIN

Required Arguments
-SYSIN filename

specifies an external file. The value for filename must be a valid UNIX filename.

-NOSYSIN
invokes SAS, processes the autoexec file, and then terminates SAS, returning
you to the command prompt.

SYSIN System Option: UNIX 499

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Details
This option applies only when you are using noninteractive or batch mode. It is not
necessary to precede the filename with the SYSIN option if the filename
immediately follows the keyword SAS. For example, the following two SAS
commands are equivalent:

 sas saspgms/report1.sas
 sas -sysin saspgms/report1.sas

The syntax of the SYSIN system option also enables you to specify NOSYSIN. If
you specify NOSYSIN, SAS is invoked, the autoexec file is processed, and then
SAS terminates, returning you to the command prompt. The following example
shows the syntax:

sas -nosysin -autoexec mysas.sas

This option is useful if you want to test an autoexec file without actually running a
complete SAS session.

See Also
“Starting SAS Sessions in UNIX Environments” on page 4

SYSPRINT System Option: UNIX
Specifies the destination for printed output.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Not included

Category: Log and Procedure Output Control: Procedure Output

PROC
OPTIONS
GROUP=

LISTCONTROL and ODSPRINT

Default: Default system printer

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
–SYSPRINT destination | 'destination-option-list'

SYSPRINT=destination | 'destination-option-list'

500 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Required Arguments
destination

is the name of a hard-copy device at your site. Consult your system
administrator for a list of available destinations.

destination-option-list
is the list of options to pass to the lp (or lpr) command.

Details
The SYSPRINT option specifies a destination for printed output other than the
default system printer. You can use the option list to pass options to the lp (or lpr)
command.

Note: When a fileref is assigned, the SYSPRINT option is queried. If the value of
the SYSPRINT option is later changed, the fileref does not pick up this change.

For more information, see “Changing the Default Print Command in UNIX
Environments” on page 129.

See Also
Commands:

n “PRINTCMD System Option: UNIX” on page 470

Other References:

n “Overview of Printing Output in UNIX Environments” on page 114

USER System Option: UNIX
Specifies the name of the default permanent SAS library.

Valid in: SAS 9.4: Configuration file, SAS invocation, OPTIONS statement, SAS System Options
window, SAS Viya: Configuration file, SAS invocation, OPTIONS statement,
SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: None

UNIX specifics: pathname must be a valid UNIX pathname

USER System Option: UNIX 501

Note: This option cannot be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “USER= System Option” in SAS System Options: Reference

Syntax
-USER pathname

USER='pathname' | libref

Required Arguments
pathname

identifies the directory containing your default permanent SAS library. It must be
a directory name.

libref
is the libref associated with the directory containing your default permanent SAS
library. It must already be assigned.

See Also
“Using One-Level Names to Access Permanent Files (User Library)” on page 75

VERBOSE System Option: UNIX
Specifies whether SAS writes the system option settings to the SAS log.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: Log and Procedure Output Control: SAS Log

PROC
OPTIONS
GROUP=

LOGCONTROL

Default: NOVERBOSE

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
–VERBOSE | –NOVERBOSE

502 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1tl8adik7ypwun1utdwxaauf9wq.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Required Arguments
-VERBOSE

writes the settings of SAS system options from the configuration file, the SAS
command, and the SASV9_OPTIONS environment variable to the SAS log. For
the CONFIG option, VERBOSE lists the names of the configuration files.

-NOVERBOSE
does not write the settings of the system options to the SAS log.

Details
In previous releases of SAS, the output from the VERBOSE system option
appeared as a simple list of options and their values. The list appeared in the
window where SAS was invoked. Pressing the Enter key advanced the list one line
at a time. Pressing the spacebar advanced the list page by page. Pressing the Q
key displayed the entire list, and brought you back to the prompt.

For SAS 9.4 and beyond, the list of system options and their values is still created.
In addition, SAS creates a list that identifies where the options were set. This list is
written to a global journal file, and then it is written to the SAS log. The advantage of
writing to a global journal file is that if SAS fails to initialize, output is still available,
even though a SAS log was not created.

See Also
System Options:

n “OPLIST System Option: UNIX” on page 465

Other References:

n “Customizing Your SAS Session By Using System Options” on page 22

WORK System Option: UNIX
Specifies the location of the Work library.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: Set in the installed !SASROOT/sasv9.cfg file

UNIX specifics: all

WORK System Option: UNIX 503

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “WORK= System Option” in SAS System Options: Reference

Syntax
–WORK filename | directory

Required Arguments
filename

specifies a file that contains a list of directories and optional keywords. SAS
chooses a directory from the list in the file as the location for the Work library for
the current SAS session.

directory
specifies a directory as the location for the Work library for the current SAS
session.

Details

The Basics
If you use the filename option, SAS opens the file, and selects one of the directories
to use as the location for the Work library. SAS either randomly selects a directory
or selects a directory based on available space. You use the METHOD keyword to
make your selection.

If you use the directory option, SAS continues its initialization using the specified
directory as the location for the Work library.

Making the Allocation of Work Libraries More
Dynamic
The filename option contains a list of directories that can be used for the Work
library. Individual SAS Work libraries still reside in a single directory. You use
METHOD=RANDOM to specify that the directory for the Work library is randomly
chosen from the list of directories. SAS selects one directory per session as the
location for the Work library. This selection enables you to balance the I/O load
across multiple hardware systems. You use METHOD=SPACE to specify the
directory that has the most available space. If the METHOD keyword is not
specified, SAS defaults to randomly selecting a directory.

504 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1er6tm8fay8u2n1fhktmeoy2be4.htm&locale=en

Examples

Example 1: Spreading a Processing Load across
Multiple Volumes of Different Disks
The following example shows how to spread an I/O processing load across multiple
volumes of different disks. In this case, you use METHOD=RANDOM. A file
named /sasinfo/workfiles contains the following information:

/disk1/sastempfiles
/disk2/sastempfiles
/disk3/sastempfiles
method=random

The Work library for a particular SAS session is placed on either disk1, disk2, or
disk3. The configuration file or command line would include the following:

-work /sasinfo/workfiles

Example 2: Choosing the Directory That Has the
Most Available Space
When you process your data, you can select the directory that has the most
available space. In this case, you use METHOD=SPACE. In the following
example, /sasinfo/workfiles contains the following directories:

/disk1/sastempfiles
/disk2/sastempfiles
/disk3/sastempfiles
method=space

The Work library is placed on the disk with the most available space.

See Also
System Options:

n “WORKINIT System Option: UNIX” on page 505

WORKINIT System Option: UNIX
Initializes the Work library.

Valid in: SAS 9.4: Configuration file, SAS invocation, SASV9_OPTIONS environment variable,
SAS Viya: Configuration file, SAS invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Files

WORKINIT System Option: UNIX 505

PROC
OPTIONS
GROUP=

ENVFILES

Default: WORKINIT

UNIX specifics: WORKINIT does not erase files from previous sessions

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

See: “WORKINIT System Option” in SAS System Options: Reference

Syntax
–WORKINIT | –NOWORKINIT

Required Arguments
-WORKINIT

specifies that a new subdirectory is to be created in the directory specified in the
WORK option.

-NOWORKINIT
specifies that the system is to use the directory specified by the WORK option.

n If the system does not find any old subdirectories, it creates a new one.

n If the system finds more than one old subdirectory, it uses the latest one.

n If file locking is in effect (see “FILELOCKS System Option: UNIX” on page
431), the system looks for the latest unlocked directory. If it finds none, then it
creates a new one.

Details
The WORKINIT option controls whether the Work library is initialized at SAS
command.

See Also
System Options:

n “FILELOCKS System Option: UNIX” on page 431

n “WORK System Option: UNIX” on page 503

506 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p09alrx4a9rop4n13xu3jpu37v3y.htm&locale=en

WORKPERMS System Option: UNIX
Sets the permissions of the SAS Work library when it is initially created.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Files

PROC
OPTIONS
GROUP=

ENVFILES

Default: 700

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
–WORKPERMS permission-value

Required Argument
permission-value

specifies the octal value representing the permissions for the SAS Work
directory. Values can be any octal value setting the permission of a UNIX
directory. Examples of values include umask, 700, 755, 770, 775, and 777.

Details
The WORKPERMS system option enables you to change or remove the current file
mode creation mask value when you initially create a SAS Work library. This means
that you can change the value of permission-value to change file permissions for a
new Work library.

XCMD System Option: UNIX
Specifies whether the X command is valid in the SAS session.

Valid in: SAS 9.4: Configuration file, SAS invocation, SAS Viya: Configuration file, SAS
invocation, SASV9_OPTIONS environment variable

Category: Environment Control: Display

XCMD System Option: UNIX 507

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

PROC
OPTIONS
GROUP=

ENVDISPLAY

Defaults: SAS 9.4 in SAS Windowing Environment: XCMD
SAS 9.4 in SAS Studio: NOXCMD
SAS Viya: NOXCMD

UNIX specifics: all

Note: This option can be restricted by a site administrator. For more information, see
“Restricted Options” in SAS System Options: Reference.

Syntax
-XCMD | -NOXCMD

Required Arguments
-XCMD

specifies that the X command is valid in the current SAS session.

-NOXCMD
specifies that the X command is not valid in the current SAS session.

Details
The XCMD system option specifies whether the X command is valid in the current
SAS session.

You cannot use several SAS statements, objects, or facilities if you use the
NOXCMD system option. Examples of these statements, objects, and facilities
include the following:

n the PIPE device type in the FILENAME statement

n the CALL SYSTEM routine

n the %SYSEXEC macro

n any facility that SAS uses to execute a shell-level command

See Also
CALL Routines:

n “CALL SYSTEM Routine: UNIX” on page 328

Commands:

n “X Command: UNIX” on page 295

508 Chapter 20 / System Options under UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

Macros:

n “%SYSEXEC” on page 367

Statements:

n “FILENAME Statement: UNIX” on page 377

Other References:

n “Executing Operating System Commands from Your SAS Session” on page 18

XCMD System Option: UNIX 509

510 Chapter 20 / System Options under UNIX

PART 5

Procedures under UNIX

Chapter 21
Overview . 513

Chapter 22
CATALOG Procedure: UNIX . 515

Chapter 23
CIMPORT Procedure: UNIX . 517

Chapter 24
CONTENTS Procedure: UNIX . 521

Chapter 25
CONVERT Procedure: UNIX . 525

Chapter 26
CPORT Procedure: UNIX . 531

Chapter 27
DATASETS Procedure: UNIX . 535

Chapter 28
OPTIONS Procedure: UNIX . 541

Chapter 29
PMENU Procedure: UNIX . 545

Chapter 30
PRINTTO Procedure: UNIX . 547

Chapter 31
SORT Procedure: UNIX . 551

511

512

21
Overview

SAS Procedures under UNIX . 513

SAS Procedures under UNIX
This section describes SAS procedures that have behavior or syntax that is specific
to UNIX environments. Each procedure description includes a brief “UNIX specifics”
section that explains which aspect of the procedure is specific to UNIX. Each
procedure is described in both this documentation and in the Base SAS Procedures
Guide.

If the information under the "UNIX specifics" is "all," then the procedure is described
only in this documentation.

513

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

514 Chapter 21 / Overview

Chapter 22
CATALOG Procedure: UNIX

Overview: CATALOG Procedure: UNIX . 515
CATALOG Procedure: Behavior That Is Specific to UNIX 515

Syntax: CATALOG Procedure: UNIX . 516
CONTENTS Statement . 516

Overview: CATALOG Procedure: UNIX

CATALOG Procedure: Behavior That Is Specific to
UNIX

Note: This documentation is a simplified version of the CATALOG procedure
documentation. For the complete syntax and its explanation, see “CATALOG
Procedure” in Base SAS Procedures Guide.

The FILE= option in the CONTENTS statement of the CATALOG procedure accepts
a fileref. If the name specified does not correspond to a fileref, a file with that name
and an extension of .lst is created in the current directory. For example, if myfile
is not a fileref, the following code creates the file myfile.lst in your current
directory:

proc catalog catalog=sasuser.profile;
 contents file=myfile;
run;

SAS writes the following output to the Log:

NOTE: 6 entries have been written to the output file /users/userid/MYFILE.lst.

515

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n11st7possem5en1vo07v2nlxg0c.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n11st7possem5en1vo07v2nlxg0c.htm&locale=en

Note: The filename that is created is always stored in lowercase, even if you
specified it in uppercase. In the SAS log, however, the filename is listed in
uppercase.

Syntax: CATALOG Procedure: UNIX
Restriction: This procedure is not included in SAS Viya.

UNIX specifics: FILE= option in the CONTENTS statement

See: “CATALOG Procedure” in Base SAS Procedures Guide

PROC CATALOG CATALOG=<libref.> catalog <ENTRYTYPE=etype> <KILL>;
CONTENTS <OUT=SAS-data-set> <FILE=fileref>;

Statement Task

CONTENTS Print the contents of a catalog

CONTENTS Statement: UNIX
Prints the contents of a SAS catalog.

Syntax
CONTENTS <OUT=SAS-data-set> <FILE=fileref>;

Optional Argument
fileref

names a file specification that is specific to the UNIX operating environment.

516 Chapter 22 / CATALOG Procedure: UNIX

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n11st7possem5en1vo07v2nlxg0c.htm&locale=en

Chapter 23
CIMPORT Procedure: UNIX

Overview: CIMPORT Procedure: UNIX . 517
CIMPORT Procedure: Behavior That Is Specific to UNIX 517

Syntax: CIMPORT Procedure: UNIX . 518
PROC CIMPORT Statement . 518

Example: Moving Data Sets . 519

Overview: CIMPORT Procedure: UNIX

CIMPORT Procedure: Behavior That Is Specific to
UNIX

Note: This documentation is a simplified version of the CIMPORT procedure
documentation. For the complete syntax and its explanation, see “CIMPORT
Procedure” in Base SAS Procedures Guide.

Starting in SAS 9.1, you can use the MIGRATE procedure to migrate a SAS library
from a previous release. For more information, see “Migrating 32-Bit SAS Files to
64-Bit in UNIX Environments” on page 57, the MIGRATE procedure, and Cross-
Release Compatibility at the SAS Technical Support site.

The CIMPORT procedure imports a transport file that was created (exported) by the
CPORT procedure. The transport file can contain a SAS data set, a SAS catalog, or
an entire SAS library.

Typically, the INFILE= option is used to designate the source of the transport file. If
this option is omitted, CIMPORT uses the default file Sascat.dat in the current
directory as the transport file.

517

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0sf0mvsb4f076n14i2u82w9z4st.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0sf0mvsb4f076n14i2u82w9z4st.htm&locale=en
https://support.sas.com/en/technical-support.html

Note: CIMPORT works only with transport files created by the CPORT procedure. If
the transport file was created using the XPORT engine with the COPY procedure,
then another PROC COPY must be used to restore the transport file. For more
information, see “COPY Procedure” in Base SAS Procedures Guide.

Syntax: CIMPORT Procedure: UNIX
Restriction: This procedure is not included in SAS Viya.

UNIX specifics: name and location of transport file

See: “CIMPORT Procedure” in Base SAS Procedures Guide

PROC CIMPORT destination=libref | <libref.>member-name <options>;

Statement Task

PROC CIMPORT Restore a transport file

PROC CIMPORT Statement: UNIX
Restores a transport file that was created by the CPORT procedure.

Syntax
PROC CIMPORT destination=libref | <libref.>member-name <options>;

Required Arguments
destination

identifies the files in the transport file as a single SAS data set, single SAS
catalog, or multiple members of a SAS library.

libref | <libref.>member-name
specifies the name of the SAS data set, catalog, or library to be created from the
transport file.

See Also
Procedures:

518 Chapter 23 / CIMPORT Procedure: UNIX

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p04y85z9f13uaan10s1k40ptx6gs.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n0sf0mvsb4f076n14i2u82w9z4st.htm&locale=en

n Chapter 26, “CPORT Procedure,” on page 531

Other References:

n “Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments” on page 57

n “Moving and Accessing SAS Files between Operating Environments” in Moving
and Accessing SAS Files

Example: Moving Data Sets CIMPORT
Procedure: UNIX

Example 1: Moving Data Sets
For this example, a SAS library that contains multiple SAS data sets was exported
to a file (called transport-file) using the CPORT procedure on a foreign host.
The transport file is then moved by a binary transfer to the receiving host.

The following code extracts all of the SAS data sets and catalogs stored within the
transport file and restores them to their original state in the new library, called
SAS-library.

libname newlib 'SAS-library';
filename tranfile 'transport-file';

proc cimport lib=newlib infile=tranfile;
run;

Example 1: Moving Data Sets 519

http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=n0l6dnk8d1edvun1myc3t5e4z0et.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=n0l6dnk8d1edvun1myc3t5e4z0et.htm&locale=en

520 Chapter 23 / CIMPORT Procedure: UNIX

Chapter 24
CONTENTS Procedure: UNIX

Overview: CONTENTS Procedure: UNIX . 521
CONTENTS Procedure: Behavior That Is Specific to UNIX 521

Syntax: CONTENTS Procedure: UNIX . 522
PROC CONTENTS Statement . 522

Example: Executing PROC CONTENTS . 522

Overview: CONTENTS Procedure: UNIX

CONTENTS Procedure: Behavior That Is Specific
to UNIX

Note: This documentation is a simplified version of the CONTENTS procedure
documentation. For the complete syntax and its explanation, see “CONTENTS
Procedure” in Base SAS Procedures Guide.

In SAS 9.4M3, the CONTENTS procedure displays file size in KB, MB, or GB, as
appropriate. This value is an approximation and is sufficient for most purposes. The
CONTENTS procedure also displays the exact file size in bytes.

The CONTENTS procedure produces the same information as the CONTENTS
statement in the DATASETS procedure. (See Chapter 27, “DATASETS Procedure,”
on page 535 for a comparison.)

521

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

Syntax: CONTENTS Procedure: UNIX
Category: CAS

UNIX specifics: information displayed in the SAS output

See: “CONTENTS Procedure” in Base SAS Procedures Guide

PROC CONTENTS <options>;

PROC CONTENTS Statement: UNIX
Prints the description of the contents of one or more files from a SAS library.

Syntax
PROC CONTENTS <options>;

Example: Executing PROC CONTENTS
CONTENTS Procedure: UNIX

Example 1: Executing PROC CONTENTS
The following SAS code executes PROC CONTENTS to describe the
Sashelp.Zipcode data set:

proc contents data=sashelp.zipcode;
run;

522 Chapter 24 / CONTENTS Procedure: UNIX

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

Output 24.1 Output from PROC CONTENTS

Example 1: Executing PROC CONTENTS 523

524 Chapter 24 / CONTENTS Procedure: UNIX

Chapter 25
CONVERT Procedure: UNIX

Overview: CONVERT Procedure: UNIX . 525
CONVERT Procedure: What Does This Procedure Do? . 525

Concepts: CONVERT Procedure: UNIX . 526
How Missing Values Are Handled . 526
How Variable Names Are Assigned . 526
Comparison with Interface Library Engines . 527

Syntax: CONVERT Procedure: UNIX . 528
PROC CONVERT Statement . 528

Examples: CONVERT Procedure: UNIX . 529
Example 1: Converting a BMDP Save File . 529
Example 2: Converting an OSIRIS File . 530
Example 3: Converting an SPSS File . 530

Overview: CONVERT Procedure: UNIX

CONVERT Procedure: What Does This Procedure
Do?

The CONVERT procedure converts BMDP and OSIRIS system files, and SPSS
export files to SAS data sets. The procedure is supplied for compatibility. The
procedure invokes the appropriate engine to convert files.

PROC CONVERT produces one output data set, but no printed output. The new
data set contains the same information as the input system file. Exceptions are
noted in “How Missing Values Are Handled” on page 526.

The procedure converts system files from these products:

525

n BMDP saves files up to and including the most recent release of BMDP
(available for AIX, HP-UX, and Solaris only).

Note: Beginning in SAS 9.4M8, the HP-UX platform is no longer supported.

n OSIRIS saves files through and including OSIRIS IV. (Hierarchical file structures
are not supported.)

Because the BMDP, OSIRIS, and SPSS products are maintained by other
organizations, changes to these products might make new files incompatible with
the current version of PROC CONVERT. SAS upgrades PROC CONVERT to
support changes to these products only when a new version of SAS is released.

Concepts: CONVERT Procedure: UNIX

How Missing Values Are Handled
If a numeric value in the output data set has no value or has a system missing
value, PROC CONVERT assigns it a missing value.

How Variable Names Are Assigned

Overview of Variable Name Assignments
The following sections explain how names are assigned to the SAS variables
created by the CONVERT procedure.

CAUTION
Make sure that the translated names are unique. Variable names are translated as
indicated in the following sections.

Variable Names in BMDP Output
Variable names from the BMDP save file are used in the SAS data set, but
nontrailing blanks and all special characters are converted to underscores in the
SAS variable names. The subscript in BMDP variable names, such as x(1),

526 Chapter 25 / CONVERT Procedure: UNIX

becomes part of the SAS variable name with the parentheses omitted: X1.
Alphabetic BMDP variables become SAS character variables of corresponding
length. Category records from BMDP are not accepted.

Variable Names in OSIRIS Output
For single-response variables, the V1 through V9999 name becomes the SAS
variable name. For multiple-response variables, the suffix Rn is added to the
variable name where n is the response. For example, V25R1 would be the first
response of the multiple-response V25. If the variable after V1000 has 100 or more
responses, responses above 99 are eliminated. Numeric variables that OSIRIS
stores in character, fixed-point binary, or floating-point binary mode become SAS
numeric variables. Alphabetic variables become SAS character variables; any
alphabetic variable of length greater than 200 is truncated to 200. The OSIRIS
variable description becomes a SAS variable label, and OSIRIS print format
information becomes a SAS format.

Variable Names in SPSS Output
SPSS variable names and variable labels become variable names and labels
without change. SPSS alphabetic variables become SAS character variables of the
same length. SPSS blank values are converted to SAS missing values. SPSS print
formats become SAS formats, and the SPSS default precision of no decimal places
becomes part of the variables' formats. The SPSS DOCUMENT data is copied so
that the CONTENTS procedure can display it. SPSS value labels are not copied.

Comparison with Interface Library Engines
The CONVERT procedure is closely related to the interface library engines BMDP,
OSIRIS, and SPSS. (In fact, the CONVERT procedure uses these engines.) For
example, the following two sections of code provide identical results:

filename myfile 'mybmdp.dat';
proc convert bmdp=myfile out=temp;
run;

libname myfile bmdp 'mybmdp.dat';
data temp;
 set myfile._first_;
run;

However, the BMDP, OSIRIS, and SPSS engines provide more extensive capability
than PROC CONVERT. For example, PROC CONVERT converts only the first
BMDP member in a save file. The BMDP engine, in conjunction with the COPY
procedure, copies all members.

Concepts: CONVERT Procedure: UNIX 527

Syntax: CONVERT Procedure: UNIX
Restriction: This procedure is not included in SAS Viya.

UNIX specifics: all

PROC CONVERT product-specification <option-list>;

Statement Task

PROC CONVERT Convert BMDP and OSIRIS system files and SPSS
export files

PROC CONVERT Statement: UNIX
Converts BMDP and OSIRIS system files and SPSS export files to SAS data sets.

Syntax
PROC CONVERT product-specification <option-list>;

Required Argument
product-specification

Product-specification can be one of the following:

BMDP=fileref <(CODE=code CONTENT=content-type)>
converts the first member of a BMDP save file created under UNIX (AIX) into
a SAS data set. Here is an example:

filename save '/usr/mydir/bmdp.dat';
proc convert bmdp=save;
run;

If you have more than one save file in the BMDP file referenced by the fileref
argument, you can use two options in parentheses after fileref. The CODE=
option specifies the code of the save file that you want, and the CONTENT=
option specifies the content of the save file. For example, if a file with
code=judges has a content of DATA, you can use the following statements:

filename save '/usr/mydir/bmdp.dat';
proc convert bmdp=save(code=judges
 content=data);
run;

528 Chapter 25 / CONVERT Procedure: UNIX

OSIRIS=fileref | libref
specifies a fileref or libref for the OSIRIS file to be converted into a SAS data
set. You must also include the DICT= option.

SPSS=fileref | libref
specifies a fileref or libref for the SPSS export file that is to be converted into
a SAS data set. The SPSS file must be created by using the SPSS EXPORT
command, but it can be from any operating environment.

Optional Argument
option-list

Option-list can be one of the following:

DICT=fileref | libref
specifies a fileref or libref of the dictionary file for the OSIRIS file. DICT= is
valid only when used with the OSIRIS product specification.

FIRSTOBS=n
gives the number of the observation where the conversion is to begin, so that
you can skip observations at the beginning of the BMDP, OSIRIS, or SPSS
file.

OBS=n
specifies the number of the last observation to be converted. This option
enables you to exclude observations at the end of the file.

OUT=SAS-data-set
names the SAS data set that holds the converted data. If OUT= is omitted,
SAS still creates a Work data set and automatically names it DATAn, just as if
you had omitted a data set name in a DATA statement. For more information,
see For more information, see “Introduction to SAS Files, Libraries, and
Engines in UNIX Environments” on page 45.

See Also
“Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments” on page 78

Examples: CONVERT Procedure: UNIX

Example 1: Converting a BMDP Save File
The following statements convert a BMDP save file and produce the temporary SAS
data set temp, which contains the converted data:

filename bmdpfile 'bmdp.savefile';
proc convert bmdp=bmdpfile out=temp;

Example 1: Converting a BMDP Save File 529

run;

Example 2: Converting an OSIRIS File
The following statements convert an OSIRIS file and produce the temporary SAS
data set temp, which contains the converted data:

filename osirfile 'osirdata';
filename dictfile 'osirdict';
proc convert osiris=osirfile dict=dictfile
 out=temp;
run;

Example 3: Converting an SPSS File
The following statements convert an SPSS file and produce the temporary SAS data
set temp, which contains the converted data:

filename spssfile 'spssfile.num1';
proc convert spss=spssfile out=temp;
run;

530 Chapter 25 / CONVERT Procedure: UNIX

Chapter 26
CPORT Procedure: UNIX

Overview: CPORT Procedure: UNIX . 531
CPORT Procedure: Behavior That Is Specific to UNIX . 531

Syntax: CPORT Procedure: UNIX . 532
PROC CPORT Statement . 532

Example: Exporting Files . 533

Overview: CPORT Procedure: UNIX

CPORT Procedure: Behavior That Is Specific to
UNIX

Note: This version is a simplified version of the CPORT procedure syntax. For the
complete syntax and its explanation, see “CPORT Procedure” in Base SAS
Procedures Guide.

