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Overview: SPATIALREG Procedure
The SPATIALREG (spatial regression) procedure analyzes spatial econometric models for cross-sectional
data whose observations are spatially referenced or georeferenced. For example, housing price data that
are collected from 48 continental states in the United States fall into the category of spatially referenced
data. Compared to nonspatial regression models, spatial econometric models are capable of handling spatial
interaction and spatial heterogeneity in a regression setting (Anselin 2001).

The SPATIALREG procedure supports the following models:

� linear model

� linear model with spatial lag of X (SLX) effects

� spatial autoregressive (SAR) model

� spatial Durbin model (SDM)

� spatial error model (SEM)

� spatial Durbin error model (SDEM)

� spatial moving average (SMA) model

� spatial Durbin moving average (SDMA) model

� spatial autoregressive moving average (SARMA) model

� spatial Durbin autoregressive moving average (SDARMA) model
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� spatial autoregressive confused (SAC) model

� spatial Durbin autoregressive confused (SDAC) model

In general, SARMA, SDARMA, SAC, and SDAC models can require two spatial weights matrices. If you fit
these four types of models by using the SPATIALREG procedure in SAS/ETS 14.2, the two spatial weights
matrices are assumed to be identical.

Spatial econometric models have been widely used in economics, political science, sociology, and other fields.
For example, LeSage and Pace (2009) provide a detailed introduction to commonly used spatial econometric
models from both frequentist and Bayesian perspectives. A brief introduction to spatial econometric models
is also provided by Elhorst (2013).

The SPATIALREG procedure in SAS/ETS 14.2 primarily uses the maximum likelihood estimation to achieve
parameter estimation. Initial values for the nonlinear optimizations are usually calculated by ordinary least
squares (OLS).

Getting Started: SPATIALREG Procedure
The SPATIALREG procedure is similar to other SAS regression model procedures, except that you usually
need to provide a secondary data set (in the WMAT= option). The spatial weights matrix defines all pairwise
spatial relationships and is the most vital component of a spatial regression model. For more information
about how to create spatial weights matrix, see the section “Specifying the Spatial Weights Matrix” on
page 2377.

The following statements fit a SAR model:

proc spatialreg data=one Wmat=W;
model y = x1 x2 / type=SAR;

run;

The response variable y is continuous, and the data set W, which you specify in the WMAT= option, contains
the spatial relationships among all spatial units in the data. In this case, W is either contiguity or weights.
You specify the TYPE=SAR option to request a SAR model.

The following example illustrates PROC SPATIALREG by using a real-world data set. The data set CRIMEOH
is taken from Anselin (1988) and can be found in the SAS/ETS Sample Library. This data set contains
variables such as INCOME (household income, measured in $1000), HVALUE (housing value by $1000),
and CRIME (number of crimes, including residential burglaries and vehicle thefts, measured per 1,000
households) in 49 neighborhoods in Columbus, Ohio. You want to examine how household income and
housing value affect the number of crimes in the 49 neighborhoods of interest.

The first 10 observations in the CRIMEOH data set are shown in Figure 32.1.
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Figure 32.1 Columbus Crime Data

Obs crime income hvalue lat lon

1 18.802 21.232 44.567 35.62 42.38

2 32.388 4.477 33.200 36.50 40.52

3 38.426 11.337 37.125 36.71 38.71

4 0.178 8.438 75.000 33.36 38.41

5 15.726 19.531 80.467 38.80 44.07

6 30.627 15.956 26.350 39.82 41.18

7 50.732 11.252 23.225 40.01 38.00

8 26.067 16.029 28.750 43.75 39.28

9 48.585 9.873 18.000 39.61 34.91

10 34.001 13.598 96.400 47.61 36.42

The following SAS statements fit a linear regression model to the CRIMEOH data set:

proc spatialreg data=crimeoh;
model crime = income hvalue / type=LINEAR;

run;

The “Model Fit Summary” table, shown in Figure 32.2, lists several fit summary statistics about the model.
By default, the SPATIALREG procedure uses the Newton-Raphson optimization technique. The maximum
log-likelihood value is shown, in addition to two information measures, Akaike’s information criterion (AIC)
and Schwarz’s Bayesian information criterion (SBC). AIC or SBC can be used for model selection. For a set
of candidate models, the model with the smallest AIC or SBC is often preferred.

Figure 32.2 Fit Summary Statistics for a Linear Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Model Fit Summary

Dependent Variable crime

Number of Observations 49

Data Set WORK.CRIMEOH

Model Linear

Log Likelihood -187.37709

Maximum Absolute Gradient 7.59852E-7

Number of Iterations 16

Optimization Method Newton-Raphson

AIC 382.75418

SBC 390.32146

The parameter estimates of the model and their standard errors are shown in Figure 32.3. Based on the
p-values, both INCOME and HVALUE are significant at the 0.05 level.
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Figure 32.3 Parameter Estimates of the Linear Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 68.618863 4.588210 14.96 <.0001

income 1 -1.597304 0.323739 -4.93 <.0001

hvalue 1 -0.273931 0.099989 -2.74 0.0062

_sigma2 1 122.751696 24.799493 4.95 <.0001

The following statements fit a SAR model to the CRIMEOH data set:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime = income hvalue / type=SAR;

run;

The NONORMALIZE option requests that the spatial weights matrix that is specified in the CRIMEWMAT
data set be used “as is” rather than be row-standardized. The “Model Fit Summary” table, shown in
Figure 32.4, lists several fit summary statistics about the SAR model. For this model, the value of AIC is
about 374.78—smaller than 382.75, which is the AIC value for the preceding linear model. Based on AIC,
the SAR model is preferred.

Figure 32.4 Fit Summary Statistics for a SAR Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Model Fit Summary

Dependent Variable crime

Number of Observations 49

Data Set WORK.CRIMEOH

Spatial Weights WORK.CRIMEWMAT

Model SAR

Log Likelihood -182.38860

Maximum Absolute Gradient 2.7871E-7

Number of Iterations 16

Optimization Method Newton-Raphson

AIC 374.77720

SBC 384.23630

The parameter estimates of the SAR model and their standard errors are shown in Figure 32.5. According
to the p-values, both INCOME and HVALUE are significant at the 0.05 level. In addition, the spatial
autoregressive coefficient � is estimated to be about 0.431, with a p-value of 0.0005.
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Figure 32.5 Parameter Estimates of the SAR Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 45.077070 7.870590 5.73 <.0001

income 1 -1.031531 0.328403 -3.14 0.0017

hvalue 1 -0.265924 0.088218 -3.01 0.0026

_rho 1 0.431020 0.123594 3.49 0.0005

_sigma2 1 95.487066 19.506312 4.90 <.0001

The following statements fit an SDM model. Unlike the previous SAR model, SDM accounts for exogenous
interaction effects by introducing spatial lags of two explanatory variables—INCOME and HVALUE.

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime = income hvalue / type=SAR;
spatialeffects income hvalue;

run;

The fit summary statistics for the SDM model are shown in Figure 32.6. Parameter estimates are provided in
Figure 32.7.

Figure 32.6 Fit Summary Statistics for the SDM Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Model Fit Summary

Dependent Variable crime

Number of Observations 49

Data Set WORK.CRIMEOH

Spatial Weights WORK.CRIMEWMAT

Model SDM

Log Likelihood -181.39141

Maximum Absolute Gradient 5.44802E-8

Number of Iterations 16

Optimization Method Newton-Raphson

AIC 376.78282

SBC 390.02556
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Figure 32.7 Parameter Estimates for the SDM Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 42.803457 13.924487 3.07 0.0021

income 1 -0.914206 0.336439 -2.72 0.0066

hvalue 1 -0.293745 0.088857 -3.31 0.0009

W_income 1 -0.519640 0.594772 -0.87 0.3823

W_hvalue 1 0.245716 0.176854 1.39 0.1647

_rho 1 0.426492 0.167492 2.55 0.0109

_sigma2 1 91.779519 18.909222 4.85 <.0001

The spatial autoregressive coefficient � is estimated to be 0.426 with a p-value of 0.0109 based on an
asymptotic t test. This result seems to suggest that there is a significantly positive spatial dependence in the
number of crimes.

In the SPATIALREG procedure, the null hypothesis H0 W � D 0 can also be tested against the alternative
Ha W � ¤ 0 by using the likelihood ratio (LR) test, Lagrange multiplier (LM) test, and Wald test. For the LR
test, the test statistic is equal to �2.Llinear � LSAR/ D �2.�187:38C 182:39/ D 9:98, where Llinear and
LSAR are the log likelihoods for the linear regression model and SAR model, respectively. The likelihood
ratio test is significant at the 0.05 level, providing strong evidence of spatial dependence in the data.

Syntax: SPATIALREG Procedure
The following statements are available in the SPATIALREG procedure:

PROC SPATIALREG < options > ;
BOUNDS bound1 < , bound2 . . . > ;
BY variables ;
CLASS variables ;
INIT initvalue1 < , initvalue2 . . . > ;
MODEL dependent = < regressors >< / options > ;
NLOPTIONS < options > ;
OUTPUT < OUT=SAS-data-set >< output-options > ;
PERFORMANCE options ;
RESTRICT restriction1 < , restriction2 . . . > ;
TEST equation1 < , equation2 . . . >< /test-options > ;
SPATIALEFFECTS < model-spatial-effect-regressors > ;
SPATIALID variable ;

You can specify more than one MODEL statement, as shown in the section “Example 32.3: Fitting Multiple
Models” on page 2401. The CLASS statement must precede the MODEL statement. If you include the
SPATIALEFFECTS statement, it must be paired with and appear after the MODEL statement.
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Functional Summary
Table 32.1 summarizes the statements and options that you can use with the SPATIALREG procedure.

Table 32.1 Functional Summary

Description Statement Option

Data Set Options
Specifies the input primary data set PROC SPATIALREG DATA=
Specifies the input spatial weights data set PROC SPATIALREG WMAT=
Suppresses normalization of the spatial weights PROC SPATIALREG NONORMALIZE
Writes parameter estimates to an output data set PROC SPATIALREG OUTEST=
Writes estimates of x0iˇ, predicted values, and
residuals to an output data set

OUTPUT OUT=

Approximation Control Options
Specifies the approximation-related options PROC SPATIALREG APPROXIMATION=

Declaring the Role of Variables
Specifies BY-group processing BY
Specifies classification variables CLASS
Specifies a spatial ID variable SPATIALID

Printing Control Options
Prints the correlation matrix of the estimates MODEL CORRB
Prints the covariance matrix of the estimates MODEL COVB
Prints a summary iteration listing MODEL ITPRINT
Suppresses the normal printed output PROC SPATIALREG NOPRINT
Prints all available output MODEL PRINTALL

Optimization Process Control Options
Specifies maximum number of iterations allowed MODEL MAXITER=
Selects the iterative minimization method to use PROC SPATIALREG METHOD=
Sets boundary restrictions on parameters BOUNDS
Sets initial values for parameters INIT
Sets linear restrictions on parameters RESTRICT
Sets the number of threads to use PERFORMANCE NTHREADS=
Specifies the optimization options NLOPTIONS See Chapter 6, “Nonlin-

ear Optimization Meth-
ods.”

Model Estimation Options
Specifies the spatial lag of covariate effect SPATIALEFFECTS
Specifies the type of model MODEL TYPE=
Specifies the type of covariance matrix MODEL COVEST=
Suppresses the intercept parameter MODEL NOINT
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Table 32.1 continued

Description Statement Option

Output Control Options
Includes covariances in the OUTEST= data set PROC SPATIALREG COVOUT
Outputs the residual OUTPUT RESID=
Outputs the expected value of the response variable OUTPUT PRED=
Outputs estimates of x0iˇ OUTPUT XBETA=

PROC SPATIALREG Statement
PROC SPATIALREG < options > ;

You can specify the following options in the PROC SPATIALREG statement.

Data Set Options

DATA=SAS-data-set
specifies the primary SAS data set that contains dependent variables, and explanatory variables, and so
on.

WMAT=SAS-data-set
specifies the secondary spatial weights data set, which can be used to construct the spatial weights
matrix W. Loosely speaking, the entries of W, w.si ; sj /, define the amount of influence that a unit
sj has over a unit si . The entries w.si ; sj / must be nonnegative and have zeros on the diagonal; that
is, w.si ; sj / � 0 and w.si ; si / D 0, where i; j D 1; 2; : : : ; n, with n being the total number of spatial
units in the data. Any nonzero diagonal elements w.si ; si / are replaced with 0. The spatial weights
matrix can be asymmetric; that is, it is not necessary that w.si ; sj / D w.sj ; si /. For information about
missing spatial weights in W, see the section “NONORMALIZE” on page 2356.

The W matrix can take two different forms. First, you can provide a full spatial weights matrix. In this
case, the data set that you specify in the WMAT= option has n rows. However, the number of columns
can be either nC 1 or n, depending on whether you need a spatial ID variable to match observations in
two data sets that are specified by the DATA= option and WMAT= option. If you need a SPATIALID
statement to specify a spatial ID variable for the purpose of matching observations, the data set that
you specify in the WMAT= option needs to have n+1 columns. In this case, the spatial ID variable can
appear in any column in the data set. Otherwise, the number of columns in the data set that you specify
in the WMAT= option should be n.

Second, you can also specify the spatial weights matrix by using a compact form when appropriate. In
this form, the number of observations in the data set that you specify in the WMAT= option should
match the number of nonzero elements in the spatial weights matrix. Moreover, the number of columns
in this data set should be three. The first two columns give the row and column indices for nonzero
entries in the spatial weights matrix. The third column in the data set contains the nonzero entries in the
spatial weights matrix. If you use the compact form for the spatial weights matrix, you must include
a SPATIALID statement to match observations in the two data sets that are specified in the DATA=
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option and WMAT= option. For more information about the SPATIALID statement, see the section
“SPATIALID Statement” on page 2364. For more information about the compact representation of
the spatial weights matrix, see the section “Compact Representation of Spatial Weights Matrix” on
page 2378.

