
Base SAS® 9.4 Procedures 
Guide, Seventh Edition

SAS® Documentation
February 27, 2024



The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2017. Base SAS® 9.4 Procedures Guide, Seventh Edition. 
Cary, NC: SAS Institute Inc.

Base SAS® 9.4 Procedures Guide, Seventh Edition

Copyright © 2017, SAS Institute Inc., Cary, NC, USA

ISBN 978-1-63526-021-2 (Paperback)
ISBN 978-1-62960-818-1 (PDF)

All Rights Reserved. Produced in the United States of America.

For a hard copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any 
means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you 
acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and 
punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted 
materials. Your support of others' rights is appreciated.

U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at 
private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication, or disclosure of the Software 
by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 
227.7202-1(a), DFAR 227.7202-3(a), and DFAR 227.7202-4, and, to the extent required under U.S. federal law, the minimum restricted rights 
as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other 
notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those 
set forth in this Agreement.

SAS Institute Inc., SAS Campus Drive, Cary, NC 27513-2414

February 2024

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and 
other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

9.4-P11:proc



Contents

Syntax Conventions for the SAS Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
What's New in Base SAS 9.4 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

PART 1 Concepts 1

Chapter 1 / Choosing the Right Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Functional Categories of Base SAS Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Report-Writing Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Statistical Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Utility Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Brief Descriptions of Base SAS Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2 / Fundamental Concepts for Using Base SAS Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 21
Language Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Procedure Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Output Delivery System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 3 / Statements with the Same Function in Multiple Procedures . . . . . . . . . . . . . . . . . . . . . . . 73
Statements with the Same Function in Multiple Procedures . . . . . . . . . . . . . . . . . . . 73
Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 4 / In-Database Processing of Base Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Base Procedures That Are Enhanced for In-Database Processing . . . . . . . . . . . . . 91

Chapter 5 / CAS Processing of Base Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
About CAS Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Procedures That Use CAS Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
When CAS Processing Cannot Be Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
BY-Group Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Filtering Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Chapter 6 / Base SAS Procedures Documented in Other Publications . . . . . . . . . . . . . . . . . . . . . . . . 99
Base SAS Procedures Documented in Other Publications . . . . . . . . . . . . . . . . . . . . . 99

PART 2 Procedures 103

Chapter 7 / APPEND Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Overview: APPEND Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Syntax: APPEND Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



Usage: APPEND Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Examples: APPEND Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 8 / AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Overview: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Concepts: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Syntax: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Usage: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Results: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Examples: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Chapter 9 / CALENDAR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Overview: CALENDAR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Concepts: CALENDAR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Syntax: CALENDAR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Results: CALENDAR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Examples: CALENDAR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Chapter 10 / CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Overview: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Concepts: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Syntax: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Usage: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Results: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Examples: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

Chapter 11 / CHART Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Overview: CHART Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Concepts: CHART Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Syntax: CHART Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Results: CHART Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Examples: CHART Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Chapter 12 / CIMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Overview: CIMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Syntax: CIMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Usage: CIMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Examples: CIMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Chapter 13 / COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Overview: COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
Concepts: COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Syntax: COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Usage: COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Results: COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Examples: COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Chapter 14 / CONTENTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Overview: CONTENTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Concepts: CONTENTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Syntax: CONTENTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
Usage: CONTENTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Examples: CONTENTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

iv Contents



Chapter 15 / COPY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Overview: COPY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
Syntax: COPY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
Usage: COPY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Examples: COPY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Chapter 16 / CPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
Overview: CPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
Syntax: CPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
Usage: CPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
Examples: CPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

Chapter 17 / DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
Overview: DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
Concepts: DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
Syntax: DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
Usage: DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
Results: DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
Examples: DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673

Chapter 18 / DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
Overview: DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
Concepts: DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
Syntax: DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
Usage: DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
Examples: DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

Chapter 19 / DELETE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
Overview: DELETE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
Concepts: DELETE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
Syntax: DELETE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
Examples: DELETE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768

Chapter 20 / DISPLAY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
Overview: DISPLAY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
Syntax: DISPLAY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
Usage: DISPLAY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
Examples: DISPLAY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

Chapter 21 / DS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
Overview: DS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
Concepts: DS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
Syntax: DS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
Usage: DS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
Examples: DS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802

Chapter 22 / DSTODS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
Overview: DSTODS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
Concepts: DSTODS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
Syntax: DSTODS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818
Examples: DSTODS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819

Chapter 23 / EXPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
Overview: EXPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
Syntax: EXPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827

Contents v



Examples: EXPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

Chapter 24 / FCMP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849
Overview: FCMP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850
Concepts: FCMP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
Syntax: FCMP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
Usage: FCMP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873
Examples: FCMP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913

Chapter 25 / FCMP Special Functions and Call Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 915
Overview of Special Functions and CALL Routines . . . . . . . . . . . . . . . . . . . . . . . . . 916
Functions and CALL Routines by Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916
Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918

Chapter 26 / FCmp Function Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961
Introduction to the FCmp Function Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961
Open the FCmp Function Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962
Working with Existing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
Creating a New Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968
Displaying New Libraries in the FCmp Function Editor . . . . . . . . . . . . . . . . . . . . . . . 971
Viewing the Log Window, Function Browser, and Data Explorer . . . . . . . . . . . . . . . 971
Using Functions in Your DATA Step Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975

Chapter 27 / FEDSQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977
Overview: FEDSQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978
Concepts: FEDSQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979
Syntax: FEDSQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983
Usage: FEDSQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992
Examples: FEDSQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002

Chapter 28 / FMTC2ITM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
Overview: FMTC2ITM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
Syntax: FMTC2ITM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024
Examples: FMTC2ITM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026

Chapter 29 / FONTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
Overview: FONTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
Concepts: FONTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032
Syntax: FONTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035
Examples: FONTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044

Chapter 30 / FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049
Overview: FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050
Concepts: FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052
Syntax: FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058
Usage: FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101
Results: FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107
Examples: FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115

Chapter 31 / FSLIST Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
Overview: FSLIST Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
Syntax: FSLIST Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
Usage: FSLIST Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179

vi Contents



Chapter 32 / GROOVY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
Overview: GROOVY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
Syntax: GROOVY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188
Usage: GROOVY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195
Examples: GROOVY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197

Chapter 33 / HADOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201
Overview: HADOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201
Syntax: HADOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202
Usage: HADOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216
Examples: HADOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217

Chapter 34 / HDMD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225
Overview: HDMD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225
Concepts: HDMD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226
Syntax: HDMD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1232
Examples: HDMD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239

Chapter 35 / HTTP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245
Overview: HTTP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246
Syntax: HTTP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246
Usage: HTTP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261
Examples: HTTP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267

Chapter 36 / IMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287
Overview: IMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287
Syntax: IMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292
Examples: IMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302

Chapter 37 / JAVAINFO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319
Overview: JAVAINFO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319
Syntax: JAVAINFO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319

Chapter 38 / JSON Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1321
Overview: JSON Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322
Concepts: JSON Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322
Syntax: JSON Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326
Usage: JSON Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1339
Examples: JSON Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1343

Chapter 39 / LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1363
Overview: LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1364
Concepts: LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365
Syntax: LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1380
Usage: LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1383
Examples: LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1385

Chapter 40 / MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1419
Overview: MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1420
Concepts: MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1423
Syntax: MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1430
Usage: MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465
Results: MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1467
Examples: MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1470
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1512

Contents vii



Chapter 41 / MIGRATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1513
Overview: MIGRATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1514
Concepts: MIGRATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1514
Syntax: MIGRATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1517
Usage: MIGRATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1521
Examples: MIGRATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1528

Chapter 42 / OPTIONS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1533
Overview: OPTIONS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1533
Syntax: OPTIONS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1534
Usage: OPTIONS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1539
Results: OPTIONS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1548
Examples: OPTIONS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1549

Chapter 43 / OPTLOAD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555
Overview: OPTLOAD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555
Syntax: OPTLOAD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556
Examples: OPTLOAD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1557

Chapter 44 / OPTSAVE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1561
Overview: OPTSAVE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1561
Syntax: OPTSAVE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1562
Usage: OPTSAVE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1563
Examples: OPTSAVE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1566

Chapter 45 / PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1569
Overview: PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1570
Concepts: PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1573
Syntax: PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1578
Usage: PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1597
Results: PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1599
Examples: PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1601

Chapter 46 / PMENU Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641
Overview: PMENU Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1642
Concepts: PMENU Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1643
Syntax: PMENU Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1646
Examples: PMENU Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1661

Chapter 47 / PRESENV Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1685
Overview: PRESENV Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1685
Concepts: PRESENV Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1686
Syntax: PRESENV Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1687
Usage: PRESENV Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1688
Examples: PRESENV Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1688

Chapter 48 / PRINT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1695
Overview: PRINT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1696
Syntax: PRINT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1699
Usage: PRINT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1723
Results: PRINT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1733
Examples: PRINT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1737

Chapter 49 / PRINTTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1797
Overview: PRINTTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1797
Syntax: PRINTTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1798

viii Contents



Usage: PRINTTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1803
Examples: PRINTTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1805

Chapter 50 / PRODUCT_STATUS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1821
Overview: PRODUCT_STATUS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1821
Syntax: PRODUCT_STATUS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1822
Examples: PRODUCT_STATUS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1823

Chapter 51 / PROTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1825
Overview: PROTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1826
Concepts: PROTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1826
Syntax: PROTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1833
Usage: PROTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1839
Examples: PROTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1849

Chapter 52 / PRTDEF Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1853
Overview: PRTDEF Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1853
Syntax: PRTDEF Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1854
Usage: PRTDEF Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1856
Examples: PRTDEF Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1861

Chapter 53 / PRTEXP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1871
Overview: PRTEXP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1871
Syntax: PRTEXP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1872
Examples: PRTEXP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1874

Chapter 54 / PWENCODE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1877
Overview: PWENCODE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1877
Concepts: PWENCODE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1878
Syntax: PWENCODE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1880
Examples: PWENCODE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1882

Chapter 55 / QDEVICE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1889
Overview: QDEVICE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1890
Concepts: QDEVICE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1890
Syntax: QDEVICE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1891
Usage: QDEVICE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1908
Examples: QDEVICE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1922

Chapter 56 / RANK Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1937
Overview: RANK Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1938
Concepts: RANK Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1939
Syntax: RANK Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1943
Results: RANK Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1951
Examples: RANK Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1952
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1960

Chapter 57 / REGISTRY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1963
Overview: REGISTRY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1963
Syntax: REGISTRY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1964
Usage: REGISTRY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1970
Examples: REGISTRY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1973

Chapter 58 / REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1981
Overview: REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1982
Concepts: REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1987

Contents ix



Syntax: REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2003
Usage: REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2068
Results: REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2084
Examples: REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2096

Chapter 59 / REPORT Procedure Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153
Overview of REPORT Procedure Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153
Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2154

Chapter 60 / S3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2183
Overview: S3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2184
Concepts: S3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2184
Syntax: S3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2189
Examples: S3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2204

Chapter 61 / SCAPROC Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2213
Overview: SCAPROC Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2213
Concepts: SCAPROC Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2214
Syntax: SCAPROC Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2215
Results: SCAPROC Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2217
Examples: SCAPROC Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2221

Chapter 62 / SCOREACCEL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2227
Overview: SCOREACCEL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2227
Concepts: SCOREACCEL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2228
Syntax: SCOREACCEL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2228
Examples: SCOREACCEL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2249

Chapter 63 / SOAP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2263
Overview: SOAP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2263
Concepts: SOAP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2264
Syntax: SOAP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2265
Usage: SOAP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2269
Examples: SOAP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2272

Chapter 64 / SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2277
Overview: SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2278
Concepts: SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2279
Syntax: SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2286
Usage: SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2307
Results: SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2310
Examples: SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2311

Chapter 65 / SQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2331
A Brief Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2331
Example: Using the SQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2332

Chapter 66 / SQOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2333
Overview: SQOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2333
Syntax: SQOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2334
Usage: SQOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2337
Examples: SQOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2338

Chapter 67 / STANDARD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2341
Overview: STANDARD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2341
Syntax: STANDARD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2344

x Contents



Usage: STANDARD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2351
Results: STANDARD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2352
Examples: STANDARD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2352

Chapter 68 / STREAM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2359
Overview: STREAM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2359
Concepts: STREAM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2360
Syntax: STREAM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2362
Usage: STREAM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2365

Chapter 69 / SUMMARY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2373
Overview: SUMMARY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2373
Syntax: SUMMARY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2374

Chapter 70 / TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2377
Overview: TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2378
Concepts: TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2381
Syntax: TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2385
Usage: TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2430
Results: TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2453
Examples: TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2464
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2532

Chapter 71 / TIMEPLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2533
Overview: TIMEPLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2533
Syntax: TIMEPLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2536
Results: TIMEPLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2546
Examples: TIMEPLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2549

Chapter 72 / TRANSPOSE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2563
Overview: TRANSPOSE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2564
Syntax: TRANSPOSE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2568
Results: TRANSPOSE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2577
Examples: TRANSPOSE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2579

Chapter 73 / XSL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2595
Overview: XSL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2595
Syntax: XSL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2596
Examples: XSL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2598

PART 3 Appendixes 2607

Appendix 1 / SAS Elementary Statistics Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2609
Overview of SAS Elementary Statistics Procedures . . . . . . . . . . . . . . . . . . . . . . . . 2609
Keywords and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2610
Statistical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2619

Appendix 2 / Operating Environment-Specific Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2651
Descriptions of Operating Environment-Specific Procedures . . . . . . . . . . . . . . . . 2651

Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures . . . . . . . . . . . . . . . . . . . . . . . . . 2653
Overview of Raw Data and DATA Steps for Base SAS Procedures . . . . . . . . . . . 2654

Contents xi



CARSURVEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2655
CENSUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2656
CHARITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2657
CONTROL Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2659
CUSTOMER_RESPONSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2690
DJIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2692
EDUCATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2693
EMPDATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2694
ENERGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2696
EXP Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2697
EXPREV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2698
GROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2700
MATCH_11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2701
PROCLIB.DELAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2703
PROCLIB.EMP95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2704
PROCLIB.EMP96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2705
PROCLIB.INTERNAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2706
PROCLIB.LAKES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2706
PROCLIB.MARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2707
PROCLIB.PAYLIST2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2708
PROCLIB.PAYROLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2708
PROCLIB.PAYROLL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2711
PROCLIB.SCHEDULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2712
PROCLIB.STAFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2715
PROCLIB.STAFF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2718
PROCLIB.SUPERV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2718
RADIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2719
SALES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2731

Appendix 4 / ICU License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2733
ICU Licence: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 . . . . . . . . . . . . . . . . . 2733
Third-Party Software Licenses: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 . 2734
Unicode, Inc. License Agreement - Data Files and Software: ICU 58 and Later 2740

xii Contents



Syntax Conventions for the SAS 
Language

Overview of Syntax Conventions for the 
SAS Language

SAS uses standard conventions in the documentation of syntax for SAS language 
elements. These conventions enable you to easily identify the components of SAS 
syntax. The conventions can be divided into these parts:

n syntax components

n style conventions

n special characters

n references to SAS libraries and external files

Syntax Components
The components of the syntax for most language elements include a keyword and 
arguments. For some language elements, only a keyword is necessary. For other 
language elements, the keyword is followed by an equal sign (=). The syntax for 
arguments has multiple forms in order to demonstrate the syntax of multiple 
arguments, with and without punctuation.

keyword
specifies the name of the SAS language element that you use when you write 
your program. Keyword is a literal that is usually the first word in the syntax. In a 
CALL routine, the first two words are keywords.

In these examples of SAS syntax, the keywords are bold:

CHAR (string, position)
CALL RANBIN (seed, n, p, x);
ALTER (alter-password)
BEST w.

xiii



REMOVE <data-set-name>

In this example, the first two words of the CALL routine are the keywords:

CALL RANBIN(seed, n, p, x)

The syntax of some SAS statements consists of a single keyword without 
arguments:

DO;
... SAS code ...
END;

Some system options require that one of two keyword values be specified:

DUPLEX | NODUPLEX

Some procedure statements have multiple keywords throughout the statement 
syntax:

CREATE <UNIQUE> INDEX index-name ON table-name (column-1 <, 
column-2, …>)

argument
specifies a numeric or character constant, variable, or expression. Arguments 
follow the keyword or an equal sign after the keyword. The arguments are used 
by SAS to process the language element. Arguments can be required or 
optional. In the syntax, optional arguments are enclosed in angle brackets ( < 
> ).

In this example, string and position follow the keyword CHAR. These arguments 
are required arguments for the CHAR function:

CHAR (string, position)

Each argument has a value. In this example of SAS code, the argument string 
has a value of 'summer', and the argument position has a value of 4:

x=char('summer', 4);

In this example, string and substring are required arguments, whereas modifiers 
and startpos are optional.

FIND(string, substring <, modifiers> <, startpos>

argument(s)
specifies that one argument is required and that multiple arguments are allowed. 
Separate arguments with a space. Punctuation, such as a comma ( , ) is not 
required between arguments.

The MISSING statement is an example of this form of multiple arguments:

MISSING character(s);

<LITERAL_ARGUMENT> argument-1 <<LITERAL_ARGUMENT> argument-2 ... >
specifies that one argument is required and that a literal argument can be 
associated with the argument. You can specify multiple literals and argument 
pairs. No punctuation is required between the literal and argument pairs. The 
ellipsis (...) indicates that additional literals and arguments are allowed.

The BY statement is an example of this argument:

BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …>;

xiv Syntax Conventions for the SAS Language



argument-1 <options> <argument-2 <options> ...>
specifies that one argument is required and that one or more options can be 
associated with the argument. You can specify multiple arguments and 
associated options. No punctuation is required between the argument and the 
option. The ellipsis (...) indicates that additional arguments with an associated 
option are allowed.

The FORMAT procedure PICTURE statement is an example of this form of 
multiple arguments:

PICTURE name <(format-options)>
<value-range-set-1 <(picture-1-options)>
<value-range-set-2 <(picture-2-options)> …>>;

argument-1=value-1 <argument-2=value-2 ...>
specifies that the argument must be assigned a value and that you can specify 
multiple arguments. The ellipsis (...) indicates that additional arguments are 
allowed. No punctuation is required between arguments.

The LABEL statement is an example of this form of multiple arguments:

LABEL variable-1=label-1 <variable-2=label-2 …>;

argument-1 <, argument-2, ...>
specifies that one argument is required and that you can specify multiple 
arguments that are separated by a comma or other punctuation. The ellipsis (...) 
indicates a continuation of the arguments, separated by a comma. Both forms 
are used in the SAS documentation.

Here are examples of this form of multiple arguments:

AUTHPROVIDERDOMAIN (provider-1:domain-1 <, provider-2:domain-2, …>
INTO :macro-variable-specification-1 <, :macro-variable-specification-2, …>

Note: In most cases, example code in SAS documentation is written in lowercase 
with a monospace font. You can use uppercase, lowercase, or mixed case in the 
code that you write.

Style Conventions
The style conventions that are used in documenting SAS syntax include uppercase 
bold, uppercase, and italic:

UPPERCASE BOLD
identifies SAS keywords such as the names of functions or statements. In this 
example, the keyword ERROR is written in uppercase bold:

ERROR <message>;

UPPERCASE
identifies arguments that are literals.

In this example of the CMPMODEL= system option, the literals include BOTH, 
CATALOG, and XML:

Style Conventions xv



CMPMODEL=BOTH | CATALOG | XML |

italic
identifies arguments or values that you supply. Items in italic represent user-
supplied values that are either one of the following:

n nonliteral arguments. In this example of the LINK statement, the argument 
label is a user-supplied value and therefore appears in italic:

LINK label;

n nonliteral values that are assigned to an argument. 

In this example of the FORMAT statement, the argument DEFAULT is 
assigned the variable default-format:

FORMAT variable(s) <format > <DEFAULT = default-format>;

Special Characters
The syntax of SAS language elements can contain the following special characters:

=
an equal sign identifies a value for a literal in some language elements such as 
system options.

In this example of the MAPS system option, the equal sign sets the value of 
MAPS:

MAPS=location-of-maps

< >
angle brackets identify optional arguments. A required argument is not enclosed 
in angle brackets.

In this example of the CAT function, at least one item is required:

CAT (item-1 <, item-2, …>)

|
a vertical bar indicates that you can choose one value from a group of values. 
Values that are separated by the vertical bar are mutually exclusive.

In this example of the CMPMODEL= system option, you can choose only one of 
the arguments:

CMPMODEL=BOTH | CATALOG | XML

...
an ellipsis indicates that the argument can be repeated. If an argument and the 
ellipsis are enclosed in angle brackets, then the argument is optional. The 
repeated argument must contain punctuation if it appears before or after the 
argument.

In this example of the CAT function, multiple item arguments are allowed, and 
they must be separated by a comma:

CAT (item-1 <, item-2, …>)

xvi Syntax Conventions for the SAS Language



'value' or "value"
indicates that an argument that is enclosed in single or double quotation marks 
must have a value that is also enclosed in single or double quotation marks.

In this example of the FOOTNOTE statement, the argument text is enclosed in 
quotation marks:

FOOTNOTE <n> <ods-format-options 'text' | "text">;

;
a semicolon indicates the end of a statement or CALL routine.

In this example, each statement ends with a semicolon:

data namegame;
   length color name $8;
   color = 'black';
   name = 'jack';
   game = trim(color) || name;
run;

References to SAS Libraries and 
External Files

Many SAS statements and other language elements refer to SAS libraries and 
external files. You can choose whether to make the reference through a logical 
name (a libref or fileref) or use the physical filename enclosed in quotation marks.

If you use a logical name, you typically have a choice of using a SAS statement 
(LIBNAME or FILENAME) or the operating environment's control language to make 
the reference. Several methods of referring to SAS libraries and external files are 
available, and some of these methods depend on your operating environment.

In the examples that use external files, SAS documentation uses the italicized 
phrase file-specification. In the examples that use SAS libraries, SAS 
documentation uses the italicized phrase SAS-library enclosed in quotation marks:

infile file-specification obs = 100;
libname libref 'SAS-library';

References to SAS Libraries and External Files xvii



xviii Syntax Conventions for the SAS Language



What's New in Base SAS 9.4 
Procedures

Overview
The following procedures are new:

n PROC AUTHLIB

n PROC DELETE

n PROC DS2

n PROC DSTODS2

n PROC FEDSQL

n PROC FMTC2ITM

n PROC HDMD

n PROC JSON

n PROC LUA

n PROC PRESENV

n PROC PRODUCT_STATUS

n PROC S3

n PROC SCOREACCEL

n PROC SQOOP

n PROC STREAM

The following Base SAS procedures have been enhanced:

PROC APPEND PROC IMPORT
PROC CIMPORT PROC MIGRATE
PROC CONTENTS PROC OPTIONS
PROC COPY PROC PRINT
PROC CPORT PROC PRINTTO
PROC DATASETS PROC PROTO
PROC EXPORT PROC PWENCODE
PROC FCMP PROC QDEVICE

xix



PROC FONTREG PROC REPORT
PROC FORMAT PROC SOAP
PROC HADOOP PROC SORT
PROC HDMD PROC SQOOP
PROC HTTP PROC XSL

New Base SAS Procedures

The AUTHLIB Procedure
The AUTHLIB procedure is a utility procedure that enables you to manage 
metadata-bound libraries. For more information, see Chapter 8, “AUTHLIB 
Procedure,” on page 123.

SAS 9.4M1 has a new option for the AUTHLIB procedure. By using the 
REQUIRE_ENCRYPTION=YES option in the CREATE or MODIFY statements, an 
administrator can require that all data sets in a metadata-bound library be 
automatically encrypted when created. For more information, see “Requiring 
Encryption for Metadata-Bound Data Sets” on page 132.

SAS 9.4M3 has the following changes and enhancements for the MODIFY 
statement of the AUTHLIB procedure:

n The PURGE statement removes any retained metadata-bound library credentials 
older than a given date of replacement. For more information, see “PURGE 
Statement” on page 145 and “Retaining and Purging Metadata-Bound Library 
Credentials” on page 131.

n The MODIFY statement has a PURGE= option that automatically removes all 
retained metadata-bound library credentials if all tables in the library are 
successfully modified to the newer credentials. For more information, see 
“PURGE=YES | NO” on page 143 and “Retaining and Purging Metadata-Bound 
Library Credentials” on page 131.

SAS 9.4M5 adds a stronger encryption AES2 algorithm.

The DELETE Procedure
The DELETE procedure enables you to delete SAS files from the disk or tape on 
which they are stored. For more information, see Chapter 19, “DELETE Procedure,” 
on page 763.

xx What's New in Base SAS 9.4 Procedures



The DS2 Procedure
The DS2 procedure enables you to submit DS2 language statements from a Base 
SAS session. DS2 is a SAS programming language that is appropriate for advanced 
data manipulation and data modeling applications. For more information, see SAS 
DS2 Language Reference. DS2 supports many data types besides SAS character 
and numeric. When appropriate SAS/ACCESS software is installed, DS2 can 
manipulate data in some, but not all, SAS/ACCESS data sources. In SAS 9.0, the 
language supports access to SAS data sets, SAS Scalable Performance Data 
(SPD) Engine data sets, and tables from Aster, DB2 for UNIX and Windows 
operating environments, Greenplum, Netezza, SAP, Sybase IQ, and Teradata 
databases. For more information, see Chapter 21, “DS2 Procedure,” on page 779.

SAS 9.4M1 has a new name for the INDB= procedure option. The name changed to 
DS2ACCEL=. The default value for the option also changed from YES to NO, which 
prevents DS2 code from executing in the database unless requested. INDB= is still 
supported as an alias. SAS 9.4M1 adds support for SAP HANA as a data source, 
when appropriate SAS/ACCESS software is installed.

SAS 9.4M2 has a new XCODE= procedure option that controls the behavior of the 
SAS session when an NLS transcoding failure occurs. In addition, the SYSCC 
macro variable now contains the current SAS condition code that is returned to your 
operating environment. SAS 9.4M2 adds support for Hive and PostgreSQL as data 
sources, when appropriate SAS/ACCESS software is installed.

SAS 9.4M3 adds a new LIBS= procedure option that enables you to override the 
default data source connection string that is sent the DS2 program, which includes 
all active librefs. LIBS= restricts the data source connection to the specified libref(s) 
and the Work library or User library (if a User library is defined). LIBS= can facilitate 
connections when many librefs are active in the SAS session. SAS 9.4M3 adds 
support for HAWQ and Impala as data sources, when appropriate SAS/ACCESS 
software is installed.

SAS 9.4M4 adds SAS Scalable Performance Data (SPD) Server tables as a data 
source. PROC DS2 can access SPD Server 5.3 and later.

SAS 9.4M5 adds the following new features:

n Support for Amazon Redshift, Microsoft SQL Server, and Vertica as data 
sources, when appropriate SAS/ACCESS software is installed. 

n Support for SAS Cloud Analytic Services (CAS) tables as a data source. You 
must have SAS Viya 3.3 software in addition to SAS 9.4M5 software. You must 
start a CAS session. You connect to the CAS session by specifying a new 
SESSREF= or new SESSUUID= procedure option. The SESSREF= procedure 
option identifies the CAS session by its session name. The SESSUUID= 
procedure option identifies the session by its universally unique identifier (UUID). 
You work with data in memory. PROC DS2 provides no way to promote or 
persist data in CAS.

SAS 9.4M6 adds support for JDBC-compliant databases as data sources, when 
appropriate SAS/ACCESS software is installed.

PROC DS2 is included in SAS Viya beginning with SAS Viya 3.1. In SAS Viya 3.1, 
PROC DS2 supports SAS data sets and SAS Cloud Analytic Services (CAS) tables 
as data sources. The DS2 functionality of SAS 9.4 is available for SAS data sets. 

New Base SAS Procedures xxi



Most DS2 functionality is available in CAS, but not all of it. For information about the 
differences, see SAS DS2 Programmer’s Guide. You must start a CAS session. You 
connect to the CAS session by specifying the SESSREF= or SESSUUID= 
procedure option. You must create tables or explicitly load tables in your CAS 
session before you can manipulate them with PROC DS2. All work is in the default 
caslib, unless you assign a caslib. For more information, see SAS Cloud Analytic 
Services: User’s Guide. You work with CAS tables in memory. PROC DS2 cannot 
be used to persist tables to the CAS server or to promote them to other CAS 
sessions.

In SAS Viya 3.2, PROC DS2 can automatically load tables into the CAS session 
when you reference a caslib that specifies a SAS data connector.

SAS Viya 3.3 adds support for SPD Engine data sets and for all SAS 9.4 external 
data sources, except SPD Server, as data sources in SAS Viya. The procedure 
operates on the data sources on the SAS Compute Server by default. You can 
process external data sources that have a data connector in CAS by assigning a 
caslib and specifying the SESSREF= or SESSUUID= procedure option on the 
PROC DS2 statement. Not all data sources have data connectors. See information 
about available data connectors in SAS Cloud Analytic Services: User’s Guide.

SAS Viya 3.4 adds the following features:

n Support for JDBC-compliant databases as data sources in SAS Viya. When 
appropriate SAS/ACCESS software is installed and a SAS library is assigned, 
you can process JDBC databases with all of the DS2 functionality that is 
available for a SAS library. When you start a CAS session and assign a caslib, 
you can process data from JDBC databases on the CAS server. 

n Support for accessing SPD Server tables from SAS Viya. SPD Server tables are 
accessed by assigning a libref for the server using the SAS Viya client for SPD 
Server, SASSPDS. A SAS data connector is not available for SPD Server.

Beginning in April 2019, the MongoDB and Salesforce non-relational databases are 
supported as data sources for SAS 9.4M6. Access to both databases is Read-only 
and through a SAS library. Appropriate SAS/ACCESS software must be installed.

Beginning in August 2019, the Google BigQuery and Snowflake databases are 
supported as data sources for SAS 9.4M6 and for SAS Viya 3.4. Read and write 
access is supported from a SAS library and on the CAS server. Appropriate 
SAS/ACCESS software must be installed.

Beginning in November 2019 on SAS 9.4M6 and with SAS Viya 3.5, write access is 
available for MongoDB and Salesforce data sources. The write support is available 
through a SAS library and on the CAS server. Appropriate SAS/ACCESS software 
must be installed.

In addition in SAS Viya 3.5, the VARBINARY data type is supported for DS2 
programming in CAS.

Beginning with SAS 9.4M7, Spark and Yellowbrick are supported as data sources, 
when appropriate SAS/ACCESS software is installed. Access is read and write 
through a SAS library only.

xxii What's New in Base SAS 9.4 Procedures



The DSTODS2 Procedure
SAS Viya 3.4 adds support for the new OUTDIR= argument that enables you to 
specify the output directory name for the file.

SAS 9.4M5 adds support for the DSTODS2 procedure. This procedure enables you 
to translate a subset of your SAS DATA step code into DS2 code. Then, if 
necessary, you can revise your program to take advantage of DS2 features and 
submit your program using PROC DS2. For more information, see Chapter 22, 
“DSTODS2 Procedure,” on page 813.

The FEDSQL Procedure
The FEDSQL procedure enables you to submit FedSQL language statements from 
a Base SAS session. The FedSQL language is the SAS implementation of ANSI 
SQL:1999 core standard. FedSQL supports many more data types than SAS 
character and numeric and supports federated access to data.For more information 
about the FedSQL language, see SAS FedSQL Language Reference. When 
appropriate SAS/ACCESS software is installed, FedSQL can create, query, and 
update data in some, but not all, SAS/ACCESS data sources. In SAS 9.0, the 
language supports access to SAS data sets, SAS Scalable Performance Data 
(SPD) Engine data sets, and tables from Aster, DB2 for UNIX and Windows 
operating environments, Greenplum, Netezza, SAP, Sybase IQ, and Teradata 
databases. For more information, see Chapter 27, “FEDSQL Procedure,” on page 
977.

SAS 9.4M1 adds support for SAP HANA as a data source, when appropriate 
SAS/ACCESS software is installed.

SAS 9.4M2 adds the new XCODE= option that controls the behavior of the SAS 
session when an NLS transcoding failure occurs. SAS 9.4M2 adds support for Hive 
and PostgreSQL as data sources, when appropriate SAS/ACCESS software is 
installed.

SAS 9.4M3 adds the following features:

n The new LIBS= procedure option enables you to override the default data source 
connection string that is sent the FedSQL program, which includes all active 
librefs. LIBS= restricts the data source connection to the specified libref(s) and 
the Work library or User library (if a User library is assigned). LIBS= can facilitate 
connections when many librefs are active in the SAS session.

n Support for HAWQ and Impala as data sources, when appropriate 
SAS/ACCESS software is installed.

n The behavior of the QUIT statement is documented. 

SAS 9.4M4 adds SAS Scalable Performance Data (SPD) Server tables as a data 
source. PROC FEDSQL can access SPD Server 5.3 and later. The documentation 
has been enhanced to include an example that shows how to use a DS2 package 
method as an expression.

SAS 9.4M5 adds the following new features:

New Base SAS Procedures xxiii



n Support for Amazon Redshift, Microsoft SQL Server, and Vertica as data 
sources, when appropriate SAS/ACCESS software is installed.

n Support for SAS Cloud Analytic Services (CAS) tables as a data source. You 
must have SAS Viya 3.3 software in addition to SAS 9.4M5 software. You must 
start a CAS session. You connect to the CAS session by specifying a new 
SESSREF= or SESSUUID= procedure option. The SESSREF= option identifies 
the CAS session by its session name. The SESSUUID= option identifies the 
session by its universally unique identifier (UUID). You must load tables into CAS 
before you can operate on them using the CAS server. FedSQL functionality in 
CAS is limited. For more information, see SAS Viya: FedSQL Programming for 
SAS Cloud Analytic Services. You operate on tables in memory. PROC FEDSQL 
cannot be used to persist a table to the CAS server or to promote a table to 
another CAS session.

SAS 9.4M6 adds support for JDBC-compliant databases as data sources, when 
appropriate SAS/ACCESS software is installed.

PROC FEDSQL is included in SAS Viya applications beginning with SAS Viya 3.1. 
In SAS Viya 3.1, PROC FEDSQL supports SAS data sets and SAS Cloud Analytic 
Services (CAS) tables as data sources. The FedSQL functionality of SAS 9.4 is 
available for SAS data sets. A subset of the functionality that FedSQL has in SAS 
9.4 is available for CAS tables. For information about CAS functionality, see SAS 
Viya: FedSQL Programming for SAS Cloud Analytic Services. You connect to a CAS 
session by specifying the SESSREF= or SESSUUID= procedure option. The 
SESSREF= option identifies the CAS session by its session name. The 
SESSUUID= option identifies the session by its universally unique identifier (UUID). 
You must explicitly load tables in your CAS session before you can submit FedSQL 
statements. You work with the CAS tables in memory. PROC FEDSQL cannot be 
used to persist tables to the CAS server or promote them to other CAS sessions.

SAS Viya 3.1 adds two procedure options. The new _METHOD procedure option 
prints a text description of the FedSQL query plan for executing the specified 
FedSQL statements. The new _POSTOPTPLAN procedure option prints an XML 
tree illustrating the FedSQL query plan.

In SAS Viya 3.2, PROC FEDSQL can automatically load tables into CAS when you 
reference a caslib that specifies a SAS data connector.

SAS Viya 3.3 adds support for SPD Engine data sets and for all SAS 9.4 external 
data sources, except SPD Server, as data sources in SAS Viya. The procedure 
operates on the data sources on the SAS Compute Server by default. You can 
process external data sources that have a data connector in CAS by assigning a 
caslib and specifying the SESSREF= or SESSUUID= procedure option on the 
PROC DS2 statement. Not all data sources have data connectors. See information 
about available data connectors in SAS Cloud Analytic Services: User’s Guide.

In addition, SAS Viya 3.3 adds the following new features in CAS:

n FedSQL implicit pass-through is available for SQL-based caslibs. In the previous 
SAS Viya release, with SAS data connector software, FedSQL automatically 
loaded data into CAS for processing. In SAS Viya 3.3, the FedSQL language 
supports single-source, full query implicit pass-through in CAS. When a request 
is accessing a single data source, an attempt is made to implicitly pass the full 
query down to the data source for processing. If pass-through is not possible, the 
request is loaded for processing in CAS. FEDSQL output is always an in-
memory CAS table. 

n PROC FEDSQL supports a new procedure option, CNTL=. CNTL= specifies 
optional control parameters for the FedSQL query planner in CAS. 

xxiv What's New in Base SAS 9.4 Procedures



SAS Viya 3.4 adds the following functionality:

n Support for JDBC-compliant databases as data sources in SAS Viya, when 
appropriate SAS/ACCESS software is installed. You can process JDBC 
databases with all of the FedSQL functionality that is available for a SAS library. 
When a caslib is assigned, you can process JDBC databases with the FedSQL 
functionality that is available in CAS.

n Support for explicit pass-through in CAS libraries. For more information, see 
SAS Viya: FedSQL Programming for SAS Cloud Analytic Services.

n Support for accessing SPD Server tables from SAS Viya. SPD Server tables are 
accessed by assigning a libref for the server using the SAS Viya client for SPD 
Server (SASSPDS). A SAS data connector is not available for SPD Server.

Beginning in April 2019, the MongoDB and Salesforce non-relational databases are 
supported as data sources for SAS 9.4M6. Access to both databases is Read-only 
and through a SAS library. Appropriate SAS/ACCESS software must be installed.

Beginning in August 2019, the Google BigQuery and Snowflake databases are 
supported as data sources for SAS 9.4M6 and for SAS Viya 3.4. Read and Write 
access is supported from a SAS library and on the CAS server. Appropriate 
SAS/ACCESS software must be installed.

Beginning in November 2019 on SAS 9.4M6 and with SAS Viya 3.5, write access is 
available for MongoDB and Salesforce data sources. The write support is available 
from a SAS library and on the CAS server. Appropriate SAS/ACCESS software 
must be installed.

Also in SAS Viya 3.5:

n use of the UNION set operator is supported for FedSQL programming in CAS

n the VARBINARY data type is supported for FedSQL programming in CAS

n there are several CNTL= options for optimizing FedSQL performance on the 
CAS server: DYNAMICCARDINALITY, OPTIMIZEVARBINARYPRECISION, and 
OPTIMIZEVARCHARPRECISION. For more information, see 
“CNTL=(parameter)” on page 986.

n the output of the _METHOD procedure option has changed. This procedure 
option no longer returns the stage query and number of threads used by a 
FedSQL query plan in its textual description of the plan. 

n there is a new CNTL= option, showStages, which returns the information 
previously printed by the _METHOD procedure option. In addition, showStages 
returns query execution details such as whether the tables in a query were 
partitioned, the number of rows and columns processed by each stage of the 
query, and the elapsed time for each processing stage.

Beginning with SAS 9.4M7, Spark and Yellowbrick are supported as data sources, 
when appropriate SAS/ACCESS software is installed. Access is read and write 
through a SAS library only.

The FMTC2ITM Procedure
The December 2017 release of SAS 9.4M5 adds support for the FMTC2ITM 
procedure. This procedure converts one or more format catalogs into a single CAS 
item store.

New Base SAS Procedures xxv



The HDMD Procedure
The HDMD procedure generates metadata that is defined in SAS for tables or files. 
It does not rely on Hive or HiveServer2.

The JSON Procedure
May 2022: The documentation has been updated to clarify the behavior of the 
KEYS | NOKEYS and SASTAGS | NOSASTAGS options. In addition, there are new 
examples: “Example 3: Suppressing SAS Variable Names in Observation Data 
When Using the EXPORT Statement” and “Example 5: Writing Values and Exporting 
Data in the Same Program”.

The JSON procedure reads data from a SAS data set and writes it to an external file 
in JSON representation. For more information, see Chapter 38, “JSON Procedure,” 
on page 1321.

The LUA Procedure
SAS 9.4M3 adds support for the LUA procedure. This procedure enables you to run 
Lua code within a SAS session and to call SAS functions within Lua commands. For 
more information, see Chapter 39, “LUA Procedure,” on page 1363.

In SAS 9.4M5, the following enhancements were made for PROC LUA:

n For customers running SAS Viya, PROC LUA enables you to call CAS actions.

n The LUA_PATH environment variable was added. Use this environment variable 
to identify multiple locations for Lua scripts when one or more locations contains 
a special character, such as a single quotation mark.

n The SAS.OPEN function accepts data set options, such as KEEP=, DROP=, or 
WHERE=.

n The SAS.PUT_VALUE function replaces the SAS.PUT function from previous 
releases. The SAS.PUT_VALUE function requires you to identify a variable by its 
name only (and does not accept its position in the data set).

n Support for several functions from the TABLE library has been added. These 
functions are TABLE.CONCAT, TABLE.INSERT, TABLE.REMOVE, and 
TABLE.SORT.

In SAS Viya 3.3, support was added for the VARCHAR data type.

In SAS Viya 3.4, the following changes and enhancements were made:

n The Lua constant Math.Huge is now represented in SAS as the value 
1.7976931348623E308. In previous releases, SAS represented this value as nil.

xxvi What's New in Base SAS 9.4 Procedures



n Support has been added for the following string-manipulation functions. These 
functions are SAS extensions to the Lua language and can be used only within 
PROC LUA:

STRING.ENDS_WITH STRING.STARTS_WITH
STRING.RESOLVE STRING.TRIM
STRING.SPLIT

In SAS 9.4M6, information about the scope of variables and other objects that are 
defined for PROC LUA was added to the documentation. For more information, see 
“Scope for PROC LUA” on page 1370.

The PRESENV Procedure
The PRESENV procedure preserves all global statements and macro variables in 
your SAS code from one SAS session to another. For more information, see 
Chapter 47, “PRESENV Procedure,” on page 1685.

The PRODUCT_STATUS Procedure
The PRODUCT_STATUS procedure returns a list of the SAS Foundation products 
that are installed on your system, along with the version numbers of those products. 
For more information, see Chapter 50, “PRODUCT_STATUS Procedure,” on page 
1821.

Note: PROC PRODUCT_STATUS is deprecated for SAS Viya 3.5 and will not be 
available in future SAS Viya releases. PROC PRODUCT_STATUS is available to 
SAS 9.4 users.

The S3 Procedure
SAS 9.4M4 adds support for the S3 procedure. The S3 procedure enables you to 
perform object management for objects in Amazon S3. These objects include 
buckets, files, and directories. For more information, see Chapter 60, “S3 
Procedure,” on page 2183.

SAS 9.4M5 adds the following enhancements:

n PROC S3 can read AWS CLI configuration files. The AWSCONFIG= and 
PROFILE= options were added to the PROC S3 statement to support this 
feature. For more information, see “PROC S3 Configuration” on page 2185.

n Transfer acceleration is available when data is uploaded or downloaded. The 
BUCKET and GETACCEL statements were added to support this feature. For 
more information, see “Transfer Acceleration” on page 2189.

The S3 procedure is now available in SAS Viya 3.3.

New Base SAS Procedures xxvii



The following enhancements were made in SAS Viya 3.4:

n Additional regions are supported in the configuration file and the REGION= 
argument. These additional regions are apindia, apseoul, cacentral, cnbeijing, 
cnningxa, eulondon, euparis, and useastoh.

n The AWSCREDENTIALS= option was added. This option enables you to specify 
alternative locations for the credentials file.

n The CREDENTIALSPROFILE= option was added. This option enables you to 
specify the profile to use in the credentials file.

In SAS 9.4M6, support was added for encryption when working with the Amazon S3 
or Amazon Redshift environment. This support includes the new ENCKEY 
statement that enables you to register encryption keys. There are also new options 
available with the COPY, GET, GETDIR, INFO, PUT, and PUTDIR statements that 
enable encryption. For more information, see “Using Server-Side Encryption with 
AWS Data” on page 2188.

In SAS 9.4M7 and SAS Viya 3.5, support was added for the OUT= option in the 
LIST statement. This option enables you to save LIST output to an external file.

Also in SAS 9.4M7, support was added for the ROLENAME= and ROLEARN= 
options in the PROC S3 statement.

In the May 2021 update for SAS 9.4M7 and SAS Viya 3.5, support was added for 
the SESSION= option in the PROC S3 statement. This option enables you to 
specify an AWS session token.

In the July 2021 update for SAS Viya 3.5, support was added for the REGION 
statement for PROC S3. This statement enables you to define a custom region.

In the August 2021 update for SAS Viya 3.5, support was added for the HOST= 
option in the REGION statement.

In the May 2022 update for SAS 9.4M7 and SAS Viya 3.5, the 
CREDENTIALSPROFILE= option is no longer supported.

In SAS 9.4M8, support has been added for EC2 Instance Metadata Service version 
2 (IMDSv2) and the REGION statement.

The SCOREACCEL Procedure
SAS Viya 3.3 adds support for the SCOREACCEL procedure. You can use this 
procedure to publish and execute DATA step and DS2 models in CAS, or in an 
external database.

In SAS Viya 3.4, the following enhancements have been made to the 
SCOREACCEL procedure:

n The DELETEMODEL statement enables you to delete models previously 
published to CAS, Teradata, and Hadoop.

n The AUTHDOMAIN option is added to the PUBLISHMODEL, RUNMODEL, and 
DELETEMODEL statements. This option enables you to specify the name of the 
authentication domain that contains the credentials that are used to access 
Teradata.

n The PUBLISHMODEL statement now supports the FORMATITEMSTOREFILE 
and STORETABLES options. The FORMATITEMSTOREFILE option enables 

xxviii What's New in Base SAS 9.4 Procedures



you to specify the file containing the format item store to be published. The 
STORETABLES option enables you to specify one or more CAS blob table 
names that contain the analytic stores to be published. 

n The KEEPLIST option in the PUBLISHMODEL statement enables you to specify 
whether to include a KEEP statement in the DS2 model program that was 
automatically generated from an analytic store model.

n The PLATFORM option in the RUNMODEL statement enables you to specify 
MAPRED or SPARK as the platform where the Hadoop Embedded Process is to 
be executed.

n The CONFIGPATH option in the RUNMODEL statement enables you to specify 
a folder where the Hadoop and Spark configuration files reside. 

SAS Viya 3.5 adds support for publishing a model to a global model table. The 
PUBLISHGLOBAL= option in the PUBLISHMODEL statement enables you to 
publish a model to a global model table, and the DELETEGLOBAL= option in the 
DELETEMODEL statement enables you to delete a model from a global model 
table.

SAS Viya 3.5 (August 2021 release, or earlier if you apply a hot fix) adds the 
following options:

n The WEBHDFSURL= option specifies a URL to delete, publish, or run a model in 
a platform that is configured to access the distributed file system through the 
REST API. 

n The JOBMANAGEMENTURL= option specifies a URL to submit execution 
requests over a REST interface to services such as Apache Livy.

n The INDATASET= and OUTDATASET= options provide additional support for 
Spark.

For more information, see Chapter 62, “SCOREACCEL Procedure,” on page 2227.

The SQOOP Procedure
SAS 9.4M3 adds support for the SQOOP procedure. You can use this procedure to 
access Apache Sqoop within a SAS session so that you can transfer data between 
a database and HDFS. A separate license to SAS/ACCESS Interface to Hadoop is 
required to use this procedure. For more information, see Chapter 66, “SQOOP 
Procedure,” on page 2333.

The STREAM Procedure
The STREAM procedure enables you to process an input stream that consists of 
arbitrary text that can contain SAS macro specifications. It can expand macro code 
and store it in a file. For more information, see Chapter 68, “STREAM Procedure,” 
on page 2359.

New Base SAS Procedures xxix



Enhanced Base SAS Procedures

The APPEND Procedure
The following enhancements have been made to the APPEND procedure:

n ENCRYPTKEY= option specifies the key value for an AES-encrypted data set. 
For more information, see ENCRYPTKEY= on page 601.

n Extended attributes are customized metadata for your SAS files. They are user-
defined characteristics that you associate with a SAS data set or variable. For 
more information, see “Extended Attributes” on page 555.

The CIMPORT Procedure
The following enhancements have been made to the CIMPORT procedure:

n PROC CIMPORT does not import data miner database catalog entries that were 
generated from SAS 9.3 or earlier versions of SAS. A warning message is 
logged.

n Extended attributes in data sets are supported in SAS 9.4. Transporting a file 
using PROC CIMPORT where the data sets contain extended attributes requires 
that you use SAS 9.4 or later. Refer to information about Extended Attributes in 
Chapter 17, “DATASETS Procedure,” on page 549 and to “Error and Warning 
Messages for Transport Files ” in Moving and Accessing SAS Files for details.

n In SAS 9.4, when you use PROC CPORT to create a transport file that is 
encoded with US-ASCII on an ASCII platform, regardless of the session 
encoding, the encoding value is set to US-ASCII encoding. If you then use 
PROC CIMPORT to transport the data set to an ASCII platform, the US-ASCII 
encoding is preserved and not transcoded.

n In SAS 9.4, the COMPRESS= option is added to allow compressing the 
CIMPORT data set. You can specify the type of compression used.

n SAS 9.4M1 has the following changes and enhancements:

o The ENCODINGINFO=option provides the ability to determine the encoding 
of the data sets in the transport file. The encoding information is written to the 
SAS log. For more information, see ENCODINGINFO= on page 386. 

o Data sets with time zone offsets can now be transported using PROC 
CPORT (with the DATECOPY option specified) and PROC CIMPORT. For 
more information, see “DATECOPY” on page 530.

xxx What's New in Base SAS 9.4 Procedures

http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=p0ex40t4pm2p40n16csbr5rlzj1e.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=p0ex40t4pm2p40n16csbr5rlzj1e.htm&locale=en


n SAS 9.4M2 adds the SORT option to PROC CIMPORT. This option causes the 
data set that is being imported to be re-sorted according to the destination 
operating system’s collating sequence. For more information, see “SORT” on 
page 390.

n SAS 9.4M3 adds support to PROC CIMPORT for importing data sets created in 
non-UTF-8 SAS sessions into UTF-8 SAS sessions. Prior to this release, 
transport files were encoded in a Windows encoding that corresponded to the 
SAS session encoding.

n In SAS Viya 3.5, PROC CIMPORT can be used to import a file that was created 
in UTF-8 encoding into non-UTF-8 SAS sessions and output corresponding data 
sets.

n SAS Viya 3.5 adds options EXTENDVAR= and the EXTENDFORMAT = options 
to PROC CIMPORT. When a transport file is imported, the original string variable 
length might not be large enough for the transcoded strings.To ensure that your 
destination buffer size is sufficient for the transcoded data, specify the 
EXTENDVAR= and the EXTENDFORMAT = options. 

Note: The EXTENDAVAR= and EXTENDFORMAT= options are not supported 
in SAS 9.

For more information, see CIMPORT Procedure on page 381.

The CONTENTS Procedure
The following enhancements have been made to the CONTENTS procedure:

n ENCRYPTKEY= option specifies the key value for an AES-encrypted data set. 
For more information, see ENCRYPTKEY= on page 601.

n Extended attributes are customized metadata for your SAS files. They are user-
defined characteristics that you associate with a SAS data set or variable. For 
more information, see “Extended Attributes” on page 555.

n The TRANSCODE option indicates whether the variable is transcoded. For more 
information, see “The OUT= Data Set” on page 666.

SAS 9.4M5 adds support for the VARCHAR data type. PROC CONTENTS output 
shows the number of bytes and characters for variables.

The COPY Procedure
The following enhancements have been made to the COPY procedure:

n ENCRYPTKEY= option specifies the key value for an AES-encrypted data set. 
For more information, see ENCRYPTKEY= on page 601.

n Extended attributes are customized metadata for your SAS files. They are user-
defined characteristics that you associate with a SAS data set or variable. For 
more information, see “Extended Attributes” on page 555.

SAS 9.4M5 adds support for the VARCHAR data type.

Enhanced Base SAS Procedures xxxi



In SAS 9.4M5, you can copy a CAS table to another CAS table on the CAS server.

The CPORT Procedure
The following enhancements have been made to the CPORT procedure:

n PROC CPORT does not export data miner database catalog entries that were 
generated from SAS 9.3 or earlier versions of SAS. A warning message is 
logged.

n Extended attributes in data sets are supported in SAS 9.4. Transporting a file 
using PROC CPORT where the data sets contain extended attributes requires 
that you run SAS 9.4 or later. Refer to information about Extended Attributes in 
Chapter 17, “DATASETS Procedure,” on page 549 and to “Error and Warning 
Messages for Transport Files ” in Moving and Accessing SAS Files for details.

n In SAS 9.4, when you use PROC CPORT to create a transport file that is 
encoded with US-ASCII on an ASCII platform, regardless of the session 
encoding, the encoding value is set to US-ASCII encoding. If you then use 
PROC CIMPORT to transport the data set to an ASCII platform, the US-ASCII 
encoding is preserved and not transcoded.

n SAS 9.4M1 adds support for transporting data sets that have time zone offsets 
using PROC CPORT (with the DATECOPY option specified) and PROC 
CIMPORT. For more information, see “DATECOPY” on page 530.

For more information, see CPORT Procedure on page 525.

The DATASETS Procedure
The following enhancements have been made to the DATASETS procedure:

n The DATASETS procedure supports extended attributes. For more information, 
see “Extended Attributes” on page 555. The following statements were added to 
the DATASETS procedure to enable you to manage extended attributes.

o XATTR ADD on page 644 statement adds extended attributes to variables or 
data sets. 

o XATTR DELETE on page 645 statement deletes extended attributes from 
variables or data sets. 

o XATTR OPTIONS on page 645 statement specifies options for extended 
attributes.

o XATTR REMOVE on page 646 statement removes extended attributes to 
variables or data sets. 

o XATTR SET on page 647 statement updates or adds extended attributes to 
variables or data sets. 

o XATTR UPDATE on page 648 statement updates extended attributes in 
variables or data sets. 

n The APPEND, COPY, and CONTENTS statements support AES encryption. For 
more information, see “Appending AES-Encrypted Data Sets” on page 578, 

xxxii What's New in Base SAS 9.4 Procedures

http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=p0ex40t4pm2p40n16csbr5rlzj1e.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=p0ex40t4pm2p40n16csbr5rlzj1e.htm&locale=en


“Copying AES-Encrypted Data Files” on page 609, and “Library Contents and 
AES Encryption” on page 486.

n The CONTENTS statement prints the International Components for Unicode 
(ICU) revision number. For more information, see “Displaying the ICU Revision 
Number” on page 485.

SAS 9.4M5 adds support for the VARCHAR data type for the COPY and 
CONTENTS statements.

The EXPORT Procedure
The following enhancements have been made to the EXPORT procedure:

n SAS Viya 3.5 adds support for all access types that are available in the 
FILENAME statement.

n SAS 9.4M5 adds support for the VARCHAR data type.

n SAS 9.4M1 adds support for exporting CSV files with a SAS data set name that 
contains a single quotation mark when the VALIDMEMNAME=EXTEND system 
option is specified. Using VALIDMEMNAME= expands the rules for SAS data set 
names. For more information, see “Using the External File Interface (EFI) ” in 
SAS/ACCESS Interface to PC Files: Reference.

n The following is true for JMP files:

o SAS 9.4 imports data from JMP files that are saved in JMP 7 or later formats, 
and it exports to files in JMP 7 or later formats. File formats in JMP 3 through 
6 are no longer supported. Support for these newer formats enables you to 
access JMP files for viewing in a variety of ways, such as with the JMP 
Graph Builder iPad app.

o The META data type for JMP files is no longer supported. Instead, extended 
attributes are automatically used. META can remain in programs but doing so 
generates a NOTE in the log and the statement is ignored.

o The META statement for PROC EXPORT is no longer supported for JMP 
files and is ignored. Instead, extended attributes are automatically used. 

o JMP variable names can be up to 255 characters in length. 

o The ROWSTATE data type is generated by JMP and is used to store several 
row-level characteristics. When PROC EXPORT sees a column named 
_rowstate_, it converts it back into row state information in the output JMP 
file. (If the JMP file contains row state information, then PROC IMPORT 
stores this information as a new variable with the name _rowstate_.)

o For more information, see Chapter 23, “EXPORT Procedure,” on page 825.

For more information, see Chapter 23, “EXPORT Procedure,” on page 825.

The FCMP Procedure
The following enhancements have been made to the FCMP procedure:

Enhanced Base SAS Procedures xxxiii

http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n08zixb5hl7tarn17jjc66xnl7le.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n08zixb5hl7tarn17jjc66xnl7le.htm&locale=en


n The FCMP procedure now contains an example that compares the 
RUN_MACRO function and the DOSUBL function. In the RUN_MACRO 
invocation, all variables are passed as arguments so that they can be set. In the 
DOSUBL invocation, all macro variables are imported to the code to be executed 
and then exported on completion. For more information, see “RUN_MACRO 
Function” on page 946. 

n PROC OPTMODEL has been added to the table that lists the procedures which 
you can use for functions and subroutines that you create in PROC FCMP. For 
more information, see Overview: FCMP Procedure on page 850.

SAS 9.4M3 adds the STATIC statement. For more information see “STRUCT 
Statement” on page 871 .

SAS 9.4M5 adds dictionary and ASTORE support to PROC FCMP. For more 
information see “Dictionaries” on page 894 and “PROC FCMP and ASTORE” on 
page 894.

SAS 9.4M6 adds these options:

OUTFILE=filename
writes referenced functions and the main program to a text file. Programs that 
have been parsed by PROC FCMP, including macro variables, can be exported.

OUTITEMSTORE=path name
exports symbols, referenced functions, and the main program to the specified 
item store. OUTITEMSTORE does not support a fileref. You must use a quoted 
path.

In SAS Viya 3.5, the quoted string size limit and label size limit for PROC FCMP 
were updated to match the DATA step size limits. PROC FCMP now supports 
quoted strings up to 32,767 bytes and labels up to 256 bytes.

The FMTC2ITM Procedure
SAS 9.4M5 adds support for the ENCODING= option. The new option enables you 
to specify an encoding for a format catalog or for all format catalogs in a list. For 
more information, see “ENCODING=encoding-name” on page 1025.

The FONTREG Procedure
SAS 9.4M2 has the following changes and enhancements to the FONTREG 
procedure:

n The OPENTYPE statement was added. This statement specifies one or more 
directories to be searched for valid OpenType font files.

n The ability to use a fileref was added. This ability enables you to use the 
FILENAME statement and its features.

For more information, see Chapter 29, “FONTREG Procedure,” on page 1031.

xxxiv What's New in Base SAS 9.4 Procedures



The FORMAT Procedure
The following enhancements have been made to the FORMAT procedure:

n A month can be formatted using a shortened version by specifying the number of 
characters to use in the %nB directive.

n The range to specify a default length of an informat, picture, or format 1-32767.

n You can create a format based on a Perl regular expression by using the 
INVALUE statement options REGEXP and REGEXPE.

For more information, see FORMAT Procedure on page 1049.

The HADOOP Procedure
The following enhancements have been made to the HADOOP procedure:

n The HADOOP procedure now provides the PROPERTIES statement to submit 
configuration properties to the Hadoop server.

n You can now specify the NOWARN option in the HDFS statement to suppress 
the Warning message when there is an attempt to delete a file that does not 
exist.

n SAS 9.4M3 has the following changes and enhancements:

o The HDFS statement supports the CAT= option to display the contents of 
files, the CHMOD= option to change file access permissions, and the LS= 
option to list HDFS files.

o Several HDFS statement options support wildcard characters when you 
specify HDFS files and request recursive action to execute the operation on 
the specified directory as well as subdirectories.

o You can connect to the Hadoop cluster by copying the Hadoop cluster 
configuration files to a physical location that is accessible to the SAS client 
machine, and then set a SAS environment variable to the location of the 
configuration files.

o You can submit a MapReduce program and Pig language code to a Hadoop 
cluster through the Apache Oozie RESTful API. 

The HADOOP procedure is available in both SAS 9.4 and in SAS Viya. However, 
the HADOOP procedure is not supported in a CAS session

For more information, see Chapter 33, “HADOOP Procedure,” on page 1201.

The HDMD Procedure
The HDMD procedure is available in SAS Viya 3.4, but it is not supported in a CAS 
session.

Enhanced Base SAS Procedures xxxv



SAS 9.4M5 supports the NAME= option, where you can specify Hadoop or the new 
Spark data source.

In SAS 9.4M6, Hive 3.0 supports managed, external, and transactional tables. By 
default, a new table is created as managed and transactional.

The HTTP Procedure
The following enhancements were made to the HTTP procedure:

n SAS 9.4 adds the SSLCALISTLOC system option to configure the trust source 
for connections that use the HTTPS protocol. The Java system options that were 
used to configure this trust source in previous versions of SAS software are no 
longer supported.

n SAS 9.4M1 has the following changes and enhancements:

o The HTTP_TOKENAUTH option is added to enable you to generate a one-
time password from the metadata server that can be used to access the SAS 
Content Server. 

o PROC HTTP supports user identity authentication. If the server that you are 
connecting to support the NTLM (for Windows only) or the Kerberos 
authentication protocols, then you do not need to specify a user name and 
password. As long as your current user identity has permissions, 
authentication is established.

n SAS 9.4M3 expands method support for PROC HTTP to include all methods that 
support the HTTP/1.1 standard and are supported by the target server. It also 
adds a HEADER statement, authentication type specification, and HTTP/1.1 
features such as persistent connections, cookie caching, and 
EXPECT_100_CONTINUE support. Input data can be specified in a quoted 
string or submitted from a fileref. Custom request headers can be specified as 
name=value pairs in a HEADERS statement or by submitting a fully formatted 
input file from a fileref. For web servers that support it, the procedure uses 
connection caching and cookie caching by default. You can toggle the behavior 
of both types of caching and clear the caches within the procedure by specifying 
procedure arguments. Or you turn cookie caching off by using a macro variable. 
A HEADEROUT_OVERWRITE argument is also provided to manage response 
headers for requests that involve redirects.

n The SSLCALISTLOC= system option is configured globally for the SAS system. 
It should not be changed for a specific PROC HTTP request.

n SAS 9.4M5 adds a DEBUG statement, TIMEOUT= procedure option, and PROC 
HTTP response status macro variables. The DEBUG statement and macro 
variables expand the messaging available for the procedure. TIMEOUT= 
specifies the number of seconds of inactivity to wait before canceling an HTTP 
request. SAS 9.4M5 also adds the OAUTH_BEARER= procedure option. 
OAUTH_BEARER= sends an OAuth token along with the HTTP call.

SAS 9.4M6 adds a new statement, SSLPARMS, new options for the DEBUG 
statement, and changes the default DEBUG output format for body components 
to binary. The settings in the SSLPARMS statement enable you to override the 
global secure communication settings for the SAS system with local settings for 
the PROC HTTP request. The local settings last for the duration of the HTTP 
request. The new DEBUG options enable you to request debugging information 

xxxvi What's New in Base SAS 9.4 Procedures



about individual components of the PROC HTTP request instead of or in addition 
to messages for a debug level. The request header body and response header 
body are now written as binary by default. An OUTPUT_TEXT option is provided 
to request them as text.

The HTTP procedure is available in both SAS 9.4 and in SAS Viya. The initial 
versions of SAS Viya have the same functionality as SAS 9.4M3.

n SAS Viya 3.3 adds the DEBUG statement, the TIMEOUT= procedure option, 
and the PROC HTTP response status macro variables to SAS Viya. It also adds 
a new OAUTH_BEARER= procedure option and a new value for 
OAUTH_BEARER=, the constant SAS_SERVICES. The SAS_SERVICES 
constant is supported in SAS Viya only. 

n In May 2019, the documentation was updated to include the following:

o three new procedure options: AUTH_NONE, FOLLOWLOC, and 
NOFOLLOWLOC. AUTH_NONE specifies not to use basic authentication, 
NTLM authentication, or to negotiate authentication, even when 
authentication using one of these methods is possible. The 
OAUTH_BEARER= procedure option can be used with AUTH_NONE. 
FOLLOWLOC enables methods that write data to be automatically redirected 
to an alternate URL. NOFOLLOWLOC prevents the GET method from 
following URL redirections. 

o Aliases for the WEBUSERNAME= and WEBPASSWORD= procedure 
options. WEBUSERNAME= supports the alias USERNAME=. 
WEBPASSWORD= supports the alias PASSWORD=.

In addition:

o The CLEAR_COOKIE_CACHE procedure option has been renamed to 
CLEAR_COOKIES.

o The NO_COOKIE_CACHE option has been renamed to NO_COOKIES.

o Support for the OAUTH_BEARER= procedure option has been clarified.

n SAS Viya 3.5 adds the SSLPARMS statement to SAS Viya. 

In addition, SAS Viya 3.5 and the November 2019 release of SAS 9.4M6 add 
two new procedure options, two new parameters for the IN= procedure option, 
change quoting requirements for the METHOD= procedure option, and include a 
documentation enhancement.

o The MAXWAITS= procedure option enables you to specify the maximum 
number of redirects that are allowed.

o The QUERY= procedure option enables you to submit URL-encoded query 
parameters for the URL= argument.

o The FORM parameter to the IN= procedure option enables you to send input 
data as a standard HTML form.

o The MULTI parameter to the IN= procedure option enables you to upload 
generic multipart data or generic form data, when it is used with the FORM 
option. When the FORM option is used, the upload is performed using the 
specialized multipart type known as multipart/form-data. 

o The METHOD= procedure option no longer requires the http-method 
argument to be quoted. 

o The documentation now describes how to send chunked data in the 
HEADERS statement.

Enhanced Base SAS Procedures xxxvii



n In May 2022, the documentation was updated to include a new example: 
“Specify Local Options for Two-Way Encryption in UNIX”.

For more information, see Chapter 35, “HTTP Procedure,” on page 1245.

The IMPORT Procedure
The following enhancements have been made to the IMPORT procedure:

n SAS Viya 3.5 adds support for all access types that are available in the 
FILENAME statement.

n SAS 9.4M5 adds support for the VARCHAR data type.

n SAS 9.4M1 adds support for exporting CSV files with a SAS data set name that 
contains a single quotation mark when the VALIDMEMNAME=EXTEND system 
option is specified. Using VALIDMEMNAME= expands the rules for SAS data set 
names. For more information, see “Using the External File Interface (EFI) ” in 
SAS/ACCESS Interface to PC Files: Reference.

n The following is true for JMP files:

o SAS 9.4 imports data from JMP files that are saved in JMP 7 or later formats, 
and it exports to files in JMP 7 or later formats. File formats in JMP 3 through 
6 are no longer supported. Support for these newer formats enables you to 
access JMP files for viewing in a variety of ways, such as with the JMP 
Graph Builder iPad app.

o The META data type for JMP files is no longer supported. Instead, extended 
attributes are automatically used. META can remain in programs but doing so 
generates a NOTE in the log and the statement is ignored.

o The META statement for PROC IMPORT is no longer supported for JMP files 
and is ignored. Instead, extended attributes are automatically used. When 
importing a JMP file with extended attributes, the attributes are automatically 
attached to the new SAS data set.

o JMP variable names can be up to 255 characters in length. 

o The ROWSTATE data type is generated by JMP and is used to store several 
row-level characteristics. When the JMP file contains row state information, 
PROC IMPORT stores this information as a new variable with the name 
_rowstate_. (If PROC EXPORT sees a column named _rowstate_, then it 
converts it back into row state information in the JMP output file.) 

For more information, see “JMP Files” in SAS/ACCESS Interface to PC Files: 
Reference and Chapter 36, “IMPORT Procedure,” on page 1287.

The MEANS Procedure
n Beginning with SAS 9.4M5, PROC MEANS summarization can be executed on 

the CAS server.

n SAS supports In-Database processing for PROC MEANS. 

xxxviii What's New in Base SAS 9.4 Procedures

http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n08zixb5hl7tarn17jjc66xnl7le.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n08zixb5hl7tarn17jjc66xnl7le.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0y75b1x6ffm26n1mf5jgknkmr4t.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0y75b1x6ffm26n1mf5jgknkmr4t.htm&locale=en


o SAS 9.4M3 supports In-Database processing for PROC MEANS with the 
Impala, HAWK, and SAP HANA database management systems.

The MIGRATE Procedure
The following enhancements have been made to the MIGRATE procedure:

n Extended attributes are supported for data sets. For more information, see 
MIGRATE Procedure on page 1513.

n SAS 9.4M3 has a new default value for BUFSIZE. The new default is the buffer 
page size of the current session. To continue using the previous behavior, which 
is to clone the page size of the members from the source library, specify 
BUFSIZE=KEEPSIZE.

The OPTIONS Procedure
The following enhancements have been made to the OPTIONS procedure:

n The LISTOPTSAVE option lists the system options that can be saved by using 
the OPTSAVE procedure or the DMOPTSAVE command. For more information, 
see “PROC OPTIONS Statement” on page 1534.

n SAS 9.4M2 enhances the OPTIONS procedure to display passwords in the SAS 
log as eight Xs, regardless of the actual password length.

The PRINT Procedure
The following enhancements have been made to the PRINT procedure:

n The PROC PRINT SUMLABEL= option and the GRANDTOTAL_LABEL= option 
enable you to specify labels for the BY group total and grand total values.

n The PROC PRINT statement STYLE= option style attributes for the HEADER 
location no longer affect the Obs column heading. You specify style attributes for 
the Obs column heading using the OBSHEADER location. 

n In SAS 9.4M6, the PROC PRINT CONTENTS= option on page 1702 accepts #BY 
directives.

n SAS 9.4M5 adds support for the VARCHAR data type. 

For more information, see PRINT Procedure on page 1797.

Enhanced Base SAS Procedures xxxix



The PRINTTO Procedure
The PROC PRINTTO PRINT= statement opens the LISTING destination. You no 
longer need to specify the ODS LISTING statement before you use the PRINTTO 
procedure. For more information, see Chapter 49, “PRINTTO Procedure,” on page 
1797.

SAS 9.4M3 has an enhancement to restore the previous location of the SAS log and 
LISTING output files. SAS saves the path of the SAS log and LISTING output files in 
automatic macro variables. For more information, see Chapter 49, “PRINTTO 
Procedure,” on page 1797.

The PROTO Procedure
SAS 9.4M6 has a new system option, PROTOLIBS, that SAS administrators can 
use to control the function of the LINK statement. Controlling the function of the 
LINK statement can prevent security issues that might occur by calling third-party 
software to a valid path for a load module that contains your functions. For more 
information, see “The PROTOLIBS System Option” on page 1836.

The PWENCODE Procedure
The following enhancements have been made to the PWENCODE procedure:

n Encoding method SAS004 is added. SAS004 uses AES encryption with a 256-
bit fixed key and a 64-bit random salt value. The salt size was increased to 64 
bits to comply with the minimum recommended salt size for PKCS #5: Password 
Based Cryptography Specification Version 2.0.

n SAS 9.4M5 adds encoding method SAS005. SAS005 uses AES encryption with 
a 256-bit fixed key and a 64-bit random salt value. SAS005 increases security for 
stored passwords by using the SHA-256 hashing algorithm and is hashed for 
additional iterations.

The QDEVICE Procedure
The following enhancements have been made to the QDEVICE procedure:

n The PROC QDEVICE DEVLOC= option enables you to specify a device library 
other than the SAS/GRAPH Gdevicen libraries and the Sashelp library. You can 
report on the first occurrence of a device, or you can report on all occurrences of 
a device in the Gdevicen and Sashelp libraries.

xl What's New in Base SAS 9.4 Procedures

https://tools.ietf.org/html/rfc2898
https://tools.ietf.org/html/rfc2898


n The PROC QDEVICE CATALOG= option enables you to specify a catalog, other 
than the DEVICES catalog, to search.

n The DEVICE statement and the PRINTER statement allow the wildcards * and ? 
in device names and printer names.

n The value for a Windows printer device type, as reported by the TYPE variable, 
is Printer Interface Device. Printer Interface Device replaces the value System 
Printer.

n For all reports, the NAMETYPE variable has been renamed to TYPE.

n The General report includes new this information:

o The ALIAS variable reports font aliases.

o The ANIMATION variable reports on the status of printer animation.

o The FVERSION variable reports the font version.

o The COMPRESSION variable now indicates a condition under which 
compression is used.

o The COMPMETHOD variable indicates the compression method.

o The MODULE variable reports the name of the device driver module.

o The character variable lengths in a report output data set are now a fixed 
length.

n The Font reports now include information for font aliases and font versions. The 
new variables are ALIAS and FVERSION, respectively.

n For all reports, except the General report, information about prototypes has been 
removed. The PROTOTYPE variable information is now reported in only the 
General report.

n Character variable lengths in report output data sets have a fixed length of 128 
characters. The LENGTH statement is no longer required when reports are 
merged or concatenated.

For more information, see QDEVICE Procedure on page 1889.

The REPORT Procedure
The following enhancements have been made to the REPORT procedure:

n In SAS 9.4M6, the following options are supported.

o the CONTENTS= option in the PROC REPORT statement accepts #BY 
directives when the ACCESSIBLETABLE system option is specified.

o the CAPTION= option can be specified in the PROC REPORT statement and 
creates visual and accessible table captions when the ACCESSSIBLETABLE 
system option is specified.

n In-Database processing for PROC REPORT is supported as follows:

o In-Database processing for PROC REPORT supports the Aster, Greenplum, 
and Hadoop database management systems.

o SAS 9.4M6 supports In-Database processing for PROC REPORT with the 
Google BigQuery database management system.

Enhanced Base SAS Procedures xli



o SAS 9.4M7 supports In-Database processing for PROC REPORT with the 
Yellowbrick database management system.

n NOWINDOWS (NOWD) is now the default windowing environment for PROC 
REPORT. 

n SAS 9.4M2 has the following changes and enhancements:

o A new section was added to describe the use of ODS Styles with PROC 
REPORT. For more information, see “Using ODS Styles with PROC 
REPORT” on page 2069.

o PROC REPORT now supports statistical keywords P20, P30, P40, P60, P70, 
and P80. For information, see “Statistics That Are Available in PROC 
REPORT” on page 2068.

n In SAS 9.4M6, the PROC PRINT CONTENTS= option on page 1702 accepts #BY 
directives.

Beginning with SAS 9.4M5, PROC REPORT summarization can be executed on the 
CAS server.

For more information, see Chapter 58, “REPORT Procedure,” on page 1981.

Starting with SAS 9.4M6, you can specify the CAPTION= option in the PROC 
REPORT statement and specify the ACCESSIBLETABLE system option to add 
visible captions to the tables. Starting with SAS 9.4M6, when BY directives are 
specified in the CAPTION= and CONTENTS= options, labels for the BY group 
tables are displayed in the table of contents in PDF output and in the contents file in 
HTML output. The labels are based on the values of the BY variable.

The SOAP Procedure
SAS 9.4M2 removed support for the SOAP procedure when SAS is in a locked-
down state. For more information, see Chapter 63, “SOAP Procedure,” on page 
2263.

The SORT Procedure
The following enhancements have been made to the SORT procedure:

n PROC SORT supports extended attributes. PROC SORT copies the attributes 
that are defined for the data set to the output data set. For more information, see 
“Extended Attributes” on page 555.

n The page size of the utility file that is used by PROC SORT is influenced by the 
new STRIPESIZE= system option. For more information, see “STRIPESIZE=” in 
SAS System Options: Reference.

n In SAS 9.4, the International Components for Unicode (ICU) library used by 
PROC SORT is 4.8.1. This ICU version uses locale data from version 2.0 of the 
Unicode Common Locale Data Repository (CLDR), improves language support, 
and provides software fixes. For more information, see Download the ICU 4.8 
Release and CLDR 2.0 Release Note.

xlii What's New in Base SAS 9.4 Procedures

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0e4bdfj5qa5r4n1byty91t7wtiw.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0e4bdfj5qa5r4n1byty91t7wtiw.htm&locale=en
https://icu.unicode.org/download/48
https://icu.unicode.org/download/48
https://unicode.org/Public/cldr/2.0.0/


A change in the ICU version used by SAS can affect the interpretation of some 
data sets sorted by previous versions of SAS. For information about these 
effects, see Chapter 64, “SORT Procedure,” on page 2277, Chapter 15, “COPY 
Procedure,” on page 509, and Chapter 41, “MIGRATE Procedure,” on page 1513.

n The CONTENTS procedure or CONTENTS statement output shows the ICU 
version number of a data set that is linguistically sorted. See “Example 5: 
Linguistic Sorting Using ALTERNATE_HANDLING=” on page 2321.

n SAS supports In-Database processing for PROC SORT. 

o SAS 9.4M3 supports In-Database processing for PROC SORT with the 
Impala, HAWK, and SAP HANA database management systems.

o SAS 9.4M6 supports In-Database processing for PROC SORT with the 
Google BigQuery database management system.

o SAS 9.4M7 supports In-Database processing for PROC SORT with the 
Yellowbrick database management system.

n SAS Viya 3.4 supports ICU version 56. This ICU version uses locale data from 
version 28 of the Unicode Common Locale Data Repository (CLDR). For in-
depth information, see Download ICU 56 and CLDR 28 Release Note. 

n In SAS Viya 3.5, PROC SORT supports the ability to run the duplicate detection 
and manipulation options (NODUPKEY, NOUNIKEY, DUPOUT=, UNIOUT=) in 
CAS. This functionality is provided to facilitate migration of code for users of SAS 
Viya. This task is performed by using the deduplicate Action.

For more information, see Chapter 64, “SORT Procedure,” on page 2277.

The SQOOP Procedure
For SAS 9.4M5, PROC SQOOP supports workflows and Kerberos on Linux, and the 
WFHDFSPATH= option is now optional.

In SAS Viya 3.5, support was added for the HIVE_SERVER= and HIVE_URI= 
options.

The SUMMARY Procedure
n Beginning with SAS 9.4M5, PROC SUMMARY summarization can be executed 

on the CAS server.

n SAS supports In-Database processing for PROC SUMMARY. 

o SAS 9.4M3 supports In-Database processing for PROC SUMMARY with the 
Impala, HAWK, and SAP HANA database management systems.

o SAS 9.4M7 supports In-Database processing for PROC SUMMARY with the 
Yellowbrick database management system.

Enhanced Base SAS Procedures xliii

https://icu.unicode.org/download/56 
http://cldr.unicode.org/index/downloads/cldr-28
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.5&docsetTarget=cas-deduplication-TblOfActions.htm&locale=en


The TABULATE Procedure
The following enhancements have been made to the TABULATE procedure:

n In SAS 9.4M6, the CONTENTS= option in the TABLE statement and the PROC 
TABULATE statement now accepts #BY directives.

n In SAS 9.4M6, the CAPTION= option is new for the TABLE statement.

n In SAS 9.4M6, PROC TABULATE provides the ability to create accessible output 
tables when used with the ACCESSIBLETABLE system option. 

n Beginning with SAS 9.4M5, PROC TABULATE summarization can be executed 
on the CAS server.

n SAS supports In-Database processing for PROC TABULATE. 

o SAS 9.4M6 supports In-Database processing for PROC TABULATE with the 
Google BigQuery database management system.

o SAS 9.4M7 supports In-Database processing for PROC TABULATE with the 
Yellowbrick database management system.

The TRANSPOSE Procedure
Beginning with SAS 9.4M5, PROC TRANSPOSE summarization can be executed 
on the CAS server.

n

n

n SAS supports In-Database processing for PROC TRANSPOSE. 

o SAS 9.4 supports In-Database processing for PROC TRANSPOSE with the 
HADOOP and Terradata database management system.

The XSL Procedure
The XSL procedure now provides the PARAMETER statement to pass a parameter 
value to an XSL style sheet. For more information, see Chapter 73, “XSL 
Procedure,” on page 2595.

xliv What's New in Base SAS 9.4 Procedures



Software Enhancements
SAS supports access to files that are created with the Advanced Encryption 
Standard (AES). For more information, see “AES Encryption” on page 25.

The International Components for Unicode (ICU) libraries have been upgraded from 
version 4.2 to version 4.8. The ICU is used by SAS for linguistic collation of 
character data. For more information about ICU version 4.8, see the ICU website at 
https://icu.unicode.org/download/48.

Data sets that are sorted linguistically by one release of SAS might not be 
recognized as sorted by another release. For more information about the effect of a 
change in the ICU version, see:

n “ Linguistic Sorting of Data Sets and ICU” on page 2284

n Chapter 14, “CONTENTS Procedure,” on page 477

n Chapter 15, “COPY Procedure,” on page 509

n Chapter 41, “MIGRATE Procedure,” on page 1513

Documentation Enhancements
The following changes have been made to the Base SAS Procedures Guide:

n “Threaded Processing for Base SAS Procedures” on page 26 contains 
information about SAS procedures that support threaded processing.

n “Using PROC FCMP Component Objects” on page 894 contains more 
information about hashing.

n SAS 9.4M1 adds a link and supporting text for Microsoft Excel functions that are 
available to PROC FCMP.

n Information about the Chapter 34, “HDMD Procedure” was moved to this 
document from SAS/ACCESS for Relational Databases: Reference.

n Chapter 41, “MIGRATE Procedure,” on page 1513 contains more information 
about using the BUFSIZE= option to improve the performance of migrated data 
sets.

Documentation Enhancements xlv

https://icu.unicode.org/download/48


xlvi What's New in Base SAS 9.4 Procedures



PART 1

Concepts

Chapter 1
Choosing the Right Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Chapter 2
Fundamental Concepts for Using Base SAS Procedures . . . . . . . . . . . . . .  21

Chapter 3
Statements with the Same Function in Multiple Procedures . . . . . . . . . . . .  73

Chapter 4
In-Database Processing of Base Procedures . . . . . . . . . . . . . . . . . . . . . . . . .  91

Chapter 5
CAS Processing of Base Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93

Chapter 6
Base SAS Procedures Documented in Other Publications . . . . . . . . . . . . .  99

1



2



1
Choosing the Right Procedure

Functional Categories of Base SAS Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Report Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Report-Writing Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Statistical Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Available Statistical Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Efficiency Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Additional Information about the Statistical Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Utility Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Brief Descriptions of Base SAS Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Functional Categories of Base SAS 
Procedures

Report Writing
These procedures display useful information, such as data listings (detail reports), 
summary reports, calendars, letters, labels, multipanel reports, and graphical 
reports.

CALENDAR PLOT SQL1

CHART1 PRINT SUMMARY1

FREQ1 QDEVICE1 TABULATE 1

3



MEANS1 REPORT1 TIMEPLOT

1 These procedures produce reports and compute statistics.

Statistics
These procedures compute elementary statistical measures that include descriptive 
statistics based on moments, quantiles, confidence intervals, frequency counts, 
crosstabulations, correlations, and distribution tests. They also rank and standardize 
data.

CHART RANK SUMMARY

CORR REPORT TABULATE

FREQ SQL UNIVARIATE

MEANS STANDARD

Utilities
These procedures perform the following basic utility operations:

n create, edit, sort, and transpose data sets

n create and restore transport data sets

n create user-defined formats

n provide basic file maintenance such as copy, append, and compare data sets

n deletes permanent or temporary data files from disk or tape

APPEND FEDSQL PRESENV

AUTHLIB FONTREG PRINTTO

CATALOG FSLIST PRTDEF

CIMPORT GROOVY PRTEXP

COMPARE HADOOP PWENCODE

CONTENTS IMPORT4 REGISTRY

CONVERT1 INFOMAPS 5 RELEASE1

4 Chapter 1 / Choosing the Right Procedure



COPY JAVAINFO SCAPROC

CPORT JSON SORT

CV2VIEW3 METADATA6 SOURCE

DATASETS METALIB6 SQL1

DELETE MIGRATE TAPECOPY

DISPLAY OPTIONS TAPELABEL 1

DOCUMENT 2 OPTLOAD TEMPLATE

DS2 OPTSAVE TRANSPOSE1

EXPORT4 PDS TRANSTAB 2

FCMP PDSCOPY1 XSL

PMENU1

1 See the SAS documentation for your operating environment for a description of this procedure.
2 For a description of this procedure, see the SAS Output Delivery System: User’s Guide.
3 For a description of this procedure, see the SAS/ACCESS for Relational Databases: Reference.
4 For a description of this procedure, see the SAS/ACCESS Interface to PC Files: Reference.
5 For a description of this procedure, see the Base SAS Guide to Information Maps.
6 For a description of this procedure, see the SAS Language Interfaces to Metadata.

Report-Writing Procedures
The following table lists report-writing procedures according to the type of report.

Table 1.1 Report-Writing Procedures by Task

Report Type Procedure Description

Detail reports PRINT Produces data listings quickly; can supply titles, 
footnotes, and column sums.

REPORT Offers more control and customization than 
PROC PRINT; can produce both column and row 
sums; has DATA step computation abilities.

SQL Combines Structured Query Language and SAS 
features such as formats; can manipulate data 
and create a SAS data set in the same step that 

Report-Writing Procedures 5



Report Type Procedure Description

creates the report; can produce column and row 
statistics; does not offer as much control over 
output as PROC PRINT and PROC REPORT.

Summary reports MEANS or 
SUMMARY

Computes descriptive statistics for numeric 
variables; can produce a printed report and 
create an output data set.

PRINT Produces only one summary report; can sum the 
BY variables.

QDEVICE Produces reports about graphics devices and 
universal printers.

REPORT Combines features of the PRINT, MEANS, and 
TABULATE procedures with features of the 
DATA step in a single report-writing tool that can 
produce a variety of reports; can also create an 
output data set.

SQL Computes descriptive statistics for one or more 
SAS data sets or DBMS tables; can produce a 
printed report or create a SAS data set.

TABULATE Produces descriptive statistics in a tabular 
format; can produce stub-and-banner reports 
(multidimensional tables with descriptive 
statistics); can also create an output data set.

Miscellaneous highly formatted reports

Calendars CALENDAR Produces schedule and summary calendars; can 
schedule tasks around nonwork periods and 
holidays, weekly work schedules, and daily work 
shifts.

Multipanel reports 
(telephone book 
listings)

REPORT Produces multipanel reports.

Low-resolution graphical reports 1

CHART Produces bar charts, histograms, block charts, 
pie charts, and star charts that display 
frequencies and other statistics.

PLOT Produces scatter diagrams that plot one variable 
against another.

6 Chapter 1 / Choosing the Right Procedure



Report Type Procedure Description

TIMEPLOT Produces plots of one or more variables over 
time intervals.

1 These reports quickly produce a simple graphical picture of the data. To produce high-resolution graphical reports, use 
SAS/GRAPH software.

Statistical Procedures

Available Statistical Procedures
The following table lists statistical procedures according to task. Table A1.1 on page 
2611 lists the most common statistics and the procedures that compute them.

Table 1.2 Elementary Statistical Procedures by Task

Report type Procedure Description

Descriptive statistics CORR Computes simple descriptive statistics.

MEANS or 
SUMMARY

Computes descriptive statistics; can produce printed 
output and output data sets. By default, PROC 
MEANS produces printed output, and PROC 
SUMMARY creates an output data set.

REPORT Computes most of the same statistics as PROC 
TABULATE; allows customization of format.

SQL Computes descriptive statistics for data in one or 
more DBMS tables; can produce a printed report or 
create a SAS data set.

TABULATE Produces tabular reports for descriptive statistics; 
can create an output data set.

UNIVARIATE Computes the broadest set of descriptive statistics; 
can create an output data set.

Frequency and 
crosstabulation tables

FREQ Produces one-way to n-way tables; reports frequency 
counts; computes chi-square tests; computes test 
and measures of association and agreement for two-
way to n-way crosstabulation tables; can compute 
exact tests and asymptotic tests; can create output 
data sets.

Statistical Procedures 7



Report type Procedure Description

TABULATE Produces one-way and two-way crosstabulation 
tables; can create an output data set.

UNIVARIATE Produces one-way frequency tables.

Correlation analysis CORR Computes Pearson's, Spearman's, and Kendall's 
correlations and partial correlations. Also, computes 
Hoeffding's measures of dependence (D) and 
Cronbach's coefficient alpha.

Distribution analysis UNIVARIATE Computes tests for location and tests for normality.

FREQ Computes a test for the binomial proportion for one-
way tables; computes a goodness-of-fit test for one-
way tables; computes a chi-square test of equal 
distribution for two-way tables.

Robust estimation UNIVARIATE Computes robust estimates of scale, trimmed means, 
and Winsorized means.

Data transformation

Computing ranks RANK Computes ranks for one or more numeric variables 
across the observations of a SAS data set and 
creates an output data set; can produce normal 
scores or other rank scores.

Standardizing 
data

STANDARD Creates an output data set that contains variables 
that are standardized to a given mean and standard 
deviation.

Low-resolution graphics1

CHART Produces a graphical report that can show one of the 
following statistics for the chart variable: frequency 
counts, percentages, cumulative frequencies, 
cumulative percentages, totals, or averages.

UNIVARIATE Produces descriptive plots such as stem-and-leaf 
plot, box plots, and normal probability plots.

1 To produce high-resolution graphical reports, use SAS/GRAPH software.

8 Chapter 1 / Choosing the Right Procedure



Efficiency Issues

Quantiles
For a large sample size n, the calculation of quantiles, including the median, 
requires computing time proportional to nlog(n). Therefore, a procedure, such as 
UNIVARIATE, that automatically calculates quantiles might require more time than 
other data summarization procedures. Furthermore, because data is held in 
memory, the procedure also requires more storage space to perform the 
computations. By default, the report procedures PROC MEANS, PROC SUMMARY, 
and PROC TABULATE require less memory because they do not automatically 
compute quantiles. These procedures also provide an option to use a new fixed-
memory, quantiles estimation method that is usually less memory-intense. For more 
information, see “Quantiles” on page 1466 in the PROC MEANS documentation.

Computing Statistics for Groups of 
Observations
To compute statistics for several groups of observations, you can use any of the 
previous procedures with a BY statement to specify BY-group variables. However, 
BY-group processing requires that you previously sort or index the data set, which 
for very large data sets might require substantial computer resources. A more 
efficient way to compute statistics within groups without sorting is to use a CLASS 
statement with one of the following procedures: MEANS, SUMMARY, or TABULATE.

Additional Information about the Statistical 
Procedures

Appendix 1, “SAS Elementary Statistics Procedures,” on page 2609 lists standard 
keywords, statistical notation, and formulas for the statistics that Base SAS 
procedures compute frequently. The sections on the individual statistical procedures 
discuss the statistical concepts that are useful to interpret a procedure output.

Utility Procedures
The following table groups utility procedures according to task.

Utility Procedures 9



Table 1.3 Utility Procedures by Task

Tasks Procedure Description

Supply information COMPARE Compares the contents of two SAS data sets.

CONTENTS Describes the contents of a SAS library or specific 
library members.

JAVAINFO Conveys diagnostic information about the Java 
environment that SAS is using.

OPTIONS Lists the current values of all SAS system options.

SCAPROC Implements the SAS Code Analyzer, which 
captures information about input, output, and the 
use of macro symbols from a SAS job while it is 
running.

SQL Supplies information through dictionary tables on 
an individual SAS data set as well as all SAS files 
active in the current SAS session. Dictionary tables 
can also provide information about macros, titles, 
indexes, external files, or SAS system options.

Manage SAS system 
options

OPTIONS Lists the current values of all SAS system options.

OPTLOAD Reads SAS system option settings that are stored 
in the SAS registry or a SAS data set.

OPTSAVE Saves SAS system option settings to the SAS 
registry or a SAS data set.

Affect printing and 
Output Delivery System 
output

DOCUMENT2 Manipulates procedure output that is stored in ODS 
documents.

FONTREG Adds system fonts to the SAS registry.

FORMAT Creates user-defined formats to display and print 
data.

PRINTTO Routes procedure output to a file, a SAS catalog 
entry, or a printer; can also redirect the SAS log to 
a file.

PRTDEF Creates printer definitions.

PRTEXP Exports printer definition attributes to a SAS data 
set.

10 Chapter 1 / Choosing the Right Procedure



Tasks Procedure Description

TEMPLATE2 Customizes ODS output.

Create, browse, and edit 
data

FCMP Enables creation, testing, and storage of SAS 
functions and subroutines before they are used in 
other SAS procedures.

FSLIST Browses external files such as files that contain 
SAS source lines or SAS procedure output.

INFOMAPS6 Creates or updates a SAS Information Map.

PRESENV Preserves all global statements and macro 
variables in your SAS code from one SAS session 
to another. When this procedure is invoked at the 
end of a SAS session, all of the global statements 
and macro variables are written to a file.

SQL Creates SAS data sets using Structured Query 
Language and SAS features.

FORMAT Creates user-defined informats to read data and 
user-defined formats to display data.

SORT Sorts SAS data sets by one or more variables.

SQL Sorts SAS data sets by one or more variables.

STREAM Enables you to process an input stream that 
consists of arbitrary text that can contain SAS 
macro specifications. It can expand macro code 
and store it in a file.

TRANSPOSE Transforms SAS data sets so that observations 
become variables and variables become 
observations.

TRANTAB4 Creates, edits, and displays customized translation 
tables.

XSL Transforms an XML document into another format, 
such as HTML, text, or another XML document 
type.

Manage SAS files APPEND Appends one SAS data set to the end of another.

AUTHLIB Manages metadata-bound libraries.

CATALOG Manages SAS catalog entries.

Utility Procedures 11



Tasks Procedure Description

CIMPORT Restores a transport sequential file that PROC 
CPORT creates (usually in another operating 
environment) to its original form as a SAS catalog, 
a SAS data set, or a SAS library.

CONVERT1 Converts BMDP system files, OSIRIS system files, 
and SPSS portable files to SAS data sets.

COPY Copies a SAS library or specific members of the 
library.

CPORT Converts a SAS catalog, a SAS data set, or a SAS 
library to a transport sequential file that PROC 
CIMPORT can restore (usually in another operating 
environment) to its original form.

CV2VIEW3 Converts SAS/ACCESS view descriptors to PROC 
SQL views.

DATASETS Manages SAS files.

DELETE Deletes permanent or temporary SAS files.

EXPORT5 Reads data from a SAS data set and writes them to 
an external data source.

IMPORT5 Reads data from an external data source and 
writes them to a SAS data set.

JSON Reads data from a SAS data set and writes it to an 
external file in JSON representation.

MIGRATE Migrates members in a SAS library forward to the 
most current release of SAS.

PDS1 Lists, deletes, and renames the members of a 
partitioned data set.

PDSCOPY1 Copies partitioned data sets from disk to tape, disk 
to disk, tape to tape, or tape to disk.

PROTO Enables registration, in batch mode, of external 
functions that are written in the C or C++ 
programming languages.

REGISTRY Imports registry information to the USER portion of 
the SAS registry.

RELEASE1 Releases unused space at the end of a disk data 
set under the z/OS environment.

12 Chapter 1 / Choosing the Right Procedure



Tasks Procedure Description

SOURCE1 Provides an easy way to back up and process 
source library data sets.

SQL Concatenates SAS data sets.

TAPECOPY1 Copies an entire tape volume or files from one or 
more tape volumes to one output tape volume.

TAPELABEL1 Lists the label information of an IBM standard-
labeled tape volume in the z/OS environment.

Control windows PMENU Creates customized menus for SAS applications.

Miscellaneous DISPLAY Executes SAS/AF applications.

DS2 Submits DS2 language statements from a Base 
SAS session.

FEDSQL Submits FedSQL language statements from a Base 
SAS session.

GROOVY Enables SAS code to execute Groovy code on the 
Java Virtual Machine (JVM).

HADOOP Enables SAS to run Apache Hadoop code against 
Hadoop data.

PWENCODE Encodes passwords for use in SAS programs.

Manage metadata in a 
SAS Metadata 
Repository

METADATA7 Sends a method call, in the form of an XML string, 
to a SAS Metadata Server.

METALIB7 Updates metadata to match the tables in a library.

METAOPERATE7 Performs administrative tasks on a metadata 
server.

1 See the SAS documentation for your operating environment for a description of these procedures.
2 For a description of this procedure, see the SAS Output Delivery System: User’s Guide.
3 For a description of this procedure, see the SAS/ACCESS for Relational Databases: Reference.
4 For a description of this procedure, see the SAS National Language Support (NLS): Reference Guide
5 For a description of this procedure, see the SAS/ACCESS Interface to PC Files: Reference.
6 For a description of this procedure, see the Base SAS Guide to Information Maps.
7 For a description of this procedure, see the SAS Language Interfaces to Metadata.

Utility Procedures 13



Brief Descriptions of Base SAS 
Procedures

APPEND procedure
adds observations from one SAS data set to the end of another SAS data set.

AUTHLIB procedure
manages metadata-bound libraries, which are physical libraries that are tied to 
corresponding metadata secured table objects. Each physical table within a 
metadata-bound library has information in its header that points to a specific 
metadata object.

CALENDAR procedure
displays data from a SAS data set in a monthly calendar format. PROC 
CALENDAR can display holidays in the month, schedule tasks, and process 
data for multiple calendars with work schedules that vary.

CATALOG procedure
manages entries in SAS catalogs. PROC CATALOG is an interactive, non-
windowing procedure that enables you to display the contents of a catalog; copy 
an entire catalog or specific entries in a catalog; and rename, exchange, or 
delete entries in a catalog.

CHART procedure
produces vertical and horizontal bar charts, block charts, pie charts, and star 
charts. These charts provide a quick visual representation of the values of a 
single variable or several variables. PROC CHART can also display a statistic 
associated with the values.

CIMPORT procedure
restores a transport file created by the CPORT procedure to its original form (a 
SAS library, catalog, or data set) in the format appropriate to the operating 
environment. Coupled with the CPORT procedure, PROC CIMPORT enables 
you to move SAS libraries, catalogs, and data sets from one operating 
environment to another.

COMPARE procedure
compares the contents of two SAS data sets. You can also use PROC 
COMPARE to compare the values of different variables within a single data set. 
PROC COMPARE produces a variety of reports on the comparisons that it 
performs.

CONTENTS procedure
prints descriptions of the contents of one or more files in a SAS library.

CONVERT procedure
converts BMDP system files, OSIRIS system files, and SPSS portable files to 
SAS data sets. For more information, see the SAS documentation for your 
operating environment.

COPY procedure
copies an entire SAS library or specific members of the library. You can limit 
processing to specific types of library members.

14 Chapter 1 / Choosing the Right Procedure



CORR procedure
computes Pearson product-moment and weighted product-moment correlation 
coefficients between variables and descriptive statistics for these variables. In 
addition, PROC CORR can compute three nonparametric measures of 
association (Spearman's rank-order correlation, Kendall's tau-b, and Hoeffding's 
measure of dependence, D), partial correlations (Pearson's partial correlation, 
Spearman's partial rank-order correlation, and Kendall's partial tau-b), and 
Cronbach's coefficient alpha. For more information, see Base SAS Procedures 
Guide: Statistical Procedures.

CPORT procedure
writes SAS libraries, data sets, and catalogs in a special format called a 
transport file. Coupled with the CIMPORT procedure, PROC CPORT enables 
you to move SAS libraries, data sets, and catalogs from one operating 
environment to another.

CV2VIEW procedure
converts SAS/ACCESS view descriptors to PROC SQL views. Starting in SAS 9, 
conversion of SAS/ACCESS view descriptors to PROC SQL views is 
recommended because PROC SQL views are platform-independent and enable 
you to use the LIBNAME statement. For more information, see the 
SAS/ACCESS for Relational Databases: Reference.

DATASETS procedure
lists, copies, renames, and deletes SAS files and SAS generation groups; 
manages indexes; and appends SAS data sets in a SAS library. The procedure 
provides all the capabilities of the APPEND, CONTENTS, and COPY 
procedures. You can also modify variables within data sets; manage data set 
attributes, such as labels and passwords; or Create and Delete integrity 
constraints.

DELETE procedure
deletes SAS files from the disk or tape on which it is stored.

DISPLAY procedure
executes SAS/AF applications. For information about building SAS/AF 
applications, see the Guide to SAS/AF Applications Development.

DOCUMENT procedure
manipulates procedure output that is stored in ODS documents. PROC 
DOCUMENT enables a user to browse and edit output objects and hierarchies, 
and to replay them to any supported ODS output format. For more information, 
see SAS Output Delivery System: User’s Guide.

DS2 procedure
enables you to submit DS2 language statements from a Base SAS session.

EXPORT procedure
reads data from a SAS data set and writes it to an external data source.

FCMP procedure
enables you to create, test, and store SAS functions and subroutines before you 
use them in other SAS procedures. PROC FCMP accepts slight variations of 
DATA step statements. Most features of the SAS programming language can be 
used in functions and subroutines that are processed by PROC FCMP.

FEDSQL procedure
enables you to submit FedSQL language statements from a Base SAS session.

FONTREG procedure
adds system fonts to the SAS registry.

Brief Descriptions of Base SAS Procedures 15

http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


FORMAT procedure
creates user-defined informats and formats for character or numeric variables. 
PROC FORMAT also prints the contents of a format library, creates a control 
data set to write other informats or formats, and reads a control data set to 
create informats or formats.

FREQ procedure
produces one-way to n-way frequency tables and reports frequency counts. 
PROC FREQ can compute chi-square tests for one-way to n-way tables; for 
tests and measures of association and of agreement for two-way to n-way 
crosstabulation tables; risks and risk difference for 2×2 tables; trends tests;and 
Cochran-Mantel-Haenszel statistics. You can also create output data sets. For 
more information, see Base SAS Procedures Guide: Statistical Procedures.

FSLIST procedure
displays the contents of an external file or copies text from an external file to the 
SAS Text Editor.

GROOVY procedure
enables SAS code to execute Groovy code on the Java Virtual Machine (JVM).

HADOOP procedure
enables SAS to run Apache Hadoop code against Hadoop data.

HDMD procedure
generate XML-based metadata that describes the contents of files that are 
stored in HDFS.

HTTP procedure
issues Hypertext Transfer Protocol (HTTP) requests.

IMPORT procedure
reads data from an external data source and writes them to a SAS data set.

INFOMAPS procedure
creates or updates a SAS Information Map. For more information, see the Base 
SAS Guide to Information Maps.

JAVAINFO procedure
conveys diagnostic information to the user about the Java environment that SAS 
is using. The diagnostic information can be used to confirm that the SAS Java 
environment has been configured correctly and can be helpful when reporting 
problems to SAS technical support.

JSON procedure
reads data from a SAS data set and writes it to an external file in JSON 
representation.

MEANS procedure
computes descriptive statistics for numeric variables across all observations and 
within groups of observations. You can also create an output data set that 
contains specific statistics and identifies minimum and maximum values for 
groups of observations.

METADATA procedure
sends a method call, in the form of an XML string, to a SAS Metadata Server. 
For more information, see SAS Language Interfaces to Metadata.

METALIB procedure
updates metadata in a SAS Metadata Repository to match the tables in a library. 
For more information, see SAS Language Interfaces to Metadata.

16 Chapter 1 / Choosing the Right Procedure

http://documentation.sas.com/?docsetId=engimap&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engimap&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


METAOPERATE procedure
performs administrative tasks on a metadata server. For more information, see 
SAS Language Interfaces to Metadata.

MIGRATE procedure
migrates members in a SAS library forward to the most current release of SAS. 
The migration must occur within the same engine family; for example, V6, V7, or 
V8 can migrate to V9, but V6TAPE must migrate to V9TAPE.

OPTIONS procedure
lists the current values of all SAS system options.

OPTLOAD procedure
reads SAS system option settings from the SAS registry or a SAS data set, and 
puts them into effect.

OPTSAVE procedure
saves SAS system option settings to the SAS registry or a SAS data set.

PDS procedure
lists, deletes, and renames the members of a partitioned data set. For more 
information, see the SAS Companion for z/OS.

PDSCOPY procedure
copies partitioned data sets from disk to tape, disk to disk, tape to tape, or tape 
to disk. For more information, see the SAS Companion for z/OS.

PLOT procedure
produces scatter plots that graph one variable against another. The coordinates 
of each point on the plot correspond to the two variables' values in one or more 
observations of the input data set.

PMENU procedure
defines menus that you can use in DATA step windows, macro windows, and 
SAS/AF windows, or in any SAS application that enables you to specify 
customized menus.

PRESENV procedure
preserves all global statements and macro variables in your SAS code from one 
SAS session to another. When this procedure is invoked at the end of a SAS 
session, all of the global statements and macro variables are written to a file.

PRINT procedure
prints the observations in a SAS data set, using all or some of the variables. 
PROC PRINT can also print totals and subtotals for numeric variables.

PRINTTO procedure
defines destinations for SAS procedure output and the SAS log.

PROTO procedure
enables you to register, in batch mode, external functions that are written in the 
C or C++ programming languages. You can use these functions in SAS as well 
as in C-language structures and types. After these functions are registered in 
PROC PROTO, they can be called from any SAS function or subroutine that is 
declared in the FCMP procedure. After registration, they can also be called from 
any SAS function, subroutine, or method block that is declared in the COMPILE 
procedure.

PRTDEF procedure
creates printer definitions for individual SAS users or all SAS users.

Brief Descriptions of Base SAS Procedures 17

http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


PRTEXP procedure
exports printer definition attributes to a SAS data set so that they can be easily 
replicated and modified.

PWENCODE procedure
encodes passwords for use in SAS programs.

QDEVICE procedure
produces reports about graphics devices and universal printers.

RANK procedure
computes ranks for one or more numeric variables across the observations of a 
SAS data set. The ranks are written to a new SAS data set. Alternatively, PROC 
RANK produces normal scores or other rank scores.

REGISTRY procedure
imports registry information into the USER portion of the SAS registry.

RELEASE procedure
releases unused space at the end of a disk data set in the z/OS environment. 
For more information, see the SAS Companion for z/OS.

REPORT procedure
combines features of the PRINT, MEANS, and TABULATE procedures with 
features of the DATA step in a single report-writing tool that can produce both 
detail and summary reports.

SCAPROC procedure
implements the SAS Code Analyzer, which captures information about input, 
output, and the use of macro symbols from a SAS job while it is running.

SCOREACCEL procedure
provides an interface to the CAS server for DATA step and DS2 model 
publishing and scoring.

SOAP procedure
reads XML input from a file that has a fileref and writes XML output to another 
file that has a fileref.

SORT procedure
sorts observations in a SAS data set by one or more variables. PROC SORT 
stores the resulting sorted observations in a new SAS data set or replaces the 
original data set.

SOURCE procedure
provides an easy way to back up and process source library data sets. For more 
information, see the SAS documentation for your operating environment.

SQL procedure
implements a subset of the Structured Query Language (SQL) for use in SAS. 
SQL is a standardized, widely used language that retrieves and updates data in 
SAS data sets, SQL views, and DBMS tables, as well as views based on those 
tables. PROC SQL can also create tables and views, summaries, statistics, and 
reports and perform utility functions such as sorting and concatenating. For more 
information, see SAS SQL Procedure User’s Guide.

SQOOP procedure
allows access to Apache Sqoop using options to allow data transfer between a 
database and HDFS.

18 Chapter 1 / Choosing the Right Procedure

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


STANDARD procedure
standardizes some or all of the variables in a SAS data set to a given mean and 
standard deviation and produces a new SAS data set that contains the 
standardized values.

STREAM procedure
enables you to process an input stream that consists of arbitrary text that can 
contain SAS macro specifications. It can expand macro code and store it in a 
file.

SUMMARY procedure
computes descriptive statistics for the variables in a SAS data set across all 
observations and within groups of observations, and writes the results to a new 
SAS data set.

TABULATE procedure
displays descriptive statistics in tabular form. The value in each table cell is 
calculated from the variables and statistics that define the pages, rows, and 
columns of the table. The statistic associated with each cell is calculated on 
values from all observations in that category. You can write the results to a SAS 
data set.

TAPECOPY procedure
copies an entire tape volume or files from one or more tape volumes to one 
output tape volume. For more information, see the SAS Companion for z/OS.

TAPELABEL procedure
lists the label information of an IBM standard-labeled tape volume under the 
z/OS environment. For more information, see the SAS Companion for z/OS.

TEMPLATE procedure
customizes ODS output for an entire SAS job or a single ODS output object. For 
more information, see SAS Output Delivery System: User’s Guide.

TIMEPLOT procedure
produces plots of one or more variables over time intervals.

TRANSPOSE procedure
transposes a data set that changes observations into variables and vice versa.

TRANTAB procedure
creates, edits, and displays customized translation tables. For more information, 
see SAS National Language Support (NLS): Reference Guide.

UNIVARIATE procedure
computes descriptive statistics (including quantiles), confidence intervals, and 
robust estimates for numeric variables. Provides detail on the distribution of 
numeric variables, which include tests for normality, plots to illustrate the 
distribution, frequency tables, and tests of location. For more information, see 
Base SAS Procedures Guide: Statistical Procedures.

XSL procedure
transforms an XML document into another format, such as HTML, text, or 
another XML document type.

Brief Descriptions of Base SAS Procedures 19

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


20 Chapter 1 / Choosing the Right Procedure



2
Fundamental Concepts for Using 
Base SAS Procedures

Language Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Temporary and Permanent SAS Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SAS System Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Data Set Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Global Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
AES Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Procedure Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Input Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Threaded Processing for Base SAS Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Controlling the Order of Data Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
RUN-Group Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Creating Titles That Contain BY-Group Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Shortcuts for Specifying Lists of Variable Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Formatted Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Processing All the Data Sets in a Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Operating Environment-Specific Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Statistic Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Computational Requirements for Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Output Delivery System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

21



Language Concepts

Temporary and Permanent SAS Data Sets

Naming SAS Data Sets
SAS data sets can have a one-level name or a two-level name. Typically, names of 
temporary SAS data sets have only one level and are stored in the WORK library. 
The WORK library is defined automatically at the beginning of the SAS session and 
is deleted automatically at the end of the SAS session. Procedures assume that 
SAS data sets that are specified with a one-level name are to be read from or 
written to the WORK library. To indicate otherwise, you specify a USER library. For 
more information, see “USER Library” on page 22. For example, the following 
PROC PRINT steps are equivalent. The second PROC PRINT step assumes that 
the DEBATE data set is in the WORK library.

proc print data=work.debate;
run;

proc print data=debate;
run;

The SAS system options WORK=, WORKINIT, and WORKTERM affect how you 
work with temporary and permanent libraries. For more information, see SAS 
System Options: Reference.

Typically, two-level names represent permanent SAS data sets. A two-level name 
takes the form libref.SAS-data-set. The libref is a name that is temporarily 
associated with a SAS library. A SAS library is an external storage location that 
stores SAS data sets in your operating environment. A LIBNAME statement 
associates the libref with the SAS library. In the following PROC PRINT step, 
PROCLIB is the libref and EMP is the SAS data set within the library:

libname proclib 'SAS-library';
proc print data=proclib.emp;
run;

USER Library
You can use one-level names for permanent SAS data sets by specifying a USER 
library. You can assign a USER library with a LIBNAME statement or with the SAS 
system option USER=. After you specify a USER library, the procedure assumes 
that data sets with one-level names are in the USER library instead of the WORK 

22 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



library. For example, the following PROC PRINT step assumes that DEBATE is in 
the USER library:

options user='SAS-library';
proc print data=debate;
run;

Note: If you have a USER library defined, then you can still use the WORK library 
by specifying WORK.SAS-data-set.

SAS System Options
Some SAS system option settings affect procedure output. The SAS system options 
listed below are the options that you are most likely to use with SAS procedures:

n BYLINE | NOBYLINE

n DATE | NODATE

n DETAILS | NODETAILS

n FMTERR | NOFMTERR

n FORMCHAR=

n FORMDLIM=

n LABEL | NOLABEL

n LINESIZE=

n NUMBER | NONUMBER

n PAGENO=

n PAGESIZE=

n REPLACE | NOREPLACE

n SOURCE | NOSOURCE

For a complete description of SAS system options, see the SAS System Options: 
Reference.

Data Set Options
Most of the procedures that read data sets or create output data sets accept data 
set options. SAS data set options appear in parentheses after the data set 
specification. Here is an example:

proc print data=stocks(obs=25 pw=green);

The individual procedure chapters contain reminders that you can use data set 
options where it is appropriate.

SAS data set options are as follows:

Language Concepts 23



ALTER= OBS=

BUFNO= OBSBUF=

BUFSIZE= OUTREP=

CNTLLEV= POINTOBS=

COMPRESS= PW=

DLDMGACTION= PWREQ=

DROP= READ=

ENCODING= RENAME=

ENCRYPT= REPEMPTY=

FILECLOSE= REPLACE=

FIRSTOBS= REUSE=

GENMAX= SORTEDBY=

GENNUM= SPILL=

IDXNAME= TOBSNO=

IDXWHERE= TYPE=

IN= WHERE=

INDEX= WHEREUP=

KEEP= WRITE=

LABEL=

For a complete description of SAS data set options, see the SAS Data Set Options: 
Reference.

Global Statements
You can use these global statements anywhere in SAS programs except after a 
DATALINES, CARDS, or PARMCARDS statement:

comment ODS

24 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



DM OPTIONS

ENDSAS PAGE

FILENAME RUN

FOOTNOTE %RUN

%INCLUDE SASFILE

LIBNAME SKIP

%LIST TITLE

LOCK X

For information about all the above statements except for the ODS statement, see 
the SAS DATA Step Statements: Reference. For information about the ODS 
statement, see “Output Delivery System” on page 72 and SAS Output Delivery 
System: User’s Guide.

AES Encryption
Prior to the SAS 9.4M5 release, SAS supported only one Advanced Encryption 
Standard (AES) encryption algorithm that was specified with the ENCRYPT=AES 
data set option. Beginning with the SAS 9.4M5 release, SAS supports a stronger 
AES key generation algorithm specified with the ENCRYPT=AES2 data set option. 
This stronger algorithm meets newer standards requested by some SAS customers. 
The same key value passphrase specified by the ENCRYPTKEY= data set option 
can be used with either algorithm. A data set that is encrypted with the AES2 
algorithm cannot be accessed by any SAS release prior to SAS 9.4M5.

To access a data set that is created with AES encryption, you have to supply the 
encryption key value with the ENCRYPTKEY= option. If you omit the 
ENCRYPTKEY= key value when accessing an AES secured data set, a dialog box 
appears and prompts you to add the ENCRYPTKEY= key value. For more 
information, see “AES Encryption” in SAS Programmer’s Guide: Essentials and 
“ENCRYPTKEY= Data Set Option” in SAS Data Set Options: Reference.

Language Concepts 25

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1s7u3pd71rgunn1xuexedikq90f.htm&docsetTargetAnchor=n1o82uabmi8m8xn1krmlzw1q1tv4&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en


Procedure Concepts

Input Data Sets
Many Base SAS procedures require an input SAS data set. You specify the input 
SAS data set by using the DATA= option in the procedure statement, as in this 
example:

proc print data=emp;

If you omit the DATA= option, the procedure uses the value of the SAS system 
option _LAST_=. The default of _LAST_= is the most recently created SAS data set 
in the current SAS job or session. _LAST_= is described in detail in the SAS Data 
Set Options: Reference.

Threaded Processing for Base SAS Procedures
Threaded processing enables multiple pieces of executable code to run 
simultaneously. Many SAS procedures, including several SAS/STAT and High-
Performance Analytics (HPA) procedures, support threaded processing. However, 
not all SAS procedures support threaded processing. See the documentation for the 
procedures that you are using to determine whether they support threaded 
processing.

Calculated statistics can vary slightly, depending on the order in which observations 
are processed. Such variations are due to numerical errors that are introduced by 
floating–point arithmetic, the results of which should be considered approximate and 
not exact. The order of observation processing can be affected by nondeterministic 
effects of multithreaded or parallel processing. The order of processing can also be 
affected by inconsistent or nondeterministic ordering of observations that are 
produced by a data source, such as a DBMS that delivers query results through an 
ACCESS engine. For more information, see “Numerical Accuracy in SAS Software” 
in SAS Language Reference: Concepts and “Threading in Base SAS” in SAS 
Language Reference: Concepts.

The following Base SAS procedures support threaded processing:

n Chapter 40, “MEANS Procedure,” on page 1419

n Chapter 58, “REPORT Procedure,” on page 1981

n Chapter 64, “SORT Procedure,” on page 2277

n Chapter 69, “SUMMARY Procedure,” on page 2373

n Chapter 70, “TABULATE Procedure,” on page 2377

n “SQL Procedure” in SAS SQL Procedure User’s Guide

26 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0ji1unv6thm0dn1gp4t01a1u0g6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0ji1unv6thm0dn1gp4t01a1u0g6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0czb9vxe72693n1lom0qmns6zlj.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0czb9vxe72693n1lom0qmns6zlj.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n1oihmdy7om5rmn1aorxui3kxizl.htm&locale=en


See Also
System Options

n “CPUCOUNT=” in SAS System Options: Reference

n “THREADS” in SAS System Options: Reference

Other Documentation

n “Support for Parallel Processing” in SAS Language Reference: Concepts

n SAS Scalable Performance Data Server: User's Guide

Controlling the Order of Data Values

Ordering of Data Values
Procedures apply an ordering scheme for data values and certain conditions affect 
how procedures order data:

n operating-environment-specific collating sequences

n the BY statement

n a single classification variable

n multiple classification variables

n formats 

n the ORDER= option

n supplemental ordering options

Examples for ordering data use the Sasuser.Houses data set.

data sasuser.houses;
input style $ 1-9 sqfeet 10-13 bedrooms 15 baths 17-19 street $ 21-36 price 38-44;
datalines;
RANCH    1250 2 1.0 Sheppart Avenue   64000
SPLIT    1190 1 1.0 Rand Street       65850
CONDO    1400 2 1.5 Market Street     80050
TWOSTORY 1810 4 3.0 Garris Street    107250
RANCH    1500 3 3.0 Kemble Avenue     86650
SPLIT    1615 4 3.0 West Drive        94450
SPLIT    1305 3 1.5 Graham Avenue     73650
CONDO    1390 3 2.5 Hampshire Avenue  79650
TWOSTORY 1040 2 1.0 Sanders Road      55850
CONDO    2105 4 2.5 Jeans Avenue     127150
RANCH    1535 3 3.0 State Highway     89100
TWOSTORY 1240 2 1.0 Fairbanks Circle  69250
RANCH     720 1 1.0 Nicholson Drive   34550
TWOSTORY 1745 4 2.5 Highland Road    102950
CONDO    1860 2 2.0 Arcata Avenue    110700

Procedure Concepts 27

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p14arc7flhenwqn1v1gipt9e49om.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0cvg7xpfvfyn4n1rnp64gu91poh.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0z5kinpzecv9nn1s45yam93tf6z.htm&locale=en


run;

proc datasets lib=sasuser memtype=data;
   modify houses;
   attrib price format=dollar8.;
run;

proc print data=sasuser.houses;
run;

Figure 2.1 The Sasuser.Houses Data Set

Data Ordered by the Operating 
Environment
Operating environments use either the ASCII or EBCIDIC collating sequences to 
order data:

n Windows and UNIX use the ASCII collating sequence.

n z/OS uses the EBCIDIC collating sequence.

28 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



This example code was run on Windows and z/OS, changing the title for each 
system:

data order;
   input x $1.;
   datalines;
1
a
A
z
Z
\
;

proc print;
run;

The following table shows the difference in the PRINT procedure output between 
ASCII and EBCIDIC:

ASCII Collating Sequence EBCDIC Collating Sequence

1 a

A z

Z A

\ \

a Z

z 1

For more information, see “Collating Sequence” in SAS National Language Support 
(NLS): Reference Guide.

Order Data Using the BY Statement
To order data by one or more variables, you must first use the SORT procedure. 
After the data is sorted, you use the same variables in a procedure BY statement to 
indicate how the data is sorted. The procedure subsets the data into BY groups 
based on the BY variables.

proc sort data=sasuser.houses out=houses;
   by style;
run;
proc freq data=houses;
  by style;
  tables bedrooms /nopercent;
run;

Here are the first two BY groups ordered by the Style variable for the house styles:

Procedure Concepts 29

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&locale=en


Figure 2.2 The First of Two BY Groups in Ascending Order

Figure 2.3 The Second of Two BY Groups in Ascending Order

By default, the SORT procedure orders BY groups in ascending order. To reverse 
the order, you use the DESCENDING option in the BY statement in PROC SORT 
and in subsequent procedures that process the data set.

proc sort data=sasuser.houses out=houses;
   by descending style;
run;
proc freq data=houses;
  by descending style;
  tables bedrooms /nopercent;
  run;

30 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Figure 2.4 First of Two BY Groups in Descending Order

Figure 2.5 Second of Two BY Groups in Descending Order

The BY statement has another option, NOTSORTED. The NOTSORTED option is 
useful when you want to list a variable in a BY statement whose values are grouped 
together, but are not sorted in either ascending or descending order.

Order Data Using a Single Classification 
Variable
Classification variables organize data into groups that are meaningful for analysis. 
The values are grouped and ordered after all of the data values in a data set or BY 
group have been read by the procedure.

The following table lists some of the procedures and their statements that define 
classification variables:

Procedure Statement

FREQ TABLES

MEANS CLASS

Procedure Concepts 31



Procedure Statement

REPORT DEFINE

use options GROUP, ORDER, or ACROSS

SUMMARY CLASS

TABULATE CLASS

For most procedures, the default ordering scheme is ascending for single 
classification variables with no formats or ordering options:

proc means data=sasuser.houses nway mean;
   class style;
   var sqfeet;
run;

Figure 2.6 The Default Ascending Order for a Single Classification Variable

For information about the default data ordering behavior for PROC REPORT, see 
“Order Data Using the ORDER= Option” on page 44.

Order Data Using Multiple Classification 
Variables
Only one variable can be considered the higher-order grouping variable when you 
use multiple classification variables to create subgroups of data. All other variables 
are used to create subgroups of the immediate preceding higher-order variable.

Here is a list of statements, by procedure, that specifies the higher-order variable. 
The first variable in the procedure statement is the higher-order variable. In all 
examples in the table, A is the higher-order variable.

32 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Procedure

Statement That 
Specifies the Higher-
Order Variable Example

FREQ TABLES proc freq;
   tables A * B * C * D;
run;

MEANS CLASS proc means;
   class A B C D;
run;

REPORT COLUMN proc report;
   column A B C D;
   define C / group;
   define A / group;
   define B / group;
   define D / group;

run;

SUMMARY CLASS proc summary;
   class A B C D;
run;

TABULATE TABLE proc tabulate;
   class D C B A;
   table A, B, C * D;
run;

The ordering scheme is determined first by developing a master order for each class 
variable, for the entire data set or BY group. The master order is then applied to 
each subgroup of the hierarchy. The order does not change from one class 
subgroup to the next.

Consider this example:

proc tabulate data=sasuser.houses format=3. noseps;
   class style bedrooms;
   table style*bedrooms, n / rts=23;
run;

The master order for Style and Bedrooms is determined separately. Style is the 
higher-order class variable. Bedrooms forms subgroups of each value of Style. The 
order for Bedrooms is not determined again for each value of Style. Instead, the 
order is taken from the master order that is determined before generating 
subgroups.

When no ORDER= option is specified in the CLASS statement, the data is ordered 
by using unformatted values, which results in the same order as the SORT 
procedure. The master order for Style is ascending alphabetically, and the master 
order for Bedrooms is ascending numerically:

Procedure Concepts 33



Figure 2.7 Master Order Using No ORDER= Option

Consider this example where the order also considers frequency counts:

proc tabulate data=sasuser.houses format=3. noseps order=freq;
   class style bedrooms;
   table style*bedrooms, n / rts=23;
run;

For PROC TABULATE, if the frequency count is the same for multiple variables, 
then the master order uses the order in which the data was read by the procedure. 
When PROC TABULATE reads the data set, the frequency count for Ranch is 4, 
Split is 3, Condo is 4, and TwoStory is 4. Therefore, the master order of the higher-
order variable, Style, is Ranch, Condo, TwoStory, and Split.

The master order for bedrooms is then determined. Two bedrooms has a count of 5, 
four bedrooms has a count of 4, three bedrooms has a count of 4, and one bedroom 
has a count of 2. The master order for bedrooms is 2, 4, 3, 1. Here is the output:

34 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Figure 2.8 The Order of Values Using the Master Order

The order becomes obvious when you add the PRINTMISS option to the TABLE 
statement to show the frequency count:

Procedure Concepts 35



Figure 2.9 The Master Order with Frequency Counts

Order Data Using Formats: Procedure 
Default Behavior
The FREQ, MEANS, SUMMARY, and TABULATE procedures default to order class 
variable values in ascending order by the actual value in the SAS data set and not 
their formatted values.

