Contents

Chapter 1 • Introduction to SAS Text Miner and Text Mining .. 1
 What's New in SAS Text Miner 14.3 ... 1
 Replacing the Original Text Miner Node ... 2
 Accessibility Features of SAS Text Miner 14.3 .. 2
 About SAS Text Miner ... 4
 File Preprocessing 6
 Text Parsing ... 7
 Text Filtering ... 7
 Document Analysis 8
 SAS Text Miner Sample Data Sets 9

Chapter 2 • The Text Import Node .. 11
 Overview of the Text Import Node .. 11
 Text Import Node Input Data .. 12
 Text Import Node Properties ... 12
 Text Import Node Results .. 15
 Text Import Node Output Data ... 16
 Using the Text Import Node .. 16

Chapter 3 • The Text Parsing Node .. 19
 Overview of the Text Parsing Node .. 20
 Text Parsing Node Input Data .. 20
 Text Parsing Node Properties ... 21
 Text Parsing Node Results .. 25
 Text Parsing Node Output Data ... 27
 Using the Text Parsing Node .. 28
 Start Lists and Stop Lists .. 33
 Term Stemming ... 34
 Term Roles and Attributes ... 35
 Synonym Lists ... 38
 Multi-Term Lists .. 40

Chapter 4 • The Text Filter Node .. 43
 Overview of the Text Filter Node .. 44
 Text Filter Node Input Data .. 44
 Text Filter Node Properties ... 45
 Text Filter Node Results ... 48
 Text Filter Node Output Data ... 51
 Using the Text Filter Node .. 51
 How to Create a Dictionary Data Set ... 56
 Term Weighting ... 57
 Text Filter Node Search Expressions ... 60
 Interactive Filter Viewer ... 60
 Strength of Association for Concept Linking ... 63

Chapter 5 • The Text Cluster Node .. 65
 Overview of the Text Cluster Node ... 65
 Text Cluster Node Input Data ... 66
 Text Cluster Node Properties ... 66
 Text Cluster Node Results ... 68
 Text Cluster Node Output Data .. 69
Chapter 6 • The Text Profile Node ... 83
 Overview of the Text Profile Node ... 83
 Text Profile Node Input Data ... 84
 Text Profile Node Properties ... 84
 Text Profile Node Results .. 86
 Text Profile Node Output Data .. 88
 Using the Text Profile Node .. 88

Chapter 7 • The Text Rule Builder Node 95
 Overview of the Text Rule Builder Node 95
 Text Rule Builder Node Input Data .. 96
 Text Rule Builder Node Properties ... 96
 Text Rule Builder Node Output Data 99
 Text Rule Builder Node Results .. 100
 Using the Text Rule Builder Node with the HPBOOLRULE Procedure 103
 Using the Text Rule Builder Node .. 104

Chapter 8 • The Text Topic Node .. 115
 Overview of the Text Topic Node .. 115
 Text Topic Node Input Data .. 116
 Text Topic Node Properties .. 116
 Text Topic Node Results ... 119
 Text Topic Node Output Data ... 121
 Using the Text Topic Node .. 121
 User-Defined Topic Lists ... 128
 Interactive Topic Viewer ... 129

Chapter 9 • Output Data .. 133
 Output Data for SAS Text Miner Nodes 133

Chapter 10 • Overview of Scoring with Text Miner 135
 Overview of Scoring with SAS Text Miner 135
 The Scoring Process .. 135

Chapter 11 • Macro Variables, Macros, and Functions 137
 Using Macro Variables to Set Additional Properties 137
 Overview of Macros and Functions 141
 %TEXTSYN Macro .. 141
 %TMFILTER Macro .. 145
 TGSCORE Function .. 155

Chapter 12 • Additional Examples ... 159
 Classifying News Articles .. 159
 Scoring New Documents ... 164
 Using the Association Node with SAS Text Miner Nodes 166
 Creating a Stored Process .. 168

Chapter 13 • Converting Diagrams and Session Encoding 179
 Converting SAS Text Miner Diagrams from a Previous Version 179
 SAS Text Miner and SAS Session Encoding 180
 Overview of the Text Miner Node ... 181
 Text Miner Node Input Data ... 182
Appendix 1 • Additional Information about Text Mining 193

Index ... 195
What’s New in SAS Text Miner 14.3
SAS Text Miner 14.3 offers performance enhancements when running text mining nodes and viewing results. It also offers improved parsing performance for the following languages: Arabic, Czech, Danish, Greek, Hebrew, Hungarian, Indonesian, Norwegian, Polish, Romanian, Slovak, Swedish, Thai, and Vietnamese. These languages now use the HPTMINE procedure, which allows for multi-threaded parsing. The following languages continue to use the HPTMINE procedure: Chinese, Dutch, English, Finnish, French, German, Italian, Japanese, Korean, Portuguese, Russian, Spanish, and Turkish.

For more information, see http://support.sas.com/software/products/txtminer.
Replacing the Original Text Miner Node

The functionality that was available in the original Text Miner node has been moved to other nodes that are available with SAS Text Miner. This restructuring of functionality conforms more to the overall philosophy of SAS Enterprise Miner components. It also improves performance because you can make changes in nodes that follow the Text Parsing node without having to reparse the collection. The following table might be helpful to you in replacing the functionality that you are using in the original Text Miner node with the new nodes.

<table>
<thead>
<tr>
<th>Controls and Functionality in the Original Text Miner Node</th>
<th>Replacement in New SAS Text Miner Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parsing</td>
<td>Text Parsing node</td>
</tr>
<tr>
<td>Term weightings</td>
<td>Text Filter node</td>
</tr>
<tr>
<td>Concept Linking Diagram</td>
<td>Text Filter node. The concept linking diagram is available in the Interactive Filter Viewer.</td>
</tr>
<tr>
<td>Creating and removing synonyms interactively</td>
<td>Text Filter node</td>
</tr>
<tr>
<td>Dynamically keeping and dropping terms</td>
<td>Text Filter node</td>
</tr>
<tr>
<td>Subsetting data for reclustering</td>
<td>Text Filter node</td>
</tr>
<tr>
<td>Clustering (Expectation Minimization and Hierarchical)</td>
<td>Text Cluster node</td>
</tr>
<tr>
<td>Generation of SVD values</td>
<td>Text Cluster node. Use this node output as input to your predictive models, for example.</td>
</tr>
<tr>
<td>Roll-up Terms</td>
<td>Text Topic node. Set the number of single term topics to the number of Roll-up Terms that you desire.</td>
</tr>
</tbody>
</table>

Accessibility Features of SAS Text Miner 14.3

Overview of Accessibility Features

SAS Text Miner 14.3 includes accessibility and compatibility features that improve the usability of the product for users with disabilities, with exceptions noted below. These features are related to accessibility standards for electronic information technology that were adopted by the U.S. Government under Section 508 of the U.S. Rehabilitation Act of 1973, as amended. SAS Text Miner 14.3 conforms to accessibility standards for the Windows platform.
For specific information about Windows accessibility features, refer to your operating system's help. If you have questions or concerns about the accessibility of SAS products, send email to accessibility@sas.com.

For information about the accessibility features of SAS Enterprise Miner 14.3, see the Accessibility topic in the SAS Enterprise Miner 14.3 Help.

- “Additional Keyboard Controls for SAS Text Miner” on page 3
- “Exceptions to Accessibility Standards” on page 3

Additional Keyboard Controls for SAS Text Miner

In addition to standard keyboard controls, SAS Text Miner supports the following additional keyboard controls.

<table>
<thead>
<tr>
<th>Keyboard Shortcut</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift + Page Up</td>
<td>selects all rows in the table from the first row that is visible in the scroll pane to the selected row</td>
</tr>
<tr>
<td>Shift + Page Down</td>
<td>selects all rows in the table from the selected row to the last row that is visible in the scroll pane</td>
</tr>
<tr>
<td>Ctrl + Shift + End</td>
<td>selects all rows in the table from the selected row to the last row</td>
</tr>
<tr>
<td>Ctrl + Shift + Home</td>
<td>selects all rows in the table from the first row to the selected row</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Keyboard Shortcut</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>F6</td>
<td>selects the Properties panel</td>
</tr>
<tr>
<td>Tab</td>
<td>navigates the Properties panel</td>
</tr>
<tr>
<td>F2 + Spacebar</td>
<td>simulates the click action for ellipsis in the Properties panel</td>
</tr>
<tr>
<td>Ctrl + Shift + n</td>
<td>select a node in a process flow diagram</td>
</tr>
<tr>
<td>Ctrl + Shift + c</td>
<td>connect selected nodes in a process flow diagram</td>
</tr>
</tbody>
</table>

Exceptions to Accessibility Standards

Exceptions to the accessibility standards described in Section 508 of the U.S. Rehabilitation Act of 1973 include the following:
• On-screen indication of the current focus is not well-defined in some dialog boxes, in some menus, and in tables.
• High-contrast color schemes are not universally inherited.
• Many controls are not read by JAWS, and the accessible properties of many controls are not surfaced to the Java Accessibility API.

About SAS Text Miner

SAS Text Miner provides tools that enable you to extract information from a collection of text documents and uncover the themes and concepts that are revealed therein. In addition, because you can embed SAS Text Miner nodes in a SAS Enterprise Miner process flow diagram, you can combine quantitative variables with unstructured text in the mining process. This means that you are incorporating text mining with other traditional data mining techniques.

These languages are supported in SAS Text Miner: Arabic, Chinese (simplified and traditional), Czech, Danish, Dutch, English, Finnish, French, German, Greek, Hebrew, Hungarian, Indonesian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Romanian, Russian, Slovak, Spanish, Swedish, Thai, Turkish, and Vietnamese. Each language must be licensed individually.

Note: Collections of text in some unsupported languages can still be processed in SAS Text Miner by choosing a supported language that uses the same or similar text encoding as the unsupported language.

SAS Text Miner includes the following SAS Enterprise Miner nodes:

• **Text Import Node** — enables you to create data sets that contain links to documents obtained with file crawl, web crawl, or web search. For more information, see “Overview of the Text Import Node” on page 11.

• **Text Parsing Node** — enables you to parse a document collection in order to quantify information about the terms that are contained therein. For more information, see “Overview of the Text Parsing Node” on page 20.

• **Text Filter Node** — enables you to reduce the total number of parsed terms or documents that are analyzed. For more information, see “Overview of the Text Filter Node” on page 44.

• **Text Topic Node** — enables you explore the document collection by clustering documents and summarizing the collection into a set of “topics.” For more information, see “Overview of the Text Topic Node” on page 115.

• **Text Cluster Node** — enables you to cluster documents from the term-document frequency matrix that is created by the Text Parsing node and possibly refined by the Text Filter node. For more information, see “Overview of the Text Cluster Node” on page 65.

• **Text Rule Builder Node** — enables you to generate rules that are useful in describing and predicting a target variable. For more information, see “Overview of the Text Rule Builder Node” on page 95.

• **Text Profile Node** — enables you see how terms change over time. For more information, see “Overview of the Text Profile Node” on page 83.

You can use SMP mode in SAS 9.4 on a properly enabled SAS Server to deploy the HP Text Miner node in a process flow diagram, and use the HPTMINE procedure and the
HPTMSCORE procedure. Using the **HP Text Miner** node in a process flow diagram can lead to multithreaded processing gains in many cases. For more information about the **HP Text Miner** node, see the HP Text Miner Node help page in the HPDM nodes help folder, or the HP Text Miner Node chapter of the *SAS Enterprise Miner High-Performance Data Mining Node Reference*.

In SAS Text Miner, the text mining process consists generally of the steps that are listed in the following table.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Description</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>File Preprocessing</td>
<td>Create a SAS data set from a document collection that is used as input for the Text Parsing node.</td>
<td>Text Import node, %TMFILTER macro, or SAS DATA step.</td>
</tr>
<tr>
<td>2</td>
<td>Text Parsing</td>
<td>Decompose textual data, and generate a quantitative representation that is suitable for data mining purposes. Parsing might include the following:</td>
<td>Text Parsing node</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• stemming</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• automatic recognition of multi-word terms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• normalization of various entities such as dates, currency, percent, and year</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• part-of-speech tagging</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• extraction of entities such as organization names, product names, and addresses</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• support for synonyms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• language-specific analyses</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Text Filtering</td>
<td>Transform the quantitative representation into a compact and informative format; reduce dimensions.</td>
<td>Text Filter node</td>
</tr>
</tbody>
</table>
File Preprocessing

The **Text Parsing** node requires an Input Data Source node to precede it in a process flow diagram. Input data for the **Text Parsing** node must be imported into a data source. Furthermore, because the **Text Parsing** node expects input data in a particular format, in most cases you will need to preprocess data before you can import it into a data source.

The **Text Import** node and the SAS `%TMFILTER` macro can be used to preprocess data.

The **Text Import** node can be used to extract text from many document formats or to retrieve text from websites by crawling the web.

The SAS `%TMFILTER` macro can be used in file preprocessing to extract text from many document formats. You can use this macro to create a SAS data set that can be used to create a data source to use as input for the **Text Parsing** node. The SAS `%TMFILTER` macro does not extract data from individual XML fields. However, you can still accomplish this task. The XML LIBNAME engine and the XML mapper in Base SAS enable you to read an XML file into a SAS data set where the fields of the XML document are the data set variables. This data set can then be used in SAS Text Miner for further preprocessing.

Documents are represented internally in SAS Text Miner by a vector that contains the frequency of how many times each term occurs in each document. This approach is very effective for short, paragraph-sized documents but can cause a harmful loss of information with longer documents. Consider preprocessing long documents in order to isolate content that is really of use in the model that you intend to build. For example, if
you are analyzing journal papers, you might find that analyzing only the abstracts gives the best results.

For more information about the **Text Import** node, the %TMFILTER macro, or the **Text Parsing** node, see the following:

- “Overview of the Text Import Node” on page 11
- “%TMFILTER Macro” on page 145
- “Overview of the Text Parsing Node” on page 20

Text Parsing

In SAS Text Miner, text parsing is done with the **Text Parsing** node. Advanced techniques enable you to break documents into terms such as words, phrases, multi-word terms, entities, punctuation marks, and terms that are in foreign languages.

- You can process multi-word groups (for example, “off the shelf” or “because of”) as single terms.
- You can identify each term’s part of speech, based on its context.
- You can extract entities such as addresses, dates, phone numbers, and company names.
- You can choose to ignore all terms that are a particular part of speech.
- You can use a stop list to ignore a specific set of terms, such as a group of low-information words. Conversely, you can use a start list to restrict parsing to only a specific set of terms.
- You can return the root forms (called stems) of terms and treat all terms that have the same stem as equivalent. For example, “grinds”, “grinding”, and “ground” could all be viewed as the term “grind”.
- You can specify synonyms (such as “teach”, “instruct”, “educate”, “train”), and treat them as equivalent.

For more information about the **Text Parsing** node, see the following:

- “Overview of the Text Parsing Node” on page 20

Text Filtering

In SAS Text Miner, text filtering is done with the **Text Filter** node.

- You can explore a parsed document collection with the **Interactive Filter Viewer** of the **Text Filter** node. For more information about the **Interactive Filter Viewer**, see “Interactive Filter Viewer” on page 60.
- You can subset collections of documents based on the attributes of a document or the content of the document.
- You can interactively adjust the stop list and synonyms to focus on the aspects of the collection that are of interest to you.
For more information about the Text Filter node, see “Overview of the Text Filter Node” on page 44.

Document Analysis

Exploration

SAS Text Miner offers visualization diagrams, topic creation, and clustering techniques that enable you to explore a parsed document collection. Applications include content discovery of large knowledge bases such as those that contain email, customer comments, abstracts, or survey data; unsupervised learning of categories; and taxonomy creation.

- You can generate data-driven topics and supply topics that you have defined in the Text Topic node for use in scoring new data.

- You can perform hierarchical clustering in the Text Cluster node. The node uses a Ward's minimum-variance method to generate hierarchical clusters, and results are presented in a tree diagram.

- You can perform expectation-maximization (EM) clustering in the Text Cluster node. EM clustering identifies primary clusters, which are the densest regions of data points, and secondary clusters, which are less dense groups of data points not included in the primary clusters. This is a spatial clustering technique that allows flexibility in the size and shape of clusters.

- You can use other SAS Enterprise Miner nodes for clustering, such as the Clustering and SOM/Kohonen nodes. For more information about these nodes, see the SAS Enterprise Miner Help.

Prediction

You can use SAS Enterprise Miner modeling capabilities to predict target variables, with applications that include the following:

- automatic email routing
- filtering spam
- matching resumes with open positions
- predicting the change in a stock price from contents of news announcements about companies
- predicting the cost of a service call based on the textual description of the problem
- predicting customer satisfaction from customer comments
- identifying authorship from a predetermined set of candidate authors

The Text Rule Builder node can be used for prediction.
SAS Text Miner Sample Data Sets

Sample Data

The following sample data sets are provided in the SAMPSIO library for use with SAS Text Miner 14.3.

Table 1.3 Sample Data Sets

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Description</th>
<th>Used In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>document collection of abstracts of conference papers</td>
<td>Input Data node</td>
</tr>
<tr>
<td>Afinn_sentiment</td>
<td>This data set is adapted from the AFINN sentiment publicly available English sentiment lexicon. It contains two topics, “Positive Tone” and “Negative Tone,” that can be used as User Topics in the Text Topic node. The Afinn_sentiment data set contains information from the AFINN sentiment database, which is made available under the Open Database License.</td>
<td>Text Topic node</td>
</tr>
<tr>
<td>News</td>
<td>document collection of brief news articles</td>
<td>Input Data node</td>
</tr>
<tr>
<td>Tm_abstract_topic</td>
<td>user-defined topics</td>
<td>Text Topic node</td>
</tr>
</tbody>
</table>

Default Data Sets

The following data sets are used in the SAS Text Miner 14.3 nodes as default inputs for node properties (for example, stop lists or multi-term lists). They are all in the SASHELP library.
Table 1.4 Default Data Sets

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Description</th>
<th>Used In</th>
</tr>
</thead>
<tbody>
<tr>
<td><language>_multi</td>
<td>(where <language> is: Eng, Frnc, Germ, Ital, Port, or Span) multi-term lists for various languages</td>
<td>Text Parsing node</td>
</tr>
<tr>
<td><language>stop</td>
<td>(where <language> is: Eng, Frch, or Grmn) stop lists for various languages</td>
<td>Text Parsing node</td>
</tr>
<tr>
<td>Engsynms</td>
<td>synonym list for the English language</td>
<td>Text Parsing node</td>
</tr>
</tbody>
</table>
Chapter 2
The Text Import Node

Overview of the Text Import Node

The Text Import node serves as a replacement for an Input Data node by enabling you to create data sets dynamically from files that are contained in a directory or from the web. The Text Import node takes an import directory that contains text files in potentially proprietary formats such as MS Word and PDF files as input. The tool traverses this directory and filters or extracts the text from the files, places a copy of the text in a plain text file, and a snippet (or possibly even all) of the text in a SAS data set. If a URL is specified, the node will crawl websites and retrieve files from the web and move them to the import directory before doing this filtering process. The output of a Text Import node is a data set that can be imported into the Text Parsing node.

In addition to filtering the text, the Text Import node can also identify the language that the document is in and take care of transcoding documents to the session encoding. For
more on encoding and transcoding, see “SAS Text Miner and SAS Session Encoding” on page 180.

The **Text Import** node relies on the SAS Document Conversion server to extract plain text from various file formats so that the text can be analyzed by SAS Text Miner. The machine must be accessible from the SAS Enterprise Miner server via the host name and port number that were specified at install time.

- “Text Import Node Input Data” on page 12
- “Text Import Node Properties” on page 12
- “Text Import Node Results” on page 15
- “Text Import Node Output Data” on page 16
- “Using the Text Import Node” on page 16

Note:

- If you run the **Text Import** node in a UTF-8 SAS session, then the node attempts to transcode all filtered text to UTF-8 encoding so that the result data set can be used in a UTF-8 SAS session. In all other SAS session encodings, the **Text Import** node does not transcode the data. Instead, it assumes that the input data is in the same encoding as the SAS session. For more information, see “SAS Text Miner and SAS Session Encoding” on page 180.

- The **Text Import** node is not supported for use in group processing (Start Groups and End Groups nodes).

- The size of the output file generated by the Text Import node is limited to 5MB.

Text Import Node Input Data

The **Text Import** node does not require a predecessor node in a process flow diagram.

Note: When running SAS Text Miner nodes or score code, SAS Text Miner might create new variables on data sets. When this occurs, it uses names with a leading or trailing underscore character. To avoid possible errors or warnings, ensure that your input data sets do not have existing variables that are named with a leading or trailing underscore character.

Text Import Node Properties

Contents

- “Text Import Node General Properties” on page 13
- “Text Import Node Train Properties” on page 13
- “Text Import Node Status Properties” on page 14
- “Text Import Node Results” on page 15
- “Text Import Node Output Data” on page 16
- “Using the Text Import Node” on page 16
Text Import Node General Properties

These are the general properties that are available on the **Text Import** node:

- **Node ID** — displays the ID that is assigned to the node. Node IDs are especially useful for distinguishing between two or more nodes of the same type in a process flow diagram. For example, the first **Text Import** node that is added to a diagram will have the Node ID **TextImport**, and the second Text Import node that is added will have the Node ID **TextImport2**.

- **Imported Data** — accesses a list of the data sets that are imported by the node and the ports that provide them. Click the ellipsis button to open the Imported Data window, which displays this list. If data exists for an imported data set, then you can select a row in the list and do any of the following:
 - browse the data set
 - explore (sample and plot) the data in a data set
 - view the table and variable properties of a data set

- **Exported Data** — accesses a list of the data sets exported by the node and the ports to which they are provided. Click the ellipsis button to open the Exported Data window, which displays this list. If data exists for an exported data set, then you can select a row in the list and do any of the following:
 - browse the data set
 - explore (sample and plot) the data in a data set
 - view the table and variable properties of a data set

- **Notes** — accesses a window that you can use to store notes of interest, such as data or configuration information. Click the ellipsis button to open the Notes window.

Text Import Node Train Properties

General Train Properties

These are the training properties that are available on the **Text Import** node:

- **Import File Directory** — specifies the path to the directory that contains files to be processed. Click the ellipsis for this property to select a directory accessible by the server for import.

- **Destination Directory** — specifies the path to the directory that will contain plain text files after processing. Click the ellipsis for this property to specify a destination directory that is accessible by the server.

- **Language** — Specifies the possible choices that the language identifier might choose from when assigning a language to each document. Click the ellipsis for this property to open the Language dialog box to specify one or more languages.

- **Extensions** — restricts the **Text Import** node to filtering only files that satisfy the provided file type. All file types that the SAS Document Converter supports are filtered when the setting is not specified. See SAS Document Conversion for more information.
• **Text Size** — specifies the number of characters to use in the TEXT variable of the output data set. This variable can serve as a snippet when the size is small, or you can set the value to as large as 32000, so that as much text as possible is placed in the data set.

• “Web Crawl Properties” on page 14

Note: A user can potentially view the contents of the Import File and Destination directories from the Interactive Filter Viewer of the Text Filter node. If, however, the directories are not accessible from the client, such as with a UNIX server and a Windows client, the documents will not be viewable from the client. In order to use this feature in this case, the files would need to be moved to an accessible directory and the path updated in the data set.

Web Crawl Properties

• **URL** — specifies the URL of an initial web page to crawl.

• **Depth** — specifies the number of recursive levels of the URL to crawl. A depth of 1 means return all the files that are linked to from the initial page. A depth of 2 means return the files from a depth of 1 and also all the files that are linked to from that set, and so on. The number of files that are retrieved grows exponentially, so use caution when increasing the depth.

• **Domain** — specifies whether to process documents outside the domain of the initial web page.

• **User Name** — specifies the user name when the URL input refers to a secured website and requires a user name and password.

• **Password** — specifies the password when the URL input refers to a secured website and requires a user name and password.

Note:

• Web crawl properties are only available if SAS Text Miner uses a Windows server.

• When there is an issue with accessing a web page, the document level HTTP status codes are reported in the output data set. The interpretation of the error code can be found at http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

Text Import Node Status Properties

These are the status properties that are displayed on the Text Import node:

• **Create Time** — time at which the node was created.

• **Run ID** — identifier of the run of the node. A new identifier is assigned every time the node is run.

• **Last Error** — error message, if any, from the last run.

• **Last status** — last reported status of the node.

• **Run time** — time at which the node was last run.
• Run duration — length of time required to complete the last node run.

• Grid Host — grid host, if any, that was used for computation.

• User-Added Node — denotes whether the node was created by a user as a SAS Enterprise Miner extension node. The value of this property is always No for the Text Import node.

Text Import Node Results

Contents

• “Results Window for the Text Import Node” on page 15
• “Text Import Node Graphical Results” on page 15
• “Text Import Node SAS Output Results” on page 16

Results Window for the Text Import Node

After the Text Import node runs successfully, you can access the Results window in three ways:

• Click Results in the Run Status window that opens immediately after a successful run of the Text Import node.

• Click the Results icon on the main Toolbar.

• Right-click the Text Import node, and click Results.

The Results window for the Text Import node is similar to the Results window for other nodes in SAS Enterprise Miner. For general information about the Results window, see the SAS Enterprise Miner Help. The icons and main menus are the same as other nodes. However, the View menu does not include the selections Assessment or Model. Instead, it includes Documents, which access submenus that list the graphical results.

Note: You can access the SAS log from the SAS Results submenu of the View menu. This log can be a useful debugging tool.

Text Import Node Graphical Results

Here are the graphical results in the Text Import node Results window:

• The Omitted/Truncated Documents pie chart shows which documents were omitted or truncated. Position the mouse pointer over a sector to see the status of a sector, such as Truncated, and the frequency in a tooltip.

• The Created/Accessed/Modified Dates by Frequency scatter plot shows the frequency by which documents were created, modified, or accessed. Position the mouse pointer over a point to see the date and frequency of the action in a tooltip.
• The **Document Languages** pie chart shows the languages that are represented among imported documents. Position the mouse pointer over a sector to see frequency of each language in a tooltip.

• The **Document Lengths by Frequency** bar chart shows document size and frequency. Position the mouse pointer over a bar for a tooltip that contains this information.

• The **Document Types** pie chart shows the types of documents that are represented among imported documents by file extension, such as `.pdf`. Position the mouse pointer over a sector to see the frequency of each file extension in a tooltip.

Select a sector, point, or bar to highlight corresponding information in the other graphical results windows.

Text Import Node SAS Output Results

The SAS output from the **Text Import** node includes summary information about the input variables.

Text Import Node Output Data

For information about output data for the **Text Import** node, see “Output Data for SAS Text Miner Nodes” on page 133.

Using the Text Import Node

Contents

You can use the **Text Import** node to import documents from a directory or the web. See the following for examples of how to use the **Text Import** node.

• “Import Documents from a Directory” on page 16

• “Import Documents from the Web” on page 17

Import Documents from a Directory

This example assumes that SAS Enterprise Miner is running, the SAS Document Conversion server is running, and a diagram workspace has been opened in a project. For information about creating a project and a diagram, see *Getting Started with SAS Enterprise Miner*.

Perform the following steps to import documents from a directory:

1. Select the **Text Mining** tab, and drag a **Text Import** node to the diagram workspace.

2. Click the ellipsis button next to the **Import File Directory** property of the **Text Import** node.

 A Select Server Directory dialog box appears.
3. Navigate to a folder that contains documents that you want to create a data set from, select it, and then click **OK**.

 Note: To see the file types that you want to select, you might need to select **All Files** on the **Type** drop-down menu.

4. Click the ellipsis button next to the **Language** property.

 The Languages dialog box appears.

5. Select one or more licensed languages in which to require the language identifier to assign each document’s language, and then click **OK**.

6. (Optional) Specify the file types to process for the **Extensions** property. For example, if you want to look at only documents with a .txt and a .pdf extension, specify **.txt .pdf** for the **Extensions** property, and click **Enter** on your keyboard.

 Note: If you do not specify file types to process, the **Text Import** node will process all file types in the specified import file directory.

7. Right-click the **Text Import** node, and click **Run**.

8. Click **Yes** in the Confirmation dialog box.

9. Click **Results** in the Run Status dialog box when the node has finished running.

10. Examine the results from the documents that you imported.

 You can now use the **Text Import** node as an input data source for your text mining analysis.

11. Select the **Text Mining** tab, and drag a **Text Parsing** node to the diagram workspace.

12. Connect the **Text Import** node to the **Text Parsing** node.

13. Right-click the **Text Parsing** node, and click **Run**.

14. Click **Yes** in the Confirmation dialog box.

15. Click **Results** in the Run Status dialog box when the node has finished running.

Import Documents from the Web

This example assumes that SAS Enterprise Miner is running, the SAS Document Conversion server is running, and a diagram workspace has been opened in a project. For information about creating a project and a diagram, see *Getting Started with SAS Enterprise Miner*.

Note: Web crawling is supported only on Windows operating systems.

Perform the following steps to import documents from the web:

1. Select the **Text Mining** tab, and drag a **Text Import** node to the diagram workspace.

2. Click the ellipsis button for the **Import File Directory** property of the **Text Import** node.

 A Select Server Directory dialog box appears.
3. Navigate to a folder, select it, and then click OK.
 The documents are first written to the Import File Directory location. The files are processed from the Import File Directory location, and then are written to the Destination Directory location.

4. Enter the uniform resource locator (URL) of a web page that you want to crawl in the URL property of the Text Import node. For example, try www.sas.com.

5. Enter 1 as the number of levels to crawl in the Depth property.

6. Set the Domain property to Unrestricted.
 Note: If you want to crawl a password-protected website, set the Domain property to Restricted, and provide a user name for the User Name property, and a password for the Password property.

7. Right-click the Text Import node and click Run.

8. Click Yes in the Confirmation dialog box.

9. Click Results in the Run Status dialog box when the node has finished running.
Chapter 3
The Text Parsing Node

Overview of the Text Parsing Node ... 20
Text Parsing Node Input Data ... 20
Text Parsing Node Properties .. 21
 Contents ... 21
 Text Parsing Node General Properties 21
 Text Parsing Node Train Properties 22
 Detect Properties ... 23
 Ignore Properties ... 23
 Synonyms Properties .. 24
 Filter Properties .. 24
 Text Parsing Node Report Properties 25
 Text Parsing Node Status Properties 25
Text Parsing Node Results ... 25
 Contents ... 25
 Results Window for the Text Parsing Node 25
 Text Parsing Node Graphical and Tabular Results 26
 Text Parsing Node SAS Output Results 27
Text Parsing Node Output Data .. 27
Using the Text Parsing Node ... 28
Start Lists and Stop Lists .. 33
Term Stemming ... 34
Term Roles and Attributes .. 35
 Contents ... 35
 Parts of Speech in SAS Text Miner 35
 Noun Groups in SAS Text Miner 36
 Entities in SAS Text Miner ... 36
 Attributes in SAS Text Miner .. 37
Synonym Lists ... 38
 Contents ... 38
 Overview of Synonym Lists ... 38
 Synonyms and Part-of-Speech Tagging 39
 Defining Multi-Term Terms Using a Synonym List 40
Multi-Term Lists ... 40
Overview of the Text Parsing Node

The **Text Parsing** node enables you to parse a document collection in order to quantify information about the terms that are contained therein. You can use the **Text Parsing** node with volumes of textual data such as e-mail messages, news articles, web pages, research papers, and surveys. See the following for more information about the **Text Parsing** node:

- “Text Parsing Node Input Data” on page 20
- “Text Parsing Node Properties” on page 21
- “Text Parsing Node Results” on page 25
- “Text Parsing Node Output Data” on page 27
- “Using the Text Parsing Node” on page 28

For related topics that you might find useful when using the **Text Parsing** node, see the following:

- “Start Lists and Stop Lists” on page 33
- “Term Stemming” on page 34
- “Term Roles and Attributes” on page 35
- “Synonym Lists” on page 38
- “Multi-Term Lists” on page 40

Note: The **Text Parsing** node is not supported for use in group processing (Start Groups and End Groups nodes).

Text Parsing Node Input Data

The **Text Parsing** node must be preceded by one or more Input Data Source nodes, where each data source contains a document collection to parse, or one or more **Text Import** nodes. At least one data source must have the role Train. Others can have roles of Train, Valid, Test, or Score.

Each observation from the input data source or **Text Import** node represents an individual document in the document collection. This data can have one of two structures. It can contain either the entire text of each document or the paths to plain text or HTML files that contain that text.

- If the data source contains the entire text of each document, then this text must be stored in a character variable that is assigned the role Text. Note that a SAS variable can hold only 32KB of text. If any document in the collection exceeds that limit, then you should not use this data source structure.
Note: There are sample data sets that you can use to create data sources with this structure. For more information, see “SAS Text Miner Sample Data Sets” on page 9.

- If the data source contains paths to files that contain the document text, then these paths must be stored in a character variable that is assigned the role Text Location. The paths must be relative to the SAS Text Miner server. This structure can be used either for collections that contain smaller documents or documents that exceed the 32KB SAS variable limit. Using a pathname with the role of Text Location enables SAS Text Miner to process the complete content of each file even if the file is longer than 32KB.

TIP

- To help identify which link represents which document, you can include an additional character variable that contains truncated document text. Give this variable the role Text.

- If there is a variable in the data set that contains the location of the unfiltered documents and if you assign this variable the role web Address, you will be able to access the original source of each document in the Interactive Results viewer.

Note: When running SAS Text Miner nodes or score code, SAS Text Miner might create new variables on data sets. When this occurs, it uses names with a leading or trailing underscore character. To avoid possible errors or warnings, ensure that your input data sets do not have existing variables that are named with a leading or trailing underscore character.

The Text Import node creates the proper roles that are necessary for the Text Parsing node. The SAS %TMFILTER macro is an alternative to using the Text Import node to preprocess textual data. This macro creates a data source from the textual data that can be included with the Input Data Source node. For more information about these options to preprocess data for the Text Parsing node, see “File Preprocessing” on page 6.

