Using This Book

Audience

Although the example in this book includes feature engineering, data exploration, model building, and model comparison, the emphasis is on familiarizing yourself with the SAS Visual Analytics user interface. This book is designed primarily for those with some analytic experience, but who are unfamiliar with the SAS Visual Analytics interface. It is also appropriate for those who are familiar with the reporting and exploration features of SAS Visual Analytics and want to learn more about the analytical features.

Requirements

To perform the tasks in this book, you need the following software, information, and privileges:

- a link to a working deployment of SAS Visual Analytics 8.1
- a supported web browser (see the SAS support site for supported web browsers and versions)
- an account that can log on to the working deployment
- the input data provided for this book

Introduction

About SAS Visual Statistics and SAS Visual Data Mining and Machine Learning

In addition, you gain access to a more powerful decision tree that includes the ability to interactively train the tree by selecting which branches to prune, split, or train. SAS Visual Data Mining and Machine Learning adds:
- factorization machine
- forest
- gradient boosting
- neural network
- support vector machine

Models that you create in SAS Visual Analytics can be exported and used to score new data. Although the exact export method varies by model, exported information can be in the form of DATA step code, an ASTORE table, and segment ID. For more information about what is exported for each model, see the SAS Visual Statistics and SAS Visual Data Mining and Machine Learning documentation within the SAS Visual Analytics documentation.

With SAS Visual Statistics and SAS Visual Data Mining and Machine Learning, you can perform a variety of tasks critical to creating good predictive models. These tasks include data segmentation (supervised and unsupervised), supervised variable transformation, stratified modeling, outlier detection, interactive feature creation, data filters, and post-model visualization. The example provided in this book covers many of these tasks. However, not all tasks available in SAS Visual Statistics or SAS Visual Data Mining and Machine Learning are covered in this book.

The SAS Visual Analytics Interface

1. The application bar at the top enables you to access other SAS applications. The name of your report is displayed in the application bar. You can search for items, access help, update your settings, and sign out of SAS Visual Analytics.
2. The left pane enables you to work with data, report objects, and the report outline.
3. The canvas is the workspace for building a report. The appearance of the canvas is affected by the report theme.
4. The menu bar enables you to create pages, show or hide report and prompt areas, undo, redo, and access other menu options.
5. The right pane enables you to work with details about the report and report objects.
About the Example in This Book

The example in this book is intended to mimic the process a data scientist might follow when solving a specific business problem. Tasks might include acquiring and preparing data, exploring the data, generating and comparing models, and documenting the insights gained from a model to act on that information. In this book, the specific business problem the data scientist is trying to solve is increasing company profits at Insight Toy Company by 5%, compared to last year.

Suppose that you are the data scientist at Insight Toy Company. Sales to your vendors have been slowly declining. Your manager wants to investigate ways to increase profits. Fortunately, your IT department has gathered two years of data on all aspects of your business, and it is readily available. This data includes information about what products are sold, to which vendors they are sold, the associated costs, and some metrics about the sales reps and the vendors.

Your plan is to first review the data provided by your IT department. You want to perform feature engineering to create necessary columns. You want to visualize the data to get a better understanding of its most important features. You want to create and compare several models to determine a champion model. Finally, you want to apply that model to determine potential solutions to increase company profits.

After completing the example, you are encouraged to repeat any of the steps with a different set of inputs, different model types, or different visualizations.

Feature Engineering

About the Tasks in This Chapter

Feature engineering is the process of determining and creating the inputs that are used in a machine learning model. This process typically involves both a general knowledge of the models to be used and a domain-specific knowledge about the problem to be solved. In this chapter, you start the process by creating some features that are essential to solving the problem of increasing profits. In the final section of this chapter, you do some data exploration before creating a new feature.

Getting Started

1. Save the insightToyDemo.sas7bdat example data located on the SAS Visual Analytics documentation page. Note the location where you saved the data.
2. Sign in to SAS Home.
4. Click the Data button in the Welcome window to load your data. A window appears that enables you to open the data source for this project.
5. Click Import in the Open Data Source window, and click Choose Files.
6. Navigate to the location where you saved the insightToyDemo.sas7bdat data set, and select insightToyDemo.sas7bdat. Click Open.
7. Click the Import Item button.
8. Click OK.