Starting in SAS 9.1, you can use the MIGRATE procedure to migrate a SAS library
from a previous release. For more information, see “Migrating 32-Bit SAS Files to
64-Bit in UNIX Environments” on page 57, and the SAS Technical Support site.

The CPORT procedure creates a transport file to later be restored (imported) by the
CIMPORT procedure. The transport file can contain a SAS data set, SAS catalog, or
an entire SAS library.

Typically, the FILE= option is used to specify the path of the transport file. The value
of the FILE= option can be a fileref defined in a FILENAME statement or an
environment variable. If this option is omitted, CPORT creates the default file
Sascat.dat in the current directory as the transport file.

531

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1pihdm18p7g5wn1ezqpet80fvw8.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1pihdm18p7g5wn1ezqpet80fvw8.htm&locale=en
https://support.sas.com/en/technical-support.html

Note: The specification of the transport file is specific to UNIX directories.

Syntax: CPORT Procedure: UNIX
Restriction: This procedure is not included in SAS Viya.

UNIX specifics: name and location of transport file

See: “CPORT Procedure” in Base SAS Procedures Guide

PROC CPORT source-type=libref | <libref.>member-name <options>;

Statement Task

PROC CPORT Write SAS data sets and catalogs into a transport file

PROC CPORT Statement: UNIX
Writes SAS data sets and catalogs into a transport file.

Syntax
PROC CPORT source-type=libref | <libref.>member-name <options>;

Required Arguments
source-type

identifies the files to export as either a single SAS data set, single SAS catalog,
or multiple members of a SAS library.

libref | <libref.> member-name
specifies the name of the SAS data set, catalog, or library to be exported.

See Also
Procedures:

n Chapter 23, “CIMPORT Procedure,” on page 517

Other References:

532 Chapter 26 / CPORT Procedure: UNIX

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1pihdm18p7g5wn1ezqpet80fvw8.htm&locale=en

n “Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments” on page 57

n “Moving and Accessing SAS Files between Operating Environments” in Moving
and Accessing SAS Files

Example: Exporting Files CPORT
Procedure: UNIX

Example 1: Exporting Files
In this example, a SAS library called oldlib contains multiple SAS data sets and is
being exported to the file called transport-file:

libname oldlib 'SAS-data-library';
filename tranfile 'transport-file';

proc cport lib=oldlib file=tranfile;
run;

This transport file is then typically moved by binary transfer to a different host, where
the CIMPORT procedure is used to restore the SAS library.

Example 1: Exporting Files 533

http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=n0l6dnk8d1edvun1myc3t5e4z0et.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=n0l6dnk8d1edvun1myc3t5e4z0et.htm&locale=en

534 Chapter 26 / CPORT Procedure: UNIX

Chapter 27
DATASETS Procedure: UNIX

Overview: DATASETS Procedure: UNIX . 535
DATASETS Procedure: Behavior That Is Specific to UNIX 535

Syntax: DATASETS Procedure: UNIX . 536
CONTENTS Statement . 536

Examples: DATASETS Procedure: UNIX . 537
Example 1: Sample Data . 537
Example 2: Describing SAS Data Sets . 537

Overview: DATASETS Procedure: UNIX

DATASETS Procedure: Behavior That Is Specific to
UNIX

Note: This documentation is a simplified version of the DATASETS procedure
documentation. For the complete syntax and its explanation, see “DATASETS
Procedure” in Base SAS Procedures Guide.

The output from the DATASETS procedure shows you the libref, engine, and
physical name that are associated with the library. The output provides the names
and other properties of the SAS files that are contained in the library. Some of the
SAS library information, such as the filenames and access permissions, that is
displayed in the SAS log by the DATASETS procedure depends on the operating
environment and the engine. The information generated by the CONTENTS
statement also varies according to the device type or access method associated
with the data set.

535

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hmips60w5w3yn1hj9klna7aplw.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hmips60w5w3yn1hj9klna7aplw.htm&locale=en

If you specify the DIRECTORY option in the CONTENTS statement, the directory
information is displayed in both the Log and Output windows.

The CONTENTS statement in the DATASETS procedure generates the same
engine and host-dependent information as the CONTENTS procedure.

Syntax: DATASETS Procedure: UNIX
Category: CAS

UNIX specifics: Directory information, CONTENTS statement output

See: “DATASETS Procedure” in Base SAS Procedures Guide

PROC DATASETS <options>;
CONTENTS <option>;

Statement Task Example

CONTENTS Describe the contents of one or more SAS data
sets and print the directory of the SAS library

Ex. 2

CONTENTS Statement
Describes the contents of one or more SAS data sets and prints the directory of the SAS library.

Syntax
CONTENTS <UNIX-specific-option>;

Optional Argument
UNIX-specific-option

specifies an option for the CONTENTS statement that is specific to UNIX
environments. Here is the possible value:

DIRECTORY
writes a list of information that is specific to the UNIX operating environment.

For a complete list of options for this statement, see “CONTENTS Statement” in
Base SAS Procedures Guide.

536 Chapter 27 / DATASETS Procedure: UNIX

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hmips60w5w3yn1hj9klna7aplw.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1v2467vdjbp7xn1222c7t3sejz3.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1v2467vdjbp7xn1222c7t3sejz3.htm&locale=en

See Also
Procedures:

n “CONTENTS Procedure” in Base SAS Procedures Guide

Examples: DATASETS Procedure: UNIX

Example 1: Sample Data
The next example uses these text files as input for the IMPORT procedure and then
generates output for the DATASETS procedure.

Here are the contents of the space-delimited file grades.txt:

Student Year State Grade1 Grade2
1000 1980 NC 85 87
1042 1981 MD 92 92
1095 1979 PA 100 72
1187 1980 MA 87 94

Here are the contents of the space-delimited file majors.txt:

Student Year State Grade1 Grade2 Major
1000 1980 NC 84 87 Math
1042 1981 MD 92 92 History
1095 1979 PA 100 73 Physics
1187 1980 MA 87 74 Dance
1204 1981 NC 82 96 French

Example 2: Describing SAS Data Sets
The following SAS code creates two SAS data sets, classes.grades and
classes.majors, and executes PROC DATASETS using classes.majors as the
input data set.

The first page of output from this example is produced by the DIRECTORY option in
the CONTENTS statement. This information also appears in the SAS log. Page 2 in
this output describes the data set classes.majors and appears only in the SAS
output:

libname classes '.';

proc import datafile='./mydata/grades.txt'
 dbms=dlm
 out=classes.grades

Example 2: Describing SAS Data Sets 537

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1hqa4dk5tay0an15nrys1iwr5o2.htm&locale=en

 replace;
 delimiter=' ';
run;

proc import datafile='./mydata/majors.txt'
 dbms=dlm
 out=classes.majors
 replace;
 delimiter=' ';
run;

proc datasets library=classes;
 contents data=majors directory;
run;

Output 27.1 Output from the DATASETS Procedure

538 Chapter 27 / DATASETS Procedure: UNIX

Example 2: Describing SAS Data Sets 539

540 Chapter 27 / DATASETS Procedure: UNIX

Chapter 28
OPTIONS Procedure: UNIX

Overview: OPTIONS Procedure: UNIX . 541
OPTIONS Procedure: Behavior That Is Specific to UNIX 541

Syntax: OPTIONS Procedure: UNIX . 542
PROC OPTIONS Statement . 542

Usage: OPTIONS Procedure: UNIX . 543
Identify Where an Option Was Set . 543

Overview: OPTIONS Procedure: UNIX

OPTIONS Procedure: Behavior That Is Specific to
UNIX

Note: This documentation is a simplified version of the OPTIONS procedure
syntax. For the complete syntax and its explanation, see “OPTIONS Procedure” in
SAS System Options: Reference.

PROC OPTIONS lists the current settings of the system options that are available in
all operating environments, as well as the system options that are available in the
UNIX environment. If you specify the HOST option in the PROC OPTIONS
statement, it lists those options that are available only under UNIX (host options).
The option values that are displayed by PROC OPTIONS depend on the default
values of SAS, the default values that are set by your site administrator, the default
values in your own configuration file, and any changes made by using the OPTIONS
statement. Some values might be dependent on the device on which you are
running SAS.

541

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1kwrbpvinbd5bn1cpha9brh92eg.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1kwrbpvinbd5bn1cpha9brh92eg.htm&locale=en

For information about a specific option, see “SAS System Options under UNIX” on
page 409.

Syntax: OPTIONS Procedure: UNIX
Category: CAS

UNIX specifics: options that are available only under UNIX

See: “OPTIONS Procedure” in SAS System Options: Reference

PROC OPTIONS <options>;

PROC OPTIONS Statement: UNIX
Lists the current settings of SAS system options.

Syntax
PROC OPTIONS <option>;

Optional Argument
option

requests details about a set of options.

HOST
displays only host-specific options.

NOHOST
displays only portable (host-independent) options.

Alias PORTABLE

See Also
“Order of Precedence for Processing SAS Configuration Files” on page 29

542 Chapter 28 / OPTIONS Procedure: UNIX

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1kwrbpvinbd5bn1cpha9brh92eg.htm&locale=en

Usage: OPTIONS Procedure: UNIX

Identify Where an Option Was Set
You can specify the VALUE option in a PROC OPTIONS statement to identify the
option’s scope and the method that was used to set the option. If an option’s value
is set using multiple methods (for example, in an OPTIONS statement or in multiple
configuration files), the VALUE option identifies which method determines the
effective value. If the method is a configuration file, the VALUE option identifies the
file path.

Use the following PROC OPTIONS statement to specify the VALUE option:

proc options option=option-name value;

For more information, see “OPTIONS Procedure” in SAS System Options:
Reference.

Usage: OPTIONS Procedure: UNIX 543

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1kwrbpvinbd5bn1cpha9brh92eg.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1kwrbpvinbd5bn1cpha9brh92eg.htm&locale=en

544 Chapter 28 / OPTIONS Procedure: UNIX

Chapter 29
PMENU Procedure: UNIX

Overview: PMENU Procedure: UNIX . 545
PMENU Procedure: Behavior That Is Specific to UNIX . 545

Syntax: PMENU Procedure: UNIX . 546
PROC PMENU Statement . 546

Overview: PMENU Procedure: UNIX

PMENU Procedure: Behavior That Is Specific to
UNIX

Note: This version is a simplified version of the PMENU procedure syntax. For the
complete syntax and its explanation, see “PMENU Procedure” in Base SAS
Procedures Guide.

The PMENU procedure defines PMENU facilities for dialog boxes that are created
by using the WINDOW statement in Base SAS software, the %WINDOW macro
statement, the BUILD procedure of SAS/AF software, or the SAS Component
Language (SCL) PMENU function with SAS/AF and SAS/FSP software.

Under UNIX, the following options are ignored:

n ATTR= and COLOR= options in the TEXT statement. The colors and attributes
for text and input fields are controlled by the CPARMS colors specified in the
SASCOLOR window. For more information, see “Customizing Colors in UNIX
Environments” on page 242.

n ACCELERATE= and the MNEMONIC= options in the “TITLE Statement” in SAS
Global Statements: Reference.

545

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p12fiom5fbp7mjn12ezd20neooi0.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p12fiom5fbp7mjn12ezd20neooi0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p10gcmrmf83iaxn1ilrx4pra969n.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p10gcmrmf83iaxn1ilrx4pra969n.htm&locale=en

Syntax: PMENU Procedure: UNIX
Restriction: This procedure is not included in SAS Viya.

UNIX specifics: ATTR= and COLOR= options in the TEXT statement have no effect; ACCELERATE=
and MNEMONIC= options in the ITEM statement are ignored

See: “PMENU Procedure” in Base SAS Procedures Guide

PROC PMENU <CATALOG=<libref.>catalog> <DESC 'entry-description'>;

PROC PMENU Statement: UNIX
Defines menu facilities for dialog boxes that are created with SAS software.

Syntax
PROC PMENU <CATALOG=<libref.>catalog> <DESC 'entry-description'>;

Optional Arguments
CATALOG=<libref.>catalog

specifies the catalog in which you want to store PMENU entries. If you omit
libref, the PMENU entries are stored in a catalog in the Sasuser library. If you
omit CATALOG=, the entries are stored in the Sasuser.Profile catalog.

DESC 'entry-description'
provides a description of the PMENU catalog entries created in the step.

546 Chapter 29 / PMENU Procedure: UNIX

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p12fiom5fbp7mjn12ezd20neooi0.htm&locale=en

Chapter 30
PRINTTO Procedure: UNIX

Overview: PRINTTO Procedure: UNIX . 547
PRINTTO Procedure: Behavior That Is Specific to UNIX 547

Syntax: PRINTTO Procedure: UNIX . 548
PROC PRINTTO Statement . 548

Usage: PRINTTO Procedure: UNIX . 549
Send Program Output to an Alternate Location . 549

Overview: PRINTTO Procedure: UNIX

PRINTTO Procedure: Behavior That Is Specific to
UNIX

Note: This version is a simplified version of the PRINTTO procedure syntax. For
the complete syntax and its explanation, see “PRINTTO Procedure” in Base SAS
Procedures Guide.

Use the PRINTTO procedure to direct program output or log output to a file that is
different from the default locations. In a UNIX environment, the file specifications for
the LOG= or PRINT= options in the PROC PRINTTO statement must be compatible
with UNIX locations.

547

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p08blwp6gwk25mn1hypjjrncx3bn.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p08blwp6gwk25mn1hypjjrncx3bn.htm&locale=en

Syntax: PRINTTO Procedure: UNIX
Category: CAS

UNIX specifics: Valid values of file-specification

See: “PRINTTO Procedure” in Base SAS Procedures Guide

PROC PRINTTO <option>;

Statement Task

PROC PRINTTO Define destinations for SAS procedure output or the SAS
log

PROC PRINTTO Statement: UNIX
Defines destinations for SAS procedure output and the SAS log.

Syntax
PROC PRINTTO <option>;

Optional Argument
option

specifies an option to use with the PRINTTO procedure. The following options
are available:

LOG=file-specification
specifies a fully qualified pathname (in quotation marks), an environment
variable, a fileref, or a file in the current directory (without extension).

PRINT=file-specification
specifies a fully qualified pathname (in quotation marks), an environment
variable, a fileref, or a file in the current directory (without extension). If you
specify a fileref that is defined with the PRINTER device-type keyword, output
is sent directly to the printer.

See Also
“Overview of Printing Output in UNIX Environments” on page 114

548 Chapter 30 / PRINTTO Procedure: UNIX

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p08blwp6gwk25mn1hypjjrncx3bn.htm&locale=en

Usage: PRINTTO Procedure: UNIX

Send Program Output to an Alternate Location
The following statements send any SAS log entries that are generated after the
RUN statement to the external file that is associated with the fileref myfile:

filename myfile '/users/myid/mydir/mylog';
proc printto log=myfile;
run;

If myfile has not been defined as a fileref, then PROC PRINTTO creates the file
myfile.log in the current directory.

The following statements send any procedure output that is generated after the
RUN statement to the file /users/myid/mydir/myout:

proc printto print='/users/myid/mydir/myout';
run;

The following statements send the procedure output from the CONTENTS
procedure directly to the system printer:

filename myfile printer;
proc printto print=myfile;
run;
proc contents data=oranges;
run;

To redirect the SAS log and procedure output to their original default destinations,
run PROC PRINTTO without any options:

proc printto;
run;

If filerefs myprint and mylog have not been defined, then the following statements
send any SAS procedure output to myprint.lst and any log output to mylog.log in
the current directory:

proc printto print=myprint log=mylog;
run;

If filerefs myprint and mylog had been defined, the output would have gone to the
files that are associated with those filerefs.

Usage: PRINTTO Procedure: UNIX 549

550 Chapter 30 / PRINTTO Procedure: UNIX

Chapter 31
SORT Procedure: UNIX

Overview: SORT Procedure: UNIX . 551
SORT Procedure: Behavior That Is Specific to UNIX . 551

Concepts: SORT Procedure: UNIX . 552
SORTSIZE= Option . 552
TAGSORT Option . 554
Disk Space Considerations for PROC SORT . 554
Performance Tuning for PROC SORT . 555
Specifying the Host Sort Utility . 557
Specifying the SORTSEQ= Option with a Host Sort Utility 560

Syntax: SORT Procedure: UNIX . 561
PROC SORT Statement . 561

Example: Creating a View with a Single BY Variable . 562

Overview: SORT Procedure: UNIX

SORT Procedure: Behavior That Is Specific to UNIX
Note: This version is a simplified version of the SORT procedure syntax. For the
complete syntax and its explanation, see “SORT Procedure” in Base SAS
Procedures Guide.

The SORT procedure sorts observations in a SAS data set by one or more
character or numeric variables. The procedure then either replaces the original data
set or creates a new, sorted data set. By default under UNIX, the SORT procedure
uses the ASCII collating sequence.

The SORT procedure uses the sort utility that is specified by the SORTPGM system
option. Sorting can be done by SAS or by the syncsort utility. You can use all of the

551

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en

options that are available to the SAS sort utility, such as the SORTSEQ and
NODUPKEY options. In some situations, you can improve your performance by
using the NOEQUALS option. If you specify an option that is not supported by the
host sort, then the SAS sort is used instead. For more information about all of the
options that are available, see “SORT Procedure” in Base SAS Procedures Guide.

Note: Beginning in SAS 9.4M8, SAS does not support the syncsort host utility. If
you supply system options or system option values that pertain to syncsort, a note
is written to the SAS log that specifies that sorting is done by SAS.

Concepts: SORT Procedure: UNIX

SORTSIZE= Option

Limiting the Amount of Memory Available
to PROC SORT
You can use the SORTSIZE= system option in the PROC SORT statement to limit
the amount of memory that is available to the SORT procedure. This option can
reduce the amount of swapping SAS must do to sort the data set.

Note: If you do not specify the SORTSIZE= option, PROC SORT uses the value of
the SORTSIZE system option. The SORTSIZE system option can be defined in the
command line or in the SAS configuration file.

Syntax of the SORTSIZE= Option
The syntax of the SORTSIZE= system option is as follows:

SORTSIZE=memory-specification

Specify memory-specification as one of the following values:

n specifies the amount of memory in bytes.

nK specifies the amount of memory in kilobytes.

nM specifies the amount of memory in megabytes.

552 Chapter 31 / SORT Procedure: UNIX

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en

nG specifies the amount of memory in gigabytes.

Default Value of the SORTSIZE= Option
The default SAS configuration file sets this option based on the value of the
SORTSIZE system option. To view the default value for your operating environment,
execute the following code:

proc options option=sortsize;
run;

You can override the default value of the SORTSIZE system option in one of the
following ways:

n by specifying a different SORTSIZE= value in the PROC SORT statement

n by submitting an OPTIONS statement that sets the SORTSIZE system option to
a new value

n by setting the SORTSIZE system option in the command line during the
invocation of SAS

Improving Performance with the
SORTSIZE= Option
The SORTSIZE system option limits the amount of memory that is available to
PROC SORT. In general, you should set the SORTSIZE= option to be no larger than
the amount of memory that is available to the SAS process through the MEMSIZE
option.

When the SORTSIZE= value is large enough to fit the entire data set in memory,
you can achieve optimal sort performance if the amount of physical RAM available
is as large as SORTSIZE=. If you do not have enough physical RAM, then your
computer starts swapping the extra memory pages to disk and negates the
performance gains of using memory.

If the entire data set to be sorted does not fit in the memory space that is allocated
by SORTSIZE, SAS creates a temporary utility file to store the data. In this case,
SAS uses a sort algorithm that is tuned to sort using disk space instead of memory.
These temporary utility files are placed in the SAS Work location. However, these
files can be placed in a different file system so that I/O is not impeded by using the
UTILLOC system option.

If you can place the SAS data set that you want to sort in physical memory on your
machine, then a sort in SAS is very efficient. Set SORTSIZE to be larger than the
size of the data file. If you cannot fit the data file in physical memory, then set
SORTSIZE to 1G or less. In addition, SORTSIZE should always be set to a value
that is at least 8M smaller than MEMSIZE.

Concepts: SORT Procedure: UNIX 553

TAGSORT Option
The TAGSORT option in the PROC SORT statement is useful when there might not
be enough disk space to sort a large SAS data set. When you specify the
TAGSORT option, only the sort keys (that is, the variables specified in the BY
statement) and the observation number for each observation are stored in the
temporary utility files. The sort keys, together with the observation number, are
referred to as tags. At the completion of the sorting process, the tags are used to
retrieve the records from the input data set in sorted order. Thus, in cases where the
total number of bytes of the sort keys is small compared with the length of the
record, temporary disk use is reduced considerably.

You must have enough disk space to hold an additional copy of the data set (the
output data set) and the utility file that contains the tags. By default, this utility file is
stored in the SAS Work library. If this directory is too small, you can change this
directory by using the WORK system option. For more information, see “WORK
System Option: UNIX” on page 503.

Note: Note that while using the TAGSORT option might reduce temporary disk use,
the processing time could be higher. However, on systems with limited available disk
space, the TAGSORT option might enable data sets to be sorted in situations where
that would otherwise not be possible.

Disk Space Considerations for PROC SORT
You need to consider the following information when determining the amount of disk
space needed to run PROC SORT:

input SAS data set
PROC SORT uses the SAS input data set specified by the DATA= option.

Note: The input data option and output data options cannot both point to a CAS
table.

output SAS data set
PROC SORT stores the output SAS data set in the location that is specified by
the OUT= option. If you use the SAS single-threaded sort, and the OUT= option
is not specified, PROC SORT stores the output SAS data set in the Work library.

Note: The input data option and output data options cannot both point to a CAS
table.

utility file
The UTILLOC system option affects the storage location of the utility file only
when the SAS multi-threaded sort is used. The SAS single-threaded sort still
stores its utility file in the Work directory. Generally, for the single-threaded sort,
the utility file is slightly larger than the uncompressed input SAS data set

554 Chapter 31 / SORT Procedure: UNIX

because additional sortkey data, derived from the BY variables, is included with
each record. The utility file can be significantly larger than the uncompressed
input SAS data set when BY variables comprise a large portion of an observation
or when you use the SORTSEQ=LINGUISTIC option with character BY
variables. The utility file can also double in size in extreme circumstances, such
as when you have a very large input data set, very little memory available for
sorting, or a large utility file page size.

When the SORT procedure invokes the multi-threaded sort, you can distribute
multiple utility files to different locations. The utility file is similar in size to the
uncompressed input SAS data set. Usually, only a single utility file of this size is
required. However, in extreme circumstances, there might be up to two utility
files of this size that are used. PROC SORT distributes the two utility files to the
next two and least recently used locations.

Note: You can use the UTILLOC system option to specify a location in which
applications can store utility files.

temporary output SAS data set
During the sort, PROC SORT creates its output in the directory specified in the
OUT= option. If you do not specify OUT=, the output is created in the directory of
the input SAS data set. The temporary data set has the same filename as the
original data set, except it has an extension of .lck. After the sort completes
successfully, the original data set is deleted, and the temporary data set is
renamed to match the original data set. Therefore, you need to have enough
available disk space in the target directory to hold two copies of the data set.

You can reduce the amount of disk space that is needed by specifying the
OVERWRITE option in the PROC SORT statement. When OVERWRITE is
specified, SORT, if possible, deletes the input data set before it attempts to write the
replacement output data set. Deleting the input data set first can free storage space.
This option should be used only with a data set that is backed up, or with a data set
that you can reconstruct. For more information, see “SORT Procedure” in Base SAS
Procedures Guide.

Performance Tuning for PROC SORT

How SAS Determines the Amount of
Memory to Use
The MEMSIZE system option limits the amount of memory that is available to the
SAS process. The SORTSIZE system option limits the amount of memory that is
available to PROC SORT. The REALMEMSIZE system option specifies the amount
of real (not virtual) memory that is made available to SAS.

Although memory settings below the default values for MEMSIZE and SORTSIZE
might adversely affect sorting and SAS performance, making large amounts of
memory available might be of no benefit. The key for determining whether additional
memory might improve performance is whether the sort fits in memory. If the sorted

Concepts: SORT Procedure: UNIX 555

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en

file requires more memory than is allocated, then a SORTSIZE value in the range of
64–512M is generally the optimal value. SORTSIZE should always be set to a value
that is at least 8M smaller than MEMSIZE.

For information about setting the REALMEMSIZE system option, see
“REALMEMSIZE System Option: UNIX” on page 471.

Note: If you receive an out of memory error, then increase the value of MEMSIZE.
For more information, see “MEMSIZE System Option: UNIX” on page 457.

Guidelines for Setting the REALMEMSIZE
System Option
You can use the REALMEMSIZE system option with PROC SORT to determine how
much memory to use. It is important that the REALMEMSIZE value reflects the
amount of memory that is available on your system. For optimal performance, the
maximum value for the memory setting for all of your applications (including file
cache), should never exceed the amount of physical RAM on your computer. The
default value for REALMEMSIZE is 80% of the MEMSIZE setting. If REALMEMSIZE
is set too high, then PROC SORT might use more memory than is actually
available. Using too much memory causes excessive paging and adversely impact
system performance.

In general, REALMEMSIZE should be set to the amount of physical memory (not
including swap space) that you expect to be available to SAS at run time. A good
starting value is the amount of physical memory installed on the computer less the
amount that is being used by running applications and the operating system. You
can experiment with the REALMEMSIZE value until you reach optimum
performance for your environment. In some cases, optimum performance can be
achieved with a very low REALMEMSIZE value. A low value could cause SAS to
use less memory and leave more memory for the operating system to perform I/O
caching.

For more information, see “REALMEMSIZE System Option: UNIX” on page 471.

Using Other Options That Affect
Performance
The THREADS system option controls whether threaded procedures use threads. It
is available as both a system option and as a procedural override in PROC SORT.

The CPUCOUNT option is directly related to the THREADS option and defaults to
the number of CPUs on your computer. Depending on your file system and the
number of concurrent users, you might benefit from lowering the CPUCOUNT on
machines that have many CPUs. When the value of CPUCOUNT equals ACTUAL,
SAS returns the number of physical CPUs that are associated with the operating
environment where SAS is executing.