The REPORT procedure default order is ascending order based on the formatted 
values of the order, group, or across variable.

The following table summarizes the default ordering schemes for procedures when 
formats are applied to classification variables:

36 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Procedure Variable Type Format Specified Ordered By

FREQ Numeric or Character Yes or No Actual value

MEANS Numeric or Character Yes or No Actual value

REPORT Numeric Yes or No Formatted value 1

Character Yes

No

Formatted value

Actual value

SUMMARY Numeric or Character Yes or No Actual value

TABULATE Numeric or Character Yes or No Actual value

1 BESTw.d is the default format if no format is assigned.

Order Data Using Formats: Using the 
Lowest Actual Value
When you format multiple values of a class variable and use ORDER=INTERNAL, 
the ordering of data uses the actual values from the data set and not formatted 
values. The value that applies to a particular class level is the lowest actual value 
that was encountered in the data set for the format range. This occurs whether you 
are producing printed output or an output data set.

In this example, GROUP B appears before GROUP A because the lowest actual 
value encountered for GROUP B is 1. For GROUP A, the lowest actual value is 3. 
The lowest possible actual value that could be in GROUP A is 0, but 0 does not 
exist in the data.

proc format;
   value numf 0,3,4='GROUP A' 
                1,2='GROUP B';

proc report data=sasuser.houses;
   column bedrooms;
   define bedrooms / group format=numf. order=internal;
run;

Figure 2.10 Ordering by the Lowest Value in a Format Range

Procedure Concepts 37



Another situation that uses the lowest actual value occurs when a format contains 
groups or ranges that are independent from one another.

In this example, for DEPT=PET, the value OTHER appears last in the sequence. It 
appears first for DEPT=PLANT. This is because the master ordering sequence for 
ID is determined before subgroups are created. ID=199 and ID=299 have the same 
format, OTHER. Because only the formatted value OTHER was established in the 
master ordering for ID, OTHER is ordered first for DEPT=PLANT.

data sample;

   length dept $ 5;
   input dept id;
   datalines;
PET   100
PET   110
PET   120
PET   199
PLANT 200
PLANT 210
PLANT 220
PLANT 299
;

proc format;
   value idfmt
         100='CAT'    
         110='DOG' 
         120='FISH' 
         199='OTHER'
         200='CACTUS' 
         210='IVY' 
         220='FERN' 
         299='OTHER';

proc tabulate data=sample noseps;
   class dept id;
   table dept*id, n;
   format id idfmt.;
run;

38 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Figure 2.11 Ordering by the Lowest Actual Value

Order Data Using Formats: Missing Values
If missing values exist in the data and in a format range, they can have one of two 
possible effects on the output, depending on the procedure and options that you 
specify:

1 The entire format group is treated as invalid.

2 The entire format range has the lowest internal value, possibly resulting in the 
format range appearing first in an ordering scheme.

Most procedures that use class variables provide the MISSING option, which 
enables you to specify whether missing values are to be considered valid class 
levels. PROC FREQ has the option MISSPRINT, which displays missing class levels 
but does not use them in calculating statistics.

The MEANS, REPORT, SUMMARY, and TABULATE procedures classify missing 
values as valid or invalid before formats are applied. If you do not specify the 
MISSING option, and you use a format range that groups nonmissing class levels 
with missing class levels, then the nonmissing class levels are treated as valid, 
whereas the missing class levels are not valid.

PROC FREQ applies formats before classifying missing values as valid or invalid. If 
MISSING or MISSPRINT is not used and a format range groups nonmissing class 
levels with missing class levels, then both the nonmissing and missing class levels 
are considered invalid. The following example demonstrates the difference in effect 
between PROC FREQ and PROC REPORT:

proc format;
   value bedfmt 1='ONE' 2='TWO' other='OTHER';

data houses;

Procedure Concepts 39



   set sasuser.houses end=last;
   output;
   if last then do;
      bedrooms=.;
      output;
   end;
   format bedrooms bedfmt.;
run;

proc print data=houses;
   title "PROC PRINT";
   title2 "WORK.HOUSES";
   var bedrooms;
   format bedrooms;
run;

proc freq data=houses;
   title1 "PROC FREQ";
   title2 "Without MISSING Specified";
   tables bedrooms / nocum nopercent;
run;

proc report data=houses;
   title1 "PROC REPORT";
   title2 "Without MISSING Specified";
   column beddrooms n;
   define bedrooms /group width=8;
run;

40 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Output 2.1 Order of Data Compared in PROC FREQ and PROC REPORT

Procedure Concepts 41



PROC FREQ does not include the formatted class level OTHER, where PROC 
REPORT does. This is because PROC FREQ applied the BEDFMT. format to the 
Bedrooms variable before classifying missing values as invalid. PROC REPORT 
classifies missing values as invalid before applying the format. This allows the 
nonmissing class levels that would normally be grouped with the missing class 
levels to be treated as valid.

You can verify this by observing the frequency counts. A total of 16 observations 
reside in the Work.Houses data set. PROC FREQ reports nine invalid class levels. 
PROC REPORT treats only one class level as invalid. If the lowest internal value in 
a format group is a missing value, then the entire group is treated as missing. 
Because missing values are considered the lowest possible internal value for either 
numeric or character variables, missing values cause an entire format group to have 
the lowest internal value. Missing values rank first when ordering by internal values. 
The following code demonstrates this by adding the MISSING option to the previous 
example:

proc freq data=houses;
   title1 "PROC FREQ";
   title2 "With MISSING Specified";
   tables bedrooms / nocum nopercent missing ;
run;

proc report data=houses missing;
   title1 "PROC REPORT";
   title2 "With MISSING Specified";
   column bedrooms n;
   define bedrooms / group width=8;
run;

42 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Output 2.2 PROC FREQ and PROC REPORT with MISSING Specified

In the results for PROC FREQ, the group OTHER is ordered first in the sequence. In 
the results for PROC REPORT, OTHER is ordered second. By default, PROC 
FREQ orders by internal values and PROC REPORT orders by formatted values. 
Note that the frequency count is the same for both procedures. In PROC FREQ, 
OTHER corresponds to the missing frequency in the Work.Houses data set. For 
PROC REPORT, the frequency increases by one to account for the single missing 
value that was not included in Work.Houses.

Order Data Using Formats: BY Variables
If a format is applied to a variable in a BY statement, then the values of the BY 
variable are grouped unless the internal values are not sequenced in the format 
range:

proc sort data=sasuser.houses out=houses;
   by bedrooms;
run;

proc format;
   value numf 3='GROUP A' 1,2,4='GROUP B';
run;

proc report data=houses;
   by bedrooms;
   format bedrooms numf.;

Procedure Concepts 43



   column price;
run;

Output 2.3 Ordering with a Formatted BY Variable

Order Data Using the ORDER= Option
The ORDER= option enables you to choose the ordering scheme that the procedure 
uses. The ORDER= option can have the values INTERNAL or UNFORMATTED, 
FORMATTED, DATA, and FREQ.

Note: The MEANS, REPORT, SUMMARY, and TABULATE procedures accept both 
the INTERNAL and UNFORMATTED as a value for the ORDER= option to order 
unformatted data. 

You can use the option with these procedures:

Procedure SAS Product Default Value

CATMOD SAS/STAT INTERNAL

FREQ Base SAS INTERNAL

GLM SAS/STAT FORMATTED

44 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Procedure SAS Product Default Value

LIFEREG SAS/STAT FORMATTED

LOGISTIC SAS/STAT FORMATTED

MEANS Base SAS UNFORMATTED

PROBIT SAS/STAT FORMATTED

REPORT Base SAS FORMATTED

SUMMARY Base SAS UNFORMATTED

TABULATE Base SAS UNFORMATTED

The following topics explain each value of ORDER=.

Order Data Using the ORDER= 
INTERNAL Option
When you specify ORDER=INTERNAL with no other ordering options specified, it 
causes class variable values to be listed in ascending order by their actual, 
unformatted values:

proc format;
   value numf 1='ONE' 2='TWO' 3='THREE' 4='FOUR';
run;
proc report data=sasuser.houses;
   column bedrooms;
   define bedrooms /group format=numf8. order=internal;
run;

Output 2.4 Output When ORDER=INTERNAL

The values for bedroom are ONE, TWO, THREE, and FOUR, which correspond to 
the numbers 1, 2, 3, 4. If you do not specify ORDER=INTERNAL, the values are 
listed in alphabetical order by the formatted value: FOUR, ONE, THREE, TWO.

Procedure Concepts 45



Order Data Using the ORDER= 
FORMATTED Option
When you specify ORDER=FORMATTED with no other ordering options specified 
causes class variable values to be listed in alphabetical order by their formatted 
values:

proc format;
   value numf 1='ONE' 2='TWO' 3='THREE' 4='FOUR';
run;
proc freq data=sasuser.houses order=formatted;
   tables bedrooms / nopercent;
   format bedrooms numf8. ;
run;

Output 2.5 Output When ORDER=FORMATTED

If ORDER=FORMATTED is specified and a class variable does not have a format 
associated with it, then the output is listed by its internal, or unformatted values.

In a special case, as the default behavior for PROC REPORT is 
ORDER=FORMATTED, this setting might cause problems because PROC 
REPORT uses BESTw. as the default format for numeric values. Here is an 
example:

proc report data=sasuser.houses;
   title1 "ORDER=FORMATTED";
   title2 "(default)";
   title4 "FORMAT=BEST9.";
   title5 "(default)";
   column baths;
   define baths / group;
run;

46 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Here, BEST9. is the default format because a format is not specified. Since the 
default setting for PROC REPORT is ORDER=FORMATTED, the values are sorted 
using the formatted values. This can be complicated by character comparisons that 
sometimes give misleading results. The values that are being compared are " 1", " 
2", " 3", "1.5", and "2.5". The single-digit values have leading blanks. Since a blank 
character sorts before a number or a period (.), the values "1", "2", and "3" sort 
before the values 1.5 or 2.5.

Output 2.6 PROC REPORT Default Formatting When Values Have Leading Blanks

This problem is corrected in the next output by using the 3.1 format, causing no 
leading blanks to appear in the comparison:

proc report data=sasuser.houses;
   title1 "ORDER=FORMATTED";
   title2 "(default)";
   title4 "FORMAT=3.1";
   title5 "(specified)";
   column baths;
   define baths / group format=3.1;
run;

Procedure Concepts 47



Output 2.7 PROC REPORT Formatted When Values Have No Leading Blanks

The problem is also corrected in the following output because the internal values 
and not the formatted values are used to determine the order:

proc report data=sasuser.houses nowd;
   title1 "ORDER =INTERNAL";
   title2 "(specified)";
   title4 "FORMAT=BEST9.";
   title5 "(default)";
   column baths;
   define baths / group order=internal;
run;

Output 2.8 PROC FORMAT Output Based on Internal Values

48 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Order Data Using the ORDER= DATA 
Option
ORDER=DATA specifies that the order is set according to how the data is initially 
read by the procedure. ORDER=DATA can be complicated depending on the use of 
BY statements or multiple classification variables. Here is a simple case:

proc tabulate data=sasuser.houses order=data format=3. noseps;
   class style;
   table style, n;
run;

Output 2.9 PROC TABULATE with ORDER=DATA

The output order for Style is neither ascending nor descending. RANCH appears 
first because it is the first value that is encountered in the input data set. SPLIT 
appears second because it is encountered second, and so on. If you use a BY 
statement, then the order is reset at the beginning of each new BY group, as if a 
new data set were being processed.

When you use multiple classification variables, the order is determined 
independently for each classification variable across the entire data set or BY group. 
The ordering scheme is developed first using the master order of the highest order 
variable and then the next highest, and so on. Here is an example:

proc tabulate data=sasuser.houses order=data format=3. noseps;
   class style bedrooms;
   table style*bedrooms, n;
run;

Procedure Concepts 49



Output 2.10 PROC TABULATE Using Two Classification Variables

To compare, the order for Style is RANCH, SPLIT, CONDO, TWOSTORY. The order 
for Bedrooms is 2, 1, 4, 3. This is not clearly apparent in the output because no 
value of STYLE has all four values of Bedrooms. The order of values is established 
independently for each variable and not according to the subgroups. You can verify 
this by adding the PRINTMISS option to the TABLE statement or by comparing the 
order of Style and Bedrooms in the Sasuser.Houses data set. See “Order Data 
Using Multiple Classification Variables” on page 32.

Order Data Using the ORDER= FREQ 
Option
ORDER=FREQ specifies that classification variables are to be ordered by the 
frequencies of each of their values. With the exception of PROC FREQ, missing 
class levels are ordered by their frequency counts just as nonmissing class levels 
are. PROC FREQ always lists missing class levels first, regardless of their 
frequency counts. All Base SAS procedures, except for PROC REPORT, list the 
frequencies in descending order. PROC REPORT, by default, lists the frequencies in 
ascending order. If you use the PROC REPORT option DESCENDING in 
conjunction with ORDER=FREQ, then the class levels are ordered by their 
descending frequency counts.

If two class levels have the same frequency, a secondary ordering algorithm is used. 
All Base SAS procedures, except for PROC FREQ, use ORDER=DATA as a 
secondary ordering method.

If duplicate frequency counts occur with PROC FREQ and ORDER=FREQ has 
been specified, then PROC FREQ uses ORDER=FORMATTED as a secondary 
ordering method. If in PROC FREQ a format has not been applied, then the tie is 

50 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



broken using the ORDER=INTERNAL method. If you use PROC REPORT with 
ORDER=FREQ and the DESCENDING option, and a tie occurs, then the 
ORDER=DATA method is used, but the levels are listed in reverse order of 
occurrence in the data.

The following table summarizes the behavior across the Base SAS procedures that 
use the ORDER= option:

Procedure Order Direction Format Order Value In a Tie

FREQ Descending No ORDER=INTERNAL

Yes ORDER=FORMATTED

MEANS Descending Yes or No ORDER=DATA

REPORT Ascending Yes or No ORDER=DATA

Descending Yes or No ORDER=DATA 1

SUMMARY Descending Yes or No ORDER=DATA

TABULATE Descending Yes or No ORDER=DATA

1 If you specify the DESCENDING option, then both the primary method, ORDER=FREQ, and the 
secondary method, ORDER=DATA, list levels in descending order.

Here are some examples when ORDER=FREQ is specified with the TABULATE, 
FREQ, and REPORT procedures. First we have PROC TABULATE and PROC 
FREQ output without a format specified:

proc format;
   value bedfmt 1='ONE' 2='TWO' 3='THREE' 4='FOUR';

proc tabulate data=sasuser.houses order=freq noseps format=3.;
   title1 "PROC TABULATE";
   title2 "Without Format";
   class bedrooms;
   table bedrooms, n;
run;

proc freq data=sasuser.houses order=freq;
   title1 "PROC FREQ";
   title2 "Without Format";
   tables bedrooms / nocum nopercent;
run;

Both outputs list data values in descending order of the frequency counts.

Procedure Concepts 51



Output 2.11 ORDER=FREQ Examples

PROC REPORT, when no format is specified, lists the output in ascending order:

proc report data=sasuser.houses;
   title1 "PROC REPORT";
   title2 "Without Format";
   title3 "Without DESCENDING";
   column bedrooms n;
   define bedrooms / group order=freq;
run;

52 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Output 2.12 PROC REPORT with No Format Specified

For PROC REPORT to list output in descending order, you must specify 
DESCENDING in the DEFINE statement:

proc report data=sasuser.houses;
   title1 "PROC REPORT";
   title2 "Without Format";
   title3 "With DESCENDING";
   column bedrooms n;
   define bedrooms / group order=freq descending;
run;

PROC TABULATE and PROC REPORT use the ORDER=DATA method to handle 
values that are the same.

proc tabulate data=sasuser.houses order=freq noseps format=3.;
   title1 "PROC TABULATE";
   title2 "With Format";
   class bedrooms;
   table bedrooms, n;
   format bedrooms bedfmt.;
run;
proc report data=sasuser.houses;
   title1 "PROC REPORT";
   title2 "With Format";
   title3 "Without DESCENDING";

Procedure Concepts 53



   column bedrooms n;
   define bedrooms / group order=freq format=bedfmt8.;
run;

Output 2.13 Descending Output Examples

PROC FREQ uses ORDER=FORMATTED when a format is specified and values 
are the same.

proc freq data=sasuser.houses order=freq;
   title1 "PROC FREQ";
   title2 "With Format";
   tables bedrooms / nocum nopercent;
   format bedrooms bedfmt.;
run;

54 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Output 2.14 Descending Output Using PROC FREQ with a Format

If you do not specify a format, PROC FREQ uses ORDER=INTERNAL.

In PROC REPORT when DESCENDING is applied, data values are listed in 
descending order of frequency counts and the data values that had the same 
frequency are listed in reverse order of occurrence. In other words, ORDER=DATA 
is used to handle values that are the same, and the data values are listed in reverse 
order.

Output 2.15 Output Using PROC REPORT with a Format and the DESCENDING Option

As with ORDER=DATA, when you add a BY statement, the order for classification 
variables is established as if each BY group were a separate data set. When you 
use multiple classification variables with ORDER=FREQ, the order is determined 
independently for each classification variable. The overall ordering scheme is then 
applied first by using the order of the highest order variable and then the next-
highest order variable, and so on.

In this example, consider the frequencies for Baths:

proc tabulate data=sasuser.houses order=freq format=3. noseps;
   class baths;
   table baths, n;
run;

Procedure Concepts 55



Output 2.16 The Frequency of Baths Using PROC TABULATE

If you make Bedrooms the highest order variable and Baths the next-highest order 
variable, you expect the rows to be ordered by the descending frequency of values 
first in Bedrooms, then in Baths.

proc tabulate data=sasuser.houses order=freq format=3. noseps;
   class baths bedrooms;
   table bedrooms*baths, n;
run;

The N statistic does not list the frequencies of the combinations in descending order. 
Instead, the order is set first by the descending frequencies of BEDROOMS and 
then by BATHS. You can verify this by comparing the order of each variable against 
the orders used in Output 2.11 on page 52. The master ordering sequence for 
BEDROOMS is 2, 4, 3, 1. The master ordering sequence for BATHS is 1, 3, 2.5, 1.5, 
2.

Output 2.17 PROC TABULATE with Bedrooms as the High Order Variable

56 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



RUN-Group Processing
RUN-group processing enables you to submit a PROC step with a RUN statement 
without ending the procedure. You can continue to use the procedure without 
issuing another PROC statement. To end the procedure, use a RUN CANCEL or a 
QUIT statement. Several Base SAS procedures support RUN-group processing:

CATALOG DS2 PLOT TRANTAB
DATASETS FEDSQL PMENU

See the section on the individual procedure for more information.

Note: PROC SQL executes each query automatically. Neither the RUN nor RUN 
CANCEL statement has any effect.

Creating Titles That Contain BY-Group Information

BY-Group Processing
BY-group processing uses a BY statement to process observations that are ordered, 
grouped, or indexed according to the values of one or more variables. By default, 
when you use BY-group processing in a procedure step, a BY line identifies each 
group. This section explains how to create titles that serve as customized BY lines.

Suppressing the Default BY Line
When you insert BY-group processing information into a title, you usually want to 
suppress the default BY line. To suppress it, use the SAS system option 
NOBYLINE.

Note: You must use the NOBYLINE option if you insert BY-group information into 
titles for the following procedures:

n MEANS

n PRINT

n STANDARD

n SUMMARY

If you use the BY statement with the NOBYLINE option, then these procedures 
always start a new page for each BY group. This behavior prevents multiple BY 

Procedure Concepts 57



groups from appearing on a single page and ensures that the information in the 
titles matches the report on the pages.

Inserting BY-Group Information into a Title
The general form for inserting BY-group information into a title is as follows:

#BY-specification<.suffix>

BY-specification is one of the following specifications:

BYVALn | BYVAL(BY-variable)
places the value of the specified BY variable in the title. You specify the BY 
variable with one of the following options:

n
is the nth BY variable in the BY statement.

BY-variable
is the name of the BY variable whose value you want to insert in the title.

BYVARn | BYVAR(BY-variable)
places the label or the name (if no label exists) of the specified BY variable in the 
title. You designate the BY variable with one of the following options:

n
is the nth BY variable in the BY statement.

BY-variable
is the name of the BY variable whose value you want to insert in the title.

BYLINE
inserts the complete default BY line into the title.

suffix supplies text to place immediately after the BY-group information that you 
insert in the title. No space appears between the BY-group information and the 
suffix.

Example: Inserting a Value from Each BY 
Variable into the Title
This example demonstrates these actions:

1 creates a data set, GROC, that contains data for stores from four regions. Each 
store has four departments. See “GROC” on page 2700 for the DATA step that 
creates the data set.

2 sorts the data by Region and Department.

3 uses the SAS system option NOBYLINE to suppress the BY line that normally 
appears in output that is produced with BY-group processing.

4 uses PROC CHART to chart sales by Region and Department. In the first TITLE 
statement, #BYVAL2 inserts the value of the second BY variable, Department, 

58 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



into the title. In the second TITLE statement, #BYVAL(Region) inserts the value 
of Region into the title. The first period after Region indicates that a suffix 
follows. The second period is the suffix.

5 uses the SAS system option BYLINE to return to the creation of the default BY 
line with BY-group processing.

data groc;                                        1

   input Region $9. Manager $ Department $ Sales;
   datalines;
Southeast    Hayes       Paper       250
Southeast    Hayes       Produce     100
Southeast    Hayes       Canned      120
Southeast    Hayes       Meat         80
...more lines of data...
Northeast    Fuller      Paper       200
Northeast    Fuller      Produce     300
Northeast    Fuller      Canned      420
Northeast    Fuller      Meat        125
;

proc sort data=groc;                              2

   by region department;
run;
options nobyline nodate pageno=1
        linesize=64 pagesize=20;                        3

proc chart data=groc;                                   4

   by region department;
   vbar manager / type=sum sumvar=sales;
   title1 'This chart shows #byval2 sales';
   title2 'in the #byval(region)..';
run;
options byline;                                         5

This partial output shows two BY groups with customized BY lines:

Procedure Concepts 59



Example: Inserting the Name of a BY 
Variable into a Title
This example inserts the name of a BY variable and the value of a BY variable into 
the title. The program does these actions.

1 uses the SAS system option NOBYLINE to suppress the BY line that normally 
appears in output that is produced with BY-group processing.

2 uses PROC CHART to chart sales by Region. In the first TITLE statement, 
#BYVAR(Region) inserts the name of the variable Region into the title. (If Region 
had a label, #BYVAR would use the label instead of the name.) The suffix al is 
appended to the label. In the second TITLE statement, #BYVAL1 inserts the 
value of the first BY variable, Region, into the title.

3 uses the SAS system option BYLINE to return to the creation of the default BY 
line with BY-group processing.

options nobyline nodate pageno=1
        linesize=64 pagesize=20;           1

proc chart data=groc;                      2

   by region;
   vbar manager / type=mean sumvar=sales;
   title1 '#byvar(region).al Analysis';
   title2 'for the #byval1';
run;
options byline;                            3

This partial output shows one BY group with a customized BY line:

60 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Example: Inserting the Complete BY Line 
into a Title
This example inserts the complete BY line into the title. The program does these 
actions:

1 uses the SAS system option NOBYLINE to suppress the BY line that normally 
appears in output that is produced with BY-group processing.

2 uses PROC CHART to chart sales by Region and Department. In the TITLE 
statement, #BYLINE inserts the complete BY line into the title.

3 uses the SAS system option BYLINE to return to the creation of the default BY 
line with BY-group processing.

options nobyline nodate pageno=1
        linesize=64 pagesize=20;         1

proc chart data=groc;                    2

   by region department;
   vbar manager / type=sum sumvar=sales;
   title 'Information for #byline';
run;
options byline;                          3

This partial output shows two BY groups with customized BY lines:

Procedure Concepts 61



Error Processing of BY-Group 
Specifications
SAS does not issue error or warning messages for incorrect #BYVAL, #BYVAR, or 
#BYLINE specifications. Instead, the text of the item becomes part of the title.

Shortcuts for Specifying Lists of Variable Names
Several statements in procedures allow multiple variable names. You can use these 
shortcut notations instead of specifying each variable name:

62 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Notation Meaning

x1-xn Specifies variables X1 through Xn. The numbers 
must be consecutive.

x: Specifies all variables that begin with the letter X.

x--a Specifies all variables between X and A, inclusive. 
This notation uses the position of the variables in 
the data set.

x-numeric-a Specifies all numeric variables between X and A, 
inclusive. This notation uses the position of the 
variables in the data set.

x-character-a Specifies all character variables between X and A, 
inclusive. This notation uses the position of the 
variables in the data set.

_numeric_ Specifies all numeric variables.

_character_ Specifies all character variables.

_all_ Specifies all variables.

Note: You cannot use shortcuts to list variable names in the INDEX CREATE 
statement in PROC DATASETS.

For more information, see the SAS Language Reference: Concepts.

Formatted Values

Using Formatted Values
Typically, when you print or group variable values, Base SAS procedures use the 
formatted values. This section contains examples of how Base SAS procedures use 
formatted values.

Example: Printing the Formatted Values for 
a Data Set
The following example prints the formatted values of the data set 
PROCLIB.PAYROLL. (For details about the DATA step that creates this data set, 

Procedure Concepts 63



see “PROCLIB.PAYROLL” on page 2708.) In PROCLIB.PAYROLL, the variable 
Jobcode indicates the job and level of the employee. For example, TA1 indicates 
that the employee is at the beginning level for a ticket agent.

options nodate pageno=1
        linesize=64 pagesize=40;
proc print data=proclib.payroll(obs=10)
           noobs;
   title  'PROCLIB.PAYROLL';
   title2 'First 10 Observations Only';
run;

The following example is a partial printing of PROCLIB.PAYROLL:

The following PROC FORMAT step creates the format $JOBFMT., which assigns 
descriptive names for each job:

proc format;
    value $jobfmt
          'FA1'='Flight Attendant Trainee'
          'FA2'='Junior Flight Attendant'
          'FA3'='Senior Flight Attendant'
          'ME1'='Mechanic Trainee'
          'ME2'='Junior Mechanic'
          'ME3'='Senior Mechanic'
          'PT1'='Pilot Trainee'
          'PT2'='Junior Pilot'
          'PT3'='Senior Pilot'
          'TA1'='Ticket Agent Trainee'
          'TA2'='Junior Ticket Agent'
          'TA3'='Senior Ticket Agent'
          'NA1'='Junior Navigator'
          'NA2'='Senior Navigator'
          'BCK'='Baggage Checker'
          'SCP'='Skycap';
run;

64 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



The FORMAT statement in this PROC MEANS step temporarily associates the 
$JOBFMT. format with the variable Jobcode:

options nodate pageno=1
        linesize=64 pagesize=60;
proc means data=proclib.payroll mean max;
   class jobcode;
   var salary;
   format jobcode $jobfmt.;
   title 'Summary Statistics for';
   title2 'Each Job Code';
run;

PROC MEANS produces this output, which uses the $JOBFMT. format:

Note: Because formats are character strings, formats for numeric variables are 
ignored when the values of the numeric variables are needed for mathematical 
calculations.

Procedure Concepts 65



Example: Grouping or Classifying 
Formatted Data
If you use a formatted variable to group or classify data, then the procedure uses 
the formatted values. The following example creates and assigns a format, 
$CODEFMT., that groups the levels of each job code into one category. PROC 
MEANS calculates statistics based on the groupings of the $CODEFMT. format.

proc format;
    value $codefmt
          'FA1','FA2','FA3'='Flight Attendant'
          'ME1','ME2','ME3'='Mechanic'
          'PT1','PT2','PT3'='Pilot'
          'TA1','TA2','TA3'='Ticket Agent'
                'NA1','NA2'='Navigator'
                      'BCK'='Baggage Checker'
                      'SCP'='Skycap';
run;

options nodate pageno=1
        linesize=64 pagesize=40;
proc means data=proclib.payroll mean max;
   class jobcode;
   var salary;
   format jobcode $codefmt.;
   title 'Summary Statistics for Job Codes';
   title2 '(Using a Format that Groups the Job Codes)';
run;

PROC MEANS produces this output:

66 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Example: Temporarily Associating a 
Format with a Variable
If you want to associate a format with a variable temporarily, then you can use the 
FORMAT statement. For example, the following PROC PRINT step associates the 
DOLLAR8. format with the variable Salary for the duration of this PROC PRINT step 
only:

options nodate pageno=1
        linesize=64 pagesize=40;
proc print data=proclib.payroll(obs=10)
           noobs;
   format salary dollar8.;
   title 'Temporarily Associating a Format';
   title2 'with the Variable Salary';
run;

PROC PRINT produces this output:

Example: Temporarily Dissociating a 
Format from a Variable
If a variable has a permanent format that you do not want a procedure to use, then 
temporarily dissociate the format from the variable by using a FORMAT statement.

In this example, the FORMAT statement in the DATA step permanently associates 
the $YRFMT. variable with the variable Year. Thus, when you use the variable in a 
PROC step, the procedure uses the formatted values. The PROC MEANS step, 
however, contains a FORMAT statement that dissociates the $YRFMT. format from 

Procedure Concepts 67



Year for this PROC MEANS step only. PROC MEANS uses the stored value for 
Year in the output.

proc format;
   value $yrfmt  '1'='Freshman'
                 '2'='Sophomore'
                 '3'='Junior'
                 '4'='Senior';
run;
data debate;
    input Name $ Gender $  Year $  GPA  @@;
    format year $yrfmt.;
    datalines;
Capiccio m 1 3.598 Tucker   m 1 3.901
Bagwell  f 2 3.722 Berry    m 2 3.198
Metcalf  m 2 3.342 Gold     f 3 3.609
Gray     f 3 3.177 Syme     f 3 3.883
Baglione f 4 4.000 Carr     m 4 3.750
Hall     m 4 3.574 Lewis    m 4 3.421
;

options nodate pageno=1
        linesize=64 pagesize=40;
proc means data=debate mean maxdec=2;
   class year;
   format year;
   title 'Average GPA';
run;

PROC MEANS produces this output, which does not use the YRFMT. format:

Formats and BY-Group Processing
When a procedure processes a data set, it checks to determine whether a format is 
assigned to the BY variable. If it is, then the procedure adds observations to the 
current BY groups until the formatted value changes. If nonconsecutive internal 

68 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



values of the BY variables have the same formatted value, then the values are 
grouped into different BY groups. Therefore, two BY groups are created with the 
same formatted value. Also, if different and consecutive internal values of the BY 
variables have the same formatted value, then they are included in the same BY 
group.

Formats and Error Checking
If SAS cannot find a format, then it stops processing and prints an error message in 
the SAS log. You can suppress this behavior with the SAS system option 
NOFMTERR. If you use NOFMTERR, and SAS cannot find the format, then SAS 
uses a default format and continues processing. Typically, for the default, SAS uses 
the BEST w. format for numeric variables and the $w. format for character variables.

Note: To ensure that SAS can find user-written formats, use the SAS system option 
FMTSEARCH=. How to store formats is described in “Storing Informats and 
Formats ” on page 1054.

Processing All the Data Sets in a Library
You can use the SAS Macro Facility to run the same procedure on every data set in 
a library. The macro facility is part of the Base SAS software.

“Example 10: Printing All the Data Sets in a SAS Library” on page 1792 shows how to 
print all the data sets in a library. You can use the same macro definition to perform 
any procedure on all the data sets in a library. Simply replace the PROC PRINT 
piece of the program with the appropriate procedure code.

Operating Environment-Specific Procedures
Several Base SAS procedures are specific to one operating environment or one 
release. Appendix 2, “Operating Environment-Specific Procedures,” on page 2651
contains a table with additional information. These procedures are described in 
more detail in the SAS documentation for operating environments.

Statistic Descriptions
The following table identifies common descriptive statistics that are available in 
several Base SAS procedures. For more detailed information about available 
statistics and theoretical information, see “Keywords and Formulas” on page 2610.

Procedure Concepts 69



Table 2.1 Common Descriptive Statistics That Base SAS Procedures Calculate

Statistic Description Procedures

Confidence intervals FREQ, MEANS or SUMMARY, TABULATE, 
UNIVARIATE

CSS Corrected sum of 
squares

CORR, MEANS or SUMMARY, REPORT, SQL, 
TABULATE, UNIVARIATE

CV Coefficient of 
variation

MEANS or SUMMARY, REPORT, SQL, 
TABULATE, UNIVARIATE

Goodness-of-fit tests FREQ, UNIVARIATE

KURTOSIS Kurtosis MEANS or SUMMARY, TABULATE, UNIVARIATE

MAX Largest (maximum) 
value

CORR, MEANS or SUMMARY, REPORT, SQL, 
TABULATE, UNIVARIATE

MEAN Mean CORR, MEANS or SUMMARY, REPORT, SQL, 
TABULATE, UNIVARIATE

MEDIAN Median (50th 

percentile)
CORR (for nonparametric correlation measures), 
MEANS or SUMMARY, TABULATE, UNIVARIATE

MIN Smallest (minimum) 
value

CORR, MEANS or SUMMARY, REPORT, SQL, 
TABULATE, UNIVARIATE

MODE Most frequent value 
(if not unique, the 
smallest mode is 
used)

UNIVARIATE

N Number of 
observations on 
which calculations 
are based

CORR, FREQ, MEANS or SUMMARY, REPORT, 
SQL, TABULATE, UNIVARIATE

NMISS Number of missing 
values

FREQ, MEANS or SUMMARY, REPORT, SQL, 
TABULATE, UNIVARIATE

NOBS Number of 
observations

MEANS or SUMMARY, UNIVARIATE

PCTN Percentage of a cell 
or row frequency to a 
total frequency

REPORT, TABULATE

PCTSUM Percentage of a cell 
or row sum to a total 
sum

REPORT, TABULATE

70 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



Statistic Description Procedures

Pearson correlation CORR

Percentiles FREQ, MEANS or SUMMARY, REPORT, 
TABULATE, UNIVARIATE

RANGE Range CORR, MEANS or SUMMARY, REPORT, SQL, 
TABULATE, UNIVARIATE

Robust statistics Trimmed means, 
Winsorized means

UNIVARIATE

SKEWNESS Skewness MEANS or SUMMARY, TABULATE, UNIVARIATE

Spearman correlation CORR

STD Standard deviation CORR, MEANS or SUMMARY, REPORT, SQL, 
TABULATE, UNIVARIATE

STDERR Standard error of the 
mean

MEANS or SUMMARY, REPORT, SQL, 
TABULATE, UNIVARIATE

SUM sum CORR, MEANS or SUMMARY, REPORT, SQL, 
TABULATE, UNIVARIATE

SUMWGT Sum of weights CORR, MEANS or SUMMARY, REPORT, SQL, 
TABULATE, UNIVARIATE

Tests of location UNIVARIATE

USS Uncorrected sum of 
squares

CORR, MEANS or SUMMARY, REPORT, SQL, 
TABULATE, UNIVARIATE

VAR Variance CORR, MEANS or SUMMARY, REPORT, SQL, 
TABULATE, UNIVARIATE

Computational Requirements for Statistics
The following computational requirements are for the statistics that are listed in 
Table 2.1 on page 70. They do not describe recommended sample sizes.

n N and NMISS do not require any nonmissing observations.

n SUM, MEAN, MAX, MIN, RANGE, USS, and CSS require at least one 
nonmissing observation.

n VAR, STD, STDERR, and CV require at least two observations.

n CV requires that MEAN is not equal to zero.

Procedure Concepts 71



Statistics are reported as missing if they cannot be computed.

Output Delivery System
The Output Delivery System (ODS) gives you greater flexibility in generating, 
storing, and reproducing SAS procedure and DATA step output, with a wide range of 
formatting options. ODS provides formatting functionality that is not available from 
individual procedures or from the DATA step alone. ODS overcomes these 
limitations and enables you to format your output more easily.

Prior to Version 7, most SAS procedures generated output that was designed for a 
traditional line-printer. This type of output has limitations that prevent you from 
getting the most value from your results:

n Traditional SAS output is limited to monospace fonts. With today's desktop 
document editors and publishing systems, you need more versatility in printed 
output.

n Some commonly used procedures do not produce output data sets. Before ODS, 
if you wanted to use output from one of these procedures as input to another 
procedure, then you relied on PROC PRINTTO and the DATA step to retrieve 
results.

For more information about the Output Delivery System, see the SAS Output 
Delivery System: User’s Guide.

72 Chapter 2 / Fundamental Concepts for Using Base SAS Procedures



3
Statements with the Same 
Function in Multiple Procedures

Statements with the Same Function in Multiple Procedures . . . . . . . . . . . . . . . . . . . . . 73
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
BY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
FREQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
QUIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
WEIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
WHERE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Statements with the Same Function in 
Multiple Procedures

Overview
Several Base SAS statements have the same function in a number of Base SAS 
procedures. Some of the statements are fully documented in the SAS DATA Step 
Statements: Reference, and others are documented in this section.

Note: For procedure steps that create output, these statements apply only to the 
INPUT data set.

The following list shows you where to find more information about each statement:

73



ATTRIB
affects the procedure output and the output data set. The ATTRIB statement 
does not permanently alter the variables in the input data set. The LENGTH= 
option has no effect. For the complete documentation, see the SAS DATA Step 
Statements: Reference.

BY
orders the output according to the BY groups. See “BY” on page 74.

FORMAT
affects the procedure output and the output data set. The FORMAT statement 
does not permanently alter the variables in the input data set. The DEFAULT= 
option is not valid. For the complete documentation, see the SAS DATA Step 
Statements: Reference.

FREQ
treats observations as if they appear multiple times in the input data set. See 
“FREQ” on page 79.

INFORMAT
applies a pattern to or executes instructions for a data value to be read as input. 
The DEFAULT= option is not valid. For the complete documentation, see the 
SAS DATA Step Statements: Reference.

LABEL
affects the procedure output and the output data set. The LABEL statement does 
not permanently alter the variables in the input data set except when it is used 
with the MODIFY statement in PROC DATASETS. For complete documentation, 
see the SAS DATA Step Statements: Reference.

QUIT
executes any statements that have not executed and ends the procedure. See 
“QUIT” on page 81.

WEIGHT
specifies weights for analysis variables in the statistical calculations. See 
“WEIGHT” on page 82.

WHERE
subsets the input data set by specifying certain conditions that each observation 
must meet before it is available for processing. See “WHERE” on page 88.

Statements

BY

Overview of the BY Statement
Orders the output according to the BY groups.

74 Chapter 3 / Statements with the Same Function in Multiple Procedures



For more information, see “Creating Titles That Contain BY-Group Information ” on 
page 57.

BY <DESCENDING> variable-1
<… <DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments
variable

specifies the variable that the procedure uses to form BY groups. You can 
specify more than one variable. If you do not use the NOTSORTED option in the 
BY statement, then either the observations in the data set must be sorted by all 
the variables that you specify, or they must be indexed appropriately. Variables in 
a BY statement are called BY variables.

Optional Arguments
DESCENDING

specifies that the observations are sorted in descending order by the variable 
that immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. The observations are grouped in another way (for example, chronological 
order).

The requirement for ordering or indexing observations according to the values of 
BY variables is suspended for BY-group processing when you use the 
NOTSORTED option. In fact, the procedure does not use an index if you specify 
NOTSORTED. The procedure defines a BY group as a set of contiguous 
observations that have the same values for all BY variables. If observations with 
the same values for the BY variables are not contiguous, then the procedure 
treats each contiguous set as a separate BY group.

You cannot use the NOTSORTED option in a PROC SORT step.

Note: You cannot use the GROUPFORMAT option, which is available in the BY 
statement in a DATA step, in a BY statement in any PROC step.

BY-Group Processing
Procedures create output for each BY group. For example, the elementary statistics 
procedures and the scoring procedures perform separate analyses for each BY 
group. The reporting procedures produce a report for each BY group.

Statements 75



Note: All Base SAS procedures except PROC PRINT process BY groups 
independently. PROC PRINT can report the number of observations in each BY 
group as well as the number of observations in all BY groups. Similarly, PROC 
PRINT can sum numeric variables in each BY group and across all BY groups.

You can use only one BY statement in each PROC step. When you use a BY 
statement, the procedure expects an input data set that is sorted by the order of the 
BY variables or one that has an appropriate index. If your input data set does not 
meet these criteria, then an error occurs. Either sort it with the SORT procedure or 
create an appropriate index on the BY variables.

Depending on the order of your data, you might need to use the NOTSORTED or 
DESCENDING option in the BY statement in the PROC step.

n For more information about the BY statement, see SAS DATA Step Statements: 
Reference.

n For more information about PROC SORT, see Chapter 64, “SORT Procedure,” 
on page 2277.

n For more information about creating indexes, see “INDEX CREATE Statement” 
on page 623.

Formatting BY-Variable Values
When a procedure is submitted with a BY statement, the following actions are taken 
with respect to processing of BY groups:

1 The procedure determines whether the data is sorted by the internal 
(unformatted) values of the BY variable(s).

2 The procedure determines whether a format has been applied to the BY 
variable(s). If the BY variable is numeric and has no user-applied format, then 
the BEST12. format is applied for the purpose of BY-group processing.

3 The procedure continues adding observations to the current BY group until both 
the internal and formatted values of the BY variable or variables change.

This process can have unexpected results if, for example, nonconsecutive internal 
BY values share the same formatted value. In this case, the formatted value is 
represented in different BY groups. Alternatively, if different consecutive internal BY 
values share the same formatted value, then these observations are grouped into 
the same BY group.

BY Variables That Have Different Lengths 
in Two Data Sets
When a procedure has a BY statement and two input data sets, one of the input 
data sets is called the primary data set and the other is called the secondary data 
set. The primary data set is usually, but not always, the DATA= data set. A BY 
statement always applies to the primary data set. The variables in the BY statement 
must appear in the primary data set.

76 Chapter 3 / Statements with the Same Function in Multiple Procedures



Each procedure determines whether a BY statement applies to a secondary data 
set, and performs one of the following actions:

n The procedure might always apply the BY statement to the secondary data set. 
In this case, one or more variables in the BY statement must appear in the 
secondary data set.

n The procedure might never apply the BY statement to the secondary data set. In 
this case, the variables in the BY statement are not required in the secondary 
data set.

n The procedure might check whether the BY variables are in the secondary data 
set. If none of the BY variables are in the secondary data set, then BY 
processing does not occur for the secondary data set. If one or more of the BY 
variables are in the secondary data set, and they match the BY variables in the 
primary data set, then BY processing is done for the secondary data set. If some 
but not all BY variables are in the secondary data set, then the procedure might 
issue an error message and quit. Or, it might take some other action described in 
the documentation for that particular procedure.

If the BY statement is applied to the secondary data set, then each BY variable that 
exists on both the data sets must have the same type, character or numeric, in both 
data sets. The BY variables are required to have either the same formatted value or 
the same unformatted value. Formatted values match only if both the formatted 
lengths and the formatted values are the same. Unformatted values are not required 
to have the same length in order to match. The unformatted character values match 
if the unformatted values are the same after stripping the trailing blanks. The 
unformatted doubles match if they have the same value.

A secondary data set does not need to have all of the BY variables that are in the 
primary data set. A procedure can define a subset of the BY variables for the 
secondary data set. For example, if the primary data set has the BY variables 
A,B,C,D, then the procedure can define the following BY variables on the secondary 
data set:

n A

n A,B

n A,B,C

n A,B,C,D

If both the primary and secondary data sets have the same number of BY variables, 
and all the BY variables have the same byte lengths and format lengths, then either 
the unformatted values or the formatted values in the BY buffer (for all of the BY 
variables) have to match. If they do not match, then each variable is compared. The 
formatted values of each variable are compared first. The formatted lengths have to 
match, and the formatted values have to match. If the formatted lengths and values 
do not match, then the unformatted values are compared even if the byte lengths 
are different.

If corresponding character variable lengths differ, then the longer character variable 
can contain only trailing blanks for the extra characters. If the lengths of the 
character variables are different, then the values match as long as they are the 
same after stripping the trailing blanks. For example, ‘ABCD’ in the primary data set 
matches ‘ABCD ’ in the secondary data set. If the secondary data set contained 
‘ABCDEF’, then they would not match.

Statements 77



Base SAS Procedures That Support the 
BY Statement

CALENDAR REPORT (nonwindowing environment only)

CHART SORT (required)

COMPARE STANDARD

CORR SUMMARY

FREQ TABULATE

MEANS TIMEPLOT

PLOT TRANSPOSE

PRINT UNIVARIATE

RANK

Note: In the SORT procedure, the BY statement specifies how to sort the data. In 
the other procedures, the BY statement specifies how the data is currently sorted.

Example
This example uses a BY statement in a PROC PRINT step. There is output for each 
value of the BY variable Year. The DEBATE data set is created in “Example: 
Temporarily Dissociating a Format from a Variable” on page 67.

options nodate pageno=1 linesize=64
        pagesize=40;
proc print data=debate noobs;
   by year;
   title 'Printing of Team Members';
   title2 'by Year';
run;

78 Chapter 3 / Statements with the Same Function in Multiple Procedures



FREQ

Overview of the FREQ Statement
Treats observations as if they appear multiple times in the input data set.

Statements 79



You can use a WEIGHT statement and a FREQ statement in the same step of any 
procedure that supports both statements.

FREQ variable;

Required Arguments
variable

specifies a numeric variable whose value represents the frequency of the 
observation. If you use the FREQ statement, then the procedure assumes that 
each observation represents n observations, where n is the value of variable. If 
variable is not an integer, then SAS truncates it. If variable is less than 1 or is 
missing, then the procedure does not use that observation to calculate statistics. 
If a FREQ statement does not appear, then each observation has a default 
frequency of 1.

The sum of the frequency variable represents the total number of observations.

Procedures That Support the FREQ 
Statement
n CORR

n MEANS or SUMMARY

n REPORT

n STANDARD

n TABULATE

n UNIVARIATE

Example
The data in this example represents a ship's course and speed (in nautical miles per 
hour), recorded every hour. The frequency variable Hours represents the number of 
hours that the ship maintained the same course and speed. Each of the following 
PROC MEANS steps calculates average course and speed. The different results 
demonstrate the effect of using Hours as a frequency variable.

The following PROC MEANS step does not use a frequency variable:

options nodate pageno=1 linesize=64 pagesize=40;

data track;
   input Course Speed Hours @@;
   datalines;
30  4  8 50 7 20
75 10 30 30 8 10
80  9 22 20 8 25

80 Chapter 3 / Statements with the Same Function in Multiple Procedures



83 11  6 20 6 20
;

proc means data=track maxdec=2 n mean;
   var course speed;
   title 'Average Course and Speed';
run;

Without a frequency variable, each observation has a frequency of 1, and the total 
number of observations is 8.

The second PROC MEANS step uses Hours as a frequency variable:

   proc means data=track maxdec=2 n mean;
      var course speed;
      freq hours;
      title 'Average Course and Speed';
   run;

When you use Hours as a frequency variable, the frequency of each observation is 
the value of Hours. The total number of observations is 141 (the sum of the values 
of the frequency variable).

QUIT

Overview of the QUIT Statement
Executes any statements that have not executed and ends the procedure.

QUIT;

Statements 81



Procedures That Support the QUIT 
Statement
n CATALOG

n DATASETS

n PLOT

n PMENU

n SQL

WEIGHT

Overview of the WEIGHT Statement
Specifies weights for analysis variables in the statistical calculations.

You can use a WEIGHT statement and a FREQ statement in the same step of any 
procedure that supports both statements.

WEIGHT variable;

Required Arguments
variable

specifies a numeric variable whose values weight the values of the analysis 
variables. The values of the variable do not have to be integers.

Different behavior for nonpositive values is discussed in the WEIGHT statement 
syntax under the individual procedure.

Prior to Version 7 of SAS, no Base SAS procedure excluded the observations 
with missing weights from the analysis. Most SAS/STAT procedures, such as 
PROC GLM, have always excluded not only missing weights but also negative 
and zero weights from the analysis. You can achieve this same behavior in a 
Base SAS procedure that supports the WEIGHT statement by using the 
EXCLNPWGT option in the PROC statement.

Weight value Procedure

0 Counts the observation in the total number of 
observations

82 Chapter 3 / Statements with the Same Function in Multiple Procedures



Less than 0 Converts the weight value to zero and counts the 
observation in the total number of observations

Missing Excludes the observation from the analysis

The procedure substitutes the value of the WEIGHT variable for wi, which 
appears in “Keywords and Formulas” on page 2610.

Procedures That Support the WEIGHT 
Statement
n CORR

n FREQ

n MEANS or SUMMARY

n REPORT

n STANDARD

n TABULATE

n UNIVARIATE

Note: In PROC FREQ, the value of the variable in the WEIGHT statement 
represents the frequency of occurrence for each observation. For more information, 
see the information about PROC FREQ in the Base SAS(R) 9.3 Procedures Guide: 
Statistical Procedures.

Calculating Weighted Statistics
The procedures that support the WEIGHT statement also support the VARDEF= 
option, which lets you specify a divisor to use in the calculation of the variance and 
standard deviation.

By using a WEIGHT statement to compute moments, you assume that the ith 
observation has a variance that is equal to σ2/wi. When you specify VARDEF=DF 
(the default), the computed variance is a weighted least squares estimate of σ2. 
Similarly, the computed standard deviation is an estimate of σ. Note that the 
computed variance is not an estimate of the variance of the ith observation, because 
this variance involves the observation's weight, which varies from observation to 
observation.

If the values of your variable are counts that represent the number of occurrences of 
each observation, then use this variable in the FREQ statement rather than in the 
WEIGHT statement. In this case, because the values are counts, they should be 
integers. (The FREQ statement truncates any noninteger values.) The variance that 

Statements 83



is computed with a FREQ variable is an estimate of the common variance σ2 of the 
observations.

Note: If your data comes from a stratified sample where the weights wi represent 
the strata weights, then neither the WEIGHT statement nor the FREQ statement 
provides appropriate stratified estimates of the mean, variance, or variance of the 
mean. To perform the appropriate analysis, consider using PROC SURVEYMEANS, 
which is a SAS/STAT procedure that is documented in the Base SAS(R) 9.3 
Procedures Guide: Statistical Procedures.

Weighted Statistics Example
As an example of the WEIGHT statement, suppose 20 people are asked to estimate 
the size of an object 30 cm wide. Each person is placed at a different distance from 
the object. As the distance from the object increases, the estimates should become 
less precise.

The SAS data set SIZE contains the estimate (ObjectSize) in centimeters at each 
distance (Distance) in meters and the precision (Precision) for each estimate. Notice 
that the largest deviation (an overestimate by 20 cm) came at the greatest distance 
(7.5 meters from the object). As a measure of precision, 1/Distance, gives more 
weight to estimates that were made closer to the object and less weight to estimates 
that were made at greater distances.

The following statements create the data set SIZE:

options nodate pageno=1 linesize=64 pagesize=60;

data size;
   input Distance ObjectSize @@;
   Precision=1/distance;
   datalines;
1.5 30 1.5 20 1.5 30 1.5 25
3   43 3   33 3   25 3   30
4.5 25 4.5 36 4.5 48 4.5 33
6   43 6   36 6   23 6   48
7.5 30 7.5 25 7.5 50 7.5 38
;

The following PROC MEANS step computes the average estimate of the object size 
while ignoring the weights. Without a WEIGHT variable, PROC MEANS uses the 
default weight of 1 for every observation. Thus, the estimates of object size at all 
distances are given equal weight. The average estimate of the object size exceeds 
the actual size by 3.55 cm.

proc means data=size maxdec=3 n mean var stddev;
   var objectsize;
   title1 'Unweighted Analysis of the SIZE Data Set';
run;

84 Chapter 3 / Statements with the Same Function in Multiple Procedures



The next two PROC MEANS steps use the precision measure (Precision) in the 
WEIGHT statement and show the effect of using different values of the VARDEF= 
option. The first PROC step creates an output data set that contains the variance 
and standard deviation. If you reduce the weighting of the estimates that are made 
at greater distances, the weighted average estimate of the object size is closer to 
the actual size.

proc means data=size maxdec=3 n mean var stddev;
   weight precision;
   var objectsize;
   output out=wtstats var=Est_SigmaSq std=Est_Sigma;
   title1 'Weighted Analysis Using Default VARDEF=DF';
run;

proc means data=size maxdec=3 n mean var std
                     vardef=weight;
   weight precision;
   var objectsize;
   title1 'Weighted Analysis Using VARDEF=WEIGHT';
run;

The variance of the ith observation is assumed to be var xi = σ2/wi and wi is the 
weight for the ith observation. In the first PROC MEANS step, the computed 
variance is an estimate of σ2. In the second PROC MEANS step, the computed 
variance is an estimate of n − 1/n σ2/w, where w is the average weight. For large n, 
this value is an approximate estimate of the variance of an observation with average 
weight.

Statements 85



The following statements create and print a data set with the weighted variance and 
weighted standard deviation of each observation. The DATA step combines the 
output data set that contains the variance and the standard deviation from the 
weighted analysis with the original data set. The variance of each observation is 
computed by dividing Est_SigmaSq (the estimate of σ2 from the weighted analysis 
when VARDEF=DF) by each observation's weight (Precision). The standard 
deviation of each observation is computed by dividing Est_Sigma (the estimate of σ
from the weighted analysis when VARDEF=DF) by the square root of each 
observation's weight (Precision).

data wtsize(drop=_freq_ _type_);
   set size;
   if _n_=1 then set wtstats;
   Est_VarObs=est_sigmasq/precision;
   Est_StdObs=est_sigma/sqrt(precision);

proc print data=wtsize noobs;
   title 'Weighted Statistics';
   by distance;
   format est_varobs est_stdobs
          est_sigmasq est_sigma precision 6.3;
run;

86 Chapter 3 / Statements with the Same Function in Multiple Procedures



Statements 87



WHERE

Overview of the WHERE Statement
Subsets the input data set by specifying certain conditions that each 
observation must meet before it is available for processing.

WHERE where-expression;

Required Arguments
where-expression

is a valid arithmetic or logical expression that generally consists of a sequence of 
operands and operators. For more information about where processing, see SAS 
DATA Step Statements: Reference.

88 Chapter 3 / Statements with the Same Function in Multiple Procedures



Procedures That Support the WHERE 
Statement
You can use the WHERE statement with any of the following Base SAS procedures 
that read a SAS data set:

CALENDAR RANK

CHART REPORT

COMPARE SORT

CORR SQL

DATASETS (APPEND 
statement)

STANDARD

FREQ TABULATE

MEANS or SUMMARY TIMEPLOT

PLOT TRANSPOSE

PRINT UNIVARIATE

Details
n The CALENDAR and COMPARE procedures and the APPEND statement in 

PROC DATASETS accept more than one input data set. For more information, 
see the documentation for the specific procedure.

n To subset the output data set, use the WHERE= data set option: 

proc report data=debate nowd
            out=onlyfr(where=(year='1'));
run;

For more information about WHERE=, see SAS DATA Step Statements: 
Reference.

Statements 89



Example
In this example, PROC PRINT prints only those observations that meet the 
condition of the WHERE expression. The DEBATE data set is created in “Example: 
Temporarily Dissociating a Format from a Variable” on page 67.

   options nodate pageno=1 linesize=64
           pagesize=40;

   proc print data=debate noobs;
      where gpa>3.5;
      title 'Team Members with a GPA';
      title2 'Greater than 3.5';
   run;

90 Chapter 3 / Statements with the Same Function in Multiple Procedures



4
In-Database Processing of Base 
Procedures

Base Procedures That Are Enhanced for In-Database Processing . . . . . . . . . . . . . . . 91

Base Procedures That Are Enhanced for 
In-Database Processing

In-database processing has several advantages over processing within SAS. These 
advantages include increased security, reduced network traffic, and the potential for 
faster processing. Increased security is possible because sensitive data does not 
have to be extracted from the data source. Faster processing is possible for the 
following reasons:

n Data is manipulated locally, on the data source, using high-speed secondary 
storage devices instead of being transported across a relatively slow network 
connection.

n The data source might have more processing resources at its disposal.

n The data source might be capable of optimizing a query for execution in a highly 
parallel and scalable fashion.

Beginning with SAS 9.2M3, Base SAS procedures were enhanced to process data 
inside the Teradata, DB2, and Oracle data sources. In SAS 9.3, procedures were 
enhanced to process data inside the Netezza data source. In SAS 9.4, procedures 
have been enhanced to process data inside the Amazon Redshift, Aster, Google 
BigQuery, Greenplum, Hadoop, HAWQ, Impala, Microsoft SQL Server, PostgreSQL, 
SAP HANA, Snowflake, Vertica, and Yellowbrick data sources. The in-database 
procedures are used to generate more sophisticated queries that allow the 
aggregations and analytics to be run inside the data source.

All of these in-database procedures generate SQL queries. You use SAS/ACCESS 
or SQL as the interface to the data source.

91



The following Base SAS procedures support in-database processing.

Table 4.1 In-Database Base Procedures

Procedure Description

PROC FREQ in Base SAS Procedures Guide: 
Statistical Procedures

Produces one-way to n-way tables; reports 
frequency counts; computes test and measures of 
association and agreement for two-way to n-way 
crosstabulation tables; can compute exact tests 
and asymptotic tests; can create output data sets.

PROC MEANS on page 1427 Computes descriptive statistics; can produce 
printed output and output data sets. By default, 
PROC MEANS produces printed output.

PROC RANK on page 19411 Computes ranks for one or more numeric variables 
across the observations of a SAS data set; can 
produce some rank scores.

PROC REPORT on page 2081 Combines features of the PRINT, MEANS, and 
TABULATE procedures with features of the DATA 
step in a single report-writing tool that can produce 
a variety of reports.

PROC SORT on page 23071 Orders SAS data set observations by the values of 
one or more character or numeric variables.

PROC SUMMARY on page 2373 Computes descriptive statistics; can produce a 
printed report and create an output data set. By 
default, PROC SUMMARY creates an output data 
set.

PROC TABULATE on page 2450 Displays descriptive statistics in tabular format, 
using some or all of the variables in a data set.

PROC TRANSPOSE on page 2566 2 Creates an output data set by restructuring the 
values in a SAS data set, transposing selected 
variables into observations.

1 Supported by Hadoop with Hive .14 and later.
2 Supported only by Hadoop. Additional licensed products and configuration are required.

For more information, see “In-Database Procedures” in SAS In-Database Products: 
User’s Guide.

92 Chapter 4 / In-Database Processing of Base Procedures



5
CAS Processing of Base 
Procedures

About CAS Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Procedures That Use CAS Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

When CAS Processing Cannot Be Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

BY-Group Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Filtering Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

About CAS Processing
Beginning with SAS 9.4M5, some Base SAS procedures are enhanced to process 
data inside SAS Cloud Analytic Services (CAS) with CAS actions. Processing with 
CAS actions can result in faster processing times. Faster processing is possible for 
the following reasons:

n The CAS server processes the in-memory tables instead of transferring the data 
across a relatively slow network connection between the server and the SAS 
client machine.

n The hardware for a CAS server typically has greater processing resources at its 
disposal.

n The majority of CAS actions are scalable for multithreaded processing. For large 
data volumes, distributed servers use multiple hosts to perform massively 
parallel processing.

Note: SAS 9.4 CAS-enabled procedures are designed to work with CAS in SAS 
Viya 3.5. In the SAS Viya 4 platform, some CAS-enabled procedures have been 
further optimized to take advantage of multithreading and the cloud-native platform. 

93



When processing data in the SAS Viya 4 CAS server, SAS recommends that you 
submit the code from a SAS client on the SAS Viya 4 platform for best results. 

The principle is to summarize and analyze large data volumes in the in-memory 
tables in the CAS server. The smaller, summarized results, are transferred from the 
server to the SAS client. The procedure then post-processes the summarized 
results to produce additional statistics, Output Delivery System (ODS) objects, and 
so on.

The core product of SAS Viya is SAS Visual Analytics. If you install SAS Visual 
Analytics only, then you have access to a subset of the Base SAS procedures. If 
you have SAS Viya with any other offering (in addition to SAS Visual Analytics) that 
is licensed and installed, you also have access to all SAS 9.4 Base procedures. The 
Base SAS Procedures Guide contains complete documentation for all Base 
procedures.

Some Base SAS procedures execute code on the CAS server. See Chapter 5, “CAS 
Processing of Base Procedures,” on page 93.

Procedures That Use CAS Actions
The following Base SAS procedures can run CAS actions:

Procedure Description

PROC APPEND on page 107 Adds rows from a CAS table to the end of 
a SAS data set, and adds rows from a 
SAS data set to the end of a CAS table.

PROC CONTENTS on page 477 Shows the contents of a CAS table and 
prints the directory of the caslib.

PROC COPY on page 509 Copies entire SAS libraries or specific 
members of the library.

PROC DATASETS on page 549 Manages CAS tables.

PROC DELETE on page 763 Deletes SAS data sets and CAS tables.

PROC DS2 1 Manipulates data with DS2 language 
statements.

PROC FCMP on page 849 Enables you to create, test, and store 
SAS functions, CALL routines, and 
subroutines before you use them in other 
SAS procedures or in DATA steps.

PROC FEDSQL 2 Manipulates data and performs reporting 
with FedSQL language statements.

94 Chapter 5 / CAS Processing of Base Procedures

http://documentation.sas.com/?docsetId=pgmdiff&docsetVersion=3.5&docsetTarget=p1e2swghnyju6fn13jr3935jpsaw.htm&locale=en


Procedure Description

PROC FORMAT on page 1049 Creates user-defined informats to read 
data and user-defined formats to display 
data.

PROC LUA on page 1363 Enables you to run statements from the 
Lua programming language within SAS 
code.

PROC MEANS on page 1429 Computes descriptive statistics; can 
produce printed output and output data 
sets. By default, PROC MEANS produces 
printed output.

PROC REPORT on page 2082 Combines features of the PRINT, 
MEANS, and TABULATE procedures with 
features of the DATA step in a single 
report-writing tool that can produce a 
variety of reports.

PROC SCOREACCEL on page 2227 Provides an interface to the CAS server 
for DATA step and DS2 model publishing 
and scoring.

PROC SORT on page 2309 Provides the ability to manage duplicate 
observations in data sets. The SORT 
procedure uses the CAS deduplicate 
action to perform the equivalent 
functionality of the NODUPKEY or 
NOUNIKEY options of PROC SORT.

PROC SUMMARY on page 2373 Computes descriptive statistics; can 
produce a printed report and create an 
output data set. By default, PROC 
SUMMARY creates an output data set.

PROC TABULATE on page 2449 Displays descriptive statistics in tabular 
format, using some or all of the variables 
in a data set.

PROC TRANSPOSE on page 2568 Transforms SAS data sets so that 
observations become variables and 
variables become observations.

1 The DS2 procedure does not use the CAS LIBNAME engine to access in-memory tables. Instead, 
the procedure accesses tables by caslib and name. For information and limitations, see “DS2 in 
CAS: Concepts” in SAS DS2 Programmer’s Guide.

2 The FEDSQL procedure does not use the CAS LIBNAME engine to access in-memory tables. 
Instead, the procedure accesses tables by caslib and name. For information and limitations, see SAS 
Viya: FedSQL Programming for SAS Cloud Analytic Services

Procedures That Use CAS Actions 95

http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=n0bqvegyrwtpc7n1u92ta8ak8zoz.htm&locale=en
http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=n0bqvegyrwtpc7n1u92ta8ak8zoz.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


When CAS Processing Cannot Be Used
The documentation for each procedure identifies the supported aggregations and 
supported statements and options. When your program includes a statement or 
option that cannot be processed with a CAS action, the observation-level data for 
the in-memory table is transferred to the SAS client. The procedure then runs on the 
transferred data.

By default, the CAS LIBNAME engine limits data transfer to 100 MB. If you reach 
the limit:

1 You might be able to achieve the result that you want with a SAS Visual 
Statistics procedure or SAS Visual Data Mining and Machine Learning 
procedure.

2 You might be able to program with CAS actions so that the summarization is 
performed by the server.

3 You can increase the limit with the CASDATALIMIT= system option or the 
DATALIMIT= LIBNAME option or data set option.

BY-Group Processing
For procedures that support a BY statement, the information is passed to the CAS 
server. This enables two optimizations:

1 The data does not need to be pre-sorted by the specified variables.

2 When the results are transferred by the server to the SAS client, the groups are 
already formed. These results can be summarized results as with PROC 
MEANS or they can be observation-level as is the case with PROC PRINT.

If you know in advance that you will perform BY-group processing, especially if you 
have large in-memory tables, you can partition the in-memory table as a further 
efficiency. When you partition an in-memory table with the same variables that you 
use for BY-group processing, you avoid the performance penalty for forming the 
groups each time you access the table.

Filtering Observations
Procedures that support a WHERE statement, the expression is sent to the server. 
The server resolves the expression and subsets the data for the analysis. This can 
greatly reduce processing time and data transfer from the server to the SAS client.

96 Chapter 5 / CAS Processing of Base Procedures



The same is true of the WHERE= data set option when it is used with the CAS 
LIBNAME engine—the expression is sent to the server to subset the data.

cas casauto host="cloud.example.com" port=5570;
libname mycas cas sessref=casauto;

proc casutil;
  load data=sashelp.prdsale;
quit;

/* View informational messages in the SAS log.       */
options msglevel=i;

/* The WHERE statement is processed by the server.   */
proc means data=mycas.prdsale;
  where region eq 'EAST';
run;

/* These results are identical to the preceding use  */
/* of PROC MEANS, but uses a WHERE= data set option. */
proc means data=mycas.prdsale(where=(region eq 'EAST'));
run;

Related Documents
n SAS Cloud Analytic Services: Fundamentals

n SAS Cloud Analytic Services: User’s Guide

n SAS Viya: FedSQL Programming for SAS Cloud Analytic Services

n SAS DS2 Programmer’s Guide

Related Documents 97

http://documentation.sas.com/?docsetId=casfun&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


98 Chapter 5 / CAS Processing of Base Procedures



6
Base SAS Procedures 
Documented in Other 
Publications

Base SAS Procedures Documented in Other Publications . . . . . . . . . . . . . . . . . . . . . . 99

Base SAS Procedures Documented in 
Other Publications

Some Base SAS procedures are documented in other SAS publications. The 
following table lists these procedures and the publications that contain them.

Procedure Description Publication

CALLRFC Executes Remote Function Calls (RFC) or 
RFC-compatible functions on an SAP 
System.

SAS/ACCESS 
Interface to R/3: 
User’s Guide

CORR Computes Pearson correlation coefficients, 
three nonparametric measures of 
association, and the probabilities 
associated with these statistics.

Base SAS 
Procedures Guide: 
Statistical 
Procedures 

DOCUMENT Enables you to rearrange, duplicate, or 
remove output from the results of a 
procedure or a database query that are in 
ODS documents.

SAS Output Delivery 
System: User’s 
Guide

99

http://documentation.sas.com/?docsetId=accr3&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=accr3&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=accr3&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=procstat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=procstat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=procstat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=procstat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Procedure Description Publication

EXPLODE Produces printed output with oversized text 
by expanding each letter into a matrix of 
characters.

The EXPLODE 
Procedure

FedSQL Specifies that the subsequent input is 
FedSQL statements.

SAS FedSQL 
Language Reference

FORMS Produces labels for envelopes, mailing 
labels, external tape labels, file cards, and 
any other printer forms that have a regular 
pattern.

The FORMS 
Procedure

FREQ Produces one-way to n-way frequency and 
contingency (crosstabulation) tables.

Base SAS 
Procedures Guide: 
Statistical 
Procedures 

GCHART Produces six types of charts: block charts, 
horizontal and vertical bar charts, pie and 
donut charts, and star charts.

SAS/GRAPH: 
Reference

GEOCODE Adds geographic coordinates (latitude and 
longitude values) and attribute values such 
as census blocks to an address.

SAS/GRAPH and 
Base SAS: Mapping 
Reference

GINSIDE Compares a data set of X and Y 
coordinates to a map data set containing 
map polygons. It determines whether the X 
and Y coordinates for each point fall inside 
or outside of the map polygons. The 
resulting output map data set contains the 
points inside the map polygons. It can be 
used as input by the GMAP procedure in 
SAS/GRAPH, or the ODS Graphics 
SGMAP procedure in Base SAS.

SAS/GRAPH and 
Base SAS: Mapping 
Reference

GPLOT Plots the values of two or more variables 
on a set of coordinate axes (X and Y).

SAS/GRAPH: 
Reference

GPROJECT Processes map data sets by converting 
spherical coordinates (longitude and 
latitude) into Cartesian coordinates for use 
by the GMAP and SGMAP procedures.

SAS/GRAPH and 
Base SAS: Mapping 
Reference

GREDUCE Processes map data sets so that they can 
draw simpler maps with fewer boundary 
points. The resulting output map data set 
with an added DENSITY variable can be 
used as an input map data set by the 
GMAP procedure in SAS/GRAPH, or the 

SAS/GRAPH and 
Base SAS: Mapping 
Reference

100 Chapter 6 / Base SAS Procedures Documented in Other Publications

http://support.sas.com/documentation/onlinedoc/base/91/explode.pdf
http://support.sas.com/documentation/onlinedoc/base/91/explode.pdf
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://support.sas.com/documentation/onlinedoc/base/91/forms.pdf
http://support.sas.com/documentation/onlinedoc/base/91/forms.pdf
http://documentation.sas.com/?docsetId=procstat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=procstat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=procstat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=procstat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en


Procedure Description Publication

ODS Graphics SGMAP procedure in Base 
SAS.

GREMOVE Combines unit areas defined in a map data 
set into larger unit areas by removing 
internal borders between the original unit 
areas. The resulting output map data set 
can be used as input by the GMAP 
procedure in SAS/GRAPH, or the ODS 
Graphics SGMAP procedure in Base SAS.

SAS/GRAPH and 
Base SAS: Mapping 
Reference

INFOMAPS Enables you to create information maps 
programmatically.

Base SAS Guide to 
Information Maps

MAPIMPORT Enables you to import Esri shapefiles 
(spatial data formats) and process the SHP 
files into map data sets that are made 
available with SAS/GRAPH or through 
third-party sources.

SAS/GRAPH and 
Base SAS: Mapping 
Reference

METADATA Sends an XML string to the SAS Metadata 
Server.

SAS Language 
Interfaces to 
Metadata

METALIB Updates the metadata in the metadata 
server to match the tables in a library.

SAS Language 
Interfaces to 
Metadata

METAOPERATE Enables you to perform administrative 
tasks in batch mode that are associated 
with the SAS Metadata Server.

SAS Language 
Interfaces to 
Metadata

ODSLIST Stores a report’s individual components 
and then enables you to modify and replay 
the report.

SAS Output Delivery 
System: User’s 
Guide

ODSTABLE Creates your tabular output templates. SAS Output Delivery 
System: User’s 
Guide

ODSTEXT Creates paragraphs and lists that can be 
customized and nested an infinite number 
of times.

SAS Output Delivery 
System: User’s 
Guide

SGDESIGN Produces a graph from one or more input 
SAS data sets and a user-defined ODS 
Graphics Designer (SGD) file.

SAS ODS Graphics: 
Procedures Guide

SGMAP Identifies the data sets needed for map 
areas, map response values, and overlay 
plots.

SAS ODS Graphics: 
Procedures Guide

Base SAS Procedures Documented in Other Publications 101

http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engimap&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engimap&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grmapref&docsetVersion=9.4_01&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrmeta&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Procedure Description Publication

SGPANEL Creates a panel of graph cells for the 
values of one or more classification 
variables.

SAS ODS Graphics: 
Procedures Guide

SGPIE Identifies the data set that contains the plot 
variables. The statement also gives you 
the option to specify a description, control 
automatic legends, and specify whether 
the chart background is opaque or 
transparent.

SAS ODS Graphics: 
Procedures Guide

SGPLOT Creates one or more plots and overlays 
them on a single set of axes.

SAS ODS Graphics: 
Procedures Guide

SGRENDER Produces graphical output from templates 
that are created with the Graph Template 
Language (GTL).

SAS ODS Graphics: 
Procedures Guide

SGSCATTER Creates a paneled graph of scatter plots 
for multiple combinations of variables, 
depending on the plot statement that you 
use.

SAS ODS Graphics: 
Procedures Guide

SQL Implements Structured Query Language 
(SQL) for SAS.

SAS SQL Procedure 
User’s Guide

TEMPLATE Enables you to customize the appearance 
of your SAS output.

SAS Output Delivery 
System: User’s 
Guide

TRANTAB Creates, edits, and displays customized 
translation tables, and enables you to view 
and modify translation tables that are 
supplied by SAS.

SAS National 
Language Support 
(NLS): Reference 
Guide

UNIVARIATE Provides a variety of descriptive measures, 
graphical displays, and statistical methods, 
which you can use to summarize, visualize, 
analyze, and model the statistical 
distributions of numeric variables.

Base SAS 
Procedures Guide: 
Statistical 
Procedures 

For information about all SAS procedures, see SAS Procedures by Name and 
Product. The information in SAS Procedures by Name and Product is arranged 
alphabetically by the procedures' names and by their products' names.

102 Chapter 6 / Base SAS Procedures Documented in Other Publications

http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=grstatproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=procstat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=procstat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=procstat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=procstat&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=allprodsproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=allprodsproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


PART 2

Procedures

Chapter 7
APPEND Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107

Chapter 8
AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123

Chapter 9
CALENDAR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  207

Chapter 10
CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  299

Chapter 11
CHART Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  329

Chapter 12
CIMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  381

Chapter 13
COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  409

Chapter 14
CONTENTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  477

Chapter 15
COPY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  509

Chapter 16
CPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  525

Chapter 17
DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  549

Chapter 18
DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  707

Chapter 19
DELETE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  763

Chapter 20
DISPLAY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  775

103



Chapter 21
DS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  779

Chapter 22
DSTODS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  813

Chapter 23
EXPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  825

Chapter 24
FCMP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  849

Chapter 25
FCMP Special Functions and Call Routines . . . . . . . . . . . . . . . . . . . . . . . . .  915

Chapter 26
FCmp Function Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  961

Chapter 27
FEDSQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  977

Chapter 28
FMTC2ITM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1023

Chapter 29
FONTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1031

Chapter 30
FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1049

Chapter 31
FSLIST Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1175

Chapter 32
GROOVY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1187

Chapter 33
HADOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1201

Chapter 34
HDMD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1225

Chapter 35
HTTP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1245

Chapter 36
IMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1287

Chapter 37
JAVAINFO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1319

Chapter 38
JSON Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1321

Chapter 39
LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1363

104



Chapter 40
MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1419

Chapter 41
MIGRATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1513

Chapter 42
OPTIONS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1533

Chapter 43
OPTLOAD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1555

Chapter 44
OPTSAVE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1561

Chapter 45
PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1569

Chapter 46
PMENU Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1641

Chapter 47
PRESENV Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1685

Chapter 48
PRINT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1695

Chapter 49
PRINTTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1797

Chapter 50
PRODUCT_STATUS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1821

Chapter 51
PROTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1825

Chapter 52
PRTDEF Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1853

Chapter 53
PRTEXP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1871

Chapter 54
PWENCODE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1877

Chapter 55
QDEVICE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1889

Chapter 56
RANK Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1937

Chapter 57
REGISTRY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1963

Chapter 58
REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1981

105



Chapter 59
REPORT Procedure Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2153

Chapter 60
S3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2183

Chapter 61
SCAPROC Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2213

Chapter 62
SCOREACCEL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2227

Chapter 63
SOAP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2263

Chapter 64
SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2277

Chapter 65
SQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2331

Chapter 66
SQOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2333

Chapter 67
STANDARD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2341

Chapter 68
STREAM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2359

Chapter 69
SUMMARY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2373

Chapter 70
TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2377

Chapter 71
TIMEPLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2533

Chapter 72
TRANSPOSE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2563

Chapter 73
XSL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2595

106



Chapter 7
APPEND Procedure

Overview: APPEND Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
What Does the APPEND Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Syntax: APPEND Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Usage: APPEND Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Using the APPEND Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Examples: APPEND Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Example 1: Concatenating Two SAS Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Example 2: Concatenating a CAS Table to a SAS Data Set . . . . . . . . . . . . . . . . . 112
Example 3: Getting Sort Indicator Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Overview: APPEND Procedure

What Does the APPEND Procedure Do?
The APPEND procedure adds the observations from one SAS data set to the end of 
another SAS data set.

For more information, see Chapter 5, “CAS Processing of Base Procedures,” on 
page 93.

Generally, the APPEND procedure functions the same as the APPEND statement in 
the DATASETS procedure. The only difference between the APPEND procedure 
and the APPEND statement in PROC DATASETS is the default for libref in the 
BASE= and DATA= options. For PROC APPEND, the default is either Work or User. 
For the APPEND statement, the default is the libref of the procedure input library.

107



Syntax: APPEND Procedure
Requirement: The BASE= data set must be a member of a SAS library that supports update 

processing. Because the CAS libname engine does not support update processing, an 
existing CAS table cannot be specified with the BASE= option.

Notes: NOTE: _LAST_ is the name of the last data set created in your session. When the 
BASE= data set does not exist and PROC APPEND creates it, PROC APPEND sets 
_LAST_ to the name of the BASE= data set.
If you use the DROP=, KEEP=, or RENAME= options on the BASE= data set, the 
options affect ONLY the APPEND processing and does not change the variables in the 
appended BASE= data set. Variables that are dropped or not kept using the DROP= and 
KEEP= options still exist in the appended BASE= data set. Variables that are renamed 
using the RENAME= option remain with their original name in the appended BASE= 
data set.

Tips: Complete documentation for the APPEND procedure is located within the DATASETS 
procedure in APPEND Statement on page 573.
You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. For more 
information, see “Statements with the Same Function in Multiple Procedures” on page 
73.
You can use data set options with the BASE= and DATA= options when using the 
APPEND procedure.

PROC APPEND BASE=<libref.>SAS-data-set
<APPENDVER=V6>

<DATA=<libref.>SAS-data-set>
<ENCRYPTKEY=key-value>
<FORCE>
<GETSORT>
<NOWARN>;

Statement Task Example

APPEND Add observations from one SAS data set to the 
end of another SAS data set

Ex. , Ex. 3

108 Chapter 7 / APPEND Procedure



Usage: APPEND Procedure

Using the APPEND Procedure
To copy only the table metadata and structure of a data set but not the data, use the 
following example where Dataset1 is nonexistent:

proc append base=dataset1 data=dataset2(obs=0); 
run;

proc contents data=dataset1; 
run;
quit;

Examples: APPEND Procedure

Example 1: Concatenating Two SAS Data Sets
Features: PROC APPEND statement options

BASE=
DATA=
FORCE

OPTIONS statement
PRINT procedure

Data set: EXP Library

Details
This example demonstrates the following tasks:

n suppresses the printing of a library

Example 1: Concatenating Two SAS Data Sets 109



n appends two data sets

n prints the new data set after appending

To create the Exp.Results and Exp.Sur data sets and print them out before using 
this example to concatenate them, see “EXP Library” on page 2697.

Program
options pagesize=40 linesize=64 nodate pageno=1;

LIBNAME exp 'SAS-library';

proc append base=exp.results data=exp.sur force;
run;

proc print data=exp.results noobs;
   title 'The Concatenated RESULTS Data Set';
run;
quit;

Program Description
This example appends one data set to the end of another data set.

The data set Exp.Sur contains the variable Wt6Mos, but the Exp.Results data 
set does not.

Set the system options. The NODATE option suppresses the display of the date 
and time in the output. The PAGENO= option specifies the starting page number. 
The LINESIZE= option specifies the output line length, and the PAGESIZE= option 
specifies the number of lines on an output page. 

options pagesize=40 linesize=64 nodate pageno=1;

The LIBNAME statement assigns the library.

LIBNAME exp 'SAS-library';

Append the data set Exp.Sur to the Exp.Results data set. PROC APPEND 
appends the data set Exp.Sur to the data set Exp.Results. FORCE causes PROC 
APPEND to carry out the Append operation even though Exp.Sur has a variable 
that Exp.Results does not. PROC APPEND does not add the Wt6Mos variable to 
Exp.Results. 

proc append base=exp.results data=exp.sur force;
run;

Print the data set. See Output 7.20 on page 112.

proc print data=exp.results noobs;
   title 'The Concatenated RESULTS Data Set';
run;
quit;

110 Chapter 7 / APPEND Procedure



Output: Concatenating Two Data Sets
Output 7.1 The Results Data Set

Output 7.2 The Sur Data Set

Example 1: Concatenating Two SAS Data Sets 111



Output 7.3 Concatenating the Results and the Sur Data Sets

Example 2: Concatenating a CAS Table to a SAS 
Data Set
Features: PROC APPEND statement options

BASE=
DATA=
FORCE

OPTIONS statement
CONTENTS procedure

Details
This example demonstrates the following tasks:

n appending a CAS table to a SAS data set

n contents of the table, the data set, and the new data set after appending

112 Chapter 7 / APPEND Procedure



Program
options pagesize=40 linesize=64 nodate pageno=1;

libname sascas1 cas;

libname saleslib 'directory-name';

proc contents data=saleslib.monthly;
run;

proc contents data=sascas1.lastmonth;
run;

proc append base=saleslib.monthly data=sascas1.lastmonth force;
run;

proc sql outobs=5;
   select store_id, address, city, state, zipcode, totalsales 
   format dollar12. 
   from saleslib.monthly(obs=4) 
   where totalsales gt 2000000;
quit;

Program Description
This example appends a CAS table to the end of a SAS data set.

Set the system options. The NODATE option suppresses the display of the date 
and time in the output. The PAGENO= option specifies the starting page number. 
The LINESIZE= option specifies the output line length, and the PAGESIZE= option 
specifies the number of lines on an output page. 

options pagesize=40 linesize=64 nodate pageno=1;

The LIBNAME statements assign the CAS engine and BASE engine libraries.

libname sascas1 cas;

libname saleslib 'directory-name';

Check the contents of the table and data set. Use PROC CONTENTS to view the 
data set and table.

proc contents data=saleslib.monthly;
run;

proc contents data=sascas1.lastmonth;
run;

Append the SasCas1.LastMonth table to the SalesLib.Monthly data set. The 
data for last month's sales in a CAS table is appended to the accumulated sales 
data stored in a SAS data set. The CAS table uses VARCHAR to store the city and 
address values. The SAS data set stores the values in character variables. Since 
the attribute for the two values differ, the FORCE option is used in PROC APPEND.

proc append base=saleslib.monthly data=sascas1.lastmonth force;
run;

Example 2: Concatenating a CAS Table to a SAS Data Set 113



Retrieve total sales. Use PROC SQL to retrieve five variables and sales that are 
greater than $2,000,000.

proc sql outobs=5;
   select store_id, address, city, state, zipcode, totalsales 
   format dollar12. 
   from saleslib.monthly(obs=4) 
   where totalsales gt 2000000;
quit;

Warnings in the Log
Note the warnings that were sent to the log.

117        proc append base=saleslib.monthly data=sascas1.lastmonth force;
 118        run;
 
 NOTE: Appending SASCAS1.LASTMONTH to SALESLIB.MONTHLY.
 WARNING: Variable city has different lengths on BASE and DATA files 
         (BASE 100 DATA 21).
 WARNING: Variable address has different lengths on BASE and DATA files 
         (BASE 160 DATA 19).
 NOTE: There were 12 observations read from the data set SASCAS1.LASTMONTH.
 NOTE: 12 observations added.
 NOTE: The data set SALESLIB.MONTHLY has 24 observations and 7 variables.

114 Chapter 7 / APPEND Procedure



Output: Concatenating a CAS Table to a 
SAS Data Set
Output 7.4 The CAS Table Contents

Example 2: Concatenating a CAS Table to a SAS Data Set 115



Output 7.5 The Monthly Data Set Contents

116 Chapter 7 / APPEND Procedure



Output 7.6 Concatenated Data Set

Output 7.7 Total Sales

Example 3: Getting Sort Indicator Information
Features: PROC APPEND statement options

GETSORT
BY statement
CONTENTS procedure
ODS statement
SORT procedure

Example 3: Getting Sort Indicator Information 117



Details
This example demonstrates the following tasks:

n creates two data sets: one with no observations and one with observations

n sorts a data set in descending order

n creates a sort indicator using the SORTEDBY data set option

n creates a sort indicator using the SORT procedure

Program
data mtea;
    length var1 8.;
    stop;
run;

data phull;
    length var1 8.;
    do var1=1 to 100000;
    output;
end;
run;

proc sort data=phull;
    by DESCENDING var1;
run;

proc append base=mtea data=phull getsort;
run;

ods select sortedby;

proc contents data=mtea;
run;

data mysort(sortedby=var1);
    length var1 8.;
    do var1=1 to 10;
    output;
end;
run;

ods select sortedby;

proc contents data=mysort;
run;
quit;

data mysort;
    length var1 8.;

118 Chapter 7 / APPEND Procedure



    do var1=1 to 10;
    output;
end;
run;

proc sort data=mysort;
    by var1;
run;

ods select sortedby;

proc contents data=mysort;
run;
quit;

Program Description
The following example shows that a sort indicator can be inherited using the 
GETSORT option with the APPEND procedure.

Create a "shell" data set that contains no observations.

data mtea;
    length var1 8.;
    stop;
run;

Create another data set with the same structure, but with many observations. 
Sort the data set.

data phull;
    length var1 8.;
    do var1=1 to 100000;
    output;
end;
run;

proc sort data=phull;
    by DESCENDING var1;
run;

proc append base=mtea data=phull getsort;
run;

ods select sortedby;

proc contents data=mtea;
run;

A sort indicator is being created using the SORTEDBY data set option.

data mysort(sortedby=var1);
    length var1 8.;
    do var1=1 to 10;
    output;
end;
run;

Example 3: Getting Sort Indicator Information 119



ods select sortedby;

proc contents data=mysort;
run;
quit;

A sort indicator is being created by PROC SORT.

data mysort;
    length var1 8.;
    do var1=1 to 10;
    output;
end;
run;

proc sort data=mysort;
    by var1;
run;

ods select sortedby;

proc contents data=mysort;
run;
quit;

Output Examples
Output 7.8 Descending Sort Information

Output 7.9 Sort Indicator Information Using the SORTEDBY= Data Set Option

120 Chapter 7 / APPEND Procedure



Output 7.10 Sort Indicator Information Using the SORT Procedure

Example 3: Getting Sort Indicator Information 121



122 Chapter 7 / APPEND Procedure



Chapter 8
AUTHLIB Procedure

Overview: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
What Does the AUTHLIB Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Concepts: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Metadata-Bound Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Using Metadata-Bound Library Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Setting and Modifying Metadata-Bound Library Passwords . . . . . . . . . . . . . . . . . 126
Encrypted Data Set Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Setting and Modifying Metadata-Bound Library Encryption Options . . . . . . . . . . . 129
Retaining and Purging Metadata-Bound Library Credentials . . . . . . . . . . . . . . . . . 131
Requiring Encryption for Metadata-Bound Data Sets . . . . . . . . . . . . . . . . . . . . . . 132
Data Sets in a Metadata-Bound Library That Are Not Bound to 

Secured Table Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Syntax: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
PROC AUTHLIB Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
CREATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
MODIFY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
PURGE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
REMOVE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
REPAIR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
REPORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
TABLES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Usage: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Requirements for Using the AUTHLIB Statements . . . . . . . . . . . . . . . . . . . . . . . . 161
Copy-In-Place Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Results: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Results: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Examples: AUTHLIB Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Example 1: Binding a Physical Library That Contains Unprotected Data Sets . . . 163
Example 2: Binding a Physical Library That Contains Password-

Protected Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Example 3: Binding a Library When Existing Data Sets Are 

Protected with the Same Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Example 4: Binding a Library When Existing Data Sets Are 

Protected with Different Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Example 5: Changing Passwords on Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Example 6: Changing Metadata-Bound Library Passwords . . . . . . . . . . . . . . . . . 174

123



Example 7: Using the REMOVE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Example 8: Using the REPORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Example 9: Using the TABLES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Example 10: Binding a Library When Existing Data Sets Are SAS 

Proprietary Encrypted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Example 11: Binding a Library When Existing Data Sets Are AES-Encrypted . . . 182
Example 12: Binding a Library with an Optional Recorded 

Encryption Key When Existing AES-Encrypted Data Sets Have 
Different Encryption Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Example 13: Binding a Library with Required AES Encryption 
When Existing Data Sets Are Encrypted with the Same Encryption Key . . . . . . 188

Example 14: Changing the Encryption Key on a Metadata-Bound 
Library That Requires AES Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Example 15: Binding a Library with Existing Data Sets That Are 
AES-Encrypted with Different Encryption Keys . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Example 16: Changing a Metadata-Bound Library to Require AES 
Encryption When Existing Data Sets Are Encrypted with 
Different Encryption Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Example 17: Using the REMOVE Statement on a Metadata-Bound 
Library with Required AES Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Example 18: Resetting Credentials on Imported SecuredLibrary Objects . . . . . . . 203

Overview: AUTHLIB Procedure

What Does the AUTHLIB Procedure Do?
The AUTHLIB procedure is a utility procedure that manages metadata-bound 
libraries. With PROC AUTHLIB, you can do the following:

n create a metadata-bound library by binding a physical library to metadata within 
a SAS Metadata Repository

n modify password and encryption key values for a metadata-bound library

n purge replaced password and encryption key values that are also known as 
metadata-bound library credentials

n repair metadata-bound libraries by recovering security information, secured 
library objects, and secured table objects 

n remove the physical security information and metadata objects that protect a 
metadata-bound library

n report inconsistencies between physical library contents and corresponding 
metadata objects within a specified metadata-bound library

Users cannot access metadata-bound data sets from any release of SAS prior to 
9.3M2.

124 Chapter 8 / AUTHLIB Procedure



Note: For a z/OS direct-access bound library that has been bound to metadata, the 
constraint is slightly broader. Neither the library nor any of its members can be 
accessed by earlier releases of SAS. 

Concepts: AUTHLIB Procedure

Metadata-Bound Library
A metadata-bound library is a physical library that is tied to a corresponding 
metadata secured table object. Each physical table within a metadata-bound library 
has information in its header that points to a specific metadata object. The pointer 
creates a security binding between the physical table and the metadata object. The 
binding ensures that SAS universally enforces metadata-layer access requirements 
for the physical table—regardless of how a user requests access from SAS. For 
more information, see SAS Guide to Metadata-Bound Libraries.

Using Metadata-Bound Library Passwords
A metadata-bound library contains a single set of passwords that are stored in the 
secured library object. This set of passwords is added to all data sets that are 
created in the metadata-bound library. These passwords are not used to authorize 
user access to the data. They are used to authorize administrator access to repair 
the binding of physical data to the secured library or table metadata objects. The 
passwords are also validated in the process of authorizing a user’s access to a data 
set. They do not determine the permissions that any user is authorized to have.

The metadata-bound library passwords are intended to be known only by the 
administrators of the metadata-bound library. Knowledge of these passwords is 
required to restore or re-create secured library and secured table objects in a SAS 
Metadata Server for data sets in a data library that have lost their previously 
recorded metadata objects and permissions.

The metadata-bound library passwords also prevent a user from exporting the 
secured library and secured table objects from a SAS Metadata Server and then 
importing them to a SAS Metadata Server that an unauthorized user created and 
controls. This prevents the unauthorized user from using such objects where the 
user has modified the permissions.

The metadata-bound library passwords are always stored and transmitted in 
encrypted formats. The encrypted password is not usable to access the data if it is 
captured from a transmission and presented to SAS as a password value in the 
SAS language. Administrators might choose to use the PWENCODE procedure to 
encode the passwords for use in a PROC AUTHLIB statement. Using an encoded 

Concepts: AUTHLIB Procedure 125



password prevents a casual observer from seeing the clear-text password in the 
PROC AUTHLIB statements that the administrator types.

There are three passwords in the metadata-bound library set that correspond to the 
READ=, WRITE=, and ALTER= passwords of SAS data sets. For greater simplicity 
in administration of metadata-bound libraries, it is recommended that you use the 
PW= option in PROC AUTHLIB statements to specify a single password value. In 
the context of metadata-bound libraries, the READ=, WRITE=, and ALTER= options 
do not Create access distinctions. If you are concerned that a single eight character 
password does not meet your security requirements, then you can choose to set 
three different password values (using READ=, WRITE=, and ALTER=). Setting 
different values for these three options can create a 24-character password. 
However, you must keep track of all password values that you have assigned to a 
metadata-bound library. You must specify the passwords to do the following:

n unbind the library

n modify the passwords

n repair any inconsistencies in the binding information between what is recorded in 
the physical files and the actual metadata objects

For more information, see “Setting and Modifying Metadata-Bound Library 
Passwords” on page 126.

TIP All password values must be valid SAS names with a maximum length 
of 8 characters.

CAUTION
If you lose the password (or passwords) for a metadata-bound library, then 
you cannot unbind the library or change its passwords. Be sure to keep track of 
passwords that you assign in the CREATE and MODIFY statements.

Setting and Modifying Metadata-Bound Library 
Passwords

The metadata-bound library passwords are set in the CREATE statement and can 
be changed with the MODIFY statement. The passwords stored in data sets in the 
operating system library can be changed by those statements and subordinate 
TABLES statements. The passwords stored in the data sets can also be changed if 
the library is unbound from the metadata with a REMOVE statement.

All of the password options in the CREATE, MODIFY, TABLES, and REMOVE 
statements accept a syntax where two values can be specified separated by a slash 
(/) (for example, PW=password-value/new-password-value). For CREATE and 
MODIFY statements, a password value to set in the metadata or data sets is 
obtained from the password value before the slash (/) if no new password value is 
specified after the slash (/). The same is true for the REMOVE statement with the 
additional possibility of specifying the slash (/) and no new password value to 
indicate that the password should be removed from the data sets during the unbind 
process. However, note that if the CREATE, MODIFY, or REMOVE statement also 

126 Chapter 8 / AUTHLIB Procedure



specifies TABLESONLY=YES, then any new password values on those statements 
are ignored.

In general, you do not specify a new password value in a TABLES statement 
following a CREATE or MODIFY statement. The new value is obtained from the 
metadata to which the data set is bound or being bound. You can specify a new 
password value in TABLES statements following a REMOVE statement if you want 
different data sets to have unique passwords. In that case, you follow these steps:

1 Change the password for the data sets using a REMOVE statement with 
TABLESONLY=YES and an individual TABLES statement for each unique 
password.

2 Remove the metadata-bound library with a REMOVE statement without 
TABLESONLY=YES.

See Also
n “Example 1: Binding a Physical Library That Contains Unprotected Data Sets” on 

page 163

n “Example 2: Binding a Physical Library That Contains Password-Protected Data 
Sets” on page 165

n “Example 3: Binding a Library When Existing Data Sets Are Protected with the 
Same Passwords” on page 167

n “Example 4: Binding a Library When Existing Data Sets Are Protected with 
Different Passwords” on page 169

n “Example 5: Changing Passwords on Data Sets” on page 172

n “Example 6: Changing Metadata-Bound Library Passwords” on page 174

Encrypted Data Set Considerations
Some data sets in metadata-bound libraries might be encrypted either with the SAS 
Proprietary Encryption or Advanced Encryption Standard (AES) encryptions. SAS 
Proprietary Encryption is specified as ENCRYPT=YES when the data set is created. 
AES encryption is specified as ENCRYPT=AES or ENCRYPT=AES2 and as 
ENCRYPTKEY= key value (passphrase) when the data set is created. Special 
considerations apply for these encrypted data sets when processed by the 
AUTHLIB procedure. The same encrypt passphrase is used for both AES and 
AES2, but different keys are generated for the actual encryption. AES2 keys meet 
stricter NIST (National Institute of Standards and Technology) guidelines..

CAUTION
AES encryption is supported only in SAS 9.4 and later releases. Do not use AES 
encryption if the data sets need to be accessible by SAS 9.3M2. The AES2 key 
generation algorithm is supported only in SAS 9.4M5 and later. Do not use it if data sets 
need to be accessible by earlier releases. 

Concepts: AUTHLIB Procedure 127



SAS Proprietary Encrypted Data Sets
SAS Proprietary Encryption uses the READ password of the data set as part of 
the encryption key. Since all metadata-bound data sets in the library share the 
same set of passwords, it is not necessary to specify the READ password when 
accessing the file. However, when the READ password is modified on the data 
set in a CREATE, MODIFY, or REMOVE statement, the data must be re-
encrypted with the new password value. This process is done automatically for 
you in the 9.4 release with a copy-in-place operation. For more information about 
the copy-in-place operation, see “Copy-In-Place Operation” on page 162.

AES-Encrypted Data Sets
There are two ways to access an AES-encrypted data set:

n the user must provide the ENCRYPTKEY= passphrase value to open the 
data set

n the administrator must have recorded an optional or required encryption key 
for the metadata-bound library with the ENCRYPTKEY= option in the 
CREATE or MODIFY statement

Note: The ENCRYPTKEY= value is a passphrase that can be up to 64 
characters long from which the actual AES encryption key is later derived, but it 
is referred to as the encryption key in most SAS documentation.

By recording an optional or required ENCRYPTKEY= key value for the 
metadata-bound library, the metadata becomes a key store for the encryption 
key value. Like password values, the key value is always stored and transmitted 
in encrypted formats. The encrypted key value is not usable to access the data if 
it is captured from a transmission and presented to SAS as an encryption key 
value in the SAS language. For more information, see “Setting and Modifying 
Metadata-Bound Library Encryption Options” on page 129. If there is no 
recorded encryption key for the library or the data set is encrypted with a 
different key, then you can specify the encryption key value by specifying the 
ENCRYPTKEY= option in a TABLES statement. For more information, see 
“TABLES Statement” on page 157.

Note: If an encryption key is recorded in the metadata with the AUTHLIB 
procedure, then it is honored by the SAS 9.4 release when creating and 
replacing SAS data sets, whether SAS 9.4M1 has been applied or not. The SAS 
9.4 release of the AUTHLIB procedure cannot be used to administer the 
metadata-bound library if the REQUIRE_ENCRYPTION=YES attribute has been 
set.

CAUTION
Even if you record the encryption key in metadata for the library, you 
should also record the key elsewhere when using ENCRYPT=AES or 
ENCRYPT=AES2. If you lose the metadata and forget the ENCRYPTKEY= key 
value, then you lose your data. SAS cannot assist you in recovering the 
ENCRYPTKEY= key value. The following note is written to the log: 

NOTE: If you lose or forget the ENCRYPTKEY= value, 
there will be no way  to open the file or 
recover the data.

128 Chapter 8 / AUTHLIB Procedure



For more information, see “Setting and Modifying Metadata-Bound Library 
Encryption Options” on page 129.

CAUTION
If data sets using AES encryption have referential integrity constraints, then 
the encryption key for all data sets must be available when they are opened 
for Update access. Normally, SAS requires that all data sets share the same 
encryption key. With a recorded optional or required encryption key in metadata, related 
data sets can have different keys. However, issues can arise if you change the 
encryption key on one library that has data sets related to data sets in a different library.

TIP If a metadata-bound library contains AES-encrypted data sets, then 
SAS recommends that you record an encryption key and use it for all 
metadata-bound data sets in the library that are encrypted with AES. The 
best way to ensure that the encryption key is used for all data sets is to 
require encryption. For more information, see “Requiring Encryption for 
Metadata-Bound Data Sets” on page 132.

See Also
n “Example 10: Binding a Library When Existing Data Sets Are SAS Proprietary 

Encrypted” on page 179

n “Example 11: Binding a Library When Existing Data Sets Are AES-Encrypted” on 
page 182

n “Example 12: Binding a Library with an Optional Recorded Encryption Key When 
Existing AES-Encrypted Data Sets Have Different Encryption Keys ” on page 
185

n “Example 13: Binding a Library with Required AES Encryption When Existing 
Data Sets Are Encrypted with the Same Encryption Key” on page 188

n “Example 14: Changing the Encryption Key on a Metadata-Bound Library That 
Requires AES Encryption” on page 192

Setting and Modifying Metadata-Bound Library 
Encryption Options

There are three options that affect metadata-bound library encryption:

n REQUIRE_ENCRYPTION=

n ENCRYPT=

n ENCRYPTKEY=

The metadata-bound library encryption options are set in the CREATE statement 
and can be changed with the MODIFY statement. The encryption of data sets in the 
operating system library can be changed by the CREATE and MODIFY statements 

Concepts: AUTHLIB Procedure 129



and subordinate TABLES statements. The encryption of data sets can also be 
changed if the library is unbound from the metadata by using a REMOVE statement. 
However, note that if the CREATE, MODIFY, or REMOVE statement also specifies 
TABLESONLY=YES, then any new encryption options on those statements are 
ignored. Also note that when encryption options are changed for a data set, the 
copy-in-place operation is automatically executed to re-encrypt the data with the 
new options. For more information about the copy-in-place operation, see “Copy-In-
Place Operation” on page 162.

The default for the REQUIRE_ENCRYPTION= option is NO when it is used in the 
CREATE statement. The REQUIRE_ENCRYPTION= option can be changed in the 
MODIFY statement to YES or NO.

The ENCRYPT= option specifies the encryption type to use: AES, AES2, YES, or 
NO. ENCRYPT=NO is not valid if encryption is required. To record or change a 
metadata-bound library encryption key, ENCRYPT=AES or ENCRYPT=AES2 must 
be specified. If you want to switch from a required encryption with a recorded AES 
or AES2 encryption key to a required encryption with the SAS Proprietary algorithm, 
then specify ENCRYPT=YES in the MODIFY statement. This process also removes 
the recorded encryption key. To remove the recorded encryption key when 
encryption is not required, specify ENCRYPT=NO in the MODIFY statement. To 
change the encryption of data sets when unbinding with the REMOVE statement, 
perform one of the following tasks:

n specify different encryption options for data sets that are unbound by using 
TABLESONLY=YES and the encryption options on different TABLES statements

n change to a common encryption for all data sets that are unbound with the 
ENCRYPT= option if TABLESONLY is not YES

Similar to password options, the ENCRYPTKEY= option on statements accepts a 
syntax where two values that are separated by a slash (/) can be specified. Here is 
an example:

ENCRYPTKEY=key-value/new-key-value

For CREATE and MODIFY statements, the encryption key value to record in the 
metadata or data sets is obtained from the encryption key value before the slash (/) 
if

n ENCRYPT=AES or ENCRYPT=AES2

n there is no new key value specified after the slash (/)

If you do not specify ENCRYPT=AES or ENCRYPT=AES2, then the encryption key 
value is used to open data sets but it is not recorded in metadata. Unlike password 
options, you do not remove an encryption key value by specifying a slash (/) after it 
and leaving it blank. Instead, you use ENCRYPT=YES or ENCRYPT=NO, as 
discussed in the previous paragraph.

If encryption is required, then you do not specify a new key value in a TABLES 
statement following a CREATE or MODIFY statement. The new value is obtained 
from the metadata to which the data set is bound or being bound. If encryption is not 
required or if you are following a REMOVE statement with TABLESONLY=YES, 
then you can specify ENCRYPT=AES or ENCRYPT=AES2 and a new key value in 
TABLES statements to have the data set re-encrypted with the new key value.

130 Chapter 8 / AUTHLIB Procedure



See Also
n “Example 15: Binding a Library with Existing Data Sets That Are AES-Encrypted 

with Different Encryption Keys” on page 195

n “Example 16: Changing a Metadata-Bound Library to Require AES Encryption 
When Existing Data Sets Are Encrypted with Different Encryption Keys” on page 
198

Retaining and Purging Metadata-Bound Library 
Credentials

Passwords and encryption keys for a metadata-bound library are collectively 
referred to as metadata-bound library credentials. Prior to SAS 9.4M3, when any of 
these credentials were modified, the replaced values were immediately removed 
from the metadata. Sometimes tables were not processed because another user 
was accessing the table.

Beginning with SAS 9.4M3, the credentials are retained in metadata and can be 
used by the system to open data sets that were not modified. This retention enables 
the user to continue processing tables and the administrator to complete the 
modification of credentials. The retained credentials are purged if a MODIFY 
statement that is processing all of the tables in the library determines that all the 
tables have been successfully changed with the credentials.

An administrator might want to retain the credentials even after all the existing 
tables have been processed successfully. The following are reasons for retaining 
the credentials:

n It enables processing of view files that implemented row and column level 
security on underlying tables by using the old passwords in the view definition. 
SAS does not know which view files might contain the passwords and does not 
have the ability to modify them in the view file. The administrator must redefine 
the views with the new passwords.

n It enables processing of data sets restored from backups prior to the 
modification.

An administrator who wants to retain older credentials and not purge them can 
specify the PURGE=NO option in the MODIFY statement.

Note: The administrator must specify the PURGE=NO option in each MODIFY 
statement that processes all tables until the administrator is ready for the replaced 
credentials to be purged.

If a library contains tables that do not follow our best practices, automatic deletion of 
old credentials might not occur when issuing a MODIFY statement for all tables. For 
example, a MODIFY statement that changes the stored encryption key for a library 
with optional encryption would not modify the keys of data sets whose keys do not 
match the stored key. Because some data sets were not modified, the old 
encryption key is not removed. In this case, the PURGE statement must be used to 
remove the old credentials.

Concepts: AUTHLIB Procedure 131



Note: Notes are written to the SAS log whenever a metadata-bound table is 
accessed and the replaced credentials are used to successfully open the data set. 
The Note identifies the date and time that these credentials were replaced.

For more information, see “PURGE Statement” on page 145.

Requiring Encryption for Metadata-Bound Data Sets
Beginning in SAS 9.4M1, an administrator can require that all data sets in a 
metadata-bound library be automatically encrypted when created. This is specified 
by using the REQUIRE_ENCRYPTION=YES option in the CREATE or MODIFY 
statements. The type of encryption required depends on whether there is a recorded 
encryption key or not. If there is a recorded encryption key, then all data sets that 
are bound to the secured library object are automatically encrypted with an 
encryption key that is generated from the recorded passphrase with the recorded 
key generation algorithm. If there is no recorded encryption key, then all data sets 
are automatically encrypted with the SAS Proprietary algorithm.

In order to automatically encrypt the data sets, a copy-in-place operation is used. 
For an explanation of the copy-in-place operation, see “Copy-In-Place Operation” on 
page 162. If the data set is currently encrypted with a different key value, then that 
key value must be either the current recorded encryption key value or specified with 
the ENCRYPTKEY= option in the TABLES statement.

Note: If the REQUIRE_ENCRYPTION=YES attribute of a metadata-bound library is 
set in the metadata with the AUTHLIB procedure, then it is honored by SAS 9.4 
when creating and replacing SAS data sets whether SAS 9.4M1 has been applied 
or not. The pre-maintenance version of the AUTHLIB procedure cannot be used to 
administer the metadata-bound library if the REQUIRE_ENCRYPTION=YES 
attribute has been set. SAS 9.3M2 does not honor the 
REQUIRE_ENCRYPTION=YES attribute, and its AUTHLIB procedure should not be 
used to administer the library if the REQUIRE_ENCRYPTION=YES attribute is set. 

See Also
n “Example 15: Binding a Library with Existing Data Sets That Are AES-Encrypted 

with Different Encryption Keys” on page 195

n “Example 16: Changing a Metadata-Bound Library to Require AES Encryption 
When Existing Data Sets Are Encrypted with Different Encryption Keys” on page 
198

132 Chapter 8 / AUTHLIB Procedure



Data Sets in a Metadata-Bound Library That Are 
Not Bound to Secured Table Objects

It is possible that some data sets in a metadata-bound library do not have the 
metadata-bound library passwords. These data sets are not considered to be part of 
the bound library for authorization purposes. This can occur with either of the 
following scenarios:

n the data sets existed in the library before it was bound and their passwords 
differed from the metadata library passwords

n the data set is AES-encrypted and the encryption key was not available to open 
the data set in a CREATE or MODIFY statement

See the following examples:

n “Example 2: Binding a Physical Library That Contains Password-Protected Data 
Sets” on page 165

n “Example 12: Binding a Library with an Optional Recorded Encryption Key When 
Existing AES-Encrypted Data Sets Have Different Encryption Keys ” on page 
185

This can also occur if data sets were to be copied into the library by an operating 
system copy utility.

If a data set was bound before being copied, then the data set is still protected by 
the permissions that the users have in the secured table object to which it is bound 
in the original secured library.

If a data set was not bound before being copied, then it is also not bound in the new 
library or protected by the metadata permissions. If the data set has passwords, 
then you must supply the appropriate passwords to access the data.

You can use the MODIFY statement to modify the passwords if necessary and to 
bind the data set to a secured table object in the secured library object to which the 
library is bound. For more information, see “Example 5: Changing Passwords on 
Data Sets” on page 172. 

Syntax: AUTHLIB Procedure
Restrictions: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.
Users cannot access metadata-bound data sets from any release of SAS prior to SAS 
9.3M2.
The AUTHLIB procedure is intended for use by SAS administrators. Users who lack 
sufficient privileges in either the metadata layer or the host layer cannot use this 
statement.
The AUTHLIB procedure cannot operate on libraries that are assigned for access 
through a SAS/SHARE server.

Syntax: AUTHLIB Procedure 133



The physical library specified cannot be a concatenated library, temporary library, or 
accessed through a SAS/SHARE server and must be processed by an engine that 
supports metadata-bound libraries.
This procedure is not supported on the CAS server.

Requirement: The AUTHLIB procedure requires a connection to the target metadata server.

Tip: Each password and encryption key option must be coded on a separate line to ensure 
that they are properly blotted in the log.

See: SAS Guide to Metadata-Bound Libraries

PROC AUTHLIB <options>;
CREATE

SECUREDLIBRARY='secured-library-name'
< SECUREDFOLDER='secured-folder-path' >
< LIBRARY=libref >
PW=all-password-value </ new-all-password-value> |
ALTER=alter-password-value </ new-alter-password-value>
READ=read-password-value </ new-read-password-value>
WRITE=write-password-value </ new-write-password-value>
<REQUIRE_ENCRYPTION=YES | NO>
<ENCRYPT=YES | NO | AES | AES2>
<ENCRYPTKEY=key-value < / new-key-value >>;

MODIFY <LIBRARY=libref>
PW=all-password < / new-all-password > |

ALTER=alter-password < / new-alter-password >
READ=read-password < / new-read-password >
WRITE=write-password < / new-write-password >
<TABLESONLY=YES | NO>
<REQUIRE_ENCRYPTION=YES | NO>
<ENCRYPT=YES | NO | AES | AES2>
<ENCRYPTKEY=key-value < / new-key-value >>
<PURGE=YES | | NO>;

PURGE CREDENTIALS | CREDS <LIBRARY=libref>
PW=all-password |

ALTER=alter-password 
READ=read-password 
WRITE=write-password 
BEFORE=datetime;

REMOVE<LIBRARY=libref>
PW=all-password < / <new-all-password> > |

ALTER=alter-password < / <new-alter-password> >
READ=read-password < / <new-read-password> >
WRITE=write-password < / <new-write-password> >
<TABLESONLY=YES | NO>
<ENCRYPT=YES | NO | AES | AES2>
<ENCRYPTKEY=key-value < / new-key-value >>;

REPAIR ADD | UPDATE | DELETE
LOCATION | METADATA

SECUREDLIBRARY=’secured-library-name’
SECUREDFOLDER='secured-folder-path'
< LIBRARY=libref >
PW=all-password |

ALTER=alter-password

134 Chapter 8 / AUTHLIB Procedure



READ=read-password
WRITE=write-password

<TABLESONLY=YES | NO>
<ENCRYPTKEY=key-value>;

REPORT <LIBRARY=libref>
<ENCRYPTKEY=key-value>;

TABLES SAS-dataset(s) | _ALL_ | _NONE_ 
< / >

< PW=all-password > < / <new-all-password> > |
< ALTER=alter-password > < / <new-alter-password> >
< READ=read-password > < / <new-read-password> >
< WRITE=write-password > < / <new-write-password> >;
< MEMTYPE= DATA | VIEW >
< ENCRYPT=YES | NO | AES | AES2 >
<ENCRYPTKEY=key-value< / new-key-value >>;

Statement Task Example

PROC AUTHLIB Create and manage metadata-bound libraries

CREATE Create the secured library object in the SAS 
Metadata Server and record the physical 
security information in the directory or bound 
files

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 11, Ex. 
10, Ex. 12, 
Ex. 13, Ex. 
15

MODIFY Modify password values and encryption key 
values for a metadata-bound library

Ex. 5, Ex. 6, 
Ex. 16

PURGE Removes any retained metadata-bound library 
credentials older than a given date of 
replacement.

REMOVE Remove the physical security information and 
metadata objects that protect a metadata-
bound library

Ex. 7

REPAIR Recover security information (in physical data) 
or secured library and table objects (in 
metadata)

REPORT For a specified metadata-bound library, 
compare physical library contents with 
corresponding metadata objects (in order to 
identify any inconsistencies)

Ex. 8

TABLES Specify which tables within a specified 
metadata-bound library are affected by certain 
AUTHLIB statements

Ex. 4, Ex. 9, 
Ex. 11, Ex. 
10, Ex. 12, 
Ex. 15, Ex. 
16

Syntax: AUTHLIB Procedure 135



PROC AUTHLIB Statement
Manages metadata-bound libraries.

Note: Data set names and variable names that end with large numeric values that are larger 
than a long integer cannot be used in numbered-range lists. For more information, see 
“Restriction for Numbered Range Lists” in SAS Language Reference: Concepts.

Syntax
PROC AUTHLIB <options>;

Summary of Optional Arguments
LIBRARY=libref

is the name of the physical library for which the secured library object is 
created and the security information is stored.

NOWARN
suppresses error processing.

PWREQ=YES | NO
controls the pop up of a dialog box.

Optional Arguments
LIBRARY=libref

is the name of the physical library for which the secured library object is created 
and the security information is stored.

If the LIBRARY= option is not specified, then the LIBRARY=libref (physical 
library) from the CREATE, MODIFY, REMOVE, REPORT, or REPAIR statement 
is used.

Aliases LIB=

DDNAME=

DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and 
must be processed by an engine that supports metadata-bound 
libraries.

NOWARN
suppresses the file not found error message when a data set in a TABLES 
statement does not exist.

136 Chapter 8 / AUTHLIB Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0wphcpsfgx6o7n1sjtqzizp1n39.htm&docsetTargetAnchor=p02si694dw39m0n17maupfh0rnv9&locale=en


PWREQ=YES | NO
controls the pop up of a dialog box for a data set password in interactive mode. 

YES specifies that a dialog box appear if a missing or invalid password is 
entered when required.

NO prevents a dialog box from appearing. If a missing or invalid 
password is entered, then the data set is not opened, and an error 
message is written to the SAS log.

Default NO

CREATE Statement
Binds a physical library and data sets in the library to metadata by generating corresponding metadata 
objects in the SAS Metadata Repository and creating a record of the metadata objects in the physical 
directory and data sets.

Requirement: The AUTHLIB CREATE statement requires a connection to the target metadata server. 
For more requirements, see “Requirements for Using the AUTHLIB Statements” on page 
161.

Tip: Each password and encryption key option must be coded on a separate line to ensure 
that they are properly blotted in the log.

Syntax
CREATE

SECUREDLIBRARY='secured-library-name'
<SECUREDFOLDER='secured-folder-path'>
<LIBRARY=libref>
PW=all-password-value </ new-all-password-value> |
ALTER=alter-password-value </ new-alter-password-value>
READ=read-password-value </ new-read-password-value>
WRITE=write-password-value </ new-write-password-value>
<REQUIRE_ENCRYPTION=YES | NO>
<ENCRYPT=YES | NO | AES | AES2>
<ENCRYPTKEY=key-value </ new-key-value>>;

Required Arguments
SECUREDLIBRARY='secured-library-name'

names the secured library object in the SAS Metadata Server.

Alias SECLIB=

Restriction The total length of the secured library object pathname including the 
fully qualified secured folder path cannot exceed 256 characters.

CREATE Statement 137



PW=all-password-value </ new-all-password-value>
sets a single password for a metadata-bound library.

ALTER=alter-password-value </ new-alter-password-value>
sets one of a maximum of three password values for a metadata-bound library.

READ=read-password-value </ new-read-password-value>
sets one of a maximum of three password values for a metadata-bound library.

WRITE=write-password-value </ new-write-password-value >
sets one of a maximum of three password values for a metadata-bound library.

TIP All password values must be valid SAS names with a maximum 
length of 8 characters.

Optional Arguments
SECUREDFOLDER='secured-folder-path'

is the name of the metadata folder within the /System/Secured Libraries 
folder tree where the secured library object is created.

If the SECUREDFOLDER= option is not specified, then the metadata-bound 
library is created directly in the /System/Secured Libraries folder of the 
Foundation repository. If the SECUREDFOLDER= option does not begin with a 
slash (/), then it is a relative path and the value is appended to /System/Secured 
Libraries/ to find the folder. If the SECUREDFOLDER= option begins with a 
slash (/), then it is an absolute path and the value must begin with /System/
Secured Libraries or /<repository_name>/System/Secured Libraries.

Alias SECFLDR=

Restriction The total length of the secured library object pathname including the 
fully qualified secured folder path cannot exceed 256 characters.

ENCRYPT=YES | NO | AES | AES2
specifies the encryption type.

YES specifies the SAS Proprietary algorithm.

NO specifies no encryption.

AES | AES2 specifies Advanced Encryption Standard (AES) encryption 
and to record the key in metadata.

Restriction ENCRYPTKEY= option is required if the library has AES encryption.

See “Encrypted Data Set Considerations” on page 127

ENCRYPTKEY=key-value </ key-value>
specifies a key value for AES encryption.

Requirement ENCRYPTKEY= option is required if the library or a data file has 
AES or AES2 encryption.

Note The encryption key value for all the data sets in a library can be 
stored in a metadata-bound library so that an authorized user 
does not have to supply the encryption key value every time a 

138 Chapter 8 / AUTHLIB Procedure



data set is opened. For more information, see “Considerations for 
Data File Encryption” in the SAS Guide to Metadata-Bound 
Libraries.

Tip The ENCRYPTKEY= value is a passphrase that can be up to 64 
characters long from which the actual AES or AES2 encryption 
key is later derived, but it is referred to as the encryption key in 
most SAS documentation.

See “Encrypted Data Set Considerations” on page 127 

“ENCRYPTKEY= Data Set Option” in SAS Data Set Options: 
Reference 

LIBRARY=libref
name of the physical library for which the secured library object is created and 
the security information is stored.

If the LIBRARY= option is not specified, then the physical library from the 
AUTHLIB procedure is used.

Aliases LIB=

DDNAME=

DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and 
must be processed by an engine that supports metadata-bound 
libraries.

REQUIRE_ENCRYPTION=YES | NO

YES specifies that all data sets in a metadata-bound library are 
automatically encrypted.

NO specifies that data sets in a metadata-bound library are not 
automatically encrypted.

See “Requiring Encryption for Metadata-Bound Data Sets” on page 132

Details

Specifying Passwords
If your physical library does not contain password-protected data sets, then you 
need to specify the new metadata-bound library password(s) with either the PW= 
option or READ=,WRITE=, and ALTER= options in the CREATE statement. This is 
the most common case. For an example, see “Example 1: Binding a Physical 
Library That Contains Unprotected Data Sets” on page 163.

If your physical library contains some password-protected data sets that all share 
the same current set of passwords, then you can specify the most restrictive 
password on the data sets before a slash (/) in the CREATE statement password 
option(s) and the new password(s) after the slash (/). For an example, see “Example 

CREATE Statement 139

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en


3: Binding a Library When Existing Data Sets Are Protected with the Same 
Passwords” on page 167. 

If your physical library contains password-protected data sets with different sets of 
passwords, then you can specify the data sets with each set of passwords on 
separate TABLES statements (see “Example 4: Binding a Library When Existing 
Data Sets Are Protected with Different Passwords” on page 169) or you can 
subsequently use MODIFY and TABLES statements to change the passwords after 
the library has been bound with the CREATE statement (see “Example 5: Changing 
Passwords on Data Sets” on page 172).

Specifying Encryption Keys
To create or access a metadata-bound library that is protected using AES or AES2 
encryption requires an encryption key value. You must use ENCRYPT=AES or 
ENCRYPT=AES2 and ENCRYPTKEY=key-value data set options.

If your physical library contains some AES-encrypted data sets that all share the 
same AES or AES2 encryption key, then you can specify the key value following 
ENCRYPTKEY= in the CREATE statement. If you want to record the key in 
metadata, then specify ENCRYPT=AES or ENCRYPT=AES2. For an example, see 
“Example 13: Binding a Library with Required AES Encryption When Existing Data 
Sets Are Encrypted with the Same Encryption Key” on page 188.

If your physical library contains AES or AES2-encrypted data sets with different 
encryption keys, then you can specify the data sets with each encryption key on 
separate TABLES statements. For an example, see “Example 15: Binding a Library 
with Existing Data Sets That Are AES-Encrypted with Different Encryption Keys” on 
page 195.

TIP For more information, see “Considerations for Data File Encryption” in 
the SAS Guide to Metadata-Bound Libraries.

For more information, see “ENCRYPTKEY= Data Set Option” in SAS Data Set 
Options: Reference and “ENCRYPT= Data Set Option” in SAS Data Set Options: 
Reference.

CAUTION
If data sets using AES encryption have referential integrity constraints, then 
the encryption key for all data sets must be available when they are opened 
for Update access. Normally, SAS requires that all data sets share the same 
encryption key. With a recorded optional or required encryption key in metadata, related 
data sets can have different keys. However, issues can arise if you change the 
encryption key on one library that has data sets related to data sets in a different library.

CAUTION
For AES-encrypted data sets that are referentially related to one another, 
follow these best practices to ensure that the data does not become 
inaccessible: Store the encryption key in the library’s metadata. You can modify the 
stored key, but do not remove the key from metadata and do not unbind the library.

CAUTION

140 Chapter 8 / AUTHLIB Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1hwtxbozzzy4un11ldzgovfhcrf.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1hwtxbozzzy4un11ldzgovfhcrf.htm&locale=en


Even if you record the encryption key in metadata for the library, then you 
should also record the key elsewhere when using ENCRYPT=AES or 
ENCRYPT=AES2. If you lose the metadata and forget the ENCRYPTKEY= key value, 
then you lose your data. SAS cannot assist you in recovering the ENCRYPTKEY= key 
value. The following note is written to the log:

NOTE: If you lose or forget the ENCRYPTKEY= value, 
there will be no way  to open the file or 
recover the data.

MODIFY Statement
Modifies password and encryption key values for a metadata-bound library.

Requirement: The AUTHLIB MODIFY statement requires a connection to the target metadata server. 
For more requirements, see “Requirements for Using the AUTHLIB Statements” on page 
161.

Tip: Each password and encryption key option must be coded on a separate line to ensure 
that they are properly blotted in the log.

Syntax
MODIFY

<LIBRARY=libref>
PW=all-password </ new-all-password> |
ALTER=alter-password </ new-alter-password>
READ=read-password </ new-read-password>
WRITE=write-password </ new-write-password>
<TABLESONLY=YES | NO>
<REQUIRE_ENCRYPTION=YES | NO>
<ENCRYPT=YES | NO | AES | AES2>
<ENCRYPTKEY=key-value </ new-key-value>>
<PURGE=YES | NO>;

Required Arguments
PW=all-password </ new-all-password >

modifies a single password for a metadata-bound library.

ALTER=alter-password </ new-alter-password>
modifies one of a maximum of three password values for a metadata-bound 
library.

READ=read-password </ new-read-password>
modifies one of a maximum of three password values for a metadata-bound 
library.

MODIFY Statement 141



WRITE=write-password </ new-write-password>
modifies one of a maximum of three password values for a metadata-bound 
library.

TIP All password values must be valid SAS names with a maximum 
length of 8 characters.

