THE POWER TO K NOW,

SAS" 9.4 Companion for
UNIX Environments, Sixth
Edition

22222222222

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2016. SAS® 9.4 Companion for UNIX Environments, Sixth
Edition. Cary, NC: SAS Institute Inc.

SAS® 9.4 Companion for UNIX Environments, Sixth Edition
Copyright © 2016, SAS Institute Inc., Cary, NC, USA

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you
acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those
set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414
July 2023

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.
9.4-P10:hostunx

Contents

About This Book
What's New in the SAS 9.4 Companion for UNIX Environments

PART 1 Running SAS Software under UNIX 1

Getting Started with SAS in UNIX Environments

Starting SAS Sessions in UNIX Environments

Running SAS in a Foreground or Background Process

Selecting a Method of Running SAS in UNIX Environments

SAS Windowing Environment in UNIX Environments

Interactive Line Mode in UNIX Environments

Noninteractive and Batch Modes in UNIX Environments

Running SAS on a Remote Host in UNIX Environments

X Command Line Options

Executing Operating System Commands from Your SAS Session
Customizing Your SAS Registry Files

Customizing Your SAS Session By Using System Options

Customizing Your SAS Session By Using Configuration and Autoexec Files
Determining the Completion Status of a SAS Job in UNIX Environments
Exiting or Interrupting Your SAS Session in UNIX Environments

Ending a Process That Is Running as a SAS Server

Interrupting a SAS Process and the Underlying DBMS Process

Chapter 2 / Connecting to the CAS Server

Overview of Connecting to the CAS Server
How to Connect to the CAS Server
Comparison of Batch Modes and Interactive Modes

Chapter 3 / Using SAS Files

Introduction to SAS Files, Libraries, and Engines in UNIX Environments
Common Types of SAS Files in UNIX Environments

File Extensions and Member Types in UNIX Environments

How File Extension Delimiters Are Handled

Using Direct I/O

Holding a File in Memory: The SASFILE Statement

Sharing SAS Files in a UNIX Environment

Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments

Creating a SAS File to Use with an Earlier Release

Reading SAS Files from Previous Releases or from Other Hosts
Referring to SAS Files By Using Librefs in UNIX Environments
Specifying Pathnames in UNIX Environments

Assigning a Libref to Several Directories (Concatenating Directories) in UNIX
Using Multiple Engines for a Library in UNIX Environments

XV

iv Contents

Using Environment Variables as Librefs in UNIX Environments
Librefs Assigned by SAS in UNIX Environments

Sasuser Library

Work Library

Multiple Work Directories

Using One-Level Names to Access Permanent Files (User Library)
Accessing Disk-Format Libraries in UNIX Environments

Accessing Sequential-Format Libraries in UNIX Environments
Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments
Support for Links in UNIX Environments

Chapter 4 / Using External Files and Devices

Introduction to External Files and Devices in UNIX Environments
Accessing an External File or Device in UNIX Environments
Specifying Pathnames in UNIX Environments

Assigning Filerefs to External Files or Devices with the FILENAME Statement
Concatenating Filenames in UNIX Environments

Assigning a Fileref to a Directory (Using Aggregate Syntax)

Using Environment Variables to Assign Filerefs in UNIX Environments
Filerefs Assigned by SAS in UNIX Environments

Reserved Filerefs in UNIX Environments

Sharing External Files in a UNIX Environment

Reading from and Writing to UNIX Commands (PIPE)

Sending Electronic Mail Using the FILENAME Statement (EMAIL)
Running External Lua Files

Chapter 5 / Printing and Routing Output

Overview of Printing Output in UNIX Environments
Previewing Output in UNIX Environments
The Default Routings for the SAS Log and Procedure Output in
UNIX Environments
Changing the Default Routings in UNIX Environments
Routing SAS Logging Facility Messages to SYSLOGD
Using the Print Dialog Box in UNIX Environments
Using Commands to Print in UNIX Environments
Using the PRINTTO Procedure in UNIX Environments
Using SAS System Options to Route Output
Printing Large Files with the PIPE Device Type in UNIX Environments
Changing the Default Print Destination in UNIX Environments
Changing the Default Print Command in UNIX Environments
Controlling the Content and Appearance of Output in UNIX Environments

Chapter 6 / Accessing Shared Executable Libraries from SAS

Overview of Shared Libraries in SAS

The SASCBTBL Attribute Table

Special Considerations When Using Shared Libraries
Examples of Accessing Shared Executable Libraries

Chapter 7 / Viewing Output and Help in the SAS Remote Browser

What Is Remote Browsing?

Using Remote Browsing with ODS Output
Installing the Remote Browser Server
System Options for Remote Browsing
Setting Up the SAS Remote Browser
Remote Browsing and Firewalls

69
69
70
74
74
75
76
77
78
84

85
86
87
88
92
94
95
97
98
99
100
101
104
110

113
114
114

115
116
118
119
121
125
127
128
128
129
129

133
134
135
141
155

163
163
164
164
165
165
166

Contents v

Chapter 8 / Performance Considerations under UNIX 169
Configure Your Environment Based on SAS Tuning Guidelines 169
Measure the 1/0 Throughput of a File System 170

PART2 SAS Windowing Environment

Chapter 9 / Working in the SAS Windowing Environment 173
Definition of the SAS Windowing Environment 174
Description of SAS in the X Environment 175
The SAS Session Manager (motifxsassm) in UNIX 177
Displaying Function Key Definitions in UNIX Environments 181
The SAS ToolBox in UNIX Environments 183
Opening Files in UNIX Environments 187
Changing Your Working Directory in UNIX Environments 189
Selecting (Marking) Text in UNIX Environments 191
Copying or Cutting and Pasting Selected Text in UNIX Environments 193
Using Drag and Drop in UNIX Environments 195
Searching for and Replacing Text Strings in UNIX Environments 196
Sending Mail from within Your SAS Session in UNIX Environments 197
Configuring SAS for Host Editor Support in UNIX Environments 200
Getting Help in UNIX Environments 202

Chapter 10 / Customizing the SAS Windowing Environment 203
Overview of Customizing SAS in X Environment 204
Overview of X Resources 204
Methods for Customizing X Resources 205
Modifying X Resources through the Preferences Dialog Box 207
Setting X Resources with the Resource Helper 213
Customizing Toolboxes and Toolsets in UNIX Environments 220
Customizing Key Definitions in UNIX Environments 228
Customizing Fonts in UNIX Environments 237
Customizing Colors in UNIX Environments 242
Controlling Drop-down Menus in UNIX Environments 250
Customizing Cut and Paste in UNIX Environments 250
Customizing Session Workspace, Session Gravity, and Window

Sizes in UNIX Environments 252
Specifying User-Defined Icons in UNIX Environments 254
Miscellaneous Resources in UNIX Environments 256
Summary of X Resources for SAS in UNIX Environments 258

pART 3 Data Considerations

Chapter 11 / Data Representation 263
Numeric Variable Length and Precision in UNIX Environments 263
Missing Values in UNIX Environments 264
Reading and Writing Binary Data in UNIX Environments 265

Converting a UNIX Datetime Value to a SAS Datetime Value 265

vi Contents

PART 4 Host-Specific Features of the SAS Language

Chapter 12 / Commands under UNIX
SAS Commands under UNIX
Dictionary

Chapter 13 / Data Set Options under UNIX
SAS Data Set Options under UNIX
Summary of SAS Data Set Options in UNIX Environments
Dictionary

Chapter 14 / Environment Variables under UNIX
Defining Environment Variables in UNIX Environments
Dictionary

Chapter 15 / Formats under UNIX
SAS Formats under UNIX
Dictionary

Chapter 16 / Functions and CALL Routines under UNIX
SAS Functions and CALL Routines under UNIX
Dictionary

Chapter 17 / Informats under UNIX
SAS Informats under UNIX
Dictionary

Chapter 18 / Macro Facility under UNIX
About the Macro Facility under UNIX
Automatic Macro Variables in UNIX Environments
Macro Statements in UNIX Environments
Macro Functions in UNIX Environments
SAS System Options Used by the Macro Facility in UNIX Environments
Using Autocall Libraries in UNIX Environments

Chapter 19 / Statements under UNIX
SAS Statements under UNIX
Dictionary

Chapter 20 / System Options under UNIX
SAS System Options under UNIX
Determining How a SAS System Option Was Set
Restricted System Options
Dictionary

PART5 Procedures under UNIX

Chapter 21 / Overview
SAS Procedures under UNIX

269
270
270

297
297
298
301

309
309
311

315
315
316

323
324
324

355
355
355

365
365
366
367
368
368
369

371
371
372

407
409
410
411
412

513
513

Chapter 22

Chapter 23

Chapter 24

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Chapter 29

Chapter 30

Chapter 31

CATALOG Procedure: UNIX
Overview: CATALOG Procedure: UNIX
Syntax: CATALOG Procedure: UNIX

CIMPORT Procedure: UNIX
Overview: CIMPORT Procedure: UNIX
Syntax: CIMPORT Procedure: UNIX
Examples: CIMPORT Procedure: UNIX

CONTENTS Procedure: UNIX
Overview: CONTENTS Procedure: UNIX
Syntax: CONTENTS Procedure: UNIX
Examples: CONTENTS Procedure: UNIX

CONVERT Procedure: UNIX
Overview: CONVERT Procedure: UNIX
Concepts: CONVERT Procedure: UNIX
Syntax: CONVERT Procedure: UNIX
Examples: CONVERT Procedure: UNIX

CPORT Procedure: UNIX
Overview: CPORT Procedure: UNIX
Syntax: CPORT Procedure: UNIX
Examples: CPORT Procedure: UNIX

DATASETS Procedure: UNIX
Overview: DATASETS Procedure: UNIX
Syntax: DATASETS Procedure: UNIX
Examples: DATASETS Procedure: UNIX

OPTIONS Procedure: UNIX
Overview: OPTIONS Procedure: UNIX
Syntax: OPTIONS Procedure: UNIX
Usage: OPTIONS Procedure: UNIX

PMENU Procedure: UNIX
Overview: PMENU Procedure: UNIX
Syntax: PMENU Procedure: UNIX

PRINTTO Procedure: UNIX
Overview: PRINTTO Procedure: UNIX
Syntax: PRINTTO Procedure: UNIX
Usage: PRINTTO Procedure: UNIX

SORT Procedure: UNIX
Overview: SORT Procedure: UNIX
Concepts: SORT Procedure: UNIX
Syntax: SORT Procedure: UNIX
Examples: SORT Procedure: UNIX

Contents Vii

515
515
516

517
517
518
519

521
521
522
522

525
525
526
528
529

531
531
532
533

535
535
536
537

541
541
542
543

545
545
546

547
547
548
549

551
551
552
561
562

viii Contents

PART 6 Appendixes

Appendix 1

Appendix 2

Appendix 3

Appendix 4

The ISASROOT Directory
Introduction to the ISASROOT Directory
Contents of the ISASROOQOT Directory

Tools for the System Administrator
The Utilities Directory in UNIX Environments
Installing Manual Pages
Utilities in the /utilities/bin Directory
SAS Usage Utilities: cleanwork
Authentication Ultilities
SAS Version Utilities

Text-Editing Commands
Text-Editing Commands for SAS Windowing Environment

Using EBCDIC Data on ASCII Systems
About EBCDIC and ASCII Data
Moving Data from EBCDIC to ASCII Systems
Moving Data from ASCII to EBCDIC Systems

567
567
568

573
573
574
574
576
578
586

591
592

643
643
646
654

About This Book

Syntax Conventions for the SAS
Language

Overview of Syntax Conventions for the SAS
Language

Overview of Syntax Conventions for the
SAS Language

SAS uses standard conventions in the documentation of syntax for SAS language
elements. These conventions enable you to easily identify the components of SAS
syntax. The conventions can be divided into these parts:

syntax components
style conventions
special characters

references to SAS libraries and external files

Syntax Components

Syntax Components

The components of the syntax for most language elements include a keyword and
arguments. For some language elements, only a keyword is necessary. For other

X About This Book

language elements, the keyword is followed by an equal sign (=). The syntax for
arguments has multiple forms in order to demonstrate the syntax of multiple
arguments, with and without punctuation.

keyword

specifies the name of the SAS language element that you use when you write
your program. Keyword is a literal that is usually the first word in the syntax. In a
CALL routine, the first two words are keywords.

In these examples of SAS syntax, the keywords are bold:
CHAR (string, position)

CALL RANBIN (seed, n, p, x);

ALTER (alter-password)

BEST w.

REMOVE <data-set-name>

In this example, the first two words of the CALL routine are the keywords:
CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without
arguments:

DO;
... SAS code ...

END;
Some system options require that one of two keyword values be specified:
DUPLEX | NODUPLEX

Some procedure statements have multiple keywords throughout the statement
syntax:

CREATE <UNIQUE> INDEX index-name ON table-name (column-1 <,
column-2, ...>)

argument

specifies a numeric or character constant, variable, or expression. Arguments
follow the keyword or an equal sign after the keyword. The arguments are used
by SAS to process the language element. Arguments can be required or
optional. In the syntax, optional arguments are enclosed in angle brackets (<

>)_

In this example, string and position follow the keyword CHAR. These arguments
are required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In this example of SAS code, the argument string
has a value of 'summer’, and the argument position has a value of 4:

x=char ('summer', 4);

In this example, string and substring are required arguments, whereas modifiers
and startpos are optional.

FIND(string, substring <, modifiers> <, startpos>

argument(s)

specifies that one argument is required and that multiple arguments are allowed.
Separate arguments with a space. Punctuation, such as a comma (,) is not
required between arguments.

Syntax Conventions for the SAS Language Xi

The MISSING statement is an example of this form of multiple arguments:
MISSING character(s);

<LITERAL_ARGUMENT> argument-1 <<LITERAL_ARGUMENT> argument-2 ... >
specifies that one argument is required and that a literal argument can be
associated with the argument. You can specify multiple literals and argument
pairs. No punctuation is required between the literal and argument pairs. The
ellipsis (...) indicates that additional literals and arguments are allowed.

The BY statement is an example of this argument:
BY <DESCENDING> variable-1 <<DESCENDING> variable-2 ...>;

argument-1 <options> <argument-2 <options> ...>
specifies that one argument is required and that one or more options can be
associated with the argument. You can specify multiple arguments and
associated options. No punctuation is required between the argument and the
option. The ellipsis (...) indicates that additional arguments with an associated
option are allowed.

The FORMAT procedure PICTURE statement is an example of this form of
multiple arguments:

PICTURE name <(format-options)>
<value-range-set-1 <(picture-1-options)>
<value-range-set-2 <(picture-2-options)> ...>>;

argument-1=value-1 <argument-2=value-2 ...>
specifies that the argument must be assigned a value and that you can specify
multiple arguments. The ellipsis (...) indicates that additional arguments are
allowed. No punctuation is required between arguments.

The LABEL statement is an example of this form of multiple arguments:
LABEL variable-1=label-1 <variable-2=label-2 ...>;

argument-1 <, argument-2, ...>
specifies that one argument is required and that you can specify multiple
arguments that are separated by a comma or other punctuation. The ellipsis (...)
indicates a continuation of the arguments, separated by a comma. Both forms
are used in the SAS documentation.

Here are examples of this form of multiple arguments:

AUTHPROVIDERDOMAIN (provider-1:domain-1 <, provider-2:domain-2, ...>
INTO :macro-variable-specification-1 <, :macro-variable-specification-2, ...>

Note: In most cases, example code in SAS documentation is written in lowercase
with a monospace font. You can use uppercase, lowercase, or mixed case in the
code that you write.

Xii About This Book

Style Conventions

Style Conventions

The style conventions that are used in documenting SAS syntax include uppercase
bold, uppercase, and italic:

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In this
example, the keyword ERROR is written in uppercase bold:

ERROR <message>;

UPPERCASE
identifies arguments that are literals.

In this example of the CMPMODEL= system option, the literals include BOTH,
CATALOG, and XML:

CMPMODEL=BOTH | CATALOG | XML |

italic
identifies arguments or values that you supply. ltems in italic represent user-
supplied values that are either one of the following:

nonliteral arguments. In this example of the LINK statement, the argument
label is a user-supplied value and therefore appears in italic:

LINK /abel,
nonliteral values that are assigned to an argument.

In this example of the FORMAT statement, the argument DEFAULT is
assigned the variable default-format;

FORMAT variable(s) <format > <DEFAULT = default-format>;

Special Characters

Special Characters

The syntax of SAS language elements can contain the following special characters:

an equal sign identifies a value for a literal in some language elements such as
system options.

In this example of the MAPS system option, the equal sign sets the value of
MAPS:

<>

Syntax Conventions for the SAS Language Xiii

MAPS=/ocation-of-maps

angle brackets identify optional arguments. A required argument is not enclosed
in angle brackets.

In this example of the CAT function, at least one item is required:

CAT (item-1 <, item-2, ...>)

a vertical bar indicates that you can choose one value from a group of values.
Values that are separated by the vertical bar are mutually exclusive.

In this example of the CMPMODEL= system option, you can choose only one of
the arguments:

CMPMODEL=BOTH | CATALOG | XML

an ellipsis indicates that the argument can be repeated. If an argument and the
ellipsis are enclosed in angle brackets, then the argument is optional. The
repeated argument must contain punctuation if it appears before or after the
argument.

In this example of the CAT function, multiple item arguments are allowed, and
they must be separated by a comma:

CAT (item-1 <, item-2, ...>)

'value' or "value"

indicates that an argument that is enclosed in single or double quotation marks
must have a value that is also enclosed in single or double quotation marks.

In this example of the FOOTNOTE statement, the argument text is enclosed in
quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | "text">;

a semicolon indicates the end of a statement or CALL routine.
In this example, each statement ends with a semicolon:

data namegame;
length color name $8;
color = 'black';
name = 'jack';
game = trim(color) || name;

run;

Xiv About This Book

References to SAS Libraries and External Files

References to SAS Libraries and External
Files

Many SAS statements and other language elements refer to SAS libraries and
external files. You can choose whether to make the reference through a logical
name (a libref or fileref) or use the physical filename enclosed in quotation marks.

If you use a logical name, you typically have a choice of using a SAS statement
(LIBNAME or FILENAME) or the operating environment's control language to make
the reference. Several methods of referring to SAS libraries and external files are
available, and some of these methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized
phrase file-specification. In the examples that use SAS libraries, SAS
documentation uses the italicized phrase SAS-library enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

What's New in the SAS 9.4
Companion for UNIX
Environments

Overview

The following categories list the areas of change for SAS in UNIX environments:
“Accessing SAS Viya” on page xv
“Platform Support” on page xvi
“Default Updates” on page xvi
“SAS Command” on page xvii
“SAS Procedures” on page xvii
“SAS Statements” on page xviii
“SAS System Options” on page xix
“System Performance and Maintenance” on page xxi

“Documentation Enhancements” on page xxi

Accessing SAS Viya

Beginning in SAS 9.4M5, if you have SAS Viya on your system, you can begin a
CAS session from your SAS 9.4 interface. For more information, see Chapter 2,
“Connecting to the CAS Server,” on page 39.

Information about whether features are included in SAS Viya has been added
throughout the book.

XV

xvi What's New in the SAS 9.4 Companion for UNIX Environments

Platform Support

Beginning in SAS 9.4M8, the HP-UX platform is no longer supported. Documenation
that references HP-UX remains for customers who have not upgraded to SAS

9.4M8 or later.

Default Updates

Default for LRECL= Option Is Now 32,767

The default value for LRECL= has changed from 256 to 32,767. If you are using
fixed length records (RECFM=F), the default value for LRECL= is 256.

Default for MEMSIZE System Option Is Now 2G

In SAS 9.4, the default value for the MEMSIZE system option has changed from
512M to 2G. In addition, when you specify -MEMSIZE MAX during invocation, the
value of MEMSIZE is adjusted accordingly based on both page size and virtual

memory limit that is available for processes.

Default for SORTSIZE System Option Is Now 1G

The default value for the SORTSIZE= system option has changed from 256M to 1G.
The default value for the SORTSIZE= option for the SORT procedure is based on

the value of the SORTSIZE= system option.

SAS Procedures Xvii

SAS Command

SETENV | UNSETENV

The SETENV | UNSETENV command is new. You can use the SETENV command

to define an environment variable by providing a variable name, a variable value, or
both. You can use the UNSETENV command to delete an environment variable by

specifying a variable name.

Run Lua Files from the SAS Command Line

You can run an external Lua script (*.lua or *.luc file) from the SAS command line
using the -SYSIN option. You can also run an external Lua script in a SAS session
using an %INCLUDE statement. Support for running external Lua files was added in
SAS 9.4M3.

SAS Procedures

BMDP Procedure

In SAS 9.4M2, the BMDP procedure has been deprecated. If you call the BMDP
procedure, SAS does not attempt to run BMDP software. However, the BMDP
engine, which enables SAS to convert to and from BMDP files, is still available.

CONTENTS Procedure

In SAS 9.4M3, the CONTENTS procedure for UNIX displays the size of a file in KB,
MB, or GB, as appropriate, labeled as File Size. This value is an approximation. If
you need to know the exact size of a file, the value File Size (bytes) is still provided
in the output for the CONTENTS procedure as well.

xviii What's New in the SAS 9.4 Companion for UNIX Environments

SORT Procedure

In SAS 9.4M8, the SORT procedure no longer supports using the host utility
syncsort. As a result, the following system options are not used: SORTANOM,
SORTCUT, SORTCUTP, SORTDEV, SORTPARM, and SORTPGM. If you specify
one or more of these options, SAS writes a note to the SAS log that the SAS sort is
used instead of the host sort utility.

SAS Statements

FILE and FILENAME Statements: PERMISSION=

Option

In SAS 9.4M2, a new option is available for the FILE and FILENAME statements.
The PERMISSION= option enables you to specify Read, Write, and Execute
permissions for the specified fileref. You also specify whether the permissions that
you set apply to you, to the group owner of the file, and to other users.

FILENAME Statement: Access Methods

The FILENAME statement has the following new access methods:

DATAURL
enables you to read data from user-specified text.

HADOOP
enables you to access files on a Hadoop Distributed File System (HDFS) whose

location is specified in a configuration file.

ZIP
enables you to access ZIP files.

In SAS 9.4M1, the following access methods are new:

ACTIVEMQ
enables SAS programs to send messages to and receive messages from an
ActiveMQ message broker through the HTTP protocol.

JMS
enables SAS programs to send messages to and receive messages from any

JMS API-compliant message service.

SAS System Options XiX

In SAS 9.4M1, a processing restriction for a SAS server in a locked-down state was
implemented. In SAS 9.4M2, the following FILENAME statement access methods
are not accessible (enabled) when SAS is in a locked-down state: EMAIL, FTP,
HADOOP, SOCKET, and URL. However, your SAS server administrator can re-
enable one or more of these access methods so that they are accessible when SAS
is in the locked-down state.

SAS System Options

System Option Enhancement

In SAS 9.4M5, you can specify the following system options using KB, MB, or GB
syntax notation:

BUFNO MVARSIZE
BUFSIZE OBS
CATCACHE REALMEMSIZE
MAXMEMQUERY SORTCUT
MEMSIZE SORTCUTP

MSYMTABMAX SORTSIZE

For example, you can specify the value of BUFSIZE as 2MB in either of the
following ways:

-bufsize=2M
-bufsize=2MB

ALIGNSASIOFILES System Option

The new ALIGNSASIOFILES system option aligns the pages of data in a SAS data
set to improve performance.

FILELOCKWAIT= System Option

The new FILELOCKWAIT system option sets the number of seconds that SAS waits
for a locked file to become available.

XX What's New in the SAS 9.4 Companion for UNIX Environments

HOSTINFOLONG System Option

The new HOSTINFOLONG system option specifies to write additional operating
environment information in the SAS log when SAS starts.

MVARSIZE System Option

In SAS 9.4M3, the default for the MVARSIZE system option changed from 32K to
65534.

OPLIST System Option Enhancement

In SAS 9.4M2, the OPLIST system option automatically masks any password values
that are specified when invoking SAS. Only the masked values appear in the SAS
log.

RTRACE System Option Argument

The RTRACE system option, which produces a list of resources that are read or
loaded during a SAS session, has a new argument called VER. This argument
writes the version number and other trace information for each module that SAS
reads or loads.

RTRACELOC System Option Enhancement

In SAS 9.4M2, you can expand the filename that is generated by the RTRACELOC
system option to include the process ID, date, and system time. Include %p, %d, or
%t, respectively, to include these values in the filename (for example,
mytrace.%d.%t.%p).

Documentation Enhancements XXi

SAS Environment Variable: AUTHINFO

In SAS 9.4M5, support for a new environment variable, AUTHINFO, was added.
Use this environment variable to specify the location of the authinfo file that you use
to authenticate to a CAS server.

System Performance and Maintenance

Measuring System Performance

In SAS 9.4M1, documentation of the iotest.sh tool for measuring system
performance was added. A new chapter, “Performance Considerations under UNIX,”
explains the use of this tool.

Cleanwork Ultility

In SAS 9.4M4, two new options were added to the cleanwork utility. These options
are -V to produce verbose output and -LOG logfile to save the output of the
cleanwork command to a log file.

Documentation Enhancements

How File Extension Delimiters Are Handled

A section about how file extension delimiters are handled was added. This section
explains the use of periods as delimiters.

xxii What's New in the SAS 9.4 Companion for UNIX Environments

Supported File Extensions

In SAS 9.4M4, the table that lists file extensions for SAS file types has been
updated to include SAS Scalable Performance Data Engine component files and
SAS Scalable Performance Data Server files. These files end with the file
extension .spds9. For more information, see Table 3.1 on page 48.

End-of-Line Delimiters

In SAS 9.4M3, either a line feed alone or a carriage return and a line feed are
recognized as an end-of-line delimiter. If you need to explicitly define the end-of-line
delimiter, use the TERMSTR= host option for FILE, FILENAME, and INFILE
statements.

Spaces within a System Option

If the value of a system option includes a space, you must enclose the value in
quotation marks. For example, here is how you would specify a value for BUFSIZE
that includes a space: -bufsize='3 k';.

Spaces within the SYSPARM= Macro Variable
Value

When you invoke the SYSPARM= macro variable on the SAS command line for a
value that includes a space, you must invoke it as follows:

sas --sysparm "my value"

Distributing Multiple Utility Files to Different
Destinations

In the SORT procedure, you can distribute multiple utility files that are written by one
threaded procedure to different locations. Each location that is specified for the
UTILLOC option identifies a single location at which utility files can be distributed. If
multiple locations are specified, then the locations are used on a rotating basis by
SAS applications as utility files are required.

Documentation Enhancements XXiii

Environment Variables under UNIX

In SAS 9.4M2, a new chapter was added to explain environment variables that are
used under UNIX environments. This chapter includes the SASV9_CONFIG,
SASV9 OPTIONS, and the PATHENCODING environment variables.

In SAS 9.4M2, any path that you provide in a SAS program must include characters
that are recognized by both the PATHENCODING environment variable and by the
SAS session encoding. Specifically, to specify a PATHENCODING value of UTF-8 in
a SAS session that uses English (LANG=EN), you must specify a SAS session
encoding of UTF-8 or SAS_US.

Processing Restriction for Server in a Locked-Down

State

In SAS 9.4M1, a processing restriction for a SAS server in a locked-down state is
new. If you are running in a client/server environment (for example, if you are
running SAS Enterprise Guide), the SAS server administrator can create an
environment where your SAS client has access to a set of directories and files. All
other directories and files are inaccessible or locked down. When a SAS server is in
a locked-down state, these SAS functions and CALL routines are not available:

ADDR PEEK
ADDRLONG PEEKC
CALL MODULE PEEKCLONG
CALL POKE PEEKLONG

CALL POKELONG

Note: Only the CALL MODULE routine and PEEKLONG function are listed in this
document. The CALL MODULE routine and PEEKLONG function have properties
that are specific to UNIX.

Function Key Definitions

In SAS 9.4M5, a table that lists the default key definitions has been added to the
information about displaying function key definitions.

xxiv What's New in the SAS 9.4 Companion for UNIX Environments

Administration Utilities That Are Available under
UNIX

In SAS 9.4M3, a new chapter was added that described useful administration
utilities that are available. These utilities assist in verifying user authentication and
identifying key descriptive information about SAS images.

In SAS 9.4M5, these authentication and image description utilities were moved into
Appendix 2, “Tools for the System Administrator,” on page 573 so that all system
administrator utilities can be found in the same place.

Results of the SASUMGMT Utility

For SAS 9.4M5, a list of return codes and their meanings was added to the
documentation for the SASUMGMT utility.

Accessing EBCDIC Data

In SAS 9.4M2, a new appendix, Appendix 4, “Using EBCDIC Data on ASCII
Systems,” on page 643 was added. This appendix provides background about
EBCDIC and ASCII data representation. This appendix includes examples of
different methods of using EBCDIC data on an ASCII machine.

Running SAS Software under UNIX

Chapter 1
Getting Started with SAS in UNIX Environments

Chapter 2
Connecting to the CAS Server

Chapter 3
Using SAS Files

Chapter 4
Using External Files and Devices

Chapter 5
Printing and Routing Output

Chapter 6
Accessing Shared Executable Libraries from SAS

Chapter 7
Viewing Output and Help in the SAS Remote Browser

Chapter 8
Performance Considerations under UNIX

PART 1

39

43

85

113

133

163

169

Getting Started with SAS in
UNIX Environments

Starting SAS Sessions in UNIX Environments
Invoking SAS
SAS Invocation Scripts
SAS Configuration Files
Syntax of the SAS Command
Example: Invoke an Interactive SAS Session
What If SAS Does Not Start?

Running SAS in a Foreground or Background Process
Selecting a Method of Running SAS in UNIX Environments

SAS Windowing Environment in UNIX Environments
Introduction to the SAS Windowing Environment
Invoking SAS in the Windowing Environment
Exiting SAS in the Windowing Environment

Interactive Line Mode in UNIX Environments
Introduction to Interactive Line Mode
Invoking SAS in Interactive Line Mode
Exiting SAS in Interactive Line Mode

Noninteractive and Batch Modes in UNIX Environments
Introduction to Running SAS in Noninteractive or Batch Mode
Invoking SAS in Noninteractive or Batch Mode
Submitting a Program to the Batch Queue
Writing Data from an External File Using UNIX Pipes

Running SAS on a Remote Host in UNIX Environments
Introduction to Running SAS on a Remote Host
Steps for Running SAS on a Remote Host
Preventing SAS from Attempting to Connect to the X Server
Troubleshooting Connection Problems

X Command Line Options
How to Specify X Window System Options
Supported X Command Line Options
Unsupported X Command Line Options

—
OQWOWOoOWOoK N N ooogoo b b

A A A -
- = O 0o

[G G G §
W WNDNDN

G G G §
aobs~ b~ M

A A A
~NOo OO

4 Chapter 1 / Getting Started with SAS in UNIX Environments

Executing Operating System Commands from Your SAS Session 18
Deciding Whether to Run an Asynchronous or Synchronous Task 18
Executing a Single UNIX Command 18
Executing Several UNIX Commands 20
Changing the File Permissions for Your SAS Session 21
Executing X Statements in Noninteractive or Batch Mode 21

Customizing Your SAS Registry Files 22

Customizing Your SAS Session By Using System Options 22
Ways to Customize Your SAS Session 22
Ways to Specify a SAS System Option 22
Overriding the Default Value for a System Option 23
When the Value of a System Option Includes a Space 24
How SAS Processes System Options That Are Set More Than Once 25
How SAS Processes System Options That Are Set in Multiple Places 25

Customizing Your SAS Session By Using Configuration and Autoexec Files 26
Customizing Your SAS Session 26
Introduction to Configuration and Autoexec Files 27
Creating a Configuration File 29
Order of Precedence for Processing SAS Configuration Files 29
Specifying a Configuration File for SAS to Use 30

Determining the Completion Status of a SAS Job in UNIX Environments 31

Exiting or Interrupting Your SAS Session in UNIX Environments 32
Methods for Exiting SAS 32
Methods for Interrupting or Terminating SAS 32
Messages in the Console Log (STDOUT) 37

Ending a Process That Is Running as a SAS Server 37

Interrupting a SAS Process and the Underlying DBMS Process 38

Starting SAS Sessions in UNIX
Environments

Invoking SAS

A SAS session is invoked using a link within the 1SASROOT directory. (The ! SASROOT
directory is a term that represents the name of the directory or folder in which SAS
is installed at your site or on your computer.) Your UNIX administrator typically adds
this link to the list of commands for your operating environment. For more
information about the ! SASROOT directory, see “Introduction to the ISASROOT
Directory” on page 567.

Ask your system administrator for the command that invokes SAS at your site. At
many sites, the command to invoke SAS is sas, but a different command might

Starting SAS Sessions in UNIX Environments B

have been defined during the SAS installation process at your site. This
documentation assumes that SAS is invoked by the sas command.

Note: Before you start your SAS session, review the different techniques for
interrupting and terminating your SAS session. For more information, see “Exiting or
Interrupting Your SAS Session in UNIX Environments” on page 32. Also, if you
cannot stop your SAS session, contact your system administrator.

SAS Invocation Scripts

SAS is invoked by scripts that are located under the ! SASROOT directory. Your
system administrator typically defines a link or alias that you can use to invoke SAS.
You can use that link or alias without specifying the full path to the SAS executable.

For SAS 9, a SAS invocation script is created for each language that is installed. An
invocation script is named using the language code of the installed language. For
example, sas_en invokes the English version of SAS. All languages are installed in
all locations. The typical path to the SAS invocation script is /usr/local/sas.

For SAS Viya, the SAS invocation script is typically located in /opt/sas/spre/
home/bin/sas, and the executable is sas_u8.

For more information about setting up SAS, see the installation documentation for
the UNIX environment.

SAS Configuration Files

SAS creates a separate configuration file for each language that is installed. The
language-specific configuration files have the form ! SASROOT/nls/<language>/
sasv9.cfg for each language. An additional configuration file that is language
independent is ! SASROOT/sasv9.cfg. This master configuration file

in 1SASROOT/nls/<language>/ is used by all languages in addition to the language-
specific files in 1 SASROOT/nls/<language>/. You can modify these configuration
files to meet your needs. For information about how to customize SAS configuration
files, see “Customizing Your SAS Session By Using Configuration and Autoexec
Files” on page 26.

Syntax of the SAS Command

The general form of the SAS command is as follows:

sas <-option1...-option-n> <filename>
sas —sysin filename

You can use these arguments with the SAS command:

6 Chapter 1 / Getting Started with SAS in UNIX Environments

-optiont ... -option-n
specifies SAS system options to configure your session or X command line
options. For more information, see “SAS System Options under UNIX” on page
409 and “X Command Line Options” on page 16. If you omit any options (either
on the command line or in the configuration file), the SAS (or site-specific)
default options are in effect.

filename
specifies the name of the file containing the SAS program to be executed.
Specifying a filename on the SAS command invokes a batch SAS session. Omit
the filename to begin an interactive session.

If the file is not in the current directory, specify its full pathname. A .sas extension
is inferred if the full pathname is not given.

Note: This command can fail in cases where an option does not recognize
filename. In this case, -sysin filename is required.

Example: Invoke an Interactive SAS Session

To invoke an interactive SAS session, without specifying any SAS system options,
enter

sas

The execution mode depends on your default settings. For more information, see
“Selecting a Method of Running SAS in UNIX Environments” on page 7.

To specify the WORK and MEMSIZE system options when you invoke SAS, you
might enter this command:

sas -work /saswork -memsize 4G

What If SAS Does Not Start?

There are several reasons why SAS might not start. Some common reasons are
listed here:

SAS does not start if you specify an autoexec file that does not exist. An error
message appears in the SAS log stating that the physical file does not exist.

SAS does not start if the configuration file cannot be found. This error normally
indicates an installation problem.

SAS does not start if the Work directory cannot be found. You can specify a
Work directory using the WORK system option.

SAS does not start if you specify invalid options, such as a misspelled
option: ./sas —nodms —stimerr (stimer is misspelled).

If SAS does not start, the SAS log might contain error messages that explain the
failure. However, error messages that SAS issues before the SAS log is initialized
are written to the console log. With the addition of better error handling, a failure
could cause information to be written to standard output as well.

Selecting a Method of Running SAS in UNIX Environments 7

If the system is not patched correctly, SAS can generate an error such as NLS
Extension Failure. This and other types of error messages indicate that the
installation did not set up the search rules correctly.

Under UNIX, the STDOUT fileref specifies the location of the console log.

Running SAS in a Foreground or
Background Process

UNIX is a multiprocessing operating system, so you can run multiple processes at
the same time. For example, you can have one process running in the foreground
and three in the background.

A foreground process executes while you wait for the prompt. That is, you cannot
execute additional commands while the current command is being executed. After
you enter a command, the shell starts a process to execute the command. After the
system executes the command, the shell displays the prompt and you can enter
additional commands. Here is an example of SAS executing as a foreground
process:

sas
Running in the foreground enables you to access standard input and output.

A background process executes independently of the shell. After you enter a
command, the shell starts a process to execute the command, and then issues the
system prompt. You can enter other commands or start other background processes
without waiting for your initial command to execute. Here is an example of the
command that is used to execute a background process:

sas&

Note: Both the C shell and the Korn shell include commands that enable you to
move jobs among three possible states: running in the foreground, running in the
background, and suspended. If you run SAS in —-nodms mode, the process stops
waiting for input. In dms mode, control of standard output and input is retained by
the shell.

Selecting a Method of Running SAS in
UNIX Environments

You can run SAS in the SAS windowing environment, in SAS Studio, in interactive
line mode, or in noninteractive or batch mode:

“Invoking SAS in the Windowing Environment” on page 9

8 Chapter 1 / Getting Started with SAS in UNIX Environments
= Using SAS Studio in SAS Studio: User’s Guide. Your site administrator provides
the URL to access SAS Studio.
= “Interactive Line Mode in UNIX Environments” on page 10
= “Noninteractive and Batch Modes in UNIX Environments” on page 12

Ask your UNIX system administrator which interface or mode of operation is the
default at your site.

SAS Windowing Environment in UNIX
Environments

Introduction to the SAS Windowing Environment

SAS Windows

You interact with SAS through windows using the keyboard, mouse, menus, and
icons. The windowing environment includes, but is not limited to, the Explorer,
Program Editor, Output, Log, and Results windows. The following display shows the
Explorer, Output, Log, and Program Editor windows. The ToolBox window is also
displayed.

Figure 1.1 Windows in the SAS Windowing Environment

210 x T B ol
File Edit view Tools Solutions Help File Edit View Tools Solutions Help |
2] Libraries /
5 |
File Sharteuts File Edit view Tools Solutions Help |
@ Favorite Folders — |

1 A
MOTE: SAS initialization used:
real time 2,45 zeconds .|
cpu time (1,53 seconds 7
=] 5
E4|H64: Program Editor-Untitled 0] x|
File Edit View Tools Run Solutions Help |
e | A
00002
(0003 J
00004
(0005
Q000G
e ——————————————— |V 7
ﬁ 5

http://documentation.sas.com/?cdcId=webeditorcdc&cdcVersion=3.71&docsetId=webeditorug&docsetTarget=p092daf4a5ypjcn138maiooc8wsn.htm

SAS Windowing Environment in UNIX Environments 9

Your SAS session might default to the windowing environment interface. (You can
change the default by using the config files.) If you want to use the windowing
environment, you can start your SAS session as a foreground process, or as a
background process by adding an ampersand (&) to your SAS command line. See
“‘Running SAS in a Foreground or Background Process” on page 7 for an example
of these SAS commands.

For more information about using the windowing environment, see “Definition of the
SAS Windowing Environment” on page 174.

Note: If you are not using an X display, then you can invoke SAS in interactive line
mode by using the NODMS system option. For more information, see “Interactive
Line Mode in UNIX Environments” on page 10.

What Is the Explorer Window?

Explorer is a windowing environment for managing basic SAS software tasks such
as viewing and managing data sets, libraries, members, applications, and output.
The SAS Explorer is a central access point from which you can do the following:

manipulate SAS data through a graphical interface

access the Program Editor, Output, and Log windows (as well as other windows)
view the results of SAS procedure output in the Results window

import files into SAS

What Are the Program Editor, Output, and
Log Windows?

The Program Editor, Output, and Log windows enable you to edit and execute SAS
programs and display output. For more information about these windows, see the
online SAS Help and Documentation.

Invoking SAS in the Windowing Environment

You can use the following commands to specify which windows open when a SAS
session starts.

You can open the Program Editor, Output, and Log windows by specifying the
DMS system option:

sas -dms

You can open the Program Editor, Output, Log, and Results windows, as well as
the Explorer window, by specifying the DMSEXP system option:

sas -dmsexp

10 Chapter 1 / Getting Started with SAS in UNIX Environments
You can open only the Explorer window by specifying the EXPLORER system
option:
sas -explorer

Figure 1.2 SAS Explorer Window

= sAsbgloer [
File Edit View Tools Solutions Help |
SAS Environment | Active Libraries
Sashelp
=% SAS Environment Gismaps
=5 Libraries Maps
3 Gismaps \S':.::Jkser
#-£) Maps
3 Sashelp
=~ £) Sasuser
- 3 Work
L& File Shortcuts

The default specification for invoking SAS is sas -dmsexp. This command displays
the Program Editor, Output, Log, and Results windows as well as the Explorer
window. If you invoke SAS without the -dmsexp option, the Explorer window is not

displayed.