A successful run of the Text Parsing node requires at least one variable with the role Text or Text Location. If you have more than one variable with either role (that has a use status of Yes), then the longest of these variables is used.

Text Parsing Node Properties

Contents

- “Text Parsing Node General Properties” on page 21
- “Text Parsing Node Train Properties” on page 22
- “Text Parsing Node Report Properties” on page 25
- “Text Parsing Node Status Properties” on page 25

Text Parsing Node General Properties

These are the general properties that are available on the Text Parsing node:

- **Node ID** — displays the ID that is assigned to the node. Node IDs are especially useful for distinguishing between two or more nodes of the same type in a process flow diagram. For example, the first Text Parsing node that is added to a diagram
will have the Node ID TextParsing. The second Text Parsing node that is added will have the Node ID TextParsing2.

- **Imported Data** — accesses a list of the data sets that are imported by the node and the ports that provide them. Click the ellipsis button to open the Imported Data window, which displays this list. If data exists for an imported data set, then you can select a row in the list and do any of the following:
 - browse the data set
 - explore (sample and plot) the data in a data set
 - view the table and variable properties of a data set

- **Exported Data** — accesses a list of the data sets that are exported by the node and the ports to which they are provided. Click the ellipsis button to open the Exported Data window, which displays this list. If data exists for an exported data set, then you can select a row in the list and do any of the following:
 - browse the data set
 - explore (sample and plot) the data in a data set
 - view the table and variable properties of a data set

- **Notes** — accesses a window that you can use to store notes of interest, such as data or configuration information. Click the ellipsis button to open the Notes window.

Text Parsing Node Train Properties

General Train Properties

These are the training properties that are available on the Text Parsing node:

- **Variables** — accesses a list of variables and associated properties in the data source. Click the ellipsis button to open the Variables window. For more information, see “Text Parsing Node Input Data” on page 20.

- “Parse Properties” on page 22
- “Detect Properties” on page 23
- “Ignore Properties” on page 23
- “Synonyms Properties” on page 24
- “Filter Properties” on page 24

Parse Properties

- **Parse Variable** — (value is populated after the node is run) displays the name of the variable in the input data source that was used for parsing. Depending on the structure of the data source, this variable contains either the entire text of each document in the document collection or the paths to plain text or HTMFL files that contain that text.

- **Language** — accesses a window in which you can select the language to use when parsing. Click the ellipsis button to open the Languages window. Only supported languages that are licensed to you are available for selection. For a list of supported languages, see “About SAS Text Miner” on page 4.
Detect Properties

- **Different Parts of Speech** — specifies whether to identify the parts of speech of parsed terms. If the value of this property is Yes, then same terms with different parts of speech are treated as different terms. For more information, see “Parts of Speech in SAS Text Miner” on page 35.

- **Noun Groups** — specifies whether to identify noun groups. If stemming is turned on, then noun group elements are also stemmed. For more information, see “Noun Groups in SAS Text Miner” on page 36.

- **Multi-word Terms** — (for all supported languages except Chinese, Japanese, and Korean) specifies a SAS data set that contains multi-word terms. For more information, see “Multi-Term Lists” on page 40. Default data sets are provided for several languages. For more information, see “SAS Text Miner Sample Data Sets” on page 9. You can edit these data sets or create your own. Click the ellipsis button to open a window in which you can do the following:
 - Click **Replace Table** to replace the currently selected table.
 - Click **Add Table** to add to the currently selected table.
 - (If a multi-word term data set is selected) Add, delete, and edit terms in the multi-term list.

- **Find Entities** — specifies whether to identify the entities that are contained in the documents. Entity detection relies on linguistic rules and lists that are provided for many entity types; these are known as standard entities. You can create custom entity types by defining linguistic rules and referencing a custom file within SAS Text Miner. If you have SAS Concept Creation for SAS Text Miner software installed, you can create a file with custom entity types. For more information about how to create a custom entity type, see your SAS representative. For more information about entities, see “Entities in SAS Text Miner” on page 36.
 - **None** identifies neither standard nor custom entities.
 - **Standard** identifies standard entities, but not custom entities.
 - **Custom** identifies custom entities, but not standard entities.
 - **All** identifies both standard and custom entities.

- **Custom Entities** — specifies the path (relative to the SAS Text Miner server) to a file that contains compiled custom entities. Valid files have the extension .li. No custom entity should have the same name as a standard entity. For more information, see “Entities in SAS Text Miner” on page 36.

Ignore Properties

- **Ignore Parts of Speech** — accesses a window in which you can select one or more parts of speech. Terms that are assigned these parts of speech will be ignored when parsing. Click the ellipsis button to open the Ignore Parts of Speech dialog box. Use the SHIFT and Ctrl keys to make multiple selections. Terms with the selected parts of speech are not parsed and do not appear in node results.

- **Ignore Types of Entities** — (if the value of **Find Entities** is **Standard** or **All**) accesses a dialog box in which you can select one or more standard entities to ignore when parsing. For more information, see “Entities in SAS Text Miner” on page 36.
Click the ellipsis button to open the Ignore Types of Entities window. Use the SHIFT and Ctrl keys to make multiple selections. Terms with the selected entity types are not parsed and do not appear in node results.

- **Ignore Types of Attributes** — accesses a window in which you can select one or more attributes to ignore when parsing. For more information, see “Attributes in SAS Text Miner” on page 37. Click the ellipsis button to open the Ignore Types of Attributes dialog box. Use the SHIFT and Ctrl keys to make multiple selections. Terms with the selected attribute types are not parsed and do not appear in node results.

Synonyms Properties

- **Stem Terms** — specifies whether to treat different terms with the same root as equivalent. For more information see “Term Stemming” on page 34.

- **Synonyms** — specifies a SAS data set that contains synonyms to be treated as equivalent. For more information, see “Synonym Lists” on page 38. Default data sets are provided for several languages. For more information, see “SAS Text Miner Sample Data Sets” on page 9.

 Note: Multi-word term lists are not supported in Chinese, Japanese, and Korean.

 You can edit these data sets or create your own. Click the ellipsis button to open a window in which you can do the following:
 - Click **Replace Table** to replace the currently selected table.
 - Click **Add Table** to add to the currently selected table.
 - (If a synonym data set is selected) Add, delete, and edit terms in the synonym list.

Filter Properties

- **Start List** — specifies a SAS data set that contains the terms to parse. If you include a start list, then the terms that are not included in the start list appear in the results Term table with a Keep status of N. For more information, see “Start Lists and Stop Lists” on page 33. Click the ellipsis button to open a window in which you can do the following:
 - Click **Replace Table** to replace the currently selected table.
 - Click **Add Table** to add to the currently selected table.
 - (If a start list is selected) Add, delete, and edit terms in the start list.

- **Stop List** — specifies a SAS data set that contains terms to exclude from parsing. If you include a stop list, then the terms that are included in the stop list appear in the results Term table with a Keep status of N. For more information, see “Start Lists and Stop Lists” on page 33. Default data sets are provided for several languages. For more information, see “SAS Text Miner Sample Data Sets” on page 9. You can edit these data sets or create your own. Click the ellipsis button to open a window in which you can do the following:
 - Click **Replace Table** to replace the currently selected table.
• Click **Add Table** to add to the currently selected table.

• (If a stop list is selected) Add, delete, and edit terms in the stop list.

• **Select Languages** — specifies languages to keep in the document collection. If no languages are selected, all documents will be processed. To process documents with the selected languages, the input data set must include a Language variable.

Text Parsing Node Report Properties

This is the report property that is available on the **Text Parsing** node:

• **Number of Terms to Display** — indicates the maximum number of terms to be displayed in the Results viewer. Terms are first sorted by the number of documents in which they appear, and then the list is truncated to the maximum number. If the value of this property is *All*, then all terms are displayed.

Text Parsing Node Status Properties

These are the status properties that are displayed on the **Text Parsing** node:

• **Create Time** — time that the node was created.

• **Run ID** — identifier of the run of the node. A new identifier is assigned every time the node is run.

• **Last Error** — error message, if any, from the last run.

• **Last Status** — last reported status of the node.

• **Last Run Time** — time at which the node was last run.

• **Run Duration** — length of time required to complete the last node run.

• **Grid Host** — grid host, if any, that was used for computation.

• **User-Added Node** — denotes whether the node was created by a user as a SAS Enterprise Miner extension node. The value of this property is always *No* for the **Text Parsing** node.

Text Parsing Node Results

Contents

• “Results Window for the Text Parsing Node” on page 25

• “Text Parsing Node Graphical and Tabular Results” on page 26

• “Text Parsing Node SAS Output Results” on page 27

Results Window for the Text Parsing Node

After the **Text Parsing** node runs successfully, you can access the Results window in three ways:
• Click **Results** in the Run Status window that opens immediately after a successful run of the **Text Parsing** node.

• Click the Results icon on the main toolbar.

• Right-click the **Text Parsing** node, and select **Results**.

The Results window for the **Text Parsing** node is similar to the Results window for other nodes in SAS Enterprise Miner. For general information about the Results window, see the SAS Enterprise Miner Help. The icons and main menus are the same as other nodes. However, the **View** menu for the **Text Parsing** node Results window does not include the selections **Assessment** or **Model**. Instead, it includes **Terms**, which accesses a submenu that lists the graphical and tabular results.

Note: You can access the SAS log that was generated by the node processing from the **SAS Results** submenu of the **View** menu. This log can be a useful debugging tool.

Text Parsing Node Graphical and Tabular Results

The following are the graphical results in the **Text Parsing** node Results window:

• The **Number of Documents by Frequency** scatter plot displays the number of documents in which a term appears versus the frequency of occurrence of that term in the entire document collection. Each data point represents a parsed term. If you position the mouse pointer over a plotted point, then a tooltip indicates the term name, the number of documents in which that term appears, and the number of times that term appears in the entire document collection.

• The **Role by Freq** bar chart displays the total frequency of occurrence of parsed terms in the document collection, broken down by term role. Each bar represents a role. If you position the mouse pointer over a bar, then a tooltip indicates the role name and the number of times a parsed term with that role appears in the entire document collection.

• The **Attribute by Frequency** bar chart displays the total frequency of occurrence of parsed terms in the document collection, broken down by attribute. For more information, see “Attributes in SAS Text Miner” on page 37. If you position the mouse pointer over a bar, then a tooltip indicates the attribute name and the number of times a term with that attribute appears in the entire document collection.

• The **ZIPF Plot** displays a scatter plot of the number of documents for each term where each is sorted and plotted by rank. If you position the mouse pointer over a point, then a tooltip indicates the term name, rank, and number of documents.

The tabular result in the **Text Parsing** node Results window is the Terms table, which displays information about parsed top-level terms (that is, terms that have no parents above them). Note that if there are more terms than the setting of the property **Number of Terms to Display**, only that number of most frequent terms will be included. All graphical results in the **Text Parsing** node Results window are linked to this table. Therefore, you can select an observation in the Terms table, and the associated data points are highlighted in the graphics. Or you can select data points in the graphics, and the associated observations are highlighted in the Terms table.

Table 3.1 Contents of the Terms Table

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>top-level terms (in lowercase); terms that are parents are preceded by a plus (+) symbol.</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Role</td>
<td>part of speech of the term, entity classification of the term, or the value Noun Group.</td>
</tr>
<tr>
<td>Attribute</td>
<td>attribute of the term.</td>
</tr>
<tr>
<td>Frequency</td>
<td>number of times the term appears in the document collection.</td>
</tr>
<tr>
<td>Number of Documents</td>
<td>number of documents in the collection in which the term appears.</td>
</tr>
<tr>
<td>Keep</td>
<td>Y if the term is used in subsequent nodes of the text mining analysis; N otherwise.</td>
</tr>
<tr>
<td>Parent/Child Status</td>
<td>plus (+) symbol if the term is a parent; blank otherwise.</td>
</tr>
<tr>
<td>Parent ID</td>
<td>key value of the term's parent.</td>
</tr>
</tbody>
</table>

Note: Each SAS Text Miner node outputs a terms data set, which is stored with the project data. The names of these data sets follow the format “NodeID_terms” (for example, TextParsing_terms). You can determine which term corresponds to a particular key by looking at this data set. For more information about where to find project data, see the “Opening SAS Enterprise Miner 4.x and 5.3 projects in SAS Enterprise Miner 14.3” topic in the SAS Enterprise Miner Help.

| Rank | rank that corresponds to the ZIPF Plot. |

For more information see the following:

- “Term Roles and Attributes” on page 35

Text Parsing Node SAS Output Results

The SAS output from the Text Parsing node includes summary information about the input variables.

Text Parsing Node Output Data

For information about output data for the Text Parsing node, see “Output Data for SAS Text Miner Nodes” on page 133.
Using the Text Parsing Node

This example shows you how to identify terms and their instances in a data set that contains text using the **Text Parsing** node. This example assumes that SAS Enterprise Miner is running, and a diagram workspace has been opened in a project. For information about creating a project and a diagram, see *Getting Started with SAS Enterprise Miner*. Perform the following steps:

1. The SAS data set SAMPSON.ABSTRACT contains the titles and text of abstracts from conferences. Create the ABSTRACT data source and add it to your diagram workspace. Set the Role value of the TEXT and TITLE variables to **Text**.

2. Select the **Text Mining** tab on the toolbar, and drag a **Text Parsing** node to the diagram workspace.

3. Connect the ABSTRACT data source to the **Text Parsing** node.

4. In the diagram workspace, right-click the **Text Parsing** node and select **Run**. Click **Yes** in the Confirmation dialog box that appears.

5. Click **Results** in the Run Status dialog box when the node finishes running. The Results window displays a variety of tabular and graphical output to help you analyze the terms and their instances in the ABSTRACT data source.

6. Sort the terms in the Terms table by frequency, and then select the term “software.” As the Terms table illustrates, the term “software” is a noun that occurs in 448 documents in the ABSTRACT data source, and appears a total number of 753 times.

<table>
<thead>
<tr>
<th>Term</th>
<th>Role</th>
<th>Attribute</th>
<th>Freq</th>
<th>#Docs</th>
<th>#Percent</th>
<th>Parent/Child Status</th>
<th>ParentID</th>
<th>Rank for Variables</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>ams institute</td>
<td>Company</td>
<td>Entity</td>
<td>4181</td>
<td>1077</td>
<td>+</td>
<td>14956</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sys</td>
<td>Noun</td>
<td>Alpha</td>
<td>2748</td>
<td>768Y</td>
<td>+</td>
<td>2135</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e bt</td>
<td>Verb</td>
<td>Alpha</td>
<td>2542</td>
<td>1962N</td>
<td>+</td>
<td>24470</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e use</td>
<td>Verb</td>
<td>Alpha</td>
<td>1458</td>
<td>718N</td>
<td>+</td>
<td>24333</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e application</td>
<td>Noun</td>
<td>Alpha</td>
<td>773</td>
<td>380Y</td>
<td>+</td>
<td>4551</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e parser</td>
<td>Noun</td>
<td>Alpha</td>
<td>786</td>
<td>57Y</td>
<td>+</td>
<td>12314</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>software</td>
<td>Noun</td>
<td>Alpha</td>
<td>753</td>
<td>440Y</td>
<td>+</td>
<td>12463</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e user</td>
<td>Noun</td>
<td>Alpha</td>
<td>632</td>
<td>316Y</td>
<td>+</td>
<td>6345</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e system</td>
<td>Prop</td>
<td>Alpha</td>
<td>593</td>
<td>365Y</td>
<td>2034</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e proc</td>
<td>Prop</td>
<td>Alpha</td>
<td>580</td>
<td>210Y</td>
<td>13087</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e system</td>
<td>Noun</td>
<td>Alpha</td>
<td>588</td>
<td>317Y</td>
<td>+</td>
<td>12442</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>information</td>
<td>Noun</td>
<td>Alpha</td>
<td>506</td>
<td>262Y</td>
<td>+</td>
<td>6359</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e provide</td>
<td>Verb</td>
<td>Alpha</td>
<td>471</td>
<td>330N</td>
<td>+</td>
<td>24381</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e new</td>
<td>Adj</td>
<td>Alpha</td>
<td>484</td>
<td>295N</td>
<td>+</td>
<td>24511</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e minority</td>
<td>Noun</td>
<td>Alpha</td>
<td>445</td>
<td>154Y</td>
<td>+</td>
<td>15917</td>
<td>33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When you select a term in the Terms table, the point that corresponds to that term in the Text Parsing Results plots is highlighted.

7. Select the Number of Documents by Frequency plot, and position the cursor over the highlighted point for information about the term “software.”
Similar information is also presented in a ZIPF plot.

The Attribute by Frequency chart shows that **Alpha** has the highest frequency among attributes in the document collection.
The Role by Freq chart illustrates that **Noun** has the highest frequency among roles in the document collection.

8. Return to the Terms table, and notice that the term “software” is kept in the text parsing analysis. This is illustrated by the value of Y in the Keep column. Notice that not all terms are kept when you run the **Text Parsing** node with default settings.
The **Text Parsing** node not only enables you to gather statistical data about the terms in a document collection. It also enables you to modify your output set of parsed terms by dropping terms that are a certain part of speech, type of entity, or attribute. Scroll down the list of terms in the Terms table. Notice that many of the terms with a role other than **Noun** are kept. Assume that you want to limit your text parsing results to terms with a role of **Noun**.

9. Close the Results window.

10. Select the **Text Parsing** node, and then select the ellipsis for the **Ignore Parts of Speech** property.

11. In the Ignore Parts of Speech dialog box, select all parts of speech except for **Noun** by holding down **Ctrl** on your keyboard and clicking each option. Click **OK**. Notice that the value for the Ignore Parts of Speech property is updated with your selection.

12. In addition to nouns, you also keep noun groups. Ensure that the **Noun Groups** property is set to its default value of **Yes**.

13. Right-click the **Text Parsing** node and select **Run**. Click **Yes** in the Confirmation dialog box that appears. Select **Results** in the Run Status dialog box when the node has finished running. Notice that the term “software” has a higher rank among terms with a role of just “noun” or “noun group” than it did when other roles were included. If you scroll down the Terms table, you can see that just terms with a **Noun** or **Noun Group** role are included.
As you would expect, there are fewer terms plotted in the Number of Documents by Frequency plot:

Similarly, the total number of terms in the output results with an attribute of **Alpha** has decreased, as can be seen in the Attribute by Frequency chart:
You can use a start list or a stop list in the Text Parsing node. These lists enable you to control which terms are or are not used in a text mining analysis. A “start list” is a data set that contains a list of terms to include in the parsing results. If you use a start list, then only terms that are included in that list appear in parsing results. A “stop list,” on the other hand, is a data set that contains a list of terms to exclude from the parsing results. Stop lists are often used to exclude terms that contain little information or that are extraneous to your text mining tasks. A default stop list is provided for each of several languages. For more information, see “SAS Text Miner Sample Data Sets” on page 9.

Note: You cannot specify both a stop list and start list simultaneously.

Start lists and stop lists have the same required format. You must include the variable “Term,” which contains the terms to include or exclude, respectively. In addition, you can include the variable “Role,” which contains an associated role. If you include “Role” and you have set the Different Parts of Speech property for the Text Parsing node to Yes, then terms are excluded or included based on the (Term, Role) pair.

Note:

- A role is either a part of speech, an entity classification, or the value Noun Group. For more information about roles, see “Term Roles and Attributes” on page 35.
- The "Term" variable must be a character variable.

For example, if you use the following stop list, then any instance of the terms “bank” and “list” are excluded from parsing results, regardless of their roles:
However, if you use the following stop list and the **Different Parts of Speech** property has the value **Yes**, then the terms “bank” and “list” are excluded from parsing results only if they are used as verbs:

<table>
<thead>
<tr>
<th>Term</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>bank</td>
<td>Verb</td>
</tr>
<tr>
<td>list</td>
<td>Verb</td>
</tr>
</tbody>
</table>

Term Stemming

Stemming is the process of finding the stem or root form of a term. SAS Text Miner uses dictionary-based stemming (also known as lemmatization), which unlike tail-chopping stemmers, produces only valid words as stems. When part-of-speech tagging is on, the stem selection process restricts the stem to be of the same part-of-speech as the original term.

<table>
<thead>
<tr>
<th>Stem</th>
<th>Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>aller (French)</td>
<td>vais, vas, va, allons, allez, vont</td>
</tr>
<tr>
<td>reach</td>
<td>reaches, reached, reaching</td>
</tr>
<tr>
<td>big</td>
<td>bigger, biggest</td>
</tr>
<tr>
<td>balloon</td>
<td>balloons</td>
</tr>
<tr>
<td>go</td>
<td>goes</td>
</tr>
</tbody>
</table>

Stemming can be very important for text mining because text mining is based on the co-occurrence relationships of terms throughout the collection. By treating the variations of a term as the term itself, document relationships can be clarified. For example, if “grinds”, “grinding”, and “ground” each occur independently in three separate documents, the individual terms do not contribute to the similarity of these three documents. However, if the terms are all stemmed to “grind” and the documents are treated as if they contain “grind” rather than the original variants, the documents will be related by this common stem.

Because SAS Text Miner uses the same equivalent term concept to manage stems as it does to manage synonyms, you can customize the stem by editing the synonym list.

Furthermore, SAS Text Miner supports compound words for German. Compound words are decomposed only when stemming is performed. When they are detected, a parent
form is generated. This parent form separates the compound into its parts by delimiting the parts with the # symbol. The individual components of the compound word are also added as terms. For example, the compound word “eckkonsole” is assigned the parent term “eck#konsole” and this parent as well as “eck” and “konsole” are added to the Terms table.

Other examples of compound words include “levensecht,” “kinderloos,” “naisjuoksija,” “Obstanbaugebiet,” and “hellgelb.”

Term Roles and Attributes

Contents

• “Parts of Speech in SAS Text Miner” on page 35
• “Noun Groups in SAS Text Miner” on page 36
• “Entities in SAS Text Miner” on page 36
• “Attributes in SAS Text Miner” on page 37

Parts of Speech in SAS Text Miner

SAS Text Miner can identify the part of speech for each term in a document based on the context of that term. Terms are identified as one of the following parts of speech:

• Abbr (abbreviation)
• Adj (adjective)
• Adv (adverb)
• Aux (auxiliary or modal)
• Conj (conjunction)
• Det (determiner)
• Interj (interjection)
• Noun (noun)
• Num (number or numeric expression)
• Part (infinitive marker, negative participle, or possessive marker)
• Pref (prefix)
• Prep (preposition)
• Pron (pronoun)
• Prop (proper noun)
Noun Groups in SAS Text Miner

SAS Text Miner can identify noun groups, such as “clinical trial” and “data set”, in a document collection. Noun groups are identified based on linguistic relationships that exist within sentences. Syntactically, these noun groups act as single units. Therefore, you can choose to parse them as single terms.

- If stemming is on, noun groups are stemmed. For example, the text “amount of defects” is parsed as “amount of defect”.
- Frequently, shorter noun groups are contained within larger noun groups. Both the shorter and larger noun groups appear in parsing results.

Entities in SAS Text Miner

An “entity” is any of several types of information that SAS Text Miner can distinguish from general text. If you enable SAS Text Miner to identify them, entities are analyzed as a unit, and they are sometimes normalized. When SAS Text Miner extracts entities that consist of two or more words, the individual words of the entity are also used in the analysis.

By default, SAS Text Miner identifies the following standard entities:

- ADDRESS (postal address or number and street name)
- COMPANY (company name)
- CURRENCY (currency or currency expression)
- DATE (date, day, month, or year)
- INTERNET (e-mail address or URL)
- LOCATION (city, country, state, geographical place or region, or political place or region)
- MEASURE (measurement or measurement expression)
- ORGANIZATION (government, legal, or service agency)
- PERCENT (percentage or percentage expression)
- PERSON (person’s name)
- PHONE (phone number)
- PROP_MISC (proper noun with an ambiguous classification)
- SSN (Social Security number)
If you have SAS Concept Creation for SAS Text Miner software installed, you can define custom entities and import these for use in a Text Parsing node. You can also use SAS Contextual Analysis to work with custom entities. For more information about how to create a custom entity type, see your SAS representative. Also note that any custom entity rules that use the SEQUENCE or PREDICATE_RULE operators are NOT supported; as these are set up to denote “Facts”, which SAS Text Miner does not currently have any facilities to handle.

Entities are normalized in these situations:

• SAS Text Miner uses a fixed dictionary of company and organization names in order to identify these entity types. These entity types will frequently be associated with a parent. For example, if “IBM” appears in the text, it is returned with the predefined parent “International Business Machines”. Typically, the longest and most precise version of a name is used as the parent form.

• SAS Text Miner normalizes entities that have an ISO (International Standards Organization) standard (dates or years, currencies, and percentages). Rather than return the normalization as a parent of the original term, these normalizations actually replace the original term.

• You can alter any parent forms that are returned by editing the synonym list. Place terms that you want to identify as an entity in the “Term” variable, place the parent to associate with it in the “Parent” variable, and place the entity category in the “Category” variable. Then rerun the node.

Attributes in SAS Text Miner

When a document collection is parsed, SAS Text Miner categorizes each term as one of the following attributes, which gives an indication of the characters that compose that term:

• Abbr, if the term is an abbreviation

• Alpha, if characters are all letters

• Mixed, if term characters include a mix of letters, punctuation, and white space

• Num, if term characters include a number

• Punct, if the term is a punctuation character
Synonym Lists

Contents

- “Overview of Synonym Lists” on page 38
- “Synonyms and Part-of-Speech Tagging” on page 39
- “Defining Multi-Word Terms Using a Synonym List” on page 40

Overview of Synonym Lists

You can use a synonym list in the Text Parsing node. A synonym list enables you to specify different words that should be processed equivalently, as the same representative parent term. A default synonym list is provided for the English language. For more information, see “SAS Text Miner Sample Data Sets” on page 9.

Synonym data sets have a required format. If your synonyms data set does not contain the variables listed below, then the Text Parsing node will return an error.

You must include the following variables:

- “Term” contains a term to treat as a synonym of “Parent.”
- “Parent” contains the representative term to which “Term” should be assigned.

Note: If a synonym list includes multiple entries that assign the same terms to different parents, then the parsing results will reflect only the first entry.

In addition to the required “term” and “parent” variables, you might also use “termrole” and “parentrole” variables in the synonyms data set. These optional variables enable you to specify that a term with a particular role is mapped to a parent term with a particular role. For example, you can specify that the term “drink,” when tagged as a noun, is mapped to the noun “beverage” as the parent term. You can also specify that when “drink” is tagged as a verb, it is mapped to the verb “sip” as the parent term. To use the “role” variables, the Noun Groups and Different Parts of Speech properties in the Text Parsing must be set to Yes. If you are using entity roles in the synonym list, the Find Entities property in the Text Parsing node must not be set to None.

You can use the following format, which enables you to change a part of speech tag.

<table>
<thead>
<tr>
<th>Term</th>
<th>Term Role</th>
<th>Parent</th>
<th>Parent Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>Noun</td>
<td>vehicle</td>
<td>Noun</td>
</tr>
</tbody>
</table>

Note: Term and parent values should be in lowercase form.

In the Text Parsing node, the following format maps all forms of “sas” to “sas institute:Company” regardless of the part of speech tag that is assigned to it. In the Text Filter node, the following format maps only “sas:Company” to “sas institute:Company”.

<table>
<thead>
<tr>
<th>Term</th>
<th>Parent</th>
<th>Term Role</th>
<th>Parent Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>sas</td>
<td>sas institute</td>
<td></td>
<td>Company</td>
</tr>
</tbody>
</table>

Note: If you need to map “sas:Noun”, you must add the following information:

<table>
<thead>
<tr>
<th>Term</th>
<th>Parent</th>
<th>Term Role</th>
<th>Parent Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>sas</td>
<td>sas institute</td>
<td></td>
<td>Company</td>
</tr>
<tr>
<td>sas</td>
<td>sas institute</td>
<td>Noun</td>
<td>Company</td>
</tr>
</tbody>
</table>

You can also use the following format. For example, use of the following synonym list causes any instance of “sas,” when identified as a company, to be processed as “sas institute.” Also, any instance of “employees” is processed as “employees.” In fact, if part-of-speech tagging is on, then this entry disables stemming for only the term “employees.”

<table>
<thead>
<tr>
<th>Term</th>
<th>Parent</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>sas</td>
<td>sas institute</td>
<td>Company</td>
</tr>
<tr>
<td>employees</td>
<td>employees</td>
<td></td>
</tr>
</tbody>
</table>

Note: The format that uses a term, parent, and a category is still accepted, but it is interpreted as a term, parent, and a parent role.

Synonyms and Part-of-Speech Tagging

The following examples demonstrate how synonym lists are handled when part-of-speech tagging is on.

<table>
<thead>
<tr>
<th>Term</th>
<th>Parent</th>
<th>Term Role</th>
<th>Parent Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>well</td>
<td>water</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this example, a term and parent (but not a parent role) are defined. When part-of-speech tagging is either on or off, every occurrence of “well,” regardless of part of speech, is assigned to the parent “water.”

<table>
<thead>
<tr>
<th>Term</th>
<th>Parent</th>
<th>Term Role</th>
<th>Parent Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>well</td>
<td></td>
<td>Noun</td>
<td></td>
</tr>
<tr>
<td>data mining</td>
<td></td>
<td>Noun</td>
<td></td>
</tr>
</tbody>
</table>
In this example, a term and parent role (but not a parent) are defined. When part-of-speech tagging is either on or off, the entry for the single word term, “well,” has no effect on the parsing results. However, when part-of-speech tagging is on, the multi-word term, “data mining” is treated as a single term only when identified as a noun. When part-of-speech tagging is off, any instance of “data mining” is treated as a single term.

<table>
<thead>
<tr>
<th>Term</th>
<th>Parent</th>
<th>Term Role</th>
<th>Parent Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>well</td>
<td>water</td>
<td>Noun</td>
<td></td>
</tr>
</tbody>
</table>

In this example, a term, parent, and parent role are defined. When part-of-speech tagging is on, “well” is assigned to the parent “water” only when it is identified as a noun. When part-of-speech tagging is off, all instances of “well” are assigned to the parent “water.”

Defining Multi-Word Terms Using a Synonym List

You can use a synonym to specify groups of words that should be processed together as single terms. To define a multi-word term, include it as a “Term” in a synonym list; do not assign it to a “Parent.” For more information, see “Multi-Term Lists” on page 40.

Unlike other entries in a synonym list, multi-word terms are case sensitive. Appearances of the multi-word term that have the following casings are identified and treated as a single term:

- same casing as the multi-word term entry in the synonym list
- all uppercase version of the multi-word term
- all lowercase version of the multi-word term
- a version that capitalizes the first letter of each term in the multi-word term and lowercases the remaining characters

Multi-Term Lists

You can use a multi-term list in the **Text Parsing** node. These lists enable you to specify groups of words that should be processed together, as single terms. A default multi-term list is provided for each of several languages. For more information, see “SAS Text Miner Sample Data Sets” on page 9.

Multi-word term data sets have a required format. You must include the variables “Term,” which contains a multi-word term, and “Role,” which contains an associated role.

Note: A role is either a part of speech, an entity classification, or the value **Noun Group**. For more information about roles, see “Term Roles and Attributes” on page 35.

For example, if you use the following multi-term list, then any instance of the words “as far as” is processed as one term, a preposition. Any instance of the words “clinical trial” is processed as one term, a noun:
You can similarly define multi-word terms using a synonym list. In this case, the groups of words that you specify will be processed together as single terms. For more information, see “Defining Multi-Word Terms Using a Synonym List” on page 40.

<table>
<thead>
<tr>
<th>Term</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>as far as</td>
<td>Prep</td>
</tr>
<tr>
<td>clinical trial</td>
<td>Noun</td>
</tr>
</tbody>
</table>
Chapter 4
The Text Filter Node

Overview of the Text Filter Node .. 44
Text Filter Node Input Data .. 44
Text Filter Node Properties ... 45
 Contents ... 45
 Text Filter Node General Properties ... 45
 Text Filter Node Train Properties ... 46
 Spelling Properties .. 46
 Weightings Properties ... 46
 Term Filters Properties .. 46
 Document Filters Properties .. 47
 Results Properties .. 47
 Text Filter Node Report Properties .. 47
 Text Filter Node Status Properties .. 48
Text Filter Node Results .. 48
 Contents ... 48
 Results Window for the Text Filter Node 48
 Text Filter Node Graphical and Tabular Results 49
 Text Filter Node SAS Output Results 51
Text Filter Node Output Data .. 51
Using the Text Filter Node ... 51
How to Create a Dictionary Data Set ... 56
Term Weighting .. 57
 Contents ... 57
 Overview of Term Weights .. 58
 Frequency Weighting Methods ... 58
 Term Weighting Methods .. 58
Text Filter Node Search Expressions ... 60
Interactive Filter Viewer .. 60
 Contents ... 60
 Overview of the Interactive Filter Viewer 61
 Searching in the Interactive Filter Viewer 61
 Documents Window of the Interactive Filter Viewer 61
 Terms Window of the Interactive Filter Viewer 62
 Concept Linking Window of the Interactive Filter Viewer 62
 Create Synonym Data Sets .. 63
Overview of the Text Filter Node

You can use the Text Filter node to reduce the total number of parsed terms or documents that are analyzed. Therefore, you can eliminate extraneous information so that only the most valuable and relevant information is considered. For example, the Text Filter node can be used to remove unwanted terms and to keep only documents that discuss a particular issue. This reduced data set can be orders of magnitude smaller than the one that represents the original collection. The data set that represents the original collection might contain hundreds of thousands of documents and hundreds of thousands of distinct terms. See the following for more information about the Text Filter node.

- “Text Filter Node Input Data” on page 44
- “Text Filter Node Properties” on page 45
- “Text Filter Node Results” on page 48
- “Text Filter Node Output Data” on page 51
- “Using the Text Filter Node” on page 51

For related topics that you might find useful when using the Text Filter node, see the following:

- “How to Create a Dictionary Data Set” on page 56
- “Term Weighting” on page 57
- “Text Filter Node Search Expressions” on page 60
- “Interactive Filter Viewer” on page 60
- “Strength of Association for Concept Linking” on page 63

Note: The Text Filter node is not supported for use in group processing (Start Groups and End Groups nodes).