Optional Arguments
ENCRYPT=YES | NO | AES | AES2

specifies the encryption type.

YES
specifies the SAS Proprietary algorithm.

NO
specifies no encryption.

AES
AES2

specifies Advanced Encryption Standard (AES) encryption and to record the 
key in metadata.

Requirement ENCRYPTKEY= option is required if the library has AES 
encryption.

See “Encrypted Data Set Considerations” on page 127

ENCRYPTKEY=key-value </ key-value>
specifies a key value for AES encryption.

Requirement ENCRYPTKEY= option is required if the library or a data file has 
AES encryption.

Note The encryption key value for all the data sets in a library can be 
stored in a metadata-bound library so that an authorized user 
does not have to supply the encryption key value every time a 
data set is opened. For more information, see “Considerations for 
Data File Encryption” in the SAS Guide to Metadata-Bound 
Libraries.

Tip The ENCRYPTKEY= value is a passphrase that can be up to 64 
characters long from which the actual AES or AES2 encryption 
key is later derived, but it is referred to as the encryption key in 
most SAS documentation.

See “Encrypted Data Set Considerations” on page 127 

“ENCRYPTKEY= Data Set Option” in SAS Data Set Options: 
Reference 

LIBRARY=libref
name of the physical library that is metadata-bound.

If the LIBRARY= option is not specified, then the physical library from the 
AUTHLIB procedure is used.

142 Chapter 8 / AUTHLIB Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en


Alias LIB=, DDNAME=, DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and 
must be processed by an engine that supports metadata-bound 
libraries.

PURGE=YES | NO

YES
removes all retained metadata-bound library credentials if all tables in the 
library are successfully modified to the newer credentials.

Default YES

NO
does not remove replaced metadata-bound library credentials even if all 
tables in the library were successfully modified.

See “Retaining and Purging Metadata-Bound Library Credentials” on page 131 

REQUIRE_ENCRYPTION=YES | NO

YES
specifies that all data sets in a metadata-bound library are automatically 
encrypted.

NO
specifies that data sets in a metadata-bound library are not automatically 
encrypted.

See “Requiring Encryption for Metadata-Bound Data Sets” on page 132

TABLESONLY=YES | NO
specifies whether the MODIFY statement action is applied at the library level or 
just to the tables. If TABLESONLY=NO, then the action is applied to the library 
and data sets. If TABLESONLY=YES, then the action is applied only to the data 
sets. 

Default NO

Tip If you specify TABLESONLY=YES and a new password or encryption 
key value in the CREATE, MODIFY, or REMOVE statement, then the 
new password value or encryption key value is ignored. The current 
password or encryption key value is still required if the library is 
metadata-bound.

Details

Using the MODIFY Statement
The MODIFY statement can modify the value of the required metadata-bound library 
passwords and encryption options. This statement can also modify passwords on 
data sets (tables) that do not have the required metadata-bound library password 

MODIFY Statement 143



values. The TABLES statement follows the MODIFY statement to specify current 
passwords and encryption keys in the data sets.

If your physical library is currently bound to a metadata library with one set of 
passwords and you want to change the metadata-bound library passwords to 
another set, then specify the current and new values for the metadata-bound library 
passwords separated by a / in the MODIFY statement. For an example, see 
“Example 6: Changing Metadata-Bound Library Passwords” on page 174.

If your physical library contains password-protected data sets with different sets of 
passwords from the metadata-bound library passwords, then you can modify the 
data set passwords to match the metadata-bound library required passwords using 
the MODIFY and TABLES statements. Specify the metadata-bound library 
passwords in the MODIFY statement. Specify the data sets with each set of 
passwords in separate TABLES statements. For more information, see “Example 5: 
Changing Passwords on Data Sets” on page 172.

If you want to change encryption options for the library, then specify the new options 
in the MODIFY statement. If your physical library contains AES-encrypted data sets, 
then you must specify the ENCRYPTKEY= key value in the MODIFY or TABLES 
statements or have a recorded encryption key for the library to make any 
modifications to the encrypted data sets. For and example, see “Example 16: 
Changing a Metadata-Bound Library to Require AES Encryption When Existing 
Data Sets Are Encrypted with Different Encryption Keys” on page 198.

For more information, see “TABLES Statement” on page 157.

CAUTION
For AES-encrypted data sets that are referentially related to one another, 
follow these best practices to ensure that the data does not become 
inaccessible: Store the encryption key in the library’s metadata. You can modify the 
stored key, but do not remove the key from metadata and do not unbind the library.

CAUTION
Even if you record the encryption key in metadata for the library, you should 
also record the key elsewhere when using ENCRYPT=AES or 
ENCRYPT=AES2. If you lose the metadata and forget the ENCRYPTKEY= key value, 
then you lose your data. SAS cannot assist you in recovering the ENCRYPTKEY= key 
value. 

You might have a need to import a SecuredLibrary object from a backup package 
for one of the following reasons:

n the SecuredLibrary object was inadvertently deleted 

n you are promoting the metadata-bound library to a new metadata server

Password values and encryption key values are not exported with the 
SecuredLibrary object. This prevents them from being imported to a rogue Metadata 
Server. In this case, the passwords and any recorded encryption key values need to 
be reset in the imported SecuredLibrary object. Until you do this, libname 
assignments that refers to the imported SecuredLibrary object will fail with the 
following messages:

ERROR: The secured library object information for library library-name 
could not be obtained from the metadata server or has invalid data.
ERROR: Association not found.

144 Chapter 8 / AUTHLIB Procedure



ERROR: Error in the LIBNAME statement.

For an example, see “Example 18: Resetting Credentials on Imported 
SecuredLibrary Objects” on page 203.

Using the LIBRARY= Option
If you want to override the default library from the AUTHLIB procedure, then use 
LIBRARY=.

MODIFY <LIBRARY=library-name>

If you want to modify the passwords or encryption options for a secured library 
object that is no longer bound to a physical library, then specify LIBRARY=_NONE_ 
with the SECUREDLIBRARY= and SECUREDFOLDER= options to locate the 
secured library object.

MODIFY <LIBRARY=_NONE_ SECUREDLIBRARY=secured-library-name> 
                <SECUREDFOLDER=secured-folder-name>

CAUTION
Do not use LIB=_none_ when the secured library object is bound to a physical 
library. LIB=_none_ causes the action to operate only on the secured library object and 
has no effect on the physical data. 

Using the PURGE Option
Passwords and encryption keys for a metadata-bound library are collectively 
referred to as metadata-bound library credentials. For information about retaining 
and purging credentials, see “Retaining and Purging Metadata-Bound Library 
Credentials” on page 131.

PURGE Statement
Removes any retained metadata-bound library credentials older than a given date of replacement.

Requirement: The AUTHLIB PURGE statement requires a connection to the target metadata server. 
For more requirements, see “Requirements for Using the AUTHLIB Statements” on page 
161.

Tip: Each password and encryption key option must be coded on a separate line to ensure 
that they are properly blotted in the log.

Syntax
PURGE CREDENTIALS | CREDS <LIBRARY=libref>

PW=all-password |
ALTER=alter-password 
READ=read-password 

PURGE Statement 145



WRITE=write-password 
BEFORE=datetime;

Required Arguments
PW=all-password

specifies a single password for a metadata-bound library.

ALTER=alter-password
specifies one of a maximum of three password values for a metadata-bound 
library.

READ=read-password
specifies one of a maximum of three password values for a metadata-bound 
library.

WRITE=write-password
specifies one of a maximum of three password values for a metadata-bound 
library.

TIP All password values must be valid SAS names with a maximum 
length of 8 characters.

BEFORE=datetime
specifies a datetime constant before any replaced, but retained, credentials are 
removed.

Optional Argument
LIBRARY=libref

name of the physical library for which the metadata-bound library is created and 
the security information is stored.

If the LIBRARY= option is not specified, then the physical library from the 
AUTHLIB procedure is used.

Alias LIB=, DDNAME=, DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and 
must be processed by an engine that supports metadata-bound 
libraries.

Details

Using the PURGE Statement
Passwords and encryption keys for a metadata-bound library are collectively 
referred to as metadata-bound library credentials. For more information about 
purging metadata-bound library credentials, see “Retaining and Purging Metadata-
Bound Library Credentials” on page 131.

146 Chapter 8 / AUTHLIB Procedure



Using the LIBRARY= Option
If you want to override the default library from the AUTHLIB procedure, then use 
LIBRARY= option.

PURGE CREDENTIALS <LIBRARY=library-name>

If you want to purge the credentials for a secured library object that is no longer 
bound to a physical library, then specify LIBRARY=_NONE_ with the 
SECUREDLIBRARY= and SECUREDFOLDER= options to locate the secured 
library object.

PURGE CREDENTIALS <LIBRARY=_NONE_ SECUREDLIBRARY=secured-library-name>
<SECUREDFOLDER=secured-folder-name>

REMOVE Statement
Removes the physical security information and metadata objects that protect a metadata-bound library so 
that it is no longer a metadata-bound library.

Requirement: The AUTHLIB REMOVE statement requires a connection to the target metadata server. 
For more requirements, see “Requirements for Using the AUTHLIB Statements” on page 
161.

Note: If any data set uses SAS Proprietary Encryption, then you cannot remove passwords 
unless you also specify ENCRYPT=NO to remove encryption.

Tips: Each password and encryption key option must be coded on a separate line to ensure 
that they are properly blotted in the log.
If you do not want the non-secured data sets altered, then move all non-secured data 
sets from the physical library before performing a REMOVE statement.
Before you use the REMOVE statement, consider running the REPORT statement. The 
output from the REPORT statement identifies any physical tables that do not have 
corresponding secured table objects in metadata. In the unusual circumstance that such 
physical tables exist, their security location information is unaffected by the REMOVE 
statement unless you specify AUTHADMIN=YES in the LIBNAME statement. You should 
use the AUTHADMIN=YES option in the LIBNAME statement in this circumstance.

Examples: “Example 7: Using the REMOVE Statement” on page 176
“Example 17: Using the REMOVE Statement on a Metadata-Bound Library with 
Required AES Encryption” on page 201

Syntax
REMOVE<LIBRARY=libref>

PW=all-password </ <new-all-password>> |
ALTER=alter-password </ <new-alter-password>>
READ=read-password </ <new-read-password>>
WRITE=write-password </ <new-write-password>>
<TABLESONLY=YES | NO>
<ENCRYPT=YES | NO | AES | AES2>
<ENCRYPTKEY=key-value </ new-key-value>>;

REMOVE Statement 147



Required Arguments
PW=all-password </ <new-all-password>>

specifies a single password for a metadata-bound library.

ALTER=alter-password </ <new-alter-password>>
specifies one of a maximum of three password values for a metadata-bound 
library.

READ=read-password </ <new-read-password>>
specifies one of a maximum of three password values for a metadata-bound 
library.

WRITE=write-password </ <new-write-password>>
specifies one of a maximum of three password values for a metadata-bound 
library.

Optional Arguments
ENCRYPT=YES | NO | AES | AES2

specifies the encryption type.

YES specifies the SAS Proprietary algorithm.

NO specifies no encryption.

AES | AES2 specifies Advanced Encryption Standard (AES) encryption 
and is required if specifying that data sets be encrypted with a 
new key value.

See “Encrypted Data Set Considerations” on page 127

ENCRYPTKEY=key-value </ key-value>
specifies a key value for AES encryption.

Tip The ENCRYPTKEY= value is a passphrase that can be up to 64 
characters long from which the actual AES or AES2 encryption key is later 
derived, but it is referred to as the encryption key in most SAS 
documentation.

See “ENCRYPTKEY= Data Set Option” in SAS Data Set Options: Reference

LIBRARY=libref
name of the physical library that is metadata-bound.

If the LIBRARY= option is not specified, then the physical library from the PROC 
AUTHLIB statement is used.

Alias LIB=, DDNAME=, DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and 
must be processed by an engine that supports metadata-bound 
libraries.

TABLESONLY=YES | NO
specifies whether the REMOVE statement action is applied at the library level or 
just to the tables. If TABLESONLY=NO, then the action is applied to the library 

148 Chapter 8 / AUTHLIB Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en


and data sets. If TABLESONLY=YES, then the action is applied only to the 
individual data sets listed. 

Default NO

Tip If you specify TABLESONLY=YES and a new password or encryption 
options, then the new password or encryption options are ignored. The 
current password is still required if the library is metadata-bound.

Details
The REMOVE statement is used to unbind the metadata-bound library feature from 
a SAS library and the data sets within it. This statement also removes the secured 
library and secured table objects from the SAS Metadata Server. The data sets 
remain in the physical library protected by the metadata-bound library passwords 
unless the administrator specifies password modifications in the REMOVE 
statement. Since the metadata-bound library feature is being removed and there is 
no longer a requirement that the data set passwords match the metadata-bound 
library passwords, the data set passwords can be removed by using a slash (/) after 
the current password but not specifying a new password. If you choose to do this, 
then you are warned in the SAS log that the data sets no longer have any SAS 
protection. You can also modify the encryption key of data sets by specifying the 
new key following a slash (/) in ENCRYPTKEY= and specifying ENCRYPT=AES or 
ENCRYPT=AES2. You can change to SAS Proprietary Encryption by specifying 
ENCRYPT=YES. You can remove all encryption by specifying ENCRYPT=NO.

The REMOVE statement removes the location information from any data set if the 
passwords specified match the metadata-bound library passwords stored in the data 
set. Note also that if the data set is AES or AES2-encrypted, the encryption key 
must either be recorded in metadata or specified in the REMOVE or TABLES 
statements. However, it does not delete the referenced secured table object unless 
that secured table object is under the secured library object to which the operating 
system library is bound. If a data set has been copied into the bound library by a 
utility not written in SAS from another metadata-bound library, then this process 
prevents a REMOVE from deleting the secured table object that belongs to the other 
metadata-bound library.

Note: Ensure that all physical tables that are protected by a particular metadata-
bound library remain within that library (directory). This best practice maximizes 
clarity and is essential in order for REMOVE statements to be fully effective. Special 
circumstances (for example, a table that is host copied to another directory) can 
prevent a REMOVE statement from unbinding the relocated data set. 

CAUTION
If you have to unbind a library that contains AES-encrypted data sets that are 
referentially related to other data sets, then either make sure that all related 
data sets are no longer AES-encrypted or make sure that all related data sets 
share the same encryption key. If you preserve AES encryption, the data will be 
available only to those users who supply the key and have host-layer access.

REMOVE Statement 149



REPAIR Statement
Recovers security information (in physical data) or secured library and table objects (in metadata).

Requirement: The AUTHLIB REPAIR statement requires a connection to the target metadata server. 
For more requirements, see “Requirements for Using the AUTHLIB Statements” on page 
161.

Tip: Each password and encryption key option must be coded on a separate line to ensure 
that they are properly blotted in the log.

Syntax
REPAIR ADD | UPDATE | DELETE

LOCATION | METADATA
SECUREDLIBRARY=’secured-library-name’
SECUREDFOLDER='secured-folder-path'
<LIBRARY=libref>
PW=all-password |
ALTER=alter-password
READ=read-password
WRITE=write-password
<TABLESONLY=YES | NO>
<ENCRYPT=YES | NO | AES | AES2>
<ENCRYPTKEY=key-value>;

Required Arguments
ADD | UPDATE | DELETE

one of these actions must be specified.

LOCATION | METADATA
clarifies whether the action is to apply to the physical security information in the 
file system, to the metadata objects in the SAS Metadata Server, or to both.

PW=all-password
specifies a single password for a metadata-bound library.

ALTER=alter-password
assigns, changes, or removes an Alter password from the secured library object 
and from the data sets in the physical library.

READ=read-password
assigns, changes, or removes a Read password from the secured library object 
and from the data sets in the physical library.

WRITE=write-password
assigns, changes, or removes a Write password from the secured library object 
and from the data sets in the physical library.

150 Chapter 8 / AUTHLIB Procedure



TABLESONLY= YES | NO
specifies whether the REPAIR statement action is applied at the library level or 
just to the tables. If TABLESONLY=NO, then the action is applied to the library 
and the tables. If TABLESONLY=YES, then the action is applied only to the 
tables. This is especially important for REPAIR because it gives the administrator 
a way to delete specific secured table objects without deleting the secured library 
and all secured tables.

Optional Arguments
/

is required if any options are included, such as passwords or MEMTYPE=. Here 
is an example:

tables table-name / pw=password;

ENCRYPT=YES | NO | AES | AES2
specifies the encryption type.

YES specifies the SAS Proprietary algorithm.

NO specifies no encryption.

/ is required if any options are included, such as passwords or 
MEMTYPE.

AES | 
AES2

specifies Advanced Encryption Standard (AES) encryption 
and is required if changing and encrypting with a new key 
value and TABLESONLY=YES in the action statement.

Requirement A / is reuired when using TABLES.

tables table-name / pw=password;

See “Encrypted Data Set Considerations” on page 127

ENCRYPTKEY=key-value
specifies a key value for AES encryption.

Requirement ENCRYPTKEY= data set option is required if the library or a data 
file has AES encryption and if the key is not recorded in the library 
metadata.

Note The encryption key value for all the data sets in a library can be 
stored in a metadata-bound library so that an authorized user 
does not have to supply the encryption key value every time a 
data set is opened. For more information, see “Considerations for 
Data File Encryption” in the SAS Guide to Metadata-Bound 
Libraries.

Tip The ENCRYPTKEY= value is a passphrase that can be up to 64 
characters long from which the actual AES encryption key is later 
derived, but it is referred to as the encryption key in most SAS 
documentation.

See “ENCRYPTKEY= Data Set Option” in SAS Data Set Options: 
Reference

LIBRARY=libref
name of the physical library where the security information is stored.

REPAIR Statement 151

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en


If the LIBRARY= option is not specified, then the physical library from the PROC 
AUTHLIB statement is used.

Alias LIB=, DDNAME=, DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and 
must be processed by an engine that supports metadata-bound 
libraries.

SECUREDLIBRARY='secured-library-name'
names the secured library object in the SAS Metadata Server.

Alias SECLIB=

Restriction The total length of the secured library object pathname including the 
fully qualified secured folder path cannot exceed 256 characters.

SECUREDFOLDER='secured-folder-path'
name of the metadata folder within a /System/Secured Libraries folder tree 
where the secured library is repaired or re-created.

Alias SECFLDR=

Restriction The total length of the secured library object pathname including the 
fully qualified secured folder path cannot exceed 256 characters.

TABLESONLY=YES | NO
specifies whether the REPAIR statement action is applied at the library level or 
just to the tables. If TABLESONLY=NO, then the action is applied to the library 
and the tables. If TABLESONLY=YES, then the action is applied only to the 
tables. This is especially important for REPAIR because it gives the administrator 
a way to delete specific secured table objects without deleting the secured library 
and all secured tables. 

Default NO

Details
The REPAIR statement feature that has been fully tested is REPAIR DELETE 
LOCATION. Use this combination of options when you need to delete the security 
information in a metadata-bound library and or data sets within the library without 
deleting the metadata objects.

It is possible for a system administrator to get in situations where a data set still has 
location information pointing to a secured table object that no longer exists. REPAIR 
DELETE LOCATION is required to remove that location information before the data 
set can be accessed in any other way.

When using the REPAIR statement, one of the ADD, UPDATE, or DELETE actions 
must be specified. LOCATION, METADATA, or both are used to clarify if the action 
is to apply to the metadata security information in the file system, to the metadata 
objects in the SAS Metadata Server, or to both. Other than DELETE LOCATION, 
these other actions have not been fully tested and are considered pre-production 
implementations. They are documented here but should be used only under advise 
and direction from Technical Support.

152 Chapter 8 / AUTHLIB Procedure



One or more TABLES statements can follow the REPAIR statement to perform the 
same action on the specified data sets. An implicit TABLES _ALL_ is used if no 
TABLES statement follows the REPAIR statement.

Inconsistencies between the metadata security information stored in the operating 
system files and the secured library object in the SAS Metadata Server that need 
repair can prevent the assignment of a LIBNAME statement to the physical library. 
The administrator that owns the physical library and knows the metadata-bound 
library passwords can perform a library assignment and repair the data by adding 
the AUTHADMIN=YES option to the LIBNAME statement. Best practice is to use 
the AUTHADMIN=YES option when performing any REPAIR actions.

CAUTION
Repairing a metadata-bound library is an advanced task. Make sure you have a 
current backup (of both metadata and physical data) before you use this statement.

Use the REPAIR statement to restore metadata-bound library security information or 
metadata objects that are inadvertently deleted. The administrator can carefully use 
the REPAIR statement to make some repairs to inconsistencies reported by the 
REPORT statement. If there are a significant number of groupings in the REPORT 
listing, then it might be more advisable to do the following:

1 Create a new operating system directory and metadata-bound library, and then 
use SAS Management Console to set appropriate default library permissions for 
the new secured library object.

2 Access the current library with the AUTHADMIN=YES, AUTHPW= or 
AUTHALTER=, AUTHWRITE=, and AUTHREAD= options in the LIBNAME 
statement.

3 Use the SAS COPY procedure to copy the SAS data sets to the new library. Use 
CONSTRAINT=YES if any data sets have referential integrity constraints. Use 
SAS Management Console to set any permissions on the secured table objects 
that differ from those inherited from the secured library object. The following is 
an example of using the COPY procedure.

Metadata-bound library ABCDE also has data sets Employees, EmpInfo, and 
Product. The REPORT statement has shown some inconsistencies between the 
physical library contents and the corresponding metadata objects. This is an 
example of a way to resolve these differences.

libname klmno "SAS-library-2";

proc authlib lib=klmno;
 create securedfolder="Department XYZZY"    
        securedlibrary="KLMNOEmps"  
        pw=password;
run;    
quit;

libname abcde "SAS-library" 
   AUTHADMIN=yes 
   AUTHPW=password;

proc copy in=abcde out=klmno ;run;

REPAIR Statement 153



Example Code 8.1 Using PROC COPY to Resolve Differences

88   proc copy in=abcde out=klmno ;run;

NOTE: Copying ABCDE.EMPINFO to KLMNO.EMPINFO (memtype=DATA).
NOTE: Data set ABCDE.EMPINFO.DATA has secured table object location information, but the
      secured library object location information that it contains:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 38C24AF4-9CF5-458B-8389-52092307007E
      is different from the registered location for the library ABCDE:
           SecuredFolder:
           SecuredLibrary:
           SecuredLibraryGUID:
      The data set might have been copied to this directory with a host copy utility.
NOTE: Permissions are obtained from the secured table and the secured library objects that are
      referenced in the header of the metadata-bound table.
NOTE: Metadata-bound library permissions are used for KLMNO.EMPINFO.DATA.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object
      at path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set
      KLMNO.EMPINFO.DATA.
NOTE: There were 5 observations read from the data set ABCDE.EMPINFO.
NOTE: The data set KLMNO.EMPINFO has 5 observations and 6 variables.
NOTE: Copying ABCDE.EMPLOYEES to KLMNO.EMPLOYEES (memtype=DATA).
NOTE: Data set ABCDE.EMPLOYEES.DATA has secured table object location information, but the
      secured library object location information that it contains:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 38C24AF4-9CF5-458B-8389-52092307007E
      is different from the registered location for the library ABCDE:
           SecuredFolder:
           SecuredLibrary:
           SecuredLibraryGUID:
      The data set might have been copied to this directory with a host copy utility.
NOTE: Permissions are obtained from the secured table and the secured library objects that are
      referenced in the header of the metadata-bound table.
NOTE: Metadata-bound library permissions are used for KLMNO.EMPLOYEES.DATA.
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library
      object at path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set
      KLMNO.EMPLOYEES.DATA.

NOTE: There were 5 observations read from the data set ABCDE.EMPLOYEES.
NOTE: The data set KLMNO.EMPLOYEES has 5 observations and 6 variables.
NOTE: Copying ABCDE.PRODUCT to KLMNO.PRODUCT (memtype=DATA).
NOTE: Data set ABCDE.PRODUCT.DATA has secured table object location information, but the
      secured library object location information that it contains:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 38C24AF4-9CF5-458B-8389-52092307007E
      is different from the registered location for the library ABCDE:
           SecuredFolder:
           SecuredLibrary:
           SecuredLibraryGUID:
      The data set might have been copied to this directory with a host copy utility.
NOTE: Permissions are obtained from the secured table and the secured library objects that are
      referenced in the header of the metadata-bound table.
NOTE: Metadata-bound library permissions are used for KLMNO.PRODUCT.DATA.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object
      at path "/System/Secured Libraries/Department XYZZY/KLMNOEmps" for data set
      KLMNO.PRODUCT.DATA.
NOTE: There were 5 observations read from the data set ABCDE.PRODUCT.
NOTE: The data set KLMNO.PRODUCT has 5 observations and 2 variables.
NOTE: PROCEDURE COPY used (Total process time):
      real time           0.14 seconds
      cpu time            0.04 seconds

154 Chapter 8 / AUTHLIB Procedure



The following REPAIR statement combination of options are preproduction and have 
not been fully tested. Preproduction means that this feature is a preliminary release 
of software that has not completed full development and testing. Because it has not 
been fully tested, preproduction software should be used with care. After final 
testing is completed, preproduction software is likely to be offered in a future release 
as a production-quality component or product.

REPAIR ADD LOCATION
Use this combination of options when metadata-bound library and secured table 
security information is missing in the metadata-bound library or data sets within 
the metadata-bound library. The secured library and secured tables objects must 
exist in the SAS Metadata Server.

REPAIR UPDATE LOCATION
Use this combination of options when metadata-bound library and secured table 
security information exists in the metadata-bound library or data sets within the 
metadata-bound library but points to incorrect or non-existent metadata objects. 
The secured library and secured tables objects to which you update the location 
information must exist in the SAS Metadata Server.

REPAIR ADD METADATA LOCATION
Use this combination of options when secured library and secured table objects 
have been deleted from the SAS Metadata Server and their security information 
is no longer registered in the metadata-bound library and data sets within the 
metadata-bound library. The metadata objects are created in the SAS Metadata 
Server, and the security information for these objects are registered in the 
metadata-bound library and data sets.

REPAIR DELETE METADATA
Use this combination of options when you need to delete the secured library, the 
secured table metadata objects, or both without deleting the security information 
in a metadata-bound library or in the data sets within that library.

REPAIR DELETE METADATA LOCATION
Use this combination of options when you need to delete the secured library, the 
secured table metadata objects, or both and the security information in a 
metadata-bound library or in the data sets within that library.

REPAIR UPDATE LOCATION
Use this combination of options when you need to update the security 
information in a metadata-bound library, in the data sets, or both to point to 
different existing secured library and secured table metadata objects.

Note: The METADATA option is not supported with a REPAIR UPDATE action. 

REPORT Statement
For a specified metadata-bound library, compares physical library contents with corresponding metadata 
objects (in order to identify any inconsistencies).

Requirement: The AUTHLIB REPORT statement requires a connection to the target metadata server. 
For more requirements, see “Requirements for Using the REPORT Statement” on page 
156.

REPORT Statement 155



Tip: Each password and encryption key option must be coded on a separate line to ensure 
that they are properly blotted in the log.

Example: “Example 8: Using the REPORT Statement” on page 177

Syntax
REPORT

<LIBRARY=libref>
<ENCRYPTKEY=key-value>;

Optional Arguments
LIBRARY=libref

name of the physical library on which to report binding information.

If the LIBRARY= option is not specified, then the physical library from the PROC 
AUTHLIB statement is used.

Alias LIB=, DDNAME=, DD=

Restriction The physical library specified cannot be a concatenated library, 
temporary library, or accessed through a SAS/SHARE server and 
must be processed by an engine that supports metadata-bound 
libraries.

ENCRYPTKEY=key-value
specifies a key value for an AES encryption.

Tip The ENCRYPTKEY= value is a passphrase that can be up to 64 
characters long from which the actual AES encryption key is later derived, 
but it is referred to as the encryption key in most SAS documentation.

See “ENCRYPTKEY= Data Set Option” in SAS Data Set Options: Reference

Details

Requirements for Using the REPORT Statement
An administrator uses the REPORT statement to identify any inconsistencies 
between a physical metadata-bound library and its corresponding metadata objects.

In order to use the REPORT statement, you must meet the following criteria:

n The SAS session runs under an account that has host-layer Read access to the 
target physical library. This is necessary in order to assign the libref.

n The SAS session connects to the metadata server as an identity that has the 
ReadMetadata permission for the target secured library object and secured table 
objects.

156 Chapter 8 / AUTHLIB Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en


n If the library has secured library object location information and the secured 
library object cannot be obtained, then you will need to use the 
AUTHADMIN=YES option in the LIBNAME= statement in order to assign the 
library.

Reporting Inconsistencies
The REPORT statement is used to report any inconsistencies between the physical 
library contents and the corresponding metadata objects.

Inconsistencies between the metadata security information in the physical directory, 
data sets, the secured library, and secured table objects might occur if the metadata 
or the operating system files are manipulated using nonstandard SAS processing. 
For example, an operating system data set copied from one directory into a 
metadata-bound library directory using an operating system copy utility will not have 
the appropriate security information for that metadata-bound library. Another 
example is that an administrator might mistakenly delete a secured library or 
secured table object using SAS Management Console.

The REPORT statement reports the secured table and metadata-bound library 
security information for each data set in the operating system directory of the library. 
This data set information is grouped by the metadata-bound library attributes that all 
the data sets share. If any data sets in the physical library are correctly registered to 
the secured library object for the library and have the required passwords, then 
those data sets and attributes will be listed as the first grouping in the report. 
Subsequent groupings are for data sets with either passwords that differ from the 
metadata-bound library passwords or whose metadata-bound library security 
information does not match the metadata-bound library location registered for the 
operating system directory.

TABLES Statement
Used after a CREATE, MODIFY, REMOVE, REPAIR, and REPORT statement to specify the tables to 
process a statement action. Also, you can specify the current passwords or encryption key value of the 
data sets in the TABLES statement, if different from the metadata-bound library passwords or recorded 
encryption key.

Default: When no TABLES statement is specified, the TABLES _ALL_ statement is the default 
behavior.

Requirement: The TABLES statement must be preceded by a CREATE, MODIFY, REMOVE, REPAIR, 
REPORT, or another TABLES statement.

Tip: Each password and encryption key option must be coded on a separate line to ensure 
that they are properly blotted in the log.

Example: “Example 9: Using the TABLES Statement” on page 179

Syntax
TABLES SAS-dataset(s) | _ALL_ | _NONE_ 

</>

TABLES Statement 157



<PW=all-password > </ <new-all-password>> |
<ALTER=alter-password> </ <new-alter-password>>
<READ=read-password> </ <new-read-password>>
<WRITE=write-password> </ <new-write-password>>;
<MEMTYPE= DATA | VIEW>
<ENCRYPT=YES | NO | AES | AES2>
<ENCRYPTKEY=key-value< / new-key-value>>;

Required Argument
SAS-dataset(s) | _ALL_ | _NONE_

SAS-
dataset(s)

name of one or more SAS data sets.

_ALL_ specifies password options to apply to all data sets.

_NONE_ limits the action of the previous CREATE, MODIFY, or 
REPAIR statements to the library level and does not apply 
the action to any table.

Optional Arguments
/

is required if any options are included, such as passwords or MEMTYPE=. Here 
is an example:

tables table-name / pw=password; 

ENCRYPT=YES | NO | AES | AES2
specifies the encryption type.

YES specifies the SAS Proprietary algorithm.

NO specifies no encryption.

AES | AES2 specifies Advanced Encryption Standard (AES) encryption 
and is required if changing and encrypting with a new key 
value and TABLESONLY=YES in the action statement.

See “Encrypted Data Set Considerations” on page 127

ENCRYPTKEY=key-value </ key-value>
specifies a key value for AES encryption.

Requirement ENCRYPTKEY= data set option is required if the data file has 
AES encryption and the key is not recorded for the library.

Tip The ENCRYPTKEY= value is a passphrase that can be up to 64 
characters long from which the actual AES or AES2 encryption 
key is later derived, but it is referred to as the encryption key in 
most SAS documentation.

See “Encrypted Data Set Considerations” on page 127 

“ENCRYPTKEY= Data Set Option” in SAS Data Set Options: 
Reference 

158 Chapter 8 / AUTHLIB Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en


MEMTYPE= DATA | VIEW
restricts processing to a single member type of DATA or VIEW. If not specified, 
then the default is both types. 

DATA specifies SAS data file member type.

VIEW specifies SAS view member type.

Aliases MTYPE=

MT=

Default ALL

PW=all-password </ <new-all-password>>
specifies the current password of the data set.

ALTER=alter-password </ <new-alter-password>>
specifies the current ALTER= password of the data set.

READ=read-password </ <new-read-password>>
specifies the current READ= password of the data set.

WRITE=write-password </ <new-write-password>>
specifies the current WRITE= password of the data set.

TIP All password values must be valid SAS names with a maximum 
length of 8 characters.

Details

Using the TABLES Statement
The TABLES statement is primarily used to specify the current password(s) and 
encryption key(s) on data sets when different from the current metadata-bound 
library required password(s) or encryption key(s). A TABLES statement usually 
follows a CREATE or MODIFY statement to make the data set passwords and 
encryption keys change to the metadata-bound library passwords and encryption 
keys. For an example, see “Example 4: Binding a Library When Existing Data Sets 
Are Protected with Different Passwords” on page 169.

TABLES _NONE_ can be used to limit the action of the previous CREATE, MODIFY, 
or REPAIR statements to the library level and not apply the action to any table. 
TABLES _ALL_ is the default behavior if no TABLES statement is specified. You 
might wish to write an explicit TABLES _ALL_ if you want to specify passwords or 
encryption key values to use when opening all data sets.

Using the TABLES Statement with the CREATE 
Statement
The CREATE statement can be followed by one or more TABLES statements to 
specify current passwords or encryption key values for data sets when different from 

TABLES Statement 159



the metadata-bound library passwords and encryption keys. If the TABLES 
statement is not used, then only two groups of data sets are bound:

n data sets without passwords or encryption keys

n data sets with passwords or encryption key values matching the metadata-bound 
library

In effect, omitting TABLES statements is equivalent to specifying one TABLES 
_ALL_ statement. For more information, see “CREATE Statement” on page 137.

Using the TABLES Statement with the MODIFY 
Statement
The MODIFY statement can be followed by one or more TABLES statements to 
specify modifications to passwords or an encryption key value in the data sets. If no 
TABLES statement follows the MODIFY statement, then there is an implicit TABLES 
_ALL_ statement. A separate TABLES statement is required for sets of data sets 
(tables) that might have different current passwords or encryption keys. For more 
information, see “MODIFY Statement” on page 141.

Using the TABLES Statement with the REPAIR 
Statement
When using the REPAIR statement, one of the ADD, UPDATE, or DELETE actions 
must be specified. LOCATION, METADATA, or both are used to clarify if the action 
is to apply to the physical security information in file system, to the metadata objects 
in the SAS Metadata Server, or to both. The REPAIR statement can be followed by 
one or more TABLES statements to perform the same action on the specified data 
sets. However, you cannot specify a new password or encryption key value in a 
TABLES statement that follows a REPAIR statement. For more information, see 
“REPAIR Statement” on page 150.

Using the TABLES Statement with the REMOVE 
Statement
You can use a TABLES statement with TABLESONLY=YES in the REMOVE 
statement to only remove the location information and secured table objects for 
specific tables in the metadata-bound library. If you do not use TABLESONLY=YES 
with a TABLES statement, then the secured library object and all secured table 
objects are deleted by the REMOVE statement.

When you use the TABLES statement after the REMOVE statement, an 
ENCRYPT=NO option removes the encryption on the data set as the table is being 
removed. For more information, see “Encrypted Data Set Considerations” on page 
127. This process is necessary only if the administrator is trying to remove the 
passwords or encryption of a data set.

If you are removing the binding of the physical library to metadata or the physical 
library is not bound to a secured library, then you might want to modify the data set 
passwords or encryption to some other value. You are not restricted to changing to 
a common metadata-bound library password or encryption. You might choose to 
specify both a current and new password or current and new encryption key 

160 Chapter 8 / AUTHLIB Procedure



separated by a slash (/) in the REMOVE statement. If you want the different data 
sets to have unique passwords or encryption, then use the following two steps:

1 Change the PW= option for the data sets using a REMOVE statement with 
TABLESONLY=YES and an individual TABLES statement for each unique 
password and encryption.

2 Remove the metadata-bound library using a REMOVE statement without 
TABLESONLY=YES.

Using the TABLES Statement with the REPORT 
Statement
The TABLES statement is syntactically accepted with the REPORT statement but 
has little use. Specifying TABLES limits the report to the tables listed if used. For 
more information, see “REPORT Statement” on page 155.

Usage: AUTHLIB Procedure

Requirements for Using the AUTHLIB Statements
Except for the REPORT statement, all statements within the AUTHLIB procedure 
require that you must meet the following criteria:

n The SAS session runs under an account that has host-layer control of the target 
physical library. To ensure that only users who have host control can bind a 
physical library to metadata, the SAS session must run under a privileged host 
account as follows:

o On UNIX, the account must be the owner of the directory.

o On Windows, the account must have full control of the directory.

o On z/OS, for UNIX file system libraries, the account must be the owner of the 
directory.

o On z/OS, for direct-access bound libraries, the account must have RACF 
ALTER access authority to the library data set.

n The SAS session connects to the SAS Metadata Server as an identity that has 
ReadMetadata and WriteMemberMetadata permissions to the target secured 
data folder.

n You must supply the password(s) in CREATE, MODIFY, REPAIR, and REMOVE 
statements.

The REPORT statement requirements are less restrictive and are documented with 
that statement.

Usage: AUTHLIB Procedure 161



Copy-In-Place Operation
In the SAS 9.4 release, the copy-in-place operation is used to re-encrypt data sets.

Prior to SAS 9.4M2, metadata-bound data sets in different representations other 
than the host environment executing the AUTHLIB code fails in CREATE, MODIFY, 
REPAIR, and REMOVE actions. In SAS 9.4M2, the copy-in-place operation is used 
to bind or alter bindings of most metadata-bound data files and view files that are 
accessed through CEDA (Cross-Environment Data Access). However, metadata-
bound data sets accessed through CEDA that contain indexes, extended attributes, 
and integrity constraints are detected and the copy-in-place operation is not 
attempted as it would still fail.

The following steps are performed in the copy-in-place operation:

1 The data set is renamed to _TEMP_ENCRYPT_FILE_NAME_.

2 The data set is copied back to the original data set name, which re-encrypts the 
data in the process.

3 The _TEMP_ENCRYPT_FILE_NAME_ file is deleted.

See the following SAS log examples of the copy-in-place operation:

n “Example 12: Binding a Library with an Optional Recorded Encryption Key When 
Existing AES-Encrypted Data Sets Have Different Encryption Keys ” on page 
185

n “Example 16: Changing a Metadata-Bound Library to Require AES Encryption 
When Existing Data Sets Are Encrypted with Different Encryption Keys” on page 
198

Results: AUTHLIB Procedure

Results: AUTHLIB Procedure
The REPORT statement produces the following output.

162 Chapter 8 / AUTHLIB Procedure



Output 8.1 Using the REPORT Statement

Examples: AUTHLIB Procedure

Example 1: Binding a Physical Library That 
Contains Unprotected Data Sets
Features: PROC AUTHLIB statement options

CREATE statement options:
PW=
SECUREDLIBRARY=
SECUREDFOLDER=

Example 1: Binding a Physical Library That Contains Unprotected Data Sets 163



Details
This example demonstrates binding a physical library that contains data sets that do 
not have passwords or AES encryption.

Program
proc authlib lib=zyxwvut; 

    create securedfolder="Department XYZZY"    
        securedlibrary="ZYXWVUTEmps"  
        pw=secretpw;  
run;
quit;    

 

Program Description
Library ZYXWVUT contains three data sets that do not have passwords: 
Employees, EmpInfo, Product.

proc authlib lib=zyxwvut; 

Using the CREATE statement, enter the name of the metadata folder and name 
the secured library object in the SAS Metadata Server. Specify metadata-bound 
library passwords with the PW= option.

    create securedfolder="Department XYZZY"    
        securedlibrary="ZYXWVUTEmps"  
        pw=secretpw;  
run;
quit;    

Results: The library and data sets are bound with the password secretpw. The 
binding is straightforward, as PROC AUTHLIB has unhindered access to the data.

 

164 Chapter 8 / AUTHLIB Procedure



Log Examples
Example Code 8.2 Unprotected Data Sets

79   proc authlib lib=zyxwvut;
80
81    create securedfolder="Department XYZZY"
82           securedlibrary="ZYXWVUTEmps"
83           pw=XXXXXXXX;
84
85   run;

NOTE: Successfully created a secured library object for the physical library ZYXWVUT and recorded its
      location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ZYXWVUTEmps
           SecuredLibraryGUID: 1A323C03-A3D8-4A83-9615-2BC2CB9FAAE2
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at
      path "/System/Secured Libraries/Department XYZZY/ZYXWVUTEmps" for data set ZYXWVUT.EMPINFO.DATA.
NOTE: The passwords on ZYXWVUT.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library object at
      path "/System/Secured Libraries/Department XYZZY/ZYXWVUTEmps" for data set
      ZYXWVUT.EMPLOYEES.DATA.
NOTE: The passwords on ZYXWVUT.EMPLOYEES.DATA were successfully modified.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at
      path "/System/Secured Libraries/Department XYZZY/ZYXWVUTEmps" for data set ZYXWVUT.PRODUCT.DATA.
NOTE: The passwords on ZYXWVUT.PRODUCT.DATA were successfully modified.
86   quit;

Example 2: Binding a Physical Library That 
Contains Password-Protected Data Sets
Features: PROC AUTHLIB statement options

CREATE statement options:
PW=
SECUREDLIBRARY=
SECUREDFOLDER=

Details
This example demonstrates what happens if you use a similar CREATE statement 
as Example 1 when the physical library contains two data sets that have the same 
READ=, WRITE=, and ALTER= passwords and one data set that does not have any 
passwords. None of the data sets are AES-encrypted.

Example 2: Binding a Physical Library That Contains Password-Protected Data Sets
165



Program
proc authlib lib=abcde; 

    create securedfolder="Department XYZZY"    
        securedlibrary="ABCDEEmps"  
        pw=secretpw;   
run;
quit;

 

Program Description
Library ABCDE has Employees, EmpInfo, and Product data sets. However, in 
library ABCDE, the Employees and EmpInfo data sets are protected with a READ= 
password abcd, WRITE= password efgh, and an ALTER= password ijkl before 
the library is secured by the statements. The third data set, Product, is not protected 
with passwords.

proc authlib lib=abcde; 

Using the CREATE statement, enter the name of the metadata folder and name 
the secured library object in the SAS Metadata Server. Specify metadata-bound 
library passwords with the PW= option.

    create securedfolder="Department XYZZY"    
        securedlibrary="ABCDEEmps"  
        pw=secretpw;   
run;
quit;

Results: The ABCDE library is bound and the unprotected Product data set is 
bound and the password was set. The protected data sets are not bound and their 
passwords did not change because their current passwords were not specified. 

 

166 Chapter 8 / AUTHLIB Procedure



Log Examples
Example Code 8.3 Password-Protected Data Sets

179  proc authlib lib=abcde;
180
181   create securedfolder="Department XYZZY"
182          securedlibrary="ABCDEEmps"
183          pw=XXXXXXXX;
184
185  run;

NOTE: Successfully created a secured library object for the physical library ABCDE and recorded its
      location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 4881263D-C346-41F7-AC49-BF9181AF13D2
ERROR: The ALTER password is the most restrictive on ABCDE.EMPINFO.DATA. You must supply its value in
       order to alter or add any passwords.
ERROR: The ALTER password is the most restrictive on ABCDE.EMPLOYEES.DATA. You must supply its value
       in order to alter or add any passwords.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at
      path "/System/Secured Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.PRODUCT.DATA.
NOTE: The passwords on ABCDE.PRODUCT.DATA were successfully modified.
NOTE: Some statement actions not processed because of errors noted above.
186  quit;

NOTE: The SAS System stopped processing this step because of errors.

Example 3: Binding a Library When Existing Data 
Sets Are Protected with the Same Passwords
Features: PROC AUTHLIB statement options

CREATE statement options:
PW=
SECUREDLIBRARY=
SECUREDFOLDER=

Details
This example demonstrates how to specify the passwords for the Employees and 
EmpInfo data sets from the preceding example in the PROC AUTHLIB CREATE 
statement. None of the data sets are AES-encrypted.

Example 3: Binding a Library When Existing Data Sets Are Protected with the Same 
Passwords 167



Program
proc authlib lib=abcde; 

    create securedlibrary="ABCDEEmps"
        securedfolder="Department XYZZY" 
        pw=ijkl/secretpw; 
run;  
quit;

 

Program Description
Library ABCDE also has Employees, EmpInfo, and Product data sets. 
However, in library ABCDE, the Employees and EmpInfo data sets are protected 
with a READ= password abcd, WRITE= password efgh, and ALTER= password 
ijkl before the library is secured by the statements. The third data set, Product, is 
not protected with any passwords.

proc authlib lib=abcde; 

Using the CREATE statement, enter the name of the metadata folder and name 
the secured library object in the SAS Metadata Server. Specify the ALTER= 
password ijkl for the data sets in the PW= argument before the new password 
secretpw, separated by a slash (/).

    create securedlibrary="ABCDEEmps"
        securedfolder="Department XYZZY" 
        pw=ijkl/secretpw; 
run;  
quit;

Results: The library ABCDE is bound. All three data sets are bound with the same 
password secretpw.

 

168 Chapter 8 / AUTHLIB Procedure



Log Examples
Example Code 8.4 Securing a Library with Data Sets That Are Protected with the Same 

Passwords

39   proc authlib lib=abcde;
40   create securedlibrary="ABCDEEmps"
41   securedfolder="Department XYZZY"
42   pw=XXXX/XXXXXXXX;
43   run;

NOTE: Successfully created a secured library object for the physical library ABCDE and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 9F746F86-2336-4E2F-A67E-BFB77DEC27F0
NOTE: Successfully added new secured table object "DEPTNAME.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.DEPTNAME.DATA.
NOTE: The passwords on ABCDE.DEPTNAME.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPINFO.DATA.
NOTE: The passwords on ABCDE.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPLOYEE.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPLOYEE.DATA.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA were successfully modified.
44   quit;

Example 4: Binding a Library When Existing Data 
Sets Are Protected with Different Passwords
Features: PROC AUTHLIB statement options

CREATE statement options:
ALTER=
READ=
SECUREDLIBRARY=
SECUREDFOLDER=
WRITE=
TABLE statement options:
ALTER=
PW=
READ=
WRITE=

Example 4: Binding a Library When Existing Data Sets Are Protected with Different 
Passwords 169



Details
This example demonstrates how to bind the library KLMNO, which contains three 
data sets with different passwords. None of the data sets are AES-encrypted. It also 
demonstrates creating a longer metadata-bound library password by specifying the 
READ=, WRITE=, and ALTER= password options.

Program
proc authlib lib=klmno;

    create securedlibrary="KLMNOEmps"
        securedfolder="Department XYZZY" 
        read=abcdefgh 
        write=ijklmno 
        alter=pqrstuvw;

    tables employees / 
        pw=lmno; 
    tables empinfo / 
        read=abcd 
        write=efgh  
        alter=ijkl;  
    tables product; 
run;
quit; 

 

Program Description
Library KLMNO has Employees, EmpInfo, and Product data sets. The 
Employees data set is protected with the PW= password lmno. The EmpInfo data 
set is protected with a READ= password abcd, a WRITE= password efgh, and an 
ALTER= password ijkl. The Product data set is not protected. 

proc authlib lib=klmno;

Using the CREATE statement, enter the name of the metadata folder and name 
the secured library object in the SAS Metadata Server. Specify the values for 
READ= password abcdefgh, WRITE= password ijklmno, and ALTER= password 
pqrstuvw to create a longer metadata-bound library password.

    create securedlibrary="KLMNOEmps"
        securedfolder="Department XYZZY" 
        read=abcdefgh 
        write=ijklmno 
        alter=pqrstuvw;

170 Chapter 8 / AUTHLIB Procedure



Use the TABLES statement to specify the current password for each data set. 
When using TABLES statements, a TABLES statement must be specified for all 
data sets. 

    tables employees / 
        pw=lmno; 
    tables empinfo / 
        read=abcd 
        write=efgh  
        alter=ijkl;  
    tables product; 
run;
quit; 

Results: The library KLMNO is bound, and all three data sets are bound with the 
same passwords. The passwords are READ= password abcdefgh, WRITE= 
password ijklmno, and ALTER= password pqrstuvw.

 

Example 4: Binding a Library When Existing Data Sets Are Protected with Different 
Passwords 171



Log Examples
Example Code 8.5 Securing a Library with Existing Data Sets That Are Protected with Different 

Passwords

177  libname klmno "c:\lib2";
NOTE: Libref KLMNO was successfully assigned as follows:
      Engine:        V9
      Physical Name: c:\lib2
178
179  proc authlib lib=klmno;
180  create securedlibrary="KLMNOEmps"
181  securedfolder="Department XYZZY"
182  read=XXXXXXXX
183  write=XXXXXXX
184  alter=XXXXXXXX;
185  tables employees /
186  pw=XXXX;
187  tables empinfo /
188  read=XXXX
189  write=XXXX
190  alter=XXXX;
191  tables product;
192  run;

NOTE: Successfully created a secured library object for the physical library KLMNO and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     KLMNOEmps
           SecuredLibraryGUID: BC74E81F-E86B-402E-8C16-F9A94A078F81
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPLOYEES.DATA.
NOTE: The passwords on KLMNO.EMPLOYEES.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPINFO.DATA.
NOTE: The passwords on KLMNO.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.PRODUCT.DATA.
NOTE: The passwords on KLMNO.PRODUCT.DATA were successfully modified.
193  quit;

Example 5: Changing Passwords on Data Sets
Features: PROC AUTHLIB statement options

MODIFY statement options:
PW=
TABLESONLY=
TABLES statement options:
PW=

172 Chapter 8 / AUTHLIB Procedure



Details
This example shows a different approach for modifying the passwords of existing 
data sets to match the metadata-bound library passwords. It uses the MODIFY 
statement. Here, the MODIFY statement is used to modify the data set passwords 
of the Employees and EmpInfo data sets from Example 2 on page 165 to match the 
metadata-bound library password. Neither of these data sets are AES-encrypted.

The MODIFY statement can also be used to modify the data set passwords of data 
sets that are copied into a metadata-bound library by operating system commands 
after the library has been bound.

Program
proc authlib lib=abcde; 

    modify tablesonly=yes 
        pw=secretpw;

    tables _all_ / 
        pw=ijkl/secretpw; 
run;    
quit;

 

Program Description
Library ABCDE has Employees, EmpInfo, and Product data sets. The library is 
bound with metadata-bound library password secretpw. However, in library ABCDE, 
the Employees and EmpInfo data sets are not bound to the library and are protected 
with an ALTER= password ijkl. The third data set, Product, is already bound.

proc authlib lib=abcde; 

The MODIFY statement is used to modify the data set passwords of the 
Employees and EmpInfo data sets to match the metadata-bound library 
password. The TABLESONLY= statement specifies to modify table passwords only. 

    modify tablesonly=yes 
        pw=secretpw;

A TABLES statement must be specified. The existing data sets’ ALTER password 
is specified in the PW= argument before the metadata-bound password, separated 
by a slash (/) in the TABLES statement. 

    tables _all_ / 
        pw=ijkl/secretpw; 
run;    
quit;

Results: All three data sets are now bound with the secretpw password.

Example 5: Changing Passwords on Data Sets 173



 

Log Examples
Example Code 8.6 Changing Data Set Passwords

76   proc authlib lib=abcde;
77   modify tablesonly=yes
78   pw=XXXXXXXX;
79   tables _all_ /
80   pw=XXXX/XXXXXXXX;
81   run;

NOTE: The passwords on ABCDE.DEPTNAME.DATA do not require modification.
NOTE: The passwords on ABCDE.EMPINFO.DATA do not require modification.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA do not require modification.
82   quit;

Example 6: Changing Metadata-Bound Library 
Passwords
Features: PROC AUTHLIB statement options

MODIFY statement options:
PW=
SECUREDLIBRARY=
SECUREDFOLDER=

Details
This example demonstrates how to use the MODIFY statement to change the library 
passwords if you believe that the metadata-bound library passwords have been 
compromised. The following code changes the library passwords and the data set 
passwords of all data sets in the library that use the specified passwords or do not 
have a password. In this example, no data sets are AES-encrypted. See later 
examples if your library has AES-encrypted data.

Program
proc authlib lib=abcde; 

    modify securedlibrary="ABCDEEmps" 
        securedfolder="Department XYZZY" 
        pw=secretpw/new-password;  
run; 

174 Chapter 8 / AUTHLIB Procedure



quit;

 

Program Description
Library ABCDE requires a password change.

proc authlib lib=abcde; 

Use the MODIFY statement to change the library passwords and the data set 
passwords. Note that the name of the secured library object and the name of the 
metadata folder are optional, but can be specified to ensure that the library is bound 
to that secured library object before making the change. This is used when the SAS 
Management Console submits the code from the Modify action to ensure that the 
correct operation system library path was specified.

    modify securedlibrary="ABCDEEmps" 
        securedfolder="Department XYZZY" 
        pw=secretpw/new-password;  
run; 
quit;

Results: The library ABCDE remains bound and the library password is modified to 
the new-password. All three data sets remain bound, and their passwords are 
modified with new-password. An error message would be displayed in the SAS log 
for any data set that had a password other than secretpw.

 

Log Examples
Example Code 8.7 Changing Metadata-bound Library Passwords

217  proc authlib lib=abcde;
218    modify securedlibrary="ABCDEEmps"
219        securedfolder="Department XYZZY"
220        pw=XXXXXXXX/XXXXXXXX;
221
222  run;

NOTE: The passwords for the secured library object with path "/System/Secured Libraries/Department
      XYZZY/ABCDEEmps" were successfully modified."
NOTE: The passwords on ABCDE.EMPINFO.DATA were successfully modified.
NOTE: The passwords on ABCDE.EMPLOYEES.DATA were successfully modified.
NOTE: The passwords on ABCDE.PRODUCT.DATA were successfully modified.
223  quit;

Example 6: Changing Metadata-Bound Library Passwords 175



Example 7: Using the REMOVE Statement
Features: PROC AUTHLIB statement options

REMOVE statement options:
PW=

Details
This example demonstrates how to unbind a metadata-bound library. The code does 
the following:

n deletes metadata that describes the library and its tables from the SAS Metadata 
Repository

n removes security bindings from the physical library and data sets

n removes the assigned password from the data sets, leaving them unprotected

The slash (/) after the password is optional and is used to remove or replace the 
password from the data sets. If a library is bound with READ=, WRITE=, and 
ALTER= passwords, as in Example 4 on page 169, then you must specify all of the 
passwords, and they must each have a slash (/). None of the data sets are AES-
encrypted.

Program
proc authlib lib=abcde; 

    remove 
        pw=currntpw/; 
run;    
quit;

 

Program Description
Unbinding the metadata-bound library ABCDE.

proc authlib lib=abcde; 

Use the REMOVE statement to unbind the metadata-bound library. The slash (/) 
after the password is used to remove the password from the data sets. 

    remove 
        pw=currntpw/; 
run;    

176 Chapter 8 / AUTHLIB Procedure



quit;

Results: The library ABCDE and all the data sets that are bound to it are no longer 
bound. All passwords are removed from the unbound data sets making them 
unprotected.

 

Log Examples
Example Code 8.8 Unbinding a Metadata-Bound Library

195  proc authlib lib=abcde;
196  remove
197  pw=XXXXXXXX/;
198  run;

WARNING: Some or all the passwords on ABCDE.DEPTNAME.DATA were removed along with the secured library 
object location,
         leaving the data set unprotected.
NOTE: The secured table object location for ABCDE.DEPTNAME.DATA was successfully removed.
WARNING: Some or all the passwords on ABCDE.EMPINFO.DATA were removed along with the secured library 
object location, leaving
         the data set unprotected.
NOTE: The secured table object location for ABCDE.EMPINFO.DATA was successfully removed.
WARNING: Some or all the passwords on ABCDE.EMPLOYEE.DATA were removed along with the secured library 
object location,
         leaving the data set unprotected.
NOTE: The secured table object location for ABCDE.EMPLOYEE.DATA was successfully removed.
NOTE: Successfully deleted the secured library object that was located at:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 9F746F86-2336-4E2F-A67E-BFB77DEC27F0
NOTE: Successfully deleted the recorded location of the secured library object for the physical 
library ABCDE.
199  quit;

Example 8: Using the REPORT Statement
Features: PROC AUTHLIB statement options

Report statement

Details
This example demonstrates how to check a library's bindings.

Example 8: Using the REPORT Statement 177



Program
proc authlib lib=abcde;  

    report; 
run; 
quit;   

 

Program Description
Check the bindings of the metadata-bound library ABCDE.

proc authlib lib=abcde;  

Use the REPORT statement.

    report; 
run; 
quit;   

Results: For the REPORT statement results, see“Output Example” on page 179.

 

Log Examples
Example Code 8.9 Creating a Report

49   proc authlib lib=abcde;
50    report;
51   run;

52   quit;

178 Chapter 8 / AUTHLIB Procedure



Output Example
Output 8.2 REPORT Statement Results for the ABCDE Library

Example 9: Using the TABLES Statement
Features: PROC AUTHLIB statement options

CREATE statement options:
ALTER=
READ=
SECUREDLIBRARY=
SECUREDFOLDER=
WRITE=
TABLE statements options:
ALTER=
PW=
READ=
WRITE=

Details
Example 4 on page 169 demonstrates how to use the TABLES statement.

Example 10: Binding a Library When Existing Data 
Sets Are SAS Proprietary Encrypted
Features: PROC AUTHLIB statement options

CREATE statement options:

Example 10: Binding a Library When Existing Data Sets Are SAS Proprietary Encrypted
179



PW=
SECUREDLIBRARY=
SECUREDFOLDER=
TABLES statement options:
PW=
READ=

Details
The following example demonstrates how to bind and change passwords on SAS 
Proprietary encrypted data sets.

Program
proc authlib lib=klmno;    

    create securedlibrary="KLMNOEmps"
        securedfolder="Department XYZZY" 
        pw=pqrstuvw;

    tables employees / 
        pw=lmno; 
    tables empinfo / 
        read=abcd;  
    tables product; 
run;
quit;

 

Program Description
Library KLMNO has three data sets: Employees, EmpInfo, and Product. In this 
library, the Employees data set is protected with the PW= password lmno. The 
EmpInfo data set is protected with a READ= password abcd. Both Employees and 
EmpInfo data sets are SAS Proprietary encrypted. The Product data set is not 
protected. 

proc authlib lib=klmno;    

Using the CREATE statement, enter the name of the metadata folder and name 
the secured library object in the SAS Metadata Server. Set the library password 
to pqrstuvw.

    create securedlibrary="KLMNOEmps"
        securedfolder="Department XYZZY" 
        pw=pqrstuvw;

Because these data sets have different passwords, a TABLES statement must 
be specified for all data sets in order to change their passwords. 

180 Chapter 8 / AUTHLIB Procedure



    tables employees / 
        pw=lmno; 
    tables empinfo / 
        read=abcd;  
    tables product; 
run;
quit;

Results: The library KLMNO is bound. All three data sets are bound and use the 
same PW= password pqrstuvw. Data sets Employees and EmpInfo are copied-in-
place to encrypt with the password pqrstuvw. Data set Product is bound, but not 
encrypted.

 

Example 10: Binding a Library When Existing Data Sets Are SAS Proprietary Encrypted
181



Log Examples
Example Code 8.10 TABLES Statement for the KLMNO Library Containing a SAS Proprietary 

Data Set

265  proc authlib lib=klmno;
266  create securedlibrary="KLMNOEmps"
267  securedfolder="Department XYZZY"
268  pw=XXXXXXXX;
269  tables employees /
270  pw=XXXX;
271  tables empinfo /
272  read=XXXX;
273  tables product;
274  run;

NOTE: Successfully created a secured library object for the physical library KLMNO and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     KLMNOEmps
           SecuredLibraryGUID: E71881CD-8C54-4E21-A8B5-FD7D4FBDAA7D
NOTE: Copying data set KLMNO.EMPLOYEES in place to encrypt with the new secured library passwords or 
encryption options.
NOTE: Renaming the data set KLMNO.EMPLOYEES to KLMNO.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set KLMNO.__TEMP_ENCRYPT_FILE_NAME__ to KLMNO.EMPLOYEES.
NOTE: Metadata-bound library permissions are used for KLMNO.EMPLOYEES.DATA.
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPLOYEES.DATA.
NOTE: There were 5 observations read from the data set KLMNO.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set KLMNO.EMPLOYEES has 5 observations and 6 variables.
NOTE: Deleting the data set KLMNO.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on KLMNO.EMPLOYEES.DATA were successfully modified.
NOTE: Copying data set KLMNO.EMPINFO in place to encrypt with the new secured library passwords or 
encryption options.
NOTE: Renaming the data set KLMNO.EMPINFO to KLMNO.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set KLMNO.__TEMP_ENCRYPT_FILE_NAME__ to KLMNO.EMPINFO.
NOTE: Metadata-bound library permissions are used for KLMNO.EMPINFO.DATA.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPINFO.DATA.
NOTE: There were 5 observations read from the data set KLMNO.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set KLMNO.EMPINFO has 5 observations and 6 variables.
NOTE: Deleting the data set KLMNO.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on KLMNO.EMPINFO.DATA were successfully modified.
NOTE: The passwords on KLMNO.PRODUCT.DATA do not require modification.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.PRODUCT.DATA.
275  quit;

Example 11: Binding a Library When Existing Data 
Sets Are AES-Encrypted
Features: PROC AUTHLIB statement options

CREATE statement options:
PW=

182 Chapter 8 / AUTHLIB Procedure



SECUREDLIBRARY=
SECUREDFOLDER=
TABLES statement option:
ENCRYPTKEY=

Details
This example demonstrates how to bind data sets that are AES-encrypted. None of 
the data sets have passwords.

CAUTION
SAS strongly recommends that you not have AES-encrypted data sets with 
different encryption keys in metadata-bound libraries, like this example 
creates. Instead, SAS recommends that you record a default encryption key in 
metadata and convert all AES-encrypted data sets to use that key. Doing this, your 
users, and programs do not have to specify the key when opening the data sets. The 
examples following this example show you how to do this process.

Program
proc authlib lib=klmno;    

    create securedlibrary="KLMNOEmps"
        securedfolder="Department XYZZY" 
        pw=pqrstuvw;

    tables employees / 
        encryptkey=lmno; 
    tables empinfo / 
        encryptkey=abcd;  
    tables product; 
run;
quit;

  

Program Description
Library KLMNO has three data sets: Employees, EmpInfo, and Product. In this 
library, the Employees data set is AES-encrypted and has the ENCRYPTKEY= 
value lmno. The EmpInfo data set is AES-encrypted and has the ENCRYPTKEY= 
value abcd. The Product data set is not protected. 

proc authlib lib=klmno;    

Example 11: Binding a Library When Existing Data Sets Are AES-Encrypted 183



Using the CREATE statement, enter the name of the metadata folder and name 
the secured library object in the SAS Metadata Server. Set the library password 
to pqrstuvw.

    create securedlibrary="KLMNOEmps"
        securedfolder="Department XYZZY" 
        pw=pqrstuvw;

Using the TABLES statements, specify the encrypt key for each data set. A 
TABLES statement must be specified for all data sets.

    tables employees / 
        encryptkey=lmno; 
    tables empinfo / 
        encryptkey=abcd;  
    tables product; 
run;
quit;

Results: The library KLMNO is bound. All three data sets are bound. The 
Employees and EmpInfo data sets remain AES-encrypted. The Product data set is 
not encrypted. The encrypt key values for the Employees and Empinfo data sets are 
different. SAS strongly recommends that you not have AES-encrypted data sets 
with different encryption keys in metadata-bound libraries, like this example created. 

  

184 Chapter 8 / AUTHLIB Procedure



Log Examples
Example Code 8.11 TABLES Statement for the KLMNO Library Containing AES-Encrypted 

Data Sets

351  proc authlib lib=klmno;
352  create securedlibrary="KLMNOEmps"
353  securedfolder="Department XYZZY"
354  pw=XXXXXXXX;
355  tables employees /
356  encryptkey=XXXX;
357  tables empinfo /
358  encryptkey=XXXX;
359  tables product;
360  run;

NOTE: Successfully created a secured library object for the physical library KLMNO and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     KLMNOEmps
           SecuredLibraryGUID: 48E2C4C7-ADE1-49D2-BBFE-14E5EAAB8961
NOTE: Successfully added new secured table object "EMPLOYEES.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPLOYEES.DATA.
NOTE: The passwords on KLMNO.EMPLOYEES.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.EMPINFO.DATA.
NOTE: The passwords on KLMNO.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "PRODUCT.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/KLMNOEmps" for data set KLMNO.PRODUCT.DATA.
NOTE: The passwords on KLMNO.PRODUCT.DATA were successfully modified.
361  quit;

Example 12: Binding a Library with an Optional 
Recorded Encryption Key When Existing AES-
Encrypted Data Sets Have Different Encryption 
Keys
Features: PROC AUTHLIB statement options

CREATE statement options:
ENCRYPT=
ENCRYPTKEY=
PW=
SECUREDLIBRARY=
SECUREDFOLDER=
TABLES statement options:
ENCRYPT=
ENCRYPTKEY=

Example 12: Binding a Library with an Optional Recorded Encryption Key When Existing 
AES-Encrypted Data Sets Have Different Encryption Keys 185



Details
This example demonstrates how to bind a library with an optional recorded 
encryption key. None of the data sets have passwords.

Since some SAS code existed that created and references the EmpInfo data set 
with ENCRYPTKEY=DEF and since the recorded library key is not required, the 
specification of the ENCRYPTKEY=DEF should be removed from the code. Any 
code that re-creates the data must keep the ENCRYPT=AES or ENCRYPT=AES2 
option so that the optional recorded key is used when the data set is re-created.

Program
proc authlib lib=abcde; 

    create securedlibrary="ABCDEEmps"
        securedfolder="Department XYZZY" 
        pw=secret 
        encrypt=aes
        encryptkey=optionalkey;
 

    tables employee;
    tables empinfo / 
        encryptkey=def/optionalkey 
        encrypt=aes;
    tables deptname;
run;
quit;

 

Program Description
Library ABCDE has Employees, EmpInfo, and DeptName data sets. In this 
library, the EmpInfo data set is AES-encrypted and has the ENCRYPTKEY= value 
def.

proc authlib lib=abcde; 

Using the CREATE statement, enter the name of the metadata folder and name 
the secured library object in the SAS Metadata Server. The optional encrypt key 
is specified for the metadata-bound library.

    create securedlibrary="ABCDEEmps"
        securedfolder="Department XYZZY" 
        pw=secret 
        encrypt=aes
        encryptkey=optionalkey;
 

186 Chapter 8 / AUTHLIB Procedure



A TABLES statement is required for each data set.

    tables employee;
    tables empinfo / 
        encryptkey=def/optionalkey 
        encrypt=aes;
    tables deptname;
run;
quit;

Results: The ABCDE library is bound and the optional encrypt key is stored. When 
the statements are executed, the following happens to the three data sets. The 
Employee data set is updated with the new metadata-bound library password but is 
not encrypted. The DeptName data set is updated with the metadata-bound library 
password but is not encrypted. The EmpInfo data set is copied to re-encrypt with the 
optional recorded key and gets the new metadata-bound library password. Note that 
it is necessary to supply both the current and new optional key in the TABLES 
statement for EmpInfo in the following program. Without the new key specification, 
the data set would remain encrypted with the def key.

 

Example 12: Binding a Library with an Optional Recorded Encryption Key When Existing 
AES-Encrypted Data Sets Have Different Encryption Keys 187



Log Examples
Example Code 8.12 Changing an Encryption Key Value to the Recorded Encryption Key

467  libname abcde "c:\lib1";
NOTE: Libref ABCDE was successfully assigned as follows:
      Engine:        V9
      Physical Name: c:\lib1
468
469  proc authlib lib=abcde;
470  create securedlibrary="ABCDEEmps"
471  securedfolder="Department XYZZY"
472  pw=XXXXXX
473  encrypt=aes
474  encryptkey=XXXXXXXXXXX;
475  tables employee;
476  tables empinfo /
477  encryptkey=XXX/XXXXXXXXXXX 
478  encrypt=aes;
479  tables deptname;
480  run;

NOTE: Successfully created a secured library object for the physical library ABCDE and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 8E683650-B306-4871-A92D-16D481EC6456
NOTE: Successfully added new secured table object "EMPLOYEE.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPLOYEE.DATA.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA were successfully modified.
NOTE: Copying data set ABCDE.EMPINFO in place to encrypt with the new secured library passwords or 
encryption options.
NOTE: Renaming the data set ABCDE.EMPINFO to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPINFO.
NOTE: Metadata-bound library permissions are used for ABCDE.EMPINFO.DATA.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPINFO.DATA.
NOTE: There were 5 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPINFO has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPINFO.DATA were successfully modified.
NOTE: Successfully added new secured table object "DEPTNAME.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.DEPTNAME.DATA.
NOTE: The passwords on ABCDE.DEPTNAME.DATA were successfully modified.
480  quit;

Example 13: Binding a Library with Required AES 
Encryption When Existing Data Sets Are Encrypted 
with the Same Encryption Key
Features: PROC AUTHLIB statement options

CREATE statement options:

188 Chapter 8 / AUTHLIB Procedure



ENCRYPT=
ENCRYPTKEY=
PW=
REQUIRE_ENCRYPTION
SECUREDLIBRARY=
SECUREDFOLDER=

Details
This example demonstrates how to bind a library with requiring that all of the data 
sets in this metadata-bound library have AES encryption and have the same 
encryption key.

Program
proc authlib lib=abcde; 

    create  seclib="ABCDEEmps"
        securedfolder="Department XYZZY"
        pw=secret 
        require_encryption=yes 
        encrypt=aes 
        encryptkey=abc ;
run;
quit;

 

Program Description
Library ABCDE has three data sets: Employees, EmpInfo, and DeptName. Data 
set EmpInfo has encryption key value of abc. The other two data sets are not AES-
encrypted. None of the data sets have passwords.

proc authlib lib=abcde; 

Using the CREATE statement, enter the name of the metadata folder and name 
the secured library object in the SAS Metadata Server. 
REQUIRE_ENCRYPTION=YES specifies that all data sets in the metadata-bound 
library are automatically AES-encrypted and use the AES key generation algorithm. 
Note that with required encryption and an encryption key, the specific key 
generation algorithm specified with ENCRYPT= is always used. With optional 
encryption, whichever key generation algorithm is specified in code with 
ENCRYPT= is used with the recorded key.

    create  seclib="ABCDEEmps"
        securedfolder="Department XYZZY"
        pw=secret 
        require_encryption=yes 

Example 13: Binding a Library with Required AES Encryption When Existing Data Sets 
Are Encrypted with the Same Encryption Key 189



        encrypt=aes 
        encryptkey=abc ;
run;
quit;

Results: The library ABCDE is bound, and all of the data sets are bound and AES-
encrypted with the same encryption key.

 

190 Chapter 8 / AUTHLIB Procedure



Log Examples
Example Code 8.13 Library ABCDE Requiring AES Encryption When the Data Sets Are 

Already Encrypted with the Same Encryption Key

40   proc authlib lib=abcde;
41   create  seclib="ABCDEEmps"
42         securedfolder="Department XYZZY"
43         pw=XXXXXX
44         require_encryption=yes
45         encrypt=aes
46         encryptkey=XXX ;
47   run;

NOTE: Setting library to require encryption.
NOTE: Required encryption will use AES encryption with the recorded key.

NOTE: Successfully created a secured library object for the physical library ABCDE and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 9FD6C5D9-EF00-4CDC-8D0A-348D08BB329E
NOTE: Copying data set ABCDE.DEPTNAME in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.DEPTNAME to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.DEPTNAME.
NOTE: Metadata-bound library permissions are used for ABCDE.DEPTNAME.DATA.
NOTE: Successfully added new secured table object "DEPTNAME.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.DEPTNAME.DATA.
NOTE: There were 10 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.DEPTNAME has 10 observations and 2 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.DEPTNAME.DATA were successfully modified.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPINFO.DATA.
NOTE: The passwords on ABCDE.EMPINFO.DATA were successfully modified.
NOTE: Copying data set ABCDE.EMPLOYEE in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPLOYEE to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPLOYEE.
NOTE: Metadata-bound library permissions are used for ABCDE.EMPLOYEE.DATA.
NOTE: Successfully added new secured table object "EMPLOYEE.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPLOYEE.DATA.
NOTE: There were 22 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPLOYEE has 22 observations and 11 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA were successfully modified.
48   quit;

Example 13: Binding a Library with Required AES Encryption When Existing Data Sets 
Are Encrypted with the Same Encryption Key 191



Example 14: Changing the Encryption Key on a 
Metadata-Bound Library That Requires AES 
Encryption
Features: PROC AUTHLIB statement options

MODIFY statement options:
ENCRYPT=
ENCRYPTKEY=
PW=

Details
This example demonstrates how to use the MODIFY statement to change the stored 
library encryption key if you believe that the metadata-bound library encryption keys 
might have been compromised.

Program
proc authlib lib=abcde;

    modify  
       pw=secret 
       encrypt=aes 
       encryptkey=/new;

run;
quit;

 

Program Description
Library ABCDE has three data sets: Employees, EmpInfo, and DeptName. In 
this library, all data sets are AES-encrypted with encryption key value abc since 
AES encryption is required for the metadata bound library.

proc authlib lib=abcde;

Use the MODIFY statement to change the library encryption key and the data 
set encryption key. You must specify ENCRYPT=AES or ENCRYPT=AES2. Note 
that the key generation algorithm can also be changed here between AES and 
AES2 simply by changing the value in the ENCRYPT= option.

192 Chapter 8 / AUTHLIB Procedure



    modify  
       pw=secret 
       encrypt=aes 
       encryptkey=/new;

run;
quit;

Results: The library ABCDE remains bound with the same password and a new 
encryption key. All three data sets remain bound with the same password and a new 
encryption key. Note that the data sets were copied-in-place to be encrypted with 
the new key value and the specified encryption key algorithm, AES in this case.

 

Example 14: Changing the Encryption Key on a Metadata-Bound Library That Requires 
AES Encryption 193



Example Code 8.14 Changing the Encryption Key ABCDE Library

502  proc authlib lib=abcde;
503  modify
504  pw=XXXXXX
505  encrypt=aes
506  encryptkey=/XXX;
507  run;

NOTE: Changing the required encryption key.

NOTE: The passwords on ABCDE.DEPTNAME.DATA do not require modification.
NOTE: Copying data set ABCDE.DEPTNAME in place to do required encryption with the 
library's required encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.DEPTNAME to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.DEPTNAME.
NOTE: There were 4 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.DEPTNAME has 4 observations and 2 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPINFO.DATA do not require modification.
NOTE: Copying data set ABCDE.EMPINFO in place to do required encryption with the 
library's required encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPINFO to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPINFO.
NOTE: There were 5 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPINFO has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA do not require modification.
NOTE: Copying data set ABCDE.EMPLOYEE in place to do required encryption with the 
library's required encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPLOYEE to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPLOYEE.
NOTE: There were 5 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPLOYEE has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords and/or encryption options for the secured library object with 
path "/System/Secured Libraries/Department
      XYZZY/ABCDEEmps" were successfully modified."
NOTE: All data sets in library ABCDE are properly protected with the metadata-bound 
library passwords and encryption options.
      Replaced Passwords and encryption keys were purged.
NOTE: Purged 1 versions of the replaced passwords and encryption keys older than 
2015-05-04T15:40:57-05:00.
508  quit;
NOTE: Renaming the data set ABCDE.EMPLOYEE to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPLOYEE.
NOTE: There were 22 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPLOYEE has 22 observations and 11 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords and/or encryption options for the secured library object with 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" were successfully modified.

194 Chapter 8 / AUTHLIB Procedure



Example 15: Binding a Library with Existing Data 
Sets That Are AES-Encrypted with Different 
Encryption Keys
Features: PROC AUTHLIB statement options

CREATE statement options:
ENCRYPT=
ENCRYPTKEY=
PW=
REQUIRE_ENCRYPTION
SECUREDLIBRARY=
SECUREDFOLDER=
TABLES statement option:
ENCRYPTKEY=

Details
This example demonstrates how to change all data sets in the metadata-bound 
library that contain different encryption keys to have the required AES encryption 
and have the same encryption key. None of the data sets have passwords.

Program
proc authlib lib=abcde;

    create  seclib="ABCDEEmps"
        securedfolder="Department XYZZY"
        pw=secret 
        require_encryption=yes
        encrypt=aes 
        encryptkey=new ;

    tables employee / 
        encryptkey=abc;
    tables empinfo / 
        encryptkey=def;
    tables deptname ;
run;
quit;

 

Example 15: Binding a Library with Existing Data Sets That Are AES-Encrypted with 
Different Encryption Keys 195



Program Description
Library ABCDE has three data sets: Employee, EmpInfo, and DeptName. The 
Employee and EmpInfo data sets are already AES-encrypted with different keys. 
The DeptName data set is not encrypted.

proc authlib lib=abcde;

Using the CREATE statement, enter the name of the metadata folder and name 
the secured library object in the SAS Metadata Server. 
REQUIRE_ENCRYPTION=YES specifies that all data sets in the metadata-bound 
library are automatically AES-encrypted.

    create  seclib="ABCDEEmps"
        securedfolder="Department XYZZY"
        pw=secret 
        require_encryption=yes
        encrypt=aes 
        encryptkey=new ;

Using the TABLES statement, specify the encrypt key for each data set. 
TABLES statements are required for each data set.

    tables employee / 
        encryptkey=abc;
    tables empinfo / 
        encryptkey=def;
    tables deptname ;
run;
quit;

Results: The library ABCDE is bound. All data sets in the metadata-bound library 
ABCDE have been copied-in-place to be encrypted with the required key and the 
specified encryption key algorithm, AES in this case.

 

196 Chapter 8 / AUTHLIB Procedure



Log Examples
Example Code 8.15 Library ABCDE Requiring AES Encryption When Each Data Set Has 

Different Encryption Key Values

554  proc authlib lib=abcde;
555  create seclib="ABCDEEmps"
556  securedfolder="Department XYZZY"
557  pw=XXXXXX
558  require_encryption=yes
559  encrypt=aes
560  encryptkey=XXX ;
561  tables employee /
562  encryptkey=XXX;
563  tables empinfo /
564  encryptkey=XXX;
565  tables deptname ;
566  run;

NOTE: Setting library to require encryption.
NOTE: Required encryption will use AES encryption with the recorded key.

NOTE: Successfully created a secured library object for the physical library ABCDE and recorded its 
location as:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 097E9A84-D6E8-488E-B779-1E2AB0670036
NOTE: Copying data set ABCDE.EMPLOYEE in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPLOYEE to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPLOYEE.
NOTE: Metadata-bound library permissions are used for ABCDE.EMPLOYEE.DATA.
NOTE: Successfully added new secured table object "EMPLOYEE.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPLOYEE.DATA.
NOTE: There were 5 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPLOYEE has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA were successfully modified.
NOTE: Copying data set ABCDE.EMPINFO in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPINFO to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPINFO.
NOTE: Metadata-bound library permissions are used for ABCDE.EMPINFO.DATA.
NOTE: Successfully added new secured table object "EMPINFO.DATA" to the secured library object at path 
"/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.EMPINFO.DATA.
NOTE: There were 5 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPINFO has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPINFO.DATA were successfully modified.
NOTE: Copying data set ABCDE.DEPTNAME in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.DEPTNAME to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.DEPTNAME.
NOTE: Metadata-bound library permissions are used for ABCDE.DEPTNAME.DATA.
NOTE: Successfully added new secured table object "DEPTNAME.DATA" to the secured library object at 
path "/System/Secured
      Libraries/Department XYZZY/ABCDEEmps" for data set ABCDE.DEPTNAME.DATA.
NOTE: There were 4 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.DEPTNAME has 4 observations and 2 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.DEPTNAME.DATA were successfully modified.
567  quit;

Example 15: Binding a Library with Existing Data Sets That Are AES-Encrypted with 
Different Encryption Keys 197



Example 16: Changing a Metadata-Bound Library to 
Require AES Encryption When Existing Data Sets 
Are Encrypted with Different Encryption Keys
Features: PROC AUTHLIB statement options

MODIFY statement options:
ENCRYPT=
ENCRYPTKEY=
PW=
REQUIRE_ENCRYPTION
SECUREDLIBRARY=
SECUREDFOLDER=
TABLES statement option:
ENCRYPTKEY=

Details
This example is similar to the previous example. The difference is that the library is 
already bound to metadata, so the MODIFY statement is used to change the 
binding to require AES encryption.

Program
proc authlib lib=abcde;

    modify  seclib="ABCDEEmps"
        securedfolder="Department XYZZY"
        pw=secret 
        require_encryption=yes
        encrypt=aes 
        encryptkey=new;

    tables employee / 
        encryptkey=abc;
    tables empinfo / 
        encryptkey=def;
    tables deptname ;
run;
quit;

 

198 Chapter 8 / AUTHLIB Procedure



Program Description
Library ABCDE has three data sets: Employees, EmpInfo, and DeptName. In 
this library, the Employees data set has the encryption key value abc. The EmpInfo 
data set has the encryption key value def. The DeptName data set is not AES-
encrypted. 

proc authlib lib=abcde;

Using the MODIFY statement, enter the name of the metadata folder and name 
the secured library object in the SAS Metadata Server. You use the 
REQUIRE_ENCRYPTION=YES option to require that all data sets in the metadata-
bound library have AES encryption. Note that the name of the secured library object 
and the name of the metadata folder are optional, but can be specified to ensure 
that the library is bound to that secured library object before making the change. 

    modify  seclib="ABCDEEmps"
        securedfolder="Department XYZZY"
        pw=secret 
        require_encryption=yes
        encrypt=aes 
        encryptkey=new;

Using the TABLES statement, specify the encrypt key for each data set. 
TABLES statements are required for each data set.

    tables employee / 
        encryptkey=abc;
    tables empinfo / 
        encryptkey=def;
    tables deptname ;
run;
quit;

Results: The library ABCDE remains bound. The MODIFY statement changed the 
binding to require AES encryption. All three data sets are copied-in-place to encrypt 
the data sets with the required encrypt key and the specified encryption key 
algorithm, AES in this case.

 

Example 16: Changing a Metadata-Bound Library to Require AES Encryption When 
Existing Data Sets Are Encrypted with Different Encryption Keys 199



Log Examples
Example Code 8.16 Library ABCDE Requiring AES Encryption and Changing the Encryption 

Key Values of Each Data Set to a Recorded Encryption Key Value

628  proc authlib lib=abcde;
629  modify seclib="ABCDEEmps"
630  securedfolder="Department XYZZY"
631  pw=XXXXXX
632  require_encryption=yes
633  encrypt=aes
634  encryptkey=XXX;
635  tables employee /
636  encryptkey=XXX;
637  tables empinfo /
638  encryptkey=XXX;
639  tables deptname ;
640  run;

NOTE: Changing library to require encryption.
NOTE: Required encryption will use AES encryption with the recorded key.

NOTE: The passwords on ABCDE.EMPLOYEE.DATA do not require modification.
NOTE: Copying data set ABCDE.EMPLOYEE in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPLOYEE to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPLOYEE.
NOTE: There were 5 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPLOYEE has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.EMPINFO.DATA do not require modification.
NOTE: Copying data set ABCDE.EMPINFO in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.EMPINFO to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPINFO.
NOTE: There were 5 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPINFO has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords on ABCDE.DEPTNAME.DATA do not require modification.
NOTE: Copying data set ABCDE.DEPTNAME in place to do required encryption with the library's required 
encryption key and
      passwords.
NOTE: Renaming the data set ABCDE.DEPTNAME to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.DEPTNAME.
NOTE: There were 4 observations read from the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.DEPTNAME has 4 observations and 2 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The passwords and/or encryption options for the secured library object with path "/System/
Secured Libraries/Department
      XYZZY/ABCDEEmps" were successfully modified."
641  quit;

200 Chapter 8 / AUTHLIB Procedure



Example 17: Using the REMOVE Statement on a 
Metadata-Bound Library with Required AES 
Encryption
Features: PROC AUTHLIB statement options

REMOVE statement options:
PW=
ENCRYPT=

Details
This example demonstrates how to unbind a metadata-bound library. The code does 
the following:

n deletes metadata that describes the library and its tables from the SAS Metadata 
Repository

n removes security bindings from the physical library and data sets 

n removes the assigned password and encryption from the data sets, leaving them 
unprotected

The slash (/) after the password is optional and is used to remove or replace the 
password from the data sets. If a library is bound with READ=, WRITE=, and 
ALTER= passwords, as in Example 4 on page 169, then you must specify all of the 
passwords, and they must each have a slash (/).

Program
proc authlib lib=abcde; 

    remove 
        pw=currntpw/ 
        encrypt=no;
run;
quit;

  

Program Description

Unbinding the metadata-bound library ABCDE.

Example 17: Using the REMOVE Statement on a Metadata-Bound Library with Required 
AES Encryption 201



proc authlib lib=abcde; 

Use the REMOVE statement to unbind the metadata-bound library. The slash (/) 
after the password is used to remove the password from the data sets. 
ENCRYPT=NO specifies that encryption is removed from all data sets.

    remove 
        pw=currntpw/ 
        encrypt=no;
run;
quit;

Results: The library ABCDE and all the data sets bound to it are no longer bound. 
All passwords and encryption are removed from the unbound data sets making 
them unprotected.

  

202 Chapter 8 / AUTHLIB Procedure



Example Code 8.17 Using the REMOVE Statement on a Metadata-Bound Library with 
Required AES Encryption

642  proc authlib lib=abcde;
643  remove
644  pw=XXXXXX/
645  encrypt=no;
646  run;

NOTE: Copying data set ABCDE.DEPTNAME in place to remove encryption.
NOTE: Renaming the data set ABCDE.DEPTNAME to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.DEPTNAME.
NOTE: There were 4 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.DEPTNAME has 4 observations and 2 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
WARNING: Some or all the passwords on ABCDE.DEPTNAME.DATA were removed along with 
the secured library object location,
         leaving the data set unprotected.
NOTE: The secured table object location for ABCDE.DEPTNAME.DATA was successfully 
removed.
NOTE: Copying data set ABCDE.EMPINFO in place to remove encryption.
NOTE: Renaming the data set ABCDE.EMPINFO to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPINFO.
NOTE: There were 5 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPINFO has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
WARNING: Some or all the passwords on ABCDE.EMPINFO.DATA were removed along with the 
secured library object location, leaving
         the data set unprotected.
NOTE: The secured table object location for ABCDE.EMPINFO.DATA was successfully 
removed.
NOTE: Copying data set ABCDE.EMPLOYEE in place to remove encryption.
NOTE: Renaming the data set ABCDE.EMPLOYEE to ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: Copying the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__ to ABCDE.EMPLOYEE.
NOTE: There were 5 observations read from the data set 
ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
NOTE: The data set ABCDE.EMPLOYEE has 5 observations and 6 variables.
NOTE: Deleting the data set ABCDE.__TEMP_ENCRYPT_FILE_NAME__.
WARNING: Some or all the passwords on ABCDE.EMPLOYEE.DATA were removed along with 
the secured library object location,
         leaving the data set unprotected.
NOTE: The secured table object location for ABCDE.EMPLOYEE.DATA was successfully 
removed.
NOTE: Successfully deleted the secured library object that was located at:
           SecuredFolder:      /System/Secured Libraries/Department XYZZY
           SecuredLibrary:     ABCDEEmps
           SecuredLibraryGUID: 157F7ACD-5B71-4BC3-A490-DCED4BD275E8
NOTE: Successfully deleted the recorded location of the secured library object for 
the physical library ABCDE.
647  quit;

Example 18: Resetting Credentials on Imported 
SecuredLibrary Objects
Features: PROC AUTHLIB statement options

Example 18: Resetting Credentials on Imported SecuredLibrary Objects 203



MODIFY statement options:
LIBRARY=
PW=
ENCRYPT=
ENCRYPTKEY=

Details
This example shows how to reset the passwords and encryption key on 
SecuredLibrary objects that are imported from a backup package.

n The LIBNAME statement without the AUTHADMIN=YES option fails because 
there are no associated password values restored by the import.

n The AUTHADMIN=YES option is used to enable the AUTHLIB procedure to 
execute with the binding information in the physical library. 

n The MODIFY statement is used to reset the metadata-bound library passwords 
and encryption key value on the library from “Example 13: Binding a Library with 
Required AES Encryption When Existing Data Sets Are Encrypted with the 
Same Encryption Key” on page 188 assuming that the SecuredLibrary object 
was imported from a backup package without those values. 

Program
libname abcde "sas-library" ;

libname abcde "sas-library" authadmin=yes;

proc authlib lib=abcde;
    modify  
        pw=secret 
        encrypt=aes 
        encryptkey=value;
run;
quit;

libname abcde "sas-library";

Program Description

Library ABCDE has three data sets: Employees, EmpInfo, and DeptName. This 
LIBNAME statement fails because there are no associated password values.

libname abcde "sas-library" ;

Use the AUTHADMIN=YES option. The AUTHADMIN=YES option enables the 
AUTHLIB procedure to execute with the binding information in the physical library.

libname abcde "sas-library" authadmin=yes;

204 Chapter 8 / AUTHLIB Procedure



Use the MODIFY statement to reset the metadata-bound library passwords 
and encryption key value. The PW= option resets the password. The 
ENCRYPTKEY= option resets the encryption key value.

proc authlib lib=abcde;
    modify  
        pw=secret 
        encrypt=aes 
        encryptkey=value;
run;
quit;

Reissue the LIBNAME statement without the AUTHADMIN=YES option . It is 
good practice to reassign the library without AUTHADMIN=YES as soon as your 
administrative need is complete, so that any other access that you make to the 
library is not in administrative mode. In this case, it also ensures that the credentials 
are reset.

libname abcde "sas-library";

Example Code 8.18 Resetting Credentials

253 libname abcde "library-name" ;
ERROR: The secured library object information for library ABCDE could not be obtained 
       from the metadata server or has invalid data.
ERROR: Association not found.
ERROR: Error in the LIBNAME statement.
254  libname abcde "library-name" authadmin=yes;
NOTE: Libref ABCDE was successfully assigned as follows:
      Engine:             V9
      Physical Name:      library-name
      Secured Library:    /System/Secured Libraries/Department XYZZY/ABCDEEmps
      Authenticated ID:   user-id@site as user-id
      Encryption Key:     YES
      Require Encryption: YES
255  proc authlib lib=abcde;
256  modify
257        pw=XXXXXX
258        encrypt=aes
259        encryptkey=XXX ;
260  run;

NOTE: Required encryption will use AES encryption with the recorded key.

NOTE: The passwords on ABCDE.DEPTNAME.DATA do not require modification.
NOTE: The passwords on ABCDE.EMPINFO.DATA do not require modification.
NOTE: The passwords on ABCDE.EMPLOYEE.DATA do not require modification.
261  quit;

Example 18: Resetting Credentials on Imported SecuredLibrary Objects 205



206 Chapter 8 / AUTHLIB Procedure



Chapter 9
CALENDAR Procedure

Overview: CALENDAR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
What Does the CALENDAR Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
What Types of Calendars Can PROC CALENDAR Produce? . . . . . . . . . . . . . . . . 209
Advanced Scheduling and Project Management Tasks . . . . . . . . . . . . . . . . . . . . . 214

Concepts: CALENDAR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Types of Calendars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Schedule Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Summary Calendar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
The Default Calendars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Calendars and Multiple Calendars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Input Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Activities Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Holidays Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Calendar Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Workdays Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Missing Values in Input Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Syntax: CALENDAR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
PROC CALENDAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
CALID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
DUR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
FIN Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
HOLIDUR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
HOLIFIN Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
HOLISTART Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
HOLIVAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
MEAN Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
OUTDUR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
OUTFIN Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
OUTSTART Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
START Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
SUM Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Results: CALENDAR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
What Affects the Quantity of PROC CALENDAR Output . . . . . . . . . . . . . . . . . . . . 254
How Size Affects the Format of PROC CALENDAR Output . . . . . . . . . . . . . . . . . 254
What Affects the Lines That Show Activity Duration . . . . . . . . . . . . . . . . . . . . . . . 254

207



Customizing the Calendar Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Portability of ODS Output with PROC CALENDAR . . . . . . . . . . . . . . . . . . . . . . . . 255

Examples: CALENDAR Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Example 1: Schedule Calendar with Holidays: 5-Day Default . . . . . . . . . . . . . . . . 255
Example 2: Schedule Calendar Containing Multiple Calendars . . . . . . . . . . . . . . 260
Example 3: Multiple Schedule Calendars with Atypical Work Shifts 

(Separated Output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Example 4: Multiple Schedule Calendars with Atypical Work Shifts 

(Combined and Mixed Output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Example 5: Schedule Calendar, Blank or with Holidays . . . . . . . . . . . . . . . . . . . . 278
Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks 281
Example 7: Summary Calendar with MEAN Values by Observation . . . . . . . . . . . 289
Example 8: Multiple Summary Calendars with Atypical Work Shifts 

(Separated Output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Overview: CALENDAR Procedure

What Does the CALENDAR Procedure Do?
The CALENDAR procedure displays data from a SAS data set in a monthly 
calendar format. You can produce a schedule calendar, which schedules events 
around holidays and nonwork periods, or you can produce a summary calendar, 
which summarizes data and displays only one-day events and holidays. When you 
use PROC CALENDAR, you can perform the following tasks:

n schedule work around holidays and other nonwork periods

n display holidays

n process data about multiple calendars in a single step and print them in a 
separate, mixed, or combined format

n apply different holidays, weekly work schedules, and daily work shifts to multiple 
calendars in a single PROC step

n produce a mean and a sum for variables based on either the number of days in a 
month or the number of observations

PROC CALENDAR also contains features that are specifically designed to work with 
PROC CPM in SAS/OR software, a project management scheduling tool.

208 Chapter 9 / CALENDAR Procedure



What Types of Calendars Can PROC CALENDAR 
Produce?

Simple Schedule Calendar
The following output illustrates the simplest type of schedule calendar that you can 
produce. This calendar output displays activities that are planned by a banking 
executive. The following statements produce Output 9.30 on page 210. 

proc calendar data=allacty;
   start date;
   dur long;
run;

For the activities data set shown that is in this calendar, see “Example 1: Schedule 
Calendar with Holidays: 5-Day Default” on page 255. 

The following calendar uses one of the two default calendars, the 24-hour-day, 7-
day-week calendar.

Overview: CALENDAR Procedure 209



Output 9.1 Simple Schedule Calendar

210 Chapter 9 / CALENDAR Procedure



Advanced Schedule Calendar
The following output is an advanced schedule calendar produced by PROC 
CALENDAR. The statements that create this calendar can perform the following 
tasks:

n schedule activities around holidays

n identify separate calendars

n print multiple calendars in the same report

n apply different holidays to different calendars

n apply different work patterns to different calendars

For an explanation of the program that produces this calendar, see “Example 4: 
Multiple Schedule Calendars with Atypical Work Shifts (Combined and Mixed 
Output)” on page 272. 

Overview: CALENDAR Procedure 211



Output 9.2 Advanced Schedule Calendar

Simple Summary Calendar
The following output shows a simple summary calendar that displays the number of 
meals served daily in a hospital cafeteria:

proc calendar data=meals;

212 Chapter 9 / CALENDAR Procedure



   start date;
   sum brkfst lunch dinner;
   mean brkfst lunch dinner;
run;

In a summary calendar, each piece of information for a given day is the value of a 
variable for that day. The variables can be either numeric or character, and you can 
format them as necessary. You can use the SUM and MEAN options to calculate 
sums and means for any numeric variables. These statistics appear in a box below 
the calendar, as shown in the following output. The data set that is shown in this 
calendar is created in “Example 7: Summary Calendar with MEAN Values by 
Observation” on page 289. 

Output 9.3 Simple Summary Calendar

Overview: CALENDAR Procedure 213



Advanced Scheduling and Project Management 
Tasks

For more complex scheduling tasks, consider using the CPM procedure in SAS/OR 
software. PROC CALENDAR requires that you specify the starting date of each 
activity. When the beginning of one task depends on the completion of others and a 
date slips in a schedule, recalculating the schedule can be time-consuming. Instead 
of manually recalculating dates, you can use PROC CPM to calculate dates for 
project activities based on an initial starting date, activity durations, and which tasks 
are identified as successors to others. For an example, see “Example 6: Calculating 
a Schedule Based on Completion of Predecessor Tasks” on page 281. 

Concepts: CALENDAR Procedure

Types of Calendars
PROC CALENDAR can produce two types of calendars: schedule and summary.

Table 9.1 Summary of Schedule and Summary Calendars

Type of Calendar Task Restriction

Schedule calendar Schedule activities around 
holidays and nonwork periods

Cannot calculate sums 
and means

Schedule calendar Schedule activities that last more 
than one day

Summary calendar Calculate sums and means Activities can last only 
one day

Note: PROC CALENDAR produces a summary calendar if you do not use a DUR 
or FIN statement in the PROC step.

214 Chapter 9 / CALENDAR Procedure



Schedule Calendar

Definition
A report in calendar format that shows when activities and holidays start and end.

Required Statements
You must supply a START statement and either a DUR or FIN statement. If you do 
not use a DUR or FIN statement, then PROC CALENDAR assumes that you want to 
create a summary calendar report.

Table 9.2 Required Statements

Statement Variable Value

“START Statement” on page 251 Starting date of an activity

“DUR Statement” on page 243 Duration of an activity

“FIN Statement” on page 244 Ending date of an activity

Examples
n “Simple Schedule Calendar” on page 209 

n “Advanced Schedule Calendar” on page 211 

n “Example 1: Schedule Calendar with Holidays: 5-Day Default” on page 255

n “Example 2: Schedule Calendar Containing Multiple Calendars” on page 260

n “Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated 
Output)” on page 265

n “Example 4: Multiple Schedule Calendars with Atypical Work Shifts (Combined 
and Mixed Output)” on page 272

n “Example 5: Schedule Calendar, Blank or with Holidays” on page 278

n “Example 6: Calculating a Schedule Based on Completion of Predecessor 
Tasks” on page 281

Concepts: CALENDAR Procedure 215



Summary Calendar

Definition
A report in calendar format that displays activities and holidays that last only one 
day and that can provide summary information in the form of sums and means.

Required Statements
You must supply a START statement. This statement identifies the variable in the 
activities data set that contains an activity's starting date.

Multiple Events on a Single Day
A summary calendar report can display only one activity on a given date. Therefore, 
if more than one activity has the same START value, then only the last observation 
that was read is used. In such situations, you might find PROC SUMMARY useful in 
collapsing your data set to contain one activity per starting date.

Examples
n “Simple Summary Calendar” on page 212 

n “Example 7: Summary Calendar with MEAN Values by Observation” on page 
289

n “Example 8: Multiple Summary Calendars with Atypical Work Shifts (Separated 
Output)” on page 294

216 Chapter 9 / CALENDAR Procedure



The Default Calendars

Description
PROC CALENDAR provides two default calendars for simple applications. You can 
produce calendars without having to specify detailed work shifts and weekly work 
patterns if your application can use one of two simple work patterns. Consider using 
a default calendar if the following conditions are true:

n your application uses a 5-day work week with 8-hour days or a 7-day work week 
with 24-hour days, as shown in the following table

n you want to print all activities on the same calendar

n you do not need to identify separate calendars

Table 9.3 Default Calendar Settings and Examples

Scheduled Work Days INTERVAL=
Default 
DAYLENGTH=

Work Period 
Length Example

7 (M-Sun) DAY 24 24-hour days 2

5 (M-F) WORKDAY 8 8-hour days 1

When You Unexpectedly Produce a 
Default Calendar
If you want to produce a specialized calendar but do not provide all the necessary 
information, then PROC CALENDAR attempts to produce a default calendar. These 
errors cause PROC CALENDAR to produce a calendar with default features:

n If the activities data set does not contain a CALID variable, then PROC 
CALENDAR produces a default calendar.

n If both the holidays and calendar data sets do not contain a CALID variable, then 
PROC CALENDAR produces a default calendar even if the activities data set 
contains a CALID variable.

n If the activities and calendar data sets contain the CALID variable, but the 
holidays data set does not, then the default holidays are used. 

Concepts: CALENDAR Procedure 217



Examples
n See the 7-day default calendar in Output 9.30 on page 210 

n See the 5-day default calendar in “Example 1: Schedule Calendar with Holidays: 
5-Day Default” on page 255

Calendars and Multiple Calendars

Definitions
calendar

a logical entity that represents a weekly work pattern, which consists of weekly 
work schedules and daily shifts. PROC CALENDAR contains two default work 
patterns: 5-day week with an 8-hour day or a 7-day week with a 24-hour day. 
You can also define your own work patterns by using CALENDAR and 
WORKDAYS data sets.

calendar report
a report in calendar format that displays activities, holidays, and nonwork 
periods. A calendar report can contain multiple calendars in one of three formats:

separate
each identified calendar is printed on separate output pages.

combined
all identified calendars are printed on the same output pages and each is 
identified.

mixed
all identified calendars are printed on the same output pages but are not 
identified as belonging to separate calendars.

multiple calendar
a logical entity that represents multiple weekly work patterns.

Advantages of Creating Multiple Calendars
Create a multiple calendar if you want to print a calendar report that shows activities 
that follow different work schedules or different weekly work patterns. For example, 
a construction project report might need to use different work schedules and weekly 
work patterns for work crews on different parts of the project.

Another use for multiple calendars is to identify activities so that you can choose to 
print them in the same calendar report. For example, if you identify activities as 

218 Chapter 9 / CALENDAR Procedure



belonging to separate departments within a division, then you can choose to print a 
calendar report that shows all departmental activities on the same calendar.

Finally, using multiple calendars, you can produce separate calendar reports for 
each calendar in a single step. For example, if activities are identified by 
department, then you can produce a calendar report that prints the activities of each 
department on separate pages.

How to Identify Multiple Calendars
Because PROC CALENDAR can process only one data set of each type (activities, 
holidays, calendar, workdays) in a single PROC step, you must be able to identify 
for PROC CALENDAR which calendar an activity, holiday, or weekly work pattern 
belongs to. Use the CALID statement to specify the variable whose values identify 
the appropriate calendar. This variable can be numeric or character.

You can use the special variable name _CAL_ or you can use another variable 
name. PROC CALENDAR automatically looks for a variable named _CAL_ in the 
holiday and calendar data sets, even when the activities data set uses a variable 
with another name as the CALID variable. Therefore, if you use the name _CAL_ in 
your holiday and calendar data sets, then you can more easily reuse these data 
sets in different calendar applications.

Using Holidays or Calendar Data Sets with 
Multiple Calendars
When using a holidays or calendar data set with multiple calendars, PROC 
CALENDAR treats the variable values in the following way:

n Every value of the CALID variable that appears in either the holidays or calendar 
data sets defines a calendar.

n If a CALID value appears in the HOLIDATA= data set but not in the CALEDATA= 
data set, then the work schedule of the default calendar is used.

n If a CALID value appears in the CALEDATA= data set but not in the HOLIDATA= 
data set, then the holidays of the default calendar are used.

n If a CALID value does not appear in either the HOLIDATA= or CALEDATA= data 
set, then the work schedule and holidays of the default calendar are used.

n If the CALID variable is not found in the holiday or calendar data set, then PROC 
CALENDAR looks for the default variable _CAL_ instead. If neither the CALID 
variable nor a _CAL_ variable appears in a data set, then the observations in 
that data set are applied to a default calendar.

Concepts: CALENDAR Procedure 219



Types of Reports That Contain Multiple 
Calendars
Because you can associate different observations with different calendars, you can 
print a calendar report that shows activities that follow different work schedules or 
different work shifts or that contain different holidays. You can perform the following 
tasks:

n print separate calendars on the same page and identify each one

n print separate calendars on the same page without identifying them

n print separate pages for each identified calendar

For example, consider a calendar that shows the activities of all departments within 
a division. Each department can have its own calendar identification value and, if 
necessary, can have individual weekly work patterns, daily work shifts, and holidays.

If you place activities that are associated with different calendars in the same 
activities data sets, then you use PROC CALENDAR to produce calendar reports 
that print the following:

n the schedule and events for each department on a separate page (separate 
output)

n the schedule and events for the entire division, each identified by department 
(combined output)

n the schedule and events for the entire division, but not identified by department 
(mixed output)

The multiple-calendar feature was added specifically to enable PROC CALENDAR 
to process the output of PROC CPM in SAS/OR software, a project management 
tool. See “Example 6: Calculating a Schedule Based on Completion of Predecessor 
Tasks” on page 281. 

How to Identify Calendars with the CALID 
Statement and the Special Variable _CAL_
To identify multiple calendars, you must use the CALID statement to specify the 
variable whose values identify which calendar an event belongs with. This variable 
can be numeric or character.

You can use the special variable name _CAL_ or you can use another variable 
name. PROC CALENDAR automatically looks for a variable named _CAL_ in the 
holiday and calendar data sets, even when the activities data set uses a variable 
with another name as the CALID variable. Therefore, if you use the name _CAL_ in 
your holiday and calendar data sets, then you can more easily reuse these data 
sets in different calendar applications.

220 Chapter 9 / CALENDAR Procedure



When You Use Holidays or Calendar Data 
Sets
When you use a holidays or calendar data set with multiple calendars, PROC 
CALENDAR treats the variable values in the following way:

n Every value of the CALID variable that appears in either the holidays or calendar 
data sets defines a calendar.

n If a CALID value appears in the HOLIDATA= data set but not in the CALEDATA= 
data set, then the work schedule of the default calendar is used.

n If a CALID value appears in the CALEDATA= data set but not in the HOLIDATA= 
data set, then the holidays of the default calendar are used.

n If a CALID value does not appear in either the HOLIDATA= or CALEDATA= data 
set, then the work schedule and holidays of the default calendar are used.

n If the CALID variable is not found in the holiday or calendar data sets, then 
PROC CALENDAR looks for the default variable _CAL_ instead. If neither the 
CALID variable nor a _CAL_ variable appears in a data set, then the 
observations in that data set are applied to a default calendar.

Examples
n “Example 2: Schedule Calendar Containing Multiple Calendars” on page 260

n “Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated 
Output)” on page 265

n “Example 4: Multiple Schedule Calendars with Atypical Work Shifts (Combined 
and Mixed Output)” on page 272

n “Example 8: Multiple Summary Calendars with Atypical Work Shifts (Separated 
Output)” on page 294

Input Data Sets
You might need several data sets to produce a calendar, depending on the 
complexity of your application. PROC CALENDAR can process one of each of four 
data sets, as shown in the following table.

Concepts: CALENDAR Procedure 221



Table 9.4 Four Possible Input Data Sets for PROC CALENDAR

Data Set Description Option

Activities Each observation contains 
information about a single 
activity.

“DATA=SAS-data-set” on 
page 233

Holidays Each observation contains 
information about a holiday.

“HOLIDATA=SAS-data-set” 
on page 237

Calendar Each observation defines one 
weekly work schedule.

“CALEDATA=SAS-data-set” 
on page 233

Workdays Each variable represents one 
daily schedule of alternating 
work and nonwork periods.

“WORKDATA=SAS-data-
set” on page 239

Activities Data Set

Purpose
The activities data set, specified with the DATA= option, contains information about 
the activities to be scheduled by PROC CALENDAR. Each observation describes a 
single activity.

Requirements and Restrictions
n An activities data set is required. (If you do not specify an activities data set with 

the DATA= option, then PROC CALENDAR uses the _LAST_ data set.)

n Only one activities data set is allowed.

n The activities data set must always be sorted or indexed by the START variable.

n If you use a CALID (calendar identifier) variable and want to produce output that 
shows multiple calendars on separate pages, then the activities data set must be 
sorted by or indexed on the CALID variable and then the START variable.

n If you use a BY statement, then the activities data set must be sorted by or 
indexed on the BY variables.

222 Chapter 9 / CALENDAR Procedure



Structure
Each observation in the activities data set contains information about one activity. 
One variable must contain the starting date. If you are producing a schedule 
calendar, then another variable must contain either the activity duration or finishing 
date. Other variables can contain additional information about an activity.

Table 9.5 Required Statements

Variable Content Statement Calendar Type

Starting date “START Statement” on page 251 Schedule

Summary

Duration “DUR Statement” on page 243 Schedule

Finishing date “FIN Statement” on page 244 Schedule

Multiple Activities per Day in Summary 
Calendars
A summary calendar can display only one activity on a given date. Therefore, if 
more than one activity has the same START value, then only the last observation 
that is read is used. In such situations, you might find PROC SUMMARY useful to 
collapse your data set to contain one activity per starting date.

Examples
Every example in the Examples section uses an activities data set.

Holidays Data Set

Purpose
You can use a holidays data set, specified with the HOLIDATA= option, to identify 
the following:

Concepts: CALENDAR Procedure 223



n holidays on your calendar output.

n days that are not available for scheduling work. (In a schedule calendar, PROC 
CALENDAR does not schedule activities on these days.)

Structure
Each observation in the holidays data set must contain at least the holiday starting 
date. A holiday lasts only one day unless a duration or finishing date is specified. 
Supplying a holiday name is recommended, though not required. If you do not 
specify which variable contains the holiday name, then PROC CALENDAR uses the 
word DATE to identify each holiday.

Table 9.6 Required Statements

Variable Content Statement

Starting date “HOLISTART Statement” on page 
246

Name “HOLIVAR Statement” on page 247

Duration “HOLIDUR Statement” on page 245

Finishing date “HOLIFIN Statement” on page 246

No Sorting Needed
You do not need to sort or index the holidays data set.

Using SAS Date versus SAS Datetime 
Values
PROC CALENDAR calculates time using SAS datetime values. Even when your 
data is in DATE. format, the procedure automatically calculates time in minutes and 
seconds. Therefore, if you specify only date values, then PROC CALENDAR prints 
messages similar to the following ones to the SAS log:

NOTE: All holidays are assumed to start at the
      time/date specified for the holiday variable
      and last one DTWRKDAY.
WARNING: The units of calculation are SAS datetime
         values while all the holiday variables are
         not. All holidays are converted to SAS
         datetime values.

224 Chapter 9 / CALENDAR Procedure



Create a Generic Holidays Data Set
If you have many applications that require PROC CALENDAR output, then consider 
creating a generic holidays data set that contains standard holidays. You can begin 
with the generic holidays and add observations that contain holidays or nonwork 
events specific to an application.

Holidays and Nonwork Periods
Do not schedule holidays during nonwork periods. Holidays that are defined in the 
HOLIDATA= data set cannot occur during any nonwork periods that are defined in 
the work schedule. For example, you cannot schedule Sunday as a vacation day if 
the work week is defined as Monday through Friday. When such a conflict occurs, 
the holiday is rescheduled to the next available working period following the 
nonwork day.

Examples
Every example in the Examples section uses a holidays data set.

Calendar Data Set

Purpose
You can use a calendar data set, specified with the CALEDATA= option, to specify 
work schedules for different calendars.

Structure
Each observation in the calendar data set defines one weekly work schedule. The 
data set created in the DATA step shown below defines weekly work schedules for 
two calendars, CALONE and CALTWO.

data cale;
   input _sun_ $ _mon_ $ _tue_ $ _wed_ $ _thu_ $ /
         _fri_ $ _sat_ $ _cal_ $ d_length time6.;
   datalines;
holiday workday workday workday workday

Concepts: CALENDAR Procedure 225



workday holiday calone 8:00
holiday shift1 shift1 shift1 shift1
shift2 holiday caltwo 9:00
;

These are the variables in this calendar data set:

_SUN_ through _SAT_
the name of each day of the week that appears in the calendar. The values of 
these variables contain the name of work shifts. These are the valid values for 
work shifts:

n WORKDAY (the default work shift)

n HOLIDAY (a nonwork period)

n names of variables in the WORKDATA= data set (in this example, SHIFT1 
and SHIFT2)

_CAL_
the CALID (calendar identifier) variable. The values of this variable identify 
different calendars. If this variable is not present, then the first observation in this 
data set defines the work schedule that is applied to all calendars in the activities 
data set.

If the CALID variable contains a missing value, then the character or numeric 
value for the default calendar (DEFAULT or 0) is used. For more details, see “The 
Default Calendars” on page 217. 

D_LENGTH
the daylength identifier variable. Values of D_LENGTH indicate the length of the 
standard workday to be used in calendar calculations. You can set the workday 
length either by placing this variable in your calendar data set or by using the 
DAYLENGTH= option.

Missing values for this variable default to the number of hours specified in the 
DAYLENGTH= option. If the DAYLENGTH= option is not used, then the day 
length defaults to 24 hours if INTERVAL=DAY, or eight hours if 
INTERVAL=WORKDAY.

Using Default Work Shifts Instead of a 
Workdays Data Set
You can use a calendar data set with or without a workdays data set. Without a 
workdays data set, WORKDAY in the calendar data set is equal to one of two 
standard workdays, depending on the setting of the INTERVAL= option:

Table 9.7 Workday Settings

INTERVAL= Work-Shift Start Day Length

DAY 00:00 24 hours

WORKDAY 9:00 8 hours

226 Chapter 9 / CALENDAR Procedure



You can reset the length of the standard workday with the DAYLENGTH= option or 
a D_LENGTH variable in the calendar data set. You can define other work shifts in a 
workdays data set.

Examples
The following examples feature a calendar data set:

n “Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated 
Output)” on page 265

n “Example 4: Multiple Schedule Calendars with Atypical Work Shifts (Combined 
and Mixed Output)” on page 272

n “Example 7: Summary Calendar with MEAN Values by Observation” on page 
289

Workdays Data Set

Purpose
You can use a workdays data set, specified with the WORKDATA= option, to define 
the daily work shifts named in a CALEDATA= data set.

Use Default Work Shifts or Create Your 
Own?
You do not need a workdays data set if your application can use one of two default 
work shifts:

Table 9.8 Default Work Shifts

INTERVAL= Work-Shift Start Day Length

DAY 00:00 24 hours

WORKDAY 9:00 8 hours

See the “INTERVAL=DAY | WORKDAY ” on page 237. 

Concepts: CALENDAR Procedure 227



Structure
Each variable in the workdays data set contains one daily schedule of alternating 
work and nonwork periods. For example, this DATA step creates a data set that 
contains specifications for two work shifts:

data work;
   input shift1 time6. shift2 time6.;
   datalines;
7:00  7:00
12:00 11:00
13:00   .
17:00   .
;

The variable SHIFT1 specifies a 10-hour workday, with one nonwork period (a lunch 
hour); the variable SHIFT2 specifies a 4-hour workday with no nonwork periods.

How Missing Values Are Treated
The missing values default to 00:00 in the first observation and to 24:00 in all other 
observations. Two consecutive values of 24:00 define a zero-length time period, 
which is ignored.

Examples
See “Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated 
Output)” on page 265

Missing Values in Input Data Sets
The following table summarizes the treatment of missing values for variables in the 
data sets used by PROC CALENDAR.

Table 9.9 Treatment of Missing Values in PROC CALENDAR

Data set Variable Treatment of Missing Values

Activities (DATA=) “_CAL_” on page 226 Default calendar value is used.

“START Statement” on 
page 251

Observation is not used.

228 Chapter 9 / CALENDAR Procedure



Data set Variable Treatment of Missing Values

“DUR Statement” on 
page 243

1.0 is used.

“FIN Statement” on page 
244

START value + daylength is used.

“VAR Statement” on page 
253

If a summary calendar or the MISSING option is 
specified, then the missing value is used. 
Otherwise, no value is used.

“SUM Statement” on 
page 252 , “MEAN 
Statement” on page 248

0

Calendar 
(CALEDATA=)

“_CAL_” on page 226 Default calendar value is used.

“_SUN_ through _SAT_” 
on page 226 

Corresponding shift for default calendar is used.

“D_LENGTH” on page 
226 

If available, DAYLENGTH= value is used, or, if 
INTERVAL=DAY, 24:00 is used. Otherwise, 8:00 
is used.

“SUM Statement” on 
page 252 , “MEAN 
Statement” on page 248

0

Holiday (HOLIDATA=) “_CAL_” on page 226 All holidays apply to all calendars.

“HOLISTART Statement” 
on page 246

Observation is not used.

“HOLIDUR Statement” on 
page 245

If available, HOLIFIN value is used instead of 
HOLIDUR value. Otherwise, 1.0 is used.

“HOLIFIN Statement” on 
page 246

If available, HOLIDUR value is used instead of 
HOLIFIN value. Otherwise, HOLISTART value + 
day length is used.

“HOLIVAR Statement” on 
page 247

No value is used.

Workdays 
(WORKDATA=)

any For the first observation, 00:00 is used. 
Otherwise, 24:00 is used.

Concepts: CALENDAR Procedure 229



Syntax: CALENDAR Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

Requirements: You must use a START statement.
For schedule calendars, you must also use a DUR or FIN statement.

Tips: If you use a DUR or FIN statement, then PROC CALENDAR produces a schedule 
calendar.
You can use the FORMAT, LABEL, and WHERE statements with PROC CALENDAR. 
For more information, see “Statements with the Same Function in Multiple Procedures” 
on page 73.
You can also use any global statement. For a list, see “Global Statements” on page 24 
and “Dictionary of SAS Global Statements” in SAS Global Statements: Reference. 

PROC CALENDAR <options>;
START variable;
BY <DESCENDING> variable-1

<<DESCENDING> variable-2 …>
<NOTSORTED>;

CALID variable
</ OUTPUT=COMBINE | MIX | SEPARATE>;

DUR variable;
FIN variable;
HOLISTART variable;

HOLIDUR variable;
HOLIFIN variable;
HOLIVAR variable;

MEAN variable(s) </ FORMAT=format-name>;
OUTSTART day-of-week;

OUTDUR number-of-days;
OUTFIN day-of-week;

SUM variable(s) </ FORMAT=format-name>;
VAR variable(s);

Statement Task Example

PROC CALENDAR Display data from a SAS data set in a monthly 
calendar format

Ex. 1, Ex. 3, 
Ex. 4, Ex. 5, 
Ex. 6, Ex. 8

BY Process activities separately for each BY 
group, producing a separate calendar for each 
value of the BY variable

230 Chapter 9 / CALENDAR Procedure

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0e7kamd4b486zn10o4lcseg4qvd.htm&locale=en


Statement Task Example

CALID Process activities in groups defined by the 
values of a calendar identifier variable

Ex. 2, Ex. 3, 
Ex. 4, Ex. 6, 
Ex. 7, Ex. 8

DUR Specify the variable that contains the duration 
of each activity

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5

FIN Specify the variable in the activities data set 
that contains the finishing date of each activity

Ex. 6

HOLIDUR Specify the variable in the holidays data set 
that contains the duration of each holiday for a 
schedule calendar

Ex. 1, Ex. 5

HOLIFIN Specify the variable in the holidays data set 
that contains the finishing date of each holiday

HOLISTART Specify a variable in the holidays data set that 
contains the starting date of each holiday

Ex. 1, Ex. 5

HOLIVAR Specify a variable in the holidays data set 
whose values are used to label the holidays

Ex. 1, Ex. 5

MEAN Specify numeric variables in the activities data 
set for which mean values are to be calculated 
for each month

OUTDUR Specify in days the length of the week to be 
displayed

OUTFIN Specify the last day of the week to display in 
the calendar

Ex. 3, Ex. 4, 
Ex. 8

OUTSTART Specify the starting day of the week to display 
in the calendar

Ex. 3, Ex. 4, 
Ex. 8

START Specify the variable in the activities data set 
that contains the starting date of each activity

Ex. 1

SUM Specify numeric variables in the activities data 
set to total for each month

Ex. 8

VAR Specify the variables that you want to display 
for each activity

Ex. 6

PROC CALENDAR Statement
Displays data from a SAS data set in a monthly calendar format.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

PROC CALENDAR Statement 231



Examples: “Example 1: Schedule Calendar with Holidays: 5-Day Default” on page 255
“Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated Output)” 
on page 265
“Example 4: Multiple Schedule Calendars with Atypical Work Shifts (Combined and 
Mixed Output)” on page 272
“Example 5: Schedule Calendar, Blank or with Holidays” on page 278
“Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks” on 
page 281
“Example 8: Multiple Summary Calendars with Atypical Work Shifts (Separated Output)” 
on page 294

Syntax
PROC CALENDAR <options>;

Summary of Optional Arguments
Control printing

FILL
displays all months, even if no activities exist.

FORMCHAR <(position(s))>='formatting-character(s)'
defines characters used for outlines, dividers, and so on.

HEADER=SMALL | MEDIUM | LARGE
specifies the type of heading to use in printing the name of the month.

LOCALE
displays month and weekday names in the local language.

MISSING
specifies how to show missing values.

WEEKDAYS
suppresses the display of Saturdays and Sundays in the output.

Control summary information
LEGEND

prints the names of the variables whose values appear in the calendar.
MEANTYPE=NOBS | NDAYS

specifies the type of mean to calculate for each month.

Specify data sets containing
CALEDATA=SAS-data-set

weekly work schedules
DATA=SAS-data-set

activities
HOLIDATA=SAS-data-set

holidays
WORKDATA=SAS-data-set

unique shift patterns

232 Chapter 9 / CALENDAR Procedure



Specify time or duration
DATETIME

specifies that START and FIN variables contain values in DATETIME. 
format.

DAYLENGTH=hours
specifies the number of hours in a standard work day.

INTERVAL=DAY | WORKDAY 
specifies the units of the DUR and HOLIDUR variables.

Optional Arguments
CALEDATA=SAS-data-set

specifies the calendar data set, a SAS data set that contains weekly work 
schedules for multiple calendars.

Default If you omit the CALEDATA= option, then PROC CALENDAR uses a 
default work schedule.

Tip A calendar data set is useful if you are using multiple calendars or a 
nonstandard work schedule.

See “The Default Calendars” on page 217 

“Calendar Data Set ” on page 225 

Examples “Example 3: Multiple Schedule Calendars with Atypical Work Shifts 
(Separated Output)” on page 265

“Example 4: Multiple Schedule Calendars with Atypical Work Shifts 
(Combined and Mixed Output)” on page 272

DATA=SAS-data-set
specifies the activities data set, a SAS data set that contains starting dates for all 
activities and variables to display for each activity. Activities must be sorted or 
indexed by starting date.

Default If you omit the DATA= option, then the most recently created SAS 
data set is used.

See “Activities Data Set ” on page 222 

Example “Example 1: Schedule Calendar with Holidays: 5-Day Default” on 
page 255

DATETIME
specifies that START and FIN variables contain values in DATETIME. format. 

Default If you omit the DATETIME option, then PROC CALENDAR assumes 
that the START and FIN values are in the DATE. format.

Examples “Example 3: Multiple Schedule Calendars with Atypical Work Shifts 
(Separated Output)” on page 265

“Example 4: Multiple Schedule Calendars with Atypical Work Shifts 
(Combined and Mixed Output)” on page 272

PROC CALENDAR Statement 233



“Example 8: Multiple Summary Calendars with Atypical Work Shifts 
(Separated Output)” on page 294

DAYLENGTH=hours
The hour value must be a SAS TIME value.

Default 24 if INTERVAL=DAY (the default), 8 if INTERVAL=WORKDAY.

Restriction DAYLENGTH= applies only to schedule calendars.

Interactions If you specify the DAYLENGTH= option and the calendar data set 
contains a D_LENGTH variable, then PROC CALENDAR uses the 
DAYLENGTH= value only when the D_LENGTH value is missing.

When INTERVAL=DAY and you have no CALEDATA= data set, 
specifying a DAYLENGTH= value has no effect.