NONORMALIZE
suppresses the row standardization of the spatial weights matrix that is specified in the WMAT= option.
By default, the spatial weights matrix is row-standardized; that is, the spatial weights matrix has unit
row sum. If the NONORMALIZE option is specified, spatial weights are used “as is” except for
w.si ; si /, which is always treated as 0. This implies that an entry w.si ; sj / in the W matrix cannot be
missing for i ¤ j if the NONORMALIZE option is specified. If this option is not specified, missing
spatial weights are replaced with zeros.

Approximation Control Options (Experimental)

APPROXIMATION=< (approx-option) >
specifies options that are related to approximating the Jacobian, as described in the section “Approxi-
mations to the Jacobian (Experimental)” on page 2382. You can specify one or more of the following
approx-options:

TAYLOR
specifies Taylor approximation. By default, Chebyshev approximation is used.

NMC=number
specifies a positive integer as the number of standard random normal draws for Monte Carlo
simulation. By default, NMC=100.

ORDER=number
specifies a positive integer as the order of series in Taylor approximation or Chebyshev approxi-
mation. If Taylor approximation is used, by default ORDER=50. If Chebyshev approximation is
used, by default ORDER=5.

SEED=number
specifies an integer seed in the range 1 to 231 � 1 for the random number generator that is used
for Monte Carlo simulation. By default, SEED=1. Specifying a seed enables you to reproduce
your analysis.

Output Data Set Options

COVOUT
writes the covariance matrix for the parameter estimates to the OUTEST= data set. This option is valid
when you specify the OUTEST= option.

OUTEST=SAS-data-set
writes the parameter estimates to the specified output data set.
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Printing Options

CORRB
prints the correlation matrix of the parameter estimates. You can also specify this option in the MODEL
statement.

COVB
prints the covariance matrix of the parameter estimates. You can also specify this option in the MODEL
statement.

NOPRINT
suppresses all printed output.

Estimation Control Options

COVEST=HESSIAN | OP | QML
specifies the type of covariance matrix for the parameter estimates. You can specify the following
types:

HESSIAN specifies the covariance from the Hessian matrix.

OP specifies the covariance from the outer product matrix.

QML specifies the covariance from the outer product and Hessian matrices.

By default, COVEST=HESSIAN. The quasi-maximum-likelihood estimates are computed using
COVEST=QML. For all models except the linear and SLX models, only COVEST=HESSIAN is
supported.

Optimization Process Control Options

PROC SPATIALREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization
tasks. All the NLO options are available in the NLOPTIONS statement. For more information, see the
section “NLOPTIONS Statement” on page 2361. In addition, you can specify the following option in the
PROC SPATIALREG statement:

METHOD=CONGRA | DBLDOG | NEWRAP | NMSIMP | NONE | NRRIDG | QUANEW | TRUREG
specifies the iterative minimization method to use. You can specify the following values:

CONGRA specifies the conjugate-gradient method.

DBLDOG specifies the double-dogleg method.

NEWRAP specifies the Newton-Raphson method.

NMSIMP specifies the Nelder-Mead simplex method.

NONE specifies that optimization not be performed.

NRRIDG specifies the Newton-Raphson ridge method.

QUANEW specifies the quasi-Newton method.

TRUREG specifies the trust region method.

By default, METHOD=NEWRAP.
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BOUNDS Statement
BOUNDS bound1 < , bound2 . . . > ;

The BOUNDS statement imposes simple boundary constraints on the parameter estimates. You can specify
any number of BOUNDS statements.

Each bound is composed of parameter names, constants, and inequality operators as follows:

item operator item < operator item operator item . . . >

Each item can be a constant, a parameter name, or a list of parameter names. Each operator can be <, >, <=,
or >=.

You can use both the BOUNDS statement and the RESTRICT statement to impose boundary constraints;
however, the BOUNDS statement provides a simpler syntax for specifying these kinds of constraints. For
more information about the RESTRICT statement, see the section “RESTRICT Statement” on page 2363.

The following BOUNDS statement constrains the estimates of the parameter for z to be negative, the
parameters for x1 through x10 to be between 0 and 1, and the parameter for spatial lag of the x1 to be less
than 1:

bounds z < 0,
0 < x1-x10 < 1,
W_x1 < 1;

BY Statement
BY variables ;

A BY statement can be used in PROC SPATIALREG to obtain separate analyses of observations in groups
that are defined by the BY variables. When you use a BY statement, the primary input data set (specified in
the DATA= option) should be sorted by the BY variables.

CLASS Statement
CLASS variable < (options) > . . . < variable < (options) > > < /global-options > ;

The CLASS statement names the classification variables that are used to group (classify) data in the analysis.
Classification variables can be either character or numeric.

Class levels are determined from the formatted values of the CLASS variables. Thus, you can use formats
to group values into levels. For more information, see the discussion of the FORMAT procedure in SAS
Language Reference: Dictionary. The CLASS statement must precede the MODEL statement.

Most options can be specified as either individual variable options or global-options. You can specify options
for each variable by enclosing the options in parentheses after the variable name. You can also specify
global-options for the CLASS statement by placing them after a slash (/). Global-options are applied to all
the variables that are specified in the CLASS statement. If you specify more than one CLASS statement,
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the global-options that are specified in any one CLASS statement apply to all CLASS statements. However,
individual CLASS variable options override the global-options.

You can specify the following values for either an option or a global-option:

MISSING
treats missing values (., ._, .A, . . . , .Z for numeric variables and blanks for character variables) as valid
levels for the CLASS variable.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of classification variables. This ordering determines which
parameters in the model correspond to each level in the data, so the ORDER= option can be useful when
you use the CONTRAST statement. By default, ORDER=FORMATTED. For ORDER=FORMATTED
and ORDER=INTERNAL, the sort order is machine-dependent. When ORDER=FORMATTED is in
effect for numeric variables for which you have supplied no explicit format, the levels are ordered by
their internal values.

The following table shows how PROC SPATIALREG interprets values of the ORDER= option:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set
FORMATTED External formatted values, except for numeric

variables with no explicit format, which are sorted
by their unformatted (internal) values

INTERNAL Unformatted value

For more information about sort order, see the chapter on the SORT procedure in SAS Visual Data
Management and Utility Procedures Guide and the discussion of BY-group processing in SAS Language
Reference: Concepts.

PARAM=keyword
specifies the parameterization method for the classification variable or variables. You can specify any
of the keywords shown in the following table; by default, PARAM=GLM.

Design matrix columns are created from CLASS variables according to the corresponding coding
schemes:

Value of PARAM= Coding

EFFECT Effect coding

GLM Less-than-full-rank reference cell coding (this
keyword can be used only as a global-option)

REFERENCE
REF

Reference cell coding

All parameterizations are full rank, except for the GLM parameterization. The REF= option in the
CLASS statement determines the reference level for effect and reference coding and for their orthogonal
parameterizations. It also indirectly determines the reference level for a singular GLM parameterization
through the order of levels.
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REF=’level’ | keyword
specifies the reference level for PARAM=EFFECT, PARAM=REFERENCE, and their orthogonaliza-
tions. When PARAM=GLM, the REF= option specifies a level of the classification variable to be put at
the end of the list of levels. This level thus corresponds to the reference level in the usual interpretation
of the linear estimates with a singular parameterization.

For an individual variable REF= option (but not for a global REF= option), you can specify the level
of the variable to use as the reference level. Specify the formatted value of the variable if a format
is assigned. For a global or individual variable REF= option, you can specify one of the following
keywords:

FIRST designates the first ordered level as reference.

LAST designates the last ordered level as reference.

By default, REF=LAST.

INIT Statement
INIT initvalue1 < , initvalue2 . . . > ;

The INIT statement sets initial values for parameters in the optimization.

Each initvalue is written as a parameter or parameter list, followed by an optional equal sign (=), followed by
a number:

parameter < = > number

For continuous regressors, the names of the parameters are the same as the corresponding variables. For a
regressor that is a CLASS variable, the parameter name combines the corresponding CLASS variable name
with the variable level. For interaction and nested regressors, the parameter names combine the names of all
the regressors. The names of the parameters can be seen in the OUTEST= data set. By default, initial values
are determined by OLS regression. Initial values can be displayed by using the ITPRINT option in the PROC
SPATIALREG statement.

MODEL Statement
MODEL dependent-variable = <regressors> </ options> ;

The MODEL statement specifies the dependent-variable and independent covariates (regressors) for the
regression model. If you specify no regressors, PROC SPATIALREG fits a model that contains only an
intercept. The dependent-variable is treated as a continuous variable in the primary input data set (specified
in the DATA= option). Models in PROC SPATIALREG do not allow missing values. If there are missing
values, you get an error message.

You can specify more than one MODEL statement. You can specify the following options in the MODEL
statement after a slash (/):
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NOINT
suppresses the intercept parameter.

TYPE=LINEAR | SAC | SAR | SARMA | SEM | SMA
specifies the type of model to be fitted. If you specify this option in both the MODEL statement and the
PROC SPATIALREG statement, the MODEL statement overrides the PROC SPATIALREG statement.
You can specify the following model types:

LINEAR specifies the linear model.

SAC specifies the spatial autoregressive confused model.

SAR specifies the spatial autoregressive model.

SARMA specifies the spatial autoregressive moving average model.

SEM specifies the spatial error model.

SMA specifies the spatial moving average model.

By default, TYPE=SAR.

Printing Options

CORRB
prints the correlation matrix of the parameter estimates. You can also specify this option in the PROC
SPATIALREG statement.

COVB
prints the covariance matrix of the parameter estimates. You can also specify this option in the PROC
SPATIALREG statement.

ITPRINT
prints the objective function and parameter estimates at each iteration. The objective function is
the negative log-likelihood function. You can also specify this option in the PROC SPATIALREG
statement.

PRINTALL
requests all available output. You can also specify this option in the PROC SPATIALREG statement.

NLOPTIONS Statement
NLOPTIONS < options > ;

The NLOPTIONS statement provides the options to control the nonlinear optimization (NLO) subsystem to
perform nonlinear optimization tasks. For a list of all the options available in the NLOPTIONS statement,
see Chapter 6, “Nonlinear Optimization Methods.”
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OUTPUT Statement
OUTPUT < OUT=SAS-data-set > < output-options > ;

The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set and,
optionally, the estimates of x0iˇ, the expected value of the response variable, and the residual.

You can specify only one OUTPUT statement for each MODEL statement. You can specify the following
output-options:

OUT=SAS-data-set
names the output data set.

XBETA=name
names the variable that contains estimates of x0iˇ.

PRED=name

MEAN=name
assigns a name to the variable that contains the predicted value of the response variable.

RESID=name

RESIDUAL=name
assigns a name to the variable that contains the residuals (that is, the difference between the observed
and predicted values of the response variable).

PERFORMANCE Statement
PERFORMANCE < performance-options > ;

The PERFORMANCE statement controls the number of threads that are used in the optimization phase. You
can also specify that multithreading not be used in the optimization phase by using the NOTHREADS option.

You can specify only one PERFORMANCE statement. You can specify the following performance-options:

DETAILS
specifies that a timing table be included in the output.

NOTHREADS
specifies that no threads be used during optimization.

NTHREADS=number
specifies the number of threads to be used during optimization.

If you use both the NTHREADS= and NOTHREADS options, then the NTHREADS= option is ignored. If
you use a PERFORMANCE statement, then it overrides any global threading settings that might have been
set using the CPUCOUNT=, THREADS, or NOTHREADS system option.
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RESTRICT Statement
RESTRICT restriction1 < , restriction2 . . . > ;

The RESTRICT statement imposes linear restrictions on the parameter estimates. You can specify any
number of RESTRICT statements.

Each restriction is written as an expression, followed by an equality operator (=) or an inequality operator (<,
>, <=, >=), followed by a second expression:

parameter < number

Restriction expressions can be composed of parameter names; constants; and the operators times (�), plus
(C), and minus (�). The restriction expressions must be a linear function of the parameters. For continuous
regressors, the names of the parameters are the same as the names of the corresponding variables. For a
regressor that is a CLASS variable, the parameter name combines the corresponding CLASS variable name
with the variable level. For interaction and nested regressors, the parameter names combine the names of all
the regressors. The names of the parameters can be seen in the OUTEST= data set.

Lagrange multipliers are reported in the “Parameter Estimates” table for all the active linear constraints. They
are identified by the names Restrict1, Restrict2, and so on. The p-values of these Lagrange multipliers are
computed using a beta distribution (LaMotte 1994). Nonactive (nonbinding) restrictions have no effect on
the estimation results and are not noted in the output.

For example, the following RESTRICT statement constrains the spatial autoregressive coefficient � to 0,
which removes endogenous interaction effects:

restrict _rho = 0;

TEST Statement
<’label’:> TEST equation [,equation. . . ] < / options > ;

The TEST statement performs Wald, Lagrange multiplier, and likelihood ratio tests of linear hypotheses
about the parameters in your model. Each equation specifies a linear hypothesis to be tested. All hypotheses
in one TEST statement are tested jointly. Variable names in the equations must correspond to regressors in
the preceding MODEL statement, and each name represents the coefficient of the corresponding regressor.
The keyword INTERCEPT refers to the coefficient of the intercept. The keywords _rho and _lambda refer to
the autoregressive coefficients � and �, respectively. In addition, the keyword _sigma2 refers to the variance
parameter �2.

You can specify the following options after the slash (/):

ALL
requests Wald, Lagrange multiplier, and likelihood ratio tests.

LM
requests the Lagrange multiplier test.
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LR
requests the likelihood ratio test.

WALD
requests the Wald test.

The following statements illustrate the use of the TEST statement:

proc spatialreg data=dat;
model y = x1 x2 x3/type=LINEAR;
test x1 = 0, x2 * .5 + 2 * x3 = 0/ALL;
test_int: test intercept = 0, x3 = 0/LR;

run;

The first test investigates the joint hypothesis that ˇ1 D 0 and 0:5ˇ2 C 2ˇ3 D 0.