The UTILLOC system option allows for the spreading of utility files, and is a good
option for balancing I/O.

556 Chapter 31 / SORT Procedure: UNIX

The DETAILS option, specified in the PROC SORT statement, causes PROC SORT
to write messages to the SAS log detailing whether the sort was performed in
memory. If the sort was not performed in memory, then the details that are written
include the number of utility files and their sizes.

For more information about the THREADS, CPUCOUNT, and UTILLOC system
options see SAS System Options: Reference.

Creating Your Own Collating Sequences
If you want to provide your own collating sequences or change a collating sequence
provided for you, use the TRANTAB procedure to create or modify translation
tables. For more information, see “TRANTAB Procedure” in SAS National Language
Support (NLS): Reference Guide. When you create your own translation tables, they
are stored in your Sasuser.Profile catalog. Your translation table overrides any
translation table with the same name that is stored in the Host catalog.

Note: System managers can modify the Host catalog by copying newly created
tables from the Profile catalog to the Host catalog. Then, all users can access the
new or modified translation table.

If you are using the SAS windowing environment and want to see the names of the
collating sequences that are stored in the Host catalog, issue the following
command from any window:

catalog sashelp.host

If you are not using the SAS windowing environment, then issue the following
statements to generate a list of the contents in the Host catalog:

proc catalog catalog=sashelp.host;
contents;
run;

Entries of type TRANTAB are the collating sequences.

To see the contents of a particular translation table, use the following statements:

proc trantab table=table-name;
list;
run;

The contents of collating sequences are displayed in the SAS log.

Specifying the Host Sort Utility

Introduction to Using the Host Sort
SAS supports one host sort utility on UNIX called syncsort. You can use this
sorting application as an alternative sorting algorithm to the SAS sort. SAS

Concepts: SORT Procedure: UNIX 557

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p140vpknze29j0n1rbfs5fcxemu3.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p140vpknze29j0n1rbfs5fcxemu3.htm&locale=en

determines which sort to use by the values that are set for the SORTNAME,
SORTPGM, SORTCUT, and SORTCUTP system options.

Note: Beginning in SAS 9.4M8, the SORT procedure does not support using the
syncsort utility. If you supply system options or system option values that pertain to
syncsort, a note is written to the SAS log that specifies that sorting is done by SAS.

Setting the Host Sort Utility as the Sort
Algorithm
Note: Beginning in SAS 9.4M8, the syncsort utility is not supported. For this
reason, the SORTNAME= and SORTPGM= system options are not honored, and a
note is written to the SAS log that states that sorting is performed by SAS.

To specify a host sort utility as the sort algorithm, complete the following steps:

1 Specify the name of the host utility (syncsort) in the SORTNAME system option.

2 Set the SORTPGM system option to tell SAS when to use the host sort utility.

n If you specify SORTPGM=HOST, then SAS always prefers to use the host
sort utility.

n If you specify SORTPGM=BEST, then SAS chooses the best sorting method
(either the SAS sort or the host sort) for the situation.

Sorting Based on Size or Observations
The sort routine that SAS uses can be based on either the number of observations
in a data set, or on the size of the data set. When the SORTPGM system option is
set to BEST, SAS uses the first available and pertinent sorting algorithm based on
the following order of precedence:

n host sort utility

n SAS sort utility

Note: Beginning in SAS 9.4M8, SAS no longer supports the syncsort utility. For
this reason, the SORTCUT, SORTCUTP, and SORTPGM= system options are not
used, and a note is written to the SAS log that the SAS sort it used.

The SORTCUT system option is based on the number of observations in a data set.
The SORTCUTP system option is based on the size of the data set. SAS looks at
the values for the SORTCUT and SORTCUTP system options to determine which
sort routine to use. If the number of observations is greater than or equal to the
value of SORTCUT, SAS uses the host sort utility. If the number of bytes in a data
set is greater than the value of SORTCUTP, SAS uses the host sort utility.

558 Chapter 31 / SORT Procedure: UNIX

If SORTCUT and SORTCUTP are set to zero, SAS uses the SAS sort utility. If you
specify both system options, and either condition is met, SAS uses the host sort
utility.

When the following OPTIONS statement is in effect, the host sort utility (syncsort)
is used when the number of observations is 500 or greater:

options sortpgm=best sortcut=500;

In this example, the host sort utility is used when the size of the data set is greater
than 40M:

options sortpgm=best sortcutp=40M;

For more information about these sort options, see “SORTCUT System Option:
UNIX” on page 484, “SORTCUTP System Option: UNIX” on page 485, and
“SORTPGM System Option: UNIX” on page 489.

Changing the Location of Temporary Files
Used by the Host Sort Utility
By default, the host sort utilities use the location that is specified in the -WORK
option for temporary files. To change the location of these temporary files, specify a
location by using the SORTDEV system option. Here is an example:

options sortdev="/tmp/host";

For more information, see “SORTDEV System Option: UNIX” on page 487.

Note: Beginning in SAS 9.4M8, the syncsort host utility is not used. For this
reason, the SORTDEV system option is not used.

Passing Options to the Host Sort Utility
To specify options for the sort utility, use the SORTANOM system option. For a list of
valid options, see “SORTANOM System Option: UNIX” on page 483.

Note: Beginning in SAS 9.4M8, the syncsort host utility is not used. For this
reason, the SORTANOM system option is not used.

Passing Parameters to the Host Sort Utility
To pass parameters to the sort utility, use the SORTPARM system option. The
parameters that you can specify depend on the host sort utility. For more
information, see “SORTPARM System Option: UNIX” on page 488.

Concepts: SORT Procedure: UNIX 559

Note: Beginning in SAS 9.4M8, the syncsort host utility is not used. For this
reason, the SORTPARM system option is not used.

Specifying the SORTSEQ= Option with a Host Sort
Utility

The SORTSEQ= option enables you to specify the collating sequence for your sort.
For a list of valid values, see “SORT Procedure” in Base SAS Procedures Guide.

CAUTION
If you are using a host sort utility to sort your data, then specifying the
SORTSEQ= option might corrupt the character BY variables if the sort
sequence translation table and its inverse are not one-to-one mappings. In
other words, for the sort to work, the translation table must map each character to a
unique weight, and the inverse table must map each weight to a unique character.

If your translation tables do not map one-to-one, then you can use one of the
following methods to perform your sort:

n Create a translation table that maps one-to-one. Once you create a translation
table that maps one-to-one, you can easily create a corresponding inverse table
using the TRANTAB procedure. If your translation table is not mapped one-to-
one, then the following note appears in the SAS log when you try to create an
inverse table:

NOTE: This table cannot be mapped one to one.

For more information, see “TRANTAB Procedure” in SAS National Language
Support (NLS): Reference Guide.

n Use the SAS sort. You can specify the SAS sort using the SORTPGM system
option. For more information, see “SORTPGM System Option: UNIX” on page
489.

n Specify the collation order options of your host sort utility. See the documentation
for your host sort utility for more information.

Note: Beginning in SAS 9.4M8, the host sort utility syncsort is no longer
supported.

n Create a view with a single BY variable. For an example, see “Example: Creating
a View with a Single BY Variable” on page 562.

After using one of these methods, you might need to perform subsequent BY
processing using either the NOTSORTED option or the NOBYSORTED system
option. For more information about the NOTSORTED option, see “BY Statement” in
SAS DATA Step Statements: Reference. For more information about the
NOBYSORTED system option, see “BYSORTED System Option” in SAS System
Options: Reference.

560 Chapter 31 / SORT Procedure: UNIX

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p140vpknze29j0n1rbfs5fcxemu3.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p140vpknze29j0n1rbfs5fcxemu3.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p0yeyftk8ftuckn1o5qzy53284gz.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1nys0tu3s8iftn15s4fbp99ilc0.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1nys0tu3s8iftn15s4fbp99ilc0.htm&locale=en

Syntax: SORT Procedure: UNIX
Category: CAS

UNIX specifics: sort utilities available

See: “SORT Procedure” in Base SAS Procedures Guide

PROC SORT <option> <collating-sequence-option>;

Statement Task

PROC SORT Sort observations in a SAS data set by one or more
variables

PROC SORT Statement: UNIX
Sorts observations in a SAS data set by one or more variables, and then stores the resulting sorted
observations in a new SAS data set or replaces the original data set.

Syntax
PROC SORT <option> <collating-sequence-option>;

Optional Argument
option

SORTSIZE=memory-specification
specifies the maximum amount of memory available to the SORT procedure.
For more information about the SORTSIZE= option, see “SORTSIZE=
Option” on page 552.

TAGSORT
stores only the BY variables and the observation numbers in temporary files.
The TAGSORT option has no effect on a UNIX host that uses syncsort.

For more information about the TAGSORT option, see “TAGSORT Option” on
page 554.

DETAILS
specifies that PROC SORT write messages to the SAS log detailing whether
the sort was performed in memory. (This option is a statement option.)

If the sort was not performed in memory, then the details that are written to
the SAS log include the number of utility files that were used and their sizes.

PROC SORT Statement: UNIX 561

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1nd17xr6wof4sn19zkmid81p926.htm&locale=en

Tip Using the DETAILS option can help determine an ideal SORTSIZE
value.

See Also
Procedures:

n “IMPORT Procedure” in Base SAS Procedures Guide

n “TRANTAB Procedure” in SAS National Language Support (NLS): Reference
Guide

System Options:

n “MEMSIZE System Option: UNIX” on page 457

n “REALMEMSIZE System Option: UNIX” on page 471

n “SORTANOM System Option: UNIX” on page 483

n “SORTCUT System Option: UNIX” on page 484

n “SORTCUTP System Option: UNIX” on page 485

n “SORTDEV System Option: UNIX” on page 487

n “SORTNAME System Option: UNIX” on page 488

n “SORTPARM System Option: UNIX” on page 488

n “SORTPGM System Option: UNIX” on page 489

n “SORTSIZE System Option: UNIX” on page 490

n “UTILLOC= System Option” in SAS System Options: Reference

Example: Creating a View with a Single
BY Variable SORT Procedure: UNIX

Example 1: Creating a View with a Single BY
Variable

This example uses a simple text file called attendees.txt as input for the IMPORT
procedure . The file is a space-delimited text file that includes a list of names and
ages. Here are the contents of the attendees.txt file:

Name Age

562 Chapter 31 / SORT Procedure: UNIX

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1qn5sclnu2l9dn1w61ifw8wqhts.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p140vpknze29j0n1rbfs5fcxemu3.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p140vpknze29j0n1rbfs5fcxemu3.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1texr4rxo0ipyn1ovajj11raccx.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1qn5sclnu2l9dn1w61ifw8wqhts.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=n1qn5sclnu2l9dn1w61ifw8wqhts.htm&locale=en

Anne 35
ALBERT 10
JUAN 90
Janet 5
Bridget 23
BRIAN 45

The following example shows how to create a view by using a single BY variable.
SAS uses the BEST argument in the SORTPGM system option to sort the data. By
using BEST, SAS selects either the host sort or the SAS sort. (Sorting can also be
performed by a DBMS when you use a SAS/ACCESS engine to define a libref.)

Note: Beginning in SAS 9.4M8, the host sort utility syncsort is no longer
supported. For this reason, even when you specify SORTPGM=BEST, the SAS sort
is always used.

options sortpgm=best msglevel=i;

proc import datafile='./mydata/attendees.txt'
 dbms=dlm
 out=one
 replace;
 delimiter=' ';
run;

data oneview / view=oneview;
 set one;
 Name1=upcase(name);
run;

proc sort data=oneview out=final(drop=name);
 by name1;
run;

proc print data=final;
run;

Example Code 31.1 Log Output

NOTE: SAS threaded sort was used.

Output 31.1 Output from Creating a View with a Single BY Variable

Example 1: Creating a View with a Single BY Variable 563

564 Chapter 31 / SORT Procedure: UNIX

PART 6

Appendixes

Appendix 1
The !SASROOT Directory . 567

Appendix 2
Tools for the System Administrator . 573

Appendix 3
Text-Editing Commands . 591

Appendix 4
Using EBCDIC Data on ASCII Systems . 643

565

566

Appendix 1
The !SASROOT Directory

Introduction to the !SASROOT Directory . 567

Contents of the !SASROOT Directory . 568

Introduction to the !SASROOT Directory
When SAS is installed, its entire directory structure is located in a directory in your
file system. This directory is called SASHOME. The SASHOME directory can be located
anywhere in your file system.

n For SAS 9, the default location for SASHOME is /usr/local/SAS.

n For SAS Viya integrated with SAS 9.4M6, the default location for SASHOME
is /opt/sas/spre/home.

n For SAS Viya only, the default location for SASHOME is /opt/sas/viya/home.

The traditional !SASROOT directory (SAS Foundation) is automatically installed in a
subdirectory that is located in SASHOME.

n For SAS 9, the default directory for !SASROOT is SASHOME/SASFoundation/9.x,
where x is the SAS release.

n For SAS Viya, the default directory for !SASROOT is $SASHOME/SASFoundation.

Note: Here, $SASHOME indicates an environment variable that contains the
path to the SASHOME directory.

567

Contents of the !SASROOT Directory
The !SASROOT directory contains the files that are required to use SAS. This
directory includes invocation points, configuration files, sample programs, catalogs,
data sets, and executable files. You do not need to know the organization of these
directories to use SAS.

If all available SAS products are installed on your system, the !SASROOT directory
contains the files and directories that are listed in the following tables.

Table A19.1 SAS Files in the !SASROOT Directory

SAS File Description of Contents

In !SASROOT for

SAS 91

SAS Viya
Integrate
d with
SAS
9.4M52

SAS Viya
Only3

cas.settings contains environment variables that are needed
for CAS start-up.

X

sas is the default invocation point for SAS. X X

sassetup enables you to renew your SAS license. X

setinit.sas is the SAS file that was used to update the license
information.

X

sasv9.cfg is the default system configuration file for SAS.
This file should not be edited. (See
sasv9_local.cfg.)

X X

sasv9_local.c
fg

is the file where user-specified system options
should be added. This file overrides the options in
the default system configuration file and prevents
the options from being lost when you re-install or
upgrade SAS.

X X

sasv9_sampl
es.cfg

contains default SAS configuration option settings
that are specific to the products that are installed
on your system. This file should not be edited.
(See sasv9_local.cfg.)

X

1 /usr/local/sas/SASFoundation/9.x
2 /opt/sas/spre/home/SASFoundation
3 /opt/sas/viya/home/SASFoundation

568 Appendix 1 / The !SASROOT Directory

Table A19.2 SAS Subdirectories in the !SASROOT Directory

SAS
Subdirector
y Description of Contents

In !SASROOT for

SAS 91

SAS Viya
Integrate
d with
SAS
9.4M52

SAS Viya
Only3

bin contains the invocation scripts for each language
that is listed in the NLS directory. This directory
also contains the sasenv script that sets the
environment variables that are required by SAS.
When you customize environment variable values,
modify the sasenv_local file. The sasenv_local file
is the last file that SAS reads when processing
environment variables.

X X

cmacros contains precompiled macros for various SAS
products.

X X

dbcs contains the subdirectories for a DBCS
installation.

X X X

dtest contains files that are used for deployment testing. X X

etc contains additional configuration files and
deployment validation scripts and files.

X

hdatplugins contains files and scripts for SAS Viya applications
that rely on Hadoop and on SAS Plug-ins for
Hadoop.

X

install contains the admin subfolder, which contains data
files and subfolders that are used by sassetup. It
also contains registry and sasregord subfolders,
which contain data files that are used to build the
SAS Registry during installation post-processing.

X X

lib contains subdirectories with JAR files that are
required for the products that are installed on your
system.

X X

maps is a SAS library that contains SAS data sets that
are used by SAS/GRAPH software to produce
maps. You receive some maps with SAS/GRAPH
software. Additional maps are available in the SAS
Map Data Library Series.

X X

mapsgfk is a SAS library that contains SAS data sets that
are used by SAS/GRAPH software to produce
maps. You receive some maps with SAS/GRAPH
software.

X

Contents of the !SASROOT Directory 569

SAS
Subdirector
y Description of Contents

In !SASROOT for

SAS 91

SAS Viya
Integrate
d with
SAS
9.4M52

SAS Viya
Only3

misc contains miscellaneous components. This
directory also contains components for various
SAS products, such as script files for
SAS/CONNECT software and thin client interfaces
for SAS/SHARE software. In this directory, the
DEPLOYMENT directory contains template files that
are required by the SAS installation program.
These template files should not be altered. There
is also a SASSETUP directory, which contains
program scripts that are used by the sassetup
utility in !SASROOT.

X X X

nls contains subdirectories for national language and
locale support. These directories include DBCS
(double-byte character set), DE (–LOCALE
German), EN (–LOCALE en_US), ES (–LOCALE
Spanish), FR (–LOCALE French), HU (–LOCALE
Hungarian), IT (–LOCALE Italian), JA (–LOCALE
ja_JP—Primary Japanese encoding), JA.SJIS (–
LOCALE ja_JP—Secondary Japanese encoding),
KO (–LOCALE ko_KR), NO (–LOCALE Norwegian),
PB (–LOCALE pt_BR—Portuguese Brazilian), PL
(–LOCALE Polish), RU (–LOCALE Russian), SV (–
LOCALE Swedish), U8 (–LOCALE en_US—for
UTF-8 support), ZH (–LOCALE zh_CN—Chinese),
and ZT (contains subfolders for traditional Chinese
fonts supported in SAS). Most of these folders
contain a sasv9.cfg configuration file, which
makes the NLS-specific content available in SAS
when SAS is invoked using the language-specific
SAS invocation script. Each language directory
contains a SASCFG subdirectory that contains the
SAS Registry and SAS Desktop data sets that are
generated during installation. This list is a
snapshot of the SAS NLS subdirectories for
national language support. The list includes
support for additional locales when they become
available.

X X

perl contains Perl binaries and libraries that are used
by the sassetup program and SAS feature testing
tools.

X

samples contains sample programs for different SAS
products. These programs are organized by
product subdirectory and might not include
samples for every SAS product.

X X X

570 Appendix 1 / The !SASROOT Directory

SAS
Subdirector
y Description of Contents

In !SASROOT for

SAS 91

SAS Viya
Integrate
d with
SAS
9.4M52

SAS Viya
Only3

sasautos contains predefined SAS macros. See “Using
Autocall Libraries in UNIX Environments” on page
369.

X X X

sasexe contains executable files for different SAS
products.

X X X

sashelp is a SAS library that contains online Help files,
menus, descriptions of graphics devices, and
other catalogs used by SAS procedures that
support windows.

X X X

sasmsg contains files that contain all of the messages and
notes that are used by SAS.

X X

saspgm contains various components of SAS products. X

sastest contains files that are used by the SAS feature
testing tools.

X X

utilities contains man pages and utility programs. For
more information, see “The Utilities Directory in
UNIX Environments” on page 573.

X X X

X11 contains the files needed to run SAS with the X
Window System. These files include bitmap files,
online Help files, and resource files.

X X

1 /usr/local/sas/SASFoundation/9.x
2 /opt/sas/spre/home/SASFoundation
3 /opt/sas/viya/home/SASFoundation

Contents of the !SASROOT Directory 571

572 Appendix 1 / The !SASROOT Directory

Appendix 2
Tools for the System
Administrator

The Utilities Directory in UNIX Environments . 573

Installing Manual Pages . 574

Utilities in the /utilities/bin Directory . 574

SAS Usage Utilities: cleanwork . 576
See Also . 578

Authentication Utilities . 578
Overview of SAS Authentication . 578
SASUMGMT Utility . 578
SASAUTH Utility . 580
SAS-SERVICES-DAEMON Utility . 582
SASPERM Utility . 583
ELSSRV Utility . 583
PWENCODE Procedure . 585
The UNIX Authentication API . 585

SAS Version Utilities . 586
Overview of SAS Versions . 586
VERCON Utility . 586
TSLVL Function . 588

The Utilities Directory in UNIX
Environments

The !SASROOT/utilities directory contains the following important subdirectories:

573

man
contains the online manual pages for SAS. “Installing Manual Pages” on page
574 describes how to make these pages accessible to users through the UNIX
man command.

bin
contains the executable files for administrative tools. “Utilities in the /utilities/bin
Directory” on page 574 describes some of the tools in this directory.

src/auth
contains source files and documentation for the UNIX Authentication API. The
API enables administrators to add custom authentication methods to SAS
authentication in UNIX environments. For more information, see “The UNIX
Authentication API” on page 585.

Installing Manual Pages
To be able to read the manual pages in the utilities/man directory, copy the files
to the man1 subdirectory of the location of the other man files for your system. This
location is usually /usr/man or /usr/local/man. Execute the UNIX man man
command to determine the appropriate pathname for your system. When you have
found the correct pathname, use the following command to copy the SAS man files:

cp -r sasroot/utilities/man/* pathname

pathname is the directory location of your system man files.

For example, the following command enables you to access online Help by copying
the SAS man files from the !SASROOT directory to the man1 file in your system’s man
directory:

cp /usr/local/SASHome/SASFoundation/9.4/utilities/man/* /usr/local/man/man1

After you issue this command, you can access online Help with the man sas
command.

You can also add the directory to your system's MANPATH environment variable if it
has been previously defined, or you can set you own MANPATH environment
variable,

Utilities in the /utilities/bin Directory
The following table briefly describes some of the tools in the /utilities/bin
directory. You can use the UNIX man command for information about these utilities.

574 Appendix 2 / Tools for the System Administrator

Table A20.1 Tools for the System Administrator

Tool Name Description

authcustom.so SASAUTH module for site-specific authentication

authldap.so SASAUTH module for LDAP authentication

authpam.so SASAUTH module for PAM authentication

bdm batch driver monitor

cfgpeh stand-alone scramble command

cleanwork tool to remove any leftover Work directories, utility directories,
or both, whose associated SAS process has ended(See the
“SAS Usage Utilities: cleanwork” on page 576.)

docsetup documentation setup utility invoked by the installer

elsconf tool to check ELS configuration

elssrv ELS server, tool to launch subprocesses

jproxy tool used to launch the Java facilities within SAS

ke2j double-byte input utility

ke2s double-byte input utility

kj2e double-byte input utility

ks2e double-byte input utility

loadmgr application load manager

motifxsassm Motif X session manager

objspawn object spawner

patchname resets the name of the SASROOT directory in the specified
executable file.

rbrowser remote browser server for the platform (supported on Linux
only, but works on all other Motif platforms)

reshelper resource helper for X Windows

sasauth user identification and authentication utility

Utilities in the /utilities/bin Directory 575

Tool Name Description

sasauth.conf configuration file for SASAUTH; specifies authentication
module used and other options

sasm.elm.mime script for supporting email from SAS

sasmailer script for supporting email from SAS

sasperm user permissions utility

sas-services-
daemon

concurrent user identification and authentication utility
(replacement for SASAUTH)

Note: This utility and its related files are available on Linux
machines only.

sas-services-
daemon.conf

configuration file for sas-services-daemon; specifies the
authentication method, number of threads, and other options

sas-services-
daemon.init

System V initialization script

sas-services-
daemon.service

system configuration file

sastcpd TCP/IP access daemon

sasumgmt obtains and transcodes or decodes the user name and
password into Unicode. It then calls the SAS authorization
service to authenticate the user. It then exits with an exit status
that indicates the success or failure of the authentication.

saswujms Japanese input server

setuid directory

setuid.sh script to set some commands to run as root

tkdef.so the location where SASROOT and TKPATH are patched for
SAS 9.4 (other executables are not patched as they were in
previous SAS releases)

SAS Usage Utilities: cleanwork
Deletes any leftover Work directories, utility directories, or both, whose associated
SAS process has ended.

576 Appendix 2 / Tools for the System Administrator

cleanwork directory <-n > <-v> <-hostmatch> <-log logfile>

directory
names the directory that contains the Work directory, the Utility directory, or
both directories. That is, you can specify multiple directory paths in the
cleanwork command. The directory name must match the value specified in the
WORK system option or the value specified in the UTILLOC system option.

Tip Execute the cleanwork command as the root user. If a different user ID is
used, then only files owned by that user ID are removed.

-n
specifies that no entries should be removed. SAS lists the directories that
contain files that can be removed, but those files are not removed.

-v
specifies verbose output.

-hostmatch
specifies the name of a host from which you can remove Work directories that
might still be active in a Network File System (NFS).

-log logfile
specifies that the output from cleanwork should be sent to a log file. The -log
option is useful when you run cleanwork from a cron (scheduled) job.

You provide the name of the log file (logfile) for the cleanwork output. The logfile
name can include a path or only the filename. If no path is provided, the file is
generated in the directory from which you called the cleanwork utility. Enclose
the filename in single quotation marks if you use characters that are considered
special by the shell.

Details

The cleanwork command removes any subdirectories that were assigned to the
Work library or directories assigned by the UTILLOC system option. The cleanwork
command removes only those files that are associated with defunct SAS processes.
Each subdirectory name has a format of the form:

SAS_workcode_nodename

SAS_utilcode_nodename

code
is a 12-character code. The first four characters are randomly generated
numbers. The next eight characters are based on the hexadecimal
representation of the process ID of the associated SAS process. Files that are
associated with active processes are not removed.

nodename
specifies the name of the UNIX system where the SAS process is running.

For example, if you are working on nodename jupiter, then the cleanwork command
removes all directories with inactive processes on jupiter. The cleanwork command
does not remove a directory that is associated with an orphaned process if that
process is still active. In this case, you need to manually kill the process, and then
rerun cleanwork.

SAS Usage Utilities: cleanwork 577

See Also
“Work Library” on page 74

Authentication Utilities

Overview of SAS Authentication
Authentication is used in SAS to validate that a user has the permission to do a
requested task and to access the requested data for that task. SAS configures the
environment based on the requirements of each user. For example, a sales
manager has access to different information than a quality assurance manager. This
is true even though each user accesses the same SAS system. The look and feel of
the software might also vary based on the data and tasks that a specific user can
access.

Here are the utilities that are used to implement authentication in SAS:

n SASUMGMT

n SASAUTH

n SAS-SERVICES-DAEMON

n SASPERM

n ELSSRV

These utilities are setuid processes that are owned by root. For more information
about these processes, see SAS Intelligence Platform: Application Server
Administration Guide. For more information about setuid processes, see SAS
Intelligence Platform: Installation and Configuration Guide.