Tips The DAYLENGTH= option is useful when you use the DUR 
statement and your work schedule contains days of varying 
lengths (for example, a work week of five half-days). In a work 
week with varying day lengths, you need to set a standard day 
length to use in calculating duration times. For example, an activity 
with a duration of 3.0 workdays lasts 24 hours if 
DAYLENGTH=8:00 or 30 hours if DAYLENGTH=10:00.

Instead of specifying the DAYLENGTH= option, you can specify 
the length of the working day by using a D_LENGTH variable in 
the CALEDATA= data set. If you use this method, then you can 
specify different standard day lengths for different calendars.

See “Calendar Data Set ” on page 225 for more information about 
setting the length of the standard workday

FILL
displays all months between the first and last activity, start and finish dates 
inclusive, including months that contain no activities.

Default If you do not specify FILL, then PROC CALENDAR prints only months 
that contain activities. (Months that contain only holidays are not 
printed.)

Example “Example 5: Schedule Calendar, Blank or with Holidays” on page 278

FORMCHAR <(position(s))>='formatting-character(s)'
defines the characters to use for constructing the outlines and dividers for the 
cells in the calendar as well as all identifying markers (such as asterisks and 
arrows) used to indicate holidays or continuation of activities in PROC 
CALENDAR output. 

position(s)
identifies the position of one or more characters in the SAS formatting-
character string. A space or a comma separates the positions.

Default Omitting (position(s)) is the same as specifying all 20 possible 
system formatting characters, in order.

Range PROC CALENDAR uses 17 of the 20 formatting characters that 
SAS provides.

234 Chapter 9 / CALENDAR Procedure



See Table 9.15 on page 235 shows the formatting characters that PROC 
CALENDAR uses.

Figure 9.12 on page 235 illustrates their use in PROC CALENDAR 
output.

formatting-character(s)
lists the characters to use for the specified positions. PROC CALENDAR 
assigns characters in formatting-character(s) to position(s), in the order in 
which they are listed. For example, the following option assigns an asterisk 
(*) to the 12th position, assigns a single hyphen (-) to the 13th, and does not 
alter remaining characters:

formchar(12 13)='*-'

These new settings change the activity line from this:

+=================ACTIVITY===============+

to this:

*------------------ACTIVITY--------------*

Figure 9.1 Formatting Characters in PROC CALENDAR Output

Table 9.10 Formatting Characters Used by PROC CALENDAR

Position Default Used to Draw

1 | Vertical bar

PROC CALENDAR Statement 235



Position Default Used to Draw

2 - Horizontal bar

3 - Cell: upper left corner

4 - Cell: upper middle intersection

5 - Cell: upper right corner

6 | Cell: middle left cell side

7 + Cell: middle middle intersection

8 | Cell: middle right cell side

9 - Cell: lower left corner

10 - Cell: lower middle intersection

11 - Cell: lower right corner

12 + Activity start and finish

13 = Activity line

16 / Activity separator

18 < Activity continuation from

19 > Activity continuation to

20 * Holiday marker

Interaction The SAS system option FORMCHAR= specifies the default 
formatting characters. The SAS system option defines the entire 
string of formatting characters. The FORMCHAR= option in a 
procedure can redefine selected characters.

Tip You can use any character in formatting-characters, including 
hexadecimal characters. If you use hexadecimal characters, then 
you must put an x after the closing quotation mark. For example, 
the following option assigns the hexadecimal character 2-D to the 
third formatting character, the hexadecimal character 7C to the 
seventh character, and does not alter the remaining characters: 
formchar(3,7)='2D7C'x

See For information about which hexadecimal codes to use for which 
characters, consult the documentation for your hardware.

236 Chapter 9 / CALENDAR Procedure



HEADER=SMALL | MEDIUM | LARGE
specifies the type of heading to use in printing the name of the month.

SMALL
prints the month and year on one line.

MEDIUM
prints the month and year in a box four lines high.

LARGE
prints the month seven lines high using asterisks (*). The year is included if 
space is available.

Default MEDIUM

HOLIDATA=SAS-data-set
specifies the holidays data set, a SAS data set that contains the holidays that 
you want to display in the output. One variable must contain the holiday names 
and another must contain the starting dates for each holiday. PROC CALENDAR 
marks holidays in the calendar output with asterisks (*) when space permits.

Interaction Displaying holidays on a calendar requires a holidays data set and a 
HOLISTART statement. A HOLIVAR statement is recommended for 
naming holidays. HOLIDUR is required if any holiday lasts longer 
than one day.

Tip The holidays data set does not require sorting.

See “Holidays Data Set ” on page 223 

Examples “Example 1: Schedule Calendar with Holidays: 5-Day Default” on 
page 255

“Example 5: Schedule Calendar, Blank or with Holidays” on page 
278

INTERVAL=DAY | WORKDAY 
specifies the units of the DUR and HOLIDUR variables to one of two default day 
lengths: 

DAY
specifies the values of the DUR and HOLIDUR variables in units of 24-hour 
days and specifies the default 7-day calendar. For example, a DUR value of 
3.0 is treated as 72 hours. The default calendar work schedule consists of 
seven working days, all starting at 00:00 with a length of 24:00.

WORKDAY
specifies the values of the DUR and HOLIDUR variables in units of 8-hour 
days. WORKDAY also specifies that the default calendar contains five days a 
week, Monday through Friday, all starting at 09:00 with a length of 08:00. 
When WORKDAY is specified, PROC CALENDAR treats the values of the 
DUR and HOLIDUR variables in units of working days, as defined in the 
DAYLENGTH= option, the CALEDATA= data set, or the default calendar. For 
example, if the working day is eight hours long, then a DUR value of 3.0 is 
treated as 24 hours.

Example “Example 5: Schedule Calendar, Blank or with Holidays” on page 
278

PROC CALENDAR Statement 237



Default DAY

Interactions If there is no CALEDATA= data set, PROC CALENDAR uses the 
work schedule defined in a default calendar.

The WEEKDAYS option automatically sets the INTERVAL= value 
to WORKDAY.

See “Calendars and Multiple Calendars” on page 218 and “Calendar 
Data Set ” on page 225 for more information about the INTERVAL= 
option and the specification of working days; “The Default 
Calendars” on page 217 

Example “Example 5: Schedule Calendar, Blank or with Holidays” on page 
278

LEGEND
prints the names of the variables whose values appear in the calendar. This 
identifying text, or legend box, appears at the bottom of the page for each month 
if space permits. Otherwise, it is printed on the following page. PROC 
CALENDAR identifies each variable by name or by label if one exists. The order 
of variables in the legend matches their order in the calendar.

Restriction LEGEND applies only to summary calendars.

Interaction If you use the SUM and MEAN statements, then the legend box 
also contains SUM and MEAN values.

Example “Example 8: Multiple Summary Calendars with Atypical Work Shifts 
(Separated Output)” on page 294

LOCALE
prints the names of months and weekdays in the language that is indicated by 
the value of the LOCALE= SAS system option. The LOCALE option in PROC 
CALENDAR does not change the starting day of the week.

Default If LOCALE is not specified, then names of months and weekdays are 
printed in English.

MEANTYPE=NOBS | NDAYS
specifies the type of mean to calculate for each month. 

NOBS
calculates the mean over the number of observations displayed in the month.

NDAYS
calculates the mean over the number of days displayed in the month.

Default NOBS

Restriction MEANTYPE= applies only to summary calendars.

Interaction Normally, PROC CALENDAR displays all days for each month. 
However, it might omit some days if you use the OUTSTART 
statement with the OUTDUR or OUTFIN statement.

Example “Example 7: Summary Calendar with MEAN Values by Observation” 
on page 289

238 Chapter 9 / CALENDAR Procedure



MISSING
determines how missing values are treated, based on the type of calendar. 

Summary Calendar
If there is a day without an activity scheduled, then PROC CALENDAR prints 
the values of variables for that day by using the SAS or user-defined that is 
format specified for missing values.

Default If you omit MISSING, then days without activities contain no values.

Schedule Calendar
variables with missing values appear in the label of an activity, using the 
format specified for missing values.

Default If you do not specify MISSING, then PROC CALENDAR ignores 
missing values in labeling activities.

See “Missing Values in Input Data Sets” on page 228 for more information 
about missing values

WEEKDAYS
suppresses the display of Saturdays and Sundays in the output. It also specifies 
that the value of the INTERVAL= option is WORKDAY.

  proc calendar weekdays;
    start date; 
run;  
proc calendar interval=workday;
    start date;    
outstart monday;    
outfin friday; 
run;

Default If you omit WEEKDAYS, then the calendar displays all seven days.

Tip The WEEKDAYS option is an alternative to using the combination of 
INTERVAL=WORKDAY and the OUTSTART and OUTFIN statements, 
as shown here:

Example “Example 1: Schedule Calendar with Holidays: 5-Day Default” on 
page 255

WORKDATA=SAS-data-set
specifies the workdays data set, a SAS data set that defines the work pattern 
during a standard working day. Each numeric variable in the workdays data set 
denotes a unique work-shift pattern during one working day.

Tip The workdays data set is useful in conjunction with the calendar data 
set.

See “Workdays Data Set ” on page 227 and “Calendar Data Set ” on 
page 225 

Examples “Example 3: Multiple Schedule Calendars with Atypical Work Shifts 
(Separated Output)” on page 265

“Example 4: Multiple Schedule Calendars with Atypical Work Shifts 
(Combined and Mixed Output)” on page 272

PROC CALENDAR Statement 239



BY Statement
Processes activities separately for each BY group, producing a separate calendar for each value of the BY 
variable.

Supports: Summary and schedule calendars

See: “CALID Statement” on page 241
“BY” on page 74 (main discussion)

Example: “Example 1: Schedule Calendar with Holidays: 5-Day Default” on page 255

Syntax
BY <DESCENDING> variable-1

<<DESCENDING> variable-2 …>
<NOTSORTED>;

Required Argument
variable

specifies the variable that the procedure uses to form BY groups. You can 
specify more than one variable, but the observations in the data set must be 
sorted by all the variables that you specify or have an appropriate index. 
Variables in a BY statement are called BY variables.

Optional Arguments
DESCENDING

specifies that the observations are sorted in descending order by the variable 
that immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. The observations are grouped in another way (for example, chronological 
order).

Details
When you use the CALID statement, you can process activities that apply to 
different calendars, indicated by the value of the CALID variable. Because you can 
specify only one CALID variable, however, you can create only one level of 
grouping. For example, if you want a calendar report to show the activities of several 
departments within a company, then you can identify each department with the 
value of the CALID variable and produce calendar output that shows the calendars 
for all departments.

240 Chapter 9 / CALENDAR Procedure



When you use a BY statement, however, you can further divide activities into related 
groups. For example, you can print calendar output that groups departmental 
calendars by division. The observations for activities must contain a variable that 
identifies which department an activity belongs to and a variable that identifies the 
division that a department resides in. Specify the variable that identifies the 
department with the CALID statement. Specify the variable that identifies the 
division with the BY statement.

CALID Statement
Processes activities in groups defined by the values of a calendar identifier variable.

Supports: Summary and schedule calendars

Tip: CALID is useful for producing multiple schedule calendars and for use with SAS/OR 
software.

See: “Calendar Data Set ” on page 225 

Examples: “Example 2: Schedule Calendar Containing Multiple Calendars” on page 260
“Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated Output)” 
on page 265
“Example 4: Multiple Schedule Calendars with Atypical Work Shifts (Combined and 
Mixed Output)” on page 272
“Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks” on 
page 281
“Example 7: Summary Calendar with MEAN Values by Observation” on page 289
“Example 8: Multiple Summary Calendars with Atypical Work Shifts (Separated Output)” 
on page 294

Syntax
CALID variable

</ OUTPUT=COMBINE | MIX | SEPARATE>;

Required Argument
variable

a character or numeric variable that identifies which calendar an observation 
contains data for.

Requirement If you specify the CALID variable, then both the activities and 
holidays data sets must contain this variable. If either of these 
data sets does not contain the CALID variable, then a default 
calendar is used.

Interaction SAS/OR software uses this variable to identify which calendar an 
observation contains data for.

CALID Statement 241



Tip You do not need to use a CALID statement to create this variable. 
You can include the default variable _CALID_ in the input data 
sets.

See “Calendar Data Set ” on page 225 

Optional Argument
OUTPUT=COMBINE | MIX | SEPARATE

controls the amount of space required to display output for multiple calendars.

COMBINE
produces one page for each month that contains activities and subdivides 
each day by the CALID value.

Restriction The input data must be sorted by or indexed on the START 
variable.

Examples “Example 2: Schedule Calendar Containing Multiple Calendars” 
on page 260

“Example 4: Multiple Schedule Calendars with Atypical Work 
Shifts (Combined and Mixed Output)” on page 272

MIX
produces one page for each month that contains activities and does not 
identify activities by the CALID value.

Restriction The input data must be sorted by or indexed on the START 
variable.

Tip MIX requires the least space for output.

Example “Example 4: Multiple Schedule Calendars with Atypical Work 
Shifts (Combined and Mixed Output)” on page 272

SEPARATE
produces a separate page for each value of the CALID variable.

Restriction The input data must be sorted by the CALID variable and then 
by the START variable or must contain an appropriate 
composite index.

Examples “Example 3: Multiple Schedule Calendars with Atypical Work 
Shifts (Separated Output)” on page 265

“Example 8: Multiple Summary Calendars with Atypical Work 
Shifts (Separated Output)” on page 294

“Example 7: Summary Calendar with MEAN Values by 
Observation” on page 289

Default COMBINE

242 Chapter 9 / CALENDAR Procedure



DUR Statement
Specifies the variable that contains the duration of each activity.

Alias: DURATION

Interaction: If you use both a DUR statement and a FIN statement, then DUR is ignored.

Supports: Schedule calendars

Tip: To produce a schedule calendar, you must use either a DUR or FIN statement.

Examples: “Example 1: Schedule Calendar with Holidays: 5-Day Default” on page 255
“Example 2: Schedule Calendar Containing Multiple Calendars” on page 260
“Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated Output)” 
on page 265
“Example 4: Multiple Schedule Calendars with Atypical Work Shifts (Combined and 
Mixed Output)” on page 272
“Example 5: Schedule Calendar, Blank or with Holidays” on page 278

Syntax
DUR variable;

Required Argument
variable

contains the duration of each activity in a schedule calendar.

Range The duration can be a real or integral value.

Restriction This variable must be in the activities data set.

See For more information about activity durations, see “Activities Data 
Set ” on page 222 and “Calendar Data Set ” on page 225 

Details
Duration is measured inclusively from the start of the activity (as given in the START 
variable). In the output, any activity that lasts part of a day is displayed as lasting a 
full day.

The INTERVAL= option in a PROC CALENDAR statement automatically sets the 
unit of the duration variable, depending on its own value as follows:

DUR Statement 243



Table 9.11 INTERVAL= Settings

INTERVAL= Default Length of the Duration Unit

DAY (the default) 24 hours

WORKDAY 8 hours

You can override the default length of a duration unit by using one of the following:

n the DAYLENGTH= option

n a D_LENGTH variable in the CALEDATA= data set

FIN Statement
Specifies the variable in the activities data set that contains the finishing date of each activity.

Alias: FINISH

Interaction: If you use both a FIN statement and a DUR statement, then FIN is used.

Supports: Schedule calendars

Tip: To produce a schedule calendar, you must use either a FIN or DUR statement.

Example: “Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks” on 
page 281

Syntax
FIN variable;

Required Argument
variable

contains the finishing date of each activity.

Restrictions The values of variable must be either SAS date or datetime 
values.

If the FIN variable contains datetime values, then you must specify 
the DATETIME option in the PROC CALENDAR statement.

Both the START and FIN variables must have matching formats. 
For example, if one contains datetime values, then so must the 
other.

244 Chapter 9 / CALENDAR Procedure



HOLIDUR Statement
Specifies the variable in the holidays data set that contains the duration of each holiday for a schedule 
calendar.

Alias: HOLIDURATION

Default: If you do not use a HOLIDUR or HOLIFIN statement, then all holidays last one day.

Restriction: You cannot use the HOLIDUR statement with a HOLIFIN statement.

Supports: Schedule calendars

Examples: “Example 1: Schedule Calendar with Holidays: 5-Day Default” on page 255
“Example 5: Schedule Calendar, Blank or with Holidays” on page 278

Syntax
HOLIDUR variable;

Required Argument
variable

contains the duration of each holiday.

Range The duration can be a real or integral value.

Restriction This variable must be in the holidays data set.

Examples “Example 3: Multiple Schedule Calendars with Atypical Work Shifts 
(Separated Output)” on page 265

“Example 8: Multiple Summary Calendars with Atypical Work Shifts 
(Separated Output)” on page 294

Details
n If you use both the HOLIFIN and HOLIDUR statements, then PROC CALENDAR 

uses the HOLIFIN variable value to define each holiday's duration.

n Set the unit of the holiday duration variable in the same way that you set the unit 
of the duration variable; use either the INTERVAL= and DAYLENGTH= options 
or the CALEDATA= data set.

n Duration is measured inclusively from the start of the holiday (as given in the 
HOLISTART variable). In the output, any holiday lasting at least half a day 
appears as lasting a full day.

HOLIDUR Statement 245



HOLIFIN Statement
Specifies the variable in the holidays data set that contains the finishing date of each holiday.

Alias: HOLIFINISH

Default: If you do not use a HOLIFIN or HOLIDUR statement, then all holidays last one day.

Supports: Schedule calendars

Syntax
HOLIFIN variable;

Required Argument
variable

contains the finishing date of each holiday.

Restrictions This variable must be in the holidays data set.

Values of variable must be in either SAS date or datetime values.

If the HOLIFIN variable contains datetime values, then you must 
specify the DATETIME option in the PROC CALENDAR 
statement.

If a HOLIFIN statement or a HOLIDUR statement is not specified, 
then all holidays last one day.

Details
If you use both the HOLIFIN and HOLIDUR statements, then PROC CALENDAR 
uses only the HOLIFIN variable.

HOLISTART Statement
Specifies a variable in the holidays data set that contains the starting date of each holiday.

Aliases: HOLISTA
HOLIDAY

Requirement: When you use a holidays data set, HOLISTART is required.

Supports: Summary and schedule calendars

246 Chapter 9 / CALENDAR Procedure



Examples: “Example 1: Schedule Calendar with Holidays: 5-Day Default” on page 255
“Example 5: Schedule Calendar, Blank or with Holidays” on page 278

Syntax
HOLISTART variable;

Required Argument
variable

contains the starting date of each holiday.

Restrictions Values of variable must be in either SAS date or datetime values.

If the HOLISTART variable contains datetime values, then specify 
the DATETIME option in the PROC CALENDAR statement.

Details
n The holidays data set do not need to be sorted.

n All holidays last only one day, unless you use a HOLIFIN or HOLIDUR 
statement.

n If two or more holidays occur on the same day, then PROC CALENDAR uses 
only the first observation.

HOLIVAR Statement
Specifies a variable in the holidays data set whose values are used to label the holidays.

Aliases: HOLIVARIABLE
HOLINAME

Default: If you do not use a HOLIVAR statement, then PROC CALENDAR uses the word DATE 
to identify holidays.

Supports: Summary and schedule calendars

Examples: “Example 1: Schedule Calendar with Holidays: 5-Day Default” on page 255
“Example 5: Schedule Calendar, Blank or with Holidays” on page 278

Syntax
HOLIVAR variable;

HOLIVAR Statement 247



Required Argument
variable

a variable whose values are used to label the holidays. Typically, this variable 
contains the names of the holidays.

Range character or numeric.

Restrictions This variable must be in the holidays data set.

If a HOLIVAR statement is not specified, then PROC CALENDAR 
use the word DATE to identify holidays.

Tip You can format the HOLIVAR variable as you like.

MEAN Statement
Specifies numeric variables in the activities data set for which mean values are to be calculated for each 
month.

Supports: Summary calendars

Tip: You can use multiple MEAN statements.

See: “Example 7: Summary Calendar with MEAN Values by Observation” on page 289

Syntax
MEAN variable(s) </ FORMAT=format-name>;

Required Argument
variable(s)

numeric variable for which mean values are calculated for each month.

Restriction This variable must be in the activities data set.

Optional Argument
FORMAT=format-name

names a SAS or user-defined format to be used in displaying the means 
requested.

Alias F=

Default BEST. format

Example “Example 7: Summary Calendar with MEAN Values by Observation” 
on page 289

248 Chapter 9 / CALENDAR Procedure



Details
n The means appear at the bottom of the summary calendar page, if there is room. 

Otherwise, they appear on the following page.

n The means appear in the LEGEND box if you specify the LEGEND option.

n PROC CALENDAR automatically displays variables named in a MEAN 
statement in the calendar output, even if the variables are not named in the VAR 
statement.

OUTDUR Statement
Specifies in days the length of the week to be displayed.

Alias: OUTDURATION

Requirement: The OUTSTART statement is required.

Syntax
OUTDUR number-of-days;

Required Argument
number-of-days

an integer that expresses the length in days of the week to be displayed.

Details
Use either the OUTDUR or OUTFIN statement to supply the procedure with 
information about the length of the week to display. If you use both, then PROC 
CALENDAR ignores the OUTDUR statement.

OUTFIN Statement
Specifies the last day of the week to display in the calendar.

Alias: OUTFINISH

Requirement: The OUTSTART statement is required.

See: “Example 8: Multiple Summary Calendars with Atypical Work Shifts (Separated Output)” 
on page 294

OUTFIN Statement 249



Examples: “Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated Output)” 
on page 265
“Example 4: Multiple Schedule Calendars with Atypical Work Shifts (Combined and 
Mixed Output)” on page 272
“Example 8: Multiple Summary Calendars with Atypical Work Shifts (Separated Output)” 
on page 294

Syntax
OUTFIN day-of-week;

Required Argument
day-of-week

the name of the last day of the week to display. For example,

    outfin friday;

Details
Use either the OUTFIN or OUTDUR statement to supply the procedure with 
information about the length of the week to display. If you use both, then PROC 
CALENDAR uses only the OUTFIN statement.

OUTSTART Statement
Specifies the starting day of the week to display in the calendar.

Alias: OUTSTA

Default: If you do not use OUTSTART, then each calendar week begins with Sunday.

See: “Example 8: Multiple Summary Calendars with Atypical Work Shifts (Separated Output)” 
on page 294

Examples: “Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated Output)” 
on page 265
“Example 4: Multiple Schedule Calendars with Atypical Work Shifts (Combined and 
Mixed Output)” on page 272
“Example 8: Multiple Summary Calendars with Atypical Work Shifts (Separated Output)” 
on page 294

Syntax
OUTSTART day-of-week;

250 Chapter 9 / CALENDAR Procedure



Required Argument
day-of-week

the name of the starting day of the week for each week in the calendar. For 
example,

   outstart monday;

Details
By default, a calendar displays all seven days in a week. Use OUTDUR or OUTFIN, 
in conjunction with OUTSTART, to control how many days are displayed and which 
day starts the week.

START Statement
Specifies the variable in the activities data set that contains the starting date of each activity.

Aliases: STA
DATE
ID

Requirement: START is required for both summary and schedule calendars.

Example: “Example 1: Schedule Calendar with Holidays: 5-Day Default” on page 255

Syntax
START variable;

Required Argument
variable

contains the starting date of each activity.

Restrictions This variable must be in the activities data set.

Values of variable must be in either SAS date or datetime values.

If you use datetime values, then specify the DATETIME option in 
the PROC CALENDAR statement.

Both the START and FIN variables must have matching formats. 
For example, if one contains datetime values, then so must the 
other.

START Statement 251



SUM Statement
Specifies numeric variables in the activities data set to total for each month.

Supports: Summary calendars

Tip: To apply different formats to variables that are being summed, use multiple SUM 
statements.

Examples: “Example 7: Summary Calendar with MEAN Values by Observation” on page 289
“Example 8: Multiple Summary Calendars with Atypical Work Shifts (Separated Output)” 
on page 294

Syntax
SUM variable(s) </ FORMAT=format-name>;

Required Argument
variable(s)

specifies one or more numeric variables to total for each month.

Restriction This variable must be in the activities data set.

Optional Argument
FORMAT=format-name

names a SAS or user-defined format to use in displaying the sums requested.

Alias F=

Default BEST. format

Examples “Example 7: Summary Calendar with MEAN Values by Observation” 
on page 289

“Example 8: Multiple Summary Calendars with Atypical Work Shifts 
(Separated Output)” on page 294

Details
n The sum appears at the bottom of the calendar page, if there is room. Otherwise, 

it appears on the following page.

n The sum appears in the LEGEND box if you specify the LEGEND option.

252 Chapter 9 / CALENDAR Procedure



n PROC CALENDAR automatically displays variables named in a SUM statement 
in the calendar output, even if the variables are not named in the VAR statement.

VAR Statement
Specifies the variables that you want to display for each activity.

Alias: VARIABLE

Example: “Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks” on 
page 281

Syntax
VAR variable(s);

Required Argument
variable(s)

specifies one or more variables that you want to display in the calendar.

Range The values of variable can be either character or numeric.

Restriction These variables must be in the activities data set.

Tip You can apply a format to this variable.

Details

When VAR Is Not Used
If you do not use a VAR statement, then the procedure displays all variables in the 
activities data set in the order in which they occur in the data set, except for the BY, 
CALID, START, DUR, and FIN variables. However, not all variables are displayed if 
the LINESIZE= and PAGESIZE= settings do not allow enough space in the 
calendar.

Display of Variables
n PROC CALENDAR displays variables in the order in which they appear in the 

VAR statement. Not all variables are displayed, however, if the LINESIZE= and 
PAGESIZE= settings do not allow enough space in the calendar.

n PROC CALENDAR also displays any variable named in a SUM or MEAN 
statement for each activity in the calendar output. It displays the variable even if 
you do not name that variable in a VAR statement.

VAR Statement 253



Results: CALENDAR Procedure

What Affects the Quantity of PROC CALENDAR 
Output

The quantity of printed calendar output depends on the following variables:

n the range of dates in the activities data set

n whether the FILL option is specified

n the BY statement

n the CALID statement

PROC CALENDAR always prints one calendar for every month that contains any 
activities. If you specify the FILL option, then the procedure prints every month 
between the first and last activities, including months that contain no activities. 
Using the BY statement prints one set of output for each BY value. Using the CALID 
statement with OUTPUT=SEPARATE prints one set of output for each value of the 
CALID variable.

How Size Affects the Format of PROC CALENDAR 
Output

PROC CALENDAR always attempts to fit the calendar within a single page, as 
defined by the SAS system options PAGESIZE= and LINESIZE=. If the PAGESIZE= 
and LINESIZE= values do not allow sufficient room, then PROC CALENDAR might 
print the legend box on a separate page. If necessary, PROC CALENDAR truncates 
or omits values to make the output fit the page and prints messages to that effect in 
the SAS log.

What Affects the Lines That Show Activity Duration
In a schedule calendar, the duration of an activity is shown by a continuous line 
through each day of the activity. Values of variables for each activity are printed on 
the same line, separated by slashes (/). Each activity begins and ends with a plus 
sign (+). If an activity continues from one week to the next, then PROC CALENDAR 
displays arrows (< >) at the points of continuation.

254 Chapter 9 / CALENDAR Procedure



The length of the activity lines depends on the amount of horizontal space available. 
You can increase the length by specifying the following variables:

n a larger line size with the LINESIZE= option in the OPTIONS statement

n the WEEKDAYS option to suppress the printing of Saturday and Sunday, which 
provides more space for Monday through Friday

Customizing the Calendar Appearance
PROC CALENDAR uses 17 of the 20 SAS formatting characters to construct the 
outline of the calendar and to print activity lines and to indicate holidays. You can 
use the FORMCHAR= option to customize the appearance of your PROC 
CALENDAR output by substituting your own characters for the default. See Figure 
9.12 on page 235 and Table 9.15 on page 235. 

If your printer supports an extended character set (one that includes graphics 
characters in addition to the regular alphanumeric characters), then you can greatly 
improve the appearance of your output by using the FORMCHAR= option to 
redefine formatting characters with hexadecimal characters. For information about 
which hexadecimal codes to use for which characters, consult the documentation for 
your hardware. For an example of assigning hexadecimal values, see “formatting-
character(s)” on page 235. 

Portability of ODS Output with PROC CALENDAR
Under certain circumstances, using PROC CALENDAR with the Output Delivery 
System produces files that are not portable. If the SAS system option FORMCHAR= 
in your SAS session uses nonstandard line-drawing characters, then the output 
might include strange characters instead of lines in operating environments in which 
the SAS Monospace font is not installed. To avoid this problem, specify the following 
OPTIONS statement before executing PROC CALENDAR:

options formchar="|----|+|---+=|-/\<>*";

Examples: CALENDAR Procedure

Example 1: Schedule Calendar with Holidays: 5-
Day Default
Features: PROC CALENDAR statement options

DATA=

Example 1: Schedule Calendar with Holidays: 5-Day Default 255



HOLIDATA=
WEEKDAYS

Other statements
DUR statement
HOLISTART statement
HOLIVAR statement
HOLIDUR statement
START statement

Other features
PROC SORT statement
BY statement
5-day default calendar

Details
This example does the following:

n creates a schedule calendar

n uses one of the two default work patterns: 8-hour day, 5-day week

n schedules activities around holidays

n displays a 5-day week

Program
data allacty;
   input date : date7. event $ 9-36 who $ 37-48 long;
   datalines;
01JUL02 Dist. Mtg.                  All          1
17JUL02 Bank Meeting                1st Natl     1
02JUL02 Mgrs. Meeting               District 6   2
11JUL02 Mgrs. Meeting               District 7   2
03JUL02 Interview                   JW           1
08JUL02 Sales Drive                 District 6   5
15JUL02 Sales Drive                 District 7   5
08JUL02 Trade Show                  Knox         3
22JUL02 Inventors Show              Melvin       3
11JUL02 Planning Council            Group II     1
18JUL02 Planning Council            Group III    1
25JUL02 Planning Council            Group IV     1
12JUL02 Seminar                     White        1
19JUL02 Seminar                     White        1
18JUL02 NewsLetter Deadline         All          1
05JUL02 VIP Banquet                 JW           1
19JUL02 Co. Picnic                  All          1
16JUL02 Dentist                     JW           1
24JUL02 Birthday                    Mary         1
25JUL02 Close Sale                  WYGIX Co.    2
;

256 Chapter 9 / CALENDAR Procedure



data hol;
   input date : date7. holiday $ 11-25 holilong @27;
   datalines;
05jul02   Vacation        3
04jul02   Independence    1
;

proc sort data=allacty;
   by date;
run;

options formchar="|----|+|---+=|-/\<>*";

proc calendar data=allacty holidata=hol weekdays;

   start date;
   dur long;

   holistart date;
   holivar holiday;
   holidur holilong;

   title1 'Summer Planning Calendar:  Julia Cho';
   title2 'President, Community Bank';
run;

Program Description
Create the activities data set. Allacty contains both personal and business 
activities information for a bank president.

data allacty;
   input date : date7. event $ 9-36 who $ 37-48 long;
   datalines;
01JUL02 Dist. Mtg.                  All          1
17JUL02 Bank Meeting                1st Natl     1
02JUL02 Mgrs. Meeting               District 6   2
11JUL02 Mgrs. Meeting               District 7   2
03JUL02 Interview                   JW           1
08JUL02 Sales Drive                 District 6   5
15JUL02 Sales Drive                 District 7   5
08JUL02 Trade Show                  Knox         3
22JUL02 Inventors Show              Melvin       3
11JUL02 Planning Council            Group II     1
18JUL02 Planning Council            Group III    1
25JUL02 Planning Council            Group IV     1
12JUL02 Seminar                     White        1
19JUL02 Seminar                     White        1
18JUL02 NewsLetter Deadline         All          1
05JUL02 VIP Banquet                 JW           1
19JUL02 Co. Picnic                  All          1
16JUL02 Dentist                     JW           1
24JUL02 Birthday                    Mary         1
25JUL02 Close Sale                  WYGIX Co.    2
;

Create the holidays data set.

Example 1: Schedule Calendar with Holidays: 5-Day Default 257



data hol;
   input date : date7. holiday $ 11-25 holilong @27;
   datalines;
05jul02   Vacation        3
04jul02   Independence    1
;

Sort the activities data set by the variable that contains the starting date. You 
are not required to sort the holidays data set.

proc sort data=allacty;
   by date;
run;

Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Create the schedule calendar. DATA= identifies the activities data set; 
HOLIDATA= identifies the holidays data set. WEEKDAYS specifies that a week 
consists of five eight-hour work days.

proc calendar data=allacty holidata=hol weekdays;

Specify an activity start date variable and an activity duration variable. The 
START statement specifies the variable in the activities data set that contains the 
starting date of the activities; DUR specifies the variable that contains the duration 
of each activity. Creating a schedule calendar requires START and DUR.

   start date;
   dur long;

Retrieve holiday information. The HOLISTART, HOLIVAR, and HOLIDUR 
statements specify the variables in the holidays data set that contain the start date, 
name, and duration of each holiday, respectively. When you use a holidays data set, 
HOLISTART is required. Because at least one holiday lasts more than one day, 
HOLIDUR is required.

   holistart date;
   holivar holiday;
   holidur holilong;

Specify the titles.

   title1 'Summer Planning Calendar:  Julia Cho';
   title2 'President, Community Bank';
run;

258 Chapter 9 / CALENDAR Procedure



Output: HTML
Output 9.4 Summer Planning Calendar: Julia Cho

Example 1: Schedule Calendar with Holidays: 5-Day Default 259



Example 2: Schedule Calendar Containing Multiple 
Calendars
Features: CALID statement

_CAL_ variable
OUTPUT=COMBINE option

Others
DUR statement
24-hour day, 7-day week

Details
This example builds on Example 1 by identifying activities as belonging to one of 
two calendars, business or personal. This example does the following:

n produces a schedule calendar report

n prints two calendars on the same output page

n schedules activities around holidays

n uses one of the two default work patterns: 24-hour day, 7-day week

n identifies activities and holidays by calendar name

Program
data allacty2;
  input date:date7. happen $ 10-34 who $ 35-47 _CAL_ $ long;
  datalines;
01JUL02  Dist. Mtg.               All          CAL1   1
02JUL02  Mgrs. Meeting            District 6   CAL1   2
03JUL02  Interview                JW           CAL1   1
05JUL02  VIP Banquet              JW           CAL1   1
06JUL02  Beach trip               family       CAL2   2
08JUL02  Sales Drive              District 6   CAL1   5
08JUL02  Trade Show               Knox         CAL1   3
09JUL02  Orthodontist             Meagan       CAL2   1
11JUL02  Mgrs. Meeting            District 7   CAL1   2
11JUL02  Planning Council         Group II     CAL1   1
12JUL02  Seminar                  White        CAL1   1
14JUL02  Co. Picnic               All          CAL1   1
14JUL02  Business trip            Fred         CAL2   2
15JUL02  Sales Drive              District 7   CAL1   5
16JUL02  Dentist                  JW           CAL1   1
17JUL02  Bank Meeting             1st Natl     CAL1   1
17JUL02  Real estate agent        Family       CAL2   1

260 Chapter 9 / CALENDAR Procedure



18JUL02  NewsLetter Deadline      All          CAL1   1
18JUL02  Planning Council         Group III    CAL1   1
19JUL02  Seminar                  White        CAL1   1
22JUL02  Inventors Show           Melvin       CAL1   3
24JUL02  Birthday                 Mary         CAL1   1
25JUL02  Planning Council         Group IV     CAL1   1
25JUL02  Close Sale               WYGIX Co.    CAL1   2
27JUL02  Ballgame                 Family       CAL2   1
;

data vac;
   input hdate:date7.  holiday $ 11-25 _CAL_ $ ;
   datalines;
29JUL02   vacation                CAL2
04JUL02   Independence            CAL1
;

proc sort data=allacty2;
   by date;
run;

options formchar="|----|+|---+=|-/\<>*"; 

proc calendar data=allacty2 holidata=vac;

   calid _CAL_ / output=combine;

   start date ;
   dur long;

   holistart hdate;
   holivar holiday;

   title1 'Summer Planning Calendar:  Julia Cho';
   title2 'President, Community Bank';
   title3 'Work and Home Schedule';
run;

Program Description
Create the activities data set and identify separate calendars. Allacty2 contains 
both personal and business activities for a bank president. The _CAL_ variable 
identifies which calendar an event belongs to.

data allacty2;
  input date:date7. happen $ 10-34 who $ 35-47 _CAL_ $ long;
  datalines;
01JUL02  Dist. Mtg.               All          CAL1   1
02JUL02  Mgrs. Meeting            District 6   CAL1   2
03JUL02  Interview                JW           CAL1   1
05JUL02  VIP Banquet              JW           CAL1   1
06JUL02  Beach trip               family       CAL2   2
08JUL02  Sales Drive              District 6   CAL1   5
08JUL02  Trade Show               Knox         CAL1   3
09JUL02  Orthodontist             Meagan       CAL2   1
11JUL02  Mgrs. Meeting            District 7   CAL1   2
11JUL02  Planning Council         Group II     CAL1   1
12JUL02  Seminar                  White        CAL1   1

Example 2: Schedule Calendar Containing Multiple Calendars 261



14JUL02  Co. Picnic               All          CAL1   1
14JUL02  Business trip            Fred         CAL2   2
15JUL02  Sales Drive              District 7   CAL1   5
16JUL02  Dentist                  JW           CAL1   1
17JUL02  Bank Meeting             1st Natl     CAL1   1
17JUL02  Real estate agent        Family       CAL2   1
18JUL02  NewsLetter Deadline      All          CAL1   1
18JUL02  Planning Council         Group III    CAL1   1
19JUL02  Seminar                  White        CAL1   1
22JUL02  Inventors Show           Melvin       CAL1   3
24JUL02  Birthday                 Mary         CAL1   1
25JUL02  Planning Council         Group IV     CAL1   1
25JUL02  Close Sale               WYGIX Co.    CAL1   2
27JUL02  Ballgame                 Family       CAL2   1
;

Create the holidays data set and identify which calendar a holiday affects. The 
_CAL_ variable identifies which calendar a holiday belongs to.

data vac;
   input hdate:date7.  holiday $ 11-25 _CAL_ $ ;
   datalines;
29JUL02   vacation                CAL2
04JUL02   Independence            CAL1
;

Sort the activities data set by the variable that contains the starting date. 
When creating a calendar with combined output, you sort only by the activity starting 
date, not by the CALID variable. You are not required to sort the holidays data set.

proc sort data=allacty2;
   by date;
run;

Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*"; 

Create the schedule calendar. DATA= identifies the activities data set; 
HOLIDATA= identifies the holidays data set. By default, the output calendar displays 
a 7-day week.

proc calendar data=allacty2 holidata=vac;

Combine all events and holidays on a single calendar. The CALID statement 
specifies the variable that identifies which calendar an event belongs to. 
OUTPUT=COMBINE places all events and holidays on the same calendar.

   calid _CAL_ / output=combine;

Specify an activity start date variable and an activity duration variable. The 
START statement specifies the variable in the activities data set that contains the 
starting date of the activities; DUR specifies the variable that contains the duration 
of each activity. Creating a schedule calendar requires START and DUR.

   start date ;
   dur long;

Retrieve holiday information. The HOLISTART and HOLIVAR statements specify 
the variables in the holidays data set that contain the start date and name of each 
holiday, respectively. HOLISTART is required when you use a holidays data set.

262 Chapter 9 / CALENDAR Procedure



   holistart hdate;
   holivar holiday;

Specify the titles.

   title1 'Summer Planning Calendar:  Julia Cho';
   title2 'President, Community Bank';
   title3 'Work and Home Schedule';
run;

Example 2: Schedule Calendar Containing Multiple Calendars 263



Output: HTML
Output 9.5 Summer Planning Calendar - Work and Home Schedule

264 Chapter 9 / CALENDAR Procedure



Example 3: Multiple Schedule Calendars with 
Atypical Work Shifts (Separated Output)
Features: PROC CALENDAR statement options

CALEDATA=
DATETIME
WORKDATA=

CALID statement
_CAL_ variable
OUTPUT=SEPARATE option

Other statements
DUR statement
OUTSTART statement
OUTFIN statement

Details
This example does the following:

n produces separate output pages for each calendar in a single PROC step

n schedules activities around holidays

n displays an 8-hour day, 5 1/2-day week

n uses separate work patterns and holidays for each calendar

Producing Different Output for Multiple Calendars
This example and “Example 4: Multiple Schedule Calendars with Atypical Work 
Shifts (Combined and Mixed Output)” on page 272 use the same input data for 
multiple calendars to produce different output. The only differences in these 
programs are how the activities data set is sorted and how the OUTPUT= option is 
set.

Table 9.12 Sort and OUTPUT= Settings

Print Options Sorting Variables
OUTPUT= 
Settings Examples

Separate pages for 
each calendar

Calendar ID and 
starting date

SEPARATE 3, 8

Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated Output)
265



Print Options Sorting Variables
OUTPUT= 
Settings Examples

All activities on the 
same page and identify 
each calendar

Starting date COMBINE 4, 2

All activities on the 
same page and NOT 
identify each calendar

Starting date MIX 4

Program
libname well 'SAS-library';

data well.act;
   input task & $16. dur : 5. date : datetime16.  _cal_ $ cost;
   datalines;
Drill Well          3.50  01JUL02:12:00:00  CAL1   1000
Lay Power Line      3.00  04JUL02:12:00:00  CAL1   2000
Assemble Tank       4.00  05JUL02:08:00:00  CAL1   1000
Build Pump House    3.00  08JUL02:12:00:00  CAL1   2000
Pour Foundation     4.00  11JUL02:08:00:00  CAL1   1500
Install Pump        4.00  15JUL02:14:00:00  CAL1    500
Install Pipe        2.00  19JUL02:08:00:00  CAL1   1000
Erect Tower         6.00  20JUL02:08:00:00  CAL1   2500
Deliver Material    2.00  01JUL02:12:00:00  CAL2    500
Excavate            4.75  03JUL02:08:00:00  CAL2   3500
;

data well.hol;
   input date date. holiday $ 11-25 _cal_ $;
   datalines;
09JUL02   Vacation            CAL2
04JUL02   Independence        CAL1
;

data well.cal;
   input _sun_ $ _sat_ $ _mon_ $ _tue_ $ _wed_ $ _thu_ $
         _fri_ $ _cal_ $;
   datalines;
Holiday Holiday  Workday Workday Workday Workday Workday CAL1
Holiday Halfday  Workday Workday Workday Workday Workday CAL2
;

data well.wor;
   input halfday time5.;
   datalines;
08:00
12:00
;

proc sort data=well.act;
   by _cal_ date;

266 Chapter 9 / CALENDAR Procedure



run;

options formchar="|----|+|---+=|-/\<>*";

proc calendar data=well.act
              holidata=well.hol
              caledata=well.cal
              workdata=well.wor
              datetime;

   calid _cal_ / output=separate;

   start date;
   dur dur;

   holistart date;
   holivar holiday;

   outstart Monday;
   outfin Saturday;

   title1 'Well Drilling Work Schedule: Separate Calendars';
   format cost dollar9.2;
run;

Program Description

Specify a library so that you can permanently store the activities data set.

libname well 'SAS-library';

Create the activities data set and identify separate calendars. Well.Act is a 
permanent SAS data set that contains activities for a well construction project. The 
_CAL_ variable identifies the calendar that an activity belongs to.

data well.act;
   input task & $16. dur : 5. date : datetime16.  _cal_ $ cost;
   datalines;
Drill Well          3.50  01JUL02:12:00:00  CAL1   1000
Lay Power Line      3.00  04JUL02:12:00:00  CAL1   2000
Assemble Tank       4.00  05JUL02:08:00:00  CAL1   1000
Build Pump House    3.00  08JUL02:12:00:00  CAL1   2000
Pour Foundation     4.00  11JUL02:08:00:00  CAL1   1500
Install Pump        4.00  15JUL02:14:00:00  CAL1    500
Install Pipe        2.00  19JUL02:08:00:00  CAL1   1000
Erect Tower         6.00  20JUL02:08:00:00  CAL1   2500
Deliver Material    2.00  01JUL02:12:00:00  CAL2    500
Excavate            4.75  03JUL02:08:00:00  CAL2   3500
;

Create the holidays data set. The _CAL_ variable identifies the calendar that a 
holiday belongs to.

data well.hol;
   input date date. holiday $ 11-25 _cal_ $;
   datalines;
09JUL02   Vacation            CAL2
04JUL02   Independence        CAL1
;

Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated Output)
267



Create the calendar data set. Each observation defines the work shifts for an 
entire week. The _CAL_ variable identifies to which calendar the work shifts apply. 
CAL1 uses the default 8-hour work shifts for Monday through Friday. CAL2 uses a 
half day on Saturday and the default 8-hour work shift for Monday through Friday.

data well.cal;
   input _sun_ $ _sat_ $ _mon_ $ _tue_ $ _wed_ $ _thu_ $
         _fri_ $ _cal_ $;
   datalines;
Holiday Holiday  Workday Workday Workday Workday Workday CAL1
Holiday Halfday  Workday Workday Workday Workday Workday CAL2
;

Create the workdays data set. This data set defines the daily work shifts that are 
named in the calendar data set. Each variable (not observation) contains one daily 
schedule of alternating work and nonwork periods. The HALFDAY work shift lasts 4 
hours.

data well.wor;
   input halfday time5.;
   datalines;
08:00
12:00
;

Sort the activities data set by the variables that contain the calendar 
identification and the starting date, respectively. You are not required to sort the 
holidays data set.

proc sort data=well.act;
   by _cal_ date;
run;

Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Create the schedule calendar. DATA= identifies the activities data set; 
HOLIDATA= identifies the holidays data set; CALEDATA= identifies the calendar 
data set; WORKDATA= identifies the workdays data set. DATETIME specifies that 
the variable specified with the START statement contains values in SAS datetime 
format.

proc calendar data=well.act
              holidata=well.hol
              caledata=well.cal
              workdata=well.wor
              datetime;

Print each calendar on a separate page. The CALID statement specifies that the 
_CAL_ variable identifies calendars. OUTPUT=SEPARATE prints information for 
each calendar on separate pages.

   calid _cal_ / output=separate;

Specify an activity start date variable and an activity duration variable. The 
START statement specifies the variable in the activities data set that contains the 
activity starting date; DUR specifies the variable that contains the activity duration. 
START and DUR are required for a schedule calendar.

   start date;

268 Chapter 9 / CALENDAR Procedure



   dur dur;

Retrieve holiday information. HOLISTART and HOLIVAR specify the variables in 
the holidays data set that contain the start date and name of each holiday, 
respectively. HOLISTART is required when you use a holidays data set.

   holistart date;
   holivar holiday;

Customize the calendar appearance. OUTSTART and OUTFIN specify that the 
calendar display a 6-day week, Monday through Saturday.

   outstart Monday;
   outfin Saturday;

Specify the title and format the Cost variable.

   title1 'Well Drilling Work Schedule: Separate Calendars';
   format cost dollar9.2;
run;

Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated Output)
269



Output: HTML
Output 9.6 Part One of Well Drilling Work Schedule

270 Chapter 9 / CALENDAR Procedure



Output 9.7 Part Two of Well Drilling Work Schedule

Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated Output)
271



Example 4: Multiple Schedule Calendars with 
Atypical Work Shifts (Combined and Mixed Output)
Features: PROC CALENDAR statement options

CALEDATA=
DATETIME
WORKDATA=

CALID statement
_CAL_ variable
OUTPUT=COMBINE option
OUTPUT=MIXED option

Other statement
DUR statement
OUTSTART statement
OUTFIN statement

Data sets: Well.Aact
Well.Hol 
Well.Cal 
Well.Wor

Details
This example does the following:

n produces a schedule calendar

n schedules activities around holidays

n uses separate work patterns and holidays for each calendar

n uses an 8-hour day, 5 1/2-day work week

n displays and identifies multiple calendars on each calendar page (combined 
output)

n displays but does not identify multiple calendars on each calendar page (mixed 
output)

This example creates both combined and mixed output. Producing combined or 
mixed calendar output requires only one change to a PROC CALENDAR step: the 
setting of the OUTPUT= option in the CALID statement. Combined output is 
produced first, then mixed output.

This example and “Example 3: Multiple Schedule Calendars with Atypical Work 
Shifts (Separated Output)” on page 265 use the same input data for multiple 
calendars to produce different output. The only differences in these programs are 
how the activities data set is sorted and how the OUTPUT= option is set.

272 Chapter 9 / CALENDAR Procedure



Table 9.13 Sort and OUTPUT= Settings

Print Options Sorting Variables
OUTPUT= 
Settings Examples

Separate pages for 
each calendar

Calendar ID and 
starting date

SEPARATE 3, 8

All activities on the 
same page and identify 
each calendar

Starting date COMBINE 4, 2

All activities on the 
same page and NOT 
identify each calendar

Starting date MIX 4

Program for Combined Characters
libname well
'SAS-library';

proc sort data=well.act;
   by date;
run;

options formchar="|----|+|---+=|-/\<>*";

proc calendar data=well.act
              holidata=well.hol
              caledata=well.cal
              workdata=well.wor
              datetime;

   calid _cal_ / output=combine;

   start date;
   dur dur;

   holistart date;
   holivar holiday;

   title1 'Well Drilling Work Schedule: Combined Calendars';
   format cost dollar9.2;
run;

Program Description
Specify the SAS library where the activities data set is stored.

libname well
'SAS-library';

Example 4: Multiple Schedule Calendars with Atypical Work Shifts (Combined and Mixed 
Output) 273



Sort the activities data set by the variable that contains the starting date. Do 
not sort by the CALID variable when producing combined calendar output.

proc sort data=well.act;
   by date;
run;

Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Create the schedule calendar. DATA= identifies the activities data set; 
HOLIDATA= identifies the holidays data set; CALEDATA= identifies the calendar 
data set; WORKDATA= identifies the workdays data set. DATETIME specifies that 
the variable specified with the START statement contains values in SAS datetime 
format.

proc calendar data=well.act
              holidata=well.hol
              caledata=well.cal
              workdata=well.wor
              datetime;

Combine all events and holidays on a single calendar. The CALID statement 
specifies that the _CAL_ variable identifies the calendars. OUTPUT=COMBINE 
prints multiple calendars on the same page and identifies each calendar.

   calid _cal_ / output=combine;

Specify an activity start date variable and an activity duration variable. The 
START statement specifies the variable in the activities data set that contains the 
starting date of the activities; DUR specifies the variable that contains the duration 
of each activity. START and DUR are required for a schedule calendar.

   start date;
   dur dur;

Retrieve holiday information. HOLISTART and HOLIVAR specify the variables in 
the holidays data set that contain the start date and name of each holiday, 
respectively. HOLISTART is required when you use a holidays data set.

   holistart date;
   holivar holiday;

Specify the title and format the Cost variable.

   title1 'Well Drilling Work Schedule: Combined Calendars';
   format cost dollar9.2;
run;

274 Chapter 9 / CALENDAR Procedure



Output: HTML
Output 9.8 Well Drilling Work Schedule: Combined Calendars

Example 4: Multiple Schedule Calendars with Atypical Work Shifts (Combined and Mixed 
Output) 275



Program for Mixed Calendars
To produce mixed output instead of combined, use the same program and change 
the setting of the OUTPUT= option to OUTPUT=MIX:

proc calendar data=well.act
              holidata=well.hol
              caledata=well.cal
              workdata=well.wor
              datetime;
   calid _cal_ / output=mix;
   start date;
   dur dur;
   holistart date;
   holivar holiday;
   outstart Monday;
   outfin Saturday;
   title1 'Well Drilling Work Schedule: Mixed Calendars';
   format cost dollar9.2;
run;

276 Chapter 9 / CALENDAR Procedure



Output: HTML
Output 9.9 Well Drilling Work Schedule: Mixed Calendars

Example 4: Multiple Schedule Calendars with Atypical Work Shifts (Combined and Mixed 
Output) 277



Example 5: Schedule Calendar, Blank or with 
Holidays
Features: PROC CALENDAR statement options

FILL
HOLIDATA=
INTERVAL=WORKDAY

Other statements
DUR statement
HOLIDUR statement
HOLISTART statement
HOLIVAR statement

Details
This example produces a schedule calendar that displays only holidays. You can 
use this same code to produce a set of blank calendars by removing the 
HOLIDATA= option and the HOLISTART, HOLIVAR, and HOLIDUR statements from 
the PROC CALENDAR step.

Program
data acts;
   input sta : date7. act $ 11-30 dur;
   datalines;
01JAN03   Start                 0
31DEC03   Finish                0
;

data holidays;
   input sta : date7. act $ 11-30 dur;
   datalines;
01JAN03   New Year's            1
30MAR03   Good Friday           1
28MAY03   Memorial Day          1
04JUL03   Independence Day      1
03SEP03   Labor Day             1
22NOV03   Thanksgiving          2
25DEC03   Christmas Break       5
;

options formchar="|----|+|---+=|-/\<>*";

proc calendar data=acts holidata=holidays fill interval=workday;

   start sta;

278 Chapter 9 / CALENDAR Procedure



   dur dur;

   holistart sta;
   holivar act;
   holidur dur;

   title1 'Calendar of Holidays Only';
run;

Program Description
Create the activities data set. Specify one activity in the first month and one in the 
last, and give each activity a duration of 0. PROC CALENDAR does not print 
activities with zero durations in the output.

data acts;
   input sta : date7. act $ 11-30 dur;
   datalines;
01JAN03   Start                 0
31DEC03   Finish                0
;

Create the holidays data set.

data holidays;
   input sta : date7. act $ 11-30 dur;
   datalines;
01JAN03   New Year's            1
30MAR03   Good Friday           1
28MAY03   Memorial Day          1
04JUL03   Independence Day      1
03SEP03   Labor Day             1
22NOV03   Thanksgiving          2
25DEC03   Christmas Break       5
;

Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Create the calendar. DATA= identifies the activities data set; HOLIDATA= identifies 
the holidays data set. FILL displays all months, even those with no activities. By 
default, only months with activities appear in the report. INTERVAL=WORKDAY 
specifies that activities and holidays are measured in 8-hour days and that PROC 
CALENDAR schedules activities only Monday through Friday.

proc calendar data=acts holidata=holidays fill interval=workday;

Specify an activity start date variable and an activity duration variable. The 
START statement specifies the variable in the activities data set that contains the 
starting date of the activities; DUR specifies the variable that contains the duration 
of each activity. Creating a schedule calendar requires START and DUR.

   start sta;
   dur dur;

Retrieve holiday information. The HOLISTART, HOLIVAR, and HOLIDUR 
statements specify the variables in the holidays data set that contain the start date, 

Example 5: Schedule Calendar, Blank or with Holidays 279



name, and duration of each holiday, respectively. When you use a holidays data set, 
HOLISTART is required. Because at least one holiday lasts more than one day, 
HOLIDUR (or HOLIFIN) is required.

   holistart sta;
   holivar act;
   holidur dur;

Specify the title.

   title1 'Calendar of Holidays Only';
run;

Output: HTML
The following output shows the December portion of the output. Without the 
INTERVAL=WORKDAY option, the 5-day Christmas break would be scheduled 
through the weekend.

280 Chapter 9 / CALENDAR Procedure



Output 9.10 Calendar of Holidays Only, December

Example 6: Calculating a Schedule Based on 
Completion of Predecessor Tasks
Features: PROC CALENDAR procedure features

PROC CALENDAR statement
CALID statement
FIN statement
VAR statement

PROC CPM step
PROC SORT step

Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks 281



Details

Program Description
This example does the following:

n calculates a project schedule containing multiple calendars (PROC CPM)

n produces a listing of the PROC CPM output data set (PROC PRINT)

n displays the schedule in calendar format (PROC CALENDAR)

This example features PROC CPM's ability to calculate a schedule that meets the 
following criteria:

n is based on an initial starting date

n applies different non-work periods to different calendars, such as personal 
vacation days to each employee's schedule

n includes milestones (activities with a duration of 0)

Automating Your Scheduling Task with 
SAS/OR Software
When changes occur to a schedule, you have to adjust the activity starting dates 
manually if you use PROC CALENDAR to produce a schedule calendar. 
Alternatively, you can use PROC CPM in SAS/OR software to reschedule work 
when dates change. Even more importantly, you can provide only an initial starting 
date for a project and let PROC CPM calculate starting dates for activities, based on 
identified successor tasks, that is, tasks that cannot begin until their predecessors 
end.

In order to use PROC CPM, you must complete the following steps:

1 Create an activities data set that contains activities with durations. (You can 
indicate nonwork days, weekly work schedules, and work shifts with holidays, 
calendar, and work-shift data sets.)

2 Indicate which activities are successors to others (precedence relationships).

3 Define resource limitations if you want them considered in the schedule.

4 Provide an initial starting date.

PROC CPM can process your data to generate a data set that contains the start and 
end dates for each activity. PROC CPM schedules the activities, based on the 
duration information, weekly work patterns, work shifts, as well as holidays and 
nonwork days that interrupt the schedule. You can generate several views of the 

282 Chapter 9 / CALENDAR Procedure



schedule that is computed by PROC CPM, from a simple listing of start and finish 
dates to a calendar, a Gantt chart, or a network diagram.

See Also
This example introduces users of PROC CALENDAR to more advanced SAS 
scheduling tools. For an introduction to project management tasks and tools and 
several examples, see Project Management Using the SAS System. For more 
examples, see SAS/OR Software: Project Management Examples. For complete 
reference documentation, see SAS/OR(R) 9.3 User's Guide: Mathematical 
Programming.

Program
options formchar="|----|+|---+=|-/\<>*";

data grant;
   input jobnum Task $ 4-22 Days Succ1 $ 27-45 aldate : date7. altype $
         _cal_ $;
   format aldate date7.;
   datalines;
1  Run Exp 1          11  Analyze Exp 1       .      .   Student
2  Analyze Exp 1       5  Send Report 1       .      .   Prof.
3  Send Report 1       0  Run Exp 2           .      .   Prof.
4  Run Exp 2          11  Analyze Exp 2       .      .   Student
5  Analyze Exp 2       4  Send Report 2       .      .   Prof.
6  Send Report 2       0  Write Final Report  .      .   Prof.
7  Write Final Report  4  Send Final Report   .      .   Prof.
8  Send Final Report   0                      .      .   Student
9  Site Visit          1                     18jul07 ms  Prof.
;

data nowork;
   format holista date7. holifin date7.;
   input holista : date7. holifin : date7. name $ 17-32 _cal_ $;
   datalines;
04jul07 04jul07 Independence Day Prof.
03sep07 03sep07 Labor Day        Prof.
04jul07 04jul07 Independence Day Student
03sep07 03sep07 Labor Day        Student
16jul07 17jul07 PROF Vacation    Prof.
16aug07 17aug07 STUDENT Vacation Student
;

proc cpm data=grant
         date='01jul07'd
         interval=weekday
         out=gcpm1
         holidata=nowork;
   activity task;
   successor succ1;
   duration days;

Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks 283



   calid _cal_;
   id task;
   aligndate aldate;
   aligntype altype;
   holiday holista / holifin=holifin;
run;

proc print data=gcpm1;
   title 'Data Set GCPM1, Created with PROC CPM';
run;

proc sort data=gcpm1;
   by e_start;
run;

proc calendar data=gcpm1
              holidata=nowork
              interval=workday;
   start e_start;
   fin   e_finish;
   calid _cal_ / output=combine;
   holistart holista;
   holifin   holifin;
   holivar name;
   var task;
   title 'Schedule for Experiment X-15';
   title2 'Professor and Student Schedule';
run;

Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Create the activities data set and identify separate calendars. This data 
identifies two calendars: the professor's (the value of _CAL_ is Prof.) and the 
student's (the value of _CAL_ is Student). The Succ1 variable identifies which 
activity cannot begin until the current one ends. For example, Analyze Exp 1 cannot 
begin until Run Exp 1 is completed. The DAYS value of 0 for JOBNUM 3, 6, and 8 
indicates that these jobs are milestones.

data grant;
   input jobnum Task $ 4-22 Days Succ1 $ 27-45 aldate : date7. altype $
         _cal_ $;
   format aldate date7.;
   datalines;
1  Run Exp 1          11  Analyze Exp 1       .      .   Student
2  Analyze Exp 1       5  Send Report 1       .      .   Prof.
3  Send Report 1       0  Run Exp 2           .      .   Prof.
4  Run Exp 2          11  Analyze Exp 2       .      .   Student
5  Analyze Exp 2       4  Send Report 2       .      .   Prof.
6  Send Report 2       0  Write Final Report  .      .   Prof.
7  Write Final Report  4  Send Final Report   .      .   Prof.
8  Send Final Report   0                      .      .   Student

284 Chapter 9 / CALENDAR Procedure



9  Site Visit          1                     18jul07 ms  Prof.
;

Create the holidays data set and identify which calendar a nonwork day 
belongs to. The two holidays are listed twice, once for the professor's calendar and 
once for the student's. Because each person is associated with a separate calendar, 
PROC CPM can apply the personal vacation days to the appropriate calendars.

data nowork;
   format holista date7. holifin date7.;
   input holista : date7. holifin : date7. name $ 17-32 _cal_ $;
   datalines;
04jul07 04jul07 Independence Day Prof.
03sep07 03sep07 Labor Day        Prof.
04jul07 04jul07 Independence Day Student
03sep07 03sep07 Labor Day        Student
16jul07 17jul07 PROF Vacation    Prof.
16aug07 17aug07 STUDENT Vacation Student
;

Calculate the schedule with PROC CPM. PROC CPM uses information supplied 
in the activities and holidays data sets to calculate start and finish dates for each 
activity. The DATE= option supplies the starting date of the project. The CALID 
statement is not required, even though this example includes two calendars, 
because the calendar identification variable has the special name _CAL_.

proc cpm data=grant
         date='01jul07'd
         interval=weekday
         out=gcpm1
         holidata=nowork;
   activity task;
   successor succ1;
   duration days;
   calid _cal_;
   id task;
   aligndate aldate;
   aligntype altype;
   holiday holista / holifin=holifin;
run;

Print the output data set that was created with PROC CPM. This step is not 
required. PROC PRINT is a useful way to view the calculations produced by PROC 
CPM. 

proc print data=gcpm1;
   title 'Data Set GCPM1, Created with PROC CPM';
run;

Sort GCPM1 by the variable that contains the activity start dates before using 
it with PROC CALENDAR.

proc sort data=gcpm1;
   by e_start;
run;

Create the schedule calendar. GCPM1 is the activity data set. PROC CALENDAR 
uses the S_START and S_FINISH dates, calculated by PROC CPM, to print the 
schedule. The VAR statement selects only the variable TASK to display on the 
calendar output. 

Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks 285



proc calendar data=gcpm1
              holidata=nowork
              interval=workday;
   start e_start;
   fin   e_finish;
   calid _cal_ / output=combine;
   holistart holista;
   holifin   holifin;
   holivar name;
   var task;
   title 'Schedule for Experiment X-15';
   title2 'Professor and Student Schedule';
run;

Output: HTML
PROC PRINT displays the observations in GCPM1, showing the scheduling 
calculations created by PROC CPM.

Output 9.11 Data Set GCPM1, Created with PROC CPM

PROC CALENDAR created the following schedule calendar by using the S_START 
and S_FINISH dates that were calculated by PROC CPM. The activities on July 25 
and August 15, because they are milestones, do not delay the start of a successor 
activity. Note that Site Visit occurs on July 18, the same day that Analyze Exp 1 
occurs. To prevent this overallocation of resources, you can use resource 
constrained scheduling, available in SAS/OR software.

286 Chapter 9 / CALENDAR Procedure



Output 9.12 Schedule for Experiment X-15, July

Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks 287



Output 9.13 Schedule for Experiment X-15, August

288 Chapter 9 / CALENDAR Procedure



Example 7: Summary Calendar with MEAN Values 
by Observation
Features: CALID statement

_CAL_ variable
OUTPUT=SEPARATE option

Other statements
FORMAT statement
LABEL statement
MEAN statement
SUM statement

PROC FORMAT
PICTURE statement

Details
This example does the following:

n produces a summary calendar

n displays holidays

n produces sum and mean values by business day (observation) for three 
variables

n prints a legend and uses variable labels

n uses picture formats to display values

To produce MEAN values based on the number of days in the calendar month, use 
MEANTYPE=NDAYS. By default, MEANTYPE=NOBS, which calculates the MEAN 
values according to the number of days for which data exists.

Program
data meals;
   input date : date7. Brkfst Lunch Dinner;
   datalines;
01Dec08       123 234 238
02Dec08       188 188 198
03Dec08       123 183 176
04Dec08       200 267 243
05Dec08       176 165 177
08Dec08       178 198 187
09Dec08       165 176 187
10Dec08       187 176 231
11Dec08       176 187 222

Example 7: Summary Calendar with MEAN Values by Observation 289



12Dec08       187 187 123
15Dec08       176 165 177
16Dec08       156   . 167
17Dec08       198 143 167
18Dec08       178 198 187
19Dec08       165 176 187
22Dec08       187 187 123
;

data closed;
   input date date. holiday $ 11-25;
   datalines;
26DEC08   Repairs
29DEC08   Repairs
30DEC08   Repairs
31DEC08   Repairs
23DEC08   Vacation
24DEC08   Christmas Eve
25DEC08   Christmas
;

proc sort data=meals;
   by date;
run;

proc format;
   picture bfmt other = '000 Brkfst';
   picture lfmt other = '000 Lunch ';
   picture dfmt other = '000 Dinner';
run;

options formchar="|----|+|---+=|-/\<>*";

proc calendar data=meals holidata=closed;
   start date;

   holistart date;
   holiname holiday;

   sum brkfst lunch dinner / format=4.0;
   mean brkfst lunch dinner / format=6.2;
   label brkfst = 'Breakfasts Served'
         lunch  = '   Lunches Served'
         dinner = '   Dinners Served';
   format brkfst bfmt.
          lunch lfmt.
          dinner dfmt.;

   title 'Meals Served in Company Cafeteria';
   title2 'Mean Number by Business Day';
run;

title;

Program Description
Create the Activities data set. MEALS records how many meals were served for 
breakfast, lunch, and dinner on the days that the cafeteria was open for business.

290 Chapter 9 / CALENDAR Procedure



data meals;
   input date : date7. Brkfst Lunch Dinner;
   datalines;
01Dec08       123 234 238
02Dec08       188 188 198
03Dec08       123 183 176
04Dec08       200 267 243
05Dec08       176 165 177
08Dec08       178 198 187
09Dec08       165 176 187
10Dec08       187 176 231
11Dec08       176 187 222
12Dec08       187 187 123
15Dec08       176 165 177
16Dec08       156   . 167
17Dec08       198 143 167
18Dec08       178 198 187
19Dec08       165 176 187
22Dec08       187 187 123
;

Create the Holidays data set.

data closed;
   input date date. holiday $ 11-25;
   datalines;
26DEC08   Repairs
29DEC08   Repairs
30DEC08   Repairs
31DEC08   Repairs
23DEC08   Vacation
24DEC08   Christmas Eve
25DEC08   Christmas
;

Sort the Activities data set by the activity starting date. You are not required to 
sort the Holidays data set.

proc sort data=meals;
   by date;
run;

Create picture formats for the variables that indicate how many meals were 
served.

proc format;
   picture bfmt other = '000 Brkfst';
   picture lfmt other = '000 Lunch ';
   picture dfmt other = '000 Dinner';
run;

Set the FORMCHAR and LINESIZE options. Setting FORMCHAR to this exact 
string renders better HTML output when it is viewed outside of the SAS environment 
where SAS Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Create the summary calendar. DATA= identifies the Activities data set; 
HOLIDATA= identifies the Holidays data set. The START statement specifies the 
variable in the Activities data set that contains the activity starting date; START is 
required.

Example 7: Summary Calendar with MEAN Values by Observation 291



proc calendar data=meals holidata=closed;
   start date;

Retrieve holiday information. The HOLISTART and HOLIVAR statements specify 
the variables in the Holidays data set that contain the start date and the name of 
each holiday, respectively. HOLISTART is required when you use a Holidays data 
set.

   holistart date;
   holiname holiday;

Calculate, label, and format the sum and mean values. The SUM and MEAN 
statements calculate sum and mean values for three variables and print them with 
the specified format. The LABEL statement prints a legend and uses labels instead 
of variable names. The FORMAT statement associates picture formats with three 
variables.

   sum brkfst lunch dinner / format=4.0;
   mean brkfst lunch dinner / format=6.2;
   label brkfst = 'Breakfasts Served'
         lunch  = '   Lunches Served'
         dinner = '   Dinners Served';
   format brkfst bfmt.
          lunch lfmt.
          dinner dfmt.;

Specify the titles.

   title 'Meals Served in Company Cafeteria';
   title2 'Mean Number by Business Day';
run;

title;

292 Chapter 9 / CALENDAR Procedure



Output: HTML
Output 9.14 Meals Served in Company Cafeteria - Mean Number by Business Day

Example 7: Summary Calendar with MEAN Values by Observation 293



Example 8: Multiple Summary Calendars with 
Atypical Work Shifts (Separated Output)
Features: PROC CALENDAR statement options

DATETIME
LEGEND

CALID statement
_CAL_ variable
OUTPUT=SEPARATE option

Other statements
OUTSTART statement
OUTFIN statement
SUM statement

Data sets: Well.Act
Well.Hol

Details
This example does the following:

n produces a summary calendar for multiple calendars in a single PROC step

n prints the calendars on separate pages

n displays holidays

n uses separate work patterns, work shifts, and holidays for each calendar

Producing Different Output for Multiple Calendars
This example produces separate output for multiple calendars. To produce 
combined or mixed output for this data, you need to change only the following two 
things:

n how the Activities data set is sorted

n how the OUTPUT= option is set

294 Chapter 9 / CALENDAR Procedure



Table 9.14 Sort and OUTPUT= Settings

Print Options Sorting Variables
OUTPUT= 
Settings Examples

Separate pages for 
each calendar

Calendar ID and 
starting date

SEPARATE 3, 8

All activities on the 
same page and identify 
each calendar

Starting date COMBINE 4, 2

All activities on the 
same page and NOT 
identify each calendar

Starting date MIX 4

Program
libname well
'SAS-library';
run;

proc sort data=well.act;
   by _cal_ date;
run;

options formchar="|----|+|---+=|-/\<>*" linesize=132;

proc calendar data=well.act
              holidata=well.hol
              datetime legend;

   calid _cal_ / output=separate;

   start date;
   holistart date;
   holivar holiday;

   sum cost / format=dollar10.2;

   outstart Monday;
   outfin Saturday;

   title 'Well Drilling Cost Summary';
   title2 'Separate Calendars';
   format cost dollar10.2;
run;

Program Description
Specify the SAS library where the Activities data set is stored.

libname well

Example 8: Multiple Summary Calendars with Atypical Work Shifts (Separated Output)
295



'SAS-library';
run;

Sort the Activities data set by the variables containing the calendar 
identification and the starting date, respectively.

proc sort data=well.act;
   by _cal_ date;
run;

Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available. LINESIZE needs to be set in this example to 
prevent truncating data in the output.

options formchar="|----|+|---+=|-/\<>*" linesize=132;

Create the summary calendar. DATA= identifies the Activities data set; 
HOLIDATA= identifies the Holidays data set; CALDATA= identifies the Calendar 
data set; WORKDATA= identifies the Workdays data set. DATETIME specifies that 
the variable specified with the START statement contains a SAS datetime value. 
LEGEND prints text that identifies the variables.

proc calendar data=well.act
              holidata=well.hol
              datetime legend;

Print each calendar on a separate page. The CALID statement specifies that the 
_CAL_ variable identifies calendars. OUTPUT=SEPARATE prints information for 
each calendar on separate pages.

   calid _cal_ / output=separate;

Specify an activity start date variable and retrieve holiday information. The 
START statement specifies the variable in the Activities data set that contains the 
activity starting date. The HOLISTART and HOLIVAR statements specify the 
variables in the Holidays data set that contain the start date and name of each 
holiday, respectively. These statements are required when you use a Holidays data 
set.

   start date;
   holistart date;
   holivar holiday;

Calculate sum values. The SUM statement totals the COST variable for all 
observations in each calendar.

   sum cost / format=dollar10.2;

Display a 6-day week. OUTSTART and OUTFIN specify that the calendar display a 
6-day week, Monday through Saturday.

   outstart Monday;
   outfin Saturday;

Specify the titles and format the Cost variable.

   title 'Well Drilling Cost Summary';
   title2 'Separate Calendars';
   format cost dollar10.2;
run;

296 Chapter 9 / CALENDAR Procedure



Output: HTML
Output 9.15 Part One of Well Drilling Cost Summary

Example 8: Multiple Summary Calendars with Atypical Work Shifts (Separated Output)
297



Output 9.16 Part Two of Well Drilling Cost Summary

298 Chapter 9 / CALENDAR Procedure



Chapter 10
CATALOG Procedure

Overview: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
What Does the CATALOG Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Concepts: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Concepts: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Syntax: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
PROC CATALOG Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
CHANGE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
CONTENTS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
COPY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
DELETE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
EXCHANGE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
EXCLUDE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
MODIFY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
SAVE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
SELECT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Usage: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Interactive Processing with RUN Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Specifying an Entry Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Catalog Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Results: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Results: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Examples: CATALOG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Example 1: Copying, Deleting, and Moving Catalog Entries from 

Multiple Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Example 2: Displaying Contents, Changing Names, and Changing a Description 323
Example 3: Using the FORCE Option with the KILL Option . . . . . . . . . . . . . . . . . 325

299



Overview: CATALOG Procedure

What Does the CATALOG Procedure Do?
The CATALOG procedure manages entries in SAS catalogs. PROC CATALOG is an 
interactive, statement-driven procedure that enables you to do the following:

n create a listing of the contents of a catalog

n copy a catalog or selected entries within a catalog

n rename, exchange, or delete entries within a catalog

n change the name of a catalog entry

n modify, by changing or deleting, the description of a catalog entry

For more information about SAS libraries and catalogs, see SAS Language 
Reference: Concepts.

Concepts: CATALOG Procedure

Concepts: CATALOG Procedure
To learn how to use the SAS windowing environment to manage entries in a SAS 
catalog, see the SAS online Help for the Explorer window. You might prefer to use 
the Explorer window instead of using PROC CATALOG. You can do most of what 
the procedure does using the Explorer window.

Syntax: CATALOG Procedure
Tips: The CATALOG procedure supports RUN-group processing.

You can perform similar functions with the SAS Explorer window and with DICTIONARY 
tables in the SQL procedure. For information about the Explorer window, see the online 
Help. For information about PROC SQL, see SAS SQL Procedure User’s Guide.

300 Chapter 10 / CATALOG Procedure



See: CATALOG Procedure under Windows, UNIX, z/OS 

PROC CATALOG CATALOG=<libref.>catalog <ENTRYTYPE=entry-type>
<FORCE> <KILL>;

CONTENTS <OUT=SAS-data-set> <FILE=fileref>;
COPY OUT=<libref.>catalog <options>;

SELECT entry-1 <entry-2 …> </ ENTRYTYPE=entry-type >;
EXCLUDE entry-1 <entry-2 …> </ ENTRYTYPE=entry-type>;

CHANGE old-name-1=new-name-1
<old-name-2=new-name-2 …>
</ ENTRYTYPE=entry-type>;

EXCHANGE name-1=other-name-1
<name-2=other-name-2 …>
</ ENTRYTYPE=entry-type>;

DELETE entry-1 <entry-2 …> </ ENTRYTYPE=entry-type>;
MODIFY entry (DESCRIPTION=<<'>entry-description<'>>)

</ ENTRYTYPE=entry-type>;
SAVE entry-1 <entry-2 …> </ ENTRYTYPE=entry-type >;

Statement Task Example

Chapter 10, 
“CATALOG 
Procedure,”

Copy entries from one SAS catalog to another Ex. 1, Ex. 2, 
Ex. 3

CHANGE Change the names of catalog entries Ex. 2

CONTENTS Print the contents of a catalog Ex. 2

COPY Copy some or all of the entries in one catalog 
to another catalog

Ex. 1

DELETE Delete specified entries Ex. 1

EXCHANGE Switch the names of two catalog entries

EXCLUDE Exclude entries from being copied Ex. 1

MODIFY Change the description of a catalog entry Ex. 2

SAVE Delete all except the entries specified

SELECT Copy only selected entries Ex. 1

PROC CATALOG Statement
Copies entries from one SAS catalog to another.

PROC CATALOG Statement 301

http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n1xi671qh9io8dn1huvy94qcyqda.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=p170uhv90nn58nn1n3ybxw7di748.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1hau2m3fzpu0nn1qpkleduqwdxy.htm&locale=en


Syntax
PROC CATALOG CATALOG=<libref.>catalog <ENTRYTYPE=entry-type>
<FORCE> <KILL>;

Summary of Optional Arguments
ENTRYTYPE=entry-type

restricts processing of the current PROC CATALOG step to one entry 
type.

FORCE
forces statements to execute on a catalog that is opened by another 
resource environment.

KILL

Required Argument
CATALOG=<libref.>catalog

specifies the SAS catalog to process.

Aliases CAT=

C=

Default PROC CATALOG processes all entries in the catalog.

Example “Example 3: Using the FORCE Option with the KILL Option” on page 
325

Optional Arguments
ENTRYTYPE=entry-type

restricts processing of the current PROC CATALOG step to one entry type.

Alias ET=

Default PROC CATALOG processes all entries in a catalog.

Interactions The specified entry type applies to any one-level entry names that 
are used in a subordinate statement. You cannot override this 
specification in a subordinate statement.

The ENTRYTYPE= option does not restrict the effects of the KILL 
option.

Tip In order to process multiple entry types in a single PROC 
CATALOG step, use the ENTRYTYPE= option in a subordinate 
statement, not in the PROC CATALOG statement.

See “Specifying an Entry Type” on page 314

302 Chapter 10 / CATALOG Procedure



Examples “Example 1: Copying, Deleting, and Moving Catalog Entries from 
Multiple Catalogs” on page 319

“Example 2: Displaying Contents, Changing Names, and Changing 
a Description” on page 323

FORCE
forces statements to execute on a catalog that is opened by another resource 
environment.

Some CATALOG statements and arguments require exclusive access to the 
catalog that they operate on if the statement can radically change the contents of 
a catalog. If exclusive access cannot be obtained, then the action fails. Here are 
the statements and arguments and the catalogs that are affected by the FORCE 
option:

COPY affects the OUT= catalog.

COPY MOVE affects the IN= catalog and the OUT= catalog.

SAVE affects the specified catalog.

Tip Use the FORCE option to execute the statement, even if exclusive 
access cannot be obtained.

Example “Example 3: Using the FORCE Option with the KILL Option” on page 
325

KILL
affects the specified catalog and deletes all entries in a SAS catalog.

deletes all entries in a SAS catalog.

CAUTION
Do not attempt to limit the effects of the KILL option. This option deletes all 
entries in a SAS catalog before any option or other statement takes effect.

Interactions The KILL option deletes all catalog entries even when the 
ENTRYTYPE= option is specified.

The SAVE statement has no effect because the KILL option 
deletes all entries in a SAS catalog before any other statements 
are processed.

Tip The KILL option deletes all entries but does not remove an empty 
catalog from the SAS library. You must use another method, such 
as PROC DATASETS or the DIR window to delete an empty SAS 
catalog.

Example “Example 3: Using the FORCE Option with the KILL Option” on 
page 325

PROC CATALOG Statement 303



CHANGE Statement
Renames one or more catalog entry names.

Tip: You can change multiple entry names in a single CHANGE statement or use multiple 
CHANGE statements.

Example: “Example 2: Displaying Contents, Changing Names, and Changing a Description” on 
page 323

Syntax
CHANGE old-name-1=new-name-1
<old-name-2=new-name-2 …>
</ ENTRYTYPE=entry-type>;

Required Argument
old-name=new-name

specifies the current name of a catalog entry and the new name that you want to 
assign to it. Specify any valid SAS name.

Restriction You must designate the type of the entry, either with the name 
(entry-name.entry-type) or with the ENTRYTYPE= option.

Optional Argument
ENTRYTYPE=entry-type

restricts processing to one entry type.

Alias ET=

See “The ENTRYTYPE= Option” on page 315

“Specifying an Entry Type” on page 314

CONTENTS Statement
Lists the contents of a catalog in the procedure output or writes a list of the contents to a SAS data set, an 
external file, or both.

Note: The ENTRYTYPE= option is not available for the CONTENTS statement.

Example: “Example 2: Displaying Contents, Changing Names, and Changing a Description” on 
page 323

304 Chapter 10 / CATALOG Procedure



Syntax
CONTENTS <CATALOG=<libref.>catalog > <OUT=SAS-data-set> <FILE=fileref>;

Without Arguments
The output is sent to the procedure output.

Optional Arguments
CATALOG=<libref.>catalog

specifies the SAS catalog to process.

Aliases CAT=

C=

Default None

FILE=fileref
sends the contents to an external file that is identified with a SAS fileref.

Interaction If fileref has not been previously assigned to a file, then the file is 
created and named according to operating environment-dependent 
rules for external files.

OUT=SAS-data-set
sends the contents to a SAS data set. When the statement executes, a message 
in the SAS log reports that a data set has been created. The data set contains 
six variables in the following order:

Table 10.1 OUT= Outpput

LIBNAME the libref

MEMNAME the catalog name

NAME the names of entries

TYPE the types of entries

DESC the descriptions of entries

DATE the dates entries were last modified

COPY Statement
Copies some or all of the entries in one catalog to another catalog.

COPY Statement 305



Restriction: A COPY statement's effect ends at a RUN statement or at the beginning of a statement 
other than the SELECT or EXCLUDE statement.

Tips: Use the SELECT or EXCLUDE statement, but not both, after the COPY statement to 
limit which entries are copied.
You can copy entries from multiple catalogs in a single PROC step, not just the one 
specified in the PROC CATALOG statement.
The ENTRYTYPE= option does not require a forward slash (/) in the COPY statement.

Example: “Example 1: Copying, Deleting, and Moving Catalog Entries from Multiple Catalogs” on 
page 319

Syntax
COPY OUT=<libref.>catalog <options>;

Required Argument
OUT=<libref.>catalog

names the catalog to which entries are copied.

Optional Arguments
ENTRYTYPE=entry-type

restricts processing to one entry type for the current COPY statement and any 
subsequent SELECT or EXCLUDE statements.

Alias ET=

See “The ENTRYTYPE= Option” on page 315

“Specifying an Entry Type” on page 314

IN=<libref.>catalog
specifies the catalog to copy.

Interaction The IN= option overrides a CATALOG= argument that was specified 
in the PROC CATALOG statement.

Example “Example 1: Copying, Deleting, and Moving Catalog Entries from 
Multiple Catalogs” on page 319

LOCKCAT=EXCLUSIVE | SHARE
specifies whether to enable more than one user to copy to the same catalog at 
the same time. Using LOCKCAT=SHARE locks individual entries rather than the 
entire catalog, which enables greater throughput. The default is 
LOCKCAT=EXCLUSIVE, which locks the entire catalog to one user. Note that 
using the LOCKCAT=SHARE option can lessen performance if used in a single-
user environment because of the overhead associated with locking and 
unlocking each entry.

MOVE
deletes the original catalog or entries after the new copy is made.

306 Chapter 10 / CATALOG Procedure



Interaction When the MOVE option removes all entries from a catalog, the 
procedure deletes the catalog from the library.

NEW
overwrites the catalog (specified by the OUT= option) if it already exists. If you 
omit the NEW option , then PROC CATALOG updates the catalog. 

See For information about using the NEW option with concatenated catalogs, 
see “Catalog Concatenation” on page 317. 

NOEDIT
prevents the copied version of the following SAS/AF entry types from being 
edited by the BUILD procedure: 

CBT
FRAME
HELP
MENU
PROGRAM
SCL
SYSTEM

Restriction If you specify the NOEDIT option for an entry that is not one of the 
above types, then it is ignored.

Tip When creating SAS/AF applications for other users, use the 
NOEDIT option to protect the application by preventing certain 
catalog entries from being altered.

Example “Example 1: Copying, Deleting, and Moving Catalog Entries from 
Multiple Catalogs” on page 319

NOSOURCE
omits copying the source lines when you copy a SAS/AF PROGRAM, FRAME, 
or SCL entry.

Alias NOSRC

Restriction If you specify this option for an entry other than a PROGRAM, 
FRAME, or SCL entry, then it is ignored.

DELETE Statement
Deletes entries from a SAS catalog.

Restriction: This procedure is not supported on the CAS server.

Tips: Use the DELETE statement to delete only a few entries; use the SAVE option when it is 
more convenient to specify which entries not to delete.
You can specify multiple entries. You can also use multiple DELETE statements.

See: SAVE Statement on page 311

DELETE Statement 307



Example: “Example 1: Copying, Deleting, and Moving Catalog Entries from Multiple Catalogs” on 
page 319

Syntax
DELETE entry-1 <entry-2 …> </ ENTRYTYPE=entry-type>;

Required Argument
entry-1 <entry-2 …>

specifies the name of one or more SAS catalog entries.

Restriction You must designate the type of the entry, either with the name 
(entry-name.entry-type) or with the ENTRYTYPE= option.

Optional Argument
ENTRYTYPE=entry-type

restricts processing to one entry type.

See “The ENTRYTYPE= Option” on page 315

“Specifying an Entry Type” on page 314

EXCHANGE Statement
Switches the name of two catalog entries.

Restriction: When using the EXCHANGE statement, the catalog entries must be of the same type.

Syntax
EXCHANGE name-1=other-name-1
<name-2=other-name-2 …>
</ ENTRYTYPE=entry-type>;

Required Argument
name=other-name

specifies two catalog entry names that the procedure switches.

Interaction You can specify only the entry name without the entry type if you 
use the ENTRYTYPE= option on either the PROC CATALOG 
statement or the EXCHANGE statement.

308 Chapter 10 / CATALOG Procedure



See “Specifying an Entry Type” on page 314

Optional Argument
ENTRYTYPE=entry-type

restricts processing to one entry type.

Alias ET=

See “The ENTRYTYPE= Option” on page 315

“Specifying an Entry Type” on page 314

EXCLUDE Statement
Specifies entries that the COPY statement does not copy.

Restrictions: The EXCLUDE statement requires the COPY statement.
Do not use the EXCLUDE statement with the SELECT statement.

Tips: You can specify multiple entries in a single EXCLUDE statement.
You can use multiple EXCLUDE statements with a single COPY statement within a RUN 
group.

See: COPY Statement on page 305 and SELECT Statement on page 311

Example: “Example 1: Copying, Deleting, and Moving Catalog Entries from Multiple Catalogs” on 
page 319

Syntax
EXCLUDE entry-1 <entry-2 …> </ ENTRYTYPE=entry-type>;

Required Argument
entry-1 <entry-2 …>

specifies the name of one or more SAS catalog entries.

Restriction You must designate the type of the entry, either when you specify 
the name (entry-name.entry-type) or with the ENTRYTYPE= option.

See “Specifying an Entry Type” on page 314

Optional Argument
ENTRYTYPE=entry-type

restricts processing to one entry type.

EXCLUDE Statement 309



Alias ET=

See “The ENTRYTYPE= Option” on page 315

“Specifying an Entry Type” on page 314

MODIFY Statement
Changes the description of a catalog entry.

Example: “Example 2: Displaying Contents, Changing Names, and Changing a Description” on 
page 323

Syntax
MODIFY entry (DESCRIPTION=<<'>entry-description<'>>)

</ ENTRYTYPE=entry-type>;

Required Arguments
entry

specifies the name of one SAS catalog entry. You can specify the entry type with 
the name (entry-name.entry-type).

Restriction You must designate the type of the entry, either when you specify 
the name (entry-name.entry-type) or with the ENTRYTYPE= option.

See “Specifying an Entry Type” on page 314

DESCRIPTION=<<'>entry-description<'>>
changes the description of a catalog entry by replacing it with a new description, 
up to 256 characters long, or by removing it altogether. You can enclose the 
description in single or double quotation marks.

Alias DESC

Tip When using the MODIFY statement with the CATALOG procedure, use 
the DESCRIPTION= option with no text to remove the current description.

Optional Argument
ENTRYTYPE=entry-type

restricts processing to one entry type.

Alias ET=

See “The ENTRYTYPE= Option” on page 315

310 Chapter 10 / CATALOG Procedure



“Specifying an Entry Type” on page 314

SAVE Statement
Specifies entries not to delete from a SAS catalog.

Restriction: The SAVE statement cannot limit the effects of the KILL option.

Tips: Use the SAVE statement to delete all but a few entries in a catalog. Use the DELETE 
statement when it is more convenient to specify which entries to delete.
You can specify multiple entries and use multiple SAVE statements.

See: DELETE Statement on page 307 

Syntax
SAVE entry-1 <entry-2 …> </ ENTRYTYPE=entry-type >;

Required Argument
entry-1 <entry-2…>

specifies the name of one or more SAS catalog entries.

Restriction You must designate the type of the entry, either with the name 
(entry-name.entry-type) or with the ENTRYTYPE= option when 
using the SAVE statement.

Optional Argument
ENTRYTYPE=entry-type

restricts processing to one entry type.

Alias ET=

See “The ENTRYTYPE= Option” on page 315

“Specifying an Entry Type” on page 314

SELECT Statement
Specifies entries that the COPY statement copies.

Restrictions: The SELECT statement requires the COPY statement.
The SELECT statement cannot be used with an EXCLUDE statement.

Tips: You can specify multiple entries in a single SELECT statement.

SELECT Statement 311



You can use multiple SELECT statements with a single COPY statement within a RUN 
group.

See: COPY Statement on page 305 and EXCLUDE Statement on page 309 

Example: “Example 1: Copying, Deleting, and Moving Catalog Entries from Multiple Catalogs” on 
page 319

Syntax
SELECT entry-1 <entry-2 …> </ ENTRYTYPE=entry-type >;

Required Argument
entry-1 <entry-2 …>

specifies the name of one or more SAS catalog entries.

Restriction You must designate the type of the entry, either when you specify 
the name (entry-name.entry-type) or with the ENTRYTYPE= option.

Optional Argument
ENTRYTYPE=entry-type

restricts processing to one entry type.

Alias ET=

See “The ENTRYTYPE= Option” on page 315. 

“Specifying an Entry Type” on page 314. 

312 Chapter 10 / CATALOG Procedure



Usage: CATALOG Procedure

Interactive Processing with RUN Groups

Definition
The CATALOG procedure is interactive. Once you submit a PROC CATALOG 
statement, you can continue to submit and execute statements or groups of 
statements without repeating the PROC CATALOG statement.

A set of procedure statements ending with a RUN statement is called a RUN group. 
The changes specified in a given group of statements take effect when a RUN 
statement is encountered.

How to End a PROC CATALOG Step
In the DATA step and most SAS procedures, a RUN statement is a step boundary 
and ends the step. However, a simple RUN statement does not end an interactive 
procedure. The following list contains ways to terminate a PROC CATALOG step:

n submit a QUIT statement

n submit a RUN statement with the CANCEL option

n submit another DATA or PROC statement

n end your SAS session

Note: When you enter a QUIT, DATA, or PROC statement, any statements 
following the last RUN group execute before the CATALOG procedure terminates. If 
you enter a RUN statement with the CANCEL option, then the remaining statements 
do not execute before the procedure ends.

See “Example 2: Displaying Contents, Changing Names, and Changing a 
Description” on page 323.

Usage: CATALOG Procedure 313



Error Handling and RUN Groups
Error handling is based in part on the division of statements into RUN groups. If a 
syntax error is encountered, then none of the statements in the current RUN group 
execute, and execution proceeds to the next RUN group.

For example, the following statements contain a misspelled DELETE statement:

   
proc catalog catalog=misc entrytype=help;
      copy out=drink;
         select coffee tea;
      del juices;        /* INCORRECT!!! */
      exchange glass=plastic;
   run;
      change calstats=nutri;
   run;
quit;

Because the DELETE statement is incorrectly specified as DEL, no statements in 
that RUN group execute, except the PROC CATALOG statement itself. The 
CHANGE statement does execute because it is in a different RUN group.

Note: Be careful when setting up batch jobs in which one RUN group's statements 
depend on the effects of a previous RUN group, especially when deleting and 
renaming entries.

Specifying an Entry Type

Four Ways to Supply an Entry Type
There is no default entry type, so if you do not supply one, then PROC CATALOG 
generates an error. You can supply an entry type in one of four ways, as shown in 
the following table:

Table 10.2 Supplying an Entry Type

Entry Type Example

Entry name delete
test1.program
test1.log test2.log;

ET= in parentheses delete
test1 (et=program);

314 Chapter 10 / CATALOG Procedure



Entry Type Example

ET= after a slash 1 delete test1 (et=program)
 test1 test2 / et=log;

ENTRYTYPE= without a 
slash 2

proc catalog catalog=mycat et=log;
     delete test1 test2;

1 in a subordinate statement
2 in the PROC CATALOG or the COPY statement

Note: All statements, except the CONTENTS statement, accept the ENTRYTYPE= 
option.

Advantages of Using the ENTRYTYPE= 
Option
The ENTRYTYPE= option can save keystrokes when you are processing multiple 
entries of the same type.

To create a default for entry type for all statements in the current step, use the 
ENTRYTYPE= option in the PROC CATALOG statement. To set the default for only 
the current statement, use the ENTRYTYPE= option in a subordinate statement.

You can have many entries of one type and a few of other types. You can use the 
ENTRYTYPE= option to specify a default and then override that for individual 
entries with (ENTRYTYPE=) in parentheses after those entries.

Avoid a Common Error
You cannot specify the ENTRYTYPE= option in both the PROC CATALOG 
statement and a subordinate statement. For example, these statements generate an 
error and do not delete any entries because the ENTRYTYPE= option specifications 
contradict each other:

   /* THIS IS INCORRECT CODE. */
proc catalog cat=sample et=help;
   delete a b c / et=program;
run;
quit;

The ENTRYTYPE= Option
The ENTRYTYPE= option is available in every statement in the CATALOG 
procedure except the CONTENTS statement.

Usage: CATALOG Procedure 315



ENTRYTYPE=entry-type
not in parentheses, sets a default entry type for the entire PROC step when used 
in the PROC CATALOG statement. In all other statements, this option sets a 
default entry type for the current statement. If you omit the ENTRYTYPE= 
option, then PROC CATALOG processes all entries in the catalog.

Alias ET=

Default PROC CATALOG processes all entries in the catalog.

Interactions If you specify the ENTRYTYPE= option in the PROC CATALOG 
statement, then you do not specify either ENTRYTYPE= or 
(ENTRYTYPE=) in a subordinate statement.

(ENTRYTYPE=) in parentheses immediately following an entry 
name overrides the ENTRYTYPE= option in that same statement.

Tips On all statements except the PROC CATALOG and COPY 
statements, the ENTRYTYPE= option follows a slash.

To process multiple entry types in a single PROC CATALOG step, 
use the ENTRYTYPE= option in a subordinate statement, not in 
the PROC CATALOG statement.

See “Specifying an Entry Type” on page 314 and “Example 1: Copying, 
Deleting, and Moving Catalog Entries from Multiple Catalogs” on 
page 319

(ENTRYTYPE=entry-type)
in parentheses, identifies the type of the entry just preceding it.

Alias (ET=)

Restriction An (ENTRYTYPE=) option immediately following an entry name in a 
subordinate statement cannot override an ENTRYTYPE= option in 
the PROC CATALOG statement. It generates a syntax error.

Interaction The (ENTRYTYPE=) option immediately following an entry name 
overrides the ENTRYTYPE= option in that same statement.

Tips This form is useful mainly for specifying exceptions to an 
ENTRYTYPE= option that is used in a subordinate statement. The 
following statement deletes A.Help, B.Format, and C.Help:
   delete a b (et=format) c / et=help;

For the CHANGE and EXCHANGE statements, specify the 
(ENTRYTYPE=) option in parentheses only once for each pair of 
names following the second name in the pair. Here is an example:
   change old1=new1 (et=log)
          old1=new2 (et=help);

See “Specifying an Entry Type” on page 314, “Example 1: Copying, 
Deleting, and Moving Catalog Entries from Multiple Catalogs” on 
page 319 and “Example 2: Displaying Contents, Changing Names, 
and Changing a Description” on page 323

316 Chapter 10 / CATALOG Procedure



Catalog Concatenation

About Catalog Concatenation
There are two types of CATALOG concatenation. The first type is specified by the 
LIBNAME statement and the second type is specified by the global CATNAME 
statement. All statements and options that can be used on single (unconcatenated) 
catalogs can be used on catalog concatenations.

Restrictions
When you use the CATALOG procedure to copy concatenated catalogs and you use 
the NEW option, the following rules apply:

n If the input catalog is a concatenation and if the output catalog exists in any level 
of the input concatenation, then the copy is not allowed.

n If the output catalog is a concatenation and if the input catalog exists in the first 
level of the output concatenation, then the copy is not allowed.

For example, the following code demonstrates these two rules, and the copy fails:

libname first 'SAS-library-1';
libname second 'SAS-library-2';
   /* create concat.x */
libname concat (first second);

   /* fails rule #1 */
proc catalog c=concat.x;
   copy out=first.x new;
run;
quit;

   /* fails rule #2 */
proc catalog c=first.x;
   copy out=concat.x new;
run;
quit;

In summary, the following table shows when copies are allowed. In the table, A and 
B are libraries, and each contains catalog X. Catalog C is an automatic 
concatenation of A and B, and catalog D is an automatic concatenation of B and A.

Table 10.3 Allowing Copies

Input Catalog Output Catalog Copy Allowed?

Usage: CATALOG Procedure 317



C.X B.X No

C.X D.X No

D.X C.X No

A.X A.X No

A.X B.X Yes

B.X A.X Yes

C.X A.X No

B.X C.X Yes

A.X C.X No

Results: CATALOG Procedure

Results: CATALOG Procedure
The CATALOG procedure produces output when the CONTENTS statement is 
executed without options. The procedure output is assigned a name. You can use 
this name to reference the table when using the Output Delivery System (ODS) to 
select tables and create output data sets. For more information, see “ODS Table 
Names Produced by Base SAS Procedures” in SAS Output Delivery System: 
Procedures Guide.

Table 10.4 ODS Tables Produced by the CATALOG Procedure

Table Name Type of Library

Catalog_Random When the catalog is in a random-access library

Catalog_Sequential When the catalog is in a sequential library

318 Chapter 10 / CATALOG Procedure

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p037wkiv6e4hqln1snmfk9b7c9it.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p037wkiv6e4hqln1snmfk9b7c9it.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p037wkiv6e4hqln1snmfk9b7c9it.htm&locale=en


Examples: CATALOG Procedure

Example 1: Copying, Deleting, and Moving Catalog 
Entries from Multiple Catalogs
Features: PROC CATALOG statement options

CAT=
COPY statement
DELETE statement

Details
This example demonstrates the following tasks:

n copies entries by excluding a few entries

n copies entries by specifying a few entries

n protects entries from being edited

n moves entries

n deletes entries

n processes entries from multiple catalogs

n processes entries in multiple run groups

The SAS catalog Perm.Sample contains the following entries:

DEFAULT     FORM        Default form for printing
FSLETTER    FORM        Standard form for letters (HP Laserjet)
LOAN        FRAME       Loan analysis application
LOAN        HELP        Information about the application
BUILD       KEYS        Function Key Definitions
LOAN        KEYS        Custom key definitions for application
CREDIT      LOG         credit application log
TEST1       LOG         Inventory program
TEST2       LOG         Inventory program
TEST3       LOG         Inventory program
LOAN        PMENU       Custom menu definitions for applicaticm
CREDIT      PROGRAM     credit application pgm
TEST1       PROGRAM     testing budget applic.
TEST2       PROGRAM     testing budget applic.
TEST3       PROGRAM     testing budget applic.
LOAN        SCL         SCL code for loan analysis application

Example 1: Copying, Deleting, and Moving Catalog Entries from Multiple Catalogs 319



PASSIST     SLIST       User profile

The SAS catalog Perm.Formats contains the following entries:

REVENUE    FORMAT      FORMAT:MAXLEN=16,16,12
DEPT       FORMATC     FORMAT:MAXLEN=1,1,14

Program
libname perm 'SAS-library';

proc catalog cat=perm.sample;
   delete credit.program credit.log;
run;

   copy out=tcatall;
run;

   copy out=testcat;
      exclude test1 test2 test3  passist (et=slist) / et=log;
run;

   copy out=logcat move;
      select test1 test2 test3 / et=log;
run;

   copy out=perm.finance noedit;
      select loan.frame loan.help loan.keys loan.pmenu;
run;

   
copy in=perm.formats out=perm.finance;
      select revenue.format dept.formatc;
run;
quit;

Program Description

Assign a library reference to a SAS library. The LIBNAME statement assigns the 
libref Perm to the SAS library that contains a permanent SAS catalog.

libname perm 'SAS-library';

Delete two entries from the Perm.Sample catalog. 

proc catalog cat=perm.sample;
   delete credit.program credit.log;
run;

Copy all entries in the Perm.Sample catalog to the Work.TCatAll catalog.

   copy out=tcatall;
run;

Copy everything except three LOG entries and Passist.Slist from 
Perm.Sample to Work.TestCat. The EXCLUDE statement specifies which entries 

320 Chapter 10 / CATALOG Procedure



not to copy. ET= specifies a default type. (ET=) specifies an exception to the default 
type.

   copy out=testcat;
      exclude test1 test2 test3  passist (et=slist) / et=log;
run;

Move three LOG entries from Perm.Sample to Work.LogCat. The SELECT 
statement specifies which entries to move. ET= restricts processing to LOG entries.

   copy out=logcat move;
      select test1 test2 test3 / et=log;
run;

Copy five SAS/AF software entries from Perm.Sample to Perm.Finance. The 
NOEDIT option protects these entries in Perm.Finance from further editing with 
PROC BUILD.

   copy out=perm.finance noedit;
      select loan.frame loan.help loan.keys loan.pmenu;
run;

Copy two formats from Perm.Formats to Perm.Finance. The IN= option enables 
you to copy from a different catalog than the one specified in the PROC CATALOG 
statement. Note the entry types for numeric and character formats: 
REVENUE.FORMAT is a numeric format and DEPT.FORMATC is a character 
format. The COPY and SELECT statements execute before the QUIT statement 
ends the PROC CATALOG step.

   
copy in=perm.formats out=perm.finance;
      select revenue.format dept.formatc;
run;
quit;

Example 1: Copying, Deleting, and Moving Catalog Entries from Multiple Catalogs 321



The SAS Log
Example Code 10.1 Copying, Protecting, Removing, Deleting, and Processing Entries Using 

PROC CATALOG

1    libname perm 'SAS-library';
NOTE: Libref PERM was successfully assigned as follows:
      Engine:        V9
      Physical Name: SAS-library\perm
2    proc catalog cat=perm.sample;
NOTE: Writing HTML Body file: sashtml.htm
3       delete credit.program credit.log;
4    run;

NOTE: Deleting entry CREDIT.PROGRAM in catalog PERM.SAMPLE.
NOTE: Deleting entry CREDIT.LOG in catalog PERM.SAMPLE.
5       copy out=tcatall;
6    run;

NOTE: Copying entry DEFAULT.FORM from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry FSLETTER.FORM from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry LOAN.FRAME from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry LOAN.HELP from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry BUILD.KEYS from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry LOAN.KEYS from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST1.LOG from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST2.LOG from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST3.LOG from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry LOAN.PMENU from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST1.PROGRAM from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST2.PROGRAM from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST3.PROGRAM from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry LOAN.SCL from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry PASSIST.SLIST from catalog PERM.SAMPLE to catalog WORK.TCATALL.
7       copy out=testcat;
8          exclude test1 test2 test3  passist (et=slist) / et=log;
9    run;

NOTE: Copying entry DEFAULT.FORM from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry FSLETTER.FORM from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry LOAN.FRAME from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry LOAN.HELP from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry BUILD.KEYS from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry LOAN.KEYS from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry LOAN.PMENU from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry TEST1.PROGRAM from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry TEST2.PROGRAM from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry TEST3.PROGRAM from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry LOAN.SCL from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
10      copy out=logcat move;
11         select test1 test2 test3 / et=log;
12   run;

NOTE: Moving entry TEST1.LOG from catalog PERM.SAMPLE to catalog WORK.LOGCAT.
NOTE: Moving entry TEST2.LOG from catalog PERM.SAMPLE to catalog WORK.LOGCAT.
NOTE: Moving entry TEST3.LOG from catalog PERM.SAMPLE to catalog WORK.LOGCAT.
13      copy out=perm.finance noedit;
14         select loan.frame loan.help loan.keys loan.pmenu;
15   run;

322 Chapter 10 / CATALOG Procedure



NOTE: Copying entry LOAN.FRAME from catalog PERM.SAMPLE to catalog PERM.FINANCE.
NOTE: Copying entry LOAN.HELP from catalog PERM.SAMPLE to catalog PERM.FINANCE.
NOTE: Copying entry LOAN.KEYS from catalog PERM.SAMPLE to catalog PERM.FINANCE.
NOTE: Copying entry LOAN.PMENU from catalog PERM.SAMPLE to catalog PERM.FINANCE.
16      copy in=perm.formats out=perm.finance;
17         select revenue.format dept.formatc;
18   quit;

NOTE: Copying entry REVENUE.FORMAT from catalog PERM.FORMATS to catalog PERM.FINANCE.
NOTE: Copying entry DEPT.FORMATC from catalog PERM.FORMATS to catalog PERM.FINANCE.

Example 2: Displaying Contents, Changing Names, 
and Changing a Description
Features: PROC CATALOG statement options

CATALOGS=
CHANGE statement
CONTENTS statement
MODIFY statement

TITLE statement

Details
This example demonstrates the following tasks:

n lists the entries in a catalog and routes the output to a file

n changes entry names

n changes entry descriptions

n processes entries in multiple run groups

Program
libname perm 'SAS-library';

proc catalog catalog=perm.finance;
   contents;
title1 'Contents of PERM.FINANCE before changes are made';
run;

   change dept=deptcode (et=formatc);
run;

   modify loan.frame (description='Loan analysis app. - ver1');
   contents;
title1 'Contents of PERM.FINANCE after changes are made';
run;

Example 2: Displaying Contents, Changing Names, and Changing a Description 323



quit;

Program Description

Assign a library reference. The LIBNAME statement assigns a libref to the SAS 
library that contains a permanent SAS catalog.

libname perm 'SAS-library';

List the entries in a catalog and route the output to a file. The CONTENTS 
statement creates a listing of the contents of the SAS catalog Perm.Finance and 
routes the output to a file.

proc catalog catalog=perm.finance;
   contents;
title1 'Contents of PERM.FINANCE before changes are made';
run;

Change entry names. The CHANGE statement changes the name of an entry that 
contains a user-written character format. (ET=) specifies the entry type.

   change dept=deptcode (et=formatc);
run;

Process entries in multiple run groups. The MODIFY statement changes the 
description of an entry. The CONTENTS statement creates a listing of the contents 
of Perm.Finance after all the changes have been applied. QUIT ends the procedure.

   modify loan.frame (description='Loan analysis app. - ver1');
   contents;
title1 'Contents of PERM.FINANCE after changes are made';
run;

quit;

324 Chapter 10 / CATALOG Procedure



Output Examples
Output 10.1 Contents of Perm.Finance before and After Changes Are Made

Example 3: Using the FORCE Option with the KILL 
Option
Features: PROC CATALOG statement options

CATALOG=
FORCE
KILL

%MACRO statement
%MEND statement
%PUT statement

Example 3: Using the FORCE Option with the KILL Option 325



Details
This example demonstrates the following tasks:

n creates a resource environment

n tries to delete all catalog entries by using the KILL option but receives an error

n specifies the FORCE option to successfully delete all catalog entries by using 
the KILL option.

Program
 %macro matt;
    %put &syscc;
%mend matt;

proc catalog c=work.sasmacr kill;
run;
quit;

proc catalog c=work.sasmacr kill force;
run;
quit;

Program Description
Start a process (resource environment). Do this by opening the catalog entry 
MATT in the Work.Sasmacr catalog.

 %macro matt;
    %put &syscc;
%mend matt;

Specify the KILL option to delete all catalog entries in Work.SasMacr. Since 
there is a resource environment (process using the catalog), KILL does not work 
and an error is sent to the log.

proc catalog c=work.sasmacr kill;
run;
quit;

Specify the FORCE option to the KILL option to delete the catalog entries.

proc catalog c=work.sasmacr kill force;
run;
quit;

326 Chapter 10 / CATALOG Procedure



Log Examples
Example Code 10.2 KILL Option Causes Error to Be Sent to the SAS Log

1     %macro matt;
2       %put &syscc;
3       %mend matt;
4
5    proc catalog c=work.sasmacr kill;
NOTE: Writing HTML Body file: sashtml.htm
6    run;

ERROR: You cannot open WORK.SASMACR.CATALOG for update access because 
WORK.SASMACR.CATALOG is in
use by you in resource environment _O_TAGS.
WARNING: Command CATALOG not processed because of errors noted above.
7    quit;

NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE CATALOG used (Total process time):
      real time           6.46 seconds
      cpu time            0.62 seconds

Example Code 10.3 Adding the FORCE Option to the KILL Option to Delete the Catalog 
Entry

8    proc catalog c=work.sasmacr kill force;
9    run;

NOTE: Deleting entry MATT.MACRO in catalog WORK.SASMACR.
10   quit;

NOTE: PROCEDURE CATALOG used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds

Example 3: Using the FORCE Option with the KILL Option 327



328 Chapter 10 / CATALOG Procedure



Chapter 11
CHART Procedure

Overview: CHART Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
What Does the CHART Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
What Types of Charts Can PROC CHART Create? . . . . . . . . . . . . . . . . . . . . . . . 330

Concepts: CHART Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Concepts: CHART Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

Syntax: CHART Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
PROC CHART Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
BLOCK Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
HBAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
PIE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
STAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
VBAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Results: CHART Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
Portability of ODS Output with PROC CHART . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Examples: CHART Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Example 1: Producing a Simple Frequency Count . . . . . . . . . . . . . . . . . . . . . . . . 363
Example 2: Producing a Percentage Bar Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Example 3: Subdividing the Bars into Categories . . . . . . . . . . . . . . . . . . . . . . . . . 368
Example 4: Producing Side-by-Side Bar Charts . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Example 5: Producing a Horizontal Bar Chart for a Subset of the Data . . . . . . . . 373
Example 6: Producing Block Charts for BY Groups . . . . . . . . . . . . . . . . . . . . . . . . 375

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

329



Overview: CHART Procedure

What Does the CHART Procedure Do?
The CHART procedure produces vertical and horizontal bar charts, block charts, pie 
charts, and star charts. These types of charts graphically display values of a 
variable or a statistic associated with those values. The charted variable can be 
numeric or character.

PROC CHART is a useful tool that lets you visualize data quickly, but if you need to 
produce presentation-quality graphics that include color and various fonts, then use 
SAS/GRAPH software. The GCHART procedure in SAS/GRAPH software produces 
the same types of charts as PROC CHART does. In addition, PROC GCHART can 
produce donut charts.

What Types of Charts Can PROC CHART Create?

Bar Charts
Horizontal and vertical bar charts display the magnitude of data with bars, each of 
which represents a category of data. The length or height of the bars represents the 
value of the chart statistic for each category.

The following output shows a vertical bar chart that displays the number of 
responses for the five categories from the survey data. The following statements 
produce the output:

proc chart data=survey;
   vbar response / sumvar=count
   axis=0 to 200 by 50
   midpoints='Always' 'Usually'
             'Sometimes' 'Rarely' 'Never';
run;

330 Chapter 11 / CHART Procedure



Output 11.1 Vertical Bar Chart

The following output shows the same data presented in a horizontal bar chart. The 
two types of bar charts have essentially the same characteristics, except that 
horizontal bar charts by default display a table of statistic values to the right of the 
bars. The following statements produce the output:

proc chart data=survey;
   hbar response / sumvar=count
        midpoints='Always' 'Usually'
           'Sometimes' 'Rarely' 'Never';
run;

Overview: CHART Procedure 331



Output 11.2 Horizontal Bar Chart

Block Charts
Block charts display the relative magnitude of data by using blocks of varying height, 
each set in a square that represents a category of data. The following output shows 
the number of each survey response in the form of a block chart.

proc chart data=survey;
    block response / sumvar=count
    midpoints='Always' 'Usually'
              'Sometimes' 'Rarely' 'Never';
run;

332 Chapter 11 / CHART Procedure



Output 11.3 Block Chart

Pie Charts
Pie charts represent the relative contribution of parts to the whole by displaying data 
as wedge-shaped slices of a circle. Each slice represents a category of the data. 
The following output shows the survey results divided by response into five pie 
slices. The following statements produce the output:

proc chart data=survey;
   pie response / sumvar=count;
run;

Overview: CHART Procedure 333



Output 11.4 Pie Chart

Star Charts
With PROC CHART, you can produce star charts that show group frequencies, 
totals, or mean values. A star chart is similar to a vertical bar chart, but the bars on a 
star chart radiate from a center point, like spokes in a wheel. Star charts are 
commonly used for cyclical data, such as measures taken every month or day or 
hour. They are also used for data in which the categories have an inherent order 
(“always” meaning more frequent than “usually,” which means more frequent than 
“sometimes”). The following output shows the survey data displayed in a star chart. 
The following statements produce the output:

334 Chapter 11 / CHART Procedure



proc chart data=survey;
   star response / sumvar=count;
run;

Output 11.5 Star Chart

Overview: CHART Procedure 335



Concepts: CHART Procedure

Concepts: CHART Procedure
Here are characteristics for the CHART procedure:

n Character variables and formats cannot exceed a length of 16.

n For continuous numeric variables, PROC CHART automatically selects display 
intervals, although you can define interval midpoints.

n For character variables and discrete numeric variables, which contain several 
distinct values rather than a continuous range, the data values themselves 
define the intervals.

Syntax: CHART Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

Requirement: You must use at least one of the chart-producing statements.

Tips: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. For more 
information, see “Statements with the Same Function in Multiple Procedures” on page 
73.
You can also use any global statement. For a list, see “Global Statements” on page 24 
and “Dictionary of SAS Global Statements” in SAS Global Statements: Reference. 

PROC CHART <options>;
BLOCK variable(s) </ options>;
BY <DESCENDING> variable-1

<<DESCENDING> variable-2 …>
<NOTSORTED>;

HBAR variable(s) </ options>;
PIE variable(s) </ options>;
STAR variable(s) </ options>;
VBAR variable(s) </ options>;

Statement Task Example

PROC CHART Produce a chart

336 Chapter 11 / CHART Procedure

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0e7kamd4b486zn10o4lcseg4qvd.htm&locale=en


Statement Task Example

BLOCK Produce a block chart Ex. 6

BY Produce a separate chart for each BY group Ex. 6

HBAR Produce a horizontal bar chart Ex. 5

PIE Produce a PIE chart

STAR Produce a STAR chart

VBAR Produce a vertical bar chart Ex. 1, Ex. 2, 
Ex. 3, Ex. 4

PROC CHART Statement
Produces vertical and horizontal bar charts, block charts, pie charts, and star charts.

Syntax
PROC CHART <options>;

Optional Arguments
DATA=SAS-data-set

identifies the input SAS data set.

Restriction You cannot use PROC CHART with an engine that supports 
concurrent access if another user is updating the data set at the 
same time.

See “Input Data Sets” on page 26 

FORMCHAR <(position(s))>='formatting-character(s)'
defines the characters to use for constructing the horizontal and vertical axes, 
reference lines, and other structural parts of a chart. It also defines the symbols 
to use to create the bars, blocks, or sections in the output.

position(s)
identifies the position of one or more characters in the SAS formatting-
character string. A space or a comma separates the positions.

Default Omitting (position(s)), is the same as specifying all 20 possible SAS 
formatting characters, in order.

Note PROC CHART uses 6 of the 20 formatting characters that SAS 
provides. Table 11.24 on page 338 shows the formatting characters 

PROC CHART Statement 337



that PROC CHART uses. Figure 11.13 on page 339 illustrates the 
use of formatting characters commonly used in PROC CHART.

formatting-character(s)
lists the characters to use for the specified positions. PROC CHART assigns 
characters in formatting-character(s) to position(s), in the order which they 
are listed. For example, the following option assigns the asterisk (*) to the 
second formatting character, the number sign (#) to the seventh character, 
and does not alter the remaining characters:

formchar(2,7)='*#'

Table 11.1 Formatting Characters Used by PROC CHART

Position Default Used to Draw

1 | Vertical axes in bar charts, the sides of the blocks in block charts, 
and reference lines in horizontal bar charts. In side-by-side bar 
charts, the first and second formatting characters appear around 
each value of the group variable (below the chart) to indicate the 
width of each group.

2 - Horizontal axes in bar charts, the horizontal lines that separate the 
blocks in a block chart, and reference lines in vertical bar charts. In 
side-by-side bar charts, the first and second formatting characters 
appear around each value of the group variable (below the chart) to 
indicate the width of each group.

7 + Tick marks in bar charts and the centers in pie and star charts.

9 - Intersection of axes in bar charts.

16 / Ends of blocks and the diagonal lines that separate blocks in a block 
chart.

20 * Circles in pie and star charts.

338 Chapter 11 / CHART Procedure



Figure 11.1 Formatting Characters Commonly Used in PROC CHART Output

Mean Yearly Pie Sales Grouped by Flavor 1
within Bakery Location

Pies_Sold Mean

400 +
| *** ***
300 +--***-------***---------***-------***------------------------------------
| *** *** *** *** ***
200 +--***--***--***---------***--***--***---------***-------***--------------
| *** *** *** *** *** *** *** ***
100 +--***--***--***---------***--***--***---------***--***--***--------------
| *** *** *** *** *** *** *** *** *** *** *** ***
--------------------------------------------------------------------------
a b c r a b c r a b c r Flavor
p l h h p l h h p l h h
p u e u p u e u p u e u
l e r b l e r b l e r b
e b r a e b r a e b r a
e y r e y r e y r
r b r b r b
r r r

|----- Clyde ----| |------ Oak -----| |---- Samford ---| Bakery

9

1 2

7

1 2

2

Interaction The SAS system option FORMCHAR= specifies the default 
formatting characters. The system option defines the entire string of 
formatting characters. The FORMCHAR= option in a procedure can 
redefine selected characters.

Tip You can use any character in formatting-characters, including 
hexadecimal characters. If you use hexadecimal characters, then 
you must put an x after the closing quotation mark. For example, 
the following option assigns the hexadecimal character 2-D to the 
second formatting character, the hexadecimal character 7C to the 
seventh character, and does not alter the remaining characters:
formchar(2,7)='2D7C'x

See For information about which hexadecimal codes to use for which 
characters, consult the documentation for your hardware.

LPI=value
specifies the proportions of PIE and STAR charts. The value is determined by

lines per inch / columns per inch * 10

For example, if you have a printer with 8 lines per inch and 12 columns per inch, 
then specify LPI=6.6667.

Default 6

PROC CHART Statement 339



BLOCK Statement
Produces a block chart.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Example: “Example 6: Producing Block Charts for BY Groups” on page 375

Syntax
BLOCK variable(s) </ options>;

Required Argument
variable(s)

specifies the variables for which PROC CHART produces a block chart, one 
chart for each variable.

Optional Arguments
AXIS=value-expression

specifies the values for the response axis, where value-expression is a list of 
individual values, each separated by a space, or a range with a uniform interval 
for the values. For example, the following range specifies tick marks on a bar 
chart from 0 to 100 at intervals of 10: hbar x / axis=0 to 100 by 10;

Restrictions Values must be equally spaced, even if you specify them 
individually.

For frequency charts, values must be integers.

Interactions For BLOCK charts, AXIS= sets the scale of the tallest block. To set 
the scale, PROC CHART uses the maximum value from the AXIS= 
list. If no value is greater than 0, then PROC CHART ignores the 
AXIS= option.

If you use AXIS= and the BY statement, then PROC CHART 
produces uniform axes over BY groups.

CAUTION Values in value-expression override the range of the data. For 
example, if the data range is 1 to 10 and you specify a range of 3 to 5, 
then only the data in the range 3 to 5 appears on the chart. Values out of 
range produce a warning message in the SAS log.

FREQ=variable
specifies a data set variable that represents a frequency count for each 
observation. Normally, each observation contributes a value of one to the 
frequency counts. With FREQ=, each observation contributes its value of the 
FREQ= value.

340 Chapter 11 / CHART Procedure



Restriction If the FREQ= values are not integers, then PROC CHART truncates 
them.

Interaction If you use SUMVAR=, then PROC CHART multiplies the sums by 
the FREQ= value.

GROUP=variable
produces side-by-side charts, with each chart representing the observations that 
have a common value for the GROUP= variable. The GROUP= variable can be 
character or numeric and is assumed to be discrete. For example, the following 
statement produces a frequency bar chart for men and women in each 
department:

   vbar gender / group=dept;

Missing values for a GROUP= variable are treated as valid levels.

Examples “Example 4: Producing Side-by-Side Bar Charts” on page 371

“Example 5: Producing a Horizontal Bar Chart for a Subset of the 
Data” on page 373

“Example 6: Producing Block Charts for BY Groups” on page 375

G100
specifies that the sum of percentages for each group equals 100. By default, 
PROC CHART uses 100% as the total sum. For example, if you produce a bar 
chart that separates males and females into three age categories, then the six 
bars, by default, add to 100%. However, with G100, the three bars for females 
add to 100%, and the three bars for males add to 100%.

Interaction PROC CHART ignores G100 if you omit GROUP=.

LEVELS=number-of-midpoints
specifies the number of bars that represent each chart variable when the 
variables are continuous.

MIDPOINTS=midpoint-specification | OLD
defines the range of values that each bar, block, or section represents by 
specifying the range midpoints.

The value for MIDPOINTS= is one of the following:

midpoint-specification
specifies midpoints, either individually, or across a range at a uniform interval. 
For example, the following statement produces a chart with five bars. The 
first bar represents the range of values of X with a midpoint of 10. The 
second bar represents the range with a midpoint of 20, and so on:

   vbar x / midpoints=10 20 30 40 50;

Here is an example of a midpoint specification for a character variable:

   vbar x / midpoints='JAN' 'FEB' 'MAR';

Here is an example of specifying midpoints across a range at a uniform 
interval:

   vbar x / midpoints=10 to 100 by 5;

OLD
specifies an algorithm that PROC CHART used in previous versions of SAS 
to choose midpoints for continuous variables. The old algorithm was based 

BLOCK Statement 341



on the work of Nelder (1976). The current algorithm that PROC CHART uses 
if you omit OLD is based on the work of Terrell and Scott (1985).

Default Without MIDPOINTS=, PROC CHART displays the values in the SAS 
System's normal sorted order.

MISSING
specifies that missing values are valid levels for the chart variable.

NOHEADER
suppresses the default header line printed at the top of a chart.

Alias NOHEADING

Example “Example 6: Producing Block Charts for BY Groups” on page 375

NOSYMBOL
suppresses printing of the subgroup symbol or legend table.

Alias NOLEGEND

Interaction PROC CHART ignores NOSYMBOL if you omit SUBGROUP=.

SUBGROUP=variable
subdivides each bar or block into characters that show the contribution of the 
values of variable to that bar or block. PROC CHART uses the first character of 
each value to fill in the portion of the bar or block that corresponds to that value, 
unless more than one value begins with the same first character. In that case, 
PROC CHART uses the letters A, B, C, and so on, to fill in the bars or blocks. If 
the variable is formatted, then PROC CHART uses the first character of the 
formatted value.

The characters used in the chart and the values that they represent are given in 
a legend at the bottom of the chart. The subgroup symbols are ordered A 
through Z and 0 through 9 with the characters in ascending order.