SAS also opens a toolbox from which you can open additional SAS windows. For
more information about the toolbox, see Chapter 9, “Working in the SAS Windowing
Environment,” on page 173.

Exiting SAS in the Windowing Environment

To end your SAS session, enter the BYE or ENDSAS command in the command
window, or select File = Exit from the menu of the SAS session that you want to
end.

Interactive Line Mode in UNIX
Environments

Introduction to Interactive Line Mode

If you are not using an X display, you can invoke SAS in interactive line mode by
using the NODMS system option.

You enter SAS statements line by line in response to prompts issued by SAS. SAS
reads the source statements from the terminal as you enter them. DATA and PROC
steps execute when one of the following occurs:

Interactive Line Mode in UNIX Environments 11

a RUN, QUIT, or DATALINES statement is entered
another DATA or PROC statement is entered
the ENDSAS statement is entered

To use interactive line mode, you must run SAS in the foreground.

Invoking SAS in Interactive Line Mode

To start an interactive line mode session, invoke SAS with the NODMS or
NODMSEXP system option:

sas -nodms
sas -nodmsexp

By default, SAS log and procedure output (if any) appear on your display as each
step executes.

You can also invoke SAS in interactive line mode and pass parameters to it:
sas -sysparm 'A B C!'

The value A B Cis assigned to the SYSPARM macro variable. You can include a
program name, such as progparn. sas in the Program Editor or from the SAS
command prompt, if you invoked SAS in line mode by using the —nodms option.

After you invoke SAS, the 1? prompt appears, and you can begin entering SAS
statements. After you enter each statement, a line number prompt appears.

Exiting SAS in Interactive Line Mode

You can end the session by pressing the EOF key, usually Ctrl-D (see “Using
Control Keys” on page 35) or by issuing the ENDSAS statement:

endsas;

The session ends after all SAS statements have executed.

12 Chapter 1 / Getting Started with SAS in UNIX Environments

Noninteractive and Batch Modes in UNIX
Environments

Introduction to Running SAS in Noninteractive or
Batch Mode

To run SAS in noninteractive or batch mode, you specify your SAS program name in
the SAS invocation command. In either of these modes, the program runs to
completion, and you can view the *.log and *.Ist files after the program finishes. You
can run a SAS program in the foreground (noninteractive mode), in the background
by specifying an ampersand at the end of the SAS command (batch mode), or
submit your application to the batch queue by using the batch, at, nohup, or cron
UNIX commands. (For more information, see the UNIX man pages for the batch,
at, nohup, or cron commands.) If you start your application with one of these UNIX
commands and you log off from your system, then your application completes
execution. If your application contains statements that start an interactive procedure
such as FSEDIT, then you need to run your application in the foreground or you
need to specify the —noterminal option.

Invoking SAS in Noninteractive or Batch Mode

To invoke SAS in noninteractive mode or in batch mode, you must specify a
filename in the SAS command. Noninteractive mode invokes a SAS program for
immediate processing in the foreground. When you run a program in batch mode, it
runs in the background. For example, suppose that weekly.sas is a file that
contains SAS statements to be executed, and suppose that you want to specify the
NODATE and LINESIZE system options. To run in noninteractive mode, enter the
following command:

sas weekly.sas -nodate -linesize 90

The command runs the program in the foreground. If you want to run the program in
the background (batch mode), add the ampersand to the end of the command:

sas weekly.sas -nodate -linesize 90 &

SAS creates a .log file and a .Ist file in the current directory that contains the log and
procedure output.

Noninteractive and Batch Modes in UNIX Environments 13

Submitting a Program to the Batch Queue

To submit your program to the batch queue, you can use the batch, at, nohup, or
cron commands. For example, you could submit weekly.sas from your shell prompt
as follows:

$ at 2am

sas weekly.sas

<control-D>

warning: commands will be executed using /usr/bin/sh
job 8400.a at Wed Mar 16 02:00:00 2011

$

If you create a file that contains the SAS command (for example, cmdfile.sh) that
is necessary to run your program, then you can enter the following command at your
shell prompt:

at 2am < cmdfile.sh

SAS sends the output to a file that has the same name as the program. The output
file has an extension of .Ist. The log file writes to a file with an extension of .log. Both
of these files are written to your current directory. See the UNIX man pages for
these commands for more information about submitting jobs to the batch queue. For
more information about routing output, see Chapter 5, “Printing and Routing
Output,” on page 113.

If you submit a file in batch mode, then a line that is greater than 256 bytes is
truncated. An explicit message about this truncation is written to the SAS log.

Note: If your program contains statements that start an interactive procedure, such

as the FSEDIT procedure, CATALOG procedure, or the REPORT procedure, you
need to run your program as a foreground process, or use the —noterminal option.

Writing Data from an External File Using UNIX

Pipes

You can use a UNIX pipe to write data from an external file to a SAS program. For
example, suppose that your data resides in the external file mydata and your SAS
program myprog. sas includes this statement:

infile stdin;

Issue this command to run myprog.sas, which reads data from the external file
mydata:

cat mydata | sas myprog.sas

For information about using external files, see Chapter 4, “Using External Files and
Devices,” on page 85. For information about another way to have a SAS program
read data from an external file, see “File Descriptors in the Bourne and Korn Shells”
on page 99.

14 Chapter 1 / Getting Started with SAS in UNIX Environments

Running SAS on a Remote Host in UNIX
Environments

Introduction to Running SAS on a Remote Host

When you invoke SAS in an interactive mode, you can run SAS on your local host.
Alternatively, you can run SAS on a remote host and interact with the session
through an X server that runs on your workstation. The server provides the display
services that are needed for the X Window System.

Most of the time, the server name is derived from the computer's name. For
example, if your computer is named green, the name of the server is green:0.0. In
most cases, the X server will already be running when you log on. If you need to
start your server manually, consult the documentation that is provided with your X
Window System software.

To run SAS on a remote host, you must tell SAS which display to use by either
setting the DISPLAY environment variable or specifying the -display X command
line option.

Steps for Running SAS on a Remote Host

To run SAS on a remote host, you must tell SAS which display to use by either
setting the DISPLAY environment variable before invoking SAS or by specifying the
-display x as a SAS command line option. Then follow these steps:

1 Make sure that the clients running on the remote host have permission to
connect to your server. With most X servers, authorization is controlled by using
an .Xauthority file that is located in the user's home directory. In addition, the
xhost command can be used to circumvent authority. To use the xhost client to
permit all remote hosts to connect to your server, enter the following command at
the system prompt on the system that is running your X server:

xhost +

If your system does not control access with the xhost client, consult your system
documentation for information about allowing remote access.

For information about editing and displaying authorization information, see the
UNIX man page for xauth.

2 Log on to the remote system, or use a remote shell.

3 Identify your server as the target display for X clients that are run on the remote
host. You can identify your server in one of two ways:

Running SAS on a Remote Host in UNIX Environments 15

a Set the DISPLAY environment variable. In the Bourne and Korn shells, you
can set the DISPLAY variable as follows:

DISPLAY=green:0.0
export DISPLAY

In the Korn shell, you can combine these two commands:
export DISPLAY=green:0.0
In the C shell, you must use the UNIX setenv command:
setenv DISPLAY green:0.0

The DISPLAY variable is used by all X clients on the system.

Note: To determine the shell for your current system, type ps at the UNIX
command prompt or check the value of the SHELL environment variable.

b Use the DISPLAY system option. For example:
sas -display green:0.0

If you have trouble establishing a connection, you can try using an IP address
instead of a display name, for example:

-display 10.22.1.1:0.0

Note: This option is a command line option for the X Window System, not for
SAS. Specifying this option in a SAS configuration file or in the
SASV9_OPTIONS environment variable might cause problems when you are
running other interfaces.

Preventing SAS from Attempting to Connect to the
X Server

To prevent SAS from attempting to connect to the X server, unset the DISPLAY
environment variable and use the -noterminal SAS option on the command line.
The -noterminal option specifies that you do not want to display the SAS session.
You must specify this option to generate a graph in noninteractive or batch mode.
You must also specify this option when you use PROC IMPORT and PROC
EXPORT. For more information, see "Running SAS/GRAPH Programs" in
SAS/GRAPH: Reference.

Troubleshooting Connection Problems

If SAS cannot establish a connection to your display, it prints a message that
indicates the nature of the problem and then terminates. An example of a message
that you might receive is the following:

16 Chapter 1 / Getting Started with SAS in UNIX Environments

ERROR: The connection to the X display server could not be made.
Verify that the X display name is correct, and that you have
access authorization. See the online Help for more information
about connecting to an X display server.

Make sure that you have brought up the SAS session correctly. You might need to
use the xhost client (enter xhost +) or some other method to change display
permissions. You can also specify the NODMS system option when you invoke SAS
to bring your session up in line mode.

If you are unable to invoke SAS, try running another application such as xclock. If
you cannot run the application, you should contact your UNIX system administrator
for assistance.

X Command Line Options

How to Specify X Window System Options

When you invoke some X clients, such as SAS, you can use command line options
that are passed to the X Window System. In general, you should specify X Window
System options after SAS options on the command line.

Supported X Command Line Options

The following list describes the X command line options that are available when you
invoke a SAS session from the command prompt.

-display host:server.screen
specifies the name or IP address of the terminal on which you want to display
the SAS session. For example, if your display node is wizard whose IP address
is 10.22.1.1:0.0, you might enter this code:

-display wizard:0.0
Or you might enter this code:
-display 10.22.1.1:0.0

-name instance-name
reads the resources in your SAS resource file that begin with instance-name. For
example, -name MYSAS reads the resources that begin with MYSAS:

MYSAS.dmsfont: Courl4
MYSAS.defaultToolbox: True

-title string
specifies a title for your SAS session window. Titles can contain up to 64
characters. Window titles are displayed in the case in which they are entered,
which can be lowercase, mixed case, or uppercase. To use multiple words in the

X Command Line Options 17

title, enclose the words in single or double quotation marks. For example,
-title MYSAS produces MYSAS:Explorer in the title bar of the Explorer window.

-xrm string
specifies a resource to override any defaults. For example, the following
resource turns off the Confirm dialog box when you exit SAS:

-xrm 'SAS.confirmSASExit: False'

Unsupported X Command Line Options

SAS does not support the following X command line options because their
functionality is not applicable to SAS or is provided by SAS resources. For more
information about SAS resources, see “Overview of X Resources” on page 204.

-geometry
Window geometry is specified by the SAS.windowHeight, SAS.windowWidth,
SAS.maxWindowHeight, and SAS.maxWindowWidth resources.

-background, -bg
These options are ignored.

-bordercolor, -bd
These options are ignored. For a description of specifying the color of window
borders, see “Defining Colors and Attributes for Window Elements (CPARMS)”
on page 246.

-borderwidth, -bw
These options are ignored. The width of window borders is set by SAS.

-foreground, -fg
These options are ignored.

-font, -fn
SAS fonts are specified by the SAS.DMSFont, SAS.DMSboldFont, and
SAS.DMSfontPattern resources.

-iconic
This option is ignored.

-reverse, -rv, +rv
These options are ignored. For more information about a description for
specifying reverse video, see “Defining Colors and Attributes for Window
Elements (CPARMS)” on page 246.

-selectionTimeout
Time-out length is specified by the SAS. selectTimeout resource.

-synchronous, +synchronous
The XSYNC command toggles synchronous communication between SAS and
the X server.

-xn1language
This option is ignored.

18 Chapter 1 / Getting Started with SAS in UNIX Environments

Executing Operating System Commands
from Your SAS Session

Deciding Whether to Run an Asynchronous or
Synchronous Task

You can execute UNIX commands from your SAS session either asynchronously or
synchronously. When you run a command as an asynchronous task, the command
executes independently of all other tasks that are currently running. To run a
command asynchronously, you must use the SYSTASK statement. See “SYSTASK
Statement: UNIX” on page 399 for information about executing commands
asynchronously.

When you execute one or more UNIX commands synchronously, you must wait for
those commands to finish executing before you can continue working in your SAS
session. You can use the CALL SYSTEM routine, %SYSEXEC macro program
statement, X statement, and X command to execute UNIX commands
synchronously. The CALL SYSTEM routine can be executed with a DATA step. The
%SYSEXEC macro statement can be used inside macro definitions, and the X
statement can be used outside of DATA steps and macro definitions. You can enter
the X command on any SAS command line. For more information, see “CALL
SYSTEM Routine: UNIX” on page 328 and “Macro Statements in UNIX
Environments” on page 367.

Executing a Single UNIX Command

Single Commands

To execute only one UNIX command, you can enter the X command, X statement,
CALL SYSTEM routine, or %SYSEXEC macro statement as follows:

X command

X command,;

CALL SYSTEM (‘command');

%SYSEXEC command,;

Note: When you use the %SYSEXEC macro statement, if the UNIX command that
you specify includes a semicolon, you must enclose the UNIX command in a macro

Executing Operating System Commands from Your SAS Session 19

quoting function. For more information about quoting functions, see SAS Macro
Language: Reference.

Example 1: Executing a UNIX Command
By Using the X Statement

You can use the X statement to execute the 1s UNIX command (in a child shell) as
follows:

x 1ls -1;

Example 2: Executing a UNIX Command
By Using the CALL SYSTEM Routine

Inside a DATA step, you can use the CALL SYSTEM routine to execute a cd
command, which changes the current directory of your SAS session:

data null ;
call system ('cd /users/smith/report');
run;

The search for any relative (partial) flenames during the SAS session now begins in
the /users/smith/report directory. When you end the session, your current
directory is the directory in which you started your SAS session.

For more information about the CALL SYSTEM routine, see “CALL SYSTEM
Routine: UNIX” on page 328.

How SAS Processes a Single UNIX
Command

When you specify only one command, SAS checks to see whether the command is
cd, pwd, setenv, or umask and, if so, executes the SAS equivalent of these
commands. The SAS cd and pwd commands are equivalent to their Bourne shell
counterparts. The SAS setenv command is equivalent to its C shell namesake. The
SAS umask command is equivalent to the numeric mode of the umask command
supported by the Bourne, Korn, and C shells. These four commands are built into
SAS because they affect the environment of the current SAS session. When
executed by SAS software, they affect only the SAS environment and the
environment of any shell programs started by the SAS session. They do not affect
the environment of the shell program that began your SAS session.

If the command is not cd, pwd, or setenv, SAS starts a shell in which it executes the
command that you specified. The shell that is used depends on the SHELL
environment variable. If the command is umask, but you do not specify a mask, then
SAS passes the command to the shell in which the current SAS session was

20 Chapter 1 / Getting Started with SAS in UNIX Environments

started. For more information about the umask command, see “Changing the File
Permissions for Your SAS Session” on page 21.

Executing Several UNIX Commands

Executing UNIX Commands

You can also use the X command, X statement, CALL SYSTEM routine, and
%SYSEXEC macro statement to execute several UNIX commands:

X 'command-1;...command-n'

X 'command-1;...command-n';

CALL SYSTEM (‘command-1;...command-n");

%SYSEXEC quoting-function(command-1;...command-n);

Separate each UNIX command with a semicolon (;).

Note: When you use the %SYSEXEC macro statement to execute several UNIX
commands, because the list of commands uses semicolons as separators, you must
enclose the string of UNIX commands in a macro quoting function. For more
information about quoting functions, see SAS Macro Language: Reference.

Example: Executing Several Commands
Using the %SYSEXEC Macro

The following code defines and executes a macro called pwdls that executes the
pwd and 1s -1 UNIX commands:

$macro pwdls;

%$sysexec %str(pwd;ls -1);
$mend pwdls;

$pwdls;

This example uses $str as the macro quoting function.

How SAS Processes Several UNIX
Commands

When you specify more than one UNIX command (as a list of commands separated
by semicolons), SAS passes the entire list to the shell. SAS does not check for the
cd, pwd, setenv, or umask commands as it does when a command is specified by
itself (and not in a list separated by semicolons).

Executing Operating System Commands from Your SAS Session 21

For more information about how SAS processes the cd, pwd, setenv, or umask
commands, see “How SAS Processes a Single UNIX Command” on page 19.

Changing the File Permissions for Your SAS

Session

At invocation, a SAS session inherits the file permissions from the parent shell. Any
file that you create inherits these permissions. If you want to change or remove file
permissions from within SAS, issue the following command in the X statement:
umask. The umask command applies a new "mask" to a file, that is, it sets new file
permissions for any new file that you create. In this way, the umask command can
provide file security by restricting access to new files and directories for the current
process.

The default value for umask varies. Some systems, like Secure Linux, use
mandatory access control, and the umask default is the same with or without Secure
Linux enabled. Other systems use 022 as the default. System administrators can set
their own default value, and you can check your default and change it in your

own .kshrc, .cshrc, or .profile files. These values affect all child processes that are
executed in the shell. Any subsequent file that you create during the current SAS
session inherits the permissions that you specified. The permissions of a file created
under a given mask are calculated in octal representation.

Note: The value of a mask can be either numeric or symbolic. For more information
about this command, see the UNIX man page for umask.

In addition, you can use the PERMISSION= option in the FILE or FILENAME
statement to control the permissions for individual output files. For more information,
see “FILE Statement: UNIX” on page 373 or “FILENAME Statement: UNIX” on page
377.

Executing X Statements in Noninteractive or Batch

Mode

If you run your SAS program in noninteractive or batch mode and if your operating
system supports job control, the program is suspended when an X statement within
the program needs input from the terminal.

If you run your SAS program from the batch queue by submitting it with the at or
batch commands, SAS processes any X statements as follows:

If the X statement does not specify a command, SAS ignores the statement.

If any UNIX command in the X statement attempts to get input, it receives an
end-of-file (standard input is set to /dev/null).

If any UNIX command in the X statement writes to standard output or standard
error, the output is mailed to you unless it was previously redirected.

22 Chapter 1 / Getting Started with SAS in UNIX Environments

Customizing Your SAS Registry Files

SAS registry files store information about the SAS session. The SAS registry is the
central storage area for configuration data for SAS. The following list identifies some
of the data that is stored in the registry:

the libraries and file shortcuts that SAS assigns at start—up. These shortcuts
could include secure information, such as your password.

the printers that are defined for use and their print setup.

configuration data for various SAS products.

The Sasuser registry file (called regstry.sas7bitm) contains your user defaults.
These registry entries can be customized by using the SAS Registry Editor or by
using PROC REGISTRY. For more information, see “The SAS Registry” in SAS
Programmer’s Guide: Essentials..

CAUTION
For experienced users only. Registry customization is generally performed by
experienced SAS users and system administrators.

Customizing Your SAS Session By Using
System Options

Ways to Customize Your SAS Session

You can customize your SAS environment in several ways. One way is through the
use of SAS system options. For information about other ways to customize a SAS
session, see “Overview of Customizing SAS in X Environment” on page 204.

Ways to Specify a SAS System Option

SAS options can be specified in one or more ways:

in a configuration file

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ljywa7os0gqgn1gj5lp8lds8o7.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ljywa7os0gqgn1gj5lp8lds8o7.htm&locale=en

Customizing Your SAS Session By Using System Options 23

in the SASV9_OPTIONS environment variable
in the SAS command

in an OPTIONS statement (either in a SAS program or an autoexec file) (An
autoexec file contains SAS statements that are executed automatically when
SAS is invoked. The autoexec file can be used to specify some SAS system
options, as well as to assign librefs and filerefs to data sources that are used
frequently.)

in the System Options window

Any options that do not affect the initialization of SAS, such as CENTER and
NOCENTER, can be specified and changed at any time.

Some options can be specified only in a configuration file, in the SASV9_OPTIONS
variable, or in the SAS command. These options determine how SAS initializes its
interfaces with the operating system and the hardware; they are often called
configuration options. After you start a SAS session, these options cannot be
changed. Usually, configuration files specify options that you would not change very
often. In those cases when you need to change an option just for one job, specify
the change in the SAS command.

Overriding the Default Value for a System Option

The default values for SAS system options will be appropriate for many of your SAS
programs. However, you can override a default setting using one or more of the
following methods:

configuration file
Modify your current configuration file (see “Order of Precedence for Processing
SAS Configuration Files” on page 29) or create a new configuration file.
Specify SAS system options in the file by preceding each with a hyphen. For ON
or OFF options, just list the keyword corresponding to the appropriate setting.
For options that accept values, list the keyword identifying the option followed by
the option value. All SAS system options can appear in a configuration file.

For example, a configuration file might contain these option specifications:
-nocenter
-verbose

-linesize 64

SASV9_OPTIONS environment variable
Specify SAS system options in the SASV9_OPTIONS environment variable
before you invoke SAS. See “Defining Environment Variables in UNIX
Environments” on page 309.

Settings that you specify in the SASV9_OPTIONS environment variable affect
SAS sessions that are started when the variable is defined.

For example, in the Korn shell, you would use the following code:
export SASV9 OPTIONS='-fullstimer -nodate'

SAS command
Specify SAS system options in the SAS command. Precede each option with a
hyphen:

24 Chapter 1 / Getting Started with SAS in UNIX Environments

sas -optionl -option2...

For ON or OFF options, list the keyword corresponding to the appropriate
setting. For options that accept values, list the keyword that identifies the option,
followed by the option value. Here is an example:

sas -nodate -work mywork

In general, settings that you specify in the SAS command last for the duration of
the SAS session. For options that can be changed within the session, command-
line settings last until you change them. All options can be specified in the SAS
command.

OPTIONS statement within a SAS session

Specify SAS system options in an OPTIONS statement at any point within a SAS
session. The options are set for the duration of the SAS session or until you
change them. When you specify an option in the OPTIONS statement, do not
precede its name with a hyphen (-). If the option has an argument, use = after
the option name. Here is an example:

options nodate linesize=72;
options editcmd='/usr/bin/xterm -e vi';

For more information about the OPTIONS statement, see “OPTIONS Statement”
in SAS Global Statements: Reference. Not all options can be specified in the
OPTIONS statement.

OPTIONS statement in an autoexec file

Specify SAS system options in an OPTIONS statement in an autoexec file. An
autoexec file contains SAS statements that are executed automatically when
SAS is invoked. The autoexec file can be used to specify some SAS system
options, as well as to assign librefs and filerefs to data sources that are used
frequently. For example, your autoexec file could contain the following
statements:

options nodate pagesize=80;
filename rpt '/users/myid/data/report';

System Options window

Change the SAS system options from within the System Options window.

In general, use quotation marks to enclose filenames and pathnames specified in
the OPTIONS statement or the System Options window. Do not use quotation
marks otherwise. Any exceptions are discussed under the individual option. To
shorten filenames and pathnames that you specify, you can use the abbreviations
listed in Table 3.3 on page 66.

When the Value of a System Option Includes a

Space

If the value of a system option includes a space, you must enclose the value in
quotation marks on the command line or in a config file. The following examples
show the correct syntax:

-bufsize '3 k';
-bottommargin '2 in';

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en

Customizing Your SAS Session By Using System Options 25

If the value of a system option does not include a space, you do not need to enclose
the value in quotation marks:

-bufsize 3k;
-bottommargin 2in;

How SAS Processes System Options That Are Set
More Than Once

If the same system option is set more than once in the SAS command, in a
configuration file, or in the SASV9_OPTIONS environment variable, only the most
recent specification is used. The other specifications are ignored. For example, the
DMS option is ignored in the following SAS command:

sas -dms -nodms
The DMS option is ignored in the following configuration file:

-dms
-linesize 80
-nodms

By default, if you specify the HELPLOC, MAPS, MSG, SAMPLOC, SASAUTOS, or
SASHELP system option more than once, the most recent specification is the value
that SAS uses. If you want to add additional pathnames to the pathnames already
specified by one of these options, you must use the APPEND or INSERT system
option. For more information, see the “APPEND System Option: UNIX” on page 415
and “INSERT System Option: UNIX” on page 448.

How SAS Processes System Options That Are Set
in Multiple Places

System Options Set in Multiple Places

If the same system option is set in more than one place, only the most recent
specification is the value that SAS uses. The following places are listed in order of
precedence. For example, a setting made in the System Options window or in the
OPTIONS statement overrides any other setting. However, if you set a system
option using the SASV9_OPTIONS environment variable, this setting overrides only
the setting for the same system option in your configuration file.

26 Chapter 1 / Getting Started with SAS in UNIX Environments

Order of Precedence When System
Options Are Processed

The order of precedence when system options are processed is as follows:
1 System Options window or OPTIONS statement (from a SAS session or job).

2 An autoexec file that contains an OPTIONS statement (after SAS initializes). (An
autoexec file contains SAS statements that are executed automatically when
SAS is invoked. The autoexec file can be used to specify some SAS system
options, as well as to assign librefs and filerefs to data sources that are used
frequently.)

3 SAS command.
4 SASV9_OPTIONS environment variable.

5 Configuration files (before SAS initializes). For more information, see “Order of
Precedence for Processing SAS Configuration Files” on page 29.

Note: If you create a configuration file in your home directory and the
NOUSERCONFIG system option is set, the configuration file in your home
directory is skipped.

For example, if a configuration file specifies NOSTIMER, you can override the
setting in the SAS command by specifying -FULLSTIMER.

By default, if you specify the HELPLOC, MAPS, MSG, SAMPLOC, SASAUTQOS, or
SASHELP system option more than one time, the most recent value that is specified
is the value that SAS uses. If you want to add pathnames to those that are already
specified by one of these options, use the APPEND or INSERT system options to
add the new pathnames. For more information, see the “APPEND System Option:
UNIX” on page 415 and “INSERT System Option: UNIX” on page 448.

Customizing Your SAS Session By Using
Configuration and Autoexec Files

Customizing Your SAS Session

You can customize your SAS environment in several ways. To customize your SAS
environment at the point of invocation, you can use configuration and autoexec files.
For information about how to customize a SAS session using the windowing
environment, see “Overview of Customizing SAS in X Environment” on page 204.

Customizing Your SAS Session By Using Configuration and Autoexec Files 27

Introduction to Configuration and Autoexec Files

Defining Configuration and Autoexec Files

You can customize your SAS session by defining configuration and autoexec files.
You can use these files to specify system options and to execute SAS statements
automatically whenever you start a SAS session. SAS system options control many
aspects of your SAS session, including output destinations, the efficiency of
program execution, and the attributes of SAS files and libraries. For a complete
description of SAS system options, see SAS System Options: Reference.

For SAS 9.4, the configuration file is typically named sasv9.cfg, and the autoexec
file is named autoexec.sas. These files typically reside in the directory where SAS
was installed. By default, this directory is the ! SASROOT directory.

Note: You generally store configuration files on multiple SAS servers. The options
that are specified pertain to the specific SAS server on which a configuration file is
stored. For example, if the WORK option is defined in a configuration file on the
workspace server, then the assigned Work directory must be valid on that
workspace server.

You can have customized configuration and autoexec files in your user home
directory. If you do, then SAS uses the customizations specified in these files when
you start a SAS session. For more information about the order of precedence SAS
uses when processing configuration files, see “Order of Precedence for Processing
SAS Configuration Files” on page 29.

SAS system options can be restricted by a UNIX system administrator, so that once
they are set by the administrator, they cannot be changed by a user. A system
option can be restricted globally, by group, and by user. For more information, see
the configuration guide for the UNIX environment on the SAS Support site, and see
“Restricted Options” in SAS System Options: Reference.

Using the AUTOEXEC System Option

The AUTOEXEC system option specifies the autoexec file. The autoexec file
contains SAS statements that are executed automatically when you invoke SAS, or
when you start another SAS process. The autoexec file can contain any SAS
statements. For example, your autoexec file can contain LIBNAME statements for
SAS libraries that you access routinely in SAS sessions.

SAS looks for the AUTOEXEC system option in the following places. It uses the first
AUTOEXEC system option that it finds.

in the command line
in the SASV9_OPTIONS environment variable

in the configuration file

http://support.sas.com
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n1243vjtfty6pan1ramcaeho4jte&locale=en

28 Chapter 1 / Getting Started with SAS in UNIX Environments

If neither the AUTOEXEC nor NOAUTOEXEC system option is found, SAS looks for
the autoexec file in three directories in the following order:

1 your current directory
2 your home directory

3 the !'sASROOT directory (for more information, see Appendix 1, “The ISASROOT
Directory,” on page 567)

SAS uses the first autoexec file that it finds to initialize the SAS session. If you want
to see the contents of the autoexec file for your session, use the ECHOAUTO
system option when you invoke SAS.

Inserting and Appending Autoexec Files

You can concatenate files in your autoexec file by using the following system
options with the AUTOEXEC system option: “INSERT System Option: UNIX” on
page 448 and “APPEND System Option: UNIX” on page 415. The autoexec file is
always a text file. If your filename contains embedded blanks or special characters,
you must enclose the filename in quotation marks. Otherwise, quotation marks are
optional when one or more filenames are specified.

You can use the following syntax to concatenate autoexec files:

-autoexec " (/pathl/autoexec.sas /path2/autoexec.sas /path3/
autoexec.sas)"

You can use the following syntax with the INSERT system option:
-insert autoexec "a.sas" -insert autoexec "b.sas"

You can use the following syntax with the APPEND system option:
-append autoexec "a.sas" -append autoexec "b.sas"

If any file in a concatenated autoexec list does not exist or cannot be opened (for
example, if you are not authorized for Read access), SAS issues error messages to
the log. SAS terminates without executing any of the files in the list. The final SAS
exit code is 103, which indicates system start-up failure.

Differences between Configuration and
Autoexec Files

The differences between configuration files and autoexec files are as follows:

Configuration files can contain only SAS system option settings. Autoexec files
can contain any valid SAS statement. For example, you might want to create an
autoexec file that includes an OPTIONS statement to change the default values
of various system options. The autoexec file can also contain LIBNAME and
FILENAME statements for the SAS libraries and external files that you use most
often.

Configuration files are processed before SAS initializes while autoexec files are
processed immediately after SAS initializes but before it processes any source

Customizing Your SAS Session By Using Configuration and Autoexec Files 29

statements. An OPTIONS statement in an autoexec file is equivalent to
submitting an OPTIONS statement as the first statement of your SAS session.

Creating a Configuration File

To create a configuration file, follow these steps:

1

Use a text editor to write the SAS system options into a UNIX file. Save the file
as either sasv9.cfg or .sasv9.cfg. (For more information, see “Order of
Precedence for Processing SAS Configuration Files” on page 29.)

Specify one or more system options on each line. Use the same syntax that you
would use for specifying system options with the SAS command, but do not
include the SAS command itself. For example, a configuration file might contain
the following lines:

-nocenter

-verbose

-linesize 64

-work /users/myid/tmp

Save and close the configuration file.

Order of Precedence for Processing SAS
Configuration Files

SAS is shipped with a default configuration file in the ! SASROOT directory. Your on-
site SAS personnel can edit this configuration file so that it contains whichever
options are appropriate to your site.

You can also create one or more of your own configuration files. SAS reads option
settings from each of these files in the order listed below.

Note: If you create a configuration file in your home directory and the
NOUSERCONFIG system option is set, the configuration file in your home directory
is skipped.

sasv9.cfg in the 1SASROOT directory. (See “Contents of the ISASROOQT Directory”
on page 568.)

sasv9_local.cfg in the ' SASROOT directory. (See “Contents of the ISASROOT
Directory” on page 568.)

.sasv9.cfg in your home directory. (Notice the leading period.)
sasv9.cfg in your home directory.

sasv9.cfg in your current directory.

30 Chapter 1 / Getting Started with SAS in UNIX Environments

6 any restricted configuration files. Restricted configuration files contain system
options that are set by the site administrator and cannot be changed by the user.
Options can be restricted globally, by group, or by user. For more information
about restricted configuration files, see the configuration guide for the UNIX
environment.

For future releases of SAS, the names of these files will change accordingly.

For each system option, SAS uses the last setting that it encounters. Any other
settings are ignored. For example, if the WORKPERMS system option is specified in
sasv9.cfg in the 1SASROOT directory and in sasv9.cfg in your current directory, SAS
uses the value specified in sasv9.cfg in your current directory.

Specifying a Configuration File for SAS to Use

When you specify a configuration file for SAS to use, you bypass the search of the
configuration files listed in “Order of Precedence for Processing SAS Configuration
Files” on page 29.

Note: SAS still processes any restricted configuration files that exist. The settings in
these files take precedence over the settings in the configuration file that you
specify.

If you set both SASV9_OPTIONS and SASV9_CONFIG, SAS always uses
SASV9_OPTIONS. SASV9_CONFIG is used only if you do not use —config in the
command line.

To specify a configuration file, complete one of the following steps:
specify a configuration file with the CONFIG system option in the SAS command:
sas -config filename

specify a configuration file in the SASV9_OPTIONS environment variable. See
“Defining Environment Variables in UNIX Environments” on page 309. For
example, in the Korn shell, you would use the following:

export SASVS OPTIONS='-config filename'

define the environment variable SASV9_CONFIG. See “Defining Environment
Variables in UNIX Environments” on page 309. For example, in the Korn shell,
you would use the following:

export SASV9 CONFIG=filename
filename is the name of a file that contains SAS system options.

If you have specified a configuration file in the SASV9_OPTIONS or
SASV9_CONFIG environment variables, you can prevent SAS from using that file
by specifying NOCONFIG in the SAS command.

If SAS cannot find SASV9_OPTIONS, the following message is written to the SAS
log:

ERROR: Cannot open [/fullpath/filename]: No such
file or directory.

Determining the Completion Status of a SAS Job in UNIX Environments 31

Determining the Completion Status of a
SAS Job in UNIX Environments

The exit status for the completion of a SAS job is returned in $STATUS for the C
shell, and in $? for the Bourne and Korn shells. A value of 0 indicates normal
termination. You can affect the exit status code by using the ABORT statement. The
ABORT statement takes an optional integer argument, n, which can range from 0 to
255.

Note: Return codes of 0—6 and return codes greater than 977 are reserved for use
by SAS.

The following table summarizes the values of the exit status code.

Table 1.1 Exit Status Code Values

Condition Exit Status Code
All steps terminated normally 0
SAS issued warnings 1
SAS issued errors 2
User issued ABORT statement 3
User issued ABORT RETURN statement 4
User issued ABORT ABEND statement 5
SAS could not initialize because of a severe error 6
User issued ABORT RETURN - n statement n
User issued ABORT ABEND - n statement n

If you specify the ERRORABEND SAS system option on the command line, and the
job has errors, the exit status code is set to 5.

UNIX exit status codes are in the range 0-255. Numbers greater than 255 might not
print what you expect because the code is interpreted as a signed byte.

32 Chapter 1 / Getting Started with SAS in UNIX Environments

Exiting or Interrupting Your SAS Session
iIn UNIX Environments

Methods for Exiting SAS

Use one of the following methods to exit a SAS session:
Select File = Exit if you are using SAS in the windowing environment.
Use endsas;.
Enter BYE in the ToolBox if you are using SAS in the windowing environment.

Use Ctrl+D if this control key sequence is your EOF command and if you are
using SAS in interactive line mode.

Methods for Interrupting or Terminating SAS

Interrupting or Terminating SAS

In addition to the methods for exiting SAS, SAS provides methods for interrupting or
terminating a SAS session. SAS does not recommend that you use these methods
until you have tried to exit SAS by one of the methods listed in “Methods for Exiting
SAS” on page 32.

You can interrupt or terminate SAS in the following ways:

Press the interrupt or quit control key. Interrupt displays a dialog box while quit
forces a shutdown. Using the quit control key is not recommended.

Use the SAS: Session Management window.

Enter the UNIX ki1l command. Use this command when all other methods of
exiting SAS have failed. By default, the kill command is kill -15 (SIGTERM).

Using the UNIX kill —9 command on a SAS process that is running might
corrupt data sets that are open for Write or Update access.

Exiting or Interrupting Your SAS Session in UNIX Environments 33

Interrupting a SAS Process

The method that you use to interrupt a SAS process depends on how you invoke
SAS.

= If you are running SAS in interactive line mode or in noninteractive mode in the
foreground, then you can use either of the following methods to interrupt SAS:

[Press the control key sequence that is set to interrupt in the shell that invoked
SAS. In most cases, this control key sequence is Ctrl+C. See the man page
for the stty command to determine the appropriate control key sequence for
your environment.

1 Use the -SIGINT option in the ki11 command. For more information, see
“Using the UNIX kill Command” on page 36.

= If you are running the SAS windowing environment in the foreground, then click
Interrupt in the SAS: Session Management window.

SAS: Session Management

Note: You can access the SAS Session Manager by invoking SAS with the -
DMS or -DMSEXP option. Select SAS: Session Management from the menu.

= If you are running SAS in noninteractive mode, you must use control keys to
interrupt the SAS process. A SAS: Session Management window is not
available.

The interrupt signal sends a request to the supervisor to handle an interrupt. The
interrupt signal is not handled until a safe point in the code is reached. A safe point
is one that allows the interrupt handler to be run safely. The supervisor responds as
soon as possible with a prompt or window that requests what type of interrupt action
you want to take. During this time, normal processing of a DATA step or PROC step
is suspended.

For example, when you interrupt a DATA step or PROC step, a Tasking Manager
window, similar to the following, appears:

34 Chapter 1 / Getting Started with SAS in UNIX Environments

HG4: Tasking Manager

JEN 1 B .

The following table explains each of the options in the window:

Table 1.2 Options in the Tasking Manager Window

Option Description

1 Cancel submitted
statements
2 Halt DATA step or

PROC DATASTEP

C Cancel the dialog
box
T Terminate SAS

What This Option Does

Selecting this option terminates the current DATA
step or PROC step. Outstanding source code that is
waiting to execute is flushed from the system. In
interactive line mode, you return to the command
prompt.

Selecting this option sends an interrupt signal to the
DATA step or PROC step. The default behavior is for
the DATA step or PROC step to terminate, and to
execute the next statement.

A procedure might specify its own handler to process
the interrupt. In this case, the procedure might
request more input from you. For example, SAS
webAF has a different interrupt menu than PROC
SQL.

Note: If you are using a relational database, the
interrupt signal might be handled differently,
depending on which relational database you are
using.

Selecting this option cancels the interrupt, and you
return to normal processing.

Selecting this option causes the DATA step or PROC
step to be terminated. Outstanding source code that
is waiting to execute is flushed from the system. SAS
exits as cleanly as possible.

Exiting or Interrupting Your SAS Session in UNIX Environments 395

Terminating a SAS Process

If you are running the SAS windowing environment in the foreground, click
Terminate in the SAS: Session Management window. If you are running a SAS
process in interactive line mode in the background, use control keys to terminate the
SAS process, or use the kill command.

If you click Terminate in the SAS: Session Management window, a dialog box
appears, confirming that you want to end the session. If you click OK, then the SAS
session and any queries that are currently running are terminated. If you click
Cancel, you are returned to the SAS session.

Using Control Keys

Control keys enable you to interrupt or terminate your session by pressing the
interrupt or quit key sequence. However, control keys can be used only when your
SAS program is running in interactive line mode or in noninteractive mode in the
foreground. You cannot use control keys to stop a background job.

Note: You cannot use control keys to stop a batch job that has been submitted with
the batch, at, nohup, or cron command

Because control keys vary from system to system, issue the UNIX stty command
to determine which key sends which signal. The stty command varies considerably
among UNIX operating environments, so check the UNIX man page for stty before
using the command. Usually, one of these forms of the command prints all of the
current terminal settings:

stty
stty -a
stty everything

The output should contain lines similar to these:

A

*C; quit = *\; erase

intr =
“U; eof = "D; eol = e

kill

H;

The caret (") represents the Ctrl key. In this example, Ctrl+C is the interrupt key and
Ctrl+\ is the quit key. Quit is a more forceful termination and might result in data
corruption. If you use —SIGTERM, SAS attempts to shut down the system correctly.

Using the SAS Session Manager

If you invoke SAS in the windowing environment, you can use the SAS session
manager to interrupt or terminate your SAS session. The SAS session manager is
automatically minimized when you start SAS. To interrupt or terminate your SAS

36 Chapter 1 / Getting Started with SAS in UNIX Environments

session, open the SAS: Session Management window and click Interrupt or
Terminate:

SAS: Session Management

If asynchronous SAS/CONNECT tasks are running when you terminate a SAS
session, these tasks are terminated and no warning message is displayed.
Generally, it is better to exit from the file menu or toolbox.

Note: Clicking Interrupt is equivalent to specifying the -SIGINT option on the kill
command. Clicking Terminate is equivalent to specifying the -SIGTERM option on
the kill command.

For more information about the SAS Session Manager, see “The SAS Session
Manager (motifxsassm) in UNIX” on page 177.

Using the UNIX kill Command

Note: Use the ki1l command only after you have tried all other methods to exit
your SAS session.

The k111 command sends an interrupt or terminate signal to SAS, depending on
which signal you specify. You can use the ki1l command to interrupt or terminate a
SAS session running in any mode. The kill command cannot be issued from within
a SAS session. You must issue it from another terminal or from another window (if
your terminal permits it).