Only linear equality tests are permitted in PROC SPATIALREG. Tests expressions can be composed only of
algebraic operations that use the addition symbol (+), subtraction symbol (–), and multiplication symbol (*).

The TEST statement accepts labels that are reproduced in the printed output. TEST statements can be labeled
in two ways: a TEST statement can be preceded by a label followed by a colon, or the keyword TEST can be
followed by a quoted string. If both are present, PROC SPATIALREG uses the label preceding the colon. If
no label is specified, PROC SPATIALREG automatically labels the tests.

SPATIALID Statement
SPATIALID variable ;

For models that require a spatial weights matrix, the SPATIALID statement specifies a variable that identifies
a spatial unit for each observation in the two data sets that are specified in the DATA= option and WMAT=
option in the PROC SPATIALREG statement. The variable that is specified in the SPATIALID statement
is also used to match the rows and columns within the WMAT= data set. You do not need a SPATIALID
statement if no matching is needed for the two data sets specified in the DATA= option and WMAT= option.
If you do need a SPATIALID statement, only one SPATIALID statement and one spatial ID variable are
allowed. The values of the spatial ID variable in either the DATA= data set or the WMAT= data set cannot be
missing.

The variable in the SPATIALID statement can be either numeric or character. However, the type of spatial ID
variable in the two data sets specified in the DATA= option and WMAT= option must be the same. When the
spatial ID variable is numeric, it needs to be integer-valued. If you specify a number that is not an integer,
PROC SPATIALREG uses the integer part of that number for matching.

SPATIALEFFECTS Statement
SPATIALEFFECTS < model-spatial-effect-regressors > < /options > ;

The SPATIALEFFECTS statement enables you to specify covariates (such as X) whose spatial lag, WX, is to
be added to the MODEL statement.

PROC SPATIALREG adds the spatially weighted model-spatial-effect-regressors to regressors that are speci-
fied in the MODEL statement. For example, if you specify q variables z1; : : : ; zq in the SPATIALEFFECTS
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statement, then each of q spatially weighted variables, as represented by each column of WZ, has a parameter
to be included in the regression. Here, WZ denotes the matrix product of W and Z. In addition, Z is the
design matrix formed by the q variables z1; : : : ; zq . The spatial weights matrix W comes from the data set
that is specified in the WMAT= option. The “Parameter Estimates” table in the displayed output shows the
estimates for spatially weighted model-spatial-effect-regressors; they are labeled with the prefix “W_”. For
example, if you specify z (a variable in your primary data set) as a spatial effect explanatory variable, then
the “Parameter Estimates” table labels the corresponding parameter estimate “W_z”.

Details: SPATIALREG Procedure

Specification of Regressors
Each term in a model, called a regressor, is a variable or combination of variables. Regressors are specified
in a special notation that uses variable names and operators. There are two kinds of variables: classification
(CLASS) variables and continuous variables. There are two primary operators: crossing and nesting. A third
operator, the bar operator, is used to simplify effect specification.

In the SAS System, classification variables are declared in the CLASS statement. (They can also be called
categorical, qualitative, discrete, or nominal variables.) Classification variables can be either numeric or
character. The values of a classification variable are called levels. For example, the classification variable
Sex has the levels “male” and “female.”

In a model, an independent variable that is not declared in the CLASS statement is assumed to be continuous.
Continuous variables, which must be numeric, are used for covariates. For example, the heights and weights
of subjects are continuous variables. A response variable is a continuous variable and must also be numeric.

Types of Regressors

Seven different types of regressors are used in the SPATIALREG procedure. In the following list, assume
that A, B, C, D, and E are CLASS variables and that X1 and X2 are continuous variables:

� Regressors are specified by writing continuous variables by themselves: X1 X2.

� Polynomial regressors are specified by joining (crossing) two or more continuous variables with
asterisks: X1*X1 X1*X2.

� Dummy regressors are specified by writing CLASS variables by themselves: A B C.

� Dummy interactions are specified by joining classification variables with asterisks: A*B B*C
A*B*C.

� Nested regressors are specified by following a dummy variable or dummy interaction with a classifica-
tion variable or list of classification variables enclosed in parentheses. The dummy variable or dummy
interaction is nested within the regressor that is listed in parentheses: B(A) C(B*A) D*E(C*B*A).
In this example, B(A) is read as “B nested within A.”

� Continuous-by-class regressors are written by joining continuous variables and classification variables
with asterisks: X1*A.
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� Continuous-nesting-class regressors consist of continuous variables followed by a classification variable
interaction enclosed in parentheses: X1(A) X1*X2(A*B).

An example of the general form of an effect that involves several variables is

X1*X2*A*B*C(D*E)

This example contains an interaction between continuous terms and classification terms that are nested within
more than one classification variable. The continuous list comes first, followed by the dummy list, followed
by the nesting list in parentheses. Note that asterisks can appear within the nested list but not immediately
before the left parenthesis.

The MODEL statement uses these effects. Some examples of MODEL statements that use various kinds of
effects are shown in the following table, where a, b, and c represent classification variables. The variables x
and z are continuous.

Specification Type of Model

model y=x; Simple regression

model y=x z; Multiple regression

model y=x x*x; Polynomial (quadratic) regression

model y=a; Regression with one classification variable

model y=a b c; Regression with multiple classification variables

model y=a b a*b; Regression with classification variables and their interactions

model y=a b(a) c(b a); Regression with classification variables and their interactions

model y=a x; Regression with both continuous and classification variables

model y=a x(a); Separate-slopes regression

model y=a x x*a; Homogeneity-of-slopes regression

Bar Operator

You can shorten the specification of a large factorial model by using the bar operator. For example, two ways
of writing the model for a full three-way factorial model follow:

model Y = A B C A*B A*C B*C A*B*C;

model Y = A|B|C;

When the bar (|) is used, the right and left sides become effects, and the cross between them becomes an
effect. Multiple bars are permitted. The expressions are expanded from left to right, using rules 2–4 from
Searle (1971, p. 390).

� Multiple bars are evaluated from left to right. For example, A | B | C is evaluated as follows:

A | B | C ! f A | B g | C

! f A B A*B g | C

! A B A*B C A*C B*C A*B*C
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� Crossed and nested groups of variables are combined. For example, A(B) | C(D) generates A*C(B D),
among other terms.

� Duplicate variables are removed. For example, A(C) | B(C) generates A*B(C C), among other terms,
and the extra C is removed.

� Effects are discarded if a variable occurs in both the crossed and nested parts of an effect. For example,
A(B) | B(D E) generates A*B(B D E), but this effect is discarded immediately.

You can also specify the maximum number of variables involved in any effect that results from bar evaluation
by specifying that maximum number, preceded by an @ sign, at the end of the bar effect. For example, the
specification A | B | C@2 would result in only those effects that contain no more than two variables: in this
case, A B A*B C A*C and B*C.

More examples of using the | and @ operators follow:

A | C(B) is equivalent to A C(B) A*C(B)

A(B) | C(B) is equivalent to A(B) C(B) A*C(B)

A(B) | B(D E) is equivalent to A(B) B(D E)

A | B(A) | C is equivalent to A B(A) C A*C B*C(A)

A | B(A) | C@2 is equivalent to A B(A) C A*C

A | B | C | D@2 is equivalent to A B A*B C A*C B*C D A*D B*D C*D

A*B(C*D) is equivalent to A*B(C D)

Missing Values
Missing values can occur in both the primary data set (specified in the DATA= option) and the secondary
spatial weights data set (specified in the WMAT= option). PROC SPATIALREG does not allow missing
values in the primary input data set. If any observation in the primary input data set has a missing value
for one or more of the regressors or the dependent variable, PROC SPATIALREG will not fit the model. If
any observation in the primary data set has a missing value for the spatial ID variable when you specify the
SPATIALID statement, PROC SPATIALREG will not fit the model. In such cases, an error message is issued.

For the secondary spatial weights data set, a missing value for the spatial ID variable is not allowed when
you specify the SPATIALID statement. Moreover, missing spatial weights are not allowed if you specify the
NONORMALIZE option. In these cases, PROC SPATIALREG issues an error message and skips the model
fitting.

Spatial Autoregressive Models
The spatial autoregressive (SAR) model is useful for incorporating the spatial dependence in the dependent
variable—that is, the endogenous interaction effect. Let yi denote the observation associated with a spatial
unit si for i D 1; 2; : : : ; n. For these spatial units, let an n � n matrix W with nonnegative elements be a
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spatial weights matrix. Further, let xi be a p � 1 vector that denotes values of p regressors recorded for the
spatial unit si . The SAR model can be formulated as

yi D �

nX
jD1

Wijyj C x0iˇ C �i

where i D 1; 2; : : : ; n. Here � is the spatial autoregressive coefficient and ˇ is a p � 1 parameter vector.
Moreover, Wij is the .i; j /th element of the matrix W subject to Wi i D 0. For the error term �i related to the

spatial unit si , it is assumed that �i
iid
� N.0; �2/.

The SAR model is often described in vector form as

y D �WyCXˇ C �

where y D .y1; y2; : : : ; yn/
0, X is an n � p matrix where each row consists of x0i , and � D .�1; �2; : : : ; �n/

0.

The standard estimator for the SAR model is the maximum likelihood estimator (MLE). For the SAR model,
the log-likelihood function is (Anselin 2001)

L D �
n

2
ln.2��2/ �

.Ay �Xˇ/0.Ay �Xˇ/
2�2

C ln jAj

where A D In � �W, with In being an n � n identity matrix. jAj denotes the determinant of A.

The gradients can be derived as follows:

@L
@ˇ
D

X0.Ay �Xˇ/
�2

@L
@�
D

1

�2
y0W0.Ay �Xˇ/ � tr.A�1W/

@L
@�2
D �

n

2�2
C
.Ay �Xˇ/0.Ay �Xˇ/

2�4

For the n � n matrix A, tr.A/ D
Pn

iD1 ai i , where ai i is the ith diagonal element of A.

A SAR model does not account for exogenous interaction effects. However, in practice, the value of the
dependent variable y for a spatial unit might be affected by some independent exploratory variables of other
spatial units as well. In such a case, you can use the SDM model instead.

Spatial Durbin Models
Unlike a SAR model, a spatial Durbin model (SDM) can account for exogenous interaction effects in addition
to the endogenous interaction effects. Let yi denote the observation associated with a spatial unit si for
i D 1; 2; : : : ; n. For these spatial units, let W be an n � n spatial weights matrix of your choice. Further,
assume that xi is a p � 1 vector that denotes values of p regressors recorded for the spatial unit si . Similarly,
assume that zi is a q � 1 vector that denotes values of q regressors measured at unit si .

The SDM model can be described in vector form as (LeSage and Pace 2009)

y D �WyCXˇ CWZ� C �
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where y D .y1; y2; : : : ; yn/
0 and � D .�1; �2; : : : ; �n/

0 with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

where each row consists of x0i , and Z is an n � q matrix where each row consists of z0i . In addition, ˇ and �
are p � 1 and q � 1 parameter vectors, respectively.

By letting eX D ŒX WZ� and ěD .ˇ0 � 0/0, you can rewrite the SDM model as

y D �WyC eXěC �
The log-likelihood function for the SDM model is

L D �
n

2
ln.2��2/ �

.Ay � eXě/0.Ay � eXě/
2�2

C ln jAj

where A D In � �W.

For the SDM model, the gradients are

@L
@ě D eX0.Ay � eXě/

�2

@L
@�
D

1

�2
y0W0.Ay � eXě/ � tr.A�1W/

@L
@�2
D �

n

2�2
C
.Ay � eXě/0.Ay � eXě/

2�4

Both the SAR model and the SDM model account for endogenous interaction effects. However, in some
cases there might be an interaction among error terms. In such cases, you might consider a spatial error
model, which addresses spatial interaction among error terms.

Spatial Error Models
The spatial error model (SEM) accounts for spatial dependence in the error terms rather than in the dependent
variable. Let yi denote the observation associated with the spatial unit si for i D 1; 2; : : : ; n. For these
spatial units, let W be an n� n spatial weights matrix. Further, let xi be a p � 1 vector that denotes values of
p regressors recorded at unit si .

The SEM model can be described in vector form by using the following two-stage formulation (LeSage and
Pace 2009),

y D Xˇ C u

u D �WuC �

where y D .y1; y2; : : : ; yn/
0 and � D .�1; �2; : : : ; �n/

0, with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

where each row consists of x0i . In addition, ˇ is a p � 1 parameter vector.

The log-likelihood function for the SEM model is

L D �
n

2
ln.2��2/ �

ŒB.y �Xˇ/�0 ŒB.y �Xˇ/�
2�2

C ln jBj

where B D In � �W.
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For the SEM model, the gradients are

@L
@ˇ
D
.BX/0 ŒB.y �Xˇ/�

�2

@L
@�
D

1

�2
ŒW.y �Xˇ/�0 ŒB.y �Xˇ/� � tr.B�1W/

@L
@�2
D �

n

2�2
C
ŒB.y �Xˇ/�0 ŒB.y �Xˇ/�

2�4

In addition to the interaction effects among error terms, you might also want to include exogenous interaction
effects in the model. In such cases, you need to consider a spatial Durbin error model (SDEM).

Spatial Durbin Error Models
The spatial Durbin error model (SDEM) accounts for spatial dependence among the error terms and the
exogenous interaction effect. Let yi denote the observation associated with the spatial unit si for i D
1; 2; : : : ; n. For these spatial units, let W be an n� n spatial weights matrix. Further, let xi be a p � 1 vector
that denotes values of p regressors recorded at unit si . Similarly, let zi be a q � 1 vector that denotes values
of q regressors measured at unit si .

The SDEM can be described in vector form by using the following two-stage formulation (LeSage and Pace
2009),

y D Xˇ CWZ� C u

u D �WuC �

where y D .y1; y2; : : : ; yn/
0 and � D .�1; �2; : : : ; �n/

0, with �i
iid
� N.0; �2/. Moreover, X and Z are n � p

and n � q matrices, where each row consists of x0i and z0i , respectively. In addition, ˇ and � are p � 1 and
q � 1 parameter vectors, respectively.