PROC CHART calculates the height of a bar or block for each subgroup 
individually and then rounds the percentage of the total bar up or down. So the 
total height of the bar can be higher or lower than the same bar without the 
SUBGROUP= option.

Interaction If you use both TYPE=MEAN and SUBGROUP=, then PROC 
CHART first calculates the mean for each variable that is listed in 
the SUMVAR= option. It then subdivides the bar into the 
percentages that each subgroup contributes.

Example “Example 3: Subdividing the Bars into Categories” on page 368

SUMVAR=variable
specifies the variable for which either values or means (depending on the value 
of TYPE=) PROC CHART displays in the chart.

Interaction If you use SUMVAR= and you use TYPE= with a value other than 
MEAN or SUM, then TYPE=SUM overrides the specified TYPE= 
value.

Tip Both HBAR and VBAR charts can print labels for SUMVAR= 
variables if you use a LABEL statement.

342 Chapter 11 / CHART Procedure



Examples “Example 3: Subdividing the Bars into Categories” on page 368

“Example 4: Producing Side-by-Side Bar Charts” on page 371

“Example 5: Producing a Horizontal Bar Chart for a Subset of the 
Data” on page 373

“Example 6: Producing Block Charts for BY Groups” on page 375

SYMBOL=character(s)
specifies the character or characters that PROC CHART uses in the bars or 
blocks of the chart when you do not use the SUBGROUP= option.

Default asterisk (*)

Interaction If the SAS system option OVP is in effect and if your printing device 
supports overprinting, then you can specify up to three characters to 
produce overprinted charts.

Example “Example 6: Producing Block Charts for BY Groups” on page 375

TYPE=statistic
specifies what the bars or sections in the chart represent. The statistic is one of 
the following:

CFREQ
specifies that each bar, block, or section represent the cumulative frequency.

CPERCENT
specifies that each bar, block, or section represent the cumulative 
percentage.

Alias CPCT

FREQ
specifies that each bar, block, or section represent the frequency with which a 
value or range occurs for the chart variable in the data.

MEAN
specifies that each bar, block, or section represent the mean of the 
SUMVAR= variable across all observations that belong to that bar, block, or 
section.

Interaction With TYPE=MEAN, you can compute only MEAN and FREQ 
statistics.

Example “Example 4: Producing Side-by-Side Bar Charts” on page 371

PERCENT
specifies that each bar, block, or section represent the percentage of 
observations that have a given value or that fall into a given range of the 
chart variable.

Alias PCT

Example “Example 2: Producing a Percentage Bar Chart” on page 366

SUM
specifies that each bar, block, or section represent the sum of the SUMVAR= 
variable for the observations that correspond to each bar, block, or section.

BLOCK Statement 343



Default FREQ (unless you use SUMVAR=, which causes a default of 
SUM)

Interaction With TYPE=SUM, you can compute only SUM and FREQ 
statistics.

Details

Statement Results
Because each block chart must fit on one output page, you might have to adjust the 
SAS system options LINESIZE= and PAGESIZE= if you have a large number of 
charted values for the BLOCK variable and for the variable specified in the 
GROUP= option.

The following table shows the maximum number of charted values of BLOCK 
variables for selected LINESIZE= (LS=) specifications that can fit on a 66-line page.

Table 11.2 Maximum Number of Bars of BLOCK Variables

GROUP= Value LS= 132 LS= 120 LS= 
105

LS= 90 LS= 76 LS= 64

0,1 9 8 7 6 5 4

2 8 8 7 6 5 4

3 8 7 6 5 4 3

4 7 7 6 5 4 3

5,6 7 6 5 4 3 2

If the value of any GROUP= level is longer than three characters, then the 
maximum number of charted values for the BLOCK variable that can fit might be 
reduced by one. BLOCK level values truncate to 12 characters. If you exceed these 
limits, then PROC CHART produces a horizontal bar chart instead.

BY Statement
Produces a separate chart for each BY group.

See: “BY” on page 74 

Example: “Example 6: Producing Block Charts for BY Groups” on page 375

344 Chapter 11 / CHART Procedure



Syntax
BY <DESCENDING> variable-1
<<DESCENDING> variable-2 …>
<NOTSORTED>;

Required Argument
variable

specifies the variable that the procedure uses to form BY groups. You can 
specify more than one variable. If you do not use the NOTSORTED option in the 
BY statement, then the observations in the data set must either be sorted by all 
the variables that you specify, or they must be indexed appropriately. Variables in 
a BY statement are called BY variables.

Optional Arguments
DESCENDING

specifies that the observations are sorted in descending order by the variable 
that immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. The observations are grouped in another way (for example, chronological 
order).

The requirement for ordering or indexing observations according to the values of 
BY variables is suspended for BY-group processing when you use the 
NOTSORTED option. In fact, the procedure does not use an index if you specify 
NOTSORTED. The procedure defines a BY group as a set of contiguous 
observations that have the same values for all BY variables. If observations with 
the same values for the BY variables are not contiguous, then the procedure 
treats each contiguous set as a separate BY group.

HBAR Statement
Produces a horizontal bar chart.

Tip: HBAR charts can print either the name or the label of the chart variable.

See: “Example 5: Producing a Horizontal Bar Chart for a Subset of the Data” on page 373

Syntax
HBAR variable(s) </ options>;

HBAR Statement 345



Required Argument
variable(s)

specifies the variables for which PROC CHART produces a horizontal bar chart, 
one chart for each variable.

Optional Arguments
ASCENDING

prints the bars and any associated statistics in ascending order of size within 
groups.

Alias ASC

AXIS=value-expression
specifies the values for the response axis, where value-expression is a list of 
individual values, each separated by a space, or a range with a uniform interval 
for the values. For example, the following range specifies tick marks on a bar 
chart from 0 to 100 at intervals of 10: hbar x / axis=0 to 100 by 10;

Restrictions Values must be equally spaced, even if you specify them 
individually.

For frequency charts, values must be integers.

Interactions For HBAR and VBAR charts, AXIS= determines tick marks on the 
response axis. If the AXIS= specification contains only one value, 
then the value determines the minimum tick mark if the value is 
less than 0, or determines the maximum tick mark if the value is 
greater than 0.

If you use AXIS= and the BY statement, then PROC CHART 
produces uniform axes over BY groups.

CAUTION Values in value-expression override the range of the data. For 
example, if the data range is 1 to 10 and you specify a range of 3 to 5, 
then only the data in the range 3 to 5 appears on the chart. Values out of 
range produce a warning message in the SAS log.

CFREQ
prints the cumulative frequency.

Restriction Available only in the HBAR statement

CPERCENT
prints the cumulative percentages.

Restriction Available only in the HBAR statement

DISCRETE
specifies that a numeric chart variable is discrete rather than continuous. Without 
DISCRETE, PROC CHART assumes that all numeric variables are continuous 
and automatically chooses intervals for them unless you use MIDPOINTS= or 
LEVELS=.

FREQ
prints the frequency of each bar to the side of the chart.

346 Chapter 11 / CHART Procedure



Restriction Available only in the HBAR statement

FREQ=variable
specifies a data set variable that represents a frequency count for each 
observation. Normally, each observation contributes a value of one to the 
frequency counts. With FREQ=, each observation contributes its value of the 
FREQ= value.

Restriction If the FREQ= values are not integers, then PROC CHART truncates 
them.

Interaction If you use SUMVAR=, then PROC CHART multiplies the sums by 
the FREQ= value.

GROUP=variable
produces side-by-side charts, with each chart representing the observations that 
have a common value for the GROUP= variable. The GROUP= variable can be 
character or numeric and is assumed to be discrete. For example, the following 
statement produces a frequency bar chart for men and women in each 
department:

   vbar gender / group=dept;

Missing values for a GROUP= variable are treated as valid levels.

Examples “Example 4: Producing Side-by-Side Bar Charts” on page 371

“Example 5: Producing a Horizontal Bar Chart for a Subset of the 
Data” on page 373

“Example 6: Producing Block Charts for BY Groups” on page 375

GSPACE=n
specifies the amount of extra space between groups of bars. Use GSPACE=0 to 
leave no extra space between adjacent groups of bars.

Interaction PROC CHART ignores GSPACE= if you omit GROUP=

G100
specifies that the sum of percentages for each group equals 100. By default, 
PROC CHART uses 100% as the total sum. For example, if you produce a bar 
chart that separates males and females into three age categories, then the six 
bars, by default, add to 100%. However, with G100, the three bars for females 
add to 100%, and the three bars for males add to 100%.

Interaction PROC CHART ignores G100 if you omit GROUP=.

LEVELS=number-of-midpoints
specifies the number of bars that represent each chart variable when the 
variables are continuous.

MEAN
prints the mean of the observations represented by each bar.

Restrictions Available only when you use SUMVAR= and TYPE=

Not available when TYPE=CFREQ, CPERCENT, FREQ, or 
PERCENT

HBAR Statement 347



MISSING
specifies that missing values are valid levels for the chart variable.

NOSTATS
suppresses the statistics on a horizontal bar chart.

Alias NOSTAT

NOSYMBOL
suppresses printing of the subgroup symbol or legend table.

Alias NOLEGEND

Interaction PROC CHART ignores NOSYMBOL if you omit SUBGROUP=.

NOZEROS
suppresses any bar with zero frequency.

PERCENT
prints the percentages of observations having a given value for the chart 
variable.

REF=value(s)
draws reference lines on the response axis at the specified positions.

Tip The REF= values should correspond to values of the TYPE= statistic.

Example “Example 4: Producing Side-by-Side Bar Charts” on page 371

SPACE=n
specifies the amount of space between individual bars.

Tips Use SPACE=0 to leave no space between adjacent bars.

Use the GSPACE= option to specify the amount of space between the 
bars within each group.

SUBGROUP=variable
subdivides each bar or block into characters that show the contribution of the 
values of variable to that bar or block. PROC CHART uses the first character of 
each value to fill in the portion of the bar or block that corresponds to that value, 
unless more than one value begins with the same first character. In that case, 
PROC CHART uses the letters A, B, C, and so on, to fill in the bars or blocks. If 
the variable is formatted, then PROC CHART uses the first character of the 
formatted value.

The characters used in the chart and the values that they represent are given in 
a legend at the bottom of the chart. The subgroup symbols are ordered A 
through Z and 0 through 9 with the characters in ascending order.

PROC CHART calculates the height of a bar or block for each subgroup 
individually and then rounds the percentage of the total bar up or down. So the 
total height of the bar can be higher or lower than the same bar without the 
SUBGROUP= option.

Interaction If you use both TYPE=MEAN and SUBGROUP=, then PROC 
CHART first calculates the mean for each variable that is listed in 
the SUMVAR= option. It then subdivides the bar into the 
percentages that each subgroup contributes.

348 Chapter 11 / CHART Procedure



Example “Example 3: Subdividing the Bars into Categories” on page 368

SUM
prints the total number of observations that each bar represents.

Restrictions Available only when you use both SUMVAR= and TYPE=

Not available when TYPE=CFREQ, CPERCENT, FREQ, or 
PERCENT

SUMVAR=variable
specifies the variable for which either values or means (depending on the value 
of TYPE=) PROC CHART displays in the chart.

Interaction If you use SUMVAR= and you use TYPE= with a value other than 
MEAN or SUM, then TYPE=SUM overrides the specified TYPE= 
value.

Tip HBAR charts can print labels for SUMVAR= variables if you use a 
LABEL statement.

Examples “Example 3: Subdividing the Bars into Categories” on page 368

“Example 4: Producing Side-by-Side Bar Charts” on page 371

“Example 5: Producing a Horizontal Bar Chart for a Subset of the 
Data” on page 373

“Example 6: Producing Block Charts for BY Groups” on page 375

SYMBOL=character(s)
specifies the character or characters that PROC CHART uses in the bars or 
blocks of the chart when you do not use the SUBGROUP= option.

Default asterisk (*)

Interaction If the SAS system option OVP is in effect and if your printing device 
supports overprinting, then you can specify up to three characters to 
produce overprinted charts.

Example “Example 6: Producing Block Charts for BY Groups” on page 375

TYPE=statistic
specifies what the bars or sections in the chart represent. The statistic is one of 
the following:

CFREQ
specifies that each bar, block, or section represent the cumulative frequency.

CPERCENT
specifies that each bar, block, or section represent the cumulative 
percentage.

Alias CPCT

FREQ
specifies that each bar, block, or section represent the frequency with which a 
value or range occurs for the chart variable in the data.

HBAR Statement 349



MEAN
specifies that each bar, block, or section represent the mean of the 
SUMVAR= variable across all observations that belong to that bar, block, or 
section.

Interaction With TYPE=MEAN, you can compute only MEAN and FREQ 
statistics.

Example “Example 4: Producing Side-by-Side Bar Charts” on page 371

PERCENT
specifies that each bar, block, or section represent the percentage of 
observations that have a given value or that fall into a given range of the 
chart variable.

Alias PCT

Example “Example 2: Producing a Percentage Bar Chart” on page 366

SUM
specifies that each bar, block, or section represent the sum of the SUMVAR= 
variable for the observations that correspond to each bar, block, or section.

Default FREQ (unless you use SUMVAR=, which causes a default of 
SUM)

Interaction With TYPE=SUM, you can compute only SUM and FREQ 
statistics.

WIDTH=n
specifies the width of the bars on bar charts.

Details

Statement Results
Each chart occupies one or more output pages, depending on the number of bars; 
each bar occupies one line, by default.

By default, for horizontal bar charts of TYPE=FREQ, CFREQ, PCT, or CPCT, PROC 
CHART prints the following statistics: frequency, cumulative frequency, percentage, 
and cumulative percentage. If you use one or more of the statistics options, then 
PROC CHART prints only the statistics that you request, plus the frequency.

PIE Statement
Produces a pie chart.

350 Chapter 11 / CHART Procedure



Syntax
PIE variable(s) </ options>;

Required Argument
variable(s)

specifies the variables for which PROC CHART produces a pie chart, one chart 
for each variable.

Optional Arguments
FREQ=variable

specifies a data set variable that represents a frequency count for each 
observation. Normally, each observation contributes a value of one to the 
frequency counts. With FREQ=, each observation contributes its value of the 
FREQ= value.

Restriction If the FREQ= values are not integers, then PROC CHART truncates 
them.

Interaction If you use SUMVAR=, then PROC CHART multiplies the sums by 
the FREQ= value.

LEVELS=number-of-midpoints
specifies the number of bars that represent each chart variable when the 
variables are continuous.

MIDPOINTS=midpoint-specification | OLD
defines the range of values that each bar, block, or section represents by 
specifying the range midpoints.

The value for MIDPOINTS= is one of the following:

midpoint-specification
specifies midpoints, either individually, or across a range at a uniform interval. 
For example, the following statement produces a chart with five bars. The 
first bar represents the range of values of X with a midpoint of 10. The 
second bar represents the range with a midpoint of 20, and so on:

   vbar x / midpoints=10 20 30 40 50;

Here is an example of a midpoint specification for a character variable:

   vbar x / midpoints='JAN' 'FEB' 'MAR';

Here is an example of specifying midpoints across a range at a uniform 
interval:

   vbar x / midpoints=10 to 100 by 5;

OLD
specifies an algorithm that PROC CHART used in previous versions of SAS 
to choose midpoints for continuous variables. The old algorithm was based 
on the work of Nelder (1976). The current algorithm that PROC CHART uses 
if you omit OLD is based on the work of Terrell and Scott (1985).

PIE Statement 351



Default Without MIDPOINTS=, PROC CHART displays the values in the SAS 
System's normal sorted order.

MISSING
specifies that missing values are valid levels for the chart variable.

NOHEADER
suppresses the default header line printed at the top of a chart.

Alias NOHEADING

Example “Example 6: Producing Block Charts for BY Groups” on page 375

SUMVAR=variable
specifies the variable for which either values or means (depending on the value 
of TYPE=) PROC CHART displays in the chart.

Interaction If you use SUMVAR= and you use TYPE= with a value other than 
MEAN or SUM, then TYPE=SUM overrides the specified TYPE= 
value.

Tip Both HBAR and VBAR charts can print labels for SUMVAR= 
variables if you use a LABEL statement.

Examples “Example 3: Subdividing the Bars into Categories” on page 368

“Example 4: Producing Side-by-Side Bar Charts” on page 371

“Example 5: Producing a Horizontal Bar Chart for a Subset of the 
Data” on page 373

“Example 6: Producing Block Charts for BY Groups” on page 375

TYPE=statistic
specifies what the bars or sections in the chart represent. The statistic is one of 
the following:

CFREQ
specifies that each bar, block, or section represent the cumulative frequency.

CPERCENT
specifies that each bar, block, or section represent the cumulative 
percentage.

Alias CPCT

FREQ
specifies that each bar, block, or section represent the frequency with which a 
value or range occurs for the chart variable in the data.

MEAN
specifies that each bar, block, or section represent the mean of the 
SUMVAR= variable across all observations that belong to that bar, block, or 
section.

Interaction With TYPE=MEAN, you can compute only MEAN and FREQ 
statistics.

Example “Example 4: Producing Side-by-Side Bar Charts” on page 371

352 Chapter 11 / CHART Procedure



PERCENT
specifies that each bar, block, or section represent the percentage of 
observations that have a given value or that fall into a given range of the 
chart variable.

Alias PCT

Example “Example 2: Producing a Percentage Bar Chart” on page 366

SUM
specifies that each bar, block, or section represent the sum of the SUMVAR= 
variable for the observations that correspond to each bar, block, or section.

Default FREQ (unless you use SUMVAR=, which causes a default of 
SUM)

Interaction With TYPE=SUM, you can compute only SUM and FREQ 
statistics.

Details

Statement Results
PROC CHART determines the number of slices for the pie in the same way that it 
determines the number of bars for vertical bar charts. Any slices of the pie 
accounting for less than three print positions are grouped together into an "OTHER" 
category.

The pie's size is determined only by the SAS system options LINESIZE= and 
PAGESIZE=. By default, the pie looks elliptical if your printer does not print 6 lines 
per inch and 10 columns per inch. To make a circular pie chart on a printer that does 
not print 6 lines and 10 columns per inch, use the LPI= option in the PROC CHART 
statement. See the description of “LPI=value” on page 339 for the formula that gives 
you the proper LPI= value for your printer. 

If you try to create a PIE chart for a variable with more than 50 levels, then PROC 
CHART produces a horizontal bar chart instead.

STAR Statement
Produces a star chart.

Syntax
STAR variable(s) </ options>;

STAR Statement 353



Required Argument
variable(s)

specifies the variables for which PROC CHART produces a star chart, one chart 
for each variable.

Optional Arguments
AXIS=value-expression

specifies the values for the response axis, where value-expression is a list of 
individual values, each separated by a space, or a range with a uniform interval 
for the values. For example, the following range specifies tick marks on a bar 
chart from 0 to 100 at intervals of 10: hbar x / axis=0 to 100 by 10;

Restrictions Values must be equally spaced, even if you specify them 
individually.

For frequency charts, values must be integers.

Interactions For STAR charts, a single AXIS= value sets the minimum (the 
center of the chart) if the value is less than zero, or sets the 
maximum (the outside circle) if the value is greater than zero. If the 
AXIS= specification contains more than one value, then PROC 
CHART uses the minimum and maximum values from the list.

If you use AXIS= and the BY statement, then PROC CHART 
produces uniform axes over BY groups.

CAUTION Values in value-expression override the range of the data. For 
example, if the data range is 1 to 10 and you specify a range of 3 to 5, 
then only the data in the range 3 to 5 appears on the chart. Values out of 
range produce a warning message in the SAS log.

FREQ=variable
specifies a data set variable that represents a frequency count for each 
observation. Normally, each observation contributes a value of one to the 
frequency counts. With FREQ=, each observation contributes its value of the 
FREQ= value.

Restriction If the FREQ= values are not integers, then PROC CHART truncates 
them.

Interaction If you use SUMVAR=, then PROC CHART multiplies the sums by 
the FREQ= value.

LEVELS=number-of-midpoints
specifies the number of bars that represent each chart variable when the 
variables are continuous.

MIDPOINTS=midpoint-specification | OLD
defines the range of values that each bar, block, or section represents by 
specifying the range midpoints.

The value for MIDPOINTS= is one of the following:

midpoint-specification
specifies midpoints, either individually, or across a range at a uniform interval. 
For example, the following statement produces a chart with five bars. The 

354 Chapter 11 / CHART Procedure



first bar represents the range of values of X with a midpoint of 10. The 
second bar represents the range with a midpoint of 20, and so on:

   vbar x / midpoints=10 20 30 40 50;

Here is an example of a midpoint specification for a character variable:

   vbar x / midpoints='JAN' 'FEB' 'MAR';

Here is an example of specifying midpoints across a range at a uniform 
interval:

   vbar x / midpoints=10 to 100 by 5;

OLD
specifies an algorithm that PROC CHART used in previous versions of SAS 
to choose midpoints for continuous variables. The old algorithm was based 
on the work of Nelder (1976). The current algorithm that PROC CHART uses 
if you omit OLD is based on the work of Terrell and Scott (1985).

Default Without MIDPOINTS=, PROC CHART displays the values in the SAS 
System's normal sorted order.

MISSING
specifies that missing values are valid levels for the chart variable.

NOHEADER
suppresses the default header line printed at the top of a chart.

Alias NOHEADING

Example “Example 6: Producing Block Charts for BY Groups” on page 375

SUMVAR=variable
specifies the variable for which either values or means (depending on the value 
of TYPE=) PROC CHART displays in the chart.

Interaction If you use SUMVAR= and you use TYPE= with a value other than 
MEAN or SUM, then TYPE=SUM overrides the specified TYPE= 
value.

Tip Both HBAR and VBAR charts can print labels for SUMVAR= 
variables if you use a LABEL statement.

Examples “Example 3: Subdividing the Bars into Categories” on page 368

“Example 4: Producing Side-by-Side Bar Charts” on page 371

“Example 5: Producing a Horizontal Bar Chart for a Subset of the 
Data” on page 373

“Example 6: Producing Block Charts for BY Groups” on page 375

TYPE=statistic
specifies what the bars or sections in the chart represent. The statistic is one of 
the following:

CFREQ
specifies that each bar, block, or section represent the cumulative frequency.

CPERCENT
specifies that each bar, block, or section represent the cumulative 
percentage.

STAR Statement 355



Alias CPCT

FREQ
specifies that each bar, block, or section represent the frequency with which a 
value or range occurs for the chart variable in the data.

MEAN
specifies that each bar, block, or section represent the mean of the 
SUMVAR= variable across all observations that belong to that bar, block, or 
section.

Interaction With TYPE=MEAN, you can compute only MEAN and FREQ 
statistics.

Example “Example 4: Producing Side-by-Side Bar Charts” on page 371

PERCENT
specifies that each bar, block, or section represent the percentage of 
observations that have a given value or that fall into a given range of the 
chart variable.

Alias PCT

Example “Example 2: Producing a Percentage Bar Chart” on page 366

SUM
specifies that each bar, block, or section represent the sum of the SUMVAR= 
variable for the observations that correspond to each bar, block, or section.

Default FREQ (unless you use SUMVAR=, which causes a default of 
SUM)

Interaction With TYPE=SUM, you can compute only SUM and FREQ 
statistics.

Details

Statement Results
The number of points in the star is determined in the same way as the number of 
bars for vertical bar charts.

If all the data values are positive, then the center of the star represents zero and the 
outside circle represents the maximum value. If any data values are negative, then 
the center represents the minimum. See the description of the AXIS=value 
expression for more information about how to specify maximum and minimum 
values. For information about how to specify the proportion of the chart, see the 
description of the “LPI=value” on page 339. 

If you try to create a star chart for a variable with more than 24 levels, then PROC 
CHART produces a horizontal bar chart instead.

356 Chapter 11 / CHART Procedure



VBAR Statement
Produces a vertical bar chart.

Examples: “Example 1: Producing a Simple Frequency Count” on page 363
“Example 2: Producing a Percentage Bar Chart” on page 366
“Example 3: Subdividing the Bars into Categories” on page 368
“Example 4: Producing Side-by-Side Bar Charts” on page 371

Syntax
VBAR variable(s) </ options>;

Required Argument
variable(s)

specifies the variables for which PROC CHART produces a vertical bar chart, 
one chart for each variable.

Optional Arguments
ASCENDING

prints the bars and any associated statistics in ascending order of size within 
groups.

Alias ASC

AXIS=value-expression
specifies the values for the response axis, where value-expression is a list of 
individual values, each separated by a space, or a range with a uniform interval 
for the values. For example, the following range specifies tick marks on a bar 
chart from 0 to 100 at intervals of 10: hbar x / axis=0 to 100 by 10;

Restrictions Values must be equally spaced, even if you specify them 
individually.

For frequency charts, values must be integers.

Interactions For HBAR and VBAR charts, AXIS= determines tick marks on the 
response axis. If the AXIS= specification contains only one value, 
then the value determines the minimum tick mark if the value is 
less than 0, or determines the maximum tick mark if the value is 
greater than 0.

If you use AXIS= and the BY statement, then PROC CHART 
produces uniform axes over BY groups.

CAUTION Values in value-expression override the range of the data. For 
example, if the data range is 1 to 10 and you specify a range of 3 to 5, 

VBAR Statement 357



then only the data in the range 3 to 5 appears on the chart. Values out of 
range produce a warning message in the SAS log.

DISCRETE
specifies that a numeric chart variable is discrete rather than continuous. Without 
DISCRETE, PROC CHART assumes that all numeric variables are continuous 
and automatically chooses intervals for them unless you use MIDPOINTS= or 
LEVELS=.

FREQ=variable
specifies a data set variable that represents a frequency count for each 
observation. Normally, each observation contributes a value of one to the 
frequency counts. With FREQ=, each observation contributes its value of the 
FREQ= value.

Restriction If the FREQ= values are not integers, then PROC CHART truncates 
them.

Interaction If you use SUMVAR=, then PROC CHART multiplies the sums by 
the FREQ= value.

GROUP=variable
produces side-by-side charts, with each chart representing the observations that 
have a common value for the GROUP= variable. The GROUP= variable can be 
character or numeric and is assumed to be discrete. For example, the following 
statement produces a frequency bar chart for men and women in each 
department:

   vbar gender / group=dept;

Missing values for a GROUP= variable are treated as valid levels.

Examples “Example 4: Producing Side-by-Side Bar Charts” on page 371

“Example 5: Producing a Horizontal Bar Chart for a Subset of the 
Data” on page 373

“Example 6: Producing Block Charts for BY Groups” on page 375

GSPACE=n
specifies the amount of extra space between groups of bars. Use GSPACE=0 to 
leave no extra space between adjacent groups of bars.

Interaction PROC CHART ignores GSPACE= if you omit GROUP=

G100
specifies that the sum of percentages for each group equals 100. By default, 
PROC CHART uses 100% as the total sum. For example, if you produce a bar 
chart that separates males and females into three age categories, then the six 
bars, by default, add to 100%. However, with G100, the three bars for females 
add to 100%, and the three bars for males add to 100%.

Interaction PROC CHART ignores G100 if you omit GROUP=.

LEVELS=number-of-midpoints
specifies the number of bars that represent each chart variable when the 
variables are continuous.

358 Chapter 11 / CHART Procedure



MIDPOINTS=midpoint-specification | OLD
defines the range of values that each bar, block, or section represents by 
specifying the range midpoints.

The value for MIDPOINTS= is one of the following:

midpoint-specification
specifies midpoints, either individually, or across a range at a uniform interval. 
For example, the following statement produces a chart with five bars; the first 
bar represents the range of values of X with a midpoint of 10, the second bar 
represents the range with a midpoint of 20, and so on:

   vbar x / midpoints=10 20 30 40 50;

Here is an example of a midpoint specification for a character variable:

   vbar x / midpoints='JAN' 'FEB' 'MAR';

Here is an example of specifying midpoints across a range at a uniform 
interval:

   vbar x / midpoints=10 to 100 by 5;

OLD
specifies an algorithm that PROC CHART used in previous versions of SAS 
to choose midpoints for continuous variables. The old algorithm was based 
on the work of Nelder (1976). The current algorithm that PROC CHART uses 
if you omit OLD is based on the work of Terrell and Scott (1985).

Default Without MIDPOINTS=, PROC CHART displays the values in the 
SAS System's normal sorted order.

Restriction When the VBAR variables are numeric, the midpoints must be 
given in ascending order.

MISSING
specifies that missing values are valid levels for the chart variable.

NOSYMBOL
suppresses printing of the subgroup symbol or legend table.

Alias NOLEGEND

Interaction PROC CHART ignores NOSYMBOL if you omit SUBGROUP=.

NOZEROS
suppresses any bar with zero frequency.

REF=value(s)
draws reference lines on the response axis at the specified positions.

Tip The REF= values should correspond to values of the TYPE= statistic.

Example “Example 4: Producing Side-by-Side Bar Charts” on page 371

SPACE=n
specifies the amount of space between individual bars.

Tips Use SPACE=0 to leave no space between adjacent bars.

Use the GSPACE= option to specify the amount of space between the 
bars within each group.

VBAR Statement 359



SUBGROUP=variable
subdivides each bar or block into characters that show the contribution of the 
values of variable to that bar or block. PROC CHART uses the first character of 
each value to fill in the portion of the bar or block that corresponds to that value, 
unless more than one value begins with the same first character. In that case, 
PROC CHART uses the letters A, B, C, and so on, to fill in the bars or blocks. If 
the variable is formatted, then PROC CHART uses the first character of the 
formatted value.

The characters used in the chart and the values that they represent are given in 
a legend at the bottom of the chart. The subgroup symbols are ordered A 
through Z and 0 through 9 with the characters in ascending order.

PROC CHART calculates the height of a bar or block for each subgroup 
individually and then rounds the percentage of the total bar up or down. So the 
total height of the bar can be higher or lower than the same bar without the 
SUBGROUP= option.

Interaction If you use both TYPE=MEAN and SUBGROUP=, then PROC 
CHART first calculates the mean for each variable that is listed in 
the SUMVAR= option. It then subdivides the bar into the 
percentages that each subgroup contributes.

Example “Example 3: Subdividing the Bars into Categories” on page 368

SUMVAR=variable
specifies the variable for which either values or means (depending on the value 
of TYPE=) PROC CHART displays in the chart.

Interaction If you use SUMVAR= and you use TYPE= with a value other than 
MEAN or SUM, then TYPE=SUM overrides the specified TYPE= 
value.

Tip VBAR charts can print labels for SUMVAR= variables if you use a 
LABEL statement.

Examples “Example 3: Subdividing the Bars into Categories” on page 368

“Example 4: Producing Side-by-Side Bar Charts” on page 371

“Example 5: Producing a Horizontal Bar Chart for a Subset of the 
Data” on page 373

“Example 6: Producing Block Charts for BY Groups” on page 375

SYMBOL=character(s)
specifies the character or characters that PROC CHART uses in the bars or 
blocks of the chart when you do not use the SUBGROUP= option.

Default asterisk (*)

Interaction If the SAS system option OVP is in effect and if your printing device 
supports overprinting, then you can specify up to three characters to 
produce overprinted charts.

Example “Example 6: Producing Block Charts for BY Groups” on page 375

TYPE=statistic
specifies what the bars or sections in the chart represent. The statistic is one of 
the following:

360 Chapter 11 / CHART Procedure



CFREQ
specifies that each bar, block, or section represent the cumulative frequency.

CPERCENT
specifies that each bar, block, or section represent the cumulative 
percentage.

Alias CPCT

FREQ
specifies that each bar, block, or section represent the frequency with which a 
value or range occurs for the chart variable in the data.

MEAN
specifies that each bar, block, or section represent the mean of the 
SUMVAR= variable across all observations that belong to that bar, block, or 
section.

Interaction With TYPE=MEAN, you can compute only MEAN and FREQ 
statistics.

Example “Example 4: Producing Side-by-Side Bar Charts” on page 371

PERCENT
specifies that each bar, block, or section represent the percentage of 
observations that have a given value or that fall into a given range of the 
chart variable.

Alias PCT

Example “Example 2: Producing a Percentage Bar Chart” on page 366

SUM
specifies that each bar, block, or section represent the sum of the SUMVAR= 
variable for the observations that correspond to each bar, block, or section.

Default FREQ (unless you use SUMVAR=, which causes a default of 
SUM)

Interaction With TYPE=SUM, you can compute only SUM and FREQ 
statistics.

WIDTH=n
specifies the width of the bars on bar charts.

Details

Statement Results
PROC CHART prints one page per chart. Along the vertical axis, PROC CHART 
describes the chart frequency, the cumulative frequency, the chart percentage, the 
cumulative percentage, the sum, or the mean. At the bottom of each bar, PROC 
CHART prints a value according to the value of the TYPE= option, if specified. For 
character variables or discrete numeric variables, this value is the actual value 

VBAR Statement 361



represented by the bar. For continuous numeric variables, the value gives the 
midpoint of the interval represented by the bar.

PROC CHART can automatically scale the vertical axis, determine the bar width, 
and choose spacing between the bars. However, by using options, you can choose 
bar intervals and the number of bars, include missing values in the chart, produce 
side-by-side charts, and subdivide the bars. If the number of characters per line 
(LINESIZE=) is not sufficient to display all vertical bars, then PROC CHART 
produces a horizontal bar chart instead.

Results: CHART Procedure

Missing Values
PROC CHART follows these rules when handling missing values:

n Missing values are considered as valid levels for the chart variable when you use 
the MISSING option.

n Missing values for a GROUP= or SUBGROUP= variable are treated as valid 
levels.

n PROC CHART ignores missing values for the FREQ= option and the SUMVAR= 
option.

n If the value of the FREQ= variable is missing, zero, or negative, then the 
observation is excluded from the calculation of the chart statistic.

n If the value of the SUMVAR= variable is missing, then the observation is 
excluded from the calculation of the chart statistic.

ODS Table Names
The CHART procedure assigns a name to each table that it creates. You can use 
these names to reference the table when using the Output Delivery System (ODS) 
to select tables and create output data sets. For more information, see SAS Output 
Delivery System: User’s Guide.

Table 11.3 ODS Tables Produced by the CHART Procedure

Name Description Statement Used

BLOCK A block chart BLOCK

HBAR A horizontal bar chart HBAR

362 Chapter 11 / CHART Procedure

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Name Description Statement Used

PIE A pie chart PIE

STAR A star chart STAR

VBAR A vertical bar chart VBAR

Portability of ODS Output with PROC CHART
Under certain circumstances, using PROC CHART with the Output Delivery System 
produces files that are not portable. If the SAS system option FORMCHAR= in your 
SAS session uses nonstandard line-drawing characters, then the output might 
include strange characters instead of lines in operating environments in which the 
SAS Monospace font is not installed. To avoid this problem, specify the following 
OPTIONS statement before executing PROC CHART:

options formchar="|----|+|---+=|-/\<>*";

Examples: CHART Procedure

Example 1: Producing a Simple Frequency Count
Features: VBAR statement

Details
This example produces a vertical bar chart that shows a frequency count for the 
values of the chart variable.

Program
data shirts;
   input Size $ @@;
   datalines;

Example 1: Producing a Simple Frequency Count 363



medium    large
large     large
large     medium
medium    small
small     medium
medium    large
small     medium
large     large
large     small
medium    medium
medium    medium
medium    large
small     small
;

proc chart data=shirts;
   vbar size;

   title 'Number of Each Shirt Size Sold';
run;

Program Description
Create the Shirts data set. Shirts contains the sizes of a particular shirt that is sold 
during a week at a clothing store, with one observation for each shirt that is sold.

data shirts;
   input Size $ @@;
   datalines;
medium    large
large     large
large     medium
medium    small
small     medium
medium    large
small     medium
large     large
large     small
medium    medium
medium    medium
medium    large
small     small
;

Create a vertical bar chart with frequency counts. The VBAR statement 
produces a vertical bar chart for the frequency counts of the Size values.

proc chart data=shirts;
   vbar size;

Specify the title.

   title 'Number of Each Shirt Size Sold';
run;

364 Chapter 11 / CHART Procedure



Output: HTML
The following frequency chart shows the store's sales of each shirt size for the 
week: 9 large shirts, 11 medium shirts, and 6 small shirts.

Output 11.6 Number of Each Shirt Size Sold

Example 1: Producing a Simple Frequency Count 365



Example 2: Producing a Percentage Bar Chart
Features: VBAR statement option

TYPE=

Data set: SHIRTS

Details
This example produces a vertical bar chart. The chart statistic is the percentage for 
each category of the total number of shirts sold.

Program
proc chart data=shirts;
   vbar size / type=percent;

   title 'Percentage of Total Sales for Each Shirt Size';
run;

Program Description
Create a vertical bar chart with percentages. The VBAR statement produces a 
vertical bar chart. TYPE= specifies percentage as the chart statistic for the variable 
Size.

proc chart data=shirts;
   vbar size / type=percent;

Specify the title.

   title 'Percentage of Total Sales for Each Shirt Size';
run;

Output: HTML
The following chart shows the percentage of total sales for each shirt size. Of all the 
shirts sold, about 42.3 percent were medium, 34.6 were large, and 23.1 were small.

366 Chapter 11 / CHART Procedure



Output 11.7 Percentage of Total Sales for Each Shirt Size

Example 2: Producing a Percentage Bar Chart 367



Example 3: Subdividing the Bars into Categories
Features: VBAR statement options

SUBGROUP=
SUMVAR=

Details
This example does the following:

n produces a vertical bar chart for categories of one variable with bar lengths that 
represent the values of another variable

n subdivides each bar into categories based on the values of a third variable

Program
data piesales;
   input Bakery $ Flavor $ Year Pies_Sold;
   datalines;
Samford  apple      2005  234
Samford  apple      2006  288
Samford  blueberry  2005  103
Samford  blueberry  2006  143
Samford  cherry     2005  173
Samford  cherry     2006  195
Samford  rhubarb    2005   26
Samford  rhubarb    2006   28
Oak      apple      2005  219
Oak      apple      2006  371
Oak      blueberry  2005  174
Oak      blueberry  2006  206
Oak      cherry     2005  226
Oak      cherry     2006  311
Oak      rhubarb    2005   51
Oak      rhubarb    2006   56
Clyde    apple      2005  213
Clyde    apple      2006  415
Clyde    blueberry  2005  177
Clyde    blueberry  2006  201
Clyde    cherry     2005  230
Clyde    cherry     2006  328
Clyde    rhubarb    2005   60
Clyde    rhubarb    2006   59
;

proc chart data=piesales;

368 Chapter 11 / CHART Procedure



   vbar flavor / subgroup=bakery

                 sumvar=pies_sold;

   title 'Pie Sales by Flavor Subdivided by Bakery Location';
run;

Program Description
Create the Piesales data set. Piesales contains the number of each flavor of pie 
that is sold for two years at three bakeries that are owned by the same company. 
One bakery is on Samford Avenue, one on Oak Street, and one on Clyde Drive.

data piesales;
   input Bakery $ Flavor $ Year Pies_Sold;
   datalines;
Samford  apple      2005  234
Samford  apple      2006  288
Samford  blueberry  2005  103
Samford  blueberry  2006  143
Samford  cherry     2005  173
Samford  cherry     2006  195
Samford  rhubarb    2005   26
Samford  rhubarb    2006   28
Oak      apple      2005  219
Oak      apple      2006  371
Oak      blueberry  2005  174
Oak      blueberry  2006  206
Oak      cherry     2005  226
Oak      cherry     2006  311
Oak      rhubarb    2005   51
Oak      rhubarb    2006   56
Clyde    apple      2005  213
Clyde    apple      2006  415
Clyde    blueberry  2005  177
Clyde    blueberry  2006  201
Clyde    cherry     2005  230
Clyde    cherry     2006  328
Clyde    rhubarb    2005   60
Clyde    rhubarb    2006   59
;

Create a vertical bar chart with the bars that are subdivided into categories. 
The VBAR statement produces a vertical bar chart with one bar for each pie flavor. 
SUBGROUP= divides each bar into sales for each bakery.

proc chart data=piesales;
   vbar flavor / subgroup=bakery

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable 
whose values are represented by the lengths of the bars.

                 sumvar=pies_sold;

Specify the title.

   title 'Pie Sales by Flavor Subdivided by Bakery Location';
run;

Example 3: Subdividing the Bars into Categories 369



Output: HTML
In the following output, the bar that represents the sales of apple pies, for example, 
shows 1,940 total pies across both years and all three bakeries. The symbol for the 
Samford Avenue bakery represents the 522 pies at the top. The symbol for the Oak 
Street bakery represents the 690 pies in the middle. The symbol for the Clyde Drive 
bakery represents the 728 pies at the bottom of the bar for apple pies. By default, 
the labels along the horizontal axis are truncated to eight characters.

Output 11.8 Pie Sales by Flavor Subdivided by Bakery Location

370 Chapter 11 / CHART Procedure



Example 4: Producing Side-by-Side Bar Charts
Features: VBAR statement options

GROUP=
REF=
SUMVAR=
TYPE=

Data set: PIESALES

Details
This example does the following:

n charts the mean values of a variable for the categories of another variable

n creates side-by-side bar charts for the categories of a third variable

n draws reference lines across the charts

Program
proc chart data=piesales;
   vbar flavor / group=bakery

                 ref=100 200 300

                 sumvar=pies_sold

                 type=mean;

   title  'Mean Yearly Pie Sales Grouped by Flavor';
   title2 'within Bakery Location';
run;

Program Description
Create a side-by-side vertical bar chart. The VBAR statement produces a side-
by-side vertical bar chart to compare the sales across values of Bakery, specified by 
GROUP=. Each Bakery group contains a bar for each Flavor value.

proc chart data=piesales;
   vbar flavor / group=bakery

Create reference lines. REF= draws reference lines to mark pie sales at 100, 200, 
and 300.

                 ref=100 200 300

Example 4: Producing Side-by-Side Bar Charts 371



Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable 
that is represented by the lengths of the bars.

                 sumvar=pies_sold

Specify the statistical variable. TYPE= averages the sales for 2005 and 2006 for 
each combination of bakery and flavor.

                 type=mean;

Specify the titles.

   title  'Mean Yearly Pie Sales Grouped by Flavor';
   title2 'within Bakery Location';
run;

Output: HTML
The following side-by-side bar charts compare the sales of pies by flavor, across 
bakeries. For example, for apple pie sales, the mean for the Clyde Drive bakery is 
364, the mean for the Oak Street bakery is 345, and the mean for the Samford 
Avenue bakery is 261.

372 Chapter 11 / CHART Procedure



Output 11.9 Mean Yearly Pie Sales Grouped by Flavor within Bakery Location

Example 5: Producing a Horizontal Bar Chart for a 
Subset of the Data
Features: HBAR statement options

GROUP=

Example 5: Producing a Horizontal Bar Chart for a Subset of the Data 373



SUMVAR=
WHERE= data set option

Data set: PIESALES

Details
This example does the following:

n produces horizontal bar charts only for observations with a common value

n charts the values of a variable for the categories of another variable

n creates side-by-side bar charts for the categories of a third variable

Program
proc chart data=piesales(where=(year=2005));

   hbar bakery / group=flavor

   sumvar=pies_sold;

   title '2005 Pie Sales for Each Bakery According to Flavor';
run;

Program Description
Specify the variable value limitation for the horizontal bar chart. WHERE= 
limits the chart to only the 2005 sales totals.

proc chart data=piesales(where=(year=2005));

Create a side-by-side horizontal bar chart. The HBAR statement produces a 
side-by-side horizontal bar chart to compare sales across values of Flavor, specified 
by GROUP=. Each Flavor group contains a bar for each Bakery value.

   hbar bakery / group=flavor

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable 
whose values are represented by the lengths of the bars.

   sumvar=pies_sold;

Specify the title.

   title '2005 Pie Sales for Each Bakery According to Flavor';
run;

374 Chapter 11 / CHART Procedure



Output: HTML
Output 11.10 2005 Pie Sales for Each Bakery According to Flavor

Example 6: Producing Block Charts for BY Groups
Features: BLOCK statement options

GROUP=
NOHEADER=
SUMVAR=
SYMBOL=

BY statement
PROC SORT
SAS system options

NOBYLINE
OVP

TITLE statement
#BYVAL specification

Data set: PIESALES

Example 6: Producing Block Charts for BY Groups 375



Details
This example does the following:

n sorts the data set

n produces a block chart for each BY group

n organizes the blocks into a three-dimensional chart

n prints BY group-specific titles

Program
proc sort data=piesales out=sorted_piesales;
   by year;
run;

options nobyline;

proc chart data=sorted_piesales;
   by year;

   block bakery / group=flavor

                  sumvar=pies_sold

                  noheader

                  symbol='OX';

   title  'Pie Sales for Each Bakery and Flavor';
   title2 '#byval(year)';
run;

options byline;

Program Description
Sort the input data set Piesales. PROC SORT sorts Piesales by year. Sorting is 
required to produce a separate chart for each year.

proc sort data=piesales out=sorted_piesales;
   by year;
run;

Suppress BY lines and allow overprinted characters in the block charts. 
NOBYLINE suppresses the usual BY lines in the output. 

options nobyline;

Specify the BY group for multiple block charts. The BY statement produces one 
chart for 2005 sales and one for 2006 sales.

proc chart data=sorted_piesales;

376 Chapter 11 / CHART Procedure



   by year;

Create a block chart. The BLOCK statement produces a block chart for each year. 
Each chart contains a grid (Bakery values along the bottom, Flavor values along the 
side) of cells that contain the blocks.

   block bakery / group=flavor

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable 
whose values are represented by the lengths of the blocks.

                  sumvar=pies_sold

Suppress the default header line. NOHEADER suppresses the default header 
line.

                  noheader

Specify the block symbols. SYMBOL= specifies the symbols in the blocks.

                  symbol='OX';

Specify the titles. The #BYVAL specification inserts the year into the second line of 
the title.

   title  'Pie Sales for Each Bakery and Flavor';
   title2 '#byval(year)';
run;

Reset the printing of the default BY line. The SAS system option BYLINE resets 
the printing of the default BY line.

options byline;

Example 6: Producing Block Charts for BY Groups 377



Output: HTML
Output 11.11 2005 Pie Sales for Each Bakery and Flavor

378 Chapter 11 / CHART Procedure



Output 11.12 2006 Pie Sales for Each Bakery and Flavor

References
Nelder, J.A. 1976. “A Simple Algorithm for Scaling Graphs.” Applied Statistics 25 (1) 

London, England: The Royal Statistical Society: 94–96.

Terrell, G.R. and D.W. Scott. 1985. “Oversmoothed Nonparametric Density 
Estimates.” Journal of the American Statistical Association 80 (389): 209–214.

Example 6: Producing Block Charts for BY Groups 379



380 Chapter 11 / CHART Procedure



Chapter 12
CIMPORT Procedure

Overview: CIMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
What Does the CIMPORT Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Process for Creating and Reading a Transport File . . . . . . . . . . . . . . . . . . . . . . . . 382
Converting Data to UTF-8 for Loading into CAS . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Syntax: CIMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
PROC CIMPORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
EXCLUDE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
SELECT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Usage: CIMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
CIMPORT Problems: Importing Transport Files . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

Examples: CIMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Example 1: Importing an Entire Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Example 2: Importing Individual Catalog Entries . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Example 3: Importing a Single Indexed SAS Data Set . . . . . . . . . . . . . . . . . . . . . 403
Example 4: Using PROC CIMPORT to Import a French Data Set 

into a UTF-8 SAS Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Overview: CIMPORT Procedure

What Does the CIMPORT Procedure Do?
The CIMPORT procedure imports a transport file that was created (exported) by the 
CPORT procedure. PROC CIMPORT restores the transport file to its original form 
as a SAS catalog, SAS data set, or SAS library. Transport files are sequential files 
that each contain a SAS library, a SAS catalog, or a SAS data set in transport 
format. The transport format that PROC CPORT writes is the same for all 
environments and for many releases of SAS.

381



PROC CIMPORT also converts SAS files, which means that it changes the format 
of a SAS file from the SAS format appropriate for one version of SAS to the SAS 
format appropriate for another version. For example, you can use PROC CPORT 
and PROC CIMPORT to move files from earlier releases of SAS to more recent 
releases (for example, from SAS 8 to SAS®9) or between the same versions (for 
example, from one SAS 9 operating environment to another SAS 9 operating 
environment). PROC CIMPORT automatically converts the transport file as it 
imports it.

However, PROC CPORT and PROC CIMPORT do not allow file transport from a 
later version to an earlier version (known as regressing). For example, transporting 
is not allowed from SAS® 9 to SAS 8.

Note: PROC CIMPORT and PROC CPORT can be used to back up graphic 
catalogs. PROC COPY cannot be used to back up graphic catalogs.

PROC CIMPORT produces no output, but it does write notes to the SAS log.

Process for Creating and Reading a Transport File
Here is the process to create a transport file at the source computer and to read it at 
a target computer:

1 A transport file is created at the source computer using PROC CPORT.

2 The transport file is transferred from the source computer to the target computer.

3 The transport file is read at the target computer using PROC CIMPORT. 

Note: Transport files that are created using PROC CPORT are not 
interchangeable with transport files that are created using the XPORT engine.

For complete details about the steps to create a transport file (PROC CPORT), to 
transfer the transport file, and to restore the transport file (PROC CIMPORT), see 
Moving and Accessing SAS Files.

Converting Data to UTF-8 for Loading into CAS
The CAS server supports only UTF-8 encoding. If your SAS Viya session encoding 
is not UTF-8, then the data that is read to a CAS table must be transcoded to UTF-8 
before loading your data into CAS. You can set your SAS Viya session to UTF-8 in 
order to avoid the need to transcode the data.

In SAS Viya 3.5, PROC CIMPORT provides the EXTENDVAR= and the 
EXTENDFORMAT = options to prevent truncation and to ensure that the SAS 
supplied format width is sufficient for the transcoded data.

Note: The formats supported are SAS supplied formats only. User-defined formats 
are not supported. 

382 Chapter 12 / CIMPORT Procedure



For more information about migrating data to UTF-8 encoding, see the following 
resources.

n “UTF-8 Encoding” in Migrating Data to UTF-8 for SAS Viya

n “Data Migration to UTF-8 Encoding” in An Introduction to SAS Viya Programming

n “Read External Files” in Migrating Data to UTF-8 for SAS Viya

Syntax: CIMPORT Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

Tip: Use PROC CIMPORT or PROC CPORT when backing up graphic catalogs. PROC 
COPY cannot be used to back up graphic catalogs.

See: CIMPORT Procedure under Windows, UNIX, z/OS 
For complete details about the steps to create a transport file (PROC CPORT), to 
transfer the transport file, and to restore the transport file (PROC CIMPORT), see 
Moving and Accessing SAS Files

PROC CIMPORT destination=libref | <libref.> member-name <options>;
EXCLUDE SAS file(s) | catalog entry(s) </ MEMTYPE=mtype> </ 

ENTRYTYPE=entry-type>;
SELECT SAS file(s) | catalog entry(s) </ MEMTYPE=mtype> </ 

ENTRYTYPE=entry-type>;

Statement Task Example

PROC CIMPORT Import a transport file Ex. 1, Ex. 2, 
Ex. 3

EXCLUDE Exclude one or more specified files from the 
import process

SELECT Specify one or more files or entries to import 
process

Ex. 2

PROC CIMPORT Statement
Imports a transport file.

Examples: “Example 1: Importing an Entire Library” on page 401
“Example 2: Importing Individual Catalog Entries” on page 402
“Example 3: Importing a Single Indexed SAS Data Set” on page 403
“Example 4: Using PROC CIMPORT to Import a French Data Set into a UTF-8 SAS 
Session” on page 405

PROC CIMPORT Statement 383

http://documentation.sas.com/?docsetId=viyadatamig&docsetVersion=3.5&docsetTarget=n0qrqvnmsnd124n1rva078ean4kh.htm&locale=en
http://documentation.sas.com/?docsetId=pgmdiff&docsetVersion=3.5&docsetTarget=p0r8cvub9yw97an0z4zmyhp00dpl.htm&locale=en
http://documentation.sas.com/?docsetId=viyadatamig&docsetVersion=3.5&docsetTarget=n00450bi7yicryn1nzuhtp2u5uh0.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p0uga4zv93xmefn17wbrs2e4wssg.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n0tb5kc4bjrb9wn157w34wtatn35.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1bm4o7mb9nr1wn1kn98cpn5zgnm.htm&locale=en


Syntax
PROC CIMPORT destination=libref | <libref.> member-name <options>;

Summary of Optional Arguments
COMPRESS=NO | CHAR | BINARY

Specifies how the resulting CIMPORT data set is to be compressed.
FORCE

enables access to a locked catalog.
NEW

creates a new catalog for the imported transport file, and deletes any 
existing catalog with the same name.

NOEDIT
imports SAS/AF PROGRAM and SCL entries without Edit capability.

NOSRC
suppresses the importing of source code for SAS/AF entries that contain 
compiled SCL code.

SORT
causes the output data set to be re-sorted if necessary when PROC 
CIMPORT is used to import a sorted data set.

Control the contents of the transport file
EXTENDFORMAT=YES | NO

specifies whether to extend the character format width.
EXTENDSN=YES | NO

specifies whether to extend by 1 byte the length of short numerics (less 
than 8 bytes) when you import them.

EXTENDVAR=multiplier | AUTO
specifies a multiplier value that expands character variable lengths.

UPCASE
writes the alphabetic characters in uppercase to the output file.

Identify the input transport file
INFILE=fileref | 'filename'

specifies a previously defined fileref or the filename of the transport file to 
read.

TAPE
reads the input transport file from a tape.

Look at the encoding of the transport file
ENCODINGINFO=ALL | n

specifies the number of data set headers to read in order to output the 
encoding value of the data set to the log.

ISFILEUTF8=YES | NO 
specifies whether the file is encoded in UTF-8 format.

Select files to import
EET=(etype(s))

384 Chapter 12 / CIMPORT Procedure



excludes specified entry types from the import process.
ET=(etype(s))

specifies entry types to import.
MEMTYPE=mtype

specifies that only data sets, only catalogs, or both, be moved when a 
library is imported.

Required Argument
destination=libref | < libref. >member-name

identifies the type of file to import and specifies the catalog, SAS data set, or 
SAS library to import.

destination
identifies the file or files in the transport file as a single catalog, as a single 
SAS data set, or as the members of a SAS library. The destination argument 
can be one of the following:

CATALOG | CAT | C
DATA | DS | D
LIBRARY | LIB | L

libref
<libref. > member-name

specifies the specific catalog, SAS data set, or SAS library as the destination 
of the transport file. If the destination argument is CATALOG or DATA, you 
can specify both a libref and a member name. If the libref is omitted, PROC 
CIMPORT uses the default library as the libref, which is usually the WORK 
library. If the destination argument is LIBRARY, specify only a libref.

See Refer to “Names in the SAS Language” in SAS Language Reference: 
Concepts for naming conventions that you can use for names and 
member names.

Optional Arguments
COMPRESS=NO | CHAR | BINARY

specifies whether the resulting CIMPORT data set is compressed. You can 
specify the compression type that is being used.

NO
specifies that the data set produced by CIMPORT is not compressed.

Alias OFF | N

CHAR
specifies that the observations in a newly created SAS data set are 
compressed (producing variable-length records) by using RLE (Run Length 
Encoding). RLE compresses observations by reducing repeated runs of the 
same character (including blanks) to two-byte or three-byte representations.

Alias ON | YES | Y

PROC CIMPORT Statement 385

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en


BINARY
specifies that the observations in a newly created SAS data set are 
compressed (producing variable-length records) by using RDC (Ross Data 
Compression). RDC combines run-length encoding and sliding-window 
compression to compress the file by representing repeated byte patterns 
more efficiently.

Note: This method is highly effective for compressing medium to large 
(several hundred bytes or larger) blocks of binary data (character and 
numeric variables). Because the compression function operates on a single 
record at a time, the record length needs to be several hundred bytes or 
larger for effective compression.

See For more information about creating and restoring transport files, see 
Moving and Accessing SAS Files.

Example proc cimport file=transportFile lib=myLib compress=char; 
run;

EET=(etype(s))
excludes specified entry types from the import process. If the etype is a single 
entry type, then you can omit the parentheses. Separate multiple values with 
spaces.

Interaction You cannot specify both the EET= option and the ET= option in the 
same PROC CIMPORT step.

ENCODINGINFO=ALL | n
specifies the number of data set headers to read in order to output the encoding 
value of the data set to the log. 

ALL
specifies that all data set headers are read. The encoding value stored for the 
data set header is output to the SAS log.

n
specifies an integer greater than zero. This value represents the number of 
data set headers to read. The encoding value stored for the data set header 
is output to the SAS log.

Range Specify an integer greater than zero. The upper limit is dependent on 
system contraints. All data is still processed when n is larger than the 
number of data sets in the transport file.

Note If catalogs are encountered in the library during the process of reading 
the data set headers, they are skipped. Catalog headers do not contain 
encoding values.

See For more information about creating and restoring transport files, see 
Moving and Accessing SAS Files.

Example proc cimport lib=work file='mixed' encodinginfo=3; 
run;

NOTE: The CPORTed data set ASCII transport file encoding=us-ascii.
NOTE: The CPORTed data set JISDS transport file encoding=wlatin1.
NOTE: The CPORTed data set UTF8 transport file encoding=wlatin1.

386 Chapter 12 / CIMPORT Procedure



NOTE: The CPORTed data set WLATIN1DS transport file encoding=wlatin1.

ET=(etype(s))
specifies the entry types to import. If the etype is a single entry type, then you 
can omit the parentheses. Separate multiple values with spaces.

Interaction You cannot specify both the EET= option and the ET= option in the 
same PROC CIMPORT step.

EXTENDSN=YES | NO
specifies whether to extend by 1 byte the length of short numerics (fewer than 8 
bytes) when you import them. You can avoid a loss of precision when you 
transport a short numeric in IBM format to IEEE format if you extend its length. 
You cannot extend the length of an 8-byte short numeric.

Default YES

Restriction This option applies only to data sets.

Tip Do not store fractions as short numerics.

EXTENDFORMAT=YES | NO
specifies whether to extend the character format width.

Note: The EXTENDFORMAT= option is used in conjunction with the 
EXTENDVAR= option. 

Alias Y, N

Default YES

Restrictions This option is supported in SAS Viya 3.5 but is not supported in 
SAS 9.

The EXTENDFORMAT= option is used in conjunction with the 
EXTENDVAR= option. If you set EXTENDVAR= to specify a larger 
variable length and then set EXTENDFORMAT= to NO, the text 
might be truncated.

EXTENDVAR=multiplier | AUTO
specifies a multiplier value that expands character variable lengths when you are 
processing a SAS data file that requires transcoding. The expanded length helps 
to ensure that character data is not truncated. 

multiplier
Specify a multiplier value from 1 to 5 or you can specify AUTO. The lengths 
for character variables are increased by multiplying the current length by the 
specified value. The default value is 1. When 1 is used, the variable length is 
not extended. When AUTO is specified, the multiplier is set automatically.

Auto
AUTO is used to set the multiplier. This value is dependant on the encoding 
of the session and the data set in the transport file. When the file that is 
specified by INFILE= is in ANSI encoding or has no character encoding ID 
(CEI) information, a multiplier value of one is used. Otherwise, the extended 
length is calculated for you.

PROC CIMPORT Statement 387



When the string is truncated, a warning message is generated. The message 
prompts you to use the EXTENDVAR option.

Default 1. When the default is used, the variable length is not extended.

Restrictions This option is supported in SAS Viya 3.5 but is not supported in 
SAS 9.

This option applies only to data sets.

This option does not take affect when the NOTRANSCODE 
attribute is specified for data types for SAS character variables.

PROC CIMPORT does not support VARCHAR.

Note If the ASIS option is specified in PROC CPORT, the 
EXTENDVAR= option is ignored.

Tip Do not store fractions as short numerics.

ISFILEUTF8=YES | NO 
explicitly designates the encoding of a data set that is contained in a transport 
file as UTF-8. Although data set encodings are recorded (or stamped) in SAS 9.2 
transport files, encodings are not stamped in transport files created using SAS 
releases before 9.2. Therefore, designating the UTF-8 encoding is useful under 
these conditions: 

n The data set in the transport file was created using a SAS release before 9.2.

n The data set is known to be encoded as UTF-8.

The person who restores the transport file in the target environment should have 
a description of the transport file in advance of the restore operation.

yes
specifies that the data set in the transport file is encoded as UTF-8.

Alias YES, Y, y, TRUE, true, T, t

no
specifies that the data set in the transport file is not encoded as UTF-8. NO is 
the default.

Alias NO, N, n, FALSE, false, F, f

In order to successfully import a transport file in the target SAS session, you 
should have this information about the transport file:

n source operating environment. Windows for example.

n SAS release. SAS 9.2 for example.

n name of the transport file. tport.dat for example.

n encoding of the character data.wlatin1 for example.

n national language of the character data. For example, American English (or 
en_US)

Default NO

Restriction PROC CIMPORT uses this option only if the transport file is not 
stamped with the encoding of the data set. Encodings were not 

388 Chapter 12 / CIMPORT Procedure



recorded in SAS releases before 9.2. If an encoding is recorded in 
the transport file and the ISFILEUTF8= option is specified in PROC 
CIMPORT, ISFILEUTF8= is ignored.

See “CIMPORT Problems: Importing Transport Files” on page 393

For more information about creating and restoring transport files, 
see Moving and Accessing SAS Files.

FORCE
enables access to a locked catalog. By default, PROC CIMPORT locks the 
catalog that it is updating to prevent other users from accessing the catalog while 
it is being updated. The FORCE option overrides this lock, which allows other 
users to access the catalog while it is being imported, or enables you to import a 
catalog that is currently being accessed by other users. 

CAUTION
The FORCE option can lead to unpredictable results. The FORCE option 
allows multiple users to access the same catalog entry simultaneously.

INFILE=fileref | 'filename'
specifies a previously defined fileref or the filename of the transport file to read. If 
you omit the INFILE= option, then PROC CIMPORT attempts to read from a 
transport file with the fileref SASCAT. If a fileref SASCAT does not exist, then 
PROC CIMPORT attempts to read from a file named SASCAT.DAT.

Alias FILE=

Example “Example 1: Importing an Entire Library” on page 401

MEMTYPE=mtype
specifies that only data sets, only catalogs, or both, be imported from the 
transport file. Values for mtype can be as follows: 

ALL both catalogs and data sets

CATALOG | CAT catalogs

DATA | DS SAS data sets

NEW
creates a new catalog to contain the contents of the imported transport file when 
the destination that you specify has the same name as an existing catalog. NEW 
deletes any existing catalog with the same name as the one you specify as a 
destination for the import. If you do not specify NEW, and the destination that 
you specify has the same name as an existing catalog, PROC CIMPORT 
appends the imported transport file to the existing catalog.

NOEDIT
imports SAS/AF PROGRAM and SCL entries without Edit capability.

You obtain the same results if you create a new catalog to contain SCL code by 
using the MERGE statement with the NOEDIT option in the BUILD procedure of 
SAS/AF software.

Note: The NOEDIT option affects only SAS/AF PROGRAM and SCL entries. It 
does not affect FSEDIT SCREEN and FSVIEW FORMULA entries.

PROC CIMPORT Statement 389



Alias NEDIT

NOSRC
suppresses the importing of source code for SAS/AF entries that contain 
compiled SCL code.

You obtain the same results if you create a new catalog to contain SCL code by 
using the MERGE statement with the NOSOURCE option in the BUILD 
procedure of SAS/AF software.

Alias NSRC

Interaction PROC CIMPORT ignores the NOSRC option if you use it with an 
entry type other than FRAME, PROGRAM, or SCL.

SORT
causes the output data set to be re-sorted if necessary when importing a sorted 
data set using PROC CIMPORT. A re-sort is necessary if the data set to be 
imported is sorted by one or more character variables and the ordering of 
character values in the target SAS session is different from that of the source 
session.

Note: The CIMPORT SORT option has no effect on data sets that do not 
contain sort information. This applies only to data sets that were sorted 
previously.

The ordering of character values, or collating sequence, is dependent upon the 
session encoding and translation tables used by SAS as well as by the options 
used when invoking the SORT procedure. If necessary, a re-sort is performed 
during the import, and the data set’s sort indicator is preserved.

For more information, see “Collating Sequence” in SAS National Language 
Support (NLS): Reference Guide and Chapter 64, “SORT Procedure,” on page 
2277.

When PROC CIMPORT re-sorts a data set, the following information is output:

NOTE: PROC CIMPORT re-sorted the data set WORK.TEMP because it contained
      character variables in the sort key, and the collating sequence of 
      the sort differs from the local host.

Example proc cimport 'transportfile.tpt' lib=library sort; run;

Example code for z/OS:
proc cimport data=file.mwelect inf=CPO sort; run;

TAPE
reads the input transport file from a tape.

Default PROC CIMPORT reads from disk.

UPCASE
reads from the transport file and writes the alphabetic characters in uppercase to 
the output file. 

Restriction The UPCASE option is allowed only if SAS is built with a Double-
Byte Character Set (DBCS).

390 Chapter 12 / CIMPORT Procedure

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&locale=en


Tip PROC CPORT can be used to create a transport file that includes 
all uppercase characters. See option “OUTTYPE=UPCASE” on 
page 533 for details.

EXCLUDE Statement
Excludes specified files or entries from the import process.

Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC CIMPORT 
step, but not both.

Tip: There is no limit to the number of EXCLUDE statements that you can use in one 
invocation of PROC CIMPORT.

Syntax
EXCLUDE SAS file(s) | catalog entry(s) </ MEMTYPE=mtype>
</ ENTRYTYPE=entry-type>;

Required Argument
SAS file(s) | catalog entry(s)

specifies one or more SAS files or one or more catalog entries to be excluded 
from the import process. Specify SAS filenames if you import a library; specify 
catalog entry names if you import an individual SAS catalog. Separate multiple 
filenames or entry names with a space. You can use shortcuts to list many like-
named files in the EXCLUDE statement. For more information, see “SAS Data 
Sets” in SAS Language Reference: Concepts.

Optional Arguments
ENTRYTYPE=entry-type

specifies a single entry type for one or more catalog entries that are listed in the 
EXCLUDE statement. See SAS Language Reference: Concepts for a complete 
list of catalog entry types.

Alias ETYPE=, ET=

Restriction ENTRYTYPE= is valid only when you import an individual SAS 
catalog.

MEMTYPE=mtype
specifies a single member type for one or more SAS files listed in the EXCLUDE 
statement. Values for mtype can be

ALL both catalogs and data sets

CATALOG catalogs

DATA SAS data sets

EXCLUDE Statement 391

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p13ekueu3y9bcnn17wwznic3mlod.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p13ekueu3y9bcnn17wwznic3mlod.htm&locale=en


You can also specify the MEMTYPE= option, enclosed in parentheses, 
immediately after the name of a file. In parentheses, MEMTYPE= identifies the 
type of the filename that just precedes it. When you use this form of the option, it 
overrides the MEMTYPE= option that follows the slash in the EXCLUDE 
statement, but it must match the MEMTYPE= option in the PROC CIMPORT 
statement.

Alias MTYPE=, MT=

Default ALL

Restriction MEMTYPE= is valid only when you import a SAS library.

SELECT Statement
Specifies individual files or entries to import.

Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC CIMPORT 
step, but not both.

Tip: There is no limit to the number of SELECT statements that you can use in one 
invocation of PROC CIMPORT.

Example: “Example 2: Importing Individual Catalog Entries” on page 402

Syntax
SELECT SAS file(s) | catalog entry(s) </ MEMTYPE=mtype>
</ ENTRYTYPE=entry-type>;

Required Argument
SAS file(s) | catalog entry(s)

specifies one or more SAS files or one or more catalog entries to import. Specify 
SAS filenames if you import a library; specify catalog entry names if you import 
an individual SAS catalog. Separate multiple filenames or entry names with a 
space. You can use shortcuts to list many like-named files in the SELECT 
statement. For more information, see “SAS Data Sets” in SAS Language 
Reference: Concepts.

Optional Arguments
ENTRYTYPE=entry-type

specifies a single entry type for one or more catalog entries that are listed in the 
SELECT statement. See SAS Language Reference: Concepts for a complete list 
of catalog entry types.

Alias ETYPE=, ET=

392 Chapter 12 / CIMPORT Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p13ekueu3y9bcnn17wwznic3mlod.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p13ekueu3y9bcnn17wwznic3mlod.htm&locale=en


Restriction ENTRYTYPE= is valid only when you import an individual SAS 
catalog.

MEMTYPE=mtype
specifies a single member type for one or more SAS files listed in the SELECT 
statement. Valid values are CATALOG or CAT, DATA, or ALL.

You can also specify the MEMTYPE= option, enclosed in parentheses, 
immediately after the name of a file. In parentheses, MEMTYPE= identifies the 
type of the filename that just precedes it. When you use this form of the option, it 
overrides the MEMTYPE= option that follows the slash in the SELECT 
statement, but it must match the MEMTYPE= option in the PROC CIMPORT 
statement.

Alias MTYPE=, MT=

Default ALL

Restriction MEMTYPE= is valid only when you import a SAS library.

Usage: CIMPORT Procedure

CIMPORT Problems: Importing Transport Files

About Transport Files and Encodings
The character data in a transport file is created for the following types of encodings:

n the UTF-8 encoding of the SAS session in which the transport file is created.

n the Windows encoding that is associated with the locale of the SAS session in 
which the transport file is created. However, starting in SAS 9.4M3, PROC 
CIMPORT supports the ability to import data sets created in non-UTF-8 SAS 
sessions into UTF-8 SAS sessions. 

Using PROC CIMPORT to import a data set in a UTF-8 session preserves the 
encoding value of the data set. For example, if a data set with SHIFT-JIS 
encoding is imported into a UTF-8 session using PROC CIMPORT, PROC 
CONTENTS shows that the SHIFT-JIS encoding is maintained. However, 
starting in SAS Viya 3.5, using PROC CIMPORT to import a data set in a UTF-8 
session, the UTF-8 encoding is maintained.

Usage: CIMPORT Procedure 393



Note: The ENCODINGINFO= option displays the Window’s encoding 
associated with the locale of the SAS Session in which the transport file was 
created.

n Starting in SAS 9.4, when you use PROC CPORT to create a transport file that 
is encoded with US-ASCII on an ASCII platform, regardless of the session 
encoding, the US-ASCII encoding is preserved for that transport file. If you then 
transport that data set to an ASCII platform using PROC CIMPORT, the US-
ASCII encoding for that transport file is preserved and is not d. The data set that 
is created has the US-ASCII encoding, not the session encoding. For example, if 
your session encoding is WLATIN1, you use PROC CPORT to create a data set 
that has an encoding of US-ASCII. The US-ASCII encoding is preserved in the 
transport file, instead of the WLATIN1 encoding. This preservation also occurs 
when you use PROC CIMPORT on this data set. The US-ASCII encoding is 
preserved and is not when you use PROC CIMPORT to transport the data set to 
an ASCII platform. 

Note: The preservation of the US-ASCII encoding occurs only on an ASCII 
platform, not on z/OS.

n on a z/OS platform, PROC CIMPORT creates data sets using the session 
encoding.

These examples show how SAS applies an encoding to a transport file:

Table 12.1 Assignment of Encodings to Transport Files

Encoding 
Value of the 
Transport File

Example of Applying an 
Encoding in a SAS Invocation Explanation

utf-8 or us-ascii sas9 -encoding utf8; A SAS session is invoked using 
the UTF-8 encoding. The 
session encoding is applied to 
the transport file. Note that 
starting in SAS 9.4M3, if the 
data set is US-ASCII, the US-
ASCII encoding is preserved, 
not the session encoding.

wlatin2 sas9 -locale pl_PL; A SAS session is invoked using 
the default UNIX encoding, 
LATIN2, which is associated with 
the Polish Poland locale.

For a complete list of encodings that are associated with each locale, see Locale 
Tables in SAS National Language Support (NLS): Reference Guide.

In order for a transport file to be imported successfully, the encodings of the source 
and target SAS sessions must be compatible. Here is an example of compatible 
source and target SAS sessions:

394 Chapter 12 / CIMPORT Procedure

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0yctvkmmbdwl2n1k87qd1nv1nu3.htm&docsetTargetAnchor=n11ixckskq5db0n146b494q3nv8g&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0yctvkmmbdwl2n1k87qd1nv1nu3.htm&docsetTargetAnchor=n11ixckskq5db0n146b494q3nv8g&locale=en


Table 12.2 Compatible Encodings

Source SAS Session Target SAS Session

Locale

UNIX SAS 
Session 
Encoding

Transport File 
Encoding Locale

Windows SAS 
Session 
Encoding

es_MX 
(Spanish 
Mexico)

latin1 wlatin1 it_IT

(Italian Italy)

wlatin1

The encodings of the source and target SAS sessions are compatible because the 
Windows default encoding for the es_MX locale is WLATIN1 and the encoding of 
the target SAS session is WLATIN1. For more detailed information about compatible 
languages and encodings, see the SAS Press book SAS Encoding: Understanding 
the Details, by Manfred Kiefer.

However, if the encodings of the source and target SAS sessions are incompatible, 
a transport file might not be successfully imported. (See the introduction to this 
section.) Here is an example of incompatible encodings:

Table 12.3 Incompatible Encodings

Source SAS Session Target SAS Session

Locale

UNIX SAS 
Session 
Encoding

Transport File 
Encoding Locale

z/OS 
Encoding

cs_CZ (Czech 
Czechoslovaki
a)

latin2 wlatin2 de_DE 
(German 
Germany)

open_ed-1141

The encodings of the source and target SAS sessions are incompatible because the 
Windows default encoding for the cs_CZ locale is WLATIN2 and the encoding of the 
target SAS session is OPEN_ED-1141. A transport file cannot be imported between 
these locales.

When importing transport files, you can use the ENCODINGINFO= option see the 
encoding value of the transport file. Otherwise, you are alerted to compatibility 
problems via warnings and error messages. For more information about the 
ENCODINGINFO= option, see “ENCODINGINFO=ALL | n” on page 386.

Usage: CIMPORT Procedure 395

http://www.sas.com/store/books/categories/usage-and-reference/sas-encoding-understanding-the-details/prodBK_64410_en.html
http://www.sas.com/store/books/categories/usage-and-reference/sas-encoding-understanding-the-details/prodBK_64410_en.html


Problems with Transport Files Created 
Using a SAS Release Prior to 9.2

Overview: SAS Releases Prior to 9.2
Transport files that were created by SAS releases before 9.2 are not stamped with 
encoding values. Therefore, the CIMPORT procedure does not know the identity of 
the transport file's encoding and cannot report specific warning and error detail. The 
encoding of the transport file must be inferred when performing recovery actions.

However, using your knowledge about the transport file, you should be able to 
recover from transport problems. For information that is useful for importing the 
transport file in the target SAS session, see Tips: for the ISFILEUTF8 option on 
page 388. For complete details about creating and restoring transport files, see 
Moving and Accessing SAS Files.

Here are the warning and error messages with recovery actions:

n “Error: Transport File Encoding Is Unknown: Use the ISFILEUTF8= Option” on 
page 396

n “Warning: Transport File Encoding Is Unknown” on page 397

Error: Transport File Encoding Is Unknown: Use the 
ISFILEUTF8= Option
The error message provides this information:

n The transport file was created using a SAS release before 9.2.

n Because the encoding is not stamped in the transport file, the encoding is 
unknown. 

n The target SAS session uses the UTF-8 encoding.

Note: In order to perform recovery steps, you must know the encoding of the 
transport file.

If you know that the transport file is encoded as UTF-8, you can import the file 
again, and use the ISFILEUTF8=YES option in PROC CIMPORT.

Here is an example of the UTF-8 transport file and UTF-8 target SAS session. The 
UTF-8 transport file was created using a SAS release before 9.2.

filename importin 'transport-file';
libname target 'sas-library';
proc cimport isfileutf8=yes infile=importin library=target 
memtype=data;
run;

For syntax details, see the ISFILEUTF8= option on page 388.

396 Chapter 12 / CIMPORT Procedure



PROC CIMPORT should succeed.

Warning: Transport File Encoding Is Unknown
The warning message provides this information:

n The transport file was created using a SAS release before 9.2.

n Because the encoding is not stamped in the transport file, the encoding is 
unknown.

Try to read the character data from the imported data set. If you cannot read the 
data, you can infer that the locale of the target SAS session is incompatible with the 
encoding of the transport file.

Note: In order to perform recovery steps, you must know the encoding of the 
transport file.

For example, the transport file was created in a source SAS session using a SAS 
release before 9.2. The transport file was also created using a Polish Poland locale. 
The target SAS session uses a German locale.

1 In the target SAS session, start another SAS session and change the locale to 
the locale of the source SAS session that created the transport file. 

In this example, you start a new SAS session in the Polish Poland locale.

sas9 -locale pl_PL;

2 Import the file again. Here is an example: 

filename importin 'transport-file';
libname target 'sas-library';
proc cimport infile=importin library=target memtype=data;
run;

PROC CIMPORT should succeed and the data should be readable in the SAS 
session that uses a Polish_Poland locale.

Problems with Transport Files Created 
Using SAS Versions 9.2 and Later

Overview
The encoding of the character data is stamped in transport files that are created 
using SAS versions 9.2 and later. Therefore, the CIMPORT procedure can detect 
error conditions such as UTF-8 encoded transport files cannot be imported into SAS 
sessions that do not use the UTF-8 encoding. For example, a UTF-8 transport file 
cannot be imported into a SAS session that uses the Wlatin2 encoding.

SAS versions 9.2 and later can detect the condition of incompatibility between the 
encoding of the transport file and the locale of the target SAS session. Because 
some customers' SAS applications ran successfully using a release prior to SAS 

Usage: CIMPORT Procedure 397



9.2, PROC CIMPORT reports a warning only, but allows the import procedure to 
continue.

Here are the warning and error messages with recovery actions:

n “Error: Target Session Uses UTF-8: Transport File Is Not UTF-8” on page 398

n “Error: Target Session Does Not Use UTF-8: Transport File Is UTF-8” on page 
399

n “Warning: Target Session Does Not Use UTF-8: Transport File Is Not UTF-8” on 
page 399

Error: Target Session Uses UTF-8: Transport File Is 
Not UTF-8
This error message should not appear in SAS 9.4M3 and later. The Error message 
provides the following information:

n The target SAS session uses the UTF-8 encoding. 

n The transport file has an identified encoding that is not UTF-8. The encodings of 
the transport file and the target SAS session are incompatible.

Note: Starting in SAS 9.4M3, PROC CIMPORT supports the ability to import 
data sets that are created in non-UTF-8 SAS sessions into UTF-8 SAS sessions. 
Prior to SAS 9.4M3, transport files are encoded in a Windows encoding that 
corresponds to the SAS session encoding. 

If this error is generated, the encoding of the target SAS session cannot be UTF-8. 
The locales of the source and target SAS sessions must be identical.

Here is an example of a SAS 9.2 WLATIN2 transport file and UTF-8 target SAS 
session.

1 To recover, in the target SAS session, start another SAS session and change the 
locale to the locale that was used in the source SAS session that created the 
transport file.

The LOCALE= value is preferred over the ENCODING= value because it sets 
automatically the default values for the ENCODING=, DFLANG=, DATESTYLE=, 
and PAPERSIZE= options.

If you do not know the locale of the source session (or the transport file), you can 
infer it from the language that is used by the character data in the transport file.

For example, if you know that Polish is the language, specify the pl_PL (Polish 
Poland) locale in a new target SAS session. Here are the encoding values that 
are associated with the pl_PL locale:

Table 12.4 LOCALE= Value for the Polish Language

POSIX Locale
Windows 
Encoding UNIX Encoding z/OS Encoding

.pl_PL

(Polish Poland)

wlatin2 latin2 open_ed-870

398 Chapter 12 / CIMPORT Procedure



Here is an example of specifying the pl_PL locale in a new SAS session:

sas9 -locale pl_PL;

For complete details, see Locale Table.

Note: Verify that you do not have a SAS invocation command that already 
contains the specification of the UTF-8 encoding. For example: sas9 -encoding 
utf8. If it exists, the UTF-8 encoding would persist regardless of a new locale 
specification.

2 Import the file again. Here is an example: 

filename importin 'transport-file';
libname target 'SAS-data-library';
proc cimport infile=importin library=target memtype=data;
run;

PROC CIMPORT should succeed.

Error: Target Session Does Not Use UTF-8: 
Transport File Is UTF-8
The error message provides this information:

n The target session uses an identified encoding that is not UTF-8.

n The transport file is encoded as UTF-8. The encodings of the transport file and 
the target SAS session are incompatible.

The encoding of the target SAS session must be changed to UTF-8.

Here is an example of a SAS 9.2 UTF-8 transport file and Wlatin1 target SAS 
session:

1 To recover, in the target SAS session, start a new SAS session and change the 
session encoding to UTF-8. Here is an example: 

sas9 -encoding utf8;

2 Import the file again. Here is an example: 

filename importin 'transport-file';
libname target 'sas-library';
proc cimport infile=importin library=target memtype=data;
run;

PROC CIMPORT should succeed.

Warning: Target Session Does Not Use UTF-8: 
Transport File Is Not UTF-8
The warning message provides this information:

n The target SAS session uses an identified encoding.

n The encoding of the transport file is identified. The encodings of the transport file 
and the target SAS session are incompatible.

Usage: CIMPORT Procedure 399

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0kcqbj7zsjq23n1lfyrcgtwiy5q.htm&locale=en


This table shows the locale and encoding values of incompatible source and target 
SAS sessions. Although the wlatin2 Windows encoding that is assigned to the 
transport file in the source SAS session is incompatible with the open_ed-1141 
encoding of the target SAS session, a warning is displayed and the import 
continues.

Table 12.5 Encoding Values for the Czech and German Locales

SAS Session POSIX Locale
Windows 
Encoding

UNIX 
Encoding

z/OS 
Encoding

Source SAS 
Session

cs_CZ (Czech 
Czechoslovaki
a)

wlatin2 latin2 open_ed-870

Target SAS 
Session

de_DE 
(German 
Germany)

wlatin1 latin9 open_ed-1141

The transport file is imported, but the contents of the file are questionable. The 
message identifies the incompatible encoding formats. To recover, try to read the 
contents of the imported file. If the file is unreadable, perform these steps:

1 In the target SAS session, start a new SAS session and change the locale 
(rather than the encoding) to the locale that is used in the source SAS session. 

The LOCALE= value is preferred over the ENCODING= value because it 
automatically sets the default values for the ENCODING=, DFLANG=, 
DATESTYLE=, and PAPERSIZE= options.

If you do not know the locale of the source session (or the transport file), you can 
infer it from the national language of the transport file.

For example, if you know that Czech is the national language, specify the cs_CZ 
locale in a new target SAS session.

Here is an example of specifying the cs_CZ locale in a new SAS session:

sas9 -locale cs_CZ;

The target SAS session and the transport file use compatible encodings. They 
both use wlatin2.

For complete details, see the Locale Table in SAS National Language Support 
(NLS): Reference Guide.

2 Import the file again. Here is an example: 

filename importin 'transport-file';
libname target 'sas-library';
proc cimport infile=importin library=target memtype=data;
run;

PROC CIMPORT should succeed.

400 Chapter 12 / CIMPORT Procedure

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0yctvkmmbdwl2n1k87qd1nv1nu3.htm&docsetTargetAnchor=n11ixckskq5db0n146b494q3nv8g&locale=en


Problems with Loss of Numeric Precision
PROC CPORT and PROC CIMPORT can lose precision on numeric values that are 
extremely small and large. Refer to “Loss of Numeric Precision and Magnitude” in 
SAS/CONNECT User’s Guide for details.

Examples: CIMPORT Procedure

Example 1: Importing an Entire Library
Features: PROC CIMPORT statement option

INFILE=

Details
This example shows how to use PROC CIMPORT to read from disk a transport file, 
named TRANFILE, that PROC CPORT created from a SAS library in another 
operating environment. The transport file was moved to the new operating 
environment by means of communications software or magnetic medium. PROC 
CIMPORT imports the transport file to a SAS library, called NEWLIB, in the new 
operating environment.

Program
libname newlib 'sas-library';
filename tranfile 'transport-file';
                  
host-options-for-file-characteristics;

proc cimport library=newlib infile=tranfile;
run;

Example 1: Importing an Entire Library 401

http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=p0vz1gp7dw8n3en122ruipkrwc9k.htm&docsetTargetAnchor=n1hllkl9o8u6a8n1wx38m4rhue5j&locale=en
http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=p0vz1gp7dw8n3en122ruipkrwc9k.htm&docsetTargetAnchor=n1hllkl9o8u6a8n1wx38m4rhue5j&locale=en


Program Description
Specify the library name and filename. The LIBNAME statement specifies a 
LIBNAME for the new SAS library. The FILENAME statement specifies the filename 
of the transport file that PROC CPORT created and enables you to specify any 
operating environment options for file characteristics.

libname newlib 'sas-library';
filename tranfile 'transport-file';
                  
host-options-for-file-characteristics;

Import the SAS library in the NEWLIB library. PROC CIMPORT imports the SAS 
library into the library named NEWLIB.

proc cimport library=newlib infile=tranfile;
run;

Log Examples
Example Code 12.1 Importing an Entire Library

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FINANCE
NOTE: Entry LOAN.FRAME has been imported.
NOTE: Entry LOAN.HELP has been imported.
NOTE: Entry LOAN.KEYS has been imported.
NOTE: Entry LOAN.PMENU has been imported.
NOTE: Entry LOAN.SCL has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.FINANCE: 5

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FORMATS
NOTE: Entry REVENUE.FORMAT has been imported.
NOTE: Entry DEPT.FORMATC has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.FORMATS: 2

Example 2: Importing Individual Catalog Entries
Features: PROC CIMPORT statement option

INFILE=
SELECT statement

Details
This example shows how to use PROC CIMPORT to import the individual catalog 
entries LOAN.PMENU and LOAN.SCL from the transport file TRANS2, which was 
created from a single SAS catalog.

402 Chapter 12 / CIMPORT Procedure



Program
libname newlib 'sas-library';
filename trans2 'transport-file';
                
host-options-for-file-characteristics;

proc cimport catalog=newlib.finance infile=trans2;
   select loan.pmenu loan.scl;
run;

Program Description
Specify the library name, filename, and operating environment options. The 
LIBNAME statement specifies a LIBNAME for the new SAS library. The FILENAME 
statement specifies the filename of the transport file that PROC CPORT created and 
enables you to specify any operating environment options for file characteristics.

libname newlib 'sas-library';
filename trans2 'transport-file';
                
host-options-for-file-characteristics;

Import the specified catalog entries to the new SAS catalog. PROC CIMPORT 
imports the individual catalog entries from the TRANS2 transport file and stores 
them in a new SAS catalog called NEWLIB.FINANCE. The SELECT statement 
selects only the two specified entries from the transport file to be imported into the 
new catalog.

proc cimport catalog=newlib.finance infile=trans2;
   select loan.pmenu loan.scl;
run;

Log Examples
Example Code 12.2 Importing Individual Catalog Entries

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FINANCE
NOTE: Entry LOAN.PMENU has been imported.
NOTE: Entry LOAN.SCL has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.FINANCE: 2

Example 3: Importing a Single Indexed SAS Data 
Set
Features: PROC CIMPORT statement option

Example 3: Importing a Single Indexed SAS Data Set 403



INFILE=

Details
This example shows how to use PROC CIMPORT to import an indexed SAS data 
set from a transport file that was created by PROC CPORT from a single SAS data 
set.

Program
libname newdata 'sas-library';
filename trans3 'transport-file';
                
host-options-for-file-characteristics;

proc cimport data=newdata.times infile=trans3;
run;

Program Description
Specify the library name, filename, and operating environment options. The 
LIBNAME statement specifies a LIBNAME for the new SAS library. The FILENAME 
statement specifies the filename of the transport file that PROC CPORT created and 
enables you to specify any operating environment options for file characteristics.

libname newdata 'sas-library';
filename trans3 'transport-file';
                
host-options-for-file-characteristics;

Import the SAS data set. PROC CIMPORT imports the single SAS data set that 
you identify with the DATA= specification in the PROC CIMPORT statement. PROC 
CPORT exported the data set NEWDATA.TIMES in the transport file TRANS3.

proc cimport data=newdata.times infile=trans3;
run;

Log Examples
Example Code 12.3 Importing a Single Indexed SAS Data Set

NOTE: Proc CIMPORT begins to create/update data set NEWDATA.TIMES
NOTE: The data set index x is defined.
NOTE: Data set contains 2 variables and 2 observations.
      Logical record length is 16

404 Chapter 12 / CIMPORT Procedure



Example 4: Using PROC CIMPORT to Import a 
French Data Set into a UTF-8 SAS Session
Features: PROC CPORT statement option

DATA=
FILE=

PROC CIMPORT statement option
DATA=
INFILE=
EXTENDVAR=
EXTENDFORMAT=

Details
This example shows how to import a French data set into a UTF-8 SAS session. 
The French data set has an 8-byte character variable ‘a’ with a character format 
‘$8.’. Using a SAS Viya deployment, we start a French SAS session where we use 
PROC CPORT to generate a transport file named ‘myfile’.

In another SAS Viya window, we start a SAS session that uses UTF-8 encoding. We 
then import the transport file (non-UTF-8) into a UTF-8 SAS session using PROC 
CIMPORT. We first show that the imported data set is truncated and then how to 
extend the variable length using the EXTENDVAR= option to avoid truncation.

Program
Use PROC CPORT to create a transport file using a French data set. From a 
SAS Viya deployment, bring up a default SAS session using the French language. 
In the following example, we are using a French data set where the data set has an 
8-byte character variable ‘a’ (the value of ‘a’ is premiere with an accented e) with a 
character format set to‘$8.’. We use PROC CPORT to create a transport file. In this 
example, the encoding is wlatin-1, the default.

data test;
   a = 'première';
   format a $8.;
run;
proc cport data=test file='myfile';
run;

Example 4: Using PROC CIMPORT to Import a French Data Set into a UTF-8 SAS 
Session 405



Output 12.1 French Data Set Used in PROC CPORT File

Import the transport file in a UTF-8 SAS session using PROC CIMPORT. From 
a separate SAS Viya session that is using UTF-8 encoding, import the transport file 
‘myfile’ into the UTF-8 SAS session using PROC CIMPORT. Print the SAS data set 
and the PROC CONTENTS. Because it takes 2 bytes to store the accented ‘e’ in 
UTF-8 encoding, the value premiere needs 9 bytes to display the value. The format 
is $8. so the value is truncated. 

proc cimport data=test infile='myfile';
run;
proc print data=test; 
run;
proc contents data=test; 
run;

406 Chapter 12 / CIMPORT Procedure



Output 12.2 CIMPORT a Non-UTF-8 Transport File to an Encoding Session That Is UTF-8 - 
Truncated

Extend the Variable Length to avoid truncation. Because there was truncation, 
we use the EXTENDVAR= option to extend the variable length and the format width 
(default for EXTENDFORMAT= is YES). 

proc cimport data=test infile='myfile' extendvar=1.5;
run;
proc print data=test; 
run;
proc contents data=test; 

Example 4: Using PROC CIMPORT to Import a French Data Set into a UTF-8 SAS 
Session 407



run;

Note that the output data set now contains the entire variable. Also, note in the 
output of PROC CONTENTS that the variable length and the format width have 
been extended.

Output 12.3 CIMPORT a Non-UTF-8 Transport File to an Encoding Session That Is UTF-8 - 
EXTENDVAR=

408 Chapter 12 / CIMPORT Procedure



Chapter 13
COMPARE Procedure

Overview: COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
What Does the COMPARE Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
What Information Does PROC COMPARE Provide? . . . . . . . . . . . . . . . . . . . . . . . 410

Concepts: COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Comparisons Using PROC COMPARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
A Comparison by Position of Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
A Comparison with an ID Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
The Equality Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
How PROC COMPARE Handles Variable Formats . . . . . . . . . . . . . . . . . . . . . . . . 415

Syntax: COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
PROC COMPARE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
ID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
WITH Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Usage: COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Customizing PROC COMPARE Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Results: COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Results Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
SAS Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Macro Return Codes (SYSINFO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Procedure Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Output Data Set (OUT=) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Output Statistics Data Set (OUTSTATS=) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

Examples: COMPARE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Example 1: Producing a Complete Report of the Differences . . . . . . . . . . . . . . . . 451
Example 2: Comparing Variables in Different Data Sets . . . . . . . . . . . . . . . . . . . . 458
Example 3: Comparing a Variable Multiple Times . . . . . . . . . . . . . . . . . . . . . . . . . 460
Example 4: Comparing Variables That Are in the Same Data Set . . . . . . . . . . . . . 462
Example 5: Comparing Observations with an ID Variable . . . . . . . . . . . . . . . . . . . 464
Example 6: Comparing Values of Observations Using an Output 

Data Set (OUT=) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
Example 7: Creating an Output Data Set of Statistics (OUTSTATS=) . . . . . . . . . . 474

409



Overview: COMPARE Procedure

What Does the COMPARE Procedure Do?
The COMPARE procedure compares the contents of two SAS data sets, selected 
variables in different data sets, or variables within the same data set.

PROC COMPARE compares two data sets: the base data set and the comparison 
data set. The procedure determines matching variables and matching observations. 
Matching variables are variables with the same name or variables that you pair by 
using the VAR and WITH statements. Matching variables must be of the same type. 
Matching observations are observations that have the same values for all ID 
variables that you specify or, if you do not use the ID statement, that occur in the 
same position in the data sets. If you match observations by ID variables, then both 
data sets must be sorted by all ID variables.

What Information Does PROC COMPARE Provide?
PROC COMPARE generates the following information about the two data sets that 
are being compared:

n whether matching variables have different values

n whether one data set has more observations than the other

n what variables the two data sets have in common

n how many variables are in one data set but not in the other

n whether matching variables have different formats, labels, or types

n a comparison of the values of matching observations

Note: You can create a view that has two columns with the same variable name. If 
duplicate variable names exist in the view, PROC COMPARE cannot determine 
which column in the base data set should be compared to the compare data set. 
PROC COMPARE issues an error if it finds duplicate variable names.

Further, PROC COMPARE creates two types of output data sets that give detailed 
information about the differences between observations of variables that it is 
comparing.

The following example compares the data sets Proclib.One and Proclib.Two, which 
contain similar data about students:

data proclib.one(label='First Data Set');

410 Chapter 13 / COMPARE Procedure



   input student year $ state $ gr1 gr2;
   label year='Year of Birth';
   format gr1 4.1;
   datalines;
1000 1990 NC 85 87
1042 1991 MS 90 92
1095 1989 TN 78 92
1187 1990 MA 87 94
;

data proclib.two(label='Second Data Set');
   input student $ year $ state $ gr1
         gr2 major $;
   label state='Home State';
   format gr1 5.2;
   datalines;
1000 1990 NC 85 87 Math
1042 1991 MS 90 92 History
1095 1989 TN 78 92 Physics
1187 1990 MA 87 94 Music
1204 1991 NC 82 96 English
;

PROC COMPARE does not produce information about values that are the same in 
each comparison data set. It produces information about values that are different, 
not the same.

PROC COMPARE does not produce a data set that contains observations that are 
in one of the comparison data sets but not in the other, or that are in both 
comparison data sets. The options for the COMPARE statement can produce much 
of this information, but they do not produce a data set. If you want to produce a data 
set that contains this information, use a DATA step that contains a MERGE 
statement. Here is an example of a DATA step that uses a MERGE statement to 
create a data set:

data inone intwo inboth;
   merge a (in=ina) b(in=inb);
   by byvar;
      if ina and not inb then output inone;
      if inb and not ina then output intwo;
      if ina and inb then output inboth;
run;

Concepts: COMPARE Procedure

Comparisons Using PROC COMPARE
PROC COMPARE first compares the following:

Concepts: COMPARE Procedure 411



n data set attributes (set by the data set options TYPE= and LABEL=).

n variables. PROC COMPARE checks each variable in one data set to determine 
whether it matches a variable in the other data set.

n attributes (type, length, labels, formats, and informats) of matching variables.

n observations. PROC COMPARE checks each observation in one data set to 
determine whether it matches an observation in the other data set. PROC 
COMPARE either matches observations by their position in the data sets or by 
the values of the ID variable.

After making these comparisons, PROC COMPARE compares the values in the 
parts of the data sets that match. PROC COMPARE either compares the data by 
the position of observations or by the values of an ID variable.

A Comparison by Position of Observations
The following figure shows two data sets. The data inside the shaded boxes shows 
the part of the data sets that the procedure compares. Assume that variables with 
the same names have the same type.

Figure 13.1 Comparison by the Positions of Observations

When you use PROC COMPARE to compare data set TWO with data set ONE, the 
procedure compares the first observation in data set ONE with the first observation 
in data set TWO, and it compares the second observation in the first data set with 
the second observation in the second data set, and so on. In each observation that 
it compares, the procedure compares the values of the idnum, name, year, state, 
grade1, and grade2.

412 Chapter 13 / COMPARE Procedure



The procedure does not report on the value of the last three observations or the 
variable major in data set TWO because there is nothing to compare them with in 
data set ONE.

A Comparison with an ID Variable
In a simple comparison, PROC COMPARE uses the observation number to 
determine which observations to compare. When you use an ID variable, PROC 
COMPARE uses the values of the ID variable to determine which observations to 
compare. ID variables should have unique values and must have the same type.

For the two data sets shown in the following figure, assume that IDNUM is an ID 
variable and that IDNUM has the same type in both data sets. The procedure 
compares the observations that have the same value for IDNUM. The data inside 
the shaded boxes shows the part of the data sets that the procedure compares.

Figure 13.2 Comparison by the Value of the ID Variable

The data sets contain five matching variables: name, year, state, grade1, and 
grade2. They also contain four matching observations: the observations with values 
of 1000, 1042, 1095, and 1187 for idnum.

Data set TWO contains three observations (idnum=1204, idnum=1198, and 
idnum=1054) for which data set ONE contains no matching observations. Similarly, 
no variable in data set ONE matches the variable “major” in data set TWO.

See “Example 5: Comparing Observations with an ID Variable” on page 464 for an 
example that uses an ID variable.

Concepts: COMPARE Procedure 413



The Equality Criterion

Using the CRITERION= Option
The COMPARE procedure judges numeric values unequal if the magnitude of their 
difference, as measured according to the METHOD= option, is greater than the 
value of the CRITERION= option. PROC COMPARE provides four methods for 
applying CRITERION=:

n The EXACT method tests for exact equality.

n The ABSOLUTE method compares the absolute difference to the value specified 
by CRITERION=.

n The RELATIVE method compares the absolute relative difference to the value 
specified by CRITERION=.

n The PERCENT method compares the absolute percent difference to the value 
specified by CRITERION=.

For a numeric variable compared, let x be its value in the base data set and let y be 
its value in the comparison data set. If both x and y are nonmissing, then the values 
are judged unequal according to the value of METHOD= and the value of 
CRITERION= (γ) as follows:

n If METHOD=EXACT, then the values are unequal if y does not equal x.

n If METHOD=ABSOLUTE, then the values are unequal if 

ABS y − x > γ

n If METHOD=RELATIVE, then the values are unequal if 

ABS y − x / ABS x + ABS y /2 + δ > γ

The values are equal if x=y=0.

n If METHOD=PERCENT, then the values are unequal if 

100 ABS y − x /ABS x > γ for x ≠ 0

or

y ≠ 0 for x = 0

If x or y is missing, then the comparison depends on the NOMISSING option. If the 
NOMISSING option is in effect, then a missing value will always be judged equal to 
anything. Otherwise, a missing value is judged equal only to a missing value of the 
same type (that is, .=., .^=.A, .A=.A, .A^=.B, and so on).

If the value that is specified for CRITERION= is negative, then the actual criterion 
that is used, γ, is equal to the absolute value of the specified criterion multiplied by a 
very small number, ε (epsilon), that depends on the numerical precision of the 
computer. This number ε is defined as the smallest positive floating-point value such 
that, using machine arithmetic, 1−ε<1<1+ε. Round-off or truncation error in floating-
point computations is typically a few orders of magnitude larger than ε. 

414 Chapter 13 / COMPARE Procedure



CRITERION=−1000 often provides a reasonable test of the equality of computed 
results at the machine level of precision.

The value δ added to the denominator in the RELATIVE method is specified in 
parentheses after the method name: METHOD=RELATIVE(δ). If not specified in 
METHOD=, then δ defaults to 0. The value of δ can be used to control the behavior 
of the error measure when both x and y are very close to 0. If δ is not given and x 
and y are very close to 0, then any error produces a large relative error (in the limit, 
2).

Specifying a value for δ avoids this extreme sensitivity of the RELATIVE method for 
small values. If you specify METHOD=RELATIVE(δ) CRITERION=γ when both x 
and y are much smaller than δ in absolute value, then the comparison is as if you 
had specified METHOD=ABSOLUTE CRITERION=δγ. However, when either x or y 
is much larger than δ in absolute value, the comparison is like METHOD=RELATIVE 
CRITERION=γ. For moderate values of x and y, METHOD=RELATIVE(δ) 
CRITERION=γ is, in effect, a compromise between METHOD=ABSOLUTE 
CRITERION=δ γ and METHOD=RELATIVE CRITERION=γ.

For character variables, if one value is longer than the other, then the shorter value 
is padded with blanks for the comparison. Nonblank character values are judged 
equal only if they agree at each character. If the NOMISSING option is in effect, 
then blank character values are judged equal to anything.

Definition of Difference and Percent 
Difference
In the reports of value comparisons and in the OUT= data set, PROC COMPARE 
displays difference and percent difference values for the numbers compared. These 
quantities are defined using the value from the base data set as the reference value. 
For a numeric variable compared, let x be its value in the base data set and let y be 
its value in the comparison data set. If x and y are both nonmissing, then the 
difference and percent difference are defined as follows:

n Difference = y − x

n Percent Difference = y − x /x * 100 for x ≠ 0
n Percent Difference = missing for x = 0 .

How PROC COMPARE Handles Variable Formats
PROC COMPARE compares unformatted values. If you have two matching 
variables that are formatted differently, then PROC COMPARE lists the formats of 
the variables. If non-matching values are found in the comparison section of the 
output, then the formatted values are displayed in the values comparison section.

Concepts: COMPARE Procedure 415



Syntax: COMPARE Procedure
Restriction: You must use the VAR statement when you use the WITH statement.

Tips: Each password and encryption key option must be coded on a separate line to ensure 
that they are properly blotted in the log.
You can use the LABEL, ATTRIB, FORMAT, and WHERE statements. For more 
information, see “Statements with the Same Function in Multiple Procedures” on page 
73.
Ensure that the LINESIZE option in the OPTIONS statement specifies an adequate 
length to display the label information for the data sets.
If problems occur with the length of CHAR variables when you compare two unequal 
data sets in CAS, you might need to change the value of the NCHARMULTIPLIER 
option of the LIBNAME statement. For more information, see “NCHARMULTIPLIER= 
LIBNAME Statement Option” in SAS Cloud Analytic Services: User’s Guide and “CAS 
LIBNAME Statement” in SAS Cloud Analytic Services: User’s Guide.

PROC COMPARE <options>;
BY <DESCENDING> variable-1

<<DESCENDING> variable-2 …>
<NOTSORTED>;

ID <DESCENDING> variable-1
<<DESCENDING> variable-2 …>
<NOTSORTED>;

VAR variable(s);
WITH variable(s);

Statement Task Example

PROC COMPARE Compare the contents of SAS data sets, or 
compare two variables

Ex. 1, Ex. 2, 
Ex. 4, Ex. 6, 
Ex. 7

BY Produce a separate comparison for each BY 
group

ID Identify variables to use to match observations Ex. 5

VAR Restrict the comparison to values of specific 
variables

Ex. 2, Ex. 3, 
Ex. 4

WITH Compare variables of different names Ex. 2, Ex. 3, 
Ex. 4

WITH Compare two variables in the same data set Ex. 4

416 Chapter 13 / COMPARE Procedure

http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=p1trdzm8lp8ke0n163dojgxwh9gt.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=p1trdzm8lp8ke0n163dojgxwh9gt.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n14gqqdmdco6wzn17eb5v0o0p679.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n14gqqdmdco6wzn17eb5v0o0p679.htm&locale=en


PROC COMPARE Statement
Compares the contents of two SAS data sets, selected variables in different data sets, or variables within 
the same data set.

Restriction: If you omit COMPARE=, then you must use the WITH and VAR statements.

Tips: Ensure that the LINESIZE option in the OPTIONS statement specifies an adequate 
length to display the label information for the data sets.
If problems occur with the length of CHAR variables when you compare two unequal 
data sets in CAS, you might need to change the value of the NCHARMULTIPLIER 
option of the LIBNAME statement. For more information, see “NCHARMULTIPLIER= 
LIBNAME Statement Option” in SAS Cloud Analytic Services: User’s Guide and “CAS 
LIBNAME Statement” in SAS Cloud Analytic Services: User’s Guide.
You can use data set options with the BASE= and COMPARE= options.

Examples: “Example 1: Producing a Complete Report of the Differences” on page 451
“Example 2: Comparing Variables in Different Data Sets” on page 458
“Example 4: Comparing Variables That Are in the Same Data Set” on page 462
“Example 6: Comparing Values of Observations Using an Output Data Set (OUT=)” on 
page 470
“Example 7: Creating an Output Data Set of Statistics (OUTSTATS=)” on page 474

Syntax
PROC COMPARE <options>;

Summary of Optional Arguments
Control the details in the default report

ALLOBS
includes the values for all matching observations.

ALLSTATS
prints a table of summary statistics for all pairs of matching variables.

ALLVARS
includes in the report the values and differences for all matching 
variables.

BRIEFSUMMARY
prints only a short comparison summary.

FUZZ=number
changes the report for numbers between 0 and 1.

MAXPRINT=total | (per-variable, total)
restricts the number of differences to be printed.

NODATE
suppresses the printing of creation and last-modified dates.

PROC COMPARE Statement 417

http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=p1trdzm8lp8ke0n163dojgxwh9gt.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=p1trdzm8lp8ke0n163dojgxwh9gt.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n14gqqdmdco6wzn17eb5v0o0p679.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n14gqqdmdco6wzn17eb5v0o0p679.htm&locale=en


NOPRINT
suppresses all printed output.

NOSUMMARY
suppresses the data set, variable, observation, and values comparison 
summary reports.

NOVALUES
suppresses the report of the value comparison results.

PRINTALL
produces a complete listing of values and differences.

STATS
prints a table of summary statistics for all pairs of matching numeric 
variables that are judged unequal.

TRANSPOSE
prints the reports of value differences by observation instead of by 
variable.

Control the listing of variables and observations
LISTALL

lists all variables and observations that are found in only one data set.
LISTBASE

lists all variables and observations found only in the base data set.
LISTBASEOBS

lists all observations found only in the base data set.
LISTBASEVAR

lists all variables found in only the base data set.
LISTCOMP

lists all variables and observations found only in the comparison data set.
LISTCOMPOBS

lists all observations found only in the comparison data set.
LISTCOMPVAR

lists all variables found only in the comparison data set.
LISTEQUALVAR

lists variables whose values are judged equal.
LISTOBS

lists all observations found in only one data set.
LISTVAR

list all variables found in only one data set.

Control the output data set
OUT=SAS-data-set

creates an output data set.
OUTALL

writes an observation for each observation in the BASE= and 
COMPARE= data sets.

OUTBASE
writes an observation for each observation in the base data set.

OUTCOMP
writes an observation for each observation in the comparison data set

OUTDIF
writes an observation to the output data set for each pair of matching 
observations.

418 Chapter 13 / COMPARE Procedure



OUTNOEQUAL
suppresses the writing of observations when all values are equal.

OUTPERCENT
writes an observation to the output data set for each pair of matching 
observations.

Create an output data set that contains summary statistics
OUTSTATS=SAS-data-set

writes summary statistics for all pairs of matching variables to the 
specified SAS-data-set.

Display a warning message in the SAS log
WARNING

displays a warning message in the SAS log when differences are found.

Display an error message in the SAS log
ERROR

displays an error message in the SAS log when differences are found.

Specify how the values are compared
CRITERION=γ

specifies the criterion for judging the equality of numeric values.
METHOD=ABSOLUTE | EXACT | PERCENT | RELATIVE<(δ)>

specifies the method for judging the equality of numeric values.
NOMISSBASE

judges a missing value in the base data set equal to any value.
NOMISSCOMP

judges a missing value in the comparison data set equal to any value.
NOMISSING

judges missing values in both the base and comparison data sets equal to 
any value.

Specify the data sets to compare
BASE=SAS-data-set

specifies the data set to use as the base data set.
COMPARE=SAS-data-set

specifies the data set to use as the comparison data set.

Write notes to the SAS log
NOTE

displays notes in the SAS log that describe the results of the comparison.

Optional Arguments
ALLOBS

includes in the report of value comparison results the values and, for numeric 
variables, the differences for all matching observations, even if they are judged 
equal.

Default If you omit ALLOBS, then PROC COMPARE prints values only for 
observations that are judged unequal.

PROC COMPARE Statement 419



Interaction When used with the TRANSPOSE option, ALLOBS invokes the 
ALLVARS option and displays the values for all matching 
observations and variables.

ALLSTATS
prints a table of summary statistics for all pairs of matching variables. 

See “Table of Summary Statistics” on page 444 for information about the 
statistics produced

ALLVARS
includes in the report of value comparison results the values and, for numeric 
variables, the differences for all pairs of matching variables, even if they are 
judged equal.

Default If you omit ALLVARS, then PROC COMPARE prints values only for 
variables that are judged unequal.

Interaction When used with the TRANSPOSE option, ALLVARS displays 
unequal values in context with the values for other matching 
variables. If you omit the TRANSPOSE option, then ALLVARS 
invokes the ALLOBS option and displays the values for all matching 
observations and variables.

BASE=SAS-data-set
specifies the data set to use as the base data set. 

Alias DATA=

Default the most recently created SAS data set

Tip You can use the WHERE= data set option with the BASE= option to 
limit the observations that are available for comparison.

BRIEFSUMMARY
produces a short comparison summary and suppresses the four default 
summary reports (data set summary report, variables summary report, 
observation summary report, and values comparison summary report).

Alias BRIEF

Tip By default, a listing of value differences accompanies the summary 
reports. To suppress this listing, use the NOVALUES option.

Example “Example 4: Comparing Variables That Are in the Same Data Set” on 
page 462

COMPARE=SAS-data-set
specifies the data set to use as the comparison data set.

Alias COMP=, C=

Default If you omit COMPARE=, then the comparison data set is the same 
as the base data set, and PROC COMPARE compares variables 
within the data set.

Restriction If you omit COMPARE=, then you must use the WITH and VAR 
statements.

420 Chapter 13 / COMPARE Procedure



Tip You can use the WHERE= data set option with COMPARE= to limit 
the observations that are available for comparison.

CRITERION=γ
specifies the criterion for judging the equality of numeric values. Normally, the 
value of γ (gamma) is positive. In that case, the number itself becomes the 
equality criterion. If you use a negative value for γ, then PROC COMPARE uses 
an equality criterion proportional to the precision of the computer on which SAS 
is running.

Default 0.00001

See “The Equality Criterion” on page 414 

ERROR
displays an error message in the SAS log when differences are found.

Interaction This option overrides the WARNING option.

FUZZ=number
alters the values comparison results for numbers less than number. PROC 
COMPARE prints the following: 

n 0 for any variable value that is less than number

n a blank for difference or percent difference if it is less than number

n 0 for any summary statistic that is less than number

Default 0

Range 0 - 1

Tip A report that contains many trivial differences is easier to read in this 
form.

LISTALL
lists all variables and observations that are found in only one data set.

Alias LIST

Interaction using LISTALL is equivalent to using the following four options: 
LISTBASEOBS, LISTCOMPOBS, LISTBASEVAR, and 
LISTCOMPVAR.

LISTBASE
lists all observations and variables that are found in the base data set but not in 
the comparison data set.

Interaction Using LISTBASE is equivalent to using the LISTBASEOBS and 
LISTBASEVAR options.

LISTBASEOBS
lists all observations that are found in the base data set but not in the 
comparison data set.

LISTBASEVAR
lists all variables that are found in the base data set but not in the comparison 
data set.

PROC COMPARE Statement 421



LISTCOMP
lists all observations and variables that are found in the comparison data set but 
not in the base data set.

Interaction Using LISTCOMP is equivalent to using the LISTCOMPOBS and 
LISTCOMPVAR options.

LISTCOMPOBS
lists all observations that are found in the comparison data set but not in the 
base data set.

LISTCOMPVAR
lists all variables that are found in the comparison data set but not in the base 
data set.

LISTEQUALVAR
prints a list of variables whose values are judged equal at all observations in 
addition to the default list of variables whose values are judged unequal.

LISTOBS
lists all observations that are found in only one data set.

Interaction Using LISTOBS is equivalent to using the LISTBASEOBS and 
LISTCOMPOBS options.

LISTVAR
lists all variables that are found in only one data set.

Interaction Using LISTVAR is equivalent to using both the LISTBASEVAR and 
LISTCOMPVAR options.

MAXPRINT=total | (per-variable, total)
specifies the maximum number of differences to be printed, where 

total
is the maximum total number of differences to be printed. The default value is 
500 unless you use the ALLOBS option (or both the ALLVAR and 
TRANSPOSE options). In that case, the default is 32000.

per-variable
is the maximum number of differences to be printed for each variable within a 
BY group. The default value is 50 unless you use the ALLOBS option (or both 
the ALLVAR and TRANSPOSE options). In that case, the default is 1000.

The MAXPRINT= option prevents the output from becoming extremely large 
when data sets differ greatly.

METHOD=ABSOLUTE | EXACT | PERCENT | RELATIVE<(δ)>
specifies the method for judging the equality of numeric values. The constant δ 
(delta) is a number between 0 and 1 that specifies a value to add to the 
denominator when calculating the equality measure. By default, δ is 0.

Unless you use the CRITERION= option, the default method is EXACT. If you 
use the CRITERION= option, then the default method is RELATIVE(φ), where φ 
(phi) is a small number that depends on the numerical precision of the computer 
on which SAS is running and on the value of CRITERION=.

See “The Equality Criterion” on page 414 

422 Chapter 13 / COMPARE Procedure



NODATE
suppresses the display in the data set summary report of the creation dates and 
the last modified dates of the base and comparison data sets.

NOMISSBASE
(By default, a missing value is equal only to a missing value of the same kind, 
that is .=., .^=.A, .A=.A, .A^=.B, and so on.)

You can use this option to determine the changes that would be made to the 
observations in the comparison data set if it were used as the master data set 
and the base data set were used as the transaction data set in a DATA step 
UPDATE statement. For information about the UPDATE statement, see 
“UPDATE” in SAS DATA Step Statements: Reference.

NOMISSCOMP
judges a missing value in the comparison data set equal to any value. (By 
default, a missing value is equal only to a missing value of the same kind, that 
is .=., .^=.A, .A=.A, .A^=.B, and so on.)

You can use this option to determine the changes that would be made to the 
observations in the base data set if it were used as the master data set and the 
comparison data set were used as the transaction data set in a DATA step 
UPDATE statement. For information about the UPDATE statement, see 
“UPDATE” in SAS DATA Step Statements: Reference.

NOMISSING
judges missing values in both the base and comparison data sets equal to any 
value. By default, a missing value is equal only to a missing value of the same 
kind, that is .=., .^=.A, .A=.A, .A^=.B, and so on.

Alias NOMISS

Interaction Using NOMISSING is equivalent to using both NOMISSBASE and 
NOMISSCOMP.

NOPRINT
suppresses all printed output.

Tip You might want to use this option when you are creating one or more 
output data sets.

Example “Example 6: Comparing Values of Observations Using an Output Data 
Set (OUT=)” on page 470

NOSUMMARY
suppresses the data set, variable, observation, and values comparison summary 
reports.

Tip NOSUMMARY produces no output if there are no differences in the 
matching values.

Example “Example 2: Comparing Variables in Different Data Sets” on page 458

NOTE
displays notes in the SAS log that describe the results of the comparison, if 
differences were found.

NOVALUES
suppresses the report of the value comparison results.

PROC COMPARE Statement 423

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=p18w3br45er2qun1r8sfmm4grjyr.htm&locale=en


Example Overview: COMPARE Procedure on page 410

OUT=SAS-data-set
names the output data set. If SAS-data-set does not exist, then PROC 
COMPARE creates it. SAS-data-set contains the differences between matching 
variables.

See “Output Data Set (OUT=)” on page 448

Example “Example 6: Comparing Values of Observations Using an Output Data 
Set (OUT=)” on page 470

OUTALL
writes an observation to the output data set for each observation in the base 
data set and for each observation in the comparison data set. The option also 
writes observations to the output data set that contains the differences and 
percent differences between the values in matching observations.

Tip Using OUTALL is equivalent to using the following four options: 
OUTBASE, OUTCOMP, OUTDIF, and OUTPERCENT.

See “Output Data Set (OUT=)” on page 448

OUTBASE
writes an observation to the output data set for each observation in the base 
data set, creating observations in which _TYPE_=BASE.

See “Output Data Set (OUT=)” on page 448

Example “Example 6: Comparing Values of Observations Using an Output Data 
Set (OUT=)” on page 470

OUTCOMP
writes an observation to the output data set for each observation in the 
comparison data set, creating observations in which _TYPE_=COMP.

See “Output Data Set (OUT=)” on page 448

Example “Example 6: Comparing Values of Observations Using an Output Data 
Set (OUT=)” on page 470

OUTDIF
writes an observation to the output data set for each pair of matching 
observations. The values in the observation include values for the differences 
between the values in the pair of observations. The value of _TYPE_ in each 
observation is DIF.

Default The OUTDIF option is the default unless you specify the OUTBASE, 
OUTCOMP, or OUTPERCENT option. If you use any of these options, 
then you must specify the OUTDIF option to create _TYPE_=DIF 
observations in the output data set.

See “Output Data Set (OUT=)” on page 448

Example “Example 6: Comparing Values of Observations Using an Output Data 
Set (OUT=)” on page 470

424 Chapter 13 / COMPARE Procedure



OUTNOEQUAL
suppresses the writing of an observation to the output data set when all values in 
the observation are judged equal. In addition, in observations containing values 
for some variables judged equal and others judged unequal, the OUTNOEQUAL 
option uses the special missing value ".E" to represent differences and percent 
differences for variables judged equal.

See “Output Data Set (OUT=)” on page 448

Example “Example 6: Comparing Values of Observations Using an Output Data 
Set (OUT=)” on page 470

OUTPERCENT
writes an observation to the output data set for each pair of matching 
observations. The values in the observation include values for the percent 
differences between the values in the pair of observations. The value of _TYPE_ 
in each observation is PERCENT.

See “Output Data Set (OUT=)” on page 448

OUTSTATS=SAS-data-set
writes summary statistics for all pairs of matching variables to the specified SAS-
data-set.

Tip If you want to print a table of statistics in the procedure output, then 
use the STATS, ALLSTATS, or PRINTALL option.

See “Output Statistics Data Set (OUTSTATS=)” on page 450

“Table of Summary Statistics” on page 444

Example “Example 7: Creating an Output Data Set of Statistics (OUTSTATS=)” 
on page 474

PRINTALL
invokes the following options: ALLVARS, ALLOBS, ALLSTATS, LISTALL, and 
WARNING.

Example “Example 1: Producing a Complete Report of the Differences” on 
page 451

STATS
prints a table of summary statistics for all pairs of matching numeric variables 
that are judged unequal.

See “Table of Summary Statistics” on page 444 for information about the 
statistics produced.

TRANSPOSE
prints the reports of value differences by observation instead of by variable. 

Interaction If you also use the NOVALUES option, then the TRANSPOSE 
option lists only the names of the variables whose values are judged 
unequal for each observation, not the values and differences.

See “Comparison Results for Observations (Using the TRANSPOSE 
Option)” on page 446. 

PROC COMPARE Statement 425



WARNING
displays a warning message in the SAS log when differences are found. 

Interaction The ERROR option overrides the WARNING option.

BY Statement
Produces a separate comparison for each BY group.

See: “BY” on page 74 

Syntax
BY <DESCENDING> variable-1
<<DESCENDING> variable-2 …>
<NOTSORTED>;

Required Argument
variable

specifies the variable that the procedure uses to form BY groups. You can 
specify more than one variable. If you do not use the NOTSORTED option in the 
BY statement, then the observations in the data set must be sorted by all the 
variables that you specify. Variables in a BY statement are called BY variables.

Optional Arguments
DESCENDING

specifies that the observations are sorted in descending order by the variable 
that immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. The observations are grouped in another way (for example, chronological 
order).

Note The requirement for ordering observations according to the values of BY 
variables is suspended for BY-group processing when you use the 
NOTSORTED option. The procedure defines a BY group as a set of 
contiguous observations that have the same values for all BY variables. If 
observations with the same values for the BY variables are not 
contiguous, then the procedure treats each contiguous set as a separate 
BY group.

426 Chapter 13 / COMPARE Procedure



Details

BY Processing with PROC COMPARE
To use a BY statement with PROC COMPARE, you must sort both the base and 
comparison data sets by the BY variables. The nature of the comparison depends 
on whether all BY variables are in the comparison data set and, if they are, whether 
their attributes match the ones of the BY variables in the base data set. The 
following table shows how PROC COMPARE behaves under different 
circumstances:

Table 13.1 Behavior of PROC COMPARE under Different Circumstances

Condition Behavior of PROC COMPARE

All BY variables are in the 
comparison data set and all 
attributes match exactly

Compares corresponding BY groups

None of the BY variables are in the 
comparison data set

Compares each BY group in the base data set 
with the entire comparison data set

Some BY variables are not in the 
comparison data set

Writes an error message to the SAS log and 
terminates

Some BY variables have different 
types in the two data sets

Writes an error message to the SAS log and 
terminates

Note: Identical BY values might not compare as equal if they are formatted 
differently.

ID Statement
Lists variables to use to match observations.

See: “A Comparison with an ID Variable” on page 413 

Example: “Example 5: Comparing Observations with an ID Variable” on page 464

Syntax
ID <DESCENDING> variable-1
<<DESCENDING> variable-2 …>
<NOTSORTED>;

ID Statement 427



Required Argument
variable

specifies the variable that the procedure uses to match observations. You can 
specify more than one variable, but the data set must be sorted by the variable 
or variables that you specify. These variables are ID variables. ID variables also 
identify observations on the printed reports and in the output data set.

Optional Arguments
DESCENDING

specifies that the data set is sorted in descending order by the variable that 
immediately follows the word DESCENDING in the ID statement.

If you use the DESCENDING option, then you must sort the data sets. SAS does 
not use an index to process an ID statement with the DESCENDING option. 
Further, the use of DESCENDING for ID variables must correspond to the use of 
the DESCENDING option in the BY statement in the PROC SORT step that was 
used to sort the data sets.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. The data are grouped in another way (for example, chronological order).

See “Comparing Unsorted Data” on page 428

Details

Requirements for ID Variables
n ID variables must be in the BASE= data set or PROC COMPARE stops 

processing.

n If an ID variable is not in the COMPARE= data set, then PROC COMPARE 
writes a warning message to the SAS log and does not use that variable to 
match observations in the comparison data set (but does write it to the OUT= 
data set).

n ID variables must be of the same type in both data sets.

n You should sort both data sets by the common ID variables (within the BY 
variables, if any) unless you specify the NOTSORTED option.

Comparing Unsorted Data
If you do not want to sort the data set by the ID variables, then you can use the 
NOTSORTED option. When you specify the NOTSORTED option, or if the ID 
statement is omitted, PROC COMPARE matches the observations one-to-one. That 
is, PROC COMPARE matches the first observation in the base data set with the first 
observation in the comparison data set, the second with the second, and so on. If 
you use NOTSORTED, and the ID values of corresponding observations are not the 
same, then PROC COMPARE prints an error message and stops processing.