Text Filter Node Input Data

The Text Filter node must be preceded by a Text Parsing node in a process flow diagram. The Text Filter node directly imports the document table from the Text Parsing node. But it also relies on several data sets that the Text Parsing node places in its workspace directory.
Text Filter Node Properties

Contents

• “Text Filter Node General Properties” on page 45
• “Text Filter Node Train Properties” on page 46
• “Text Filter Node Report Properties” on page 47
• “Text Filter Node Status Properties” on page 48

Text Filter Node General Properties

These are the general properties that are available on the Text Filter node:

• **Node ID** — displays the ID that is assigned to the node. Node IDs are especially useful for distinguishing between two or more nodes of the same type in a process flow diagram. For example, the first Text Filter node that is added to a diagram will have the Node ID TextFilter. The second Text Filter node that is added will have the Node ID TextFilter2.

• **Imported Data** — accesses a list of the data sets that are imported by the node and the ports that provide them. Click the ellipsis button to open the Imported Data window, which displays this list. If data exists for an imported data set, then you can select a row in the list and do the following:
 • browse the data set
 • explore (sample and plot) the data in a data set
 • view the table and variable properties of a data set

• **Exported Data** — accesses a list of the data sets that are exported by the node and the ports to which they are provided. Click the ellipsis button to open the Exported Data window, which displays this list. If data exists for an exported data set, then you can select a row in the list and do the following:
 • browse the data set
 • explore (sample and plot) the data in a data set
 • view the table and variable properties of a data set

• **Notes** — accesses a window that you can use to store notes of interest, such as data or configuration information. Click the ellipsis button to open the Notes window.
Text Filter Node Train Properties

General Train Properties
These are the training properties that are available on the Text Filter node:

- **Variables** — accesses a list of variables and associated properties in the data source. Click the ellipsis button to open the Variables window.

- **“Spelling Properties” on page 46**
- **“Weightings Properties” on page 46**
- **“Term Filters Properties” on page 46**
- **“Document Filters Properties” on page 47**
- **“Results Properties” on page 47**

Spelling Properties

- **Check Spelling** — specifies whether to check spelling and create synonyms for misspelled words.
- **Dictionary** — specifies a data set of correctly spelled terms. Click the ellipsis button to open the Select a SAS Table window, and select a dictionary data set to use when you use spell checking. For more information about how to create a dictionary data set, see “How to Create a Dictionary Data Set” on page 56.

Note: The Check Spelling property value must be set to Yes to use the dictionary data set.

Weightings Properties

- **Frequency Weighting** — specifies the frequency weighting method to use. For more information, see “Frequency Weighting Methods” on page 58.
- **Term Weight** — specifies the term weighting method to use. For more information, see “Term Weighting Methods” on page 58.

Term Filters Properties

- **Minimum Number of Documents** — excludes terms that occur in fewer than this number of documents.
- **Maximum Number of Terms** — specifies the maximum number of terms to keep.
- **Import Synonyms** — specifies a synonym data set. Click the ellipsis button to navigate to a data set. Click **Replace Table** to replace the currently selected table. Click **Add Table** to add to the currently selected table. Synonym data sets must have the variables term and parent. The variables term role and parent role are optional variables that give you control of changing term role assignments (part-of-speech tag or entity category), if desired.
Document Filters Properties

- **Search Expression** — specifies a search expression to use to filter documents. For more information, see “Text Filter Node Search Expressions” on page 60.

- **Subset Documents** — accesses a window in which you can build a WHERE clause to use to filter documents. Only documents that satisfy this WHERE clause are kept. For more information about WHERE clauses and WHERE-expression processing, see *SAS Language Reference: Concepts* at http://support.sas.com/documentation/onlinedoc/base/index.html. Click the ellipsis button to open the Build Where Clause dialog box, in which you can do the following:
 - Select from the drop-down menus to build a WHERE clause.
 - Enter the full text of a custom WHERE clause.

Results Properties

- **Filter Viewer** — (after the node has run) accesses the “Interactive Filter Viewer” on page 60, in which you can interactively refine the parsed and filtered data. Click the ellipsis button to open the Interactive Filter Viewer.

- **Spell-Checking Results** — (after the node has run and if the value of Check Spelling is Yes) accesses a window in which you can view the data set that contains spelling corrections that are generated during spell checking. Click the ellipsis button to view the data set.

 In the spell checking results data set, the variable **Term** contains the proposed misspelled terms, and the variable **Parent** contains the associated proposed correct spellings of these terms. If you want to edit this file, you can do so using SAS code.

- **Exported Synonyms** — opens a data set that contains synonyms that are exported from the Interactive Filter Viewer. For more information about how to create a synonym data set from the Interactive Filter Viewer, see “Create Synonym Data Sets” on page 63.

Text Filter Node Report Properties

These are the report properties that are available on the **Text Filter** node:

- **Terms to View** — specifies which terms to display in the Results window.
 - **Selected** displays all terms that were kept after filtering.
 - **Filtered** displays all terms that were dropped after filtering.
 - **All** displays all terms both kept and dropped after filtering.

- **Number of Terms to Display** — indicates the maximum number of terms to be displayed in the Results viewer. Terms are first sorted by the number of documents in which they appear, and then the list is truncated to the maximum number. If the value of this property is **All**, then all terms are displayed.
Text Filter Node Status Properties

These are the status properties that are displayed on the Text Filter node:

- **Create Time** — time that the node was created.
- **Run ID** — identifier of the run of the node. A new identifier is assigned every time the node is run.
- **Last Error** — error message, if any, from the last run.
- **Last Status** — last reported status of the node.
- **Last Run Time** — time at which the node was last run.
- **Run Duration** — length of time required to complete the last node run.
- **Grid Host** — grid host, if any, that was used for computation.
- **User-Added Node** — denotes whether the node was created by a user as a SAS Enterprise Miner Extension node. The value of this property is always **No** for the Text Filter node.

Text Filter Node Results

Contents

- “Results Window for the Text Filter Node” on page 48
- “Text Filter Node Graphical and Tabular Results” on page 49
- “Text Filter Node SAS Output Results” on page 51
- “Interactive Filter Viewer” on page 60

Results Window for the Text Filter Node

After the Text Filter node runs successfully, you can access the Results window in three ways:

- Click **Results** in the Run Status window that opens immediately after a successful run of the Text Filter node.
- Click the Results icon on the main Toolbar.
- Right-click the Text Filter node, and select **Results**.

The Results window for the Text Filter node is similar to the Results window for other nodes in SAS Enterprise Miner. For general information about the Results window, see the SAS Enterprise Miner Help. The icons and main menus are the same as other nodes. However, the **View** menu does not include the selections **Assessment** or **Model**. Instead,
it includes **Terms** and **Filtering**, which access submenus that list the graphical and tabular results.

Note: You can access the SAS log from the SAS Results submenu of the View menu. This log can be a useful debugging tool.

Text Filter Node Graphical and Tabular Results

The following are the graphical results in the Text Filter node Results window:

- The **Number of Documents** scatter plot displays the imported number of documents in which a term appears versus the number of documents. Each data point represents a term. If you position the mouse pointer over a plotted point, then a tooltip indicates the term name, the imported number of documents for a term, the number of documents in which that term appears, and the weight of the term.

 Note: The Number of Documents scatter plot is available in the Text Filter node results if the value for the number of documents in which a term appears changes from before the Text Filter node runs to after the node runs. This might occur when you are using the Check Spelling, Subset Documents, or Search Expression properties in the Text Filter node, or when you are making changes in the Interactive Filter Viewer. In the Results Window, select View ⇒ Filtering ⇒ Number of Documents to open the Number of Documents scatter plot.

- The **Number of Documents by Weight** scatter plot displays the number of documents in which a term appears versus the weight of the term. Each data point represents a term. If you position the mouse pointer over a plotted point, then a tooltip indicates the term name, the number of documents in which that term appears, and the weight of the term. For more information, see “Term Weighting” on page 57.

- The **Number of Documents by Frequency** scatter plot displays the number of documents in which a term appears versus the frequency of occurrence of that term in the entire document collection. Each data point represents a term. If you position the mouse pointer over a plotted point, then a tooltip indicates the term name, the number of documents in which that term appears, and the number of times that term appears in the entire document collection.

- The **Role by Freq** bar chart displays the total frequency of occurrence of terms in the document collection, broken down by term role and keep status. Each bar represents a role. If you position the mouse pointer over a bar, then a tooltip indicates the role name, the number of times a term with that role appears in the entire document collection, and the keep status of the associated terms.

- The **Attribute by Frequency** bar chart displays the total frequency of occurrence of terms in the document collection, broken down by attribute and keep status. If you position the mouse pointer over a bar, then a tooltip indicates the attribute name, the number of times a term with that attribute appears in the entire document collection, and the keep status of the associated terms.

- The **ZIPF Plot** displays a scatter plot of the number of documents for each term, where each is sorted and plotted by rank. If you position the mouse pointer over a point, then a tooltip indicates the term name, rank, and number of documents.

There are three tabular results in the Text Filter node Results window:
- The **Terms** table displays information about top-level terms (in other words, terms that have no parents above them). All graphical results in the **Text Filter** node Results window are linked to this table. Therefore, you can select an observation in the Terms table, and the associated data points are highlighted in the graphics. Or, you can select data points in the graphics, and the associated observations are highlighted in the Terms table.

- The **Excluded Terms** table (accessible via the **Filtering** submenu of the **View** menu) displays information about all dropped terms.

- The **New Parent Terms** table (accessible via the **Filtering** submenu of the **View** menu) displays information about all terms that were newly classified as parent terms in the **Text Filter** node.

Table 4.1 Contents of the Terms Table

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>top-level terms (in lowercase); terms that are parents are preceded by a plus (+) symbol.</td>
</tr>
<tr>
<td>Role</td>
<td>part of speech of the term, entity classification of the term, or the value Noun Group.</td>
</tr>
<tr>
<td>Attribute</td>
<td>attribute of the term.</td>
</tr>
<tr>
<td>Status</td>
<td>Keep if the term is used in subsequent nodes of the text mining analysis; Drop otherwise.</td>
</tr>
<tr>
<td>Weight</td>
<td>weight of the term.</td>
</tr>
<tr>
<td>Imported Frequency</td>
<td>number of times the term appears in the document collection. This variable reflects the frequency passed from the previous node.</td>
</tr>
<tr>
<td>Frequency</td>
<td>number of times the term appears in the document collection. This variable reflects the frequency after filtering.</td>
</tr>
<tr>
<td>Number of Imported Documents</td>
<td>number of documents in the collection in which the term appears. This variable reflects the number passed from the previous node.</td>
</tr>
<tr>
<td>Number of Documents</td>
<td>number of documents in the collection in which the term appears. This variable reflects the number after filtering.</td>
</tr>
<tr>
<td>Rank</td>
<td>rank that corresponds to the ZIPF Plot.</td>
</tr>
<tr>
<td>Parent/Child Status</td>
<td>plus (+) symbol if the term is a parent; blank otherwise.</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Parent ID</td>
<td>key value of the term's parent.</td>
</tr>
</tbody>
</table>

Note: Each SAS Text Miner node outputs a terms data set, which is stored with the project data. The names of these data sets follow the format “NodeID_terms” (for example, TextFilter_terms). You can determine which term corresponds to a particular key by looking at this data set. For more information about where to find project data, see the “Opening SAS Enterprise Miner 4.x and 5.3 projects in SAS Enterprise Miner 14.3” topic in the SAS Enterprise Miner Help.

For more information, see:
- “Term Roles and Attributes” on page 35
- “Term Weighting” on page 57

Text Filter Node SAS Output Results

The SAS output from the Text Filter node includes summary information about the input variables.

Text Filter Node Output Data

For information about output data for the Text Filter node, see “Output Data for SAS Text Miner Nodes” on page 133.

Using the Text Filter Node

This example assumes that SAS Enterprise Miner is running, and a diagram workspace has been opened in a project. For information about creating a project and a diagram, see *Getting Started with SAS Enterprise Miner*.

The Text Filter node enables you to reduce the total number of terms in your text mining analysis. For example, common or infrequent words might not be useful to analyze, and can be filtered out. This example shows you how to filter out terms using the Text Filter node. This example assumes that you have performed “Using the Text Parsing Node” on page 28. It builds off the process flow diagram created there.

1. Select the Text Mining tab on the toolbar, and drag a Text Filter node to the diagram workspace.

2. Connect the Text Parsing node to the Text Filter node.
3. In the diagram workspace, right-click the Text Filter node and select Run. Click Yes in the Confirmation dialog box.

4. Click Results in the Run Status dialog box when the node finishes running.

5. Select the Terms table. Sort the terms by frequency by clicking the Freq column heading.

<table>
<thead>
<tr>
<th>Term</th>
<th>Role</th>
<th>Attribute</th>
<th>Status</th>
<th>Weight</th>
<th>Freq</th>
<th>Number of Imported Documents</th>
<th># Docs</th>
<th>Parent/Child Status</th>
<th>Parent ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>Noun</td>
<td>Alpha</td>
<td>Keep</td>
<td>0.103</td>
<td>2748</td>
<td>786</td>
<td>1</td>
<td>1</td>
<td>1411</td>
</tr>
<tr>
<td>paper</td>
<td>Noun</td>
<td>Alpha</td>
<td>Keep</td>
<td>0.104</td>
<td>2772</td>
<td>721</td>
<td>1</td>
<td>1</td>
<td>3001</td>
</tr>
<tr>
<td>software</td>
<td>Noun</td>
<td>Alpha</td>
<td>Keep</td>
<td>0.120</td>
<td>766</td>
<td>576</td>
<td>2</td>
<td>1</td>
<td>8150</td>
</tr>
<tr>
<td>user</td>
<td>Noun</td>
<td>Alpha</td>
<td>Keep</td>
<td>0.180</td>
<td>632</td>
<td>376</td>
<td>2</td>
<td>1</td>
<td>8252</td>
</tr>
<tr>
<td>system</td>
<td>Noun</td>
<td>Alpha</td>
<td>Keep</td>
<td>0.223</td>
<td>566</td>
<td>376</td>
<td>2</td>
<td>1</td>
<td>3862</td>
</tr>
<tr>
<td>information</td>
<td>Noun</td>
<td>Alpha</td>
<td>Keep</td>
<td>0.237</td>
<td>560</td>
<td>376</td>
<td>2</td>
<td>1</td>
<td>4160</td>
</tr>
<tr>
<td>macro</td>
<td>Noun</td>
<td>Alpha</td>
<td>Keep</td>
<td>0.295</td>
<td>445</td>
<td>376</td>
<td>2</td>
<td>1</td>
<td>10497</td>
</tr>
<tr>
<td>variable</td>
<td>Noun</td>
<td>Alpha</td>
<td>Keep</td>
<td>0.302</td>
<td>351</td>
<td>376</td>
<td>2</td>
<td>1</td>
<td>4046</td>
</tr>
<tr>
<td>voe</td>
<td>Noun</td>
<td>Alpha</td>
<td>Drop</td>
<td>0.000</td>
<td>32</td>
<td>200</td>
<td>2</td>
<td>1</td>
<td>1627</td>
</tr>
<tr>
<td>report</td>
<td>Noun</td>
<td>Alpha</td>
<td>Keep</td>
<td>0.301</td>
<td>313</td>
<td>151</td>
<td>2</td>
<td>1</td>
<td>286</td>
</tr>
<tr>
<td>web</td>
<td>Noun</td>
<td>Alpha</td>
<td>Keep</td>
<td>0.312</td>
<td>311</td>
<td>151</td>
<td>2</td>
<td>1</td>
<td>7458</td>
</tr>
<tr>
<td>tool</td>
<td>Noun</td>
<td>Alpha</td>
<td>Keep</td>
<td>0.262</td>
<td>307</td>
<td>216</td>
<td>2</td>
<td>1</td>
<td>7758</td>
</tr>
</tbody>
</table>

Assume that for purposes of your text mining analysis, you know that “software” and “application” are really used as synonyms in the documents that you want to analyze, and you want to treat them as the same term.

6. Close the Results window. Select the Text Filter node, and then click the ellipsis button for the Filter Viewer property.

7. In the Interactive Filter Viewer sort the terms in the Terms table by frequency. Hold down Ctrl on your keyboard, select “software” and “application”, and then right-click “software” and select Treat as Synonyms from the drop-down menu.

<table>
<thead>
<tr>
<th>Term</th>
<th>Freq</th>
<th># Docs</th>
<th>Keep</th>
<th>Weight</th>
<th>Role</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>software</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>user</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>macro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. In the Create Equivalent Terms dialog box, select software as the term to represent both terms in the Terms table.
9. Click **OK** in the Create Equivalent Terms dialog box. Notice that the term “software” now represents both terms in the Terms table. Expand the term “software”.

10. Close the Interactive Filter Viewer. When prompted whether you would like to save your changes, select **Yes**.

11. Right-click the **Text Filter** node, and select **Run**. Select **Yes** in the Confirmation dialog box. Select **Results** in the Run Status dialog box when the node has finished running.

12. Select the Number of Documents by Frequency plot to see how both terms are now treated as the same.
You can also use options to change your view or specify a subset of results to appear in a plot. For example, consider that you want to refine this plot to only show terms that appear in more than 200 documents.

13. Right-click the Number of Documents by Frequency plot, and select **Data Options**.

14. Select the **Where** tab in the Data Options Dialog box. Select **# Docs** from the **Column name** drop-down menu. Select **Greater than** from the **Operator** drop-down menu. Type **200** in the **Value** text box.

15. Click **Apply**, and then click **OK**. The Number of Documents by Frequency plot resizes and includes only terms that occur in more than 200 documents.
16. Close the Results window. In addition to resizing or subsetting a plot to help focus your analysis, you can also directly search for terms using the Interactive Filter Viewer.

17. Select the **Text Filter** node, and then click the ellipsis button for the **Filter Viewer** property. In the Interactive Filter Viewer, type `software` in the **Search** text box, and click **Apply**.

The Documents table provides a snippet of text that includes the term that you are searching for. You can use information in the Documents table to help you understand the context in which a term is being used by examining the snippet result in addition to the full text and title of the document. For more information about the Interactive Filter Viewer, see “Interactive Filter Viewer” on page 60.

Searching for a term in the Interactive Filter Viewer raises an interesting problem. As shown above, a search for “software” is case insensitive. However, what if there are instances of a term that you want to find that are misspelled in the document collection? You can also check for spelling when filtering terms using a dictionary data set.

18. Close the Interactive Filter Viewer, and select **No** when prompted for whether you want to save changes.
19. (Optional) Select the **Text Filter** node, and set the **Check Spelling** property to **Yes**. When you rerun the **Text Filter** node, terms will be checked for misspellings. You can also specify a data set to use in spell-checking by clicking the ellipsis button for the **Dictionary** property and selecting a data set. For information about creating a dictionary data set, see "How to Create a Dictionary Data Set" on page 56.

Right-click the **Text Filter** node, and select **Run**. Select **Yes** in the Confirmation dialog box. When the node finishes running, select **OK** in the Run Status dialog box. Click the ellipsis button for the **Spell-Checking Results** property to access a window in which you can view the data set that contains spelling corrections generated during spell-checking. To see misspellings for the term “software,” click in the Parent column to sort the column in ascending order. Click again to sort the Parent column in descending order. Scroll through the table to see that the terms “softwae” and “solftware” are identified as misspellings of “software.”

You can see this relationship in the Terms table in the Interactive Filter Viewer. Click the ellipsis button for the **Filter Viewer** property. Expand the term "software" in the Terms table to view its synonyms. The synonyms include "softwae," which was identified as a misspelled term during spell-checking.

<table>
<thead>
<tr>
<th>Parent # Docs</th>
<th>Term</th>
<th># Docs</th>
<th>Parent Term</th>
<th>Role</th>
<th>Parent Role</th>
<th># Distance</th>
<th>Dictionary</th>
<th>Key</th>
<th>Parent ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>software</td>
<td>2.0</td>
<td>software</td>
<td>Noun</td>
<td>Noun</td>
<td>7.0</td>
<td>9311.0</td>
<td>ROE.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>software</td>
<td>2.0</td>
<td>software</td>
<td>Noun</td>
<td>Noun</td>
<td>8.0</td>
<td>9341.0</td>
<td>ROE.0</td>
<td></td>
</tr>
</tbody>
</table>

Notice that the synonyms also include "application," which was created in steps 7-10 of this example, and "applicaion," which was identified during spell-checking as a misspelling of "application."

How to Create a Dictionary Data Set

You can use a “dictionary data set” as input to the **Text Filter** node or the %TEXTSYN macro for any language that is supported by SAS Text Miner.

Typically, if you specify to use spell checking during filtering, the words in a document collection are checked against each other and candidate misspellings are proposed. Including a dictionary data set for spell checking can reduce the number of misspellings that are falsely identified by this process. All words in the dictionary data set are viewed as correctly spelled, regardless of how they compare to other words in the collection.

There are several free dictionary sources that you can use with a DATA step to create a dictionary data set for use with SAS Text Miner. For example, OpenOffice.org has links...
to dictionaries for many languages that are available for free download at http://
extensions.services.openoffice.org/dictionary.

To create an English dictionary data set that you can use with the Text Filter node or the
%TEXTSYN macro, do the following:

the ZIP files for OpenOffice US English spelling dictionary.

2. Click Download to download the file en_US.oxt to your local machine. You might
need to rename this file to en_US.zip in order to extract the dictionary files. The
dictionary file is en_US.dic. You must extract this file to a location on your local
machine.

3. In SAS Enterprise Miner, select View ⇒ Program Editor.

4. In the Program Editor that opens, enter and run the following SAS code. This code
removes extraneous characters from the OpenOffice dictionary, assigns the proper
noun part of speech to any term that is capitalized in the file, and creates an English
dictionary data set with the required format.

Note: Be sure to change <fileLocation> to the path to the ZIP files for the
dictionary. Also, note that the following code uses a library called tmlib. You will
need to create this library with a LIBNAME statement before running this code,
or change tmlib to another library that you have already created.

```sas
data tmlib.engdict (keep=term pos);
  length inputterm term $32;
  infile '<fileLocation>en_US.dic'
    truncover;
  input linetxt $80.;
  i=1;
  do until (inputterm = ' ');
    inputterm = scan(linetxt, i, ' ');
    if inputterm ne ' ' then do;
      location=index(inputterm,'/');
      if location gt 0 then
        term = substr(inputterm,1,location-1);
      if location eq 0 then
        term = inputterm;
      if lowcase(term) ne term then pos = 'Prop';
      term = lowcase(term);
    output;
    end;
    i=i+1;
  end;
run;
```

Term Weighting

Contents

- “Overview of Term Weights” on page 58
Overview of Term Weights

The term weighting options in the **Text Filter** node enable you to vary the importance of terms based on how frequently the terms occur in individual documents and how the terms are distributed throughout the document collection. A weighted, term-by-document frequency matrix is created for a text mining analysis by first assigning child frequencies to their parent terms. Next, a weighting function is applied to the frequency of occurrence of each term in each document. Finally, the entry for each term is scaled by multiplying it by its term weight. This weighted, term-by-document frequency matrix becomes the underlying representation for the collection. Formally, term and frequency weights are applied as follows.

Let f_{ij} be the ijth frequency in the unweighted term-by-document matrix, the frequencies of terms be weighted using the function $g(.)$, and the weight of the ith term be denoted by w_i. Then the weighted frequency of element f_{ij} in the term-by-document frequency matrix is: $w_i * g(f_{ij})$.

Frequency Weighting Methods

The following frequency weighting functions, $g(.)$, are available in the **Text Filter** node.

- **Default**

 The default frequency weighting method is Log with one exception. In a process flow that has multiple **Text Filter** nodes, the default frequency weighting method that is used in a node is determined by the setting that was specified in the previous **Text Filter** node.

- **Binary**

 An indicator function, where $g(f_{ij})= 1$ if a term appears in the document, and $g(f_{ij})= 0$ if it does not. This function removes the effect of terms that occur repeatedly in the same document.

- **Log**

 $g(f_{ij})= \log_2(f_{ij}+1)$. This function dampens the effect of terms that occur many times in a document.

- **None**

 $g(f_{ij})= f_{ij}$. In other words, no change is applied to the raw frequency for the term.

Term Weighting Methods

Term weights are useful for distinguishing important terms from others. In general, the assumption is that terms that are useful for categorizing documents are those that occur in only a few documents but many times in those few documents. SAS Text Miner implements several methods that, at a high level, have the same goals. However, because the functions vary, you should try different weighting techniques to see which method works best for a particular analysis.

In the **Text Filter** node, the following term weights, w_i, are available.
• **Default**

The default term weighting method is Entropy (if the data source does not have a categorical target) and Mutual Information (if the data source has a categorical target) with one exception. In a process flow that has multiple Text Filter nodes, the default term weighting method used in a node is controlled by the setting that was specified in the previous Text Filter node.

• **Entropy**

\[w_i = 1 + \sum_j \left(\frac{f_{ij}}{g_i} \right) \log_2 \left(\frac{f_{ij}}{g_i} \right) \frac{\log_2(n)}{\log_2(n)} \]

Here, \(g_i \) is the number of times that term \(i \) appears in the document collection, and \(n \) is the number of documents in the collection. \(\log(.) \) is taken to be 0 if \(f_{ij} = 0 \). This method gives greater weight to terms that occur infrequently in the document collection by using a derivative of the entropy measure found in information theory.

• **Inverse Document Frequency**

\[w_i = \log_2 \left(\frac{1}{P(t_i)} \right) + 1 \]

Here, \(P(t_i) \) is the proportion of documents that contain term \(t_i \). This method gives greater weight to terms that occur infrequently in the document collection by placing the number of documents that contain the term in the numerator of the formula.

Note: \(1/P(t_i) = N/N(t_i) \).

• **Mutual Information**

\[w_i = \max_{C_k} \left[\log \left(\frac{P(t_i, C_k)}{P(t_i) P(C_k)} \right) \right] \]

Here, \(P(t_i) \) is the proportion of documents that contain term \(t_i \). \(P(C_k) \) is the proportion of documents that belong to category \(C_k \). And \(P(t_i, C_k) \) is the proportion of documents that contain term \(t_i \) and belong to category \(C_k \). \(\log(.) \) is taken to be 0 if \(P(t_i, C_k) = 0 \) or \(P(C_k) = 0 \).

This weight is valid only if the data source includes a categorical target variable. The weight is proportional to the similarity of the distribution of documents that contain the term to the distribution of documents that are contained in the respective category.

• **None**

\(w_i = 1 \). In other words, no term weight is applied.
Text Filter Node Search Expressions

The Text Filter node and the Interactive Filter Viewer enable you to use a search expression to filter documents. A subset of documents that match your query is returned. A query consists of a list of terms, and the search results show a set of documents that contain at least one of the query terms. A relevance score indicates how well each document matches the query. A relevance of 1 indicates which document was the best match in the collection for that query. You can use the following special characters to enhance a search:

- **+term** returns only documents that include term.
- **-term** returns only documents that do not include term.

Note: A query cannot consist entirely of -term. Use of this special character must be in combination with additional query terms. Positive terms locate the documents, and then negative terms are applied to filter those.

- **"text string"** returns only documents that include the quoted text.
- **string1*string2** returns only documents that include a term that begins with string1, ends with string2, and has text in between.
- **>#term** returns only documents that include term or any of the synonyms that have been assigned to the term.

Note:

- The Interactive Filter Viewer does not support use of the + operator with the ># operator in a search. Query length is limited to 100 bytes on the Solaris for 64 and Solaris for x64 platforms.
- The Text Filter node Search Expression property has a limit of 400 characters. If a search expression is longer than 400 characters, upon the execution of the Text Filter node, the expression will be truncated to the first 400 characters, and the Text Filter node results will be based off of the first 400 characters that are specified.

Interactive Filter Viewer

Contents

- “Overview of the Interactive Filter Viewer” on page 61
- “Searching in the Interactive Filter Viewer” on page 61
- “Documents Window of the Interactive Filter Viewer” on page 61
- “Terms Window of the Interactive Filter Viewer” on page 62
- “Concept Linking Window of the Interactive Filter Viewer” on page 62
- “Create Synonym Data Sets” on page 63
Overview of the Interactive Filter Viewer

The Interactive Filter Viewer enables you to refine the parsed and filtered data that exists after the Text Filter node has run. You can save any changes that you make to the data when you close the Interactive Filter Viewer. The edited data is used in subsequent nodes of the analysis. To access the Interactive Filter Viewer, click the ellipsis button that corresponds to the Filter Viewer property in the Properties panel of the Text Filter node.

Searching in the Interactive Filter Viewer

Search Box Functionality

The Search box enables you to filter documents based on the results of a search expression. If you enter a search expression in the Search Expression property before you run the Text Filter node, then the Search box is populated with that expression when you open the Interactive Filter Viewer. You can edit the expression or enter a new expression in the Interactive Filter Viewer and click Apply to refine the filter. Search expressions can also be added to the Search box by right-clicking on a term in the Terms table and selecting Add Term to Search Expression. For more information about search expressions, see “Text Filter Node Search Expressions” on page 60.

Note: The number of search results for a given term might differ from the number of documents that are assigned to that term in the Terms table because the search is over the original text and not over the entries in the table.

Find Functionality

To access the Find Text window, select the Documents window or the Terms window and select Edit → Find. Enter text that you want to find, and click OK. You will be advanced to the next matching observation in the TEXT column of the Documents window, or the TERM column of the Terms window. This behavior is different from that of the Search box.

Documents Window of the Interactive Filter Viewer

The Documents window of the Interactive Filter Viewer displays all of the variables in the input data source. The first variable that is displayed is the variable that was used for text parsing. To wrap or unwrap the full contents of this variable in the column cells, select Edit → Toggle Show Full Text. You cannot wrap the contents of the other columns.

If the input data source in the process flow diagram contains paths to files that contain the document text (rather than containing the full text, itself) and if these files are accessible from the client, then you can use the Edit menu to view the full document text. Select Edit → View Input File to view the file stored in the location that is specified by the variable with the role Web Address (if such a variable exists in the data source). Select Edit → View Original to view the file that is stored in the location specified by the variable with the role Text Location.

You can right-click the column title and select Label or Name to switch between labels and variable names.
Terms Window of the Interactive Filter Viewer

The Terms window of the Interactive Filter Viewer displays a table that is similar to the Terms table that is displayed in the Text Filter node results window. However, fewer variables are displayed. And, instead of displaying only top-level terms, the Terms window of the Interactive Filter Viewer displays all terms. If stemming or synonym lists are used in the node, then parent terms appear as the root of a tree in the table. Children appear as branches. Click the plus (+) symbol at the left of a parent term to view or hide its children.

The following functions in the Terms window enable you to refine your filtered data:

• Select two or more terms, and then select Edit \(\Rightarrow\) Treat as Synonyms to define new synonyms. You are prompted to specify which of the selected terms to treat as the parent in the Create Equivalent Terms window. The other selected terms are treated as children.

• Select one or more child terms, and then select Edit \(\Rightarrow\) Remove Synonyms to disassociate one or more child terms from a parent.

• Select one or more terms, and then select Edit \(\Rightarrow\) Toggle KEEP to toggle the keep status of one or more terms. For a single term, you can also accomplish this task by selecting the check box in the KEEP column for that term.

Note: You can use the SHIFT and Ctrl keys to make multiple selections in the table.

The Terms window is equipped with a quick-find functionality that enables you to scroll quickly to a specific row in a sorted column. To use quick-find, sort the table by a particular column, select any row, and enter the first letter or number of any row to which you want to scroll. The cursor advances to the first item under the sorted column that starts with that letter or number. Quick-find is available for all columns except for KEEP. Quick-find complements the find functionality.

Concept Linking Window of the Interactive Filter Viewer

The Concept Linking window enables you to interactively view terms that are associated with a particular term in a hyperbolic tree display. To view the Concept Linking window, select a term in the Terms window and select Edit \(\Rightarrow\) View Concept Links. The Concept Linking window is available for only a single term at a time, and for only kept terms (not for dropped terms).

In the Concept Linking window, the selected term appears in the center of the tree, surrounded by the terms that are most highly associated with that term. The width of the lines in the display represents the strength of association between terms. A thicker line indicates a closer association. For more information, see “Strength of Association for Concept Linking” on page 63. Furthermore, you can double-click a term in the display to expand the tree and include terms that are associated with that term.

If you position the mouse pointer over a term, then a tooltip shows two numbers, separated by a forward slash (/). The first number is the number of documents in which the term appears with its immediate predecessor in the display. The second number represents the total number of documents in which the term occurs in the document collection.

A pop-up menu enables you to perform these actions in the Concept Linking window:
Strength of Association for Concept Linking

For a given pair of terms, their “strength of association” with one another is computed using the binomial distribution. This strength measure is used to produce concept linking diagrams in the Interactive Filter Viewer of the Text Filter node.

The following assumptions obtain:

- \(n \) is the number of documents that contain term \(B \).
- \(k \) is the number of documents containing both term \(A \) and term \(B \).
• \(p = \frac{k}{n}\) is the probability that term A occurs when term B occurs, assuming that they are independent of each other.

Then the strength of association between the terms A and B, for a given \(r \) documents, is as follows:

\[
\text{Strength} = \log_e(1/\text{Prob}_k)
\]

The sum of probabilities is as follows:

\[
\text{Prob}_k = \sum_{r=k}^{r=n} \text{Prob}(r).
\]

\[
\text{Prob}(r) = \frac{n!}{[r!(n-r)!]} p^r(1-p)^{n-r}
\]
Overview of the Text Cluster Node

The Text Cluster node clusters documents into disjoint sets of documents and reports on the descriptive terms for those clusters. Two algorithms are available. The Expectation Maximization algorithm clusters documents with a flat representation, and the Hierarchical clustering algorithm groups clusters into a tree hierarchy. Both approaches rely on the singular value decomposition (SVD) to transform the original weighted, term-document frequency matrix into a dense but low dimensional representation.
The most memory-intensive task of the text clustering process is computing the SVD of the weighted term-by-document frequency matrix. For more information, see “Singular Value Decomposition” on page 75. When in-memory resources are limited, the node might use, instead of the full collection, a simple random sample of the documents in an attempt to run the node successfully. Sampling occurs only if the node encounters a memory failure during an attempt to compute the SVD without sampling. Furthermore, because sampling generally occurs when the document collection is extremely large, there is typically not an adverse effect on modeling results. Exactly when sampling occurs depends on a number of parameters including the size of your collection, the platform on which your system is running, and the available RAM.