The format of the kill command is:
kill <-signal-name> pid

To send the interrupt signal, specify -SIGINT. To send the terminate signal, specify
-SIGTERM. Use the ps command and its options to determine the process
identification number (pid) of the SAS session that you want to interrupt or
terminate.

The results of using the ps command differ in different operating environments. See
the UNIX man page for your operating environment for specific information about
the ps command and its options. Adding options helps determine which process you
want to kill if you have more than one SAS process running. Also, servers
(metadata, OLAP, and so on) leave a process identification number in their start-up
directories. You can use this number with the ki1l command.

The following table lists some of the important ki11 signals.

Ending a Process That Is Running as a SAS Server 37

Table 1.3 Description of Important Kill Signals

Signal Option Description

0 SIGNULL Checks access to process
identifier.

1 SIGHUP Causes SAS to terminate.

2 SIGINT Causes SAS to interrupt

the session. SIGINT is
very similar to SIGQUIT.

3 SIGQUIT Causes a more forceful
shutdown than SIGTERM.
It does not cause a core
dump.

9 SIGKILL Brings down SAS. Use this
option only after all
attempts to exit SAS have
failed. Using SIGKILL can
cause data corruption.

15 SIGTERM Causes SAS to terminate.

For more information, see the UNIX man pages for the ps and ki1l commands.

Messages in the Console Log (STDOUT)

If SAS encounters an error or warning condition when the SAS log is not available,
then any messages that SAS issues are written to the console log. Normally, the
SAS log is unavailable only early in SAS initialization and late in SAS termination.

If you are using the -STDIO option, the log is displayed in stderr, and the listing is
displayed in stdout.

Ending a Process That Is Running as a
SAS Server

If you need to end a process that is running as a SAS server, use one of the
following methods:

If you are using the SAS Metadata Server, use the SAS Management Console to
end a process.

38 Chapter 1 / Getting Started with SAS in UNIX Environments

If you are using another SAS server, use the UNIX scripts that shipped with the
servers to stop the process. You can also use these scripts to start (or restart) a
server, as well as determine whether the server is already running. For more
information about these scripts, contact your site administrator.

Note: If the server does not respond to the UNIX script, then you can use the
kill command to end the server process. For more information, see “Using the
UNIX kill Command” on page 36.

Interrupting a SAS Process and the
Underlying DBMS Process

CAUTION

Interrupting a SAS process and the underlying DBMS process might kill all
jobs that are running on your DBMS. Interrupting a SAS or DBMS process should
be an exception. Use care when you construct your queries. For example, if SAS sends
SQL to an RDBMS, there is no way to interrupt the SQL statements because SAS no
longer has control of them. The statements are running in the RDBMS.

When you interrupt a SAS process, you might terminate the current query. If you are
using the current query to create a new data set, then the data set is still created
even if the query is terminated. If you are using the current query to overwrite a data
set, then the data set is not overwritten if the query is terminated. In most cases, you
do not receive a warning that the query did not complete.

Note: In this section, SAS process refers to a series of events. It is not the process
on the operating system. When you interrupt or terminate a SAS process, the
process on the operating system might still be running.

In many cases (such as using Oracle in UNIX environments), when you interrupt or
terminate a query on a server, the following processes stop:

Processing of current extractions. For example, if you forgot to include a
WHERE clause in your SQL query and are now extracting one billion rows into
SAS, issuing an interrupt stops the SAS process and the extract step in the
DBMS.

Processing of queries that are in progress on the server. For example, you might
have a very complex extract query that runs for a long time before producing a
result. Issuing an interrupt stops the SAS and DBMS processes. As a result, the
complex extract query running on your DBMS server is interrupted and
terminated.

Processing an update, delete, or insert. For example, you are updating, deleting,
or inserting many rows in your DBMS. An interrupt stops the SAS and DBMS
processes.

39

Connecting to the CAS Server

Overview of Connecting to the CAS Server 39
How to Connect to the CAS Server 39
Requirements to Connect to the CAS Server 39
Example Program That Connects to the CAS Server 40
Comparison of Batch Modes and Interactive Modes 41

Overview of Connecting to the CAS
Server

The following topics explain how to connect to the CAS server if you have both SAS
9.4 and SAS Viya on your system. There are some requirements that must be met
before you can connect to the server from your SAS 9.4 session. These
requirements also apply when you run a SAS program from the command line, such
as when you run a program in batch mode or when you submit SAS commands in
interactive line mode.

How to Connect to the CAS Server

Requirements to Connect to the CAS Server

Before you can submit a program that connects to the server, you must have
permission to access the server. Your system administrator manages users and
permissions.

40 Chapter 2 / Connecting to the CAS Server

In addition, the server must be running before your program can connect to it. Your
system administrator typically manages the servers that are used by SAS.

To submit a program that connects to the server from the command line:

If you attempt to connect to the CAS server, and you receive an error that the
certificate is not trusted, then contact your SAS administrator. For information
about obtaining and configuring certificates, see “Configure SAS 9.4 Clients to
Work with SAS Viya”.

Create an authinfo file. You must have an authinfo file that provides your user ID
and password for connecting to the server. For more information, see "Client
Authentication Using an Authinfo File".

Specify the CAS server. You can provide this value with the HOST value in the
authinfo file, or you can use the CASHOST= option in the OPTIONS statement.

Note: In SAS Studio for SAS Viya, the CAS server is set automatically and does
not need to be specified. If you are running SAS 9.4, specify the CASHOST=
option.

Specify the server port value. The default value for the server port is 5570. You

can provide this value with the PORT value in the authinfo file, or you can use
the CASPORT= option in the OPTIONS statement.

Note: In SAS Studio for SAS Viya, the CAS server port value is set
automatically and does not need to be specified. If you are running SAS 9.4,
specify the CASPORT= option.

Specify a “CAS Statement” in SAS Cloud Analytic Services: User’s Guide in your
program to start your CAS session.

As a best practice, at the end of the program, specify the TERMINATE option in
a CAS statement. For example, this statement ends the CAS session called
mysess:

cas mysess terminate;

When you submit a program from the command line, such as when you submit a
program at a scheduled time overnight, specify the CAS server value and CAS
server port value. Otherwise, your program does not connect to the CAS server.

Example Program That Connects to the CAS
Server

The following code connects to the CAS server:

/* These options must be included to connect to the CAS server in
noninteractive */

/* mode or in batch mode */

options cashost="host-name’ casport=xxxxx;

http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calencryptmotion&docsetTarget=n1xdqv1sezyrahn17erzcunxwix9.htm#p11x7tc5wa1oein1jcnkjg0zf6ve
http://documentation.sas.com/?cdcId=calcdc&cdcVersion=3.5&docsetId=calencryptmotion&docsetTarget=n1xdqv1sezyrahn17erzcunxwix9.htm#p11x7tc5wa1oein1jcnkjg0zf6ve
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=authinfo&docsetTarget=n0xo6z7e98y63dn1fj0g9l2j7oyq.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=authinfo&docsetTarget=n0xo6z7e98y63dn1fj0g9l2j7oyq.htm
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n0z3r80fjqpobvn1lvegno9gefni.htm&locale=en

Comparison of Batch Modes and Interactive Modes 41

cas casauto;
caslib _all assign;

proc cas;
session casauto;

/* Load source data (Cars) into a table in CAS */
table.loadTable result=r /
caslib="hps"
path="carssashelp.sashdat"
casOut={name="cars",replace=true};

/* View variable information */
table.columnInfo / table="cars";

/* View table. The TO= parameter is similar to OBS=. */
table.fetch /
format=true
sortby={
{name="make", order="descending"},
{name="model", order="descending"}
}
table="cars.sashdat"
to=10;
run;
quit;

cas casauto terminate;

Comparison of Batch Modes and
Interactive Modes

There are two methods of running a program from the command line. One method
is to submit a program from the command line without viewing it in an interface
(noninteractive mode or batch mode). The other is to submit the program from SAS
Studio as a background submission. To do this, right-click on the program, and
submit it without first opening it in the code editor.

Table 2.1 Comparison of Running SAS Noninteractively from the Command Line or in SAS
Studio

Method Description

From the command line (noninteractive Invoke the SAS command, and specify the

mode or batch mode) program to submit. To submit the program
mySASprog.sas from the command line,
issue this command:

sas mySASprog

42 Chapter 2 / Connecting to the CAS Server

Method

In SAS Studio (as a background

submission)

Description

You can specify options in the invocation
command:

sas -errors 10 mySASprog

The log and results are in separate files that
begin with the name of the program that
you are submitting. For example, if you
submit the program mySASprog.sas, then
the log and results are in the files
mySASprog.log and mySASprog.Ist,
respectively.

Right-click on the program in the navigation
pane, and submit it to run in the
background. This runs the program in SAS
Studio without first opening it in the code
editor.

The log and results appear in SAS Studio.

For more information, see Using the
Background Submit Feature in SAS Studio:
User’s Guide.

Table 2.2 Comparison of Interactive Mode from the Command Line or in SAS Studio

Method

From the command line

In SAS Studio

Description

Invoke the SAS command without
specifying a program to submit. Specify
options in the invocation command:

sas -errors 10

This begins the interactive session. For

more information, see “Introduction to
Interactive Line Mode” on page 10.

Click the interactive icon EI When this
icon is active, you can run selected sections
of code within a SAS program.

http://documentation.sas.com/?cdcId=webeditorcdc&cdcVersion=3.8&docsetId=webeditorug&docsetTarget=n0t5b6xetubfnzn1mhjyfg1heypq.htm&docsetVersion=3.8#n0is8x2njxf9gxn1pod0bg8y5xgv
http://documentation.sas.com/?cdcId=webeditorcdc&cdcVersion=3.8&docsetId=webeditorug&docsetTarget=n0t5b6xetubfnzn1mhjyfg1heypq.htm&docsetVersion=3.8#n0is8x2njxf9gxn1pod0bg8y5xgv

43

Using SAS Files

Introduction to SAS Files, Libraries, and Engines in UNIX Environments 45
SAS Files 45
SAS Libraries and Librefs 45
Engines 46
Additional Resources 46

Common Types of SAS Files in UNIX Environments 46
SAS Data Sets 46
SAS Catalogs (Member Type CATALOG) 47
Stored Program Files 48

File Extensions and Member Types in UNIX Environments 48

How File Extension Delimiters Are Handled 49

Using Direct I/O 50
Introduction to Direct I/O 50
Turning On Direct 1/O 51

Holding a File in Memory: The SASFILE Statement 51

Sharing SAS Files in a UNIX Environment 52
Sharing SAS Files 52
Options to Use for File Locking: SAS Files 52
File Locking for SAS Files: The FILELOCKS Statement Option 53
File Locking for SAS Files: The FILELOCKS System Option 53
Waitingto Use alLocked File 54
Conditions to Check When FILELOCKS=NONE 54
When FILELOCKS=CONTINUE 55
Sharing Filesovera Network 55

Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments 57
What Is File Migration? 57
Benefits of Migrating SAS Files 57
How to Migrate a SAS Library in a Linux Environment 57

Creating a SAS File to Use with an Earlier Release 58

Reading SAS Files from Previous Releases or from Other Hosts 58
Reading Version 6 Files 58
Reading Version 8 or Later Files from Compatible Computer Types 59

Reading Version 8 or Later Files from Incompatible Computer Types 59

44 Chapter 3 / Using SAS Files

Referring to SAS Files By Using Librefs in UNIX Environments 61
Techniques for Referringtoa SAS File 61
What Is a Libref? ... 61
Assigning Librefs 62
Permanently Assigning a Libref 64
Accessing a Permanent SAS Library By Using a Libref 64

Specifying Pathnames in UNIX Environments 65
Rules for Specifying Directory and Pathnames 65
Example 1: Access a File That Is Not in the Current Directory 65
Example 2: Access a File in the Current Directory 65
Valid Character Substitutions in Pathnames 66

Introduction to Concatenating Directories 66
How SAS Accesses Concatenated Libraries 67
Accessing Files for Inputand Update 67
Accessing Files for Output 67
Accessing Data Sets with the Same Name 68
Using Multiple Engines for a Library in UNIX Environments 68
Using Environment Variables as Librefs in UNIX Environments 69
Librefs Assigned by SAS in UNIX Environments 69
Sasuser Library 70
What Is the Sasuser Library? 70
Contents of the Sasuser Library 71
Sasuser.Profile Catalog 71
Sasuser.Registry Catalog 73
Sasuser.Prefs File 73
Work Library 74
Multiple Work Directories 74
Using One-Level Names to Access Permanent Files (User Library) 75
Introduction to One-Level Names 75
Techniques for Assigning the User Libref 75
Accessing Disk-Format Libraries in UNIX Environments 76
Accessing Sequential-Format Libraries in UNIX Environments 77
Benefits and Limitations of Sequential Engines 77
Writing Sequential Data Sets to Named Pipes 77
Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments 78
Introduction to the BMDP, OSIRIS, and SPSS Files 78
The BMDP Engine 79
The OSIRIS Engine 80
The SPSS ENgine 82

Support for Links in UNIX Environments 84

Introduction to SAS Files, Libraries, and Engines in UNIX Environments 45

Introduction to SAS Files, Libraries, and
Engines in UNIX Environments

SAS Files

What Is a SAS File?

Your data can reside in different types of files, including SAS files and files that are
formatted by other software products, such as database management systems.
Under UNIX, a SAS file is a specially structured UNIX file. Although the UNIX
operating environment manages the file for SAS by storing it, the operating system
cannot process it because of the structure built into the file by SAS. For example,
you can list the filename with the 1s command, but you cannot use the vi editor to
edit the file. A SAS file can be permanent or temporary.

Case Sensitivity in Data Set Names

In UNIX operating environments, SAS data set names are written in all lowercase
characters. Because of this requirement, SAS reads only data set names that are
written in all lowercase characters.

If you use the UNIX utilities mv or cp to rename SAS data set names with uppercase
or mixed-case characters, SAS can no longer read the data set names.

SAS Libraries and Librefs

SAS files are stored in SAS libraries. A SAS library is a collection of SAS files within
a UNIX directory. Any UNIX directory can be used as a SAS library. (The directory
can also contain files called external files that are not managed by SAS. See
Chapter 4, “Using External Files and Devices,” on page 85 for how to access
external files.) SAS stores temporary SAS files in a Work library, which is
automatically defined for you. You must specify a library for each permanent SAS
file. For more information, see “Work Library” on page 74.

SAS libraries can be identified with librefs. A libref is a name by which you reference
the directory in your application. For more information about how to assign a libref,
see “Referring to SAS Files By Using Librefs in UNIX Environments” on page 61.

46 Chapter 3 / Using SAS Files

Engines

SAS files and SAS libraries are accessed through engines. An engine is a set of
routines that SAS must use to access the files in the library. SAS can read from and,
in some cases, write to the file by using the engine that is appropriate for that file
type. For some file types, you need to tell SAS which engine to use. For others, SAS
automatically chooses the appropriate engine. The engine that is used to create a
SAS data set determines the format of the file.

Additional Resources

For more information about SAS files, libraries, and engines, see SAS
Programmer’s Guide: Essentials.

Common Types of SAS Files in UNIX
Environments

SAS Data Sets

What Are SAS Data Sets?

SAS data sets fall into two categories:
“SAS Data Sets (Member Type DATA)” on page 47
“SAS Views (Member Type VIEW)” on page 47

Descriptor Information and Data Values

Data sets consist of descriptor information and data values organized as a table of
rows and columns that can be processed by one of the SAS engines. The descriptor
information includes data set type, data set label, the names and labels of the
columns in the data set, and so on. A SAS data set can also include indexes for one
or more columns.

SAS data sets are implemented in two forms:

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Common Types of SAS Files in UNIX Environments 47

If the data values and the data set's descriptor information are stored in a file,
then the file is a SAS data set.

If the file contains information about where to obtain a data set's data values and
descriptor information, then the file is a SAS view.

The default SAS engine processes the data set as if the data file or data view and
the indexes were a single entity.

For more information, see “SAS Data Sets (Member Type DATA)” on page 47 and
“SAS Views (Member Type VIEW)” on page 47.

SAS Data Sets (Member Type DATA)

The SAS data set is probably the most frequently used type of data file. These files
have the extension .sas7bdat. SAS data sets are created in the DATA step and by
some SAS procedures. SAS data sets store data values and their descriptor
information in files formatted by SAS.

SAS data sets are created by the default SAS engine, and they can be indexed. An
index is an auxiliary file created in addition to the data set it indexes. The index
provides fast access to observations within a SAS data set by a variable or key.
Under UNIX, indexes are stored as separate files, but are treated by SAS as an
integral part of the SAS data set.

CAUTION

Do not remove index files using UNIX commands. Removing the index file can
damage your SAS data set. Also, do not change its name or move it to a different
directory. Use the DATASETS procedure to manage indexes.

SAS Views (Member Type VIEW)

A SAS view contains only the information needed to derive the data values and the
descriptor information. SAS views contain information about data in one or more
SAS data sets or SAS views. A SAS view is created with the SQL procedure or
DATA step.

SAS Catalogs (Member Type CATALOG)

Catalogs are a special type of SAS file that can contain multiple entries. Many
different types of entries can be kept in the same SAS catalog. For example,
catalogs can contain entries created by SAS/AF and SAS/FSP software, windowing
applications, key definitions, SAS/GRAPH graphs, and so on.

Catalogs have the SAS member type of CATALOG.

48 Chapter 3 / Using SAS Files

Stored Program Files

Stored program files are compiled DATA steps, and have the SAS member type of
PROGRAM. For more information, see “Stored, Compiled DATA Step Programs” in
SAS V9 LIBNAME Engine: Reference.

File Extensions and Member Types in
UNIX Environments

Because SAS needs to distinguish between the different file types, it automatically
assigns an extension to each file when it creates the file. Also, because each SAS
file is a member of a library, SAS assigns each file a member type.

The following table lists the file extensions and their corresponding SAS member
types.

CAUTION
Do not change the file extensions of SAS files. File extensions determine how
SAS accesses files; changing them can cause unpredictable results.

Table 3.1 File Extensions for SAS File Types

SAS 9

Random Access Sequential Access

Files Files SAS Member Type Description

.sas .sas .sas SAS program

Ist Ist Ist Procedure output

og Jog Jog SAS log file

.sas7bdat .sas7sdat DATA SAS data set

.sas7bndx .sas7sndx INDEX Data file index; not treated by
the SAS system as a separate
file

.sas7bcat .sas7scat CATALOG SAS catalog!

.sas7bpgm .sas7spgm PROGRAM Stored program (DATA step)

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1h8ok8rj6uzqkn18tpnp1lb4lp9.htm&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1h8ok8rj6uzqkn18tpnp1lb4lp9.htm&locale=en

Random Access

Files

.sas7bvew

.sas7baud

.sas7bfdb

.sas7bmdb

.sas7bods

.sas7bdmd

.sas7bitm

.sas7butl

.sas7bput

.sas7bbak

.spds9

1 This file type is not included in SAS Viya.

SAS 9

Sequential Access

Files

.sas7svew

.sas7saud

.sas7sfdb

.sas7smdb

.sas7sods

.sas7sdmd

.sas7sitm

.sas7sutl

.sas7sput

.sas7sbak

.spds9

SAS Member Type

VIEW

AUDIT

FDB

MDDB

SASODS

DMDB

ITEMSTOR

UTILITY

PUTILITY

BACKUP

multiple

UNIX Environments” on page 68.

How File Extension Delimiters Are Handled 49

Description

SAS view

Audit file

Consolidation database
Multidimensional database
Output delivery system file
Data mining database
Item store file

Utility file

Permanent utility file
Backup file

SAS SPD Engine component
files and SAS SPD Server
files

A UNIX directory can store a variety of files, but you might find it more practical to
store files in separate directories according to their use. Also, you can keep libraries
that are accessed by different engines in the same directory, but this is not
recommended. For more information, see “Using Multiple Engines for a Library in

How File Extension Delimiters Are
Handled

If you reference a SAS file directly by its physical name, the final embedded period
is an extension delimiter, regardless of the VALIDMEMNAME setting. Consequently,
if you use the EXTEND option with VALIDMEMNAME= and the member name itself

contains a period, then the full extension must be specified as part of the reference.

For more information, see “VALIDMEMNAME= System Option” in SAS System

Options: Reference.

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n10nwm6blrcrtmn0zdcwyxlwxfjh.htm&locale=en

50 Chapter 3 / Using SAS Files

The following example illustrates this concept. The comments in the example are
from the SAS log:

options validmemname=extend;

libname mylib './saslib';
/* NOTE: Libref MYLIB was successfully assigned as follows: */
/* Engine: V9 */
/* Physical Name: SAS-library */

data mylib."my.member"n;
x=1;

run;
/* NOTE: The data set MYLIB.'MY.MEMBER'n has 1 observations */
/* and 1 variables. */

data null ;
set './saslib/my.member.sas7bdat';

run;
/* NOTE: There were 1 observations read from the data set */
/* ./saslib/my.member.sas7bdat. */

data null ;
set './saslib/my.member';

run;
/* ERROR: Extension for physical file name "./saslib/my.member" */
/* does not correspond to a valid member type. */
/* NOTE: The SAS System stopped processing this step because of */
/* errors. */

Using Direct |/O

Introduction to Direct I/O

Direct I/O is a method for processing input and output files and is used in file
handling. Direct I/O enables SAS to read files from and write files directly to storage
devices without first going through the UNIX operating environment's read and write
caches. You can use direct I/O for SAS files. Using direct I/O might improve system
performance, depending on the number and types of jobs that you are running.

SAS uses three related options that affect direct 1/0:
ENABLEDIRECTIO statement option
USEDIRECTIO= statement option
USEDIRECTIO= data set option

The ENABLEDIRECTIO option in the LIBNAME statement makes direct 1/0
processing available for data sets that are listed in the DATA statement. The libref
that points to the data sets must have been defined in a LIBNAME statement that

Holding a File in Memory: The SASFILE Statement 51

uses the ENABLEDIRECTIO option. Using ENABLEDIRECTIO itself does not turn
on direct I/O.

A libref that is assigned to a directory with the ENABLEDIRECTIO option will not
match another libref that is assigned to the same directory without the
ENABLEDIRECTIO option. The two librefs point to the same directory, but the files
that are opened using the libref with ENABLEDIRECTIO can be read from and
written to using direct I/O. Files that are opened using the other libref are read from
and written to using the regular disk I/O calls.

The USEDIRECTIO= data set option in the DATA statement or the USEDIRECTIO=
statement option in the LIBNAME statement turns on direct I/O for data sets in
which the ENABLEDIRECTIO statement option has been applied. Using
USEDIRECTIO= without first applying the ENABLEDIRECTIO option has no effect
on direct I/O in a data set.

Turning On Direct I/0O

You can turn on direct I/O in two ways:

Use both the ENABLEDIRECTIO and USEDIRECTIO= options in the LIBNAME
statement.

This method opens for direct I/O all of the files that are referenced by the libref in
the LIBNAME statement.

Use the ENABLEDIRECTIO option in the LIBNAME statement to render direct
I/0 available, and use the USEDIRECTIO= data set option in a DATA statement
to turn on direct I/O functionality.

This method opens for direct /O only the data set where the option is used. The
data set must be referenced by the libref in the LIBNAME statement.

For more information about these options and how they are used, see:
ENABLEDIRECTIO in “Engine and Host Options” on page 395
USEDIRECTIO= in “Engine and Host Options” on page 395
“USEDIRECTIO= Data Set Option: UNIX” on page 305

Holding a File in Memory: The SASFILE
Statement

You can use the SASFILE statement to open a SAS data set. SAS attempts to
allocate enough buffers to hold the entire data set in memory. If enough memory is

52 Chapter 3 / Using SAS Files

available, then the entire data set is kept in memory until the data set is closed. If
enough memory is not available, then SAS allocates as many buffers as it can. If
your file is very large or if SAS is already using a large amount of memory, then
using the SASFILE statement does not help.

When the SASFILE statement executes the first time, SAS opens the file.
Subsequent DATA and PROC steps use the file without having to open it again
because the file remains in memory. The file remains open until a second SASFILE
statement closes it, or until the program or session ends. For more information, see
“SASFILE Statement” in SAS Global Statements: Reference.

Sharing SAS Files in a UNIX
Environment

Sharing SAS Files

If more than one SAS process has Write access to a SAS file and both processes
attempt to update the file at the same time, then the file is likely to be corrupted. For
this reason, SAS locks the file to prevent more than one user from having Write
access to a file. When one SAS process opens a file with Write access, other
processes are blocked from Write access until the first process closes the file. SAS
provides statement and system options to override this file protection. However, in
almost all cases, you should leave file protection turned on.

Be aware that SAS uses the cooperative file locking mechanism that is provided by
the operating system. This means that you can place a Write lock on a file in a SAS
session. However, an external user can still modify or delete the file via a command
in the operating system if the command does not honor cooperative locking.

Options to Use for File Locking: SAS Files

You can turn off file locking for SAS files in the following ways:
Use the FILELOCKS option in the LIBNAME statement.
Use the FILELOCKS system option.

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0osyhi338pfaan1plin9ioilduk.htm&locale=en

Sharing SAS Files in a UNIX Environment 53

File Locking for SAS Files: The FILELOCKS
Statement Option

By default, SAS restricts Write access to one user. The FILELOCKS option in the
LIBNAME statement overrides the default and allows multiple users to have Write
access to a file. SAS files that are opened under the libref in the LIBNAME
statement are the files that are locked. Multiple users have Read access to files.

CAUTION

Setting FILELOCKS=NONE in a LIBNAME statement can result in data
corruption. If multiple users have Write access to a file, then simultaneous updates to
the file can generate unpredictable results.

The FILELOCKS statement option applies to most (but not all) of the SAS 1/O files
(for example, data sets and catalogs) that are opened under the libref in the
LIBNAME statement.

For more information, see “LIBNAME Statement: UNIX” on page 391.

File Locking for SAS Files: The FILELOCKS
System Option

By default, SAS restricts Write access to one user. The FILELOCKS system option
overrides this default for both SAS files and external files and allows multiple users
to have Write access to a file. The FILELOCKS system option enables you to apply
a behavior globally to individual files that are opened.

CAUTION

Setting FILELOCKS=NONE in a LIBNAME statement can result in data
corruption. If multiple users have Write access to a file, then simultaneous updates to
the file can generate unpredictable results.

You can use the FILELOCKS system option at start-up, in the OPTIONS statement,
or in the command line. You can specify multiple instances of the FILELOCKS
system option. Each instance is added to an internal table of paths and settings.
The FILELOCKS system option applies to most (but not all) of the SAS 1/O files (for
example, data sets and catalogs) that are opened under the libref in the LIBNAME
statement. For more information, see “FILELOCKS System Option: UNIX” on page
431 and “LIBNAME Statement: UNIX” on page 391.

54 Chapter 3 / Using SAS Files

Waiting to Use a Locked File

If you want to use a SAS file that is locked by another process, you can use the
FILELOCKWAIT option in the LIBNAME statement to specify how long SAS waits
for the locked file to become available. The FILELOCKWAIT statement option
affects only those files that are opened under the libref in a LIBNAME statement.
For more information, see “LIBNAME Statement: UNIX” on page 391.

Conditions to Check When FILELOCKS=NONE

When file locking is turned off (FILELOCKS=NONE), SAS attempts to open a file
without checking for an existing lock on the file. These files are not protected from
shared Update access.

CAUTION

SAS recommends that you do not use the FILELOCKS=NONE option. If multiple
users open the same file for Write access, then the file might become corrupted. The
FILELOCKS=NONE option is used primarily to determine whether a job failed because
of a locked file.

If the FILELOCKS system option is set to NONE, then you should perform one of
the following tasks:

Make sure that your sasuser directory is unique for each SAS session. Typically,
the system administrator assigns this directory in the system configuration file.
The specification in that file or in your personal configuration file helps ensure
that the directory is unique as long as you run only one SAS session at a time.

If you run two or more SAS sessions simultaneously, you can guarantee unique
user files by specifying different sasuser directories for each session. In the first
session, you can invoke SAS with this option and value:

-sasuser ~/sasuser
In the nth session, you can invoke SAS with this option and value:
-sasuser ~/sasusern

For more information, see “Order of Precedence for Processing SAS
Configuration Files” on page 29 and “RSASUSER System Option: UNIX” on
page 473. The RSASUSER option can be used to control modifications to the
Sasuser library when it is shared by several users (see “RSASUSER System
Option: UNIX” on page 473.)

If you run two or more SAS sessions simultaneously, and you use the same
Sasuser.Profile catalog, do not perform any actions within a SAS session to
change the Sasuser.Profile catalog. This is because both SAS sessions can use
the same catalog.

You can run two or more SAS sessions either by using the X statement or by
invoking SAS from two different windows.

Sharing SAS Files in a UNIX Environment 5%

Actions such as using the WSAVE command or changing key assignments
modify the Sasuser.Profile catalog.

Multiple users can read the same data sets at the same time. However, only one
user at a time should write to or update a data set so that data is not overwritten
or corrupted.

When FILELOCKS=CONTINUE

By default, SAS restricts Write access to one user. When you use the
FILELOCKS=CONTINUE option, SAS fails to open a file if that file is locked by
another user, and writes an error message to the log. However, if SAS returns a
message that identifies some other error, then SAS disregards the lock on the file,
opens the file, and continues to execute the job.

Sharing Files over a Network

Introduction to Sharing Files on Multiple
Workstations

SAS can be licensed to run on one or more workstations in a network of similar
computers. The license specifically lists the workstations on which SAS can run.
Unlicensed workstations in the network might have access to the SAS executable
files, but they might not be able to run SAS.

If the licensed workstations are connected through NFS mounts so that they share a
file system, they can all share a single copy of the SAS executable files. However,
sharing of a single copy is not necessary. They can also share SAS files. In
contrast, if a SAS session opens a data set or catalog for update, it must obtain an
exclusive file lock on that file to prevent other SAS sessions from accessing that file.
Other SAS sessions are blocked from access as long as the file is open.

If SAS is installed on different types of workstations that are connected through
NFS, then each type of workstation must have its own copy of the SAS executable
files.

Accessing Files on Different Networks

You can access a file on a different type of workstation if the two computers are
connected to the same file system. You can access external files that were created
under a different operating environment.

Suppose that you create a data set or catalog and save it to a directory, and you
later want to access the file from another computer on a different network. You have
several methods available to work with that file:

56 Chapter 3 / Using SAS Files

You can log on to a computer remotely and perform the work there if you rarely
use the file.

You can log on to a computer remotely and perform the work there if the file
changes often. This alternative ensures that you are accessing the most current
version of the file. If you use PROC CPORT to copy the file to your computer, the
original file might have changed between the time it was copied and the time it
was read.

You can log on to a computer remotely rather than transfer the file to your
computer if you want to use the file once. It might not be efficient to use PROC
CPORT, or you might not have enough disk space for PROC CPORT to run
locally.

You can use the File Transfer Protocol (FTP) or the Routing Control Processor
(RCP) to transfer the file from the remote computer to your computer.

You can do part of your work on your computer and part of your work on a
remote computer. One example of this alternative is to run a set of statements on
a small test case on the local computer, and then submit the real work to be
done on the remote computer. Similarly, you can subset a large data set on
another computer and then do local analysis on that subset. You can accomplish
this task by using SAS/CONNECT software. For more information about Remote
Library Services, see SAS/CONNECT User’s Guide.

Troubleshooting: Accessing Data over
NFS Mounts

SAS might hang when accessing data over NFS mounts if the FILELOCKS option is
set to FAIL or CONTINUE. To alleviate the problem, ensure that all NFS file locking
daemons are running on both computers (usually statd and lockd). Your UNIX
system administrator can assist with starting statd and lockd.

Note: To test whether there is a problem with file locking, you can set the
FILELOCKS system option to NONE temporarily. If setting FILELOCKS to NONE
resolves the problem, then you know that there probably is a problem with the statd
and lockd daemons. It is recommended that you do not set FILELOCKS to NONE
permanently because it might cause data corruption or unpredictable results.

http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Migrating 32-Bit SAS Files to 64-Bit in UNIX Environments 57

Migrating 32-Bit SAS Files to 64-Bit in
UNIX Environments

What Is File Migration?

File migration moves libraries forward to a new release of SAS. In many cases, SAS
files from previous releases or from other hosts are compatible with SAS 9.4. If the
files are not compatible, you can use Cross-Environment Data Access (CEDA) to
migrate your files and libraries. You can use PROC MIGRATE, a utility procedure, to
streamline the process of moving files and libraries forward. When you migrate your
files and libraries, consider the release of SAS in which your data currently resides,
what member types exist in your libraries, and whether you must move members
from 32-bit libraries to 64-bit libraries.

For information about using CEDA, see “Cross-Environment Data Access” in SAS
Programmer’s Guide: Essentials. For information about using the MIGRATE
procedure, see “MIGRATE Procedure” in Base SAS Procedures Guide. For more
information, see the SAS Technical Support site.

Benefits of Migrating SAS Files

Migrating SAS files enables you to do the following:
have Update access to unsupported data files
have access to indexes, integrity constraints, and other features
use long names for formats and informats
use more than 32,767 variables
use suppressed transcoding of a specified variable

avoid the overhead of reading or writing to 32-bit files in a 64-bit SAS session

How to Migrate a SAS Library in a Linux
Environment

To migrate a SAS library, use the MIGRATE procedure. If you are migrating from a
32-bit Linux environment to a 64-bit Linux environment and catalogs exist in the
library, you must have access to a 32-bit Release 9 SAS/CONNECT or SAS/SHARE
server.

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1kv04orx2cy03n1urntor37gzkz.htm&locale=en
https://support.sas.com/en/technical-support.html

58 Chapter 3 / Using SAS Files

For information about using the MIGRATE procedure, see “MIGRATE Procedure” in
Base SAS Procedures Guide. For more information, see the SAS Technical Support
site.

Creating a SAS File to Use with an
Earlier Release

The V9 engine differs slightly from previous SAS engines. The V9 engine supports
longer format and informat names than previous SAS engines. For a discussion
about how to ensure compatibility between releases, see “Migration and Cross-
Version Compatibility (SAS 6 through SAS 9.4)” in SAS/SHARE User’s Guide. For
more information, see the SAS Technical Support site.

Reading SAS Files from Previous
Releases or from Other Hosts

Reading Version 6 Files

Using the V6 Read-Only engine, SAS can read Release 6 data sets that were
created by compatible computer types. In most cases, SAS invokes the V6 engine
automatically, and you do not have to specify it. The following examples
demonstrate how you can use the V6 engine:

If you are running SAS 9.4 on Linux, you can use the V6 engine to read Release
6 data sets that were created with any Intel ABI release of SAS, such as SCO
UNIX.

If you are running SAS 9.4 on HP-UX, you can use the V6 engine to read
Release 6 data sets that were created on HP-UX, Solaris, AlX, or IRIX.

For more information about the compatibility of Release 6 files, see “Migration
and Cross-Version Compatibility (SAS 6 through SAS 9.4)" in SAS/SHARE
User’s Guide.

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1kv04orx2cy03n1urntor37gzkz.htm&locale=en
http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p1kv04orx2cy03n1urntor37gzkz.htm&locale=en
https://support.sas.com/en/technical-support.html
https://support.sas.com/en/technical-support.html
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=p18fbbtmtkvkcsn1ur8p4kvsk3pv.htm&locale=en
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=p18fbbtmtkvkcsn1ur8p4kvsk3pv.htm&locale=en
https://support.sas.com/en/technical-support.html
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=p18fbbtmtkvkcsn1ur8p4kvsk3pv.htm&locale=en
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=p18fbbtmtkvkcsn1ur8p4kvsk3pv.htm&locale=en
http://documentation.sas.com/?docsetId=shrref&docsetVersion=9.4&docsetTarget=p18fbbtmtkvkcsn1ur8p4kvsk3pv.htm&locale=en

Reading SAS Files from Previous Releases or from Other Hosts 59

Reading Version 8 or Later Files from Compatible
Computer Types

If your files were created in 64-bit SAS, they are compatible with SAS 9.4. You do
not need to use CEDA to read your files.

Reading Version 8 or Later Files from Incompatible
Computer Types

Compatibility of Existing SAS Files with
SAS 9.4

In SAS 9, SAS for AlX, HP-UX, and Solaris environments is 64-bit only. Some SAS
files that were created in 32-bit releases of SAS cannot be read by the V9 engine.

SAS automatically tries to use CEDA to read data sets. If you use CEDA to read a
data set and include msglevel=i in your code, then SAS writes a note to the log.

The following table lists processing that is supported for each SAS file with CEDA.

Table 3.2 Supported Processing for Release 8 32-Bit Files in SAS 9

File Type Support

SAS files Input processing and output processing.
(In SAS 9, if you create a new data file
from the 32-bit file, the new file is
generally 64-bit. For more information
about CEDA, see “Cross-Environment
Data Access” in SAS Programmer’s
Guide: Essentials. For more information,
see the SAS Technical Support site.)

MDDB file Input processing.
PROC SQL view Input processing.

SAS/ACCESS view for Oracle or Sybase Input processing.

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
https://support.sas.com/en/technical-support.html

60 Chapter 3 / Using SAS Files

File Type Support

SAS/ACCESS view other than for Oracle No support.

or Sybase

SAS catalog No support.
Stored compiled DATA step program No support.
DATA step view No support.
Item store No support.

Note: In SAS 9, if you create a new data file from a 32-bit file, the new file is
generally 64-bit. For information about CEDA, see “Cross-Environment Data
Access” in SAS Programmer’s Guide: Essentials. For more information, see the
SAS Technical Support site.

Accessing Version 8 or Later Files with
CEDA

CEDA enables a SAS data set that was created in Version 8 or later in any
directory-based operating environment (such as UNIX and Windows) to be read by
a SAS session that is running in another directory-based environment. In SAS 9.4, if
you try to access a data set that was created in a previous release, then SAS
automatically uses CEDA to process the file. For example, if you are running SAS
9.4 on Linux, SAS uses CEDA to process a data set that was created in Release 8
on a 64-bit Solaris host. With CEDA, you have Read and Write access to these files.
However, the file cannot be updated. For more information, see the SAS Technical
Support site.

For best system performance, it is better to use data sets that are in the native
format. Otherwise, CEDA might require additional CPU resources and might reduce
system performance.

If you need to access 32-bit SAS data sets, SAS/ACCESS views from Oracle or
Sybase, SQL views, or MDDB files from a 64-bit SAS session, then you can access
these files using CEDA. CEDA provides Read and Write access to these files.
However, CEDA does not support Update processing. CEDA consumes additional
resources each time you read or write to these files. For more information about
CEDA, see “Cross-Environment Data Access” in SAS Programmer’s Guide:
Essentials.

Catalogs and other SAS files (not including SAS data sets) contain data structures
that are known only to the application that created them. These catalogs and files
might contain data objects other than character or numeric objects and therefore
cannot be shared between 64-bit SAS and earlier 32-bit releases of SAS.

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
https://support.sas.com/en/technical-support.html
https://support.sas.com/en/technical-support.html
https://support.sas.com/en/technical-support.html
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en

Referring to SAS Files By Using Librefs in UNIX Environments 61

Referring to SAS Files By Using Librefs
iIn UNIX Environments

Techniques for Referring to a SAS File

If you want to read or write to a permanent SAS file, you can refer to the SAS file in
one of two ways:

Refer to the data file directly by using its pathname in the appropriate statements
(such as DATA, SET, MERGE, UPDATE, OUTPUT, and PROC).

Assign a libref to the SAS library (directory) that contains the data file and use
the libref as the first level of a two-level filename.

What Is a Libref?

A libref is an alias that you can use to refer to the library during a SAS session or
job. You will probably want to use a libref when one of the following is true:

The data file pathname is long and must be specified several times within a
program.

The pathname might change. If the pathname changes, you need to change only
the statement assigning the libref, not every reference to the file.

Your application will be used on other platforms. Using librefs makes it easier to
port an application to other operating environments.

You need to concatenate libraries. For more information, see “Assigning a Libref
to Several Directories (Concatenating Directories) in UNIX” on page 66.

For information about assigning librefs, see “Rules for Most SAS Names” in SAS
Programmer’s Guide: Essentials.

Librefs can be stored in the SAS registry. For more information, see “Customizing
Your SAS Registry Files” on page 22.

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&docsetTargetAnchor=p0bjsity6vyjegn12zg7raqgmroz&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&docsetTargetAnchor=p0bjsity6vyjegn12zg7raqgmroz&locale=en

62 Chapter 3 / Using SAS Files

Assigning Librefs

Methods for Assigning Librefs

You can use any of the following items to assign a SAS libref:
LIBNAME statement
LIBNAME function
DMLIBASSIGN command in the SAS windowing environment
LIBNAME window in the SAS windowing environment
SAS Explorer window in the SAS windowing environment

A libref assignment remains in effect for the duration of the SAS job, session, or
process unless you clear the libref or use the same libref in another LIBNAME
statement or LIBNAME function.

If you assign a libref from a SAS process, that libref is valid only within that SAS
process. If you clear a libref from within a SAS process, that libref is not cleared
from other SAS processes.