By letting eX D ŒX WZ� and ěD .ˇ0 � 0/0, the SDEM model can be rewritten as

y D eXěC B�1�

where B D In � �W.

The log-likelihood function for the SDEM model is

L D �
n

2
ln.2��2/ �

�
B.y � eXě/�0 �B.y � eXě/�

2�2
C ln jBj

For the SDEM model, the gradients are

@L
@ě D .BeX/0 �B.y � eXě/�

�2

@L
@�
D

1

�2

�
W.y � eXě/�0 �B.y � eXˇ/� � tr.B�1W/

@L
@�2
D �

n

2�2
C

�
B.y � eXě/�0 �B.y � eXě/�

2�4
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Spatial Moving Average Models
The spatial moving average (SMA) model accounts for spatial dependence among the error terms; thus it is
similar to the SEM model but with a different autocorrelation structure. The SMA model is used for modeling
local autocorrelation. Let yi denote the observation associated with the spatial unit si for i D 1; 2; : : : ; n.
For these spatial units, let W be an n� n spatial weights matrix. Further, let xi be a p � 1 vector that denotes
values of p regressors recorded at unit si .

The SMA model can be described in vector form by using the following two-stage formulation,

y D Xˇ C u

u D .In � �W/�

where y D .y1; y2; : : : ; yn/
0 and � D .�1; �2; : : : ; �n/

0, with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

that has x0i in each row, and Z is an n� q matrix that has of z0i in each row. In addition, ˇ is a p � 1 parameter
vector.

The log-likelihood function for the SMA model is

L D �
n

2
ln.2��2/ �

�
B�1.y �Xˇ/

�0 �B�1.y �Xˇ/
�

2�2
� ln jBj

where B D In � �W.

For the SMA model, the gradients are

@L
@ˇ
D
.B�1X/0

�
B�1.y �Xˇ/

�
�2

@L
@�
D �

1

�2

�
B�1.y �Xˇ/

�0 �
B�1W

� �
B�1.y �Xˇ/

�
C tr.B�1W/

@L
@�2
D �

n

2�2
C

�
B�1.y �Xˇ/

�0 �B�1.y �Xˇ/
�

2�4

Spatial Durbin Moving Average Models
The term spatial Durbin moving average (SDMA) model is used to refer to the SMA model with exogenous
interaction effects. Let yi denote the observation associated with the spatial unit si for i D 1; 2; : : : ; n. For
these spatial units, let W be an n � n spatial weights matrix. Further, let xi be a p � 1 vector that denotes
values of p regressors recorded at unit si . Similarly, let zi be a q � 1 vector that denotes values of q covariates
measured at unit si .

The SDMA model can be described in vector form as

y D Xˇ CWX� C .In � �W/�

where y D .y1; y2; : : : ; yn/
0 and � D .�1; �2; : : : ; �n/

0, with �i
iid
� N.0; �2/. Moreover, X and Z are n � p

and n � q matrices, where each row consists of x0i and z0i , respectively. In addition, ˇ is a p � 1 parameter
vector and � is a q � 1 parameter vector, respectively.
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By letting eX D ŒX WZ� and ěD .ˇ0 � 0/0, the SDMA model can be written as

y D eXěC B�

The log-likelihood function for the SDMA model is

L D �
n

2
ln.2��2/ �

�
B�1.y � eXě/�0 �B�1.y � eXě/�

2�2
� ln jBj

where B D In � �W and jBj denotes the determinant of matrix B.

For the SDMA model, the gradients are

@L
@ě D .B�1eX/0 �B�1.y � eXě/�

�2

@L
@�
D �

1

�2

�
B�1.y � eXě/�0 �B�1W

� �
B�1.y � eXě/�C tr.B�1W/

@L
@�2
D �

n

2�2
C

�
B�1.y � eXě/�0 �B�1.y � eXě/�

2�4

Spatial Autoregressive Moving Average Models
The spatial autoregressive moving average (SARMA) model, like the SMA model, can account for spatial
dependence among the error terms. In addition, the SARMA model enables you to account for spatial
dependence in the dependent variable, as the SAR model does. Let yi denote the observation associated
with the spatial unit si for i D 1; 2; : : : ; n. For these spatial units, let the n � n matrices W1 and W2 with
nonnegative elements be two spatial weights matrices. In practice, W1 and W2 can be identical. Further, it is
assumed that xi is a p � 1 vector that denotes values of p covariates recorded at unit si .

The SARMA model can be described in the vector form by using the following two-stage formulation
(LeSage and Pace 2009),

y D �W1yCXˇ C u

u D .In � �W2/�

where y D .y1; y2; : : : ; yn/
0 and � D .�1; �2; : : : ; �n/

0, with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

that consists of x0i in each row. In addition, ˇ is a p � 1 parameter vector, and In is an n � n identity matrix.

The log-likelihood function for the SARMA model is

L D �
n

2
ln.2��2/ �

�
B�1.Ay �Xˇ/

�0 �B�1.Ay �Xˇ/
�

2�2
C ln jAj � ln jBj

where A D In � �W1, B D In � �W2 and j � j denotes the matrix determinant operator.

For the SARMA model, the gradients are

@L
@ˇ
D
.B�1X/0

�
B�1.Ay �Xˇ/

�
�2
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@L
@�
D

�
B�1W1y

�0 B�1.Ay �Xˇ/
�2

� tr.A�1W1/

@L
@�
D �

1

�2

�
B�1.Ay �Xˇ/

�0 �
B�1W2

� �
B�1.Ay �Xˇ/

�
C tr.B�1W2/

@L
@�2
D �

n

2�2
C

�
B�1.Ay �Xˇ/

�0 �B�1.Ay �Xˇ/
�

2�4

Spatial Durbin Autoregressive Moving Average Models
You can also accommodate exogenous interaction effects in the SARMA model. The term spatial Durbin
autoregressive moving average (SDARMA) model is used to refer to such an extension of the SARMA model.
Let yi denote the observation associated with the spatial unit si for i D 1; 2; : : : ; n. For these spatial units,
let W1 and W2 be two spatial weights matrices. Further, let xi be a p � 1 vector that denotes values of p
regressors recorded at unit si . Similarly, let zi be a q � 1 vector that denotes values of q regressors measured
at unit si .

The SDARMA model can be described in vector form by using the following two-stage formulation,

y D �W1yCXˇ CW1Z� C u

u D .In � �W2/�

where y D .y1; y2; : : : ; yn/
0 and � D .�1; �2; : : : ; �n/

0, with �i
iid
� N.0; �2/0. Moreover, X is an n�p matrix

that has x0i in each row, Z is an n � q matrix that has z0i in each row. In addition, ˇ is a p � 1 parameter
vector.

By letting eX D ŒX W1Z� and ěD .ˇ0 � 0/0, the SDARMA model can be written as

y D �W1yC eXěC .In � �W2/�

The log-likelihood function for the SDARMA model is

L D �
n

2
ln.2��2/ �

�
B�1.Ay � eXě/�0 �B�1.Ay � eXě/�

2�2
C ln jAj � ln jBj

where A D In � �W1 and B D In � �W2.

For the SDARMA model, the gradients are

@L
@ě D .B�1eX/0 �B�1.Ay � eXě/�

�2

@L
@�
D

�
B�1W1y

�0 B�1.Ay � eXě/
�2

� tr.A�1W1/

@L
@�
D �

1

�2

�
B�1.Ay � eXě/�0 �B�1W2

� �
B�1.Ay � eXě/�C tr.B�1W2/

@L
@�2
D �

n

2�2
C

�
B�1.Ay � eXě/�0 �B�1.Ay � eXě/�

2�4
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Spatial Autoregressive Confused Models
The spatial autoregressive confused (SAC) model, like the SARMA model, can accommodate spatial
dependence in both the dependent variable and error terms. However, the covariance structure for the error
terms in a SAC model is different from that of the SARMA model. Let yi denote the observation associated
with the spatial unit si for i D 1; 2; : : : ; n. For these spatial units, let W1 and W2 be two spatial weights
matrices. Further, let xi be a p � 1 vector that denotes values of p regressors recorded at unit si .

The SAC model can be described in vector form by using the following two-stage formulation (LeSage and
Pace 2009),

y D �W1yCXˇ C u

u D �W2uC �

where y D .y1; y2; : : : ; yn/
0 and � D .�1; �2; : : : ; �n/

0, with �i
iid
� N.0; �2/0. Moreover, X is an n�p matrix

that has x0i in each row. In addition, ˇ is a p � 1 parameter vector.

The log-likelihood function for the SAC model is

L D �
n

2
ln.2��2/ �

ŒB.Ay �Xˇ/�0 ŒB.Ay �Xˇ/�
2�2

C ln jAj C ln jBj

where A D In � �W1 and B D In � �W2.

For the SAC model, the gradients are

@L
@ˇ
D
.BX/0 ŒB.Ay �Xˇ/�

�2

@L
@�
D
.BW1y/0 B.Ay �Xˇ/

�2
� tr.A�1W1/

@L
@�
D

1

�2
ŒW2.Ay �Xˇ/�0 ŒB.Ay �Xˇ/� � tr.B�1W2/

@L
@�2
D �

n

2�2
C
ŒB.Ay �Xˇ/�0 ŒB.Ay �Xˇ/�

2�4

Spatial Durbin Autoregressive Confused Models
The SAC model can be extended to account for exogenous interaction effects. The term spatial Durbin
autoregressive confused (SDAC) model is used to refer to such an extension of the SAC model. Let yi denote
the observation associated with the spatial unit si for i D 1; 2; : : : ; n. For these spatial units, let W1 and W2

be two spatial weights matrices. Further, let xi be a p � 1 vector that denotes values of p regressors recorded
at unit si . Similarly, assume that zi is a q � 1 vector that denotes values of q regressors measured at unit si .

The SDAC model can be described in vector form by using the following two-stage formulation,

y D �W1yCXˇ CW1Z� C u

u D .In � �W2/
�1�
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where y D .y1; y2; : : : ; yn/
0 and � D .�1; �2; : : : ; �n/

0, with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

that has x0i in each row, Z is an n � q matrix that has z0i in each row. In addition, ˇ is a p � 1 parameter
vector.

By letting eX D ŒX W1Z� and ěD .ˇ0 � 0/0, the SDAC model can be rewritten as

y D �W1yC eXěC .In � �W2/
�1�

The log-likelihood function for the SDAC model is

L D �
n

2
ln.2��2/ �

�
B.Ay � eXě/�0 �B.Ay � eXě/�

2�2
C ln jAj C ln jBj

For the SDAC model, the gradients are

@L
@ě D .BeX/0 �B.Ay � eXě/�

�2

@L
@�
D
.BW1y/0 B.Ay � eXě/

�2
� tr.A�1W1/

@L
@�
D

1

�2

�
W2.Ay � eXě/�0 �B.Ay � eXě/� � tr.B�1W2/

@L
@�2
D �

n

2�2
C

�
B.Ay � eXě/�0 �B.Ay � eXě/�

2�4

Linear Regression Models
You can also fit a linear regression model in PROC SPATIALREG. In this case, let yi denote the observation
associated with the spatial unit si for i D 1; 2; : : : ; n. Further, let xi be a p � 1 vector that denotes values of
p regressors recorded at unit si .

The linear regression model can be described in vector form as

y D Xˇ C �

where y D .y1; y2; : : : ; yn/
0 and � D .�1; �2; : : : ; �n/

0, with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

that has x0i in each row.

The log-likelihood function for the linear regression model is

L D �
n

2
ln.2��2/ �

.y �Xˇ/0.y �Xˇ/
2�2

For the linear regression model, the gradients are

@L
@ˇ
D

X0.y �Xˇ/
�2

@L
@�2
D �

n

2�2
C
.y �Xˇ/0.y �Xˇ/

2�4
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The Hessians take the following forms:

@2L
@ˇ@ˇ0

D �
X0X
�2

@2L
@ˇ@�2

D �
X0.y �Xˇ/

�4

@2L
@�4
D

n

2�4
�
.y �Xˇ/0.y �Xˇ/

�6

Spatial Lag of X Models
The spatial lag of X (SLX) model assumes no endogenous interaction effects or spatial dependence in the
error terms. Instead, it incorporates only exogenous interaction effects into the linear regression model. Let
yi denote the observation associated with the spatial unit si for i D 1; 2; : : : ; n. For these spatial units, let W
be a spatial weights matrix. Further, let xi be a p � 1 vector that denotes values of p regressors recorded at
unit si . Similarly, let zi be a q � 1 vector that denotes values of q regressors measured at unit si .

The SLX model can be described in vector form as

y D Xˇ CWZ� C �

where y D .y1; y2; : : : ; yn/
0 and � D .�1; �2; : : : ; �n/

0, with �i
iid
� N.0; �2/. Moreover, X is an n � p matrix

that has x0i in each row, Z is an n � q matrix that has z0i in each row. In addition, ˇ is a p � 1 parameter
vector.

By letting eX D ŒX WZ� and ěD .ˇ0 � 0/0, the SLX model can be rewritten as

y D eXěC �
The log-likelihood function for the SLX model is

L D �
n

2
ln.2��2/ �

.y � eXě/0.y � eXě/
2�2

For the SLX model, the gradients are

@L
@ě D .eX/0.y � eXě/

�2

@L
@�2
D �

n

2�2
C
.y � eXě/0.y � eXě/

2�4

The Hessians take the following forms:

@2L
@ě@ě0 D �eX0eX�2

@2L
@ě@�2

D �

eX0.y � eXě/
�4

@2L
@�4
D

n

2�4
�
.y � eXě/0.y � eXě/

�6
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Specifying the Spatial Weights Matrix
The spatial weights matrix W plays a vital role in spatial econometric modeling. If you fit a purely linear
model without SLX effects, you do not need a W matrix. For other types of models in PROC SPATIALREG,
you need to provide a spatial weights matrix to fit the model. Although the creation of the W matrix is often
problem-specific, there are some general guidelines to consider. Two common ways to create the W matrix
are k-order binary contiguity matrices and k-nearest neighbor matrices (Elhorst 2013).

k -Order Binary Contiguity Matrices

You start with the spatial contiguity matrix C. In the case of the first-order neighbors (k D 1), a value of
1 for the .i; j /th entry in C indicates that the two units i and j are neighbors to each other, and 0 indicates
otherwise. The neighbor relationship is often defined based on sharing of a common boundary. To generalize
this, a k-order neighbor (k � 2) of a unit i can be any units whose neighbors are .k � 1/-order neighbors of
unit i. In this sense, the two units i and j that are not first-order neighbors can still be second-order neighbors
if unit j is the neighbor to a first-order neighbor of unit i.