Calculate Total Costs

For this example, the total cost of an order is the sum of its distribution, marketing, product, and sales costs. To create the Total Cost measure, complete the following steps:

1. In the Data pane, click Add, and select Add calculated item.
2. In the Name field, enter Total Cost.
By default, the calculated item type is set to **Numeric** with **Format: Comma**. These are correct for this new item.

3. Select **Text** in the upper center of the window.

4. Replace any text in the field with the following expression into the code field: `'Order Distribution Cost'n + 'Order Marketing Cost'n + 'Order Product Cost'n + 'Order Sales Cost'n`, and click **OK**.

The **Total Cost** item appears in the **Measure** list.

5. Click the icon to save the project. Because this is the first time saving your project, the **Save As** window appears. Navigate to a folder where you have Write permission. In the **Name** field, enter **Insight Toy Demo**. Click **Save**.

Calculate the Order Profit Measure

Order profit is defined as the amount that you received for an order minus the amount returned and the total cost. To create the **Order Profit** measure, complete the following steps:

1. In the **Data** pane, click **Add**, and select **Add calculated item**.

2. In the **Name** field, enter **Order Profit**.

 By default, the calculated item type is set to **Numeric** with **Format: Comma**. These are correct for this new item.

3. Select **Text** in the upper center of the window.

4. Enter the following expression into the code field: `('Order Amount'n - 'Order Amount Returned'n) - 'Total Cost'n`, and click **OK**.
The Order Profit item appears in the Measure list.

5 Save the project.

Create a Monthly Time Variable

To create the monthly time variable, complete the following steps:

1 In the Data pane, locate the Order Date category.
2 Right-click Order Date, and select Duplicate. This creates the category Order Date (1).
3 Select Order Date (1), and click .
4 In the Name field, enter Order Date Month.
5 For Format, click the MMDDYYYY button to change the category’s format. In the Format window, select MMYYYY. Click OK.
6 Save the project.

Create a Vendor Region Category

Although your data contains the state-level location data for each vendor, it is sometimes better to group vendors by census region instead. To create a custom category, complete the following steps:

1 In the Data pane, click Add, and select Add custom category.
2 In the Name field, enter Vendor Region.
3 In the Based on field, select Vendor State/Province.
4 In Values of Vendor State/Province, select the following values: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia.
 Drag these items into Value Group 1.
5 Right-click Value Group 1, and select Edit group name. Enter South for Name in the Edit Group Name window, and click OK.
6 In Values of Vendor State/Province, select the following values: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont.
 Drag these items into a new value group. This new group is automatically assigned the name Value Group 1.
7 Right-click **Value Group 1**, and select **Edit group name**. Enter **Northeast** for **Name** in the Edit Group Name window, and click **OK**.

8 In **Values of Vendor State/Province**, select the following values: **Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin**.

Drag these items into a new value group. This new group is automatically assigned the name **Value Group 1**.

9 Right-click **Value Group 1**, and select **Edit group name**. Enter **Midwest** for **Name** in the Edit Group Name window, and click **OK**.

10 In **Values of Vendor State/Province**, select the remaining 13 values: **Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, Wyoming**.

Drag these items into a new value group. This new group is automatically assigned the name **Value Group 1**.

11 Right-click **Value Group 1**, and select **Edit group name**. Enter **West** for **Name** in the Edit Group Name window, and click **OK**.

12 Click **OK**.

13 Save the project.

Transform the Return Amount Measure

Because some of the models that you want to use assume that the data is normally distributed, you need to explore the **Order Amount Returned** measure.

1 From the **Data** pane, drag the **Order Amount Returned** measure onto the canvas.

By default, a histogram is created. As you can see, the data is not normal, and it is skewed right.

2 From the **Objects** pane, drag a **Box Plot** onto the canvas below the histogram.

3 In the **Roles** pane for the box plot, specify **Vendor Type** for **Category** and **Order Amount Returned** for the **Measures**.