Using the LIBNAME Statement

The LIBNAME statement identifies a SAS library to SAS, associates an engine with
the library, enables you to specify options for the library, and assigns a libref to it.
For information about LIBNAME statement syntax, see “LIBNAME Statement: UNIX”
on page 391.

Using the LIBNAME Function

The LIBNAME function takes the same arguments and options as the LIBNAME
statement. For more information about the LIBNAME function, see “LIBNAME
Function” in SAS Functions and CALL Routines: Reference.

Using the DMLIBASSIGN Command

Perform the following steps to assign a libref using the DMLIBASSIGN command in
the SAS windowing environment:

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en

Referring to SAS Files By Using Librefs in UNIX Environments 63

Issue the DMLIBASSIGN command in the command window.

The New Library dialog box appears.
Specify the libref in the Name field.

Specify an engine for the libref in the Engine field by selecting the default engine
or another engine from the menu. Depending on the engine that you select, the
fields in the Library Information area might change.

Click Enable at startup to assign this libref when you invoke SAS.

Specify the necessary information for the SAS library in the Library Information
area. Depending on the engine that you select, there might not be a Path field
available for input.

Specify LIBNAME options in the Options field. These options can be specific to
your host or engine, including options that are specific to a SAS engine that
accesses another software vendor's relational database system.

Click OK.

Using the LIBNAME Window

Perform the following steps to assign a libref from the LIBNAME window in SAS
windowing environment:

1

Issue the LIBNAME command in the command window.
The LIBNAME window appears.

From the File menu, select New.

The New Library dialog box appears.

Complete the fields in the New Library dialog box as described in “Using the
DMLIBASSIGN Command” on page 62.

Click OK.

Using the SAS Explorer Window

Perform the following steps to assign a libref from the SAS Explorer window in the
SAS windowing environment:

1

From the File menu, select New when the Libraries node in the tree structure is
active.

64 Chapter 3 / Using SAS Files

The New dialog box appears.

2 Select Library, and then click OK.

The New Library dialog box appears.

3 Complete the fields in the New Library dialog box as described in “Using the

DMLIBASSIGN Command” on page 62.

4 Click OK.

Permanently Assigning a Libref

You might want to save a libref so that it is valid between SAS sessions. You can
assign a libref permanently by using one of the following methods:

Specify the LIBNAME statement or LIBNAME function in an autoexec file. For
more information, see “LIBNAME Function” in SAS Functions and CALL
Routines: Reference or “LIBNAME Statement: UNIX” on page 391.

Select Enable at startup when you assign a libref using the DMLIBASSIGN
command, LIBNAME window, or SAS Explorer window. Selecting this option
saves the libref in the SAS registry. For more information about these methods,
see “Assigning Librefs” on page 62.

Use environment variables as librefs. Include these environment variables in
your start-up files so that these variables are set when SAS is invoked.

Accessing a Permanent SAS Library By Using a

Libref

After you have defined a libref, you can use the libref in one of two ways to access a
permanent SAS library:

as the first level of a two-level SAS filename:

libref. member-name

Here libref is the first-level name referring to the directory where the file is stored,
and member-name is the name of the file being read or created.

as the value of the USER= option. (For more information, see “Using One-Level
Names to Access Permanent Files (User Library)” on page 75.)

For example, these SAS statements access the data file Final.sas7bdat in the Sales
library that is stored in the /users/myid/mydir directory:

libname sales '/users/myid/mydir';
data sales.final;

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p1bq8nyxm7y1ygn1i4vyf82z68ls.htm&locale=en

Specifying Pathnames in UNIX Environments 65

Specifying Pathnames in UNIX
Environments

Rules for Specifying Directory and Pathnames

Whether you specify a data filename directly in the various SAS statements or you
specify the library name in a LIBNAME statement, the same rules apply for
specifying UNIX directory and file pathnames.

Specify directory and file pathnames in quotation marks. The level of specification
depends on your current directory.

Example 1: Access a File That Is Not in the Current
Directory

If /u/2011/budgets is not your current directory, then to access the data file named
May, you must specify the entire pathname:

data '/u/2011/budgets/may’;
If you wanted to use a libref, you might specify these statements:

libname budgets '/u/2011/budgets’;
data budgets.may;

Example 2: Access a File in the Current Directory

If /u/2011/budgets is your current directory, you could specify only the filenames:

data 'quarterl';
merge 'jan' 'feb' 'mar';
run;

Note: If you omit the quotation marks, then SAS assumes that these data sets are
stored in the Work directory.

If you wanted to use a libref, then you might specify these statements:

libname budgets '.';
data budgets.quarterl;
merge budgets.jan budgets.feb budgets.mar;

66 Chapter 3 / Using SAS Files

run;

Valid Character Substitutions in Pathnames

You can use the character substitutions in the following table to specify pathnames.

Table 3.3 Character Substitutions in Pathnames

Characters Meaning

~/ $HOME/
Can be used only at the beginning of a pathname.

~name/ name's home directory (taken from file /etc/passwd). Can be
used only at the beginning of a pathname.

Isasroot name of sasroot directory (see Appendix 1, “The ISASROOT
Directory,” on page 567.) Specified only at the beginning of a
pathname.

current working directory.
parent of current working directory.

$VARIABLE environment variable VARIABLE.

Assigning a Libref to Several Directories
(Concatenating Directories) in UNIX

Introduction to Concatenating Directories

You can use the LIBNAME statement to assign librefs and engines to one or more
directories, including the Work directory.

If you have SAS data sets located in multiple directories, you can treat these
directories as a single SAS library by specifying a single libref and concatenating the
directory locations. Here is an example:

libname income ('/u/2011/revenue', '/u/2011/costs');

This statement indicates that the two directories, /u/2011/revenue and /u/2011/
costs, are to be treated as a single SAS library.

Assigning a Libref to Several Directories (Concatenating Directories) in UNIX 67

If you have already assigned librefs to your SAS libraries, you can use these librefs
to indicate that you want to concatenate the libraries, as in this example:

libname income ('/u/2011/corpsale', '/u/2011/retail');
libname costs ('/u/2011/salaries', '/u/2011/expenses');
libname profits (income, costs, '/u/2011/capgain');

This statement indicates that the five

directories, /u/2011/corpsale, /u/2011/retail, /u/2011/salaries,
/u/2011/expenses, and /u/2011/capgain, are to be treated as a single SAS
library.

How SAS Accesses Concatenated Libraries

When you concatenate SAS libraries, SAS uses a protocol for accessing the
libraries, which depends on whether you are accessing the libraries for read, write,
or update.

SAS uses the protocol in the following sections to determine which directory is
accessed. The protocol illustrated by these examples applies to all SAS statements
and procedures that access SAS files. These include the DATA, UPDATE, and
MODIFY statements in the DATA step and the SQL and APPEND procedures.

Accessing Files for Input and Update

When a SAS data set is accessed for input or update, the first SAS data set that is
found by that name is the one that is accessed. For example, if you submit the
following statements and the data set o1d. species exists in both directories, the
one in the mysasdir directory is the one that is printed:

libname old ('mysasdir', 'saslib');
proc print data=old.species;
run;

The same would be true if you opened o1d. species for update with the FSEDIT
procedure.

Accessing Files for Output

If the data set is accessed for output, it is always written to the first directory,
provided that the directory exists. If the directory does not exist, an error message is
displayed. For example, if you submit the following statements, SAS writes the
old.species data set to the first directory (mysasdir), and replaces any existing
data set with the same name:

libname old ('mysasdir', 'saslib');
data old.species;

x=1;

y=2;
run;

68 Chapter 3 / Using SAS Files

If a copy of the old. species data set exists in the second directory, it is not
replaced.

Accessing Data Sets with the Same Name

If you use the DATA and SET statements to access data sets with the same name,
the DATA statement uses the output rules and the SET statement uses the input
rules. When you execute the following statements, assume that test.species
originally exists only in the second directory, mysasdir. Execute the following
statements:

libname test ('sas', 'mysasdir');
data test.species;
set test.species;
if valuel='y' then
value2=3;
run;

The DATA statement opens test.species for output according to the output rules.
That is, SAS opens a data set in the first of the concatenated libraries (sas). The
SET statement opens the existing test.species data set in the second directory
(mysasdir), according to the input rules. Therefore, the original test.species data
set is not updated. After the DATA step executes, two test.species data sets exist,
one in each directory.

Using Multiple Engines for a Library in
UNIX Environments

You can assign multiple librefs to a single directory, and specify a different engine
with each libref. For example, after the following statements are executed, data sets
that are referenced by one are created and accessed using the default engine. Data
sets that are referenced by two are created and accessed using the sequential
engine:

libname one v9 '/users/myid/educ';
libname two v8 '/users/myid/educ';

Note: Keeping different types of libraries in one directory is not recommended
because you must remember the appropriate engine for accessing each library.
SAS cannot determine the right engine for accessing libraries in a directory that
contains libraries of different types. For more information, see “Omitting Engine
Names from the LIBNAME Statement” on page 395.

Librefs Assigned by SAS in UNIX Environments 69

Using Environment Variables as Librefs
iIn UNIX Environments

An environment variable can be used as a libref. The variable name must be in all
uppercase characters, and the variable value must be the full pathname of the
directory. That is, the name of the directory must begin with a slash.

Note: SAS on UNIX does not support the assignment of the User libref using the
USER environment variable.

Supposed that you want to use the library in /users/mydir/educ, and you want to
refer to it with the EDUC environment variable. You can define the variable at the
following times:

Before you invoke SAS. See “Defining Environment Variables in UNIX
Environments” on page 309. For example, in the Korn shell, you might use this
command:

export EDUC=/users/mydir/educ

After you invoke SAS. You can use the X statement (see “Executing Operating
System Commands from Your SAS Session” on page 18) and the SAS setenv
command:

x setenv EDUC /users/mydir/educ;

You cannot specify an engine when you define a libref as an environment variable,
so SAS determines which engine to use as described in “Omitting Engine Names
from the LIBNAME Statement” on page 395.

After the libref is defined, you can use it to access data sets stored in the library:

proc print data=educ.class;
run;

Note: If a variable and a libref have the same name, but refer to different libraries,
SAS uses the libref.

Librefs Assigned by SAS in UNIX
Environments

SAS automatically defines three librefs:

70 Chapter 3 / Using SAS Files

Sashelp
contains a group of catalogs that contain information that is used to control
various aspects of your SAS session. The Sashelp library is in the ! SASROOT
directory. For more information, see Appendix 1, “The ISASROOQOT Directory,” on
page 567.

Sasuser
contains SAS catalogs that enable you to customize features of SAS (such as
window size, font settings, and printer entries) for your needs. If the defaults in
the Sashelp library are not suitable for your applications, you can modify them
and store your personalized defaults in your Sasuser library.

Work
is the temporary, or scratch, library automatically defined by SAS at the
beginning of each SAS session or job. The Work library stores two types of
temporary files: those files that you create, and those files that are created
internally by SAS as part of normal processing.

These librefs and the library libref are reserved librefs. If your site also has
SAS/GRAPH software, the maps libref might be automatically defined. For more
information about all of these libraries, see “SAS Default Libraries” in SAS
Programmer’s Guide: Essentials. Sasuser and Work have operating system
dependencies.

Sasuser Library

What Is the Sasuser Library?

The Sasuser library contains the customizations (such as window size and
positioning, colors, fonts, and printer entries) that you specified for your SAS
session. When you invoke SAS, it looks for the Sasuser directory to find these
customizations. If this directory does not exist, SAS uses the SASUSER system
option to create it. The default directory is set in the system configuration file
(sasv9.cfg) and is usually similar to the following:

-sasuser ~/sasuser.v94

This specification tells SAS to create a directory for the Sasuser libref in your home
directory. To determine the value of this directory for your system, use PROC
OPTIONS or 1ibname sasuser LIST.

You can permit Read-Only access to the Sasuser library by using the RSASUSER
system option. For information about the SASUSER and RSASUSER system
options, see “SASUSER System Option: UNIX” on page 481 and “RSASUSER
System Option: UNIX” on page 473.

After the Sasuser library has been created, SAS automatically assigns the same
Sasuser libref to it each time you start a SAS session. It cannot be cleared or
reassigned during a SAS session. If you delete the library, SAS re-creates it the next
time you start a session. Because SAS assigns the libref for you, you do not need to
use a LIBNAME statement before referencing this library.

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0gp1b7qxwuzg0n1n0574z3s9sts.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0gp1b7qxwuzg0n1n0574z3s9sts.htm&locale=en

Sasuser Library T1

Contents of the Sasuser Library

Your customizations are stored in one of the following locations in the Sasuser
library:

“Sasuser.Profile Catalog” on page 71
“Sasuser.Registry Catalog” on page 73

“Sasuser.Prefs File ” on page 73

Sasuser.Profile Catalog

Overview of the Sasuser.Profile Catalog

The Sasuser.Profile catalog is the profile.sas7bcat file in your Sasuser library. This
catalog enables you to customize how you work with SAS. SAS uses this catalog to
store function key definitions, fonts for graphics applications, window attributes, and
other information from interactive windowing procedures. SAS saves changes that
you make to function key definitions, window attributes (such as size, color, and
position), PMENU settings, and so on, in the Sasuser.Profile catalog. The
information in the Sasuser.Profile catalog is accessed automatically by SAS when
you need it for processing.

How SAS Accesses the Sasuser.Profile
Catalog

SAS creates the Sasuser.Profile catalog the first time it tries to find it and it does not
exist. If you are using an interactive windowing environment, then creating the
Sasuser.Profile catalog occurs during system initialization in your first SAS session.
If you are using one of the other modes of execution, the Sasuser.Profile catalog is
created the first time you execute a SAS procedure that requires it.

72 Chapter 3 / Using SAS Files

When the Sasuser.Profile Catalog Does
Not Exist

If the Sasuser.Profile catalog does not exist, then, at invocation, SAS checks for the
Sashelp.Profile catalog. (This catalog exists only if you have copied your
Sasuser.Profile catalog to the Sashelp library.) If the Sashelp.Profile catalog exists,
then SAS copies it to the Sasuser library, and this catalog becomes your new
Sasuser.Profile catalog. If the Sashelp.Profile catalog does not exist, then SAS
creates Sasuser.Profile using the default settings for a SAS session. The default
settings for your SAS session are stored in several catalogs in the Sashelp library. If
you make changes to key settings or other options, then the new information is
stored in your Sasuser.Profile catalog. To restore the original default settings to the
Sasuser.Profile catalog, use the CATALOG procedure or the CATALOG window to
delete entries from your Sasuser.Profile catalog. By default, SAS then uses the
corresponding entry from the Sashelp library.

Checking for an Uncorrupted
Sasuser.Profile Catalog

When you invoke SAS, SAS checks for an existing, uncorrupted Sasuser.Profile
catalog. If the catalog is found, SAS copies the Sasuser.Profile catalog to
Sasuser.Profbak. This backup catalog is used if Sasuser.Profile becomes corrupted.

If you invoke SAS and determine that your customizations have been lost, then your
Sasuser.Profile catalog is either corrupted or locked by another SAS session that
was started with the same user ID. If either of these conditions are true, then SAS
uses Sashelp.Profile or Sasuser.Profbak to replace the locked or corrupted
Sasuser.Profile catalog.

If Your Sasuser.Profile Catalog Is Locked
or Corrupted

If your Sasuser.Profile catalog is locked, then SAS checks for Sashelp.Profile. If
Sashelp.Profile exists, SAS copies it to Work.Profile, and then saves the
customizations to the Work.Profile catalog instead of the Sasuser.Profile catalog.
This Work.Profile catalog is used for the duration of the SAS session. Because the
contents of the Work directory are temporary, any customizations that you save to
the Work.Profile catalog are lost at the end of the SAS session.

If your Sasuser.Profile catalog is corrupted, SAS copies the corrupted catalog to
Sasuser.Badpro.SAS, and then checks for Sasuser.Profbak. If Sasuser.Profbak
exists, then SAS copies it to Sasuser.Profile. Any changes that you made to the
Sasuser.Profile catalog during the previous session are lost. If your Sasuser.Profile
catalog is being used by multiple SAS sessions, then you can specify the
RSASUSER system option to permit Read-Only access to the Sasuser library.

Sasuser Library T3

Because this permission is Read-Only, you will not be able to save any
customizations to your Sasuser.Profile catalog during that SAS session.

For more information about the Sasuser.Profile catalog and its related catalogs, as
well as information about recovering locked or corrupted profile catalogs, see
“Managing SAS Catalogs” in SAS Programmer’s Guide: Essentials.

Sasuser.Registry Catalog

Overview of the Sasuser.Registry Catalog

The Sasuser.Registry catalog is the regstry.sas7bitm file in your Sasuser library. If
you change any Universal Printing entries or libref assignments during a SAS
session, then SAS saves the changes in the Sasuser.Registry catalog.

How SAS Accesses the Sasuser.Registry
Catalog

At invocation, SAS looks in the sasuser directory to see whether it can write to the
Sasuser.Registry catalog. If SAS cannot write to this catalog, then the following
warning appears in the SAS log:

WARNING: Unable to open SASUSER.REGISTRY. WORK.REGISTRY will be used instead.
NOTE: All registry changes will be lost at the end of the session.

If SAS can read the Sasuser.Registry catalog, then SAS copies the
Sasuser.Registry catalog to create a Work.Registry catalog (in the Work library).
This Work.Registry catalog is used for the duration of the SAS session. Because the
contents of the Work library are temporary, then any customizations that you save to
the Work.Registry catalog are lost at the end of the SAS session. However, the
customizations saved in the Sasuser.Registry catalog still exist.

If SAS cannot read the Sasuser.Registry catalog, then SAS creates the
Work.Registry catalog using the default settings for a SAS session. In this case,
SAS issues an additional warning to the SAS log:

WARNING: Unable to copy SASUSER.REGISTRY to WORK.REGISTRY.

Sasuser.Prefs File

The settings that you specify in the Preferences dialog box (with the exception of
resources on the General tab) are saved in the Sasuser.Prefs file. For more

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1ma7iw5zyrhunn1p1nw6bw2fgte.htm&locale=en

74 Chapter 3 / Using SAS Files

information about these resources, see “Modifying X Resources through the
Preferences Dialog Box” on page 207.

Work Library

The Work library is the temporary library that is automatically defined by SAS at the
beginning of each SAS session or job. The Work library stores temporary SAS files
that you create, as well as files created internally by SAS.

To access files in the Work library, specify a one-level name for the file. The libref
Work is automatically assigned to these files unless you have assigned the User
libref.

When you invoke SAS, it assigns the Work libref to a subdirectory of the directory
specified in the WORK system option described in “WORK System Option: UNIX”
on page 503. This subdirectory is usually named SAS workcode nodename, and has
the following characteristics:

workcode
is a 12-character code. The first four characters are randomly generated
numbers. The next eight characters are based on the hexadecimal process
identification number of the SAS session.

nodename
is the name of the UNIX computer where the SAS process is running.

This libref cannot be cleared or reassigned during a SAS session.

The WORKINIT and WORKTERM system options control the creation and deletion
of the Work library. For more information, see “WORKINIT System Option” in SAS
System Options: Reference and “WORKTERM System Option” in SAS System
Options: Reference.

Note: If a SAS session is terminated improperly (for example, with the kill -9
command), SAS does not delete the SAS workcode nodename directory. You might
want to use the cleanwork command to delete the directories.

Multiple Work Directories

SAS can make the distribution of Work libraries dynamic by distributing Work
libraries across several directories. This functionality eliminates the potential
problem of filling up a single volume with all of the Work directories.

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p09alrx4a9rop4n13xu3jpu37v3y.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p09alrx4a9rop4n13xu3jpu37v3y.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p182lylgccdsgin14sgkqd4heyiz.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p182lylgccdsgin14sgkqd4heyiz.htm&locale=en

Using One-Level Names to Access Permanent Files (User Library) TS

The WORK system option contains the PATHNAME argument, which can be a
directory, or a file that contains a list of directories, that SAS can use for allocating
Work libraries. Individual Work libraries still reside in a single directory. You can use
the WORK system option in a configuration file or in the command line.

When the argument to WORK is a list of directories in a file, you can specify a
method for choosing which directory to use for WORK. If you specify
METHOD=RANDOM, then SAS chooses at random a directory from the list of
available directories. If you choose METHOD=SPACE, then SAS chooses the
directory that has the most available space.

For more information, see “WORK System Option: UNIX” on page 503.

Using One-Level Names to Access
Permanent Files (User Library)

Introduction to One-Level Names

SAS data sets are referenced with a one- or two-level name. The two-level name
has the form libref. member-name, where libref refers to the SAS library in which the
data set resides, and member-name refers to the particular member within that
library. The one-level name has the form member-name (without a libref). In this
case, SAS stores the files in the temporary Work library. To override this action and
store files with one-level names in a permanent library, you must first assign the
User libref to an existing directory. To refer to temporary SAS files while User is
assigned, use a two-level name with WORK as the libref.

Techniques for Assigning the User Libref

You have three ways to assign the User libref:
Assign the User libref directly using the LIBNAME statement:
libname user '/users/myid/mydir';

Specify the USER= system option before you start the SAS session. For
example, you can assign the User libref when you invoke SAS:

sas -user /users/myid/mydir

Specify the USER= system option after you start the SAS session. First, assign
a libref to the permanent library. Then, use the USER= system option in an
OPTIONS statement to equate that libref to User. For example, these statements
assign the libref User to the directory with libref mine:

libname mine '/users/myid/mydir';
options user=mine;

76 Chapter 3 / Using SAS Files

For information about the USER system option, see “USER System Option: UNIX”
on page 501.

Note: SAS on UNIX does not support the assignment of the User libref using the
USER environment variable.

Accessing Disk-Format Libraries in UNIX
Environments

You probably create and access libraries on disk more than any other type of library.
The default engine and the compatibility engines allow Read, Write, and Update
access to SAS files on disk. They also support indexing and compression of
observations.

In the following example, the In libref is assigned to a directory that contains the
Stats1 data set:

libname in '/users/myid/myappl';
proc print data=in.statsl;
run;

Remember, either a SAS-data-library must exist or you must specify the
DLCREATEDIR system option before SAS can read from or write to this directory. If
DLCREATEDIR is specified and you refer to a directory that does not exist, SAS
creates the directory. If DLCREATEDIR is not specified, then you first need to create
the directory. For example, to create the SAS data set Orders in a new directory,
use the X statement to issue the mkdir UNIX command. Then, you can use the
LIBNAME statement to associate the libref with the new directory:

x mkdir /users/publish/books;
libname books '/users/publish/books';
data books.orders;
. more SAS statements ...
run;

By default, the LIBNAME statement associates the V9 engine with the directory.

Accessing Sequential-Format Libraries in UNIX Environments T7

Accessing Sequential-Format Libraries in
UNIX Environments

Benefits and Limitations of Sequential Engines

The sequential engines enable you to access libraries in sequential format on disk.
The sequential engines do not support indexing and compression of observations.

Note: Before using sequential engines, read the information about sequential
libraries in “Engine Characteristics” in SAS Programmer’s Guide: Essentials.

Writing Sequential Data Sets to Named Pipes

Why Use Named Pipes?

You can send output to and read input from the operating environment by using
named pipes. For example, you might want to compress a data set or send it to a
sequential access management system without creating intermediate files.

Syntax of the LIBNAME Statement

You can read from and write to named pipes from within your SAS session by
specifying the pipe name in the LIBNAME statement:

LIBNAME libref 'pipename’;

Because you cannot position a pipe file, SAS uses a sequential engine to ensure
sequential access. You do not have to specify the engine name.

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0qxjkao2a08rpn0ztduhz1reezb.htm&locale=en

78 Chapter 3 / Using SAS Files

Example: Creating a SAS Data Set Using
a Named Pipe

To create a SAS data set and compress the data set without creating an
intermediate, uncompressed data set, create a named pipe (such as mypipe) and
enter the compress command:

mkfifo mypipe; compress <mypipe >sasds.Z
In your SAS session, assign a libref to the pipe and begin writing to the data set:

libname x 'mypipe’';
data x.a;
...more SAS statements...
output;
run;

The data is sent to mypipe and then compressed and written to the data set. When
SAS closes the data set, compression finishes, and you have a compressed,
sequential data set in sasds.Z.

If you begin writing to a named pipe before the task on the other end (in this case,
the compress command) begins reading, then your SAS session is suspended until
the task begins to read.

Accessing BMDP, OSIRIS, or SPSS Files
in UNIX Environments

Introduction to the BMDP, OSIRIS, and SPSS Files

SAS includes three interface library engines, BMDP, OSIRIS, and SPSS, that
enable you to access external data directly from a SAS program. All of these
engines are read-only.

Because they are sequential, these engines cannot be used with the POINT= option
in the SET statement, or with the FSBROWSE, FSEDIT, or FSVIEW procedures.
You can use PROC COPY, PROC DATASETS, or a DATA step to copy a BMDP or
OSIRIS system file or an SPSS export file to a SAS data set. Also, some
procedures (such as PROC PRINT) give a warning message about the engine
being sequential.

With these engines, the physical filename that is associated with a libref is an actual
filename, not a directory. This association is an exception to the rules concerning
librefs.

Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments 79

You can use the CONVERT procedure to convert BMDP, OSIRIS, and SPSS files to
SAS files. For more information, see Chapter 25, “CONVERT Procedure,” on page
525.

The BMDP Engine

What Is the BMDP Engine?

The BMDP interface library engine enables you to read BMDP files from the BMDP
statistical software application directly from a SAS program. The BMDP engine is a
read-only engine. The following discussion assumes that you are familiar with the
BMDP save file terminology. For more information, see the documentation that is
provided by BMDP Statistical Solutions on the website.

Note: This engine is available for AlX, HP-UX, and Solaris platforms. However,
beginning in SAS 9.4M8, the HP-UX platform is no longer supported.

Syntax for Accessing BMDP Save Files

To read a BMDP save file, issue a LIBNAME statement that explicitly specifies the
BMDP engine. In this case, the LIBNAME statement has the following form:

LIBNAME /ibref BMDP 'filename';
This is a description of the arguments:

libref
specifies a SAS libref.

filename
specifies a BMDP physical filename.

Note: If the libref appears previously as a fileref, omit filename because SAS uses
the physical filename that is associated with the fileref.

This engine can read save files that are created only on UNIX.

Because a single physical file can contain multiple save files, you reference the
CODE-= value as the member name of the data set within the SAS language. For
example, if the save file contains CODE=ABC and CODE=DEF, and the libref is
MyLib, you reference the files as MyLib.ABC and MyLib.DEF. All CONTENT types
are treated the same. Even if member DEF has the value CONTENT=CORR, it is
treated as if the value was CONTENT=DATA.

If you know that you want to access the first save file in the physical file or if there is
only one save file, refer to the member name as _FIRST _. This reference is
convenient if you do not know the CODE= value.

80 Chapter 3 / Using SAS Files

Example: BMDP Engine

Assume that the physical file mybmdp.dat contains the save file ABC. The following
SAS code associates the libref Mylib with the BMDP physical file and executes the
CONTENTS and PRINT procedures on the save file:

libname mylib bmdp 'mybmdp.dat';
proc contents data=mylib.abc;
run;

proc print data=mylib.abc;
run;

The following example uses the LIBNAME statement to associate the libref mylib2
with the BMDP physical file. Then, it writes the data for the first save file in the
physical file:

libname mylib2 bmdp 'mybmdp.dat';
proc print data=mylib2. first ;
run;

The OSIRIS Engine

What Is the OSIRIS Engine?

The Inter-University Consortium for Political and Social Research (ICPSR) uses the
OSIRIS file format for distribution of its data files. SAS provides the OSIRIS
interface library engine to support the many users of the ICPSR data and to be
compatible with PROC CONVERT.

With the OSIRIS engine, you can read OSIRIS data and dictionary files directly from
a SAS program. The following discussion assumes that you are familiar with the
OSIRIS file terminology and structure. If you are not familiar with OSIRIS, see the
documentation provided by ICPSR.

Notes about the OSIRIS Data Dictionary
Files

Because OSIRIS software does not run outside the z/OS environment, the layout of
an OSIRIS data dictionary is consistent across operating environments. However,
the OSIRIS engine is designed to accept a data dictionary from any other operating
environment on which SAS runs. It is important that the dictionary and data files not
be converted from EBCDIC to ASCII; the engine expects EBCDIC data.

Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments 81

The dictionary file should consist of fixed-length records of length 80. The data file
should contain records that are large enough to hold the data that is described in
the dictionary.

Syntax for Accessing an OSIRIS File

To read an OSIRIS file, issue a LIBNAME statement that explicitly specifies the
OSIRIS engine. In this case, the syntax of the LIBNAME statement has the following
form:

LIBNAME /ibref OSIRIS 'data-filename' DICT='dictionary-filename';
This is a description of the arguments:

libref
specifies a SAS libref.

'data-filename'
specifies the physical filename of the data file.

If the libref appears also as a fileref, omit data-filename.

DICT='dictionary-filename'
specifies the physical filename of the dictionary file. If dictionary-filename is an
environment variable or a fileref, do not enclose it in quotation marks. The DICT=
option is required.

OSIRIS data files do not have member names. Therefore, use whatever member
name you want.

To use the same dictionary file with different data files, use a separate LIBNAME
statement for each one.

Example: OSIRIS Engine

In the following example, the data file is /users/myid/osr/dat, and the dictionary
file is /users/myid/osr/dic. The example associates the libref Mylib with the
OSIRIS files, and executes the CONTENTS procedure and the PRINT procedure:

libname mylib osiris '/users/myid/osr/dat'’
dict="'/users/myid/osr/dic"';

proc contents data=mylib. first ;

run;

proc print data=mylib. first ;

run;

82 Chapter 3 / Using SAS Files

The SPSS Engine

What Is the SPSS Engine?

The SPSS engine is a read-only engine. With the SPSS interface library engine, you
can read only SPSS export files. This engine does not read SPSS-X native files.

Syntax for Accessing an SPSS Export File

To read an SPSS export file, issue a LIBNAME statement that explicitly specifies the
SPSS engine. In this case, the syntax of the LIBNAME statement has the following
form:

LIBNAME /ibref SPSS 'filename;
This is a description of the arguments:

libref
specifies a SAS libref.

'filename'
specifies the physical filename.

Note: If the libref appears also as a fileref, omit filename because SAS uses the
physical filename that is associated with the fileref.

Export files must be created by the SPSS EXPORT command and can originate
from any operating environment. Export files must be transported to and from your
operating environment in ASCI| format. If they are transported in binary format,
other operating environments are not able to read them.

Because SPSS-X files do not have internal names, refer to them by any member
name that you like. A common extension for export files is .por, but this extension is
not required.

SPSS can have system-missing and user-defined missing data. When you use the
SPSS engine or PROC CONVERT, the missing values (user-defined or system-
missing) are converted to system-missing values. User-defined missing values have
to be recoded as valid values. When the data set is converted, you can use PROC
FORMAT to make the translation (for example, -1 to .A and -2 to .B).

Reformatting SPSS Files

SAS cannot use an SPSS file that contains a variable with a numeric format that has
a larger number of decimal places than the width of the entire variable. For example,
if an SPSS file has a variable with a width of 17 and has 35 decimal places, SAS

Accessing BMDP, OSIRIS, or SPSS Files in UNIX Environments 83

returns errors when you try to run a DATA step on the file or view it with the table
viewer. To use the SPSS file with SAS, you have to reformat the variable.

You can reformat the variable by reducing the number of decimal spaces to a value
that fits within the width of the variable. In the following example, the statement
revision=cat (format, formatl,'.2'); converts the number of decimal spaces to
2. This value reduces the number of decimal spaces so that the number is not
greater than the width of the variable.

libname abc spss 'FILENAME.POR';
proc contents data=abc. all out=new;
run;

filename sascode temp;
data null ;
set new;
file sascode
if formatd > formatl then do;
revision=cat (format, formatl,'.2"');
put 'format' +1 name +1 revision ';' ;
end;
run;

data temp;

set abc. all ;

%inc sascode/source2;
run;

Note: The OPTIONS NOFMTERR statement does not allow SAS to use a data set
with a DATA step or the table viewer. You have to reformat numeric variables that
have a larger decimal value than their width before you can use a DATA step or the
table viewer.

Example: SPSS Engine

The following example associates the libref Mylib with the physical
file /users/myid/mydir/myspssx.por to execute the CONTENTS and PRINT
procedures on the export file:

libname mylib spss '/users/myid/mydir/myspssx.por’;
proc contents data=mylib. first ;

proc print data=mylib. first ;

run;

In the next example, the FILENAME statement associates the fileref mylib2 with
the /users/myid/mydir/aspssx.por SPSS physical file, and the LIBNAME
statement associates the libref with the SPSS engine. The PRINT procedure writes
the data from the portable file.

filename mylib2 '/users/myid/mydir/aspssx.por';
libname mylib2 spss;

proc print data=mylib2. first ;

run;

84 Chapter 3 / Using SAS Files

Support for Links in UNIX Environments

SAS provides limited support for hard links and symbolic links in UNIX
environments. You can create links that point to a SAS data set or SAS catalog. If
you reference the link in a SAS program, SAS follows the link to find the data set or
catalog.

For example, you can create a symbolic link in the /tmp directory to
the /home/user/mydata.sas7bdat data set by entering the following command at
the UNIX prompt:

In -s /home/user/mydata.sas7bdat /tmp/mydata.sas7bdat

The following SAS code uses the symbolic link in the /tmp directory to find the
mydata.sas7bdat data set. This code does not change the symbolic link, but it does
sort the data in the data set.

libname tmp '/tmp';

proc sort data=tmp.mydata;
by myvariable;
run;

If you are running in the SAS windowing environment, you can use the SAS
Explorer window to view the symbolic links that are stored within a specific directory.
Any symbolic link that points to a nonexistent SAS file has a file size of 0.0kB and a
modified date of 31DEC59:19:00:00.

Note: SAS does not support links for a version data set or for a data set that has an
index.

85

4

Using External Files and Devices

Introduction to External Files and Devices in UNIX Environments 86
Accessing an External File or Device in UNIX Environments 87
Specifying a Pathname ora Fileref 87
Whatls a Fileref? 87
Specifying Pathnames in UNIX Environments 88
Rules for Specifying Pathnames 88
Omitting Quotation Marks ina Filename 88
Working with Mixed Case or Uppercase Filenames 89
Interpreting the Messages inthe SASLog 89
Using Wildcards in Pathnames (InputOnly) a0
Assigning Filerefs to External Files or Devices with the FILENAME Statement .. 92
Introduction to the FILENAME Statement 92
Accessing DISK Files 92
Debugging Code with DUMMY Devices 92
Sending Output to PRINTER Devices 93
Using Temporary Files (TEMP Device Type) 93
Accessing TERMINAL Devices Directly 93
Assigning Filerefs to Files on Other Systems (FTP, SFTP, and
SOCKET ACCESS TYPES) . .« o oot 94
Concatenating Filenames in UNIX Environments 94
Assigning a Fileref to a Directory (Using Aggregate Syntax) 95
Introduction to Aggregate Syntax 95
Assigning a Fileref to Several Directories 96
Using Environment Variables to Assign Filerefs in UNIX Environments 97
Requirements for Variable Names 97
Readinga DataFile 97
Writing to an External File 98
Filerefs Assigned by SAS in UNIX Environments 98
Filerefs for Standard Input, Standard Output, and Standard Error 98
File Descriptors 98
Reserved Filerefs in UNIX Environments 929
Sharing External Files in a UNIX Environment 100

Sharing External Files 100

86 Chapter 4 / Using External Files and Devices

Options to Use for File Locking: External Files 100
File Locking for External Files: The LOCKINTERNAL Statement Option 100
File Locking for External Files: The FILELOCKS System Option 101
Reading from and Writing to UNIX Commands (PIPE) 101
What Are Pipes? 101
Syntax of the FILENAME Statement to Assign a Fileref to a Pipe 101
Using the Fileref for Reading 102
Using the Fileref for Writing 103
Sending Electronic Mail Using the FILENAME Statement (EMAIL) 104
Advantages of Sending Electronic Mail from within SAS 104
Initializing Electronic Mail 104
Components of the DATA Step or SCL Code Used to Send Email 105
Syntax of the FILENAME Statement for Electronic Mail 105
Specifying Email Options in the FILE Statement 106
Defining the Body of the Message 107
Specifying Email Directives in the PUT Statement 107
Example: Sending Email from the DATA Step 108
Example: Sending Email Using SCL Code 109
Running External Lua Files 110

Introduction to External Files and
Devices in UNIX Environments

At times during a SAS session, you might want to use external files. That is, you
might want to use files that contain data or text, or files in which you want to store
data or text. These files are created and maintained by other applications or by
SAS. You can create, read, write, and delete external files from within SAS.

You can use external files in a SAS session to perform the following functions:
hold raw data to be read with the INPUT statements
store printed reports created by a SAS procedure
submit a file containing SAS statements for processing
store data written with PUT statements

For SAS, external files and devices can serve both as sources of input and as
receivers of output. The input can be either raw data to be read in a DATA step or
SAS statements to be processed by SAS. The output can be one of the following:

the SAS log, which contains notes and messages produced by the program
the formatted output of SAS procedures
data written with PUT statements in a DATA step

You might also want to use peripheral devices such as a printer, plotter, or your own
terminal. UNIX treats these I/O devices as if they were files. Each device is
associated with a file, called a special file, which is treated as an ordinary disk file.
When you write to a special file, the associated device is automatically activated. All
special files reside in the dev directory or its subdirectories. Although there are

Accessing an External File or Device in UNIX Environments 87

some differences in how you use the various devices, the basic concept is the same
for them all.

UNIX also enables you to use pipes to send data to and from operating system
commands as if they were 1/O devices.

If you need to access an external file containing a transport data library, see Moving
and Accessing SAS Files.

Accessing an External File or Device in
UNIX Environments

Specifying a Pathname or a Fileref

To access an external file or device, you need to specify its pathname or fileref in
the appropriate SAS statements:

FILE
specifies the current output file for PUT statements.

%INCLUDE
includes a file that contains SAS source statements that are executed when you
submit a program from the Program Editor.

TIP If you use %INCLUDE, the line limit is 6000 bytes.

INFILE
identifies an external file that you want to read with an INPUT statement.

In the SAS statement, refer to the file or device in one of two ways:

Specify the pathnames for the external files. For more information, see
“Specifying Pathnames in UNIX Environments” on page 88.

Assign a fileref to a device, one or more files, or a directory, and use the fileref
when you want to refer to the file, directory, or device.

In most cases, you should use a fileref.

What Is a Fileref?

A fileref is nickname that you assign to a file or device. You assign the fileref once,
and then use it as needed. Filerefs are especially useful under the following
conditions:

The pathname is long and has to be specified several times within a program.

http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

88 Chapter 4 / Using External Files and Devices

The pathname might change. If the pathname changes, you need to change only
the statement that assigns the fileref, not every reference to the file.

You can assign filerefs in the File Shortcuts window of the Explorer, with the
FILENAME statement, with the FILENAME function, or by defining the fileref as an
environment variable.

Note: For complete descriptions of the FILENAME function and the FILENAME
statement, see “FILENAME Statement” in SAS Global Statements: Reference and
“FILENAME Function” in SAS Functions and CALL Routines: Reference. For
information about defining filerefs, see “Rules for Most SAS Names” in SAS
Programmer’s Guide: Essentials.

Specifying Pathnames in UNIX
Environments

Rules for Specifying Pathnames

You can reference an external file directly by specifying its pathname in the FILE,
INFILE, or %INCLUDE statements. You can reference the file indirectly by
specifying a fileref and a pathname in the FILENAME statement and then using the
fileref in the FILE, INFILE, or %INCLUDE statements.

Whether you reference a file directly or indirectly, you need to specify its pathname
in the appropriate statement. In most cases, you must enclose the name in
quotation marks. For example, the following INFILE statement refers to the

file /users/pat/cars:

infile '/users/pat/cars';
The following FILE statement directs output to a specified special device file:
file '/dev/ttypl';

The level of specification depends on your current directory. You can use the
character substitutions shown in Table 3.3 on page 66 to specify the pathname. You
can also use wildcards as described in “Using Wildcards in Pathnames (Input Only)”
on page 90.

Omitting Quotation Marks in a Filename

You can omit the quotation marks in a filename if one of the following is true:

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n15scht124hr4nn1g296cqg2kqfa.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&docsetTargetAnchor=p0bjsity6vyjegn12zg7raqgmroz&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0ty0ux2rvfhx2n1wka6q16zgtj5.htm&docsetTargetAnchor=p0bjsity6vyjegn12zg7raqgmroz&locale=en

Working

Specifying Pathnames in UNIX Environments 89

There is not already a fileref defined with that filename.

The file has the file extension that is expected by the statement that you are
using to refer to the file. If you do not enclose a filename in quotation marks, the
FILE and INFILE statements assume a file extension of ‘.dat’. The %INCLUDE
statement assumes a file extension of ‘.sas’.

The file is located in the current directory.
The filename is written with all lowercase characters.