- “Text Cluster Node Input Data” on page 66
- “Text Cluster Node Properties” on page 66
- “Text Cluster Node Results” on page 68
- “Text Cluster Node Output Data” on page 69
- “Using the Text Cluster Node” on page 70

For related topics that you might find useful when using the Text Cluster node, see the following:
- “Singular Value Decomposition” on page 75
- “Clustering Techniques” on page 80

Note: The Text Cluster node is not supported for use in group processing (Start Groups and End Groups nodes).

Text Cluster Node Input Data

The Text Cluster node requires the following predecessor nodes:

- a data source
- a Text Parsing node
- a Text Filter node

Text Cluster Node Properties

Contents

- “Text Cluster Node General Properties” on page 66
- “Text Cluster Node Train Properties” on page 67
- “Text Cluster Node Status Properties” on page 68

Text Cluster Node General Properties

These are the general properties that are available on the Text Cluster node:
• **Node ID** — displays the ID that is assigned to the node. Node IDs are especially useful for distinguishing between two or more nodes of the same type in a process flow diagram. For example, the first **Text Cluster** node that is added to a diagram will have the Node ID **TextCluster**. The second **Text Cluster** node that is added will have the Node ID **TextCluster2**.

• **Imported Data** — accesses a list of the data sets that are imported by the node and the ports that provide them. Click the ellipsis button to open the Imported Data window, which displays this list. If data exists for an imported data set, then you can select a row in the list and do any of the following:
 - browse the data set
 - explore (sample and plot) the data in a data set
 - view the table and variable properties of a data set

• **Exported Data** — accesses a list of the data sets that are exported by the node and the ports to which they are provided. Click the ellipsis button to open the Exported Data window, which displays this list. If data exists for an exported data set, then you can select a row in the list and do any of the following:
 - browse the data set
 - explore (sample and plot) the data in a data set
 - view the table and variable properties of a data set

• **Notes** — accesses a window that you can use to store notes of interest, such as data or configuration information. Click the ellipsis button to open the Notes window.

Text Cluster Node Train Properties

General Train Properties
These are the training properties that are available on the **Text Cluster** node:

• **Variables** — accesses a list of variables and associated properties in the data source. Click the ellipsis button to open the Variables window.

• “Transform Properties” on page 67

• “Cluster Properties” on page 68

Transform Properties

• **SVD Resolution** — specifies the resolution to use to generate the singular-value decomposition (SVD) dimensions. For more information about SVD, see “Singular Value Decomposition” on page 75.

• **Max SVD Dimensions** — specifies the maximum number of SVD dimensions to generate. The minimum value that you can specify is 2, and the maximum value that you can specify is 500.
Cluster Properties

- **Exact or Maximum Number** — specifies whether to find an exact number of clusters or any number less than or equal to a maximum number of clusters.

- **Number of Clusters** — specifies the number of clusters to create. This is the exact number if the value of **Exact or Maximum Number** is **Exact**, and it is the maximum number if the value of **Exact or Maximum Number** is **Maximum**.

- **Cluster Algorithm** — specifies the clustering algorithm to use. For more information about clustering, see “Clustering Techniques” on page 80.

- **Descriptive Terms** — specifies the number of descriptive terms to display for each cluster. The default value is 15. For more information, see “Descriptive Terms” on page 82.

Text Cluster Node Status Properties

These are the status properties that are displayed on the **Text Cluster** node:

- **Create Time** — time that the node was created.

- **Run ID** — identifier of the run of the node. A new identifier is assigned every time the node is run.

- **Last Error** — error message, if any, from the last run.

- **Last Status** — last reported status of the node.

- **Last Run Time** — time at which the node was last run.

- **Run Duration** — length of time that is required to complete the last node run.

- **Grid Host** — grid host, if any, that was used for computation.

- **User-Added Node** — denotes whether the node was created by a user as a SAS Enterprise Miner extension node. The value of this property is always **No** for the **Text Cluster** node.

Text Cluster Node Results

Contents

- “Results Window for the Text Cluster Node” on page 68
- “Text Cluster Node Graphical and Tabular Results” on page 69
- “Text Cluster Node SAS Output Results” on page 69

Results Window for the Text Cluster Node

After the **Text Cluster** node runs successfully, you can access the Results window in three ways:
• Click Results in the Run Status dialog box that opens immediately after a successful run of the Text Cluster node.

• Click the Results icon on the main Toolbar.

• Right-click the Text Cluster node, and click Results.

The Results window for the Text Cluster node is similar to the Results window for other nodes in SAS Enterprise Miner. For general information about the Results window, see the SAS Enterprise Miner Help. The icons and main menus are the same as other nodes. However, the View menu does not include the options Assessment or Model. Instead, it includes the Clusters option, which accesses submenus that list the graphical and tabular results.

Note: You can access the SAS log from the SAS Results submenu of the View menu. This log can be a useful debugging tool.

Text Cluster Node Graphical and Tabular Results

The following are the graphical results in the Text Cluster node Results window.

• The Cluster Frequencies pie chart shows the frequency of each cluster. Position the mouse pointer over a sector to see the cluster ID and frequency in a tooltip. Select a sector to highlight the cluster in the other graphical results windows and the Clusters table.

• The Cluster Frequency by RMS scatter plot shows the root mean squared (RMS) standard deviation by frequency. Position the mouse pointer over a point to see the frequency, RMS standard deviation, and descriptive terms in the cluster in a tooltip. Select a point to highlight the cluster in the other graphical results windows and the Clusters table.

• The Distance Between Clusters scatter plot shows the distance between clusters using a Cartesian coordinate system. Position the mouse pointer over a point to see the x-coordinate, y-coordinate, cluster ID, and descriptive terms in the cluster in a tooltip. Select a point to highlight the cluster in the other graphical results windows and the Clusters table.

• The Cluster Hierarchy plot shows a hierarchical relationship among clusters when the Cluster Algorithm property is set to HIERARCHICAL. Select a point to highlight corresponding information in the Hierarchy Data table.

The Clusters table displays information about each cluster.

The Hierarchy Data table displays hierarchical and statistical information about each cluster in the Clusters table when the Cluster Algorithm property is set to HIERARCHICAL.

Text Cluster Node SAS Output Results

The SAS output from the Text Cluster node includes summary information about the input variables.

Text Cluster Node Output Data

For information about output data for the Text Cluster node, see “Output Data for SAS Text Miner Nodes” on page 133.
Using the Text Cluster Node

This example assumes that SAS Enterprise Miner is running, and a diagram workspace has been opened in a project. For information about creating a project and a diagram, see *Getting Started with SAS Enterprise Miner*.

This example uses the **Text Cluster** node to cluster SAS Users Group International (SUGI) abstracts.

Note: SAS Users Group International is now SAS Global Forum.

Perform the following steps:

1. Create a data source for SAMPSIO.ABSTRACT. Change the Role of the variable TITLE to ID.

 Note: The SAMPSIO.ABSTRACT data set contains information about 1,238 papers prepared for meetings of SUGI from 1998 through 2001 (SUGI 23 through 26). The variable TITLE is the title of the SUGI paper. The variable TEXT contains the abstract of the SUGI paper.

2. Add the SAMPSIO.ABSTRACT data source to the diagram workspace.

3. Select the **Text Mining** tab on the Toolbar, and drag a **Text Parsing** node to the diagram workspace.

4. Connect the **Input Data** node to the **Text Parsing** node.

5. Select the **Text Parsing** node, and then click the ellipsis for the **Stop List** property.

6. Click **Replace Table**, browse to select SAMPSIO.SUGISTOP as the stop list, and then click **OK**. Click **Yes** in the confirmation dialog box. Click **OK** to exit the dialog box for the **Stop List** property.

7. Set the **Find Entities** property to **Standard**.

8. Click the ellipsis button for the **Ignore Types of Entities** property to open the Ignore Types of Entities dialog box.

9. Select all entity types except for **Location**, **Organization**, **Person**, and **Product**. Click **OK**.

10. Select the **Text Mining** tab, and drag a **Text Filter** node into the diagram workspace.

11. Connect the **Text Parsing** node to the **Text Filter** node.

12. Select the **Text Mining** tab, and drag a **Text Cluster** node into the diagram workspace.

13. Connect the **Text Filter** node to the **Text Cluster** node. Your process flow diagram should resemble the following:
14. Right-click the **Text Cluster** node and select **Run**. Click **Yes** in the Confirmation dialog box.

15. Click **Results** in the Run Status dialog box when the node has finished running.

16. Select the Clusters table.

The Clusters table contains an ID for each cluster, the descriptive terms that make up that cluster, and statistics for each cluster.

<table>
<thead>
<tr>
<th>Cluster ID</th>
<th>Descriptive Terms</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>server +performance windows nt ...</td>
<td>150</td>
<td>13%</td>
</tr>
<tr>
<td>2</td>
<td>warehouse +business management ...</td>
<td>140</td>
<td>11%</td>
</tr>
<tr>
<td>3</td>
<td>web intranet +page 'intranet software' ...</td>
<td>107</td>
<td>9%</td>
</tr>
<tr>
<td>4</td>
<td>clinical +analysis +study statistical ...</td>
<td>211</td>
<td>17%</td>
</tr>
<tr>
<td>5</td>
<td>report +output +procedure +graph ...</td>
<td>112</td>
<td>9%</td>
</tr>
<tr>
<td>6</td>
<td>set +program +code +macro +variable ...</td>
<td>203</td>
<td>24%</td>
</tr>
<tr>
<td>7</td>
<td>model regression +test +estimate ...</td>
<td>87</td>
<td>7%</td>
</tr>
<tr>
<td>8</td>
<td>object 'af software' +frame java ...</td>
<td>129</td>
<td>10%</td>
</tr>
</tbody>
</table>

17. Select the first cluster in the Clusters table.

18. Select the Cluster Frequencies window to see a pie chart of the clusters by frequency. Position the mouse pointer over a section to see the frequency for that cluster in a tooltip.
19. Select the Cluster Frequency by RMS window, and then position the mouse pointer over the highlighted cluster.

20. Select the Distance Between Clusters window. Then position the mouse pointer over the highlighted cluster to see the position of the first cluster in an X and Y coordinate grid.

How does the first cluster compare to the other clusters in terms of distance?
Position the mouse pointer over other clusters to compare distances.

21. Close the Results window.

Now compare the clustering results obtained with the Expectation-Maximization clustering algorithm by using a Hierarchical clustering algorithm.

22. Select the Text Cluster node.

23. Select Exact for the Exact or Maximum Number property.

24. Specify 10 for the Number of Clusters property.

25. Select Hierarchical for the Cluster Algorithm property.

26. Right-click the Text Cluster node and select Run. Click Yes in the Confirmation dialog box.

27. Click Results in the Run Status dialog box when the node has finished running.

28. Select the Clusters table.
Notice that while there are 10 clusters in the table, the Cluster IDs do not range from 1 to 10.

29. Select the Hierarchy Data table for more information about the clusters that appear in the Clusters table.

30. Select the Cluster Hierarchy graph for a hierarchical graphical representation of the clusters.
Singular Value Decomposition

Parsing the document collection generates a term-document frequency matrix. Each entry of the matrix represents the number of times that a term appears in a document. For a collection of several thousand documents, the term-document frequency matrix can contain hundreds of thousands of words. It requires too much computing time and space to analyze this matrix effectively. Also, dealing with high dimensional data is inherently difficult for modeling. To improve the performance, singular value decomposition (SVD) can be implemented to reduce the dimensions of the term-document frequency matrix. SVD transforms the matrix into a lower dimensional, more compact, and informative form.

A high number of SVD dimensions usually summarize the data better. But the higher the number, the more computing resources are required. The Text Cluster node determines the number of SVD dimensions based on the values of the SVD Resolution and Max SVD Dimensions properties. The value of the SVD Resolution property can be set to Low (default), Medium, or High. High resolution yields more SVD dimensions. The default value of the Max SVD Dimensions property is 100, and the value must be between 2 and 500. Suppose that the maximum number of SVD dimensions that you specify for the Max SVD Dimensions property is maxdim and these maxdim SVD dimensions account for \(p\% \) of the total variance. High resolution always generates the maximum number of SVD dimensions, maxdim. For medium resolution, the recommended number of SVD dimensions account for \(5/6 \times (p\%) \) of the total variance. For low resolution, the recommended number of SVD dimensions account for \(2/3 \times (p\%) \) of the total variance.

31. Close the Results window.
The computation of the SVD is itself a memory-intensive task. For extremely large problems, the SVD might automatically perform a random sample of the documents in an attempt to avoid running out of memory. When this occurs, a note indicating that sampling has occurred will be written to the SAS log.

The SVD approximates the original weighted frequency matrix. It is the best least squares fit to that matrix. In other words, for any given k, the transformation output will be the factorization of the matrix with k dimensions that best approximates the original matrix. A higher value of k gives a better approximation to the matrix A. However, choosing too large a value for k might result in too high a dimension for the modeling process. Generally, the value of k must be large enough to preserve the meaning of the document collection, but not so large that it captures the noise. Values between 10 and 200 are appropriate unless the document collection is small. In SAS Text Miner, you can specify the number of dimensions (k). That is, you can specify the first k singular values to be calculated. The algorithm for computing the singular values is designed to give only the leading singular values. The value for k can be at most 4 fewer than the minimum of the number of rows and number of columns of A. In some cases, the algorithm might not be able to calculate that many singular values, so you must reduce the number of dimensions. As you carry out text mining, this problem does not usually occur. For your specific text mining application, you might want to compare the results for several values of k. As a general rule, smaller values of k (2 to 50) are useful for clustering, and larger values (30 to 200) are useful for prediction or classification.

SVD factors the large, sparse term-by-document frequency matrix by calculating a truncated SVD of the matrix. Then, it projects the rows or columns of the sparse matrix onto the columns of a dense matrix.

Suppose A is the large, sparse term-by-document frequency matrix with weighted entries. The SVD of a matrix A is a factorization of A into three new matrices U, D, and V, such that $A = UDV^T$, where matrices U and V have orthonormal columns, and D is a diagonal matrix of singular values. SVD calculates only the first k columns of these matrices (U, D, and V). This is called the truncated decomposition of the original matrix.

After the SVD is computed, each column (or document) in the term-by-document frequency matrix can be projected onto the first k columns of U. Mathematically, this projection forms a k-dimensional subspace that is a best fit to describe the data set. Column projection (document projection) of the term-by-document matrix is a method to represent each document by k distinct concepts.

In other words, the collection of documents is mapped into a k-dimensional space in which one dimension is reserved for each concept. Similarly, each row (or term) in the term-by-document matrix can be projected onto the first k columns of V.

The following description shows the benefits of the SVD. Suppose that you have a document collection as given below. Documents 1, 3, and 6 are about banking at a financial institution. To be more specific, documents 3 and 6 are about borrowing from a financial institution. Documents 2, 4, 5, and 7 are about the bank of a river. Finally, documents 8 and 9 are about a parade. Some of these documents share the same words. A bank can relate to a financial institution or to the shore of a river. “Check” can serve as a noun in document 1 or in an entirely different role as a verb in document 8. “Floats” is used as both a verb in document 4 and as an object that appears in a parade in document 8.

- Document 1 — deposit the cash and check in the bank
- Document 2 — the river boat is on the bank
- Document 3 — borrow based on credit
- Document 4 — river boat floats up the river
• Document 5 — boat is by the dock near the bank
• Document 6 — with credit, I can borrow cash from the bank
• Document 7 — boat floats by dock near the river bank
• Document 8 — check the parade route to see the floats
• Document 9 — along the parade route

Parsing this document collection generates the following term-by-document frequency matrix:

<table>
<thead>
<tr>
<th></th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
<th>d5</th>
<th>d6</th>
<th>d7</th>
<th>d8</th>
<th>d9</th>
</tr>
</thead>
<tbody>
<tr>
<td>the</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>cash</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>check</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>bank</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>river</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>boat</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+ be</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>on</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>borrow</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>credit</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+ floats</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>by</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dock</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>near</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>parade</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>route</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

By using the co-occurrence of items from the matrix as a measure of similarity, you can see that documents 1 and 2 are more similar than documents 1 and 3. This is because documents 1 and 2 share the same word bank, but documents 1 and 3 have no words in common. However, in fact, documents 1 and 2 are not related at all, but documents 1 and 3 are similar. The SVD helps overcome this difficulty.

The SVD is then applied to approximate the above matrix, and documents are projected into a reduced dimensional space. The generated SVD dimensions are those that fit the subspace the best in terms of least-square best fit. The following displays show the two-dimensional scatter plot of documents.
Document 1 is closer to document 3 than it is to document 2. This is true even though documents 1 and 3 do not share any of the same words. On the other hand, document 5 is directly related to documents 2, 4, and 7. That is, projections tend to place similar documents—even if they share few common words—close to one another in the reduced space. The SVD represents terms with 2 dimensions rather than the original 16 dimensions (1 dimension for each word).

The following display shows the two-dimensional scatter plot of terms. The terms form four groups:
The following display shows the scatter plot of documents and terms all together:
Clustering Techniques

Contents

• “Hierarchical Clustering” on page 80
• “Expectation-Maximization Clustering” on page 80
• “Descriptive Terms” on page 82

Hierarchical Clustering

When the Text Cluster node performs hierarchical clustering on document vectors, it obtains an initial set of seeds. Then, the node generates a result tree. In this tree, parent clusters always contain at least two children, and children are either leaves or have subtrees, themselves.

In hierarchical clustering, the Ward minimum variance method is used. In this method, the distance between two clusters is as follows:

\[
\frac{(\mu_1 - \mu_2)^	op (\mu_1 - \mu_2)}{1/n_1 + 1/n_2}
\]

Here, \(\mu_1\) and \(\mu_2\) are the cluster means, and \(n_1\) and \(n_2\) are the cluster frequencies.

Expectation-Maximization Clustering

The expectation-maximization (EM) algorithm assumes that a mixture model approximates the data distribution by fitting \(k\) cluster density functions, \(f_h\) \((h=1, \ldots, k)\) to a data set with \(d\) variables. The mixture model probability density function that is evaluated at point \(x\) is as follows:

\[
p(x) = \sum_{h=1}^{k} w_h f_h(x | \mu_h, \Sigma_h)
\]

Here, \(w_h\) is the proportion of data that belongs to primary cluster \(h\). Each cluster is modeled by a \(d\)-dimensional Gaussian probability distribution as follows:

\[
f_h(x | \mu_h, \Sigma_h) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma_h)}} \exp\left(-\frac{1}{2} (x - \mu_h)^	op (\Sigma_h)^{-1} (x - \mu_h) \right)
\]

Here, \(\mu_h\) and \(\Sigma_h\) are the mean vector and covariance matrix for each cluster \(h\).

In the Text Cluster node, EM clustering is an iterative process:

1. Obtain initial parameter estimates.
2. Apply the standard or scaled version of the EM algorithm to find primary clusters and to update parameter estimates. The standard EM algorithm uses the entire input data set at each iteration to estimate the model parameters. The scaled EM algorithm, on the other hand, uses a portion of the input data set at each iteration.

If the data set is small enough and less memory is needed, the standard EM algorithm is used. Otherwise, the scaled EM algorithm is used. The algorithm terminates when two successive log-likelihood values differ by a particular amount or when a maximum of five iterations has been reached.

3. (For the scaled EM algorithm) Summarize data in the primary summarization phase. Observations that are near each of the primary cluster means are summarized. If a primary cluster contains fewer observations than the minimum requirement, this cluster becomes inactive. Inactive clusters are not used for updating the parameter estimates in the EM algorithm.

4. (For the scaled EM algorithm) Summarize data in the secondary summarization phase. Secondary clusters are identified as subsets of observations that result from a k-means clustering algorithm, where the sample standard deviation for each variable does not exceed the specified amount. Then, a hierarchical agglomerative clustering algorithm is used to combine similar secondary clusters. A secondary cluster is disjoint from all other secondary clusters and from all primary clusters.

For each observation \(x \) in the data set at iteration \(j \), the parameter estimates of a standard EM algorithm are computed as follows:

1. Compute the membership probability of \(x \) in each cluster \(h = 1, \ldots, k \).

\[
\psi^j_h(x) = \frac{\psi^j_h f_h \left(x \mid \mu^j_h, \Sigma^j_h \right)}{\sum_{i} \psi^j_i f_i \left(x \mid \mu^j_i, \Sigma^j_i \right)}
\]

2. Update the mixture model parameters for each cluster \(h = 1, \ldots, k \).

\[
\begin{align*}
\omega_{h}^{j+1} &= \sum_{x} \psi^j_h(x) \\
\mu_{h}^{j+1} &= \frac{\sum_{x} \psi^j_h(x) x}{\sum_{x} \psi^j_h(x)} \frac{\sum_{x} \psi^j_h(x)(x - \mu_{h}^{j+1})(x - \mu_{h}^{j+1})^T}{\sum_{x} \psi^j_h(x)}
\end{align*}
\]

The iterative computation stops if

\[
| L(\Phi^j) - L(\Phi^{j+1}) | \leq \varepsilon,
\]

where \(\varepsilon > 0 \), and

\[
L(\Phi) = \sum_{x} \log \left[\sum_{h=1}^{k} \psi_h f_h \left(x \mid \mu_h, \Sigma_h \right) \right]
\]

For EM clustering, the distance between a document and a cluster is the Mahalanobis distance, \(\sqrt{(x-u)'S(x-u)} \). Here, \(u \) is the cluster mean, and \(S \) is the inverse of the cluster covariance matrix.
Descriptive Terms

The Text Cluster node uses a descriptive terms algorithm to describe the contents of both EM clusters and hierarchical clusters. If you specify to display m descriptive terms for each cluster, then the top 2*m most frequently occurring terms in each cluster are used to compute the descriptive terms.

For each of the 2*m terms, a binomial probability for each cluster is computed. The probability of assigning a term to cluster j is \(\text{prob} = F(k|N, p) \). Here, \(F \) is the binomial cumulative distribution function. \(k \) is the number of times that the term appears in cluster j. \(N \) is the number of documents in cluster j. \(p \) is equal to \(\frac{\text{sum-k}}{\text{total-N}} \), sum is the total number of times that the term appears in all the clusters, and total is the total number of documents. The m descriptive terms are those that have the highest binomial probabilities.

Descriptive terms must have a keep status of Y and must occur at least twice (by default) in a cluster. You can use the macro variable TM_MINDESCTERMS to change the minimum frequency that a descriptive term must have. If a cluster consists of blank documents or documents that contain only the dropped terms, or if the terms do not meet the minimum required frequency, then no descriptive term will be displayed. For more information about macro variables, see “Using Macro Variables to Set Additional Properties” on page 137.
Chapter 6

The Text Profile Node

Overview of the Text Profile Node

The Text Profile node enables you to profile a target variable using terms found in the documents. For each level of a target variable, the node outputs a list of terms from the collection that characterize or describe that level.

The approach uses a hierarchical Bayesian model using PROC TMBELIEF to predict which terms are the most likely to describe the level. In order to avoid merely selecting the most common terms, prior probabilities are used to down-weight terms that are common in more than one level of the target variable. For binary target variables, a two-way comparison is used to enhance the selection of terms. For nominal variables, an n-way comparison is used. Finally, for ordinal and time variables (which are converted to ordinal internally), a sequential, two-way comparison is done. This means that the reported terms for level n are compared to those at level n-1. The exception for this is the first level, which is compared to level 2 since there is no preceding level to compare it to.
In all cases of variable types, a corpus-level profile output is also provided. This can be interpreted as the best descriptive terms for the entire collection itself.

See the following for more information about the Text Profile node:

- “Text Profile Node Input Data” on page 84
- “Text Profile Node Properties” on page 84
- “Text Profile Node Results” on page 86
- “Text Profile Node Output Data” on page 88
- “Using the Text Profile Node” on page 88

Note: The Text Profile node is not supported for use in group processing (Start Groups and End Groups nodes).

Text Profile Node Input Data

The Text Profile node requires the following:

- one Text Parsing node and at least one Text Filter node that precedes it in the diagram.

- at least one target variable with a measurement level of either Binary, Ordinal, or Nominal, or a format type of DATE or DATETIME. The Use column value must be set to Default or Yes.

Note: The Text Profile node can profile multiple binary targets. If the node has more than one of any other target type, then only the first one in the target list will be profiled. The type of an ordinal target variable must be numeric.

Text Profile Node Properties

Contents

- “Text Profile Node General Properties” on page 84
- “Text Profile Node Train Properties” on page 85
- “Text Profile Node Status Properties” on page 85

Text Profile Node General Properties

These are the general properties that are available on the Text Profile node:

- **Node ID** — displays the ID that is assigned to the node. Node IDs are especially useful for distinguishing between two or more nodes of the same type in a process flow diagram. For example, the first Text Profile node that is added to a diagram will have the Node ID TextProfile, and the second Text Profile node that is added will have the Node ID TextProfile2.
• **Imported Data** — accesses a list of the data sets that are imported by the node and
the ports that provide them. Click the ellipsis button to open the Imported Data
window, which displays this list. If data exists for an imported data set, then you can
select a row in the list and do any of the following:

 • browse the data set

 • explore (sample and plot) the data in a data set

 • view the table and variable properties of a data set

• **Exported Data** — accesses a list of the data sets that are exported by the node and
the ports to which they are provided. Click the ellipsis button to open the Exported
Data window, which displays this list. If data exists for an exported data set, then you
can select a row in the list and do any of the following:

 • browse the data set

 • explore (sample and plot) the data in a data set

 • view the table and variable properties of a data set

• **Notes** — accesses a window that you can use to store notes of interest, such as data
or configuration information. Click the ellipsis button to open the Notes window.

Text Profile Node Train Properties

These are the training properties that are available on the **Text Profile** node:

• **Variables** — accesses a list of variables and associated properties in the data source.
Click the ellipsis button to open the Variables window.

• **Maximum Number of Terms** — specifies the maximum number of terms to use to
describe each variable level.

• **Date Binning Interval** — specifies the time interval to bin date target variables.

 Note: This setting is applied only for date targets in the data source.

Text Profile Node Status Properties

These are the status properties that are displayed on the **Text Profile** node:

• **Create Time** — time at which the node was created.

• **Run ID** — identifier of the run of the node. A new identifier is assigned every time
the node is run.

• **Last Error** — error message, if any, from the last run.

• **Last Status** — last reported status of the node.
Text Profile Node Results

Contents

- “Results Window for the Text Profile Node” on page 86
- “Text Profile Node Graphical and Tabular Results” on page 86
- “Text Profile Node SAS Output Results” on page 88

Results Window for the Text Profile Node

After the Text Profile node runs successfully, you can access the Results window in three ways:

- Click Results in the Run Status window that opens immediately after a successful run of the Text Profile node.
- Click the Results icon on the main toolbar.
- Right-click the Text Profile node, and click Results.

The Results window for the Text Profile node is similar to the Results window for other nodes in SAS Enterprise Miner. For general information about the Results window, see the SAS Enterprise Miner Help. The icons and main menus are the same as other nodes. However, the View menu for the Text Profile node Results window does not include the options Assessment or Model. Instead, it includes Targets, which accesses a submenu that lists the graphical and tabular results.

Note: You can access the SAS log that was generated by the node processing from the SAS Results submenu of the View menu. This log can be a useful debugging tool.

Text Profile Node Graphical and Tabular Results

The tabular result in the Text Profile node Results window is the Profiled Variables table. This table displays the value of each target variable and its associated highest-belief terms. Each observation has at most the specified maximum number of terms associated with it, but it can have fewer. The Target Similarities constellation plot and the Target Distribution pie chart are linked to this table. Therefore, you can select an observation in the Profiled Variables table to highlight the associated data points in these
graphics. Or, you can select data points in these graphics to highlight the associated observations in the Profiled Variables table.

Table 6.1 Contents of the Profiled Variables Table

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>name of the target variable or corpus</td>
</tr>
<tr>
<td>Value</td>
<td>values of the target variable</td>
</tr>
<tr>
<td>Term 1 to Term n</td>
<td>terms that describe each variable level</td>
</tr>
<tr>
<td>Freq</td>
<td>frequency of each target value</td>
</tr>
<tr>
<td>Target variable name</td>
<td>contains values of the target variable</td>
</tr>
<tr>
<td>Date/Time Interval</td>
<td>When you run a Text Profile node with a time target in the data source, the Profiled Variables table in the node results includes Date/Time Interval variable. This variable numbers the time intervals from 0 to the number of intervals. Note: The first row (Corpus) in the Profiled Variables table is all of the data combined, and therefore isn't a time interval.</td>
</tr>
<tr>
<td>Var/Var Level ID</td>
<td>the variable or variable level ID</td>
</tr>
<tr>
<td>Terms</td>
<td>all the terms that describe each variable level</td>
</tr>
</tbody>
</table>

The following are the graphical results in the Text Profile node Results window:

- The **Target Distribution** pie chart shows the frequencies of the target values. It is linked to the Profiled Variables table.

 Note: The **Target Distribution** pie chart becomes a lattice of pie charts when you run the Text Profile node with multiple binary variables (one chart for each variable).

- The **Beliefs by Value** graph shows belief values for term and role pairs for various target values. If you position the mouse pointer over a cell, then a tooltip indicates the target value, term and role pair, and belief value.

 Note: The **Beliefs by Value** graph is displayed for nominal targets.

- Either the **Term Time Series** or the **Term Ordinal Series** line plot is displayed when a target variable has the format type DATE or DATETIME or when the target variable is ordinal, respectively. The chart contains a multiple line plot that shows how the rate of occurrence of each selected term changes over the values of the target variable. When you select a target value, at most the top 16 terms for that target value are displayed in the line plot. So some terms might appear in the Profiled Variables table that are not displayed in this plot.

 Note: The line plot is available only for time targets.
The **Target Similarities** constellation plot shows similarities between the sets of documents characterized by the different target values. The similarities are calculated using PROC DISTANCE on the term beliefs of the chosen terms. The constellation plot is linked to the Profiled Variables table.

Note: The **Target Similarities** constellation plot is available for nominal and ordinal targets.

Text Profile Node SAS Output Results

The SAS output from the **Text Profile** node includes summary information about the input variables. In addition, it shows the variable analysis type that was performed (NOM = nominal, ORD = ordinal, or BIN = binary).

Text Profile Node Output Data

For information about output data for the **Text Profile** node, see “Output Data for SAS Text Miner Nodes” on page 133.

Using the Text Profile Node

This example uses the SAMPSIO.NEWS data set to profile terms using the **Text Profile** node. This example assumes that SAS Enterprise Miner is running, and a diagram workspace has been opened in a project. For information about creating a project and a diagram, see *Getting Started with SAS Enterprise Miner*.

The **Text Profile** node must be preceded by one **Text Parsing** node and at least one **Text Filter** node in the diagram. For more information about the input requirements for the **Text Profile** node, see “Text Profile Node Input Data” on page 84.

The SAMPSIO.NEWS data set consists of 600 brief news articles. Most of the news articles fall into one of these categories: computer graphics, hockey, and medical issues.

The SAMPSIO.NEWS data set contains 600 observations and the following variables:

- **TEXT** is a nominal variable that contains the text of the news article.
- **graphics** is a binary variable that indicates whether the document belongs to the computer graphics category (1-yes, 0-no).
- **hockey** is a binary variable that indicates whether the document belongs to the hockey category (1-yes, 0-no).
- **medical** is a binary variable that indicates whether the document is related to medical issues (1-yes, 0-no).
- **newsgroup** is a nominal variable that contains the group that a news article fits into.

1. Use the Data Source Wizard to define a data source for the data set SAMPSIO.NEWS.
 a. Set the measurement levels of the variables **graphics**, **hockey**, and **medical** to **Binary**.
b. Set the model role of the variable **hockey** to **Target** and leave the roles of **newsgroup**, **graphics**, and **medical** as **Input**.

c. Set the variable **TEXT** to have a role of **Text**.

d. Select **No** in the Data Source Wizard — Decision Configuration dialog box.

e. Use the default target profile for the target **hockey**.

2. After you create the **NEWS** data source, drag it to the diagram workspace.

3. Select the **Text Mining** tab on the toolbar, and drag a **Text Parsing** node to the diagram workspace.

4. Connect the **NEWS** data source to the **Text Parsing** node.

5. Select the **Text Mining** tab on the toolbar, and drag a **Text Filter** node to the diagram workspace.

6. Connect the **Text Parsing** node to the **Text Filter** node.

7. Select the **Text Mining** tab on the toolbar, and drag a **Text Profile** node to the diagram workspace.

8. Connect the **Text Filter** node to the **Text Profile** node.

Your process flow diagram should resemble the following:

9. Select the **Text Profile** node in the process flow diagram.

10. In the diagram workspace, right-click the **Text Profile** node and select **Run**. Click **Yes** in the Confirmation dialog box that appears.

11. Click **Results** in the Run Status dialog box when the node finishes running.

12. Select the **Target Distribution** pie chart.
The **Target Distribution** pie chart shows the frequencies of the target values. It is grouped by hierarchy level and is linked to the Profiled Variables table.

13. Select the **Profiled Variables** table.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Term 1</th>
<th>Term 2</th>
<th>Term 3</th>
<th>Term 4</th>
<th>Term 5</th>
<th>Term 6</th>
<th>Term 7</th>
<th>Term 8</th>
<th>Freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corpus</td>
<td>defenseman</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>500</td>
</tr>
<tr>
<td>hockey</td>
<td>gordon/lcm</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>400</td>
</tr>
<tr>
<td>hockey</td>
<td>can/will</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>200</td>
</tr>
</tbody>
</table>

The **Profiled Variables** table displays each combination of values of the target variables and their associated highest-belief terms. Each observation has at most the specified maximum number of terms associated it, but it can have less. All graphical results in the Text Profile node Results window are linked to this table. Therefore, you can select an observation in the Profiled Variables table, and the associated data points are highlighted in the graphics. Or, you can select data points in the graphics to highlight associated observations in the Profiled Variables table.