4 To enhance this visualization, make the following changes in the **Options** pane:

 - Change the value of **Box direction** to **→**.
 - Change the value of **Outliers** to **Show Outliers**.

From this plot, you notice that it is primarily the convenience stores and discount stores that are skewing your data with a lot of outliers. Department stores, kiosks, and all others are also skewed right, but not necessarily to the same degree. From this, you decide that a log transformation is appropriate to reduce overall skewness.

5 From the **Data** pane, click **Add**, and select **Add calculated item**.
6 In the **Name** field, enter **Order Amount Returned (Log)**.

 By default, the calculated item type is set to **Numeric** with **Format: Comma**. These are correct for this new item.

7 In the Add Calculated Item window, select **Text** in the upper center of the window.

8 Enter the following expression into the code field: `Order Amount Returned`n Log 10, and click **OK**.

 The **Order Amount Returned (Log)** item appears in the **Measure** list.

9 From the **Data** pane, drag the **Order Amount Returned (Log)** measure onto the right side of the canvas.

 By default, a histogram is created. As you can see, the data is now much closer to a normal distribution.

10 From the **Objects** pane, drag a **Box Plot** onto the canvas below the newest histogram.

11 In the **Roles** pane for the box plot, specify **Vendor Type** for **Category** and **Order Amount Returned (Log)** for the **Measures**.

12 To enhance this visualization, make the following changes in the **Options** pane:

 - Change the value of **Box direction** to ✅.

 - Change the value of **Outliers** to **Show Outliers**.

 These settings should match the previous box plot. Notice that the data is much closer to normal than before. Convenience stores and discount stores still present the most variance.

13 Save the project.

Data Exploration

About the Tasks in This Chapter

In this chapter, you explore the data with various explorations. The knowledge gained in these explorations helps you determine which inputs are going to be the best in your models.
Correlation Matrix

A correlation matrix, as the name implies, displays the correlation statistic either between all items in a set or between items in two separate sets. Complete the following steps to create a correlation matrix:

1. Click + to add a new page to the canvas.
2. From the Objects pane, drag a Correlation Matrix onto the canvas.
3. In the Options pane, set the following properties:
 - Set Show correlations to Between two sets of measures.
 - Enable Rotate axis labels.
4. In the Roles pane, click Add under the X axis role, and select Market Penetration, Order Amount, Order Amount Returned, Order Amount Returned (Log), Order Distribution Cost, Order Marketing Cost, Order Product Cost, Order Sales Cost, Order Size, Sales Rep Rating, Sales Rep Vendors, Total Cost, Vendor Distance, Vendor Rating, and Vendor Satisfaction. Click OK.
5. For the Y axis role, click Add, and select Order Profit. Click OK.
6. Notice which variables have the strongest correlation with Order Profit. For example, the strongest correlation is Order Amount at 0.7120, and the weakest correlation is Market Penetration at 0.0100.
7. Save the project.

List Table

A list table lets you view aggregated information across many different measures at the same time. To create a list table, complete the following steps:

1. From the Objects pane, drag a List Table onto the canvas below the correlation matrix.
2. In the Roles pane, click Add, and select Vendor Region, Vendor Type, Product Line, Order Amount, Order Amount Returned, and Vendor Satisfaction.
 - Notice that the Vendor Satisfaction values do not really make sense. The default aggregation statistic is sum. But, Vendor Satisfaction should use the mean instead.
3. In the Data pane, find Vendor Satisfaction. Click next to Vendor Satisfaction. Set the value of Aggregation to Average. Now, the list table values should make more sense.
4. Sort the list table descending by Order Amount Returned. Notice that the top of the list includes mostly discount stores with relatively low satisfaction ratings. At a glance, Vendor Region, Product Line, and Order Amount do not appear to display any pattern or bias.
 - Based on this information, you want to further investigate Vendor Type and Vendor Satisfaction.
In this chapter, you create a time series plot of your company’s profits and explore how they might change in the upcoming year.