428 Chapter 13 / COMPARE Procedure



If the data sets are not sorted by the common ID variables and if you do not specify 
the NOTSORTED option, then PROC COMPARE writes a warning message to the 
SAS log and continues to process the data sets as if you had specified 
NOTSORTED.

Avoiding Duplicate ID Values
The observations in each data set should be uniquely labeled by the values of the 
ID variables. If PROC COMPARE finds two successive observations with the same 
ID values in a data set, then it does the following:

n prints the warning Duplicate Observations for the first occurrence for that data 
set

n prints the total number of duplicate observations found in the data set in the 
observation summary report

n uses the duplicate observations in the base data set and the comparison data 
set to compare the observations on a one-to-one basis

When the data sets are not sorted, PROC COMPARE detects only those duplicate 
observations that occur in succession.

VAR Statement
Restricts the comparison of the values of variables to the ones named in the VAR statement.

Examples: “Example 2: Comparing Variables in Different Data Sets” on page 458
“Example 3: Comparing a Variable Multiple Times” on page 460
“Example 4: Comparing Variables That Are in the Same Data Set” on page 462

Syntax
VAR variable(s);

Required Argument
variable(s)

one or more variables that appear in the BASE= and COMPARE= data sets or 
only in the BASE= data set.

Details
n If you do not use the VAR statement, then PROC COMPARE compares the 

values of all matching variables except the ones that appear in BY and ID 
statements.

VAR Statement 429



n If a variable in the VAR statement does not exist in the COMPARE= data set, 
then PROC COMPARE writes a warning message to the SAS log and ignores 
the variable.

n If a variable in the VAR statement does not exist in the BASE= data set, then 
PROC COMPARE stops processing and writes an error message to the SAS 
log.

n The VAR statement restricts only the comparison of values of matching 
variables. PROC COMPARE still reports on the total number of matching 
variables and compares their attributes. However, it produces neither error nor 
warning messages about these variables.

WITH Statement
Compares variables in the base data set with variables that have different names in the comparison data 
set, and compares different variables that are in the same data set.

Restriction: You must use the VAR statement when you use the WITH statement.

Examples: “Example 2: Comparing Variables in Different Data Sets” on page 458
“Example 3: Comparing a Variable Multiple Times” on page 460
“Example 4: Comparing Variables That Are in the Same Data Set” on page 462

Syntax
WITH variable(s);

Required Argument
variable(s)

one or more variables to compare with variables in the VAR statement.

Details

Comparing Selected Variables
If you want to compare variables in the base data set with variables that have 
different names in the comparison data set, then specify the names of the variables 
in the base data set in the VAR statement and specify the names of the matching 
variables in the WITH statement. The first variable that you list in the WITH 
statement corresponds to the first variable that you list in the VAR statement, the 
second with the second, and so on. If the WITH statement list is shorter than the 
VAR statement list, then PROC COMPARE assumes that the extra variables in the 
VAR statement have the same names in the comparison data set as they do in the 
base data set. If the WITH statement list is longer than the VAR statement list, then 
PROC COMPARE ignores the extra variables.

430 Chapter 13 / COMPARE Procedure



A variable name can appear any number of times in the VAR statement or the WITH 
statement. By selecting VAR and WITH statement lists, you can compare the 
variables in any permutation.

If you omit the COMPARE= option in the PROC COMPARE statement, then you 
must use the WITH statement. In this case, PROC COMPARE compares the values 
of variables with different names in the BASE= data set.

Usage: COMPARE Procedure

Customizing PROC COMPARE Output
PROC COMPARE produces lengthy output. You can use one or more options to 
determine the types of comparisons to make and the degree of detail in the report. 
For example, in the following PROC COMPARE step, the NOVALUES option 
suppresses the part of the output that shows the differences in the values of 
matching variables:

options nodate pageno=1 linesize=80 pagesize=40;

title 'The SAS System';

proc compare base=proclib.one
             compare=proclib.two novalues;
run;

Usage: COMPARE Procedure 431



Output 13.1 Part One of Comparison of WORK.ONE and WORK.TWO

432 Chapter 13 / COMPARE Procedure



Output 13.2 Part Two of Comparison of WORK.ONE and WORK.TWO

Usage: COMPARE Procedure 433



Output 13.3 Part Three of Comparison of WORK.ONE and WORK.TWO

“Procedure Output” on page 438 shows the default output for these two data sets. 
“Example 1: Producing a Complete Report of the Differences” on page 451 shows 
the complete output for these two data sets.

Results: COMPARE Procedure

Results Reporting
PROC COMPARE reports the results of its comparisons in the following ways:

n the SAS log

n return codes stored in the automatic macro SYSINFO

n procedure output

n output data sets

434 Chapter 13 / COMPARE Procedure



SAS Log
When you use the WARNING, PRINTALL, or ERROR option, PROC COMPARE 
writes a description of the differences to the SAS log.

Macro Return Codes (SYSINFO)
PROC COMPARE stores a return code in the automatic macro variable SYSINFO. 
The value of the return code provides information about the result of the 
comparison. By checking the value of SYSINFO after PROC COMPARE has run 
and before any other step begins, SAS macros can use the results of a PROC 
COMPARE step to determine what action to take or what parts of a SAS program to 
execute.

The following table is a key for interpreting the SYSINFO return code from PROC 
COMPARE. For each of the conditions listed, the associated value is added to the 
return code if the condition is true. Thus, the SYSINFO return code is the sum of the 
codes listed in the following table for the applicable conditions:

Table 13.2 Macro Return Codes

Bit Condition Code
Hexadecima
l Description

1 DSLABEL 1 0001X Data set labels differ

2 DSTYPE 2 0002X Data set types differ

3 INFORMAT 4 0004X Variable has different informat

4 FORMAT 8 0008X Variable has different format

5 LENGTH 16 0010X Variable has different length

6 LABEL 32 0020X Variable has different label

7 BASEOBS 64 0040X Base data set has observation not in 
comparison

8 COMPOBS 128 0080X Comparison data set has observation 
not in base

9 BASEBY 256 0100X Base data set has BY group not in 
comparison

10 COMPBY 512 0200X Comparison data set has BY group not 
in base

Results: COMPARE Procedure 435



Bit Condition Code
Hexadecima
l Description

11 BASEVAR 1024 0400X Base data set has variable not in 
comparison

12 COMPVAR 2048 0800X Comparison data set has variable not 
in base

13 VALUE 4096 1000X A value comparison was unequal

14 TYPE 8192 2000X Conflicting variable types

15 BYVAR 16384 4000X BY variables do not match

16 ERROR 32768 8000X Fatal error: comparison not done

These codes are ordered and scaled to enable a simple check of the degree to 
which the data sets differ. For example, if you want to check that two data sets 
contain the same variables, observations, and values, but you do not care about 
differences in labels, formats, and so on, then use the following statements:

proc compare base=SAS-data-set
             compare=SAS-data-set;
run;

%if &sysinfo >= 64 %then
   %do;
      handle error;
   %end;

Each time you include SYSINFO in your code, the value for each subsequent 
instance of SYSINFO is added to the previous value. The final value for SYSINFO is 
the cumulative value for all of the instances of SYSINFO in the code. For example, if 
you run the following example code, the first instance of SYSINFO produces a 
return code of 32, and the second instance produces a return code of 4096. The two 
values are added together to produce the final return code of 4128.

/*diff label -- RC is 32*/
data class1;
   set sashelp.class;
   label sex='Gender';
run;

data class2;
   set sashelp.class;
run;

proc compare base=class1 comp=class2;
run;

%let rc=&sysinfo
%put 'RC' &rc

/*diff label and value -- RC is 4128*/
data class1;
   set sashelp.class;

436 Chapter 13 / COMPARE Procedure



   label sex='Gender';
run;
data class2;
   set sashelp.class;
   if name="Jeffrey" then name="Jeff";
run;

proc compare base=class1 comp=class2;
run;

%let rc=&sysinfo
%put 'RC' &rc

You can examine individual bits in the SYSINFO value by using DATA step bit-
testing features to check for specific conditions. For example, to check for the 
presence of observations in the base data set that are not in the comparison data 
set, use the following statements:

proc compare base=SAS-data-set
             compare=SAS-data-set;
run;

%let rc=&sysinfo;
data _null_;
   /* Test for data set label */
   if &rc = '1'b then
      put '<<<< Data sets have different labels';
/* Test for data set types */
   if &rc = '1.'b then
      put '<<<< Data set types differ';
/* Test for label */
   if &rc = '1.....'b then
      put '<<<< Variable has different label';
/* Test for base observation */
if &rc = '1......'b then
      put '<<<< Base data set has observation not in comparison data set';
/* Test for length */
   if &rc = '1....'b then
      put '<<<< Variable has different lengths between the base data set 
      and the comparison data set';
/* Variable in base data set not in compare data set */
   if &rc ='1..........'b then 
      put '<<<< Variable in base data set not found in comparison data set';
/* Comparison data set has variable not in base data set */
   if &rc = '1...........'b then
      put '<<<< Comparison data set has variable not contained in the 
      base data set';
/* Test for values */
   if &rc = '1............'b then
      put '<<<< A value comparison was unequal';
/* Conflicting variable types */
   if &rc ='1.............'b then
      put '<<<< Conflicting variable types between the two data sets 
      being compared';
run;

Results: COMPARE Procedure 437



PROC COMPARE must run before you check SYSINFO and you must obtain the 
SYSINFO value before another SAS step starts because every SAS step resets 
SYSINFO.

Procedure Output

Procedure Output Overview
The following sections show and describe the default output of the two data sets 
shown in Overview: COMPARE Procedure on page 410. Because PROC 
COMPARE produces lengthy output, the output is presented in seven pieces.

options nodate pageno=1 linesize=80 pagesize=60;
proc compare base=proclib.one compare=proclib.two;
  run;

Data Set Summary
This report lists the attributes of the data sets that are being compared. These 
attributes include the following:

n the data set names

n the data set types, if any

n the data set labels, if any

n the dates created and last modified

n the number of variables in each data set

n the number of observations in each data set

To view the Data Set Summary, see Output 13.65 on page 439.

Note: The COMPARE procedure omits data set labels if the line size is too small for 
them.

Variables Summary
This report compares the variables in the two data sets. The first part of the report 
lists the following:

n the number of variables the data sets have in common

n the number of variables in the base data set that are not in the comparison data 
set and vice versa

438 Chapter 13 / COMPARE Procedure



n the number of variables in both data sets that have different types

n the number of variables that differ on other attributes (length, label, format, or 
informat)

n the number of BY, ID, VAR, and WITH variables specified for the comparison

The second part of the report lists matching variables with different attributes and 
shows how the attributes differ. (The COMPARE procedure omits variable labels if 
the line size is too small for them.)

The following output shows the Data Set Summary and the Variables Summary.

Output 13.4 Partial Output Showing the Data Set Summary and Variables Summary

Results: COMPARE Procedure 439



Observation Summary
This report provides information about observations in the base and comparison 
data sets. First of all, the report identifies the first and last observation in each data 
set, the first and last matching observations, and the first and last different 
observations. Then, the report lists the following:

n the number of observations that the data sets have in common

n the number of observations in the base data set that are not in the comparison 
data set and vice versa

n the total number of observations in each data set

n the number of matching observations for which PROC COMPARE judged some 
variables unequal

n the number of matching observations for which PROC COMPARE judged all 
variables equal

The following output shows the Observation Summary.

Output 13.5 Partial Output Showing the Observation Summary

Values Comparison Summary
This report first lists the following:

n the number of variables compared with all observations equal

n the number of variables compared with some observations unequal

n the number of variables with differences involving missing values, if any

440 Chapter 13 / COMPARE Procedure



n the total number of values judged unequal

n the maximum difference measure between unequal values for all pairs of 
matching variables (for differences not involving missing values)

In addition, for the variables for which some matching observations have unequal 
values, the report lists the following:

n the name of the variable

n other variable attributes

n the number of times PROC COMPARE judged the variable unequal

n the maximum difference measure found between values (for differences not 
involving missing values)

n the number of differences caused by comparison with missing values, if any

The following output shows the Values Comparison Summary.

Output 13.6 Partial Output Showing the Values Comparison Summary

Value Comparison Results
This report consists of a table for each pair of matching variables judged unequal at 
one or more observations.

Note:

n When it is comparing character values, PROC COMPARE displays only the first 
20 characters. When you use the TRANSPOSE option, PROC COMPARE 
displays only the first 12 characters.

Results: COMPARE Procedure 441



If you are comparing character values, in the output PROC COMPARE displays 
a plus sign at the end of a character string that is longer than 20 characters. If 
you specify the TRANSPOSE option PROC COMPARE displays a plus sign in 
the output at the end of a character string that is longer than 12 characters. In 
both instances, the plus sign appears in the table-cell border above the character 
string. Here is an example.

Note: The plus sign is displayed at the end of the border above the character 
string.

n If you do not specify an adequate value for the LINESIZE option, SAS might 
write a warning that indicates the LINESIZE value is too small to print all of the 
ID variables in the value comparison reports. PROC COMPARE reserves space 
for the value section based on the formatted width of the data values. The rest of 
the space is available for ID values. The character ID values use the width that is 
specified by their format, and numeric variables use approximately 10 spaces.

Each table shows the following:

n the number of the observation or, if you use the ID statement, the values of the 
ID variables

n the value of the variable in the base data set

n the value of the variable in the comparison data set

n the difference between these two values (numeric variables only)

n the percent difference between these two values (numeric variables only)

The following output shows the Value Comparison Results for Variables.

442 Chapter 13 / COMPARE Procedure



Output 13.7 Partial Output Showing the Value Comparison Results for Variables

You can suppress the value comparison results with the NOVALUES option. If you 
use both the NOVALUES and TRANSPOSE options, then PROC COMPARE lists 
for each observation the names of the variables with values judged unequal but 
does not display the values and differences.

The display limits of PROC COMPARE and the TRANSPOSE option apply only to 
the printed output generated by PROC COMPARE. To see the entire value, you 
have to use the following options to create an output data set with PROC 
COMPARE:

n OUT= specifies the name of the output data set.

n OUTNOEQUAL suppresses writing observations where all variables match.

n OUTBASE and OUTCOMP include the observations from the BASE= and 
COMPARE= data sets.

n NOPRINT suppresses the default printed reports.

The following example produces a Differences data set and then runs PROC 
PRINT.

data x;
a='aaaaaaaaaaaaaaaaaaaaaa';
data y;

Results: COMPARE Procedure 443



a='aaaaaaaaaaaaaaaaaaaaab';
run;
proc compare base=x comp=y out=dif outbase outcomp outdif outnoequal;
run;
proc print data=dif;
run;

Figure 13.3 Differences Data Set

Table of Summary Statistics
If you use the STATS, ALLSTATS, or PRINTALL option, then the Value Comparison 
Results for Variables section contains summary statistics for the numeric variables 
that are being compared. The STATS option generates these statistics for only the 
numeric variables whose values are judged unequal. The ALLSTATS and 
PRINTALL options generate these statistics for all numeric variables, even if all 
values are judged equal. Here is the formula that is used to generate the statistics 
for the ALLSTATS section.

(ystat-xstat)/x*100

Note:  In all cases PROC COMPARE calculates the summary statistics based on 
all matching observations that do not contain missing values, not just on those 
containing unequal values.

The following output shows the following summary statistics for base data set 
values, comparison data set values, differences, and percent differences:

N
the number of nonmissing values.

Note: The value of the N statistic is always the count of nonmissing 
observations for all four of the columns in the output. The Diff and %Diff columns 
do not perform any calculations on the N statistic.

MEAN
the mean, or average, of the values.

STD
the standard deviation.

MAX
the maximum value.

444 Chapter 13 / COMPARE Procedure



MIN
the minimum value.

MISSDIFF
the number of missing values in either a base or compare data set.

STDERR
the standard error of the mean.

T
the T ratio (MEAN/STDERR).

PROB> | T |
the probability of a greater absolute T value if the true population mean is 0.

NDIF
the number of matching observations judged unequal, and the percent of the 
matching observations that were judged unequal.

DIFMEANS
the difference between the mean of the base values and the mean of the 
comparison values. This line contains three numbers. The first is the mean 
expressed as a percentage of the base values mean. The second is the mean 
expressed as a percentage of the comparison values mean. The third is the 
difference in the two means (the comparison mean minus the base mean).

R
the correlation of the base and comparison values for matching observations that 
are nonmissing in both data sets.

RSQ
the square of the correlation of the base and comparison values for matching 
observations that are nonmissing in both data sets.

The following output is from the ALLSTATS option using the two data sets shown in 
Overview: COMPARE Procedure on page 410.:

options nodate pageno=1
   linesize=80 pagesize=60;
proc compare base=proclib.one
     compare=proclib.two allstats;
   title 'Comparing Two Data Sets: Default Report';
run;

Results: COMPARE Procedure 445



Output 13.8 Partial Output Showing Value Comparison Results for Variables

Note: If you use a wide line size with PRINTALL, then PROC COMPARE prints the 
value comparison result for character variables next to the result for numeric 
variables. In that case, PROC COMPARE calculates only NDIF for the character 
variables.

Comparison Results for Observations 
(Using the TRANSPOSE Option)
The TRANSPOSE option prints the comparison results by observation instead of by 
variable. The comparison results precede the observation summary report. By 

446 Chapter 13 / COMPARE Procedure



default, the source of the values for each row of the table is indicated by the 
following label:

 _OBS_1=number-1  _OBS_2=number-2

where number-1 is the number of the observation in the base data set for which the 
value of the variable is shown, and number-2 is the number of the observation in the 
comparison data set.

The following output shows the differences in PROCLIB.ONE and PROCLIB.TWO 
by observation instead of by variable.

options nodate pageno=1
   linesize=80 pagesize=60;
proc compare base=proclib.one
     compare=proclib.two transpose;
   title 'Comparing Two Data Sets: Default Report';
run;

Output 13.9 Partial Output Showing Comparison Results for Observations

If you use an ID statement, then the identifying label has the following form:

ID-1=ID-value-1 ... ID-n=ID-value-n

where ID is the name of an ID variable and ID-value is the value of the ID variable.

Note: When you use the TRANSPOSE option, PROC COMPARE prints only the 
first 12 characters of the value.

ODS Table Names
The COMPARE procedure assigns a name to each table that it creates. You can 
use these names to reference the table when using the Output Delivery System 
(ODS) to select tables and create output data sets. For more information, see SAS 
Output Delivery System: User’s Guide.

Results: COMPARE Procedure 447



Table 13.3 ODS Tables Produced by the COMPARE Procedure

Table Name Description
Conditions When Table Is 
Generated

CompareData sets Information about the data set or 
data sets

By default, unless 
NOSUMMARY or NOVALUES 
option is specified

CompareDetails (Comparison 
Results for Observations)

A listing of observations that the 
base data set and the compare 
data set do not have in common

If PRINTALL option is specified

CompareDetails (ID variable 
notes and warnings)

A listing of notes and warnings 
concerning duplicate ID variable 
values

If ID statement is specified and 
duplicate ID variable values exist 
in either data set

CompareDifferences A report of variable value 
differences

By default unless NOVALUES 
option is specified

CompareSummary Summary report of observations, 
values, and variables with 
unequal values

By default

CompareVariables A listing of differences in variable 
types or attributes between the 
base data set and the compare 
data set

By default, unless the variables 
are identical or the 
NOSUMMARY option is 
specified

Note: The ODS output tables contain the same information as that written to the 
Output window. These tables do not contain any additional information, and they do 
not provide a different format for the information. The ODS output tables might be of 
some use to you, but it depends on the task that you are performing. For an 
example of the format produced in the Output window, see the outputs in 
“Customizing PROC COMPARE Output” on page 431.

Output Data Set (OUT=)
By default, the OUT= data set contains an observation for each pair of matching 
observations. The OUT= data set contains the following variables from the data sets 
you are comparing:

n all variables named in the BY statement

n all variables named in the ID statement

n all matching variables or, if you use the VAR statement, all variables listed in the 
VAR statement

In addition, the data set contains two variables created by PROC COMPARE to 
identify the source of the values for the matching variables: _TYPE_ and _OBS_.

448 Chapter 13 / COMPARE Procedure



_TYPE_
is a character variable of length 8. Its value indicates the source of the values for 
the matching (or VAR) variables in that observation. (For ID and BY variables, 
which are not compared, the values are the values from the original data sets.) 
_TYPE_ has the label Type of Observation. The four possible values of this 
variable are as follows:

BASE
the values in this observation are from an observation in the base data set. 
PROC COMPARE writes this type of observation to the OUT= data set when 
you specify the OUTBASE option.

COMPARE
the values in this observation are from an observation in the comparison data 
set. PROC COMPARE writes this type of observation to the OUT= data set 
when you specify the OUTCOMP option.

DIF
the values in this observation are the differences between the values in the 
base and comparison data sets.

For character variables, PROC COMPARE uses a period (.) to represent 
equal characters and an X to represent unequal characters.

For numeric variables, an E means that there is no difference. Otherwise, the 
numeric difference is shown.

PROC COMPARE writes this type of observation to the OUT= data set by 
default. However, if you request any other type of observation with the 
OUTBASE, OUTCOMP, or OUTPERCENT option, then you must specify the 
OUTDIF option to generate observations of this type in the OUT= data set.

For an example output that shows the use of the period, X, and E to 
represent equal and different values, see “Example 6: Comparing Values of 
Observations Using an Output Data Set (OUT=)” on page 470.

PERCENT
the values in this observation are the percent differences between the values 
in the base and comparison data sets. For character variables the values in 
observations of type PERCENT are the same as the values in observations 
of type DIF.

_OBS_
is a numeric variable that contains a number further identifying the source of the 
OUT= observations.

For observations with _TYPE_ equal to BASE, _OBS_ is the number of the 
observation in the base data set from which the values of the VAR variables 
were copied. Similarly, for observations with _TYPE_ equal to COMPARE, 
_OBS_ is the number of the observation in the comparison data set from which 
the values of the VAR variables were copied.

For observations with _TYPE_ equal to DIF or PERCENT, _OBS_ is a sequence 
number that counts the matching observations in the BY group.

_OBS_ has the label Observation Number.

The COMPARE procedure takes variable names and attributes for the OUT= data 
set from the base data set except for the length of the VAR variable. The COMPARE 
procedure uses the longer length for the VAR variable regardless of which data set 
contains that length is from. This behavior has two important repercussions:

Results: COMPARE Procedure 449



n If you use the VAR and WITH statements, then the names of the variables in the 
OUT= data set come from the VAR statement. Thus, observations with _TYPE_ 
equal to BASE contain the values of the VAR variables, whereas observations 
with _TYPE_ equal to COMPARE contain the values of the WITH variables.

n If you include a variable more than once in the VAR statement in order to 
compare it with more than one variable, then PROC COMPARE can include only 
the first comparison in the OUT= data set because each variable must have a 
unique name. Other comparisons produce warning messages.

For an example of the OUT= option, see “Example 6: Comparing Values of 
Observations Using an Output Data Set (OUT=)” on page 470. 

Output Statistics Data Set (OUTSTATS=)
When you use the OUTSTATS= option, PROC COMPARE calculates the same 
summary statistics as the ALLSTATS option for each pair of numeric variables that 
are compared. For more information, see “Table of Summary Statistics” on page 
444). The OUTSTATS= data set contains an observation for each summary statistic 
for each pair of variables. The data set also contains the BY variables used in the 
comparison and several variables created by PROC COMPARE:

_VAR_
is a character variable that contains the name of the variable from the base data 
set for which the statistic in the observation was calculated.

_WITH_
is a character variable that contains the name of the variable from the 
comparison data set for which the statistic in the observation was calculated. 
The _WITH_ variable is not included in the OUTSTATS= data set unless you use 
the WITH statement.

_TYPE_
is a character variable that contains the name of the statistic contained in the 
observation. Values of the _TYPE_ variable are N, MEAN, STD, MIN, MAX, STDERR, 
T, PROBT, NDIF, DIFMEANS, and R, RSQ.

_BASE_
is a numeric variable that contains the value of the statistic calculated from the 
values of the variable named by _VAR_ in the observations in the base data set 
with matching observations in the comparison data set.

_COMP_
is a numeric variable that contains the value of the statistic calculated from the 
values of the variable named by the _VAR_ variable (or by the _WITH_ variable 
if you use the WITH statement) in the observations in the comparison data set 
with matching observations in the base data set.

_DIF_
is a numeric variable that contains the value of the statistic calculated from the 
differences of the values of the variable named by the _VAR_ variable in the 
base data set and the matching variable (named by the _VAR_ or _WITH_ 
variable) in the comparison data set.

_PCTDIF_
is a numeric variable that contains the value of the statistic calculated from the 
percent differences of the values of the variable named by the _VAR_ variable in 

450 Chapter 13 / COMPARE Procedure



the base data set and the matching variable (named by the _VAR_ or _WITH_ 
variable) in the comparison data set.

Note: For both types of output data sets, PROC COMPARE assigns one of the 
following data set labels: 

Comparison of base-SAS-data-set
with comparison-SAS-data-set

Comparison of variables in base-SAS-data-set

Labels are limited to 40 characters.

See “Example 7: Creating an Output Data Set of Statistics (OUTSTATS=)” on page 
474 for an example of an OUTSTATS= data set.

Examples: COMPARE Procedure

Example 1: Producing a Complete Report of the 
Differences
Features: PROC COMPARE statement options

BASE=
PRINTALL
COMPARE=

Data set: Proclib.One, Proclib.Two

Details
This example shows the most complete report that PROC COMPARE produces as 
procedure output.

Program
libname proclib 'SAS-library';

options nodate pageno=1 linesize=80 pagesize=40;

proc compare base=proclib.one compare=proclib.two printall;
   title 'Comparing Two Data Sets: Full Report';

Example 1: Producing a Complete Report of the Differences 451



run;

Program Description
Declare the PROCLIB SAS library.

libname proclib 'SAS-library';

Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create a complete report of the differences between two data sets. BASE= and 
COMPARE= specify the data sets to compare. PRINTALL prints a full report of the 
differences.

proc compare base=proclib.one compare=proclib.two printall;
   title 'Comparing Two Data Sets: Full Report';
run;

Output: HTML
A > in the output marks information that is in the full report but not in the default 
report. The additional information includes a listing of variables found in one data 
set but not the other, a listing of observations found in one data set but not the other, 
a listing of variables with all equal values, and summary statistics. For an 
explanation of the statistics, see “Table of Summary Statistics” on page 444. 

452 Chapter 13 / COMPARE Procedure



Output 13.10 Part One of Comparing Two Data Sets: Full Report

Example 1: Producing a Complete Report of the Differences 453



Output 13.11 Part Two of Comparing Two Data Sets: Full Report

454 Chapter 13 / COMPARE Procedure



Output 13.12 Part Three of Comparing Two Data Sets: Full Report

Example 1: Producing a Complete Report of the Differences 455



Output 13.13 Part Four of Comparing Two Data Sets: Full Report

456 Chapter 13 / COMPARE Procedure



Output 13.14 Part Five of Comparing Two Data Sets: Full Report

Example 1: Producing a Complete Report of the Differences 457



Output 13.15 Part Six of Comparing Two Data Sets: Full Report

Example 2: Comparing Variables in Different Data 
Sets
Features: PROC COMPARE statement option

NOSUMMARY
VAR statement
WITH statement

Data set: Proclib.One, Proclib.Two

Details
This example compares a variable from the base data set with a variable in the 
comparison data set. All summary reports are suppressed.

458 Chapter 13 / COMPARE Procedure



Program
libname proclib 'SAS-library';

options nodate pageno=1 linesize=80 pagesize=40;

proc compare base=proclib.one compare=proclib.two nosummary;

   var gr1;
   with gr2;
   title 'Comparison of Variables in Different Data Sets';
run;

Program Description
Declare the PROCLIB SAS library.

libname proclib 'SAS-library';

Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Suppress all summary reports of the differences between two data sets. 
BASE= specifies the base data set and COMPARE= specifies the comparison data 
set. NOSUMMARY suppresses all summary reports.

proc compare base=proclib.one compare=proclib.two nosummary;

Specify one variable from the base data set to compare with one variable from 
the comparison data set. The VAR and WITH statements specify the variables to 
compare. This example compares GR1 from the base data set with GR2 from the 
comparison data set.

   var gr1;
   with gr2;
   title 'Comparison of Variables in Different Data Sets';
run;

Example 2: Comparing Variables in Different Data Sets 459



Output: HTML
Output 13.16 Comparison of Variables in Different Data Sets

Example 3: Comparing a Variable Multiple Times
Features: VAR statement

WITH statement

Data set: Proclib.One, Proclib.Two

Details
This example compares one variable from the base data set with two variables in 
the comparison data set.

Program
libname proclib 'SAS-library';

options nodate pageno=1 linesize=80 pagesize=40;

460 Chapter 13 / COMPARE Procedure



proc compare base=proclib.one compare=proclib.two nosummary;

   var gr1 gr1;
   with gr1 gr2;
   title 'Comparison of One Variable with Two Variables';
run;

Program Description
Declare the PROCLIB SAS library.

libname proclib 'SAS-library';

Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Suppress all summary reports of the differences between two data sets. 
BASE= specifies the base data set and COMPARE= specifies the comparison data 
set. NOSUMMARY suppresses all summary reports.

proc compare base=proclib.one compare=proclib.two nosummary;

Specify one variable from the base data set to compare with two variables 
from the comparison data set. The VAR and WITH statements specify the 
variables to compare. This example compares GR1 from the base data set with 
GR1 and GR2 from the comparison data set.

   var gr1 gr1;
   with gr1 gr2;
   title 'Comparison of One Variable with Two Variables';
run;

Output: HTML
The Value Comparison Results section shows the result of the comparison.

Example 3: Comparing a Variable Multiple Times 461



Output 13.17 Comparison of One Variable with Two Variables

Example 4: Comparing Variables That Are in the 
Same Data Set
Features: PROC COMPARE statement options

ALLSTATS
BRIEFSUMMARY

VAR statement
WITH statement

Data set: Proclib.One

462 Chapter 13 / COMPARE Procedure



Details
This example shows that PROC COMPARE can compare two variables that are in 
the same data set.

Program
libname proclib 'SAS-library';

options nodate pageno=1 linesize=80 pagesize=40;

proc compare base=proclib.one allstats briefsummary;

   var gr1;
   with gr2;
   title 'Comparison of Variables in the Same Data Set';
run;

Program Description
Declare the Proclib SAS library.

libname proclib 'SAS-library';

Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create a short summary report of the differences within one data set. 
ALLSTATS prints summary statistics. BRIEFSUMMARY prints only a short 
comparison summary.

proc compare base=proclib.one allstats briefsummary;

Specify two variables from the base data set to compare. The VAR and WITH 
statements specify the variables in the base data set to compare. This example 
compares GR1 with GR2. Because there is no comparison data set, the variables 
GR1 and GR2 must be in the base data set.

   var gr1;
   with gr2;
   title 'Comparison of Variables in the Same Data Set';
run;

Example 4: Comparing Variables That Are in the Same Data Set 463



Output: HTML
Output 13.18 Comparison of One Variable with Two Variables

Example 5: Comparing Observations with an ID 
Variable
Features: ID statement

Data sets: Proclib.Emp95
Proclib.Emp96

464 Chapter 13 / COMPARE Procedure



Details
In this example, PROC COMPARE compares only the observations that have 
matching values for the ID variable.

Program
libname proclib 'SAS-library';

options nodate pageno=1 linesize=80 pagesize=40;

data proclib.emp95;
   input #1 idnum $4. @6 name $15.
         #2 address $42.
         #3 salary 6.;
   datalines;
2388 James Schmidt
100 Apt. C Blount St. SW Raleigh NC 27693
92100
2457 Fred Williams
99 West Lane  Garner NC 27509
33190
... more data lines...
3888 Kim Siu
5662 Magnolia Blvd Southeast Cary NC 27513
77558
;

data proclib.emp96;
   input #1 idnum $4. @6 name $15.
         #2 address $42.
         #3 salary 6.;
   datalines;
2388 James Schmidt
100 Apt. C Blount St. SW Raleigh NC 27693
92100
2457 Fred Williams
99 West Lane  Garner NC 27509
33190
...more data lines...
6544 Roger Monday
3004 Crepe Myrtle Court Raleigh NC 27604
47007
;

proc sort data=proclib.emp95 out=emp95_byidnum;

 by idnum;
run;

proc sort data=proclib.emp96 out=emp96_byidnum;

Example 5: Comparing Observations with an ID Variable 465



   by idnum;
run;

proc compare base=emp95_byidnum compare=emp96_byidnum;
   id idnum;
   title 'Comparing Observations that Have Matching IDNUMs';
run;

Program Description
Declare the PROCLIB SAS library.

libname proclib 'SAS-library';

Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create the Proclib.Emp95 and Proclib.Emp96 data sets. Proclib.Emp95 and 
Proclib.Emp96 contain employee data. IDNUM works well as an ID variable 
because it has unique values. The first DATA step creates Proclib.Emp95. The 
second DATA step creates Proclib.Emp96.

data proclib.emp95;
   input #1 idnum $4. @6 name $15.
         #2 address $42.
         #3 salary 6.;
   datalines;
2388 James Schmidt
100 Apt. C Blount St. SW Raleigh NC 27693
92100
2457 Fred Williams
99 West Lane  Garner NC 27509
33190
... more data lines...
3888 Kim Siu
5662 Magnolia Blvd Southeast Cary NC 27513
77558
;

data proclib.emp96;
   input #1 idnum $4. @6 name $15.
         #2 address $42.
         #3 salary 6.;
   datalines;
2388 James Schmidt
100 Apt. C Blount St. SW Raleigh NC 27693
92100
2457 Fred Williams
99 West Lane  Garner NC 27509
33190
...more data lines...
6544 Roger Monday
3004 Crepe Myrtle Court Raleigh NC 27604

466 Chapter 13 / COMPARE Procedure



47007
;

Sort the data sets by the ID variable. Both data sets must be sorted by the 
variable that will be used as the ID variable in the PROC COMPARE step. OUT= 
specifies the location of the sorted data.

proc sort data=proclib.emp95 out=emp95_byidnum;

 by idnum;
run;

proc sort data=proclib.emp96 out=emp96_byidnum;
   by idnum;
run;

Create a summary report that compares observations with matching values 
for the ID variable. The ID statement specifies IDNUM as the ID variable.

proc compare base=emp95_byidnum compare=emp96_byidnum;
   id idnum;
   title 'Comparing Observations that Have Matching IDNUMs';
run;

Output: HTML
PROC COMPARE identifies specific observations by the value of IDNUM. In the 
Value Comparison Results for Variables section, PROC COMPARE prints the 
nonmatching addresses and nonmatching salaries. For salaries, PROC COMPARE 
computes the numerical difference and the percent difference. Because ADDRESS 
is a character variable, PROC COMPARE displays only the first 20 characters. For 
addresses where the observation has an IDNUM of 0987, 2776, or 3888, the 
differences occur after the 20th character and the differences do not appear in the 
output. The plus sign in the output indicates that the full value is not shown. To see 
the entire value, create an output data set. See “Example 6: Comparing Values of 
Observations Using an Output Data Set (OUT=)” on page 470.

Example 5: Comparing Observations with an ID Variable 467



Output 13.19 Part One of Comparing Observations That Have Matching IDNUMs

468 Chapter 13 / COMPARE Procedure



Output 13.20 Part Two of Comparing Observations That Have Matching IDNUMs

Example 5: Comparing Observations with an ID Variable 469



Output 13.21 Part Three of Comparing Observations That Have Matching IDNUMs

Example 6: Comparing Values of Observations 
Using an Output Data Set (OUT=)
Features: PROC COMPARE statement options

NOPRINT
OUT=
OUTBASE
OUTCOMP
OUTDIF
OUTNOEQUAL

PRINT procedure

Data sets: Proclib.Emp95
Proclib.Emp96

Details
This example creates and prints an output data set that shows the differences 
between matching observations.

In “Example 5: Comparing Observations with an ID Variable” on page 464, the 
output does not show the differences past the 20th character. The output data set in 
this example shows the full values. Further, it shows the observations that occur in 
only one of the data sets.

470 Chapter 13 / COMPARE Procedure



Program
libname proclib 'SAS-library';

options nodate pageno=1 linesize=120 pagesize=40;

proc sort data=proclib.emp95 out=emp95_byidnum;

 by idnum;
run;

proc sort data=proclib.emp96 out=emp96_byidnum;
   by idnum;
run;

proc compare base=emp95_byidnum compare=emp96_byidnum

             out=result outnoequal outbase outcomp outdif
     noprint;

   id idnum;
run;

proc print data=result noobs;
   by idnum;
   id idnum;
   title 'The Output Data Set RESULT';
run;

Program Description
Declare the PROCLIB SAS library.

libname proclib 'SAS-library';

Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=120 pagesize=40;

Sort the data sets by the ID variable. Both data sets must be sorted by the 
variable that will be used as the ID variable in the PROC COMPARE step. OUT= 
specifies the location of the sorted data.

proc sort data=proclib.emp95 out=emp95_byidnum;

 by idnum;
run;

proc sort data=proclib.emp96 out=emp96_byidnum;
   by idnum;
run;

Specify the data sets to compare. BASE= and COMPARE= specify the data sets 
to compare.

proc compare base=emp95_byidnum compare=emp96_byidnum

Example 6: Comparing Values of Observations Using an Output Data Set (OUT=) 471



Create the Result output data set and include all unequal observations and 
their differences. OUT= names and creates the output data set. NOPRINT 
suppresses the printing of the procedure output. OUTNOEQUAL includes only 
observations that are judged unequal. OUTBASE writes an observation to the 
output data set for each observation in the base data set. OUTCOMP writes an 
observation to the output data set for each observation in the comparison data set. 
OUTDIF writes an observation to the output data set that contains the differences 
between the two observations.

             out=result outnoequal outbase outcomp outdif
     noprint;

Specify the ID variable. The ID statement specifies IDNUM as the ID variable.

   id idnum;
run;

Print the Result output data set and use the BY and ID statements with the ID 
variable. PROC PRINT prints the output data set. Using the BY and ID statements 
with the same variable makes the output easy to read. See the PRINT procedure for 
more information about this technique.

proc print data=result noobs;
   by idnum;
   id idnum;
   title 'The Output Data Set RESULT';
run;

Output: HTML
The differences for character variables are noted with an X or a period (.). An X 
shows that the characters do not match. A period shows that the characters do 
match. For numeric variables, an E means that there is no difference. Otherwise, 
the numeric difference is shown. By default, the output data set shows that two 
observations in the comparison data set have no matching observation in the base 
data set. You do not have to use an option to make those observations appear in 
the output data set.

472 Chapter 13 / COMPARE Procedure



Output 13.22 Part One of the Output Data Set RESULT

Output 13.23 Part Two of the Output Data Set RESULT

Example 6: Comparing Values of Observations Using an Output Data Set (OUT=) 473



Example 7: Creating an Output Data Set of 
Statistics (OUTSTATS=)
Features: PROC COMPARE statement options

NOPRINT
OUTSTATS=

Data sets: Proclib.Emp95
Proclib.Emp96

Details
This example creates an output data set that contains summary statistics for the 
numeric variables that are compared.

Program
libname proclib 'SAS-library';

options nodate pageno=1 linesize=80 pagesize=40;

proc sort data=proclib.emp95 out=emp95_byidnum;
   by idnum;
run;

proc sort data=proclib.emp96 out=emp96_byidnum;
   by idnum;
run;

proc compare base=emp95_byidnum compare=emp96_byidnum
             outstats=diffstat noprint;
   id idnum;
run;

proc print data=diffstat noobs;
   title 'The DIFFSTAT Data Set';
run;

Program Description
Declare the Proclib SAS library.

libname proclib 'SAS-library';

474 Chapter 13 / COMPARE Procedure



Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Sort the data sets by the ID variable. Both data sets must be sorted by the 
variable that will be used as the ID variable in the PROC COMPARE step. OUT= 
specifies the location of the sorted data. 

proc sort data=proclib.emp95 out=emp95_byidnum;
   by idnum;
run;

proc sort data=proclib.emp96 out=emp96_byidnum;
   by idnum;
run;

Create the output data set of statistics and compare observations that have 
matching values for the ID variable. BASE= and COMPARE= specify the data 
sets to compare. OUTSTATS= creates the output data set Diffstat.Noprint and 
suppresses the procedure output. The ID statement specifies IDNUM as the ID 
variable. PROC COMPARE uses the values of IDNUM to match observations.

proc compare base=emp95_byidnum compare=emp96_byidnum
             outstats=diffstat noprint;
   id idnum;
run;

Print the output data set Diffstat. PROC PRINT prints the output data set Diffstat.

proc print data=diffstat noobs;
   title 'The DIFFSTAT Data Set';
run;

Output: HTML
The variables are described in “Output Statistics Data Set (OUTSTATS=)” on page 
450. 

Example 7: Creating an Output Data Set of Statistics (OUTSTATS=) 475



Output 13.24 The Diffstat Data Set

476 Chapter 13 / COMPARE Procedure



Chapter 14
CONTENTS Procedure

Overview: CONTENTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
What Does the CONTENTS Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Concepts: CONTENTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Concepts: CONTENTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

Syntax: CONTENTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
PROC CONTENTS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

Usage: CONTENTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
Using PROC CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

Examples: CONTENTS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Example 1: Describing a SAS Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Example 2: Using the DIRECTORY Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
Example 3: Using the DIRECTORY and DETAILS Options . . . . . . . . . . . . . . . . . . 498
Example 4: Using the ORDER= Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Overview: CONTENTS Procedure

What Does the CONTENTS Procedure Do?
The CONTENTS procedure shows the contents of a SAS data set and prints the 
directory of the SAS library.

Generally, the CONTENTS procedure functions the same as the CONTENTS 
statement in the DATASETS procedure. The differences between the CONTENTS 
procedure and the CONTENTS statement in PROC DATASETS are as follows:

n The default for libref in the DATA= option in PROC CONTENTS is Work. For the 
CONTENTS statement, the default is the libref of the procedure input library.

477



n PROC CONTENTS can read sequential files. The CONTENTS statement 
cannot.

Concepts: CONTENTS Procedure

Concepts: CONTENTS Procedure
See Concepts for the CONTENTS Statement on page 589.

PROC CONTENTS reports metadata about the table and the metadata about the 
variables. The CAS engine is the only engine supporting VARCHAR. If there is a 
VARCHAR data type in the table, PROC CONTENTS shows the Length in bytes 
and characters as well as maximum bytes used.

Just like with Base engine data sets, the top portion of PROC CONTENTS reports 
the information about the table. The Encoding shows the encoding of the CAS table. 
The same for the Data Representation.

The bottom portion of PROC CONTENTS (related to the variable metadata reports) 
is the metadata that is represented in the SAS session. Based on what type of 
transcoding that might or might not be needed to go from the CAS UTF–8 encoding 
to the SAS session encoding, The variable byte length used in the SAS session may 
differ from the byte length in the CAS table depending on the encoding of the SAS 
session.

478 Chapter 14 / CONTENTS Procedure



Output 14.1 Output of Mycas.French2 with VARCHAR

The following PROC CONTENTS shows the output from the Hadoop engine.

Concepts: CONTENTS Procedure 479



Output 14.2 PROC CONTENTS for the Hadoop Engine

CAUTION
Do not confuse the GENNUM variable value in CONTENTS’ OUT= data set with 
the GEN variable value from DICTIONARY tables. GENNUM from a CONTENTS 
procedure or statement refers to a specific generation of a data set. GEN from 
DICTIONARY tables refers to the total number of generations for a data set. Each SAS 
procedure is designed and architected to deliver specific information. The output from 
DICTIONARY.TABLES and PROC CONTENTS are not interchangeable. 

Syntax: CONTENTS Procedure
Restrictions: You cannot use the WHERE option to affect the output because PROC CONTENTS 

does not process any observations.

480 Chapter 14 / CONTENTS Procedure



When a SAS data file reaches the maximum observation count, SAS procedures that 
return an observation count (such as the PRINT procedure or the CONTENTS 
procedure) return a missing value, which is represented by a period (.), for the number of 
observations. For more information, see “Understanding the Observation Count in a SAS 
Data File” in SAS Language Reference: Concepts.
When using a SAS/ACCESS LIBNAME engine to access a database, some of the 
information that is available in the header of a SAS data set is not available. Procedures 
like CONTENTS and DATASETS don’t query the system tables so indexes, integrity 
constraints, number of observations, and so on will not be displayed. For more 
information, see “Differences in the DATASETS Procedure Output When Using 
SAS/ACCESS LIBNAME Engines” on page 560.

Note: The ATTRIB statement does not affect the PROC CONTENTS output. PROC 
CONTENTS reports the labels, informats, and formats on the actual member.

Tips: Complete documentation for the CONTENTS procedure is in CONTENTS Statement on 
page 589. The links in the table below are to the DATASETS procedure documentation, 
which explains these options.
When using PROC CONTENTS, you can use data set options with the DATA=, OUT=, 
and OUT2= options.
The ORDER= option does not affect the order of the OUT= and OUT2= data sets.

See: CONTENTS Procedure under Windows, UNIX, z/OS 

PROC CONTENTS <options>;

Statement Task Example

CONTENTS List the contents of one or more SAS data sets 
and print the directory of the SAS library

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4

PROC CONTENTS Statement
Describes the contents of one or more SAS data sets and prints the directory of the SAS library.

Restriction: You cannot use the WHERE option to affect the output because PROC CONTENTS 
does not process any observations.

Notes: The ATTRIB statement does not affect the CONTENTS statement output. CONTENTS 
reports the labels, informats, and formats on the actual member.
When using the CONTENTS statement with SAS/ACCESS LIBNAME engines, 
“Differences in the DATASETS Procedure Output When Using SAS/ACCESS LIBNAME 
Engines” on page 560.

Tip: You can use data set options with the DATA=, OUT=, and OUT2= options. You can use 
any global statements as well.

Example: “Example 1: Describing a SAS Data Set” on page 489.

Syntax
PROC CONTENTS<options>

PROC CONTENTS Statement 481

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n15wxgrm8mhpzbn1o0vsldh1zow9.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n15wxgrm8mhpzbn1o0vsldh1zow9.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p02vdgvofvi65sn12xzz2c0qwvc6.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n11w9h53f78rlpn1czaexwlczzb2.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n1nya9nd0fuj8mn1y179r44ggup7.htm&locale=en


Optional Arguments
CENTILES

prints centiles information for indexed variables.

The following additional fields are printed in the default report of PROC 
CONTENTS when the CENTILES option is selected and an index exists on the 
data set. Note that the additional fields depend on whether the index is simple or 
complex.

# number of the index on the data set.

Index name of the index.

Update Centiles percentage of the data values that must be changed 
before the CENTILES for the indexed variables are 
automatically updated.

Current Update 
Percentage

percentage of index updated since CENTILES were 
refreshed.

# of Unique Values number of unique indexed values.

Variables names of the variables used to make up the index. 
Centile information is listed below the variables.

DATA=SAS-file-specification
specifies an entire library or a specific SAS data set within a library. SAS-file-
specification can take one of the following forms: 

<libref.>SAS-data-set
names one SAS data set to process. The default for libref is the libref of the 
procedure input library. For example, to obtain the contents of the SAS data 
set HtWt from the procedure input library, use the following CONTENTS 
statement:

contents data=HtWt;

To obtain the contents of a specific version from a generation group, use the 
GENNUM= data set option as shown in the following CONTENTS statement:

contents data=HtWt(gennum=3);

<libref.>_ALL_
gives you information about all SAS data sets that have the type or types 
specified by the MEMTYPE= option. libref refers to the SAS library. The 
default for libref is the libref of the procedure input library.

n If you are using the _ALL_ keyword, you need Read access to all read-
protected SAS data sets in the SAS library.

n DATA=_ALL_ automatically prints a listing of the SAS files that are 
contained in the SAS library. Note that for SAS views, all librefs that are 
associated with the views must be assigned in the current session in 
order for them to be processed for the listing.

Default most recently created data set in your job or session, from any SAS 
library.

Tip If you specify a read-protected data set in the DATA= option but do 
not give the Read password, by default the procedure looks in the 
PROC DATASETS statement for the Read password. However, if you 
do not specify the DATA= option and the default data set (last one 

482 Chapter 14 / CONTENTS Procedure



created in the session) is Read protected, the procedure does not 
look in the PROC DATASETS statement for the Read password.

Example “Example 5: Describing a SAS Data Set” on page 688

DETAILS | NODETAILS
includes information in the output about the number of observations, number of 
variables, number of indexes, and data set labels. DETAILS includes these 
additional columns of information in the output, but only if DIRECTORY is also 
specified.

Default If neither DETAILS nor NODETAILS is specified, the defaults are as 
follows: for the CONTENTS procedure, the default is the system option 
setting, which is NODETAILS; for the CONTENTS statement, the 
default is whatever is specified in the PROC DATASETS statement, 
which also defaults to the system option setting.

See a description of the additional columns in the Optional Argument 
section of PROC DATASETS Statement on page 566

DIRECTORY
prints a list of all SAS files in the specified SAS library. If DETAILS is also 
specified, using DIRECTORY causes the additional columns described in 
DETAILS | NODETAILS on page 483 to be printed.

ENCRYPTKEY=key-value
specifies the key value for AES encryption. 

See “Appending AES-Encrypted Data Sets” on page 578

FMTLEN
prints the length of the informat or format. If you do not specify a length for the 
informat or format when you associate it with a variable, the length does not 
appear in the output of the CONTENTS statement unless you use the FMTLEN 
option. The length also appears in the FORMATL or INFORML variable in the 
output data set.

MEMTYPE=(member-type(s))
restricts processing to one or more member types. The CONTENTS statement 
produces output only for member types DATA, VIEW, and ALL, which includes 
DATA and VIEW.

MEMTYPE= in the CONTENTS statement differs from MEMTYPE= in most of 
the other statements in the DATASETS procedure in the following ways:

n A slash does not precede the option.

n You cannot enclose the MEMTYPE= option in parentheses to limit its effect to 
only the SAS file immediately preceding it.

MEMTYPE= results in a directory of the library in which the DATA= member is 
located. However, MEMTYPE= does not limit the types of members whose 
contents are displayed unless the _ALL_ keyword is used in the DATA= option. 
For example, the following statements produce the contents of only the SAS 
data sets with the member type DATA:

proc datasets memtype=data;    
   contents data=_all_; 
run;

PROC CONTENTS Statement 483



Aliases MTYPE=

MT=

Default DATA

NODS
suppresses printing the contents of individual files when you specify _ALL_ in 
the DATA= option. The CONTENTS statement prints only the SAS library 
directory. You cannot use the NODS option when you specify only one SAS data 
set in the DATA= option.

NODETAILS
See “DETAILS|NODETAILS” on page 483. 

NOPRINT
suppresses printing the output of the CONTENTS statement.

ORDER=COLLATE | CASECOLLATE | IGNORECASE | VARNUM

COLLATE prints a list of variables in alphabetical order beginning 
with uppercase and then lowercase names.

CASECOLLATE prints a list of variables in alphabetical order even if they 
include mixed-case names and numerics.

IGNORECASE prints a list of variables in alphabetical order ignoring the 
case of the letters.

VARNUM is the same as the VARNUM option.

Note The ORDER= option does not affect the order of the OUT= and 
OUT2= data sets.

See “VARNUM” on page 485

Example See “Example 4: Using the ORDER= Option” on page 502 to compare 
the default and the four options for ORDER=.

OUT=SAS-data-set
names an output SAS data set.

Tip OUT= does not suppress the printed output from the statement. If you 
want to suppress the printed output, you must use the NOPRINT option.

See “The OUT= Data Set” on page 666 for a description of the variables in the 
OUT= data set.

OUT2=SAS-data-set
names the output data set to contain information about indexes and integrity 
constraints.

Note When you use the OUT2=PermanentLibrary_ALL_ option within PROC 
CONTENTS or PROC DATASETS with the CONTENTS statement, you 
must also set the REPLACE=YES data set option or the REPLACE 
system option.

Tips If UPDATECENTILES was not specified in the index definition, then the 
default value of 5 is used in the re-create variable of the OUT2 data set.

484 Chapter 14 / CONTENTS Procedure



OUT2= does not suppress the printed output from the statement. To 
suppress the printed output, use the NOPRINT option.

See “The OUT2= Data Set” on page 672 for a description of the variables in 
the OUT2= data set.

SHORT
prints only the list of variable names, the index information, and the sort 
information for the SAS data set.

Restriction If the list of variables is more than 32,767 characters, the list is 
truncated and a WARNING is written to the SAS log. To get a 
complete list of the variables, request an alphabetical listing of the 
variables.

VARNUM
prints a list of the variable names in the order of their logical position in the data 
set. By default, the CONTENTS statement lists the variables alphabetically. The 
physical position of the variable in the data set is engine-dependent.

Details

Using the CONTENTS Procedure Instead of the 
CONTENTS Statement
The only difference between the CONTENTS procedure and the CONTENTS 
statement in PROC DATASETS is the default for libref in the DATA= option. For 
PROC CONTENTS, the default is Work. For the CONTENTS statement, the default 
is the libref of the procedure input library.

Printing Variables
The CONTENTS statement prints an alphabetical listing of the variables by default, 
except for variables in the form of a numbered range list. Numbered range lists, 
such as x1–x100, are printed in incrementing order, that is, x1–x100. For more 
information, see “Alphabetic List of Variables and Attributes” on page 661. 

Note: If a label is changed after a view is created from a data set with variable 
labels, the CONTENTS or DATASETS procedure output shows the original labels. 
The view must be recompiled in order for the CONTENTS or DATASETS procedure 
output to reflect the new variable labels.

Displaying the ICU Revision Number
The CONTENTS statement prints the International Components for Unicode (ICU) 
revision number when you use the SORT procedure for a linguistic sort on a data 
set. For more information about linguistic sorting, see Chapter 64, “SORT 
Procedure,” on page 2277.

PROC CONTENTS Statement 485



Library Contents and AES Encryption
When requesting the contents of all data files in a library, use the _ALL_ option. If 
the library contains data files that are AES -encrypted, the ENCRYPTKEY= data set 
option must be used to access the data files. Here is an example using the 
ENCRYPTKEY= option:

proc contents data=MyLib._all_ (encryptkey=key-value);
run;

If the key value does not match the key value for a particular data file in the library, 
then you will be prompted to enter the correct key value.

For more information about AES encryption, see “AES Encryption” in SAS 
Programmer’s Guide: Essentials. For more information about the ENCRYPTKEY= 
data set option, see “ENCRYPTKEY= Data Set Option” in SAS Data Set Options: 
Reference.

Observation Length, Alignment, and Padding for a 
SAS Data Set
There are three different cases for alignment.

n Observations within a SAS data set are aligned on double-byte boundaries 
whenever possible. As a result, 8-byte and 4-byte numeric variables are 
positioned at 8-byte boundaries at the front of the data set. They are followed by 
character variables in the order in which they are encountered. If the data set 
contains only 4-byte numeric data, the alignment is based on 4-byte boundaries. 
Since numeric doubles can be operated upon directly rather than being moved 
and aligned before doing comparisons or increments, the boundaries cause 
better performance.

Since there are many observations contained within a given disk data page 
buffer, there might be padding between observations. The padding is to let each 
observation be aligned on a double-byte boundary. See the following example:

data a;
   length aa 7 bb 6 cc $10 dd 8 ee 3;
   aa = 1;
   bb = 2;
   cc = 'abc';
   dd = 3;
   ee = 4;
   ff = 5;
   output;
run;

proc contents data=a out=a1; 
run;

proc print data=a1(keep=name length varnum npos); 
run;

486 Chapter 14 / CONTENTS Procedure

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1s7u3pd71rgunn1xuexedikq90f.htm&docsetTargetAnchor=n1o82uabmi8m8xn1krmlzw1q1tv4&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1s7u3pd71rgunn1xuexedikq90f.htm&docsetTargetAnchor=n1o82uabmi8m8xn1krmlzw1q1tv4&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en


Figure 14.1 Observation Length

PROC CONTENTS shows an observation length of 48. PROC PRINT displays 
the internal layout of the variables within the observation where NPOS is the 
zero-based offset for each variable.

Figure 14.2 Observation and Variable Boundaries

Variables DD and FF, the only true numeric doubles, are at offsets 0 and 8, 
respectively, so they are automatically aligned. The rest of the observation 
contains the remaining numeric variables and then character variables.

The last physical variable in this layout is CC with an offset of 32 and a length of 
10. This gives you an internal length of 42, even though PROC CONTENTS 
reports the observation length as 48. The difference is the 6 bytes of padding so 
that the next observation is aligned on a double-byte boundary within the disk 
page buffer.

n No alignment is done when the observation does not contain 8-byte numeric 
variables as demonstrated in the next example, which gives you an observation 
length of 7 and no padding between observations within disk page buffers: 

PROC CONTENTS Statement 487



data b;
   length aa 6 cc $1;
   aa = 1;
   cc = 'x';
   output;
run;

proc contents data=b out=b1;
run;

proc print data=b1(keep=name length varnum npos); 
run;

Figure 14.3 Variables and Attributes

n Observations for compressed data sets are not aligned within the disk page 
buffer, but the same algorithm is used for positioning the variables within the 
observations. Compressed observations must be uncompressed and moved into 
a work buffer. The 8-byte numeric values will be aligned and ready for use 
immediately after uncompressing. The observation length in the PROC 
CONTENTS output might be larger due to operating system-specific overhead.

Usage: CONTENTS Procedure

Using PROC CONTENTS
For information on using PROC CONTENTS with SAS data sets, see “CONTENTS 
Statement” on page 589.

For more information, see Chapter 5, “CAS Processing of Base Procedures,” on 
page 93.

488 Chapter 14 / CONTENTS Procedure



Examples: CONTENTS Procedure

Example 1: Describing a SAS Data Set
Features: PROC CONTENTS statement options

DATA=
OUT=

OPTIONS statement
TITLE statement

Details
This example shows the output from the CONTENTS procedure for the Group data 
set. The output shows the modifications made to the Group data set in “Example 4: 
Modifying SAS Data Sets” on page 686 and the contents of the Grpout data set.

Program
options pagesize=40 linesize=80 nodate pageno=1;

LIBNAME health 'SAS-library';

proc datasets library=health nolist;
run;

proc contents data=health.group (read=green) out=health.grpout;
   title  'The Contents of the GROUP Data Set';
run;

proc contents data=health.grpout;
   title  'The Contents of the GRPOUT Data Set';
run;

Program Description

Set the system options. The PAGESIZE= option specifies the number of lines that 
compose a page of the SAS log and SAS output. The LINESIZE= option specifies 
the line size for the SAS log and for the SAS procedure output. The NODATE option 

Example 1: Describing a SAS Data Set 489



specifies that the date and the time are not printed. The PAGENO= option specifies 
a beginning page number for the next page of output.

options pagesize=40 linesize=80 nodate pageno=1;

Set your libref.

LIBNAME health 'SAS-library';

Specify Health as the procedure input library, and suppress the directory 
listing.

proc datasets library=health nolist;
run;

Create the output data set Grpout from the data set Group. Specify Group as 
the data set to describe, give Read access to the Group data set, and create the 
output data set Grpout.

proc contents data=health.group (read=green) out=health.grpout;
   title  'The Contents of the GROUP Data Set';
run;

Display the contents of the Grpout data set.

proc contents data=health.grpout;
   title  'The Contents of the GRPOUT Data Set';
run;

Output Examples
Output 14.3 Contents of the Group Data Set

490 Chapter 14 / CONTENTS Procedure



Example 1: Describing a SAS Data Set 491



Output 14.4 Contents of the Grpout Data Set

492 Chapter 14 / CONTENTS Procedure



Example 1: Describing a SAS Data Set 493



Example 2: Using the DIRECTORY Option
Features: PROC CONTENTS statement options

DATA=
DIRECTORY
OUT=

OPTIONS statement
TITLE statement

494 Chapter 14 / CONTENTS Procedure



Details
This example shows the output from the CONTENTS procedure for the Group data 
set using the DIRECTORY option. This option prints a list of all SAS files that are in 
the specified SAS library.

Program
options pagesize=40 linesize=80 nodate pageno=1;

LIBNAME health 'SAS-library';

proc datasets library=health nolist;
run;

proc contents data=health.group (read=green) directory;
title 'Contents Using the DIRECTORY Option';
run;

Program Description

Set the system options. The PAGESIZE= option specifies the number of lines that 
compose a page of the SAS log and the SAS output. The LINESIZE= option 
specifies the line size for the SAS log and for the SAS procedure output. The 
NODATE option specifies that the date and the time are not printed. The PAGENO= 
option specifies a beginning page number for the next page of output.

options pagesize=40 linesize=80 nodate pageno=1;

Set your libref.

LIBNAME health 'SAS-library';

Specify Health as the procedure input library, and suppress the directory 
listing.

proc datasets library=health nolist;
run;

Specify Group as the data set to describe, and give Read access to the Group 
data set. Use the DIRECTORY option to print a listing of all the data sets that are in 
the HEALTH library.

proc contents data=health.group (read=green) directory;
title 'Contents Using the DIRECTORY Option';
run;

Example 2: Using the DIRECTORY Option 495



Output Examples
Output 14.5 Using the DIRECTORY Option - Section 1

496 Chapter 14 / CONTENTS Procedure



Example 2: Using the DIRECTORY Option 497



Example 3: Using the DIRECTORY and DETAILS 
Options
Features: PROC CONTENTS statement options

DATA=
DETAILS
DIRECTORY
OUT=

OPTIONS statement
TITLE statement

498 Chapter 14 / CONTENTS Procedure



Details
This example shows the output from the CONTENTS procedure for the Group data 
set using the DIRECTORY option. This option prints a list of all SAS files that are in 
the specified SAS library. The DETAILS option includes information in the output 
about the number of observations, number of variables, number of indexes, and 
data set labels.

Program
options pagesize=40 linesize=80 nodate pageno=1;

LIBNAME health 'SAS-library';

proc datasets library=health nolist;
run;

proc contents data=health.groupdirectory details;
title 'Contents Using the DIRECTORY and DETAILS Options';
run;

Program Description

Set the system options. The PAGESIZE= option specifies the number of lines that 
compose a page of the SAS log and the SAS output. The LINESIZE= option 
specifies the line size for the SAS log and for the SAS procedure output. The 
NODATE option specifies that the date and the time are not printed. The PAGENO= 
option specifies a beginning page number for the next page of output.

options pagesize=40 linesize=80 nodate pageno=1;

Set your libref.

LIBNAME health 'SAS-library';

Specify Health as the procedure input library, and suppress the directory 
listing.

proc datasets library=health nolist;
run;

Specify Group as the data set. Use the DIRECTORY option to print a listing of all 
the data sets that are in the HEALTH library. Use the DETAILS options for additional 
columns of information in the Group output. 

proc contents data=health.groupdirectory details;
title 'Contents Using the DIRECTORY and DETAILS Options';
run;

Example 3: Using the DIRECTORY and DETAILS Options 499



Output Examples
Output 14.6 Using the DIRECTORY and DETAILS Options

500 Chapter 14 / CONTENTS Procedure



Example 3: Using the DIRECTORY and DETAILS Options 501



Example 4: Using the ORDER= Option
Features: PROC CONTENTS statement options

DATA=
ORDER=
OUT=

OPTIONS statement
TITLE statement

502 Chapter 14 / CONTENTS Procedure



Details
This example shows the output from the CONTENTS procedure for the Grpout data 
set using the ORDER= option, which prints a list of variables in different orders.

Program
options pagesize=40 linesize=80 nodate pageno=1;

LIBNAME health 'SAS-library';

proc contents data=health.grpout order=collate;
title 'Contents Using the ORDER= Option';
run;

proc contents data=health.grpout order=varnum;
title 'Contents Using the ORDER= Option';
run;

Program Description

Set the system options. The PAGESIZE= option specifies the number of lines that 
compose a page of the SAS log and the SAS output. The LINESIZE= option 
specifies the line size for the SAS log and for the SAS procedure output. The 
NODATE option specifies that the date and the time are not printed. The PAGENO= 
option specifies a beginning page number for the next page of output.

options pagesize=40 linesize=80 nodate pageno=1;

Set your libref.

LIBNAME health 'SAS-library';

Specify the Grpout data set. Use the ORDER=COLLATE option to print a listing of 
all variables in alphabetical order.

proc contents data=health.grpout order=collate;
title 'Contents Using the ORDER= Option';
run;

Specify the Grpout data set. Use the ORDER=VARNUM option to print a listing of 
all variables in number order.

proc contents data=health.grpout order=varnum;
title 'Contents Using the ORDER= Option';
run;

Example 4: Using the ORDER= Option 503



Output Examples
Output 14.7 Using the ORDER=COLLATE Option

504 Chapter 14 / CONTENTS Procedure



Example 4: Using the ORDER= Option 505



Output 14.8 Using the ORDER=VARNUM Option

506 Chapter 14 / CONTENTS Procedure



Example 4: Using the ORDER= Option 507



508 Chapter 14 / CONTENTS Procedure



Chapter 15
COPY Procedure

Overview: COPY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
What Does the COPY Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

Syntax: COPY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

Usage: COPY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
CAS Processing for PROC COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Using CLONE | NOCLONE on a CAS Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
Compressing Output CAS Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
Using the COPY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

Examples: COPY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Example 1: Copying SAS Data Sets between Hosts . . . . . . . . . . . . . . . . . . . . . . . 517
Example 2: Converting SAS Data Sets Encodings . . . . . . . . . . . . . . . . . . . . . . . . 519
Example 3: Using PROC COPY to Migrate from a 32-bit to a 64-bit Machine . . . . 521
Example 4: Copy a SAS Data Set to a CAS Table . . . . . . . . . . . . . . . . . . . . . . . . . 522

Overview: COPY Procedure

What Does the COPY Procedure Do?
The COPY procedure copies one or more tables from one SAS library to another.

Generally, the COPY procedure functions the same as the COPY statement in the 
DATASETS procedure. The differences are as follows:

n The IN= argument is required with PROC COPY. In the COPY statement, IN= is 
optional. If IN= is omitted, the default value is the libref of the procedure input 
library.

n PROC DATASETS cannot work with libraries that allow only sequential data 
access.

509



n The COPY statement honors the NOWARN option but PROC COPY does not.

Note: The MIGRATE procedure is available specifically for migrating a SAS library 
from a previous release to the most recent release. For migration, PROC MIGRATE 
offers benefits that PROC COPY does not. For more information, see MIGRATE 
Procedure on page 1513.

With the ACCEL option, PROC COPY executes a CAS action to copy a CAS table 
from one caslib to another caslib in the same CAS session.

Syntax: COPY Procedure
Restrictions: PROC COPY ignores concatenations with catalogs. Use PROC CATALOG COPY to 

copy concatenated catalogs.
PROC COPY does not support data set options.
PROC COPY does not back up graphic catalogs. Use PROC CPORT or PROC 
CIMPORT when doing back ups with graphic catalogs.

Interaction: The International Components for Unicode (ICU) version is used to sort data sets with a 
linguistic collating sequence. If a linguistically sorted data set has a different ICU version 
number than that of the current SAS session, the following occurs: PROC COPY retains 
the data set's sort order in the OUT= destination library. However, the data set is no 
longer marked as sorted, and a message is written to the SAS log. For more information 
about linguistic sorting, see Chapter 64, “SORT Procedure,” on page 2277.

Notes: Data set names and variable names that end with large numeric values that are larger 
than a long integer cannot be used in numbered-range lists. For more information, see 
“Restriction for Numbered Range Lists” in SAS Language Reference: Concepts.
PROC COPY uses a CAS action to provide the copy operation in the CAS server when 
both the IN= and OUT= values use the CAS libname engine and both libnames use the 
same CAS session. See “Copying a CAS Table to Another CAS Table” on page 605
and “CAS Processing for PROC COPY” on page 511.

Tips: Complete documentation for the COPY procedure is in COPY Statement on page 596.
For more information, see “Statements with the Same Function in Multiple Procedures” 
on page 73.

PROC COPY <ACCEL | NOACCEL>
OUT=libref-1 <CLONE | NOCLONE>

<CONSTRAINT=YES | NO>
<DATECOPY>
<ENCRYPTKEY=key-value>
<FORCE>
IN=libref-2
<INDEX=YES | NO>
<MEMTYPE=(member-type(s))>
<MOVE <ALTER=alter-password>>
<OVERRIDE=(ds-option-1=value-1 <ds-option-2=value-2 …> ) >;
<SELECT SAS-file(s)>
</ <ENCRYPTKEY=key-value> <ALTER=alter-password> 
<MEMTYPE=member-type>>;

510 Chapter 15 / COPY Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0wphcpsfgx6o7n1sjtqzizp1n39.htm&docsetTargetAnchor=p02si694dw39m0n17maupfh0rnv9&locale=en


Statement Task Example

COPY Copy one or more files Ex. 1, Ex. 3

EXCLUDE Exclude files or memtypes Ex. 

SELECT Select files or memtypes Ex. 1, Ex. 2

Usage: COPY Procedure

CAS Processing for PROC COPY
When the IN= option and OUT= option both reference a CAS engine library and 
both libraries use the same CAS session, the COPY procedure can use a CAS 
action to copy tables within the server.

PROC COPY options are valid when using a CAS LIBNAME engine except for the 
following:

n ENCRYPTKEY=

n OVERRIDE=

n PW=

When a copy occurs on the CAS server, the MVA session system options (like 
VALIDMEMNAME and VALIDVARNAME) will not be used.

SAS Cloud Analytic Services (CAS) is the analytic server and associated cloud 
services in SAS Viya. The CAS LIBNAME engine can connect a SAS 9.4 session to 
an existing SAS Cloud Analytic Services session through the CAS session name or 
the CAS session UUID. The libref then becomes your handle to communicate from 
SAS with the specific session. The following example shows how to use PROC 
COPY with CAS processing.

Here is an example of how to run PROC COPY with CAS.

/* Connect to a CAS server */
cas casauto host="cloud.example.com" port=5570;

/*Specify the LIBNAME statements*/
libname foo cas caslib=casuserhdfs;
libname bar cas caslib=casuser;

/*Loading data to Casuserhdfs. Note that you can specify OUTCASLIB= 
on the PROC CASUTIL statement and it will apply to all statements 
that follow (up to the quit). */
proc casutil;
load data=sashelp.class outcaslib=casuserhdfs;

Usage: COPY Procedure 511



load data=sashelp.class compress casout="class_comp" 
outcaslib=casuserhdfs;
load data=sashelp.class promote casout="class_prom" 
outcaslib=casuserhdfs;
quit;

/*Execute the PROC COPY statement*/
title 'Copy with CLONE;
proc copy in=foo out=bar;
run;

For information about how to use the CAS LIBNAME statement, see “Getting 
Started” in SAS Cloud Analytic Services: User’s Guide.

Using CLONE | NOCLONE on a CAS Table
The CLONE | NOCLONE option specifies whether to copy data set attributes. The 
only attribute that can be used with the CAS engine is COMPRESS.

Attributes are specified with data set options, system options, or LIBNAME 
statement options. The CAS engine supports only the COMPRESS=YES | NO 
option. No other attributes are supported by the CAS engine.

The following table summarizes how the COPY statement works:

Table 15.1 CLONE Interaction with Attributes

Attribute To
CLONE or 
NOCLONE Description

BUFSIZE=

CAS engine does not 
support.

SAS data set 
to CAS table

CAS table to 
SAS data set

CLONE OVERRIDE=(BUFSIZE=v
alue other than default)

NOCLONE Uses setting of BUFSIZE= 
system option

CAS table to 
CAS table

COMPRESS=

SAS data set - 
COMPRESS=BINARY | 
CHAR | NO

CAS table - 
COMPRESS=NO | YES

SAS data set 
to CAS table

CLONE A compressed SAS data 
set becomes a 
compressed CAS table 
unless OVERRIDE= is 
used. An uncompressed 
SAS data set becomes an 
uncompressed CAS table 
unless OVERRIDE= is 
used.

512 Chapter 15 / COPY Procedure



Attribute To
CLONE or 
NOCLONE Description

NOCLONE Follows the CAS 
LIBNAME setting.

CAS table to 
SAS data set

CLONE Compressed CAS table 
becomes a SAS data set 
CHAR unless the 
OVERRIDE= is used.

NOCLONE The COMPRESS= 
system option or 
LIBNAME option value is 
used.

CAS table to 
CAS table

CLONE Keeps the current setting.

NOCLONE Set using the CAS 
LIBNAME setting for the 
OUT= libref.

REUSE=

CAS engine does not 
support.

SAS data set 
to CAS table

CAS table to 
SAS data set

CLONE REUSE=NO unless 
OVERRIDE= or 
REUSE=YES system 
option is used.

NOCLONE Uses the REUSE= system 
option value.

CAS table to 
CAS table

POINTOBS=

CAS engine does not 
support.

SAS data set 
to CAS table

CAS table to 
SAS data set

CLONE POINTOBS=NO unless 
OVERRIDE= is used.

NOCLONE POINTOBS=NO, if the 
CAS table is compressed 
and the LIBNAME 
statement has 
POINTOBS=NO.

POINTOBS=YES, if the 
CAS table is compressed 

Usage: COPY Procedure 513



Attribute To
CLONE or 
NOCLONE Description

and the LIBNAME option 
is missing.

CAS table to 
CAS table

OUTREP=

CAS engine does not 
support.

SAS data set 
to CAS table

CLONE Converts to LINUX_86_64 
if needed. (A warning is 
sent to the log if the 
OVERRIDE= option is 
used.)

NOCLONE Converts to LINUX_86_64 
if needed.

CAS table to 
SAS data set

CLONE Keeps data 
representation. (A warning 
is sent to the log if the 
OVERRIDE= option is 
used.)

CAS table to 
CAS table

ENCODING=

CAS engine supports 
UTF-8 only.

Changing encoding is 
not implemented for the 
CAS engine.

SAS data set 
to CAS table

CLONE Converts to UTF-8 if 
needed. (A warning is 
sent to the log if the 
OVERRIDE= option is 
used.)

NOCLONE Converts to UTF-8 if 
needed.

CAS table to 
SAS data set

CLONE Keeps the UTF-8 
encoding unless 
OVERRIDE= is used.

NOCLONE Keeps the UTF-8 
encoding unless 
OUTENCODING= is used 
in the output data set 
LIBNAME is used.

CAS table to 
CAS table

514 Chapter 15 / COPY Procedure



Compressing Output CAS Tables
When copying previously compressed tables, the following occurs:

n if a SAS data set is compressed, then it retains the COMPRESS=YES value on 
the CAS table.

n if a CAS table is compressed, then it converts to a SAS data set with the 
COMPRESS=CHAR value.

n if a CAS table is copied to another CAS table, the COMPRESS=YES attribute is 
maintained.

Using the COPY Procedure

Copying Select Files from a Large 
Directory of Files
When using the COPY procedure, an in-memory directory of the library is obtained. 
This can be a performance issue if the library has thousands of members and only a 
few members are being copied. To resolve this performance issue, use a 
combination of the MEMTYPE= option in the COPY statement with a SELECT 
statement. The following is an example of this process:

proc copy in=work out=mylib memtype=(data catalog); 
   select mydata x1-x10 data2; 
run;  

Note: If either MEMTYPE=ALL or a wildcard specification (":") is used, the 
performance code cannot be used. 

TIP If the MSGLEVEL=I option is set, and the SELECT performance code 
can be used, the following message is sent to the SAS log:

INFO: COPY with SELECT performance is in use. 

Usage: COPY Procedure 515



Transporting SAS Data Sets between 
Hosts
The COPY procedure, along with the XPORT engine and the XML engine, can 
create and read transport files that can be moved from one host to another. PROC 
COPY can create transport files only with SAS data sets, not with catalogs or other 
types of SAS files.

Transporting is a three-step process:

1 Use PROC COPY to copy one or more SAS data sets to a file that is created 
with either the transport (XPORT) engine or the XML engine. This file is referred 
to as a transport file and is always a sequential file.

2 After the file is created, you can move it to another operating environment via 
communications software, such as FTP, or tape. If you use communications 
software, be sure to move the file in binary format to avoid any type of 
conversion. If you are moving the file to a mainframe, the file must have certain 
attributes. Consult the SAS documentation for your operating environment and 
the SAS Technical Support web page for more information.

3 After you have successfully moved the file to the receiving host, use PROC 
COPY to copy the data sets from the transport file to a SAS library.

For an example, see “Example 1: Copying SAS Data Sets between Hosts” on page 
517. 

For details about transporting files, see Moving and Accessing SAS Files.

The CPORT and CIMPORT procedures also provide a way to transport SAS files. 
For more information, see Chapter 16, “CPORT Procedure,” on page 525 and 
Chapter 12, “CIMPORT Procedure,” on page 381.

If you need to migrate a SAS library from a previous release of SAS, see the 
Migration focus area at http://support.sas.com/migration.

For more information, see the Details on page 603 section of the CONTENTS 
statement in PROC DATASETS.

Copying AES-Encrypted Data Files
You must use the ENCRYPTKEY= data set option when copying an AES-encrypted 
data file. An error occurs when you copy an AES-encrypted file to a library that does 
not support AES encryption. For more information about AES encryption, see “AES 
Encryption” in SAS Programmer’s Guide: Essentials and see “Copying AES-
Encrypted Data Files” on page 609.

The following is an example using the ENCRYPTKEY= data set option:

proc copy in=Lib1 out=Lib2;
select My-Data1 (encryptkey=key-value1) <My-Data2 (encryptkey=key-value2) ...>;
run;

516 Chapter 15 / COPY Procedure

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1s7u3pd71rgunn1xuexedikq90f.htm&docsetTargetAnchor=n1o82uabmi8m8xn1krmlzw1q1tv4&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1s7u3pd71rgunn1xuexedikq90f.htm&docsetTargetAnchor=n1o82uabmi8m8xn1krmlzw1q1tv4&locale=en


To copy AES-encrypted data files containing referential integrity constraints, see 
“Copying AES-Encrypted Data Files Containing Referential Integrity Constraints ” on 
page 609.

Compressing Output Data Files
The COPY procedure does not support data set options. Therefore, you cannot use 
the COMPRESS= data set option in PROC COPY or a COPY statement from 
PROC DATASETS. To compress an OUTPUT data set generated by PROC COPY, 
you can use the COMPRESS=YES system option before the PROC COPY 
statement with the NOCLONE option.

options compress=yes;
proc copy in=work out=new noclone;
select x;
run;

Examples: COPY Procedure

Example 1: Copying SAS Data Sets between Hosts
Features: PROC COPY statement options

IN=
MEMTYPE=
OUT=
SELECT statement

XPORT engine

Details
This example demonstrates how to create a transport file on a host and read it on 
another host.

In order for this example to work correctly, the transport file must have certain 
characteristics, as described in the SAS documentation for your operating 
environment. In addition, the transport file must be moved to the receiving operating 
system in binary format.

Example 1: Copying SAS Data Sets between Hosts 517



Program

libname source 'SAS-library-on-sending-host';

libname xptout xport 'filename-on-sending-host';

proc copy in=source out=xptout memtype=data;
   select bonus budget salary;
run;
 

libname insource xport 'filename-on-receiving-host';

proc copy in=insource out=work;
run;
 

Program Description
Assign library references. Assign a libref, such as Source, to the SAS library that 
contains the SAS data set that you want to transport. Also, assign a libref to the 
transport file and use the XPORT keyword to specify the XPORT engine.

libname source 'SAS-library-on-sending-host';

libname xptout xport 'filename-on-sending-host';

Copy the SAS data sets to the transport file. 

proc copy in=source out=xptout memtype=data;
   select bonus budget salary;
run;
 

Enable the procedure to read data from the transport file. The XPORT engine in 
the LIBNAME statement enables the procedure to read the data from the transport 
file.

libname insource xport 'filename-on-receiving-host';

Copy the SAS data sets to the receiving host. After you copy the files, use PROC 
COPY to copy the SAS data sets to the Work data library on the receiving host. You 
could use FTP in binary mode to the Windows host.

proc copy in=insource out=work;
run;
 

518 Chapter 15 / COPY Procedure



Log Examples
Example Code 15.1 Source Library Log

1    LIBNAME source 'SAS-library-on-sending-host ';
NOTE: Libref SOURCE was successfully assigned as follows:
      Engine:        V9
      Physical Name: SAS-library-on-sending-host
2    LIBNAME xptout xport 'filename-on-sending-host';
NOTE: Libref XPTOUT was successfully assigned as follows:
      Engine:        XPORT
      Physical Name: filename-on-sending-host 
3    proc copy in=source out=xptout memtype=data;
4    select bonus budget salary;
5    run;

NOTE: Copying SOURCE.BONUS to XPTOUT.BONUS (memtype=DATA).
NOTE: The data set XPTOUT.BONUS has 1 observations and 3 variables.
NOTE: Copying SOURCE.BUDGET to XPTOUT.BUDGET (memtype=DATA).
NOTE: The data set XPTOUT.BUDGET has 1 observations and 3 variables.
NOTE: Copying SOURCE.SALARY to XPTOUT.SALARY (memtype=DATA).
NOTE: The data set XPTOUT.SALARY has 1 observations 

Example Code 15.2 Insource Library Log

1     LIBNAME insource xport 'filename-on-receiving-host';
NOTE: Libref INSOURCE was successfully assigned as follows:
       Engine:      XPORT
       Physical Name: filename-on-receiving-host 
2     proc copy in=insource out=work;
3     run;
NOTE: Input library INSOURCE is sequential.
NOTE: Copying INSOURCE.BUDGET to WORK.BUDGET (memtype=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.
      System Option for BUFSIZE was used.
NOTE: The data set WORK.BUDGET has 1 observations and 3 variables.
NOTE: Copying INSOURCE.BONUS to WORK.BONUS (memtype=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.
      System Option for BUFSIZE was used.
NOTE: The data set WORK.BONUS has 1 observations and 3 variables.
NOTE: Copying INSOURCE.SALARY to WORK.SALARY (memtype=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.
      System Option for BUFSIZE was used.
NOTE: The data set WORK.SALARY has 1 observations and 3 variables.

Example 2: Converting SAS Data Sets Encodings
Features: PROC COPY statement options

IN=
NOCLONE
OUT=
SELECT statement

CVP engine

Example 2: Converting SAS Data Sets Encodings 519



Details
This example demonstrates how to convert encoding from one type to another type. 
In order for this example to work correctly, the two encodings must be compatible. 
For documentation, see “Compatible and Incompatible Encodings” in SAS National 
Language Support (NLS): Reference Guide.

Program
Assign library references. The two encodings must be compatible.

     
LIBNAME inlib cvp 'SAS-library';
LIBNAME outlib 'SAS-library' outencoding=”encoding value for output”;
proc copy noclone in=inlib out=outlib;
   select car;
run;

Log Examples
Example Code 15.3 InLib Library Log

1    LIBNAME inlib cvp  'SAS-library';
NOTE: Libref INLIB was successfully assigned as follows:
      Engine:        V9
      Physical Name: SAS-library
2    LIBNAME outlib 'SAS-library’ outencoding=”encoding value for output”;
NOTE: Libref OUTLIB was successfully assigned as follows:
      Engine:        V9
      Physical Name: SAS-library 
3    proc copy noclone in=inlib out=outlib;
4    select car;
5    run;

NOTE: Copying INLIB.CAR to OUTLIB.CAR (memtype=DATA).
NOTE: System Options for BUFSIZE and REUSE were used at user's request.

NOTE: Libname and/or system options for compress, pointobs, data representation and 
encoding attributes were used at user's request.
NOTE: Data file OUTLIB.CAR.DATA is in a format that is native to another host, or 
the file encoding does not match the session encoding. Cross Environment Data Access 
will be used, which might require additional CPU resources and might reduce 
performance.

NOTE: There were 25 observations read from the data set INLIB.CAR.

NOTE: The data set OUTLIB.CAR has 25 observations and 2 variables.

520 Chapter 15 / COPY Procedure

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n04275wmuchnqjn1hfx0yzpopw5a.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n04275wmuchnqjn1hfx0yzpopw5a.htm&locale=en


Example 3: Using PROC COPY to Migrate from a 
32-bit to a 64-bit Machine
Features: PROC COPY statement options

IN=
OUT=
NOCLONE
SELECTstatement

OUTREP= data set option

Details
This example demonstrates how to use PROC COPY to migrate from a 32-bit to a 
64-bit environment. PROC MIGRATE does not support item stores when you 
migrate from a 32-bit to a 64-bit environment.

Program

libname source 'SAS-library';
libname target 'SAS-library'  
    outrep=windows_64;

proc copy in=source out=target NOCLONE;
    select data-set-name;
run;

Program Description
Assign library resources. Use the OUTREP= option when changing from a 32-bit 
to a 64-bit machine.

libname source 'SAS-library';
libname target 'SAS-library'  
    outrep=windows_64;

Copy data set from a 32-bit to a 64-bit machine.

proc copy in=source out=target NOCLONE;
    select data-set-name;
run;

Example 3: Using PROC COPY to Migrate from a 32-bit to a 64-bit Machine 521



Example 4: Copy a SAS Data Set to a CAS Table
Features: PROC COPY statement options

IN=
OUT=
SELECT statement

Details
This example demonstrates how to copy a SAS data set into a CAS table.

Program
     
libname mycas cas;
libname mylib 'BASE-engine-library';

proc copy in=mylib out=mycas;
   select monthly;
run;
quit;

Program Description
Assign library references. Select the data set that you want to copy into a CAS 
table.

     
libname mycas cas;
libname mylib 'BASE-engine-library';

Use PROC COPY and the SELECT statement. Copy a SAS data set into a CAS 
table.

proc copy in=mylib out=mycas;
   select monthly;
run;
quit;

522 Chapter 15 / COPY Procedure



Log Examples
Example Code 15.4 MyLib Library Log

57         libname mycas cas;
 NOTE: Libref MYCAS was successfully assigned as follows: 
       Engine:        CAS 
       Physical Name: 1f436ced
 58         libname mylib 'BASE-engine-library';
 NOTE: Libref MYLIB was successfully assigned as follows: 
       Engine:        V9 
       Physical Name: BASE-engine-library
 59         
 60         proc copy in=mylib out=mycas;
 61            select monthly;
 62         run;
 
 NOTE: Copying MYLIB.MONTHLY to MYCAS.MONTHLY (memtype=DATA).
 NOTE: There were 12012 observations read from the data set MYLIB.MONTHLY.
 NOTE: The data set MYCAS.MONTHLY has 12012 observations and 7 variables.
 NOTE: PROCEDURE COPY used (Total process time):
       real time           0.06 seconds
       cpu time            0.02 seconds
       

Example 4: Copy a SAS Data Set to a CAS Table 523



524 Chapter 15 / COPY Procedure



Chapter 16
CPORT Procedure

Overview: CPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
What Does the CPORT Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
Process for Creating and Reading a Transport File . . . . . . . . . . . . . . . . . . . . . . . . 526

Syntax: CPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
PROC CPORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
EXCLUDE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
SELECT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
TRANTAB Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

Usage: CPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
READ= Data Set Option in the PROC CPORT Statement . . . . . . . . . . . . . . . . . . 537
CPORT Problems: Creating Transport Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538

Examples: CPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Example 1: Exporting Multiple Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Example 2: Exporting Individual Catalog Entries . . . . . . . . . . . . . . . . . . . . . . . . . . 542
Example 3: Exporting a Single SAS Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
Example 4: Applying a Translation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Example 5: Exporting Entries Based on Modification Date . . . . . . . . . . . . . . . . . . 546

Overview: CPORT Procedure

What Does the CPORT Procedure Do?
The CPORT procedure writes SAS data sets, SAS catalogs, or SAS libraries to 
sequential file formats (transport files). Use PROC CPORT with the CIMPORT 
procedure to move files from one environment to another. Transport files are 
sequential files that each contain a SAS library, a SAS catalog, or a SAS data set in 
transport format. The transport format that PROC CPORT writes is the same for all 
environments and for many releases of SAS. In PROC CPORT, export means to put 

525



a SAS library, a SAS catalog, or a SAS data set into transport format. PROC 
CPORT exports catalogs and data sets, either singly or as a SAS library. PROC 
CIMPORT restores (imports) the transport file to its original form as a SAS catalog, 
SAS data set, or SAS library.

PROC CPORT also converts SAS files, which means that it changes the format of a 
SAS file from the format appropriate for one version of SAS to the format 
appropriate for another version. For example, you can use PROC CPORT and 
PROC CIMPORT to move files from earlier releases of SAS to more recent 
releases. PROC CIMPORT automatically converts the transport file as it imports it.

Note: PROC CPORT and PROC CIMPORT can be used to back up graphic 
catalogs. PROC COPY cannot be used to back up graphic catalogs.

PROC CPORT produces no output (other than the transport files), but it does write 
notes to the SAS log.

Process for Creating and Reading a Transport File
Here is the process to create a transport file at the source computer and to read it at 
a target computer:

1 A transport file is created at the source computer using PROC CPORT.

2 The transport file is transferred from the source computer to the target computer 
via communications software or a magnetic medium.

3 The transport file is read at the target computer using PROC CIMPORT. 

Note: Transport files that are created using PROC CPORT are not 
interchangeable with transport files that are created using the XPORT engine.

For complete details about the steps to create a transport file (PROC CPORT), to 
transfer the transport file, and to restore the transport file (PROC CIMPORT), see 
Moving and Accessing SAS Files.

Syntax: CPORT Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

Tip: Use PROC CPORT or PROC CIMPORT when backing up graphic catalogs. PROC 
COPY cannot be used to back up graphic catalogs.

See: CPORT Procedure under Windows, UNIX , z/OS 
For complete details about the steps to create a transport file (PROC CPORT), to 
transfer the transport file, and to restore the transport file (PROC CIMPORT), see 
Moving and Accessing SAS Files

526 Chapter 16 / CPORT Procedure

http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n0i38sjgt8zl6xn1udfdlj23nw6f.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n06a8f84fgm5wdn1urgad20tls7q.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n0jkdeb2aomypen1t6r45xpbbsm7.htm&locale=en


PROC CPORT source-type=libref | <libref.>member-name <options>;
EXCLUDE SAS file(s) | catalog entry(s) </ MEMTYPE=mtype>

</ ENTRYTYPE=entry-type>;
SELECT SAS file(s) | catalog entry(s) </ MEMTYPE=mtype>

</ ENTRYTYPE=entry-type> ;
TRANTAB NAME=translation-table-name

<options>;

Statement Task Example

PROC CPORT Create a transport file Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5

EXCLUDE Exclude one or more specified files from the 
transport file

SELECT Specify one or more files or entries to include in 
the transport file

Ex. 2

TRANTAB Specify one or more translation tables for 
characters in catalog entries to be exported

Ex. 4

PROC CPORT Statement
Creates a transport file.

Examples: “Example 1: Exporting Multiple Catalogs” on page 541
“Example 2: Exporting Individual Catalog Entries” on page 542
“Example 3: Exporting a Single SAS Data Set” on page 543
“Example 4: Applying a Translation Table” on page 545
“Example 5: Exporting Entries Based on Modification Date” on page 546

Syntax
PROC CPORT source-type=libref | <libref.>member-name <options>;

Summary of Optional Arguments
NOEDIT

exports SAS/AF PROGRAM and SCL entries without Edit capability when 
you import them.

NOSRC
specifies that exported catalog entries contain compiled SCL code, but 
not the source code.

PROC CPORT Statement 527



OUTLIB=libref
specifies a libref associated with a SAS library.

Control the contents of the transport file
ASIS

suppresses the conversion of displayed character data to transport 
format.

CONSTRAINT=YES | NO
controls the exportation of integrity constraints.

DATECOPY
copies the created and modified date and time to the transport file.

INDEX=YES | NO
controls the exportation of indexes with indexed SAS data sets.

INTYPE=DBCS-type
specifies the type of DBCS data stored in the SAS files to be exported.

NOCOMPRESS
suppresses the compression of binary zeros and blanks in the transport 
file.

OUTTYPE=UPCASE
writes all alphabetic characters to the transport file in uppercase.

TRANSLATE=(translation-list)
translates specified characters from one ASCII or EBCDIC value to 
another.

Identify the transport file
FILE=fileref | 'filename'

specifies the transport file to write to.
TAPE

directs the output from PROC CPORT to a tape.

Select files to export
AFTER=date

exports copies of all data sets or catalog entries that have a modification 
date equal to or later than the date that you specify.

EET=(etype(s))
excludes specified entry types from the transport file.

ET=(etype(s))
includes specified entry types in the transport file.

GENERATION=YES | NO
specifies whether to export all generations of a data set.

MEMTYPE=mtype
specifies that only data sets, only catalogs, or both, be moved when a 
library is exported.

Required Argument
source-type=libref | < libref.>member-name

identifies the type of file to export and specifies the catalog, SAS data set, or 
SAS library to export.

528 Chapter 16 / CPORT Procedure



source-type
identifies one or more files to export as a single catalog, as a single SAS data 
set, or as the members of a SAS library. The source-type argument can be 
one of the following:

CATALOG | CAT | C
DATA | DS | D
LIBRARY | LIB | L

Note If you specify a password-protected data set as the source type, you 
must also include the password when creating its transport file. For 
details, see “READ= Data Set Option in the PROC CPORT 
Statement ” on page 537.

libref
<libref.>member-name

specifies the specific catalog, SAS data set, or SAS library to export. If 
source-type is CATALOG or DATA, you can specify both a libref and a 
member name. If the libref is omitted, PROC CPORT uses the default library 
as the libref, which is usually the WORK library. If the source-type argument 
is LIBRARY, specify only a libref. If you specify a library, PROC CPORT 
exports only data sets and catalogs from that library. You cannot export other 
types of files.

See Refer to “Names in the SAS Language” in SAS Language Reference: 
Concepts for naming conventions that you can use for names and 
member names.

Optional Arguments
AFTER=date

exports copies of all data sets or catalog entries that have a modification date 
later than or equal to the date that you specify. The modification date is the most 
recent date when the contents of the data set or catalog entry changed. Specify 
date as a SAS date literal or as a numeric SAS date value.

Tip You can determine the modification date of a catalog entry by using 
the CATALOG procedure.

Example “Example 5: Exporting Entries Based on Modification Date” on page 
546

ASIS
suppresses the conversion of displayed character data to transport format. Use 
this option when you move files that contain DBCS (double-byte character set) 
data from one operating environment to another if both operating environments 
use the same type of DBCS data.

Interactions The ASIS option invokes the NOCOMPRESS option.

You cannot use both the ASIS option and the OUTTYPE= options 
in the same PROC CPORT step.

CONSTRAINT=YES | NO
controls the exportation of integrity constraints that have been defined on a data 
set. When you specify CONSTRAINT=YES, all types of integrity constraints are 

PROC CPORT Statement 529

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en


exported for a library; only general integrity constraints are exported for a single 
data set. When you specify CONSTRAINT=NO, indexes created without integrity 
constraints are ported, but neither integrity constraints nor any indexes created 
with integrity constraints are ported. For more information about integrity 
constraints, see the section on SAS files in SAS Language Reference: 
Concepts.

Alias CON=

Default YES

Interactions You cannot specify both CONSTRAINT= and INDEX= in the same 
PROC CPORT step.

If you specify INDEX=NO, no integrity constraints are exported.

DATECOPY
copies the SAS internal date and time at which the SAS file was created and the 
date and time at which it was last modified to the resulting transport file. Note 
that the operating environment date and time are not preserved. 

Restriction DATECOPY can be used only when the destination file uses the V8 
or V9 engine.

Note If the file that you are transporting has attributes that require 
additional processing, then the last modified date might be changed 
to the current date and time.

Tips The DATECOPY option must be specified to transport data sets 
with time zone offsets.

You can alter the file creation date and time with the DTC= option in 
the MODIFY statement in a PROC DATASETS step. For details, 
see “MODIFY Statement” on page 628.

EET=(etype(s))
excludes specified entry types from the transport file. If etype is a single entry 
type, then you can omit the parentheses. Separate multiple values with a space.

Interaction You cannot use both the EET= option and the ET= option in the 
same PROC CPORT step.

ET=(etype(s))
includes specified entry types in the transport file. If etype is a single entry type, 
then you can omit the parentheses. Separate multiple values with a space.

Interaction You cannot use both the EET= option and the ET= option in the 
same PROC CPORT step.

FILE=fileref | 'filename'
specifies a previously defined fileref or the filename of the transport file to write 
to. If you omit the FILE= option, then PROC CPORT writes to the fileref 
SASCAT, if defined. If the fileref SASCAT is not defined, PROC CPORT writes to 
SASCAT.DAT in the current directory. 

Note The behavior of PROC CPORT when SASCAT is undefined varies 
from one operating environment to another. For details, see the SAS 
documentation for your operating environment.

530 Chapter 16 / CPORT Procedure



Example All examples.

GENERATION=YES | NO
specifies whether to export all generations of a SAS data set. To export only the 
base generation of a data set, specify GENERATION=NO in the PROC CPORT 
statement. To export a specific generation number, use the GENNUM= data set 
option when you specify a data set in the PROC CPORT statement. For more 
information about generation data sets, see SAS Language Reference: 
Concepts.

Alias GEN=

Default YES for libraries; NO for single data sets

Note PROC CIMPORT imports all generations of a data set that are present 
in the transport file. It deletes any previous generation set with the 
same name and replaces it with the imported generation set, even if the 
number of generations does not match.

INDEX=YES | NO
specifies whether to export indexes with indexed SAS data sets.

Default YES

Interactions You cannot specify both INDEX= and CONSTRAINT= in the same 
PROC CPORT step.

If you specify INDEX=NO, no integrity constraints are exported.

INTYPE=DBCS-type
specifies the type of DBCS data stored in the SAS files to be exported. Double-
byte character set (DBCS) data uses up to two bytes for each character in the 
set. DBCS-type must be one of the following values: 

IBM | HITAC | FACOM for z/OS

IBM for VSE

DEC | SJIS for OpenVMS

PCIBM | SJIS for OS/2

Default If the INTYPE= option is not used, the DBCS type defaults to the 
value of the SAS system option DBCSTYPE=.

Restriction The INTYPE= option is allowed only if SAS is built with Double-
Byte Character Set (DBCS) extensions. Because these extensions 
require significant computing resources, there is a special 
distribution for those sites that require it. An error is reported if this 
option is used at a site for which DBCS extensions are not 
enabled.

Interactions Use the INTYPE= option in conjunction with the OUTTYPE= option 
to change from one type of DBCS data to another.

The INTYPE= option invokes the NOCOMPRESS option.

You cannot use the INTYPE= option and the ASIS option in the 
same PROC CPORT step.

PROC CPORT Statement 531



Tip You can set the value of the SAS system option DBCSTYPE= in 
your configuration file.

MEMTYPE=mtype
restricts the type of SAS file that PROC CPORT writes to the transport file. 
MEMTYPE= restricts processing to one member type. Values for mtype can be 

ALL
both catalogs and data sets

CATALOG
CAT

catalogs

DATA
DS

SAS data sets

Alias MT=

Default ALL

Example “Example 1: Exporting Multiple Catalogs” on page 541

NOCOMPRESS
suppresses the compression of binary zeros and blanks in the transport file.

Alias NOCOMP

Default By default, PROC CPORT compresses binary zeros and blanks to 
conserve space.

Interaction The ASIS, INTYPE=, and OUTTYPE= options invoke the 
NOCOMPRESS option.

Note Compression of the transport file does not alter the flag in each 
catalog and data set that indicates whether the original file was 
compressed.

NOEDIT
exports SAS/AF PROGRAM and SCL entries without Edit capability when you 
import them.

The NOEDIT option produces the same results as when you create a new 
catalog to contain SCL code by using the MERGE statement with the NOEDIT 
option in the BUILD procedure of SAS/AF software.

Alias NEDIT

Note The NOEDIT option affects only SAS/AF PROGRAM and SCL entries. It 
does not affect FSEDIT SCREEN or FSVIEW FORMULA entries.

NOSRC
specifies that exported catalog entries contain compiled SCL code but not the 
source code.

The NOSRC option produces the same results as when you create a new 
catalog to contain SCL code by using the MERGE statement with the 
NOSOURCE option in the BUILD procedure of SAS/AF software.

532 Chapter 16 / CPORT Procedure



Alias NSRC

OUTLIB=libref
specifies a libref associated with a SAS library. If you specify the OUTLIB= 
option, PROC CIMPORT is invoked automatically to re-create the input library, 
data set, or catalog in the specified library.

Alias OUT=

Tip Use the OUTLIB= option when you change SAS files from one DBCS 
type to another within the same operating environment if you want to 
keep the original data intact.

OUTTYPE=UPCASE
writes all displayed characters to the transport file and to the OUTLIB= file in 
uppercase. 

Interaction The OUTTYPE= option invokes the NOCOMPRESS option.

TAPE
directs the output from PROC CPORT to a tape.

Default The output from PROC CPORT is sent to disk.

TRANSLATE=(translation-list)
translates specified characters from one ASCII or EBCDIC value to another. 
Each element of translation-list has the following form: 

n ASCII-value-1 TO ASCII-value-2

n EBCDIC-value-1 TO EBCDIC-value-2

You can use hexadecimal or decimal representation for ASCII values. If you use 
the hexadecimal representation, values must begin with a digit and end with an 
x. Use a leading zero if the hexadecimal value begins with an alphabetic 
character.

For example, to translate all left brackets to left braces, specify the 
TRANSLATE= option as follows (for ASCII characters):

translate=(5bx to 7bx)

The following example translates all left brackets to left braces and all right 
brackets to right braces:

translate=(5bx to 7bx 5dx to 7dx)

EXCLUDE Statement
Excludes specified files or entries from the transport file.

Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC CPORT 
step, but not both.

Tip: There is no limit to the number of EXCLUDE statements that you can use in one 
invocation of PROC CPORT.

EXCLUDE Statement 533



Syntax
EXCLUDE SAS file(s) | catalog entry(s) </ MEMTYPE=mtype>
</ ENTRYTYPE=entry-type>;

Required Argument
SAS file(s) | catalog entry(s)

specifies one or more SAS files or one or more catalog entries to be excluded 
from the transport file. Specify SAS filenames when you export a SAS library; 
specify catalog entry names when you export an individual SAS catalog. 
Separate multiple filenames or entry names with a space. You can use shortcuts 
to list many like-named files in the EXCLUDE statement. For more information, 
see “SAS Data Sets” in SAS Language Reference: Concepts.

Optional Arguments
ENTRYTYPE=entry-type

specifies a single entry type for the catalog entries listed in the EXCLUDE 
statement. See SAS Language Reference: Concepts for a complete list of 
catalog entry types.

Alias ETYPE=, ET=

Restriction ENTRYTYPE= is valid only when you export an individual SAS 
catalog.

MEMTYPE=mtype
specifies a single member type for one or more SAS files listed in the EXCLUDE 
statement. Valid values are CATALOG, DATA, or ALL. If you do not specify the 
MEMTYPE= option in the EXCLUDE statement, then processing is restricted to 
those member types specified in the MEMTYPE= option in the PROC CPORT 
statement.

You can also specify the MEMTYPE= option, enclosed in parentheses, 
immediately after the name of a file. In parentheses, MEMTYPE= identifies the 
type of the filename that immediately precedes it. When you use this form of the 
option, it overrides the MEMTYPE= option that follows the slash in the 
EXCLUDE statement, but it must match the MEMTYPE= option in the PROC 
CPORT statement:

Alias MTYPE=, MT=

Default If you do not specify MEMTYPE= in the PROC CPORT statement 
or in the EXCLUDE statement, the default is MEMTYPE=ALL.

Restrictions MEMTYPE= is valid only when you export a SAS library.

If you specify a member type for MEMTYPE= in the PROC 
CPORT statement, it must agree with the member type that you 
specify for MEMTYPE= in the EXCLUDE statement.

See Refer to “Names in the SAS Language” in SAS Language 
Reference: Concepts for naming conventions that you can use for 
names and member names.

534 Chapter 16 / CPORT Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p13ekueu3y9bcnn17wwznic3mlod.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en


SELECT Statement
Includes specified files or entries in the transport file.

Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC CPORT 
step, but not both.

Tip: There is no limit to the number of SELECT statements that you can use in one 
invocation of PROC CPORT.

Examples: “Example 2: Exporting Individual Catalog Entries” on page 542
“Example 4: Using PROC CIMPORT to Import a French Data Set into a UTF-8 SAS 
Session” on page 405

Syntax
SELECT SAS file(s) | catalog entry(s) </ MEMTYPE=mtype>
</ ENTRYTYPE=entry-type> ;

Required Argument
SAS file(s) | catalog entry(s)

specifies one or more SAS files or one or more catalog entries to be included in 
the transport file. Specify SAS filenames when you export a SAS library; specify 
catalog entry names when you export an individual SAS catalog. Separate 
multiple filenames or entry names with a space. You can use shortcuts to list 
many like-named files in the SELECT statement. For more information, see 
“SAS Data Sets” in SAS Language Reference: Concepts. 

Optional Arguments
ENTRYTYPE=entry-type

specifies a single entry type for the catalog entries listed in the SELECT 
statement. See SAS Language Reference: Concepts for a complete list of 
catalog entry types.

Alias ETYPE=, ET=

Restriction ENTRYTYPE= is valid only when you export an individual SAS 
catalog.

MEMTYPE=mtype
specifies a single member type for one or more SAS files listed in the SELECT 
statement. Valid values are CATALOG, DATA, or ALL. If you do not specify the 
MEMTYPE= option in the SELECT statement, then processing is restricted to 
those member types specified in the MEMTYPE= option in the PROC CPORT 
statement.

You can also specify the MEMTYPE= option, enclosed in parentheses, 
immediately after the name of a member. In parentheses, MEMTYPE= identifies 

SELECT Statement 535

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p13ekueu3y9bcnn17wwznic3mlod.htm&locale=en


the type of the member name that immediately precedes it. When you use this 
form of the option, it overrides the MEMTYPE= option that follows the slash in 
the SELECT statement, but it must match the MEMTYPE= option in the PROC 
CPORT statement.

Alias MTYPE=, MT=

Default If you do not specify MEMTYPE= in the PROC CPORT statement 
or in the SELECT statement, the default is MEMTYPE=ALL.

Restrictions MEMTYPE= is valid only when you export a SAS library.

If you specify a member type for MEMTYPE= in the PROC 
CPORT statement, it must agree with the member type that you 
specify for MEMTYPE= in the SELECT statement.

See Refer to “Names in the SAS Language” in SAS Language 
Reference: Concepts for naming conventions that you can use for 
names and member names.

TRANTAB Statement
Specifies translation tables for characters in catalog entries that you export.

Restriction: The TRANTAB statement does not support DBCS or UTF-8 SAS sessions.

Tip: You can specify only one translation table for each TRANTAB statement. However, you 
can use more than one translation table in a single invocation of PROC CPORT.

See: The TRANTAB Statement for the CPORT Procedure and the UPLOAD and 
DOWNLOAD Procedures in SAS National Language Support (NLS): Reference Guide.

Example: “Example 4: Applying a Translation Table” on page 545

Syntax
TRANTAB NAME=translation-table-name <options>;

536 Chapter 16 / CPORT Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en


Usage: CPORT Procedure

READ= Data Set Option in the PROC CPORT 
Statement

To be authorized to create the transport file for a read-protected data set, you must 
include the password (clear-text or encoded). If the password is not included, the 
transport file cannot be created.

If you are working with a password protected data set, you can supply that 
password using the READ= option. If you do not supply the password using the 
READ= option for a read-protected data set, you are prompted for the password.

Use the READ= data set option to include the appropriate password for the read-
protected data set when creating a transport file. In Example 1, PROC CPORT 
copies the input file that is named SOURCE.GRADES, includes the password 
ADMIN with the data set, and creates the transport file named GRADESOUT.

Example 1: Clear-Text Password:

proc cport data=source.grades(read=admin) file=gradesout;

In Example 2, an encoded password is specified with the READ= option. An 
encoded password is generated via the PWENCODE procedure. For details, see 
Chapter 54, “PWENCODE Procedure,” on page 1877.

Example 2: Encoded Password

proc cport
data=source.grades(read={sas003}6EDB396015B96DBD9E80F0913A543819A8E5)
   file=gradesout;

If the password is omitted when referring to a password protected data set, SAS 
prompts for the password. If an invalid password is specified, an error message is 
sent to the log. Here is an example error:

 ERROR: Invalid or missing READ password on member WORK.XYZ.DATA

If the data set is transported as part of a library or named in a SELECT statement, a 
password is not required. However, if a data set with a password is transported and 
the target SAS engine does not support passwords, the transport file cannot be 
imported.

For details about the READ= data set option, see SAS Data Set Options: 
Reference, and for details about password-protected data sets, see SAS Language 
Reference: Concepts.

Note: PROC CIMPORT does not require a password in order to restore the 
transport file in the target environment. However, other SAS procedures that use the 
password-protected data set must include the password.

Usage: CPORT Procedure 537



CPORT Problems: Creating Transport Files

About Transport Files and Encodings
The character data in a transport file is created for the following types of encodings:

n the UTF-8 encoding of the SAS session in which the transport file is created.

n the Windows encoding that is associated with the locale of the SAS session in 
which the transport file is created. However, starting in SAS 9.4M3, PROC 
CIMPORT supports the ability to import data sets that are created in non-UTF-8 
SAS sessions into UTF-8 SAS sessions. 

Using PROC CIMPORT to import a data set in a UTF-8 session preserves the 
encoding value of the data set. For example, if a data set with SHIFT-JIS 
encoding is imported into a UTF-8 session using PROC CIMPORT, PROC 
CONTENTS shows that the SHIFT-JIS encoding is maintained.

Note: The ENCODINGINFO= option displays the Window’s encoding 
associated with the locale of the SAS session in which the transport file was 
created.

n In SAS 9.4, when you use PROC CPORT to create a transport file that is 
encoded with US-ASCII on an ASCII platform, regardless of the session 
encoding, the US-ASCII encoding is preserved for that transport file. If you then 
transport that data set to an ASCII platform using PROC CIMPORT, the US-
ASCII encoding for that transport file is preserved and is not transcoded. The 
data set that is created has the US-ASCII encoding, not the session encoding. 
For example, if your session encoding is WLATIN1, you use PROC CPORT to 
create a data set that has an encoding of US-ASCII. The US-ASCII encoding is 
preserved in the transport file, instead of the WLATIN1 encoding. This 
preservation also occurs when you use PROC CIMPORT on this data set. The 
US-ASCII encoding is preserved and is not transcoded when you use PROC 
CIMPORT to transport the data set to an ASCII platform. 

Note: The preservation of the US-ASCII encoding occurs only on an ASCII 
platform, not on z/OS.

n on a z/OS platform, PROC CIMPORT creates data sets using the session 
encoding.

These examples show how SAS applies an encoding to a transport file:

538 Chapter 16 / CPORT Procedure



Table 16.1 Assignment of Encodings to Transport Files

Encoding 
Value of the 
Transport File

Example of Applying an 
Encoding in a SAS Invocation Explanation

utf-8 or us-ascii sas9 -encoding utf8; A SAS session is invoked using 
the UTF-8 encoding. The 
session encoding is applied to 
the transport file. Note that 
starting in SAS 9.4M3, if the 
data set is US-ASCII, the US-
ASCII encoding is preserved, 
not the session encoding.

wlatin2 sas9 -locale pl_PL; A SAS session is invoked using 
the default UNIX encoding, 
LATIN2, which is associated with 
the Polish Poland locale.

For a complete list of encodings that are associated with each locale, see Locale 
Tables in SAS National Language Support (NLS): Reference Guide.

In order for a transport file to be imported successfully, the encodings of the source 
and target SAS sessions must be compatible. Here is an example of compatible 
source and target SAS sessions:

Table 16.2 Compatible Encodings

Source SAS Session Target SAS Session

Locale

UNIX SAS 
Session 
Encoding

Transport File 
Encoding Locale

Windows SAS 
Session 
Encoding

es_MX 
(Spanish 
Mexico)

latin1 wlatin1 it_IT

(Italian Italy)

wlatin1

The encodings of the source and target SAS sessions are compatible because the 
Windows default encoding for the es_MX locale is WLATIN1 and the encoding of 
the target SAS session is WLATIN1. For more detailed information about compatible 
languages and encodings, see the SAS Press book SAS Encoding: Understanding 
the Details, by Manfred Kiefer.

However, if the encodings of the source and target SAS sessions are incompatible, 
a transport file might not be successfully imported. (See the introduction to this 
section.) Here is an example of incompatible encodings:

Usage: CPORT Procedure 539

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0yctvkmmbdwl2n1k87qd1nv1nu3.htm&docsetTargetAnchor=n11ixckskq5db0n146b494q3nv8g&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0yctvkmmbdwl2n1k87qd1nv1nu3.htm&docsetTargetAnchor=n11ixckskq5db0n146b494q3nv8g&locale=en
http://www.sas.com/store/books/categories/usage-and-reference/sas-encoding-understanding-the-details/prodBK_64410_en.html
http://www.sas.com/store/books/categories/usage-and-reference/sas-encoding-understanding-the-details/prodBK_64410_en.html


Table 16.3 Incompatible Encodings

Source SAS Session Target SAS Session

Locale

UNIX SAS 
Session 
Encoding

Transport File 
Encoding Locale

z/OS 
Encoding

cs_CZ (Czech 
Czechoslovaki
a)

latin2 wlatin2 de_DE 
(German 
Germany)

open_ed-1141

The encodings of the source and target SAS sessions are incompatible because the 
Windows default encoding for the cs_CZ locale is WLATIN2 and the encoding of the 
target SAS session is OPEN_ED-1141. A transport file cannot be imported between 
these locales.

When importing transport files, you can use the ENCODINGINFO= option to see the 
encoding value of the transport file. Otherwise, you are alerted to compatibility 
problems via warnings and error messages. For more information about the 
ENCODINGINFO= option, see “ENCODINGINFO=ALL | n” on page 386.

Data Control Blocks Characteristics
A common problem when you create or import a transport file under the z/OS 
environment is a failure to specify the correct Data Control Block (DCB) 
characteristics. When you reference a transport file, you must specify the following 
DCB characteristics:

n LRECL=80

n BLKSIZE=8000

n RECFM=FB

n DSORG=PS

Another common problem can occur if you use communications software to move 
files from another environment to z/OS. In some cases, the transport file does not 
have the proper DCB characteristics when it arrives on z/OS. If the communications 
software does not allow you to specify file characteristics, try the following approach 
for z/OS:

1 Create a file under z/OS with the correct DCB characteristics and initialize the 
file.

2 Move the transport file from the other environment to the newly created file under 
z/OS using binary transfer.

540 Chapter 16 / CPORT Procedure



Loss of Numeric Precision
PROC CPORT and PROC CIMPORT can lose precision on numeric values that are 
extremely small and large. Refer to “Loss of Numeric Precision and Magnitude” in 
SAS/CONNECT User’s Guide for details.

Examples: CPORT Procedure

Example 1: Exporting Multiple Catalogs
Features: PROC CPORT statement options

FILE=
MEMTYPE=

Details
This example shows how to use PROC CPORT to export entries from all of the SAS 
catalogs in the SAS library that you specify.

Program
libname source 'sas-library';
filename tranfile 'transport-file';
                  
host-options-for-file-characteristics;

proc cport library=source file=tranfile memtype=catalog;
run;

Program Description
Specify the library reference for the SAS library that contains the source files 
to be exported and the file reference to which the output transport file is 
written. The LIBNAME statement assigns a libref for the SAS library. The 

Example 1: Exporting Multiple Catalogs 541

http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=p0vz1gp7dw8n3en122ruipkrwc9k.htm&docsetTargetAnchor=n1hllkl9o8u6a8n1wx38m4rhue5j&locale=en
http://documentation.sas.com/?docsetId=connref&docsetVersion=9.4&docsetTarget=p0vz1gp7dw8n3en122ruipkrwc9k.htm&docsetTargetAnchor=n1hllkl9o8u6a8n1wx38m4rhue5j&locale=en


FILENAME statement assigns a fileref and any operating environment options for 
file characteristics for the transport file that PROC CPORT creates.

libname source 'sas-library';
filename tranfile 'transport-file';
                  
host-options-for-file-characteristics;

Create the transport file. The PROC CPORT step executes on the operating 
environment where the source library is located. MEMTYPE=CATALOG writes all 
SAS catalogs in the source library to the transport file.

proc cport library=source file=tranfile memtype=catalog;
run;

Log Examples
Example Code 16.1 Exporting Multiple Catalogs

NOTE: Proc CPORT begins to transport catalog SOURCE.FINANCE
NOTE: The catalog has 5 entries and its maximum logical record length is 866.
NOTE: Entry LOAN.FRAME has been transported.
NOTE: Entry LOAN.HELP has been transported.
NOTE: Entry LOAN.KEYS has been transported.
NOTE: Entry LOAN.PMENU has been transported.
NOTE: Entry LOAN.SCL has been transported.

NOTE: Proc CPORT begins to transport catalog SOURCE.FORMATS
NOTE: The catalog has 2 entries and its maximum logical record length is 104.
NOTE: Entry REVENUE.FORMAT has been transported.
NOTE: Entry DEPT.FORMATC has been transported.

Example 2: Exporting Individual Catalog Entries
Features: PROC CPORT statement option

FILE=
SELECT statement

Details
This example shows how to use PROC CPORT to export individual catalog entries, 
rather than all of the entries in a catalog.

542 Chapter 16 / CPORT Procedure



Program
libname source 'sas-library';
filename tranfile 'transport-file';
                  
host-options-for-file-characteristics;

proc cport catalog=source.finance file=tranfile;
select loan.scl;
run;

Program Description
Assign library references. The LIBNAME and FILENAME statements assign a 
libref for the source library and a fileref for the transport file, respectively.

libname source 'sas-library';
filename tranfile 'transport-file';
                  
host-options-for-file-characteristics;

Write an entry to the transport file. SELECT writes only the LOAN.SCL entry to 
the transport file for export.

proc cport catalog=source.finance file=tranfile;
select loan.scl;
run;

Log Examples
Example Code 16.2 Exporting Individual Catalog Entries

NOTE: Proc CPORT begins to transport catalog SOURCE.FINANCE
NOTE: The catalog has 5 entries and its maximum logical record length is 866.
NOTE: Entry LOAN.SCL has been transported.

Example 3: Exporting a Single SAS Data Set
Features: PROC CPORT statement option

FILE=

Example 3: Exporting a Single SAS Data Set 543



Details
This example shows how to use PROC CPORT to export a single SAS data set.

Program
libname source 'sas-library';
filename tranfile 'transport-file';
                  
host-options-for-file-characteristics;

proc cport data=source.times file=tranfile;
run;

Program Description
Assign library references. The LIBNAME and FILENAME statements assign a 
libref for the source library and a fileref for the transport file, respectively. 

libname source 'sas-library';
filename tranfile 'transport-file';
                  
host-options-for-file-characteristics;

Specify the type of file that you are exporting. The DATA= specification in the 
PROC CPORT statement tells the procedure that you are exporting a SAS data set 
rather than a library or a catalog.

proc cport data=source.times file=tranfile;
run;

Log Examples
Example Code 16.3 Exporting a Single SAS Data Set

NOTE: Proc CPORT begins to transport data set SOURCE.TIMES
NOTE: The data set contains 2 variables and 2 observations.
      Logical record length is 16.
NOTE: Transporting data set index information.

544 Chapter 16 / CPORT Procedure



Example 4: Applying a Translation Table
Features: PROC CPORT statement option

FILE=
TRANTAB statement option

TYPE=

Details
This example shows how to apply a customized translation table to the transport file 
before PROC CPORT exports it. For this example, assume that you have already 
created a customized translation table called TTABLE1.

Program
libname source 'sas-library';
filename tranfile 'transport-file';
                  
host-options-for-file-characteristics;

proc cport catalog=source.formats file=tranfile;
   trantab name=ttable1 type=(format);
run;

Program Description
Assign library references. The LIBNAME and FILENAME statements assign a 
libref for the source library and a fileref for the transport file, respectively.

libname source 'sas-library';
filename tranfile 'transport-file';
                  
host-options-for-file-characteristics;

Apply the translation specifics. The TRANTAB statement applies the translation 
that you specify with the customized translation table TTABLE1. TYPE= limits the 
translation to FORMAT entries.

proc cport catalog=source.formats file=tranfile;
   trantab name=ttable1 type=(format);
run;

Example 4: Applying a Translation Table 545



Log Examples
Example Code 16.4 Applying a Translation Table

NOTE: Proc CPORT begins to transport catalog SOURCE.FORMATS
NOTE: The catalog has 2 entries and its maximum logical record length is 104.
NOTE: Entry REVENUE.FORMAT has been transported.
NOTE: Entry DEPT.FORMATC has been transported.

Example 5: Exporting Entries Based on Modification 
Date
Features: PROC CPORT statement options

AFTER=
FILE=

Details
This example shows how to use PROC CPORT to transport only the catalog entries 
with modification dates equal to or later than the date that you specify in the 
AFTER= option.

Program
libname source 'sas-library';
filename tranfile 'transport-file';
                  
host-options-for-file-characteristics;

proc cport catalog=source.finance file=tranfile
           after='09sep1996'd;
run;

Program Description
Assign library references. The LIBNAME and FILENAME statements assign a 
libref for the source library and a fileref for the transport file, respectively.

libname source 'sas-library';
filename tranfile 'transport-file';
                  

546 Chapter 16 / CPORT Procedure



host-options-for-file-characteristics;

Specify the catalog entries to be written to the transport file. AFTER= specifies 
that only catalog entries with modification dates on or after September 9, 1996, 
should be written to the transport file.

proc cport catalog=source.finance file=tranfile
           after='09sep1996'd;
run;

Log Examples
PROC CPORT writes messages to the SAS log to inform you that it began the 
export process for all the entries in the specified catalog. However, PROC CPORT 
wrote only the entries LOAN.FRAME and LOAN.HELP in the FINANCE catalog to 
the transport file because only those two entries had a modification date equal to or 
later than September 9, 1996. That is, of all the entries in the specified catalog, only 
two met the requirement of the AFTER= option.

Example Code 16.5 Exporting Entries Based on Modification Date

NOTE: Proc CPORT begins to transport catalog SOURCE.FINANCE
NOTE: The catalog has 5 entries and its maximum logical record length is 866.
NOTE: Entry LOAN.FRAME has been transported.
NOTE: Entry LOAN.HELP has been transported.