As an example, a first-order binary contiguity matrix might look like the following:

C D

0BBBB@
SID L1 L2 L3 L4
L1 0 1 0 1

L2 1 0 0 0

L3 0 0 0 1

L4 1 0 1 0

1CCCCA
The diagonal elements of C are zeros because, in general, a unit is not considered to be a neighbor of itself.
Moreover, the two units L2 and L4 are neighbors of L1; L2 has L1 as its only neighbor; L3 has L4 as its
only neighbor; and L4 has L1 and L3 as its neighbors. You can create the spatial weights matrix W by
row-standardizing the contiguity matrix C. To do so, you divide entries in each row of C by the sum of that
row. The spatial weights matrix W, which is the row-standardized version of C, is as follows:

W D

0BBBB@
SID L1 L2 L3 L4
L1 0 1

2
0 1

2

L2 1 0 0 0

L3 0 0 0 1

L4 1
2

0 1
2

0

1CCCCA

k -Nearest Neighbor Matrices

You can create a spatial contiguity matrix based on a distance metric. Let dij denote the distance between
the two units i and j, which might be the Euclidean distance between centroids of the two spatial units. Let
.loni ; lati / and .lonj ; latj / be the centroids of units i and j, where 1 � i; j � n, and lon and lat denote the
longitude and latitude, respectively. Under the Euclidean distance metric, the distance dij between units i
and j is

dij D

q
.lati � latj /2 C .loni � lonj /2

After computing the distance between the unit i and other units under a certain metric, you sort dij in ascending
order; for example, dij1

� dij2
� � � � � dijk

� � � � � dijn�1
. For a given k, let Nk.i/ D fj1; j2; : : : ; jkg be
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the set that contains the indices of k-nearest neighbors of unit i; then the .i; j /th entries of the contiguity
matrix C are defined as

Cij D

(
1 if j 2 Nk.i/

0 otherwise

The .i; j /th entry of the corresponding row-standardized matrix W is Wij D Cij

nP
j2Nk.i/ Cij

o�1
.

Unlike the k-order binary contiguity matrix, which is often symmetric by construction, k-nearest neighbor
matrices can be asymmetric. To obtain a symmetric k-nearest neighbor matrices, you can define the .i; j /th
entries of the contiguity matrix C as follows:

Cij D

(
1 if j 2 Nk.i/ or i 2 Nk.j /

0 otherwise

In addition to the Euclidean distance measure, you can use other distance metrics as appropriate. A variant of
k-nearest neighbor matrices C� that is used in some empirical studies defines its .i; j /th entries as

C �ij D

(
1 if dij � dcutoff
0 otherwise

where dcutoff is a prespecified threshold distance.

In addition to the two constructions of spatial weights matrices that are presented earlier, see Elhorst (2013)
and the references therein for more information about other ways to create a spatial weights matrix. In
practice, you can define the neighbor relation that is problem-specific. For example, you can define two
spatial units that are far apart to be neighbors because they share some attributes (such as population sizes
larger than 500,000).

The data set that you specify in the WMAT= option is row-standardized by default to create a spatial
weights matrix. This means that if you specify WMAT=C, PROC SPATIALREG row-standardizes the spatial
contiguity matrix to create a spatial weights matrix. If you want to suppress row standardization, you must
specify the NONORMALIZE option.

Compact Representation of Spatial Weights Matrix
When the number of spatial units n increases, the amount of memory that it takes to store n2 entries of
the spatial contiguity matrix C or the spatial weights matrix W increases dramatically. To circumvent the
storage issue, PROC SPATIALREG enables you to provide a compact representation of W (or C) when
appropriate. With the compact matrix representation, you provide a data set that contains three variables
by using the WMAT= option. The first two variables identify the row r and column c of W (or C), and
.r; c/ can be expressed either as numerical indices or as values of the variable specified in the SPATIALID
statement. The third variable contains the nonzero value of W (or C) for row r and column c. With this
compact representation, the number of observations in the data set specified in the WMAT= option equals
the total number of nonzero entries in W (or C).

You must use a SPATIALID statement if you want to use the compact representation of the spatial contiguity
or spatial weights matrix. With the compact representation, the first two variables of the data set that you
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specify in the WMAT= option must be of the same type. First, the first two columns in that data set can be
row and column index for each nonzero entry in W (or C). In this case, the SPATIALID variable is numeric
type. Alternatively, the first two columns in the WMAT= data set can be characters that are the names of two
neighboring spatial units in W (or C). In this second case, the SPATIALID variable is character type.

For example, the compact representation of the spatial weights matrix W,

W D

0BB@
0 0:5 0 0:5

1 0 0 0

0 0 0 1

0:5 0 0:5 0

1CCA
would look like the following:

data Ws;
input SID cSID Weight;
datalines;
1 2 0.5
1 4 0.5
2 1 1.0
3 4 1.0
4 1 0.5
4 3 0.5
;

run;

For the spatial contiguity matrix C,

C D

0BB@
0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0

1CCA
the compact representation would look like the following:

data Cs;
input SID cSID Weight;
datalines;
1 2 1.0
1 4 1.0
2 1 1.0
3 4 1.0
4 1 1.0
4 3 1.0
;

run;

If the spatial weights matrix is the same as matrix W in the section “k-Order Binary Contiguity Matrices” on
page 2377, its compact representation would be as follows:

data Ws2;
input SID $ cSID $ Weight;
datalines;
L1 L2 0.5
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L1 L4 0.5
L2 L1 1.0
L3 L4 1.0
L4 L1 0.5
L4 L3 0.5
;

run;

If the spatial contiguity matrix is the same as matrix C in the section “k-Order Binary Contiguity Matrices”
on page 2377, its compact representation can be given in the data set Cs2 as follows:

data Cs2;
input SID $ cSID $ Weight;
datalines;
L1 L2 1.0
L1 L4 1.0
L2 L1 1.0
L3 L4 1.0
L4 L1 1.0
L4 L3 1.0
;

run;

Spatial ID Matching
Depending on the type of model that you use in PROC SPATIALREG, you might need to specify two data
sets: one in the DATA= option and the other in the WMAT= option. However, in some cases, these two data
sets might not come in the same order in terms of spatial units. In such cases, you must use a SPATIALID
statement to specify a spatial ID variable in order to match observations in these two data sets.

As an example, assume that the data set you specify in the DATA= option looks like the following:

data example;
input SID $ x1 x2 y;
datalines;
L1 0.3 0.5 0.9
L3 -0.7 0.8 -0.4
L2 0.4 -1.2 0.6
L8 -1.7 1.2 -0.5
L4 1.4 0.9 0.3
L5 2.3 1.5 1.9
L7 -0.9 -0.8 -1.3
L6 1.4 -1.6 -2.0
;

run;

Suppose the spatial contiguity matrix that you specify in the WMAT= option looks like the following:

data cmat;
input SID $ L1 L8 L3 L4 L7 L6 L5 L2;
datalines;
L1 0 1 0 1 0 1 0 1
L2 1 0 0 0 1 0 0 0
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L6 1 0 1 0 0 0 0 0
L4 1 0 0 0 1 0 0 0
L3 0 0 0 0 1 1 0 0
L7 0 0 1 1 0 0 0 1
L5 0 1 0 0 0 0 0 0
L8 1 0 0 0 0 0 1 0
;

run;

As you can see, rows in the two data sets Example and Cmat do not share identically sorted SID values.
The second row in the Example data set contains the observation for a spatial unit L3, and its neighbor
information is given in the fifth row of the Cmat data set. Moreover, the rows and columns of the spatial
weights data set Cmat are not in the same order. The following SAS statements fit a SAR model to these data:

proc spatialreg data=example Wmat=cmat;
model y=x1 x2/type=SAR;
spatialid SID;

run;

The SPATIALID statement enables you to match rows and columns of Cmat in addition to rows of Example
and Cmat. Without the SPATIALID statement, you need to sort Cmat so that the order of its rows and
columns matches that of Example. The sorted data set, Cmat2, would look like the following:

data cmat2;
input SID $ L1 L3 L2 L8 L4 L5 L7 L6;
datalines;
L1 0 0 1 1 1 0 0 1
L3 0 0 0 0 0 0 1 1
L2 1 0 0 0 0 0 1 0
L8 1 0 0 0 0 1 0 0
L4 1 0 0 0 0 0 1 0
L5 0 0 0 1 0 0 0 0
L7 0 1 1 0 1 0 0 0
L6 1 1 0 0 0 0 0 0
;

run;

Parameter Space of Autoregressive Parameters
For all models except linear regression models in PROC SPATIALREG, the autoregressive parameters � and
� are often assumed to satisfy some assumptions to ensure consistency of the maximum likelihood estimator
(Elhorst 2013). For SAR and SDM models, the Jacobian term involves the log-determinant of I � �W1, and
the parameter space of � is often specified such that I � �W1 is nonsingular. For SEM, SMA, SDM, and
SDMA models, the Jacobian term involves the log-determinant of I � �W1, and the parameter space of � is
often specified such that I � �W1 is nonsingular. For SAC, SDAC, SARMA, and SDARMA models, the
Jacobian term involves the log-determinants of both I � �W1 and I � �W1. As a result, the parameter space
of � and � is often specified such that both I � �W1 and I � �W1 are nonsingular.

In the SPATIALREG procedure, the parameter space of autoregressive parameters � and � depends on the
spatial weights matrix W that you choose. For W, the parameter space of the autoregressive parameters �
and � in PROC SPATIALREG is determined as follows:
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1. For a symmetric W, the nonsingularity condition requires � 2
�
!�1

min; !
�1
max

�
and � 2

�
!�1

min; !
�1
max

�
.

Here !min and !max denote the smallest (that is, most negative) and largest real eigenvalues of W,
respectively.

2. If W is symmetric and subsequently row-standardized, the nonsingularity condition requires � 2�
!�min

�1; 1
�

and � 2
�
!�min

�1; 1
�

. Here !�min denotes the smallest purely real eigenvalue of the
row-standardized W.

3. If W is asymmetric and subsequently row-standardized, the nonsingularity condition requires � 2�
r�min

�1; 1
�

and � 2
�
r�min

�1; 1
�

. Here r�min denotes the smallest purely real eigenvalue of the
row-standardized W.

4. When Taylor approximation or Chebyshev approximation is used for SAR and SDM models, W is
required to be row-standardized. In these cases, the restriction on the autoregressive coefficient � is
� 2 .�1; 1/.

Approximations to the Jacobian (Experimental)
To obtain maximum likelihood estimates for all models except linear regression models in PROC SPATIAL-
REG, you need to compute the Jacobian term, because it appears in the log-likelihood function. For SAR and
SDM models, the Jacobian term is ln jIn � �Wj, where n is the number of observations and W is the spatial
weights matrix. When n is not large, you can compute the Jacobian as follows,

ln jIn � �Wj D
nX

iD1

ln j1 � �!i j

where !i s are the eigenvalues of W. Such a method requires you to precompute all eigenvalues of W, which
works fine for small data sets. However, when n is large, computing the Jacobian term by using the eigenvalue
method can be computationally infeasible. Instead, you can use approximations to the Jacobian.

The SPATIALREG procedure supports two different approximations to the Jacobian for two models only.
For SAR and SDM models, you can approximate the Jacobian by using either Taylor approximation or
Chebyshev approximation. These two approximations can be described as follows (for more information, see
LeSage and Pace 2009, and the references therein):

� Taylor approximation uses finite, lower-order series to approximate the log-determinant as

ln jIn � �Wj � �
qX

kD1

�ktr
�
Wk

�
k

� Chebyshev approximation uses finite, lower-order Chebyshev polynomials of the first kind to approxi-
mate the log-determinant as

ln jIn � �Wj �
qX

kD0

ck.�/tr .Tk.W//



Parameter Naming Conventions for RESTRICT, TEST, BOUNDS, and INIT Statements F 2383

where T0.W/ D In, T1.W/ DW, and TkC1.W/ D 2WTk.W/� Tk�1.W/ for k D 1; 2; : : : ; q. The
coefficients ck.�/ are defined as

ck.�/ D

(
1

qC1

Pq
jD0 ln.1 � � cos �j / cos.k�j / if k D 0

2
qC1

Pq
jD0 ln.1 � � cos �j / cos.k�j / if k > 0

with �j D .j C 1/�=.q C 1/ for j D 0; 1; : : : ; q.

The traces of powers of W can be computed exactly or approximated using Monte Carlo simulation. The
Monte Carlo simulation is done as follows,

tr
�
Wk

�
�

1

M

MX
lD1

n

u0
l
ul

u0lW
kul

where ul
iid
� N.0; In/ and M is the total number of Monte Carlo samples.

When you apply these two approximations, it is often assumed that the maximum eigenvalue of W equals
1 and the minimum eigenvalue of W is greater than or equal to –1 (see LeSage and Pace 2009, and the
references therein). One way to satisfy this assumption is to use a row-standardized spatial weights matrix
that is similar to a symmetric matrix. If the spatial weights matrix is not symmetric or similar to a symmetric
matrix, it becomes more difficult to apply Chebyshev approximation and thus requires extra care (LeSage
and Pace 2009).