Create a Time Series Forecast

1. Click + to add a new page to the canvas.
2. From the Objects pane, drag a Time Series Plot onto the canvas below the correlation matrix.
3. In the Roles pane, make the following changes:
 - Under Time axis, click Add, and select Order Date Month.
 - Under Measure, click Add, and select Order Profit. Click OK.
 - Under Measure, right-click Frequency, and select Remove Frequency.
 - Under Forecast, enable Show forecast.
 - Under Underlying factors, click Add, and select Order Amount and Order Amount Returned. Click OK.
4. In the Options pane, for the Forecast horizon property, set the value to 12.

The default forecast horizon is 6, but because the data is aggregated monthly, and you want a full-year forecast, you should increase it to 12. Note that the time series takes into account the seasonality of your products.

Save the project.
5 Save the project.

What If Analysis / Goal Seeking

1 Make sure that the time series plot is selected. In the Roles pane, under Forecast, click the What If button. A what-if analysis helps determine how the underlying factors need to change to reach your 5% growth goal.

2 In the What-If Analysis window, change the type of analysis to Goal Seeking.

3 Click the icon, and select Set series values.

The Set Series Values window enables you to adjust the forecast series based on a specified factor.

4 In the Set Series Values window, select By percentage, and enter 5 in the field. Click OK.

5 When you are back in the What-If Analysis window, click Apply under Goal Seeking. Note that Order Amount was adjusted up and Order Amount Returned was adjusted down to generate the 5% increased Order Profit prediction.

6 Click Close.

7 Save the project.
Modeling

About the Tasks in This Chapter

In this chapter, you create four statistical models to determine whether an order was returned. Two of the models are available from SAS Visual Statistics—the logistic regression model and the decision tree model. The other two models are available from SAS Visual Data Mining and Machine Learning—the forest model and the gradient boosting model. You compare these four models to determine a champion.

Specify the Partition Column

Your data set contains the **z Partition** category. This category is intended as a partition variable and contains only two values, **T** for training observations and **V** for validation observations. To create a partition column based on this category, complete the following steps:

1. In the **Data** pane, right-click on the **z Partition** category, and select **Set as partition column**.
2. In the **Edit Partition Column** window, ensure that the value of **Training data value** is **T** and **Validation data value** is **V**.
3. Click **OK**.

Create a Logistic Regression

Now that you have completed the feature engineering, data exploration, and forecasting tasks, you are ready to begin modeling your data. The first model that you create is a logistic regression on whether an order is returned.

1. Click + to add a new page to the canvas.
2. From the **Objects** pane, drag a **Logistic Regression** onto the canvas.
3. In the **Roles** pane of the logistic regression, make the following assignments:
 - Under **Response**, click **Add**, and select **Order Returned**.
 - Under **Continuous effects**, click **Add**, and select **Order Distribution Cost**, **Order Marketing Cost**, **Order Product Cost**, **Order Sales Cost**, **Vendor Distance**, **Vendor Rating**, and **Vendor Satisfaction**. Click **OK**.
 - Under **Classification effects**, click **Add**, and select **Product Line** and **Vendor Type**. Click **OK**.
4. In the **Options** pane of the logistic regression, enable **Use validation partition**. After doing so, the default model statistic is changed from the R-Square value to the Validation Misclassification rate.
5. To view the misclassification plot, right-click in the **Validation Lift** plot, and select **Switch to validation misclassification**. The overall validation misclassification rate is approximately 5.5%.
6. Right-click in the **Validation misclassification** plot, and select **Switch to validation ROC**. The ROC chart for this model rises steeply, and then quickly flattens.
7. In the **Options** pane, locate **Event level**, and click the **Change** button.
8. In the Select Event Level window, select **Y**, and click **OK**.
9. Notice the **Fit Summary** plot. This plot ranks the variables by their relative importance as measured by p-values. You can see that the most important variables in the model are **Vendor Satisfaction**, **Vendor Type**, and **Product Line**.
10 Save the project.