Example 5: Exporting Entries Based on Modification Date 547



548 Chapter 16 / CPORT Procedure



Chapter 17
DATASETS Procedure

Overview: DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
Managing Data Sets Using the DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . 550
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

Concepts: DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
Procedure Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
Extended Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Contents of a Library at the Directory Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
CONTENTS Statement with VARCHAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
Differences in the DATASETS Procedure Output When Using 

SAS/ACCESS LIBNAME Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
CAS Processing for the DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
PROC DATASETS and the Output Delivery System (ODS) . . . . . . . . . . . . . . . . . 561

Syntax: DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
PROC DATASETS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
AGE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
APPEND Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
ATTRIB Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
AUDIT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
CHANGE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
CONTENTS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
COPY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
DELETE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
EXCHANGE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
EXCLUDE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
FORMAT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
IC CREATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
IC DELETE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
IC REACTIVATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
INDEX CENTILES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
INDEX CREATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
INDEX DELETE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
INFORMAT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625
INITIATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
LABEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
LOG Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
MODIFY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
REBUILD Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
RENAME Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

549



REPAIR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
RESUME Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
SAVE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639
SELECT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
SUSPEND Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
TERMINATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
USER_VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643
XATTR ADD Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
XATTR DELETE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
XATTR OPTIONS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
XATTR REMOVE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
XATTR SET Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
XATTR UPDATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

Usage: DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
Using Passwords with the DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 649
Restricting Processing for Generation Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 650
Restricting Member Types for Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
Sample PROC DATASETS Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

Results: DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
Directory Listing to the SAS Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
Directory Listing as SAS Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
Procedure Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
PROC DATASETS and the Output Delivery System (ODS) . . . . . . . . . . . . . . . . . 664
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
Output Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666

Examples: DATASETS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
Example 1: Removing All Labels and Formats in a Data Set . . . . . . . . . . . . . . . . 673
Example 2: Manipulating SAS Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
Example 3: Saving SAS Files from Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
Example 4: Modifying SAS Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
Example 5: Describing a SAS Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
Example 6: Concatenating Two SAS Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 691
Example 7: Aging SAS Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
Example 8: Initiating an Audit File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
Example 9: Extended Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702

Overview: DATASETS Procedure

Managing Data Sets Using the DATASETS 
Procedure

The DATASETS procedure is a utility procedure that manages your SAS files. With 
PROC DATASETS, you can do the following:

n copy SAS files from one SAS library to another

550 Chapter 17 / DATASETS Procedure



n rename SAS files

n repair SAS files

n delete SAS files

n list the SAS files that are contained in a SAS library

n list the attributes of a SAS data set: 

o the date on which the data was last modified

o whether the data is compressed

o whether the data is indexed

n manipulate passwords on SAS files

n append SAS data sets

n modify attributes of SAS data sets and variables within the data sets

n create and delete indexes on SAS data sets

n create and manage audit files for SAS data sets

n create and delete integrity constraints on SAS data sets

n create and manage extended attributes of data sets

Notes
n Although the DATASETS procedure can perform some operations on catalogs, 

generally the CATALOG procedure is the best utility to use for managing 
catalogs. 

n The term member often appears as a synonym for SAS file. If you are unfamiliar 
with SAS files and SAS libraries, see “SAS Files Concepts” in SAS Language 
Reference: Concepts.

n If the NOLIST option is specified, then the PROC DATASETS statement does 
not list the SAS files. However, if you are using the ODS LISTING statement the 
result is displayed in the Results window. To view the output only in the SAS log, 
use the ODS EXCLUDE statement with the LISTING destination.

n PROC DATASETS cannot work with sequential data libraries.

n You cannot change the length of a variable using the LENGTH statement or the 
LENGTH= option in an ATTRIB statement.

n There can be a discrepancy between the modified date in PROC DATASETS, 
PROC CONTENTS, and other components of SAS, such as SAS Explorer. The 
two modified dates and times are distinctly different: 

o Operating-environment modified date and time is reported by the SAS 
Explorer and the PROC DATASETS LIST option. 

o The modified date and time reported by the CONTENTS statement is the 
date and time that the data within the data set was actually modified.

n If you have a library containing a large number of members, the DATASETS 
procedure might show an increase in process time. You might want to reorganize 
your library into smaller libraries for better performance.

Overview: DATASETS Procedure 551

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1bidsfinjj8w4n1ih918jkj5yh0.htm&docsetTargetAnchor=p1oy71luv66boln1403z8u57zinu&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1bidsfinjj8w4n1ih918jkj5yh0.htm&docsetTargetAnchor=p1oy71luv66boln1403z8u57zinu&locale=en


n Beginning in the SAS 9.4 release, extended attributes are supported.

n If you want to use the KILL functionality of the DATASETS procedure and the 
DBMS=Redshift, then you need to use a SCHEMA= option in the LIBNAME 
statement.

Concepts: DATASETS Procedure

Procedure Execution

Execution of Statements
When you start the DATASETS procedure, you specify the procedure input library in 
the PROC DATASETS statement. If you omit a procedure input library, the 
procedure processes the current default SAS library (usually the Work library). To 
specify a new procedure input library, issue the DATASETS procedure again.

Statements execute in the order in which they are written. Use CONTENTS, COPY, 
CONTENTS if you want to see the contents of a data set, copy a data set, and then 
visually compare the contents of the second data set with the first.

RUN-Group Processing
PROC DATASETS supports RUN-group processing. RUN-group processing 
enables you to submit RUN groups without ending the procedure.

The DATASETS procedure supports four types of RUN groups. Each RUN group is 
defined by the statements that compose it and by what causes it to execute.

Some statements in PROC DATASETS act as implied RUN statements because 
they cause the RUN group preceding them to execute.

The following list discusses what statements compose a RUN group and what 
causes each RUN group to execute:

n The PROC DATASETS statement always executes immediately. No other 
statement is necessary to cause the PROC DATASETS statement to execute. 
Therefore, the PROC DATASETS statement alone is a RUN group.

n The MODIFY statement, and any of its subordinate statements, form a RUN 
group. These RUN groups always execute immediately. No other statement is 
necessary to cause a MODIFY RUN group to execute.

552 Chapter 17 / DATASETS Procedure



n The APPEND, CONTENTS, and COPY statements (including EXCLUDE and 
SELECT, if present), form their own separate RUN groups. Every APPEND 
statement forms a single-statement RUN group; every CONTENTS statement 
forms a single-statement RUN group; and every COPY step forms a RUN group. 
Any other statement in the procedure, except those that are subordinate to either 
the COPY or MODIFY statement, causes the RUN group to execute.

n One or more of the following statements form a RUN group: 

o AGE

o CHANGE

o DELETE

o EXCHANGE

o REPAIR

o SAVE

If any of these statements appear in sequence in the PROC step, the sequence 
forms a RUN group. For example, if a REPAIR statement appears immediately 
after a SAVE statement, the REPAIR statement does not force the SAVE 
statement to execute; it becomes part of the same RUN group. To execute the 
RUN group, submit one of the following statements:

o PROC DATASETS

o APPEND

o CONTENTS

o COPY

o MODIFY

o QUIT

o RUN

o another DATA or PROC step

SAS reads the program statements that are associated with one task until it reaches 
a RUN statement or an implied RUN statement. SAS executes all of the preceding 
statements immediately and continues reading until it reaches another RUN 
statement or implied RUN statement. To execute the last task, you must use a RUN 
statement or a statement that stops the procedure.

The following PROC DATASETS step contains five RUN groups:

LIBNAME dest 'SAS-library';
   /* RUN group */

proc datasets;
      /* RUN group */
   change nutr=fatg;
   delete bldtest;
   exchange xray=chest;
      /* RUN group */
   copy out=dest;
      select report;
      /* RUN group */
   modify bp;
      label dias='Taken at Noon';
      rename weight=bodyfat;

Concepts: DATASETS Procedure 553



      /* RUN group */
   append base=tissue data=newtiss;
quit;

Note: If you are running in interactive line mode, you can receive messages that 
statements have already executed before you submit a RUN statement. Plan your 
tasks carefully if you are using this environment for running PROC DATASETS.

Error Handling
Generally, if an error occurs in a statement, the RUN group containing the error 
does not execute. RUN groups preceding or following the one containing the error 
execute normally. The MODIFY RUN group is an exception. If a syntax error occurs 
in a statement subordinate to the MODIFY statement, only the statement containing 
the error fails. The other statements in the RUN group execute.

Note: If the first word of the statement (the statement name) is in error and the 
procedure cannot recognize it, the procedure treats the statement as part of the 
preceding RUN group.

Password Errors
If there is an error involving an incorrect or omitted password in a statement, the 
error affects only the statement containing the error. The other statements in the 
RUN group execute.

Forcing a RUN Group with Errors to 
Execute
The FORCE option in the PROC DATASETS statement forces execution of the RUN 
group even if one or more of the statements contain errors. Only the statements that 
are error-free execute.

Ending the Procedure
To stop the DATASETS procedure, you must issue a QUIT statement, a RUN 
CANCEL statement, a new PROC statement, or a DATA statement. Submitting a 
QUIT statement executes any statements that have not executed. Submitting a 
RUN CANCEL statement cancels any statements that have not executed.

554 Chapter 17 / DATASETS Procedure



Extended Attributes
Extended attributes are customized metadata for your SAS files. They are user-
defined characteristics that you associate with a SAS data set or variable. Whereas 
common SAS attributes, such as length for variables for data sets are predefined 
SAS system attributes, extended attributes are attributes that you define yourself. 
Extended attributes are organized into (name, value) pairs.

Use the MODIFY statement to add, delete, remove, set, and update extended 
attributes. When using the COPY statement, if the OUT= library engine supports 
extended attributes, they are copied. Extended attributes are not appended when 
using the APPEND statement, unless the BASE= data set does not exist.

Extended attributes can be used to automate tasks that require a custom attribute to 
be associated with a variable or a data set.

An extended attribute can have numeric or character values. There is no maximum 
length to an extended attribute character value. By default, each value is stored in 
256-byte segments. The length of the segment can be changed with the SEGLEN= 
option of the XATTR OPTIONS statement. This option indicates the length of the 
storage element that will hold the character attribute value. Should the segment size 
not be large enough for some particular character attribute value, another segment 
is allocated. To minimize processing time, choose a length that would accommodate 
most attribute values for the data set.

The following output shows a data set and variables with extended attributes.

Concepts: DATASETS Procedure 555



Output 17.1 Contents of a Data Set with Extended Attributes

For information about using extended attributes, see “XATTR ADD Statement” on 
page 644, “XATTR DELETE Statement” on page 645, “XATTR REMOVE 
Statement” on page 646, “XATTR SET Statement” on page 647, and “XATTR 
UPDATE Statement” on page 648.

Contents of a Library at the Directory Level
In a concatenated library, each physical piece of the library is a level. Level 1 is the 
first location in the libref definition, Level 2 is the second location, and so on. PROC 
DATASETS reports the number of levels in the library as a value under the LEVEL 
specification.

The following example shows that there are 6 Levels in the libref named Samp.

556 Chapter 17 / DATASETS Procedure



Concepts: DATASETS Procedure 557



CONTENTS Statement with VARCHAR
If there is a VARCHAR data type in the table, PROC CONTENTS or PROC 
DATASETS CONTENTS statement shows the Length in bytes and characters, as 
well as the max bytes used. PROC CONTENTS reports metadata about the table 
and the metadata about the variables. The CAS engine is the only engine 
supporting VARCHAR.

The bottom portion of PROC CONTENTS (related to the variable metadata) is the 
metadata that is represented in the SAS session. Based on what type of 
transcoding that might or might not be needed to go from the CAS UTF–8 encoding 
to the SAS session encoding. The variable byte length used in SAS is dependent on 
the encoding of the SAS session. The variable byte length used in the SAS session 
might differ from the byte length.

Output 17.2 Contents of Mycas.French2 Table

Use the following code to show the contents of the Mycas library:

proc datasets lib=mycas;
contents data=cars;
run;

558 Chapter 17 / DATASETS Procedure



Output 17.3 Mycas Library and Mycas.Cars Table

Use the following code to show the contents of the Mycas library:

proc datasets lib=mycas;
contents data=mycs.cars directory details;
run;

Concepts: DATASETS Procedure 559



Differences in the DATASETS Procedure Output 
When Using SAS/ACCESS LIBNAME Engines

When you use a SAS/ACCESS LIBNAME engine to access a database, some of 
the information that is available in the header of a SAS data set is not available to 
the procedure. Therefore, the procedure does not have the information to display. 
The CONTENTS procedure, the DATASETS COPY statement, and the DATASETS 
CONTENTS statement do not provide information about the indexes, integrity 
constraints, and number of observations. For example, copying a table with indexes 
and integrity constraints results in a table with no indexes or integrity constraints if 
the engine used to access the table is a SAS/ACCESS LIBNAME engine. In the 
following code, the output from the CONTENTS statement displays a 0 (zero) in the 
index field although the database has indexes, and displays a . (period) for the 
unknown number of observations.

proc datasets lib=mylib details; 
   contents data=table-name; 
run; 
quit;  

To obtain the number of observations, run an SQL query to obtain the count using 
the LIBNAME engine or explicit-pass through on the DBMS table.

To obtain the information about indexes and integrity constraints, you can use 
explicit pass-through of database-specific syntax to query the system tables. For 
documentation on explicit pass-through, see “Connecting to a DBMS By Using the 
SQL Procedure Pass-Through Facility” in SAS SQL Procedure User’s Guide.

CAS Processing for the DATASETS Procedure
Accessing CAS tables through the CAS LIBNAME engine with the DATASETS 
procedure results in some behavior that differs from other LIBNAME engines. The 
following is a summary of these behavior differences:

560 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p00m0fdlbdu781n1jxsn4umlqyok.htm&docsetTargetAnchor=n0vtpo1d9es6zon1rhxqj2go918o&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p00m0fdlbdu781n1jxsn4umlqyok.htm&docsetTargetAnchor=n0vtpo1d9es6zon1rhxqj2go918o&locale=en


n Indexes, integrity constraints, and extended attributes are not supported in CAS 
tables.

n The MODIFY statement results in an error because UPDATE access is not 
supported.

n If there is a VARCHAR data type in the table, the CONTENTS statement shows 
the length in bytes, length in characters, and maximum bytes used. 

n The encoding shown by the CONTENTS statement is the encoding of the CAS 
table.

n The block I/O method cannot be used when appending a CAS table to a SAS 
data set.

n You cannot use the APPEND statement to add data to a CAS table because 
UPDATE access is not supported. Data from a CAS table can be appended to a 
SAS data set. 

n If the CAS LIBNAME engine is used for both the input and output libraries with 
the COPY statement, the COPY task is executed on the CAS server. The 
NOACCEL option disables this behavior, causing the COPY task to be executed 
in the SAS session.

PROC DATASETS and the Output Delivery System 
(ODS)

Most procedures send their messages to the log and their procedure results to the 
output. PROC DATASETS is unique because it sends procedure results to both the 
log and the procedure output table. When the interface to ODS was created, it was 
decided that all procedure results (from both the log and the procedure output table) 
should be available to ODS. In order to implement this feature and maintain 
compatibility with earlier releases, the interface to ODS had to be slightly different 
from the usual interface.

By default, the PROC DATASETS statement itself produces two output objects: 
Members and Directory. These objects are routed to the log. The CONTENTS 
statement produces three output objects by default: Attributes, EngineHost, and 
Variables. (The use of various options adds other output objects.) These objects are 
routed to the procedure output table. If you open an ODS destination (such as 
HTML, RTF, or PRINTER), all of these objects are, by default, routed to that 
destination.

You can use the ODS SELECT and ODS EXCLUDE statements to control which 
objects go to which destination, just as you can for any other procedure.

PROC DATASETS and PROC CONTENTS assign a name to each table that they 
create. You can use these names to reference the table when using the Output 
Delivery System (ODS) to select tables and create output tables.

PROC CONTENTS generates the same ODS tables as PROC DATASETS with the 
CONTENTS statement.

Concepts: DATASETS Procedure 561



Table 17.1 ODS Tables Produced by the DATASETS Procedure without the CONTENTS 
Statement

ODS Table Description Generates Table

Directory General library 
information

Unless you specify the NOLIST option

Members Library member 
information

Unless you specify the NOLIST option

Table 17.2 ODS Table Names Produced by PROC CONTENTS and PROC DATASETS with the CONTENTS 
Statement

ODS Table Description Generates Table

Attributes Data set attributes Unless you specify the SHORT option

Directory General library information If you specify DATA=<libref.>_ALL_ or the 
DIRECTORY option

Members Library member information If you specify DATA=<libref.>_ALL_ or the 
DIRECTORY option

Position A detailed listing of variables 
by logical position in the table

If you specify the VARNUM option and you do 
not specify the SHORT option

PositionShort A concise listing of variables 
by logical position in the table

If you specify the VARNUM option and the 
SHORT option

Variables A detailed listing of variables 
in alphabetical order

Unless you specify the SHORT option

VariablesShort A concise listing of variables 
in alphabetical order

If you specify the SHORT option

Syntax: DATASETS Procedure
Notes: Data set names and variable names that end with large numeric values that are larger 

than a long integer cannot be used in numbered-range lists. For more information, see 
“Restriction for Numbered Range Lists” in SAS Language Reference: Concepts.
NOTE: _LAST_ is the name of the last data set that is created in your session. When the 
BASE= data set does not exist and PROC APPEND creates it, PROC APPEND sets 
_LAST_ to the name of the BASE= data set.

Tips: Supports RUN-group processing.

562 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0wphcpsfgx6o7n1sjtqzizp1n39.htm&docsetTargetAnchor=p02si694dw39m0n17maupfh0rnv9&locale=en


Supports the Output Delivery System. For details, see “Output Delivery System: Basic 
Concepts” in SAS Output Delivery System: User’s Guide. 

See: For more information, see “Statements with the Same Function in Multiple Procedures” 
on page 73.
DATASETS Procedure under Windows, UNIX, z/OS 

PROC DATASETS <options>;
AGE current-name related-SAS-file(s)

</ <ALTER=alter-password> <MEMTYPE=member-type>>;
APPEND BASE=<libref.>SAS-data-set

<APPENDVER=V6>
<DATA=<libref.>SAS-data-set>
<ENCRYPTKEY=key-value>
<FORCE>
<GETSORT>
<NOWARN>;

AUDIT SAS-file <(SAS-password <ENCRYPTKEY=key-value> 
<GENNUM=integer>)>;

INITIATE <AUDIT_ALL=NO | YES>;
LOG <ADMIN_IMAGE=YES | NO>

<BEFORE_IMAGE=YES | NO>
<DATA_IMAGE=YES | NO>
<ERROR_IMAGE=YES | NO>;

<SUSPEND | RESUME | TERMINATE; >
<USER_VAR> variable-name-1 <$> <length> <LABEL='variable-label' >

<variable-name-2 <$> <length> <LABEL='variable-label' > …>;
CHANGE old-name-1=new-name-1

<old-name-2=new-name-2 …>
</ <ENCRYPTKEY=key-value>
<ALTER=alter-password> <GENNUM=ALL | integer> <MEMTYPE=member-
type>>;

CONTENTS <options>;
COPY <ACCEL | NOACCEL>OUT=libref-1

<CLONE | NOCLONE>
<CONSTRAINT=YES | NO>
<DATECOPY>
<ENCRYPTKEY=key-value>
<FORCE>
IN=libref-2
<INDEX=YES | NO>
<MEMTYPE=(member-type(s))>
<MOVE <ALTER=alter-password>>
<OVERRIDE=(ds-option-1=value-1 <ds-option-2=value-2 …> ) >;

SELECT SAS-file(s)
</ <ENCRYPTKEY=key-value> <ALTER=alter-password> 
<MEMTYPE=member-type>>;

DELETE SAS-file(s)
</ <ALTER=alter-password>
<ENCRYPTKEY=key-value>
<GENNUM=ALL | HIST | REVERT | integer>
<MEMTYPE=member-type>>;

EXCHANGE name-1=other-name-1 <name-2=other-name-2 …>
</ <ALTER=alter-password> <MEMTYPE=member-type>>;

Syntax: DATASETS Procedure 563

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0qzwimb5swq2jn15m15c81ugd2t.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0qzwimb5swq2jn15m15c81ugd2t.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n0yyy9zscyifkln1i8tl75d63a1l.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n0gyolxomgnlf0n1pfymgvxs0yjd.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p1hu5ptb3e3nm7n14mc55a7suvd6.htm&locale=en


MODIFY SAS-file <(options)>
</ <CORRECTENCODING=encoding-value> <DTC=SAS-date-time>
<GENNUM=integer> <MEMTYPE=member-type>>;

ATTRIB variable-list(s) attribute-list(s);
FORMAT variable-1 <format-1>

<variable-2 <format-2> …>;
IC CREATE <constraint-name=> constraint <MESSAGE='message-string'

<MSGTYPE=USER>>;
IC DELETE constraint-name(s) | _ALL_;
IC REACTIVATE foreign-key-name REFERENCES libref;
INDEX CENTILES index(s)

</ <REFRESH> <UPDATECENTILES=ALWAYS | NEVER | integer>>;
INDEX CREATE index-specification(s)

</ <NOMISS> <UNIQUE> <UPDATECENTILES=ALWAYS | NEVER | 
integer>>;

INDEX DELETE index(s) | _ALL_;
INFORMAT variable-1 <informat-1>

<variable-2 <informat-2> …>;
LABEL variable-1=<'label-1' | ' '>

<variable-2=<'label-2' | ' '> …>;
RENAME old-name-1=new-name-1

<old-name-2=new-name-2 …>;
XATTR ADD DS attribute-name-1=attribute-value-1 

<attribute-name-2=attribute-value-2 …>;
or
XATTR ADD VAR variable-name-1 (attribute-name-1=attribute-value-1

< attribute-name-2=attribute-value-2 …>)
<variable-name-2 (attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2 …>) >;

XATTR DELETE;
XATTR OPTIONS <SEGLEN=number-of-bytes>;
XATTR REMOVE DS attribute-name(s) ;
or
XATTR REMOVE VAR variable-name-1 (attribute-name(s))

<variable-name-2 (attribute-name(s) …)>;
XATTR SET DS attribute-name-1=attribute-value-1 

<attribute-name-2="attribute-value-2" …>;
or
XATTR SET VAR variable-name-1 (attribute-name-1=attribute-value-1 

<attribute-name-2=attribute-value-2 … >)
<variable-name-2 (attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2> …)>;

XATTR UPDATE DS attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2 …>;

or
XATTR UPDATE VAR variable-name-1 (attribute-name-1=attribute-value-1 

<attribute-name-2=attribute-value-2 …>)
<variable-name-2 (attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2 …>)>;

REBUILD SAS-file </ <ENCRYPTKEY=key-value>

564 Chapter 17 / DATASETS Procedure



<ALTER=password> <GENNUM=n> <MEMTYPE=member-type> 
<NOINDEX>>;

REPAIR </ <ENCRYPTKEY=key-value>
<ALTER=alter-password> <GENNUM=integer> <MEMTYPE=member-type>>;

SAVE SAS-file(s) </ MEMTYPE=member-type>;

Statement Task Example

PROC DATASETS Manage SAS files

AGE Rename a group of related SAS files Ex. 7

APPEND Add observations from one SAS data set to the 
end of another SAS data set

Ex. 6

ATTRIB Associate a format, informat, or label with 
variables in the SAS data set specified in the 
MODIFY statement

Ex. 1

AUDIT Initiate, control, suspend, resume, or terminate 
event logging to an audit file

CHANGE Rename one or more SAS files Ex. 2

CONTENTS Describe the contents of one or more SAS data 
sets and prints a directory of the SAS library

Ex. 5

COPY Copy all or some of the SAS files Ex. 2

DELETE Delete SAS files Ex. 2

EXCHANGE Exchange the names of two SAS files Ex. 2

EXCLUDE Exclude SAS files from copying Ex. 2

FORMAT Permanently assign, change, and remove 
variable formats

Ex. 4

IC CREATE Create an integrity constraint

IC DELETE Delete an integrity constraint

IC REACTIVATE Reactivate a foreign key integrity constraint

INDEX CENTILES Update centiles statistics for indexed variables

INDEX CREATE Create simple or composite indexes Ex. 4

INDEX DELETE Delete one or more indexes

INFORMAT Permanently assign, change, and remove 
variable informats

Ex. 4

INITIATE Create an audit file that has the same name as 
the SAS data file and a data set type of AUDIT

Ex. 8

LABEL Assign, change, and remove variable labels Ex. 4

Syntax: DATASETS Procedure 565



Statement Task Example

LOG Specify the settings for an audit file Ex. 8

MODIFY Change the attributes of a SAS file and the 
attributes of variables

Ex. 4

REBUILD Specify whether to restore or delete the 
disabled indexes and integrity constraints

RENAME Rename variables in the SAS data set Ex. 4

REPAIR Attempt to restore damaged SAS data sets or 
catalogs

RESUME Resume event logging to the audit file, if the 
audit file was suspended

Ex. 8

SAVE Delete all the SAS files except the ones listed 
in the SAVE statement

Ex. 3

SELECT Select SAS files for copying Ex. 2

SUSPEND Suspend event logging to the audit file Ex. 8

TERMINATE Terminate event logging and deletes the audit 
file

Ex. 8

USER_VAR Define optional variables to be logged in the 
audit file with each update to an observation

Ex. 8

XATTR ADD Add an extended attribute to a variable or a 
data set

Ex. 9

XATTR DELETE Delete all of the extended attributes from a data 
set

XATTR OPTIONS Specify options as needed for extended 
attributes

Ex. 9

XATTR REMOVE Remove an extended attribute from a variable 
or a data set

XATTR SET Update or add an extended attribute to a 
variable or a data set

XATTR UPDATE Update an extended attribute of a variable or a 
data set

Ex. 9

PROC DATASETS Statement
Manages SAS files.

566 Chapter 17 / DATASETS Procedure



Syntax
PROC DATASETS <options>;

Summary of Optional Arguments
ALTER=alter-password

provides Alter access to any alter-protected SAS file in the SAS library.
DETAILS
NODETAILS

includes information in the log about the number of observations, number 
of variables, number of indexes, and data set labels.

ENCRYPTKEY=key-value
specifies the key value for AES encryption.

FORCE
forces either a RUN group to execute even when there are errors or 
forces an Append operation.

GENNUM=ALL | HIST | REVERT | integer
restricts processing for generation data sets.

KILL
deletes SAS files.

LIBRARY=libref
specifies the procedure input/output library.

MEMTYPE=(member-type(s))
restricts processing to a certain type of SAS file.

NODETAILS
see the description of DETAILS | NODETAILS.

NOLIST
suppresses the printing of the directory.

NOPRINT
suppresses the printing of the output to the log and listing.

NOWARN
suppresses error processing.

PW= password
provides Read, Write, or Alter access.

READ=read-password
provides Read access.

Optional Arguments
ALTER=alter-password

provides the Alter password for any alter-protected SAS files in the SAS library.

See “Using Passwords with the DATASETS Procedure” on page 649

DETAILS | NODETAILS
determines whether the following columns are written to the log: 

PROC DATASETS Statement 567



Obs, 
Entries, 
or 
Indexes

gives the number of observations for SAS files of type AUDIT, 
DATA, and VIEW; the number of entries for type CATALOG; and 
the number of files of type INDEX that are associated with a 
data file, if any. If SAS cannot determine the number of 
observations in a SAS data set, the value in this column is set to 
missing. For example, in a very large data set, if the number of 
observations or deleted observations exceeds the number that 
can be stored in a double-precision integer, the count shows as 
missing. The value for type CATALOG is the total number of 
entries. For other types, this column is blank.

Vars gives the number of variables for types AUDIT, DATA, and 
VIEW. If SAS cannot determine the number of variables in the 
SAS data set, the value in this column is set to missing. For 
other types, this column is blank.

Label contains the label associated with the SAS data set. This 
column prints a label only for the type DATA.

TIP The value for files of type INDEX includes both user-defined indexes 
and indexes created by integrity constraints. To view index ownership and 
attribute information, use PROC DATASETS with the CONTENTS 
statement and the OUT2 option.

Note: The DETAILS option affects output only when a directory is specified and 
requires Read access to all read-protected SAS files in the SAS library. If you do 
not supply the Read password, the directory listing contains missing values for 
the columns produced by the DETAILS option.

Default If neither DETAILS or NODETAILS is specified, the default is the 
system option setting. The default system option setting is 
NODETAILS.

Tip If you are using the SAS windowing environment and specify the 
DETAILS option for a library that contains read-protected SAS files, a 
dialog box prompts you for each Read password that you do not 
specify in the PROC DATASETS statement. Therefore, you might 
want to assign the same Read password to all SAS files in the same 
SAS library.

Example “Example 2: Manipulating SAS Files” on page 678

ENCRYPTKEY=key-value
specifies the key value for AES encryption. 

See “Appending AES-Encrypted Data Sets” on page 578

FORCE
performs two separate actions: 

n forces a RUN group to execute even if errors are present in one or more 
statements in the RUN group. See “RUN-Group Processing” on page 552 for 
a discussion of RUN-group processing and error handling.

568 Chapter 17 / DATASETS Procedure



n forces all APPEND statements to concatenate two data sets even when the 
variables in the data sets are not exactly the same. The APPEND statement 
drops the extra variables and issues a warning message to the SAS log 
unless the NOWARN option is specified (either with the APPEND statement 
or PROC DATASETS). For more information about the FORCE option, see 
APPEND statement on page 573.

GENNUM=ALL | HIST | REVERT | integer
restricts processing for generation data sets. Valid values are as follows: 

ALL for subordinate CHANGE and DELETE statements, refers to 
the base version and all historical versions in a generation 
group.

HIST for a subordinate DELETE statement, refers to all historical 
versions, but excludes the base version in a generation group.

REVERT | 
0

for a subordinate DELETE statement, refers to the base 
version in a generation group and changes the most current 
historical version, if it exists, to the base version.

integer for subordinate AUDIT, CHANGE, MODIFY, DELETE, and 
REPAIR statements, refers to a specific version in a generation 
group. Specifying a positive number is an absolute reference 
to a specific generation number that is appended to a data set 
name (that is, gennum=2 specifies MYDATA#002). Specifying a 
negative number is a relative reference to a historical version 
in relation to the base version, from the youngest to the oldest 
(that is, gennum=-1 refers to the youngest historical version).

See “Restricting Processing for Generation Data Sets” on page 650

KILL
deletes all SAS files in the SAS library that are available for processing. The 
MEMTYPE= option subsets the member types that the statement deletes. The 
following example deletes all the data files in the Work library: 

proc datasets lib=work kill memtype=data; run; quit;

CAUTION
The KILL option deletes the SAS files immediately after you submit the 
statement. If the SAS file has an ALTER= password assigned, it must be specified 
in order to delete the SAS file.

LIBRARY=libref
names the library that the procedure processes. This library is the procedure 
input/output library.

Aliases DDNAME=

DD=

LIB=

Default Work or User

Note A SAS library that is accessed via a sequential engine (such as a tape 
format engine) cannot be specified as the value of the LIBRARY= 
option.

PROC DATASETS Statement 569



See For information about the Work and User libraries, see “One-level 
SAS Data Set Names” in SAS Language Reference: Concepts.

Example “Example 2: Manipulating SAS Files” on page 678

MEMTYPE=(member-type(s))
restricts processing to one or more member types and restricts the listing of the 
data library directory to SAS files of the specified member types. For example, 
the following PROC DATASETS statement limits processing to SAS data sets in 
the default data library and limits the directory listing in the SAS log to SAS files 
of member type DATA: 

proc datasets memtype=data;

Aliases MTYPE=

MT=

Default ALL

See “Restricting Member Types for Processing” on page 651

NODETAILS
See “DETAILS|NODETAILS” on page 567.

NOLIST
suppresses the printing of the directory of the SAS files in the SAS log and any 
open non-LISTING destination. 

Note If you have ODS LISTING turned on and open a non-LISTING ODS 
destination, PROC DATASETS output goes to both the SAS log and 
the ODS destination. The NOLIST option suppresses output to both. 
To see the output in the SAS log only, use the ODS EXCLUDE 
statement by specifying the Members and Directory output objects. 
For example, if the RTF and LISTING destinations are both open and 
Directory and Members information is desired in the LOG window 
only, use the following:

ods rtf file="listing_nolist.rtf";
ods trace on;
ods rtf exclude directory members;

proc datasets lib=work; 
run;
quit;

ods rtf close;

Example “Example 4: Modifying SAS Data Sets” on page 686

NOPRINT
suppresses the printing of the output and the printing of the directory of the SAS 
files in the log and any open non-LISTING destination. The NOPRINT option is a 
combination of the NOLIST option and the NOPRINT option in the CONTENTS 
statement.

570 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0uj2x4rejfm9un17pce2lisqtb9.htm&docsetTargetAnchor=n11emcdju2gjgkn12408krss9l67&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0uj2x4rejfm9un17pce2lisqtb9.htm&docsetTargetAnchor=n11emcdju2gjgkn12408krss9l67&locale=en


NOWARN
suppresses the error processing that occurs when a SAS file that is specified in 
a SAVE, CHANGE, EXCHANGE, REPAIR, DELETE, or COPY statement or 
listed as the first SAS file in an AGE statement, is not in the procedure input 
library. When an error occurs and the NOWARN option is in effect, PROC 
DATASETS continues processing that RUN group. If NOWARN is not in effect, 
PROC DATASETS stops processing that RUN group and issues a warning for all 
operations except DELETE, for which it does not stop processing.

PW= password
provides the password for any protected SAS files in the SAS library. PW= can 
act as an alias for READ=, WRITE=, or ALTER=.

See “Using Passwords with the DATASETS Procedure” on page 649

READ=read-password
provides the Read password for any read-protected SAS files in the SAS library.

See “Using Passwords with the DATASETS Procedure” on page 649

AGE Statement
Renames a group of related SAS files in a library.

Example: “Example 7: Aging SAS Data Sets” on page 694

Syntax
AGE current-name related-SAS-file(s)
</ <ALTER=alter-password> <MEMTYPE=member-type>>;

Required Arguments
current-name

is a SAS file that the procedure renames. current-name receives the name of the 
first name in related-SAS-file(s).

related-SAS-file(s)
is one or more SAS files in the SAS library.

Optional Arguments
ALTER=alter-password

provides the Alter password for any alter-protected SAS files named in the AGE 
statement. Because an AGE statement renames and deletes SAS files, you 
need Alter access to use the AGE statement. You can use the option either in 
parentheses after the name of each SAS file or after a forward slash.

See “Using Passwords with the DATASETS Procedure” on page 649

AGE Statement 571



MEMTYPE=member-type
restricts processing to one member type. All of the SAS files that you name in 
the AGE statement must be the same member type. You can use the option after 
a forward slash after the name of each SAS file.

Aliases MTYPE=

MT=

Default If you do not specify MEMTYPE= in the PROC DATASETS statement, 
the default is DATA.

See “Restricting Member Types for Processing” on page 651

Details
The AGE statement renames the current-name to the name of the first name in the 
related-SAS-files, renames the first name in the related-SAS-files to the second 
name in the related-SAS-files, and so on, until it changes the name of the next-to-
last SAS file in the related-SAS-files to the last name in the related-SAS-files. The 
AGE statement then deletes the last file in the related-SAS-files.

If the first SAS file named in the AGE statement does not exist in the SAS library, 
PROC DATASETS stops processing the RUN group containing the AGE statement 
and issues an error message. The AGE statement does not age any of the related-
SAS-files. To override this behavior, use the NOWARN option in the PROC 
DATASETS statement.

If one of the related-SAS-files does not exist, the procedure prints a warning 
message to the SAS log but continues to age the SAS files that it can.

If you age a data set that has an index, the index continues to correspond to the 
data set.

You can age only entire generation groups. For example, if data sets A and B have 
generation groups, then the following statement deletes generation group B and 
ages (renames) generation group A to the name B:

age a b;

For example, suppose the generation group for data set A has three historical 
versions and the generation group for data set B has two historical versions. Then 
aging A to B has this effect:

Table 17.3 Generation Groups

Old Name Version New Name Version

A base B base

A 1 B 1

A 2 B 2

A 3 B 3

572 Chapter 17 / DATASETS Procedure



Old Name Version New Name Version

B base is deleted

B 1 is deleted

B 2 is deleted

APPEND Statement
Adds the observations from one SAS data set to the end of another SAS data set.

Default: If the BASE= data set is accessed through a SAS server and if no other user has the 
data set open at the time the APPEND statement begins processing, the BASE= data 
set defaults to CNTLLEV=MEMBER (member-level locking). When this behavior 
happens, no other user can update the file while the data set is processed.

Restriction: The BASE= option cannot be an existing CAS table.

Requirement: The BASE= data set must be a member of a SAS library that supports update 
processing.

Note: If you use the DROP=, KEEP=, or RENAME= options on the BASE= data set, the 
options ONLY affect the APPEND processing and does not change the variables in the 
appended BASE= data set. Variables that are dropped or not kept using the DROP= and 
KEEP= options still exist in the appended BASE= data set. Variables that are renamed 
using the RENAME= option remain with their original name in the appended BASE= 
data set. The CAS engine does not support update processing and therefore an existing 
CAS table cannot be specified with BASE=.

Tips: You can specify most data set options for the BASE= argument and DATA= option. 
However, if you specify DROP=, KEEP=, or RENAME= data set option for the BASE= 
data set, the option is ignored. You can use any global statements as well.
If a failure occurs during processing, the data set is marked as damaged and is reset to 
the pre-append condition at the next REPAIR statement. If the data set has an index, the 
index is not updated with each observation but is updated once at the end. (This 
behavior is Version 7 and later, as long as APPENDVER=V6 is not set.)
Each password and encryption key option must be coded on a separate line to ensure 
that they are properly blotted in the log.

Example: “Example 6: Concatenating Two SAS Data Sets” on page 691

Syntax
APPEND BASE=<libref.>SAS-data-set
<APPENDVER=V6>
<DATA=<libref.>SAS-data-set>
<ENCRYPTKEY=key-value>
<FORCE>
<GETSORT>

APPEND Statement 573



<NOWARN>;

Required Argument
BASE=<libref.> SAS-data-set

names the data set to which you want to add observations.

libref
specifies the library that contains the SAS data set. If you omit the libref, the 
default is the libref for the procedure input library. If you are using PROC 
APPEND, the default for libref is either Work or User.

SAS-data-set
names a SAS data set. If the APPEND statement cannot find an existing data 
set with this name, it creates a new data set in the library. That is, you can 
use the APPEND statement to create a data set by specifying a new data set 
name in the BASE= argument.

Whether you are creating a new data set or appending to an existing data set, 
the BASE= data set is the current SAS data set after all Append operations.

Alias OUT=

Example “Example 6: Concatenating Two SAS Data Sets” on page 691

Optional Arguments
APPENDVER=V6

uses the Version 6 behavior for appending observations to the BASE= data set, 
which is to append one observation at a time. Beginning in Version 7, to improve 
performance, the default behavior changed so that all observations are 
appended after the data set is processed. 

See “Appending to an Indexed Data Set — Fast-Append Method” on page 
580

DATA=<libref.> SAS-data-set
names the SAS data set containing observations that you want to append to the 
end of the SAS data set specified in the BASE= argument. 

libref
specifies the library that contains the SAS data set. If you omit libref, the 
default is the libref for the procedure input library. The DATA= data set can be 
from any SAS library. You must use the two-level name if the data set resides 
in a library other than the procedure input library.

SAS-data-set
names a SAS data set. If the APPEND statement cannot find an existing data 
set with this name, it stops processing.

Alias NEW=

Default the most recently created SAS data set, from any SAS library

See “Appending with Generation Groups” on page 583

Example “Example 6: Concatenating Two SAS Data Sets” on page 691

574 Chapter 17 / DATASETS Procedure



ENCRYPTKEY=key-value
specifies the key value for AES encryption. 

See “Appending AES-Encrypted Data Sets” on page 578

FORCE
forces the APPEND statement to concatenate data sets when the DATA= data 
set contains variables that meet one of the following criteria:

n are not in the BASE= data set

n do not have the same type as the variables in the BASE= data set

n are longer than the variables in the BASE= data set

Tip You can use the GENNUM= data set option to append to or from a 
specific version in a generation group. Here are some examples:
/* appends historical version to base A */ 
proc datasets;    
   append base=a       
      data=a (gennum=2);  

/* appends current version of A to historical version */ 
proc datasets;    
   append base=a (gennum=1)       
      data=a;

See “Appending to Data Sets with Different Variables” on page 581 and 
“Appending to Data Sets That Contain Variables with Different 
Attributes” on page 581

Example “Example 6: Concatenating Two SAS Data Sets” on page 691

GETSORT
copies the sort indicator from the DATA= data set to the BASE= data set. The 
sort indicator is established by either a PROC SORT or an ORDERBY clause in 
PROC SQL if the following criteria are met: 

n The BASE= data set must meet the following criteria: 

o be SAS Version 7 or later

o contain no observations

o accept sort indicators

CAUTION
Any pre-existing sort indicator on the BASE= data set is overwritten with 
no warning, even if the DATA= data set is not sorted at all.

n The DATA= data set must meet the following criteria: 

o contain a sort indicator established by PROC SORT

o be the same data representation as the BASE= data set

Restrictions The GETSORT option has no effect on the data sets if the BASE= 
data set has an audit trail associated with it. This restriction causes 
a WARNING in the output while the APPEND process continues.

APPEND Statement 575



The GETSORT option has no effect on the data sets if there are 
dropped, kept, or renamed variables in the DATA= data file.

NOWARN
suppresses the warning when used with the FORCE option to concatenate two 
data sets with different variables.

Details

Using the APPEND Procedure Instead of the 
APPEND Statement
The only difference between the APPEND procedure and the APPEND statement in 
PROC DATASETS, is the default for libref in the BASE= and DATA= arguments. For 
PROC APPEND, the default is either Work or User. For the APPEND statement, the 
default is the libref of the procedure input library.

You can use the WHERE= data set option with the DATA= data set to restrict the 
observations that are appended. Similarly, you can use the WHERE statement to 
restrict the observations from the DATA= data set. The WHERE statement has no 
effect on the BASE= data set.

CAUTION
If there is a WHERE option used on an existing BASE= data set, it is used only 
if the WHEREUP= option is set to YES. If the BASE= data set does not exist, then 
no WHEREUP= option is needed for the WHERE option to take effect.

Appending Sorted Data Sets
You can append sorted data sets and maintain the sort using the following 
guidelines:

n The DATA= data set and the BASE= data set contain sort indicators from the 
SORT procedure.

n The DATA= data set and the BASE= data set are sorted using the same 
variables. 

n The observations added from the DATA= data set do not violate the sort order of 
the BASE= data set.

The sort indicator from the BASE= data set is retained.

Using the Block I/O Method to Append

Note:  The block I/O method cannot be used when appending a CAS table to a 
SAS data set.

The block I/O method is used to append blocks of data instead of one observation 
at a time. This method increases performance when you are appending large data 

576 Chapter 17 / DATASETS Procedure



sets. SAS determines whether to use the block I/O method. Not all data sets can 
use the block I/O method. There are restrictions set by the APPEND statement and 
the Base SAS engine.

To display information in the SAS log about the append method that is being used, 
you can specify the MSGLEVEL= system option as follows:

options msglevel=i;

The following message is written to the SAS log, if the block I/O method is not used:

INFO: Data set block I/O cannot be used because:

If the APPEND statement determines that the block I/O will not be used, one of the 
following explanations is written to the SAS log:

INFO: - The data sets use different engines, have different variables 
or have attributes that might differ.

INFO: - There is a WHERE clause present.

INFO: - There is no member level locking.

INFO: - The OBS option is active. 

INFO: - The FIRSTOBS option is active. 

If the Base SAS engine determines that the block I/O method will not be used, one 
of the following explanations is written to the SAS log:

INFO: - Referential Integrity Constraints exist.

INFO: - Cross Environment Data Access is being used.

INFO: - The file is compressed.

INFO: - The file has an audit file which is not suspended.

Restricting the Observations That Are Appended
You can use the WHERE= data set option with the DATA= data set in order to 
restrict the observations that are appended. Likewise, you can use the WHERE 
statement in order to restrict the observations from the DATA= data set. The 
WHERE statement has no effect on the BASE= data set. If you use the WHERE= 
data set option with the BASE= data set, WHERE= has no effect.

CAUTION
For an existing BASE= data set: If there is a WHERE statement in the BASE= data 
set, it takes effect only if the WHEREUP= option is set to YES.

CAUTION
For the non-existent BASE= data set: If there is a WHERE statement in the non-
existent BASE= data set, regardless of the WHEREUP option setting, you use the 
WHERE statement.

Note: You cannot append a data set to itself by using the WHERE= data set option.

APPEND Statement 577



Choosing between the SET Statement and the 
APPEND Statement
If you use the SET statement in a DATA step to concatenate two data sets, SAS 
must process all the observations in both data sets to create a new one. The 
APPEND statement bypasses the processing of data in the original data set and 
adds new observations directly to the end of the original data set. Using the 
APPEND statement can be more efficient than using a SET statement if any of the 
following occurs:

n The BASE= data set is large.

n All variables in the BASE= data set have the same length and type as the 
variables in the DATA= data set and if all variables exist in both data sets. 

Note: You can use the CONTENTS statement to see the variable lengths and 
types.

The APPEND statement is especially useful if you frequently add observations to a 
SAS data set (for example, in production programs that are constantly appending 
data to a journal-type data set).

Appending Password-Protected SAS Data Sets
In order to use the APPEND statement, you need Read access to the DATA= data 
set and Write access to the BASE= data set. To gain access, use the READ= and 
WRITE= data set options in the APPEND statement in parentheses immediately 
after the data set name. When you are appending password-protected data sets, 
use the following guidelines:

n If you do not give the Read password for the DATA= data set in the APPEND 
statement, by default the procedure looks for the Read password for the DATA= 
data set in the PROC DATASETS statement. However, the procedure does not 
look for the Write password for the BASE= data set in the PROC DATASETS 
statement. Therefore, you must specify the Write password for the BASE= data 
set in the APPEND statement.

n If the BASE= data set is read-protected only, you must specify its Read 
password in the APPEND statement.

Appending AES-Encrypted Data Sets
When appending two AES-encrypted data sets, you must use the ENCRYPTKEY= 
data set option for access to the data sets. Here is an example using the 
ENCRYPTKEY= option on both data sets:

proc datasets;    
   append base=a (encryptkey=secret)     
      data=a (encryptkey=jlgh56);
run;

When appending to a non-encrypted data set, you must specify the 
ENCRYPTKEY= on the DATA= data set. Then, you can append to the data set even 
if the BASE= data set engine does not support AES encryption. The data appended 
will not be encrypted.

578 Chapter 17 / DATASETS Procedure



proc datasets;    
   append base=a 
      data=a (encryptkey=key-value);
run;

For more information about AES encryption, see “AES Encryption” in SAS 
Programmer’s Guide: Essentials. For more information about the ENCRYPTKEY= 
data set option, see “ENCRYPTKEY= Data Set Option” in SAS Data Set Options: 
Reference.

Appending to a Compressed Data Set
You can concatenate compressed SAS data sets. Either or both of the BASE= and 
DATA= data sets can be compressed. If the BASE= data set allows the reuse of 
space from deleted observations, the APPEND statement might insert the 
observations into the middle of the BASE= data set to use available space.

Either or both of the BASE= SAS data set and DATA= data set or CAS table can be 
compressed. If the BASE= data set allows the reuse of space from deleted rows, 
the APPEND statement might insert the rows into the middle of the BASE= data set.

For information about the COMPRESS= and REUSE= data set and system options, 
see SAS Data Set Options: Reference and SAS System Options: Reference.

PROC APPEND places all of the new observations at the end of the BASE= data-
set and tries to reuse space, which is part of the fast-append behavior that was 
added in SAS 7. The fast-append behavior was added for better performance 
writing to the BASE data set and updating indexes. If you want to reuse space, then 
you need to add the APPENDVER=v6 option to the PROC DATASETS APPEND 
statement. PROC DATASETS APPEND reuses space only when the new 
observations fit into the space previously occupied by the deleted observations.

  proc append base=libref.data-set data=librefdata-set appendver=v6;
  run;

Appending to Data Sets That Contain Variables with 
Different Attributes
If a variable has different attributes in the BASE= SAS data set than it does in the 
DATA= data set or table, the attributes in the BASE= data set prevail.

If the formats in the DATA= SAS data set or CAS table are different from those in 
the BASE= SAS data set, then the formats in the BASE= data set are used. 
However, the data from the DATA= data set or table is not converted in order to be 
consistent with the formats in the BASE= data set. The result could be data that 
seems to be incorrect. A warning message is displayed in the log.

Use the FORCE option if one of the following occurs:

n if the length of a variable is longer in the DATA= SAS data set or CAS table than 
in the BASE= data set

n if the same variable is a character variable in one data set or table and a numeric 
variable in the other

Using FORCE has the following consequences:

APPEND Statement 579

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1s7u3pd71rgunn1xuexedikq90f.htm&docsetTargetAnchor=n1o82uabmi8m8xn1krmlzw1q1tv4&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1s7u3pd71rgunn1xuexedikq90f.htm&docsetTargetAnchor=n1o82uabmi8m8xn1krmlzw1q1tv4&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


n The length of the variables in the BASE= SAS data set takes precedence. The 
values might be truncated from the DATA= data set or CAS table to fit them into 
the length that is specified in the BASE= data set.

n The type of the variables in the BASE= data set takes precedence. The 
APPEND statement replaces values of the wrong type (all values for the variable 
in the DATA= data set or table) with missing values.

Appending to an Indexed Data Set — Fast-Append 
Method
Beginning with Version 7, the behavior of appending to an indexed data set 
changed to improve performance.

n In Version 6, when you appended to an indexed data set, the index was updated 
for each added observation. Index updates tend to be random. Therefore, disk 
I/O could have been high. 

n Currently, SAS does not update the index until all observations are added to the 
data set. After the append, SAS internally sorts the observations and inserts the 
data into the index sequentially. The behavior reduces most of the disk I/O and 
results in a faster append method. 

The fast-append method is used by default when the following requirements are 
met. Otherwise, the Version 6 method is used:

n The BASE= data set is open for member-level locking. If CNTLLEV= is set to 
record, then the fast-append method is not used.

n The BASE= data set does not contain referential integrity constraints.

n The BASE= data set is not accessed using the Cross Environment Data Access 
(CEDA) facility. 

n The BASE= data set is not using a WHERE= data set option. 

To display information in the SAS log about the append method that is being used, 
you can specify the MSGLEVEL= system option as follows:

options msglevel=i;

Either a message appears if the fast-append method is in use, or a message or 
messages appear as to why the fast-append method is not in use.

The current append method initially adds observations to the BASE= data set 
regardless of the restrictions that are determined by the index. For example, a 
variable that has an index that was created with the UNIQUE option does not have 
its values validated for uniqueness until the index is updated. Then, if a nonunique 
value is detected, the offending observation is deleted from the data set. After 
observations are appended, some of them might subsequently be deleted.

For a simple example, consider that the BASE= data set has ten observations 
numbered from 1 to 10 with a UNIQUE index for the variable ID. You append a data 
set that contains five observations numbered from 1 to 5, and observations 3 and 4 
both contain the same value for ID. The following actions occur:

1 After the observations are appended, the BASE= data set contains 15 
observations numbered from 1 to 15. 

2 SAS updates the index for ID, validates the values, and determines that 
observations 13 and 14 contain the same value for ID. 

580 Chapter 17 / DATASETS Procedure



3 SAS deletes one of the observations from the BASE= data set, resulting in 14 
observations that are numbered from 1 to 15. For example, observation 13 is 
deleted. Note that you cannot predict which observation is deleted, because the 
internal sort might place either observation first. (In Version 6, you could predict 
that observation 13 would be added and observation 14 would be rejected.) 

If you do not want the current behavior (which could result in deleted observations) 
or if you want to be able to predict which observations are appended, request the 
Version 6 append method by specifying the APPENDVER=V6 option:

proc datasets;
   append base=a data=b appendver=v6;
run;

Note: In Version 6, deleting the index and then re-creating it after the append could 
improve performance. The current method might eliminate the need to do that. 
However, the performance depends on the nature of your data.

Appending to Data Sets with Different Variables
If the DATA= data set contains variables that are not in the BASE= data set, use the 
FORCE option in the APPEND statement to force the concatenation of the two data 
sets. The APPEND statement drops the extra variables and issues a warning 
message. You can use the NOWARN option to suppress the warning message.

If the BASE= data set contains a variable that is not in the DATA= data set, the 
APPEND statement concatenates the data sets, but the observations from the 
DATA= data set have a missing value for the variable that was not present in the 
DATA= data set. The FORCE option is not necessary in this case.

If you use the DROP=, KEEP=, or RENAME= options on the BASE= data set, the 
options ONLY affect the APPEND processing and does not change the variables in 
the appended BASE= data set. Variables that are dropped or not kept using the 
DROP= and KEEP= options still exist in the appended BASE= data set. Variables 
that are renamed using the RENAME= option remain with their original name in the 
appended BASE= data set.

Appending to Data Sets That Contain Variables with 
Different Attributes
If a variable has different attributes in the BASE= data set than it does in the DATA= 
data set, the attributes in the BASE= data set prevail.

If the SAS formats in the DATA= data set are different from those in the BASE= data 
set, then the SAS formats in the BASE= data set are used. However, SAS does not 
convert the data from the DATA= data set in order to be consistent with the SAS 
formats in the BASE= data set. The result could be data that seems to be incorrect. 
A warning message is displayed in the SAS log. The following example illustrates 
appending data by using different SAS formats:

data format1;
   input Date date9.;
   format Date date9.;
datalines;
24sep1975

APPEND Statement 581



22may1952
;

data format2;
   input Date datetime20.;
   format Date datetime20.;
datalines;
25aug1952:11:23:07.4
;

proc append base=format1 data=format2;
run;

The following messages are displayed in the SAS log.

NOTE: Appending WORK.FORMAT2 to WORK.FORMAT1.
WARNING: Variable Date has format DATE9. on the BASE data set
   and format DATETIME20. on the DATA data set. DATE9. used.
NOTE: There were 1 observations read from the data set WORK.FORMAT2.
NOTE: 1 observations added.
NOTE: The data set WORK.FORMAT1 has 3 observations and 1 variables.

If the length of a variable is longer in the DATA= data set than in the BASE= data 
set, or if the same variable is a character variable in one data set and a numeric 
variable in the other, use the FORCE option. Using FORCE has the following 
consequences:

n The length of the variables in the BASE= data set takes precedence. SAS 
truncates values from the DATA= data set to fit them into the length that is 
specified in the BASE= data set.

n The type of the variables in the BASE= data set takes precedence. The 
APPEND statement replaces values of the wrong type (all values for the variable 
in the DATA= data set) with missing values.

Note: If a character variable's transcoding attribute is opposite in the BASE= and 
DATA= data sets (for example, one is YES and the other is NO), then a warning is 
issued. To determine the transcoding attributes, use the CONTENTS procedure for 
each data set. You set the transcoding attribute with the TRANSCODE= option in 
the ATTRIB statement or with the TRANSCODE= column modifier in PROC SQL. 

Appending Data Sets That Contain Integrity 
Constraints
If the DATA= data set contains integrity constraints and the BASE= data set does 
not exist, the APPEND statement copies the general constraints. Note that the 
referential constraints are not copied. If the BASE= data set exists, the APPEND 
action copies only observations.

582 Chapter 17 / DATASETS Procedure



Appending to a Data Set with Integrity Constraints or 
Indexes
Here is a simple way to get the indexes and integrity constraints from an existing 
data set and then apply them to another data set. Note that Work.Model should 
already exist and have observations:

Proc contents data=sashelp.zipcode out2=work.ConstraintsIndexes;
run;

proc sql noprint;
   select recreate into :macroVarCIs separated by ' ' 
          from work.ConstraintsIndexes;
quit;

data work.test_zipcode;
   set sashelp.zipcode;
run;

proc datasets lib=work nolist;
   modify test_zipcode;
   &macroVarCIs
quit;

proc contents data=work.test_zipcode;
run;

Appending with Generation Groups
You can use the GENNUM= data set option to append to a specific version in a 
generation group. Here are examples:

Table 17.4 Appending with Generation Groups

SAS Statements Result

proc datasets;
   append base=a
      data=b(gennum=2);

Appends historical version B#002 to 
base A

proc datasets;
   append base=a(gennum=2)
      data=b(gennum=2);

Appends historical version B#002 to 
historical version A#002

System Failures
If a system failure or some other type of interruption occurs while the procedure is 
executing, the Append operation might not be successful; it is possible that not all, 
perhaps none, of the observations are added to the BASE= data set. In addition, the 
BASE= data set might suffer damage. The Append operation performs an update in 
place, which means that it does not make a copy of the original data set before it 
begins to append observations. If you want to be able to restore the original 

APPEND Statement 583



observations, you can initiate an audit trail for the base data file and choose to store 
a before-update image of the observations. Then you can write a DATA step to 
extract and reapply the original observations to the data file. For information about 
initiating an audit trail, see “AUDIT Statement” on page 585. 

ATTRIB Statement
Associates a format, informat, or label with variables in the SAS data set specified in the MODIFY 
statement.

Restriction: The ATTRIB statement must appear in a MODIFY RUN group

Note: The ATTRIB statement does not affect the CONTENTS statement output. CONTENTS 
reports the labels, informats, and formats on the actual member.

Example: AUDIT statement on page 673

Syntax
ATTRIB variable-list(s) attribute-list(s);

Required Arguments
variable-list(s)

names the variables that you want to associate with the attributes. You can list 
the variables in any form that SAS allows.

attribute-list(s)
specifies one or more attributes to assign to variable-list. Specify one or more of 
the following attributes in the ATTRIB statement:

FORMAT=format
associates a format with variables in variable-list.

Tip The format can be either a standard SAS format or a format that is 
defined with the FORMAT procedure.

INFORMAT=informat
associates an informat with variables in variable-list.

Tip The informat can be either a standard SAS informat or an informat that 
is defined with the FORMAT procedure.

LABEL='label'
associates a label with variables in the variable-list.

Details
Within the DATASETS procedure, the ATTRIB statement must be used in a 
MODIFY RUN group and can use only the FORMAT, INFORMAT, and LABEL 

584 Chapter 17 / DATASETS Procedure



options. The ATTRIB statement is the simplest way to remove or change all variable 
labels, formats, or informats in a data set using the keyword _ALL_. For an 
example, see “Example 1: Removing All Labels and Formats in a Data Set” on page 
673. 

If you are not deleting or changing all attributes, it is easier to use the following 
statements, LABEL statement on page 627 , FORMAT Statement on page 617, 
and INFORMAT statement on page 625. 

AUDIT Statement
Initiates and controls event logging to an audit file as well as suspends, resumes, or terminates event 
logging in an audit file.

Tips: The AUDIT statement takes one of two forms, depending on whether you are initiating 
the audit trail or suspending, resuming, or terminating event logging in an audit file.
You can define attributes such as format and informat for the user variables in the data 
file by using the PROC DATASETS MODIFY statement.

See: “Understanding an Audit Trail” in SAS Language Reference: Concepts

Syntax
AUDIT SAS-file <(SAS-password <ENCRYPTKEY=key-value> 
<GENNUM=integer>)>;
INITIATE <AUDIT_ALL=NO | YES>;
LOG<ADMIN_IMAGE=YES | NO>
<BEFORE_IMAGE=YES | NO>
<DATA_IMAGE=YES | NO>
<ERROR_IMAGE=YES | NO>;
<SUSPEND | RESUME | TERMINATE; >
<USER_VAR variable(s) >;

Required Argument
SAS-file

specifies the SAS data file in the procedure input library that you want to audit.

Optional Arguments
SAS-password

specifies the password for the SAS data file, if one exists. The parentheses are 
required.

ENCRYPTKEY=key-value
specifies the key value for AES encryption. 

GENNUM=integer
specifies that the SUSPEND, RESUME, or TERMINATE action be performed on 
the audit trail of a generation file. You cannot initiate an audit trail on a 

AUDIT Statement 585

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ndg2uekz7qkbn1caoki2hzqx8l.htm&locale=en


generation file. Valid values for GENNUM= are integers, which is a number that 
references a specific version from a generation group. Specifying a positive 
number is an absolute reference to a specific generation number that is 
appended to a data set's name (that is, gennum=2 specifies MYDATA#002). 
Specifying a negative number is a relative reference to a historical version in 
relation to the base version, from the youngest to the oldest (that is, gennum=-1 
refers to the youngest historical version). Specifying 0, which is the default, 
refers to the base version. The parentheses are required.

Restriction The GENNUM= option cannot be specified before an INITIATE or 
USER_VAR statement.

Details

Creating an Audit File

Note: The initiation of an audit trail is possible only with the Base SAS engine.

The following example creates the audit file MyLib.MyFile.audit to log updates to the 
data file MyLib.MyFile.data, storing all available record images:

proc datasets library=mylib;
   audit myfile (alter=password);
   initiate;
run;

The following example creates the same audit file but stores only error record 
images:

proc datasets library=mylib;
   audit myfile (alter=password);
   initiate;
      log data_image=no 
          before_image=no
          data_image=no;
run; 

The following example initiates an audit file using AUDIT_ALL=YES:

proc datasets lib=mylib;  /* all audit image types will be logged 
                             and the file cannot be suspended */
     audit myfile (alter=password);
     initiate audit_all=yes;
quit; 

The following example terminates an audit file:

proc datasets lib=mylib;           
     audit myfile (alter=password);
     terminate;
quit;

586 Chapter 17 / DATASETS Procedure



The AUDIT statement starts an audit run group for a file. Multiple audit run groups 
for that file can be submitted in the following ways:

n in the same PROC DATASETS step

n in separate PROC DATASETS steps 

n in separate SAS sessions

All audit file related statements (INITIATE, USER_VAR, LOG, SUSPEND, 
RESUME, TERMINATE) must be preceded by an AUDIT statement, which identifies 
the file that they apply to.

The INITIATE statement creates an audit file and must be submitted in the first 
AUDIT statement occurrence. No other audit-related statement, such as 
USER_VAR, LOG, SUSPEND, RESUME, or TERMINATE will be valid for that audit 
file until the INITIATE statement has been submitted. You can initiate an audit file on 
a generation data set, but it must be the latest generation of the generation group. 
You cannot specify a GENNUM to identify the latest generation. You will get the 
latest generation by default.

Here is an example of the AUDIT statement in the first AUDIT RUN group for a 
given file:

AUDIT file <(SAS-password)>; 

Once an audit file has been initiated, the AUDIT statements that follow the INITIATE 
statement for that file can specify a GENNUM:

 AUDIT file <(<SAS-password><GENNUM=integer>)>;

The USER_VAR statement must directly follow the INITIATE statement in the same 
AUDIT RUN group.

CHANGE Statement
Renames one or more SAS files in the same SAS library.

Example: “Example 2: Manipulating SAS Files” on page 678

Syntax
CHANGE old-name-1=new-name-1
<old-name-2=new-name-2 …>
</ <ENCRYPTKEY=key-value>
<ALTER=alter-password> <GENNUM=ALL | integer> <MEMTYPE=member-type>>;

Required Argument
old-name=new-name

changes the name of a SAS file in the input data library. old-name must be the 
name of an existing SAS file in the input data library.

Example “Example 2: Manipulating SAS Files” on page 678

CHANGE Statement 587



Optional Arguments
ENCRYPTKEY=key-value

specifies the key value for AES encryption. This option is needed only if 
RELATIVE GENNUM is specified. For more information, see “Library Contents 
and AES Encryption” on page 593.

ALTER=alter-password
provides the Alter password for any alter-protected SAS files named in the 
CHANGE statement. Because a CHANGE statement changes the names of 
SAS files, you need Alter access to use the CHANGE statement for new-name. 
You can use the option either in parentheses after the name of each SAS file or 
after a forward slash.

See “Using Passwords with the DATASETS Procedure” on page 649

GENNUM=ALL | integer
restricts processing for generation data sets. You can use the option either in 
parentheses after the name of each SAS file or after a forward slash. The 
following list shows valid values: 

ALL
0

refers to the base version and all historical versions of a generation group.

integer
refers to a specific version from a generation group. Specifying a positive 
number is an absolute reference to a specific generation number that is 
appended to a data set's name (that is, gennum=2 specifies MYDATA#002). 
Specifying a negative number is a relative reference to a historical version in 
relation to the base version, from the youngest to the oldest (that is, 
gennum=-1 refers to the youngest historical version).

For example, the following statements change the name of version A#003 to 
base B:

proc datasets;    
   change A=B / gennum=3;  

proc datasets;    
   change A(gennum=3)=B;

The following CHANGE statement produces an error:

proc datasets;    
   change A(gennum=3)=B(gennum=3);

See “Restricting Processing for Generation Data Sets” on page 650 and 
“Understanding Generation Data Sets” in SAS Language Reference: 
Concepts 

MEMTYPE=member-type
restricts processing to one member type. You can use the option either in 
parentheses after the name of each SAS file or after a forward slash.

Aliases MTYPE=

MT=

588 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en


Default If you do not specify MEMTYPE= in the PROC DATASETS statement, 
the default is MEMTYPE=ALL.

See “Restricting Member Types for Processing” on page 651

Details
The CHANGE statement changes names by the order in which the old-names occur 
in the directory listing, not in the order in which you list the changes in the CHANGE 
statement.

If the old-name SAS file does not exist in the SAS library, PROC DATASETS stops 
processing the RUN group containing the CHANGE statement and issues an error 
message. To override this behavior, use the NOWARN option in the PROC 
DATASETS statement.

If you change the name of a data set that has an index, the index continues to 
correspond to the data set.

CONTENTS Statement
Describes the contents of one or more SAS data sets and prints the directory of the SAS library.

Restriction: You cannot use the WHERE option to affect the output because PROC CONTENTS 
does not process any observations.

Notes: The ATTRIB statement does not affect the CONTENTS statement output. CONTENTS 
reports the labels, informats, and formats on the actual member.
When using the CONTENTS statement with SAS/ACCESS LIBNAME engines, see 
“Differences in the DATASETS Procedure Output When Using SAS/ACCESS LIBNAME 
Engines” on page 560.

Tip: You can use data set options with the DATA=, OUT=, and OUT2= options. You can use 
any global statements as well.

Example: “Example 5: Describing a SAS Data Set” on page 688

Syntax
CONTENTS <options>;

Optional Arguments
CENTILES

prints centiles information for indexed variables.

The following additional fields are printed in the default report of PROC 
CONTENTS when the CENTILES option is selected and an index exists on the 

CONTENTS Statement 589



data set. Note that the additional fields depend on whether the index is simple or 
complex.

# number of the index on the data set.

Index name of the index.

Update Centiles percentage of the data values that must be changed 
before the CENTILES for the indexed variables are 
automatically updated.

Current Update 
Percentage

percentage of index updated since CENTILES were 
refreshed.

# of Unique Values number of unique indexed values.

Variables names of the variables used to make up the index. 
Centile information is listed below the variables.

DATA=SAS-file-specification
specifies an entire library or a specific SAS data set within a library. SAS-file-
specification can take one of the following forms: 

<libref.>SAS-data-set
names one SAS data set to process. The default for libref is the libref of the 
procedure input library. For example, to obtain the contents of the SAS data 
set HtWt from the procedure input library, use the following CONTENTS 
statement:

contents data=HtWt;

To obtain the contents of a specific version from a generation group, use the 
GENNUM= data set option as shown in the following CONTENTS statement:

contents data=HtWt(gennum=3);

<libref.>_ALL_
gives you information about all SAS data sets that have the type or types 
specified by the MEMTYPE= option. libref refers to the SAS library. The 
default for libref is the libref of the procedure input library.

n If you are using the _ALL_ keyword, you need Read access to all read-
protected SAS data sets in the SAS library.

n DATA=_ALL_ automatically prints a listing of the SAS files that are 
contained in the SAS library. Note that for SAS views, all librefs that are 
associated with the views must be assigned in the current session in 
order for them to be processed for the listing.

Default most recently created data set in your job or session, from any SAS 
library.

Tip If you specify a read-protected data set in the DATA= option but do 
not give the Read password, by default the procedure looks in the 
PROC DATASETS statement for the Read password. However, if you 
do not specify the DATA= option and the default data set (last one 
created in the session) is Read protected, the procedure does not 
look in the PROC DATASETS statement for the Read password.

Example “Example 5: Describing a SAS Data Set” on page 688

590 Chapter 17 / DATASETS Procedure



DETAILS | NODETAILS
includes information in the output about the number of observations, number of 
variables, number of indexes, and data set labels. DETAILS includes these 
additional columns of information in the output, but only if DIRECTORY is also 
specified.

Default If neither DETAILS nor NODETAILS is specified, the defaults are as 
follows: for the CONTENTS procedure, the default is the system option 
setting, which is NODETAILS; for the CONTENTS statement, the 
default is whatever is specified in the PROC DATASETS statement, 
which also defaults to the system option setting.

See a description of the additional columns in the Optional Argument 
section of PROC DATASETS Statement on page 566 

DIRECTORY
prints a list of all SAS files in the specified SAS library. If DETAILS is also 
specified, using DIRECTORY causes the additional columns described in 
DETAILS | NODETAILS on page 591 to be printed.

ENCRYPTKEY=key-value
specifies the key value for AES encryption. For more information, see “Library 
Contents and AES Encryption” on page 593.

FMTLEN
prints the length of the informat or format. If you do not specify a length for the 
informat or format when you associate it with a variable, the length does not 
appear in the output of the CONTENTS statement unless you use the FMTLEN 
option. The length also appears in the FORMATL or INFORML variable in the 
output data set.

MEMTYPE=(member-type(s))
restricts processing to one or more member types. The CONTENTS statement 
produces output only for member types DATA, VIEW, and ALL, which includes 
DATA and VIEW.

MEMTYPE= in the CONTENTS statement differs from MEMTYPE= in most of 
the other statements in the DATASETS procedure in the following ways:

n A slash does not precede the option.

n You cannot enclose the MEMTYPE= option in parentheses to limit its effect to 
only the SAS file immediately preceding it.

MEMTYPE= results in a directory of the library in which the DATA= member is 
located. However, MEMTYPE= does not limit the types of members whose 
contents are displayed unless the _ALL_ keyword is used in the DATA= option. 
For example, the following statements produce the contents of only the SAS 
data sets with the member type DATA:

proc datasets memtype=data;    
   contents data=_all_; 
run;

Aliases MTYPE=

MT=

Default DATA

CONTENTS Statement 591



NODS
suppresses printing the contents of individual files when you specify _ALL_ in 
the DATA= option. The CONTENTS statement prints only the SAS library 
directory. You cannot use the NODS option when you specify only one SAS data 
set in the DATA= option.

NODETAILS
See “DETAILS|NODETAILS” on page 591. 

NOPRINT
suppresses printing the output of the CONTENTS statement.

ORDER=COLLATE | CASECOLLATE | IGNORECASE | VARNUM

COLLATE prints a list of variables in alphabetical order beginning 
with uppercase and then lowercase names.

CASECOLLATE prints a list of variables in alphabetical order even if they 
include mixed-case names and numerics.

IGNORECASE prints a list of variables in alphabetical order ignoring the 
case of the letters.

VARNUM is the same as the VARNUM option.

Note The ORDER= option does not affect the order of the OUT= and 
OUT2= data sets.

See “VARNUM” on page 593

Example See “Example 4: Using the ORDER= Option” on page 502 to compare 
the default and the four options for ORDER=.

OUT=SAS-data-set
names an output SAS data set.

Tip OUT= does not suppress the printed output from the statement. If you 
want to suppress the printed output, you must use the NOPRINT option.

See “The OUT= Data Set” on page 666 for a description of the variables in the 
OUT= data set.

OUT2=SAS-data-set
names the output data set to contain information about indexes and integrity 
constraints.

Note When you use the OUT2=PermanentLibrary_ALL_ option within PROC 
CONTENTS or PROC DATASETS with the CONTENTS statement, you 
must also set the REPLACE=YES data set option or the REPLACE 
system option.

Tips If UPDATECENTILES was not specified in the index definition, then the 
default value of 5 is used in the re-create variable of the OUT2 data set.

OUT2= does not suppress the printed output from the statement. To 
suppress the printed output, use the NOPRINT option.

See “The OUT2= Data Set” on page 672 for a description of the variables in 
the OUT2= data set.

592 Chapter 17 / DATASETS Procedure



SHORT
prints only the list of variable names, the index information, and the sort 
information for the SAS data set.

Restriction If the list of variables is more than 32,767 characters, the list is 
truncated and a WARNING is written to the SAS log. To get a 
complete list of the variables, request an alphabetical listing of the 
variables.

VARNUM
prints a list of the variable names in the order of their logical position in the data 
set. By default, the CONTENTS statement lists the variables alphabetically. The 
physical position of the variable in the data set is engine-dependent.

Details

Using the CONTENTS Procedure Instead of the 
CONTENTS Statement
The only difference between the CONTENTS procedure and the CONTENTS 
statement in PROC DATASETS is the default for libref in the DATA= option. For 
PROC CONTENTS, the default is Work. For the CONTENTS statement, the default 
is the libref of the procedure input library.

Printing Variables
The CONTENTS statement prints an alphabetical listing of the variables by default, 
except for variables in the form of a numbered range list. Numbered range lists, 
such as x1–x100, are printed in incrementing order, that is, x1–x100. For more 
information, see “Alphabetic List of Variables and Attributes” on page 661. 

Note: If a label is changed after a view is created from a data set with variable 
labels, the CONTENTS or DATASETS procedure output shows the original labels. 
The view must be recompiled in order for the CONTENTS or DATASETS procedure 
output to reflect the new variable labels.

Displaying the ICU Revision Number
The CONTENTS statement prints the International Components for Unicode (ICU) 
revision number when you use the SORT procedure for a linguistic sort on a data 
set. For more information about linguistic sorting, see Chapter 64, “SORT 
Procedure,” on page 2277.

Library Contents and AES Encryption
When requesting the contents of all data files in a library, use the _ALL_ option. If 
the library contains data files that are AES -encrypted, the ENCRYPTKEY= data set 

CONTENTS Statement 593



option must be used to access the data files. Here is an example using the 
ENCRYPTKEY= option:

proc contents data=MyLib._all_ (encryptkey=key-value);
run;

If the key value does not match the key value for a particular data file in the library, 
then you will be prompted to enter the correct key value.

For more information about AES encryption, see “AES Encryption” in SAS 
Programmer’s Guide: Essentials. For more information about the ENCRYPTKEY= 
data set option, see “ENCRYPTKEY= Data Set Option” in SAS Data Set Options: 
Reference.

Observation Length, Alignment, and Padding for a 
SAS Data Set
There are three different cases for alignment.

n Observations within a SAS data set are aligned on double-byte boundaries 
whenever possible. As a result, 8-byte and 4-byte numeric variables are 
positioned at 8-byte boundaries at the front of the data set. They are followed by 
character variables in the order in which they are encountered. If the data set 
contains only 4-byte numeric data, the alignment is based on 4-byte boundaries. 
Since numeric doubles can be operated upon directly rather than being moved 
and aligned before doing comparisons or increments, the boundaries cause 
better performance.

Since there are many observations contained within a given disk data page 
buffer, there might be padding between observations. The padding is to let each 
observation be aligned on a double-byte boundary. See the following example:

data a;
   length aa 7 bb 6 cc $10 dd 8 ee 3;
   aa = 1;
   bb = 2;
   cc = 'abc';
   dd = 3;
   ee = 4;
   ff = 5;
   output;
run;

proc contents data=a out=a1; 
run;

proc print data=a1(keep=name length varnum npos); 
run;

594 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1s7u3pd71rgunn1xuexedikq90f.htm&docsetTargetAnchor=n1o82uabmi8m8xn1krmlzw1q1tv4&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1s7u3pd71rgunn1xuexedikq90f.htm&docsetTargetAnchor=n1o82uabmi8m8xn1krmlzw1q1tv4&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en


Figure 17.1 Observation Length

PROC CONTENTS shows an observation length of 48. PROC PRINT displays 
the internal layout of the variables within the observation where NPOS is the 
zero-based offset for each variable.

Figure 17.2 Observation and Variable Boundaries

Variables DD and FF, the only true numeric doubles, are at offsets 0 and 8, 
respectively, so they are automatically aligned. The rest of the observation 
contains the remaining numeric variables and then character variables.

The last physical variable in this layout is CC with an offset of 32 and a length of 
10. This gives you an internal length of 42, even though PROC CONTENTS 
reports the observation length as 48. The difference is the 6 bytes of padding so 
that the next observation is aligned on a double-byte boundary within the disk 
page buffer.

n No alignment is done when the observation does not contain 8-byte numeric 
variables as demonstrated in the next example, which gives you an observation 
length of 7 and no padding between observations within disk page buffers: 

CONTENTS Statement 595



data b;
   length aa 6 cc $1;
   aa = 1;
   cc = 'x';
   output;
run;

proc contents data=b out=b1;
run;

proc print data=b1(keep=name length varnum npos); 
run;

Figure 17.3 Variables and Attributes

n Observations for compressed data sets are not aligned within the disk page 
buffer, but the same algorithm is used for positioning the variables within the 
observations. Compressed observations must be uncompressed and moved into 
a work buffer. The 8-byte numeric values will be aligned and ready for use 
immediately after uncompressing. The observation length in the PROC 
CONTENTS output might be larger due to operating system-specific overhead.

COPY Statement
Copies all or some of the SAS files in a SAS library.

Restriction: The COPY statement does not support data set options.

Notes: When using the COPY statement with SAS/ACCESS LIBNAME engines, see 
“Differences in the DATASETS Procedure Output When Using SAS/ACCESS LIBNAME 
Engines” on page 560.
For CAS engine specifics, see “CAS Processing for PROC COPY” on page 511.

Tips: See the example in PROC COPY on page 521 to migrate from a 32-bit machine to a 64-
bit machine.
The COPY statement defaults to the encoding and data representation of the output 
library when you use Remote Library Services (RLS) such as SAS/SHARE or 
SAS/CONNECT. If you are not using RLS, you must use the PROC COPY option 
NOCLONE for the output files to take on the encoding and data representation of the 
output library. Using the NOCLONE option results in a copy with the data representation 
of the data library (if specified in the OUTREP= LIBNAME option) or the native data 
representation of the operating environment.

Example: “Example 2: Manipulating SAS Files” on page 678

596 Chapter 17 / DATASETS Procedure



Syntax
COPY <ACCEL | NOACCEL>OUT=libref-1
<CLONE | NOCLONE>
<CONSTRAINT=YES | NO>
<DATECOPY>
<ENCRYPTKEY=key-value>
<FORCE>
IN=libref-2
<INDEX=YES | NO>
<MEMTYPE=(member-type(s))>
<MOVE <ALTER=alter-password>>
<OVERRIDE=(ds-option-1=value-1 <ds-option-2=value-2 …> ) >;

Required Argument
OUT=libref-1

names the SAS library to copy SAS files to.

Alias OUTLIB= and OUTDD=

Example “Example 2: Manipulating SAS Files” on page 678

Optional Arguments
ACCEL | NOACCEL

specifies whether to perform the copy operation in CAS. Both the IN= and OUT= 
libraries must be CAS engine libraries and they must use the same CAS 
session.

Default ACCEL

See “Copying a CAS Table to Another CAS Table” on page 605

CLONE | NOCLONE
specifies whether to copy the following data set attributes: 

n size of input/output buffers

n whether the data set is compressed

n whether free space is reused

n data representation of input data set, library, or operating environment

n encoding value

n whether a compressed data set can be randomly accessed by an observation 
number

These attributes are specified with data set options, SAS system options, and 
LIBNAME statement options:

n BUFSIZE= value for the size of the input/output buffers

n COMPRESS= value for whether the data set is compressed

n REUSE= value for whether free space is reused

COPY Statement 597



n OUTREP= value for data representation

n ENCODING= or INENCODING= for encoding value

n POINTOBS= value for whether a compressed data set can be randomly 
accessed by an observation number

For the BUFSIZE= attribute, the following table summarizes how the COPY 
statement works:

Table 17.5 CLONE and the Buffer Page Size Attribute

Option COPY Statement

CLONE Uses the BUFSIZE= value from the input data set for the 
output data set. However, specifying BUFSIZE= value in 
the OVERRIDE= option list results in a copy that uses the 
specified value.

NOCLONE Uses the current setting of the SAS system option 
BUFSIZE= for the output data set.

Neither Determines the type of access method, sequential or 
random, used by the engine for the input data set and the 
engine for the output data set. If both engines use the 
same type of access, the COPY statement uses the 
BUFSIZE= value from the input data set for the output data 
set. If the engines do not use the same type of access, the 
COPY statement uses the setting of SAS system option 
BUFSIZE= for the output data set.

For the COMPRESS= attribute, the following table summarizes how the COPY 
statement works:

Table 17.6 CLONE and the Compression Attribute

Option COPY Statement

CLONE Uses the values from the input data set for the output data 
set. However, specifying COMPRESS= value in the 
OVERRIDE= option list results in a copy that uses the 
specified encoding.

NOCLONE Results in a copy with the compression of the operating 
environment or, if specified, the value of the COMPRESS= 
option in the LIBNAME statement for the library.

Neither Defaults to CLONE.

For the REUSE= attribute, the following table summarizes how the COPY 
statement works:

598 Chapter 17 / DATASETS Procedure



Table 17.7 CLONE and the Reuse Space Attribute

Option COPY Statement

CLONE Uses the values from the input data set for the output data 
set. If the engine for the input data set does not support the 
reuse space attribute, then the COPY statement uses the 
current setting of the corresponding SAS system option. 
However, specifying REUSE= value in the OVERRIDE= 
option list results in a copy that uses the specified value.

NOCLONE Uses the current setting of the SAS system options 
COMPRESS= and REUSE= for the output data set.

Neither Defaults to CLONE.

For the OUTREP= attribute, the following table summarizes how the COPY 
statement works:

Table 17.8 CLONE and the Data Representation Attribute

Option COPY Statement

CLONE Results in a copy with the same data representation of the 
input data set. However, if you specify an OUTREP= value 
in the OVERRIDE= option list, the data representation is 
changed, and its encoding will change to an encoding that 
is compatible with the data representation and the locale of 
the current session. The encoding will also change if it is 
specified in the OVERRIDE= option list.

NOCLONE Results in a copy with the data representation of the 
operating environment or, if specified, the value of the 
OUTREP= option in the LIBNAME statement for the OUT= 
library.

Neither Defaults to CLONE.

Data representation is the form in which data is stored in a particular operating 
environment. Different operating environments use the following different 
standards or conventions:

n for storing floating-point numbers (for example, IEEE or IBM 390)

n for character encoding (ASCII or EBCDIC)

n for the ordering of bytes in memory (big Endian or little Endian)

n for word alignment (4-byte boundaries or 8-byte boundaries)

n for data-type length (16-bit, 32-bit, or 64-bit)

Native data representation is when the data representation of a file is the same 
as the CPU operating environment. For example, a file in Windows data 
representation is native to the Windows operating environment.

COPY Statement 599



For the ENCODING= attribute, the following table summarizes how the COPY 
statement works.

Table 17.9 CLONE and the Encoding Attribute

Option COPY Statement

CLONE Results in a copy that uses the encoding of the input data 
set or, if specified, the value of the INENCODING= option 
in the LIBNAME statement for the input library. However, 
specifying ENCODING= value in the OVERRIDE= option 
list results in a copy that uses the specified encoding.

NOCLONE Results in a copy that uses the encoding of the current 
session encoding or, if specified, the value of the 
OUTENCODING= option in the LIBNAME statement for 
the output library.

Neither Defaults to CLONE.

All text (character) data that is stored, transmitted, or processed by a computer is 
in an encoding. An encoding maps each character to a unique numeric 
representation. An encoding is a combination of a character set with an encoding 
method. A character set is the repertoire of characters and symbols that are 
used by a language or group of languages. An encoding method is the set of 
rules that are used to assign the numbers to the set of characters that are used 
in an encoding.

For the POINTOBS= attribute, the following table summarizes how the COPY 
statement works. To use POINTOBS=, the output data set must be compressed.

Table 17.10 CLONE and the POINTOBS= Attribute

Option COPY Statement

CLONE Uses the POINTOBS= value from the input data set for the 
output data set. However, specifying POINTOBS= value in 
the OVERRIDE= option list results in a copy that uses the 
specified value.

NOCLONE Uses the LIBNAME statement if the output data set is 
compressed and the POINTOBS= option is specified and 
supported by the output engine. If the LIBNAME statement 
is not specified and the data set is compressed, the default 
is POINTOBS=YES when supported by the output engine.

Neither Defaults to CLONE.

CONSTRAINT=YES | NO
specifies whether to copy all integrity constraints when copying a data set.

Default NO

600 Chapter 17 / DATASETS Procedure



Tip For data sets with integrity constraints that have a foreign key, the 
COPY statement copies the general and referential constraints if 
CONSTRAINT=YES is specified and the entire library is copied. If you 
use the SELECT or EXCLUDE statement to copy the data sets, then 
the referential integrity constraints are not copied. For more information, 
see “Understanding Integrity Constraints” in SAS Language Reference: 
Concepts.

DATECOPY
copies the SAS internal date and time at which the SAS file was created and 
when it was last modified to the resulting copy of the file. Note that the operating 
environment date and time are not preserved.

Restrictions DATECOPY cannot be used with encrypted files or catalogs.

DATECOPY can be used only when the resulting SAS file uses the 
V8 or V9 engine.

Tips You can alter the file creation date and time with the DTC= option 
in the MODIFY statement. See MODIFY statement on page 628. 

If the file that you are copying has attributes that require additional 
processing, the last modified date is changed to the current date. 
For example, when you copy a data set that has an index, the 
index must be rebuilt, and the last modified date changes to the 
current date. Other attributes that require additional processing 
and that could affect the last modified date include integrity 
constraints and a sort indicator.

ENCRYPTKEY= key-value
specifies the key value needed to copy data sets in the IN= library that have AES 
encryption.

Note If the output library does not support AES-encryption and the input data 
set is AES-encrypted, the COPY process will produce an error.

See “Copying AES-Encrypted Data Files Containing Referential Integrity 
Constraints ” on page 609

FORCE
enables you to use the MOVE option for a SAS data set on which an audit trail 
exists. 

Note The AUDIT file is not moved with the audited data set.

IN=libref-2
names the SAS library containing SAS files to copy.

Alias INLIB= and INDD=

Default the libref of the procedure input library

Interaction To copy only selected members, use the SELECT or EXCLUDE 
statements.

INDEX=YES | NO
specifies whether to copy all indexes for a data set when copying the data set to 
another SAS library.

COPY Statement 601

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0te4txy6dyzs9n1csptlqoktu7m.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0te4txy6dyzs9n1csptlqoktu7m.htm&locale=en


Default YES

MEMTYPE=(member-type(s))
restricts processing to one or more member types.

Aliases MTYPE=

MT=

Default If you omit MEMTYPE= in the PROC DATASETS statement, the 
default is MEMTYPE=ALL.

Note When PROC COPY processes a SAS library on tape and the 
MEMTYPE= option is not specified, it scans the entire sequential 
library for entries until it reaches the end-of-file. If the sequential 
library is a multivolume tape, all tape volumes are mounted. This 
behavior is also true for single-volume tape libraries.

See “Specifying Member Types When Copying or Moving SAS Files” on 
page 605 and “Member Types” on page 653

Example “Example 2: Manipulating SAS Files” on page 678

MOVE
moves SAS files from the input data library (named with the IN= option) to the 
output data library (named with the OUT= option). And deletes the original files 
from the input data library.

See “Using Passwords with the DATASETS Procedure” on page 649

Restriction The MOVE option can be used to delete a member of a SAS library 
only if the IN= engine supports the deletion of tables. A tape format 
engine does not support table deletion. If you use a tape format 
engine, SAS suppresses the MOVE operation and prints a warning.

Example “Example 2: Manipulating SAS Files” on page 678

ALTER=alter-password
provides the Alter password for any alter-protected SAS files that you are moving 
from one data library to another. Because the MOVE option deletes the SAS file 
from the original data library, you need Alter access to move the SAS file.

OVERRIDE=(ds-option-1=value-1 <ds-option-2=value-2> ...)
overrides specified output data set options copied from the input data set. Some 
data set options might not be appropriate in the output data set context of COPY. 

Restriction The OVERRIDE option is ignored if the NOCLONE option is 
specified. However, it can be used to modify data set attributes 
other than those controlled by the NOCLONE option.

Interaction When you specify an OUTREP= value in the OVERRIDE= option, 
the default encoding is based on the operating environment that is 
represented by the OUTREP= value and the locale of the current 
SAS session. To assign a nondefault encoding such as UTF-8, you 
must also specify an ENCODING= value in the OVERRIDE=option. 
For more information about locale and encoding, see SAS National 
Language Support (NLS): Reference Guide.

602 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Tip The default (or CLONE) behavior is to preserve many attributes, 
including the data representation and encoding, from the input data 
set. If instead you want the data representation and encoding of the 
SAS session that is executing the procedure, then specify 
OVERRIDE=(OUTREP=SESSION ENCODING=SESSION) in 
PROC COPY or in the COPY statement. If you do not want to 
preserve any attributes from the input data set, then specify 
NOCLONE instead.

NOCLONE
See the description of “CLONE|NOCLONE” on page 597.

Details

Performance Improvement Using SELECT with 
MEMTYPE
When using the COPY statement, an in-memory directory of the library is obtained. 
This can be a performance issue if the library has thousands of members and only a 
few members are being copied. To resolve this performance issue, use a 
combination of the MEMTYPE= option in the COPY statement with a SELECT 
statement. Here is an example of this process:

proc datasets lib=work;
    copy out=mylib memtype=(data catalog); 
    select mydata x1-x10 data2; 
run;  

Note: If either MEMTYPE=ALL or a wildcard specification (":") is used, the 
performance code cannot be used.

Using the Block I/O Method to Copy
The block I/O method is used to copy blocks of data instead of one observation at a 
time. This method can increase performance when you are copying large data sets. 
SAS determines whether to use this method. Not all data sets can use the block I/O 
method. There are restrictions set by the COPY statement and the Base SAS 
engine.

To display information in the SAS log about the copy method that is being used, you 
can specify the MSGLEVEL= system option as follows:

options msglevel=i;

The following message is written to the SAS log, if the block I/O method is not used:

INFO: Data set block I/O cannot be used because:

If the COPY statement determines that the block I/O will not be used, one of the 
following explanations is written to the SAS log:

COPY Statement 603



INFO: - The data sets use different engines, have different variables 
or have attributes that might differ.

INFO: - There is no member level locking. 

INFO: - The OBS option is active. 

INFO: - The FIRSTOBS option is active. 

If the Base SAS engine determines that the block I/O method will not be used, one 
of the following explanations is written to the SAS log:

INFO: - Referential Integrity Constraints exist.

INFO: - Cross Environment Data Access is being used.

INFO: - The file is compressed.

INFO: - The file has an audit file which is not suspended.

If you are having performance issues and want to create a subset of a large data set 
for testing, you can use the OBS=0 option. In this case, you want to reduce the use 
of system resources by disabling the block I/O method.

The following example uses the OBS=0 option to reduce the use of system 
resources:

options obs=0 msglevel=i;
proc copy in=old out=lib;
select a;
run;

You get the same results when you use the SET statement:

data lib.new;
    if 0 then set old.a;
    stop;
run;

Copying an Entire Library
To copy an entire SAS library, simply specify an input data library and an output data 
library following the COPY statement. For example, the following statements copy 
all the SAS files in the Source data library into the Dest data library:

proc datasets library=source;
   copy out=dest;
run;

Copying Selected SAS Files
To copy selected SAS files, use a SELECT or EXCLUDE statement. For more 
discussion of using the COPY statement with a SELECT statement or an EXCLUDE 
statement, see “Specifying Member Types When Copying or Moving SAS Files” on 
page 605 and see Manipulating SAS Files on page 678 for an example. Also, see 
EXCLUDE statement on page 616 and SELECT statement on page 640. 

You can also select or exclude an abbreviated list of members. For example, the 
following statement selects members Tabs, Test1, Test2, and Test3:

select tabs test1-test3;

604 Chapter 17 / DATASETS Procedure



Also, you can select a group of members whose names begin with the same letter 
or letters by entering the common letters followed by a colon (:). For example, you 
can select the four members in the previous example and all other members having 
names that begin with the letter T by specifying the following statement:

select t:;

You specify members to exclude in the same way that you specify those to select. 
That is, you can list individual member names, use an abbreviated list, or specify a 
common letter or letters followed by a colon (:). For example, the following 
statement excludes the members Stats, Teams1, Teams2, Teams3, Teams4 and all 
the members that begin with the letters RBI from the copy operation:

exclude stats teams1-teams4 rbi:;

Note that the MEMTYPE= option affects which types of members are available to be 
selected or excluded.

When a SELECT or EXCLUDE statement is used with CONSTRAINT=YES, only 
the general integrity constraints on the data sets are copied. Any referential integrity 
constraints are not copied. For more information, see “Understanding Integrity 
Constraints” in SAS Language Reference: Concepts.

Copying a CAS Table to Another CAS Table
When PROC COPY IN= and OUT= options are set to a CAS libref, and the same 
CAS session is used by both librefs by default the copy occurs in CAS.

This is a change to the default behavior. If options MSGLEVEL=I system option is 
set, when the COPY occurs in CAS, an INFO message is sent to the log: INFO: 
Running COPY in Cloud Analytic Services.

The PROC COPY option ACCEL | NOACCEL determines where the COPY 
procedure executes. ACCEL is the default, which means the COPY operation runs 
on the CAS server. If the COPY procedure fails on the CAS server, it does not 
attempt to copy the file by pulling the observations into V9 SAS.

If the OVERRIDE option is specified on the PROC COPY invocation, the option is 
ignored, and a note is sent to the log.

You cannot copy between sessions with PROC COPY. If the CAS libraries are 
defined with two different sessions, the following error is displayed: ERROR: The CAS 
sessions SESS1 and SESS2 used for this action do not match.

Specifying Member Types When Copying or Moving 
SAS Files
The MEMTYPE= option in the COPY statement differs from the MEMTYPE= option 
in other statements in the procedure in several ways:

n A slash does not precede the option.

n You cannot limit its effect to the member immediately preceding it by enclosing 
the MEMTYPE= option in parentheses.

n The SELECT and EXCLUDE statements and the IN= option (in the COPY 
statement) affect the behavior of the MEMTYPE= option in the COPY statement 
according to the following rules: 

COPY Statement 605

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0te4txy6dyzs9n1csptlqoktu7m.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0te4txy6dyzs9n1csptlqoktu7m.htm&locale=en


1 MEMTYPE= in a SELECT or EXCLUDE statement takes precedence over 
the MEMTYPE= option in the COPY statement. The following statements 
copy only Vision.catalog and Nutr.data from the default data library to the 
Dest data library; the MEMTYPE= value in the first SELECT statement 
overrides the MEMTYPE= value in the COPY statement. 

proc datasets;
   copy out=dest memtype=data;
      select vision(memtype=catalog) nutr;
run;

2 If you do not use the IN= option, or you use it to specify the library that 
happens to be the procedure input library, the value of the MEMTYPE= 
option in the PROC DATASETS statement limits the types of SAS files that 
are available for processing. The procedure uses the order of precedence 
described in rule 1 to further subset the types available for copying. The 
following statements do not copy any members from the default data library 
to the Dest data library. Instead, the procedure issues an error message 
because the MEMTYPE= value specified in the SELECT statement is not 
one of the values of the MEMTYPE= option in the PROC DATASETS 
statement. 

      /* This step fails! */
proc datasets memtype=(data program);
   copy out=dest;
      select apples / memtype=catalog;
run;

3 If you specify an input data library in the IN= option other than the procedure 
input library, the MEMTYPE= option in the PROC DATASETS statement has 
no effect on the copy operation. Because no subsetting has yet occurred, the 
procedure uses the order of precedence described in rule 1 to subset the 
types available for copying. The following statements successfully copy 
Bodyfat.data to the Dest data library because the Source library specified in 
the IN= option in the COPY statement is not affected by the MEMTYPE= 
option in the PROC DATASETS statement. 

proc datasets library=work memtype=catalog;
   copy in=source out=dest;
      select bodyfat / memtype=data;
run;

When using the COPY statement, an in-memory directory of the library is obtained. 
This can be a performance issue if the library has thousands of members and only a 
few members are being copied. To resolve this performance issue, use a 
combination of the MEMTYPE= option in the COPY statement with a SELECT 
statement. Here is an example of this process:

proc datasets lib=work;
    copy out=mylib memtype=(data catalog); 
    select mydata x1-x10 data2; 
run;  

Note: If either MEMTYPE=ALL or a wildcard specification (":") is used, the 
performance code cannot be used.

606 Chapter 17 / DATASETS Procedure



Copying Views
The COPY statement with NOCLONE specified supports the OUTREP= and 
ENCODING= LIBNAME options for SQL views, DATA step views, and some views 
(Oracle and Sybase). When you use the COPY statement with Remote Library 
Services (RLS) such as SAS/SHARE or SAS/CONNECT, the COPY statement 
defaults to the encoding and data representation of the output library.

CAUTION
If you use the DATA statement's SOURCE=NOSAVE option when creating a 
DATA step view, the view cannot be copied from one version of SAS to 
another version.

Copying Password-Protected SAS Files
You can copy a password-protected SAS file without specifying the password. In 
addition, because the password continues to correspond to the SAS file, you must 
know the password in order to access and manipulate the SAS file after you copy it.

Copying Data Sets with Long Variable Names
If the VALIDVARNAME=V6 system option is set and the data set has long variable 
names, the long variable names are truncated, unique variables names are 
generated, and the copy succeeds. The same is true for index names. If 
VALIDVARNAME=ANY, the copy fails with an error if the OUT= engine does not 
support long variable names.

When a variable name is truncated, the variable name is shortened to eight bytes. If 
this name has already been defined in the data set, the name is shortened and a 
digit is added, starting with the number 2. The process of truncation and adding a 
digit continues until the variable name is unique. For example, a variable named 
LONGVARNAME becomes LONGVARN, provided that a variable with that name 
does not already exist in the data set. In that case, the variable name becomes 
LONGVAR2.

CAUTION
Truncated variable names can collide with names already defined in the input 
data set. This behavior is possible when the variable name that is already defined is 
exactly eight bytes long and ends in a digit. In the following example, the truncated name 
is defined in the output data set and the name from the input data set is changed: 

options validvarname=any;
data test;
   longvar10='aLongVariableName';
   retain longvar1-longvar5 0;
run;

options validvarname=v6;
proc copy in=work out=sasuser;
   select test;
run;

In this example, LONGVAR10 is truncated to LONGVAR1 and placed in the output data 
set. Next, the original LONGVAR1 is copied. Its name is no longer unique. Therefore, it 

COPY Statement 607



is renamed LONGVAR2. The other variables in the input data set are also renamed 
according to the renaming algorithm. The following example is from the SAS log: 

1    options validvarname=any;
2    data test;
3       longvar10='aLongVariableName';
4       retain longvar1-longvar5 0;
5    run;

NOTE: The data set WORK.TEST has 1 observations and 6 variables.
NOTE: DATA statement used (Total process time):
      real time           2.60 seconds
      cpu time            0.07 seconds

6
7    options validvarname=v6;
8    proc copy in=work out=sasuser;
9       select test;
10   run;

NOTE: Copying WORK.TEST to SASUSER.TEST (memtype=DATA).
NOTE: The variable name longvar10 has been truncated to longvar1.
NOTE: The variable longvar1 now has a label set to longvar10.
NOTE: Variable LONGVAR1 already exists on file SASUSER.TEST, using LONGVAR2
instead.
NOTE: The variable LONGVAR2 now has a label set to LONGVAR1.
NOTE: Variable LONGVAR2 already exists on file SASUSER.TEST, using LONGVAR3
instead.
NOTE: The variable LONGVAR3 now has a label set to LONGVAR2.
NOTE: Variable LONGVAR3 already exists on file SASUSER.TEST, using LONGVAR4
instead.
NOTE: The variable LONGVAR4 now has a label set to LONGVAR3.
NOTE: Variable LONGVAR4 already exists on file SASUSER.TEST, using LONGVAR5
instead.
NOTE: The variable LONGVAR5 now has a label set to LONGVAR4.
NOTE: Variable LONGVAR5 already exists on file SASUSER.TEST, using LONGVAR6
instead.
NOTE: The variable LONGVAR6 now has a label set to LONGVAR5.
NOTE: There were 1 observations read from the data set WORK.TEST.
NOTE: The data set SASUSER.TEST has 1 observations and 6 variables.
NOTE: PROCEDURE COPY used (Total process time):
      real time           13.18 seconds
      cpu time            0.31 seconds

11
12   proc print data=test;
13   run;

ERROR: The value LONGVAR10 is not a valid SAS name.
NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE PRINT used (Total process time):
      real time           0.15 seconds
      cpu time            0.01 seconds

608 Chapter 17 / DATASETS Procedure



Copying AES-Encrypted Data Files
In order to copy data files with AES encryption, you must specify the 
ENCRYPTKEY=key-value in one of two ways:

n if all the AES-encrypted data sets in the library have the same 
ENCRYPTKEY=key-value, use the following example:

proc copy in=lib1 out=lib2 encryptkey=key-value;
run;
    

n if the ENCRYPTKEY=key-value is different for each data set, use the SELECT 
statement as shown in the following example:

proc copy in=lib1 out=lib2;
    select mydata1 (encryptkey=key-value1) mydata2 (encryptkey=key-value2);
run;

For more information about AES encryption, see “AES Encryption” in SAS 
Programmer’s Guide: Essentials. For more information about the ENCRYPTKEY= 
data set option, see “ENCRYPTKEY= Data Set Option” in SAS Data Set Options: 
Reference.

Copying AES-Encrypted Data Files Containing 
Referential Integrity Constraints
In order to copy data files with AES encryption and with referential integrity 
constraints, you must do the following:

n copy the entire contents of the IN=library

n specify the CONSTRAINT=YES statement option

n specify the ENCRYPTKEY=key-value option or the library must be metadata 
bound with the encryption key recorded for the library

proc copy in=Lib1 out=Lib2 constraint=yes encryptkey=key-value; 
run;

However, the above code will not work if there are multiple data primary key and 
referential data set pairs in the IN=LIB and each pair has different ENCYPTKEY= 
values. For example, if there are two pairs:

primarydset1/foreigndset1 having ENCRYPTKEY=secret1  
primarydset2/foreigndset2 having ENCRYPTKEY=secret2

then the above scheme would work for only one pair. All pairs must have the same 
key value.

For more information, see “ENCRYPTKEY= Data Set Option” in SAS Data Set 
Options: Reference.

Copying Generation Groups
You can use the COPY statement to copy an entire generation group. However, you 
cannot copy a specific version in a generation group.

COPY Statement 609

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1s7u3pd71rgunn1xuexedikq90f.htm&docsetTargetAnchor=n1o82uabmi8m8xn1krmlzw1q1tv4&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1s7u3pd71rgunn1xuexedikq90f.htm&docsetTargetAnchor=n1o82uabmi8m8xn1krmlzw1q1tv4&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en


Transporting SAS Data Sets between Hosts
You use the COPY procedure, along with the XPORT engine or a REMOTE engine, 
to transport SAS data sets between hosts. For more information, see “Strategies for 
Moving and Accessing SAS Files” in Moving and Accessing SAS Files.

Using the COPY Procedure Instead of the COPY 
Statement
Generally, the COPY procedure functions the same as the COPY statement in the 
DATASETS procedure. Here is a list of differences:

n The IN= argument is required with PROC COPY. In the COPY statement, IN= is 
optional. If omitted, the default value is the libref of the procedure input library.

n PROC DATASETS cannot work with libraries that allow only sequential data 
access.

n The COPY statement honors the NOWARN option but PROC COPY does not.

DELETE Statement
Deletes SAS files from a SAS library.

Example: “Example 2: Manipulating SAS Files” on page 678

Syntax
DELETE SAS-file(s)
</ <ALTER=alter-password>
<ENCRYPTKEY=key-value>
<GENNUM=ALL | HIST | REVERT | integer>
<MEMTYPE=member-type>>;

Required Argument
SAS-file(s)

specifies one or more SAS files that you want to delete. If the SAS file has an 
ALTER= password assigned, it must be specified in order to delete the SAS file. 
You can also use a numbered range list or colon list. For more information, see 
“Data Set Name Lists” in SAS Programmer’s Guide: Essentials.

Optional Arguments
ALTER=alter-password

provides the Alter password for any alter-protected SAS files that you want to 
delete. You can use the option either in parentheses after the name of each SAS 
file or after a forward slash.

610 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1nxfbk0gb5qtqn1os370f4n867d.htm&docsetTargetAnchor=n0oru3akf51pi5n1wco2onzr39oz&locale=en


See “Using Passwords with the DATASETS Procedure” on page 649

ENCRYPTKEY=key-value
specifies the key value for AES encryption. This option is required when 
specifying GENNUM=REVERT (which is the same as GENNUM=0) or 
GENNUM=relative-generation-number. The key value for the ENCRYPTKEY= 
option must be the key value for the base version. For more information, see 
“Library Contents and AES Encryption” on page 593.

GENNUM=ALL | HIST | REVERT | integer
restricts processing for generation data sets. You can use the option either in 
parentheses after the name of each SAS file or after a forward slash. Here is a 
list of valid values: 

ALL refers to the base version and all historical versions in a 
generation group.

HIST refers to all historical versions, but excludes the base version 
in a generation group.

REVERT | 
0

deletes the base version and changes the most current 
historical version, if it exists, to the base version.

integer is a number that references a specific version from a 
generation group. Specifying a positive number is an absolute 
reference to a specific generation number that is appended to 
a data set's name (that is, gennum=2 specifies MYDATA#002). 
Specifying a negative number is a relative reference to a 
historical version in relation to the base version, from the 
youngest to the oldest (that is, gennum=-1 refers to the 
youngest historical version).

See “Understanding Generation Data Sets” in SAS Language Reference: 
Concepts and “Restricting Processing for Generation Data Sets” on page 
650

MEMTYPE=member-type
restricts processing to one member type. You can use the option either in 
parentheses after the name of each SAS file or after a forward slash.

Aliases MTYPE=

MT=

Default DATA

See “Restricting Member Types for Processing” on page 651

Example “Example 2: Manipulating SAS Files” on page 678

DELETE Statement 611

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en


Details

The Basics
SAS immediately deletes SAS files when the RUN group executes. You do not have 
an opportunity to verify the Delete operation before it begins.

If the SAS file has an ALTER= password assigned, it must be specified in order to 
delete the SAS file.

If you attempt to delete a SAS file that does not exist in the procedure input library, 
PROC DATASETS issues a message and continues processing. If NOWARN is 
used, no message is issued.

When you use the DELETE statement to delete a data set that has indexes 
associated with it, the statement also deletes the indexes.

You cannot use the DELETE statement to delete a data file that has a foreign key 
integrity constraint or a primary key with foreign key references. For data files that 
have foreign keys, you must remove the foreign keys before you delete the data file. 
For data files that have primary keys with foreign key references, you must remove 
the foreign keys that reference the primary key before you delete the data file.

If you attempt to delete a CAS table that does not exist in the input CAS engine 
libref, a message is written to the log and processing continues. If NOWARN is 
used, no message is issued.

Working with Generation Groups

Overview of Working with Generation Groups
When you are working with generation groups, you can use the DELETE statement 
to delete the following versions:

n delete the base version and all historical versions

n delete the base version and rename the youngest historical version to the base 
version

n delete an absolute version

n delete a relative version

n delete all historical versions and leave the base version

Deleting the Base Version and All Historical 
Versions
The following statements delete the base version and all historical versions where 
the data set name is A:

proc datasets;
   delete A(gennum=all);

proc datasets;
   delete A / gennum=all;

612 Chapter 17 / DATASETS Procedure



proc datasets gennum=all;
   delete A;

The following statements delete the base version and all historical versions where 
the data set name begins with the letter A:

proc datasets;
   delete A:(gennum=all);

proc datasets;
   delete A: / gennum=all;

proc datasets gennum=all;
   delete A:;

Deleting the Base Version and Renaming the 
Youngest Historical Version to the Base Version
The following statements delete the base version and rename the youngest 
historical version to the base version, where the data set name is A:

proc datasets;
   delete A(gennum=revert);

proc datasets;
   delete A / gennum=revert;

proc datasets gennum=revert;
   delete A;

The following statements delete the base version and rename the youngest 
historical version to the base version, where the data set name begins with the letter 
A:

proc datasets;
   delete A:(gennum=revert);

proc datasets;
   delete A: / gennum=revert;

proc datasets gennum=revert;
   delete A:;

Deleting a Version with an Absolute Number
The following statements use an absolute number to delete the first historical 
version:

proc datasets;
   delete A(gennum=1);

proc datasets;
   delete A / gennum=1;

proc datasets gennum=1;
   delete A;

DELETE Statement 613



The following statements delete a specific historical version, where the data set 
name begins with the letter A:

proc datasets;
   delete A:(gennum=1);

proc datasets;
   delete A: / gennum=1;

proc datasets gennum=1;
   delete A:;

Deleting a Version with a Relative Number
The following statements use a relative number to delete the youngest historical 
version, where the data set name is A:

proc datasets;
   delete A(gennum=-1);

proc datasets;
   delete A / gennum=-1;

proc datasets gennum=-1;
   delete A;

The following statements use a relative number to delete the youngest historical 
version, where the data set name begins with the letter A:

proc datasets;
   delete A:(gennum=-1);

proc datasets;
   delete A: / gennum=-1;

proc datasets gennum=-1;
   delete A:;

Deleting All Historical Versions and Leaving the 
Base Version
The following statements delete all historical versions and leave the base version, 
where the data set name is A:

proc datasets;
   delete A(gennum=hist);

proc datasets;
   delete A / gennum=hist;

proc datasets gennum=hist;
   delete A;

The following statements delete all historical versions and leave the base version, 
where the data set name begins with the letter A:

proc datasets;

614 Chapter 17 / DATASETS Procedure



   delete A:(gennum=hist);

proc datasets;
   delete A: / gennum=hist;

proc datasets gennum=hist;
   delete A:;

EXCHANGE Statement
Exchanges the names of two SAS files in a SAS library.

Example: “Example 2: Manipulating SAS Files” on page 678

Syntax
EXCHANGE name-1=other-name-1 <name-2=other-name-2 …>
</ <ALTER=alter-password> <MEMTYPE=member-type>>;

Required Argument
name=other-name

exchanges the names of SAS files in the procedure input library. Both name and 
other-name must already exist in the procedure input library.

Optional Arguments
ALTER=alter-password

provides the Alter password for any alter-protected SAS files whose names you 
want to exchange. You can use the option either in parentheses after the name 
of each SAS file or after a forward slash.

See “Using Passwords with the DATASETS Procedure” on page 649

MEMTYPE=member-type
restricts processing to one member type. You can exchange only the names of 
SAS files of the same type. You can use the option either in parentheses after 
the name of each SAS file or after a forward slash.

Default If you do not specify MEMTYPE= in the PROC DATASETS statement, 
the default is ALL.

See “Restricting Member Types for Processing” on page 651

EXCHANGE Statement 615



Details
When you exchange more than one pair of names in one EXCHANGE statement, 
PROC DATASETS performs the exchanges in the order in which the names of the 
SAS files occur in the directory listing, not in the order in which you list the 
exchanges in the EXCHANGE statement.

If the name SAS file does not exist in the SAS library, PROC DATASETS stops 
processing the RUN group that contains the EXCHANGE statement and issues an 
error message. To override this behavior, specify the NOWARN option in the PROC 
DATASETS statement.

The EXCHANGE statement also exchanges the associated indexes so that they 
correspond with the new name.

The EXCHANGE statement allows only two existing generation groups to exchange 
names. You cannot exchange a specific generation number with either an existing 
base version or another generation number.

EXCLUDE Statement
Excludes SAS files from copying.

Restrictions: The EXCLUDE statement must follow a COPY statement
The EXCLUDE statement cannot appear in the same COPY step with a SELECT 
statement

Example: “Example 2: Manipulating SAS Files” on page 678

Syntax
EXCLUDE SAS-file(s) </ MEMTYPE=member-type>;

Required Argument
SAS-file(s)

specifies one or more SAS files to exclude from the copy operation. All SAS files 
you name in the EXCLUDE statement must be in the library that is specified in 
the IN= option in the COPY statement. If the SAS files are generation groups, 
the EXCLUDE statement allows only selection of the base versions.

You can use the following shortcuts to list several SAS files in the EXCLUDE 
statement:

Table 17.11 Using the EXCLUDE Statement

Notation Meaning

x1–xn Specifies files X1 through Xn. The 
numbers must be consecutive.

616 Chapter 17 / DATASETS Procedure



x: Specifies all files that begin with the 
letter X.

Optional Argument
MEMTYPE=member-type

restricts processing to one member type. You can use the option either in 
parentheses after the name of each SAS file or after a forward slash.

Aliases MTYPE=

MT=

Default If you do not specify MEMTYPE= in the PROC DATASETS statement, 
the COPY statement, or in the EXCLUDE statement, the default is 
MEMTYPE=ALL.

See “Specifying Member Types When Copying or Moving SAS Files” on 
page 605 and “Restricting Member Types for Processing” on page 651

Details

Excluding Several Like-Named Files
You can use shortcuts for listing several SAS files in the EXCLUDE statement.

FORMAT Statement
Assigns, changes, and removes variable formats in the SAS data set specified in the MODIFY statement 
permanently.

Restriction: The FORMAT statement must appear in a MODIFY RUN group

Example: “Example 4: Modifying SAS Data Sets” on page 686

Syntax
FORMAT variable-1 <format-1>
<variable-2 <format-2> …>;

FORMAT Statement 617



Required Argument
variable

specifies one or more variables whose format you want to assign, change, or 
remove. If you want to disassociate a format with a variable, list the variable last 
in the list with no format following:

   format x1-x3 4.1 time hhmm2.2 age;

Optional Argument
format

specifies a format to apply to the variable or variables listed before it. If you do 
not specify a format, the FORMAT statement removes any format associated 
with the variables in variable-list.

Tip To remove all formats from a data set, use the ATTRIB Statement on page 
584 and the _ALL_ keyword.

IC CREATE Statement
Creates an integrity constraint.

Restriction: The IC CREATE statement must appear in a MODIFY RUN group

Note: In order for a referential constraint to be established, the foreign key must specify the 
same number of variables as the primary key, in the same order, and the variables must 
be of the same type (character or numeric) and length.

See: “Understanding Integrity Constraints” in SAS Language Reference: Concepts 

Syntax
IC CREATE <constraint-name=> constraint <MESSAGE='message-string'
<MSGTYPE=USER>>;

Required Argument
constraint

is the type of constraint. Here is a list of valid values:

NOT NULL 
(variable)

specifies that variable does not contain a SAS missing 
value, including special missing values.

UNIQUE 
(variables)

specifies that the values of variables must be unique. 
This constraint is identical to DISTINCT.

DISTINCT 
(variables)

specifies that the values of variables must be unique. 
This constraint is identical to UNIQUE.

618 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0te4txy6dyzs9n1csptlqoktu7m.htm&locale=en


CHECK 
(WHERE-
expression)

limits the data values of variables to a specific set, 
range, or list of values. This behavior is accomplished 
with a WHERE expression.

PRIMARY KEY 
(variables)

specifies a primary key, that is, a set of variables that do 
not contain missing values and whose values are 
unique.

When defining overlapping primary key and foreign key constraints, which 
means that variables in a data file are part of both a primary key and a foreign 
key definition, if you use exactly the same variables, then the variables must be 
defined in a different order.

A primary key affects the values of an individual data file until it has a foreign key 
referencing it.

Note: If a not null constraint exists for a variable that is being used to define a 
new primary key constraint, then the primary key constraint replaces the existing 
not null constraint.

FOREIGN KEY 
(variables) 
REFERENCES table-
name <ON DELETE 
referential-action> <ON 
UPDATE referential-
action>

specifies a foreign key, that is, a set of variables 
whose values are linked to the values of the 
primary key variables in another data file. The 
referential actions are enforced when updates 
are made to the values of a primary key variable 
that is referenced by a foreign key. There are 
three types of referential actions: RESTRICT, 
SET NULL, and CASCADE:

The following operations can be done with the RESTRICT referential action:

a delete 
operation

deletes the primary key row, but only if no foreign key 
values match the deleted value.

an update 
operation

updates the primary key value, but only if no foreign key 
values match the current value to be updated.

The following operations can be done with the SET NULL referential action:

a delete operation deletes the primary key row and sets the corresponding 
foreign key values to NULL.

an update 
operation

modifies the primary key value and sets all matching 
foreign key values to NULL.

The following operations can be done with the CASCADE referential action:

an update 
operation

modifies the primary key value, and also modifies any 
matching foreign key values to the same value. CASCADE 
is not supported for Delete operations.

Default RESTRICT is the default action if no referential action is 
specified.

Requirements When defining overlapping primary key and foreign key 
constraints, which means that variables in a data file are part of 
both a primary key and a foreign key definition, the following 
actions are required:

IC CREATE Statement 619



If you use exactly the same variables, then the variables must be 
defined in a different order.

The foreign key's update and delete referential actions must both 
be RESTRICT.

Interaction Before it enforces a SET NULL or CASCADE referential action, 
SAS checks to see whether there are other foreign keys that 
reference the primary key and that specify RESTRICT for the 
intended operation. If RESTRICT is specified, or if the constraint 
reverts to the default values, then RESTRICT is enforced for all 
foreign keys, unless no foreign key values match the values to 
updated or deleted.

Optional Arguments
<constraint-name=>

is an optional name for the constraint. The name must be a valid SAS name. 
When you do not supply a constraint name, a default name is generated. This 
default constraint name has the following form: 

Table 17.12 Using RESTRICT=

Default Name Constraint Type

_NMxxxx_ Not Null

_UNxxxx_ Unique

_CKxxxx_ Check

_PKxxxx_ Primary key

_FKxxxx_ Foreign key

xxxx is a counter beginning at 0001.

Note: The names PRIMARY, FOREIGN, MESSAGE, UNIQUE, DISTINCT, 
CHECK, and NOT cannot be used as values for constraint-name.

<MESSAGE='message-string' <MSGTYPE=USER>>
message-string is the text of an error message to be written to the log when the 
data fails the constraint: 

ic create not null(socsec)    
   message='Invalid Social Security number';

<MSGTYPE=USER> controls the format of the integrity constraint error 
message. By default when the MESSAGE= option is specified, the message that 
you define is inserted into the SAS error message for the constraint, separated 
by a space. MSGTYPE=USER suppresses the SAS portion of the message.

Length The maximum length of the message is 250 characters.

620 Chapter 17 / DATASETS Procedure



Example The following examples show how to Create integrity constraints:
ic create a = not null(x);
ic create Unique_D = unique(d);
ic create Distinct_DE = distinct(d e);
ic create E_less_D = check(where=(e < d or d = 99));
ic create primkey = primary key(a b);
ic create forkey = foreign key (a b) references table-name
  on update cascade on delete set null;
ic create not null (x);

IC DELETE Statement
Deletes an integrity constraint.

Restriction: IC DELETE must be in a MODIFY RUN group

See: “Understanding Integrity Constraints” in SAS Language Reference: Concepts 

Syntax
IC DELETE constraint-name(s) | _ALL_;

Required Arguments
constraint-name(s)

names one or more constraints to delete. For example, to delete the constraints 
Unique_D and Unique_E, use the following statement: ic delete Unique_D 
Unique_E;

_ALL_
deletes all constraints for the SAS data file specified in the preceding MODIFY 
statement.

IC REACTIVATE Statement
Reactivates a foreign key integrity constraint that is inactive.

Restriction: IC REACTIVATE must be in a MODIFY RUN group

See: “Understanding Integrity Constraints” in SAS Language Reference: Concepts 

Syntax
IC REACTIVATE foreign-key-name REFERENCES libref;

IC REACTIVATE Statement 621

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0te4txy6dyzs9n1csptlqoktu7m.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0te4txy6dyzs9n1csptlqoktu7m.htm&locale=en


Required Arguments
foreign-key-name

is the name of the foreign key to reactivate.

libref
refers to the SAS library containing the data set that contains the primary key 
that is referenced by the foreign key.

Example
Suppose that you have the foreign key FKEY defined in data set MyLib.MyOwn and 
that FKEY is linked to a primary key in data set MainLib.Main. If the integrity 
constraint is inactivated by a copy or move operation, you can reactivate the 
integrity constraint by using the following code:

proc datasets library=mylib;
   modify myown;
   ic reactivate fkey references mainlib;
run;

INDEX CENTILES Statement
Updates centiles statistics for indexed variables.

Restriction: INDEX CENTILES must be in a MODIFY RUN group

See: “Understanding SAS Indexes” in SAS Language Reference: Concepts 

Syntax
INDEX CENTILES index(s)
</ <REFRESH> <UPDATECENTILES=ALWAYS | NEVER | integer>>;

Required Argument
index(s)

names one or more indexes.

Optional Arguments
REFRESH

updates centiles immediately, regardless of the value of UPDATECENTILES.

UPDATECENTILES=ALWAYS | NEVER | integer
specifies when centiles are to be updated. It is not practical to update centiles 
after every data set update. Therefore, you can specify as the value of 

622 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n06cy7dznbx6gen1q9mat8de6rdq.htm&locale=en


UPDATECENTILES the percentage of the data values that can be changed 
before centiles for the indexed variables are updated.

Here is a list of valid values:

ALWAYS | 0 updates centiles when the data set is closed if any changes 
have been made to the data set index. You can specify 
ALWAYS or 0 and produce the same results.

NEVER | 101 does not update centiles. You can specify NEVER or 101 
and produce the same results.

integer is the percentage of values for the indexed variable that can 
be updated before centiles are refreshed. The alias is 
UPDCEN. The default is 5 (percent).

INDEX CREATE Statement
Creates simple or composite indexes for the SAS data set specified in the MODIFY statement.

Restriction: INDEX CREATE must be in a MODIFY RUN group

See: “Understanding SAS Indexes” in SAS Language Reference: Concepts 

Example: “Example 4: Modifying SAS Data Sets” on page 686

Syntax
INDEX CREATE index-specification(s)
</ <NOMISS> <UNIQUE> <UPDATECENTILES=ALWAYS | NEVER | integer>>;

Required Argument
index-specification(s)

can be one or both of the following forms:

variable
creates a simple index on the specified variable.

index=(variables)
creates a composite index. The name that you specify for index is the name 
of the composite index. It must be a valid SAS name and cannot be the same 
as any variable name or any other composite index name. You must specify 
at least two variables.

Note The index name must follow the same rules as a SAS variable name, 
including avoiding the use of reserved names for automatic variables, 
such as _N_, and special variable list names, such as _ALL_. For more 
information, see “Words in the SAS Language” in SAS Language 
Reference: Concepts.

INDEX CREATE Statement 623

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n06cy7dznbx6gen1q9mat8de6rdq.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1qge1g4ytqq41n1e8x8s7ugmyst.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1qge1g4ytqq41n1e8x8s7ugmyst.htm&locale=en


Optional Arguments
NOMISS

excludes from the index all observations with missing values for all index 
variables.

When you create an index with the NOMISS option, SAS uses the index only for 
WHERE processing and only when missing values fail to satisfy the WHERE 
expression. For example, if you use the following WHERE statement, SAS does 
not use the index, because missing values satisfy the WHERE expression:

   where dept ne '01';

For more information, see SAS Language Reference: Concepts.

BY-group processing ignores indexes that are created with the NOMISS option.

Example “Example 4: Modifying SAS Data Sets” on page 686

UNIQUE
specifies that the combination of values of the index variables must be unique. If 
you specify UNIQUE and multiple observations have the same values for the 
index variables, the index is not created.

Example “Example 4: Modifying SAS Data Sets” on page 686

UPDATECENTILES=ALWAYS | NEVER | integer
specifies when centiles are to be updated. It is not practical to update centiles 
after every data set update. Therefore, you can specify the percentage of the 
data values that can be changed before centiles for the indexed variables are 
updated. Here is a list of valid values: 

ALWAYS | 0 updates centiles when the data set is closed if any changes 
have been made to the data set index. You can specify 
ALWAYS or 0 and produce the same results.

NEVER | 101 does not update centiles. You can specify NEVER or 101 
and produce the same results.

integer specifies the percentage of values for the indexed variable 
that can be updated before centiles are refreshed. The alias 
is UPDCEN and the default is 5 (percent).

INDEX DELETE Statement
Deletes one or more indexes associated with the SAS data set specified in the MODIFY statement.

Restriction: The INDEX DELETE statement must appear in a MODIFY RUN group

Note: You can use the CONTENTS statement to produce a list of all indexes for a data set.

Syntax
INDEX DELETE index(s) | _ALL_;

624 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Required Arguments
index(s)

names one or more indexes to delete. The index(es) must be for variables in the 
SAS data set that is named in the preceding MODIFY statement. You can delete 
both simple and composite indexes.

_ALL_
deletes all indexes, except for indexes that are owned by an integrity constraint. 
When an index is created, it is marked as owned by the user, by an integrity 
constraint, or by both. If an index is owned by both a user and an integrity 
constraint, the index is not deleted until both an IC DELETE statement and an 
INDEX DELETE statement are processed.