SASUMGMT Utility

Overview
Use the SASUMGMT utility to validate that a user name and password is valid and
that these credentials can be used for SAS authentication. Use this utility to debug
any issues that pertain to a user’s ability to authenticate. You also run this utility to
ensure that a user has access to a specific file or directory.

The SASUMGMT utility is used during installation to validate the user names and
passwords that are entered during initial server configuration. If these passwords
are not verified during the installation process, then server start-up might fail. This
situation results in a long process to determine the issue and correct it. Validating

578 Appendix 2 / Tools for the System Administrator

the passwords during the initial configuration ensures that all necessary users can
authenticate into the server after it is running. During initial configuration,
SASUMGMT also ensures that a user has access to the files and directories that
they need when they run the server.

The SASUMGMT utility is stored in the !SASROOT directory of a standard SAS
installation.

Syntax for SASUMGMT
Here is the syntax for SASUMGMT:

<sasroot>/utilities/bin/sasumgmt -u <username> -p <plain-text-password>
 -u <username> -p {*}<encoded-password>
 -u <username> -stdio
 -read <pathname>
 -write <pathname>
 -execute <filename>
 -re <filename>
 -rw <filename>
 -rwe <filename>

There are multiple ways to enter the password for a user. You can specify it in plain
text, with a provided SAS encoded string, or through standard input. For more
information about encrypting password values, see “PWENCODE Procedure” on
page 585.

Results of SASUMGMT
The SASUMGMT utility provides the following results. Return codes are shown in
parentheses:

n (0) The user name and password were authenticated. (There is no output on the
command line.)

n (1) Access denied. The user name and password were not authenticated.

n (2) The password has expired.

n (3) The SASAUTH service is not setuid root as required by the installation.

n (4) The TKSECURE authentication service encountered a problem.

n (5) There was a problem initiating the thread.

n (6) A user name was not supplied.

n (7) A password was not supplied.

n (8) There was failure reading the password from standard input.

n (9) Insufficient arguments were supplied to the program.

n (10) The user name or password could not be transcoded into UNICODE.

n (11) Memory could not be allocated to perform the authentication.

n (12) The password could not be decoded.

Authentication Utilities 579

n (13) The thread handle could not be obtained.

n (14) The user does not have appropriate access to the pathname.

n (15) The filename was omitted from the argument list when specifying Read or
Write permission.

SASAUTH Utility

Overview of SASAUTH
The SASAUTH utility is used by SAS 9 servers to perform authentication for
connecting clients. The default authentication method is via the host operating
system. Most sites that use host operating system authentication deploy a shadow
password file configuration. To read the password entries that contain the password
from the shadow password file, the calling user ID must be root. If the SASAUTH
executable is not a setuid process that is owned by root, then the system is not able
to authenticate users that attempt to access the SAS servers.

The SASAUTH utility is used to authenticate access to a SAS server, such as the
workspace server, SAS Metadata Server, SAS Stored Process Server, or
SAS/SHARE server.

Changing the Authentication Method
The administrator is allowed to change the authentication from the host operating
system to another method of authentication, such as PAM or LDAP. The file
sasauth.conf is used by SASAUTH to manage the authentication requirements. The
sasauth.conf file must reside in the same directory as SASAUTH.

To change the authentication method, change the line that contains methods=pw in
the sasauth.conf file. Here are the available methods:

methods=pw
specifies to use standard /etc/password or /etc/shadow authentication. On
some hosts, this includes protected password databases or OS-provided
enhanced security.

methods=pam
specifies to use PAM for authentication. The password database is also used to
determine the user’s UID and GID. The pam.conf file must be configured
properly for SASAUTH.

methods=ldap
specifies to use LDAP authentication. You must define the LDAP parameters.

methods=ext
specifies to use a customer authentication method. This method is built using the
authentication kit, which is available from SAS Technical Support.

580 Appendix 2 / Tools for the System Administrator

Logging SASAUTH Output
The sasauth.conf file enables the administrator to log SASAUTH operations. To turn
on logging, remove the ‘#’ in front of the appropriate log variable and provide a
location for the log file. The lines with the log variables look like these:

#debugLog=/tmp/sasauth-debug.log
#accessLog=/tmp/sasauth-access.log
#errorLog=/tmp/sasauth-error.log
#logOwner=0
debugNoPasswords=true

Here are the log file descriptions and definitions for authentication-related variables:

debugLog
specifies the path for the debugging log. As a best practice, do not use
debugLog regularly in a production environment, because the log can become
very large. This file is readable by the root user, unless an alternative file owner
is specified for the logOwner variable. (See below.)

accessLog
specifies the path for the access log. All authentication operations and the
corresponding result (ok, expired, or error) are logged in this file. This file is
readable by anyone.

errorLog
specifies the path for the error log. If this variable is not specified, errors are sent
to syslog.

logOwner
specifies the UID of the owner of the debug log file. By default, the debug log
owner is the root user (UID=0).

debugNoPasswords
is a Boolean variable that specifies whether to write passwords in the debug log.
By default, passwords are not written to the debug log
(debugNoPasswords=true).

This figure shows the output from two authentication attempts. The first succeeds,
but the second is an unknown user.

Figure A20.1 Sample sasauth-access.log File

This figure shows sample output for the sasauth-debug.log file.

Authentication Utilities 581

Figure A20.2 Sample sasauth-debug.log File

SAS-SERVICES-DAEMON Utility

Overview of SAS-SERVICES-DAEMON
The SAS-SERVICES-DAEMON utility is similar to the SASAUTH utility. The SAS-
SERVICES-DAEMON utility is used to perform authentication for connecting clients.
SAS-SERVICES-DAEMON differs from SASAUTH because it enables multiple
authentication requests that are handled concurrently. SAS-SERVICES-DAEMON
runs independently of any other SAS processes. SAS-SERVICES-DAEMON should
be started as a daemon when SAS starts. It should be started before any SAS
processes or SAS servers, and it must be run under the root user ID. However,
unlike SASAUTH, SAS-SERVICES-DAEMON does not require the setuid bit to be
set.

Note: The SAS-SERVICES-DAEMON utility is supported for Linux environments
only.

The SASAUTH utility runs by default. However, you can enable the SAS-
SERVICES-DAEMON utility by setting the SAS_USE_SASSD= environment
variable to 1 in the level_env_usermods.sh file. That is, include the following line in
the level_env_usermods.sh file:

export SAS_USE_SASSD=1

For more information, see your SAS installation and configuration documentation for
UNIX at support.sas.com.

Changing the Authentication Method
The default authentication method is based on the host operating system. Most sites
that use host operating system authentication deploy a shadow password file
configuration. An administrator is allowed to change the authentication method. The

582 Appendix 2 / Tools for the System Administrator

http://support.sas.com/documentation/installcenter/94/unx/index.html

file sas-services-daemon.conf is used by SAS-SERVICES-DAEMON to manage the
authentication requirements. The sas-services-daemon.conf file must reside in the
same directory as SAS-SERVICES-DAEMON.

To change the authentication method, change the line that contains methods=pw in
the sas-services-daemon.conf file. Here are the available methods:

methods=pw
specifies to use standard /etc/passwd or /etc/shadow authentication.

methods=pam
specifies to use PAM for authentication. The password database is used to
determine the user’s UID and GID. The SAS-SERVICES-DAEMON PAM
configuration file must be named sas-services-daemon. Store this file in /etc/
pam.d.

Specifying the Number of Threads
An administrator can set the number of threads to use for concurrent authentication
requests. Set the numThreads value in the sas-services-daemon.conf file to change
the number of threads that process authentication requests. The default value for
numThreads is 4 and the maximum value is 32.

SASPERM Utility
The SASPERM utility performs host authorization checks against files on disk in the
SAS/SHARE Server and SAS Stored Process Server. This process uses the stat()
system call and the access() system call to determine whether a user should have
access to a given file. The utility must switch identity to the requesting client to
perform these calls as the user that is requesting the access. Therefore, calls to
SASPERM must be run as root.

ELSSRV Utility

Overview
The object spawner uses a setuid root utility called ELSSRV to launch processes
under the identity of the requesting client (a standard workspace server) or a multi-
user credential (a load-balanced stored process server and a pooled workspace
server). The call to ELSSRV must be as the root user to switch identity to another
user.

Authentication Utilities 583

Note: If you run the UNIX ps —ef command, the ELSSRV process is displayed as
sasels on a machine that is not a SAS server and as saslesrv on a SAS server. The
path of execution is not provided.

In the case of a standard workspace server, the client provides host credentials for
the user that requests a SAS process, such as a query or an ETL process, from the
spawner. The spawner host authenticates the client and receives confirmation of
valid credentials from SASAUTH. In addition, SASAUTH returns the UNIX user ID
and the list of groups that are associated with that user. The ELSSRV utility
launches the workspace server under the client identity so that the process runs
with the host authority of the requesting client. The ELSSRV process also requires
the credentials to do a second validation of the user authority to prevent misuse of
the ELSSRV process.

In the case of a SAS Stored Process Server or a SAS Pooled Workspace Server,
the spawner uses ELSSRV to launch processes under a chosen credential that is
stored in metadata and that is associated with the server. For a SAS Stored Process
Server, the clients are authenticated by the host before they can run a SAS process
on one of the servers. The pooled workspace servers do not require host
authentication because processes that run on these servers are in a much more
controlled environment. The SAS Stored Process Server host authenticates the
connecting clients by using SASAUTH and obtains the clients user ID and
associated groups.

Logging with ELSSRV
You can use environment variables to enable logging and debugging of the
ELSSRV process. For example, logging is useful when a SAS BI Client installation
is unable to launch a SAS BI Server or when a server is exiting or timing out for an
unknown reason. The els log file provides detailed information about what servers
are requesting and about the exit status of the servers.

The ELSDEBUG environment variable instructs the ELSSRV process to log its
activity. This is often useful to debug systask commands, launching a SAS server,
or using the X command or filename pipe.

On a csh shell, you enable the ELSDEBUG environment variable on the command
line with this syntax:

setenv ELSDEBUG 1

On a ksh shell, you enable this ELSDEBUG environment variable on the command
line with this syntax:

export ELSDEBUG=1

The ELSLOG environment variable enables you to specify the path and base
filename for the output log file. The name of the log file is appended with
“.els.<process-ID>”. For example, if you specify your path as /tmp/techsupport,
then the output file for process 2456 would be /tmp/techsupport.els.2456.

584 Appendix 2 / Tools for the System Administrator

Restricting Access to Ports
The server communicates the exit status of processes through a socket connection.
By default, the port number is obtained from the operating system. To limit the range
of the port values that can be selected, use the MINPORT and MAXPORT options.
This enables you to set a range of port numbers for the ELSSRV utility. Specify
these options as follows:

-minport <minimum-port-value>
-maxport <maximum-port-value>

If a port cannot be found within this range, then TKELS fails to load and SAS
subsequently fails to start. The maximum possible port number is 641024–1.

PWENCODE Procedure
Use the PWENCODE procedure to encode a password to be given to SAS
authentication. This procedure provides multiple methods to create encrypted
values for user passwords. The following example shows results from the SAS002
encryption algorithm. The code to call the PWENCODE procedure specifies in=’my
password’, which is masked in the log. The log shows the resulting encrypted
value.

Output A20.1 Sample Call to the PWENCODE Procedure

1
2 proc pwencode in=XXXXXXXXXXXX method=sas002;
3 run;

{SAS002}68B279564BD2695538CDCDB301E8A357563480B0

The supported encoding methods include:

n SAS001, which uses the Base64 binary-to-text encoding scheme to encode
passwords.

n SAS002 (or sasenc), which uses a 32-bit key to encode passwords. This is the
default SAS encryption method.

n SAS003, which uses a 256-bit key to encode passwords. This Advanced
Encryption Standard is supported in SAS/SECURE.

SAS001 and SAS002 are supplied with Base SAS.

The UNIX Authentication API
The UNIX Authentication Application Programming Interface (API) is a set of
predefined routines that provide user authentication, identification, and permissions
verification for SAS when running in UNIX environments. The source files provide

Authentication Utilities 585

the ability to add site-specific behavior to the authentication/identification/
permissions validations process. Administrators that need to implement custom
behaviors should contact SAS Technical Support.

SAS Version Utilities

Overview of SAS Versions
Your SAS image is one of thousands of possible executable images of SAS
software. Each SAS image has a signature that includes the release level, relevant
hot fixes, the product name, and even the development group that provided the
image. Included with your software are tools that can identify the specifics about the
SAS image that was installed at your site. If you have an issue with SAS, it is very
important to be able to provide the specifics of your SAS image to SAS Technical
Support.

There are two methods to obtain the image signature for your instance of SAS:

n VERCON utility, which is available from the command line

n TSLVL function, which is available within a SAS program

VERCON Utility

About the VERCON Utility
The VERCON utility is a stand-alone executable that you can run for your SAS
image. This utility provides detailed information about the specifics of your
installation, including the release, hot fixes, and maintenance images that were
used as part of your SAS instance.

Syntax for VERCON
Here is the syntax to call the VERCON utility:

<!SASROOT>/utilities/bin/vercon <-l output-file> <- options> image(s)

Use the -l output-file argument to specify a filename for output. If you do not
specify this argument, the default is standard output.

You can specify one or more of the following options. These options are not case
sensitive.

586 Appendix 2 / Tools for the System Administrator

–b Print product: dvd/script/scriptname.bld. This can be used with –i to print
the information about the image.

–d Print the time at which the image was built in date and time format.
–f Do not format the output.
–h Print hot fix information.
–i Print information about the image.
–p Print the product name.
–q Do not print the image name.
–s Print the version information.
–t Print the track name.

At the end of the command, specify one or more images to provide version
information for. If there are not too many, specify the images by name, separated by
spaces. If the number of images is large, you can request information for all images
in a directory that you specify. In this case, specify the directory as -dir directory.

VERCON Examples
By default, VERCON prints the most relevant information that is embedded for a
given image. Here is the default output for VERCON run on the executable
tkmemtst.so. The information provided includes the date on which the image was
built, the product name, the release track, and the group that provided the image.

Figure A20.3 Default VERCON Output

Here are some additional examples that show different combinations of options and
the resulting output. Note in the last example that an error is displayed if the
information for a file cannot be extracted.

SAS Version Utilities 587

Figure A20.4 Sample Calls to VERCON

TSLVL Function

About the TSLVL Function
The TSLVL function runs inside a DATA step in a SAS program. This function
returns the same information as the VERCON utility. You provide the image name
as the first argument and any options as the second argument. Enter each
argument within quotation marks.

Here are the available options that you can request. Options are not case sensitive.

A Additional track information
D Port date (for example, 9.03.01B0D02282010)
E Number of seconds since January 1, 1970 (UNIX date). Note that SAS

dates are based on the number of second since January 1, 1960.
H Hot fix information
I Image description
M Maintenance release information
P Product number
T SAS track information

588 Appendix 2 / Tools for the System Administrator

The output for the TSLVL function returns one character string for each requested
information item, separated by commas to facilitate parsing the results.

If any information for an image is not available, you might receive the following
errors:

n ImageNotLoaded—indicates that the requested image is not loaded

n VersionNotFound—indicates that version information could not be found

n NotAvailable—indicates any other problems obtaining version information

TSLVL Example
The following example calls the TSLVL function twice. The first instance results in
the release number, SAS 9.4 Technical Support level 1 Maintenance level 5. This
was the sixth release of SAS 9.4. The second instance requests the track, the port
date, and the UNIX time at which the image was built. This image was built in the
main development track for SAS 9.4M5 on April 22, 2018.

1
2 data x;
3 y=tslvl('sasxkern');
4 put y=;
5 a=tslvl('sasxkern','tde');
6 put a=;
7 run;

y=9.04 TS1M5
a=dev/mva-v940m5b,9.04.01M5P04222018,1524439845
NOTE: The data set WORK.X has 1 observations and 2 variables.

SAS Version Utilities 589

590 Appendix 2 / Tools for the System Administrator

32
Text-Editing Commands

Text-Editing Commands for SAS Windowing Environment . 592

Dictionary . 592
AUTOADD Command . 592
AUTOFLOW Command . 593
AUTOSCROLL Command . 595
AUTOSPLIT Command . 595
AUTOWRAP Command . 597
BOUNDS Command . 598
C Command . 599
CAPS Command . 600
CC Command . 601
CCL Command . 602
CCU Command . 603
CL Command . 604
CU Command . 605
CURSOR Command . 606
D Command . 607
DD Command . 607
DICT Command . 608
FILL Command . 609
I Command . 610
INDENT Command . 611
JC Command . 613
JJC Command . 614
JJL Command . 615
JJR Command . 616
JL Command . 617
JR Command . 619
KEYS Command . 620
M Command . 620
MASK Command . 621
MM Command . 622
NUMBERS Command . 623
R Command . 624
RESET Command . 625
RR Command . 626
SPELL Command . 627

591

TC Command . 629
TF Command . 630
TS Command . 631
UNDO Command . 632
< Command . 633
<< Command . 634
> Command . 635
>> Command . 636
(Command . 637
((Command . 638
) Command . 639
)) Command . 640

Text-Editing Commands for SAS
Windowing Environment

Commands that are specific to the text editor are called text-editing commands
because they perform editing functions in windows. Text-editing commands can be
one of two types:

n line commands

n command-line commands

Most line commands rearrange or reformat text. They perform tasks such as
moving, deleting, copying, and aligning lines or blocks of text. Command-line
commands, in addition to rearranging and reformatting text, perform other tasks
such as reversing the effects of commands or changing the default case of text.

This section describes commands that you can use in the UNIX environment, but
that are not specific to UNIX. You can use these commands in any operating
environment that supports text-editing commands.

Dictionary

AUTOADD Command
Controls automatic line addition.

Category: Text Editing, Command-Line Command

592 Chapter 32 / Text-Editing Commands

Syntax
AUTOADD <ON | OFF>

Without Arguments
The AUTOADD command is toggled ON or OFF. Issue the command once to
reverse the current setting. If the current setting is ON, then issuing the AUTOADD
command changes the setting to OFF. If the current setting is OFF, then issuing the
AUTOADD command changes the setting to ON.

Required Arguments
ON

turns on the AUTOADD command in the window so that lines are added
automatically.

OFF
turns off the AUTOADD command in the window so that lines are not added
automatically.

Details
The AUTOADD command controls whether blank lines are added as you scroll past
existing text. The number of lines that are added is determined by the setting of the
VSCROLL command, which determines the default scroll amount forward or
backward.

See Also
Commands:

n “AUTOFLOW Command” on page 593

n “AUTOSPLIT Command” on page 595

n “AUTOWRAP Command” on page 597

AUTOFLOW Command
Controls whether text is flowed when it is included, copied, or pasted.

Category: Text Editing, Command-Line Command

AUTOFLOW Command 593

Syntax
AUTOFLOW <ON | OFF>

Without Arguments
The AUTOFLOW command is toggled on and off. Issue the command once to
reverse the current setting. If the current setting is ON, then issuing the AUTOFLOW
command changes the setting to OFF. If the current setting is OFF, then issuing the
AUTOFLOW command changes the setting to ON.

Required Arguments
ON

turns on the AUTOFLOW command in the window so that text flows when it is
inserted in the window.

OFF
turns off the AUTOFLOW command in the window so that text retains its
previous position when it is inserted in the window.

Details
The AUTOFLOW command controls whether text inserted with the INCLUDE,
PASTE, or COPY command automatically flows. When text is flowed, the left and
right boundaries are determined by the settings that were specified with previous
executions of the INDENT and BOUNDS commands. The AUTOFLOW command
controls all text that is inserted in the window. It does not stop at paragraph
boundaries.

Comparisons
The AUTOFLOW command controls whether text inserted in the window flows. The
TF command flows text that is already in the window.

See Also
Commands:

n “AUTOSPLIT Command” on page 595

n “AUTOWRAP Command” on page 597

n “BOUNDS Command” on page 598

n “INDENT Command” on page 611

n “TF Command” on page 630

594 Chapter 32 / Text-Editing Commands

AUTOSCROLL Command
Specifies how often the Log and Output windows scroll to display output.

UNIX specifics: valid arguments and default values

Syntax
AUTOSCROLL <n>

Optional Argument
n

specifies the number of lines that the window should scroll when it receives a
line of data that cannot fit.

Details
The AUTOSCROLL command controls the scrolling of lines as they are written to
the Log and Output windows. The default value for AUTOSCROLL in the Log and
Output windows is 1. Processing is slower when AUTOSCROLL displays one line at
a time. To expedite processing, you can specify a greater AUTOSCROLL value in
your autoexec.sas file. Specifying a value of 0 optimizes processing and results in
the fastest scrolling (similar to jump scrolling in xterm windows). To add the
AUTOSCROLL command to your autoexec.sas file, you must use the DM
command. The following example maximizes scrolling in both the Log and Output
windows:

dm 'output; autoscroll 0; log; autoscroll 0; pgm;';

AUTOSPLIT Command
Controls whether text is split at the cursor when you press Enter, or when you are at a carriage return.

Category: Text Editing, Command-Line Command

Syntax
AUTOSPLIT <ON | OFF>

AUTOSPLIT Command 595

Without Arguments
The AUTOSPLIT command acts is toggled on and off. The first time you issue the
AUTOSPLIT command, it reverses the current setting. If the current setting is ON,
then issuing the AUTOSPLIT command changes the setting to OFF. If the current
setting is OFF, then issuing the AUTOSPLIT command changes the setting to ON.

Optional Arguments
ON

turns on the AUTOSPLIT command in the window so that when you press Enter,
or when you are at a carriage return, text automatically splits at the cursor.

OFF
turns off the AUTOSPLIT command in the window so that when you press Enter,
or when you are at a carriage return, text does not automatically split at the
cursor.

Details
The AUTOSPLIT command controls whether text is split at the cursor when you
press Enter, or when you are at a carriage return. All text on the line, starting with
the character on which the cursor is resting, moves to the left margin of the next
line. The cursor is repositioned so that it rests on the first character of the new line.

Comparisons
Entering a carriage return with the AUTOSPLIT command turned on is identical to
issuing the TS command with the default numeric argument of 1. The results of a
carriage return with the AUTOSPLIT command turned on can be reversed by the TC
command or undone with the UNDO command.

See Also
Commands:

n “AUTOSCROLL Command” on page 595

n “AUTOWRAP Command” on page 597

n “TF Command” on page 630

n “TS Command” on page 631

596 Chapter 32 / Text-Editing Commands

AUTOWRAP Command
Controls whether text is wrapped when it is included, copied, or filed.

Category: Text Editing, Command-Line Command

Syntax
AUTOWRAP <ON | OFF>

Without Arguments
The AUTOWRAP command is toggled on or off. The first time you issue the
AUTOWRAP command, it reverses the current setting. If the current setting is ON,
then issuing the AUTOWRAP command changes the setting to OFF. If the current
setting is OFF, then issuing the AUTOWRAP command changes the setting to ON.

Optional Arguments
ON

turns on the AUTOWRAP command in the window so that text is wrapped when
it is inserted in the window, or when it is moved to an external file.

OFF
turns off the AUTOWRAP command in the window. Depending on the line
length, text can be truncated as it is inserted in the window, or when it is moved
to an external file.

Details
When the AUTOWRAP command is turned on, you can use the INCLUDE or COPY
commands. These commands can insert a file, which has a line length that exceeds
the boundaries of the window, in a window. The text in the file is not truncated.
Instead, lines in the file are split at word boundaries. Conversely, the AUTOWRAP
command enables you to use the FILE command to send text, which has a line
length that exceeds the boundaries of a file, to an external file. The text in the file is
not truncated. Lines are split at word boundaries. When the AUTOWRAP command
is turned off, text can be truncated depending on the line length of the text and of
the window or file.

See Also
Commands:

AUTOWRAP Command 597

n “AUTOFLOW Command” on page 593

n “AUTOSPLIT Command” on page 595

BOUNDS Command
Sets left and right boundaries when text is flowed.

Category: Text Editing, Command-Line Command

Syntax
BOUNDS <left right>

Without Arguments
The BOUNDS command displays a message identifying the current boundary
settings.

Optional Arguments
left

sets the left boundary by column position.

right
sets the right boundary by column position.

Details
The BOUNDS command resets the left and right boundaries for text. Text is reset by
column position and must already be in the window and flowed with the TF
command. The BOUNDS command sets the left and right boundaries for text
inserted in the window with the INCLUDE, COPY, and PASTE commands when the
AUTOFLOW command is turned on. When the AUTOFLOW command is turned on,
the left boundary setting is maintained when text is split with the TS command.

For example, specify the following command if you want the text flowed between
columns 10 and 60:

bounds 10 60

Each time text is flowed after this BOUNDS command is issued, the text is flowed
between spaces 10 and 60. The text is flowed until you issue another BOUNDS
command, or the INDENT command is set to ON.

Setting the INDENT command to ON always overrides the current left boundary
setting. To ensure that the left boundary setting is used, set the INDENT command
to OFF.

598 Chapter 32 / Text-Editing Commands

Comparisons
The BOUNDS command affects the behaviors of the TF and TS commands. The
BOUNDS command is similar to the INDENT command because both can set the
left boundary. However, the BOUNDS command can set the right boundary. When
text is flowed, setting the INDENT command to ON always sets the left boundary,
which overrides the left boundary that is set by the BOUNDS command.

See Also
Commands:

n “AUTOFLOW Command” on page 593

n “INDENT Command” on page 611

n “TF Command” on page 630

n “TS Command” on page 631

C Command
Copies one line of text.

Category: Text Editing, Line Command

Syntax
C

intervening text

A | B

Without Arguments
The C command copies one line of text to a new position anywhere in a window.

Required Arguments
A

marks the target position of the line of text to be copied; in this case, after the
position where the A argument is entered. You can place the A argument either
before or after the line to be copied.

C Command 599

B
marks the target position of the line of text to be copied; in this case, before the
position where the B argument is entered. You can place the B argument either
before or after the line to be copied.

Comparisons
The C and CC commands enable you to specify a target position for the line of text
anywhere in the window. The R and RR commands repeat the line or block of text
immediately after it first appears.

See Also
Commands:

n “CC Command” on page 601

n “R Command” on page 624

n “RR Command” on page 626

CAPS Command
Changes the default case of text.

Category: Text Editing, Command-Line Command

Syntax
CAPS <ON | OFF>

Without Arguments
The CAPS command is toggled on and off. The first time you issue the CAPS
command, it reverses the current setting. If the current setting is ON, then issuing
the CAPS command changes the setting to OFF. If the current setting is OFF, then
issuing the CAPS command changes the setting to ON.