When you request an approximation to the Jacobian, the choices that you need to make might include the
approximation method to use (that is, Taylor approximation or Chebyshev approximation); the order of
series q; and the number of Monte Carlo samples (that is, M). Your choice can be accommodated through
the APPROXIMATION= option in the PROC SPATIALREG statement. For the approximation method,
you can use the keyword TAYLOR in the APPROXIMATION= option to request Taylor approximation.
Otherwise, the approximation method defaults to Chebyshev approximation. You specify ORDER=q in
the APPROXIMATION= option to request a series of order q when approximating the log-determinant. In
addition, you specify NMC=M in the APPROXIMATION= option to request M Monte Carlo samples to be
drawn when approximating the traces of powers of W. In addition, you can use the SEED= suboption of
the APPROXIMATION= option to specify an integer seed for a random number generator to replicate your
analysis.

Parameter Naming Conventions for RESTRICT, TEST, BOUNDS, and INIT
Statements
This section describes how you refer to the parameters when using either the RESTRICT, TEST, BOUNDS,
or INIT statement. The examples are presented using the RESTRICT statement. However, the same remarks
apply to referencing parameters when you use the TEST, BOUNDS, or INIT statement.

To impose a restriction on a parameter related to a regressor in the MODEL statement, you simply use the
name of the regressor itself. Suppose your model is

model y = x1-x3 / type=SAR;
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where x1-x3 are continuous variables. Suppose you want to restrict the parameter associated with the
regressor x3 to be greater than 1.7. You should provide the following statement:

RESTRICT x3 > 1.7;

To impose a restriction on a parameter associated with a regressor in the SPATIALEFFECTS statement, you
can form the name of the parameter by prefixing W_ to the name of the regressor. Suppose your MODEL
and SPATIALEFFECTS statements are as follows:

model y = x1-x3 / type=SAR;
spatialeffects x1 x2 x3;

Suppose you want to restrict the parameter related to the x3 regressor in the SPATIALEFFECTS statement to
be less than 1.0. You should refer to the parameter as W_x3 and provide the following statement:

RESTRICT W_x3 < 1.0;

Even though the regressor x3 appears in both the MODEL and SPATIALEFFECTS statements, the parameter
associated with x3 in the MODEL statement is, of course, different from the parameter associated with x3 in
the SPATIALEFFECTS statement. Thus, when the name of a regressor is used in a RESTRICT statement
without any prefix, it refers to the parameter associated with that regressor in the MODEL statement.
Meanwhile, when the name of a regressor is used in a RESTRICT statement with the prefix W_, it refers to
the parameter associated with that regressor in the SPATIALEFFECTS statement. Note that the intercept is
not included in the SPATIALEFFECTS statement.

Referring to Class Level Parameters

When your MODEL includes a CLASS variable, you can impose restrictions on the parameters associated
with each of the levels related to that variable as described in this section.

Suppose your CLASS variable is named C and has three levels: 0, 1, 2. Suppose your model is the following:

class C;
model y = x1 x2 C;

Adding a CLASS variable as a regressor to your model introduces additional parameters to your model,
each of which is associated with one of the levels of that variable. You can form the name of the parameter
associated with a particular level of your CLASS variable by inserting the underscore character between the
name of the variable and the value of the level. Thus, to restrict the parameter associated with level 0 of the
CLASS variable C to always be greater than 0.7, you should refer to the parameter as C_0 and provide the
following statement:

RESTRICT C_0 > 0.7;

When the value of a level is a negative number, you must replace the minus sign with an underscore when
you form the name of the parameter associated with that particular level of the CLASS variable. For example,
suppose your CLASS variable is named D and has four levels: –1, 0, 1, 2. Suppose your model is the
following:

class D;
model y = x1 x2 D;

To restrict the parameter associated with level –1 of the CLASS variable D to always be less than 0.4, you
should refer to the parameter as D__1 (note that there are two underscores in this parameter name: one to
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connect the name of the variable to its value and the other to replace the minus sign in the value itself). The
following statement imposes the restriction on the parameter in question:

RESTRICT D__1 < 0.4;

Depending on the parameterization that you impose on your CLASS variable, one of the parameters associated
with its levels can be dropped from your model before optimization in order to avoid collinearity. For example,
when the default parameterization GLM is imposed, the parameter associated with the last level of your
CLASS variable is dropped before optimization. If you attempt to impose a restriction on a dropped parameter
by using the RESTRICT statement, you receive an error message in the log.

For example, suppose once again that your CLASS variable is named C and that it has three levels: 0, 1, 2.
Suppose your model is the following:

class C;
model y = x1 x2 C;

Because no additional options were specified in the CLASS statement, the GLM parameterization is assumed.
This entails that the parameter named C_2 (which is the parameter associated with the last level of your
CLASS variable) will be dropped from your model before the optimizer is invoked. Therefore, you generate
an error if you attempt to restrict the C_2 parameter in any way by referring to it in a RESTRICT statement.
For example, the following RESTRICT statement generates an error:

RESTRICT C_2 < 0.3;

Referring to Parameters Associated with Interactions between Regressors

When a regressor in your model involves an interaction between other regressors, you can impose restrictions
on the parameters associated with the interaction as described in this section.

Suppose you have the following model:

model y = x1 x2 x3*x4;

You can form the name of the parameter associated with the interaction regressor x3*x4 by replacing the
multiplication sign with an underscore. Thus, x3_x4 refers to the parameter associated with the interaction
regressor x3*x4.

Referring to interactions between regressors and CLASS variables is handled in exactly the same way.
Suppose you have a CLASS variable named C that has three levels (0, 1, 2), and that your model is the
following:

class C;
model y = x1 x2 C*x3;

The interaction between the continuous variable x3 and the CLASS variable C introduces three additional
parameters, which are named x3_C_0, x3_C_1, and x3_C_2. Note that, although the order of the terms in
the interaction is C followed by x3, the name of the parameter associated with the interaction is formed by
placing the name of the continuous variable x3 first, followed by an underscore, followed by the name of
the CLASS variable C, followed by another underscore, and then followed by the level value. Once again,
depending on the parameterization that you specify in your CLASS statement, for each interaction in your
model that involves a CLASS variable, one of the parameters associated with that interaction can be dropped
from your model before optimization.
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The name of a parameter associated with a nested interaction is formed in a slightly different way. Suppose
you have a CLASS variable named C that has three levels (0, 1, 2) and your model is the following:

class C;
model y = x1 x2 x3(C);

The nested interaction between the continuous variable x3 and the CLASS variable C introduces three
additional parameters, which are named x3_C__0, x3_C__1, and x3_C__2. Note how the name in each case
was formed from the name of the regressor by replacing the left and right parentheses with underscores and
then appending another underscore followed by the level value.

Referring to Implicit Parameters

For all models in PROC SPATIALREG, one or more implicit parameters are added to your model before
optimization. You can impose restrictions on these implicit parameters as follows.

If you have a linear model or SLX model, the _sigma2 parameter is added to your model. For the SAR or
SDM model, the _rho and _sigma2 parameters are added to your model.

If you specify TYPE=SEM or TYPE=SMA, the _lambda and _sigma2 parameters are added to your model.
If you specify the TYPE=SAC or TYPE=SARMA option, then three implicit parameters are added to your
model: _rho, _lambda, and _sigma2.

Whenever your model type dictates the addition of one or more of these implicit parameters, you can impose
restrictions on the implicit parameters by referring to them by name. For example, assuming that your model
type implies the existence of the _rho parameter, you can restrict _rho to be greater than 0 as follows:

RESTRICT _rho > 0.0;

Computational Resources
The time and memory that PROC SPATIALREG requires are proportional to the number of parameters in the
model and the number of observations in the data set being analyzed. Also affecting resources are the method
that is chosen to calculate the variance-covariance matrix and the optimization method. All optimization
methods available through the METHOD= option have similar memory use requirements.

The processing time might differ for each method, depending on the number of iterations and functional calls
needed. The data set is read into memory to save processing time. If not enough memory is available to hold
the data, the SPATIALREG procedure stores the data in a utility file on disk and rereads the data as needed
from this file. When this occurs, the execution time of the procedure increases substantially. The gradient
and the variance-covariance matrix must be held in memory. If the model has p parameters, including the
intercept, then at least 8.pCp.pC1/=2/ bytes are needed. If the quasi–maximum likelihood method is used
to estimate the variance-covariance matrix (COVEST=QML), an additional 8p.p C 1/=2 bytes of memory
are needed.

Processing time is also a function of the number of iterations needed to converge to a solution for the model
parameters. The number of iterations cannot be known in advance. The MAXITER= option can be used to
limit the number of iterations that PROC SPATIALREG performs. The convergence criteria can be altered by
nonlinear optimization options available in the PROC SPATIALREG statement. For a list of all the nonlinear
optimization options, see Chapter 6, “Nonlinear Optimization Methods.”
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Nonlinear Optimization Options
PROC SPATIALREG uses the nonlinear optimization (NLO) subsystem to perform nonlinear optimization
tasks. In the PROC SPATIALREG statement, you can specify nonlinear optimization options that are then
passed to the NLO subsystem. For a list of all the nonlinear optimization options, see Chapter 6, “Nonlinear
Optimization Methods.”

Covariance Matrix Types
The SPATIALREG procedure enables you to specify the estimation method for the covariance matrix. The
COVEST=HESSIAN option estimates the covariance matrix based on the inverse of the Hessian matrix,
COVEST=OP uses the outer product of gradients, and COVEST=QML produces the covariance matrix based
on both the Hessian and outer product matrices. By default, COVEST=HESSIAN.

Although all three methods produce asymptotically equivalent results, they differ in computational intensity
and produce results that might differ in finite samples. The COVEST=OP option provides the covariance
matrix that is usually the easiest to compute. In some cases, the OP approximation is considered more
efficient than the Hessian or QML approximation because it contains fewer random elements. The QML
approximation is computationally the most complex, because both the outer product of gradients and the
Hessian matrix are required. In most cases, the OP or Hessian approximation is preferred to QML. The need
to use QML approximation arises in some cases when the model is misspecified and the information matrix
equality does not hold.

When Taylor approximation or Chebyshev approximation is used for the SAR and SDM models, only
COVEST=HESSIAN is supported.

Displayed Output
PROC SPATIALREG produces the following displayed output.

Class Level Information

If you specify the CLASS statement, the SPATIALREG procedure displays a table that contains the following
information:

� CLASS variable name

� number of levels of the CLASS variable

� list of values of the CLASS variable

Iteration History for Parameter Estimates

If you specify the ITPRINT or PRINTALL option in the PROC SPATIALREG statement, PROC SPATIAL-
REG displays a table that contains the following information for each iteration. Some information is specific
to the model-fitting procedure that you choose (for example, Newton-Raphson, trust region, quasi-Newton).
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� iteration number

� number of restarts since the fitting began

� number of function calls

� number of active constraints at the current solution

� value of the objective function (the negative log-likelihood value) at the current solution

� change in the objective function from previous iteration

� value of the maximum absolute gradient element

� step size (for Newton-Raphson and quasi-Newton methods)

� slope of the current search direction (for Newton-Raphson and quasi-Newton methods)

� lambda (for trust region method)

� radius value at current iteration (for trust region method)

Model Fit Summary

The “Model Fit Summary” table contains the following information:

� dependent variable name

� number of observations used

� data set name

� name of the spatial weights data set (specified by the WMAT= option)

� type of model that was fit

� log-likelihood value at solution

� maximum absolute gradient at solution

� number of iterations

� AIC value at the solution (a smaller value indicates a better fit)

� SBC value at the solution (a smaller value indicates a better fit)

Below the “Model Fit Summary” table is a statement about whether the algorithm successfully converged.
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Parameter Estimates

The “Parameter Estimates” table displays the estimates of the model parameters. In the SAR model, estimates
are also displayed for the autoregressive coefficient � and the variance of the error terms �2. For the SEM,
SDEM, SMA, and SDMA models, estimates are given for the autoregressive coefficient � and the variance
of the error terms �2. In addition, for SAC, SDAC, SARMA, and SDARMA models, estimates are given for
the autoregressive coefficients � and �, and the variance of the error terms �2. In the linear and SLX models,
estimates are given for the variance of the error terms �2.

“_rho” is the internal name of the autoregressive coefficient � in the SAR, SDM, SARMA, SDARMA,
SAC, and SDAC models. The t statistic given for “_rho” is a test of autoregressive coefficient. In addition,
“_lambda” is the internal name of the autoregressive coefficient � in the SEM, SDEM, SMA, SARMA, SAC,
and SDAC models. Moreover, “_sigma2” is the internal name of the variance parameter �2.

Last Evaluation of the Gradient

If you specify the ITPRINT option in the MODEL statement, the SPATIALREG procedure displays the last
evaluation of the gradient vector.

Covariance of Parameter Estimates

If you specify the COVB option in the MODEL statement or in the PROC SPATIALREG statement, the
SPATIALREG procedure displays the estimated covariance matrix, defined as the inverse of the information
matrix, evaluated at the final iteration.

Correlation of Parameter Estimates

If you specify the CORRB option in the MODEL statement or in the PROC SPATIALREG statement, PROC
SPATIALREG displays the estimated correlation matrix. It is based on the Hessian matrix that is used in the
final iteration.

OUTPUT OUT= Data Set
The OUTPUT statement creates a new SAS data set that contains all the variables in the input data set and,
optionally, the estimates of x0iˇ, the expected value of the response variable, and the residual.

OUTEST= Data Set
The OUTEST= data set has two rows: the first row (with _TYPE_=‘PARM’) contains each of the parameter
estimates in the model, and the second row (with _TYPE_=‘STD’) contains the standard errors for the
parameter estimates in the model.

If you specify the COVOUT option in the PROC SPATIALREG statement, the OUTEST= data set also
contains the covariance matrix for the parameter estimates. The covariance matrix appears in the observations
for which _TYPE_=‘COV’, and the _NAME_ variable labels the rows with the parameter names.