14. Close the Results window.

15. Select the **News** data source.

16. Click the ellipsis button for the **Variables** property.

The Variables dialog box appears.

17. Set the role of the **newsgroup** variable to **Target**, and set the role of the **hockey** variable to **Input**.

18. Click **OK**.

19. In the diagram workspace, right-click the **Text Profile** node and click **Run**. Click **Yes** in the Confirmation dialog box that appears.

20. Click **Results** in the Run Status dialog box when the node finishes running.
21. Select the **Target Distribution** pie chart.

Since you changed the value of the Target from the binary hockey variable to the nominal newsgroup variable, you can now see the distribution of the three possible newsgroup values (hockey, medical, and graphics).

22. Select the **Target Similarities** constellation plot.

The **Target Similarities** constellation plot shows similarities among different target values. The similarities are measured using PROC DISTANCE on the term beliefs.
Links are shown only between those target values on the same level of the hierarchy. The constellation plot is linked to the Profiled Variables table.

Note: The **Target Similarities** constellation plot is available for nominal and ordinal targets.

23. Select the **Beliefs by Value** graph.

![Beliefs by Value Graph](image)

The **Beliefs by Value** graph shows belief values for term and role pairs for various target values. If you position the mouse pointer over a cell, then a tooltip indicates the target value, term and role pair, and belief value.

Note: The **Beliefs by Value** graph is displayed for nominal and ordinal targets.

24. Select the **Profiled Variables** table.

![Profiled Variables Table](image)

25. Close the Results window.

26. Select the **Text Profile** node.

27. Click the value for the **Maximum Number of Terms** property, and enter 16.

Click **Enter** on your keyboard.

28. In the diagram workspace, right-click the **Text Profile** node and click Run. Click **Yes** in the Confirmation dialog box that appears.

29. Click **Results** in the Run Status dialog box when the node finishes running.

30. Select the **Profiled Variables** table. Notice that there are now 16 term and role pairs for each target value.

31. Close the Results window.
32. (Optional) Run the **Text Profile** node with a target variable that has the format type **DATE** or **DATETIME**. This will produce a Term Time Series line plot in the results.

 a. Create the data source **VRTEXT** from the **Sampsio** library. Set the role value of the **VAX_DATE** variable to **Target**.

 This data source contains adverse event reactions to vaccinations. For example, some side effects reported might include soreness, redness, fever, and so on.

 b. Add the **VRTEXT** node to the diagram workspace.

 c. Select the **Text Mining** tab on the toolbar, and drag a **Text Parsing** node to the diagram workspace.

 d. Connect the **VRTEXT** data source to the **Text Parsing** node.

 e. Select the **Text Mining** tab on the toolbar, and drag a **Text Filter** node to the diagram workspace.

 f. Connect the **Text Parsing** node to the **Text Filter** node.

 g. Select the **Text Mining** tab on the toolbar, and drag a **Text Profile** node to the diagram workspace.

 h. Connect the **Text Filter** node to the **Text Profile** node.

 Your process flow diagram should resemble the following:

 ![Process Flow Diagram](image)

 i. Select the **Text Profile** node, and select **Monthly** as the value for the **Date Binning Interval** property.

 j. In the diagram workspace, right-click the **Text Profile** node and click **Run**. Click **Yes** in the Confirmation dialog box that appears.

 k. Click **Results** in the Run Status dialog box when the node finishes running.
1. Select the Term Time Series line plot, and then select **October 2005** from the menu.

In this example, you can see that the flu starts climbing and stays prominent for several months.

For more information about the Term Time Series line plot, see “Text Profile Node Graphical and Tabular Results” on page 86.

33. (Optional) Run the **Text Profile** node with a target variable that is ordinal. This will produce a Term Ordinal Series line plot in the results. For more information about the Term Ordinal Series line plot, see “Text Profile Node Graphical and Tabular Results” on page 86.
Chapter 7
The Text Rule Builder Node

Overview of the Text Rule Builder Node

The Text Rule Builder node generates an ordered set of rules that together are useful in describing and predicting a target variable. Each rule in the set is associated with a specific target category. This specific target category consists of a conjunction that indicates the presence or absence of one or a small subset of terms (for example, “term1” AND “term2” AND (NOT “term3”)). A particular document matches this rule if and only if it contains at least one occurrence of term1 and of term2 but no occurrences of term3.
This set of derived rules creates a model that is both descriptive and predictive. The rules are provided in the syntax that can be used within SAS Content Categorization Studio, and can be deployed there.

The Text Rule Builder node is a standard SAS Enterprise Miner modeling tool, complete with the standard reporting features. You can view which predicted target values are most likely to be wrong based on the generated model. You have the option to change the target that is assigned to some of these observations and rerun the results. Thus, the Text Rule Builder node facilitates “active learning” in which a user can dynamically interact with an algorithm to iteratively build a predictive model.

See the following for more information about the Text Rule Builder node:

- “Text Rule Builder Node Input Data” on page 96
- “Text Rule Builder Node Properties” on page 96
- “Text Rule Builder Node Results” on page 100
- “Text Rule Builder Node Output Data” on page 99
- “Using the Text Rule Builder Node with the HPBOOLRULE Procedure” on page 103
- “Using the Text Rule Builder Node” on page 104

Text Rule Builder Node Input Data

The training data that is provided to the Text Rule Builder node must be preceded by at least one Text Parsing and one Text Filter node. The node must have at least one target variable with a measurement level of binary, ordinal, or nominal. The Drop property for the target variable in the input data node in the process flow diagram must be set to No. In the Text Rule Builder node, the target variable should have a Use property value of Default or Yes. If any of these conditions are not met, the Text Rule Builder node will generate an error.

If you plan on using validation or test data, those data sets must contain the same target variables that are in the training data.

Text Rule Builder Node Properties

Contents

- Text Rule Builder Node General Properties on page 96
- Text Rule Builder Node Train Properties on page 97
- Text Rule Builder Node Score Properties on page 98
- Text Rule Builder Node Status Properties on page 98

Text Rule Builder Node General Properties

These are the general properties that are available on the Text Rule Builder node:
• **Node ID** — displays the ID that is assigned to the node. Node IDs are especially useful for distinguishing between two or more nodes of the same type in a process flow diagram. For example, the first **Text Rule Builder** node that is added to a diagram has the Node ID `TextRule`, and the second **Text Rule Builder** node that is added has the Node ID `TextRule2`.

• **Imported Data** — accesses a list of the data sets that are imported by the node and the ports that provide them. Click the ellipsis button to open the Imported Data window, which displays this list. If data exists for an imported data set, then you can select a row in the list and do any of the following:
 - browse the data set
 - explore (sample and plot) the data in a data set
 - view the table and variable properties of a data set

• **Exported Data** — accesses a list of the data sets that are exported by the node and the ports to which they are provided. Click the ellipsis button to open the Exported Data window, which displays this list. If data exists for an exported data set, then you can select a row in the list and do any of the following:
 - browse the data set
 - explore (sample and plot) the data in a data set
 - view the table and variable properties of a data set

• **Notes** — accesses a window that you can use to store notes of interest, such as data or configuration information. Click the ellipsis button to open the Notes window.

Text Rule Builder Node Train Properties

These are the training properties that are available on the **Text Rule Builder** node:

• **Variables** — choose which categorical target to use in this node (note that only one target can be analyzed). Click the ellipsis button to open the Variables window.

• **Generalization Error** — determines the predicted probability for rules that use an untrained data set. This is to prevent overtraining. Higher values do a better job of preventing overtraining at a cost of not finding potentially useful rules. Valid values are **Very Low**, **Low**, **Medium** (default), **High**, and **Very High**.

• **Purity of Rules** — determines how selective each rule is by controlling the maximum p-value necessary to add a term to a rule. Selecting **Very High** results in the fewest, purest rules. Selecting **Very Low** results in the most rules that handle the most terms. Valid values are **Very Low** (p<.17), **Low** (p<.05), **Medium** (default, p<.005), **High** (p<.0005), and **Very High** (p<.00005).

• **Exhaustiveness** — determines the exhaustiveness of the rule search process, or how many potential rules are considered at each step. As you increase the exhaustiveness, you increase the amount of time that the **Text Rule Builder** node requires and increase the probability of overtraining the model. Valid values are **Very Low**, **Low**, **Medium** (default), **High**, and **Very High**.
Text Rule Builder Node Score Properties

These are the score properties that are available on the Text Rule Builder node:

- **Content Categorization Code** — Click the ellipsis button to the right of the Content Categorization Code property to view the Content Categorization Code window. The code that is provided in this window can be copied and pasted into SAS Content Categorization Studio. The Text Rule Builder node must be run before you can open the Content Categorization Code window.

- **Change Target Values** — Click the ellipsis button to the right of the Change Target Values property to view the Change Target Values window. The Change Target Values window enables you to view and reassign target values. As a result, you can rerun the Text Rule Builder node and iteratively refine your model.

The observations in the Change Target Values window contain all observations in the training, validation, or test data set that meet any of the following conditions:

Note: If no rules are matched, the observations are not shown.

- contains a rule that predicted a target value other than the target assigned to this document in the imported data. This includes observations for which the target contains a missing value.

- an observation for which you have previously changed the imported target value to a different target value.

The observations in the Change Target Values window are ordered by the model’s determined “posterior probability” in descending order from 1 to 0. Therefore, the values that the model is most certain are incorrect are at the very beginning.

The data set that is shown in the Change Target Values window is not created until you run the node. The node will generate an error if you try to view the Change Target Values window before running the node. Any changes to the assigned target value are retained and used when the node is rerun, as long as the target variable has not been changed. When you rerun the node, your changes are applied to the data before the rule creation algorithm is run.

If you copy a Text Rule Builder node, then the Change Target Values data set is copied to the new node.

Text Rule Builder Node Status Properties

These are the status properties that are displayed on the Text Rule Builder node:

- **Create Time** — time at which the node was created.

- **Run ID** — identifier of the run of the node. A new identifier is assigned every time the node is run.

- **Last Error** — error message, if any, from the last run.

- **Last Status** — last reported status of the node.
- **Last Run Time** — time at which the node was last run.
- **Run Duration** — length of time that is required to complete the last node run.
- **Grid Host** — grid host, if any, that was used for computation.
- **User-Added Node** — denotes whether the node was created by a user as a SAS Enterprise Miner extension node. The value of this property is always **No** for the **Text Rule Builder** node.

Text Rule Builder Node Output Data

The **Text Rule Builder** node exports the following:

- **Train Role** — contains the imported training data set to be imported to an assessment tool with the following additional columns:

<table>
<thead>
<tr>
<th>Role</th>
<th>Form</th>
<th>Type</th>
<th>Source</th>
<th>Example Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASSIFICATION</td>
<td>F_<target></td>
<td>$32</td>
<td>Decmeta, Type=FROM</td>
<td>F_c_target</td>
<td>Formatted target value normalized to a length of 32.</td>
</tr>
<tr>
<td>CLASSIFICATION</td>
<td>I_<target></td>
<td>$32</td>
<td>Decmeta, Type=INTO</td>
<td>I_c_target</td>
<td>Formatted predicted target value normalized to a length of 32.</td>
</tr>
<tr>
<td>PREDICTED</td>
<td>P_<target></td>
<td>8</td>
<td>Decmeta, Type=PREDICTED,level=formatted normalized target value</td>
<td>P_c_targethockey</td>
<td>There is one of these for every target value. This contains the posterior probability generated by the model that the observation belongs to for that target. The sum of these should equal one for every observation.</td>
</tr>
<tr>
<td>Role</td>
<td>Form</td>
<td>Type</td>
<td>Source</td>
<td>Example Name</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>------</td>
<td>--------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>ASSESSMENT</td>
<td>W_<target></td>
<td>8</td>
<td></td>
<td>W_c_target</td>
<td>Why the observation was assigned the INTO value that it was. This contains the number of the rule that triggered the classification, or missing if no rule matched and it was assigned by default to the most common remaining value.</td>
</tr>
</tbody>
</table>

- **Validate, Test Role** — contains any imported validation or test data set to be imported to an assessment tool with the same additional columns as listed above.

- **EMINFO** — contains the following:
 - key=LastTmNode, Value=&EM_NODEID
 - key=LastTMNodeType, Value=TextBoolCat
 - key=LastTextBoolCat, value=&EM_NODEID
 - key=PRESCORECODE, value=&EM_NODEID

See “Output Data for SAS Text Miner Nodes” on page 133 for more information.

Text Rule Builder Node Results

Contents

- Results Window for the Text Rule Builder Node on page 100
- Text Rule Builder Node Graphical and Tabular Results on page 101
- Text Rule Builder Node SAS Output Results on page 103

Results Window for the Text Rule Builder Node

After the **Text Rule Builder** node runs successfully, you can access the Results window in three ways:

- Click **Results** in the Run Status window that opens immediately after a successful run of the **Text Rule Builder** node.

- Click the Results icon on the main toolbar.

- Right-click the **Text Rule Builder** node, and click **Results**.
The Results window for the **Text Rule Builder** node is similar to the Results window for other nodes in SAS Enterprise Miner. For general information about the Results window, see the SAS Enterprise Miner Help. The icons and main menus are the same as other nodes. However, the **View** menu for the **Text Rule Builder** node Results window does not include the selection **Model**. Instead, it includes **Rules**, which accesses a submenu that lists the generated rules in tabular form.

Note: You can access the SAS log that was generated by the node processing from the **SAS Results** submenu of the **View** menu. This log can be a useful debugging tool.

Text Rule Builder Node Graphical and Tabular Results

The following are the graphical results in the **Text Rule Builder** node Results window:

- **Score Rankings Overlay** — The Score Rankings Overlay chart displays assessment statistics. To change the graphed statistic, click one of the following items on the drop-down menu:
 - **Cumulative Lift**
 - **Lift**
 - **Gain**
 - **% Response**
 - **Cumulative % Response**
 - **% Captured Response**
 - **Cumulative % Captured Response**

 For more graphical options, right-click the **Score Rankings Overlay** chart, and click **Data Options**.

- **Fit Statistics** — The Fit Statistics table displays the following statistics for the target variable:
 - **Average Squared Error**
 - **Divisor for ASE**
 - **Maximum Absolute Error**
 - **Sum of Frequencies**
 - **Root Average Squared Error**
 - **Sum of Squared Errors**
 - **Frequency of Classified Cases**
 - **Misclassification Rate**
 - **Number of Wrong Classifications**

- **Rules Obtained** — The Rules Obtained table displays rules for predicting the target variable.

 The Rule column contains the rules that are extracted from the text. These rules are presented as the conjunction of terms and their negations. For example, the Rule "dividend&~acquire&~sell" says that for a document to satisfy this rule, it must contain the term “dividend” and should not contain either of the terms “acquire” or
“sell”. Note that the ‘~’ character is the negation operation on a term. If a document satisfies a rule, the document is covered by that rule. Otherwise, it is uncovered.

The “Target Value” column indicates the target value that corresponds to the rule. The order of the rules for each category in the table is important. The rule in the first row for each category is discovered by considering all the documents and is the first rule that is added into the rule set. The rule in the second row of the table for each category is learned by analyzing all documents that were not covered by the first rule, and so on.

The “Precision” column indicates the precision (True Positive/Total category N) for training data for all rules up to this point in the table for this target value for matching documents that were actually assigned to that target value.

The “Recall” column indicates the recall (True Positive/Total matching) for training data for all rules up to this point in the table for this target value matching documents that were actually assigned to that target value.

The “F1 Score” column indicates the harmonic mean of precision and recall.

Let r_i be the ith rule that is added into the rule set. The True Positive/Total column of r_i indicates the number of correctly matching documents in the training data for that rule. The number of matching documents is followed by a slash and then by the total number of documents that match that rule.

The precision column and recall column of r_i contain the precision and recall of the rule set r_1, \ldots, r_i, which is computed using the training data.

If there is validation data, the last four columns will have an additional "Valid" in their labels to indicate that they apply to the validation data.

• **Rule Success** — The Rule Success graph shows the success per generated rule using training and validation data. Position the pointer over a bar for a tooltip that contains information about the bar. The categorical variable is a concatenation of the rule ID (Why Into variable) and the partition (train or valid). The Assigned Target variable is used to group the data by the original assigned target values. Therefore, there are up to X different colors displayed in one bar. X is the number of different target values. The values and their associated colors are identified in the legend. For more information about the rules in this graph, see the Document Rules table. The Document Rules table can be opened by navigating to View ⇒ Rules ⇒ Document Rules.

Two additional charts are available by navigating to View ⇒ Assessment:

• Select **Classification Chart** to display a stacked bar chart of the classification results for a categorical variable. The horizontal axis displays the target levels that observations actually belong to. The color of the stacked bars identifies the target levels that observations are classified into. The height of the stacked bars represents the percentage of total observations.

• Select **Score Distribution** to display a chart that plots the proportion of events (by default), nonevents, and other values on the vertical axis. The values on the horizontal axis represent the model score of a bin. The model score depends on the prediction of the target. For categorical targets, observations are grouped into bins,
based on the posterior probabilities of the event level and the number of buckets. The Score Distribution chart of a useful model shows a higher percentage of events for higher model scores and a higher percentage of nonevents for lower model scores. The chart choices are as follows:

- **Percentage of Events** — for categorical targets.
- **Number of Events** — for categorical targets.
- **Cumulative Percentage of Events** — for categorical targets.

If you use a target profile in your data source, the following additional graphs are available in the results by navigating to **View ➤ Assessment**:

- Select **Adjusted Classification Chart** to display an adjusted classification chart. The adjusted classification chart is the same as the classification chart except that the percentage of total observations has been adjusted such that the adjusted percentage = unadjusted percentage * (prior/data prior). This chart is available only if you have a target profile with adjusted prior probabilities in the data source.

- Select **Score Rankings Matrix** to display a score rankings matrix plot. The score rankings matrix plot overlays the selected statistics for standard, baseline and best models in a lattice that is defined by the training and validation data sets. This chart is available only if you have a target profile in the data source.

For more information about graphical and tabular results in SAS Enterprise Miner, see the Predictive Modeling Help topic in the SAS Enterprise Miner help.

Text Rule Builder Node SAS Output Results

The SAS output from the **Text Rule Builder** node includes summary information about the input variables, targets, predicted and decision variables, training results, and validation results (if a **Data Partition** node was used). The Classification Table contains precision (as Target Percentage) and recall (as Outcome Percentage), for both the training and validation data.

Using the Text Rule Builder Node with the HPBOOLRULE Procedure

Overview of the HPBOOLRULE Procedure in the Text Rule Builder Node

Starting in SAS Text Miner 14.1, the HPBOOLRULE procedure replaced macros in the **Text Rule Builder** node. This section contains information about the benefits of using the **Text Rule Builder** node with the HPBOOLRULE procedure, and how you can run the **Text Rule Builder** node as it existed prior to SAS Text Miner 14.1 in case you prefer the previous way this node worked.
Benefits of Using the HPBOOLRULE Procedure in the Text Rule Builder Node

This section outlines some benefits from using the HPBOOLRULE procedure instead of the macros that were used in the Text Rule Builder node in releases prior to SAS Text Miner 14.1:

• All category values are processed in parallel to obtain rules. This means that processing happens much faster, particularly when there are many target values.

• The Text Rule Builder node prior to SAS Text Miner 14.1 assigned the first matching rule as a predicted value. The new Text Rule Builder node uses posterior probability* sqrt(1/prior), meaning that all matching rules are considered for categorization.

• In the Rules Obtained window in the results, the Text Rule Builder node prior to SAS Text Miner 14.1 only showed the true positive/total for the one rule that determined categorization. Starting with SAS Text Miner 14.1, the Text Rule Builder Rules Obtained window shows the true positive/total for all matching rules.

• A new column (rule_<target>) has been added to the output training, validation, and test data that contains the numbers of all matching rules for that document.

• The Text Rule Builder node will now use a target profile for a target variable if one is set up. This is similar to most other predictive modeling nodes in SAS Enterprise Miner.

Using the Text Rule Builder Node as It Existed Prior to SAS Text Miner 14.1

As mentioned there are several advantages with the new approach of creating rules for all target levels simultaneously. However, it does result in some different rules being generated than previous releases of SAS Text Miner. If, for compatibility reasons, you want to use the "old-style" approach to building rules, there is an easy way to enable this. Please contact Technical Support for this information.

Using the Text Rule Builder Node

This example assumes that SAS Enterprise Miner is running, and a diagram workspace has been opened in a project. For information about creating a project and a diagram, see Getting Started with SAS Enterprise Miner.

The Text Rule Builder node creates Boolean rules from small subsets of terms to predict a categorical target variable. The node must be preceded by Text Parsing and Text Filter nodes.

This example uses the SAMPSON.NEWS data set to show you how to predict a categorical target variable with the Text Rule Builder node. The results will also show that the model is highly interpretable and useful for explanatory and summary purposes as well.

The SAMPSON.NEWS data set consists of 600 brief news articles. Most of the news articles fall into one of these categories: computer graphics, hockey, and medical issues.

The SAMPSON.NEWS data set contains 600 observations and the following variables:
• **TEXT** is a nominal variable that contains the text of the news article.

• **graphics** is a binary variable that indicates whether the document belongs to the computer graphics category (1-yes, 0-no).

• **hockey** is a binary variable that indicates whether the document belongs to the hockey category (1-yes, 0-no).

• **medical** is a binary variable that indicates whether the document is related to medical issues (1-yes, 0-no).

• **newsgroup** is a nominal variable that contains the group that a news article fits into.

To use the **Text Rule Builder** node to predict the categorical target variable, **newsgroup**, in the SAMSIO.NEWS data set:

1. Use the Data Source Wizard to define a data source for the data set **SAMPSIO.NEWS**.
 a. Set the measurement levels of the variables **graphics**, **hockey**, and **medical** to **Binary**.
 b. Set the model role of the variable **newsgroup** to **Target** and leave the roles of **graphics**, **hockey**, and **medical** as **Input**.
 c. Set the variable **TEXT** to have a role of **Text**.
 d. Select **No** in the Data Source Wizard — Decision Configuration dialog box.
 e. Use the default target profile for the target **newsgroup**.

2. After you create the **NEWS** data source, drag it to the diagram workspace.

3. Select the **Text Mining** tab on the toolbar, and drag a **Text Parsing** node to the diagram workspace.

4. Connect the **NEWS** data source to the **Text Parsing** node.

5. Select the **Text Mining** tab on the toolbar, and drag a **Text Filter** node to the diagram workspace.

6. Connect the **Text Parsing** node to the **Text Filter** node.

7. Select the **Text Mining** tab on the toolbar, and drag a **Text Rule Builder** node to the diagram workspace.

8. Connect the **Text Filter** node to the **Text Rule Builder** node.

Your process flow diagram should resemble the following:
9. Select the **Text Rule Builder** node in the process flow diagram.

10. Click the value for the **Generalization Error** property, and select **Very Low**.

11. Click the value for the **Purity of Rules** property, and select **Very Low**.

12. Click the value for the **Exhaustiveness** property, and select **Very Low**.

13. In the diagram workspace, right-click the **Text Rule Builder** node and select **Run**. Click **Yes** in the Confirmation dialog box that appears.

14. Click **Results** in the Run Status dialog box when the node finishes running.

15. Select the **Rules Obtained** table to see information about the rules that were obtained.

 The words in the Rule column have the corresponding precision at implying the target, **newsgroup**.

 ![Rules Obtained Table](image)

 In the seventh column above, the True Positive (the first number) is the number of documents that matched the rule. The Total (the second number) is the total positive.
In the above example, in the first row, 37 of the documents matched the rule “graphics”. All 37 of these documents were actually in the GRAPHICS category. In the next row, 30 out of 31 documents correctly matched the rule “image”. This means that in the training data, 31 documents contain the term “image”. 30 of these documents were an example of the GRAPHICS category, and one was not.

Most of the rules are single term rules because the NEWS data set is limited in size. However, there are several multiple term rules above. In the 5th row, the rule “software & ~health” means that 22 out of the 23 documents that contain the word “software” and do not contain the word “health” are an example of the GRAPHICS category.

Note: ~ means logical not.

16. Select the Score Rankings Overlay graph to view the following types of information about the target variable:

- Cumulative Lift
- Lift
- Gain
- % Response
- Cumulative % Response
- % Captured Response
- Cumulative % Captured Response

Note: To change the statistic, select one of the above options from the drop-down menu.

17. Select the Fit Statistics window for statistical information about the target variable, newsgroup.
18. Select the Rule Success graph, and position the cursor over a bar for more information.

The Document Rules table appears with more information about the rules in the Rule Success graph.
20. Close the Results window.

21. Click the value for the **Generalization Error** property, and select **Medium**.

22. Click the value for the **Purity of Rules** property, and select **Medium**.

23. Click the value for the **Exhaustiveness** property, and select **Medium**.

24. Select the **NEWS** data source.

25. Click the ellipsis button for the **Variables** property.

26. Change the role of the **HOCKEY** variable to **Target**, and change the role of the **NEWSGROUP** variable to **Input**.

27. Click **OK**.

28. In the diagram workspace, right-click the **Text Rule Builder** node and select **Run**. Click **Yes** in the Confirmation dialog box that appears.

29. Click **Results** in the Run Status dialog box when the node finishes running.

30. Select the Rules Obtained table to see information about the rules that predicted the hockey target.

The words in the Rule column have the corresponding precision at implying the hockey target.
In the above example, the target value is 0 or 1, instead of “HOCKEY,” because you set the hockey variable to be the target instead of the newsgroup variable. Thus, you are most interested in the rules that begin with rule #16 because those correspond to the hockey documents. 68 out of 69 documents that match the rule “team” (68 were correctly assigned) were in the HOCKEY newsgroup.

Note that the rule matches discussed above are not, in themselves, definitive evidence for the rule builder algorithm to assign a category based on a single rule match. Instead, the algorithm determines all the rule matches for a document, and then decides, based on the combination of the rule matches, which category to assign. So, for example, suppose that a document contains the word “hockey”, matching rule 17 associated with hockey documents and also contains the word “work” matching rule 11 associated with non-hockey documents. In this case, it would generally decide to assign the document to hockey=1 (because rule 17 is true in training data 52/52 times but rule 11 is true only 51/55 times). At the same time, it would not be very confident about its prediction. On the other hand, if a document matched rules 16, 17, and 18, the model would be very confident about its prediction. This confidence is reflected in the posterior probabilities that are assigned for each of the categories to each document. These posterior probabilities show up in the output tables, and can also be seen in the Change Target Values property. The thresholds for determining the decisions, based on posterior probabilities, can also be changed using a target profile.

31. Select the Score Rankings Overlay graph to view the following types of information about the target variable:

- Cumulative Lift
- Lift
- Gain
- % Response
- Cumulative % Response
• % Captured Response
• Cumulative % Captured Response

Note: To change the statistic, select one of the above options from the drop-down menu.

32. Select the Fit Statistics table for statistical information about the hockey target variable.

<table>
<thead>
<tr>
<th>Target</th>
<th>Target Label</th>
<th>Fit Statistics</th>
<th>Statistics Label</th>
<th>Train</th>
</tr>
</thead>
<tbody>
<tr>
<td>hockey</td>
<td>ASE</td>
<td>Average Squared Error</td>
<td>0.005591</td>
<td></td>
</tr>
<tr>
<td>hockey</td>
<td>DIV</td>
<td>Divisor for ASE</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>hockey</td>
<td>MAX</td>
<td>Maximum Absolute Error</td>
<td>0.820138</td>
<td></td>
</tr>
<tr>
<td>hockey</td>
<td>NOBS</td>
<td>Sum of Frequencies</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>hockey</td>
<td>RASE</td>
<td>Root Average Squared Error</td>
<td>0.074774</td>
<td></td>
</tr>
<tr>
<td>hockey</td>
<td>SSE</td>
<td>Sum of Squared Errors</td>
<td>5.709436</td>
<td></td>
</tr>
<tr>
<td>hockey</td>
<td>DISF</td>
<td>Frequency of Classified Cases</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>hockey</td>
<td>MISC</td>
<td>Misclassification Rate</td>
<td>0.033333</td>
<td></td>
</tr>
<tr>
<td>hockey</td>
<td>WRONG</td>
<td>Number of Wrong Classifications</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

33. Select the Rule Success graph, and position the cursor over a bar for more information.
34. Select View ⇒ Rules ⇒ Document Rules from the menu.

The Document Rules table appears with more information about the rules in the Rule Success graph.

35. Close the Results window.

36. Click the ellipsis button for the Content Categorization Code property.

The Content Categorization Code window appears. The code provided in this window is the code that is generated for SAS Content Categorization and is ready for compilation.

37. Click Cancel.

38. Click the ellipsis button for the Change Target Values property.
The Change Target Values window appears.

You can use the Change Target Values window to improve the model.

39. Select one or more cells in the Assigned Target column, and select a new target value.

 Note: If the precision for every rule in the Rules Obtained table is 100%, then the Change Target Values window might not list any observations.

40. Click **OK**.

41. Rerun the **Text Rule Builder** node, and then check whether your model has been improved.
Overview of the Text Topic Node

The Text Topic node enables you to explore the document collection by automatically associating terms and documents according to both discovered and user-defined topics. Topics are collections of terms that describe and characterize a main theme or idea. The approach is different from clustering because clustering assigns each document to a unique group. But the Text Topic node assigns a score for each document and term to
each topic. Then thresholds are used to determine whether the association is strong enough to consider that the document or term belongs to the topic. As a result, documents and terms can belong to more than one topic or to none at all. The number of topics that you request should be directly related to the size of the document collection (for example, a large number for a large collection).

The most memory-intensive task is computing the singular value decomposition (SVD) of the term-by-document frequency matrix. For more information, see “Singular Value Decomposition” on page 75. When in-memory resources are limited, the Text Topic node might use, instead of the full collection, a simple random sample of the documents. The Text Topic node does this in an attempt to run the node successfully. Sampling occurs only if the node encounters a memory failure during an attempt to compute the SVD without sampling. Furthermore, because sampling generally occurs when the document collection is extremely large, there is typically not an adverse effect on modeling results. Exactly when sampling occurs depends on a number of parameters including the size of your collection, the platform on which your system is running, and the available RAM.

See the following for more information about the Text Topic node.

- “Text Topic Node Input Data” on page 116
- “Text Topic Node Properties” on page 116
- “Text Topic Node Results” on page 119
- “Text Topic Node Output Data” on page 121
- “Using the Text Topic Node” on page 121

For related topics that you might find useful when using the Text Topic node, see the following:

- “User-Defined Topic Lists” on page 128
- “Interactive Topic Viewer” on page 129

Note: The Text Topic node is not supported for use in group processing (Start Groups and End Groups nodes).

Text Topic Node Input Data

The Text Topic node must be preceded by a Text Parsing node. If it is not also preceded by a Text Filter node, then the Text Topic node weights terms using the Log frequency weighting and a term weighting of Mutual Information if there is a categorical target, or Entropy otherwise. For more information, see “Term Weighting” on page 57.

Text Topic Node Properties

Contents

- “Text Topic Node General Properties” on page 117
- “Text Topic Node Train Properties” on page 117
- “Text Topic Node Status Properties” on page 118
Text Topic Node General Properties

These are the general properties that are available on the Text Topic node:

- **Node ID** — displays the ID that is assigned to the node. Node IDs are especially useful for distinguishing between two or more nodes of the same type in a process flow diagram. For example, the first Text Topic node that is added to a diagram will have the Node ID `TextTopic`, and the second Text Topic node that is added will have the Node ID `TextTopic2`.

- **Imported Data** — accesses a list of the data sets that are imported by the node and the ports that provide them. Click the ellipsis button to open the Imported Data window, which displays this list. If data exists for an imported data set, then you can select a row in the list and do any of the following:
 - browse the data set
 - explore (sample and plot) the data in a data set
 - view the table and variable properties of a data set

- **Exported Data** — accesses a list of the data sets exported by the node and the ports to which they are provided. Click the ellipsis button to open the Exported Data window, which displays this list. If data exists for an exported data set, then you can select a row in the list and do any of the following:
 - browse the data set
 - explore (sample and plot) the data in a data set
 - view the table and variable properties of a data set

- **Notes** — accesses a window that you can use to store notes of interest, such as data or configuration information. Click the ellipsis button to open the Notes window.

Text Topic Node Train Properties

General Train Properties

These are the training properties that are available on the Text Topic node:

- **Variables** — accesses a list of variables and associated properties in the data source. Here you can select the text variable and target variable that you want to use for Mutual Information weighting. Click the ellipsis button to open the Variables window.

- **User Topics** — specifies a SAS data set that contains user-defined topics. For more information, see “User-Defined Topic Lists” on page 128. A sample data set is provided for use with the SAMPSIO.abstract sample input data set. For more information, see “SAS Text Miner Sample Data Sets” on page 9. Click the ellipsis button to open a window in which you can do the following:
 - Click Replace Table to replace the currently selected table.
 - Click Add Table to add to the currently selected table.
 - (If a user-defined topic data set is selected) Add, delete, and edit user-defined topics.
Two sample data sets are provided. One is for use with the SAMPSIO.ABSTRACT sample input data set, and the other is for detecting positive and negative tone in any English document set. For more information, see “SAS Text Miner Sample Data Sets” on page 9.

Term Topics Properties
- **Number of Single-term Topics** — specifies the maximum number of single-term topics to create from top-weighted terms. This number should be less than or equal to the smaller of 1000 or the number of terms that are imported into the Text Topic node. When the node is run, the number of single-term topics actually created is equal to the number that is specified here plus the number of user topics, u. Then the u single-term topics that are most closely related to user topics are eliminated.