Optional Arguments
ON

turns on the CAPS command. The case of characters that you enter after you
turn on the CAPS command is uppercase. Character strings for the FIND and

600 Chapter 32 / Text-Editing Commands

CHANGE commands are also translated into uppercase unless they are
enclosed in quotation marks.

OFF
turns off the CAPS command. The case of characters that you enter after you
turn off the CAPS command is unchanged.

Details
The CAPS command changes the case for text not yet entered, or for text that is
modified in a window. If you specify CAPS ON and enter text, the text is changed to
uppercase as soon as you press Enter. The setting remains in effect for a window
until the SAS session ends, or until the setting is changed by another CAPS
command. You can use the WSAVE command to save the setting of the CAPS
command beyond your current SAS session.

Comparisons
The CAPS ON command is similar to the CU and CCU commands, and to the CL
and CCL commands, which change the case of existing text. However, the CAPS
command changes the default case of text, not the case of existing text.

See Also
Command:

n “CCL Command” on page 602

n “CCU Command” on page 603

n “CL Command” on page 604

n “CU Command” on page 605

CC Command
Copies a block of lines of text.

Category: Text Editing, Line Command

Syntax
CC

block of text

CC Command 601

CC

intervening text

A | B

Without Arguments
The CC command copies a block of lines of text to a new position anywhere in a
window.

Required Arguments
A

marks the target position of the lines of text to be copied; in this case, after the
position where the A argument is entered. You can place the A argument either
before or after the lines to be copied.

B
marks the target position of the lines of text to be copied; in this case, before the
position where the B argument is entered. You can place the B argument either
before or after the lines to be copied.

Details
The C and CC commands enable you to specify a target position for the lines of text
anywhere in the window. The R and RR commands repeat the block of lines of text
immediately after it first appears.

See Also
Commands:

n “C Command” on page 599

n “R Command” on page 624

n “RR Command” on page 626

CCL Command
Changes all characters in designated lines of text to lowercase.

Category: Text Editing, Line Command

602 Chapter 32 / Text-Editing Commands

Syntax
CCL

block of text

CCL

Without Arguments
The CCL command changes to lowercase all characters in a block of lines of text.

Details
The CL and CCL commands change existing text to lowercase. The CAPS OFF
command makes the default case of text lowercase, which changes the case of
new, inserted text. The CU and CCU commands, which change existing text to
uppercase, accomplish the opposite of the CL and CCL commands.

See Also
Commands:

n “CAPS Command” on page 600

n “CCU Command” on page 603

n “CL Command” on page 604

n “CU Command” on page 605

CCU Command
Changes all characters in a designated block of lines of text to uppercase.

Category: Text Editing, Line Command

Syntax
CCU

block of text

CCU

CCU Command 603

Without Arguments
The CCU command changes to uppercase all characters in a block of designated
lines of text.

Details
The CU and CCU commands are similar to the CAPS ON command. The CU and
CCU commands change existing text to uppercase. The CAPS ON command
makes the default case of text uppercase, which changes the case of new, inserted
text. The CL and CCL commands, which change existing text to lowercase,
accomplish the opposite of the CU and CCU commands.

See Also
Commands:

n “CAPS Command” on page 600

n “CCL Command” on page 602

n “CL Command” on page 604

n “CU Command” on page 605

CL Command
Changes all characters in a designated line of text to lowercase.

Category: Text Editing, Line Command

Syntax
CL <n>

Without Arguments
The CL command changes to lowercase all characters in a designated line of text.

Optional Argument
n

specifies the number of lines of text to be changed to lowercase. Follow the n
argument with a space.

604 Chapter 32 / Text-Editing Commands

Details
The CL and CCL commands change existing text to lowercase. The CAPS OFF
command makes the default case of text lowercase. The case of new, inserted text
is changed. The CU and CCU commands, which change existing text to uppercase,
accomplish the opposite of the CL and CCL commands.

See Also
Commands:

n “CAPS Command” on page 600

n “CCL Command” on page 602

n “CCU Command” on page 603

n “CU Command” on page 605

CU Command
Changes all characters in a designated line of text to uppercase.

Category: Text Editing, Line Command

Syntax
CU <n>

Without Arguments
The CU command changes to uppercase all characters in a designated line of text.

Optional Argument
n

specifies the number of lines of text to be changed to uppercase. Follow the n
argument with a space.

Details
The CU and CCU commands are similar to the CAPS ON command. The CU and
CCU commands change existing text to uppercase. The CAPS ON command
makes the default case of text uppercase, which changes the case of new, inserted

CU Command 605

text. The CL and CCL commands, which change existing text to lowercase,
accomplish the opposite of the CU and CCU commands.

See Also
Commands:

n “CAPS Command” on page 600

n “CCL Command” on page 602

n “CCU Command” on page 603

n “CL Command” on page 604

CURSOR Command
Moves the cursor to the command line.

Category: Text Editing, Command-Line Command

Syntax
CURSOR

Without Arguments
The CURSOR command moves the cursor to the command line. The CURSOR
command is designed to be executed with a function key.

Details
The CURSOR command can be used interchangeably with the Home key.

Comparisons
The CURSOR command has the same results as pressing the Home key.

606 Chapter 32 / Text-Editing Commands

D Command
Deletes a designated line.

Category: Text Editing, Line Command

Syntax
D <n>

Without Arguments
The D command deletes only the designated line.

Optional Argument
n

specifies the number of lines to delete. Follow the n argument with a space.

See Also
Commands:

n “DD Command” on page 607

DD Command
Deletes a designated block of lines.

Category: Text Editing, Line Command

Syntax
DD

block of lines

DD

DD Command 607

Without Arguments
The DD command deletes a block of lines of text.

See Also
Commands:

n “D Command” on page 607

DICT Command
Includes, releases, and creates an auxiliary dictionary.

Category: Text Editing, Command-Line Command

Syntax
DICT INCLUDE dictionary-name | FREE dictionary-name | CREATE dictionary-
name <size>

Required Arguments
INCLUDE dictionary-name

makes the auxiliary dictionary that is specified available in the current SAS
session. Only a one-level name is accepted. The Sasuser.Profile catalog is
checked first for the dictionary. Then, the Sashelp.Base catalog is checked. If the
auxiliary dictionary is not found, SAS issues an error message. If the auxiliary
dictionary is made available from the Sashelp.Base catalog, no changes to it are
saved. If it is made available from the Sasuser.Profile catalog, changes to it are
saved.

FREE dictionary-name
releases the auxiliary dictionary that is specified. A newly created dictionary is
not saved in the Sasuser.Profile catalog until you issue the DICT command with
the FREE argument, or you end the current interactive windowing task. If the
auxiliary dictionary has been modified, the changes are saved when you issue
the DICT command with the FREE argument. These changes are saved unless
the auxiliary dictionary was made available from the Sashelp.Base catalog.

CREATE dictionary-name
creates a new auxiliary dictionary as specified. The dictionary is initially empty.
When the dictionary is released, it is saved in the Sasuser.Profile catalog. Only a
one-level name is accepted.

608 Chapter 32 / Text-Editing Commands

Optional Argument
size

specifies the size in bytes of the auxiliary dictionary. The default is 9,808 bytes.

Details
The DICT command includes, releases, and creates an auxiliary dictionary. The
SPELL command checks spelling and flags unrecognized words. In addition, the
SPELL command can create and update dictionaries.

See Also
Commands:

n “SPELL Command” on page 627

FILL Command
Places fill characters beginning at the current cursor position.

Category: Text Editing, Command-Line Command

Syntax
FILL <'fill-character'> <n>

Without Arguments
The FILL command displays a message identifying the fill character and the number
of its repetitions.

Optional Arguments
'fill-character'

specifies a customized character that must be enclosed in single quotation
marks. The fill character remains in effect until you change it.

n
specifies the exact number of fill characters. The number remains in effect until
you change it.

FILL Command 609

Details
The FILL command places fill characters beginning at the current cursor position.
The fill characters extend to the end of a line, or to the space before the next non-
blank character, whichever occurs first. By default, the fill character is usually an
underscore or hyphen. If you use the FILL arguments, you can change the fill
character and the number of repetitions.

The FILL command is most easily issued with a function key. To place the fill
characters at the cursor position, set one of your function keys to issue the FILL
command. Move the cursor to a Program Editor field, and then press the function
key. The fill characters are displayed.

The following example shows how you can change the default. Issuing the following
command makes the default become 10 question marks:

fill '?' 10

The changed fill character is in effect for the duration of your SAS session, or until
you change it. You can use the WSAVE command to permanently save the setting.

I Command
Inserts one or more blank lines.

Category: Text Editing, Line Command

Syntax
I <A | B> <n>

Without Arguments
The I command inserts one or more blank lines immediately after the line on which
you issued the command.

Optional Arguments
A

inserts one or more blank lines immediately after the line on which you issued
the command. You cannot have any characters between the I command and the
A argument.

B
inserts one or more the blank lines immediately before the line on which you
issued the command. You cannot have any characters between the I command
and the B argument.

n
specifies the number of blank lines to insert. Follow the n argument with a space.
If you use the A or B argument, the n argument is specified last. For example, if

610 Chapter 32 / Text-Editing Commands

line 00009 contains a PROC PRINT statement, the following I command
specifies that you want to insert three blank lines before the line of text:

ib3 9 proc print data=final.educ;

Details
The I command inserts one or more blank lines. By default, the lines are blank. You
can define content with the MASK command. The I command is most easily issued
with a function key.

Comparisons
You can use the MASK command with the I command. The I command inserts one
or more blank lines, which can include content set by the MASK command.

See Also
Commands:

n “MASK Command” on page 621

INDENT Command
Retains left margin indention when text is flowed.

Category: Text Editing, Command-Line Command

Syntax
INDENT <ON | OFF>

Without Arguments
The INDENT command is toggled on or off. The first time you issue the INDENT
command, it reverses the current setting. If the current setting is ON, then issuing
the INDENT command changes the setting to OFF. If the current setting is OFF,
then issuing the INDENT command changes the setting to ON. When you reissue
the INDENT command, it returns to the previous setting.

INDENT Command 611

Optional Arguments
ON

turns on the INDENT command in the window.

Tips The INDENT ON command indents all lines.

When the INDENT command is turned on and you issue the TF
command, all of the lines in the paragraph are indented the same as the
first line in the paragraph.

OFF
turns off the INDENT command in the window.

Details
The INDENT command specifies that the current left margin indention is used under
the following conditions:

n when existing text in a window is flowed with the TF command

n when text is inserted in a window when the AUTOFLOW command is turned on

n when existing text in a window is split with the TS command

Comparisons
The left boundary can be set by both the INDENT and BOUNDS commands.
However, when text is flowed, turning the INDENT command on always determines
the left boundary, and overrides the left boundary set by the BOUNDS command.

Examples

Example 1
This example shows four lines of text. The TF command is entered in the number
field of the first line. The first line of the paragraph is indented. The INDENT
command is set to ON, and the default boundaries are 1 and 50:

tf 01 The purpose of Monday's meeting is to review
00002 the documentation plan and gather your responses. Please
00003 send a representative
00004 if you are unable to attend.

612 Chapter 32 / Text-Editing Commands

Example 2
The following example shows the result of pressing Enter to issue the TF command.
The indention is used for all of the lines and the right boundary is 50:

tf 01 The purpose of Monday's meeting is to review
00002 the documentation plan and gather your responses. Please
00003 send a representative
00004 if you are unable to attend.

See Also
Commands:

n “AUTOFLOW Command” on page 593

n “BOUNDS Command” on page 598

n “TF Command” on page 630

n “TS Command” on page 631

JC Command
Centers a designated line of text.

Category: Text Editing, Line Command

Syntax
JC <n>

Without Arguments
The JC command centers the designated line of text that contains the line command
based on the left and right boundary settings.

Optional Argument
n

specifies the column position on which to center the designated line of text.
Follow the n argument with a space.

JC Command 613

Details
The JC command centers a designated line of text. Unless you specify a numeric
argument, centering is based on the current boundary settings set by the BOUNDS
command. A numeric argument overrides these boundary settings.

Comparisons
Like the JL, JJL, JR, and JJR commands, the JC and JJC commands align text.

See Also
Commands:

n “BOUNDS Command” on page 598

n “JJC Command” on page 614

n “JJL Command” on page 615

n “JJR Command” on page 616

n “JL Command” on page 617

n “JR Command” on page 619

JJC Command
Centers each line of text independently in a designated block of text.

Category: Text Editing, Line Command

Syntax
JJC

block-of-text

JJC

Details
The JJC command centers a designated block of text. Each line in the block is
centered independently. Centering is based on the current boundary settings set by
the BOUNDS command.

614 Chapter 32 / Text-Editing Commands

Comparisons
Like the JL, JJL, JR, and JJR commands, the JC and JJC commands align text.

See Also
Commands:

n “BOUNDS Command” on page 598

n “JC Command” on page 613

n “JJL Command” on page 615

n “JJR Command” on page 616

n “JL Command” on page 617

n “JR Command” on page 619

JJL Command
Left-aligns a designated block of text.

Category: Text Editing, Line Command

Syntax
JJL <n>

block-of-text

JJL <n>

Without Arguments
The JJL command left-aligns a designated block of text. Alignment is based on the
left and right boundary settings.

Optional Arguments
n

specifies the column position on which to left-align the designated block of text.
By default, the n argument is the left boundary setting. Follow the n argument
with a space. You can specify the numeric argument in the beginning or ending
line of the block command or in both. If it is specified in both, then the first
numeric argument is used.

JJL Command 615

block-of-text
specifies a block of text to be left aligned.

Details
The JJL command left-aligns a designated block of text. Unless you specify a
numeric argument, left-alignment is based on the current boundary settings set by
the BOUNDS command. A numeric argument overrides these boundary settings.

Comparisons
Like the JC, JJC, JR, and JJR commands, the JL and JJL commands align text.

See Also
Commands:

n “BOUNDS Command” on page 598

n “JC Command” on page 613

n “JJC Command” on page 614

n “JJR Command” on page 616

n “JL Command” on page 617

n “JR Command” on page 619

JJR Command
Right-aligns a designated block of text.

Category: Text Editing, Line Command

Syntax
JJR <n>

block-of-text

JJR <n>

616 Chapter 32 / Text-Editing Commands

Without Arguments
The JJR command right-aligns a designated block of text. Alignment is based on the
left and right boundary settings.

Optional Arguments
n

specifies the column position on which to right-align the designated block of text.
By default, the n argument is the right boundary setting. Follow the n argument
with a space. You can specify the numeric argument in the beginning or ending
line of the block command or in both. If it is specified in both, then the first
numeric argument is used.

block-of-text
specifies a block of text to be right aligned.

Details
The JJR command right-aligns a designated block of text. Unless you specify a
numeric argument, right-alignment is based on the current boundary settings set by
the BOUNDS command. A numeric argument overrides these boundary settings.

Comparisons
Like the JC, JJC, JL, and JJL commands, the JR and JJR commands align text.

See Also
Commands:

n “BOUNDS Command” on page 598

n “JC Command” on page 613

n “JJC Command” on page 614

n “JJL Command” on page 615

n “JL Command” on page 617

n “JR Command” on page 619

JL Command
Left-aligns a designated line of text.

JL Command 617

Category: Text Editing, Line Command

Syntax
JL <n>

Without Arguments
The JL command left-aligns the designated line of text. Alignment is based on the
left and right boundary settings.

Optional Argument
n

specifies the column position on which to left-align the designated line of text. By
default, the n argument is the left boundary setting. Follow the n argument with a
space.

Details
The JL command left-aligns a designated line of text. Unless you specify a numeric
argument, left-alignment is based on the current boundary settings set by the
BOUNDS command. A numeric argument overrides those boundary settings.

Comparisons
Like the JC, JJC, JR, and JJR commands, the JL and JJL commands align text.

See Also
Commands:

n “BOUNDS Command” on page 598

n “JC Command” on page 613

n “JJC Command” on page 614

n “JJL Command” on page 615

n “JJR Command” on page 616

n “JR Command” on page 619

618 Chapter 32 / Text-Editing Commands

JR Command
Right-aligns a designated line of text.

Category: Text Editing, Line Command

Syntax
JR <n>

Without Arguments
The JR command right-aligns the designated line of text. Alignment is based on the
left and right boundary settings.

Optional Argument
n

specifies the column position on which to right-align the designated line of text.
By default, the n argument is the right boundary setting. Follow the n argument
with a space.

Details
The JR command right-aligns a designated line of text. Unless you specify a
numeric argument, right-alignment is based on the current boundary settings set by
the BOUNDS command. A numeric argument overrides these boundary settings.

Comparisons
Like the JC, JJC, JL, and JJL commands, the JR and JJR commands align text.

See Also
Commands:

n “BOUNDS Command” on page 598

n “JC Command” on page 613

n “JJC Command” on page 614

JR Command 619

n “JJL Command” on page 615

n “JJR Command” on page 616

n “JL Command” on page 617

KEYS Command
Enables you to assign function keys to tasks.

Category: Text Editing, Command-Line Command

Syntax
KEYS

Comparisons
The KEYS command enables you to access the KEYS window so that you can
assign function keys to tasks.

M Command
Moves one line of text.

Category: Text Editing, Line Command

Syntax
M <n>

intervening-text

A | B

Required Arguments
A

marks the target position of the line of text to be moved; in this case, after the
line where the A argument is entered. You can place the A argument either
before or after the line to be moved.

620 Chapter 32 / Text-Editing Commands

B
marks the target position of the line of text to be moved; in this case, before the
line where the B argument is entered. You can place the B argument either
before or after the line to be moved.

Optional Argument
n

specifies the number of lines of text to move. Follow the n argument with a
space. Without the n argument, only the line of text that contains the line
command is moved.

Details
The M command moves a designated line of text to a new position anywhere in a
window.

See Also
Commands:

n “MM Command” on page 622

MASK Command
Defines the contents of one or more new lines.

Category: Text Editing, Line Command

Syntax
MASK

Without Arguments
The MASK command defines, displays, and enables you to edit the contents of one
or more new lines that are created by the I command.

MASK Command 621

Details
The MASK command defines, displays, and enables you to edit the contents of one
or more new lines that are created by the I command. The default setting for the
new lines are blank lines. To display or edit a new line, type MASK in the number
field of the line, and then press Enter. The line with the contents defined by the
MASK command is inserted. You can then edit the line. A line with the contents
defined by the MASK command is inserted each time you issue the I command.

The contents defined by the MASK command remain in effect for that window
throughout your current SAS session unless you change them. To change the
contents, type over the text. If you want to return to the default (a blank line), do one
of the following tasks:

n blank any characters in the text field of the MASK line.

n issue the CLEAR command with MASK as an argument:

clear mask

The contents of the MASK line are cleared, and a note appears in the log
indicating that the MASK line has been cleared.

You can use the RESET command or the D command to not display the
contents of the MASK command. The MASK command remains in effect even
when it is not displayed. For example, the MASK command remains in effect
under the following conditions:

o when you scroll past the MASK line and it is not displayed

o when you issue the D or RESET command without blanking any characters
in the text of the MASK line

In some windows, such as the Program Editor window, you can use the WSAVE
command to permanently save the contents of the MASK command.

See Also
Commands:

n “D Command” on page 607

n “RESET Command” on page 625

MM Command
Moves a block of text.

Category: Text Editing, Line Command

622 Chapter 32 / Text-Editing Commands

Syntax
MM

block-of-text

MM

intervening-text

A | B

Required Arguments
A

marks the target position of the lines of text to be moved; in this case, after the
line where the A argument is entered. You can place the A argument either
before or after the lines to be moved.

B
marks the target position of the lines of text to be moved; in this case, before the
line where the B argument is entered. You can place the B argument either
before or after the lines to be moved.

See Also
Commands:

n “M Command” on page 620

NUMBERS Command
Adds or removes line numbers.

Category: Text Editing, Command-Line Command

Syntax
NUMBERS <ON | OFF>

Without Arguments
The NUMBERS command is toggled on or off. The first time you issue the
NUMBERS command, it reverses the current setting. If the current setting is ON,
then issuing the NUMBERS command changes the setting to OFF. If the current
setting is OFF, then issuing the NUMBERS command changes the setting to ON.

NUMBERS Command 623

Optional Arguments
ON

turns on the NUMBERS command in the window, so that the lines in the
Program Editor are numbered.

OFF
turns off the NUMBERS command in the window, so that the lines in the
Program Editor are not numbered.

Details
The NUMBERS command adds or removes line numbers for data lines in windows
that allow text editing. When you issue the NUMBERS command to remove line
numbers, the line numbers disappear and all text shifts left. When you issue the
NUMBERS command to add line numbers, the numbers are displayed on the left,
and all of the text shifts right. The alias for the NUMBERS command is NUMS.

R Command
Repeats a designated line.

Category: Text Editing, Line Command

Syntax
R <n>

Without Arguments
The R command repeats a designated line one time.

Optional Argument
n

specifies the number of times to repeat the designated line. Follow the n
argument with a space.

Details
The R command repeats a designated line immediately after the designated line.
The default is one time.

624 Chapter 32 / Text-Editing Commands

Comparisons
The R and RR commands repeat the line or block of lines immediately after the line
with the R or RR command. The C and CC commands enable you to copy one or
more lines anywhere in a window.

See Also
Commands:

n “C Command” on page 599

n “CC Command” on page 601

n “RR Command” on page 626

RESET Command
Removes any pending line commands.

Category: Text Editing, Command-Line Command

Syntax
RESET

Without Arguments
The RESET command removes any pending line commands.

Details
The RESET command removes any pending line commands. It also removes any
MASK lines that were created when the MASK command was issued. The display of
the MASK line, not the setting of the MASK command, is removed. If you do not
want to complete a command on a block of lines (such as the MM or CC command),
you can issue the RESET command to remove the pending command.

RESET Command 625

Comparisons
The RESET command has the same result as the D command. The RESET
command also removes the display of MASK lines from the MASK command.

See Also
Commands:

n “D Command” on page 607

RR Command
Repeats a block of lines.

Category: Text Editing, Line Command

Syntax
RR <n>

block of text

RR <n>

Without Arguments
The RR command repeats the block of lines one time.

Optional Argument
n

specifies the number of times to repeat the designated block of lines. Follow the
n argument with a space. You can specify the numeric argument in the beginning
or ending line of the block command or in both. If it is specified in both, the first
numeric argument is used.

Details
The RR command repeats a designated block of lines immediately after the
designated block of lines. The default is one time.

626 Chapter 32 / Text-Editing Commands

Comparisons
The R and RR commands repeat the line or block of lines immediately after the line
with the R or RR command. The C and CC commands enable you to copy one or
more lines anywhere in a window.

See Also
Commands:

n “C Command” on page 599

n “CC Command” on page 601

n “R Command” on page 624

SPELL Command
Checks spelling and flags unrecognized words.

Category: Text Editing, Command-Line Command

Syntax
SPELL <ALL <SUGGEST>>

SPELL <NEXT | PREV | SUGGEST>

SPELL <REMEMBER <dictionary-name>>

Without Arguments
The SPELL command checks the first word if the cursor is positioned on the
command line. Otherwise, the SPELL command checks the word on which the
cursor is positioned. Assign a function key to the SPELL command by using the
KEYS command. Use the function key to check the spelling of the word on which
the cursor is positioned. If the word is recognized, the message “OK” appears.
Otherwise, a message appears that indicates the word is unrecognized.

Optional Arguments
ALL

checks the spelling of all words. If all words are recognized, a message indicates
that no unrecognized words have been found.

If a word is unrecognized, the SPELL: Unrecognized Words window appears,
listing the unrecognized words and their corresponding line numbers. The

SPELL Command 627

window initially displays a blank field for the dictionary that you want to specify.
Enter a new dictionary name, or the name of an existing dictionary. Select Tools
ð Remember to add the unrecognized words to the dictionary.

Tip Specify the SPELL ALL SUGGEST command to display the SPELL:
Suggestions window for each unrecognized word that is found.

SUGGEST
invokes the SPELL: Suggestions window, which displays the last unrecognized
word and its line number, and suggestions for changing the unrecognized word.
In this window, you can select Tools ð Remember to add the unrecognized
word to a dictionary. The window then closes, you are returned to the previous
window, and a message indicates that the word is now recognized.

You can change the unrecognized word by positioning your cursor on a
suggestion, and then pressing Enter. The suggested word is highlighted. Select
Tools ð Replace. When you return to the Program Editor window, you will see
that the unrecognized word has been changed. If you want to replace all
occurrences of the recognized word, first, position the cursor on the phrase ALL
OCCURRENCES, and then press Enter. The phrase ALL OCCURRENCES is
highlighted. When you return to the Program Editor window, you can see that all
occurrences of the unrecognized word have been changed.

Alias ?

NEXT
finds the next unrecognized word, based on the current cursor position. If all
words from the current cursor position to the end of the file are recognized, a
message indicates that the end of the file was reached. Otherwise, a message
indicates that a word is unrecognized, and the cursor is positioned on the
unrecognized word.

PREV
finds the previous unrecognized word, based on the current cursor position. If all
words from the current cursor position to the beginning of the file are recognized,
a message indicates that the beginning of the file was reached. Otherwise, a
message indicates that a word is unrecognized, and the cursor is positioned on
the unrecognized word.

REMEMBER dictionary-name
adds the last unrecognized word to an auxiliary dictionary, where dictionary-
name is the name of an auxiliary dictionary. A message indicates that the word
has been added to an auxiliary dictionary. If you are using only one auxiliary
dictionary, you can omit dictionary-name. If no auxiliary dictionary is specified,
and dictionary-name is omitted, the unrecognized word is saved in a temporary
dictionary in the current SAS session only.

You can highlight a word from the SPELL: Unrecognized Words window or from
the SPELL: Suggestions window, and then select Tools ð Remember. The
word that you added is now recognized.

Alias ADD

628 Chapter 32 / Text-Editing Commands

Details
The SPELL command checks spelling and flags unrecognized words. You can use
the SPELL command to do the following tasks:

n See suggestions for unrecognized words.

n Add unrecognized words to an auxiliary dictionary.

n Replace unrecognized words with suggestions.

The SPELL command checks words with a default dictionary. However, you can
specify one or more auxiliary dictionaries to use in addition to the default dictionary.