For example, if the current directory is /users/mkt/report and it includes file
gtr.sas, you can reference gtr.sas in any of the following statements:

$include '/users/mkt/report/qtr.sas';
$include 'gqtr.sas';
file 'gqtr.sas';

If there is no gtr fileref already defined, you can omit the quotation marks and the
file extension in the %INCLUDE statement:

%$include gtr;

with Mixed Case or Uppercase Filenames

Filenames in the UNIX operating system are case sensitive. This means that a file
named PROGRAM is not the same as a file named program. When you reference the
name of a file that is written in mixed case or uppercase, and that filename is not
enclosed in quotation marks, SAS converts the filename to lowercase. If the
filename does not have a file extension, SAS adds the missing file extension.

For example, if you specify $include code (PROGRAM) ; in your program, SAS
converts the flename PROGRAM to lowercase, and adds an extension of .sas to
the filename. PROGRAM becomes program. sas.

Interpreting the Messages in the SAS Log

When you execute the following program, SAS converts TEMP to temp, and adds an
extension of .sas to the filename:

filename inc code 'your-directory';
%$include inc_code (TEMP) ;

SAS writes the following messages to the SAS log:

WARNING: Physical file does not exist, A.../your-directory/TEMP.sas.
ERROR: Cannot $%INCLUDE member TEMP in the aggregate INC_CODE.

The warning message shows only the original filename (TEMP.sas), and not the
lowercase conversion (temp.sas). This situation might cause confusion if a file
named TEMP.sas does exist.

To avoid this confusion, include the file extension with the filename if the filename
contains an extension. Enclose a mixed case or uppercase filename in quotation
marks if the filename does not have an extension. For example:

90 Chapter 4 / Using External Files and Devices

%include code (TEMP.sas) ;
%include code ("TEMP") ;

In both of these cases, SAS does not convert TEMP to lowercase.

Using Wildcards in Pathnames (Input Only)

Descriptions of the Valid Wildcards

You can use the *, ?, and [] wildcards to specify pathnames in the FILENAME,
INFILE, and %INCLUDE statements and in the INCLUDE command.

Note: You can use these wildcard characters in the FILENAME statement only if
you are using a fileref for input.

matches one or more characters, except for the period at the beginning of
filenames.

matches any single character.

matches any single character from the set of characters defined within the
brackets. You can specify a range of characters by specifying the starting
character and ending character separated by a hyphen.

Wildcards are supported for input only. You cannot use wildcards in the FILE
statement.

Example 1: Selecting Files By Including a
Wildcard in a String

The following example reads input from every file in the current directory that begins
with the string wild and ends with .dat:

filename wild 'wild*.dat';
data;

infile wild;

input;
run;

Specifying Pathnames in UNIX Environments 91

Example 2: Reading Each File in the
Current Directory

The following example reads input from every file in every subdirectory of the
current working directory:

filename subfiles '*/*';
data;
infile subfiles;
input;
run;

If new files are added to any of the subdirectories, they can be accessed with the
Subfiles fileref without changing the FILENAME statement.

Example 3: Wildcards in Filenames When
Using Aggregate Syntax

You can also use wildcards in filenames, but not in directory names, when you use
aggregate syntax:

filename curdir ".";
data;
infile curdir('wild*');
input;
run;
In the example above, the period in the FILENAME statement refers to the current
directory.

See “Valid Character Substitutions in Pathnames” on page 66 for information about
character substitutions available in UNIX.

Example 4: Associating a Fileref with
Multiple Files

The following statement associates the fileref MyRef with all files that begin with
alphabetic characters. Files beginning with numbers or other characters such as the
period or tilde are excluded.

filename myref '[a-zA-Z]*.dat';

The following statement associates MyRef with any file beginning with Sales (in
either uppercase, lowercase, or mixed case) and a year between 2010 and 2019:

filename myref '[Ss] [Aa] [L1] [Ee] [Ss]201[0-9].dat';

92 Chapter 4 / Using External Files and Devices

Assigning Filerefs to External Files or
Devices with the FILENAME Statement

Introduction to the FILENAME Statement

The most common way to assign a fileref to an external file or device is with the
FILENAME statement. There are several forms of the FILENAME statement,
depending on the type of device that you want to access. For more information, see
“FILENAME Statement: UNIX” on page 377.

Accessing DISK Files

The most common use of the FILENAME statement is to access DISK files. The
FILENAME syntax for a DISK file is the following:

FILENAME fileref <DISK> ‘pathname’' <options>;

The following FILENAME statement associates the fileref myfile with the external
file /users/mydir/myfile, which is stored on a disk device:

filename myfile disk '/users/mydir/myfile';

The following FILENAME statement assigns a fileref of prices to the
file /users/pat/cars. The FILE statement then refers to the file using the fileref:

filename prices '/users/pat/cars';
data current.list;

file prices;

...PUT statements...
run;

For more information about using DISK files, see “Concatenating Filenames in UNIX
Environments” on page 94.

Debugging Code with DUMMY Devices

You can substitute the DUMMY device type for any of the other device types. This
device type serves as a tool for debugging your SAS code without actually reading
or writing to the device. After debugging is complete, replace the DUMMY device

Assigning Filerefs to External Files or Devices with the FILENAME Statement 93

name with the proper device type, and your program will access the specified device
type.

Here is the FILENAME syntax for a DUMMY file:
FILENAME fileref DUMMY 'pathname’ <options>;
Output to DUMMY devices is discarded.

Sending Output to PRINTER Devices

The PRINTER device type enables you to send output directly to a printer. Here is
the FILENAME syntax to direct a file to a PRINTER:

FILENAME fileref PRINTER '<printer> <printer-options>' <options>;
For example, this SAS program sends the output file to the BLDG3 printer:
filename myfile printer 'bldg3';
data test;
file myfile;

put 'This will appear in bldg3 .';
run;

For more information, see “Printing the Contents of a Window” on page 122 and
“Using the PRINTTO Procedure in UNIX Environments” on page 125.

Using Temporary Files (TEMP Device Type)

The TEMP device type associates a fileref with a temporary file stored in the same
directory as the Work library. (See “Work Library” on page 74.) Using the TEMP
device type enables you to create a file that lasts only as long as the SAS session.

Here is the FILENAME syntax for a TEMP file:
FILENAME fileref TEMP <options>;
For example, this FILENAME statement associates Tmp1 with a temporary file:

filename tmpl temp;

Accessing TERMINAL Devices Directly

To access a terminal directly, use the TERMINAL device type. Here is the
FILENAME syntax to associate a file with a terminal:

FILENAME fileref TERMINAL <'terminal-pathname> <options>;

The terminal-pathname must be a pathname of the special file associated with the
terminal. Check with your UNIX system administrator for information. Enclose the
name in quotation marks. If you omit the terminal pathname, the fileref is assigned
to your terminal.

94 Chapter 4 / Using External Files and Devices

For example, this FILENAME statement associates the fileref here with your
terminal:

filename here terminal;

The following FILENAME statement associates the fileref thatfile with another
terminal:

filename thatfile terminal '/dev/tty3';

Assigning Filerefs to Files on Other Systems (FTP,
SFTP, and SOCKET Access Types)

You can access files on other systems in your network by using the FTP, SFTP, and
SOCKET access methods. Here are the forms of the FILENAME statement:

FILENAME fileref FTP ‘external-file' <ftp-options>;

FILENAME fileref SFTP ‘external-file' <sftp-options>;
FILENAME fileref SOCKET ‘external-file' <tcpip-options>;
FILENAME fileref SOCKET ":portno' SERVER <tcpip-options>;

These access methods are documented in SAS DATA Step Statements: Reference.
Under UNIX, the FTP access method supports an additional option:

MACH="machine’
identifies which entry in the .netrc file should be used to get the user name and
password. The .netrc file resides on the host on which the SAS program is
running. See the UNIX man page for more information about the .netrc file. You
cannot specify the MACH option together with the HOST option in the
FILENAME statement.

If you are transferring a file to UNIX from the z/OS operating environment and you
want to use either the S370V or S370VB format to access that file, then the file must
be of type RECFM=U and BLKSIZE=32760 before you transfer it.

CAUTION

When you use the FTP access method to create a remote file, the UNIX
permissions for that file are set to -rw-rw-rw-, which makes the file world-
readable and world-writable. See the UNIX man page for chmod for information about
changing file permissions.

Concatenating Filenames in UNIX
Environments

You can concatenate filenames in the FILENAME, %INCLUDE, and INFILE
statements. Concatenating filenames enables you to read those files sequentially.

Assigning a Fileref to a Directory (Using Aggregate Syntax) 95

FILENAME fileref ("pathname-1" ... "pathname-n");

%INCLUDE '("filename-1" ... "filename-n");

%INCLUDE "(‘filename-1' ... 'filename-n')";

INFILE '("filename-1" ... "filename-n")",

INFILE "(‘filename-1' ... 'filename-n')";

You can enclose the pathnames in single or double quotation marks and separate
them with commas or blank spaces. You can use the characters shown in Table 3.3

on page 66 and the wildcards described in “Using Wildcards in Pathnames (Input
Only)” on page 90 to specify the pathnames.

Assigning a Fileref to a Directory (Using
Aggregate Syntax)

Introduction to Aggregate Syntax

Aggregate Syntax

Aggregate syntax enables you to assign a fileref to a directory and then work with
any file in that directory by specifying its filename in parentheses after the fileref.

FILENAME fileref directory-name;

Aggregate syntax is especially useful when you have to refer to several files in one
directory.

Example 1: Referring to a File Using
Aggregate Syntax

To refer to a file in the directory, specify the fileref followed by the individual filename
in parentheses. For example, you can refer to the file cars.dat in the
directory /users/pat as shown in this example:

filename prices '/users/pat';
data current.list;
file prices(cars);
...other SAS statements...
run;

96 Chapter 4 / Using External Files and Devices

Example 2: Using Aggregate Syntax with
Filerefs Defined by Environment Variables

You can also use aggregate syntax with filerefs that have been defined using
environment variables. (See “Using Environment Variables to Assign Filerefs in
UNIX Environments” on page 97.) For example:

x setenv PRICES /users/pat;
data current.list;
file prices(cars);
...other SAS statements...
run;

Assigning a Fileref to Several Directories

In the FILENAME statement, you can concatenate directory names and use the
fileref to refer to any file within those directories:

FILENAME fileref ("directory-1" ... "directory-n");

When you concatenate directory names, you can use aggregate syntax to refer to a
file in one of the directories. For example, assume that the Report.sas file resides in
the directory associated with the MYPROGS environment variable. When SAS
executes the following code, it searches for Report.sas in the pathnames that are
specified in the FILENAME statement and it executes the program.

filename progs ("$MYPROGS" "/users/mkt/progs");

%$inc progs (report) ;
SAS searches the pathnames in the order specified in the FILENAME statement
until one of these situations occurs:

it finds the first file with the specified name. Even if you use wildcards (see
“Using Wildcards in Pathnames (Input Only)” on page 90) in the filename, SAS
matches only one file.

it encounters a filename in the list of pathnames that you specified in the
FILENAME statement.

Using Environment Variables to Assign Filerefs in UNIX Environments 97

Using Environment Variables to Assign
Filerefs in UNIX Environments

Requirements for Variable Names

Reading

An environment variable can also be used as a fileref to refer to DISK files. The
variable name must be in all uppercase characters, and the variable value must be
the full pathname of the external file. That is, the filename must begin with a slash.

Note: If a variable and a fileref have the same name but refer to different files, SAS
uses the fileref. For example, the %INCLUDE statement below refers to file /users/
myid/this one.

filename ABC '/users/myid/this one';

x setenv ABC /users/myid/that one;

%include ABC;

a Data File

If you want to read the data file /users/myid/educ.dat, but you want to refer to it
with the INED environment variable, you can define the variable at two times:

Before you invoke SAS, see “Defining Environment Variables in UNIX
Environments” on page 309. For example, in the Korn shell, you use the
following:

export INED=/users/myid/educ.dat

After you invoke SAS by using the X statement (see “Executing Operating
System Commands from Your SAS Session” on page 18) and the SAS setenv
command:

x setenv INED /users/myid/educ.dat;

After INED is associated with the file /users/myid/educ.dat, you can use ined as
a fileref to refer to the file in the INFILE statement:

infile ined;

98 Chapter 4 / Using External Files and Devices

Writing to an External File

The same method applies if you want to write to an external file. For example, you
can define OUTFILE before you invoke SAS:

OUTFILE=/users/myid/scores.dat
export OUTFILE

Then, use the environment variable name as a fileref to refer to the file:

file OUTFILE;

Filerefs Assigned by SAS in UNIX
Environments

Filerefs for Standard Input, Standard Output, and
Standard Error

Often a command's arguments or options tell the command what to use for input
and output. If they do not, the shell supplies you with three standard files: one for
input (standard input), one for output (standard output), and one for error messages
(standard error). By default, these files are all associated with your terminal:
standard input with your keyboard, and both standard output and standard error with
your terminal's display. When you invoke SAS, it assigns a fileref to each file that it
opens, including the three standard files. SAS assigns the filerefs Stdin, Stdout, and
Stderr to standard input, standard output, and standard error, respectively.

File Descriptors

What Is a File Descriptor?

Each file has an assigned internal file descriptor. By default, O is the file descriptor
for standard input, 1 is the file descriptor for standard output, and 2 is the file
descriptor for standard error. As other files are opened, they get other file
descriptors. In the Bourne shell and in the Korn shell, you can specify that data be
written to or be read from a file using the file descriptor. (See below.)

Reserved Filerefs in UNIX Environments 99

File Descriptors in the Bourne and Korn
Shells

If you are using the Bourne shell or the Korn shell, SAS assigns filerefs of the
following form to files that have a file descriptor larger than 2.

FILDESnumber

number is a two-digit representation of the file descriptor. You can use these filerefs
in your SAS applications.

For example, if you invoke SAS with the following command, then the operating
environment opens the file sales_data and assigns file descriptor 4 to it:

sas salespgm 4< sales data

SAS assigns the fileref FILDES04 to the file and executes the application salespgm.
When the application reads input from FILDESO04, it reads the file sales_data. Using
file descriptors as filerefs enables you to use the same application to process data
from different files without changing the application to refer to each file. In the
command that you use to invoke the application, you assign the appropriate file
descriptor to the file to be processed.

Reserved Filerefs in UNIX Environments

The following filerefs are reserved.

DATALINES fileref in the INFILE statement
specifies that input data immediately follow a DATALINES statement. You need
to use INFILE DATALINES only when you want to specify options in the INFILE
statement to read instream data.

LOG fileref in the FILE statement
specifies that output lines produced by PUT statements be written to the SAS
log. LOG is the default destination for output lines.

PRINT fileref in the FILE statement
specifies that output lines produced by PUT statements be written to the same
print file as output produced by SAS procedures.

100 Chapter 4 / Using External Files and Devices

Sharing External Files in a UNIX
Environment

Sharing External Files

If more than one user has simultaneous Write access to an external file, or if a
single user has Write access to the same file from different SAS sessions, the
results of sharing the file can be unpredictable. To remedy this situation, you can
use a statement option or a system option to restrict Write access to one user, while
allowing multiple users Read access. For more information, see “Sharing SAS Files”
on page 52.

Options to Use for File Locking: External Files

File locking applies to all files that are opened. You can turn off file locking for
external files in the following ways:

Use the LOCKINTERNAL option in the FILENAME statement.
Use the FILELOCKS system option.

File Locking for External Files: The
LOCKINTERNAL Statement Option

You can control file locking for external files by using the LOCKINTERNAL option in
the FILENAME statement. The AUTO option value locks a file exclusively for Write
access, or non-exclusively for Read access. For example, if a file is opened for
update or output, then all other access from internal processes are blocked. If a file
is opened for input, then other users can also open the file for input. In this case,
opening the file for update and output is blocked. The SHARED option value allows
for all of the behavior of the AUTO option, except that the file can be shared by one
writer and multiple readers. The external file that is associated with the fileref is the
file that is locked. By default, multiple users can simultaneously read an external file.
For more information, see “FILENAME Statement: UNIX” on page 377.

Reading from and Writing to UNIX Commands (PIPE) 101

File Locking for External Files: The FILELOCKS
System Option

You can control file locking for external files (as well as for SAS files) by using the
FILELOCKS system option. This option enables you to apply a behavior globally to
individual files or directories. Using FILELOCKS restricts writer access to one user.
With file locking turned on, multiple SAS sessions are able to simultaneously read
the same file. You can use FILELOCKS at start-up, in the OPTIONS statement, or in
the command line. You can specify multiple instances of the FILELOCKS option.
Each instance is added to an internal table of paths and settings. For more
information, see “FILELOCKS System Option: UNIX” on page 431.

Reading from and Writing to UNIX
Commands (PIPE)

What Are Pipes?

Pipes enable your SAS application to receive input from any UNIX command that
writes to standard output and to route output to any UNIX command that reads from
standard input. In UNIX commands, the pipe is represented by a vertical bar (|). For
example, to find the number of files in your directory, you could redirect the output of
the 1s command through a pipe to the wc (word count) command:

l1s | we -w

Syntax of the FILENAME Statement to Assign a
Fileref to a Pipe

Under UNIX, you can use the FILENAME statement to assign filerefs not only to
external files and I/O devices, but also to a pipe. Here is the syntax of the
FILENAME statement:

FILENAME fileref PIPE 'UNIX-command' <options>;

fileref
is the name by which you reference the pipe from SAS.

PIPE
identifies the device-type as a UNIX pipe.

102 Chapter 4 / Using External Files and Devices

'UNIX-command'
is the name of a UNIX command, executable program, or shell script to which
you want to route output or from which you want to read input. The commands
must be enclosed in either double or single quotation marks.

options
control how the external file is processed. For an explanation of these options,
see “FILENAME Statement: UNIX” on page 377.

Whether you are using the command as input or output depends on whether you
use the fileref in a reading or writing operation. For example, if the fileref is used in
an INFILE statement, then SAS assumes that the input comes from a UNIX
command. If the fileref is used in a FILE statement, then SAS assumes that the
output goes to a UNIX command.

Using the Fileref for Reading

Specifying a Fileref for Reading

When the fileref is used for reading, the specified UNIX command executes, and
any output sent to its standard output or standard error is read through the fileref. In
this case, the standard input of the command is connected to /dev/null.

Example 1: Sending the Output of the
Process Command to a SAS DATA Step

The following SAS program uses the PIPE device-type keyword to send the output
of the ps (process) command to a SAS DATA step. The resulting SAS data set
contains data about every process currently running SAS:

filename ps list pipe "ps -e|grep 'sas'";
data sasjobs;
infile ps_list;
length process $ 80;
input process $ chars8o.;
run;
proc print data=sasjobs;
run;

The ps -e command produces a listing of all active processes in the system,
including the name of the command that started the task. In BSD-based UNIX
systems, you use the ps -ax command.

The operating environment uses pipes to send the output from ps to the grep
command, which searches for every occurrence of the string 'sas'. The FILENAME
statement connects the output of the grep command to the fileref ps_1ist. The
DATA step then creates a data set named sasjobs from the INFILE statement that
points to the input source. The INPUT statement reads the first 80 characters on
each input line.

Reading from and Writing to UNIX Commands (PIPE) 103

Example 2: Using the Stdin Fileref to Read
Input

In the next example, the Stdin fileref is used to read input through a pipe into the
SAS command, which, in turn, executes the SAS program. By placing the piping
operation outside the SAS program, the program becomes more general. The
program in the previous example has been changed and stored in file ps.sas:

data sasjobs;
infile stdin;
length process $ 80;
input process $ char8o.;
run;
proc print data=sasjobs;
run;

To run the program, use pipes to send the output of ps to grep and from grep into
the SAS command:

ps -e|grep 'sas'|sas ps.sas &

The output is stored in ps.1st, and the log is stored in ps.log, as described in “The
Default Routings for the SAS Log and Procedure Output in UNIX Environments” on
page 115.

Using the Fileref for Writing

Specifying a Fileref for Writing

When the fileref is used for writing, the output from SAS is read in by the specified
UNIX command, which then executes.

Example 1: Sending Mail Using Pipes

In this example, any data sent to the mail fileref are piped to the mail command
and sent to user PAT:

filename mail pipe 'mail pat';

104 Chapter 4 / Using External Files and Devices

Example 2: Starting a Remote Shell and
Printing Output

Consider this FILENAME statement:
filename letterqg pipe 'remsh alpha lp -dbldga3’;

Any data sent to the letterq fileref is passed to the UNIX command, which starts a
remote shell on the computer named Alpha. Note that the form of the command that
starts a remote shell varies among the various UNIX operating systems. The shell
then prints the letterqg output on the printer identified by the destination BLDGAG3.
Any messages that are produced by the 1p command are sent to the SAS log.

Sending Electronic Mail Using the
FILENAME Statement (EMAIL)

Advantages of Sending Electronic Mail from within
SAS

SAS lets you send electronic mail using SAS functions in a DATA step or in SCL.
Sending email from within SAS enables you to do the following:

Use the logic of the DATA step or SCL to subset email distribution based on a
large data set of email addresses.

Send email automatically upon completion of a SAS program that you submitted
for batch processing.

Direct output through email based on the results of processing.

Send email messages from within a SAS/AF frame application, customizing the
user interface.

Initializing Electronic Mail

By default, SAS uses SMTP (Simple Mail Transfer Protocol) to send email. SMTP,
unlike some external scripts, supports attachments. This default is specified by the
EMAILSYS system option. For information about how to change the email protocol,
see “EMAILSYS System Option: UNIX” on page 429.

Sending Electronic Mail Using the FILENAME Statement (EMAIL) 105

Before you can send email from within SAS, your system administrator might need
to set the EMAILHOST system option to point to the SMTP server. For more
information, see “EMAILHOST= System Option” in SAS System Options:
Reference.

Components of the DATA Step or SCL Code Used
to Send Email

In general, a DATA step or SCL code that sends electronic mail has the following
components:

a FILENAME statement with the EMAIL device-type keyword

options specified in the FILENAME or FILE statements indicating the email
recipients, subject, and any attached files

PUT statements that contain the body of the message

PUT statements that contain special email directives (of the form |EM_directive!)
that can override the email attributes (TO, CC, BCC, SUBJECT, ATTACH) or
perform actions (such as SEND, ABORT, and start a NEWMSG)

Syntax of the FILENAME Statement for Electronic

Mail

To send electronic mail from a DATA step or SCL, issue a FILENAME statement of
the following form:

FILENAME fileref EMAIL 'address' <email-options>;
The FILENAME statement accepts the following options:

fileref
is a valid fileref.

address
is the destination email address of the user to which you want to send email. You
must specify an address here, but you can override its value with the TO email
option.

email-options
can be any of the following:

TO=to-address
specifies the primary recipients of the electronic mail. If an address contains
more than one word, enclose it in quotation marks. To specify more than one
address, enclose the group of addresses in parentheses, enclose each
address in quotation marks, and separate each address with a space. For
example, to="'joe@someplace.org' and
to=("joe@smplc.org" "janeediffplc.org") are valid TO values.

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1v9dr6zep9p9en1prhl6tdy3igx.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1v9dr6zep9p9en1prhl6tdy3igx.htm&locale=en

106 Chapter 4 / Using External Files and Devices

Note: You can send an email without specifying a recipient in the TO= option
as long as you specify a recipient in either the CC= or BCC= option.

CC=cc-address
specifies the recipients that you want to receive a copy of the electronic mail.
If an address contains more than one word, enclose it in quotation marks. To
specify more than one address, enclose the group of addresses in
parentheses, enclose each address in quotation marks, and separate each
address with a space. For example, cc='joe@someplace.org' and
cc=("joe@smplc.org" "janeediffplc.org") are valid CC values.

BCC=bcc-address
specifies the recipients that you want to receive a blind copy of the electronic
mail. Individuals listed in the bcc field receive a copy of the email. The BCC
field does not appear in the email header, so that these email addresses
cannot be viewed by other recipients.

If a BCC address contains more than one word, enclose it in quotation marks.
To specify more than one address, enclose the group of addresses in
parentheses, enclose each address in quotation marks, and separate each
address with a space. For example, bcc="'joe@someplace.org' and

bece= ("joe@smplc.org" "janeediffplc.org") are valid BCC values.

SUBJECT="subject'
specifies the subject of the message. If the subject text is longer than one
word (that is, it contains at least one blank space), you must enclose it in
quotation marks. You also must use quotation marks if the subject contains
any special characters. For example, subject=Sales and subject="'June
Report' are valid subjects. Any subject not enclosed in quotation marks is
converted to uppercase.

ATTACH="filename.ext' | ATTACH= ('filename.ext' <attachment-options>)
specifies the physical names of the files to be attached to the message and
any options to modify attachment specifications. Enclose filename.ext in
quotation marks. To attach more than one file, enclose the group of filenames
in parentheses. For example, attach="'/u/userid/opinion.txt' and
attach=("junell.txt" "julyll.txt") are valid file attachments.

By default, an SMTP email attachment has the same value as the default
value of LRECL, which is 32K. To send a longer attachment, you can specify
the LRECL= and RECFM= options from the FILENAME statement as
attachment-options. For more information about the LRECL= and RECFM=
options, see “FILENAME Statement: UNIX” on page 377.

For more information about the options that are valid when you are using SMTP, see
‘FILENAME Statement: EMAIL (SMTP) Access Method” in SAS Global Statements:
Reference.

Specifying Email Options in the FILE Statement

You can also specify the email-options in the FILE statement inside the DATA step.
Options that you specify in the FILE statement override any corresponding options
that you specified in the FILENAME statement.

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0ig2krarrz6vtn1aw9zzvtez4qo.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0ig2krarrz6vtn1aw9zzvtez4qo.htm&locale=en

Sending Electronic Mail Using the FILENAME Statement (EMAIL) 107

Defining the Body of the Message

In your DATA step, after using the FILE statement to define your email fileref as the
output destination, use PUT statements to define the body of the message.

Specifying Email Directives in the PUT Statement

You can also use PUT statements to specify email directives that change the
attributes of your electronic message or perform actions with it. Specify only one
directive in each PUT statement; each PUT statement can contain only the text
associated with the directive that it specifies.

Here are the directives that change the attributes of your message:

IEM_TO! addresses
Replace the current primary recipient addresses with addresses. In the PUT
statement, specify addresses without single quotation marks.

IEM_CC! addresses
Replace the current copied recipient addresses with addresses. In the PUT
statement, specify addresses without single quotation marks.

IEM_BCC! addresses
Replace the current blind copied recipient addresses with addresses. In the PUT
statement, specify addresses without single quotation marks.

IEM_SUBJECT! subject
Replace the current subject of the message with subject.

IEM_ATTACH! pathname
Replace the names of any attached files with pathname.

Here are the directives that perform actions:

IEM_SEND!
Sends the message with the current attributes. By default, SAS sends a
message when the fileref is closed. The fileref closes when the next FILE
statement is encountered or the DATA step ends. If you use this directive, SAS
sends the message when it encounters the directive, and again at the end of the
DATA step.

IEM_ABORT!
Aborts the current message. You can use this directive to stop SAS from
automatically sending the message at the end of the DATA step.

IEM_NEWMSG!
Clears all attributes of the current message, including TO, CC, SUBJECT,
ATTACH, and the message body.

108 Chapter 4 / Using External Files and Devices

Example: Sending Email from the DATA Step

Suppose that you want to share a copy of your config.sas file with your coworker
Jim, whose user ID is JBrown. If your email program handles alias names and
attachments, you could send it by submitting the following DATA step:

filename mymail email 'JBrown'
subject='My CONFIG.SAS file'
attach='config.sas';

data null ;
file mymail;
put 'Jim,';
put 'This is my CONFIG.SAS file.';
put 'I think you might like the
new options I added.';
run;

The following example sends a message and two attached files to multiple
recipients. It specifies the email options in the FILE statement instead of the
FILENAME statement:

filename outbox email 'ron@acme.com';

data null ;
file outbox

/* Overrides value in filename statement */
to=('ron@acme.com' 'lisa@acme.com')
cc=('margaret@yourcomp.com'
'lenny@laverne.abc.com')

subject='My SAS output'
attach=('results.out' 'code.sas')

put 'Folks,';

put 'Attached is my output from the
SAS program I ran last night.';

put 'It worked welll';

run;

You can use conditional logic in the DATA step to send multiple messages and
control which recipients get which message. For example, suppose you want to
send customized reports to members of two different departments. If your email
program handles alias names and attachments, your DATA step might look like the
following:

filename reports email 'Jim';

data null ;
file reports;
infile cards eof=lastobs;
length name dept $ 21;
input name dept;

/* Assign the TO attribute */

Sending Electronic Mail Using the FILENAME Statement (EMAIL) 109
put '"!EM TO!' name;

/* Assign the SUBJECT attribute */
put '!EM SUBJECT! Report for ' dept;

put name ',';
put 'Here is the latest report for ' dept '.';

/* ATTACH the appropriate report */
if dept='marketing' then

put '!EM ATTACH! mktrept.txt';
else

put '!EM ATTACH! devrept.txt';

/* Send the message */
put '!EM SEND!';

/* Clear the message attributes */
put '!EM NEWMSG!';

return;

/* Rbort the message before the */

/* RUN statement causes it to */

/* be sent again. */
lastobs: put '!EM ABORT!';

datalines;
Susan marketing
Jim marketing
Rita development
Herb development
run;

The resulting email message and its attachments are dependent on the department
to which the recipient belongs.

Note: You must use the IEM_NEWMSG! directive to clear the message attributes
between recipients. The [EM_ABORT! directive prevents the message from being
automatically sent at the end of the DATA step.

Example: Sending Email Using SCL Code

The following example is the SCL code behind a frame entry design for email. The
frame entry includes several text entry fields that let the user enter information:

mailto
the user ID to send mail to

copyto
the user ID to copy (CC) the mail to

110 Chapter 4 / Using External Files and Devices

attach
the name of a file to attach

subject
the subject of the mail

linet
the text of the message

The frame entry also contains a button named SEND that causes this SCL code
(marked by the send: label) to execute.

send:

/* set up a fileref */
rc = filename('mailit', 'userid', 'email');

/* 1if the fileref was successfully set up
open the file to write to */
if rc = 0 then do;
fid = fopen('mailit','o');
if fid > 0 then do;

/* fput statements are used to
implement writing the
mail and the components such as
subject, who to mail to, and so on. */
fputrcl = fput(fid,linel);
rc = fwrite(fid);

fputrc2 = fput(fid,'!EM TO! '||mailto);
rc = fwrite(fid);
fputrc3 = fput(fid,'!EM CC! '||copyto);

rc = fwrite(fid);

fputrcd = fput(fid,'!EM ATTACH! '||attach);
rc = fwrite(fid);
fputrc5 = fput(fid,'!EM SUBJECT! '||subject);

rc = fwrite(fid);

closerc = fclose(fid);
end;
end;
return;

cancel:

call execcmd('end') ;
return;

Running External Lua Files

You can run external scripts written in the Lua programming language from the SAS
command line. You can run both uncompiled Lua scripts (*.lua files) or precompiled

Running External Lua Files 111

Lua scripts (*.luc files). Support for running external Lua files was added in SAS
9.4M3.

To run the files, use the -SYSIN option on the SAS command line. For example, to
run the file abc.lua, submit this command:

sas -sysin abc.lua

You can also run external Lua scripts (*.lua or *.luc files) using the %INCLUDE
statement in a SAS session. For example, to run the Lua script abc.luc, enter the
following line in your SAS program:

%$include "./tmp/abc.luc";

112 Chapter 4 / Using External Files and Devices

Printing and Routing Output

113

Overview of Printing Output in UNIX Environments

Previewing Output in UNIX Environments
Previewing Output Using Universal Printing
Previewing Output from within SAS/AF Applications

The Default Routings for the SAS Log and Procedure Output in

UNIX Environments

Changing the Default Routings in UNIX Environments
Techniques for Routing Output
Determining Which Technique to Use When Changing the Routing

Routing SAS Logging Facility Messages to SYSLOGD

Using the Print Dialog Box in UNIX Environments
Printing from Text Windows
Printing from GRAPH Windows

Using Commands to Print in UNIX Environments
Differences between the PRTFILE, PRINT, and FILE Commands
Sending Outputtoa UNIX Command
Specifyingthe PrintFile
Printing the Contents ofa Window
Using the FILE Command

Using the PRINTTO Procedure in UNIX Environments
Important Note about the PRINTTO Procedure
Using the LOG=and PRINT=Options
Routing Output to a Universal Printer
Routing Outputtoa Printer
Piping Outputto a UNIX Command
Routing Outputtoa Terminal

Using SAS System Options to Route Output

Changing the Output Destination Using the LOG, PRINT, ALTLOG,

and ALTPRINT System Options
Printing Large Files with the PIPE Device Type in UNIX Environments
Changing the Default Print Destination in UNIX Environments

Changing the Default Print Command in UNIX Environments

114 Chapter 5 / Printing and Routing Output

Controlling the Content and Appearance of Output in UNIX Environments 129
Overview of Controlling the Content and Appearance of Output 129
SAS Log Options 130
Procedure Output Options 130

Overview of Printing Output in UNIX
Environments

When you print text or graphics, SAS needs to know where the output should go,
how it should be written, and how the output should look. Universal Printing is the
default printing mechanism in UNIX. Universal Printing supports PostScript, PCL,
GIF, PNG, SVG, EMF, and PDF files in all environments. For more information about
Universal Printing, see “Universal Printing” in SAS Programmer’s Guide: Essentials.

If you are printing graphics, the output is controlled by native SAS/GRAPH drivers.
See the online Help for SAS/GRAPH for information about native SAS/GRAPH
drivers.

Previewing Output in UNIX Environments

Previewing Output Using Universal Printing

With Universal Printing, you can preview your output before you send it to a printer,
plotter, or external file. To preview your output, you first need to define a previewer
for your system. For more information, see “Universal Printing” in SAS
Programmer’s Guide: Essentials.

Previewing Output from within SAS/AF Applications

To preview output from within a SAS/AF application, use the DMPRTMODE and
DMPRTPREVIEW commands to turn on preview mode, print the output, open the
Print Preview dialog box, and then turn preview mode off. For example, the following
code prints the GRAPH1 object using the host drivers and displays it in the Preview
dialog box:

/* Turn on preview mode. */

CALL EXECCMDI ("DMPRTMODE PREVIEW") ;

/* Print the graph */
GRAPH1. PRINT ();

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1dux3w63ku2wdn16vw3deeg9tqn.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1dux3w63ku2wdn16vw3deeg9tqn.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1dux3w63ku2wdn16vw3deeg9tqn.htm&locale=en

The Default Routings for the SAS Log and Procedure Output in UNIX Environments
115

/* Open the Preview dialog box */
CALL EXECCMDI ("DMPRTPREVIEW") ;

/* Turn off preview mode */
CALL EXECCMDI ("DMPRTMODE NORMAL") ;

The Default Routings for the SAS Log
and Procedure Output in UNIX
Environments

For each SAS job or session, SAS automatically creates two types of output:

SAS log

contains information about the processing of SAS statements. As each program
step executes, notes are written to the SAS log along with any applicable error or
warning messages.

SAS output
is also called the procedure output file or print file. Whenever a SAS program
executes a PROC step or a DATA step that produces printed output, SAS sends

the output to the SAS output file. The default destination for SAS output is
HTML.

The following table shows the default routings of the SAS log and output files.

Table 5.1 Default Routings of the SAS Log and Output Files

Processing Mode SAS Log File SAS Output File
batch filename.log filename.lst
windowing environment Log window HTML

interactive line terminal terminal

By default, both the log file and the output file are written to your current directory.
Your system administrator might have changed these default routings.

116 Chapter 5 / Printing and Routing Output

Changing the Default Routings in UNIX
Environments

Techniques for Routing Output

Here are the primary methods for routing your output:
Using the default HTML destination.

Using the Print dialog box. The Print dialog box is available when you are using
the SAS windowing environment.

Issuing windowing environment commands. The PRTFILE, PRINT, and FILE
commands can be issued from any command line. You can use these
commands to send output to external files or to other devices defined with the
FILENAME statement.

Using the PRINTTO procedure. You can use the PRINTTO procedure in any
mode. Using the FILENAME statement with the PRINTTO procedure is the most
flexible way of routing your output.

Using SAS system options, such as PRINT, LOG, ALTPRINT, or ALTLOG, to
specify alternate destinations.

Determining Which Technique to Use When
Changing the Routing

Use the following table to help you decide which method you should choose to
change the routing.

Table 5.2 Decision Table: Changing the Default Destination

Output destination
for your SAS log or Processing
procedure output mode Method See

a printer any mode FILENAME statement “Using the PRINTTO
(UPRINTER or PRINTER device Procedure in UNIX
type) and PRINTTO procedure Environments” on page 125

windowing DMPRINT command “Using the Print Dialog Box in
environment UNIX Environments” on page
119

Changing the Default Routings in UNIX Environments 117

Output destination

for your SAS log or Processing
procedure output mode Method See
Print dialog box “Using the Print Dialog Box in
UNIX Environments” on page
119
FILENAME statement and “Printing the Contents of a
PRTFILE, PRINT, and FILE Window” on page 122
commands
an external file any mode PRINTTO procedure and “Using the PRINTTO
FILENAME statement Procedure in UNIX
Environments” on page 125
windowing Print dialog box “Using the Print Dialog Box in

a UNIX command
(pipe)

its usual location
and to an external
file

a terminal

environment

batch

any mode

windowing
environment

any mode

windowing
environment

batch

FILENAME statement and
PRTFILE, PRINT, and FILE
commands

LOG and PRINT system options

FILENAME statement and
PRINTTO procedure

FILENAME statement and
PRTFILE and PRINT commands
ALTLOG and ALTPRINT system
options

FILE command

Print dialog box

FILENAME statement and
PRINTTO procedure

UNIX Environments” on page
119

“Printing the Contents of a
Window” on page 122

“Using SAS System Options
to Route Output” on page
127

“Using the PRINTTO
Procedure in UNIX
Environments” on page 125

“Printing the Contents of a
Window” on page 122

“Using SAS System Options
to Route Output” on page
127

“Using the FILE Command ”
on page 124

“Using the Print Dialog Box in
UNIX Environments” on page
119

“Routing Output to a
Terminal ” on page 126

118 Chapter 5 / Printing and Routing Output

Routing SAS Logging Facility Messages
to SYSLOGD

The SAS logging facility enables the categorization and collection of log event
messages, and then writes them to a variety of output devices. The logging facility
supports problem diagnosis and resolution, performance and capacity management,
and auditing and regulatory compliance. The following features are provided:

Log events are categorized using a hierarchical naming system that enables you
to configure logging at a broad or a fine-grained level.

Log events can be directed to multiple output destinations, including files,
operating system facilities, databases, and client applications. For each output
destination, you can specify these items:

the categories and levels of log events to report

the message layout, including the types of data to be included, the order of
the data, and the format of the data

filters based on criteria such as diagnostic levels and message content

Logging diagnostic levels can be adjusted dynamically without starting and
stopping processes.

Performance-related log events can be generated for processing by an
Application Response Measurement (ARM) 4.0 server.

The logging facility is used by most SAS server processes. You can also use the
logging facility within SAS programs.

In the UNIX operating environment, logging facility messages can be written to
SYSLOGD.

For information about using the logging facility in the UNIX operating environment,
see the SAS Logging: Configuration and Programming Reference.

http://documentation.sas.com/?docsetId=logug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Using the Print Dialog Box in UNIX Environments 119

Using the Print Dialog Box in UNIX
Environments

Printing from Text Windows

Open the Print Dialog Box from a Text
Window

To print part or all of the contents of a window:

1 Click in the window to make it the active window. If you want to mark and print
only selected lines of text, mark the text before you open the Print dialog box.

2 Issue the DMPRINT command or select File = Print to open the Print dialog
box.

Figure 5.1 Print Dialog Box

r

All Pages vl 4
I

120 Chapter 5 / Printing and Routing Output

Default Printing Mode

In UNIX, the default printing mode is Universal Printing. For more information about
how to use Universal Printing, click Help on the Print dialog box.

Troubleshooting Print Server Errors

After clicking OK, if SAS displays a clock icon for a long time and you are sending
output to a network printer, your printer server might be down. If so, you eventually
see a message in the shell where you invoked your SAS session that indicates that

the server is down.

Printing from GRAPH Windows

Open the Print Dialog Box from the
GRAPH Window

With Universal Printing, you can use the Print dialog box to print the contents of a
SAS/GRAPH window. Click in the window to make it the active window, and then
issue the DMPRINT command or select File = Print to open the Print dialog box.

Figure 5.2 Print Dialog Box for Graphs

= SAS: Print.__

r

Using Commands to Print in UNIX Environments 121

Note: In most cases, fonts set through the Print dialog box have no effect when you
print from GRAPH windows. However, some SAS/GRAPH drivers use Universal
Printing and can be affected by the fonts set in the dialog box. Make sure that you
specify the correct options in a GOPTIONS statement.

Specifics for SAS/GRAPH Drivers

To print output using a SAS/GRAPH driver, select Use SAS/GRAPH Drivers. Select
the down arrow beside the Driver field to display the available drivers. Make sure
that your printer destination has been set inside the device using the GDEVICE
procedure or the GOPTIONS statement. For complete information about printing
from GRAPH windows, see SAS/GRAPH: Reference and the online Help for
SAS/GRAPH.