Learned Topics Properties
- **Number of Multi-term Topics** — specifies the maximum number of multi-term topics to create from a rotated singular-value decomposition (SVD) of the weighted term-by-document matrix. For more information, see “Singular Value Decomposition” on page 75. This number should be less than or equal to the smaller of 1000, the number of documents less 6, and the number of terms that are imported into the Text Topic node less 6. When the node is run, the number of multi-term topics actually that are created is equal to the number specified here plus the number of user topics, u. Then the u multi-term topics that are most closely related to user topics are eliminated. See Getting Started with SAS Text Miner for how that makes it possible to discover new topics that come up at new time periods.

Note: Convergence problems can arise if you specify a number that is too close to the smaller of the number of documents and the number of terms that are imported into the Text Topic node. In this case, choosing a smaller number of multi-term topics can lead to convergence.

- **Correlated Topics** — specifies whether learned topics must be orthogonal (uncorrelated) or if they can be correlated. The topics can align more closely with the individual terms if the correlated topics option is set to Yes. But then the results should not be fed into a Memory Based Reasoning (MBR) modeling tool that requires orthogonal inputs.

Results Properties
- **Topic Viewer** — (after the node has run) opens the Interactive Topic Viewer in which you can interactively adjust the results of the topic creation. Click the ellipsis button to open the Interactive Topic Viewer. For more information, see “Interactive Topic Viewer” on page 129.

Text Topic Node Status Properties
These are the status properties that are displayed on the Text Topic node:

- **Create Time** — time at which the node was created.
- **Run ID** — identifier of the run of the node. A new identifier is assigned every time the node is run.
- **Last Error** — error message, if any, from the last run.
- **Last Status** — last reported status of the node.
- **Last Run Time** — time at which the node was last run.
• **Run Duration** — length of time that is required to complete the last node run.

• **Grid Host** — grid host, if any, that was used for computation.

• **User-Added Node** — denotes whether the node was created by a user as a SAS Enterprise Miner Extension node. The value of this property is always **No** for the Text Topic node.

Text Topic Node Results

Contents

- “Results Window for the Text Topic Node” on page 119
- “Text Topic Node Graphical and Tabular Results” on page 119
- “Text Topic Node SAS Output Results” on page 121
- “Interactive Topic Viewer” on page 129

Results Window for the Text Topic Node

After the **Text Topic** node runs successfully, you can access the Results window in three ways:

- Click **Results** in the Run Status window that opens immediately after a successful run of the **Text Topic** node.

- Click the **Results** icon on the main toolbar.

- Right-click the **Text Topic** node, and click **Results**.

The Results window for the **Text Topic** node is similar to the Results window for other nodes in SAS Enterprise Miner. For general information about the Results window, see the SAS Enterprise Miner Help. The icons and main menus are the same as other nodes. However, the **View** menu for the **Text Topic** node Results window does not include the selections **Assessment** or **Model**. Instead, it includes **Custom Reports**, which accesses a submenu that lists the graphical and tabular results.

Note: You can access the SAS log that was generated by the node processing from the SAS Results submenu of the **View** menu. This log can be a useful debugging tool.

Text Topic Node Graphical and Tabular Results

The following are the graphical results in the **Text Topic** node Results window:

- The **Number of Documents by Topics** bar chart displays the number of documents that are assigned to each topic. Each bar corresponds to a topic. If you position the mouse pointer over a bar, then a tooltip indicates the topic, the number of documents included in that topic, the category, and the topic ID.

- The **Number of Terms by Topics** bar chart displays the number of terms that define each topic. Each bar corresponds to a topic. If you position the mouse pointer over a bar, then a tooltip indicates the topic, the number of terms included in that topic, the category, and the topic ID.
The **Topic Terms** matrix graph shows the interaction between each pair of topics by examining terms that describe the topics. The terms are plotted in each scatterplot with the two topic scores that are associated with the lattice entry. If you position the mouse pointer over a point, then a tooltip indicates the term that you have selected, its topic scores for the two topics, and how frequent the term is with a RANK (where RANK=1 means the term is the most frequent term in the collection).

The tabular result in the **Text Topic** node Results window is the **Terms** table and the **Topics** table. The **Terms** table shows terms and their weights for each topic. The **Topics** table displays information about identified topics.

The **Topic Terms** matrix graph is linked to the **Terms** table. Therefore, you can select observations in the **Terms** table to highlight the associated data points in the **Topic Terms** matrix graph. Or, you can select data points in the **Topic Terms** matrix graph to highlight the associated observations in the **Terms** table.

The **Number of Documents by Topics** bar chart and the **Number of Terms by Topics** bar chart are linked to the **Topics** table. Therefore, you can select observations in the **Topics** table to highlight the associated data points in these graphics. Or, you can select data points in these graphics to highlight the associated observations in the **Topics** table.

Table 8.1 Contents of the **Topics Table**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>User if the topic is user-defined, Single if the topic is a single-term topic, and Multiple if the topic is a multi-term topic.</td>
</tr>
<tr>
<td>Topic ID</td>
<td>key value of the topic.</td>
</tr>
<tr>
<td>Document Cutoff</td>
<td>minimum topic membership that a document must have to be included in this topic.</td>
</tr>
<tr>
<td>Term Cutoff</td>
<td>minimum topic weight that a term must have to be used as a term for this topic. The weight of any term that has an absolute value weight less than this is effectively set to zero.</td>
</tr>
<tr>
<td>Topic</td>
<td>terms that describe the topic.</td>
</tr>
<tr>
<td>Number of Terms</td>
<td>number of terms in the topic</td>
</tr>
<tr>
<td># Docs</td>
<td>number of documents that contain the topic</td>
</tr>
</tbody>
</table>

Table 8.2 Contents of the **Terms Table**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>a row for each term.</td>
</tr>
<tr>
<td>Role</td>
<td>role value for the term.</td>
</tr>
<tr>
<td>Attribute</td>
<td>attribute value for the term.</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Weight</td>
<td>weight for each term.</td>
</tr>
<tr>
<td>Freq</td>
<td>frequency of the term.</td>
</tr>
<tr>
<td># Docs</td>
<td>number of documents that contain the term.</td>
</tr>
<tr>
<td>Keep</td>
<td>whether the term was kept (Y) or dropped (N).</td>
</tr>
<tr>
<td>Rank</td>
<td>rank for the variable NUMDOCS.</td>
</tr>
<tr>
<td>Topics 1 to n</td>
<td>a column for each topic in the Topics table.</td>
</tr>
<tr>
<td>_termid</td>
<td>ID value for each term.</td>
</tr>
</tbody>
</table>

Text Topic Node SAS Output Results

The SAS output from the Text Topic node includes summary information about the input variables.

Text Topic Node Output Data

For information about output data for the Text Topic node, see “Output Data for SAS Text Miner Nodes” on page 133.

Using the Text Topic Node

This example assumes that SAS Enterprise Miner is running, and a diagram workspace has been opened in a project. For information about creating a project and a diagram, see *Getting Started with SAS Enterprise Miner*.

The Text Topic node enables you to create topics of interest from a list of terms. The goal in creating a list of topics is to establish combinations of words that you are interested in analyzing. For example, you might be interested in mining articles that discuss the activities of a "company president." One way to approach this task is to look at all articles that have the term "company," and all articles that have the term "president." The Text Topic node enables you to combine the terms "company" and "president" into the topic "company president."

The ability to combine individual terms into topics can improve your text mining analysis. Through combining, you can narrow the amount of text that is subject to analysis to specific groupings of words that you are interested in. This example shows you how to create topics using the Text Topic node.

1. The SAS data set SAMPSIO.ABSTRACT contains the titles and text of abstracts from conferences. Create the ABSTRACT data source and add it to your diagram workspace. Set the Role value of the TEXT and TITLE variables to Text.
2. Select the **Text Mining** tab on the toolbar, and drag a **Text Parsing** node to the diagram workspace.

3. Connect the **ABSTRACT** data source to the **Text Parsing** node.

4. Select the **Text Parsing** node, and then select the ellipsis for the **Ignore Parts of Speech** property.

5. In the Ignore Parts of Speech dialog box, select all parts of speech except for **Noun** by holding down **Ctrl** on your keyboard and clicking each option. Click **OK**.

6. Set the **Noun Groups** property to **Yes**.

7. Select the **Text Mining** tab on the toolbar, and drag a **Text Filter** node to the diagram workspace.

8. Connect the **Text Parsing** node to the **Text Filter** node.

9. Select the **Text Mining** tab on the toolbar, and drag a **Text Topic** node to the diagram workspace.

10. Connect the **Text Filter** node to the **Text Topic** node.

Your process flow diagram should resemble the following:

![Diagram Image]

11. In the diagram workspace, right-click the **Text Topic** node and select **Run**. Click **Yes** in the Confirmation dialog box that appears. Click **Results** in the Run Status dialog box when the node finishes running.

12. Select the Topics table to view the topics that have been created with a default run of the **Text Topic** node.
13. Select the Number of Documents by Topics chart to see a topic by the number of documents that it contains.

14. Select the Terms table. Select the first entry in the table.

Note: You might need to resize the default graph to see the topic ID values.
The **Terms** table shows terms and their weights for each topic. Notice that all kept terms have a role of **Noun** or **Noun Group**.

15. Select the **Number of Terms by Topics** bar chart.

If you position the mouse pointer over a bar, then a tooltip indicates the topic ID, the number of terms included in that topic, the category, and the topic.

16. Select the **Topic Terms** matrix graph.
The **Topic Terms** matrix graph shows the topic values across terms.

Note: You might need to expand this matrix to see the points more clearly.

In addition to multi-term topics, you can use the **Text Topic** node to create single-term topics or to create your own topics.

17. Close the Results window, and select the **Text Topic** node.

18. Select the **Number of Single-term Topics** property, type 10, and press **Enter** on your keyboard.

19. Click the ellipsis button for the **User Topics** property.

20. In the User Topics dialog box, click ![Add row icon] to add a row. Enter the term *company*, give it a weight of 0.5, and specify the topic *company and president*. Click ![Add row icon] again to add a second row. Enter the term *president*, give it a weight of 0.5, and specify the topic *company and president*.

![User Topics dialog box]

<table>
<thead>
<tr>
<th>Topic</th>
<th>Term</th>
<th>Role</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>company and president</td>
<td>company</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>company and president</td>
<td>president</td>
<td></td>
<td>0.5</td>
</tr>
</tbody>
</table>
21. Click **OK**.

22. Right-click the **Text Topic** node and select **Run**. Select **Yes** in the Confirmation dialog box, and then **Results** in the Run Status dialog box when the node finishes running.

23. Select the Topics table. Notice that 10 new single-term topics have been created along with the topic that you specified in the User Topics dialog box.

You can use the Interactive Topic Viewer to view and modify topic properties.

24. Select the Number of Documents by Topics window to see the multi-term, single-term, and user-created topics by the number of documents that they contain.

25. Close the Results window, and select the **Text Topic** node. Click the ellipsis button for the **Topic Viewer** property. When the Interactive Topic Viewer window appears, sort by the **Topic** column in the **Topics** pane.
In the Interactive Topic Viewer, you can change the topic name, term and document cutoff values, and the topic weight.

26. Select the topic value “company and president” in the Topics table and rename the topic company. Select the topic weight for the term “company” in the Terms table, and change it to 0.25. Click Recalculate.
27. Close the Interactive Topic Viewer, and select No when prompted for whether you want to save your changes. For more information about the Interactive Topic Viewer, see “Interactive Topic Viewer” on page 129.

User-Defined Topic Lists

You can use a user-defined topic list in the Text Topic node. User-defined topic lists enable you to define your own topics of interest. A sample user topic list is provided for use when analyzing the SAMPSIO.abstract sample data set.

User-defined topic data sets have a required format. You must include the variables _topic_, _term_, _role_, and _weight_. The variables _topic_ and _weight_ must have nonmissing values for all observations in the data set. Also, no observations can have blank values for both _term_ and _role_.

- _topic_ contains a unique identifier for each topic.
- _term_ contains a term that is used in the topic identified by the value of _topic_. If this value is blank, then all terms that match the given role are assigned to the topic. For example, you could have a “People” topic that has one row with _term_ blank, and _role_ set to “PERSON”. The values in _term_ are not case sensitive.
- _role_ contains the role of _term_. A role is either a part of speech, an entity classification, or the value Noun Group. If this value is blank, then any time the _term_ occurs with any role, it is considered to be in the topic. The values in _role_ are not case sensitive. For more information about roles, see “Term Roles and Attributes” on page 35.
• _weight_ contains the weight of term and role pair. Weights are relative. Give most important term and role pairs a weight of 1. Give less important term and role pairs positive weights less than one in order to reflect their relative importance. Note that terms with a _weight_ of 0 are omitted.

Several terms can be used in the same topic. To define topics with several terms, include multiple observations that all have the same value of _topic_. Each observation corresponds to a different term.

For example, the following user-defined topic list defines two topics ("davis" and "nouns"). The nouns topic would include all terms with a role of Noun:

<table>
<thead>
<tr>
<th>topic</th>
<th>term</th>
<th>role</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>davis</td>
<td>Betty Davis</td>
<td>person</td>
<td>1.0</td>
</tr>
<tr>
<td>davis</td>
<td>eyes</td>
<td>noun</td>
<td>0.8</td>
</tr>
<tr>
<td>davis</td>
<td>film</td>
<td>noun</td>
<td>0.2</td>
</tr>
<tr>
<td>nouns</td>
<td></td>
<td>noun</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Interactive Topic Viewer

Contents

- “Overview of the Interactive Topic Viewer” on page 129
- “Topics Table of the Interactive Topic Viewer” on page 130
- “Terms Table of the Interactive Topic Viewer” on page 130
- “Documents Table of the Interactive Topic Viewer” on page 130
- “Merging Topics” on page 131

Overview of the Interactive Topic Viewer

The Interactive Topic Viewer enables you to refine the topics that were generated (either automatically or from user-defined topics) when the Text Topic node was run. You can edit values that appear in bold in the tables of the viewer. You can save any changes that you make to the topics when you close the Interactive Topic Viewer. Any change to a topic name, cutoff, or any topic weights will cause that topic to be a User topic and to be stored in the data set in the User Topics property. To access the Interactive Topic Viewer, click the ellipsis button that corresponds to the Topic Viewer property in the Properties panel of the Text Topic node.

The Interactive Topic Viewer initially opens as a window that is split three ways. At the top is the Topics table, which contains a list of all user, single, and multi-term topics. One of these topics is always selected as the active topic. When the viewer is first opened, this is the first topic in the topic table. Next is the Terms table, which contains the weights for the selected topic for each term sorted by descending weight. Last is the Documents table, which contains topic weights for the selected topic, also sorted by descending weight. For easier viewing, you can hide any one of these tables by clicking on the arrow icon at the top right of any of the tables. Clicking that icon a second time
opens that table. Clicking to hide any other table causes the new table to be hidden and
the old one to reappear. Any of the columns in any of the tables can be resized or
dragged to move, and any column can be sorted by clicking on it. Clicking the same
column again causes it to be sorted in the opposite order.

Topics Table of the Interactive Topic Viewer

The Topics table displays summary information about the generated topics. You can edit
the following properties of a topic:

- topic name
- term cutoff value
- document cutoff value

Note: The topic name, by default, consists of those five terms that have the highest topic
weights in the Terms table. However, you can create a more succinct heading if
preferred.

The Terms table and Documents table are linked to the Topics table. You can select a
different topic either by double-clicking an observation in the Topics table or right-
clicking on a topic and selecting Select Current Topic. Then the Terms and Document
tables will update to display values that are related to the selected topic. Furthermore, if
you edit values in the Topics table, then you must click Recalculate to repopulate these
two tables with the new information that results from the edit.

Terms Table of the Interactive Topic Viewer

The Terms table displays summary information about the terms that formulate the topic
selected in the Topics table. Terms with weights that are higher in absolute value than the
term cutoff contribute to the particular topic. Those that are lower do not contribute to
the topic. You can edit the topic weight for any term. If you edit the topic weight for a
term, then the topic is automatically reclassified as a user-specified topic, if it was not
classified as such already.

Documents Table of the Interactive Topic Viewer

The Documents table displays the relation of each document to the selected topic. If the
topic weight for the document is greater than the document cutoff for the topic, the
document is considered to contain the topic. This information includes, in addition to the
topic weight for a document, all of the variables in the input data source. The second
variable that is displayed is the variable that was used for text parsing. To wrap or
unwrap the full contents of this variable in the column cells, right-click the value for an
observation and click Toggle Show Full Text on the resulting menu.

The Interactive Topic Viewer enables you to examine each document on a term-by-term
basis. In the Documents table, right-click the document that you want to investigate and
click Show Document Terms. Or click the Show Document Terms icon at the top left.
This refreshes the Terms table so that it contains only the terms in the document that you
selected. Selecting a new document in the Documents table updates the Terms table to
include only the terms from that document. To go back to showing all terms, right-click
and click Show All Terms or click the Show All Terms icon at the top left.
Merging Topics

To merge multiple topics into one, enter the same topic name for all topics to be merged. The topics will initially still show up as distinct topics, but when you rerun the node, they will be combined into one, with all terms included from all topics. For all terms in common between the topics, the weight will be the average for each of the topics.
Output Data for SAS Text Miner Nodes

You can access the output data from a SAS Text Miner node by using data sets that are referenced by the macro variables &EM_DATA_EMINFO and &EM_IMPORT_DATA_EMINFO. When you run a process flow diagram in SAS Enterprise Miner, a data set is created and passed on in the flow. This data set, when exported by a node, is referenced by the macro variable &EM_DATA_EMINFO. When imported by a node (from a previous node), it is referenced by the macro variable &EM_IMPORT_DATA_EMINFO.

The EMINFO data sets keep track of which node produced the most recent output. After training is performed, this data set is edited as follows:

- Observations are added (if not already present) for the variable `key` and given the following values, which are discussed in detail below:
 - `LastTMNode`
 - `PRESCORECODE`
 - (if Text Parsing node) `LastTextParsing`
 - (if Text Filter node) `LastTextFilter`
 - (if Text Topic node) `LastTopic`
 - (if Text Cluster node) `LastCluster`
 - (if Text Rule Builder node) `LastTextRule`
 - (if Text Profile node) `LastTextProfile`

 For each observation, the variable `data` is the assigned value of the node ID of a particular node in the process flow.

- The variable `target` is in the data set, but is not used by the SAS Text Miner nodes.

 The value of data that corresponds to LastTextParsing, LastTextFilter, LastTopic, and LastCluster is the node ID of the most recently run node of each node type in the flow. You could use this value, for example, to access output data sets from the most recently run node of a particular type. For example, the following code obtains the ID of the most recently run Text Topic node run and prints the TERMS output data from the Text Filter node.
%let last_topic_node = ;
proc sql noprint;
 select data into :last_filter_node
 from &EM_IMPORT_DATA_EMINFO
 where key="LastTextFilter";
quit;

%let last_filter_node= %trim(&last_filter_node);
proc print data=&EM_LIB..&last_filter_node._TERMS;
run;

Note: SAS Text Miner nodes use the naming convention “nodeID._TERMS” for the Terms data set.

The EMINFO data set also includes a key for PRESCORECODE. Its data value is the node ID of the last SAS Text Miner node in the process flow. SAS Enterprise Miner looks for a file called PRESCORECODE.sas in the workspace directory for the referenced node (&EM_NODEDIR.&EM_DSEP.PRESCORECODE.sas). This file contains SAS code that is appended to a score flow before it runs.

Or, if you wanted to create a SAS code node that mimicked a Text Filter node, you could add the following code to the end of your code:

data &EM_DATA_EMINFO;
 length TARGET KEY $32 DATA $43;

 key="LastTMNode";
 data="&EM_NODEID";
 output;

 key="LastTextFilter";
 data="&EM_NODEID";
 output;
run;
Chapter 10
Overview of Scoring with Text Miner

Overview of Scoring with SAS Text Miner

This chapter explains notable changes and options in the scoring process for SAS Text Miner.

The Scoring Process

SAS Text Miner models, whether they are supervised or unsupervised, can also be used in a scoring process. However, unlike most of the other SAS Enterprise Miner models, many data sets from the SAS Text Miner training run must be accessible at score time. The data sets that are needed include the terms data set that is generated from the Text Filter node (or, in some cases, the Text Topic node), the tmconfig data set (contains the parsing options), and the multiword term data set. These last two data sets are both generated from the Text Parsing node. In addition, most of the other SAS Text Miner nodes also produce supplementary data sets that will be referenced by the score code.

In previous versions of SAS Text Miner, these data sets have been embedded in the prescore code that is generated from the nodes. This means that the score code was extremely large because the necessary data sets were then generated by the score code. Starting with SAS Text Miner 14.1, all of these data sets are kept in an accessible directory, and the score code references the data sets from that directory.

The default location for the data sets is the workspace directory of your project. This folder is prefixed with EMWS. Since that directory might not be accessible from the location from which you want to run your score code, you can also override the location by setting the macro variable EMTERM_LOC in your start-up code and rerunning your training flow. When the macro is set to a valid path, the data sets that are needed at scoring time (but generated at training time) will reside there. If you use a network drive that is accessible from both the training run and your deployment location, then you will not have to relocate these input data sets. For more information about the EM_TERM_LOC macro variable see, “Using Macro Variables to Store Prebuilt Scoring Data in Tables Instead of Prescore Code” on page 138. For an example that demonstrates
how to create a stored process using the EM_TERM_LOC macro variable, see “Creating a Stored Process” on page 168.

As always, SAS Text Miner models still need to be run in SAS where a SAS Enterprise Miner and a SAS Text Miner installation is available. This is because score code from many SAS Text Miner nodes relies on SAS procedures and not just DATA step code.
Chapter 11
Macro Variables, Macros, and Functions

Using Macro Variables to Set Additional Properties

Contents

- “Overview of SAS Text Miner Macro Variables” on page 138
- “Using Macro Variables to Store Prebuilt Scoring Data in Tables Instead of Prescore Code” on page 138
Overview of SAS Text Miner Macro Variables

Some advanced properties can be set using the value of macro variables (rather than in the node properties) for the **Text Filter** node, the **Text Topic** node, and the **Text Rule Builder** node. You can set the values of these macro variables in the start-up code. If you specify an invalid value for a macro variable, then the default value is used. You can also use macro variables to store prebuilt scoring data in tables instead of prescore code.

Using Macro Variables to Store Prebuilt Scoring Data in Tables Instead of Prescore Code

You can use the EM_TERM_LOC macro variable that is listed in the following table to store prebuilt scoring data in tables instead of prescore code. This affects data sets that are used by the **Text Filter**, **Text Topic**, **Text Cluster**, **Text Profile** and **Text Rule Builder** nodes. The EM_TERM_LOC macro variable enables you to deploy scoring results where a SAS Text Miner install is available. The EM_TERM_LOC macro variable also reduces the size of prescore code.

<table>
<thead>
<tr>
<th>Macro Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM_TERM_LOC</td>
<td>You can use the EM_TERM_LOC macro variable to specify where to store scoring tables that are prebuilt. SAS Text Miner score code uses those scoring tables for scoring.</td>
</tr>
</tbody>
</table>

When you use the EM_TERM_LOC macro variable, SAS Text Miner uses scoring tables that are stored prebuilt, rather than built within score code for the SAS Text Miner nodes. You can specify the EM_TERM_LOC macro variable by navigating to the **Project Start Code** in SAS Enterprise Miner, and indicating the location of the scoring tables. So, when you specify the EM_TERM_LOC macro variable in the **Project Start Code**, scoring tables are written to the specified location, which is used for scoring. When you do not specify the EM_TERM_LOC macro variable in the **Project Start Code**, scoring tables in your project's **EMWS** folder are used for scoring.

The following is an example of how to use the EM_TERM_LOC macro variable in the SAS Enterprise Miner **Project Start Code** to specify a location to write scoring tables to, which is used for scoring:

```
%let em_term_loc=\myMachine\folder\SAS_Text_Miner\Term_Location;
```

Note: The above path is hypothetical, and should be replaced with the actual path that you want to use on your system that contains a destination folder that you have Write access to before running the **Project Start Code**.
Text Filter Node Macro Variables

You can use the macro variables listed in the following table to set additional properties for the Text Filter node. These properties all relate to spell-checking. Note the following:

- To reduce the number of falsely identified misspellings (Type I error rate), set larger values for TMM_DICTPEN, TMM_MINPARENT, and TMM_MULTIPEN and smaller values for TMM_MAXCHILD and TMM_MAXSPEDIS.

- To reduce the number of non-identified misspellings (Type II error rate), set larger values for TMM_MAXCHILD and TMM_MAXSPEDIS and smaller values for TMM_DICTPEN, TMM_MINPARENT, and TMM_MULTIPEN.

<table>
<thead>
<tr>
<th>Macro Variable</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMM_DICTPEN</td>
<td>2</td>
<td>penalty to apply to the SPEDIS() value if a dictionary data set is specified and a potential misspelling exists in the dictionary</td>
</tr>
<tr>
<td>TMM_MAXCHILD</td>
<td>\log_{10}(\text{numdocs})+1</td>
<td>maximum number of documents in which a term can occur and also be considered a misspelling</td>
</tr>
<tr>
<td>TMM_MAXSPEDIS</td>
<td>15</td>
<td>maximum SPEDIS() for a misspelling and its parent to have and also evaluate as a misspelling</td>
</tr>
<tr>
<td>TMM_MINPARENT</td>
<td>\log_{10}(\text{numdocs})+4</td>
<td>minimum number of documents in which a term must occur to be considered a possible parent</td>
</tr>
<tr>
<td>TMM_MULTIPEN</td>
<td>2</td>
<td>penalty to apply to the SPEDIS() value if one of the terms is a multi-word term</td>
</tr>
</tbody>
</table>

Text Topic Node Macro Variables

You can use the macro variables listed in the following table to set additional properties for the Text Topic node.
Table 11.3 Macro Variables for the Text Topic Node

<table>
<thead>
<tr>
<th>Macro Variable</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMM_DOCCUTOFF</td>
<td>0.001</td>
<td>document cutoff value is for any user-created topic. It is used to determine the default document cutoff for user topics (excluding those that are modified multi-term or single-term topics) in the Topic table. Higher values decrease the number of documents assigned to a topic.</td>
</tr>
<tr>
<td>TMM_NORM_PIVOT</td>
<td>0.7</td>
<td>value (between 0 and 1) used for the pivot normalization of document length. If you want longer documents to contain many more topics than short documents, set this value closer to 1. If you want short documents and long documents to contain about the same number of topics, set this value closer to 0.</td>
</tr>
<tr>
<td>TMM_TERM_CUTOFF</td>
<td></td>
<td>cutoff value is for any user-created or multi-term topic. It is used to determine the default term cutoff for user topics (excluding those that are modified multi-term or single-term topics) and for multi-term in the Topic table. Higher values decrease the number of documents assigned to a topic. If this macro variable is set to blank or not set, then the mean topic weight + 1 standard deviation is set for topic cutoff for each topic.</td>
</tr>
</tbody>
</table>

Text Rule Builder Node Macro Variables

You can use the macro variable that is listed in the following table to set additional properties for the Text Rule Builder node.
Table 11.4 Macro Variables for the Text Rule Builder Node

<table>
<thead>
<tr>
<th>Macro Variable</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMB_MAXTEXTLEN</td>
<td>200 bytes</td>
<td>identifies the length of the text variable in the Change Target Values table. Any text variable that matches on the first &tmb_maxtextlen bytes in that table is assumed to be the same document.</td>
</tr>
</tbody>
</table>

Using Special Characters

If you use special characters, such as ' and " in a path, you need to mask the pathname by using %nrbquote.

For example, consider that you want to use the following path to specify a location for variable em_term_loc in the project start code:
```
\myComp\public\MyFolder\tm\user's termloc folder
```
You can use %nrbquote as shown below for a path with this quotation mark character:
```
%let em_term_loc=%nrbquote(\myComp\public\MyFolder\tm\user's termloc folder);
```
For more information, see http://support.sas.com/documentation/cdl/en/mcrolref/61885/HTML/default/viewer.htm#tw3514-overvwqt.htm.

Overview of Macros and Functions

You can use the following SAS Text Miner macros and functions to create a synonym data set, filter a collection of documents, generate a compressed, term-by-document frequency summary data set, and other tasks:

- “%TEXTSYN Macro” on page 141
- “%TMFILTER Macro” on page 145
- “TGSCORE Function” on page 155

%TEXTSYN Macro

Contents

- “%TEXTSYN Macro Syntax” on page 142
- “%TEXTSYN Macro Output Data Set” on page 143
- “%TEXTSYN Macro Example” on page 144
The %TEXTSYN macro is provided with SAS Text Miner. You can use this macro after a Text Parsing node has been successfully run to find and correct misspellings that appear in the input data source. It is not supported for use with the Chinese language.

The macro creates a synonym data set, which you can use in SAS Text Miner, that contains misspelled terms and candidate parents (correctly spelled terms). The data set includes the variables "term", "parent", "termrole", and "parentrole." Using optional arguments, you can also specify that the synonym data set include example usages (from up to two documents) of the misspelled terms.

Terms are selected as follows:

1. Candidate child terms that occur in a specified maximum number of documents are selected from all terms. Likewise, candidate parent terms that occur in a specified minimum number of documents are selected from all terms.

2. All combinations of the candidate parent and child terms are found where the first alphabetic character is the same for a parent and a child. The SPEDIS function (a Base SAS function) is used to calculate a distance measure in both directions for each parent-child combination. The minimum of the two distances is divided by the length of the shorter term, which defines a new distance measure. For multi-word terms and terms that do not appear in a dictionary, this distance measure is multiplied by a penalty constant.

3. Parent-child combinations with the lowest final distance measures (below a specified threshold) are output to the synonym data set.

```
%TEXTSYN (TERMDS=<libref.>SAS-data-set, SYNDS=<libref.>output-data-set, 
<, DOCDS=<libref.>SAS-data-set, OUTDS=<libref.>SAS-data-set, 
TEXTVAR=text-variable, DICT=<libref.>SAS-data-set, MNPARDOC=n, 
MXCHDDOC=n, MAXSPED=n, MULTIPEN=n, DICTPEN=n, CONTEXT=n >)
```

Required Arguments:

- `TERMDS=<libref.>SAS-data-set`
 specifies the name of the Terms data set that was output from any Text Parsing node.

 Note: Each Text Parsing node outputs a terms data set, which is stored with the project data. The name of these data sets follows the format NodeID_TERMS (for example, TEXTparsing_TERMS).

- `SYNDS=<libref.>SAS-data-set`
 specifies the name to give the output synonym data set. It is recommended that you save this data set in a permanent library. For more information, see “%TEXTSYN Macro Output Data Set” on page 143.

Optional arguments:

- `DOCDS=<libref.>SAS-data-set`
 specifies the name of the Documents data set that was output. This argument is required to include example usages of the misspelled terms.

- `OUTDS=<libref.>SAS-data-set`
specifies the name of the OUT data set that was output from a Text Parsing node. This argument is required to include example usages of the misspelled terms.

- **TEXTVAR=**variable-name
 specifies the name of the character variable in the input data set that contains the text (or a path to a file that contains the text) to score. This argument is required to include example usages of the misspelled terms.

- **DICT=<libref.>SAS-data-set**
 specifies the name of a dictionary data set. Using a dictionary data set can reduce the number of false positives that are in the output synonym data set. For more information, see “How to Create a Dictionary Data Set” on page 56.

- **MNPARDOC=n**
 specifies the minimum number of documents in which a term must appear in order to be considered a parent term. The default value is 3.

- **MXCHDDOC=n**
 specifies the maximum number of documents in which a term must appear in order to be considered a child term. The default value is 6.

- **MAXSPED=n**
 specifies the SPEDIS() cutoff value for acceptance that a parent-child combination is valid. The default value is 15.

- **MULTIPEN=n**
 specifies the number by which to multiply the value of MAXSPED= when the parent or child term is a multi-word term. The default value is 2.

- **DICTPEN=n**
 specifies the number by which to multiply the value of MAXSPED= when the child term is found in the dictionary table. The default value is 2.

- **CONTEXT=n**
 specifies the number of words to include before and after the target term in examples. The default value is 4.

%TEXTSYN Macro Output Data Set

The synonym output data set contains the following variables:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><Example1></td>
<td>(if DOCDS=, OUTDS=, and TEXTVAR= arguments are specified) example from a document that includes the TERM.</td>
</tr>
<tr>
<td><Example2></td>
<td>(if DOCDS=, OUTDS=, and TEXTVAR= arguments are specified) example from a document that includes the TERM.</td>
</tr>
<tr>
<td>Column Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TERM</td>
<td>child term from the KEY data set. This is typically a misspelled word.</td>
</tr>
<tr>
<td>TERMROLE</td>
<td>the part of speech or entity of TERM</td>
</tr>
<tr>
<td>PARENT</td>
<td>parent term for the misspelled word.</td>
</tr>
<tr>
<td>PARENTROLE</td>
<td>the part of speech or entity of PARENT</td>
</tr>
<tr>
<td>CHILDNDOCS</td>
<td>number of documents that contain TERM</td>
</tr>
<tr>
<td>NUMDOCS</td>
<td>number of documents that contain PARENT</td>
</tr>
<tr>
<td>MINSPED</td>
<td>minimum spelling distance between terms. The smaller the number, the closer the terms.</td>
</tr>
<tr>
<td>DICT</td>
<td>(if DICT= argument is specified) Y if TERM is found in the dictionary data set, and N otherwise.</td>
</tr>
</tbody>
</table>

%TEXTSYN Macro Example

This example assumes that you have already created a diagram in a SAS Enterprise Miner project and that you have created an input data source using the SAMPSON.ABSTRACT sample data set.

1. Drag the input data source that you have created using the SAMPSON.ABSTRACT data set into the diagram workspace.

2. Select the Text Mining tab on the Toolbar.

3. Drag a Text Parsing node to the diagram workspace.

4. Connect the input data source node to the Text Parsing node.

5. Select the Text Parsing node to view its properties.
 - Set Different Parts of Speech to No.
 - Set Noun Groups to No.