Any dictionary that you create is stored in your Sasuser.Profile catalog. If you
update a dictionary using the SPELL REMEMBER command, updates are saved to
a temporary dictionary in the current SAS session. The temporary dictionary is
created if you do not specify a dictionary name. If you specify a dictionary from the
Sashelp.Base catalog, updates are saved in that dictionary.

Comparisons
The SPELL command checks spelling and flags unrecognized words, and the DICT
command includes or creates an auxiliary dictionary. The SPELL command can also
create and update auxiliary dictionaries. Use the SPELL command to create a
permanent auxiliary dictionary. The word list that is used by the SPELL command
acts as a record of the words that are contained in the auxiliary dictionary.

See Also
Commands:

n “DICT Command” on page 608

TC Command
Connects two lines of text.

Category: Text Editing, Line Command

Syntax
TC

TC Command 629

Without Arguments
The TC command connects two lines of text.

Details
The TC command connects two lines of text. To connect two lines of text, type TC in
the number field of a line, and press Enter or Return. The text from the second line
moves to the first line. No space appears between text on the first line and text on
the second line. To create a space between the last word of the first line and the first
word of the second line, start the text of the second line in the second column.

The command does not truncate text.

Comparisons
The TC command is the opposite of the TS command, which splits text at the
cursor. It is similar to the TF command, except that it breaks text at boundaries
instead of flowing text in a paragraph by removing trailing blanks.

See Also
Commands:

n “TF Command” on page 630

n “TS Command” on page 631

TF Command
Flows text to a blank line or to the end of the text.

Category: Text Editing, Line Command

Syntax
TF <A> <n>

Without Arguments
The TF command flows text to the first blank line, or to the end of the text,
whichever comes first, based on left and right boundary settings.

630 Chapter 32 / Text-Editing Commands

Optional Arguments
A

flows text in a paragraph to the end of the text by removing trailing blanks,
continuing over, but not deleting, blank lines. This argument, like the numeric
argument, must be specified on the same line as the TF command. You cannot
have any characters between the TF command and the A argument.

n
specifies a right boundary to temporarily override the right boundary set by the
BOUNDS command. Follow the n argument with a space.

TS Command
Splits text at the cursor.

Category: Text Editing, Line Command

Syntax
TS <n>

Without Arguments
The TS command splits the line of text at the cursor, and moves the remaining text
to a new line.

Optional Argument
n

specifies how many lines down to move the remaining text. The default is one
line. Follow the n argument with a space.

Details
The TS command splits the line of text at the cursor, and moves the remaining text
to a new line starting at the left margin. If you specify a numeric argument, the TS
command moves the text down the number of lines specified. With the AUTOFLOW
command turned on, the TS command uses the left boundary that is specified by
the BOUNDS command. If the INDENT command is turned on, the TS command
uses the current indention at the left margin. With the AUTOFLOW command turned
off, the left boundary and the current indention at the left margin are reset.

This example shows the effect of splitting two statements in a SAS program and
placing each statement on a separate line. This example shows the text after you
type the TS command on line 0001 and position the cursor after the first statement,
and before you press Enter or Return:

TS Command 631

ts 01 proc print data=temp; run;

When you press Enter or Return, the following result is displayed:

00001 proc print data=temp;
00002 run;

Comparisons
The TS command, with its default numeric argument of 1, is the same as entering a
carriage return or pressing Enter or Return with the AUTOSPLIT command turned
on. The TS command contrasts with the TC command and the TF command. The
TC command connects two lines of text. The TF command flows text to a blank line
or to the end of the text. With the AUTOFLOW command turned on, the TS
command is affected by both the BOUNDS and INDENT commands.

See Also
Commands:

n “AUTOSPLIT Command” on page 595

n “I Command” on page 610

n “TC Command” on page 629

n “TF Command” on page 630

UNDO Command
Cancels an action.

Syntax
UNDO

Without Arguments
The UNDO command cancels the most recent action in an active window that
allows text editing.

632 Chapter 32 / Text-Editing Commands

Details
The UNDO command cancels the most recent action in an active window that
allows text editing. The action must be a command that enters or modifies text. If
you want to undo more than one action, you must continue to issue the UNDO
command. Actions are undone one at a time, starting with the most recent action
and moving backward.

Note: The UNDO command cannot undo the SUBMIT command. It cannot reverse
the effects of submitted SAS statements.

Comparisons
Although you cannot undo the SUBMIT command, you can use the RECALL
command to recall submitted statements back to the Program Editor window.

If you use the CC command to copy and paste a block of text, and then you issue
the UNDO command, the block of text that you copied and pasted is deleted. If you
use the DD command to delete a block of text, and then you issue the UNDO
command, the block of text that you deleted is restored.

< Command
Shifts to the left a designated line of text.

Category: Text Editing, Line Command

Syntax
< <n>

Without Arguments
The < command shifts a designated line of text one space to the left.

Optional Argument
n

specifies the number of spaces that the designated line of text shifts. Follow the
n argument with a space.

< Command 633

Details
The < command shifts a designated line of text one or more spaces to the left. The
line shifts the number of spaces that you specify with the n argument, or the line
shifts at the left window border, whichever is less. This text-shift command does not
lose characters when shifting.

Comparisons
The > and >> commands shift text in the opposite direction from the < and <<
commands. The),)), (, and ((commands are similar text-shift commands, which,
depending on the extent of the shift, can lose characters.

See Also
Commands:

n “<< Command” on page 634

<< Command
Shifts to the left a designated block of text.

Category: Text Editing, Line Command

Syntax
<< <n>

block-of-text

<< <n>

Without Arguments
The << command shifts a designated block of lines of text one space to the left.

Optional Argument
n

specifies the number of spaces that the designated block of lines of text shifts.
Follow the n argument with a space. You can specify the numeric argument in

634 Chapter 32 / Text-Editing Commands

the beginning or ending line of the block command, or in both. If it is specified in
both, the first numeric argument is used.

Details
The << command shifts a designated block of lines of text one or more spaces to
the left. The block of lines of text shifts the number of spaces that you specify with
the n argument, or the block shifts at the left window border, whichever is less. This
text-shift command does not lose characters when shifting.

Comparisons
The > and >> commands shift text in the opposite direction from the < and <<
commands. The),)), (, and ((commands are similar text-shift commands, which,
depending on the extent of the shift, can lose characters.

> Command
Shifts to the right a designated line of text.

Category: Text Editing, Line Command

Syntax
> <n>

Without Arguments
The > command shifts a designated line of text one space to the right.

Optional Argument
n

specifies the number of spaces that the designated line of text shifts. Follow the
n argument with a space.

Details
The > command shifts a designated line of text one or more spaces to the right. The
line shifts the number of spaces that you specify with the n argument, or the line

> Command 635

shifts at the left window border, whichever is less. This text-shift command does not
lose characters when shifting.

Comparisons
The < and << commands shift text in the opposite direction from the > and >>
commands. The),)), (, and ((commands are similar text-shift commands, which,
depending on the extent of the shift, can lose characters.

See Also
Commands:

n “>> Command” on page 636

>> Command
Shifts to the right a designated block of text.

Category: Text Editing, Line Command

Syntax
>> <n>

block of text

>> <n>

Without Arguments
The >> command shifts a designated block of lines of text one space to the right.

Optional Argument
n

specifies the number of spaces that the designated block of lines of text shifts.
Follow the n argument with a space. You can specify the numeric argument in
the beginning or ending line of the block command, or in both. If it is specified in
both, the first numeric argument is used.

636 Chapter 32 / Text-Editing Commands

Details
The >> command shifts a designated block of lines of text one or more spaces to
the right. The block of lines of text shifts the number of spaces that you specify with
the n argument, or the block shifts at the left window border, whichever is less. This
text-shift command does not lose characters when shifting.

Comparisons
The < and << commands shift text in the opposite direction from the > and >>
commands. The),)), (, and ((commands are similar text-shift commands, which,
depending on the extent of the shift, can lose characters.

See Also
Commands:

n “> Command” on page 635

(Command
Shifts to the left one designated line of text.

Category: Text Editing, Line Command

Syntax
(<n>

Without Arguments
The (command shifts a designated line of text one space to the left.

Optional Argument
n

specifies the number of spaces that the designated line of text shifts. The default
is one space. Follow the n argument with a space.

(Command 637

Details
The (command shifts a designated line of text one or more spaces to the left. If the
shift extends past the beginning of the current line, characters are lost.

Comparisons
The) and)) commands shift text in the opposite direction from the (and
((commands. The <, <<, >, and >> commands are similar text-shift commands, but
they do not lose characters when shifting.

See Also
Commands:

n “((Command” on page 638

((Command
Shifts to the left a designated block of lines of text.

Category: Text Editing, Line Command

Syntax
((<n>

block-of-text

((<n>

Without Arguments
The ((command shifts a designated block of lines of text one space to the left.

Optional Argument
n

specifies the number of spaces that the designated block of lines of text shifts.
The default is one space. Follow the n argument with a space. You can specify
the numeric argument in the beginning or ending line of the block command, or
in both. If it is specified in both, the first numeric argument is used.

638 Chapter 32 / Text-Editing Commands

Details
The ((command shifts a designated block of lines of text one or more spaces to the
left. If the shift extends past the beginning of the current line, characters are lost.

Comparisons
The) and)) commands shift text in the opposite direction from the (and
((commands. The <, <<, >, and >> commands are similar text-shift commands, but
they do not lose characters when shifting.

See Also
Commands:

n “(Command” on page 637

) Command
Shifts to the right one designated line of text.

Category: Text Editing, Line Command

Syntax
) <n>

Without Arguments
The) command shifts a designated line of text one space to the right.

Optional Argument
n

specifies the number of spaces that the designated line of text shifts. The default
is one space. Follow the n argument with a space.

) Command 639

Details
The) command shifts a designated line of text one or more spaces to the right. If
the shift extends past the end of the current line, characters are lost.

Comparisons
The (and ((commands shift text in the opposite direction from the) and))
commands. The <, <<, >, and >> commands are similar text-shift commands, but
they do not lose characters when shifting.

See Also
Commands:

n “)) Command” on page 640

)) Command
Shifts to the right a designated block of lines of text.

Category: Text Editing, Line Command

Syntax
)) <n>

block-of-text

)) <n>

Without Arguments
The)) command shifts a designated block of lines of text one space to the right.

Optional Argument
n

specifies the number of spaces that the designated block of lines of text shifts.
The default is one space. Follow the n argument with a space. You can specify
the numeric argument in the beginning or ending line of the block command, or
in both. If it is specified in both, the first numeric argument is used.

640 Chapter 32 / Text-Editing Commands

Details
The (and ((commands shift text in the opposite direction from the) and))
commands. The <, <<, >, and >> commands are similar text-shift commands, but
they do not lose characters when shifting.

See Also
Commands:

n “) Command” on page 639

)) Command 641

642 Chapter 32 / Text-Editing Commands

Appendix 4
Using EBCDIC Data on ASCII
Systems

About EBCDIC and ASCII Data . 643
Overview of EBCDIC and ASCII Data Representation . 643
EBCDIC File Structures . 644
ASCII File Structure . 645
Numeric Values . 645

Moving Data from EBCDIC to ASCII Systems . 646
Overview of Accessing EBCDIC Data on ASCII Systems . 646
Example of Incorrect Conversion of Packed-Decimal Numeric Data 647
Convert EBCDIC Files with Fixed-Length Records . 648
Convert EBCDIC Files with Variable-Length Records . 649
Read EBCDIC Data from Structured COBOL Files . 652

Moving Data from ASCII to EBCDIC Systems . 654
Overview . 654
Using FTP to Write Files Directly . 654
Using the dd Command to Convert and Copy a File . 655
Using the iconv Command to Convert a Text File . 657

About EBCDIC and ASCII Data

Overview of EBCDIC and ASCII Data
Representation

Extended Binary Coded Decimal Interchange Code (EBCDIC) is an 8-bit character
encoding method for IBM mainframe machines. American Standard Code for

643

Information Interchange (ASCII) is a 7-bit character encoding method for most other
machines, including Windows, UNIX, and Macintosh machines.

Hexadecimal characters are used to represent one byte or eight bits of data. In a
binary system, each bit can have the value 0 or 1. An aggregation of four bits can
therefore take on 16 (24) possible values. This means that two hexadecimal
characters can be used to represent one byte of data. In the EBCDIC and ASCII
encoding methods, each character is represented by two hexadecimal characters.
(This pertains primarily to Western language, single-byte encoding methods. There
are other encoding methods that store a single character in two bytes of storage,
such as encoding methods that are used for Japanese or Korean data.)

Each encoding method represents the same data differently, as shown in the
following examples:

n On an EBCDIC system, the digit 4 is represented by the hexadecimal value
'F4'x. On an ASCII system, the digit 4 is represented by the hexadecimal value
'34'x.

n On an EBCDIC system, the hexadecimal value '50'x represents the symbol &.
On an ASCII system, the same hexadecimal value represents the letter P.

When SAS reads a file, it expects the data in the file to be in the encoding that
matches the ENCODING= option for the SAS session. For example, on a Windows
machine, the default encoding for a single-byte SAS session with a US English
locale is LATIN1. SAS expects the data in a file on that Windows machine to use a
LATIN1 encoding. However, if a file originates on an EBCDIC machine and it is
stored on a Windows machine, then SAS would misinterpret the data from this file if
no other encoding information is provided. For this reason, specific steps must be
performed to convert data that originates on an EBCDIC system before it can be
used on an ASCII system (for example, the Windows machine). Here are the two
main methods to make EBCDIC data available on an ASCII system:

n On the ASCII system, read the data directly from the EBCDIC system.

n Use an FTP program to move the data, with or without any conversion of the
data.

EBCDIC File Structures
When you decide how to move data from an EBCDIC system to an ASCII system,
consider the structure of the EBCDIC source file. On EBCDIC systems, you might
have files with fixed-length records or files with variable-length records. Either type
of file contains a header with information about the file. The header includes a
Record Format attribute that indicates whether the records are fixed length or
variable length. The header for a file with fixed-length records includes a Logical
Record Length attribute that indicates the length of each record in bytes.

In SAS, the Record Format attribute corresponds to the RECFM= option in a
FILENAME statement. To access a file with fixed-length records, specify RECFM=F.
To access a file with variable-length records, specify RECFM=V. Similarly, the
Logical Record Length attribute corresponds to the LRECL= option.

The Logical Record Length attribute in the header for a file with variable-length
records indicates the maximum record length. Each record in a file with variable-
length records begins with a record descriptor word (RDW). The RDW is a 4-byte
binary integer field. The first two bytes of the RDW indicate the length of the current

644 Appendix 4 / Using EBCDIC Data on ASCII Systems

record. The last two bytes of the RDW contain information that is used by the
operating system. The length of the record includes the four bytes of the RDW at the
beginning of the record. Because the length of each record is specified in an
EBCDIC file (either in the header or in the RDW), there are no end-of-record
indicators in EBCDIC files.

A file with variable-length records also contains block descriptor words (BDWs). Like
the RDW, the BDW is a 4-byte, binary integer field. The first two bytes indicate the
block size, and the last two bytes are used by the operating system. Each block can
contain multiple records. If the block size is not specified when the file is created,
the default block size is the logical record length plus 4. Otherwise, the size of a
block is the number of bytes that are contained in the block. This value is the sum of
the record lengths in the block (obtained from the RDWs) plus 4 (the length of the
BDW).

ASCII File Structure
On ASCII systems, a file does not contain a header with information about the file,
such as record format or lengths. The RECFM attribute for ASCII files is variable
(RECFM=V), and the record length (LRECL) is unlimited. Instead of defining record
lengths like EBCDIC files do, ASCII files use end-of-record indicators to flag the end
of a record. On a Windows machine, the end-of-record indicators are the carriage
return (CR) and line feed (LF) characters. On a UNIX machine, an LF indicates the
end of a record. On a Macintosh machine, a CR indicates the end of a record. Other
types of machines use different combinations of characters to identify the end of
record. For all ASCII machines, the hexadecimal value for CR is '0D'x, and the
hexadecimal value for LF is '0A'x.

When SAS reads a file from disk on an ASCII machine, default values for some file
attributes must be used because these attributes are not defined. The default
RECFM value is V (variable-length record), and the default LRECL value is 32767.
This means that SAS scans the input from an ASCII file, parses the data into
variable values based on the INPUT statement, and looks for an end-of-record
indicator. If the end of a record is not found within the specified number of
characters (based on LRECL), then SAS truncates the record and prints a message
in the log. For example, suppose LRECL is set to 256, and there is a record that is
300 characters. SAS reads the first 256 characters based on the INPUT statement,
and then discards the last 44 characters. A message in the log states that “One or
more lines have been truncated.” You can override the current LRECL value using
the LRECL= option in the INFILE statement.

Numeric Values
When stored as character data, the decimal digits 0 through 9 each occupy one byte
of storage. One 8-bit byte includes two 4-bit nibbles. Each nibble can have 16 (24)
possible values. The first nibble is the high-order nibble, and the second is the low-
order nibble. In EBCDIC and ASCII systems, the high-order nibble has a standard
value. Decimal digits are represented in EBCDIC with a high-order nibble of F.
Decimal digits are represented in ASCII with a high-order nibble of 3. This means
that in an EBCDIC system, the digits 0 through 9 are represented by the
hexadecimal values 'F0'x through 'F9'x. In an ASCII system, the digits 0 through 9

About EBCDIC and ASCII Data 645

are represented by the hexadecimal values '30'x through '39'x. This encoding
method treats decimal digits as characters.

As an alternative to storing decimal digits as characters, there are other encoding
methods that can be used on an EBCDIC system. For example, a packed-decimal
encoding method represents two decimal digits in one byte of storage. A zoned-
decimal encoding method represents one decimal digit in one byte of storage, and
the sign of the entire value is included within one byte of storage. (The byte that
stores the decimal digit and the sign of the entire value can be either the first byte or
the last byte, depending on the type of machine.)

You must know the numeric encoding that is used on the source EBCDIC system so
that the source data is interpreted correctly on the ASCII system. For SAS, this
means that you must specify the correct informats to use for numeric data.

Moving Data from EBCDIC to ASCII
Systems

Overview of Accessing EBCDIC Data on ASCII
Systems

There are several ways to access EBCDIC data on an ASCII system. For example,
some ASCII machines have peripheral devices that can read 3480 or 3490 cartridge
tapes that are created on an EBCDIC system. These devices can read the data
directly from a tape into an application on an ASCII machine. Alternatively, these
devices can copy data from a tape and store it on the ASCII machine’s hard drive.

A more common method of moving and converting data is to use an FTP program to
transfer the data. By default, most FTP programs convert EBCDIC data into ASCII
when transferring data. If the source data contains only character data (including
digits that are encoded as characters), this is the recommended method. During the
conversion process, the FTP program creates the appropriate end-of-record
indicators for the ASCII system. After conversion, you can use an INFILE statement
to access the newly created file on the ASCII system. Use an INPUT statement to
specify the correct informat values to use when reading the data in the file.

Note: Even when all of the EBCDIC source data is encoded as character data,
there might be some characters that are not interpreted correctly during conversion.
The correct interpretation of these characters depends on the encoding method that
is used on the EBCDIC machine. As a best practice, verify that your data was
converted correctly by viewing the data that SAS reads from a converted file.

When an EBCDIC file contains numeric data that is not encoded as character data,
such as when a packed-decimal or zoned-decimal encoding method is used, the
default FTP conversion does not work correctly. Some numeric data can resemble
standard character data. In this case, FTP conversion incorrectly assigns ASCII

646 Appendix 4 / Using EBCDIC Data on ASCII Systems

characters to EBCDIC numeric data. For more information, see “Example of
Incorrect Conversion of Packed-Decimal Numeric Data”.

Note: There is no way to correctly convert packed-decimal encoded data from
EBCDIC into ASCII. Other methods to convert the data must be used if a packed-
decimal, zoned-decimal, or other numeric encoding method is used on the EBCDIC
system. For more information, see “Convert EBCDIC Files with Variable-Length
Records” on page 649.

In some instances, a byte of EBCDIC data might be interpreted in ASCII as an end-
of-line flag or end-of-file flag. If SAS is reading a file with variable-length records
when one of these hexadecimal values is encountered, then you might observe
unintended results. Depending on the expected data values based on specified
informats, you might observe anything from invalid data errors to unexpected
termination of the DATA step.

Example of Incorrect Conversion of Packed-
Decimal Numeric Data

This example demonstrates the problems that can result when you convert packed-
decimal numeric data as if it were encoded as character data. Suppose an EBCDIC
data file contains the numeric value 505, stored as a packed-decimal value
('505C'x). If you looked at the file with an EBCDIC file browser or editor, you would
see the characters ‘&*’. This is because '50'x corresponds to ‘&’ and '5C'x
corresponds to ‘*’. The FTP program interprets the ‘&’ character and converts it to
the ASCII value '26'x. The FTP program converts the ‘*’ character to the ASCII value
'2A'x, and the resulting converted value is '262A'x. The correct packed-decimal
value in ASCII should be '000505'x. Because the input data does not conform to the
expected packed-decimal informat, SAS prints an error to the log that states that the
data is invalid. Each time invalid data is encountered, SAS writes an error to the log,
and prints the contents of the input buffer and the corresponding DATA step
variables.

Table A22.1 Incorrect Conversion of Packed-Decimal Numeric Data

Step Action Value

1 FTP program reads the EBCDIC
packed-decimal numeric value
‘505’.

'505C'x

2 FTP program interprets the
value as standard EBCDIC
characters.

&*

3 FTP program converts to
standard ASCII hexadecimal
characters.

'262A'x

Moving Data from EBCDIC to ASCII Systems 647

Step Action Value

4 SAS flags the data as invalid
because packed-decimal
numeric data is expected (based
on the specified informat value).

???

Convert EBCDIC Files with Fixed-Length Records

FTP the File in Binary
When you convert an EBCDIC file with fixed-length records, use FTP to transfer the
file in binary. Then, with a FILENAME or INFILE statement, specify RECFM=F, and
assign the same value to LRECL that the file has in the EBCDIC system. Use the
formatted input style with the following informats:

n $EBCDICw. for character input data

n S370Fxxxw.d for numeric input data

Note: There are many S370Fxxxw.d informats. Select those informats that
match the type of data that you have. For more information, see SAS Formats
and Informats: Reference for SAS 9.3 and higher.

Because you are transferring the source file in binary, there is no processing to add
end-of-record indicators. For this reason, you must specify the exact number of
bytes that are specified for the source file in the EBCDIC system. If there are bytes
in the source file that would be interpreted as end-of-record indicators or end-of-file
indicators in an ASCII context, SAS treats those bytes simply as data.

Example: Convert an EBCDIC File with
Fixed-Length Records into an ASCII File
The following code reads a file, fixed.txt, that was previously transferred via FTP in
binary from an EBCDIC system to an ASCII system. The source file has fixed-length
records that are 60 bytes long. Based on the informat in this example, the last three
bytes in each record contain numeric data that was stored using the packed-decimal
encoding method.

filename test1 'c:\fixed.txt' recfm=f lrecl=60;
data one;
infile test1;
input @1 name $ebcdic20.
 @21 addr $ebcdic20.
 @41 city $ebcdic15.

648 Appendix 4 / Using EBCDIC Data on ASCII Systems

 @56 state $ebcdic2.
 @58 zip $s370fpd3.;
run;

Convert EBCDIC Files with Variable-Length
Records

Overview of Converting EBCDIC Files with
Variable-Length Records
When you convert an EBCDIC file with variable-length records, you can use an FTP
program. The FTP program removes BDWs and RDWs and adds end-of-record
indicators that are expected by the ASCII system. The data in the file is converted
from EBCDIC to ASCII. If all of the data in the EBCDIC file is encoded as
characters, then this process typically works correctly.

Note: Even when all of the EBCDIC source data is encoded as character data,
there might be some characters that are not interpreted correctly during conversion.
The correct interpretation of these characters depends on the encoding method that
is used on the EBCDIC machine. As a best practice, verify that your data was
converted correctly by viewing the data that SAS reads from a converted file.

When an EBCDIC file contains numeric data that is not encoded as character data,
such as when a packed-decimal or zoned-decimal encoding method is used, the
default FTP conversion does not work correctly. For more information, see
“Overview of Accessing EBCDIC Data on ASCII Systems” on page 646. To prevent
misinterpretation of data during conversion, transfer the file in binary via FTP without
converting the data to an ASCII encoding. When the data is transferred in binary
and is not converted, be aware that the BDW and RDW information is removed
automatically. This removes information that SAS needs to read the data
successfully.

Read Files Directly from the EBCDIC
System
If you have direct access between the ASCII machine and the EBCDIC machine,
then the best practice is to read the file directly. Direct access is enabled via a
peripheral device on the ASCII machine that can read an EBCDIC tape. You can
access the file via the FTP access method in a FILENAME statement. There are
several advantages to this method of accessing EBCDIC data:

n file preprocessing is not required

n copying the source file is not required

Moving Data from EBCDIC to ASCII Systems 649

n FTP access method works for fixed-length and variable-length records

n DATA step processing works as expected

The main disadvantage is that this method requires more time for processing
because you are accessing the data remotely.

This method of accessing EBCDIC data applies if you have a 3480 or 3490
cartridge tape reader attached to your ASCII machine. In this case, you do not need
to preprocess the file on an EBCDIC machine. You can read it directly from the tape
by setting RECFM=S370VB and using the $EBCDICw. and S370Fxxxw.d informats.

In a FILENAME statement, specify the FTP access method and the source
filename, and provide values for the HOST=, USER=, and PASS= options. The
HOST= option specifies the name of the EBCDIC machine, USER= specifies the
user account that you use to log on, and PASS= specifies the password that you
use to log on. The FTP access method uses an FTP program on the ASCII machine
to open a connection between the ASCII machine and the EBCDIC machine. The
SAS system connects to and logs on to the mainframe machine with the specified
user account and password. The FTP program transfers the file.

Note: If you specify the PASS= option, the password is saved as text in your SAS
program. The password is not visible in the SAS log. As an alternative to the PASS=
option, you can specify the PROMPT option and provide a password at the prompt
when you execute the SAS program.

For EBCDIC files with variable-length records, you must also specify the S370V and
RCMD= options. The S370V option indicates that the records in the source file have
variable lengths. For the RCMD= option, specify RCMD="SITE RDW" to indicate
that the FTP process should keep the RDW information during the file transfer.

If you experience connection problems to the EBCDIC machine, you can add the
DEBUG option to see the informational messages that are sent to and from the FTP
server.