Troubleshooting Print Server Errors

After clicking OK, if SAS displays a clock icon for a long time and you are sending
output to a network printer, your printer server might be down. If so, you eventually
see a message in the shell where you invoked your SAS session that indicates that
the server is down.

Using Commands to Print in UNIX
Environments

Differences between the PRTFILE, PRINT, and
FILE Commands

In the SAS windowing environment, you can use the PRTFILE, PRINT, and FILE
commands to send the contents of the active window to an output device.

The following table lists the results of each of these commands.

Table 5.3 Routing Output Commands

Command Action Performed

PRTFILE specifies the filename or fileref for your output.

122 Chapter 5 / Printing and Routing Output

Command Action Performed

FILE sends the contents of the active window to the filename or fileref that
you specify.
PRINT sends the contents of the active window either:

to your default printer when issued from the command line of the
window.

to the location specified with the PRTFILE command.

Sending Output to a UNIX Command

If you want to send your output to a UNIX command, you can use the FILENAME
statement. The FILENAME statement enables you to create filerefs that point to
printers, plotters, or external files or filerefs that pipe to a UNIX command. For more
information, see “FILENAME Statement: UNIX” on page 377.

Specifying the Print File

When you issue the PRINT command, SAS sends your output to your default
printer, unless you specify a print file. You can specify a print file by entering the
PRTFILE command (for example, PRTFILE file-spec CLEAR | APPEND |
REPLACE) . The file-spec argument can be either a fileref or a filename.

If you are using forms printing, and you select File = Print, a window appears that
enables you to select file options. When you select Print to File, the Save As
window appears. Enter the location to which you want your file saved. This option is
available only when Universal Printing is turned off.

Printing the Contents of a Window

Using PRTFILE and PRINT with a Fileref

You can use the PRTFILE command, followed by the PRINT command, to print the
contents of windows. PRTFILE establishes the destination, and PRINT sends the
contents of the window to that destination. If you do not specify a destination with
the PRTFILE command, PRINT automatically sends the window contents to your
default printer.

Using Commands to Print in UNIX Environments 123

Steps for Sending Output Directly to a
Printer

If you want to send output directly to a printer, you must first submit the FILENAME
statement to assign a fileref to the PRINTER or PIPE device. For example, to print
the contents of your Output window, complete the steps in the following table.

Table 5.4 Printing the Contents of Your Output Window

Step Action Example

1 Submit a FILENAME statement or filename myrpt printer 'bldga2';
FILENAME function to associate a

or

fileref with a system printer (PRINTER

device type) or a UNIX command filename ascout pipe 'lp -dmyljet';
(PIPE device type). Enclose the printer For more information, see

name or UNIX command in either “Examples of FILENAME

single or double quotation marks. Statements Using PRINTER and

PIPE ” on page 124.

2 Issue the PRTFILE command as prtfile myrpt
described in “Specifying the Print File”
on page 122 . Specify the fileref from
your FILENAME statement or
FILENAME function.

3 Issue the PRINT command from the
command line of the windows whose
contents you want to print. If you are
sending output to a system printer or if
you are using forms-based printing,
then you can print the contents of
more than one window.

4 Enter A in the dialog box that warns
you that the destination file already
exists. The A value tells SAS to
append the window contents to the
destination file.

5 Submit a FILENAME statement or filename myrpt clear;
FILENAME function to clear
(deassign) the fileref.

To clear the print file setting, issue the PRTFILE CLEAR command.

124 Chapter 5 / Printing and Routing Output

Examples of FILENAME Statements Using
PRINTER and PIPE

The following statement associates MyRpt with the system printer named BldgA2
and specifies two copies of every printout:

filename myrpt printer 'bldga2 -n2';

(See the documentation for your print command for information about other options
that you can specify.)

The following statement enables you to print output using the 1p command on the
printer named Myljet:

filename ascout pipe 'lp -dmylijet';

The following statement sends output to the 1p command and redirects any error
messages produced by this command to the LpError file in your home directory:
filename myrpt pipe 'lp 2>$SHOME/lperror';

If you frequently use the same print command and destination, you can add the
appropriate FILENAME statement to your autoexec file. For more information, see
“Customizing Your SAS Session By Using System Options” on page 22.

Using the FILE Command

You can use the FILE command to copy the contents of many different windows to
external files. Issue the FILE command on the command line of the window whose
contents you want to copy. For example, to copy the contents of the Log window

to /u/myid/log/appl, issue the following command on the command line of the Log
window:

file '/u/myid/log/appl’

If the file does not exist, SAS creates it. If the file already exists, a dialog box asks
you whether you want to replace it or to append data to the existing data.

If you have already associated a fileref with your external file, you can use the fileref
instead of the filename:

file myref

If you use the FILE command to save your output, carriage-control information is not
saved (that is, page breaks are removed from the output). You might want to use the
PRINT command with the FILE option instead:

PRINT FILE=fileref | 'pathname'

Using the PRINTTO Procedure in UNIX Environments 125

Using the PRINTTO Procedure in UNIX
Environments

Important Note about the PRINTTO Procedure

Anytime you use PROC PRINTTO to route output, you must close the output device
before PROC PRINTTO will release the output or log and send it to the destination
that you have specified. To close the output device, issue PROC PRINTTO without
any parameters:

proc printto;
run;

Issuing PROC PRINTTO without any parameters closes the output device,
generates output, and reroutes the log and procedure output to their default
destinations. For a list of the default destinations, see Table 5.1 on page 115.

For more information, see Chapter 30, “PRINTTO Procedure,” on page 547 and
“‘PRINTTO Procedure” in Base SAS Procedures Guide.

Using the LOG= and PRINT= Options

When you use the PRINTTO procedure with its LOG= and PRINT= options, you can
route the SAS log or SAS procedure output to an external file or a fileref from any
mode. Specify the external file or the fileref in the PROC PRINTTO statement. The
following example routes procedure output to /u/myid/output/progi:

proc printto print='/u/myid/output/progl' new;
run;

The NEW option causes any existing information in the file to be cleared. If you omit
the NEW option from the PROC PRINTTO statement, the SAS log or procedure
output is appended to the existing file.

If you plan to specify the same destination several times in your SAS program, you
can assign a fileref to the file using a FILENAME statement. (For information and
examples, see “Assigning Filerefs to External Files or Devices with the FILENAME
Statement” on page 92.)

Routing Output to a Universal Printer

You can direct output directly to your Universal Printer by using the UPRINTER
device type:

http://documentation.sas.com/?docsetId=proc&docsetVersion=9.4&docsetTarget=p08blwp6gwk25mn1hypjjrncx3bn.htm&locale=en

126 Chapter 5 / Printing and Routing Output

filename myoutput uprinter;
proc printto print=myoutput;
run;

Output is sent to your default Universal Printer. This output is in PostScript or PCL
format.

Routing Output to a Printer

You can direct output directly to your system printer by using the PRINTER device
type:

filename myoutput printer;
proc printto print=myoutput;
run;

Output is sent to your default system printer or, if you have specified the SYSPRINT
system option, to the printer specified with that option. This method produces output
in ASCII format.

Piping Output to a UNIX Command

You can also use the PIPE device type to send output to a UNIX command. When
you specify the print command, you might also want to specify a destination for any
error messages that are produced by the print command. Enclose the UNIX
command in either single or double quotation marks. The following example
associates the fileref MyOutput with the print command 1p, which sends output to
the printer named Myljet:

filename myoutput pipe 'lp -dmylijet';
proc printto print=myoutput;
run;

You can send the SAS log to the same printer by using the LOG= option:

filename mylog pipe 'lp -dmyljet';
proc printto log=mylog;
run;

The log and procedure output continue to be routed to the designated external file
until another PROC PRINTTO statement reroutes them.

Routing Output to a Terminal

In noninteractive or batch mode, you can direct output to a terminal by associating a
fileref with a terminal and then using PROC PRINTTO to send output to that fileref.
In the FILENAME statement, specify the TERMINAL device-type and the special file
associated with the terminal. For example, the following statements send the SAS
log to the terminal that is associated with the /dev/tty3 special file:

filename term terminal '/dev/tty3';

Using SAS System Options to Route Output 127

proc printto log=term;
run;

Using SAS System Options to Route
Output

Changing the Output Destination Using the LOG,
PRINT, ALTLOG, and ALTPRINT System Options

You can use SAS system options to change the destination of the SAS log and
procedure output. The options that you use depend on which task you want to
accomplish:

To route your SAS log or procedure output to an external file instead of to their
default destinations, use the LOG and PRINT system options.

To route the log or output to an external file in addition to their default
destinations, use the ALTLOG and ALTPRINT system options. This method
works in all modes of running SAS.

LOG and PRINT are normally used in batch and interactive line modes. These
system options have no effect in the windowing environment. If you are running in
the windowing environment, use the ALTLOG and ALTPRINT system options.

You can specify these options in the following locations:
the SAS command
a configuration file
the SASV9_OPTIONS environment variable
For example, you could specify these options in the SAS command as follows:
sas -log '/u/myid/log' -print '/u/myid/prt’
sas -altlog '/u/myid/log' -altprint '/u/myid/prt'

For more information, see “Ways to Specify a SAS System Option” on page 22.

128 Chapter 5 / Printing and Routing Output

Printing

Large Files with the PIPE Device

Type in UNIX Environments

When you print a file with the 1p command, a symbolic link is created from the file to
the /usr/spool directory. When you pipe output to the 1p command, the output is
copied under the /usr/spool directory.

If you experience problems printing large files using the PIPE device type, you can
circumvent the problem in either of the following ways:

save the print file to a disk file and then print it with the 1p command. Issue the
PRINT command from the Output or Log window:

print file='bigfile'

Exit your SAS session and print the file, or use the SAS X command to print the
file from within your SAS session:

x 'lp -dmylsrjt bigfile'

create a fileref using the PIPE device type that can handle large files. For
example, the following fileref saves the print file to disk, prints the saved file, and
then removes the file:

filename myfile pipe 'cat >bigfile;lp -dmylsrlt bigfile;rm bigfile;';

Changing the Default Print Destination in
UNIX Environments

When you print a file, SAS looks in the following locations to determine where to
send output. The locations are listed in order of precedence:

1

2

3

The destination specified in Universal Printing or the form printer device that you
are using. See Universal Printing in SAS Programmer’s Guide: Essentials for
more information.

The value specified in the SYSPRINT system option. You can use the
SYSPRINT option to set your default print destination. Use the SYSPRINT
system option to specify the destination option that is used with your print
command. For example, if your print command is 1p, you can set the default
destination to the printer named Myljet by entering the following OPTIONS
statement:

options sysprint='-dmyljet';

The value of the $LPDEST environment variable. For more information, see
“Defining Environment Variables in UNIX Environments” on page 309 .

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Controlling the Content and Appearance of Output in UNIX Environments 129

SAS uses the first destination that it finds. If you specify a destination in all three
locations, SAS uses the destination specified by Universal Printing.

Changing the Default Print Command in
UNIX Environments

UNIX uses 1p as the default print command. You can use the PRINTCMD system
option to specify a different print command. For example, you can change your
default print command to 1pr by entering the following at SAS invocation:

sas -printcmd "lpr"

You can also customize your default print command in your SAS configuration file. If
you use this method, then you will not have to change the default print command
every time you invoke SAS. For more information, see “PRINTCMD System Option:
UNIX” on page 470.

Controlling the Content and Appearance
of Output in UNIX Environments

Overview of Controlling the Content and
Appearance of Output

Some of the attributes of the SAS log and procedure output depend on the
destination to which they are being sent. For example, if the log and output are
being sent to your display, the default line and page size are derived from your
display. If one or both of these files are sent to the system printer or written to a file,
the default line size and page size depend on your printer and page setup. The line
size and page size for your current settings can be seen in the Print dialog box.

Some of the attributes of the SAS log and procedure output depend on the mode in
which you are running. For example, if you are running in interactive line mode, SAS
source statements are not echoed to the SAS log. If you are using the SAS
windowing environment, all source statements are written to the log as they are
submitted. In noninteractive mode or in batch mode, the log and procedure output
are formatted for a standard system printer.

For more information about specifying system options, see “Customizing Your SAS
Session By Using System Options” on page 22.

130 Chapter 5 / Printing and Routing Output

SAS Log Options

Use the following options to control the contents of the log. For more information
about specifying options, see “SAS System Options under UNIX” on page 409.

FULLSTIMER | NOFULLSTIMER
controls whether a list of resources (such as I/O performed, page faults, elapsed
time, and CPU time) used for each PROC or DATA step is written to the log.
NOFULLSTIMER is the default.

LINESIZE=width
controls the line length used. Width can be any value from 64 to 256.

NEWS | NONEWS
controls whether messages are written to the SAS log. NEWS is the default.

NOTES | NONOTES
controls printing of NOTES on the log. NOTES is the default setting for all
execution modes. Specify NOTES unless your SAS program is completely
debugged.

PAGESIZE=n
controls the number of lines that are printed on each page. N can be any number
from 15 to 32767.

SOURCE | NOSOURCE
controls whether SAS source statements are written to the log. NOSOURCE is
the default setting in interactive line mode. Otherwise, SOURCE is the default.

SOURCE2 | NOSOURCE2
controls whether SAS statements that are included with %INCLUDE statements
are written to the log. NOSOURCEZ2 is the default setting for all execution
modes.

STIMER | NOSTIMER
controls whether user CPU time and elapsed time are written to the log. STIMER
is the default.

Procedure Output Options

Use these system options to control the contents of the procedure output for the
LISTING destination:

CENTER | NOCENTER
controls whether the printed results are centered or left-aligned on the procedure
output page. CENTER is the default.

DATE | NODATE
controls whether the date is written at the top of each procedure output page.
DATE is the default.

LINESIZE=width
controls the line length used. Width can be any value from 64 to 256.

Controlling the Content and Appearance of Output in UNIX Environments 131

NUMBER | NONUMBER
controls whether the output page number is written on each procedure output
page. NUMBER is the default.

PAGENO=n
resets the current page number in the print file. The default page number at the
beginning of the SAS session is 1. The pages are numbered sequentially
throughout the SAS session unless the PAGENO option is specified in an
OPTIONS statement during the session.

PAGESIZE=n
controls the number of lines that are printed on each page. The value of n can
be any number from 15 to 32,767.

132 Chapter 5 / Printing and Routing Output

133

Accessing Shared Executable
Libraries from SAS

Overview of Shared Libraries in SAS 134
What Is a Shared Library? 134
Invoking Shared Libraries from within SAS 134
Steps for Accessing an External Shared Library 134

The SASCBTBL Attribute Table 135
Introduction to the SASCBTBL Attribute Table 135
What Is the SASCBTBL Attribute Table? 135
Syntax of the Attribute Table 136
The Importance of the Attribute Table 140

Special Considerations When Using Shared Libraries 141
32-Bit and 64-Bit Considerations 141
Naming Considerations When Using Shared Libraries 143
Using PEEKLONG Functions to Access Character String Arguments 143
Accessing Shared Libraries Efficiently 144
Grouping SAS Variables as Structure Arguments 145
Using Constants and Expressions as Arguments to the MODULE Function 147
Specifying Formats and Informats to Use with MODULE Arguments 148
Understanding MODULE Log Messages 153

Examples of Accessing Shared Executable Libraries 155
Example 1: Updating a Character String Argument 155
Example 2: Passing Arguments by Value 156
Example 3: Using PEEKCLONG to Access a Returned Pointer 157
Example 4: Using Structures 158

Example 5: Invoking a Shared Library Routine 160

134 Chapter 6 / Accessing Shared Executable Libraries from SAS

Overview of Shared Libraries in SAS

What Is a Shared Library?

Shared libraries in UNIX are libraries that contain executable programs that are
written in any of several programming languages. In UNIX, the names of these
programs typically end with a .so or .sl extension. However, they are not constrained
to this naming convention.

Shared libraries are a mechanism for storing useful routines that might be needed
by multiple applications. When an application needs a routine that resides in an
external shared library, it loads the shared library, invokes the routine, and unloads
the shared library upon completion.

Invoking Shared Libraries from within SAS

SAS provides routines and functions that let you invoke these external routines from
within SAS. You can access the shared library routines from the DATA step, the IML
procedure, and SCL code. You use the MODULE family of SAS CALL routines and
functions (including MODULE, MODULEN, and MODULEC), as well as the
SAS/IML CALL routines and functions (including MODULEIC, MODULEIN, and
MODULEI), to invoke a routine that resides in a shared library. This documentation
refers to the MODULE family of CALL routines and functions generically as the
MODULE function.

For more information, see “CALL MODULE Routine” in SAS Functions and CALL
Routines: Reference, “MODULEC Function” in SAS Functions and CALL Routines:
Reference, and “MODULEN Function” in SAS Functions and CALL Routines:
Reference. For information about MODULEIC, MODULEIN, and MODULEI, see
SAS/IML 12.3 User's Guide .

Steps for Accessing an External Shared Library

Use the following steps to access an external shared library routine:

1 Create a text file that describes the shared library routine that you want to
access, including the arguments that it expects and the values that it returns (if
any). This attribute file must be in a special format, as described in “The
SASCBTBL Attribute Table” on page 135.

2 Use the FILENAME statement to assign the SASCBTBL fileref to the attribute file
that you created.

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0g0t4qe5q9jqcn15ovkk41ga6wl.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0g0t4qe5q9jqcn15ovkk41ga6wl.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1c7xirwnpygden18b5vhhou79az.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n1c7xirwnpygden18b5vhhou79az.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0d84o1pjgm0akn129atp8njpj77.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0d84o1pjgm0akn129atp8njpj77.htm&locale=en

The SASCBTBL Attribute Table 135

3 In a DATA step or SCL code, use the CALL MODULE routine, or the MODULEN
or MODULEC functions to invoke the shared library routine. The specific CALL
routine or function that you use depends on the type of expected return value
(none, numeric, or character). (You can also use MODULEI, MODULEIN, or
MODULEIC within a PROC IML step.) The MODULE functions are described in
“CALL MODULE Routine: UNIX” on page 325.

CAUTION

Only experienced programmers should access external routines in shared
libraries. By accessing a function in a shared library, you transfer processing control to
the external function. If done improperly, or if the external function is not reliable, you
might lose data, get unreliable results, or receive severe errors.

The SASCBTBL Attribute Table

Introduction to the SASCBTBL Attribute Table

Because the MODULE function invokes an external routine that SAS knows nothing
about, provide information about the routine's arguments. This enables the
MODULE function to validate the arguments and convert them, if necessary. For
example, suppose you want to invoke a routine that requires an integer as an
argument. Because SAS uses floating-point values for all of its numeric arguments,
the floating-point value must be converted to an integer before you invoke the
external routine. The MODULE function looks for this attribute information in an
attribute table that is referred to by the SASCBTBL fileref.

What Is the SASCBTBL Attribute Table?

The attribute table is a sequential text file that contains descriptions of the routines
that you can invoke with the MODULE function. The table defines how the MODULE
function should interpret supplied arguments when it builds a parameter list to pass
to the called routine.

The MODULE function locates the table by opening the file that is referenced by the
SASCBTBL fileref. If you do not define this fileref, the MODULE function simply calls
the requested shared library routine without altering the arguments.

CAUTION

Using the MODULE function without defining an attribute table can cause SAS
to crash, produce unexpected results, or result in severe errors. You need to
use an attribute table for all external functions that you want to invoke.

136 Chapter 6 / Accessing Shared Executable Libraries from SAS

Syntax of the Attribute Table

The Attribute Table

The attribute table should contain the following items:

a description in a ROUTINE statement for each shared library routine that you
intend to call

descriptions in ARG statements for each argument that is associated with the
routine that you intend to call

At any point in the attribute table file, you can create a comment using an asterisk
(*) as the first non-blank character of a line or after the end of a statement (following
the semicolon). You must end the comment with a semicolon.

ROUTINE Statement

Here is the syntax of the ROUTINE statement:

ROUTINE name MINARG=minarg MAXARG=maxarg
<CALLSEQ=BYVALUE | BYADDR>
<TRANSPOSE=YES | NO> <MODULE=shared-library-name>

<RETURNS=DBLPTR | CHAR<n> | DOUBLE | LONG | PTR | SHORT |
[UJINT32
| [U]INT64 | ULONG | USHORT>;

The following are descriptions of the ROUTINE statement attributes:

ROUTINE
starts the ROUTINE statement. You need a ROUTINE statement for every
shared library function that you intend to call.

name
specifies the routine name. The value for name must match the routine name or
ordinal that you specified as part of the module argument in the MODULE
function. The module argument is the name of the shared library (if it is not
specified by the MODULE attribute) and the routine name or ordinal. For
example, in order to specify 1ibc, getcwd in the MODULE function call, set
name to getcwd.

The name argument is case sensitive, and is required for the ROUTINE
statement.

MINARG=minarg
specifies the minimum number of arguments to expect for the shared library
routine. In most cases, this value is the same as MAXARG; but some routines do
allow a varying number of arguments. This attribute is required.

The SASCBTBL Attribute Table 137

MAXARG=maxarg
specifies the maximum number of arguments to expect for the shared library
routine. This attribute is required.

CALLSEQ=BYVALUE | BYADDR
indicates the calling sequence method used by the shared library routine.
Specify BYVALUE for call-by-value and BYADDR for call-by-address. The
default value is BYADDR.

Fortran and COBOL are call-by-address languages. C is usually call-by-value,
although a specific routine might be implemented as call-by-address.

The MODULE function does not require that all arguments use the same calling
method. You can identify any exceptions by using the BYVALUE and BYADDR
options in the ARG statement.

TRANSPOSE=YES | NO
specifies whether SAS transposes matrices that have both more than one row
and more than one column before it calls the shared library routine. This attribute
applies only to routines called from within PROC IML with MODULEI,
MODULEIC, and MODULEIN.

TRANSPOSE=YES is necessary when you are calling a routine that is written in
a language that does not use row-major order to store matrices. (For example,
Fortran uses column-major order.)

For example, consider this matrix with three columns and two rows:

columns

rows 1 | 10 11 12
2 | 13 14 15

PROC IML stores this matrix in memory sequentially as 10, 11, 12, 13, 14, 15.
However, Fortran routines expect this matrix as 10, 13, 11, 14, 12, 15.

The default value is NO.

MODULE=shared-library-name
names the executable module (the shared library) in which the routine resides.
You do not need to specify this attribute if the name of the shared library is the
same name as the routine. If you specify the MODULE attribute in the ROUTINE
statement, then you do not need to specify the module name in the module
argument in the MODULE function. However, if the shared library routine name
that you are calling is not unique in the attribute table, then you must specify this
attribute. The MODULE routine is described in “CALL MODULE Routine: UNIX”
on page 325.

You can have multiple ROUTINE statements that use the same MODULE name.
You can also have duplicate routine names that reside in different shared
libraries.

The MODULE function searches the directories that are defined in each
operating system's library path environment variable when it attempts to load the
shared library argument provided in the MODULE attribute. The following table
lists this environment variable for each UNIX operating system that SAS
supports.

138 Chapter 6 / Accessing Shared Executable Libraries from SAS

Table 6.1 Shared Library Environment Variable Name

Operating Environment Environment Variable Name

Solaris $LD_LIBRARY_PATH

AIX/R $LIBPATH

HP-UX $LD_LIBRARY_PATH or $SHLIB_PATH

Note: Beginning in SAS 9.4M8, the
HP-UX platform is no longer supported.

Linux $LD_LIBRARY_PATH

Note: For more information about these environment variables, see the man
pages for your operating environment.

You can also use the PATH system option to point to the directory that contains
the shared library specified in the MODULE= option. Using the PATH system
option overrides your system's environment variable when you load the shared
library. For more information, see “PATH System Option: UNIX” on page 468.

RETURNS=DBLPTR | CHAR<n> | DOUBLE | LONG | PTR | SHORT | [U]INT32 |
[U]INT64 | ULONG | USHORT
specifies the type of value that the shared library routine returns. This value is
converted as appropriate, depending on whether you use MODULEC (which
returns a character) or MODULEN (which returns a number). Here are the
possible return value types:

DBLPTR
pointer to a double-precision floating point number (instead of using a
floating-point register). See the documentation for your shared library routine
to determine how it handles double-precision floating-point values.

CHAR<n>
pointer to a character string up to n bytes long. The string is expected to be
null-terminated and is blank-padded or truncated as appropriate. If you do not
specify n, the MODULE function uses the maximum length of the receiving
SAS character variable.

DOUBLE
double-precision floating-point number.

LONG
long integer.

PTR
character string being returned.

SHORT
short integer.

[U]INT32
32-bit unsigned integer.

[U]INT64
64-bit unsigned integer.

The SASCBTBL Attribute Table 139

ULONG
unsigned long integer.

USHORT
unsigned short integer.

If you do not specify the RETURNS attribute, you should invoke the routine with
only the MODULE and MODULEI CALL routines. You will get unpredictable
values if you omit the RETURNS attribute and invoke the routine using the
MODULEN and MODULEIN functions or the MODULEC and MODULEIC
functions.

ARG Statement

The ROUTINE statement must be followed by as many ARG statements as you
specified in the MAXARG= option. The ARG statements must appear in the order in
which the arguments will be specified within the MODULE function.

Here is the syntax for each ARG statement:

ARG argnum NUM | CHAR <INPUT | OUTPUT | UPDATE> <NOTREQD |
REQUIRED>

<BYADDR | BYVALUE> <FDSTART> <FORMAT=format>;
Here are the descriptions of the ARG statement attributes:

argnum
defines the argument number. This is a required attribute. Define the arguments
in ascending order, starting with the first routine argument (ARG 1).

NUM | CHAR
defines the argument as numeric or character. This attribute is required.

If you specify NUM here but pass the routine a character argument, the
argument is converted using the standard numeric informat. If you specify CHAR
here but pass the routine a numeric argument, the argument is converted using
the BEST12. informat.

INPUT | OUTPUT | UPDATE
indicates the argument is either input to a routine, an output argument, or both. If
you specify INPUT, the argument is converted and passed to the shared library
routine. If you specify OUTPUT, the argument is not converted, but is updated
with an outgoing value from the shared library routine. If you specify UPDATE,
the argument is converted, passed to the shared library routine, and updated
with an outgoing value from the routine.

You can specify OUTPUT and UPDATE only with variable arguments (that is, no
constants or expressions are allowed).

NOTREQD | REQUIRED
indicates whether the argument is required. If you specify NOTREQD, then the
MODULE function can omit the argument. If other arguments follow the omitted
argument, identify the omitted argument by including an extra comma as a
placeholder. For example, to omit the second argument to routine XYZ, you
would specify this code:

call module('XYZ',1,,3);

CAUTION

140 Chapter 6 / Accessing Shared Executable Libraries from SAS

Be careful when using NOTREQD; the shared library routine must not
attempt to access the argument if it is not supplied in the call to MODULE.
If the routine does attempt to access it, you might receive unexpected
results or severe errors.

The REQUIRED attribute indicates that the argument is required and cannot be
omitted. REQUIRED is the default value.

BYADDR | BYVALUE
indicates whether the argument is passed by reference or by value.

BYADDR is the default value unless CALLSEQ=BYVALUE was specified in the
ROUTINE statement. In that case, BYVALUE is the default. Specify BYADDR
when you are using a call-by-value routine that also has arguments to be passed
by address.

FDSTART
indicates that the argument begins a block of values that are grouped into a
structure whose pointer is passed as a single argument. Note that all subsequent
arguments are treated as part of that structure until the MODULE function
encounters another FDSTART argument.

FORMAT=format
names the format that presents the argument to the shared library routine. Any
formats supplied by SAS, PROC FORMAT style formats, or SAS/TOOLKIT
formats are valid. Note that this format must have a corresponding valid informat
if you specified the UPDATE or OUTPUT attribute for the argument.

The FORMAT= attribute is not required, but is recommended because format
specification is the primary purpose of the ARG statements in the attribute table.

CAUTION
Using an incorrect format can produce invalid results, cause SAS to crash,
or result in serious errors.

The Importance of the Attribute Table

The MODULE function relies heavily on the accuracy of the information in the
attribute table. If this information is incorrect, unpredictable results can occur
(including a system crash).

Consider an example routine xyz that expects two arguments: an integer and a
pointer. The integer is a code indicating what action takes place. For example,
action 1 means that a 20-byte character string is written into the area that is pointed
to by the second argument, the pointer.

Suppose you call xyz using the MODULE function, but you indicate in the attribute
table that the receiving character argument is only 10 characters long:

routine xyz minarg=2 maxarg=2;
arg 1 input num byvalue format=ib4.;
arg 2 output char format=$charlo.;

Regardless of the value given by the LENGTH statement for the second argument
to MODULE, MODULE passes a pointer to a 10-byte area to the xyz routine. If xyz

Special Considerations When Using Shared Libraries 141

writes 20 bytes at that location, the 10 bytes of memory following the string provided
by MODULE are overwritten, causing unpredictable results:

data null ;

length x $20;

call module('xyz',1,x);
run;

The call might work fine, depending on which 10 bytes were overwritten. However,
overwriting can cause you to lose data or cause your system to crash.

Also, note that the PEEKLONG and PEEKCLONG functions rely on the validity of
the pointers that you supply. If the pointers are invalid, it is possible that severe
errors will result. For example, this code causes an error:

data null ;
length ¢ $10;
/* trying to copy from address 0!!!*x/
¢ = peekclong(0,10);
run;

Special Considerations When Using
Shared Libraries

32-Bit and 64-Bit Considerations

Compatibility between Your Shared
Libraries and SAS

Starting in SAS 9, SAS is a 64-bit application that runs on all supported UNIX
environments that are 64-bit enabled. When you call external routines in shared
libraries, the shared library needs to be compatible with SAS.

For example, suppose that you are running SAS 9 on Solaris, which calls routines in
the shared library libc.so. The compatible version of this shared library must be 64-
bit for SAS 9 to load the library. A 64-bit application cannot load a 32-bit library.

To determine whether a vendor-supplied library is 32-bit or 64-bit, you can use the
FILE command. The following output shows the results of using the FILE command
on Solaris for a 32-bit and 64-bit library:

142 Chapter 6 / Accessing Shared Executable Libraries from SAS

$ file libc-2.12.s0
libc-2.12.s0: ELF 64-bit LSB shared object, x86-64, version 1 (GNU/Linux),
dynamically linked (uses shared libs), for GNU/Linux 2.6.18,not stripped

$ file ./libc.so
./libc.so: ELF 64-bit MSB dynamic lib SPARCV9 Version 1, dynamically linked,
not stripped

If you have difficulty loading a SAS module that is linked to a vendor-supplied
library, check your LD_LIBRARY_PATH environment variable to make sure that it is
set up correctly. The environment variable should point to the 64-bit directory of
libraries, rather than the 32-bit directory.

Allocated by the Shared Library

When specifying your SAS format and informat for each routine argument in the
FORMAT attribute of the ARG statement, you need to consider the amount of
memory the shared library allocates for the parameters that it receives and returns.
To determine how much storage is being reserved for the input and return
parameters of the routine in the external shared library, you can use the SIZEOF C
function.

The following table lists the typical memory allocations for C data types for 64-bit
systems:

Table 6.2 Memory Allocations for C Data Types

64-Bit System Size

Type (Bytes) 64-Bit System Size (Bits)
CHAR 1 8

SHORT 2 16

INT 4 32

LONG 8 64

LONG LONG 8 64

FLOAT 4 32

DOUBLE 8 64

POINTER 8 64

For information about the SAS formats to use for your data types, see “Specifying
Formats and Informats to Use with MODULE Arguments” on page 148.

Special Considerations When Using Shared Libraries 143

Naming Considerations When Using Shared
Libraries

Naming Constraints

SAS loads external shared libraries that meet the following naming constraints:
The name is eight characters or less.
The name does not contain a period.

If the name of your external shared library is greater than eight characters or
contains a period, then you can create a symbolic link to point to the destination of
the shared library. Once the link is created, you can add the name of the symbolic
link to the MODULE statement in the SASCBTBL attribute table. When you are
ready to execute your SAS program, use the PATH system option to point to the
directory that contains the symbolic link.

Example of Creating a Symbolic Link

The Hewlett-Packard shared library libc.sl that is installed in the /usr/lib/hpux64
directory contains a period in the name. Before SAS loads this shared library, you
need to create a symbolic link that meets the naming convention of eight characters
or less and no period. The symbolic link shown in the following example points to
the target location of libc.sl:

$ In -s /usr/lib/hpux64/libc.so /tmp/libclnk

After the symbolic link is created, you can update the MODULE= option in the
SASCBTBL attribute table, as shown in the following code:

routine name minarg=2 maxarg=2 returns=short module=1libclnk;
arg 1 char output byaddr fdstart format=$cstr9.;
arg 2 char output format=$Scstr9.;

To load the shared library during your invocation of SAS, enter the following
command:

/usr/local/sasv94/sas -path /tmp module.sas

Using PEEKLONG Functions to Access Character
String Arguments

Because the SAS language does not provide pointers as data types, you can use
the SAS PEEKLONG functions to access the data stored at these address values.

144 Chapter 6 / Accessing Shared Executable Libraries from SAS

For example, the following program demonstrates how the address of a pointer is
supplied and how it can set the pointer to the address of a static table containing the
contiguous integers 1, 2, and 3. It also calls the useptr routine in the useptr shared
library on a 64-bit operating system.

static struct MYTABLE {
int valuel;

int value2;

int value3;

} mytable = {1,2,3};

useptr (toset)
char **toset;

{

*toset = (char *)&mytable

}
Here is the SASCBTBL attribute table entry:

routine useptr minarg=1 maxarg=1;
arg 1 char update format=$char20.;

Here is the SAS code:

data null ;
length ptrval $20 thedata $12;
call module('*i', 'useptr',ptrval);
thedata=peekclong(ptrval,l12);

/* Converts hexadecimal data to character data */
put thedata=$hex24.;

/* Converts hexadecimal positive binary values to fixed or floating
point value */

ptrval=hex40.;
run;

SAS writes the following output to the log.

Output 6.1 Log Output for Accessing Character Strings with the PEEKCLONG Function

thedata=000000010000000200000003 ptrval=800003FFFFOC

In this example, the PEEKCLONG function is given two arguments, a pointer via a
numeric variable and a length in bytes. PEEKCLONG returns a character string of
the specified length containing the characters at the pointer location.

For more information about the PEEKLONG functions, see “PEEKLONG Function:
UNIX” on page 350.

Accessing Shared Libraries Efficiently

The MODULE function reads the attribute table that is referenced by the
SASCBTBL fileref once per step (DATA step, PROC IML step, or SCL step). It
parses the table and stores the attribute information for future use during the step.

Special Considerations When Using Shared Libraries 145

When you use the MODULE function, SAS searches the stored attribute information
for the matching routine and module names. The first time you access a shared
library during a step, SAS loads the shared library, and determines the address of
the requested routine. Each shared library that you invoke stays loaded for the
duration of the step, and is not reloaded in subsequent calls. All modules and
routines are unloaded at the end of the step.

In the following example, the attribute table has the following basic form:

* routines XYZ and BBB in FIRST.Shared Library;
routine XYZ minarg=1 maxarg=1l module=FIRST;

arg 1 num input;

routine BBB minarg=1 maxarg=1l module=FIRST;

arg 1 num input;

* routines ABC and DDD in SECOND.Shared Library;
routine ABC minarg=1 maxarg=1 module=SECOND;

arg 1 num input;

routine DDD minarg=1 maxarg=1 module=SECOND;
arg 1 num input;

The DATA step code looks like the following:

filename sascbtbl 'myattr.tbl';
data null ;
do i=1 to 50;
/* FIRST.Shared Library is loaded only once */
value = modulen('XYZ',1i);
/* SECOND.Shared Library is loaded only once */
value2 = modulen('ABC',value);
put i= value= value2=;
end;
run;

In this example, MODULEN parses the attribute table during DATA step compilation.
In the first loop iteration (i=1), FIRST.Shared Library is loaded and the XYZ routine
is accessed when MODULEN calls for it. Next, SECOND.Shared Library is loaded
and the ABC routine is accessed. For subsequent loop iterations (starting when
i=2), FIRST.Shared Library and SECOND.Shared Library remain loaded, so the
MODULEN function simply accesses the XYZ and ABC routines. SAS unloads both
shared libraries at the end of the DATA step.

Note that the attribute table can contain any number of descriptions for routines that
are not accessed for a given step. The presence of the attribute table does not
cause any additional overhead (apart from a few bytes of internal memory to hold
the attribute descriptions). In the above example, BBB and DDD are in the attribute
table but are not accessed by the DATA step.

Grouping SAS Variables as Structure Arguments

Passing an Argument to a Structure

A common need when calling external routines is to pass a pointer to a structure.
Some parts of the structure might be used as input to the routine. Other parts might
be replaced or filled in by the routine. Even though SAS does not have structures in

146 Chapter 6 / Accessing Shared Executable Libraries from SAS

its language, you can indicate to the MODULE function that you want a particular
set of arguments grouped into a single structure. You indicate this grouping by using
the FDSTART option of the ARG statement to flag the argument that begins the
structure in the attribute table. SAS gathers that argument and the subsequent
arguments (until it encounters another FDSTART option) into a single contiguous
block. SAS then passes a pointer to the block as an argument to the shared library
routine.

Example: Grouping Your System
Information as Structure Arguments

This example uses the uname routine, which is part of
the /usr/lib/hpux64/libc.so shared library in the HP-UX operating environment.
This routine returns the following information about your computer system:

The node name on which you are executing SAS.
The version of the operating system.

The vendor of the operating system.

The computer identification number.

The model type of your computer.

The unique identification number of your class of hardware. This value could be
a serial number.

Here is the C prototype for this routine:
int uname (struct utsname *name) ;
In C, the utsname structure is defined with the following members:

#define UTSLEN 9
#define SNLEN 15

char sysname [UTSLEN] ;
char nodename [UTSLEN] ;
char release [UTSLEN] ;
char version [UTSLEN] ;
char machine [UTSLEN] ;
char idnumber [SNLEN] ;

Each of the above structure members are null-terminated strings.

To call this routine using the MODULE function, you use the following attribute table
entries:

* attribute table entry;
routine uname minarg=6 maxarg=6 returns=short module=libc;
arg 1 char output byaddr fdstart format=S$Scstr9.;

arg 2 char output format=$cstr9.;
arg 3 char output format=$cstr9.;
arg 4 char output format=$cstr9.;

arg 5 char output format=$cstr9.;

Special Considerations When Using Shared Libraries 147

arg 6 char output format=$cstril5. ;

The following example shows the SAS source code to call the uname routine from
within the DATA step:

x 'if [! -L ./libc 1; then 1ln -s /usr/lib/hpux64/libc.so ./libc ;
fi' ;
X 'setenv LD LIBRARY PATH .:/usr/lib:/lib:/usr/lib/hpux64’

data null ;

length sysname $9 nodename $9 release $9 version $9 machine $9
idnumber $15.

retain sysname nodename release version machine idnumber “ “;

rc=modulen ('uname', sysname, nodename, release, version, machine,
idnumber)

put rc = ;

put sysname = ;

put nodename ;

put release ;

put version = ;

put machine ;

put idnumber ;
run;

SAS writes the following output to the log:
Example Code 6.1 Grouping SAS Variables as a Structure

rc=0

sysname=HP-UX
nodename=garage
release=B.11.31
version=u
machine=1ia64
idnumber=103901537

Using Constants and Expressions as Arguments to
the MODULE Function

You can pass any type of expression as an argument to the MODULE function. The
attribute table indicates whether the argument is for input, output, or update.

You can specify input arguments as constants and arithmetic expressions. However,
because output and update arguments must be able to be modified and returned,
you can pass only a variable for them. If you specify a constant or expression where
a value that can be updated is expected, SAS issues a warning message pointing
out the error. Processing continues, but the MODULE function cannot perform the
update (meaning that the value of the argument that you wanted to update is lost).

Consider these examples. Here is the attribute table:

* attribute table entry for ABC;
routine abc minarg=2 maxarg=2;
arg 1 input format=ib4.;

arg 2 output format=ib4.;

148 Chapter 6 / Accessing Shared Executable Libraries from SAS

Here is the DATA step with the MODULE calls:

data null ;
x=5;
/* passing a variable as the */
/* second argument - OK */

call module('abc',1,x);

/* passing a constant as the */
/* second argument - INVALID */
call module('abc',1,2);

/* passing an expression as the */
/* second argument - INVALID */
call module('abc',1,x+1);

run;

In the above example, the first call to MODULE is correct because x is updated by
the value that the abe routine returns for the second argument. The second call to
MODULE is not correct because a constant is passed. MODULE issues a warning
indicating you have passed a constant, and passes a temporary area instead. The
third call to MODULE is not correct because an arithmetic expression is passed.
Passing an arithmetic expression causes a temporary location from the DATA step
to be used and the returned value to be lost.

Specifying Formats and Informats to Use with
MODULE Arguments

Using the FORMAT Attribute in the ARG
Statement

You specify the SAS format and informat for each shared library routine argument
by specifying the FORMAT attribute in the ARG statement. The format indicates
how numeric and character values should be passed to the shared library routine
and how they should be read back upon completion of the routine.