Create a Decision Tree

1 Click + to add a new page to the canvas.

2 From the Objects pane, drag a Decision Tree onto the canvas.

3 In the Roles pane of the decision tree, make the following assignments:
 - Under Response, click Add, and select Order Returned.
 - Under Predictors, click Add, and select Product Line, Vendor Type, Order Distribution Cost, Order Marketing Cost, Order Product Cost, Order Sales Cost, Vendor Distance, Vendor Rating, and Vendor Satisfaction. Click OK.

4 In the Options pane, enable Use validation partition. The overall validation misclassification rate is approximately 6%.

5 In the Options pane, locate Event level, and click the Change button.

6 In the Select Event Level window, select Y, and click OK.

7 In the Variable Importance plot, notice that Vendor Satisfaction is the most important predictor in the tree.
8 Save the project.

Create a Forest

A forest is a predictive model that combines the results of many different decision trees based on a random subset of the data and a random subset of predictors. To determine the predicted value of an observation, each tree in the forest gets to vote, and the majority vote is chosen. To create a forest, complete the following steps:

1. Click + to add a new page to the canvas.
2. From the Objects pane, drag a Forest onto the canvas.
3. In the Roles pane of the forest, make the following assignments:
 - Under Response, click Add, and select Order Returned.
 - Under Predictors, click Add, and select Product Line, Vendor Type, Order Distribution Cost, Order Marketing Cost, Order Product Cost, Order Sales Cost, Vendor Distance, Vendor Rating, and Vendor Satisfaction. Click OK.
4. In the Options pane, enable Use validation partition. The overall validation misclassification rate is approximately 19%.
5. Notice that the Training Error Plot converges fairly quickly, enabling you to train fewer trees for similar results. In the Options pane, set the value of Number of trees to 30.
6. In the Options pane, locate Event level, and click the Change button.
7. In the Select Event Level window, select Y, and click OK.
8. In the Variable Importance plot, notice that Vendor Satisfaction is the most important predictor in the tree.
Create a Gradient Boosting

Like a forest, gradient boosting combines the results of several decision trees. The key difference is that when a new decision tree in a gradient boosting is created, it uses the results of the previous decision trees to better tune the results. To create a gradient boosting model, complete the following steps:

1. Click \(\text{+} \) to add a new page to the canvas.
2. From the Objects pane, drag a Gradient Boosting onto the canvas.
3. In the Roles pane of the gradient boosting, make the following assignments:
 - Under Response, click Add, and select Order Returned.
 - Under Predictors, click Add, and select Product Line, Vendor Type, Order Distribution Cost, Order Marketing Cost, Order Product Cost, Order Sales Cost, Vendor Distance, Vendor Rating, and Vendor Satisfaction. Click OK.
4. In the Options pane, enable Use validation partition. The overall validation misclassification rate is approximately 17%.
5. Notice that the Training Iteration Plot has not necessarily converged. In the Options pane, set the value of Number of trees to 25.
6. In the Options pane, locate Event level, and click the Change button.
7. In the Select Event Level window, select Y, and click OK.
8. In the Variable Importance plot, notice that Vendor Satisfaction is the most important predictor in the tree.

9. Save the project.
Create a Model Comparison

Now that you have four competing predictive models, you can add a model comparison to determine a champion model.

1. Click \[+\] to add a new page to the canvas.

2. From the **Objects** pane, drag a **Model Comparison** onto the canvas.

3. In the Add Model Comparison window, review the following fields:
 - **Partition** should contain **Use validation partition**.
 - **Response** should contain **Order Returned**.
 - **Event level** should contain **Y**.

4. Under **Available models**, you should see the four models that you previously created. Enable **Select all**, and click **OK**.

5. Because you modeled a category response, the default fit statistic is the misclassification rate. In the **Fit Statistic** plot, notice that **Logistic Regression 1** has the best misclassification rate. This is your champion model.

9. Save the project.
About the Tasks in This Chapter

In this chapter, you export the champion model from the previous chapter. Then, you further explore the results of that model to determine where you can reduce returned orders and increase company profits.

Export the Champion Model
1. Navigate back to the page that contains the logistic regression.
2. To export the model, right-click in the Fit Summary window, and select Export model.
3. Review the code in the Export Model window, and click Export. If your browser asks you whether to open or save the exported file, save the file.