Example: Read an EBCDIC Source File
Directly with the FTP Access Method
This example shows how to read an EBCDIC file with variable-length records
directly from an EBCDIC machine using the FTP access method. The user is
prompted for her MVS logon password. The ZIP code is entered as a 5-digit
EBCDIC number, represented by one digit per byte. The comments section is
varying in length up to 200 characters. After the data is read, it is printed to verify
the contents of the data set.

filename test1 ftp "'SASEBCDIC.VB.TEST1'" host='MVS' user='SASEBCDIC'
PROMPT
 s370v rcmd='site rdw';
data one;
infile test1;
input @1 name $ebcdic20.
 @21 addr $ebcdic20.
 @41 city $ebcdic10.
 @51 state $ebcdic2.
 @54 zip s370ff5.

650 Appendix 4 / Using EBCDIC Data on ASCII Systems

 @60 comments :$ebcdic200.;
run;

proc print;
run;

Reformat an EBCDIC File with Variable-
Length Records with IEBGENER
Suppose that you do not have direct access between the ASCII machine and the
EBCDIC machine. That is, you do not have a peripheral device that reads EBCDIC
data on the ASCII machine. In this situation, you can convert the data by
reformatting the file on the mainframe machine. By changing the format of the file,
you prevent the FTP program from removing the RDW information that SAS
requires to read the data correctly. After you reformat the file, you can transfer the
file in binary to the ASCII machine.

To reformat the source file, use the IEBGENER program on the EBCDIC machine.
Use this program to make an exact copy of the file with altered header information.
Specifically, use IEBGENER to change the RECFM value from V (variable-length
records in blocks) to U (undefined record length and unblocked). After making this
change, the FTP program no longer removes the RDW information during the file
transfer.

When you run the IEBGENER program, in addition to the required arguments,
specify the following overrides:

SYSUT1 DCB=(RECFM=U,BLKSIZE=32760)
SYSUT2 DCB=(RECFM=U,BLKSIZE=32760) DISP=(NEW,CATLG)

Note: Do not use the original values of RECFM and BLKSIZE for SYSUT1.

Transfer the new version of the file in binary using an FTP program on the ASCII
machine. In SAS, use a FILENAME or INFILE statement to read the transferred file.
Set the options appropriately.

n Set the RECFM= option to S370V if the record format for the original file was
variable (RECFM=V). Set the RECFM= option to S370VB if the record format for
the original file was variable and blocked (RECFM=VB). By specifying the
RECFM= option as S370V or S370VB, you tell SAS to process the RDW
information for each record and enter the correct number of bytes for each
record.

n Specify the same value for the LRECL= option that is in the original file. If you do
not specify a value for the LRECL= option, SAS uses the default LRECL value
(32767). Using the default value could cause SAS to truncate data records if
they are longer than the default LRECL value.

Use the formatted input style with the informats that are described in “FTP the File in
Binary” on page 648.

Moving Data from EBCDIC to ASCII Systems 651

Example: Read a File with Modified
Header Data
This example reads a file that was generated from an EBCDIC file with a header
that was modified to change the file format. The modified file was transferred to an
ASCII machine for SAS processing. For more information, see “Reformat an
EBCDIC File with Variable-Length Records with IEBGENER” on page 651.

The TRUNCOVER option is included in the INFILE statement because the
Comment variable can be up to 60 characters (but it is likely shorter). Without the
TRUNCOVER option, the INPUT statement could attempt to read past the end of
the record. Data from the next record would continue to be assigned to the
Comment variable until the variable was full. The LRECL= option is not specified
because the default value is sufficient to handle the longest record in the file. After
the data is read, it is printed to output for verification.

filename test1 'c:\vbtest.xfr' recfm=s370vb;
data one;
infile test1 truncover;
input @1 name $ebcdic14.
 @15 addr $ebcdic18.
 @33 zip s370ff5.
 @38 comment $ebcdic60.;
run;

proc print;
run;

Read EBCDIC Data from Structured COBOL Files

About Structured COBOL Files
A structured COBOL file is generated using an OCCURS DEPENDING ON clause.
This type of file has variable-length records. And, when the file is transferred via
FTP in binary, there is no BDW or RDW information. Each record is divided into
three parts: a record header (a fixed-length portion of the record), an index variable,
and one or more data segments. The documentation for the file provides the length
of the record header, the index variable, and a data segment. The record header is
the same length for each record. It contains information that pertains to all of the
data segments that follow. The index variable provides the number of data
segments for the current record. The remainder of the record contains the data
segments.

Because of the structure of the records, SAS is able to read the data in these files.
The length of a record is the sum of the header length, the index length, and the
product of the index value and the size of each data segment. For each data

652 Appendix 4 / Using EBCDIC Data on ASCII Systems

segment, SAS reads the segment, and then writes a copy of the header and the
current data segment to a new observation in a SAS data set.

When you read a structured COBOL file, specify RECFM=N in your FILENAME
statement. This tells SAS that you are reading a stream of data that does not
conform to a typical file structure. Any restrictions to record length are ignored when
SAS reads a data stream because SAS does not attempt to buffer the input. SAS
writes a statement to the SAS log to notify you that SAS reads a data stream as
unbuffered when RECFM=N.

SAS reads an entire structured COBOL file as a single, long record. Therefore, if
you need to skip some data or move past a space, you must use relative column
pointers in your INPUT statement. Line holders are ignored because the contents of
the file are treated as a single input record. The @column pointers do not work for
these files.

CAUTION
Do not use @column pointers when you specify RECFM=N. Using @column
pointers initiates an infinite loop in which SAS reads and writes the same data
repeatedly until you halt the program or until no more disk space is available.

Example: Read Data from a Structured
COBOL File
In this example, an EBCDIC file was transferred via FTP in binary without first
processing the file using IEBGENER. The record header (fixed-length) portion of
each record is 59 bytes in length and contains a combination of character and
numeric data. The index variable is two bytes. There is another space (one byte) to
separate the index variable from the remainder of the record. The data segment
portion of the record consists of one or more repeats of 13 bytes in length. Each
repeat contains a combination of character and numeric data.

filename test1 'c:\VB.TEST' recfm=n;

data one;
infile test1;
input name $ebcdic20. addr $ebcdic20. city $ebcdic10. st $ebcdic2. +1
 zip s370ff5. +1 idx s370ff2. +1;
do i = 1 to idx;
 input cars $ebcdic10. +1 years s370ff2. ;
 output;
 if i lt idx then input +1 ;
end;
run;

Moving Data from EBCDIC to ASCII Systems 653

Moving Data from ASCII to EBCDIC
Systems

Overview
There are several ways to transcode ASCII data to EBCDIC:

n Use FTP to write files (data) directly.

n Use the dd command.

n Use the iconv command.

Using FTP to Write Files Directly

Overview of Using FTP to Write Files
Directly
FTP automatically performs the conversion when the type of file is specified as text
(instead of binary). When you have direct access between the ASCII machine and
EBCDIC machine, the best practice is to read the file directly. Direct access is
enabled via a peripheral device on the ASCII machine that can read an EBCDIC
tape. You can access the file via the FTP access method in a FILENAME statement.
There are several advantages to this method of accessing EBCDIC data:

n No file preprocessing is required.

n You do not need to copy the source file.

n The FTP access method works for fixed-length and variable-length records.

n DATA step processing works as expected.

This method of accessing EBCDIC data applies if you have a 3480 or 3490
cartridge tape reader attached to your ASCII machine. In this case, you do not need
to preprocess the file on an EBCDIC machine. You can read it directly from the tape
by setting RECFM=S370VB and using the $EBCDICw. and S370Fxxxw.d informats.

In a FILENAME statement, specify the FTP access method and the source
filename, and provide values for the HOST=, USER=, and PASS= options. The
HOST= option specifies the name of the EBCDIC machine, USER= specifies the
user account that you use to log on, and PASS= specifies the password that you
use to log on. The FTP access method uses an FTP program on the ASCII machine

654 Appendix 4 / Using EBCDIC Data on ASCII Systems

to open a connection between the ASCII machine and the EBCDIC machine. The
SAS system connects to and logs on to the mainframe machine with the specified
user account and password. The FTP program transfers the file.

Example: Reading an ASCII File from SAS
on z/OS

1 filename unixin '/net/bin/u/<user>/sample.txt' encoding=latin1;
2 data _null_;
3 infile unixin;
4 input;
5 put _infile_;
6
run;

NOTE: The infile UNIXIN is:
 File Name=/net/bin/u/<user>/sample.txt,
 Access Permission=-rwxr-xr-x,Number of Links=1,
 Owner Name=<user>,Group Name=R@D,File Size=45,
 Last Modified=Jan 19 2000

This is a test.
Another line.
End of file.

Using the dd Command to Convert and Copy a File

About the dd Command
The dd command reads the InFile parameter or standard input, performs the
specified conversion, and then copies the converted data to the OutFile parameter
or standard output. The input block size and output block size can be specified to
take advantage of raw physical I/O.

Use the cbs parameter value if you are specifying the block, unblock, ascii,
ebcdic, or ibm conversion value. If an unblock or ascii value is specified, then the
dd command performs a fixed-length to varying-length conversion. Otherwise, it
performs a varying-length to fixed-length conversion. The cbs parameter value
determines the fixed length.

CAUTION
If the specified cbs parameter value is smaller than the smallest input block,
the converted block is truncated.

Moving Data from ASCII to EBCDIC Systems 655

After it finishes, the dd command reports the number of whole and partial input and
output blocks. For more information about the dd command, see the dd manual
page on your system.

dd Command Exit Status
The dd command returns the following exit values:

Table A22.2 Exit Status Values for the dd Command

Item Description

0 The input file was copied successfully.

>0 An error occurred.

Examples: dd Command Conversion
Here are two simple examples:

n To convert an ASCII text file to EBCDIC, enter the following:

dd if=text.ascii of=text.ebcdic conv=ebcdic

This command converts the text.ascii file to EBCDIC representation and stores
the EBCDIC version in the text.ebcdic file.

When you specify the conv=ebcdic parameter, the dd command converts the
ASCII ^ (circumflex) character to an unused EBCDIC character (9A
hexadecimal) and the ASCII ~ (tilde) character to the EBCDIC ^ character (NOT
symbol).

n To use the dd command as a filter, enter the following:

ls -l | dd conv=ucase

This command displays a long listing of the current directory in uppercase.

The performance of the dd command and cpio command in the IBM 9348
Magnetic Tape Unit Model 12 can be improved by changing the default block
size. To change the block size, use the chdev command as follows:

chdev -l Device_name -a block_size=32k

656 Appendix 4 / Using EBCDIC Data on ASCII Systems

Using the iconv Command to Convert a Text File

About the iconv Command
Use the iconv command to convert the encoding of a text file. Use one the following
examples of syntax:

iconv –f FromCode –t ToCode FileName

iconv –l

For more information about the syntax and parameters for the iconv command, see
the iconv manual page on your system.

iconv Command Exit Status
The iconv command returns the following exit values:

Table A22.3 Exit Status Values for the iconv Command

Item Description

0 Input data was successfully converted.

1 The specified conversions are not supported, the input file cannot be opened or
read, or there is a usage-syntax error.

2 An unusable character was encountered in the input stream.

Examples: iconv Command Conversion
Here are two simple examples:

n To convert the contents of the mail.x400 file from code set IBM-850 and store the
results in the mail.local folder, enter the following:

iconv –f IBM-850 –t ISO8859-1 mail.x400 > mail.local

n To convert the contents of a local file to the mail interchange format and send
mail, enter the following:

iconv –f IBM-943 –t fold7 mail.local > mail.fxrojas

Moving Data from ASCII to EBCDIC Systems 657

658 Appendix 4 / Using EBCDIC Data on ASCII Systems

	Contents
	About This Book
	Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language

	Syntax Components
	Syntax Components

	Style Conventions
	Style Conventions

	Special Characters
	Special Characters

	References to SAS Libraries and External Files
	References to SAS Libraries and External Files

	What's New in the SAS 9.4 Companion for UNIX Environments
	Overview
	Accessing SAS Viya
	Platform Support
	Default Updates
	Default for LRECL= Option Is Now 32,767
	Default for MEMSIZE System Option Is Now 2G
	Default for SORTSIZE System Option Is Now 1G

	SAS Command
	SETENV | UNSETENV
	Run Lua Files from the SAS Command Line

	SAS Procedures
	BMDP Procedure
	CONTENTS Procedure
	SORT Procedure

	SAS Statements
	FILE and FILENAME Statements: PERMISSION= Option
	FILENAME Statement: Access Methods

	SAS System Options
	System Option Enhancement
	ALIGNSASIOFILES System Option
	FILELOCKWAIT= System Option
	HOSTINFOLONG System Option
	MVARSIZE System Option
	OPLIST System Option Enhancement
	RTRACE System Option Argument
	RTRACELOC System Option Enhancement

	SAS Environment Variable: AUTHINFO
	System Performance and Maintenance
	Measuring System Performance
	Cleanwork Utility

	Documentation Enhancements
	How File Extension Delimiters Are Handled
	Supported File Extensions
	End-of-Line Delimiters
	Spaces within a System Option
	Spaces within the SYSPARM= Macro Variable Value
	Distributing Multiple Utility Files to Different Destinations
	Environment Variables under UNIX
	Processing Restriction for Server in a Locked-Down State
	Function Key Definitions
	Administration Utilities That Are Available under UNIX
	Results of the SASUMGMT Utility
	Accessing EBCDIC Data

	Running SAS Software under UNIX
	Getting Started with SAS in UNIX Environments
	Starting SAS Sessions in UNIX Environments
	Invoking SAS
	SAS Invocation Scripts
	SAS Configuration Files
	Syntax of the SAS Command
	Example: Invoke an Interactive SAS Session
	What If SAS Does Not Start?

	Running SAS in a Foreground or Background Process
	Selecting a Method of Running SAS in UNIX Environments
	SAS Windowing Environment in UNIX Environments
	Introduction to the SAS Windowing Environment
	SAS Windows
	What Is the Explorer Window?
	What Are the Program Editor, Output, and Log Windows?

	Invoking SAS in the Windowing Environment
	Exiting SAS in the Windowing Environment

	Interactive Line Mode in UNIX Environments
	Introduction to Interactive Line Mode
	Invoking SAS in Interactive Line Mode
	Exiting SAS in Interactive Line Mode

	Noninteractive and Batch Modes in UNIX Environments
	Introduction to Running SAS in Noninteractive or Batch Mode
	Invoking SAS in Noninteractive or Batch Mode
	Submitting a Program to the Batch Queue
	Writing Data from an External File Using UNIX Pipes

	Running SAS on a Remote Host in UNIX Environments
	Introduction to Running SAS on a Remote Host
	Steps for Running SAS on a Remote Host
	Preventing SAS from Attempting to Connect to the X Server
	Troubleshooting Connection Problems

	X Command Line Options
	How to Specify X Window System Options
	Supported X Command Line Options
	Unsupported X Command Line Options

	Executing Operating System Commands from Your SAS Session
	Deciding Whether to Run an Asynchronous or Synchronous Task
	Executing a Single UNIX Command
	Single Commands
	Example 1: Executing a UNIX Command By Using the X Statement
	Example 2: Executing a UNIX Command By Using the CALL SYSTEM
Routine
	How SAS Processes a Single UNIX Command

	Executing Several UNIX Commands
	Executing UNIX Commands
	Example: Executing Several Commands Using the %SYSEXEC Macro
	How SAS Processes Several UNIX Commands

	Changing the File Permissions for Your SAS Session
	Executing X Statements in Noninteractive or Batch Mode

	Customizing Your SAS Registry Files
	Customizing Your SAS Session By Using System Options
	Ways to Customize Your SAS Session
	Ways to Specify a SAS System Option
	Overriding the Default Value for a System Option
	When the Value of a System Option Includes a Space
	How SAS Processes System Options That Are Set More Than Once
	How SAS Processes System Options That Are Set in Multiple Places
	System Options Set in Multiple Places
	Order of Precedence When System Options Are Processed

	Customizing Your SAS Session By Using Configuration and Autoexec
Files
	Customizing Your SAS Session
	Introduction to Configuration and Autoexec Files
	Defining Configuration and Autoexec Files
	Using the AUTOEXEC System Option
	Inserting and Appending Autoexec Files
	Differences between Configuration and Autoexec Files

	Creating a Configuration File
	Order of Precedence for Processing SAS Configuration Files
	Specifying a Configuration File for SAS to Use

	Determining the Completion Status of a SAS Job in UNIX Environments
	Exiting or Interrupting Your SAS Session in UNIX Environments
	Methods for Exiting SAS
	Methods for Interrupting or Terminating SAS
	Interrupting or Terminating SAS
	Interrupting a SAS Process
	Terminating a SAS Process
	Using Control Keys
	Using the SAS Session Manager
	Using the UNIX kill Command

	Messages in the Console Log (STDOUT)

	Ending a Process That Is Running as a SAS Server
	Interrupting a SAS Process and the Underlying DBMS Process

	Connecting to the CAS Server
	Overview of Connecting to the CAS Server
	How to Connect to the CAS Server
	Requirements to Connect to the CAS Server
	Example Program That Connects to the CAS Server

	Comparison of Batch Modes and Interactive Modes

	Using SAS Files
	Introduction to SAS Files, Libraries, and Engines in UNIX Environments
	SAS Files
	What Is a SAS File?
	Case Sensitivity in Data Set Names

	SAS Libraries and Librefs
	Engines
	Additional Resources

	Common Types of SAS Files in UNIX Environments
	SAS Data Sets
	What Are SAS Data Sets?
	Descriptor Information and Data Values
	SAS Data Sets (Member Type DATA)
	SAS Views (Member Type VIEW)

	SAS Catalogs (Member Type CATALOG)
	Stored Program Files

	File Extensions and Member Types in UNIX Environments
	How File Extension Delimiters Are Handled
	Using Direct I/O
	Introduction to Direct I/O
	Turning On Direct I/O

	Holding a File in Memory: The SASFILE Statement
	Sharing SAS Files in a UNIX Environment
	Sharing SAS Files
	Options to Use for File Locking: SAS Files
	File Locking for SAS Files: The FILELOCKS Statement Option
	File Locking for SAS Files: The FILELOCKS System Option
	Waiting to Use a Locked File
	Conditions to Check When FILELOCKS=NONE
	When FILELOCKS=CONTINUE
	Sharing Files over a Network
	Introduction to Sharing Files on Multiple Workstations
	Accessing Files on Different Networks
	Troubleshooting: Accessing Data over NFS Mounts

	Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments
	What Is File Migration?
	Benefits of Migrating SAS Files
	How to Migrate a SAS Library in a Linux Environment

	Creating a SAS File to Use with an Earlier Release
	Reading SAS Files from Previous Releases or from Other Hosts
	Reading Version 6 Files
	Reading Version 8 or Later Files from Compatible Computer Types
	Reading Version 8 or Later Files from Incompatible Computer
Types
	Compatibility of Existing SAS Files with SAS 9.4
	Accessing Version 8 or Later Files with CEDA

	Referring to SAS Files By Using Librefs in UNIX Environments
	Techniques for Referring to a SAS File
	What Is a Libref?
	Assigning Librefs
	Methods for Assigning Librefs
	Using the LIBNAME Statement
	Using the LIBNAME Function
	Using the DMLIBASSIGN Command
	Using the LIBNAME Window
	Using the SAS Explorer Window

	Permanently Assigning a Libref
	Accessing a Permanent SAS Library By Using a Libref

	Specifying Pathnames in UNIX Environments
	Rules for Specifying Directory and Pathnames
	Example 1: Access a File That Is Not in the Current Directory
	Example 2: Access a File in the Current Directory
	Valid Character Substitutions in Pathnames

	Assigning a Libref to Several Directories (Concatenating Directories)
in UNIX
	Introduction to Concatenating Directories
	How SAS Accesses Concatenated Libraries
	Accessing Files for Input and Update
	Accessing Files for Output
	Accessing Data Sets with the Same Name

	Using Multiple Engines for a Library in UNIX Environments
	Using Environment Variables as Librefs in UNIX Environments
	Librefs Assigned by SAS in UNIX Environments
	Sasuser Library
	What Is the Sasuser Library?
	Contents of the Sasuser Library
	Sasuser.Profile Catalog
	Overview of the Sasuser.Profile Catalog
	How SAS Accesses the Sasuser.Profile Catalog
	When the Sasuser.Profile Catalog Does Not Exist
	Checking for an Uncorrupted Sasuser.Profile Catalog
	If Your Sasuser.Profile Catalog Is Locked or Corrupted

	Sasuser.Registry Catalog
	Overview of the Sasuser.Registry Catalog
	How SAS Accesses the Sasuser.Registry Catalog

	Sasuser.Prefs File

	Work Library
	Multiple Work Directories
	Using One-Level Names to Access Permanent Files (User Library)
	Introduction to One-Level Names
	Techniques for Assigning the User Libref

	Accessing Disk-Format Libraries in UNIX Environments
	Accessing Sequential-Format Libraries in UNIX Environments
	Benefits and Limitations of Sequential Engines
	Writing Sequential Data Sets to Named Pipes
	Why Use Named Pipes?
	Syntax of the LIBNAME Statement
	Example: Creating a SAS Data Set Using a Named Pipe

	Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments
	Introduction to the BMDP, OSIRIS, and SPSS Files
	The BMDP Engine
	What Is the BMDP Engine?
	Syntax for Accessing BMDP Save Files
	Example: BMDP Engine

	The OSIRIS Engine
	What Is the OSIRIS Engine?
	Notes about the OSIRIS Data Dictionary Files
	Syntax for Accessing an OSIRIS File
	Example: OSIRIS Engine

	The SPSS Engine
	What Is the SPSS Engine?
	Syntax for Accessing an SPSS Export File
	Reformatting SPSS Files
	Example: SPSS Engine

	Support for Links in UNIX Environments

	Using External Files and Devices
	Introduction to External Files and Devices in UNIX Environments
	Accessing an External File or Device in UNIX Environments
	Specifying a Pathname or a Fileref
	What Is a Fileref?

	Specifying Pathnames in UNIX Environments
	Rules for Specifying Pathnames
	Omitting Quotation Marks in a Filename
	Working with Mixed Case or Uppercase Filenames
	Interpreting the Messages in the SAS Log
	Using Wildcards in Pathnames (Input Only)
	Descriptions of the Valid Wildcards
	Example 1: Selecting Files By Including a Wildcard in a String
	Example 2: Reading Each File in the Current Directory
	Example 3: Wildcards in Filenames When Using Aggregate Syntax
	Example 4: Associating a Fileref with Multiple Files

	Assigning Filerefs to External Files or Devices with the FILENAME
Statement
	Introduction to the FILENAME Statement
	Accessing DISK Files
	Debugging Code with DUMMY Devices
	Sending Output to PRINTER Devices
	Using Temporary Files (TEMP Device Type)
	Accessing TERMINAL Devices Directly
	Assigning Filerefs to Files on Other Systems (FTP, SFTP, and
SOCKET Access Types)

	Concatenating Filenames in UNIX Environments
	Assigning a Fileref to a Directory (Using Aggregate Syntax)
	Introduction to Aggregate Syntax
	Aggregate Syntax
	Example 1: Referring to a File Using Aggregate Syntax
	Example 2: Using Aggregate Syntax with Filerefs Defined by
Environment Variables

	Assigning a Fileref to Several Directories

	Using Environment Variables to Assign Filerefs in UNIX Environments
	Requirements for Variable Names
	Reading a Data File
	Writing to an External File

	Filerefs Assigned by SAS in UNIX Environments
	Filerefs for Standard Input, Standard Output, and Standard
Error
	File Descriptors
	What Is a File Descriptor?
	File Descriptors in the Bourne and Korn Shells

	Reserved Filerefs in UNIX Environments
	Sharing External Files in a UNIX Environment
	Sharing External Files
	Options to Use for File Locking: External Files
	File Locking for External Files: The LOCKINTERNAL Statement
Option
	 File Locking for External Files: The FILELOCKS System Option

	Reading from and Writing to UNIX Commands (PIPE)
	What Are Pipes?
	Syntax of the FILENAME Statement to Assign a Fileref to a Pipe
	Using the Fileref for Reading
	Specifying a Fileref for Reading
	Example 1: Sending the Output of the Process Command to a SAS
DATA Step
	Example 2: Using the Stdin Fileref to Read Input

	Using the Fileref for Writing
	Specifying a Fileref for Writing
	Example 1: Sending Mail Using Pipes
	Example 2: Starting a Remote Shell and Printing Output

	Sending Electronic Mail Using the FILENAME Statement (EMAIL)
	Advantages of Sending Electronic Mail from within SAS
	Initializing Electronic Mail
	Components of the DATA Step or SCL Code Used to Send Email
	Syntax of the FILENAME Statement for Electronic Mail
	Specifying Email Options in the FILE Statement
	Defining the Body of the Message
	Specifying Email Directives in the PUT Statement
	Example: Sending Email from the DATA Step
	Example: Sending Email Using SCL Code

	Running External Lua Files

	Printing and Routing Output
	Overview of Printing Output in UNIX Environments
	Previewing Output in UNIX Environments
	Previewing Output Using Universal Printing
	Previewing Output from within SAS/AF Applications

	The Default Routings for the SAS Log and Procedure Output in
UNIX Environments
	Changing the Default Routings in UNIX Environments
	Techniques for Routing Output
	Determining Which Technique to Use When Changing the Routing

	Routing SAS Logging Facility Messages to SYSLOGD
	Using the Print Dialog Box in UNIX Environments
	Printing from Text Windows
	Open the Print Dialog Box from a Text Window
	Default Printing Mode
	Troubleshooting Print Server Errors

	Printing from GRAPH Windows
	Open the Print Dialog Box from the GRAPH Window
	Specifics for SAS/GRAPH Drivers
	Troubleshooting Print Server Errors

	Using Commands to Print in UNIX Environments
	Differences between the PRTFILE, PRINT, and FILE Commands
	Sending Output to a UNIX Command
	Specifying the Print File
	Printing the Contents of a Window
	Using PRTFILE and PRINT with a Fileref
	Steps for Sending Output Directly to a Printer
	Examples of FILENAME Statements Using PRINTER and PIPE

	Using the FILE Command

	Using the PRINTTO Procedure in UNIX Environments
	Important Note about the PRINTTO Procedure
	Using the LOG= and PRINT= Options
	Routing Output to a Universal Printer
	Routing Output to a Printer
	Piping Output to a UNIX Command
	Routing Output to a Terminal