Usually, the format that you use corresponds to a variable type for a given
programming language. The following sections describe the proper formats that
correspond to different variable types in various programming languages.

C Language Formats

Special Considerations When Using Shared Libraries 149

Table 6.3 C Language Formats

C Type

DOUBLE

FLOAT

SIGNED INT
SIGNED SHORT
SIGNED LONG
CHAR *
UNSIGNED INT
UNSIGNED SHORT
UNSIGNED LONG

CHAR[W]

SAS Format or Informat for 64-Bit
Systems

RB8.
FLOATA4.
IB4.

IB2.

IB8.

IB8.
PIB4.
PIB2.
PIBS.

$CHARw. or $CSTRw. (see “$CSTRw.
Format” on page 151)

Note: For information about passing character data other than as pointers to
character strings, see “$BYVALw. Format” on page 152.

Fortran Language Formats

Table 6.4 Fortran Language Formats
Fortran Type

integer*2

integer*4

real*4

real*8

character*w

SAS Format or Informat

IB2.

IB4.

RB4.

RBS8.

$CHARwW.

150 Chapter 6 / Accessing Shared Executable Libraries from SAS

The MODULE function can support Fortran character arguments only if they are not
expected to be passed by a descriptor.

PL/I Language Formats

Table 6.5 PL/I Language Formats

PL/I Type SAS Format or Informat
FIXED BIN(15) IB2.

FIXED BIN(31) IB4.

FLOAT BIN(21) RB4.

FLOAT BIN(31) RB8.

CHARACTER(w) $CHARwW.

The PL/I descriptions are added here for completeness. These descriptions do not
guarantee that you will be able to invoke PL/I routines.

COBOL Language Formats

Table 6.6 COBOL Language Formats

COBOL Format SAS Format or Informat Description
PIC Sxxxx BINARY IBw. integer binary
COMP-2 RBS. double-precision

floating point

COMP-1 RB4. single-precision
floating point

PIC xxxx or Sxxxx Fw. printable numeric

PIC yyyy $CHARw. character

The following COBOL specifications might not match properly with the formats
supplied by SAS because zoned and packed decimal are not truly defined for
systems based on Intel architecture.

Special Considerations When Using Shared Libraries 151

Table 6.7 COBOL Specifications and SAS Formats and Informats

COBOL Format SAS Format or Informat Description
PIC Sxxxx DISPLAY ZDw. zoned decimal
PIC Sxxxx PACKED-DECIMAL PDw. packed decimal

The following COBOL specifications do not have true native equivalents and are
usable only in conjunction with the corresponding S370F xxx format and informat.
The S370Fxxx format and informat enable IBM mainframe-style representations to
be read and written in the UNIX environment.

Table 6.8 COBOL Specifications Used with the S370Fxxx Group of Formats and Informats

SAS Format or

COBOL Format Informat Description

PIC xxxx DISPLAY S370FZDUw. zoned decimal
unsigned

PIC Sxxxx DISPLAY SIGN S370FZDLw. zoned decimal

LEADING leading sign

PIC Sxxxx DISPLAY SIGN S370FZDSw. zoned decimal

LEADING SEPARATE leading sign separate

PIC Sxxxx DISPLAY SIGN S370FZDTw. zoned decimal

TRAILING SEPARATE trailing sign separate

PIC xxxx BINARY S370FIBUw. integer binary
unsigned

PIC xxxx PACKED-DECIMAL S370FPDUwW. packed decimal
unsigned

$CSTRw. Format

If you pass a character argument as a null-terminated string, use the $CSTRw.
format. This format looks for the last non-blank character of your character
argument and passes a copy of the string with a null terminator after the last non-
blank character. For example, consider the following attribute table entry:

* attribute table entry;
routine abc minarg=1 maxarg=1;
arg 1 input char format=$cstrlO.;

With this entry, you can use the following DATA step:

data null ;

152 Chapter 6 / Accessing Shared Executable Libraries from SAS

rc = module('abc', 'my string');
run;

The $CSTR format adds a null terminator to the character string my string before
passing it to the abc routine. Adding a null terminator to the character string and
then passing the string to the abc routine is equivalent to the following attribute
entry:

* attribute table entry;
routine abc minarg=1 maxarg=1l;
arg 1 input char format=$charlo.;

The entry would have the following DATA step:

data null_;
rc = module('abc', 'my string'||'00'x);
run;

The first example is easier to understand and easier to use when using variable or
expression arguments.

The $CSTR informat converts a null-terminated string into a blank-padded string of
the specified length. If the shared library routine is supposed to update a character
argument, use the $CSTR informat in the argument attribute.

$BYVALw. Format

When you use a MODULE function to pass a single character by value, the
argument is automatically promoted to an integer. If you want to use a character
expression in the MODULE call, you must use the special format or informat called
$BYVALw. The $BYVALw. format and informat expects a single character and
produces a numeric value, the size of which depends on w. $BYVAL2. produces a
short, $BYVALA4. produces a long, and $BYVALS. produces a double. Consider this
example using the C language:

long xyz(a,b)

long a; double b;

{

static char ¢ = 'Y';

if (a == 'X")
return(l) ;

else if (b == ¢)
return(2) ;

else return(3);

}

In this example, the xyz routine expects two arguments, a long and a double. If the
long is an x, the actual value of the long is 88 in decimal. This result happens
because an ASCII x is stored as hexadecimal 58, and this value is promoted to a
long, represented as 0x00000058 (or 88 decimal). If the value of a is %, or 88, then a
1 is returned. If the second argument, a double, is y (which is interpreted as 89),
then 2 is returned.

If you want to pass characters as the arguments to xyz, then in the C language, you
would invoke them as follows:

x = xyz('X', (double) 'Z") ;
y = xyz('Q', (double) 'Y") ;

Special Considerations When Using Shared Libraries 153

The characters are invoked in this way because the x and Q values are
automatically promoted to integers. (Integers are the same as longs in this
example.) The integer values corresponding to Z and Y are cast to doubles.

To call xyz using the MODULEN function, your attribute table must reflect the fact
that you want to pass characters:

routine xyz minarg=2 maxarg=2 returns=long;
arg 1 input char byvalue format=Sbyval4d.;
arg 2 input char byvalue format=Sbyvals.;

Note that it is important that the BYVALUE option appears in the ARG statement as
well. Otherwise, MODULEN assumes that you want to pass a pointer to the routine,
instead of a value.

Here is the DATA step that invokes MODULEN and passes it characters:

data null_;
x = modulen('xyz','X','Z");
put x= ' (should be 1)';
y = modulen('xyz','Q','Y");
put y= ' (should be 2)';
run;

Understanding MODULE Log Messages

If you specify 1 in the control string parameter to MODULE, SAS prints several
informational messages to the log. You can use these messages to determine
whether you have passed incorrect arguments or coded the attribute table
incorrectly.

Consider this example that uses MODULEIN from within the IML procedure. It uses
the MODULEIN function to invoke the changi routine (which is stored in theoretical
TRYMOD.so0). In the example, MODULEIN passes the constant 6 and the matrix x2,
which is a 4x5 matrix to be converted to an integer matrix. The attribute table for
changi is as follows:

routine changi module=trymod returns=long;
arg 1 input num format=ib4. byvalue;
arg 2 update num format=ib4.;

The following IML step invokes MODULEIN:

proc iml;
x1 = J(4,5,0);
do i=1 to 4;
do j=1 to 5;
x1[1i,3] = 1*10+3+3;
end;
end;
yl= x1;
X2 = x1;
y2 = vyl;
rc = modulein('*i', 'changi', 6,x2);

The '*1i' control string causes the lines shown in the following output to be written
in the log.

154 Chapter 6 / Accessing Shared Executable Libraries from SAS

Example Code 6.2 MODULEIN Log

---PARM LIST FOR MODULEIN ROUTINE--- CHR PARM 1 885EOAA8 2A69 (*i)

CHR PARM 2 885E0ADO 6368616E6769 (changi)

NUM PARM 3 885EOAEO0 0000000000001840

NUM PARM 4 885E07F0
0000000000002C400000000000002E40000000000000304000000000000031400000000000003240
000000000000384000000000000039400000000000003A400000000000003B400000000000003C40
0000000000004140000000000080414000000000

---ROUTINE changi LOADED AT ADDRESS 886119B8 (PARMLIST AT 886033A0)--- PARM 1
06000000 <CALL-BY-VALUE>

PARM 2 88604720
0E0000000F00000010000000110000001200000018000000190000001A0000001B0000001C000000
22000000230000002400000025000000260000002C0000002D0000002E0000002F00000030000000
---VALUES UPON RETURN FROM changi ROUTINE--- PARM 1 06000000 <CALL-BY-VALUE>
PARM 2 88604720
140000001F0000002A0000003500000040000000820000008D00000098000000A3000000AE000000
F0000000FB00000006010000110100001C0100005E01000069010000740100007F0100008A010000
---VALUES UPON RETURN FROM MODULEIN ROUTINE--- NUM PARM 3 885E0AE00000000000001840
NUM PARM 4 885E07F0
00000000000034400000000000003F4000000000000045400000000000804A400000000000005040
00000000004060400000000000A06140000000000000634000000000006064400000000000C06540
0000000000006E400000000000606F4000000000

The output is divided into four sections:
The first section describes the arguments passed to MODULEIN.

The CHR PARM n portion indicates that character parameter n was passed. In
the example, 885E0AAS is the actual address of the first character parameter to
MODULEIN. The value at the address is hexadecimal 2A69, and the ASCII
representation of that value ("*i') is in parentheses after the hexadecimal value.
The second parameter is printed similarly. The ASCII equivalents are printed for
only these first two arguments because other arguments might contain
unreadable binary data.

The remaining parameters appear with only hexadecimal representations of their
values (NUM PARM 3 and NUM PARM 4 in the example).

The third parameter to MODULEIN is numeric, and it is at address 885E0AEO.
The hexadecimal representation of the floating-point number 6 is shown. The
fourth parameter is at address 885E07FO0, which points to an area containing all
the values for the 4x5 matrix. The *1i option prints the entire argument. Be
careful if you use this option with large matrices, because the log might become
quite large.

The second section of the log lists the arguments that are to be passed to the
requested routine and, in this case, changed. This section is important for
determining whether the arguments are being passed to the routine correctly.
The first line of this section contains the name of the routine and its address in
memory. It also contains the address of the location of the parameter block that
MODULEIN created.

The log contains the status of each argument as it is passed. For example, the
first parameter in the example is call-by-value (as indicated in the log). The
second parameter is the address of the matrix. The log shows the address,
along with the data to which it points.

Note that all the values in the first parameter and in the matrix are long integers
because the attribute table states that the format is IB4.

Examples of Accessing Shared Executable Libraries 155

In the third section, the log contains the argument values upon return from
changi. The call-by-value argument is unchanged, but the other argument (the
matrix) contains different values.

The last section of the log output contains the values of the arguments as they
are returned to the MODULEIN CALL routine.

Examples of Accessing Shared
Executable Libraries

Example 1: Updating a Character String Argument

This example uses the tmpnam routine in the shared library provided by Solaris,
libc.so, which is installed in the /usr/1ib/64 directory. The tmpnam routine
generates a unique filename that can be used safely as a temporary filename. The
temporary filename is typically placed in the /var/tmp directory.

Here is the C prototype for this routine:
char * tmpnam(char *s);
The attribute table for this prototype would be the following:

routine tmpnam minarg=1 maxarg=1 returns=char255. module=libc;
arg 1 char output byaddr format=$cstr255;

The SAS source code would be the following:

x 'if [! -L ./libec 1 ; then 1n -s /usr/lib/64/libc.so.l1 ./libc ; fi' ;
x 'setenv LD LIBRARY PATH .:/usr/lib/64/usr/lib:/lib';

data null ;
length tempname $255 tname $255;
retain tempname tname “ “;
tname = modulec ('tmpnam', tempname);
put tempname = ;
put tname = ;

run;

The SAS log would display the following information:
Example Code 6.3 Updating a Character String Argument

tempname=/var/tmp/aaaKraydG
tname=/var/tmp/aaakKraydG

The POSIX standard for the maximum number of characters in a pathname is
defined in /usr/include/limits.h as 255 characters. This example uses 254 as
the length of the generated filename (tempname) with one character reserved for the
null terminator. The $CSTR255. informat ensures that the null terminator and all

156 Chapter 6 / Accessing Shared Executable Libraries from SAS

subsequent characters are replaced by trailing blanks when control returns to the
DATA step.

Example 2: Passing Arguments by Value

This example calls the access routine that is supplied by most UNIX vendors. This
particular access routine is in the Hewlett-Packard shared library, libc.sl, which is
installed in the /usr/lib/hpux64 directory.

Here is the C prototype for this routine:
int access(char *path, int amode) ;

The access routine checks the file that is referenced by the accessibility path
according to the bit pattern contained in amode. You can use the following integer
values for amode that correspond to the types of permission for which you are

testing:
4 Read access
2 Write access
1 Execute (search) access
0 Check existence of file

A return value of 0 indicates a successful completion, and the requested access is
permitted. A return value of -1 indicates a failure, and the requested access is not
permitted.

Because the amode argument is a pass-by-value, this example includes the
BYVALUE specification for arg 2 in the attribute table. If both arguments were pass-
by-values, one could use the CALLSEQ=BYVALUE attribute in the ROUTINE
statement, and it would not be necessary to specify the BYVALUE option in arg 2.

The attribute table would be the following:

routine access minarg=2 maxarg=2 returns=short module=libc;
arg 1 char input byaddr format=$cstr200.;
arg 2 num input byvalue format=ib4.;

The SAS source code would be the following:
x 'if [! -L ./libc] ; then 1ln -s /usr/lib/hpuxé64/libc.so ; fi' ;
x 'setenv LD LIBRARY PATH .:/usr/lib/hpux64:/usr/lib:/lib' ;

data null ;
length path $200.;
path="'/dev"';

/* A non-root user is testing for write permission in the /dev
directory */

rc = modulen("*ie", 'access',path,2);

put rc = ;
run;

The SAS log output would be the following:
Example Code 6.4 Results If Request Access Is Permitted

C=E!

Examples of Accessing Shared Executable Libraries 157

If you changed the SAS source code to check for a Write permission in the user’s
$HOME directory, the output would be different:

data null ;
length homedir $200.;
homedir=sysget ('HOME') ;

/* A user is testing for write permissions in their $HOME directory
*/

rc = modulen(“*ie”, 'access',6 homedir,2);

put rc = ;
run;

In this case, the SAS log output would be the following:

Example Code 6.5 Results for Successful Completion (Access Permitted)

rc=0

Example 3: Using PEEKCLONG to Access a
Returned Pointer

This example uses the strcat routine, which is part of the Red Hat Linux shared
library libc-2.12.s0. This library is typically installed in the /1ibé64 directory. This
routine concatenates two strings and returns a pointer to the newly concatenated
string.

Here is the C prototype for this routine:
char *strcat (char, *dest, const char *src);
The proper SASCBTBL attribute table would be the following:

routine strcat minarg=2 maxarg=2 returns=ulong module=libc;
arg 1 char input format=$cstr200.;
arg 2 char input format=$cstr200.;

The following example shows the SAS code:

filenamesascbtbl './sascbtbl.txt';

data null ;
file sascbtbl;
put "routine strcat minarg=2 maxarg=2 returns=ulong module=libc;";
put "arg 1 char input format=$cstr200.;";
put "arg 2 char input format=$cstr200.;";
run;

data null ;
length stringl string2 newstring $200;
length chptr $20;
stringl='This is string one and';
string2=' this is string two.';
chptr=modulec ('strcat', stringl, string2);
newstring=peekclong (chptr,200) ;

158 Chapter 6 / Accessing Shared Executable Libraries from SAS

put newstring=;
run;

SAS writes the following output to the log:
Example Code 6.6 Results from Using PEEKCLONG to Access a Returned Pointer

newstring=This is string one and this is string two.

For more information about the PEEKLONG and PEEKCLONG functions, see
“‘PEEKLONG Function: UNIX” on page 350 and “PEEKCLONG Function” in SAS
Functions and CALL Routines: Reference.

Example 4: Using Structures

“Grouping SAS Variables as Structure Arguments” on page 145 describes how to
use the FDSTART attribute to pass several arguments as one structure argument to
a shared library routine. The passing of several arguments as one structure is
another example of using structures with another routine in an external shared
library.

The statvfs routine that is available under most UNIX operating systems retrieves
file system information. This example uses the statvfs routine that is in the Solaris
libc.so.1 shared library and typically installed in the /usr/1ib/sparcv9 directory.

Here is the C prototype for this routine:
int statvfs(const char *path, struct statvfs *buf);

The statvefs routine returns a 0 if the routine completes successfully and —1 if there
is a failure.

The statvfs structure is defined with the following members:

unsigned long f bsize; /* preferred file system block size */
unsigned long f frsize; /* fundamental file system block */
unsigned long f blocks; /* total number of blocks on file
system in units */

unsigned long f bfree; /* total number of free blocks */
unsigned long f bavail; /* number of free blocks available to
non-superuser */

unsigned long f files; /* total number of file nodes (inodes)
*/

unsigned long f ffree; /* total number of free file nodes */
unsigned long f favail; /* number of inodes available to non-
superuser */

unsigned long f fsid; /* file system id (dev for now) */
char f basetype[16]; /* target fs type name, null-
terminated */

unsigned long f flag; /* bit mask of flags */

unsigned long g f namemax; /* maximum filename length */

char f fstr[32]; /* file system specific string */

The SASCBTBL attribute table would be the following:
routine statvfs
minarg=14
maxarg=14

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0f3dmjwzwbsaqn1wfxvxgfxbe4q.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0f3dmjwzwbsaqn1wfxvxgfxbe4q.htm&locale=en

Examples of Accessing Shared Executable Libraries 159

returns=short
module=1libc;

arg 1 char input byaddr format=$char256.;
arg 2 num output byaddr fdstart format=pib8.;
arg 3 num output format=pibs8.;
arg 4 num output format=pibs8.;
arg 5 num output format=pibs8.;
arg 6 num output format=pibs8.;
arg 7 num output format=pibs8.;
arg 8 num output format=pibs8.;
arg 9 num output format=pibs8.;
arg 10 num output format=pibs8.;
arg 11 char output format=$cstrilé6.;
arg 12 num output format=pibs8.;
arg 13 num output format=pibs8.;
arg 14 char output format=$cstr32.;

The SAS source code to call the statvEfs routine from within the DATA step would
be the following:

x 'if [! -L ./libc 1; then 1ln -s /usr/lib/sparcv9/libc.so.1 ./libc ;
fi' ;
X 'setenv LD LIBRARY PATH .:/usr/lib/sparcv9:/usr/lib:/lib';

data null ;

length f basetype $16. f fstr $32.;

retain f bsize f frsize f blocks f bfree f bavail f files f ffree
f favail

f fsid £ flag f namemax 0;

retain f basetype f fstr ' ';

rc=modulen ('statvfs' , '/tmp', f bsize, f frsize, f blocks,
f bfree, f bavail,

f files, f ffree, f favail, f fsid, f basetype, f flag,
f namemax, f fstr);

put rc = ;

put f bsize = ;

put £ frsize ;

put f blocks = ;

put £ bfree = ;

put f bavail ;

put £ files = ;

put £ ffree = ;

put £ favail ;

put £ fsid = ;

put f basetype = ;

put £ flag = ;

put f namemax = ;

/* Determining the total bytes available in the file system and
then dividing the

total number of bytes by the number of bytes in a gigabyte */

gigsfree = ((f bavail * f bsize)/1073741824);

put 'The total amount of space available in /tmp is 'gigsfree 4.2
Gigabytes.';
run;

The SAS log output would be the following:

160 Chapter 6 / Accessing Shared Executable Libraries from SAS

Example Code 6.7 Log Output for Using Structures

rc=0

f bsize=8192

f frsize=8192
f_blocks=196608
f bfree=173020
f bavail=173020
f files=884732
f ffree=877184
f favail=877184
f fsid=2

f basetype=tmpfs
f flag=4
f_namemax=255

The total amount of space available in /tmp is 1.32 Gigabytes.

Example 5: Invoking a Shared Library Routine

This example shows how to pass a matrix as an argument within PROC IML. The
example creates a 4x5 matrix. Each cell is set to 10x+y+3, where x is the row
number and y is the column number. For example, the cell at row 1 column 2 is set
to (10*1)+2+3, or 15.

The example invokes several routines from the theoretical TRYMOD shared library.
It uses the changd routine to add 100x+10y to each element, where x is the C row
number (0 through 3) and y is the C column number (0 through 4). The first
argument to changd specifies the extra amount to sum. The changdx routine works
just like changd, except that it expects a transposed matrix. The changi routine
works like changd except that it expects a matrix of integers. The changix routine
works like changdx except that integers are expected.

Note: A maximum of three arguments can be sent when invoking a shared library
routine from PROC IML.

In this example, all four matrices x1, x2, y1, and y2 should become set to the same
values after their respective MODULEIN calls. Here are the attribute table entries:

routine changd module=trymod returns=long;

arg 1 input num format=rb8. byvalue;

arg 2 update num format=rb8.;

routine changdx module=trymod returns=long
transpose=yes;

arg 1 input num format=rb8. byvalue;

arg 2 update num format=rb8.;

routine changi module=trymod returns=long;

arg 1 input num format=ib4. byvalue;

arg 2 update num format=ib4.;

routine changix module=trymod returns=long
transpose=yes;

arg 1 input num format=ib4. byvalue;

arg 2 update num format=ib4.;

Here is the PROC IML step:

Examples of Accessing Shared Executable Libraries 161

proc iml;
x1 = J(4,5,0);
do i=1 to 4;

do j=1 to 5;

x1[1i,3] = 1*10+7+3;

end;
end;
yl= x1; x2 = x1; y2 = yl;
rc = modulein('changd',6,x1);
rc = modulein('changdx',6,x2);
rc = modulein('changi',6,vyl);
rc modulein ('changix',6,y2);
print x1 x2 yl y2;

run;

Here are the results of the PRINT statement:

Output 6.2 Invoking a Shared Library Routine from PROC IML

X1

20 31 42 53 64
130 141 152 163 174
240 251 262 273 284
350 361 372 383 394
X2

20 31 42 53 64
130 141 152 163 174
240 251 262 273 284
350 361 372 383 394
Y1

20 31 42 B3 64
130 141 152 163 174
240 251 262 273 284
350 361 372 383 394
Y2

20 31 42 53 64
130 141 152 163 174
240 251 262 273 284

350 361 372 383 394

162 Chapter 6 / Accessing Shared Executable Libraries from SAS

163

7

Viewing Output and Help in the
SAS Remote Browser

What Is Remote Browsing? 163
Using Remote Browsing with ODS Output 164
Installing the Remote Browser Server 164
System Options for Remote Browsing 165
Setting Up the SAS Remote Browser 165
Setting Up the SAS Remote Browser at SAS Invocation 165
Setting Up the SAS Remote Browser during a SAS Session 166
Remote Browsing and Firewalls 166
For General Users 166
For System Administrators 166

What Is Remote Browsing?

Remote browsing enables you to view SAS documentation, URLs that are specified
in the WBROWSE command, and ODS output in the web browser on your local
computer. In the past, all web documentation was displayed by executing your
browser on the SAS server. By displaying this documentation locally, you have
faster access to the documentation and you free up resources on the SAS server
that were used by your browser.

A small software agent called the remote browser server runs on your local
computer. When SAS needs to display HTML content, it connects to the remote
browser server and sends the URL that references the content. The remote browser
server then passes the URL to a browser for display. If the remote browser server is
not running on your computer, SAS displays a dialog box that contains the URL that
you need to use to download the remote browser server.

Two system options are provided to configure remote browsing: HELPHOST and
HELPPORT. These options specify the host name and port number of the computer

164 Chapter 7 / Viewing Output and Help in the SAS Remote Browser

where HTML content is to be displayed. In most cases, these options do not need to
be set. HELPHOST defaults to the host name that is specified in the X11 DISPLAY
environment variable. Alternatively, if the client connects to the UNIX host by using
SSH with X11 forwarding enabled, HELPHOST defaults to the IP address that is
specified in the SSH_CLIENT environment variable. HELPPORT defaults to the
standard port for the remote browser server.

Using Remote Browsing with ODS
Output

The SAS Output Delivery System (ODS) can be used to generate graphical reports
of your SAS data. Remote browsing enables you to view your output directly from a
SAS session as the output is generated or on demand from the Results window.

Remote browsing displays ODS output in many formats. If your browser does not
have the appropriate plug-in for output that is not HTML, the browser displays a
dialog box rather than the output. This dialog box enables you to download your
output to your computer and view it using a local program such as Excel for an XSL
file.

The automatic display of ODS output (HTML, PDF, and RTF only) is turned off by
default. You can turn on the automatic display of ODS output by issuing the
AUTONAVIGATE command in the Results window or by selecting View results as
they are generated from the Results tab of the Preferences dialog box.

Installing the Remote Browser Server

You can install the remote browser server directly from your SAS session. If SAS is
unable to make a connection for remote browsing, SAS displays a dialog box that
contains the URL that you need to download the installer. Use this URL to download
and install the remote browser server. Do not exit SAS. To install the remote
browser server, follow these steps:

1 Type the URL that appears in the dialog box into your browser and press Enter,
or use the Copy URL button in the dialog box to copy the URL, and then paste it
into your browser.

2 After the download page is displayed, download the installer that is appropriate
for your computer.

3 Run the installer.

In the Windows environment, the remote browser server is added to your
start-up items, so that the server starts whenever you log on. An icon is
displayed in your system tray to indicate that the remote browser server is
running.

Setting Up the SAS Remote Browser 165

In the Linux environment, manually add the command rbrowser to the start-
up script for your windowing environment. The remote browser server will
initially run minimized.

System Options for Remote Browsing

After the remote browser server is running on your computer, you can run the
remote browsing system by specifying the HELPHOST and HELPPORT system
options.

The HELPHOST system option specifies the name of your host computer where
the remote browsing system is to be displayed. If you do not specify this option,
then the host name specified in the X display name is used. For more
information, see “HELPHOST System Option: UNIX” on page 441.

The HELPPORT system option specifies the port number for the remote browser
server that is installed on your computer. Under UNIX, you can use the default
value for this option. For more information, see “HELPPORT= System Option” in
SAS System Options: Reference.

You can set these options in your configuration file, at SAS invocation, or during
your SAS session in the OPTIONS statement or in the SAS System Options
window.

Setting Up the SAS Remote Browser

Setting Up the SAS Remote Browser at SAS
Invocation

The following syntax is specific for UNIX operating environments and shows how
you might set up the SAS Remote Browser if your remote browser server is using
network port 12000:

sas94 -helpport 12000

Because you did not specify the HELPHOST system option, SAS uses the host
name that is specified in the X display name.

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0yu1cr572z0yon1tt928pimzmyd.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0yu1cr572z0yon1tt928pimzmyd.htm&locale=en

166 Chapter 7 / Viewing Output and Help in the SAS Remote Browser

Setting Up the SAS Remote Browser during a SAS

Session

The syntax in this example applies to UNIX environments.

You can set up the remote browsing system during a SAS session by using the
OPTIONS statement or the SAS System Options window. The following example
uses the OPTIONS statement to change the value of the HELPPORT system
option:

options helpport=12000;

Because you did not specify the HELPHOST system option, its value remains
unchanged.

Remote Browsing and Firewalls

For General Users

If your network has a firewall between desktop computers and the computer that is
hosting SAS, web browsers cannot display web pages from your SAS session.
Usually, this problem is indicated by a time-out or connection error from the web
browser. If you receive a time-out or connection error, contact your system
administrator.

For System Administrators

To enable the display of web pages when a firewall exists between desktop
computers and the computer that is hosting SAS, a firewall rule that allows a web
browser to connect to SAS must be added. The firewall rule specifies a range of
network ports for which SAS remote browsing connections are allowed. Contact the
appropriate system administrator who can select and configure a range of network
ports for remote browsing. The range depends on the number of simultaneous SAS
users. A value of approximately three times the number of simultaneous SAS users
should reserve a sufficient number of network ports.

After the firewall rule is added, SAS must be configured to listen for network
connections in the network port range. Normally, SAS selects any free network port,
but the HTTPSERVERPORTMIN and the HTTPSERVERPORTMAX system options
limit the network ports that SAS can select. Add these system options to your SAS
configuration file. Set HTTPSERVERPORTMIN to the lowest port in the network
range. Set HTTPSERVERPORTMAX to the highest port in the network range. For

Remote Browsing and Firewalls 167

example, if the system administrator defined a network port range of 8000 to 8200,
the system options would be the following:

httpserverportmin=8000
httpserverportmax=8200

After these system options are set, desktop computers can display web pages. If
there is an insufficient number of network ports, or the system options are specified
incorrectly, a message appears in the SAS log.

For more information about these system options, see “‘HTTPSERVERPORTMIN=
System Option” in SAS System Options: Reference and
‘HTTPSERVERPORTMAX= System Option” in SAS System Options: Reference.

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1nhc5ttouwwx5n0zzctwxf82f3a.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1nhc5ttouwwx5n0zzctwxf82f3a.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0ic4hpidalimpn1a3jxmt0xvc0l.htm&locale=en

168 Chapter 7 / Viewing Output and Help in the SAS Remote Browser

169

Performance Considerations
under UNIX

Configure Your Environment Based on SAS Tuning Guidelines 169
SAS System Option Guidelines 169
Operating System Tuning Guidelines 169
Guidelines for the SAS Middle Tier and SAS Web Application Server 170

Measure the I/O Throughput of a File System 170

Configure Your Environment Based on
SAS Tuning Guidelines

SAS System Option Guidelines

For the best performance in a UNIX environment, verify that SAS system options
are set based on SAS tuning guidelines. You can find these guidelines in Usage
Note 46954. This usage note is updated as needed. Typically, these setting
recommendations are the default settings for SAS system options.

Operating System Tuning Guidelines

You can achieve better performance by following SAS recommendations for UNIX
operating systems. Usage Note 53873 contains the current operating system tuning
guidelines. This usage note is updated as needed.

http://support.sas.com/kb/46/954.html
http://support.sas.com/kb/46/954.html
http://support.sas.com/kb/53/873.html

170 Chapter 8 / Performance Considerations under UNIX

Guidelines for the SAS Middle Tier and SAS Web
Application Server

For information about tuning values for the SAS middle tier and SAS Web
Application Server, see SAS Web Applications: Tuning for Performance and
Scalability in the SAS Intelligence Platform documentation.

Measure the I/O Throughput of a File
System

When troubleshooting performance problems, be aware that SAS processes place
different demands on file systems and I/O throughput than traditional databases or
simple query processes. For that reason, you need to be able to determine the I/O
throughput rates of any file system that SAS uses.

SAS has a shell script, iotest.sh, that system administrators and IT teams can use to
test I/0O throughput. For information about usage and I/O throughput targets, see
Usage Note 53876.

http://documentation.sas.com/?cdcId=bicdc&cdcVersion=9.4&docsetId=appsrvtuning&docsetTarget=titlepage.htm
http://documentation.sas.com/?cdcId=bicdc&cdcVersion=9.4&docsetId=appsrvtuning&docsetTarget=titlepage.htm
http://support.sas.com/kb/53/876.html

171

SAS Windowing Environment

Chapter 9
Working in the SAS Windowing Environment 173

Chapter 10
Customizing the SAS Windowing Environment 203

172

173

9

Working in the SAS Windowing
Environment

Definition of the SAS Windowing Environment 174
Description of SAS in the X Environment 175
Definition of X Window System 175
X Window Managers 175
SAS Window Session ID 175
Workspace and Gravity in a SAS Session 176
Window Types 176
The SAS Session Manager (motifxsassm) in UNIX 177
What Is the SAS Session Manager? 177
Features of the SAS Session Manager 178
Interrupting a SAS Session 178
Using the Host Editor from within Your SAS Session 180
Closing the SAS Session Manager 180
Disabling the SAS Session Manager 180
Displaying Function Key Definitions in UNIX Environments 181
Benefits of Assigning Function Key Definitions 181
How to Display Function Key Definitions 181
The SAS ToolBox in UNIX Environments 183
Introduction to the SAS ToolBox 183
Customizing the Default SAS ToolBox 184
Default Configuration for the Command Window and the Toolbar 184
Opening and Closing the Command Window and the Toolbar 185
Executing Commands 186
Opening Files in UNIX Environments 187
Opening the Open Dialog Box 187
Using Regular Expressions in Filenames 189
Changing Your Working Directory in UNIX Environments 189
What Is Your Working Directory? 189
Changing Your Working Directory 189
The Change Working Directory Dialog Box 190

Selecting (Marking) Text in UNIX Environments 191

174 Chapter 9 / Working in the SAS Windowing Environment

Difference between Marking Character Strings and Blocks 191
Techniques for Selecting Text 192
Copying or Cutting and Pasting Selected Text in UNIX Environments 193
Techniques for Copying or Cutting and Pasting Selected Text 193
How SAS Uses the Automatic Paste Buffer 194
Disabling the Automatic Paste Buffer 194
Copying and Pasting Text between SAS and Other X Clients 194
Using Drag and Drop in UNIX Environments 195
Difference between Default and Non-Default Drag and Drop 195
Limitations of Drag and Drop in UNIX 195
How to Drag and Drop Text 195
Searching for and Replacing Text Strings in UNIX Environments 196
What Are the Find and Replace Dialog Boxes? 196
Opening the Find Dialog Box 196
Description of the Find Dialog Box Options 196
Opening the Replace Dialog Box 196
Description of the Replace Dialog Box Options 197
Sending Mail from within Your SAS Session in UNIX Environments 197
Default Email Protocol in SAS 197
What Is the Send Mail Dialog Box? 198
Sending Email By Using the Send Mail Dialog Box 198
Sending the Contents of a Text Window 199
Sending the Contents of a Non-Text Window 199
Changing the Default File Type 200
Configuring SAS for Host Editor Support in UNIX Environments 200
Requirements for Using a Host Editor 200
Invoking and Using Your Host Editor 200
Troubleshooting the Transfer of Text Attributes 201
Getting Help in UNIX Environments 202

Definition of the SAS Windowing
Environment

The SAS windowing environment refers to the windows that open when you invoke
SAS. These windows include: the Program Editor, Log, Output, Explorer, and
Results. These windows appear when you start SAS from your X workstation or
through an X emulator. For more information about these windows, see the online
SAS Help and Documentation.

The SAS windowing environment supports the use of X-based graphical user
interfaces (GUIs). In UNIX environments, SAS provides an X Window System
interface that is based on the Motif style.

Many features of the SAS windowing environment are controlled by X resources.
For example, colors, window sizes, the appearance of the SAS ToolBox, and key
definitions are all controlled through X resources. Chapter 10, “Customizing the SAS
Windowing Environment,” on page 203 provides general information about

Description of SAS in the X Environment 175

resources, such as how to specify resources, and describes all of the resources that
you can use to customize the interface.

Description of SAS in the X Environment

Definition of X Window System

The X Window System is a networked windowing system. If several computers are
on a network, you can run an X server that, in turn, serves X applications (as clients)
from all the other computers in the network.

X Window Managers

In UNIX environments, SAS features an X Window System interface that is based
on Motif. This interface uses the window manager on your system to manage the
windows on your display. Any window manager that is compliant with the Inter-Client
Communication Conventions Manual (ICCCM) can be used with the Motif interface
to SAS. Vendors provide at least one window manager with the X Window System
environment. A common window manager is the GNOME. KDE is an alternative
window manager. You should read the documentation that is supplied by the vendor
for the window manager that you are using.

All window managers perform the same basic functions, but they differ in their style
and in their advanced functions. The appearance and function of the interface to
SAS depends to some extent on your X window manager. Most window managers
provide some type of frame around a window. The window manager also governs
the placement, sizing, stacking, and appearance of windows, as well as their
interaction with the keyboard. The basics of interacting with SAS are the same for all
window managers: opening menus, moving windows, responding to dialog boxes,
dragging text, and so on.

SAS Window Session ID

When you run SAS on an X workstation, SAS shares the display with other X
applications, including other SAS sessions. To distinguish between different
applications and SAS sessions, SAS generates a SAS window session ID for each
session by appending a number to the application name. The default application
name is SAS. This session ID appears in the window title bar for each SAS window
and in the window icon title. The SAS sessions are assigned sequentially. Your first
SAS session is not assigned a number, so the session ID is SAS; your second SAS
session is assigned the session ID SAS2, and so on. Although the default application
name is SAS, you can use the -name X option or the -title X option to change the
instance name. The instance hame can be up to 64 characters long and is

176 Chapter 9 / Working in the SAS Windowing Environment

displayed in the case in which it was entered, which can be lowercase, mixed case,
or uppercase.

Workspace and Gravity in a SAS Session

When you use SAS on an X workstation, the display might be shared by many
concurrent applications. When SAS windows from different sessions and windows
from other applications appear on the display, the display can become cluttered. To
help alleviate this problem, the windows for a SAS session first appear within an
application workspace (AWS). The AWS defines a rectangular region that
represents a virtual display in which SAS windows are initially created. SAS
attempts to position the AWS in relation to the upper left corner of your display. In
other words, the workspace gravitates toward a certain direction (session gravity) on
the display. Some window manager configurations might override the placement
that SAS has chosen for a window.

If you issue windowing commands or execute SAS procedures that create new SAS
windows, the same rules of initial position and size apply to these windows: they are
initially placed in the SAS AWS. You can use the WSAVE command to save the
current window positions (or geometry). For more information, see “Customizing
Session Workspace, Session Gravity, and Window Sizes in UNIX Environments” on
page 252.

Window Types

Top-Level Windows

SAS uses primary and interior windows. Some SAS applications consist of one or
more primary windows controlled by the X window manager, in addition to the
interior windows controlled by SAS. The SAS windowing environment primary
windows, as well as most SAS application windows, initially appear as top-level
windows. Top-level windows interact directly with the X window manager. They have
a full title bar along with other window manager decorations. You can manipulate
them individually after they appear on the display.

Interior Windows

Interior windows behave differently from primary windows. SAS/ASSIST software is
an application with interior windows. Interior windows are contained within container
windows, which might not be primary windows. The following display shows an
interior window in SAS/ASSIST software.

The SAS Session Manager (motifxsassm) in UNIX 177

Figure 9.1 Sample Interior Window

SAS: ASSIST |r (ol
SASSASSIST: WarkPlace 4]
File Edit View Tools Ffun Tasks Help
£ ’ ‘JJJ =, Er
Data Mgma, | Report Writing Graphics Data Analysis
\) |
|
P ing Es | Hamata Conna ot
™ =
= - =) E»
Fesubts tuap Invdene Exit

SAS provides some degree of window management for interior windows.
Specifically, interior windows have the following sizing and movement capabilities:

You can move interior windows by clicking the interior window title bar and
dragging the window to the desired location. If the destination of the interior
window is outside the bounds of the container window, the container window
changes according to the value of the SAS.awsResizePolicy resource. (The
space within the container window is the application workspace, which is
described in “Workspace and Gravity in a SAS Session” on page 176.) For more
information, see “Overview of X Resources” on page 204.

Interior windows cannot be minimized individually. Clicking on the container
window icon button minimizes the container window and its interior windows.

A push-to-back button (the small overlapping squares in the upper right corner)
is available with interior windows. However, you cannot push an active window
behind an inactive window.

The SAS Session Manager
(motifxsassm) in UNIX

What Is the SAS Session Manager?

The SAS Session Manager for X (motifxsassm) is an X client that is run by SAS
when you use the SAS windowing environment. The SAS Session Manager is
automatically minimized when you start SAS. The SAS: Session Management
dialog box for the SAS Session Manager appears as shown in the following display:

178 Chapter 9 / Working in the SAS Windowing Environment

Figure 9.2 SAS: Session Management Dialog Box

SAS: Session Management

The SAS: Session Management dialog box lists the following information:
= which SAS session it controls
= the host computer from which the SAS session was invoked

= the UNIX process identifier of the SAS session

Features of the SAS Session Manager

The buttons in the SAS: Session Management dialog box enable you to do the
following tasks:
Minimize
maps and minimizes all windows of the SAS session. This function is performed
with standard X library calls and works with most X window managers.

Restore
restores all of the windows that are open in the SAS session that is controlled by
that SAS Session Manager. This function is performed with standard X library
calls and works with most X window managers.

Interrupt
sends a UNIX signal to SAS. When SAS receives the signal, it displays the
Tasking Manager dialog box. (See “Interrupting a SAS Session” on page 178).

Terminate

displays a dialog box that asks you to confirm whether you want to terminate the
SAS session.

Help
provides Help for the SAS: Session Management dialog box.

Interrupting a SAS Session

When you click Interrupt in the SAS: Session Management dialog box, and if no
PROC or DATA step is executing, the following Tasking Manager dialog box
appears:

The SAS Session Manager (motifxsassm) in UNIX 179

Figure 9.3 Tasking Manager Dialog Box

HG64: Tasking Manager

Y I B

If a PROC or DATA step is executing, the following Tasking Manager dialog box
appears:

Figure 9.4 Tasking Manager Dialog Box: DATA Step or PROC Step Executing

He4: Tasking Manager

JEY I T T B

Click one of the following buttons in the Tasking Manager dialog box:

-

causes the current PROC or DATA step statements to be deleted.