 This file contains the SAS code necessary to score new data based on the logistic regression model that you just created.
4. Save the project.

Derive Predicted Values
1. To derive the predicted values for the model, right-click in the Fit Summary window, and select Derive predicted values.
2. In the New Prediction Variables window, review the Name field for both Predicted values and Probability values. Click OK.

 The value of the Predicted values variable contains the model’s prediction for each observation of whether the order was returned. Possible values of this variable are Yes, No, and missing. Similarly, the value of the Probability values variable is the probability assigned by the model that the given observation is a returned order. Possible values of this variable are real numbers between 0 and 1.
In the Data pane, there are two new items, Predicted: Order Returned and Probability: Order Returned=Y. These items are available as inputs to other models and as data items in report visualizations.

Save the project.

Create the Count Variables
1. In the Data pane, right-click Order Returned, and select Create calculation for data item.
2. For Type, select Count.
3. In the Create Calculation window, enter Order Returned (#) in the Name field.
4. Click OK.
5. In the Data pane, right-click Predicted: Order Returned, and select Create calculation for data item.
6. For Type, select Count.
7. In the Create Calculation window, enter Predicted Order Returned (#) in the Name field.
8. Click OK.
9. Save the project.

Review the Model Results
1. Click + to add a new page to the canvas.
2. From the Objects pane, drag a Slider onto the canvas.
3. In the Roles pane of the slider, under Measure/Date, click Add, and select Order Date Month.
 You will use this slider in later steps to interactively filter the data displayed in other objects.
4. From the Objects pane, drag a Bar Chart onto the canvas below the slider.
5. In the Roles pane of the bar chart, make the following assignments:
 - Under Category, click Add, and select Vendor Type.
 - Under Measure, click Add, and select Order Returned (#). Click OK. Right-click Frequency, and select Remove Frequency.
 - Under Group, click Add, and select Vendor Region.
6. In the Options pane, under Grouping style, click ..
7. In the Filters pane of this bar chart, click Add, and select Order Returned.
8. Under Order Returned, deselect N.
9. From the Objects pane, drag a second Bar Chart onto the canvas below the slider and to the right of the first bar chart.
10. In the Roles pane of this new bar chart, make the following assignments:
 - Under Category, click Add, and select Vendor Type.
 - Under Measure, click Add, and select Predicted: Order Returned (#). Click OK. Right-click Frequency, and select Remove Frequency.
 - Under Group, click Add, and select Vendor Region.
11. In the Options pane, under Grouping style, click ..
12. In the Filters pane of this bar chart, click Add, and select Order Returned.
13. Under Order Returned, deselect N.
14. From the Objects pane, drag a Crosstab onto the canvas below the two bar charts.
15. In the Roles pane of the crosstab, make the following assignments:
 - Under Rows, click Add, and select Vendor Region and Vendor State/Province. Click OK.
 - Under Measures, click Add, and select Order Returned (#), Predicted: Order Returned (#), and Order Amount Returned. Click OK.
16. In the Filters pane of the crosstab, click Add, and select Order Returned.
17. Under Order Returned, deselect N.
18. Now, select the slider at the top of the canvas. In the Actions pane, click Add, and select Add filter.
In the Add Filter Action window, select Select all. Click OK.

On this page, you can compare how many orders the logistic regression model predicts as returned against the true number of returns over a custom time range. After reviewing these results, you are confident in your logistic regression model’s ability to classify whether an order is returned.

![Graph showing order return comparison](image)

Save the project.

Cluster the Model Results

Now that you are confident in your model’s ability to predict whether an order was returned, you want to cluster the results to further identify what types of orders are returned. SAS Visual Analytics provides two primary tools for model segmentation—k-means clustering and decision trees.

1. **Click +** to add a new page to the canvas.
2. From the Objects pane, drag a Cluster onto the canvas.
3. In the Roles pane, under Variables, click Add, and select **Probability: Order Returned=Y** and **Vendor Satisfaction**. Click OK.
4. Notice that one of the clusters includes observations where the value of **Probability: Order Returned=Y** is very high and the value of **Vendor Satisfaction** is very low. These are the observations that you want to target to reduce returns.
Right-click in the **Cluster** window, and select **Derive a cluster ID variable**.