	Using SAS System Options to Route Output
	Changing the Output Destination Using the LOG, PRINT, ALTLOG,
and ALTPRINT System Options

	Printing Large Files with the PIPE Device Type in UNIX Environments
	Changing the Default Print Destination in UNIX Environments
	Changing the Default Print Command in UNIX Environments
	Controlling the Content and Appearance of Output in UNIX Environments
	Overview of Controlling the Content and Appearance of Output
	SAS Log Options
	Procedure Output Options

	Accessing Shared Executable Libraries from SAS
	Overview of Shared Libraries in SAS
	What Is a Shared Library?
	Invoking Shared Libraries from within SAS
	Steps for Accessing an External Shared Library

	The SASCBTBL Attribute Table
	Introduction to the SASCBTBL Attribute Table
	What Is the SASCBTBL Attribute Table?
	Syntax of the Attribute Table
	The Attribute Table
	ROUTINE Statement
	ARG Statement

	The Importance of the Attribute Table

	Special Considerations When Using Shared Libraries
	32-Bit and 64-Bit Considerations
	Compatibility between Your Shared Libraries and SAS
	Allocated by the Shared Library

	Naming Considerations When Using Shared Libraries
	Naming Constraints
	Example of Creating a Symbolic Link

	Using PEEKLONG Functions to Access Character String Arguments
	Accessing Shared Libraries Efficiently
	Grouping SAS Variables as Structure Arguments
	Passing an Argument to a Structure
	Example: Grouping Your System Information as Structure Arguments

	Using Constants and Expressions as Arguments to the MODULE
Function
	Specifying Formats and Informats to Use with MODULE Arguments
	Using the FORMAT Attribute in the ARG Statement
	C Language Formats
	Fortran Language Formats
	PL/I Language Formats
	COBOL Language Formats
	$CSTRw. Format
	$BYVALw. Format

	Understanding MODULE Log Messages

	Examples of Accessing Shared Executable Libraries
	Example 1: Updating a Character String Argument
	Example 2: Passing Arguments by Value
	Example 3: Using PEEKCLONG to Access a Returned Pointer
	Example 4: Using Structures
	Example 5: Invoking a Shared Library Routine

	Viewing Output and Help in the SAS Remote Browser
	What Is Remote Browsing?
	Using Remote Browsing with ODS Output
	Installing the Remote Browser Server
	System Options for Remote Browsing
	Setting Up the SAS Remote Browser
	Setting Up the SAS Remote Browser at SAS Invocation
	Setting Up the SAS Remote Browser during a SAS Session

	Remote Browsing and Firewalls
	For General Users
	For System Administrators

	Performance Considerations under UNIX
	Configure Your Environment Based on SAS Tuning Guidelines
	SAS System Option Guidelines
	Operating System Tuning Guidelines
	Guidelines for the SAS Middle Tier and SAS Web Application
Server

	Measure the I/O Throughput of a File System

	SAS Windowing Environment
	Working in the SAS Windowing Environment
	Definition of the SAS Windowing Environment
	Description of SAS in the X Environment
	Definition of X Window System
	X Window Managers
	SAS Window Session ID
	Workspace and Gravity in a SAS Session
	Window Types
	Top-Level Windows
	Interior Windows

	The SAS Session Manager (motifxsassm) in UNIX
	What Is the SAS Session Manager?
	Features of the SAS Session Manager
	Interrupting a SAS Session
	Using the Host Editor from within Your SAS Session
	Closing the SAS Session Manager
	Disabling the SAS Session Manager

	Displaying Function Key Definitions in UNIX Environments
	Benefits of Assigning Function Key Definitions
	How to Display Function Key Definitions

	The SAS ToolBox in UNIX Environments
	Introduction to the SAS ToolBox
	Customizing the Default SAS ToolBox
	Default Configuration for the Command Window and the Toolbar
	Opening and Closing the Command Window and the Toolbar
	Executing Commands

	Opening Files in UNIX Environments
	Opening the Open Dialog Box
	Opening the Dialog Box
	Description of the Open Dialog Box Options
	Specifying the Initial Filter and Directory Using SAS Resources

	Using Regular Expressions in Filenames

	Changing Your Working Directory in UNIX Environments
	What Is Your Working Directory?
	Changing Your Working Directory
	The Change Working Directory Dialog Box

	Selecting (Marking) Text in UNIX Environments
	Difference between Marking Character Strings and Blocks
	Techniques for Selecting Text
	Select Text with the Mouse
	Select Text with the MARK Command
	Select Text By Using the Edit Menu

	Copying or Cutting and Pasting Selected Text in UNIX Environments
	Techniques for Copying or Cutting and Pasting Selected Text
	How SAS Uses the Automatic Paste Buffer
	Disabling the Automatic Paste Buffer
	Copying and Pasting Text between SAS and Other X Clients

	Using Drag and Drop in UNIX Environments
	Difference between Default and Non-Default Drag and Drop
	Limitations of Drag and Drop in UNIX
	How to Drag and Drop Text

	Searching for and Replacing Text Strings in UNIX Environments
	What Are the Find and Replace Dialog Boxes?
	Opening the Find Dialog Box
	Description of the Find Dialog Box Options
	Opening the Replace Dialog Box
	Description of the Replace Dialog Box Options

	Sending Mail from within Your SAS Session in UNIX Environments
	Default Email Protocol in SAS
	What Is the Send Mail Dialog Box?
	Sending Email By Using the Send Mail Dialog Box
	Sending the Contents of a Text Window
	Sending the Contents of a Non-Text Window
	Changing the Default File Type

	Configuring SAS for Host Editor Support in UNIX Environments
	Requirements for Using a Host Editor
	Invoking and Using Your Host Editor
	How to Open and Use the Host Editor
	Example 1: Invoking SAS to Use xedit with the HOSTEDIT Command
	Example 2: Invoking SAS to Use vi

	Troubleshooting the Transfer of Text Attributes

	Getting Help in UNIX Environments

	Customizing the SAS Windowing Environment
	Overview of Customizing SAS in X Environment
	Overview of X Resources
	Introduction to X Resources
	Syntax for Specifying X Resources

	Methods for Customizing X Resources
	Modifying X Resources through the Preferences Dialog Box
	What Is the Preferences Dialog Box?
	Opening the Preferences Dialog Box
	Description of the Options in the Preferences Dialog Box
	Modifying the General Settings
	Modifying the DMS Settings
	Modifying the Editing Settings
	Modifying the Results Settings
	Modifying the SAS ToolBox Settings

	Setting X Resources with the Resource Helper
	Introduction to the Resource Helper
	How to Start the Resource Helper
	Start the Resource Helper from a SAS Session
	Start the Resource Helper from a Shell Prompt

	Defining Keys with the Resource Helper
	How to Define a Key
	Troubleshooting Incorrect Key Definitions

	Modifying the Color of a SAS Window Using the Resource Helper
	How to Use the Color Window
	Example: Change the Color of a SAS Window
	Return to the Default Settings
	Permanently Save Your Color Settings

	How the Resource Helper Searches for X Resources

	Customizing Toolboxes and Toolsets in UNIX Environments
	Techniques for Customizing Toolboxes
	X Resources That Control Toolbox Behavior
	Using the Tool Editor
	What Is a Toolset?
	Invoking the Tool Editor
	After You Invoke the Tool Editor
	Changing the Appearance of the Entire Toolbox
	Changing the Attributes of an Existing Tool
	Adding Tools to the Toolbox
	Change the Order of the Tools in the Toolbox
	Deleting Tools from the Toolbox
	Returning to the Default Settings
	Saving Changes to the Toolbox or Toolset

	Creating a New Toolbox
	Create or Customize an Application- or Window-Specific Toolbox
	Create or Customize an Application- or Window-Specific Toolset

	Customizing Key Definitions in UNIX Environments
	Techniques for Customizing Your Key Definitions
	Defining Key Translations
	What Is a Key Translation?
	What Is the SAS.keyboardTranslations Resource?
	Steps for Creating a Key Definition
	Determining Keysyms
	Syntax of the SAS.keyboardTranslations Resource
	Syntax of the SAS.keysWindowLabels Resource
	SAS Keyboard Action Names
	Examples: Defining Keys Using SAS Resources

	Customizing Fonts in UNIX Environments
	Difference between the System Font and Fonts That Are Used
in the Windowing Environment
	How SAS Determines Which Font to Use
	Customizing Fonts By Using the Fonts Dialog Box
	Introduction to the Fonts Dialog Box
	How to Change the Default Font

	Specifying Font Resources
	Specifying Font Aliases
	Font Aliases
	Example: Substitute the Lucida Font for Palatino

	Customizing Colors in UNIX Environments
	Methods for Customizing the Color Settings in Your SAS Session
	Customizing Colors By Using the SASCOLOR Window
	Syntax of the COLOR Command
	Defining Color Resources
	Types of Color Resources
	Specifying RGB Values or Color Names for Foreground and Background
Resources
	Defining Colors and Attributes for Window Elements (CPARMS)
	Controlling Contrast

	Controlling Drop-down Menus in UNIX Environments
	Customizing Cut and Paste in UNIX Environments
	Instructions for Cutting and Pasting Text
	Types of Paste Buffers
	Selecting a Paste Buffer
	Manipulating Text Using a Paste Buffer
	Notes about Preserving Text and Attribute Information

	Customizing Session Workspace, Session Gravity, and Window
Sizes in UNIX Environments
	Specifying User-Defined Icons in UNIX Environments
	Why Specify User-Defined Icons?
	How SAS Locates a User-Defined Icon
	X Resources for Specifying User-Defined Icons

	Miscellaneous Resources in UNIX Environments
	Summary of X Resources for SAS in UNIX Environments

	Data Considerations
	Data Representation
	Numeric Variable Length and Precision in UNIX Environments
	Missing Values in UNIX Environments
	Reading and Writing Binary Data in UNIX Environments
	Converting a UNIX Datetime Value to a SAS Datetime Value

	Host-Specific Features of the SAS Language
	Commands under UNIX
	SAS Commands under UNIX
	Dictionary
	AUTOSCROLL Command: UNIX
	CAPS Command: UNIX
	COLOR Command: UNIX
	DLGABOUT Command: UNIX
	DLGCDIR Command: UNIX
	DLGENDR Command: UNIX
	DLGFIND Command: UNIX
	DLGFONT Command: UNIX
	DLGOPEN Command: UNIX
	DLGPREF Command: UNIX
	DLGREPLACE Command: UNIX
	DLGSAVE Command: UNIX
	DLGSCRDUMP Command: UNIX
	DLGSMAIL Command: UNIX
	FILE Command: UNIX
	FILL Command: UNIX
	FONTLIST Command: UNIX
	GSUBMIT Command: UNIX
	HOME Command: UNIX
	HOSTEDIT Command: UNIX
	INCLUDE Command: UNIX
	SETAUTOSAVE Command: UNIX
	SETDMSFONT Command: UNIX
	SETENV Command: UNIX
	TOOLCLOSE Command: UNIX
	TOOLEDIT Command: UNIX
	TOOLLARGE Command: UNIX
	TOOLLOAD Command: UNIX
	TOOLTIPS Command: UNIX
	WBROWSE Command: UNIX
	WCOPY Command: UNIX
	WCUT Command: UNIX
	WDEF Command: UNIX
	WPASTE Command: UNIX
	WUNDO Command: UNIX
	X Command: UNIX
	XSYNC Command: UNIX

	Data Set Options under UNIX
	SAS Data Set Options under UNIX
	Summary of SAS Data Set Options in UNIX Environments
	Dictionary
	ALTER= Data Set Option: UNIX
	BUFNO= Data Set Option: UNIX
	BUFSIZE= Data Set Option: UNIX
	PW= Data Set Option: UNIX
	USEDIRECTIO= Data Set Option: UNIX

	Environment Variables under UNIX
	Defining Environment Variables in UNIX Environments
	What Is a UNIX Environment Variable?
	How to Define an Environment Variable for Your Shell
	Defining Environmental Variables
	Bourne and Korn Shells
	C Shell

	Use the OPTIONS Statement and SET System Option
	Displaying the Value of an Environment Variable

	Dictionary
	AUTHINFO Environment Variable
	PATHENCODING Environment Variable: UNIX
	SASV9_CONFIG Environment Variable: UNIX
	SASV9_OPTIONS Environment Variable: UNIX

	Formats under UNIX
	SAS Formats under UNIX
	Dictionary
	HEX Format: UNIX
	$HEX Format: UNIX
	IB Format: UNIX
	PD Format: UNIX
	PIB Format: UNIX
	RB Format: UNIX
	ZD Format: UNIX

	Functions and CALL Routines under UNIX
	SAS Functions and CALL Routines under UNIX
	Dictionary
	BYTE Function: UNIX
	CALL MODULE Routine: UNIX
	CALL SLEEP Routine: UNIX
	CALL SYSTEM Routine: UNIX
	COLLATE Function: UNIX
	DINFO Function: UNIX
	DOPEN Function: UNIX
	DOPTNAME Function: UNIX
	DOPTNUM Function: UNIX
	FDELETE Function: UNIX
	FEXIST Function: UNIX
	FILEEXIST Function: UNIX
	FILENAME Function: UNIX
	FILEREF Function: UNIX
	FINFO Function: UNIX
	FOPTNAME Function: UNIX
	FOPTNUM Function: UNIX
	MODEXIST Function: UNIX
	MOPEN Function: UNIX
	PATHNAME Function: UNIX
	PEEKLONG Function: UNIX
	RANK Function: UNIX
	SYSGET Function: UNIX
	TRANSLATE Function: UNIX

	Informats under UNIX
	SAS Informats under UNIX
	Dictionary
	HEX Informat: UNIX
	$HEX Informat: UNIX
	IB Informat: UNIX
	PD Informat: UNIX
	PIB Informat: UNIX
	RB Informat: UNIX
	ZD Informat: UNIX

	Macro Facility under UNIX
	About the Macro Facility under UNIX
	Automatic Macro Variables in UNIX Environments
	Macro Statements in UNIX Environments
	Macro Functions in UNIX Environments
	SAS System Options Used by the Macro Facility in UNIX Environments
	Using Autocall Libraries in UNIX Environments
	What Is an Autocall Library?
	Available Autocall Macros
	Guidelines for Naming Macro Files
	The SASAUTOS System Option
	Example: Setting Up and Testing a Macro in an Autocall Library

	Statements under UNIX
	SAS Statements under UNIX
	Dictionary
	ABORT Statement: UNIX
	ATTRIB Statement: UNIX
	FILE Statement: UNIX
	FILENAME Statement: UNIX
	FOOTNOTE Statement: UNIX
	%INCLUDE Macro Statement: UNIX
	INFILE Statement: UNIX
	LENGTH Statement: UNIX
	LIBNAME Statement: UNIX
	SYSTASK Statement: UNIX
	TITLE Statement: UNIX
	WAITFOR Statement: UNIX
	X Statement: UNIX

	System Options under UNIX
	SAS System Options under UNIX
	Behavior or Syntax That Is Specific to UNIX Environments
	When You Use Parentheses in a Command Line
	When the Value of a System Option Includes a Space

	Determining How a SAS System Option Was Set
	Restricted System Options
	Dictionary
	ALIGNSASIOFILES System Option: UNIX
	ALTLOG System Option: UNIX
	ALTPRINT System Option: UNIX
	APPEND System Option: UNIX
	AUTOEXEC System Option: UNIX
	AUTOSAVELOC System Option: UNIX
	BUFNO System Option: UNIX
	BUFSIZE System Option: UNIX
	CATCACHE System Option: UNIX
	CLEANUP System Option: UNIX
	CONFIG System Option: UNIX
	DEVICE System Option: UNIX
	ECHO System Option: UNIX
	EDITCMD System Option: UNIX
	EMAILSYS System Option: UNIX
	ENGINE= System Option: UNIX
	FILELOCKS System Option: UNIX
	FILELOCKWAIT= System Option: UNIX
	FILELOCKWAITMAX= System Option: UNIX
	FMTSEARCH System Option: UNIX
	FONTSLOC System Option: UNIX
	FULLSTIMER System Option: UNIX
	HELPHOST System Option: UNIX
	HELPINDEX System Option: UNIX
	HELPLOC System Option: UNIX
	HELPTOC System Option: UNIX
	HOSTINFOLONG System Option: UNIX
	INSERT System Option: UNIX
	JREOPTIONS System Option: UNIX
	LINESIZE System Option: UNIX
	LOG System Option: UNIX
	LPTYPE System Option: UNIX
	MAPS System Option: UNIX
	MAXMEMQUERY System Option: UNIX
	MEMSIZE System Option: UNIX
	MSG System Option: UNIX
	MSGCASE System Option: UNIX
	MSYMTABMAX System Option: UNIX
	MVARSIZE System Option: UNIX
	NEWS System Option: UNIX
	OBS= System Option: UNIX
	OPLIST System Option: UNIX
	PAGESIZE= System Option: UNIX
	PATH System Option: UNIX
	PRINT System Option: UNIX
	PRINTCMD System Option: UNIX
	REALMEMSIZE System Option: UNIX
	RSASUSER System Option: UNIX
	RTRACE System Option: UNIX
	RTRACELOC System Option: UNIX
	SASAUTOS System Option: UNIX
	SASHELP System Option: UNIX
	SASSCRIPT System Option: UNIX
	SASUSER System Option: UNIX
	SET System Option: UNIX
	SORTANOM System Option: UNIX
	SORTCUT System Option: UNIX
	SORTCUTP System Option: UNIX
	SORTDEV System Option: UNIX
	SORTNAME System Option: UNIX
	SORTPARM System Option: UNIX
	SORTPGM System Option: UNIX
	SORTSIZE System Option: UNIX
	STDIO System Option: UNIX
	STIMEFMT System Option: UNIX
	STIMER System Option: UNIX
	SYSIN System Option: UNIX
	SYSPRINT System Option: UNIX
	USER System Option: UNIX
	VERBOSE System Option: UNIX
	WORK System Option: UNIX
	WORKINIT System Option: UNIX
	WORKPERMS System Option: UNIX
	XCMD System Option: UNIX

	Procedures under UNIX
	Overview
	SAS Procedures under UNIX

	CATALOG Procedure: UNIX
	Overview: CATALOG Procedure: UNIX
	CATALOG Procedure: Behavior That Is Specific to UNIX

	Syntax: CATALOG Procedure: UNIX
	CONTENTS Statement: UNIX

	CIMPORT Procedure: UNIX
	Overview: CIMPORT Procedure: UNIX
	CIMPORT Procedure: Behavior That Is Specific to UNIX

	Syntax: CIMPORT Procedure: UNIX
	PROC CIMPORT Statement: UNIX

	Example: Moving Data Sets CIMPORT Procedure: UNIX
	Example 1: Moving Data Sets

	CONTENTS Procedure: UNIX
	Overview: CONTENTS Procedure: UNIX
	CONTENTS Procedure: Behavior That Is Specific to UNIX

	Syntax: CONTENTS Procedure: UNIX
	PROC CONTENTS Statement: UNIX

	Example: Executing PROC CONTENTS CONTENTS Procedure: UNIX
	Example 1: Executing PROC CONTENTS

	CONVERT Procedure: UNIX
	Overview: CONVERT Procedure: UNIX
	CONVERT Procedure: What Does This Procedure Do?

	Concepts: CONVERT Procedure: UNIX
	How Missing Values Are Handled
	How Variable Names Are Assigned
	Overview of Variable Name Assignments
	Variable Names in BMDP Output
	Variable Names in OSIRIS Output
	Variable Names in SPSS Output

	Comparison with Interface Library Engines

	Syntax: CONVERT Procedure: UNIX
	PROC CONVERT Statement: UNIX

	Examples: CONVERT Procedure: UNIX
	Example 1: Converting a BMDP Save File
	Example 2: Converting an OSIRIS File
	Example 3: Converting an SPSS File

	CPORT Procedure: UNIX
	Overview: CPORT Procedure: UNIX
	CPORT Procedure: Behavior That Is Specific to UNIX

	Syntax: CPORT Procedure: UNIX
	PROC CPORT Statement: UNIX

	Example: Exporting Files CPORT Procedure: UNIX
	Example 1: Exporting Files

	DATASETS Procedure: UNIX
	Overview: DATASETS Procedure: UNIX
	DATASETS Procedure: Behavior That Is Specific to UNIX

	Syntax: DATASETS Procedure: UNIX
	CONTENTS Statement

	Examples: DATASETS Procedure: UNIX
	Example 1: Sample Data
	Example 2: Describing SAS Data Sets

	OPTIONS Procedure: UNIX
	Overview: OPTIONS Procedure: UNIX
	OPTIONS Procedure: Behavior That Is Specific to UNIX

	Syntax: OPTIONS Procedure: UNIX
	PROC OPTIONS Statement: UNIX

	Usage: OPTIONS Procedure: UNIX
	Identify Where an Option Was Set

	PMENU Procedure: UNIX
	Overview: PMENU Procedure: UNIX
	PMENU Procedure: Behavior That Is Specific to UNIX

	Syntax: PMENU Procedure: UNIX
	PROC PMENU Statement: UNIX

	PRINTTO Procedure: UNIX
	Overview: PRINTTO Procedure: UNIX
	PRINTTO Procedure: Behavior That Is Specific to UNIX

	Syntax: PRINTTO Procedure: UNIX
	PROC PRINTTO Statement: UNIX

	Usage: PRINTTO Procedure: UNIX
	Send Program Output to an Alternate Location

	SORT Procedure: UNIX
	Overview: SORT Procedure: UNIX
	SORT Procedure: Behavior That Is Specific to UNIX

	Concepts: SORT Procedure: UNIX
	SORTSIZE= Option
	Limiting the Amount of Memory Available to PROC SORT
	Syntax of the SORTSIZE= Option
	Default Value of the SORTSIZE= Option
	Improving Performance with the SORTSIZE= Option

	TAGSORT Option
	Disk Space Considerations for PROC SORT
	Performance Tuning for PROC SORT
	How SAS Determines the Amount of Memory to Use
	Guidelines for Setting the REALMEMSIZE System Option
	Using Other Options That Affect Performance
	Creating Your Own Collating Sequences

	Specifying the Host Sort Utility
	Introduction to Using the Host Sort
	Setting the Host Sort Utility as the Sort Algorithm
	Sorting Based on Size or Observations
	Changing the Location of Temporary Files Used by the Host Sort
Utility
	Passing Options to the Host Sort Utility
	Passing Parameters to the Host Sort Utility

	Specifying the SORTSEQ= Option with a Host Sort Utility

	Syntax: SORT Procedure: UNIX
	PROC SORT Statement: UNIX

	Example: Creating a View with a Single BY Variable SORT Procedure: UNIX
	Example 1: Creating a View with a Single BY Variable

	Appendixes
	The !SASROOT Directory
	Introduction to the !SASROOT Directory
	Contents of the !SASROOT
Directory

	Tools for the System Administrator
	The Utilities Directory in UNIX Environments
	Installing Manual Pages
	Utilities in the /utilities/bin Directory
	SAS Usage Utilities: cleanwork
	Authentication Utilities
	Overview of SAS Authentication
	SASUMGMT Utility
	Overview
	Syntax for SASUMGMT
	Results of SASUMGMT

	SASAUTH Utility
	Overview of SASAUTH
	Changing the Authentication Method
	Logging SASAUTH Output

	SAS-SERVICES-DAEMON Utility
	Overview of SAS-SERVICES-DAEMON
	Changing the Authentication Method
	Specifying the Number of Threads

	SASPERM Utility
	ELSSRV Utility
	Overview
	Logging with ELSSRV
	Restricting Access to Ports

	PWENCODE Procedure
	The UNIX Authentication API

	SAS Version Utilities
	Overview of SAS Versions
	VERCON Utility
	About the VERCON Utility
	Syntax for VERCON
	VERCON Examples

	TSLVL Function
	About the TSLVL Function
	TSLVL Example

	Text-Editing Commands
	Text-Editing Commands for SAS Windowing Environment
	Dictionary
	AUTOADD Command
	AUTOFLOW Command
	AUTOSCROLL Command
	AUTOSPLIT Command
	AUTOWRAP Command
	BOUNDS Command
	C Command
	CAPS Command
	CC Command
	CCL Command
	CCU Command
	CL Command
	CU Command
	CURSOR Command
	D Command
	DD Command
	DICT Command
	FILL Command
	I Command
	INDENT Command
	JC Command
	JJC Command
	JJL Command
	JJR Command
	JL Command
	JR Command
	KEYS Command
	M Command
	MASK Command
	MM Command
	NUMBERS Command
	R Command
	RESET Command
	RR Command
	SPELL Command
	TC Command
	TF Command
	TS Command
	UNDO Command
	< Command
	<< Command
	> Command
	>> Command
	(Command
	((Command
) Command
)) Command

	Using EBCDIC Data on ASCII Systems
	About EBCDIC and ASCII Data
	Overview of EBCDIC and ASCII Data Representation
	EBCDIC File Structures
	ASCII File Structure
	Numeric Values

	Moving Data from EBCDIC to ASCII Systems
	Overview of Accessing EBCDIC Data on ASCII Systems
	Example of Incorrect Conversion of Packed-Decimal Numeric Data
	Convert EBCDIC Files with Fixed-Length Records
	FTP the File in Binary
	Example: Convert an EBCDIC File with Fixed-Length Records into
an ASCII File

	Convert EBCDIC Files with Variable-Length Records
	Overview of Converting EBCDIC Files with Variable-Length Records
	Read Files Directly from the EBCDIC System
	Example: Read an EBCDIC Source File Directly with the FTP Access
Method
	Reformat an EBCDIC File with Variable-Length Records with IEBGENER
	Example: Read a File with Modified Header Data

	Read EBCDIC Data from Structured COBOL Files
	About Structured COBOL Files
	Example: Read Data from a Structured COBOL File

	Moving Data from ASCII to EBCDIC Systems
	Overview
	Using FTP to Write Files Directly
	Overview of Using FTP to Write Files Directly
	Example: Reading an ASCII File from SAS on z/OS

	Using the dd Command to Convert and Copy a File
	About the dd Command
	dd Command Exit Status
	Examples: dd Command Conversion

	Using the iconv Command to Convert a Text File
	About the iconv Command
	iconv Command Exit Status
	Examples: iconv Command Conversion