The names of the parameters are used as variable names. These are the same names that are used in the INIT,
BOUNDS, and RESTRICT statements.
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ODS Table Names
PROC SPATIALREG assigns a name to each table that it creates. You can use these names to denote the
table when using the Output Delivery System (ODS) to select tables and create output data sets. These names
are listed in Table 32.2.

Table 32.2 ODS Tables Produced in PROC SPATIALREG

ODS Table Name Description Option

ODS Tables Created by the MODEL Statement
ClassLevels Class levels Default
FitSummary Summary of nonlinear estimation Default
ConvergenceStatus Convergence status Default
ParameterEstimates Parameter estimates Default
CovB Covariance of parameter estimates COVB
CorrB Correlation of parameter estimates CORRB
InputOptions Input options ITPRINT
IterStart Optimization start ITPRINT
IterHist Iteration history ITPRINT
IterStop Optimization results ITPRINT
ParameterEstimatesResults Parameter estimates ITPRINT
ParameterEstimatesStart Parameter estimates ITPRINT
ProblemDescription Problem description ITPRINT

ODS Tables Created by the TEST Statement
TestResults Test results Default
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Examples: SPATIALREG Procedure

Example 32.1: Columbus Crime Data

Data Description and Objective

The data set CRIMEOH contains data from Columbus, Ohio, about the number of crimes (including residential
burglaries and vehicle thefts) and possible determinants of crime. This data set is taken from Anselin (1988)
and can be found in the SAS/ETS Sample Library.

The variable CRIME represents the number of crimes in 49 neighborhoods of Columbus, Ohio. Additional
variables in the data set that you want to evaluate as determinants of crimes include INCOME (household
income by $1000) and HVALUE (housing value by $1000). Summary statistics for these variables are
computed by the following statements and presented in Output 32.1.1:

proc means data=crimeoh;
var crime income hvalue;

run;

Output 32.1.1 Summary Statistics

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

crime
income
hvalue

49
49
49

35.1288367
14.3749388
38.4362245

16.7320385
5.7033781
18.4660693

0.1780000
4.4770000
17.9000000

68.8920000
31.0700000
96.4000000

The spatial relationships among the 49 neighborhoods are summarized using the first-order neighbor contigu-
ity matrix, contained in the CRIMEWMAT data set. This data set is also taken from Anselin (1988) and can be
found in the SAS/ETS Sample Library.

Spatial Autoregressive (SAR) Model

The following statements fit a SAR model to the data by using the regressors INCOME and HVALUE:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SAR;

run;

In this example, the TYPE=SAR option in the MODEL statement specifies a SAR model. The NONOR-
MALIZE option indicates that the spatial weights data set CRIMEWMAT should be used “as is” rather than
be row-standardized. The parameter estimates for this model are shown in Output 32.1.2. According to the
results, the spatial autoregressive coefficient � is positive and significant at the 0.05 level. This indicates that
there is a positive spatial dependence in the data.
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Output 32.1.2 Parameter Estimates of SAR Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 45.077070 7.870590 5.73 <.0001

income 1 -1.031531 0.328403 -3.14 0.0017

hvalue 1 -0.265924 0.088218 -3.01 0.0026

_rho 1 0.431020 0.123594 3.49 0.0005

_sigma2 1 95.487066 19.506312 4.90 <.0001

Spatial Durbin Model (SDM)

To fit an SDM model, you specify the SPATIALEFFECTS statement together with the TYPE=SAR option.
In this example, the spatial lags of the regressors INCOME and HVALUE are considered in the SDM model.

The following statements fit an SDM model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SAR;
spatialeffects income hvalue;

run;

The parameter estimates are given in Output 32.1.3. As in the SAR model, the spatial autoregressive
coefficient � in the SDM model is positive and significant at the 0.05 level, indicating a positive spatial
dependence in the data.

Output 32.1.3 Parameter Estimates of SDM Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 42.803457 13.924487 3.07 0.0021

income 1 -0.914206 0.336439 -2.72 0.0066

hvalue 1 -0.293745 0.088857 -3.31 0.0009

W_income 1 -0.519640 0.594772 -0.87 0.3823

W_hvalue 1 0.245716 0.176854 1.39 0.1647

_rho 1 0.426492 0.167492 2.55 0.0109

_sigma2 1 91.779519 18.909222 4.85 <.0001

In order to avoid potential collinearity with the intercept term in the MODEL statement, the SPATIALEF-
FECTS statement always excludes the intercept term. This means that only the explicitly specified variables
in the SPATIALEFFECTS statement are used to construct spatial lag of covariate effects.
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Spatial Error Model (SEM)

To fit an SEM model, use the TYPE=SEM option.

The following statements fit an SEM model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SEM;

run;

The parameter estimates are shown in Output 32.1.4. According to this output, the p-value for the spatial
autoregressive parameter � is 0.0002. The results indicate that there is a significant positive dependence in
the error term.

Output 32.1.4 Parameter Estimates of SEM Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 59.891908 5.884104 10.18 <.0001

income 1 -0.941301 0.370267 -2.54 0.0110

hvalue 1 -0.302253 0.090552 -3.34 0.0008

_lambda 1 0.561780 0.152413 3.69 0.0002

_sigma2 1 95.572115 20.037417 4.77 <.0001

Spatial Durbin Error Model (SDEM)

To fit an SDEM model, use the SPATIALEFFECTS statement together with the TYPE=SEM option. In this
example, the spatial lags of the regressors INCOME and HVALUE are considered in the SDEM model.

The following statements fit an SDEM model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SEM;
spatialeffects income hvalue;

run;

The parameter estimates are shown in Output 32.1.5.
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Output 32.1.5 Parameter Estimates of SDEM Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 73.540584 8.860968 8.30 <.0001

income 1 -1.051699 0.322436 -3.26 0.0011

hvalue 1 -0.275607 0.091154 -3.02 0.0025

W_income 1 -1.156553 0.592915 -1.95 0.0511

W_hvalue 1 0.111754 0.202366 0.55 0.5808

_lambda 1 0.425397 0.173831 2.45 0.0144

_sigma2 1 92.533614 19.090022 4.85 <.0001

Spatial Moving Average (SMA) Model

To fit an SMA model, use the TYPE=SMA option.

The following statements fit an SMA model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SMA;

run;

The parameter estimates are shown in Output 32.1.6.

Output 32.1.6 Parameter Estimates of SMA Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 59.252971 5.934861 9.98 <.0001

income 1 -0.921806 0.363482 -2.54 0.0112

hvalue 1 -0.287393 0.086880 -3.31 0.0009

_lambda 1 -0.799089 0.277861 -2.88 0.0040

_sigma2 1 117.731990 26.373322 4.46 <.0001

Spatial Durbin Moving Average (SDMA) Model

To fit an SDMA model, use the SPATIALEFFECTS statement together with the TYPE=SMA option. In this
example, the spatial lags of the regressors INCOME and HVALUE are considered in the SDMA model.

The following statements fit an SDMA model to the CRIMEOH data:
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proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SMA;
spatialeffects income hvalue;

run;

Partial output is shown in Output 32.1.7.

Output 32.1.7 Parameter Estimates of SDMA Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 73.944211 9.083977 8.14 <.0001

income 1 -1.065635 0.312045 -3.42 0.0006

hvalue 1 -0.266840 0.092400 -2.89 0.0039

W_income 1 -1.074757 0.584955 -1.84 0.0662

W_hvalue 1 0.067568 0.209867 0.32 0.7475

_lambda 1 -0.642124 0.296638 -2.16 0.0304

_sigma2 1 103.502516 22.487027 4.60 <.0001

Spatial Autoregressive Confused (SAC) Model

To fit an SAC model, use the TYPE=SAC option.

The following statements fit the SAC model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SAC;

run;

The parameter estimates are shown in Output 32.1.8.

Output 32.1.8 Parameter Estimates of SAC Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 47.778983 9.278453 5.15 <.0001

income 1 -1.025841 0.334007 -3.07 0.0021

hvalue 1 -0.281636 0.093366 -3.02 0.0026

_rho 1 0.368142 0.181119 2.03 0.0421

_lambda 1 0.166526 0.298114 0.56 0.5764

_sigma2 1 95.597785 19.474541 4.91 <.0001
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Spatial Durbin Autoregressive Confused (SDAC) Model

To fit an SDAC model, use the SPATIALEFFECTS statement together with the TYPE=SAC option. In this
example, the spatial lags of the regressors INCOME and HVALUE are considered in the SDAC model.

The following statements fit an SDAC model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SAC;
spatialeffects income hvalue;

run;

The parameter estimates are shown in Output 32.1.9.

Output 32.1.9 Parameter Estimates of SDAC Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 50.827256 31.089621 1.63 0.1021

income 1 -0.950352 0.353961 -2.68 0.0073

hvalue 1 -0.286559 0.091261 -3.14 0.0017

W_income 1 -0.690471 0.839980 -0.82 0.4111

W_hvalue 1 0.208936 0.222585 0.94 0.3479

_rho 1 0.316760 0.414771 0.76 0.4450

_lambda 1 0.152884 0.475512 0.32 0.7478

_sigma2 1 93.133958 19.187743 4.85 <.0001

Spatial Autoregressive Moving Average (SARMA) Model

To fit a SARMA model, use the TYPE=SARMA option.

The following statements fit a SARMA model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SARMA;

run;

The parameter estimates are shown in Output 32.1.10.
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Output 32.1.10 Parameter Estimates of SARMA Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 48.973247 9.602039 5.10 <.0001

income 1 -1.016359 0.337215 -3.01 0.0026

hvalue 1 -0.287458 0.093079 -3.09 0.0020

_rho 1 0.336281 0.204317 1.65 0.0998

_lambda 1 -0.271945 0.426840 -0.64 0.5241

_sigma2 1 97.992936 21.253768 4.61 <.0001

Spatial Durbin Autoregressive Moving Average (SDARMA) Model

To fit an SDARMA model, use the SPATIALEFFECTS statement together with the TYPE=SARMA option.
In this example, the spatial lags of the regressors INCOME and HVALUE are considered in the SDARMA
model.

The following statements fit an SDARMA model without an intercept term to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SARMA noint;
spatialeffects income hvalue;

run;

The parameter estimates are shown in Output 32.1.11.

Output 32.1.11 Parameter Estimates of SDARMA Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

income 1 -0.792292 0.379696 -2.09 0.0369

hvalue 1 -0.328521 0.095588 -3.44 0.0006

W_income 1 0.587122 0.457090 1.28 0.1990

W_hvalue 1 0.438500 0.136144 3.22 0.0013

_rho 1 0.957745 0.041913 22.85 <.0001

_lambda 1 0.691307 0.260974 2.65 0.0081

_sigma2 1 86.990404 19.034142 4.57 <.0001
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Linear Regression Model

To fit a linear model, use the TYPE=LINEAR option.

The following statements fit a linear model to the CRIMEOH data:

proc spatialreg data=crimeoh;
model crime=income hvalue / type=LINEAR;

run;

Partial output is shown in Output 32.1.12.

Output 32.1.12 Parameter Estimates of Linear Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 68.618863 4.588210 14.96 <.0001

income 1 -1.597304 0.323739 -4.93 <.0001

hvalue 1 -0.273931 0.099989 -2.74 0.0062

_sigma2 1 122.751696 24.799493 4.95 <.0001

Spatial Lag of X Model

To fit an SLX model, use the SPATIALEFFECTS statement together with the TYPE=LINEAR option. In
this example, the spatial lags of the regressors INCOME and HVALUE are considered in the linear model.

The following statements fit an SLX model to the CRIMEOH data:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=LINEAR;
spatialeffects income hvalue;

run;

The parameter estimates are shown in Output 32.1.13.
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Output 32.1.13 Parameter Estimates of SLX Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: crime

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 75.028184 6.279950 11.95 <.0001

income 1 -1.109020 0.354232 -3.13 0.0017

hvalue 1 -0.289734 0.096058 -3.02 0.0026

W_income 1 -1.370866 0.531889 -2.58 0.0100

W_hvalue 1 0.191785 0.189841 1.01 0.3124

_sigma2 1 107.292373 21.676329 4.95 <.0001

Example 32.2: Models with Spatial ID Matching

Data Description and Objective

Two simulated data sets, SIMDATA and SIMW, are used to illustrate models with spatial ID matching in
PROC SPATIALREG.

The SIMDATA data set contains 50 observations and five variables. The variable SID identifies each spatial
unit in the data. Three explanatory variables are x1, x2, and x3. The dependent variable is y. The SIMW data
set defines the spatial contiguity for all 50 spatial units. The first column, SID, in the SIMW data set identifies
each spatial unit. The remaining entries in the SIMW data set are binary and define whether two spatial units
are neighbors. A value of 1 indicates that two spatial units are neighbors, and 0 indicates otherwise.

Summary statistics for all variables except SID in the SIMDATA data set are computed by the following
statements and presented in Output 32.2.1:

proc means data=simdata;
var x1 x2 x3 y;

run;

Output 32.2.1 Summary Statistics

The MEANS Procedure

Variable N Mean Std Dev Minimum Maximum

x1
x2
x3
y

50
50
50
50

-0.0076329
-0.0829941
-0.0894387
1.1569199

1.0989504
0.9671181
0.9975304
1.5687060

-2.4523193
-2.5725767
-2.4470049
-1.9399423

1.6539456
2.4034547
2.6720533
4.7136835

Because the SIMDATA and SIMW data sets are ordered differently in terms of the values of SID, the
SPATIALID statement is needed to match observations in SIMDATA and SIMW. The following statements fit
a SAR model to the data by using three regressors, x1, x2, and x3:
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proc spatialreg data=simdata Wmat=simw;
model y=x1-x3 / type=SAR;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.2.2.

Output 32.2.2 Parameter Estimates of SAR Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.780650 0.098703 18.04 <.0001

x1 1 0.573329 0.047395 12.10 <.0001

x2 1 0.707048 0.057181 12.37 <.0001

x3 1 -0.902843 0.053314 -16.93 <.0001

_rho 1 -0.473713 0.063008 -7.52 <.0001

_sigma2 1 0.131509 0.026350 4.99 <.0001

To fit an SDM model that includes exogenous interaction effects of x1, x2, and x3, sumbit the following
statements:

proc spatialreg data=simdata Wmat=simw;
model y=x1-x3/ type=SAR;
spatialeffects x1-x3;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.2.3.