In the New Cluster ID window, enter **Cluster Order Returned**. Click OK.

Explore the Clustered Results

In this section, you create a visualization that enables you to interactively view and filter your results by vendor region.

1. Click $+$ to add a new page to the canvas.
2. From the **Objects** pane, drag a **Button Bar** onto the canvas.
3. In the **Roles** pane, under **Category**, click **Add**, and select **Vendor Region**.
4. From the **Objects** pane, drag a **Slider** onto the canvas to the right of the button bar.
5. In the **Roles** pane for the slider, under **Measure/Date**, click **Add**, and select **Order Date Month**.
6. In the **Data** pane, select **Vendor State/Province**, and click \bigcirc.
7. Under **Classification**, select **Geography**.
8. In the Geography Classification for Vendor State/Province window, select **US State Names** in the **Geography** field. Click OK.
9. From the **Objects** pane, drag a **Geomap** onto the canvas below the button bar and the slider.
10. In the **Roles** pane for the geomap, under **Category**, click **Add**, and select **Vendor State/Province**.
11. Under **Size**, click **Frequency**, and replace it with **Order Amount Returned**.
12. From the **Objects** pane, drag a **Butterfly Chart** to the right of the geomap.
13. In the **Roles** pane, under **Category**, click **Add**, and select **Cluster Order Returned**.
14. Under **Measure (bar)**, click **Add**, and select **Order Amount Returned**.
15. Under **Measure (bar 2)**, click **Add**, and select **Order Amount**.
16. In the **Objects** pane, drag a **Bar Chart** onto the canvas below the geomap and the butterfly chart.
17. In the **Roles** pane of the bar chart, make the following assignments:
 - Under **Category**, click **Add**, and select **Vendor Type**.
 - Under **Measure**, click **Add**, and select **Frequency** and **Order Amount Returned**.
18. On the canvas, select the button bar. In the **Actions** pane of the button bar, click **Add**, and select **Add filter**.
19. In the Add Filter Action window, select **Geo Map 1**, **Butterfly Chart 1**, and **Bar Chart 3**. Click OK.
20. On the canvas, select the slider. In the **Actions** pane of the slider, click **Add**, and select **Add filter**.
21. In the Add Filter Action window, select **Geo Map 1**, **Butterfly Chart 1**, and **Bar Chart 3**. Click OK.
22. On the canvas, select the butterfly chart. In the **Actions** pane of the butterfly chart, click **Add**, and select **Add linked selection**.
23 In the Add Linked Selection Action window, select Select all. Click OK.

24 In the butterfly chart, select the cluster that contains the most returned orders. The corresponding data values are selected in both the geomap and the bar chart. Note the cluster number with the most returned orders. You will need this cluster number in a future step.

Review the charts for each region. Notice that in every region, the amount returned is dominated by discount stores and convenience stores, and that a significant portion of these returns is contained in a single cluster. The vendors in this cluster are those that you want to target to reduce returns.

Armed with this information, you can work with your sales team to target those vendors that are not satisfied and are contributing to a financial loss.

25 Save the project.

Identify the Vendors for Investigation

1 Click + to add a new page to the canvas.

2 From the Objects tab, drag a Crosstab onto the canvas.

3 In the Roles pane, make the following assignments:
 - Under Columns, click Add, and select Cluster Order Returned.
 - Under Rows, click Add, and select Vendor and Vendor Region. Click OK.
 - Under Measures, click Add, and select Order Amount Returned, Order Amount, Order Profit, and Vendor Satisfaction. Click OK.

4 On the Filters tab, click Add, and select Cluster Order Returned.

5 Select the cluster that you noted earlier as containing the most returned orders.

6 Use the crosstab to identify and investigate individual vendors and their contributions to your profits. Ideally, you can take this list to your sales team and work with them to better engage and satisfy these vendors, thus leading to fewer returned orders.
7 Save the project.