N

causes the current PROC or DATA step to receive a request to interrupt
processing. You are prompted to confirm this action.

(@)

closes the dialog box without affecting SAS processing.

-

forces SAS to terminate the SAS session. You are prompted to confirm
termination.

The following Confirm Termination dialog box appears:
Figure 9.5 Confirm Termination Dialog Box

Confirm Termination...

=]

180 Chapter 9 / Working in the SAS Windowing Environment

If you click OK, the SAS Session Manager sends a UNIX signal to the SAS session
that forces the session to terminate.

CAUTION

Terminating your SAS session might result in data loss or data corruption.
Before terminating your SAS session, you should attempt to end SAS using one of the
methods described in “Methods for Exiting SAS” on page 32.

Using the Host Editor from within Your SAS Session

When you issue the HOSTEDIT command, SAS passes the request to the SAS
Session Manager, which then invokes your host editor. The SAS Session Manager
must be running for the HOSTEDIT command to take effect. When you issue the
HOSTEDIT command, SAS creates a temporary file that contains the data from the
active SAS window and passes this file to your host editor. (These temporary files
are stored in the directory specified by the SAS WORK option.) When you save your
file in the host editor, the file is copied back into the SAS window if the window is
able to be written to. The temporary files are deleted when the SAS session ends.
For more information, see “Configuring SAS for Host Editor Support in UNIX
Environments” on page 200.

Closing the SAS Session Manager

If you close the SAS: Session Management dialog box, you cannot retrieve the SAS
Session Manager. To display the SAS Session Manager again, you can

reinvoke ! SASROOT/utilities/bin/motifxsassm with the -pid or the -sessionid
arguments. Execute these commands at the UNIX prompt or use them with the X
statement:

ISASROOT/utilities/bin/motifxsassm -pid pid

ISASROOT/utilities/bin/motifxsassm -sessionid integer

Disabling the SAS Session Manager

You can disable the SAS Session Manager in the following ways:
Select Tools = Options = Preferences.
On the General tab, deselect the Start Session manager check box.

Specify the following X resource, in lowercase, on the SAS command line at
invocation:

sas -xrm 'SAS.startSessionManager: False'

Specifying the sas.startSessionManager X resource deselects the Start
Session manager check box in the Preferences dialog box.

Displaying Function Key Definitions in UNIX Environments 181

Note: SAS saves the settings in the Preferences dialog box when it exits. If you
have disabled the SAS Session Manager during your session, then the next time
you invoke SAS, the SAS Session Manager will not run. To start the SAS Session
Manager, select the Start Session manager check box in the Preferences dialog
box. Alternatively, specify the following command in lowercase on the SAS
command line at invocation:

sas -xrm 'SAS.startSessionManager: True'

Displaying Function Key Definitions in
UNIX Environments

Benefits of Assigning Function Key Definitions

Function keys provide quick access to commands. They enable you to issue
commands, insert text strings, and insert commands in programs. Function key
definitions can be different on different terminals. These definitions can be fully
customized.

How to Display Function Key Definitions

You can open the KEYS (DMKEY'S) window to display all of your function key
definitions in one of the following ways:

Press F2.
Issue the KEYS command.
Select Tools = Options = Keys.

To view a single key definition without bringing up the KEYS window, use the
KEYDEF command and specify the key definition that you want to view. For
example, the following command displays the definition for key F4:

keydef f4
Table 9.1 Default Key Definitions
Key or Key Combination Definition
F1 Help

F2 Keys (SAS: KEYS <DMKEYS> window)

182 Chapter 9 / Working in the SAS Windowing Environment

Key or Key Combination Definition

F3

F4

F5

F6

F7

F8

F10

F11

Shift + F2
Shift + F9
Shift + right arrow
Shift + left arrow
Ctrl + A
Ctrl+B
Ctrl + E
Ctrl+ F
Ctrl + H
Ctrl + K
Ctrl +L
Ctrl + N
Ctrl+ O
Ctrl + P
Ctrl + R

Ctrl+T

submit

pgm; recall

rfind

rchange
Backward
Forward

Scroll left

Scroll right

Keys

Command prompt (toggles with Program menus)
Scroll right
Scroll left

Next window
Previous window
clear

Mark

Unmark

Cut

Log

Undo

Output window
Program window
Store

Paste

The SAS ToolBox in UNIX Environments 183

Key or Key Combination Definition

Ctrl+ U Home
Ctrl + W Command window
Ctrl+Y Command prompt (toggles with Program menus)

For information about customizing key definitions, see “Customizing Key Definitions
in UNIX Environments” on page 228. For information about the Keys window and
the KEYDEF command, see the online SAS Help and Documentation.

The SAS ToolBox in UNIX Environments

Introduction to the SAS ToolBox

The SAS ToolBox has two parts as illustrated in the following display:

Figure 9.6 The SAS ToolBox

SAS: ToolBox: Program Editor-compare.zas I ;lglll

A ENEEEEEE R e

A command window that enables you to quickly enter any command in the active
SAS window. For information about commands that are available under UNIX,
see “SAS Commands under UNIX” on page 270 and the SAS commands section
in the Base SAS section in the online SAS Help and Documentation.

A toolbar that contains several tool icons. When you select a tool icon, SAS
immediately executes the command that is associated with that icon. You can
customize both the toolbar and the tool icons. For more information, see “Using
the Tool Editor” on page 221.

The name of the active window is displayed in the title bar of the SAS ToolBox. For
example, if the Log window were active, the title bar would say SAS ToolBox: Log
instead of SAS ToolBox: Program Editor.

Under UNIX, the default SAS ToolBox automatically appears at the bottom of the
SAS windows stack by default. To control its configuration, you use the Preferences
dialog box. (See “Modifying the SAS ToolBox Settings ” on page 212.)

184 Chapter 9 / Working in the SAS Windowing Environment

Customizing the Default SAS ToolBox

The default SAS ToolBox is automatically copied to your
Sasuser.Profile.Dms.Toolbox regardless of whether you customize the ToolBox. If
you invoke an application that does not have an associated PMENU entry, the
default toolbox is displayed for that application. If you then customize the toolbox for
that application, the customized toolbox is stored in Sasuser.Profile.Default. Toolbox.
In Sasuser.Profile.Default. Toolbox, DEFAULT is the same entry name as the
PMENU entry for the window or application.

You can customize the default SAS ToolBox, create multiple toolboxes and switch
between them, and create application-specific toolboxes (such as with SAS/AF
applications) that are automatically loaded when the application is loaded. Only one
toolbox is displayed at a time, and the tools in the toolbox change as you move
between applications. For more information, see “Customizing Toolboxes and
Toolsets in UNIX Environments” on page 220.

Default Configuration for the Command Window
and the Toolbar

By default, the toolbar and the command window are joined and are automatically
displayed when SAS initializes unless one of the following conditions applies:

You executed your SAS job in a non-windowing environment mode.

The SAS.defaultToolBox or SAS.defaultCommandWindow resource is set to
False. The default value is True. For more information about the resources that
control the toolbox, see “X Resources That Control Toolbox Behavior” on page
220.

You deselect Display tools window, Display command window, or Combine
windows from the ToolBox tab in the Preferences dialog box.

The following display shows the command window and the toolbar in their default
configuration.

Figure 9.7 Default Configuration for Command Window and Toolbar

SAS: ToolBox: Program Editor-compare. sas ;lglll

M ol S o o

The SAS ToolBox in UNIX Environments 185

Opening and Closing the Command Window and

the Toolbar

The following table lists the steps that you can use to open and close the command
window and toolbar.

Table 9.2 Steps for Opening and Closing the Command Window and the Toolbar

Window

Command

Window and

Toolbar

Command
Window

Toolbar

How to Open

To open both windows, complete
any of the following steps:

Issue the COMMAND
WINDOW command.

Issue the TOOLLOAD
command. For more
information, see “TOOLLOAD
Command: UNIX” on page
290.

Select Tools = Options =
Toolbox.

To open only the command
window, deselect Combine
Windows on the tab of the
Preferences dialog box, and
complete any of the following
steps:

Select Display command
window in the ToolBox tab
of the Preferences dialog box.

Issue the COMMAND
WINDOWS command.

To open only the toolbar,
deselect Combine windows on
the ToolBox tab of the
Preferences dialog box, and
complete any of the following
steps:

Select Display tools window
on the ToolBox tab of the
Preferences dialog box.

Issue the TOOLLOAD
command. See “TOOLLOAD
Command: UNIX” on page
290.

How to Close

To close these windows,
complete any of the following
steps:

Select Close from the
ToolBox window menu.

Enter the TOOLCLOSE
command as described in
“TOOLCLOSE Command:
UNIX” on page 289.

Select Tools = Options =
Toolbox so that ToolBox is
deselected.

To close only the command
window, complete the following
steps:

Deselect Display command
window on the ToolBox tab
of the Preferences dialog box.

Select Close from the window
menu.

To close only the toolbar,
deselect Combine windows on
the ToolBox tab of the
Preferences dialog box, and
complete any of the following
steps:

Deselect Display tools
window on the ToolBox tab
of the Preferences dialog box.

Issue the TOOLCLOSE
command as described in
“TOOLCLOSE Command:
UNIX” on page 289.

186 Chapter 9 / Working in the SAS Windowing Environment

Window How to Open How to Close
Select Tools = Options = Select Tools = Options =
Toolbox. Toolbox so that Toolbox is

deselected.

Executing Commands

You can execute commands from either the command window or the toolbar. The
following table gives more details about how to execute commands.

Table 9.3 Executing Commands in the Command Window and the Toolbar

Location Execution

Command Window To execute a command, complete the following steps:
1 Click in the command window.
2 Enter the command.
3 Press Enter or click the check mark.

The command is executed in the active SAS window. You can
use the up and down arrow keys to scroll through previously
entered commands, or you can select a previous command
from the drop-down list. Use the left mouse button to select a
command from the drop-down list. Use the right mouse button
to select and execute a command from the list.

Toolbar To execute a command, click a tool icon in the toolbar to
execute the command or commands that are associated with
that icon. If you place the cursor over an icon for the amount of
time specified by the SAS.toolBoxTipDelay resource, a pop-up
window displays text that describes the command for that icon.

Opening Files in UNIX Environments 187

Opening Files in UNIX Environments

Opening the Open Dialog Box

Opening the Dialog Box

The Open dialog box enables you to select files from the host file system. To open
this dialog box, select File = Open.

Figure 9.8 Open Dialog Box

¥ i

:
SAS Files; ™.
e g8

Description of the Open Dialog Box
Options

The following table describes the options found in the Open dialog box.

188 Chapter 9 / Working in the SAS Windowing Environment

Table 9.4 Options in the Open Dialog Box

Option

Enter directory, name or filter

Page of Directories

Files

Page

File type

Ignore Case

Include hidden

Description

is where you can enter the name of the directory,
file, or file filter (file type) that you want to open.

The directory shown in the Filter field is the
currently selected directory. You can change this
directory either by selecting a name from the Page
of Directories list or by entering the new name
directly into the field. The dialog box displays non-
readable directories with a different icon.

To display a list of all the files in a directory, enter
the asterisk (*) wildcard in the Filter field or select
All Files; * as the file type.

contains the names of the directories specified in
the Filter and Page fields.

contains the files in the selected directory that
match the filter specified.

enables you to change the directories that are listed
in the Page of Directories list. A new page is
defined when the number of entries in the Page of
Directories list exceeds twice the screen height. To
change pages, use the right or left arrows next to
the Page field.

enables you to select the type or types of files to be
shown in the Files list. You can display a list of
possible file filters by selecting the down arrow next
to the field. Click on a file filter to select it.

specifies that both uppercase and lowercase names
be included in the display. (If you select All Files; *
as the filter, both uppercase and lowercase names
are displayed if you select Ignore Case.)

includes or excludes hidden files and directories
from the graphical display.

Specifying the Initial Filter and Directory
Using SAS Resources

You can specify the initial filter in the File type field by assigning a value to the
SAS.pattern resource. However, the Open dialog box retains its filter between
invocations, so the SAS.pattern resource applies only to the first invocation of the

Changing Your Working Directory in UNIX Environments 189

Open dialog box. You can also use the SAS.directory resource to specify the
directory that you want when you first invoke the Open dialog box.

For more information about specifying SAS resources, see “Overview of X
Resources” on page 204.

Using Regular Expressions in Filenames

Everything that you enter into the Open dialog box is treated as a regular
expression. When you are opening or saving a file and you want to use a regular
expression special character as part of the filename, precede the character with a
backslash (\). For example, to write to a file named $Jan, enter \$Jan as the
filename.

For more information about regular expressions, see UNIX man page 5 for regexp:

man 5 regexp

Changing Your Working Directory in
UNIX Environments

What Is Your Working Directory?

The working directory is the operating system directory to which many SAS
commands and actions apply. By default, SAS uses the current directory as the
working directory when you begin your SAS session.

Changing Your Working Directory

You can change the working directory during your SAS session. You can use the
Change Working Directory dialog box to select a new directory, or you can use the X
command, the X statement, the CALL SYSTEM routine, or the %SYSEXEC macro
statement to issue the change directory (cd) command. For information about the X
command and statement, the CALL SYSTEM routine, and the %SYSEXEC macro
statement, see “Executing Operating System Commands from Your SAS Session”
on page 18.

190 Chapter 9 / Working in the SAS Windowing Environment

The Change Working Directory Dialog Box

To open the Change Working Directory dialog box, issue the DLGCDIR command or
select Tools = Options = Change Directory.

Figure 9.9 The Change Working Directory Dialog Box

Change Working Directory._..

¥ &

:
545 Files; . I_
N | =

The Change Working Directory dialog box works exactly the same as the Open
dialog box, except that you cannot select a file from the list. For an explanation of
the options in the Change Working Directory dialog box, see “Description of the
Open Dialog Box Options” on page 187.

Selecting (Marking) Text in UNIX Environments 191

Selecting (Marking) Text in UNIX
Environments

Difference between Marking Character Strings and
Blocks

When you select text in a SAS window, you can select character strings or blocks.
Character strings include the text in successive columns of one or more rows, as
shown in the following display. Blocks are rectangular blocks that include the same
columns from successive rows, as shown in Figure 9.11 on page 192.

Figure 9.10 Program Editor Window with Strings That Are Marked

SAS: Program Editor-compare.sas ;IEIEI

File Edit View Tools Run Solutions Help

00001 libname students ©/u/myid/studentsz’;

0000z

00003 data students.one(label='Firgt Data Set’);
anood input student year state gradel gradeZ;
a0oos label year='Year of Birth’;

anooe format gradel 4.1;

aaoay
00008
0aoas
00010 iy
0ao0i1
00012

00013 runj;

00014

00015 data studentz.two(label=’3S=scond Data Set’);

00016 input student year state gradel gradeZ major &;
aao17 lakel state="Home State’;

ano1g format gradel 5.2;

192 Chapter 9 / Working in the SAS Windowing Environment
Figure 9.11 Program Editor Window with Blocks That Are Marked

MSAS: Program Editor-compare_sas | 5[

File Edit View Tools Run Solutions Help

00001 libname students ©/u/myid/students’;

00002

00003 data students.one(label=’'First Data Set’);
anood input student year state gradel gradeZ;
anoos label year='Year of Birth’;

anooe format gradel 4.1;

0aoa7
00008
0aoas
ogol1o
0aoi1
0o0o1z ;

00013 runj;

00014

00015 data studentz.two(label=’3S=scond Data Set’);

0ao0le input student vear state gradel gradeZ major
aonl17 label state="Home State’;

00018 format gradel 5.2;

Techniques for Selecting Text

Select Text with the Mouse

To select your text, complete the following steps:
1 Position the cursor at the beginning of the text that you want to mark.

2 Press and hold the left mouse button. If you want to select a block instead of a
string, press and hold the Ctrl key before you press the left mouse button.

3 Drag the mouse pointer over the text that you want to mark.

4 Press and hold down the Alt key (or Extend Char key or Meta key, depending on
your keyboard) while you release the mouse button. The marks that are
generated by the mouse are called drag marks.

To extend an area of marked text, press and hold the Shift key, and use the left
mouse button and the Alt key (and the Ctrl key, if you are marking a block) to mark
the new ending position. To unmark the selected text, press the mouse button
anywhere in the window.

Select Text with the MARK Command

You can issue the MARK command from the command line, or you can assign it to a
function key. With the MARK command, you can select more than one area of text
in the same window at the same time. For more information about the MARK
command, see the online SAS Help and Documentation.

Copying or Cutting and Pasting Selected Text in UNIX Environments 193

To select your text, complete the following steps:

1

2

3

a4

Position the cursor at the beginning of the text that you want to mark.

Issue the MARK command. If you want to select a block instead of a string, add
the BLOCK argument to the MARK command.

Move the cursor to the end of the text that you want to mark.

Issue the MARK command a second time.

To unmark the selected text, issue the UNMARK command.

Select Text By Using the Edit Menu

To select your text using the Edit menu, complete the following steps:

1

2

3

a4

Position the cursor at the beginning of the text that you want to mark.
Select Edit = Select.
Position the cursor at the end of the text that you want to mark.

Press the left mouse button.

To unmark the selected text, select Edit = Deselect.

Copying or Cutting and Pasting Selected
Text in UNIX Environments

Techniques for Copying or Cutting and Pasting
Selected Text

After you have marked text, you can copy or cut the text and paste it in another

location.

To copy text, select the Copy icon from the ToolBox, issue the STORE or
WCOPY command, or select Edit = Copy.

To cut text, select the Cut icon from the ToolBox, issue the CUT or WCUT
command, or select Edit = Cut.

To paste the cut or copied text, select the Paste icon from the ToolBox, issue the
PASTE or WPASTE command, or select Edit = Paste.

For more information about the CUT, PASTE, and STORE commands, see online
SAS Help and Documentation.

194 Chapter 9 / Working in the SAS Windowing Environment

How SAS Uses the Automatic Paste Buffer

When you end a drag mark by releasing the mouse button without holding down the
Alt key, SAS performs an end-of-mark action that might automatically generate a
STORE command to save the contents of the mark into a SAS paste buffer. If the
STORE command is generated automatically, you do not have to explicitly copy the
text before you paste it.

Disabling the Automatic Paste Buffer

You can disable the automatic paste buffer in the following ways:
Set the SAS.markPasteBuffer resource.

Deselect Automatically store selection on the Editing tab in the Preferences
dialog box: Tools = Options => Preferences.

For more information, see “Customizing Cut and Paste in UNIX Environments” on
page 250.

Copying and Pasting Text between SAS and Other
X Clients

You can cut or copy and paste text between X clients if you associate the default
SAS paste buffer with a paste buffer specific to X. For example, if you associate the
default SAS paste buffer with the paste buffer, you can copy and paste text between
xterm windows and SAS windowing environment. To associate the SAS buffer with
an X buffer, specify the SAS.defaultPasteBuffer resource:

SAS.defaultPasteBuffer: XTERM

For more information about using paste buffers, see “Customizing Cut and Paste in
UNIX Environments” on page 250.

Using Drag and Drop in UNIX Environments 195

Using Drag and Drop in UNIX
Environments

Difference between Default and Non-Default Drag
and Drop

The SAS windowing environment on UNIX offers two types of drag and drop: default
and non-default. Default drag and drop enables you to move text from one place to
another. Non-default drag and drop enables you to choose whether to move or copy
the text, submit the text if you are dragging SAS code, or cancel the drag and drop
operation. With default drag and drop, you can drag text between SAS windows in
different SAS sessions and between SAS windows and other Motif applications that
support drag and drop. Non-default drag and drop is available only between
windows in the same SAS session.

Limitations of Drag and Drop in UNIX

Under UNIX, you cannot drag and drop files or RTF (Rich Text Format) text.

How to Drag and Drop Text

To drag and drop text, first mark the text in one of the ways described in “Selecting
(Marking) Text in UNIX Environments” on page 191. To use default drag and drop,
use the middle mouse button to drag the text where you want it. To use non-default
drag and drop, press and hold the Alt (or EXTEND CHAR) key before you release
the mouse button.

196 Chapter 9 / Working in the SAS Windowing Environment

Searching for and Replacing Text Strings
iIn UNIX Environments

What Are the Find and Replace Dialog Boxes?

The Find and Replace dialog boxes enable you to search for and replace strings in
SAS text editor windows such as the Program Editor, the SCL editor, or NOTEPAD.

Opening the Find Dialog Box

To search for a string, open the Find dialog box by issuing the DLGFIND command
or by selecting Edit = Find.

Description of the Find Dialog Box Options

The Find dialog box works like the Replace dialog box, except it does not have the
Replace field or the Replace and Replace All buttons.

For a description of the options in the Find dialog box, see “Description of the
Replace Dialog Box Options ” on page 197.

Opening the Replace Dialog Box

To replace one text string with another, open the Replace dialog box by issuing the
DLGREPLACE command or by selecting Edit = Replace.

Sending Mail from within Your SAS Session in UNIX Environments 197

Figure 9.12 Replace Dialog Box

Replace...:Program Editor

Description of the Replace Dialog Box Options

To find a character string, enter the string in the Find field, and click Find. To
change a character string, enter the string in the Find field, enter its replacement in
the Replace field, and click Replace. To change every occurrence of the string to its
replacement string, click Replace All.

You can customize your find or replace operation using the following buttons:

Match Case

tells the search to match the uppercase and lowercase characters exactly as you
entered them.

Match Word
searches for the specified string delimited by space, end-of-line, or end-of-file
characters.

Previous
searches from the current cursor position toward the beginning of the file.

Next
searches from the current cursor position toward the end of the file.

Sending Mail from within Your SAS
Session in UNIX Environments

Default Email Protocol in SAS

By default, SAS uses SMTP (Simple Mail Transfer Protocol) to send email from
within your SAS session. You can use the EMAILSYS system option to specify

198 Chapter 9 / Working in the SAS Windowing Environment

which script or protocol you want to use for sending electronic mail. For more
information, see “EMAILSYS System Option: UNIX” on page 429.

For more information about the SMTP email interface, see SAS Programmer’s
Guide: Essentials.

What Is the Send Mail Dialog Box?

The Send Mail dialog box enables you to send email without leaving your current
SAS session. To invoke the dialog box, issue the DLGSMAIL command or select
File = Send Mail.

Figure 9.13 Send Mail Dialog Box

Send mail...

Jibname students Yusmyid/students”

data students.oneflabel="First Data Set?);
input student year state § gradel gradeZ;
lahel year="vear of Birth’;

format gradel 4.1;

datalines;

1000 1998 MC &5 &7

1042 1935 MD 32 92

1095 1997 P& 7§ 72

1187 1997 Ma 67 94

rum;
data students.two(label="Second Data Set?;

input student § vear state § gradel grade? major §; L
lahel state="Home State’;

=] |~

Sending Email By Using the Send Mail Dialog Box

To send email, complete the following steps as needed:

1 Enter the IDs of the email recipients in the To, Cc, and Bcc fields. Separate
multiple addresses with either spaces or commas.

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en

Sending

Sending

Sending Mail from within Your SAS Session in UNIX Environments 199

2 Edit the entry in the Subject field as needed.

3 Enter the name of the file that you want to send in the Attach field. Separate
multiple filenames with spaces. You can also use Browse to select a file.

4 Enter your message in the message area or edit the contents grabbed from the
active SAS text window.

5 Click Send.

To cancel a message, click Cancel.

the Contents of a Text Window

You can email the contents of an active SAS text window (such as the Program
Editor or the Log) by using the Send mail dialog box. To open the Send mail dialog
box, select File = Send Mail. SAS automatically copies the contents of the active
SAS window and includes the text in the body of your email. You can change or add
to the email message in the Send mail dialog box.

If you do not want to include the contents of the active SAS window in your
message, select Edit = Clear All before invoking the Send mail dialog box.

the Contents of a Non-Text Window

To send the contents of a non-text window (such as a graph generated by
SAS/GRAPH or an image from your PROC REPORT output), select File = Send
Mail from the active SAS window. SAS automatically copies the image data to a
temporary file and enters that filename into the Attach field of the Send mail dialog
box. To change the default file type for this temporary file, see “Changing the Default
File Type” on page 200 .

SAS copies only the portion of the image that is visible in the active window, along
with the window frame and title. This behavior is similar to using the DLGSCRDUMP
command. For more information, see “DLGSCRDUMP Command: UNIX” on page
278.

If you do not want to attach this image to your email, clear the contents of the
Attach field.

200 Chapter 9 / Working in the SAS Windowing Environment

Changing the Default File Type

You can change the default file type for the temporary file that SAS creates by using
the Preferences dialog box. To open the Preferences dialog box, follow these steps:

1 Select Tools = Options = Preferences.

2 On the DMS tab in the Image type for Email attachments box, select one of
the following file types:

Portable Network Graphics (.png)
Graphics Interchange Format (.gif)

Tagged Image File Format (.tif)

Configuring SAS for Host Editor Support
In UNIX Environments

Requirements for Using a Host Editor

SAS supports the use of a host text editor with the Motif interface, so you can use
an editor such as vi or Emacs with your SAS session. There is no host editor set as
the default host editor, so you must specify one to use this feature. Host editor
support requires the use of the motifxsassm client. For more information, see “The
SAS Session Manager (motifxsassm) in UNIX” on page 177.

Invoking and Using Your Host Editor

How to Open and Use the Host Editor

To use your host text editor with SAS, complete the following steps:

1 Specify the command required to invoke your editor with the EDITCMD system
option.

2 Invoke the editor as needed with the HOSTEDIT command.

Configuring SAS for Host Editor Support in UNIX Environments 201

The HOSTEDIT command passes data from a SAS window to the host editor. When
you save data in the host editor, the data is copied back into the SAS window if the
window can be written to.

After you return to the SAS text editor window, you can issue the UNDO command
to undo all of the changes that you made with your host editor. You must issue the
UNDO command a second time to return to the state of the window before the
HOSTEDIT command was issued. If you issue the HOSTEDIT command in a read-
only window, you can save your editing changes to an external file, but the SAS text
editor window remains unchanged.

For more information, see “EDITCMD System Option: UNIX” on page 428 and
‘HOSTEDIT Command: UNIX” on page 284.

Example 1: Invoking SAS to Use xedit with
the HOSTEDIT Command

An X-based editor, called xedit, is installed on some systems. If you want to use
xedit with the HOSTEDIT command, you can invoke SAS with the following
command:

sas -editcmd '/usr/local/bin/xedit’

Example 2: Invoking SAS to Use vi

The vi editor is a terminal-based editor that requires a terminal window. The xterm
client's -e option runs a program when the xterm client is invoked. To use the
EDITCMD option to display an xterm client in conjunction with vi, invoke SAS as
follows:

sas -editcmd '/usr/bin/X11l/xterm -e /usr/bin/vi'

Troubleshooting the Transfer of Text Attributes

Text attributes, such as color and highlighting, are not transferred between a host
editor window and a SAS text editor window. Issue the HEATTR ON command to
display a dialog box that warns you if you are editing text with highlighting and color
attributes that will be removed by the host editor. This dialog box prompts you to
continue or stop the HOSTEDIT command. Specify HEATTR OFF to suppress this
dialog box.

202 Chapter 9 / Working in the SAS Windowing Environment

Getting Help in UNIX Environments

The Help menu is always available within your SAS session. Here are descriptions
of the Help topics that are available from the Help menu:

Using This Window
provides help information that is relevant to the active window. You can access
the same information by clicking the Help button or pressing the F1 key.

SAS Help and Documentation
provides tutorials and sample programs to help you learn how to use SAS,
comprehensive documentation for all products installed at your site, and
information about contacting SAS for additional support.

Note: If you set the block unrequested pop-up windows option in your browser's
Preferences dialog box, then the online SAS Help and Documentation might not
be displayed.

Getting Started with SAS Software
opens a tutorial that helps you get started with SAS.

SAS on the Web
provides links to useful areas on the SAS website, including the customer
support center, frequently asked questions, sending feedback to SAS, and the
SAS home page. (See the SAS Technical Support site.)

About SAS 9

opens the About SAS 9 dialog box, which provides information about SAS
software, your operating environment, and Motif.

https://support.sas.com/en/technical-support.html

203

10

Customizing the SAS Windowing
Environment

Overview of Customizing SAS in X Environment 204
Overview of X Resources 204
Introduction to X Resources 204
Syntax for Specifying X Resources 205
Methods for Customizing X Resources 205
Modifying X Resources through the Preferences Dialog Box 207
What Is the Preferences Dialog Box? 207
Opening the Preferences Dialog Box 207
Description of the Options in the Preferences Dialog Box 208
Setting X Resources with the Resource Helper 213
Introduction to the Resource Helper 213
How to Start the Resource Helper 213
Defining Keys with the Resource Helper 214
Modifying the Color of a SAS Window Using the Resource Helper 216
How the Resource Helper Searches for X Resources 218
Customizing Toolboxes and Toolsets in UNIX Environments 220
Techniques for Customizing Toolboxes 220
X Resources That Control Toolbox Behavior 220
Using the Tool Editor 221
Creating a New Toolbox 226
Create or Customize an Application- or Window-Specific Toolbox 227
Create or Customize an Application- or Window-Specific Toolset 227
Customizing Key Definitions in UNIX Environments 228
Techniques for Customizing Your Key Definitions 228
Defining Key Translations 229
Customizing Fonts in UNIX Environments 237
Difference between the System Font and Fonts That Are Used in
the Windowing Environment 237
How SAS Determines Which Font to Use 237
Customizing Fonts By Using the Fonts Dialog Box 238

Specifying Font Resources 239

204 Chapter 10 / Customizing the SAS Windowing Environment

Specifying Font Aliases

Customizing Colors in UNIX Environments
Methods for Customizing the Color Settings in Your SAS Session
Customizing Colors By Using the SASCOLOR Window
Syntax of the COLOR Command
Defining Color Resources

Controlling Drop-down Menus in UNIX Environments

Customizing Cut and Paste in UNIX Environments
Instructions for Cutting and Pasting Text
Types of Paste Buffers
Selecting a Paste Buffer
Manipulating Text Using a Paste Buffer
Notes about Preserving Text and Attribute Information

Customizing Session Workspace, Session Gravity, and Window
Sizes in UNIX Environments

Specifying User-Defined Icons in UNIX Environments
Why Specify User-Defined lcons?
How SAS Locates a User-Defined Icon
X Resources for Specifying User-Defined Icons

Miscellaneous Resources in UNIX Environments

Summary of X Resources for SAS in UNIX Environments

Overview of Customizing SAS in X

Environment

The SAS windowing environment supports the use of X-based graphical user
interfaces (GUIs). In UNIX environments, SAS provides an X Window System

240

242
242
242
243
244

250

250
250
250
251
251
252

252

254
254
254
255

256
258

interface that is based on the Moitif style. For more information about SAS in the X

environment, see “Description of SAS in the X Environment” on page 175.

You can customize your working environment by using X resources.

Overview of X Resources

Introduction to X Resources

X clients usually have characteristics that can be customized; these properties are
known as X resources. Because SAS functions as an X client, many aspects of the
appearance and behavior of the SAS windowing environment are controlled by X

Methods for Customizing X Resources 205

resources. For example, X resources can be used to define a font, a background
color, or a window size. The resources for an application, such as SAS, are placed
in a resource database.

SAS functions correctly without any modifications to the resource database.
However, you might want to change the default behavior or appearance of the
interface. There are several ways to specify your customizations. Some methods
modify all SAS sessions displayed on a particular X server. Some methods affect all
SAS sessions run on a particular host. Other methods affect only a single SAS
session.

If you need more information about X Window System clients and X resources, see
the documentation provided by your vendor.

Syntax for Specifying X Resources

A resource specification has the following format:
resource-string: value

The resource string usually contains two identifiers and a separator. The first
identifier is the client or application name (SAS), the separator is a period (.) or
asterisk (*) character, and the second identifier is the name of the specific resource.
The value given can be a Boolean value (True or False), a number, or a character
string, depending on the resource type.

The application name and resource name can both specify an instance value or a
class value. A specification for a class applies to a larger scope than a single
instance.

The following are sample resource specifications:

SAS.startSessionManager: True
SAS.maxWindowHeight: 100
SAS.awsResizePolicy: grow

See your X Window System documentation for more information about resource
specifications.

Methods for Customizing X Resources

The following list describes the methods that you can use to customize X resources.

Use the Font dialog box, the Preferences dialog box, or the Resource Helper to
customize your SAS session. All of these tools write X resource definitions out to
a location that SAS will read the next time you start a SAS session. For more
information about these tools, see “Modifying X Resources through the
Preferences Dialog Box” on page 207, “Setting X Resources with the Resource
Helper” on page 213, and “Customizing Fonts in UNIX Environments” on page
237.

206 Chapter 10 / Customizing the SAS Windowing Environment

Note: The settings that you specify in the Preferences dialog box override any
command line settings.

Specify session-specific resources by using the -xrm option on the command
line for each invocation of SAS. For example, the following command specifies
that SAS will not display the Confirm dialog box when you exit your SAS session:

sas -xrm 'SAS.confirmSASExit: False'

You can specify the -xrm option as many times as needed. You must specify the
-xrm option for each resource.

Note: If you normally invoke SAS with a shell script, you should protect the
quotation marks from the shell with the backslash (\) character:

sasscript -xrm \'SAS.confirmSASExit: False\'

Add resource definitions to a file in your home directory. If you place resources in
a file that X Toolkit normally searches for when applications are invoked, these
resources are loaded when you invoke SAS. For information about where the X
Toolkit searches for resources, see the documentation for the X Window System.

You can also add resources to the resource database after SAS has initialized
by running the xrdb utility. For example, the following command merges the
definitions in the MyResources file into the resource database:

xrdb -merge myresources

Create a subdirectory for storing resource definitions. (This subdirectory is
usually named app-defaults.) Set the XUSERFILESEARCHPATH environment
variable to the pathname of this subdirectory. You can use %N to substitute an
application class name for a file when specifying the XUSERFILESEARCHPATH
environment variable. Specify the definition for this environment variable in the
initialization file for your shell (for example, the $HOME!/ .login, $HOME/.cshrc, or
$HOME/.profile files). This action ensures that the XUSERFILESEARCHPATH
environment variable is defined for each shell that is started.

Create a file called sas in the subdirectory identified by
XUSERFILESEARCHPATH. Include your resource definitions in this file.

Note: Alternatively, you could set the XAPPLRESDIR environment variable to
the pathname of the subdirectory that stores your resource definitions. The
XAPPLRESDIR and XUSERFILESEARCHPATH environment variables use a
slightly different syntax to specify the location of your resource definitions. The
location specified by the XUSERFILESEARCH environment variable takes
precedence over the location specified by the XAPPLRESDIR variable. For more
information, see the UNIX X man page.

If you want the customized resource definitions to be used for all users on a
particular host, create a file called sas to contain your customized resource
definitions. Store this file in the system app-defaults directory.

For more information about X resources, see the X Window System documentation
supplied by your vendor or other documentation about the X Window System.

Modifying X Resources through the Preferences Dialog Box 207

Modifying X Resources through the
Preferences Dialog Box

What Is the Preferences Dialog Box?

The Preferences dialog box enables you to control the settings of certain X
resources. Changes that are made through the Preferences dialog box (with the
exception of changes to resources on the General tab) become effective
immediately. The settings are saved in the SasuserPrefs file in your Sasuser
directory.

Note: The settings that you specify in the Preferences dialog box override any
command line settings for the current session.

Opening the Preferences Dialog Box

You can open the Preferences dialog box by issuing the DLGPREF command or by
selecting Tools = Options = Preferences.

208 Chapter 10 / Customizing the SAS Windowing Environment

Figure 10.1 Preferences Dialog Box

Preferences

Description of the Options in the Preferences Dialog
Box

Modifying the General Settings

To modify the General settings, select the General tab in the Preferences dialog
box, and then select from the items in the window:

Start Session manager
specifies whether you want the SAS Session Manager to be started
automatically when you start your SAS session. If you want to use your host
editor in your SAS session, the SAS Session Manager must be running. The
SAS Session Manager enables you to interrupt or terminate your SAS session
and minimize and restore all of the windows in a SAS session. See “The SAS
Session Manager (motifxsassm) in UNIX” on page 177 and “Configuring SAS for
Host Editor Support in UNIX Environments” on page 200 for more information.
Clicking the Start Session manager box sets the SAS.startSessionManager
resource.

Modifying X Resources through the Preferences Dialog Box 209

Startup Logo
specifies whether you want SAS to display an XPM file while your SAS session
is being initialized and, if so, which file.

If you select Use Default Logo, SAS uses the default file for your site. If you
select No Logo, then no file is displayed. If you select Use Custom Logo, then
you can either enter the XPM filename directly in the text field or click Select to
open the File Selection dialog box. Selecting this box sets the sAS.startupLogo
resource.

Use application workspace
confines all windows displayed by an application to a single application
workspace. Selecting this box sets the SAS.noAWS resource. You must exit and
reopen the windows for changes to this resource to take effect.

Note: In the UNIX operating environment, the application workspace (AWS) is
turned on by default. If you are using the EFI window, and you want the window
to remember its exact position and size, then you must turn off the AWS. To do
this, select Tools = Options = Preferences, and deselect Use application
workspace. Be sure to return the AWS to its default setting when your work in
the EFI window is completed.

AWS Resize Policy
controls the policy for resizing AWS windows as interior windows are added and
removed. (For more information, see “Workspace and Gravity in a SAS Session’
on page 176 and “Window Types” on page 176.)

Grow
The AWS window attempts to grow anytime an interior window is grown or
moved (to make all of its interior windows visible). It does not shrink to
remove unused areas.

Fixed
The AWS window attempts to size itself to the size of the first interior window
and does not attempt any further size changes.

Selecting this box sets the SAS.awsResizePolicy resource.

Modifying the DMS Settings

To modify the DMS settings, select the DMS tab in the Preferences dialog box, and
then select from the items in the window:

Use menu access keys
activates menu mnemonics. When mnemonics are turned on, you can select
menu items by entering the single, underlined letter in the item. Selecting this
box sets the SAS.usePmenuMnemonics resource.

Confirm exit
displays the Exit dialog box when you exit your SAS session. Selecting this box
sets the SAS.confirmSASExit resource.

Save Settings on Exit
tells SAS to issue the WSAVE ALL command when you exit your SAS session.
This command saves the global settings, such as window color and window
position, that are in effect for all windows that are currently open. These settings

210 Chapter 10 / Customizing the SAS Windowing Environment

are saved in your Sasuser.Profile catalog. Selecting this box sets the
SAS.wsaveAllExit resource.

Note: For the WSAVE command to work, your window manager must support
explicit window placement. See the documentation for your window manager to
determine how to configure your window manager. For example, if you are
running Exceed, open the Screen Definition Settings dialog box and deselect
Cascade Windows.

Backup Documents
enables you to specify whether you want SAS to automatically save (at the
interval specified by the sAS.autoSaveInterval resource) the documents that
you currently have open. Selecting this box sets the SAS.autoSaveOn resource.

Image type for Email attachments
specifies the default file type for the temporary file that SAS creates when
sending the contents of a non-text window via email. Examples of non-text
windows include a graph generated by SAS/GRAPH or an image from your
PROC REPORT output. For more information, see “Sending the Contents of a
Non-Text Window” on page 199.

Modifying the Editing Settings

To modify the Editing settings, select the Editing tab in the Preferences dialog box,
and then select from the items in the window:

Default paste buffer
defines an alias for the default SAS buffer. The following list describes the paste
buffer alias names and the X buffer with which each name is associated.

XPRIMARY
X primary selection (PRIMARY)

XSCNDARY
X secondary selection (SECONDARY)

XCLIPBRD
X clipboard (CLIPBOARD)

XTERM
exchange protocol used by the xterm client

XCUTn
X cut buffer where n is between 0 and 7, inclusive

Selecting this box sets the SAS.defaultPasteBuffer resource. See
“Controlling Drop-down Menus in UNIX Environments” on page 250 for more
information about cut-and-paste buffers.

Automatically store selection
generates a STORE command every time you mark a region of text with the
mouse. Selecting this box sets the SAS.markPasteBuffer resource.

Cursor
controls the editing mode in SAS text editor windows. Selecting the Insert and
Overtype boxes sets the SAS. insertModeOn resource to True and False,
respectively.

Modifying X Resources through the Preferences Dialog Box 211

Modifying the Results Settings

To modify the results settings, click the Results tab in the Preferences dialog box.
The items on the Results tab affect output that is produced through ODS. (For a
complete description of ODS, see the SAS Output Delivery System: User’s Guide.)
Select from the items in this dialog box:

Create Listing
opens the ODS LISTING destination, which produces monospace output.
Selecting this box is equivalent to entering the ODS LISTING SELECT ALL
statement.

Create HTML
opens the ODS HTML destination, which produces output that is formatted in
HTML. HTML is the default output type.

Folder
specifies a destination directory for HTML files. Specifying a directory in this field
is equivalent to specifying a directory with the PATH option in the ODS HTML
statement.

Use WORK Folder
tells ODS to send all HTML files to your Work directory.