Output 32.2.3 Parameter Estimates of SDM Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.932575 0.198882 9.72 <.0001

x1 1 0.548505 0.049806 11.01 <.0001

x2 1 0.686012 0.056266 12.19 <.0001

x3 1 -0.890162 0.053516 -16.63 <.0001

W_x1 1 0.172300 0.154018 1.12 0.2633

W_x2 1 0.023744 0.198557 0.12 0.9048

W_x3 1 -0.324806 0.228032 -1.42 0.1543

_rho 1 -0.639755 0.164652 -3.89 0.0001

_sigma2 1 0.120527 0.024729 4.87 <.0001
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If you want to fit another type of model, you need to change the TYPE= option. As an example, if you want
to fit an SEM model instead of a SAR model to the data, you can use the following statements:

proc spatialreg data=simdata Wmat=simw;
model y=x1-x3 / type=SEM;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.2.4.

Output 32.2.4 Parameter Estimates of SEM Model

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.166289 0.029514 39.52 <.0001

x1 1 0.487975 0.049086 9.94 <.0001

x2 1 0.634442 0.061776 10.27 <.0001

x3 1 -0.831250 0.054780 -15.17 <.0001

_lambda 1 -0.964826 0.132514 -7.28 <.0001

_sigma2 1 0.147434 0.031318 4.71 <.0001

Example 32.3: Fitting Multiple Models
You can fit more than one model by making only one call to PROC SPATIALREG. For example, if you want
to fit both SAR and SEM models to the CRIMEOH data set, you can use the following statements:

proc spatialreg data=crimeoh Wmat=crimeWmat NONORMALIZE;
model crime=income hvalue / type=SAR;
model crime=income hvalue / type=SEM;

run;

The parameter estimates for the SAR and SEM models are shown in Output 32.3.1 and Output 32.3.2,
respectively.

Output 32.3.1 Parameter Estimates of SAR Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 45.077070 7.870590 5.73 <.0001

income 1 -1.031531 0.328403 -3.14 0.0017

hvalue 1 -0.265924 0.088218 -3.01 0.0026

_rho 1 0.431020 0.123594 3.49 0.0005

_sigma2 1 95.487066 19.506312 4.90 <.0001
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Output 32.3.2 Parameter Estimates of SEM Model

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 59.891908 5.884104 10.18 <.0001

income 1 -0.941301 0.370267 -2.54 0.0110

hvalue 1 -0.302253 0.090552 -3.34 0.0008

_lambda 1 0.561780 0.152413 3.69 0.0002

_sigma2 1 95.572115 20.037417 4.77 <.0001

Example 32.4: Compact Representation of a Spatial Weights Matrix
When a spatial weights matrix is sparse, you might want to provide its compact representation rather than
the full matrix to PROC SPATIALREG. In this case, you must use a SPATIALID statement. This example
shows you how to use the compact representation of a spatial weights matrix in PROC SPATIALREG. For
illustration, the simulated data sets SIMDATA and SIMW in “Example 32.2: Models with Spatial ID Matching”
on page 2399 are used here. The compact representation of the spatial weights matrix in the SIMW data set is
created and saved in the SIMW_COMPACT data set.

The first 10 observations in the SIMW_COMPACT data set are shown in Figure 32.4.1.

Output 32.4.1 SIMW_COMPACT Data Set

Obs SID cSID Value

1 L50 L45 1

2 L30 L22 1

3 L42 L46 1

4 L32 L35 1

5 L7 L25 1

6 L33 L25 1

7 L50 L25 1

8 L23 L50 1

9 L9 L7 1

10 L45 L36 1

To fit a SAR model, you can use the following statements:

proc spatialreg data=simdata Wmat=simw_compact;
model y=x1-x3 / type=SAR;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.4.2.
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Output 32.4.2 Parameter Estimates of SAR Model with Compact Representation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.780650 0.098703 18.04 <.0001

x1 1 0.573329 0.047395 12.10 <.0001

x2 1 0.707048 0.057181 12.37 <.0001

x3 1 -0.902843 0.053314 -16.93 <.0001

_rho 1 -0.473713 0.063008 -7.52 <.0001

_sigma2 1 0.131509 0.026350 4.99 <.0001

To fit an SEM model instead of a SAR model to the data, you can use the following statements:

proc spatialreg data=simdata Wmat=simw_compact;
model y=x1-x3 / type=SEM;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.4.3.

Output 32.4.3 Parameter Estimates of SEM Model with Compact Representation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.166289 0.029514 39.52 <.0001

x1 1 0.487975 0.049086 9.94 <.0001

x2 1 0.634442 0.061776 10.27 <.0001

x3 1 -0.831250 0.054780 -15.17 <.0001

_lambda 1 -0.964826 0.132514 -7.28 <.0001

_sigma2 1 0.147434 0.031318 4.71 <.0001
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Example 32.5: Taylor and Chebyshev Approximations
When you have a large data set (that is, the number of spatial units in your data is large), it becomes
burdensome to fit some models. This is partially because all models except linear regression models involve
the calculation of the determinant of the matrix of a large size (such as jI � �Wj in a SAR model). In these
cases, Taylor and Chebyshev approximations in PROC SPATIALREG can be helpful. The SPATIALREG
procedure enables you to estimate both SAR and SDM models with a relatively large spatial weights matrix by
using these two approximations. Using the two small data sets SIMDATA and SIMW in “Example 32.2: Models
with Spatial ID Matching” on page 2399, you will see how you can invoke the two approximations in PROC
SPATIALREG.

The following statements fit a SAR model by using Chebyshev approximation:

proc spatialreg data=simdata Wmat=simw approximation=(ORDER=10);
model y=x1-x3 / type=SAR;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.1. Note that the spatial weights matrix in
the SIMW data set is a full matrix. Compared with Output 32.2.2, Chebyshev approximation yields very
similar parameter estimates.

Output 32.5.1 Parameter Estimates of SAR Model with Chebyshev Approximation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.780638 0.098699 18.04 <.0001

x1 1 0.573329 0.047395 12.10 <.0001

x2 1 0.707050 0.057181 12.37 <.0001

x3 1 -0.902843 0.053314 -16.93 <.0001

_rho 1 -0.473704 0.063004 -7.52 <.0001

_sigma2 1 0.131509 0.026350 4.99 <.0001

Using the compact representation of the spatial weights matrix, you can submit the following statements to
fit a SAR model by using Chebyshev approximation:

proc spatialreg data=simdata Wmat=simw_compact approximation=(ORDER=10);
model y=x1-x3 / type=SAR;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.2, which is identical to Output 32.5.1.
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Output 32.5.2 Parameter Estimates of SAR Model with Chebyshev Approximation and Compact Repre-
sentation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.780638 0.098699 18.04 <.0001

x1 1 0.573329 0.047395 12.10 <.0001

x2 1 0.707050 0.057181 12.37 <.0001

x3 1 -0.902843 0.053314 -16.93 <.0001

_rho 1 -0.473704 0.063004 -7.52 <.0001

_sigma2 1 0.131509 0.026350 4.99 <.0001

The following statements fit an SDM model by using Taylor approximation:

proc spatialreg data=simdata Wmat=simw approximation=(Taylor ORDER=50);
model y=x1-x3/ type=SAR;
spatialeffects x1-x3;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.3. Compared with Output 32.2.3, the SDM
model that is fit using Taylor approximation yields almost identical parameter estimates.

Output 32.5.3 Parameter Estimates of SDM Model with Taylor Approximation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.932575 0.198882 9.72 <.0001

x1 1 0.548505 0.049806 11.01 <.0001

x2 1 0.686012 0.056266 12.19 <.0001

x3 1 -0.890162 0.053516 -16.63 <.0001

W_x1 1 0.172300 0.154018 1.12 0.2633

W_x2 1 0.023744 0.198557 0.12 0.9048

W_x3 1 -0.324806 0.228032 -1.42 0.1543

_rho 1 -0.639755 0.164652 -3.89 0.0001

_sigma2 1 0.120527 0.024729 4.87 <.0001
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With the compact representation, the following statements fit the SDM model by using Taylor approximation:

proc spatialreg data=simdata Wmat=simw_compact
approximation=(Taylor ORDER=50);

model y=x1-x3/ type=SAR;
spatialeffects x1-x3;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.4, which is identical to Output 32.5.3.

Output 32.5.4 Parameter Estimates of SDM Model with Taylor Approximation and Compact Representation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.932575 0.198882 9.72 <.0001

x1 1 0.548505 0.049806 11.01 <.0001

x2 1 0.686012 0.056266 12.19 <.0001

x3 1 -0.890162 0.053516 -16.63 <.0001

W_x1 1 0.172300 0.154018 1.12 0.2633

W_x2 1 0.023744 0.198557 0.12 0.9048

W_x3 1 -0.324806 0.228032 -1.42 0.1543

_rho 1 -0.639755 0.164652 -3.89 0.0001

_sigma2 1 0.120527 0.024729 4.87 <.0001

To use Chebyshev approximation for the preceding SDM model, submit the following statements:

proc spatialreg data=simdata Wmat=simw approximation=(ORDER=10);
model y=x1-x3/ type=SAR;
spatialeffects x1-x3;
spatialid SID;
run;

The parameter estimates for this model are shown in Output 32.5.5, which is similar to Output 32.5.3.
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Output 32.5.5 Parameter Estimates of SDM Model with Chebyshev Approximation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.932081 0.198494 9.73 <.0001

x1 1 0.548538 0.049802 11.01 <.0001

x2 1 0.686049 0.056262 12.19 <.0001

x3 1 -0.890191 0.053515 -16.63 <.0001

W_x1 1 0.172017 0.153857 1.12 0.2636

W_x2 1 0.023362 0.198331 0.12 0.9062

W_x3 1 -0.324342 0.227739 -1.42 0.1544

_rho 1 -0.639325 0.164295 -3.89 <.0001

_sigma2 1 0.120542 0.024731 4.87 <.0001

To use Chebyshev approximation for this model with compact representation, submit the following statements:

proc spatialreg data=simdata Wmat=simw_compact approximation=(ORDER=10);
model y=x1-x3/ type=SAR;
spatialeffects x1-x3;
spatialid SID;

run;

The parameter estimates for this model are shown in Output 32.5.6.

Output 32.5.6 Parameter Estimates of SDM Model with Chebyshev Approximation and Compact Repre-
sentation

The SPATIALREG Procedure

Model: MODEL 1
Dependent Variable: y

Parameter Estimates

Parameter DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 1.932081 0.198494 9.73 <.0001

x1 1 0.548538 0.049802 11.01 <.0001

x2 1 0.686049 0.056262 12.19 <.0001

x3 1 -0.890191 0.053515 -16.63 <.0001

W_x1 1 0.172017 0.153857 1.12 0.2636

W_x2 1 0.023362 0.198331 0.12 0.9062

W_x3 1 -0.324342 0.227739 -1.42 0.1544

_rho 1 -0.639325 0.164295 -3.89 <.0001

_sigma2 1 0.120542 0.024731 4.87 <.0001
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statement, 2357
DETAILS option

PERFORMANCE statement (SPATIALREG),
2362

INIT statement
SPATIALREG procedure, 2360

ITPRINT option
MODEL statement, 2361

LM option
TEST statement (SPATIALREG), 2363

LR option
TEST statement (SPATIALREG), 2364

METHOD= option
PROC SPATIALREG statement, 2357

MISSING option
CLASS statement (SPATIALREG), 2359

MODEL statement
SPATIALREG procedure, 2360

NEWRAP option
METHOD= option, PROC SPATIALREG

statement, 2357
NLOPTIONS statement

SPATIALREG procedure, 2361
NMSIMP option

METHOD= option, PROC SPATIALREG
statement, 2357

NOINT option
MODEL statement (SPATIALREG), 2361

NONE option
METHOD= option, PROC SPATIALREG

statement, 2357
NONORMALIZE option

PROC SPATIALREG statement, 2356
NOPRINT option

PROC SPATIALREG statement, 2357
NOTHREADS option

PERFORMANCE statement (SPATIALREG),
2362

NRRIDG option
METHOD= option, PROC SPATIALREG

statement, 2357
NTHREADS= option

PERFORMANCE statement (SPATIALREG),
2362

ORDER= option
CLASS statement (SPATIALREG), 2359

OUT= option
OUTPUT statement (SPATIALREG), 2362

OUTEST= option
PROC SPATIALREG statement, 2356

OUTPUT statement
SPATIALREG procedure, 2362

PARAM= option
CLASS statement (SPATIALREG), 2359

PERFORMANCE statement
SPATIALREG procedure, 2362

PRED= option
OUTPUT statement (SPATIALREG), 2362

PRINTALL option
MODEL statement, 2361

QUANEW option
METHOD= option, PROC SPATIALREG

statement, 2357



REF= option
CLASS statement (SPATIALREG), 2360

RESID= option
OUTPUT statement (SPATIALREG), 2362

RESTRICT statement
SPATIALREG procedure, 2363

SPATIALEFFECTS statement
SPATIALREG procedure, 2364

SPATIALID statement
SPATIALREG procedure, 2364

SPATIALREG procedure, 2353
syntax, 2353

SPATIALREG procedure, CLASS statement, 2358
MISSING option, 2359
ORDER= option, 2359
PARAM= option, 2359
REF= option, 2360

SPATIALREG procedure, TEST statement, 2363

TRUREG option
METHOD= option, PROC SPATIALREG

statement, 2357
TYPE= option

MODEL statement, SPATIALREG procedure,
2361

PROC SPATIALREG statement, 2361

WALD option
TEST statement (SPATIALREG), 2364

WMAT=option
PROC SPATIALREG statement, 2355

XBETA= option
OUTPUT statement (SPATIALREG), 2362
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