6. In the diagram workspace, right-click the Text Parsing node and click Run. Click Yes in the Confirmation dialog box.

7. Click OK in the Run Status dialog box.

8. Drag a SAS Code node to the diagram workspace from the Utility tab on the toolbar.

9. Connect the Text Parsing node to the SAS Code node.
10. Select the **SAS Code** node, and then click the ellipsis button for the **Code Editor** property.

11. Enter the following code into the code window. Be sure to change `<libref>` to the actual libref for your diagram.

 TIP To determine the libref of a diagram, select the diagram name in the Project panel and view the value of the **ID** property. This value is the libref.

 Note: The following code assumes that the **Mylib** libref has been assigned to a SAS library. If you have not already created a **Mylib** libref, change **Mylib** in the following code to another libref to store your output:

   ```sas
   %textsyn(docds=<libref>.TEXTparsing_train,
           termds= <libref>.TEXTparsing_TERMS,
           outds=<libref>.TEXTparsing_tmOUT,
           synds=Mylib.textsyn,
           textvar=text);
   ```

12. Right-click the **SAS Code** node and click **Run**. Click **Yes** in the Confirmation dialog box, and **OK** in the Run Status dialog box when the node has finished running.

13. Click the **Explorer** toolbar shortcut to open the Explorer window. In the SAS Libraries tree, navigate to the library where you stored your output results. Highlight this directory. Then double-click the file in the right panel of the Explorer window. A preview of the data set opens.

 Note: If you do not see the data set, you might need to refresh your Explorer window.

 The `example1` and `example2` variables provide example usages of the candidate misspelled terms from the input data set. Misspelled terms in the examples are enclosed in exclamation marks. Proposed correctly spelled terms are contained in the parent variable.

 Note: After you run the `%TEXTSYN` macro, you should always examine the output data set and delete any proposed misspelled terms that should remain spelled as they are in the input data set.

%TMFILTER Macro

Contents

- “%TMFILTER Macro Syntax” on page 146
- “%TMFILTER Macro Output Data Set” on page 148
- “%TMFILTER Macro Details” on page 149
- “%TMFILTER Macro Examples” on page 152
%TMFILTER Macro Syntax

The %TMFILTER macro is provided with SAS Text Miner. It is supported in all operating systems for filtering and on Windows for crawling. See documentation for the SAS Document Conversion server for more information.

You can use this macro to do the following:

• filter a collection of documents that are saved in any supported file format and output a SAS data set that can be used to create a SAS Text Miner data source.

• web crawl and output a SAS data set that can be used to create a SAS Text Miner data source. Web crawling retrieves the text of a starting web page, extracts the URL links within that page, and then repeats the process within the linked pages recursively. You can restrict a crawl to the domain of the starting URL. Or you can let a crawl process any linked pages that are not in the domain of the starting URL. The crawl continues until a specified number of levels of drill-down is reached or until all the web pages that satisfy the domain constraint are found. Web crawling is supported only in Windows operating systems.

• identify the languages of all documents in a collection.

%TMFILTER (DIR=path, URL=path <,DATASET=<libref.>output-data-set <,DEPTH=n, DESTDIR=path, EXT=extension1 <extension2 extension3...>, FORCE=anything, HOST=name | IP address, LANGUAGE=ALL | language1 <language2 language3...>, NORESTRICCT=anything, NUMCHARS=n, PASSWORD=password, USERNAME=username)

Note:

• If you run %TMFILTER in a UTF-8 SAS session, then the macro attempts to transcode all filtered text to UTF-8 encoding so that the resulting data set can be used in a UTF-8 SAS session. In all other SAS session encodings, %TMFILTER does not transcode the data. Instead, it assumes that the input data is in the same encoding as the SAS session. For more information, see “SAS Text Miner and SAS Session Encoding” on page 180.

• The %TMFILTER macro sets the macro variable EMEXCEPTIONSTRING to 1 if an error occurs. You can use the value of this variable to debug programs (for example, in extension nodes or SAS Code nodes).

• If you run the web crawling aspect of %TMFILTER macro within a SAS Enterprise Miner client installation that is connected to a Windows server, then you must issue the XCMD SAS system option on the server. For details, see the post-installation instructions that are generated during the installation of SAS Enterprise Miner and SAS Text Miner.

When there is an issue with accessing a web page, the document level HTTP status codes are reported in the output data set. The interpretation of the error code can be found at http://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

Required arguments:

• DIR=path

specifies the path to the directory that contains the documents to process. Any subfolders in this directory are processed recursively. The path might be a UNC (Universal Naming Convention) formatted network path.
• **URL=URL**

(web crawling only) specifies the URL—fewer than or equal to 255 characters in length—of the starting web page. The value can be either in the form `http://www.sas.com` or `www.sas.com`. Web pages that are retrieved are placed in the directory that is specified by the `DIR=` argument. Web crawling is supported only in Windows operating systems.

Note:

- If the URL contains an ampersand (&), then the ampersand will be misinterpreted as a macro trigger. In this case, you must use the `%NRSTR` function when you specify the URL.

- Be aware of the terms and service policies of the web pages that you want to crawl. Some policies might restrict automatic access, and some might restrict how you use any retrieved content. Furthermore, be aware that when you are crawling web pages, the `%TMFILTER` macro might place a high demand on a web host.

Optional arguments:

- **DATASET=libref.>output-data-set**

 specifies the name to give the output data set. For more information, see “%TMFILTER Macro Output Data Set” on page 148. It is recommended that you save this data set in a permanent library. If you do not specify this argument, then the name of the output data set is `Work.Data`.

- **DEPTH=n**

 (for web crawling only) specifies the number of levels for web crawling. If you do not specify this argument, then the macro visits all links on the starting web page and all links on the linked pages (in other words, `DEPTH=2`).

- **DESTDIR=path**

 specifies the path to the directory in which to save the output plain text files. Do not make the value of `DESTDIR=` a subdirectory of the `DIR=` directory. If you do not specify this argument, then filtered plain text files that correspond to the files in `DIR=` directory are not produced.

 Note: If you specify a network path, then the folders in the path must already exist on the network machine. Otherwise, the macro will fail. If you specify a local path, then it is not necessary for the folders to exist. The `%TMFILTER` macro creates them automatically if they do not already exist.

- **EXT=extension1 <extension2 extension3...>**

 specifies one or more file types to process. Only files (with a listed extension) that are in the directory specified by the `DIR=` argument are processed. To specify documents with no extension, use a single period (`EXT=` .). If you do not specify this argument, then all applicable file types are processed.

- **FORCE=anything**

 specifies not to terminate the `%TMFILTER` macro if the directory specified by the `DESTDIR=` argument is not empty when the macro begins processing. Any value (for example, `1` or `y`) keeps the macro from terminating if the destination
directory is not empty. Otherwise, if you do not specify this option or if you do not specify a value for it, the macro terminates if the destination directory is not empty.

- **HOST=**name | IP address

specifies the name or IP address of the machine on which to run the %TMFILTER macro. If you do not specify this argument, then the macro assumes that the SAS Document Conversion Server will use its own defaults.

- **LANGUAGE=**ALL | language1 <language2 language3...>

specifies one or more licensed languages in which the input documents are written. If a list is supplied, then the %TMFILTER macro automatically detects the language (from those in the list) of each document. To search all supported languages, specify `LANGUAGE=ALL`. Automatic detection is not accurate in documents that contain fewer than 256 different characters, and might return a result of unknown.

If you do not specify this argument, then it is assumed that input files are written in English.

- **NORESTRIC**T=anything

(for web crawling only) specifies to allow the processing of websites outside the domain of the starting URL. Any value (for example, 1 or ‘y’) lets the macro process websites outside of the starting domain. Otherwise, if you do not specify this option or if you do not specify a value for it, only web pages that are in the same domain as the starting URL are processed.

- **NUMCHARS=**n

specifies the length of the TEXT variable in the output data set. If you do not specify this argument, then the TEXT variable is restricted to 100 characters. For more information, see “%TMFILTER Macro Output Data Set” on page 148.

- **PASSWORD=**password

(for web crawling only) specifies the password to use when the URL input refers to a secured website that requires a password.

- **PORT=**port-number

specifies the number of the port on which the SAS Document Conversion Server resides. If it is not set, it is assumed that the conversion server will use its own defaults.

- **USERNAME=**user name

(for web crawling only) specifies the user name to use when the URL input refers to a secured website that requires a user name.

%TMFILTER Macro Output Data Set

The output data set contains the following variables:

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXT</td>
<td>text of each document, truncated to the length specified by the NUMCHARS= argument.</td>
</tr>
<tr>
<td>Column Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>URI</td>
<td>path to the input files that reside in the directory specified by the DIR= option.</td>
</tr>
<tr>
<td>NAME</td>
<td>name of the input file</td>
</tr>
<tr>
<td>FILTERED</td>
<td>path to the directory that contains the HTML file. This path corresponds to the value of the DESTDIR= argument.</td>
</tr>
<tr>
<td>LANGUAGE</td>
<td>most likely source language of the document, as determined by the LANGUAGE= option.</td>
</tr>
<tr>
<td>CREATED</td>
<td>date and time that the input document was created.</td>
</tr>
<tr>
<td>ACCESSED</td>
<td>date and time that the input document was last accessed.</td>
</tr>
<tr>
<td>MODIFIED</td>
<td>date and time that the input document was last modified.</td>
</tr>
<tr>
<td>TRUNCATED</td>
<td>1 if TEXT contains truncated text; 0 otherwise.</td>
</tr>
<tr>
<td>OMITTED</td>
<td>1 if the document was skipped (because of an unsupported input file type or some filtering error). 0 otherwise.</td>
</tr>
<tr>
<td>EXTENSION</td>
<td>file extension of the input document.</td>
</tr>
<tr>
<td>SIZE</td>
<td>size of the input document, in bytes.</td>
</tr>
<tr>
<td>FILTEREDSIZE</td>
<td>size of the input document after filtering, in bytes.</td>
</tr>
</tbody>
</table>

%TMFILTER Macro Details

Contents
- “Starting the cfs.exe Process Manually” on page 149
- “Supported Document Formats” on page 150

Starting the cfs.exe Process Manually
By default, the cfs.exe process is automatically started by the %TMFILTER macro. However, if the socket connection mechanism is unable to function properly, you might need to start the process manually. To manually start cfs.exe:

1. Ensure that the log file (cfs.log) is created in a writable system location by editing the _cfsoptions.txt file. This file is located in the !SASROOT/tmine/sasmisc directory, where !SASROOT is the actual path to your SAS installation. Edit the
following line, ensuring that what you specify for `<path>` is a writable directory, and save the file:

```xml
<cat name="CatLogFileManager.FilePath" value="<path>\_cfsLog.txt" />
```

2. Open a Command Prompt window and navigate to the `!SASROOT/tmine/sasmisc` directory.

3. In the Command Prompt window, submit the following code. Replace `<portnumber>` with a four-digit port number and `!SASROOT` with the actual path to your SAS installation. (if this path has spaces, enclose the entire path in quotation marks.)

```cmd
cfs.exe -optionfile !SASROOT/tmine/sasmisc/_cfsoptions.txt -port <portnumber>
```

At this point, the cfs.exe process is running. The command window should no longer contain a command prompt. When you run the `%TMFILTER` macro, you must use the MANUAL= and PORT= options. When the macro finishes, you can either terminate the cfs.exe process (by closing the command window), or you can call the macro again without restarting the process.

Supported Document Formats

The following four tables list the proprietary-encoded file formats supported by the `%TMFILTER` macro.

Table 11.5 Text, Markup, and Word Processing Formats

<table>
<thead>
<tr>
<th>Document Format</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII text</td>
<td>All</td>
</tr>
<tr>
<td>ANSI text</td>
<td>All</td>
</tr>
<tr>
<td>HTML/XML</td>
<td></td>
</tr>
<tr>
<td>Microsoft Rich Text Format (RTF)</td>
<td>All</td>
</tr>
<tr>
<td>Microsoft Word for Macintosh (DOC)</td>
<td>All</td>
</tr>
<tr>
<td>Microsoft Word for PC (DOC)</td>
<td>4, 5, 5.5, 6</td>
</tr>
<tr>
<td>Microsoft Word for Windows (DOC)</td>
<td>All</td>
</tr>
<tr>
<td>Microsoft Word for Windows (DCX)</td>
<td></td>
</tr>
<tr>
<td>Microsoft WordPad</td>
<td>All</td>
</tr>
<tr>
<td>Microsoft Works (WPS)</td>
<td>1 — 4</td>
</tr>
<tr>
<td>Office Writer</td>
<td>4.0 — 6.0</td>
</tr>
<tr>
<td>OpenOffice (SXW)</td>
<td>1, 1.1</td>
</tr>
</tbody>
</table>
Table 11.6 Spreadsheets

<table>
<thead>
<tr>
<th>Document Format</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comma-Separated Values (CSV)</td>
<td>All</td>
</tr>
<tr>
<td>Microsoft Excel for Macintosh</td>
<td>All</td>
</tr>
<tr>
<td>Microsoft Excel for Windows (XLS)</td>
<td>All</td>
</tr>
<tr>
<td>Microsoft Excel for Windows (XLSX)</td>
<td></td>
</tr>
<tr>
<td>Microsoft Multiplan</td>
<td>4</td>
</tr>
<tr>
<td>Microsoft Works Spreadsheet (S30, S40)</td>
<td>1 — 4</td>
</tr>
<tr>
<td>OpenOffice Spreadsheets (SXI, SXP)</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table 11.7 Presentation Formats

<table>
<thead>
<tr>
<th>Document Format</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe Portable Document Format (PDF)</td>
<td>2.0 — 6.0, Japanese</td>
</tr>
<tr>
<td>Microsoft PowerPoint for Windows (PPT)</td>
<td>All</td>
</tr>
<tr>
<td>Microsoft PowerPoint for Macintosh (PPT)</td>
<td>All</td>
</tr>
<tr>
<td>Microsoft PowerPoint (PPTX)</td>
<td></td>
</tr>
<tr>
<td>OpenOffice (SXI, SXP)</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table 11.8 Database Formats

<table>
<thead>
<tr>
<th>Document Format</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>Through 2.0</td>
</tr>
<tr>
<td>dBASE</td>
<td>Through 5.0</td>
</tr>
<tr>
<td>Microsoft Works for Windows</td>
<td>Through 4.0</td>
</tr>
<tr>
<td>Microsoft Works for DOS</td>
<td>Through 2.0</td>
</tr>
<tr>
<td>Microsoft Works for Macintosh</td>
<td>Through 2.0</td>
</tr>
</tbody>
</table>
%TMFILTER Macro Examples

Contents

- “Filter Documents of Different File Types” on page 152
- “Language Detection” on page 153
- “Convert Files” on page 154

Filter Documents of Different File Types

When you use the %TMFILTER macro to create a SAS data set that contains the text of documents of various formats, you must decide whether you want to store all the text in the variable in the SAS data set, or whether you want to reference the files by path and then place only a portion of text into the Text variable. In this example, all the text is placed in the SAS data set because the files are short. If the files were longer, the DESTDIR parameter would have been used in addition to the DIR and NUMCHARS parameters.

```
%tmfilter(dataset=tmlib.txtinput, dir=c:\public\example, numchars=32000);
```

Note: In the above example, you must first specify a libref (such as “tmlib”) to a location that you can access, and you must specify a directory of files that you would like to process with the %TMFILTER macro.

You use the DATASET parameter to specify a name for the generated SAS data set. The DIR parameter specifies a directory that contains documents of various formats. The %TMFILTER macro extracts text of all the supported file formats in the directory and its subdirectories. In this example, the C:\public\example directory contains four files and a folder named “more” that contains three additional files.

After the SAS data set is generated, you can create a data source from this SAS data set and explore its contents. For information about how to explore the SAS data set, see the SAS Enterprise Miner Help.

The following table shows examples of the values of the TRUNCATED and OMITTED variables:

<table>
<thead>
<tr>
<th>EXPLANATION</th>
<th>TRUNCATED</th>
<th>OMITTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>The document cannot be processed.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>The document is larger than 32 KB and the text must be truncated.</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>The document has been processed.</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

If the %TMFILTER macro fails, consult the log file. The log file contains information that can help you diagnose problems that might occur during this process. Sometimes the macro skips a file because the file cannot be extracted. In this case, the filename is listed
in the corresponding log file. The log file can be found by selecting the Log tab in the SAS Enterprise Miner Program Editor.

When you use the `%TMFILTER` macro to retrieve web pages, you must specify values for the URL, DIR, and DESTDIR parameters. The `%TMFILTER` macro extracts text from the web pages and transforms textual data of different formats into a SAS data set. That data set is then used as input for the Text Parsing node. Notice that non-text components such as figures and graphics are ignored in the process. The following example code shows how to use the `%TMFILTER` macro to process documents on a web page:

```sas
%tmfilter(url=http://support.sas.com/events/sasglobalforum,
depth=2,
dir=c:\macro\dir,
destdir=c:\macro\destdir,
norestrict=1,
dataset=macrooutput);
```

In this example, the following web page contains links to HTML files:

http://support.sas.com/events/sasglobalforum

View the SAS data set Tmlib.Macrooutput in SAS. The data set consists of the variables TEXT, URI, NAME, FILTERED, LANGUAGE, CREATED, ACCESSED, MODIFIED, TRUNCATED, OMITTED, EXTENSION, SIZE, and FILTEREDSIZE.

When the SAS data set Tmlib.Macrooutput is used as an input to a Text Parsing node, the variables TEXT, FILTERED, and URI should be assigned the roles of Text, Text Location, and Web Address, respectively.

Language Detection

Suppose you store a collection of documents in various languages in the mydoc folder. You use the following `%TMFILTER` macro statement with the LANGUAGE parameter to create a SAS data set. The LANGUAGE parameter uses language identification technology to detect the language of each document. The value of the LANGUAGE parameter is a list of licensed languages that are separated by spaces.

```sas
%tmfilter(dir=c:\mydoc,
dataset=tmlib.languages,
language=arabic chinese czech danish
dutch english finnish french
german greek hebrew hungarian
indonesian italian japanese
korean norwegian polish portuguese
romanian russian slovak spanish
swedish thai turkish vietnamese);
```

Use any of the following parameter values: arabic, chinese, czech, danish, dutch, english, finnish, french, german, greek, hebrew, hungarian, indonesian, italian, japanese, korean, norwegian, polish, portuguese, romanian, russian, slovak, spanish, swedish, thai, turkish, and vietnamese.

The following is a display of the contents of the resulting Tmlib.Languages data set. The LANGUAGE column represents the language that SAS Text Miner detects.
The accuracy of language identification increases significantly if all the documents in the DIR directory are in the languages that SAS Text Miner supports.

Convert Files

You can use the %TMFILTER macro to convert files into a SAS data set that can then be used as an input data source for the Text Parsing node. The %TMFILTER macro supports web crawling only in Windows operating environments, but you can run the %TMFILTER macro on files on either Windows or UNIX. The following example specifies some %TMFILTER macro parameters.

1. Create a new project and define the following LIBNAME statement in the start-up code:

   ```sas
   libname mylib '<path-to-your-library>'; 
   ```

 Note: The value `mylib` is the first-level SAS name that identifies the library name. You must replace `<path-to-your-library>` with the path specification that points to your SAS library.

2. Run the following code in the Program Editor:

   ```sas
   %tmfilter (dataset=mylib.tmoutds, 
   dir=\\aclientmachine\Public\TM\Examples, 
   destdir=\\aclientmachine\Public\TM\mydatasets, 
   ext=doc txt html pdf, 
   language=english spanish, 
   numchars=20);
   ```

 - The value `mylib` is the library name, and the value `tmoutds` is the name of the generated SAS data set.
 - The value `\\aclientmachine\Public\TM\Examples` is the path to the directory that contains the files to be processed.
The value `\aclclientmachine\Public\TM\mydatasets` is the path to the directory that will contain the filtered files.

- The file extensions `.doc`, `.txt`, `.html`, and `.pdf` are processed by the `%TMFILTER` macro.
- The languages `english` and `spanish` are by the `%TMFILTER` macro.
- The length in bytes of the TEXT variable is 20.

TGSCORE Function

Contents

- “TGSCORE Function Syntax” on page 155
- “TGSCORE Function Example” on page 156

TGSCORE Function Syntax

The TGSCORE function is called inside a SAS DATA step and is used in SAS Text Miner for document scoring. It takes a textual variable and data sets from a SAS Text Miner training run and generates a compressed, term-by-document frequency summary data set. Child term frequencies are mapped to the parent terms. The TGSCORE function can also build a Teragram search index. A zero is returned if the function runs successfully, and a nonzero value is returned otherwise.

```
TGSCORE (text-variable, "<libref.>CONFIG-data-set", "<libref.>KEY-data-set", 
"<libref.>output-data-set", "multiterm-file-path"|0, 0|1)
```

Table 11.10 Arguments of the TGSCORE Function

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>text-variable</td>
<td>name of character variable in the input data set that contains the text (or a path to a file that contains the text) to score.</td>
</tr>
<tr>
<td>CONFIG-data-set</td>
<td>name of the CONFIG data set. This data set contains the parsing settings that are used for scoring.</td>
</tr>
<tr>
<td>Argument</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>KEY-data-set</td>
<td>name of the KEY output data set, which contains summary information about the terms from the training data at the document collection level. The data set must contain the variables “term” and “key.” It must also contain “role” if part-of-speech tagging is used, and “parent” can be included to map child terms to parent terms.</td>
</tr>
<tr>
<td></td>
<td>- You must sort the data set by the variable “term” and also create an index on this variable if part-of-speech tagging is used.</td>
</tr>
<tr>
<td></td>
<td>- You must sort the data set by the variables “term” and “role” and also create an index on these variables if part-of-speech tagging is not used.</td>
</tr>
<tr>
<td>output-data-set</td>
<td>name to give the output data set.</td>
</tr>
<tr>
<td>multiterm-file-path</td>
<td>file path of the XML file that contains the list of multi-word terms. The SAS Text Miner parser ensures that the multi-word terms that are on this list are treated as a single term. If you are not using a multiterm file, then you must enter a 0 (with no quotation marks) for this argument.</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

TGSCORE Function Example

1. Using SAS Text Miner, build and run a model to produce a KEY output data set and a CONFIG data set. You can determine the names of these data sets by looking at the SAS log. In this example, the data sets that were produced are named **EMWS.TEXT_TERMS** and **EMWS.TEXT_OUT_T_CFG**, respectively.

2. Sort and index the KEY data set. In this example, the training run has used part-of-speech tagging. Therefore, you can create a composite index on the term and role variables. The following code accomplishes the sorting and indexing.

   ```sas
   proc sort data=EMWS.TEXT_TERMS out=work.sortKey;
   by key;
   run;
   ```

   ```sas
   proc datasets lib=work nolist;
   modify sortKey;
   index create both=(term role);
   run;
   ```

3. Use the TGSCORE function to produce an output data set and Teragram search index files in the Work directory:

   ```sas
   data _NULL_;
   set sampsio.svdtutor;
   ```
rc=tgscsore(text,"EMWS.TEXIT_8_6_T_CFG","WORK.sortKey","WORK.OUT",0,1);
run;

Note: You can use a Score node after a Text Parsing node in a process flow diagram and examine the generated code for more examples.
Chapter 12
Additional Examples

Classifying News Articles

Description of the Input Data Set

This example assumes that SAS Enterprise Miner is running, and a diagram workspace has been opened in a project. For information about creating a project and a diagram, see Getting Started with SAS Enterprise Miner.

The SAMPSIO.NEWS data set consists of 600 brief news articles. Most of the news articles fall into one of these categories: computer graphics, hockey, and medical issues.

The SAMPSIO.NEWS data set contains 600 observations and the following variables:

- **TEXT** is a nominal variable that contains the text of the news article.

- **graphics** is a binary variable that indicates whether the document belongs to the computer graphics category (1-yes, 0-no).

- **hockey** is a binary variable that indicates whether the document belongs to the hockey category (1-yes, 0-no).

- **medical** is a binary variable that indicates whether the document is related to medical issues (1-yes, 0-no).
- **newsgroup** is a nominal variable that contains the group that a news article fits into.

Creating the Process Flow Diagram

Follow these steps to create the Process Flow Diagram:

1. Use the Data Source Wizard to define a data source for the data set SAMPSIO.NEWS.
2. Set the measurement levels of the variables graphics, hockey, and medical to **Binary**.
3. Set the model role of the variable hockey to **Target** and leave the roles of graphics, medical, and newsgroup as **Input**. The variable TEXT has a role of **Text**.
4. Select **No** in the Data Source Wizard — Decision Configuration dialog box. Use the default target profile for the target hockey.
5. After you create the NEWS data source, drag it to the diagram workspace.

Input Data Source

1. Use the Data Source Wizard to define a data source for the data set SAMPSIO.NEWS.
2. Set the measurement levels of the variables graphics, hockey, and medical to **Binary**.
3. Set the model role of the variable hockey to **Target** and leave the roles of graphics, medical, and newsgroup as **Input**. The variable TEXT has a role of **Text**.
4. Select **No** in the Data Source Wizard — Decision Configuration dialog box. Use the default target profile for the target hockey.
5. After you create the NEWS data source, drag it to the diagram workspace.

Data Partition Node

1. Add a **Data Partition** node from the **Sample** tab to the diagram workspace, and connect the NEWS node to it.
2. In the Properties panel of the **Data Partition** node, set the **Partitioning Method** property to **Simple Random**.
3. Change the data set allocations for **Training**, **Validation**, and **Test** to 60.0, 20.0, and 20.0, respectively.

Text Parsing Node
1. Add a **Text Parsing** node from the **Text Mining** tab to the diagram workspace, and connect the **Data Partition** node to it.

2. Ensure that the **Text Parsing Node** properties **Stem Terms**, **Different Parts of Speech**, and **Noun Groups** properties are set to **Yes**. Use the default settings for the other parsing properties.

Text Filter Node
1. Add a **Text Filter** node from the **Text Mining** tab to the diagram workspace.

2. Connect the **Text Parsing** node to the **Text Filter** node.

Text Cluster Node
1. Add a **Text Cluster** node from the **Text Mining** tab to the diagram workspace.

 *Note: For process flow diagrams where you want to use the **Decision Tree** node in your predictive model, it is recommended that you use the **Text Topic** node instead of the **Text Cluster** node.*

2. Connect the **Text Filter** node to the **Text Cluster** node.

MBR Node (Memory-Based Reasoning Node)
1. Add an **MBR** node from the **Model** tab to the diagram workspace.

2. Connect the **Text Cluster** node to the **MBR** node.

3. Right-click the **MBR** node, and select **Run**.

4. Click **Yes** in the Confirmation dialog box that appears.

5. Click **Results** in the Run Status dialog box after the node has finished running.

Viewing Results

In the MBR Results window, select **View ⇒ Assessment ⇒ Classification Chart: hockey**.

The classification chart displays the agreement between the predicted and actual target values. By default, the chart displays the percentage on the vertical axis. To create a plot based on frequency counts, right-click in the chart and select **Data Options**. In the Data Options dialog box, set the Role for the variable COUNT to **Response**.

Using SAS Code Node to Generate a Precision and Recall ROC Chart
Follow these steps to generate a precision and recall ROC chart:

1. Add a SAS Code node from the Utility tab to the diagram workspace, and then connect the MBR node to it.

2. Select the SAS Code node and click the ellipsis button next to the Code Editor property to open the Code window.

3. Enter the following SAS code in the Training Code editor:

   ```sas
   %prcrcroc(hockey, P_hockey1, &EM_IMPORT_TEST);
   %prerec(hockey, I_hockey, &EM_IMPORT_TEST);
   run;
   ```

 The macro PRCRCROC creates a precision and recall ROC plot. The macro PRERECE prints a confusion matrix of the scored test data set. For more information about these macros, see “PRCRCROC and PRERECE Macros” on page 164.

4. Save these changes, and then close the SAS Code window. Run the SAS Code node and view the results.

5. On the main menu in the SAS Code Results window, select View ⇒ SAS Results ⇒ Train Graphs to display the precision and recall ROC chart. The following display shows the precision and recall ROC chart:

 ![Recall vs. Precision ROC Plot](image)

 For more information, see the Precision and Recall ROC Chart topic in the SAS Enterprise Miner help.

6. The Output window in the SAS Code Results window displays the confusion matrix (with a threshold value of 50%) of the scored training data set. The scored test data set has 120 observations, which is 20% of the original input data set (600 observations). The following display shows the resulting confusion matrix.
Interpretation of the matrix shows the following:

- 76 articles are correctly predicted as 0.
- 34 articles are correctly classified into the hockey category.
- 6 articles that actually belong in the hockey category are misclassified.
- 4 articles that do not belong in the hockey category are misclassified.
- The overall correct classification rate is 91.6667%.
- Precision and recall are 0.85 and 0.89474, respectively. The break-even point is 0.87237, which is the average of these values.

Precision and Recall ROC Chart

Precision and recall are measures that describe the effectiveness of a binary text classifier to predict documents that are relevant to the category. A relevant document is one that actually belongs to the category. A classifier has a high precision if it assigns a low percentage of non-relevant documents to the category. Recall indicates how well the
classifier can find relevant documents and assign them to the correct category. Precision and recall can be calculated from a two-way contingency table:

<table>
<thead>
<tr>
<th>Actual Values</th>
<th>Predicted Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>0</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>D</td>
</tr>
</tbody>
</table>

Suppose that the target value 1 is of interest, that A is the number of documents that are predicted into category 1 and actually belong to that category, that A+C is the number of documents that actually belong to category 1, and that A+B is the number of documents that are predicted into category 1. Then, precision = A/(A+B) and recall = A/(A+C).

High precision and high recall are generally mutually conflicting goals. To obtain high precision, the classifier assigns to the category only the documents that are definitely in the category. High precision is achieved at the expense of missing some documents that might also belong to the category, and it therefore lowers the recall.

The precision and recall ROC chart enables you to make a decision about a cutoff probability to categorize the documents. Charts that push upward and to the right represent good precision and recall, which means a good prediction model. The precision and recall ROC chart emphasizes the trade-off between precision and recall. The precision and recall ROC chart is relevant to the sensitivity and specificity ROC chart in the Assessment node, but it is not exactly the same.

PRCRCROC and PREREC Macros

Two macros, PRCRCROC and PREREC, are used in this example to explore the results from the MBR node.

The macro PRCRCROC computes and plots a precision and recall curve for the scored data set. Here is an example of PRCRCROC:

```
%prcrcroc(hockey, P_hockey1, &EM_IMPORT_TEST);
```

In the example, hockey is the target variable, P_hockey1 is the posterior probability for an observation that the predicted value of hockey is 1, and &EM_IMPORT_TEST is the macro variable name of the scored test data set.

The macro PREREC is used to generate a tabular view of classification results. The following code shows an example:

```
%prerec(hockey, I_hockey, &EM_IMPORT_TEST);
```

In the example, hockey is the target variable, I_hockey is the label of the predicted category of an observation, and &EM_IMPORT_TEST is the scored test data set.

Scoring New Documents

This example assumes that SAS Enterprise Miner is running, and a diagram workspace has been opened in a project. For information about creating a project and a diagram, see *Getting Started with SAS Enterprise Miner*.
When the model for the document collection is generated, you can use it to predict new documents. Scoring can be done either at the same time as training or after the training is complete.

Suppose you have created a model as described in “Classifying News Articles” on page 159, and you want to score new documents with the model. In this case, you must use the Score node in your process flow diagram. In this example, a sample from the SAMPSIO.NEWS data set is used as the score data set. Follow these steps to score new documents.

1. Create the process flow diagram in the Classification of News Articles example through the MBR node.

2. Drag the SAMPSIO.NEWS data source to the diagram workspace, and rename it NEWS (2).

3. Select the NEWS (2) input data node in the diagram workspace, and change the value of the Role property to Score.

4. Select the Sample tab on the toolbar, and drag a Sample node to the diagram workspace.

5. Connect the NEWS (2) input data node to the Sample node.

6. Select the Assess tab on the toolbar, and drag a Score node to the diagram workspace.

7. Connect the MBR node to the Score node, and connect the Sample node to the Score node. Your process flow diagram should resemble the following:
8. Right-click the Score node and click Run. Click Yes in the Confirmation window that appears.

9. Click Results in the Run Status dialog box when the node finishes running. The Output window in the Results window displays the summary statistics for the score class variable, such as I_hockey.

10. Close the Results window.

Using the Association Node with SAS Text Miner Nodes

This example assumes that SAS Enterprise Miner is running, and a diagram workspace has been opened in a project. For information about creating a project and a diagram, see Getting Started with SAS Enterprise Miner.

You can use topic output as input to an Association node to help you perform association discovery and sequence discovery of topics.

Association discovery is the identification of items that occur together in a given event or record. Association discovery rules are based on frequency counts of the number of
times items occur alone and in combination. An association discovery rule can be expressed as "if item A is part of an event, then item B is also part of the event X percent of the time." Associations can be written using the form A --> B, where A (or the left hand side) is called the antecedent and B (the right hand side) is called the consequent.

Both sides of an association rule can contain more than one item. An example of an association rule might be, "If shoppers buy a jar of salsa, then they buy a bag of tortilla chips." In this example, the antecedent is "buy a jar of salsa," and the consequent is "buy a bag of tortilla chips." Association rules should not be interpreted as a direct causation. Association rules define some affinity between two or more items.

Sequence discovery takes into account the ordering of the relationships among items. For example, rule A --> B implies that event B occurs after event A occurs. Here are two hypothetical sequence rules:

- Of those customers who currently hold an equity index fund in their portfolio, 15% of them will open an international fund in the next year.

- Of those customers who purchase a new computer, 25% of them will purchase a laser printer in the next month.

You can use the Text Topic node as input to an Association node. This example illustrates a process flow diagram that generates topic output as input for an Association node in SAS Enterprise Miner. Perform the following steps to use a Text Topic node as input to an Association node:

1. The SAS data set SAMPSON.ABSTRACT contains the titles of abstracts and abstracts from conferences. Create the ABSTRACT data source and add it to your diagram workspace. Set the Role value of the TEXT and TITLE variables to Text.

2. Select the Text Mining tab on the toolbar, and drag a Text Parsing node to the diagram workspace. Connect the ABSTRACT data source to the Text Parsing node.

3. Drag a Text Filter node from the Text Mining tab to the diagram workspace. Connect the Text Parsing node to the Text Filter node.

4. Drag a Text Topic node from the Text Mining tab to the diagram workspace. Connect the Text Filter node to the Text Topic node.

5. Select the Explore tab on the toolbar, and drag an Association node to the diagram workspace. Connect the Text Topic node to the Association node. Your final diagram should resemble the following:
6. In the diagram workspace, right-click the Association node and click Run. Click Yes in the Confirmation dialog box that appears.

Note: Other process flow diagrams are possible. However, a Text Topic node should precede the Association node in your process flow diagram.

For more information about the Association node, see the SAS Enterprise Miner help.

Creating a Stored Process

Overview of Creating a Stored Process

Often, you want to deploy your scoring process outside the SAS environment, through another SAS product, through a web application, or even via Microsoft Office (for example, as a spreadsheet). Fortunately, you can easily deploy the score code via a stored process that is registered in SAS Metadata.

This example explains how to create a stored process. See *SAS 9.4 Stored Processes: Developer's Guide* for more information about stored processes. See *SAS Add-In 7.1 for Microsoft Office: Getting Started in Microsoft Excel, Microsoft Word, and Microsoft PowerPoint* for information about deploying stored processes in Microsoft Office.

How to Create a Stored Process

The following is a step-by-step guide that takes you through two examples of how you can build a stored process. The first example that is presented in this section builds a stored process that you can use in SAS Enterprise Guide, or that can be called by a web application. The second example in “Modifying the Stored Process to Be Run from Microsoft Excel” on page 174 builds off the example in this section, and illustrates how you can modify the stored process to be run from Microsoft Excel.

Perform the following steps to build a stored process that you can use in SAS Enterprise Guide, or that can be called by a web application:
1. Create a SAS Text Miner process flow diagram in SAS Enterprise Miner.
 a. Create the NEWS data source from the SAMPSSIO library by setting the *newsgroup* variable to be the target, and add the NEWS data source to your diagram workspace.
 b. Add the following nodes to your diagram workspace from the Text Mining tab.
 - Text Parsing
 - Text Filter
 - Text Topic
 - Text Rule Builder
 c. Connect the NEWS data source to the Text Parsing node. Connect the Text Parsing node to the Text Filter node. Connect the Text Filter node to the Text Topic node. Finally, connect the Text Topic node to the Text Rule Builder node.

Your process flow diagram should resemble the following:

Note: In your process flow diagram, your nodes will not have a green check mark because you have not run them yet.

2. Set the value of the **Number of Multi-term Topics** property of the Text Topic node to be 5.

3. Modify the project start code.
 a. Click the project name.

 Note: In the following example, the project is called *Stored Process Creation*, but your project name will be whatever you specified for it when you created your SAS Enterprise Miner project.
b. Click the ellipses for the **Project Start Code** property.

The Project Start Code dialog box appears.

c. Specify a path for the **em_term_loc** macro variable.

```
%let em_term_loc=C:\All_Users\myUserID\stored_process;
```

Note: The above path is just an example. The path that you specify should be appropriate for your system. It is important that the path that you specify is available to anyone who wants to use the stored process; so often a location available across your network is a good choice.

This project start code uses the **em_term_loc** SAS macro variable to set up an external folder to store data sets that will be used with your stored process. For more information about the **em_term_loc** SAS macro variable, see “Using Macro Variables to Store Prebuilt Scoring Data in Tables Instead of Prescore Code” on page 138.

d. Click **OK**.

4. Add additional nodes.

a. Add a **Score** node to your process flow diagram from the **Assess** tab.

b. Add a **Score Code Export** node to your process flow diagram from the **Utility** tab.

c. Connect the **Text Rule Builder** node to the **Score** node. Connect the **Score** node to the **Score Code Export** node. Your process flow diagram should resemble the following:

Note: In your process flow diagram, your nodes will not have a green check mark because you have not run them yet.
d. Set the value for the **Output Directory** property of the **Score Code Export** node to be the same location that you specified for the **em_term_loc** macro variable in your **Project Start Code**.

5. In the diagram workspace, right-click the **Score Code Export** node and select **Run**. Click **Yes** in the **Confirmation** dialog box that appears. After a successful run, a SAS program with the name **score** has been stored by the **Score Code Export** node where you told it to store it.

![Score Code Export node](image)

6. Configure stored process information in SAS Enterprise Guide.

 b. Create a new stored process.

 i. Select **File** ⇒ **New** ⇒ **Stored Process** from the menu.

 A wizard to create a stored process appears.

 ii. Provide a name for the stored process.

 Note: This example uses the name **TM Stored Process**.

 iii. Click **Next**.

 iv. Provide SAS code by clicking the **Replace with code from** ⇒ **My Computer** and navigate to that location.

 Note: This code has been stored by the **Score Code Export** node where you told it to store it. It should show a SAS program with the name **score**.

 v. Select **score**, and then click **Open**.
You will see the code being embedded in this window.

vi. Modify the following code so that you are not actually modifying the data that you are scoring from

```sas
Data &em_score_output; set &em_score_output;

to

Data &em_score_output; set &em_score_input;
```

vii. Add the following code to print the contents of the scored data, which just keeps the variables that you care about:

```sas
Proc print label;
  Id text;
  Var I_Newsgroup TextTopic_raw1-TextTopic_raw5;
Run;
```

viii. Click **Next** to go to the third screen in the wizard.

ix. Specify that you want to allow execution on other application servers so that it is not tied to this particular server. Make sure that both **Stream** and **Package** result capabilities are checked.

![Source code location and execution](image)

x. Click **Next** to navigate to the fourth screen.

xi. Click **New**.

xii. Choose **Prompt from SAS code for**.

The `em_score_output` and `em_score_input` are both given to you as choices. Create a prompt for each of these, and enter appropriate displayed text where it is shown. Both prompts are required, or the code would not run. So also be sure to enable the check box that requires a non-blank value. The following is an example for the `em_score_output` results data set:
xiii. Click **OK** to save your changes for both prompts.

xiv. Click **Finish**. (At this point, you do not need to do anything on the fifth or sixth screen.)

c. Right-click the **TM Stored Process** icon and run it. You will then see a screen like the following with input fields for the input and output data. Since the only SAS libraries the stored process knows about are **sampsio**, **termloc**, and **work**, you can use something like the following:

d. Click **Run**.
If everything works correctly, you should see a report like the following in the Results tab:

If you have a syntax error, correct it and rerun it, until you get something like the above. At this point, the stored process can be deployed within a web application. With a few modifications, the stored process can even be deployed from a Microsoft Office application, such as Microsoft Excel, which is discussed in the following section.

Modifying the Stored Process to Be Run from Microsoft Excel

This section explains how to modify the stored process so that it can be run from Microsoft Excel.

Note: You can modify the stored process so that it can be run from Microsoft Excel only if the SAS Add-in for Microsoft Office is installed and activated. To verify whether the SAS Add-in for Microsoft Office is installed and activated, open Microsoft Excel, and check whether there is a SAS tab in the menu.

The example in this section involves selecting some documents in Microsoft Excel and using SAS Text Miner score code to automatically score them.

This involves using SAS code to stream the input data from Microsoft Excel, and saving the resulting data in a temporary place. Then you need to remove the prompts that you created in the previous section. Finally, the data stream needs to be identified as a Data Source and Target.

To modify a stored process to be run from Microsoft Excel:

1. Modify the code in SAS Enterprise Guide.

 Note: The steps in this section begin where the steps in the last section ended.

 a. Select the option **Modify Stored Process** at the top of the Results tab.

 Each of the six screens that were configured in the previous section are displayed to the left.

 b. Click **SAS Code**.

 In this view, you can modify the SAS code to take advantage of the information that is coming from Microsoft Excel.

 c. Type (or copy) the next four lines:
libname instream xml;
%let em_score_input=exceldata;
%let em_score_output=work.score;
data &em_score_input; set instream.&_WEBIN_SASNAME;

This code assigns a library and data source that represents the selected cells from Microsoft Excel.

Your window should look something like the following:

![SAS Code](image)

d. Modify prompts.

i. Click the **Prompts** option in the left panel.

ii. Choose each of the prompts that you created earlier, and then click **Delete** to remove each one.

e. Click **Data Sources and Targets on the left panel.**

f. Click **New.**

g. Specify that the data source uses XML-based data, that the **Filerref is **instream**, and that the **Allow rewinding stream** check box is enabled.**
h. Click OK.

i. Click Save.

You are now ready to do scoring from Microsoft Excel.

2. Open Microsoft Excel.

3. Enter a series of texts in a column, and make sure that the column is labeled with the word text.

Note: This is because text is the parse variable.
4. Click the **SAS** tab in the menu if it is not already selected.

5. Click the **Reports** button on the **SAS** tab.

6. Click the stored process that you created earlier.

 Note: The name of this stored process will be the name that you assigned to it. This example used the name *TM Stored Process*.

7. Click the pointer icon at the top right, and then select the cells that you want to analyze, as shown below:

8. Click **OK**.

9. Choose to store the results in the existing worksheet.

 Note: In this example, the results are stored in cell F1.
Note: If you see an error message, click Details to examine the SAS log that was generated. After you find and correct your error, you can rerun it.

Converting SAS Text Miner Diagrams from a Previous Version

Releases before SAS Text Miner 5.1 included a Text Miner node. The Text Miner node is not available on the Text Mining tab in SAS Text Miner 14.3. However, you can import a diagram from an earlier release of SAS Text Miner that has a Text Miner node in a process flow diagram.

Note: If you import a Text Miner node, you will not be able to change its property values or open its Interactive window.

For more information about project conversion from earlier versions of SAS Enterprise Miner to SAS Enterprise Miner 14.3, see the SAS Enterprise Miner Help. For more information about the Text Miner node, see “Overview of the Text Miner Node” on page 181.
SAS Text Miner and SAS Session Encoding

For computing, text is stored as numbers that are mapped to letters and symbols for display. This mapping process is called “encoding.” Many different encodings exist for different languages, operating systems, and purposes. For example, WLATIN1 is an encoding for Western European languages, and BIG5 encodes characters from the Traditional Chinese language.

SAS Text Miner uses the same encoding settings as the current SAS session. You might not be able to process text correctly if it is in an encoding different from the current SAS session. Furthermore, you cannot view such data sets in the SAS Enterprise Miner Explorer. Instead, start SAS with the encoding settings that correspond to the encoding of the data set that you are analyzing. Alternatively, for some compatible encodings, you can transcode a data set from its encoding to the SAS session encoding. Start SAS and using DATA step, simply copy your data set to a new data set. The new data set will be automatically transcoded to the current session encoding. Note that, using this method, it is possible that some characters cannot be converted between encodings.

Since UTF-8 is capable of representing all text, you can instead run a UTF-8 SAS session if you are working with a data set in another encoding. If your current SAS session uses UTF-8 encoding and the SAS Text Miner input data set contains the entire text of each document in the collection, then the data is transcoded (converted to) UTF-8 encoding. However, it is possible that some characters cannot be transcoded; SAS Text Miner ignores these characters.

Note: If the file that you are using is of a type that can indicate its encoding (such as an HTML file), then the filtering will do the transcoding to UTF-8. However, a .txt file, for example, does not indicate its encoding. In the case of files that do not indicate their encoding, the transformation cannot take place. Furthermore, your current SAS session needs to be running in an encoding that supports the encoding of your data. UTF-8 can encode any language, but you do need to transcode to it in the case of some encodings before you can use it.

If your documents reside on the file system, you can also transcode them to the UTF-8 SAS session encoding. If you run the `%TMFILTER` macro or the Text Import node in a UTF-8 SAS session, all processed text will be transcoded to UTF-8. It is possible that some characters cannot be transcoded into UTF-8. SAS Text Miner ignores these characters. If a document collection is in multiple encodings or in an encoding different from the current SAS session, then it is recommended that you transcode the documents using this method. For more information about the `%TMFILTER` macro, see “%TMFILTER Macro” on page 145.

Note: It is not recommended to mix documents from various languages in a single SAS Text Miner analysis. Instead, use the language detection feature of the `%TMFILTER` macro, separate the documents by language, and analyze the subcollections separately.
Overview of the Text Miner Node

Note: The Text Miner node is not available on the Text Mining tab in SAS Text Miner 14.3. The Text Miner node has now been replaced by the functionality in other SAS Text Miner nodes. You can import diagrams from a previous release of SAS Text Miner that had a Text Miner node in the process flow diagram. However, new Text Miner nodes can no longer be created, and property values cannot be changed in imported Text Miner nodes. For more information, see “Converting SAS Text Miner Diagrams from a Previous Version” on page 179.

The Text Miner node enables you to discover and use the information that exists in a collection of documents. The node can process volumes of textual data such as e-mail messages, news articles, web pages, research papers, and surveys, even if they are stored in data formats.

Data is processed in three phases: text parsing, transformation, and document clustering. Text parsing processes textual data into a term-by-document frequency matrix. Transformations such as singular value decomposition (SVD) alter this matrix into a data set that is suitable for data mining purposes. A document collection of several thousand documents and hundreds of thousands of terms can be represented in a compact and efficient form. Finally, the Text Miner node enables you to explore the text collection by clustering the documents, reporting on these clusters, and presenting visualizations of this data.

The Text Miner node can require a lot of computing time and resources to process a very large collection of documents. If your system has limited resources, try the following:

- Analyze only a sample of the document collection.
- Set some of these properties to No: Find Entities, Noun Groups, Terms in Single Document.
- Reduce the number of requested SVD dimensions or roll-up terms.

 Note: If the Text Miner node encounters memory problems generating the SVD, then try rolling up a certain number of terms; the remaining terms are automatically dropped.
- To limit parsing to high-information words, disable all parts of speech except nouns, proper nouns, noun groups, and verbs.

The Text Miner node behaves like most nodes in SAS Enterprise Miner except that the Text Miner node does not generate portable score code. For more information about the Text Miner node, see the following:

- “Text Miner Node Input Data” on page 182
- “Text Miner Node Properties” on page 183
- “Text Miner Node Results” on page 187
Text Miner Node Input Data

Note: The Text Miner node is not available on the Text Mining tab in SAS Text Miner 14.3. The Text Miner node has now been replaced by the functionality in other SAS Text Miner nodes. You can import diagrams from a previous release of SAS Text Miner that had a Text Miner node in the process flow diagram. However, new Text Miner nodes can no longer be created, and property values cannot be changed in imported Text Miner nodes. For more information, see “SAS Text Miner and SAS Session Encoding” on page 180.

The Text Miner node must be preceded by one or more Input Data Source nodes, where each data source contains a document collection to parse. At least one data source must have the role Train. Others can have the roles of Train, Valid, Test, or Score.

Each observation in a data source represents an individual document in the document collection. The data source can have one of two structures. It can either contain the entire text of each document, or it can contain paths to plain text or HTML files that contain that text.

- If the data source contains the entire text of each document, then this text must be stored in a character variable that is assigned the role Text. Note that a SAS variable can hold only 32KB of text. If any document in the collection is larger than that limit, then you should not use this data source structure.

- There are two sample data sets that you can use to create data sources with this structure. For more information, see “SAS Text Miner Sample Data Sets” on page 9.

- If the data source contains paths to files that contain the document text, then these paths must be stored in a character variable that is assigned the role Text Location. The paths must be relative to the SAS Text Miner server. This structure can be used either for collections that contain smaller documents or documents that exceed the 32KB SAS variable limit.

Tip

- To help identify which link represents which document, you can include an additional character variable that contains truncated document text. Give this variable the role Text.

- If there is a variable in the data set that contains the location of the unfiltered documents and if you assign this variable the role Web Address, you will be able access the original source of each document in the Interactive Results viewer.

In many cases, you will need to preprocess textual data before you can import it into a data source. A SAS macro named %TMFILTER is provided with SAS Text Miner. It can be used in file preprocessing to extract text from various document formats or to retrieve text from websites by crawling the web. The macro creates a SAS data set that you can use to create a data source to use as input for the Text Parsing node. Depending on which structure (of the two described above) that you use, you will need to adjust the roles of the variables accordingly in the Data Source wizard.
A successful run of the **Text Miner** node requires at least one variable with the role **Text** or **Text Location** variable. If you have more than one variable with either role (that has a use status of **Yes**), then the longest of these variables is used.

Text Miner Node Properties

Contents

Note: The **Text Miner** node is not available on the **Text Mining** tab in SAS Text Miner 14.3. The **Text Miner** node has now been replaced by the functionality in other SAS Text Miner nodes. You can import diagrams from a previous release of SAS Text Miner that had a **Text Miner** node in the process flow diagram. However, new **Text Miner** nodes can no longer be created, and property values cannot be changed in imported **Text Miner** nodes. For more information, see “Converting SAS Text Miner Diagrams from a Previous Version” on page 179.

- “Text Miner Node General Properties” on page 183
- “Text Miner Node Train Properties” on page 184
- “Text Miner Node Status Properties” on page 186

Text Miner Node General Properties

These are the general properties that are available on the **Text Miner** node:

- **Node ID** — displays the ID that SAS Enterprise Miner automatically assigns the node. Node IDs are especially useful for distinguishing between two or more nodes of the same type in a process flow diagram. For example, the first **Text Miner** node that is added to a diagram will have the node ID **TEXT**, and the second **Text Miner** node that is added will have the node ID **TEXT2**.

- **Imported Data** — accesses a list of the data sets that are imported by the node and the ports that provide them. Click the ellipsis button to open the Imported Data window, which displays this list. If data exists for an imported data set, then you can select a row in the list and do any of the following:
 - browse the data set
 - explore (sample and plot) the data in a data set
 - view the table and variable properties of a data set

- **Exported Data** — accesses a list of the data sets exported by the node and the ports to which they are provided. Click the ellipsis button to open the Exported Data window, which displays this list. If data exists for an exported data set, then you can select a row in the list and do any of the following:
 - browse the data set
 - explore (sample and plot) the data in a data set
 - view the table and variable properties of a data set
• **Notes** — accesses a window that you can use to store notes of interest, such as data or configuration information. Click the ellipsis button to open the Notes window.

Text Miner Node Train Properties

General Train Properties

These are the training properties that are available on the **Text Miner** node:

- **Variables** — accesses a list of variables and associated properties in the data source. Only variables with the roles Text, Text Location, or Web Address are displayed. Click the ellipsis button to open the Variables window.

- **Interactive** — This property is not available in SAS Text Miner 14.3.

- **Force Run** — specifies whether to rerun the node, even if it has already been successfully run. This function is useful if the underlying input data has changed.

Parse Properties

- **Parse Variable** — (value is populated after the node has run) displays the name of the variable in the input data source that was used for parsing. Depending on the structure of the data source, this variable contains either the entire text of each document in the document collection or it contains paths to plain text or HTML files that contain that text.

- **Language** — specifies the language to use when parsing text. Only supported languages that are licensed to you are available for selection. For a list of supported languages, see “About SAS Text Miner” on page 4.

- **Stop List** — accesses a window in which you can select a SAS data set that contains terms to exclude from parsing. If you include a stop list, then the terms therein are not included in the node results. Default data sets are provided for several languages. You can edit these data sets or create your own. Click the ellipsis button to open the Select a SAS Table window.

- **Start List** — accesses a window in which you can select a SAS data set that contains the terms to parse. If you include a start list, then terms other than those therein are not included in the node results. Click the ellipsis button to open the Select a SAS Table window.

- **Stem Terms** — specifies whether to stem terms.

- **Terms in Single Document** — specifies whether to parse terms that appear in only one document.

- **Punctuation** — specifies whether to parse punctuation marks as terms.

- **Numbers** — specifies whether to parse numbers as terms.

- **Different Parts of Speech** — specifies whether to identify the parts of speech of parsed terms. If the value of this property is **Yes**, then same terms with different parts of speech are treated as different terms.
• **Ignore Parts of Speech** — accesses a window in which you can select one or more parts of speech to ignore when parsing. Click the ellipsis button to open the Ignore Parts of Speech window. Terms with the selected parts of speech are not parsed and do not appear in node results. This property is not used if the value of **Different Parts of Speech** is **No**.

• **Noun Groups** — specifies whether to identify noun groups. If stemming is turned on, then noun group elements are also stemmed.

• **Synonyms** — specifies a SAS data set that contains synonyms to be treated as equivalent. Default data sets are provided for several languages. You can edit these data sets or create your own. Click the ellipsis button to open the Select a SAS Table window.

• **Find Entities** — specifies whether to identify the entities of parsed terms.

• **Types of Entities** — accesses a window in which you can select one or more entity classifications to parse. Click the ellipsis button to open the Select Entity Types window.

 Note: If the value of **Find Entities** is **Yes** but you have not selected any entity types in the Select Entity Types window, then all entity types are parsed. In other words, deselecting all entity types has the same effect as selecting all of them.

Transform Properties

• **Compute SVD** — specifies whether to compute the singular-value decomposition (SVD) of the term-by-document frequency matrix.

• **SVD Resolution** — specifies the resolution to use to generate the SVD dimensions.

• **Max SVD Dimensions** — specifies the maximum number, greater than or equal to 2, of SVD dimensions to generate.

• **Scale SVD Dimensions** — specifies whether to scale the SVD dimensions by the inverse of the singular values in order to generate equal variances.

• **Frequency Weighting** — specifies the frequency weighting method to use.

• **Term Weight** — specifies the term weighting method to use.

• **Roll up Terms** — specifies whether to first sort parsed terms in descending order of the value of the term weight multiplied by the square root of the number of documents and then roll up these selected terms as variables on the Document data set.

• **No. of Rolled-up Terms** — specifies the number of terms to use to roll up lower-weighted terms. This property is used if the value of **Roll up Terms** is **Yes**.

• **Drop Other Terms** — specifies whether to drop terms if they are not rolled up in the Document data set. This property is used if the value of **Roll up Terms** is **Yes**.

Cluster Properties
Automatically Cluster — specifies whether to perform clustering analysis. If you select **No**, then the remaining Cluster Properties are not used.

Exact or Maximum Number — specifies whether to find an exact number of clusters or any number less than or equal to a maximum number of clusters.

Number of Clusters — specifies the number of clusters. This is the exact number if the value of **Exact or Maximum Number** is **Exact**, and it is the maximum number if the value of **Exact or Maximum Number** is **Maximum**.

Cluster Algorithm — specifies the clustering algorithm.

Ignore Outliers — specifies whether to ignore outliers in the clustering analysis. If the value of this property is **No**, then do one of the following:

* for Hierarchical clustering, outliers are removed
* for Expectation-Maximization clustering, outliers are placed in a single cluster

Hierarchy Levels — (for Hierarchical clustering) specifies the number of levels in the cluster hierarchy. To specify the maximum depth (all levels), enter a period (.).

Descriptive Terms — specifies the number of descriptive terms to display in each cluster.

What to Cluster — specifies whether to cluster roll-up terms or the SVD dimensions.

Text Miner Node Status Properties

These are the status properties that are displayed on the **Text Miner** node:

Create Time — time at which the node was created.

Run ID — identifier of the run of the node. A new identifier is assigned every time the node is run.

Last Error — error message, if any, from the last run.

Last Status — last reported status of the node.

Last Run Time — time at which the node was last run.

Run Duration — length of time required to complete the last node run.

Grid Host — grid host, if any, that was used for computation.

User-Added Node — denotes whether the node was created by a user as a SAS Enterprise Miner Extension node. The value of this property is always **No** for the **Text Miner** node.
Text Miner Node Results

Overview of Text Miner Node Results

Note: The Text Miner node is not available on the Text Mining tab in SAS Text Miner 14.3. The Text Miner node has now been replaced by the functionality in other SAS Text Miner nodes. You can import diagrams from a previous release of SAS Text Miner that had a Text Miner node in the process flow diagram. However, new Text Miner nodes can no longer be created, and property values cannot be changed in imported Text Miner nodes. For more information, see the following topics:

- “Converting SAS Text Miner Diagrams from a Previous Version” on page 179
- “Results Window for the Text Miner Node” on page 187
- “Text Miner Node Graphical and Tabular Results” on page 187
- “Text Miner Node SAS Output Results” on page 189

Results Window for the Text Miner Node

After the Text Miner node runs successfully, you can access the Results window in three ways:

- Click Results in the Run Status window that opens immediately after a successful run of the Text Miner node.
- Click the Results icon on the main Toolbar.
- Right-click the Text Miner node, and click Results.

The Results window for the Text Miner node is similar to the Results window for other nodes in SAS Enterprise Miner. For general information about the Results window, see the SAS Enterprise Miner Help. The icons and main menus are similar to those of other nodes. However, the View menu for the Text Miner node Results window includes selections to access graphical and tabular results.

Note: You can access the SAS log that was generated by the node processing from the SAS Results submenu of the View menu. This log can be a useful debugging tool.

Text Miner Node Graphical and Tabular Results

The following are the graphical results in the Text Miner node Results window:

- The Terms: Attribute by Freq bar chart displays the total frequency of occurrence of terms in the document collection, broken down by attribute. If you position the mouse pointer over a bar, then a tooltip indicates the attribute name and the number of times a term with that attribute appears in the entire document collection.

- The Terms: # of Docs by Frequency: Histogram displays the total frequency of occurrence of terms in the document collection, broken down by binned number of documents. If you position the mouse pointer over a bar, then a tooltip indicates the
range of the bin and the number of terms that appear in a total number of documents within that range.

- The Terms: # of Docs by Frequency: Scatter Plot displays the number of documents in which a term appears versus the frequency of occurrence of that term in the entire document collection. Each data point represents a term. If you position the mouse pointer over a plotted point, then a tooltip indicates the term name, the number of documents in which that term appears, and the number of times that term appears in the entire document collection.

- The Terms: Freq by Weight scatter plot displays the frequency of occurrence of terms in the document collection versus the weight of the term. Each data point represents a term. If you position the mouse pointer over a plotted point, then a tooltip indicates the term name, the frequency of occurrence of the term, and the weight of the term.

- The Terms: Role by Freq bar chart displays the total frequency of occurrence of terms in the document collection, broken down by term role. Each bar represents a role. If you position the mouse pointer over a bar, then a tooltip indicates the role name and the number of times a term with that role appears in the entire document collection.

- The Clusters: Freq by RMS scatter plot (if clustering was performed) displays the number of terms in the clusters versus the root mean squared standard deviation of the clusters. Each data point represents a cluster. If you position the mouse pointer over a plotted point, then a tooltip indicates the number of terms in the cluster, the root mean squared standard deviation of the cluster, and the terms that describe the cluster.

There are two tabular results in the Text Miner node Results window:

- The Terms table displays information about top-level terms (that is, terms that have no parents above them). All graphical results in the Text Miner node Results window are linked to this table. Therefore, you can select an observation in the Terms table, and the associated data points are highlighted in the graphics. Or you can select data points in the graphics, and the associated observations are highlighted in the Terms table.

- (If clustering was performed) The Clusters table displays clustering information including cluster ID, percentage of documents in a cluster, number of documents in a cluster, root mean squared standard deviation of the cluster, and terms that describe the cluster.

Table 13.1 Contents of the Terms Table

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>top-level terms (in lowercase). Terms that are parents are preceded by a plus (+) symbol.</td>
</tr>
<tr>
<td>Role</td>
<td>part of speech of the term, entity classification of the term, or the value Noun Group.</td>
</tr>
<tr>
<td>Attribute</td>
<td>attribute of the term.</td>
</tr>
</tbody>
</table>
Variable | Description
--- | ---
Freq | number of times that the term appears in the document collection.

Documents | number of documents in the collection in which the term appears.

Keep | Y if the term is used in the text mining analysis.

Weight | weight of the term

Text Miner Node SAS Output Results

The SAS output from the **Text Miner** node includes variable summary, summary statistics, and information about the terms. Terms in the output are sorted by their weights.

Text Miner Node Output Data

Note: The **Text Miner** node is not available on the **Text Mining** tab in SAS Text Miner 14.3. The **Text Miner** node has now been replaced by the functionality in other SAS Text Miner nodes. You can import diagrams from a previous release of SAS Text Miner that had a **Text Miner** node in the process flow diagram. However, new **Text Miner** nodes can no longer be created, and property values cannot be changed in imported **Text Miner** nodes. For more information, see “Converting SAS Text Miner Diagrams from a Previous Version” on page 179.

The **Text Miner** node outputs the Documents, Validate, Test, Terms, Cluster, and Out data sets. The Validate and Test data sets exist only if the process flow diagram has a **Data Partition** node before the **Text Miner** node. The Cluster data set exists only if you have clustered the documents. To view the output data sets, click the ellipsis button that is associated with the **Exported Data** property of the **Text Miner** node after the node has been run.

The following table lists the variables in the **Documents**, **Validate**, and **Test** data sets:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>original variables from the input data sources</td>
<td>the roles that are defined in the input data sources</td>
</tr>
</tbody>
</table>

Document ID (_document_) | ID |

SVD dimensions (_SVD_\(<\text{num}\)) | input for the dimensions that are used in a cluster analysis. Otherwise, the role is set to Rejected. |

the length of the vector formed from the SVD dimensions that are used (_SVDLEN_) | Rejected |

Cluster ID (_CLUSTER_) | Segment |
the probability that a document is categorized into a cluster if expectation-maximization clustering is performed (PROB <num>)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>Text</td>
</tr>
<tr>
<td>Role</td>
<td>Input</td>
</tr>
<tr>
<td>Attribute</td>
<td>Input</td>
</tr>
<tr>
<td>Freq</td>
<td>Frequency</td>
</tr>
<tr>
<td># Documents</td>
<td>Input</td>
</tr>
<tr>
<td>Keep</td>
<td>Input</td>
</tr>
<tr>
<td>Term ID</td>
<td>ID</td>
</tr>
<tr>
<td>Parent ID</td>
<td>Input</td>
</tr>
<tr>
<td>Parent_id</td>
<td>ID</td>
</tr>
<tr>
<td>_ispar</td>
<td>Input</td>
</tr>
<tr>
<td>oldkey</td>
<td>Input</td>
</tr>
<tr>
<td>Weight</td>
<td>Input</td>
</tr>
<tr>
<td>SVD dimensions (SVD <num>)</td>
<td>input for the dimensions that are used in a cluster analysis. Otherwise, the role is set to Rejected.</td>
</tr>
<tr>
<td>the length of the vector formed from the SVD dimensions that are used (SVDLEN)</td>
<td>Rejected</td>
</tr>
</tbody>
</table>

The following table lists the variables and their roles in the Terms data set.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>Text</td>
</tr>
<tr>
<td>Role</td>
<td>Input</td>
</tr>
<tr>
<td>Attribute</td>
<td>Input</td>
</tr>
<tr>
<td>Freq</td>
<td>Frequency</td>
</tr>
<tr>
<td># Documents</td>
<td>Input</td>
</tr>
<tr>
<td>Keep</td>
<td>Input</td>
</tr>
<tr>
<td>Term ID</td>
<td>ID</td>
</tr>
<tr>
<td>Parent ID</td>
<td>Input</td>
</tr>
<tr>
<td>Parent_id</td>
<td>ID</td>
</tr>
<tr>
<td>_ispar</td>
<td>Input</td>
</tr>
<tr>
<td>oldkey</td>
<td>Input</td>
</tr>
<tr>
<td>Weight</td>
<td>Input</td>
</tr>
<tr>
<td>SVD dimensions (SVD <num>)</td>
<td>input for the dimensions that are used in a cluster analysis. Otherwise, the role is set to Rejected.</td>
</tr>
<tr>
<td>the length of the vector formed from the SVD dimensions that are used (SVDLEN)</td>
<td>Rejected</td>
</tr>
</tbody>
</table>

The following table lists the variables and their roles in the Cluster data source.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>ID</td>
</tr>
<tr>
<td>the percentage of documents that are in a cluster (Percentage)</td>
<td>Rejected</td>
</tr>
<tr>
<td>SVD dimensions (SVD <num>)</td>
<td>Input</td>
</tr>
</tbody>
</table>
Note: The Cluster data source contains only the SVD dimensions that are used in a cluster analysis.

The Text Miner node creates an OUT data set to be used as an input to the Association node with the role Transaction and the variables _termid_, _DOCUMENT_, and _count_. The _termid_ variable has the role of Target. The OUT data set contains the roles and variables that are required by the Association node. Therefore, the Text Miner node can be linked to the Association node to run a flow diagram with an input data source. For details about the Association node, see the SAS Enterprise Miner documentation.

The following tables list the variables and their roles in the OUT data set.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>termid</td>
<td>Target</td>
</tr>
<tr>
<td>DOCUMENT</td>
<td>ID</td>
</tr>
<tr>
<td>count</td>
<td>Rejected</td>
</tr>
</tbody>
</table>
Appendix 1
Additional Information about Text Mining

The following titles are recommended background reading on text mining:

Index

A
- About 4
- Accessibility 2
- Attributes 35

C
- Clustering 80
- Concept Linking 63
- Converting Diagrams 179

D
- Data Sets 9
- Dictionary Data Set 56
- Document Analysis 8

E
- Encoding 180

F
- File Preprocessing 6

M
- Macros 141
- Multi-Term Lists 40

P
- Parsing 7

R
- Recommended Reading 193
- Roles 35

S
- SAS Text Miner
 - Text Profile Node 83
- Singular Value Decomposition 75
- Start Lists 33
- Stop Lists 33
- Synonym Lists 38

T
- Term Stemming 34
- Term Weighting 57
- Text Cluster Node 65
- Text Filter Node 44
- Text Import Node 11
- Text Miner Node 181
- Text Parsing Node 20
- Text Topic Node 115
- TGSCORE Function 155

U
- User-Defined Topic Lists 128
Gain Greater Insight into Your SAS® Software with SAS Books.

Discover all that you need on your journey to knowledge and empowerment.

support.sas.com/bookstore for additional books and resources.