INFORMAT Statement
Assigns, changes, and removes variable informats in the data set specified in the MODIFY statement 
permanently.

Restriction: The INFORMAT statement must appear in a MODIFY RUN group

Example: “Example 4: Modifying SAS Data Sets” on page 686

Syntax
INFORMAT variable-1 <informat-1>
<variable-2 <informat-2> …>;

Required Argument
variable

specifies one or more variables whose informats you want to assign, change, or 
remove. If you want to disassociate an informat with a variable, list the variable 
last in the list with no informat following:

    informat a b 2. x1-x3 4.1 c;

Optional Argument
informat

specifies an informat for the variables immediately preceding it in the statement. 
If you do not specify an informat, the INFORMAT statement removes any 
existing informats for the variables in variable-list.

Tip To remove all informats from a data set, use the ATTRIB statement on page 
584 and the _ALL_ keyword.

INFORMAT Statement 625



INITIATE Statement
Creates an audit file that has the same name as the SAS data file and a data set type of AUDIT.

Restrictions: The INITIATE statement must appear in an AUDIT RUN group.
An INITIATE statement is a required statement that can occur only once per audit file 
and must be placed directly after the AUDIT statement in the first AUDIT RUN group for 
that file.

Example: “Example 8: Initiating an Audit File” on page 695

Syntax
INITIATE <AUDIT_ALL=NO | YES>;

Optional Argument
AUDIT_ALL=NO | YES

specifies whether logging can be suspended and audit settings can be changed. 
AUDIT_ALL=YES specifies that all images are logged and cannot be 
suspended. That is, you cannot use the LOG statement to turn off logging of 
particular images, and you cannot suspend event logging by using the 
SUSPEND statement. To turn off logging, you must use the TERMINATE 
statement, which terminates event logging and deletes the audit file.

Default NO

Example “Example 8: Initiating an Audit File” on page 695

Details
The audit file logs additions, deletions, and updates to the SAS data file. You must 
initiate an audit trail before you can suspend, resume, or terminate it. Although the 
AUDIT statement immediately preceding the INITIATE statement cannot specify a 
GENNUM= option, if the specified file identifies a generation data set group, the 
audit file created by the INITIATE statement will be attached to the most recently 
created generation in the generation group.

The following example creates the audit file MyLib.MyFile.audit to log updates to the 
data file MyLib.MyFile.data, storing all available record images:

proc datasets library=mylib;
   audit myfile (alter=password);
   initiate;
run;

The following example initiates an audit file using AUDIT_ALL=YES:

proc datasets lib=mylib;  /* all audit image types will be logged 

626 Chapter 17 / DATASETS Procedure



                             and the file cannot be suspended */
     audit myfile (alter=password);
     initiate audit_all=yes;
quit; 

LABEL Statement
Assigns, changes, and removes variable labels for the SAS data set specified in the MODIFY statement.

Restriction: The LABEL statement must appear in a MODIFY RUN group

Example: “Example 4: Modifying SAS Data Sets” on page 686

Syntax
LABEL variable-1=<'label-1' | ' '>
<variable-2=<'label-2' | ' '> …>;

Required Argument
variable=<'label'> 

specifies a text string of up to 256 characters. If the label text contains single 
quotation marks, use double quotation marks around the label, or use two single 
quotation marks in the label text and enclose the string in single quotation marks. 
To remove a label from a data set, assign a label that is equal to a blank that is 
enclosed in quotation marks.

Range 1 - 256 characters

Tip To remove all variable labels in a data set, use the ATTRIB statement on 
page 584 and the _ALL_ keyword.

LOG Statement
specifies the audit file settings.

Restriction: The LOG statement must appear after the INITIATE statement in an AUDIT RUN group.

Example: “Example 8: Initiating an Audit File” on page 695

Syntax
LOG <ADMIN_IMAGE=YES | NO>
<BEFORE_IMAGE=YES | NO>
<DATA_IMAGE=YES | NO>

LOG Statement 627



<ERROR_IMAGE=YES | NO>;

Optional Arguments
ADMIN_IMAGE=YES | NO

specifies whether the administrative events are logged to the audit file (that is, 
the SUSPEND and RESUME actions).

Default YES

Tip If you do not want to log a particular image, specify NO for the image 
type. For example, the following code turns off logging the error 
images, but the administrative, before, and data images continue to be 
logged: log error_image=no;

BEFORE_IMAGE=YES | NO
specifies whether the before-update record images are logged to the audit file.

Default YES

DATA_IMAGE=YES | NO
specifies whether the added, deleted, and after-update record images are 
logged to the audit file.

Default YES

ERROR_IMAGE=YES | NO
specifies whether the after-update record images are logged to the audit file.

Default YES

Details
The following example creates the same audit file but stores only error record 
images:

proc datasets library=mylib;
   audit myfile (alter=password);
   initiate;
      log admin_image=no 
          before_image=no
          data_image=no;
run; 

MODIFY Statement
Changes the attributes of a SAS file and, through the use of subordinate statements, the attributes of 
variables in the SAS file.

Restriction: You cannot change the length of a variable using the LENGTH= option in an ATTRIB 
statement.

628 Chapter 17 / DATASETS Procedure



Example: “Example 4: Modifying SAS Data Sets” on page 686

Syntax
MODIFY SAS-file <(options)>
</ <CORRECTENCODING=encoding-value> <DTC=SAS-date-time>
<GENNUM=integer> <MEMTYPE=member-type>>;

Required Argument
SAS-file

specifies a SAS file that exists in the procedure input library.

Optional Arguments
ALTER=password-modification

assigns, changes, or removes an Alter password for the SAS file named in the 
MODIFY statement. password-modification is one of the following: 

n new-password 

n old-password / new-password

n / new-password 

n old-password / 

n /

See “Manipulating Passwords” on page 632

CORRECTENCODING=encoding-value
enables you to change the encoding indicator, which is recorded in the file's 
descriptor information, in order to match the actual encoding of the file's data. 

See “CORRECTENCODING= Option Statement” in SAS National Language 
Support (NLS): Reference Guide

ENCRYPTKEY=key-value
specifies a key value for AES encryption.

Requirement ENCRYPTKEY= data set option is required if the data file has 
AES encryption.

DTC=SAS-date-time
specifies a date and time to substitute for the date and time stamp placed on a 
SAS file at the time of creation. You cannot use this option in parentheses after 
the name of each SAS file; you must specify DTC= after a forward slash: 

modify mydata / dtc='03MAR00:12:01:00'dt;

Restrictions A SAS file's creation date and time cannot be set later than the 
date and time the file was actually created.

DTC= cannot be used with encrypted files or sequential files.

MODIFY Statement 629

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n18o56b2gc03k9n1mdk3r8krqo5e.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n18o56b2gc03k9n1mdk3r8krqo5e.htm&locale=en


DTC= can be used only when the resulting SAS file uses the V8 or 
V9 engine.

Tip Use DTC= to alter a SAS file's creation date and time before using 
the DATECOPY option in the COPY procedure, CPORT 
procedure, SORT procedure, and the COPY statement in the 
DATASETS procedure.

GENMAX=number-of-generations
specifies the maximum number of versions. Use this option in parentheses after 
the name of SAS file.

Default 0

Range 0 to 1,000

GENNUM=integer
restricts processing for generation data sets. You can specify GENNUM= either 
in parentheses after the name of each SAS file or after a forward slash. Valid 
value is integer, which is a number that references a specific version from a 
generation group. Specifying a positive number is an absolute reference to a 
specific generation number that is appended to a data set's name (that is, 
gennum=2 specifies MYDATA#002). Specifying a negative number is a relative 
reference to a historical version in relation to the base version, from the youngest 
to the oldest (that is, gennum=-1 refers to the youngest historical version). 
Specifying 0, which is the default, refers to the base version.

See “Understanding Generation Data Sets” in SAS Language Reference: 
Concepts 

LABEL='data-set-label' | ' '
assigns, changes, or removes a data set label for the SAS data set named in the 
MODIFY statement. If a single quotation mark appears in the label, write it as 
two single quotation marks. LABEL= or LABEL=' ' removes the current label.

Range 1 - 256 characters

Restriction A view label cannot be updated after the label is created.

Tip To remove all variable labels in a data set, use the ATTRIB 
statement on page 584. 

See “Example 4: Modifying SAS Data Sets” on page 686

MEMTYPE=member-type
restricts processing to one member type. You cannot specify MEMTYPE= in 
parentheses after the name of each SAS file; you must specify MEMTYPE= after 
a forward slash.

Aliases MTYPE=

MT=

Default If you do not specify the MEMTYPE= option in the PROC DATASETS 
statement or in the MODIFY statement, the default is 
MEMTYPE=DATA.

630 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en


PW=password-modification
assigns, changes, or removes a Read, Write, or Alter password for the SAS file 
named in the MODIFY statement. password-modification is one of the following: 

n new-password 

n old-password / new-password

n / new-password 

n old-password / 

n /

READ=password-modification
assigns, changes, or removes a Read password for the SAS file named in the 
MODIFY statement. password-modification is one of the following: 

n new-password 

n old-password / new-password

n / new-password 

n old-password / 

n /

See “Manipulating Passwords” on page 632

Example “Example 4: Modifying SAS Data Sets” on page 686

SORTEDBY=sort-information
specifies how the data are currently sorted. SAS stores the sort information with 
the file but does not verify that the data are sorted the way you indicate. sort-
information can be one of the following: 

by-clause </ 
collate-
name>

indicates how the data are currently sorted. Values for by-
clause are the variables and options that you can use in a 
BY statement in a PROC SORT step. collate-name names 
the collating sequence used for the sort. By default, the 
collating sequence is that of your host operating 
environment.

_NULL_ removes any existing sort indicator.

Restriction The data must be sorted in the order in which you specify. If the 
data is not in the specified order, SAS does not sort it for you.

Tip When using the MODIFY SORTEDBY option, you can also use a 
numbered range list or colon list. For more information, see “Data 
Set Name Lists” in SAS Programmer’s Guide: Essentials.

Example “Example 4: Modifying SAS Data Sets” on page 686

TYPE=special-type
assigns or changes the special data set type of a SAS data set. SAS does not 
verify the following: 

n the SAS data set type that you specify in the TYPE= option (except to check 
if it has a length of eight or fewer characters)

n that the SAS data set's structure is appropriate for the type that you have 
designated

MODIFY Statement 631

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1nxfbk0gb5qtqn1os370f4n867d.htm&docsetTargetAnchor=n0oru3akf51pi5n1wco2onzr39oz&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1nxfbk0gb5qtqn1os370f4n867d.htm&docsetTargetAnchor=n0oru3akf51pi5n1wco2onzr39oz&locale=en


Note Do not confuse the TYPE= option with the MEMTYPE= option. The 
TYPE= option specifies a type of special SAS data set. The MEMTYPE= 
option specifies one or more types of SAS files in a SAS library.

Tip Most SAS data sets have no special type. However, certain SAS 
procedures, like the CORR procedure, can create a number of special 
SAS data sets. In addition, SAS/STAT software and SAS/EIS software 
support special data set types.

WRITE=password-modification
assigns, changes, or removes a Write password for the SAS file named in the 
MODIFY statement. password-modification is one of the following: 

n new-password 

n old-password / new-password

n / new-password 

n old-password / 

n /

See “Manipulating Passwords” on page 632

Details

Changing Data Set Labels and Variable Labels
The LABEL option can change either the data set label or a variable label within the 
data set. To change a data set label, use the following syntax:

modify datasetname(label='Label for Data Set');
run; 

You can change one or more variable labels within a data set. To change a variable 
label within the data set, use the following syntax:

modify datasetname;
    label  variablename='Label for Variable';
run;

For an example of changing both a data set label and a variable label in the same 
PROC DATASETS, see “Example 4: Modifying SAS Data Sets” on page 686. 

Manipulating Passwords
In order to assign, change, or remove a password, you must specify the password 
for the highest level of protection that currently exists on that file.

Assigning Passwords
/* assigns a password to an unprotected file */
modify colors (pw=green);

/* assigns an Alter password to an already read-protected SAS data set */
modify colors (read=green alter=red);

632 Chapter 17 / DATASETS Procedure



Changing Passwords
/* changes the Write password from YELLOW to BROWN */
modify cars (write=yellow/brown);

/* uses Alter access to change unknown Read password to BLUE */
modify colors (read=/blue alter=red);

Removing Passwords
/* removes the Alter password RED from STATES */
modify states (alter=red/);

/* uses Alter access to remove the Read password */
modify zoology (read=green/ alter=red);

/* uses PW= as an alias for either WRITE= or ALTER= to remove unknown
   Read password */
modify biology (read=/ pw=red);

Working with Generation Groups
Changing the Number of Generations

/* changes the number of generations on data set A to 99 */
modify A (genmax=99);

Removing Passwords
/* removes the Alter password RED from STATES#002 */
modify states (alter=red/) / gennum=2;

REBUILD Statement
Specifies whether to restore or delete the disabled indexes and integrity constraints.

Default: Rebuild indexes and integrity constraints

Restriction: The REBUILD statement applies only to data sets created in Version 7 or later

Syntax
REBUILD SAS-file </ <ENCRYPTKEY=key-value>
<ALTER=password> <GENNUM=n> <MEMTYPE=member-type> <NOINDEX>>;

Required Argument
SAS-file

specifies a SAS data file that contains the disabled indexes and integrity 
constraints. You can also use a numbered range list or colon list.

See “Data Set Name Lists” in SAS Programmer’s Guide: Essentials.

REBUILD Statement 633

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1nxfbk0gb5qtqn1os370f4n867d.htm&docsetTargetAnchor=n0oru3akf51pi5n1wco2onzr39oz&locale=en


Optional Arguments
ENCRYPTKEY=key-value

specifies a key value for AES encryption.

Requirement ENCRYPTKEY= data set option is required if the data file has 
AES encryption.

ALTER=alter-password
provides the Alter password for any alter-protected SAS files that are named in 
the REBUILD statement. You can use the option either in parentheses after the 
name of each SAS file or after a forward slash.

GENNUM=integer
restricts processing for generation data sets. You can use the option either in 
parentheses after the name of each SAS file or after a forward slash. Valid value 
is integer, which is a number that references a specific version from a generation 
group. Specifying a positive number is an absolute reference to a specific 
generation number that is appended to a data set's name (that is, gennum=2 
specifies MYDATA#002). Specifying a negative number is a relative reference to 
a historical version in relation to the base version, from the youngest to the 
oldest (that is, gennum=-1 refers to the youngest historical version). Specifying 0, 
which is the default, refers to the base version.

See “Understanding Generation Data Sets” in SAS Language Reference: 
Concepts 

MEMTYPE=member-type
restricts processing to one member type.

Aliases MTYPE=

MT=

Default If you do not specify the MEMTYPE= option in the PROC DATASETS 
statement or in the REBUILD statement, the default is 
MEMTYPE=ALL.

NOINDEX
specifies to delete the disabled indexes and integrity constraints.

Restriction The NOINDEX option cannot be used for data files that contain one 
or more referential integrity constraints.

Details
When the DLDMGACTION=NOINDEX data set or system option is specified and 
SAS encounters a damaged data file, SAS does the following:

n repairs the data file without indexes and integrity constraints

n deletes the index file

n updates the data file to reflect the disabled indexes and integrity constraints

n limits the data file to be opened only in INPUT mode

634 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en


n writes the following warning to the SAS log: 

WARNING: SAS data file MYLIB.MYFILE.DATA was damaged and
         has been partially repaired. To complete the repair,
         execute the DATASETS procedure REBUILD statement.

The REBUILD statement completes the repair of a damaged SAS data file by 
rebuilding or deleting all of the data file's disabled indexes and integrity constraints. 
The REBUILD statement establishes and uses member-level locking in order to 
process the new index file and to restore the indexes and integrity constraints.

To rebuild the index file and restore the indexes and integrity constraints, use the 
following code:

proc datasets library=mylib;
rebuild myfile
/alter=password
 gennum=n
 memtype=mytype;

To delete the disabled indexes and integrity constraints, use the following code:

proc datasets library=mylib;
rebuild myfile /noindex;

After you execute the REBUILD statement, the data file is no longer restricted to 
INPUT mode.

The REBUILD statement default is to rebuild the indexes and integrity constraints 
and the index file.

If a data file contains one or more referential integrity constraints and you use the 
NOINDEX option with the REBUILD statement, the following error message is 
written to the SAS log:

Error: Unable to rebuild data file MYLIB.MYFILE.DATA using the
              NOINDEX option because the data file contains referential
              constraints. Resubmit the REBUILD statement without the
              NOINDEX option to restore the data file.

RENAME Statement
Renames variables in the SAS data set specified in the MODIFY statement.

Restriction: The RENAME statement must appear in a MODIFY RUN group

Example: “Example 4: Modifying SAS Data Sets” on page 686

Syntax
RENAME old-name-1=new-name-1
<old-name-2=new-name-2 …>;

RENAME Statement 635



Required Argument
old-name=new-name

changes the name of a variable in the data set specified in the MODIFY 
statement. old-name must be a variable that already exists in the data set. new-
name cannot be the name of a variable that already exists in the data set or the 
name of an index, and the new name must be a valid SAS name.

For example, assume the Oxygen data set includes a variable named OXYGEN. 
The following code renames the OXYGEN variable to intake:

modify oxygen;
      rename oxygen=intake;

See “Rules for Words and Names in the SAS Language” in SAS Language 
Reference: Concepts 

Details
If old-name does not exist in the SAS data set or new-name already exists, PROC 
DATASETS stops processing the RUN group containing the RENAME statement 
and issues an error message.

When you use the RENAME statement to change the name of a variable for which 
there is a simple index, the statement also renames the index.

If the variable that you are renaming is used in a composite index, the composite 
index automatically references the new variable name. However, if you attempt to 
rename a variable to a name that has already been used for a composite index, you 
receive an error message.

REPAIR Statement
Attempts to restore damaged SAS data sets or catalogs, in permanent libraries, to a usable condition.

Note: The REPAIR statement is not a replacement for having a current backup.

636 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0m7v8i6xka1r1n1lwb6efyewu10.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0m7v8i6xka1r1n1lwb6efyewu10.htm&locale=en


Syntax
REPAIR SAS-file(s)
</ <ENCRYPTKEY=key-value>
<ALTER=alter-password> <GENNUM=integer> <MEMTYPE=member-type>>;

Required Argument
SAS-file(s)

specifies one or more SAS data sets or catalogs in the procedure input library. 
You can also use a numbered range list or colon list.

See “Data Set Name Lists” in SAS Programmer’s Guide: Essentials

Optional Arguments
ALTER=alter-password

provides the Alter password for any alter-protected SAS files that are named in 
the REPAIR statement. You can use the option either in parentheses after the 
name of each SAS file or after a forward slash.

See “Using Passwords with the DATASETS Procedure” on page 649

ENCRYPTKEY=key-value
specifies a key value for AES encryption.

Requirement ENCRYPTKEY= data set option is required if the data file has 
AES encryption.

GENNUM=integer
restricts processing for generation data sets. You can use the option either in 
parentheses after the name of each SAS file or after a forward slash. Valid value 
is integer, which is a number that references a specific version from a generation 
group. Specifying a positive number is an absolute reference to a specific 
generation number that is appended to a data set's name (that is, gennum=2 
specifies MYDATA#002). Specifying a negative number is a relative reference to 
a historical version in relation to the base version, from the youngest to the 
oldest (that is, gennum=-1 refers to the youngest historical version). Specifying 0, 
which is the default, refers to the base version.

See “Restricting Processing for Generation Data Sets” on page 650 and 
“Understanding Generation Data Sets” in SAS Language Reference: 
Concepts 

MEMTYPE=member-type
restricts processing to one member type.

Aliases MTYPE=

MT=

Default If you do not specify the MEMTYPE= option in the PROC DATASETS 
statement or in the REPAIR statement, the default is MEMTYPE=ALL.

REPAIR Statement 637

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1nxfbk0gb5qtqn1os370f4n867d.htm&docsetTargetAnchor=n0oru3akf51pi5n1wco2onzr39oz&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en


See “Restricting Member Types for Processing” on page 651

Details
CAUTION
If you have extensive damage to your data set, the REPAIR statement will not 
correct it. If the device on which a SAS data set or an auxiliary file (index, audit, or 
extended attribute file) resides is damaged, then you must restore the damaged data set 
and auxiliary files from a backup device.

The most common situations where the REPAIR statement might be helpful are as 
follows:

n A system failure occurs while you are updating a SAS data set or catalog.

When you use the REPAIR statement for SAS data sets, it re-creates all indexes 
for the data set. It also attempts to restore the data set to a usable condition, but 
the restored data set might not include the last several updates that occurred 
before the system failed. You cannot use the REPAIR statement to re-create 
indexes that were destroyed by using the FORCE option in a PROC SORT step.

n An I/O error occurs while you are writing a SAS data set or catalog entry.

If the disk that stores the SAS data set becomes full before the file is completely 
written to disk, the step that writes the data set will fail, and an error is written to 
the SAS log. The REPAIR statement can repair the data set header and perhaps 
offer a workable data set. The data set will likely be incomplete and its integrity 
questionable. The best recourse is to re-create the data set from a backup.

Note that observations might be lost during the repair process.

When you use the REPAIR statement for a catalog, you receive a message stating 
whether the REPAIR statement restored the entry. If the entire catalog is potentially 
damaged, the REPAIR statement attempts to restore all the entries in the catalog. If 
only a single entry is potentially damaged, for example, when a single entry is being 
updated and a disk-full condition occurs, on most systems only the entry that is 
open when the problem occurs is potentially damaged. In this case, the REPAIR 
statement attempts to repair only that entry. Some entries within the restored 
catalog might not include the last updates that occurred before a system crash or an 
I/O error. The REPAIR statement issues warning messages for entries that might 
have truncated data.

To repair a damaged catalog, you must use a version of SAS that can update the 
catalog. A damaged SAS 9 catalog can be repaired with SAS 9 only.

If you issue a REPAIR statement for a SAS file that does not exist in the specified 
library, PROC DATASETS stops processing the run group that contains the REPAIR 
statement, and issues an error message. To override this behavior, use the 
NOWARN option in the PROC DATASETS statement.

If you are using Cross-Environment Data Access (CEDA) to process a foreign SAS 
data set that has become damaged, you must move the data set back to its native 
environment before you attempt to repair it using the PROC DATASETS REPAIR 
statement. CEDA does not support update processing, which is required in order to 
repair a damaged data set.

638 Chapter 17 / DATASETS Procedure



For more information about CEDA, see “Definitions for Cross-Environment Data 
Access (CEDA)” in SAS Programmer’s Guide: Essentials.

RESUME Statement
resumes event logging to the audit file, if it was suspended.

Restriction: The RESUME statement must appear in an AUDIT RUN group.

Example: “Example 8: Initiating an Audit File” on page 695

Syntax
RESUME;

Details
No other audit-related statement, such as RESUME, SUSPEND, TERMINATE, 
USER_VAR, or LOG, will be valid for an audit file until the INITIATE statement has 
been submitted. For more information, see “INITIATE Statement” on page 626.

The RESUME statement requires the LOG statement ADMIN_IMAGE=YES option. 
This option specifies whether the administrative events are logged to the audit file 
(that is, the SUSPEND and RESUME actions). For more information, see “LOG 
Statement” on page 627.

SAVE Statement
Deletes all the SAS files in a library except the ones listed in the SAVE statement.

Example: “Example 3: Saving SAS Files from Deletion” on page 683

Syntax
SAVE SAS-file(s) </ MEMTYPE=member-type>;

Required Argument
SAS-file(s)

specifies one or more SAS files that you do not want to delete from the SAS 
library.

SAVE Statement 639

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1kll044bewka4n12ah0n5pl9aq1.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1kll044bewka4n12ah0n5pl9aq1.htm&locale=en


Note: If a SAS file has an ALTER= password assigned, it must be specified in 
order to delete the SAS file.

Optional Argument
MEMTYPE=member-type

restricts processing to one member type. You can use the option either in 
parentheses after the name of each SAS file or after a forward slash.

Aliases MTYPE=

MT=

Default If you do not specify the MEMTYPE= option in the PROC DATASETS 
statement or in the SAVE statement, the default is MEMTYPE=ALL.

See “Restricting Member Types for Processing” on page 651

Example “Example 3: Saving SAS Files from Deletion” on page 683

Details
If one of the SAS files in SAS-file does not exist in the procedure input library, 
PROC DATASETS stops processing the RUN group containing the SAVE statement 
and issues an error message. To override this behavior, specify the NOWARN 
option in the PROC DATASETS statement.

When the SAVE statement deletes SAS data sets, it also deletes any indexes 
associated with those data sets. (If the SAS data set that is to be deleted has an 
ALTER= password assigned to it, the ALTER= password must be specified in order 
to delete the SAS data set.)

CAUTION
SAS immediately deletes libraries and library members when you submit a 
RUN group. You are not asked to verify the Delete operation before it begins. The 
SAVE statement deletes many SAS files in one operation. Make sure that you 
understand how the MEMTYPE= option affects which types of SAS files are saved and 
which types are deleted.

When you use the SAVE statement with generation groups, the SAVE statement 
treats the base version and all historical versions as a unit. You cannot save a 
specific version.

SELECT Statement
Selects SAS files for copying.

Restrictions: The SELECT statement must follow a COPY statement

640 Chapter 17 / DATASETS Procedure



The SELECT statement cannot appear with an EXCLUDE statement in the same COPY 
step

Example: “Example 2: Manipulating SAS Files” on page 678

Syntax
SELECT SAS-file(s)
</ <ENCRYPTKEY=key-value> <ALTER=alter-password> <MEMTYPE=member-
type>>;

Required Argument
SAS-file(s)

specifies one or more SAS files that you want to copy. All of the SAS files that 
you name must be in the data library that is referenced by the libref named in the 
IN= option in the COPY statement. If the SAS files have generation groups, all 
the generations are copied because the SELECT statement does not allow you 
to select specific versions.

Optional Arguments
ALTER=alter-password

provides the Alter password for any alter-protected SAS files that you are moving 
from one data library to another. Because you are moving and thus deleting a 
SAS file from a SAS library, you need Alter access. You can use the option either 
in parentheses after the name of each SAS file or after a forward slash.

See “Using Passwords with the DATASETS Procedure” on page 649

ENCRYPTKEY=key-value
specifies the key value for AES encryption.

See “Appending AES-Encrypted Data Sets” on page 578 

MEMTYPE=member-type
restricts processing to one member type. You can use the option either in 
parentheses after the name of each SAS file or after a forward slash.

Aliases MTYPE=

MT=

Default If you do not specify the MEMTYPE= option in the PROC DATASETS 
statement, in the COPY statement, or in the SELECT statement, the 
default is MEMTYPE=ALL.

See “Specifying Member Types When Copying or Moving SAS Files” on 
page 605 and “Restricting Member Types for Processing” on page 
651

Example “Example 2: Manipulating SAS Files” on page 678

SELECT Statement 641



Details

Selecting Several Like-Named Files
You can use shortcuts for listing several SAS files in the SELECT statement:

Table 17.13 Using the SELECT Statement

Notation Meaning

x1–xn Specifies files X1 through Xn. The numbers must be consecutive.

x: Specifies all files that begin with the letter X.

SUSPEND Statement
suspends event logging to the audit file, but does not delete the audit file.

Restriction: The SUSPEND statement must appear in an AUDIT RUN group.

Example: “Example 8: Initiating an Audit File” on page 695

Syntax
SUSPEND;

Details
No other audit-related statement, such as SUSPEND, RESUME, TERMINATE, 
USER_VAR, or LOG, will be valid for an audit file until the INITIATE statement has 
been submitted. For more information, see “INITIATE Statement” on page 626.

The SUSPEND statement requires the LOG statement ADMIN_IMAGE=YES option. 
This option specifies whether the administrative events are logged to the audit file 
(that is, the SUSPEND and RESUME actions). For more information, see “LOG 
Statement” on page 627.

TERMINATE Statement
terminates event logging and deletes the audit file.

Restriction: The TERMINATE statement must appear in an AUDIT RUN group.

642 Chapter 17 / DATASETS Procedure



Example: “Example 8: Initiating an Audit File” on page 695

Syntax
TERMINATE;

Details
No other audit-related statement, such as TERMINATE, SUSPEND, RESUME, 
USER_VAR, or LOG, will be valid for an audit file until the INITIATE statement has 
been submitted. For more information, see “INITIATE Statement” on page 626.

USER_VAR Statement
defines optional variables to be logged in the audit file with each update to an observation. When you use 
USER_VAR, it must follow an INITIATE statement.

Restrictions: The USER_VAR statement must appear in an AUDIT RUN group.
The USER_VAR statement is optional. If specified, the USER_VAR statement must 
immediately follow the INITIATE statement for the applicable audit file.

Example: “Example 8: Initiating an Audit File” on page 695

Syntax
USER_VAR variable-name-1 <$> <length> <LABEL='variable-label' >
<variable-name-2 <$> <length> <LABEL='variable-label' > …>;

Required Argument
variable-name

is a name for the variable.

Optional Arguments
$

indicates that the variable is a character variable.

length
specifies the length of the variable.

Default 8

LABEL='variable-label'
specifies a label for the variable.

USER_VAR Statement 643



XATTR ADD Statement
Adds an extended attribute to a variable or a data set.

Restrictions: The XATTR ADD statement must appear in a MODIFY RUN group
Generation data sets do not support extended attributes.

Supports: V9 engine only

Notes: An extended attribute can have numeric or character values.
A blank space in a character value indicates a missing value. Missing numeric values 
are also allowed.
An extended attribute name must conform to SAS naming rules. A SAS name can be up 
to 32 characters long. For more information, see “Rules for User-Supplied SAS Names” 
in SAS Language Reference: Concepts and “SAS Variable Attributes” in SAS Language 
Reference: Concepts.

Example: “Example 9: Extended Attributes” on page 702

Syntax
XATTR ADD DS attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2 …>;

or

XATTR ADD VAR variable-name-1 (attribute-name-1=attribute-value-1
< attribute-name-2=attribute-value-2 …>)
<variable-name-2 (attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2 …>) >;

Required Arguments
Note that for character values, attribute-value must be in quotation marks, such as "attribute-
value".

XATTR ADD DS attribute-name-1=attribute-value-1 <attribute-
name-2=attribute-value-2 ...>

adds an extended attribute to a data set. If the extended attribute already exists, 
an error will be returned.

XATTR ADD VAR variable-name-1 (attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2 ...>) <variable-name-2 (attribute-
name-1=attribute-value-1 <attribute-name-2=attribute-value-2 ...>)>

adds an extended attribute to a variable. If the extended attribute already exists, 
an error will be returned.

644 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=p0ovqih65701xfn14v8z8aaoha3n&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=p0ovqih65701xfn14v8z8aaoha3n&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n08fs0rt7fikeln1uh0t8v5pt25d.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n08fs0rt7fikeln1uh0t8v5pt25d.htm&locale=en


Details
Extended attributes are organized into (name, value) pairs. If you try to add a new 
attribute and the attribute already exists, an error is written to the SAS log.

XATTR DELETE Statement
Deletes all extended attributes from a SAS file.

Restriction: The XATTR DELETE statement must appear in a MODIFY RUN group

Supports: V9 engine only

Example: “Example 9: Extended Attributes” on page 702

Syntax
XATTR DELETE;

Required Argument
XATTR DELETE

deletes all extended attributes from a data set.

Details
Use the XATTR DELETE statement to delete all of the extended attributes from a 
data set. None of the extended attributes will exist after using this command. The 
following example deletes all extended attributes from a data set:

proc datasets lib=library_name nolist;
   modify dataset_name;
      xattr delete;
   run;
quit;

XATTR OPTIONS Statement
Specifies options as needed for extended attributes. Currently, only SEGLEN= is a valid option.

Restriction: The XATTR OPTIONS statement must appear in a MODIFY RUN group

Supports: V9 engine only

Example: “Example 9: Extended Attributes” on page 702

XATTR OPTIONS Statement 645



Syntax
XATTR OPTIONS <SEGLEN=number-of-bytes>;

Required Argument
XATTR OPTIONS SEGLEN=number-of-bytes

Indicates the length of the storage element that will hold the character extended 
attribute value. The value can be 1 to 32,760 bytes.

Default 256

XATTR REMOVE Statement
Removes an extended attribute from a variable or a data set.

Restriction: The XATTR REMOVE statement must appear in a MODIFY RUN group

Supports: V9 engine only

Example: “Example 9: Extended Attributes” on page 702

Syntax
XATTR REMOVE DS attribute-name(s) ;

or

XATTR REMOVE VAR variable-name-1 (attribute-name(s))
<variable-name-2 (attribute-name(s) …)>;

Required Arguments
XATTR REMOVE DS attribute-name(s)

removes an extended attribute from a data set.

XATTR REMOVE VAR variable-name-1 (attribute-name(s)) <variable-name-2 
(attribute-name(s))>

removes an extended attribute from a variable.

Details
If you no longer need an extended attribute that you created, use the XATTR 
REMOVE statement to remove it from a variable or a data set. The XATTR 
REMOVE statement deletes only the extended attribute that you specify.

646 Chapter 17 / DATASETS Procedure



XATTR SET Statement
Updates or adds extended attributes to variables or data sets.

Restrictions: The XATTR SET statement must appear in a MODIFY RUN group
Generation data sets do not support extended attributes.

Supports: V9 engine only

Notes: An extended attribute can have numeric or character values.
A blank space in a character value indicates a missing value. Missing numeric values 
are also allowed.
An extended attribute name must conform to SAS naming rules. A SAS name can be up 
to 32 characters long. For more information, see “Rules for User-Supplied SAS Names” 
in SAS Language Reference: Concepts and “SAS Variable Attributes” in SAS Language 
Reference: Concepts.

Example: “Example 9: Extended Attributes” on page 702

Syntax
XATTR SET DS attribute-name-1=attribute-value-1 
<attribute-name-2="attribute-value-2" …>;

or

XATTR SET VAR variable-name-1 (attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2 … >)
<variable-name-2 (attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2> …)>;

Required Arguments
Note that for character values, attribute-value must be in quotation marks, such as "attribute-
value".

XATTR SET DS attribute-name-1=attribute-value-1 <attribute-name-2=attribute-
value-2 ...>

updates or adds an extended attribute to a data set. If the data set extended 
attribute does not exist, it will be added. If it does exist, it will be updated with the 
value specified.

XATTR SET VAR variable-name-1 (attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2 ...>) <variable-name-2 (attribute-
name-1=attribute-value-1 <attribute-name-2=attribute-value-2 ...>)>

updates or adds an extended attribute to a variable. If the variable and extended 
attribute combination does not exist, the extended attribute will be added. If it 
does exist, the extended attribute will be updated with the one specified.

XATTR SET Statement 647

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=p0ovqih65701xfn14v8z8aaoha3n&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=p0ovqih65701xfn14v8z8aaoha3n&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n08fs0rt7fikeln1uh0t8v5pt25d.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n08fs0rt7fikeln1uh0t8v5pt25d.htm&locale=en


Details
Use the XATTR SET statement if you are not sure if an extended attribute exists. If 
an extended attribute does exist, it will be updated. If the extended attribute does 
not exist, it added. The XATTR SET statement defines the variable or data set 
extended attribute even if it does not exist yet. When using XATTR ADD, an error 
occurs if there is an existing extended attribute using that value. You also get an 
error if you try to use XATTR UPDATE on an extended attribute that does not exist 
yet. Using XATTR SET defines the variable or data set extended attributes. If the 
extended attribute did not exist, it does now. If the extended attribute did exist, then 
it has a new value.

XATTR UPDATE Statement
Updates an extended attribute to a variable or a data set.

Restriction: The XATTR UPDATE statement must appear in a MODIFY RUN group

Supports: V9 engine only

Notes: A blank space in a character value indicates a missing value. Missing numeric values 
are also allowed.
An extended attribute name must conform to SAS naming rules. A SAS name can be up 
to 32 characters long. For more information, see “Rules for User-Supplied SAS Names” 
in SAS Language Reference: Concepts and “SAS Variable Attributes” in SAS Language 
Reference: Concepts.

Example: “Example 9: Extended Attributes” on page 702

Syntax
XATTR UPDATE DS attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2 …>;

or

XATTR UPDATE VAR variable-name-1 (attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2 …>)
<variable-name-2 (attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2 …>)>;

Required Arguments
Note that for character values, attribute-value must be in quotation marks, such as "attribute-
value".

XATTR UPDATE DS attribute-name-1=attribute-value-1 <attribute-
name-2=attribute-value-2 ...>

updates an extended attribute in a data set. If the extended attribute does not 
exist, an error is written to the SAS log.

648 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=p0ovqih65701xfn14v8z8aaoha3n&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=p0ovqih65701xfn14v8z8aaoha3n&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n08fs0rt7fikeln1uh0t8v5pt25d.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n08fs0rt7fikeln1uh0t8v5pt25d.htm&locale=en


XATTR UPDATE VAR variable-name-1 (attribute-name-1=attribute-value-1 
<attribute-name-2=attribute-value-2 ...>) <variable-name-2 (attribute-
name-1=attribute-value-1 <attribute-name-2=attribute-value-2 ...>)>

updates an extended attribute for a variable. If the variable and extended 
attribute combination is not found, an error message is written to the SAS log.

Details
To make changes to an existing extended attribute, use the XATTR UPDATE 
statement. If you try to update an extended attribute that does not exist, an error is 
written to the SAS log.

Usage: DATASETS Procedure

Using Passwords with the DATASETS Procedure
Several statements in the DATASETS procedure support options that manipulate 
passwords on SAS files. These options, ALTER=, PW=, READ=, and WRITE=, are 
also data set options.1 If you do not know how passwords affect SAS files, see 
“Assigning Passwords” in SAS Programmer’s Guide: Essentials.

When you are working with password-protected SAS files in the AGE, CHANGE, 
DELETE, EXCHANGE, REPAIR, or SELECT statement, you can specify ALTER= 
and PW= password options in the PROC DATASETS statement or in the 
subordinate statement.

Note: The ALTER= option works slightly different for the COPY (when moving a 
file) and MODIFY statements. For more information, see COPY statement on page 
596 and the MODIFY statement on page 628. 

SAS searches for passwords in the following order:

1 in parentheses after the name of the SAS file in a subordinate statement. When 
used in parentheses, the option refers only to the name immediately preceding 
the option. If you are working with more than one SAS file in a data library and 
each SAS file has a different password, you must specify password options in 
parentheses after individual names.

In the following statement, the ALTER= option provides the password red for the 
SAS file Bones only:

delete xplant bones(alter=red);

1. In the APPEND and CONTENTS statements, you use these options just as you use any SAS data set option, in 
parentheses after the SAS data set name.

Usage: DATASETS Procedure 649

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1lslsvg1oilpxn141ntayj2if1j.htm&locale=en


2 after a forward slash (/) in a subordinate statement. When you use a password 
option following a slash, the option refers to all SAS files named in the statement 
unless the same option appears in parentheses after the name of a SAS file. 
This method is convenient when you are working with more than one SAS file 
and they all have the same password.

In the following statement, the ALTER= option in parentheses provides the 
password red for the SAS file Chest, and the ALTER= option after the slash 
provides the password blue for the SAS file Virus:

delete chest(alter=red) virus / alter=blue;

3 in the PROC DATASETS statement. Specifying the password in the PROC 
DATASETS statement can be useful if all the SAS files that you are working with 
in the library have the same password. Do not specify the option in parentheses.

In the following PROC DATASETS step, the PW= option provides the password 
red for the SAS files Insulin and Abneg:

proc datasets pw=red;
   delete insulin;
   contents data=abneg;
run;

Note: For the password for a SAS file in a SELECT statement, SAS looks in the 
COPY statement before it looks in the PROC DATASETS statement.

Restricting Processing for Generation Data Sets
Several statements in the DATASETS procedure support the GENNUM= option to 
restrict processing for generation data sets. GENNUM= is also a data set option.1 If 
you do not know how to request and use generation data sets, see “Generation 
Data Sets” in “Understanding Generation Data Sets” in SAS Language Reference: 
Concepts.

When you are working with a generation group for the AUDIT, CHANGE, DELETE, 
MODIFY, and REPAIR statements, you can restrict processing in the PROC 
DATASETS statement or in the subordinate statement to a specific version.

Note: The GENNUM= option works slightly different for the MODIFY statement. 
See MODIFY statement on page 628. 

Note: You cannot restrict processing to a specific version for the AGE, COPY, 
EXCHANGE, and SAVE statements. These statements apply to the entire 
generation group.

SAS searches for a generation specification in the following order:

1. For the APPEND and CONTENTS statements, use GENNUM= just as you use any SAS data set option, in parentheses 
after the SAS data set name.

650 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en


1 in parentheses after the name of the SAS data set in a subordinate statement. 
When used in parentheses, the option refers only to the name immediately 
preceding the option. If you are working with more than one SAS data set in a 
data library and you want a different generation version for each SAS data set, 
then you must specify GENNUM= in parentheses after individual names.

In the following statement, the GENNUM= option specifies the version of a 
generation group for the SAS data set Bones only:

delete xplant bones (gennum=2);

2 after a forward slash (/) in a subordinate statement. When you use the 
GENNUM= option following a slash, the option refers to all SAS data sets named 
in the statement unless the same option appears in parentheses after the name 
of a SAS data set. This method is convenient when you are working with more 
than one file and you want the same version for all files.

In the following statement, the GENNUM= option in parentheses specifies the 
generation version for SAS data set Chest, and the GENNUM= option after the 
slash specifies the generation version for SAS data set Virus:

delete chest (gennum=2) virus / gennum=1;

3 in the PROC DATASETS statement. Specifying the generation version in the 
PROC DATASETS statement can be useful if you want the same version for all 
of the SAS data sets you are working with in the library. Do not specify the option 
in parentheses.

In the following PROC DATASETS step, the GENNUM= option specifies the 
generation version for the SAS files Insulin and Abneg:

proc datasets gennum=2;
   delete insulin;
   contents data=abneg;
run;

Note: For the generation version for a SAS file in a SELECT statement, SAS 
looks in the COPY statement before it looks in the PROC DATASETS statement.

Restricting Member Types for Processing

In the PROC DATASETS Statement
If you reference more than one member type in subordinate statements and you 
have a specified member type in the PROC DATASETS statement, then include all 
of the member types in the PROC DATASETS statement. Only the member type or 
types in the original PROC DATASETS statement is in effect. The following example 
lists multiple member types:

proc datasets lib=library memtype=(data view);

Usage: DATASETS Procedure 651



In Subordinate Statements
Use the MEMTYPE= option in the following subordinate statements to limit the 
member types that are available for processing:

AGE CHANGE DELETE EXCHANGE

EXCLUDE REPAIR SAVE SELECT

Note: The MEMTYPE= option works slightly differently for the CONTENTS, COPY, 
and MODIFY statements. For more information, see CONTENTS statement on 
page 589, COPY Statement on page 596, and MODIFY statement on page 628. 

The procedure searches for MEMTYPE= in the following order:

1 in parentheses immediately after the name of a SAS file. When used in 
parentheses, the MEMTYPE= option refers only to the SAS file immediately 
preceding the option. For example, the following statement deletes House.data, 
Lot.catalog, and Sales.data because the default member type for the DELETE 
statement is DATA. (For more information, see Table 17.52 on page 653 for the 
default types for each statement.) 

delete house lot(memtype=catalog) sales;

2 after a slash (/) at the end of the statement. When used following a slash, the 
MEMTYPE= option refers to all SAS files named in the statement unless the 
option appears in parentheses after the name of a SAS file. For example, the 
following statement deletes Lotpix.catalog, Regions.data, and Appl.catalog: 

delete lotpix regions(memtype=data) appl / memtype=catalog;

3 in the PROC DATASETS statement. For example, this DATASETS procedure 
deletes Appl.catalog: 

proc datasets memtype=catalog;
   delete appl;
run;

Note: When you use the EXCLUDE and SELECT statements, the procedure 
looks in the COPY statement for the MEMTYPE= option before it looks in the 
PROC DATASETS statement. For more information, see “Specifying Member 
Types When Copying or Moving SAS Files” on page 605. 

4 for the default value. If you do not specify a MEMTYPE= option in the 
subordinate statement or in the PROC DATASETS statement, the default value 
for the subordinate statement determines the member type available for 
processing.

652 Chapter 17 / DATASETS Procedure



Member Types
The following list gives the possible values for the MEMTYPE= option:

ACCESS
access descriptor files (created by SAS/ACCESS software)

ALL
all member types

CATALOG
SAS catalogs

DATA
SAS data files

FDB
financial database

MDDB
multidimensional database

PROGRAM
stored compiled SAS programs

VIEW
SAS views

The following table shows the member types that you can use in each statement:

Table 17.14 Subordinate Statements and Appropriate Member Types

Statement Appropriate Member Types
Default 
Member Type

AGE ACCESS, CATALOG, DATA, FDB, MDDB, 
PROGRAM, VIEW

DATA

CHANGE ACCESS, ALL, CATALOG, DATA, FDB, 
MDDB, PROGRAM, VIEW

ALL

CONTENTS ALL, DATA, VIEW DATA 1

COPY ACCESS, ALL, CATALOG, DATA, FDB, 
MDDB, PROGRAM, VIEW

ALL

DELETE ACCESS, ALL, CATALOG, DATA, FDB, 
MDDB, PROGRAM, VIEW

DATA

EXCHANGE ACCESS, ALL, CATALOG, DATA, FDB, 
MDDB, PROGRAM, VIEW

ALL

EXCLUDE ACCESS, ALL, CATALOG, DATA, FDB, 
MDDB, PROGRAM, VIEW

ALL

Usage: DATASETS Procedure 653



Statement Appropriate Member Types
Default 
Member Type

MODIFY ACCESS, DATA, VIEW DATA

REPAIR ALL, CATALOG, DATA ALL 2

SAVE ACCESS, ALL, CATALOG, DATA, FDB, 
MDDB, PROGRAM, VIEW

ALL

SELECT ACCESS, ALL, CATALOG, DATA, FDB, 
MDDB, PROGRAM, VIEW

ALL

1 When DATA=_ALL_ in the CONTENTS statement, the default is ALL. ALL includes only DATA and 
VIEW.

2 ALL includes only DATA and CATALOG.

Sample PROC DATASETS Output
The DATASETS procedure includes the following:

n copies all data sets from the Control library to the Health library

n lists the contents of the Health library

n deletes the Syndrome data set from the Health library

n changes the name of the Prenat data set to Infant

The SAS log is shown in the following output.

LIBNAME control 'SAS-library-1';
LIBNAME health 'SAS-library-2';

proc datasets memtype=data;
   copy in=control out=health;
run;

proc datasets library=health memtype=data details;
   delete syndrome;
   change prenat=infant;
run;
quit;

654 Chapter 17 / DATASETS Procedure



Example Code 17.1 Log from PROC DATASETS

744  proc datasets library=health memtype=data details;

                                   Directory

Libref         HEALTH

Engine         V9

Physical Name  c:\Documents and Settings\myfile\My Documents\procdatasets\health

Filename       c:\Documents and Settings\myfile\My Documents\procdatasets\health

              Member  Obs, Entries                                   File

 #  Name      Type     or Indexes   Vars  Label                      Size  Last Modified

 1  ALL       DATA         23        17                             13312  12Sep07:10:57:50

 2  BODYFAT   DATA         83        13   California Results        13312  12Sep07:10:57:54

 3  CONFOUND  DATA          8         4                              5120  12Sep07:10:57:50

 4  CORONARY  DATA         39         4                              5120  12Sep07:10:57:50

 5  DRUG1     DATA          6         2   JAN2005 DATA               5120  12Sep07:10:57:50

 6  DRUG2     DATA         13         2   MAY2005 DATA               5120  12Sep07:10:57:50

 7  DRUG3     DATA         11         2   JUL2005 DATA               5120  12Sep07:10:57:50

 8  DRUG4     DATA          7         2   JAN2002 DATA               5120  12Sep07:10:57:50

 9  DRUG5     DATA          1         2   JUL2002 DATA               5120  12Sep07:10:57:50

10  GROUP     DATA        148        11   Test Subjects             33792  12Sep07:13:01:16

    GROUP     INDEX         1                                        9216  12Sep07:13:01:16

11  GRPOUT    DATA         11        40                             17408  13Dec10:11:40:24

12  GRPOUT1   DATA         11        40                             17408  13Dec10:10:28:32

13  INFANT    DATA        149         6                             17408  12Sep07:10:57:52

14  MLSCL     DATA         32         4   Multiple Sclerosis Data    5120  12Sep07:10:57:52

15  NAMES     DATA          7         4                              5120  12Sep07:10:57:52

16  OXYGEN    DATA         31         7                             17408  12Sep07:13:01:16

17  PERSONL   DATA        148        11                             25600  12Sep07:10:57:52

18  PHARM     DATA          6         3   Sugar Study                5120  12Sep07:10:57:52

19  POINTS    DATA          6         6                              5120  12Sep07:10:57:52

20  RESULTS   DATA         10         5                              5120  12Sep07:10:57:54

21  SLEEP     DATA        108         6                              9216  12Sep07:10:57:54

22  TEST2     DATA         15         5                              5120  12Sep07:10:57:54

23  TRAIN     DATA          7         2                              5120  12Sep07:10:57:54

24  VISION    DATA         16         3                              5120  12Sep07:10:57:54

25  WEIGHT    DATA          1         2                              5120  12Sep07:10:57:50

26  WGHT      DATA         83        13                             13312  12Sep07:10:57:54

745     delete syndrome;

746     change prenat=infant;

747  run;

ERROR: The file HEALTH.PRENAT (memtype=DATA) was not found, but appears on a CHANGE statement.

748  quit;

749

750  proc datasets memtype=data;

Usage: DATASETS Procedure 655



Results: DATASETS Procedure

Directory Listing to the SAS Log
The PROC DATASETS statement lists the SAS files in the procedure input library 
unless the NOLIST option is specified. The NOLIST option prevents the creation of 
the procedure results that go to the log. If you specify the MEMTYPE= option, only 
specified types are listed. If you specify the DETAILS option, PROC DATASETS 
prints these additional columns of information: Obs, Entries or Indexes, Vars, 
and Label.

Directory Listing as SAS Output
The CONTENTS statement lists the directory of the procedure input library if you 
use the DIRECTORY option or specify DATA=_ALL_.

If you want only a directory, use the NODS option and the _ALL_ keyword in the 
DATA= option. The NODS option suppresses the description of the SAS data sets; 
only the directory appears in the output.

Note: The CONTENTS statement does not put a directory in an output data set. If 
you try to create an output data set using the NODS option, you receive an empty 
output data set. Use the SQL procedure to create a SAS data set that contains 
information about a SAS library.

Note: If you specify the ODS RTF destination, the PROC DATASETS output goes 
to both the SAS log and the ODS output area. The NOLIST option suppresses 
output to both. To see the output only in the SAS log, use the ODS EXCLUDE 
statement by specifying the member directory as the exclusion.

656 Chapter 17 / DATASETS Procedure



Procedure Output

The CONTENTS Statement
The only statement in PROC DATASETS that produces procedure output is the 
CONTENTS statement. This section shows the output from the CONTENTS 
statement for the Health library and the Group data set, which is shown in the 
following output.

Only the items in the output that require explanation are discussed.

The Health Library Contents
The following is the list of all the files and catalogs in the Health library.

Results: DATASETS Procedure 657



Data Set Attributes
Here are descriptions of selected fields shown in the following output:

Member Type
is the type of library member (DATA or VIEW).

Created
indicates the date and time that the data set was created. The date and time 
reflect the setting of the TIMEZONE= system option. If the TIMEZONE= system 
option is not set, then the local time zone in which the SAS session is running is 
used.

658 Chapter 17 / DATASETS Procedure



Last Modified
indicates the date and time that the data set was last modified. The date and 
time reflect the setting of the TIMEZONE= system option. If the TIMEZONE= 
system option is not set, then the local time zone in which the SAS session is 
running is used.

Protection
indicates whether the SAS data set is Read, Write, or Alter password protected.

Data Set Type
names the special data set type (such as CORR, COV, SSPC, EST, or 
FACTOR), if any.

Observations
is the total number of observations currently in the file. Note that for a very large 
data set, if the number of observations exceeds the largest integer value that can 
be represented in a double precision floating point number, the count is shown 
as missing.

Deleted Observations
is the number of observations marked for deletion. These observations are not 
included in the total number of observations, shown in the Observations field. 
Note that for a very large data set, if the number of deleted observations 
exceeds the number that can be stored in a double-precision integer, the count 
is shown as missing. Also, the count for Deleted Observations shows a 
missing value if you use the COMPRESS=YES option with one or both of the 
REUSE=YES and POINTOBS=NO options.

Compressed
indicates whether the data set is compressed. If the data set is compressed, the 
output includes an additional item, Reuse Space (with a value of YES or NO). 
This item indicates whether to reuse space that is made available when 
observations are deleted.

Sorted
indicates whether the data set is sorted. If you sort the data set with PROC 
SORT, PROC SQL, or specify sort information with the SORTEDBY= data set 
option, a value of YES appears here, and there is an additional section to the 
output. See “Sort Information” on page 663 for details.

Data Representation
is the format in which data is represented on a computer architecture or in an 
operating environment. For example, on an IBM PC, character data is 
represented by its ASCII encoding and byte-swapped integers. Native data 
representation refers to an environment for which the data representation 
compares with the CPU that is accessing the file. For example, a file that is in 
Windows data representation is native to the Windows operating environment.

Encoding
is the encoding value. Encoding is a set of characters (letters, logograms, digits, 
punctuation, symbols, control characters, and so on) that have been mapped to 
numeric values (called code points) that can be used by computers. The code 
points are assigned to the characters in the character set when you apply an 
encoding method.

Results: DATASETS Procedure 659



Output 17.4 Attributes of the Group Data Set

Engine and Operating Environment-
Dependent Information
The CONTENTS statement produces operating environment-specific and engine-
specific information. This information differs depending on the operating 
environment. The following output is from the Windows operating environment.

660 Chapter 17 / DATASETS Procedure



Output 17.5 Engine/Host Dependent Information for the Group Data Set

Alphabetic List of Variables and Attributes
Here are descriptions of selected columns in the following output:

#
is the logical position of each variable in the observation. This number is 
assigned to the variable when the variable is defined.

Variable
is the name of each variable. By default, variables appear alphabetically.

Note: Variable names are sorted such that X1, X2, and X10 appear in that order 
and not in the true collating sequence of X1, X10, and X2. Variable names that 
contain an underscore and digits might appear in a nonstandard sort order. For 
example, P25 and P75 appear before P2_5.

Type
specifies the type of variable: character or numeric.

Len
specifies the variable's length, which is the number of bytes used to store each 
of a variable's values in a SAS data set.

Transcode
specifies whether a character variable is transcoded. If the attribute is NO, then 
transcoding is suppressed. By default, character variables are transcoded when 

Results: DATASETS Procedure 661



required. For more information about transcoding, see SAS National Language 
Support (NLS): Reference Guide.

Note: If none of the variables in the SAS data set has a format, informat, or label 
associated with it, or if all of the variables are set to TRANSCODE=YES, then the 
column for the attribute is NOT displayed.

Output 17.6 Listing of Variables and Attributes of the Group Data Set

Alphabetic List of Indexes and Attributes
The section shown in the following output appears only if the data set has indexes 
associated with it.

#
indicates the number of each index. The indexes are numbered sequentially as 
they are defined.

Index
displays the name of each index. For simple indexes, the name of the index is 
the same as a variable in the data set.

Unique Option
indicates whether the index must have unique values. If the column contains 
YES, the combination of values of the index variables is unique for each 
observation.

662 Chapter 17 / DATASETS Procedure

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Nomiss Option
indicates whether the index excludes missing values for all index variables. If the 
column contains YES, the index does not contain observations with missing 
values for all index variables.

# of Unique Values
gives the number of unique values in the index.

Variables
names the variables in a composite index.

Output 17.7 Listing of Indexes and Attributes of the Group Data Set

Sort Information
The section shown in the following output appears only if the Sorted field has a 
value of YES.

Sortedby
indicates how the data are currently sorted. This field contains either the 
variables and options that you use in the BY statement in PROC SORT, the 
column name in PROC SQL, or the values that you specify in the SORTEDBY= 
option.

Validated
indicates whether the data was sorted using PROC SORT or SORTEDBY. If 
PROC SORT or PROC SQL sorted the data set, the value is YES. If you 
assigned the sort indicator with the SORTEDBY= data set option, the value is 
NO.

Character Set
is the character set used to sort the data. The value for this field can be ASCII, 
EBCDIC, or PASCII.

Collating Sequence
is the collating sequence used to sort the data set, which can be a translation 
table name, an encoding value, or LINGUISTIC if the data set is sorted 
linguistically. This field does not appear if you do not specify a collating 
sequence that is different from the character set.

If the data set is sorted linguistically, additional linguistic collating sequence 
information appears after Collating Sequence, such as the locale, collation 
style, and so on. For a list of the collation rules that can be specified for linguistic 
collation.

Results: DATASETS Procedure 663



Sort Option
indicates whether PROC SORT used the NODUPKEY option when sorting the 
data set. This field does not appear if you did not use this option in a PROC 
SORT statement (not shown).

Output 17.8 Group Data Set Sort Information

PROC DATASETS and the Output Delivery System 
(ODS)

Most SAS procedures send their messages to the SAS log and their procedure 
results to the output. PROC DATASETS is unique because it sends procedure 
results to both the SAS log and the procedure output file. When the interface to 
ODS was created, it was decided that all procedure results (from both the log and 
the procedure output file) should be available to ODS. In order to implement this 
feature and maintain compatibility with earlier releases, the interface to ODS had to 
be slightly different from the usual interface.

By default, the PROC DATASETS statement itself produces two output objects: 
Members and Directory. These objects are routed to the SAS log. The CONTENTS 
statement produces three output objects by default: Attributes, EngineHost, and 
Variables. (The use of various options adds other output objects.) These objects are 
routed to the procedure output file. If you open an ODS destination (such as HTML, 
RTF, or PRINTER), all of these objects are, by default, routed to that destination.

You can use ODS SELECT and ODS EXCLUDE statements to control which 
objects go to which destination, just as you can for any other procedure. However, 
because of the unique interface between PROC DATASETS and ODS, when you 
use the keyword LISTING in an ODS SELECT or ODS EXCLUDE statement, you 
affect both the log and the listing.

ODS Table Names
PROC DATASETS and PROC CONTENTS assign a name to each table that they 
create. You can use these names to reference the table when using the Output 
Delivery System (ODS) to select tables and create output data sets.

PROC CONTENTS generates the same ODS tables as PROC DATASETS with the 
CONTENTS statement.

664 Chapter 17 / DATASETS Procedure



Table 17.15 ODS Tables Produced by the DATASETS Procedure without the CONTENTS 
Statement

ODS Table Description Generates Table

Directory General library 
information

Unless you specify the NOLIST option

Members Library member 
information

Unless you specify the NOLIST option

Table 17.16 ODS Table Names Produced by PROC CONTENTS and PROC DATASETS with the CONTENTS 
Statement

ODS Table Description Generates Table

Attributes Data set attributes Unless you specify the SHORT option

Directory General library information If you specify DATA=<libref.>_ALL_ or the 
DIRECTORY option 1

EngineHost Engine and operating 
environment information

Unless you specify the SHORT option

IntegrityConstraints A detailed listing of integrity 
constraints

If the data set has integrity constraints and you 
do not specify the SHORT option

IntegrityConstraintsSh
ort

A concise listing of integrity 
constraints

If the data set has integrity constraints and you 
specify the SHORT option

Indexes A detailed listing of indexes If the data set is indexed and you do not 
specify the SHORT option

IndexesShort A concise listing of indexes If the data set is indexed and you specify the 
SHORT option

Members Library member information If you specify DATA=<libref.>_ALL_ or the 
DIRECTORY option 1

Position A detailed listing of variables 
by logical position in the data 
set

If you specify the VARNUM option and you do 
not specify the SHORT option

PositionShort A concise listing of variables 
by logical position in the data 
set

If you specify the VARNUM option and the 
SHORT option

PositionVarchar Position including varchar 
type

If a varchar is in the data set, you specify 
VARNUM and you do not specify the SHORT 
option

Results: DATASETS Procedure 665



ODS Table Description Generates Table

Sortedby Detailed sort information If the data set is sorted and you do not specify 
the SHORT option

SortedbyShort Concise Sort information If the data set is sorted and you specify the 
SHORT option

Variables A detailed listing of variables 
in alphabetical order

Unless you specify the SHORT option

VariablesShort A concise listing of variables 
in alphabetical order

If you specify the SHORT option

VariablesVarchar Variables including varchar 
type

If a varchar is in the data set, unless the 
SHORT option is specified

1 For PROC DATASETS, if both the NOLIST option and either the DIRECTORY option or DATA=<libref.>_ALL_ are 
specified, then the NOLIST option is ignored.

Output Data Sets

The CONTENTS Statement
The CONTENTS statement is the only statement in the DATASETS procedure that 
generates output data sets.

The OUT= Data Set
The OUT= option in the CONTENTS statement creates an output data set. Each 
variable in each DATA= data set has one observation in the OUT= data set. Here 
are the variables in the output data set:

CHARSET
the character set used to sort the data set. The value is ASCII, EBCDIC, or 
PASCII. A blank appears if the data set does not have a sort indicator stored with 
it.

COLLATE
the collating sequence used to sort the data set. A blank appears if the sort 
indicator for the input data set does not include a collating sequence.

COMPRESS
indicates whether the data set is compressed.

CRDATE
date the data set was created.

666 Chapter 17 / DATASETS Procedure



DELOBS
number of observations marked for deletion in the data set. (Observations can 
be marked for deletion but not actually deleted when you use the FSEDIT 
procedure of SAS/FSP software.)

ENCRYPT
indicates whether the data set is encrypted.

ENGINE
name of the method used to read from and write to the data set.

FLAGS
indicates whether the variables in an SQL view are protected (P) or contribute (C) 
to a derived variable.

P
indicates the variable is protected. The value of the variable can be displayed 
but not updated.

C
indicates whether the variable contributes to a derived variable.

The value of FLAG is blank if P or C does not apply to an SQL view or if it is a 
data set view.

FORMAT
variable format. The value of FORMAT is a blank if you do not associate a format 
with the variable.

FORMATD
number of decimals that you specify when you associate the format with the 
variable. The value of FORMATD is 0 if you do not specify decimals in the 
format.

FORMATL
format length. If you specify a length for the format when you associate the 
format with a variable, the length that you specify is the value of FORMATL. If 
you do not specify a length for the format when you associate the format with a 
variable, the value of FORMATL is the default length of the format if you use the 
FMTLEN option and 0 if you do not use the FMTLEN option.

GENMAX
maximum number of versions for the generation group.

GENNEXT
the next generation number for a generation group.

GENNUM
the version number.

IDXCOUNT
number of indexes for the data set.

IDXUSAGE
use of the variable in indexes. Possible values are

NONE
the variable is not part of an index.

SIMPLE
the variable has a simple index. No other variables are included in the index.

COMPOSITE
the variable is part of a composite index.

Results: DATASETS Procedure 667



BOTH
the variable has a simple index and is part of a composite index.

INFORMAT
variable informat. The value is a blank if you do not associate an informat with 
the variable.

INFORMD
number of decimals that you specify when you associate the informat with the 
variable. The value is 0 if you do not specify decimals when you associate the 
informat with the variable.

INFORML
informat length. If you specify a length for the informat when you associate the 
informat with a variable, the length that you specify is the value of INFORML. If 
you do not specify a length for the informat when you associate the informat with 
a variable, the value of INFORML is the default length of the informat if you use 
the FMTLEN option and 0 if you do not use the FMTLEN option.

JUST
justification (0=left, 1=right).

LABEL
variable label (blank if none given).

LENGTH
variable length.

LIBNAME
libref used for the data library.

MEMLABEL
label for this SAS data set (blank if no label).

MEMNAME
SAS data set that contains the variable.

MEMTYPE
library member type (DATA or VIEW).

MODATE
date the data set was last modified.

NAME
variable name.

NOBS
number of observations in the data set.

NODUPKEY
indicates whether the NODUPKEY option was used in a PROC SORT statement 
to sort the input data set.

NODUPREC
indicates whether the NODUPREC option was used in a PROC SORT statement 
to sort the input data set.

NPOS
physical position of the first character of the variable in the data set.

POINTOBS
indicates whether the data set can be addressed by observation.

668 Chapter 17 / DATASETS Procedure



PROTECT
the first letter of the level of protection. The value for PROTECT is one or more 
of the following:

A
indicates the data set is alter-protected.

R
indicates the data set is read-protected.

W
indicates the data set is write-protected.

REUSE
indicates whether the space made available when observations are deleted from 
a compressed data set should be reused. If the data set is not compressed, the 
REUSE variable has a value of NO.

SORTED
the value depends on the sorting characteristics of the input data set. Here are 
the possible values:

. (period)
for not sorted.

0
for sorted but not validated.

1
for sorted and validated.

SORTEDBY
the value depends on that variable's role in the sort. Here are the possible 
values:

. (period)
if the variable was not used to sort the input data set.

n
where n is an integer that denotes the position of that variable in the sort. A 
negative value of n indicates that the data set is sorted by the descending 
order of that variable.

TRANSCOD
indicates whether the variable is transcoded.

TYPE
type of the variable (1=numeric, 2=character).

TYPEMEM
special data set type (blank if no TYPE= value is specified).

VARNUM
variable number in the data set. Variables are numbered in the order in which 
they appear.

The output data set is sorted by the variables LIBNAME and MEMNAME.

Note: The variable names are sorted so that the values X1, X2, and X10 are listed 
in that order, not in the true collating sequence of X1, X10, X2. Therefore, if you 
want to use a BY statement on MEMNAME in subsequent steps, run a PROC 
SORT step on the output data set first. You can also use the NOTSORTED option in 
the BY statement.

Results: DATASETS Procedure 669



Here is an example of an output data set created from the Group data set, which is 
shown in “Example 5: Describing a SAS Data Set” on page 688 and in “Procedure 
Output” on page 657. 

Due to the size of the Health.Grpout, the following output is in five sections.

Output 17.9 An Example of an Output Data Set — Section 1

Output 17.10 An Example of an Output Data Set — Section 2

670 Chapter 17 / DATASETS Procedure



Output 17.11 An Example of an Output Data Set — Section 3

Output 17.12 An Example of an Output Data Set — Section 4

Results: DATASETS Procedure 671



Output 17.13 An Example of an Output Data Set — Section 5

The OUT2= Data Set
The OUT2= option in the CONTENTS statement creates an output data set that 
contains information about indexes and integrity constraints. Here are the variables 
in the output data set:

IC_OWN
contains YES if the index is owned by the integrity constraint.

INACTIVE
contains YES if the integrity constraint is inactive.

LIBNAME
libref used for the data library.

MEMNAME
SAS data set that contains the variable.

MG
the value of MESSAGE=, if it is used, in the IC CREATE statement.

MSGTYPE
the value is blank unless an integrity constraint is violated and you specified a 
message.

NAME
the name of the index or integrity constraint.

NOMISS
contains YES if the NOMISS option is defined for the index.

NUMVALS
the number of distinct values in the index (displayed for centiles).

NUMVARS
the number of variables involved in the index or integrity constraint.

ONDELETE
for a foreign key integrity constraint, contains RESTRICT or SET NULL if 
applicable (the ON DELETE option in the IC CREATE statement).

672 Chapter 17 / DATASETS Procedure



ONUPDATE
for a foreign key integrity constraint, contains RESTRICT or SET NULL if 
applicable (the ON UPDATE option in the IC CREATE statement).

RECREATE
the SAS statement necessary to re-create the index or integrity constraint.

REFERENCE
for a foreign key integrity constraint, contains the name of the referenced data 
set.

TYPE
the type. For an index, the value is “Index” while for an integrity constraint, the 
value is the type of integrity constraint (Not Null, Check, Primary Key, and so on).

UNIQUE
contains YES if the UNIQUE option is defined for the index.

UPERC
the percentage of the index that has been updated since the last refresh 
(displayed for centiles).

UPERCMX
the percentage of the index update that triggers a refresh (displayed for centiles).

WHERE
for a check integrity constraint, contains the WHERE statement.

Examples: DATASETS Procedure

Example 1: Removing All Labels and Formats in a 
Data Set
Features: PROC DATASETS statement options

LIB=
MEMTYPE=
CONTENTS statement
MODIFY statement

CONTENTS procedure
FORMAT procedure
OPTIONS statement
TITLE statement

Example 1: Removing All Labels and Formats in a Data Set 673



Details
This example demonstrates the following tasks:

n sets system options

n creates a user defined FORMAT

n creates a data set

n deletes labels and format from the data set

n uses PROC CONTENTS to show data set with and without labels and format

Program
options ls=79 nodate center;
title ;

libname mylib 'c:\mylib';

proc format;
   value clsfmt 1='Freshman' 2='Sophomore' 3='Junior' 4='Senior';
run;

data mylib.class;
   format z clsfmt.;
   label x='ID NUMBER'
      y='AGE'
      z='CLASS STATUS';
   input x y z;
datalines;
1 20 4
2 18 1
;

proc contents data=mylib.class;
run;

proc datasets lib=mylib memtype=data;
   modify class;
     attrib _all_ label=' ';
     attrib _all_ format=;
contents data=mylib.class;
run;
quit;

Program Description

Set the system options and the LIBNAME statement. In this example, the 
LIBNAME is MyLib. The CENTER option specifies to align SAS procedure output in 

674 Chapter 17 / DATASETS Procedure



the center. The NODATE option specifies that the date and the time are not printed. 
The LS= option specifies the line size for the SAS log and for the output. The TITLE 
statement followed by a blank space removes any existing title in your SAS session.

options ls=79 nodate center;
title ;

libname mylib 'c:\mylib';

Create a user-defined format with a value of CLSFMT.

proc format;
   value clsfmt 1='Freshman' 2='Sophomore' 3='Junior' 4='Senior';
run;

Create a data set named Class. Use the CLSFMT format on variable Z. Create 
labels for variables, X, Y, and Z.

data mylib.class;
   format z clsfmt.;
   label x='ID NUMBER'
      y='AGE'
      z='CLASS STATUS';
   input x y z;
datalines;
1 20 4
2 18 1
;

Use PROC CONTENTS to view the contents of the data set before removing 
the labels and format. 

proc contents data=mylib.class;
run;

Within PROC DATASETS, remove all the labels and formats using the MODIFY 
statement and the ATTRIB option. Use the CONTENTS statement within PROC 
DATASETS to view the contents of the data set without the labels and format.

proc datasets lib=mylib memtype=data;
   modify class;
     attrib _all_ label=' ';
     attrib _all_ format=;
contents data=mylib.class;
run;
quit;

Example 1: Removing All Labels and Formats in a Data Set 675



Output Examples
Output 17.14 CONTENTS Procedure for Class Data Set with Labels and Format

676 Chapter 17 / DATASETS Procedure



Output 17.15 CONTENTS Statement for Class Data Set without Labels and Format

Example 1: Removing All Labels and Formats in a Data Set 677



Example 2: Manipulating SAS Files
Features: PROC DATASETS statement options

DETAILS
LIBRARY=
COPY statement
CHANGE statement
DELETE statement
EXCHANGE statement

COPY procedure
EXCLUDE statement
OPTIONS statement

Details
This example demonstrates the following tasks:

n changes the names of SAS files

n copies SAS files between SAS libraries

n deletes SAS files

n selects SAS files to copy

n exchanges the names of SAS files

n excludes SAS files from a copy operation

Program
options pagesize=60 linesize=80 nodate pageno=1 source;

LIBNAME dest1 'SAS-library-1';
LIBNAME dest2 'SAS-library-2';
LIBNAME health 'SAS-library-3';

proc datasets library=health details;

   delete tension a2(mt=catalog);

678 Chapter 17 / DATASETS Procedure



   change a1=postdrug;
   exchange weight=bodyfat;

   copy out=dest1 move memtype=view;

      select spdata;

      select etest1-etest5 / memtype=catalog;

   copy out=dest2;
      exclude d: mlscl oxygen test2 vision weight;
quit;

Program Description

Set the system options. The SOURCE system option writes the programming 
statements to the SAS log. PAGESIZE= option specifies the number of lines that 
compose a page of the SAS log and SAS output. LINESIZE= option specifies the 
line size for the SAS log and for SAS procedure output. NODATE option specifies 
that the date and the time are not printed. PAGENO= option specifies a beginning 
page number for the next page of output.

options pagesize=60 linesize=80 nodate pageno=1 source;

LIBNAME dest1 'SAS-library-1';
LIBNAME dest2 'SAS-library-2';
LIBNAME health 'SAS-library-3';

Specify the procedure input library, and add more details to the directory. 
DETAILS prints these additional columns in the directory: Obs, Entries or Indexes, 
Vars, and Label. All member types are available for processing because the 
MEMTYPE= option does not appear in the PROC DATASETS statement.

proc datasets library=health details;

Delete two files in the library, and modify the names of a SAS data set and a 
catalog. The DELETE statement deletes the Tension data set and the A2 catalog. 
MT=CATALOG applies only to A2 and is necessary because the default member 
type for the DELETE statement is DATA. The CHANGE statement changes the 
name of the A1 catalog to Postdrug. The EXCHANGE statement exchanges the 
names of the Weight and Bodyfat data sets. MEMTYPE= is not necessary in the 
CHANGE or EXCHANGE statement because the default is MEMTYPE=ALL for 
each statement.

   delete tension a2(mt=catalog);
   change a1=postdrug;
   exchange weight=bodyfat;

Restrict processing to one member type and delete and move data views. 
MEMTYPE=VIEW restricts processing to SAS views. MOVE specifies that all SAS 
views named in the SELECT statements in this step be deleted from the Health data 
library and moved to the Dest1 data library.

   copy out=dest1 move memtype=view;

Move the SAS view Spdata from the Health data library to the Dest1 data 
library.

      select spdata;

Example 2: Manipulating SAS Files 679



Move the catalogs to another data library. The SELECT statement specifies that 
the catalogs Etest1 through Etest5 be moved from the Health data library to the 
Dest1 data library. MEMTYPE=CATALOG overrides the MEMTYPE=VIEW option in 
the COPY statement.

      select etest1-etest5 / memtype=catalog;

Exclude all files with specified criteria from processing. The EXCLUDE 
statement excludes from the COPY operation all SAS files that begin with the letter 
D and the other SAS files listed. All remaining SAS files in the Health data library 
are copied to the Dest2 data library.

   copy out=dest2;
      exclude d: mlscl oxygen test2 vision weight;
quit;

680 Chapter 17 / DATASETS Procedure



Log Examples
Example Code 17.2 SAS Log for Dest1

117    options pagesize=60 linesize=80 nodate pageno=1 source;
118  LIBNAME dest1 'SAS-library-1';
NOTE: Libref DEST1 was successfully assigned as follows:
      Engine:        V9
      Physical Name: SAS-library-1\dest1
119  LIBNAME dest2 'SAS-library-2';
NOTE: Libref DEST2 was successfully assigned as follows:
      Engine:        V9
      Physical Name: SAS-library-2\dest2
120  LIBNAME health 'SAS-library-3';
NOTE: Libref HEALTH was successfully assigned as follows:
      Engine:        V9
      Physical Name: SAS-library-3\health

121  proc datasets library=health details;
                                   Directory

Libref         HEALTH
Engine         V9
Physical Name  \myfiles\health
Filename       \myfiles\health

                     Member   Obs, Entries
        #  Name      Type      or Indexes   Vars  Label

        1  A1        CATALOG       23
        2  ALL       DATA          23        17
        3  BODYFAT   DATA           1         2
        4  CONFOUND  DATA           8         4
        5  CORONARY  DATA          39         4
        6  DRUG1     DATA           6         2   JAN2005 DATA
        7  DRUG2     DATA          13         2   MAY2005 DATA
        8  DRUG3     DATA          11         2   JUL2005 DATA
        9  DRUG4     DATA           7         2   JAN2002 DATA
       10  DRUG5     DATA           1         2   JUL2002 DATA
       11  ETEST1    CATALOG        1
       12  ETEST2    CATALOG        1
       13  ETEST3    CATALOG        1
       14  ETEST4    CATALOG        1
       15  ETEST5    CATALOG        1
       16  ETESTS    CATALOG        1
       17  FORMATS   CATALOG        6
       18  GROUP     DATA         148        11
       19  GRPOUT    DATA          11        40
       20  INFANT    DATA         149         6
       21  MLSCL     DATA          32         4   Multiple Sclerosis Data
       22  NAMES     DATA           7         4
       23  OXYGEN    DATA          31         7
       24  PERSONL   DATA         148        11
       25  PHARM     DATA           6         3   Sugar Study
       26  POINTS    DATA           6         6
       27  RESULTS   DATA          10         5
       28  SLEEP     DATA         108         6
       29  SPDATA    VIEW           .         2
       30  TEST2     DATA          15         5
       31  TRAIN     DATA           7         2
       32  VISION    DATA          16         3
       33  WEIGHT    DATA          83        13   California Results
       34  WGHT      DATA          83        13

Example 2: Manipulating SAS Files 681



                          File
                     #    Size  Last Modified

                     1   62464  07Mar05:14:36:20
                     2   13312  12Sep07:13:57:48
                     3    5120  12Sep07:13:57:48
                     4    5120  12Sep07:13:57:48
                     5    5120  12Sep07:13:57:48
                     6    5120  12Sep07:13:57:49
                     7    5120  12Sep07:13:57:49
                     8    5120  12Sep07:13:57:49
                     9    5120  12Sep07:13:57:49
                    10    5120  12Sep07:13:57:49
                    11   17408  04Jan02:14:20:16
                    12   17408  04Jan02:14:20:16
                    13   17408  04Jan02:14:20:16
                    14   17408  04Jan02:14:20:16
                    15   17408  04Jan02:14:20:16
                    16   17408  24Mar05:16:12:20
                    17   17408  24Mar05:16:12:20
                    18   25600  12Sep07:13:57:50
                    19   17408  24Mar05:15:33:31
                    20   17408  12Sep07:13:57:51
                    21    5120  12Sep07:13:57:50
                    22    5120  12Sep07:13:57:50
                    23    9216  12Sep07:13:57:50
                    24   25600  12Sep07:13:57:51
                    25    5120  12Sep07:13:57:51
                    26    5120  12Sep07:13:57:51
                    27    5120  12Sep07:13:57:52
                    28    9216  12Sep07:13:57:52
                    29    5120  24Mar05:16:12:21
                    30    5120  12Sep07:13:57:52
                    31    5120  12Sep07:13:57:53
                    32    5120  12Sep07:13:57:53
                    33   13312  12Sep07:13:57:53
                    34   13312  12Sep07:13:57:53122  delete tension
a2(mt=catalog);
123  change a1=postdrug;
124  exchange weight=bodyfat;
NOTE: Changing the name HEALTH.A1 to HEALTH.POSTDRUG (memtype=CATALOG).
NOTE: Exchanging the names HEALTH.WEIGHT and HEALTH.BODYFAT (memtype=DATA).
125  copy out=dest1 move memtype=view;
126  select spdata;
127
128  select etest1-etest5 / memtype=catalog;
NOTE: Moving HEALTH.SPDATA to DEST1.SPDATA (memtype=VIEW).
NOTE: Moving HEALTH.ETEST1 to DEST1.ETEST1 (memtype=CATALOG).
NOTE: Moving HEALTH.ETEST2 to DEST1.ETEST2 (memtype=CATALOG).
NOTE: Moving HEALTH.ETEST3 to DEST1.ETEST3 (memtype=CATALOG).
NOTE: Moving HEALTH.ETEST4 to DEST1.ETEST4 (memtype=CATALOG).
NOTE: Moving HEALTH.ETEST5 to DEST1.ETEST5 (memtype=CATALOG).

682 Chapter 17 / DATASETS Procedure



129  copy out=dest2;
130  exclude d: mlscl oxygen test2 vision weight;
131  quit;

NOTE: Copying HEALTH.ALL to DEST2.ALL (memtype=DATA).
NOTE: There were 23 observations read from the data set HEALTH.ALL.
NOTE: The data set DEST2.ALL has 23 observations and 17 variables.
NOTE: Copying HEALTH.BODYFAT to DEST2.BODYFAT (memtype=DATA).
NOTE: There were 83 observations read from the data set HEALTH.BODYFAT.
NOTE: The data set DEST2.BODYFAT has 83 observations and 13 variables.
NOTE: Copying HEALTH.CONFOUND to DEST2.CONFOUND (memtype=DATA).
NOTE: There were 8 observations read from the data set HEALTH.CONFOUND.
NOTE: The data set DEST2.CONFOUND has 8 observations and 4 variables.
NOTE: Copying HEALTH.CORONARY to DEST2.CORONARY (memtype=DATA).
NOTE: There were 39 observations read from the data set HEALTH.CORONARY.
NOTE: The data set DEST2.CORONARY has 39 observations and 4 variables.
NOTE: Copying HEALTH.ETESTS to DEST2.ETESTS (memtype=CATALOG).
NOTE: Copying HEALTH.FORMATS to DEST2.FORMATS (memtype=CATALOG).
NOTE: Copying HEALTH.GROUP to DEST2.GROUP (memtype=DATA).
NOTE: There were 148 observations read from the data set HEALTH.GROUP.
NOTE: The data set DEST2.GROUP has 148 observations and 11 variables.
NOTE: Copying HEALTH.GRPOUT to DEST2.GRPOUT (memtype=DATA).
NOTE: There were 11 observations read from the data set HEALTH.GRPOUT.
NOTE: The data set DEST2.GRPOUT has 11 observations and 40 variables.
NOTE: Copying HEALTH.INFANT to DEST2.INFANT (memtype=DATA).
NOTE: There were 149 observations read from the data set HEALTH.INFANT.
NOTE: The data set DEST2.INFANT has 149 observations and 6 variables.
NOTE: Copying HEALTH.NAMES to DEST2.NAMES (memtype=DATA).
NOTE: There were 7 observations read from the data set HEALTH.NAMES.
NOTE: The data set DEST2.NAMES has 7 observations and 4 variables.
NOTE: Copying HEALTH.PERSONL to DEST2.PERSONL (memtype=DATA).
NOTE: There were 148 observations read from the data set HEALTH.PERSONL.
NOTE: The data set DEST2.PERSONL has 148 observations and 11 variables.
NOTE: Copying HEALTH.PHARM to DEST2.PHARM (memtype=DATA).
NOTE: There were 6 observations read from the data set HEALTH.PHARM.
NOTE: The data set DEST2.PHARM has 6 observations and 3 variables.
NOTE: Copying HEALTH.POINTS to DEST2.POINTS (memtype=DATA).
NOTE: There were 6 observations read from the data set HEALTH.POINTS.
NOTE: The data set DEST2.POINTS has 6 observations and 6 variables.
NOTE: Copying HEALTH.POSTDRUG to DEST2.POSTDRUG (memtype=CATALOG).
NOTE: Copying HEALTH.RESULTS to DEST2.RESULTS (memtype=DATA).
NOTE: There were 10 observations read from the data set HEALTH.RESULTS.
NOTE: The data set DEST2.RESULTS has 10 observations and 5 variables.
NOTE: Copying HEALTH.SLEEP to DEST2.SLEEP (memtype=DATA).
NOTE: There were 108 observations read from the data set HEALTH.SLEEP.
NOTE: The data set DEST2.SLEEP has 108 observations and 6 variables.
NOTE: Copying HEALTH.TRAIN to DEST2.TRAIN (memtype=DATA).
NOTE: There were 7 observations read from the data set HEALTH.TRAIN.
NOTE: The data set DEST2.TRAIN has 7 observations and 2 variables.
NOTE: Copying HEALTH.WGHT to DEST2.WGHT (memtype=DATA).
NOTE: There were 83 observations read from the data set HEALTH.WGHT.
NOTE: The data set DEST2.WGHT has 83 observations and 13 variables.
NOTE: PROCEDURE DATASETS used (Total process time):
      real time           44.04 seconds
      cpu time            0.60 seconds

Example 3: Saving SAS Files from Deletion
Features: PROC DATASETS statement options

LIB=
SAVE statement

Example 3: Saving SAS Files from Deletion 683



OPTIONS statement

Details
This example demonstrates how to use the SAVE statement to save some SAS files 
from deletion and to delete other SAS files.

Program
options pagesize=40 linesize=80 nodate pageno=1 source;

LIBNAME elder 'SAS-library';

proc datasets lib=elder;

      save chronic aging clinics / memtype=data;
   run;

Program Description

Set the system options and the LIBNAME statement. The SOURCE system 
option writes the programming statements to the SAS log. LINESIZE= option 
specifies the line size for the SAS log and for SAS procedure output. NODATE 
option specifies that the date and the time are not printed. 

options pagesize=40 linesize=80 nodate pageno=1 source;

LIBNAME elder 'SAS-library';

Specify the procedure input library to process.

proc datasets lib=elder;

Save the data sets Chronic, Aging, and Clinics, and delete all other SAS files 
(of all types) in the Elder library. MEMTYPE=DATA is necessary because the 
Elder library has a catalog named Clinics and a data set named Clinics.

      save chronic aging clinics / memtype=data;
   run;

684 Chapter 17 / DATASETS Procedure



Log Examples
Example Code 17.3 SAS Log for Elder Library

6    options pagesize=40 linesize=80 nodate pageno=1 source;
7    LIBNAME elder 'c:\procdatasets\elder';
NOTE: Libref ELDER was successfully assigned as follows:
      Engine:        V9
      Physical Name: c:\procdatasets\elder
8    proc datasets lib=elder;
9       save chronic aging clinics / memtype=data;
10   run;

NOTE: Saving ELDER.CHRONIC (memtype=DATA).
NOTE: Saving ELDER.AGING (memtype=DATA).
NOTE: Saving ELDER.CLINICS (memtype=DATA).
11   quit;

NOTE: PROCEDURE DATASETS used (Total process time):
      real time           0.06 seconds
      cpu time            0.01 seconds

 

Output 17.16 Elder Library before and After Using the SAVE Statement

Example 3: Saving SAS Files from Deletion 685



Example 4: Modifying SAS Data Sets
Features: PROC DATASETS statement options

LIB=
NOLIST
MODIFY statement

OPTIONS statement

Details
This example modifies two SAS data sets using the MODIFY statement and 
statements subordinate to it. “Example 5: Describing a SAS Data Set” on page 688
shows the modifications to the Group data set.

This example demonstrates the following tasks:

n modifying SAS files

n labeling a SAS data set

n adding a Read password to a SAS data set

n indicating how a SAS data set is currently sorted

n creating an index for a SAS data set

n assigning informats and formats to variables in a SAS data set

n renaming variables in a SAS data set

n labeling variables in a SAS data set

686 Chapter 17 / DATASETS Procedure



Program
options pagesize=40 linesize=80 nodate pageno=1 source;

LIBNAME health 'SAS-library';

proc datasets library=health nolist;

   modify group (label='Test Subjects' read=green sortedby=lname);

      index create vital=(birth salary) / nomiss unique;

      informat birth date7.;
      format birth date7.;

      label salary='current salary excluding bonus';

   modify oxygen;
      rename oxygen=intake;
      label intake='Intake Measurement';
quit;

Program Description

Set the system options and LIBNAME statement. The SOURCE system option 
writes the programming statements to the SAS log. PAGESIZE= option specifies the 
number of lines that compose a page of the SAS log and SAS output. LINESIZE= 
option specifies the line size for the SAS log and for SAS procedure output. 
NODATE option specifies that the date and the time are not printed. PAGENO= 
option specifies a beginning page number for the next page of output.

options pagesize=40 linesize=80 nodate pageno=1 source;

LIBNAME health 'SAS-library';

Specify Health as the procedure input library to process. NOLIST suppresses 
the directory listing for the Health data library.

proc datasets library=health nolist;

Add a label to a data set, assign a Read password, and specify how to sort the 
data. LABEL= adds a data set label to the data set Group. READ= assigns green 
as the Read password. The password appears as Xs in the SAS log. SAS issues a 
warning message if you specify a level of password protection on a SAS file that 
does not include alter protection. SORTEDBY= specifies how the data is sorted.

   modify group (label='Test Subjects' read=green sortedby=lname);

Create the composite index VITAL on the variables BIRTH and SALARY for the 
Group data set. NOMISS excludes all observations that have missing values for 
BIRTH and SALARY from the index. UNIQUE specifies that the index is created 
only if each observation has a unique combination of values for BIRTH and 
SALARY.

      index create vital=(birth salary) / nomiss unique;

Assign an informat and format, respectively, to the BIRTH variable.

      informat birth date7.;
      format birth date7.;

Example 4: Modifying SAS Data Sets 687



Assign a label to the variable SALARY.

      label salary='current salary excluding bonus';

Rename a variable, and assign a label. Modify the data set Oxygen by renaming 
the variable OXYGEN to INTAKE and assigning a label to the variable INTAKE.

   modify oxygen;
      rename oxygen=intake;
      label intake='Intake Measurement';
quit;

Log Examples
Example Code 17.4 SAS Log for Health Library

169  options pagesize=40 linesize=80 nodate pageno=1 source;
170  LIBNAME health 'SAS-library';
NOTE: Libref HEALTH was successfully assigned as follows:
      Engine:        V9
      Physical Name: SAS-library\health

NOTE: PROCEDURE DATASETS used (Total process time):
      real time           8:06.11
      cpu time            0.54 seconds

171  proc datasets library=health nolist;
172   modify group (label='Test Subjects' read=XXXXX sortedby=lname);
WARNING: The file HEALTH.GROUP.DATA is not ALTER protected.  It could be
         deleted or replaced without knowing the password.
173   index create vital=(birth salary) / nomiss unique;
NOTE: Composite index vital has been defined.
NOTE: MODIFY was successful for HEALTH.GROUP.DATA.
174  informat birth date7.;
175  format birth date7.;
176  label salary='current salary excluding bonus';
177  modify oxygen;
178  rename oxygen=intake;
NOTE: Renaming variable oxygen to intake.
179  label intake='Intake Measurement';
180  quit;

NOTE: MODIFY was successful for HEALTH.OXYGEN.DATA.
NOTE: PROCEDURE DATASETS used (Total process time):
      real time           15.09 seconds
      cpu time            0.06 seconds

Example 5: Describing a SAS Data Set
Features: PROC DATASETS statement options

LIB=
NOLIST
CONTENTS statement

OPTIONS statement

688 Chapter 17 / DATASETS Procedure



Details
This example demonstrates the output from the CONTENTS statement for the 
Group data set. The output shows the modifications made to the Group data set in 
“Example 4: Modifying SAS Data Sets” on page 686. 

Program
options pagesize=40 linesize=80 nodate pageno=1;

LIBNAME health 'SAS-library';

proc datasets library=health nolist;

   contents data=group (read=green) out=grpout;
   title  'The Contents of the GROUP Data Set';
run;
quit;

Program Description

Set the system options and LIBNAME statement. PAGESIZE= option specifies 
the number of lines that compose a page of the SAS log and SAS output. 
LINESIZE= option specifies the line size for the SAS log and for SAS procedure 
output. NODATE option specifies that the date and the time are not printed. 
PAGENO= option specifies a beginning page number for the next page of output.

options pagesize=40 linesize=80 nodate pageno=1;

LIBNAME health 'SAS-library';

Specify Health as the procedure input library, and suppress the directory 
listing with the NOLIST option.

proc datasets library=health nolist;

Create the output data set Grpout from the data set Group. Specify Group as 
the data set to describe, give Read access to the Group data set, and create the 
output data set Grpout, which appears in the OUT= data set.

   contents data=group (read=green) out=grpout;
   title  'The Contents of the GROUP Data Set';
run;
quit;

Example 5: Describing a SAS Data Set 689



Output Examples
Output 17.17 Contents of Group Data Set

Output 17.18 Engine Host Dependent Information

690 Chapter 17 / DATASETS Procedure



Output 17.19 Alphabetic List of Variables and Attributes

Output 17.20 Alphabetic List of Extended Attributes for the Data Set and Variables

Example 6: Concatenating Two SAS Data Sets
Features: PROC DATASETS statement options

LIBRARY=
NOLIST
APPEND statement

PRINT procedure
OPTIONS statement

Example 6: Concatenating Two SAS Data Sets 691



Data set: EXP Library

Details
This example demonstrates the following tasks:

n suppresses the printing of a library

n appends two data sets

n prints the data sets before appending and prints the new data set after 
appending

To create the Exp.Results and Exp.Sur data sets and print them out before using 
this example to concatenate them, see “EXP Library” on page 2697.

Program
options pagesize=40 linesize=64 nodate pageno=1;

LIBNAME exp 'SAS-library';

proc datasets library=exp nolist;

   append base=exp.results data=exp.sur force;
run;

proc print data=exp.results noobs;
   title 'The RESULTS Data Set';
run;

Program Description
This example appends one data set to the end of another data set.

This example appends one data set to the end of another data set.

The data set Exp.Sur contains the variable Wt6Mos, but the Exp.Results data 
set does not.

Set the system options. The NODATE option suppresses the display of the date 
and time in the output. The PAGENO= option specifies the starting page number. 
The LINESIZE= option specifies the output line length, and the PAGESIZE= option 
specifies the number of lines on an output page. 

options pagesize=40 linesize=64 nodate pageno=1;

The LIBNAME statement assigns the library.

LIBNAME exp 'SAS-library';

Suppress the printing of the Exp library. LIBRARY= specifies Exp as the 
procedure input library. NOLIST suppresses the directory listing for the Exp library. 

proc datasets library=exp nolist;

692 Chapter 17 / DATASETS Procedure



Append the data set Exp.Sur to the Exp.Results data set. The APPEND 
statement appends the data set Exp.Sur to the data set Exp.Results. FORCE 
causes the APPEND statement to carry out the Append operation even though 
Exp.Sur has a variable that Exp.Results does not. APPEND does not add the 
Wt6Mos variable to Exp.Results.

   append base=exp.results data=exp.sur force;
run;

Print the data set.

proc print data=exp.results noobs;
   title 'The RESULTS Data Set';
run;

Output: Concatenating Two Data Sets
Output 17.21 The Results Data Set

Output 17.22 The Sur Data Set

Example 6: Concatenating Two SAS Data Sets 693



Output 17.23 Concatenating the Results and the Sur Data Sets

Example 7: Aging SAS Data Sets
Features: PROC DATASETS statement options

LIBRARY=
NOLIST
AGE statement

OPTIONS statement

Details
This example demonstrates how the AGE statement ages SAS files.

Program
options pagesize=40 linesize=80 nodate pageno=1 source;

LIBNAME daily 'SAS-library';

694 Chapter 17 / DATASETS Procedure



proc datasets library=daily nolist;

   age today day1-day7;
run;

Program Description

Set the system options. The SOURCE system option writes the programming 
statements to the SAS log. PAGESIZE= option specifies the number of lines that 
compose a page of the SAS log and SAS output. LINESIZE= option specifies the 
line size for the SAS log and for SAS procedure output. NODATE option specifies 
that the date and the time are not printed. PAGENO= option specifies a beginning 
page number for the next page of output.

options pagesize=40 linesize=80 nodate pageno=1 source;

LIBNAME daily 'SAS-library';

Specify Daily as the procedure input library and suppress the directory listing.

proc datasets library=daily nolist;

Delete and age. Delete the last SAS file in the list, Day7, and then age (or rename) 
Day6 to Day7, Day5 to Day6, and so on, until it ages Today to Day1.

   age today day1-day7;
run;

Log Examples
Example Code 17.5 SAS Log

6  options pagesize=40 linesize=80
nodate pageno=1 source;
7
8     proc datasets library=daily nolist;
9
10        age today day1-day7;
11     run;
NOTE: Deleting DAILY.DAY7 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY6 to DAILY.DAY7 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY5 to DAILY.DAY6 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY4 to DAILY.DAY5 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY3 to DAILY.DAY4 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY2 to DAILY.DAY3 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY1 to DAILY.DAY2 (memtype=DATA).
NOTE: Ageing the name DAILY.TODAY to DAILY.DAY1 (memtype=DATA).

Example 8: Initiating an Audit File
Features: PROC DATASETS statement options

Example 8: Initiating an Audit File 695



LIB=
AUDIT statement
INITIATE statement
LOG statement
RESUME statement
SUSPEND statement
TERMINATE statement
USER_VAR statement

SQL procedure

Details
This example demonstrates the following tasks:

n initiates an audit file

n updates the data set

n suspends audit file

n terminates audit file

Program
libname mylib "SAS-library";

data mylib.inventory;
input vendor $10. +1 item $4. +1 description $11. +1 units 4.;
datalines;
SmithFarms F001 Apples      10
Tropicana  B002 OrangeJuice 45
UpperCrust C215 WheatBread  25
;  
run;

proc datasets lib=mylib;                                       
   audit inventory;
   initiate;
   user_var reason $ 30;
quit;

proc sql;      
   Insert into mylib.inventory values ('Bordens','B132', 'Milk', 100,
                                       'increase on hand'); 
   Update mylib.inventory    set units=10, reason='recounted inventory' 
                             where item='B002';  
quit;

proc datasets lib=mylib;   

696 Chapter 17 / DATASETS Procedure



audit inventory;
log admin_image=no;
suspend;
quit; 

proc sql;
select * from mylib.inventory(type=audit); 
quit; 

proc datasets lib=mylib; 
audit inventory;
resume;
quit;

proc datasets lib=mylib;  
audit inventory;
terminate;
quit;

Program Description

Initiates an audit file using USER_VAR.

libname mylib "SAS-library";

data mylib.inventory;
input vendor $10. +1 item $4. +1 description $11. +1 units 4.;
datalines;
SmithFarms F001 Apples      10
Tropicana  B002 OrangeJuice 45
UpperCrust C215 WheatBread  25
;  
run;

proc datasets lib=mylib;                                       
   audit inventory;
   initiate;
   user_var reason $ 30;
quit;

Update the data set.

proc sql;      
   Insert into mylib.inventory values ('Bordens','B132', 'Milk', 100,
                                       'increase on hand'); 
   Update mylib.inventory    set units=10, reason='recounted inventory' 
                             where item='B002';  
quit;

Example 8: Initiating an Audit File 697



Discontinue the logging of ADMIN images and suspend audit file.

proc datasets lib=mylib;   
audit inventory;
log admin_image=no;
suspend;
quit; 

View the audit file.

proc sql;
select * from mylib.inventory(type=audit); 
quit; 

Resume the audit file.

proc datasets lib=mylib; 
audit inventory;
resume;
quit;

Terminate the audit file.

proc datasets lib=mylib;  
audit inventory;
terminate;
quit;

698 Chapter 17 / DATASETS Procedure



Log Examples
Example Code 17.6 Initiating an Audit File

1    options nocenter;
2
3    libname mylib "SAS-library";
NOTE: Libref MYLIB was successfully assigned as follows:
      Engine:        V9
      Physical Name: c:\mylib
4
5    data mylib.inventory;
6    input vendor $10. +1 item $4. +1 description $11. +1 units 4.;
7    datalines;

NOTE: The data set MYLIB.INVENTORY has 3 observations and 4 variables.
NOTE: DATA statement used (Total process time):
      real time           3.45 seconds
      cpu time            0.00 seconds

11   ;
12   run;
13
14   proc datasets lib=mylib;
NOTE: Writing HTML Body file: sashtml.htm
15      audit inventory;
16      initiate;
WARNING: The audited data file MYLIB.INVENTORY.DATA is not password protected.  
Apply an Alter password to prevent accidental
         deletion or replacement of it and any associated audit files.
17      user_var reason $ 30;
18   quit;

NOTE: The data set MYLIB.INVENTORY.AUDIT has 0 observations and 11 variables.
NOTE: PROCEDURE DATASETS used (Total process time):
      real time           18.17 seconds
      cpu time            0.79 seconds

19
20   proc sql;
21      Insert into mylib.inventory values ('Bordens','B132', 'Milk', 100,
22                                          'increase on hand');
NOTE: 1 row was inserted into MYLIB.INVENTORY.

23      Update mylib.inventory    set units=10, reason='recounted inventory'
24                                where item='B002';
NOTE: 1 row was updated in MYLIB.INVENTORY.

25   quit;
NOTE: PROCEDURE SQL used (Total process time):
      real time           2.57 seconds
      cpu time            0.03 seconds

26
27   proc datasets lib=mylib;
28   audit inventory;
29   log admin_image=no;
30   suspend;
31   quit;

NOTE: PROCEDURE DATASETS used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds

Example 8: Initiating an Audit File 699



32
33   proc sql;
34   select * from mylib.inventory(type=audit);
35   quit;
NOTE: PROCEDURE SQL used (Total process time):
      real time           0.54 seconds
      cpu time            0.01 seconds

36
37   proc datasets lib=mylib;
37 !                            /* resume audit file */
38   audit inventory;
39   resume;
40   quit;

NOTE: PROCEDURE DATASETS used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds

41
42   /* additional step(s) which update the inventory dataset could go here*/
43
44   proc datasets lib=mylib;
44 !                           /* terminate audit file */
45   audit inventory;
46   terminate;
NOTE: Deleting MYLIB.INVENTORY (memtype=AUDIT).
47   quit;

NOTE: PROCEDURE DATASETS used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds

700 Chapter 17 / DATASETS Procedure



Output Examples
Output 17.24 Inventory Contents for MyLib Library

Output 17.25 Audit File Listing for MyLib Library

Example 8: Initiating an Audit File 701



Output 17.26 Inventory Data File Contents for MyLib Library

Example 9: Extended Attributes
Features: PROC DATASETS statement options

LIB=
NOLIST
CONTENTS statement
MODIFY statement
XATTR ADD DS statement
XATTR ADD VAR statement

Program
libname mylib 'C:\mylib';   

data mylib.sales; 
   purchase="car"; 
   age=10;  
   income=200000;  
   kids=3;         
   cars=4;         
run;     

proc datasets lib=mylib nolist;                             
   modify sales;     
      xattr add ds role="train" attrib="table";             
      xattr add var purchase (role="target" level="nominal") 
                    age (role="reject")                    
                    income (role="input" level="interval");
                     
   contents data=sales;                                      
   title  'The Contents of the Sales Data Set That Contains Extended 
Attributes';
                     
run;                 
quit;

Program Description

Create MyLib.Sales data set.

702 Chapter 17 / DATASETS Procedure



libname mylib 'C:\mylib';   

data mylib.sales; 
   purchase="car"; 
   age=10;  
   income=200000;  
   kids=3;         
   cars=4;         
run;     

Adding extended attributes to the data set and to the variables.

proc datasets lib=mylib nolist;                             
   modify sales;     
      xattr add ds role="train" attrib="table";             
      xattr add var purchase (role="target" level="nominal") 
                    age (role="reject")                    
                    income (role="input" level="interval");
                     
   contents data=sales;                                      
   title  'The Contents of the Sales Data Set That Contains Extended 
Attributes';
                     
run;                 
quit;

Example 9: Extended Attributes 703



Log Examples
Example Code 17.7 Extended Attributes

355   libname mylib 'C:\mylib';
NOTE: Libref MYLIB was successfully assigned as follows:
      Engine:        V9
      Physical Name: C:\mylib
356
357  data mylib.sales;
358     purchase = "car";
359     age = 10;
360     income = 200000;
361     kids = 3;
362     cars = 4;
363  run;

NOTE: The data set MYLIB.SALES has 1 observations and 5 variables.
NOTE: DATA statement used (Total process time):
      real time           0.00 seconds
      cpu time            0.00 seconds

364
365  proc datasets lib=mylib nolist ;
366     modify sales;
367        xattr add ds role= "train" attrib="table";
368        xattr add var purchase ( role="target" level="nominal" )
369                      age ( role="reject" )
370                      income ( role="input" level="interval" );
NOTE: MODIFY was successful for MYLIB.SALES.DATA.
371
372     contents data=sales;
373     title  'The Contents of the Sales Data Set That Contains Extended 
Attributes';
374
375  run;

376  quit;

NOTE: PROCEDURE DATASETS used (Total process time):
      real time           1.02 seconds
      cpu time            0.10 seconds
 

704 Chapter 17 / DATASETS Procedure



Output Examples
Output 17.27 Contents of the Sales Data Set with Extended Attributes

Example 9: Extended Attributes 705



706 Chapter 17 / DATASETS Procedure



Chapter 18
DATEKEYS Procedure

Overview: DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
Overview: The DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

Concepts: DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708
Concepts: The DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

Syntax: DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
PROC DATEKEYS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
DATEKEYCALENDAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
DATEKEYDATA Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
DATEKEYDEF Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
DATEKEYDSOPT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
DATEKEYKEY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720
DATEKEYPERIODS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
ID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724

Usage: DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
Using the DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
Using the DATEKEYKEY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
Details for the ID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735
Data Set Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
Listing the Datekeys By Using the LIST Option . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
Creating a Data Set of BY Statement Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
Written Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

Examples: DATEKEYS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740
Example 1: Methods for Constructing a Datekeys Definition Data Set . . . . . . . . . 740
Example 2: Using User-Defined SAS Datekey Keywords Directly in 

Other SAS Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
Example 3: Obtaining a Calendar Variable By Using the DATEKEYS Procedure . 749
Example 4: Filtering Data Sets By Using the DATEKEYDSOPT Statement . . . . . 755

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

707



Overview: DATEKEYS Procedure

Overview: The DATEKEYS Procedure
The DATEKEYS procedure enables you to process a single date or a set of dates in 
a time series using a name to reference the dates. For example, the DATEKEYS 
procedure can be used to identify time periods that are associated with a datekey, 
read and write datekeys, and provide details about datekey definitions.

The DATEKEYS procedure can be used to identify time periods that are associated 
with a datekey.

Some common uses of the DATEKEYS procedure are to define datekeys that 
identify holiday periods, sales events, or changes to operating hours.

Concepts: DATEKEYS Procedure

Concepts: The DATEKEYS Procedure
A SAS datekey describes a date or time interval that is associated with special 
events such as holidays and sale periods and time computations.

A datekey has a name, a date or set of dates that are associated with the datekey, 
and a set of qualifiers.

The DATEKEYS procedure provides results in output data sets that can be 
interpreted in other SAS procedures. It enables you to define datekeys that can be 
specified as SAS predefined datekeys when used in conjunction with the SAS 
system option EVENTDS=. The datekeys that you define can be used as date 
keywords, just as SAS predefined datekeys are used.

The following example creates datekeys, and then writes the datekey definitions to 
an output data set named MyHolidays. The datekey definitions are automatically 
available to SAS High-Performance Forecasting procedures by setting the SAS 
system option EVENTDS=.

proc datekeys;
   datekeydef SuperBowl=
                '15JAN1967'd '14JAN1968'd '12JAN1969'd '11JAN1970'd

708 Chapter 18 / DATEKEYS Procedure



   '17JAN1971'd '16JAN1972'd '14JAN1973'd '13JAN1974'd '12JAN1975'd
   '18JAN1976'd '09JAN1977'd '15JAN1978'd '21JAN1979'd '20JAN1980'd
   '25JAN1981'd '24JAN1982'd '30JAN1983'd '22JAN1984'd '20JAN1985'd
   '26JAN1986'd '25JAN1987'd '31JAN1988'd '22JAN1989'd '28JAN1990'd
   '27JAN1991'd '26JAN1992'd '31JAN1993'd '30JAN1994'd '29JAN1995'd
   '28JAN1996'd '26JAN1997'd '25JAN1998'd '31JAN1999'd '30JAN2000'd
   '28JAN2001'd '03FEB2002'd '26JAN2003'd '01FEB2004'd '06FEB2005'd
   '05FEB2006'd '04FEB2007'd '03FEB2008'd '01FEB2009'd '07FEB2010'd
   '06FEB2011'd '05FEB2012'd '03FEB2013'd '02FEB2014'd '01FEB2015'd
...'07FEB2016'd '05FEB2017'd '04FEB2018'd '03FEB2019'd '02FEB2020'd
   / PULSE=DAY ;

   datekeydef GoodFriday=Easter / shift=-2 pulse=day;
   datekeykey EasterMonday=Easter / shift=1 pulse=day;
   datekeydata out=MyHolidays condense;
run;

options eventds=(MyHolidays);

proc hpfevents data=sashelp.citiday;
   id date interval=day start='27JAN1991'd end='01APR1991'd;
   eventkey SuperBowl;
   eventkey GoodFriday;
   eventkey EasterMonday;
   eventdata out=MyHolidayEvents condense;
   eventdummy out=MyHolidayDates;
run;

The following output shows the results:

Figure 18.1 Event Definition Data Set Based on User-Defined Datekeys

The following statements display an output data set that shows variables for the 
Super Bowl, Good Friday, and Easter Monday events. The first output shows the 
results when Month=1. The second output shows the results when Month GE 3.

proc print data=MyHolidayDates(where=(month(date)=1));
   var date SuperBowl GoodFriday EasterMonday;
run;

proc print data=MyHolidayDates(where=(month(date) GE 3));
   var date SuperBowl GoodFriday EasterMonday;
run;

Concepts: DATEKEYS Procedure 709



Figure 18.2 Output Data Set Based on User-Defined Datekeys: Month=1

710 Chapter 18 / DATEKEYS Procedure



Figure 18.3 Output Data Set Based on User-Defined Datekeys: Month GE 3

Concepts: DATEKEYS Procedure 711



Syntax: DATEKEYS Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

PROC DATEKEYS<options>;
BY variable(s);
DATEKEYCALENDAR OUT=SAS-data-set <SUMMARY=SAS-variable-name>;
DATEKEYDATA IN=SAS-data-set | OUT=SAS-data-set <options>;
DATEKEYDEF SAS-variable-name=timing-value </qualifier-options>;
DATEKEYDSOPT LOCALE=<(ONLY)>'POSIX locale';
DATEKEYKEY <SAS-variable-name=> datekey-keyword </qualifier-options>;
DATEKEYPERIODS OUT=SAS-data-set;
ID SAS-variable-name INTERVAL=interval <options>;
VAR variable(s);

Statement Task Example

PROC DATEKEYS Creates and manages datekeys that are 
associated with time computations

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4

BY Obtains separate calendar variables for groups 
of observations that are defined by the BY 
variables

DATEKEYCALENDAR Writes variables that indicate the active time 
periods for datekeys

Ex. 3, Ex. 4

DATEKEYDATA Inputs and outputs datekeys Ex. 1, Ex. 2, 
Ex. 3, Ex. 4

DATEKEYDEF Defines a datekey that can be used in other 
SAS procedures

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4

DATEKEYDSOPT Limits input and output processing of data sets 
to a specified locale

Ex. 4

DATEKEYKEY Alters a user-defined or predefined SAS 
datekey, or creates a new datekey from another 
datekey

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4

DATEKEYPERIODS Writes variables that list the active time periods 
in the input time ID for datekeys

Ex. 1

ID Names a numeric variable containing SAS 
date, datetime or time values that identifies 
observations by time period in input and output 
data sets

Ex. 1, Ex. 2, 
Ex. 4

712 Chapter 18 / DATEKEYS Procedure



Statement Task Example

VAR Copies input variables to the output calendar 
variables data set

PROC DATEKEYS Statement
Creates and manages datekeys that are associated with time computations.

Syntax
PROC DATEKEYS <options>;

Optional Argument
option

The following options are available:

DATA=SAS-data-set
names the SAS data set that contains the variables that are used in the VAR, 
ID, and BY statements.

Tip If the DATA= option is not specified, the most recently created SAS data 
set is used.

LEAD=number-of-periods
specifies the number of periods to extend the calendar variables beyond the 
input time ID. The LEAD= value is relative to the last observation in the input 
data set. If BY variables are specified, the LEAD= value is relative to the last 
observation in each BY group.

Default 0

MAXERROR=number
specifies the maximum number of warning and error messages that are 
produced during the execution of the procedure.

Default 25

Tip This option is particularly useful in BY-group processing, where it 
can be used to suppress the recurring messages.

SORTNAMES
specifies that the datekeys and variables in the output data sets be written in 
alphabetical order. Variables are sorted within their groups. Variables that are 
listed in the VAR statement are sorted with respect to other variables that are 
listed in the VAR statement. Calendar variables are sorted with respect to 
other calendar variables.

PROC DATEKEYS Statement 713



BY Statement
Obtains separate calendar variables for groups of observations that are defined by the BY variables.

Syntax
BY variable(s);

Required Argument
variable

specifies a variable that is used to obtain separate calendar variables for groups 
of observations that are defined by the BY variables.

Tip When a BY statement appears, the procedure expects the input data set to 
be sorted in order of the BY variables. If your input data set is not sorted in 
ascending order, use one of the following alternatives: Sort the data by 
using the SORT procedure with a similar BY statement, or create an index 
for the BY variables by using the DATASETS procedure. For more 
information, see the DATASETS procedure in Base SAS Procedures 
Guide.

DATEKEYCALENDAR Statement
Writes variables that indicate the active time periods for datekeys. The active periods are indicated with a 
value of 1, and the inactive periods are indicated with a value of 0.

Syntax
DATEKEYCALENDAR OUT=SAS-data-set <SUMMARY=SAS-variable-name>;

Summary of Optional Arguments
SUMMARY | SUM=SAS-variable-name

714 Chapter 18 / DATEKEYS Procedure



Required Argument
OUT=SAS-data-set

names the output data set to contain the calendar variables for the specified 
datekeys based on the ID information as specified in the ID statement.

Tip SAS-data-set also includes variables that are specified in the VAR, BY, and 
ID statements.

Optional Argument
SUMMARY | SUM=SAS-variable-name

specifies that the datekey calendar variables be summed and that the result be 
placed in the specified variable in the DATEKEYCALENDAR OUT= data set.

The SUM= variable can be interpreted as the number of keydates that are active 
for each time interval. If the SUM= option is not specified, no such variable is 
included in the OUT= data set.

DATEKEYDATA Statement
Inputs datekeys from a datekeys data set or writes datekeys to a datekeys data set. You can specify 
multiple DATEKEYDATA statements.

Syntax
DATEKEYDATA IN=SAS-data-set | OUT=SAS-data-set <options>;

Summary of Optional Arguments
option

Required Arguments
IN=SAS-data-set

names an input data set that contains datekey definitions.

Note: The IN= or OUT= argument is required.

OUT=SAS-data-set
names the output data set to contain the datekey definitions that are specified in 
the DATEKEYDATA IN= data sets and in the DATEKEYDEF and DATEKEYKEY 
statements.

DATEKEYDATA Statement 715



Note: The IN= or OUT= argument is required.

Tip If the LIST option is not specified, the OUT= data set can then be used in 
other SAS procedures and system options to define datekeys.

Optional Argument
option

The following options are available:

CONDENSE
specifies that the DATEKEYDATA OUT= data set be condensed. Any 
variables that contain only default values are omitted from the data set.

The DATEKEYDATA IN= option reads both condensed data sets and data 
sets that have not been condensed. For more information, see “Identifying 
Variables in the DATEKEYDATA OUT= Data Set” on page 737.

LIST
specifies that the DATEKEYDATA OUT= data set contain only a list of the 
available datekeys. When you specify the LIST option, the output data set 
does not contain the parameters that are required for datekey definition.

NODEFAULTS
specifies that the DATEKEYDATA OUT= data set not contain any SAS 
predefined datekeys.

DATEKEYDEF Statement
Defines a datekey that can be interpreted in other SAS procedures. You can specify multiple 
DATEKEYDEF statements.

Note: These datekeys can be used to create events that can be included in forecasting 
models.

Syntax
DATEKEYDEF SAS-variable-name=timing-value </qualifier-options>;

Summary of Optional Arguments
qualifier-options

716 Chapter 18 / DATEKEYS Procedure



Required Arguments
SAS-variable-name

specifies a name in the DATEKEYDEF statement.

timing-value list
specifies one or more datekeys, dates, datetime values, or observation numbers. 
You can also specify a value-list.

The way you specify value-list depends on the type of variable:

integer value-list
For integer variables, integer value-list is either an explicit list of one or more 
integers or a starting value and an ending value with an interval increment, or 
a combination of both forms:

n n <...n>

Here is an example:

10,11,12

n n TO n <BY increment>

Here is an example:

10 to 12 by 1

n n <...n> TO n TO n <BY increment> <n<...n> >

Here is an example:

11 to 5, 5 to 10 by 1;

SAS keyword value-list
For character variables, SAS keyword value-list is a list of one or more 
unique character values that are separated by blanks:

"value-1" <"value-2"..."value-n">

Here is an example:

"INDEPENDENCE"
or
"INDEPENDENCE" "EASTER" "NEWYEARS"

SAS date value-list and SAS datetime value-list
For date and time values, value-list can have the following forms:

n "SAS-value"i<..."SAS-value"i>

Here are some examples:

'01Jan2000'd,'01Feb2000'd, '01Mar2000'd 
or
'01Mar1990:15:03:00'dt
or
'01Jan:15:03:00'dt,'1Feb:15:03:00'dt, '01Mar:15:03:00'dt

n "SAS-value"i TO "SAS-value"i< BY interval>

Note: "SAS-value"i TO "SAS-value"i must be integers, dates, datetime, 
or time values. Do not mix types.

Here are some examples:

DATEKEYDEF Statement 717



'01Jan2000'd TO '01Mar2000'd BY month
or
'01Jan1990:15:03:00'dt TO '01Mar1990:15:03:00'd

Optional Argument
qualifier-options

The following qualifier options are available:

AFTER=(<DURATION=value>)
specifies options that control the datekey definition after the timing value. The 
DURATION= suboption is used within the parentheses in the AFTER= ( ) 
option. DURATION specifies the datekey duration after the timing value.

BEFORE=(<DURATION=value>)
specifies options that control the datekey definition before the timing value. 
The DURATION= suboption is used within the parentheses in the BEFORE= 
( ) option. DURATION specifies the datekey duration before the timing value.

LABEL='SAS-label'
specifies a label that is associated with the datekey. 'SAS-label' is a text 
string that is enclosed in quotation marks and can be up to 256 characters.

The default label is 'SAS-variable-name where SAS-variable-name is the 
name that is specified in the DATEKEYDEF statement. The label is stored in 
the DATEKEYDATA OUT= data set.

LOCALE='POSIX locale'
specifies a locale that is associated with the datekey. The locale should be a 
POSIX locale value. There is no default for the locale value.

PERIOD=interval
specifies the interval for the frequency of the datekey. For example, 
PERIOD=YEAR produces a datekey that is periodic in a yearly pattern.

If the PERIOD= option is omitted, the datekey is not periodic. The PERIOD= 
option does not apply to observation numbers, which are not periodic, or to 
date keywords, which have their own periodicity. For intervals that you can 
specify, see Chapter 4, “Date Intervals, Formats, and Functions” in SAS/ETS 
User’s Guide.

PULSE=interval
specifies the interval to be used with the DURATION= option to determine the 
width of the datekey.

If the datekey is evaluated with respect to a time ID variable, then the default 
pulse is one observation. When no DURATION= values are specified and the 
PULSE= option is specified, the DURATION= values are set to zero. For 
intervals that you can specify, see Chapter 4, “Date Intervals, Formats, and 
Functions” in SAS/ETS User’s Guide.

RULE=value
specifies the action to take when the defined datekey has multiple timing 
values that include at least one datekey.

When the datekey timing values consist only of SAS date, SAS datetime 
values, and observation numbers, the RULE= option does not apply. The 
RULE= option also does not apply when the timing value list consists of a 
single datekey. The RULE= option accepts the values AND and OR. The 
default is RULE=OR.

718 Chapter 18 / DATEKEYS Procedure



The following examples demonstrate the RULE= option:

datekeykey JANUARY               / pulse=month;
datekeydef RainyDays='11JUL2013'd '13JUL2013'd '21JUL2013'd;
datekeydef HotDays=  '11JUL2013'd '16JUL2013'd '17JUL2013'd
                     '18JUL2013'd '19JUL2013'd;
datekeydef FridaysInJanuary=JANUARY FRIDAY / rule=and;
datekeydef JanuaryPlusFridays=JANUARY FRIDAY / rule=or;
datekeydef HotandRainyDays=RainyDays HotDays / rule=and;

The RULE= option does not apply to the first statement because the timing 
value list consists of a single datekey. The RULE= option does not apply to 
the second and third statements because the timing value list consists only of 
SAS date values. The operation between two SAS date, datetime, or 
observation values is always OR. In the fourth statement, the RULE=AND 
option identifies only dates where the month is January and the day of the 
week is Friday. In the fifth statement, the RULE=OR option identifies all dates 
in January and all dates where the day of the week is Friday. In the sixth 
statement, the RULE=AND option identifies days that are both rainy and hot. 
The RULE=AND applies to the two datekeys, RainyDays and HotDays.

Usually, the result of an AND operation between two discrete time periods is 
an empty value. Therefore, the OR operation is always used between 
discrete time periods. An example is '13JUL2013'd, '01Mar1990:15:03:00'dt, 
3.

The following table explains how the RULE= option is interpreted for each 
observation:

Table 18.1 Definition of RULE= Option Values

RULE= option Name Definition

AND and identifies time periods 
that are identified by all 
datekeys and the group 
of discrete timing values

OR or identifies time periods 
that are identified by any 
datekeys or the group of 
discrete timing values

SHIFT=number
specifies the number of pulses to shift the timing value δ. The default is not to 
shift the timing value (δ= 0). When the SHIFT= option is used, all timing 
values in the list (including those that are generated by date keywords) are 
shifted. Therefore, SHIFT= can be used with EASTER to specify 
ecclesiastical holidays that are based on Easter. For example, the following 
statement specifies Good Friday, which is defined as two days before Easter 
(Montes 2001).

datekeydef GoodFriday=EASTER / shift=-2 pulse=day;

DATEKEYDEF Statement 719



DATEKEYDSOPT Statement
Limits the input and output processing of data sets to a specified locale.

Syntax
DATEKEYDSOPT LOCALE= 'POSIX locale'<(ONLY)>;

Summary of Optional Arguments
(ONLY)

Required Arguments
LOCALE=

specifies a locale that is used to filter input and output data sets.

'POSIX locale'
specifies a POSIX locale value. There is no default for the locale value.

Optional Argument
(ONLY)

specifies to process only the specified locale, both for input and output data sets. 
If (ONLY) is not specified, the specified locale and defaults (no specified locale) 
are processed, both for input and output data sets.

DATEKEYKEY Statement
Alters a user-defined or predefined SAS datekey, or creates a new datekey from another datekey. You can 
specify multiple DATEKEYKEY statements.

See: “Using the DATEKEYKEY Statement” on page 732

Syntax
DATEKEYKEY <SAS-variable-name=> datekey-keyword </qualifier-options>;

720 Chapter 18 / DATEKEYS Procedure



Summary of Optional Arguments
qualifier-option
SAS-variable-name

Required Argument
datekey-keyword

specifies the default SAS variable name for a user-defined or predefined 
datekey. 

Optional Arguments
SAS-variable-name

specifies the name of the new datekey keyword.

TIP If you specify the DATEKEYCALENDAR option, a variable by this 
name is created and indicates the active and inactive periods of the 
keyword. If this option is not specified, then datekey-keyword is the name 
of the altered datekey.

qualifier-option
The following options are available:

AFTER=(<DURATION=value>)
specifies options that control the datekey definition after the timing value. The 
DURATION= suboption is used within the parentheses in the AFTER ( ) 
option.

DURATION specifies the datekey duration after the timing value when used 
in the AFTER= option.

BEFORE=(<DURATION=value>)
specifies options that control the datekey definition before the timing value. 
The DURATION= suboption is used within the parentheses in the BEFORE 
( ) option.

DURATION specifies the datekey duration before the timing value when used 
in the BEFORE= option.

LABEL='SAS-label'
specifies a label that is associated with the datekey. 'SAS-label' is a text 
string that is enclosed in quotation marks and can be up to 256 characters. 
The default label is 'SAS-variable-name , where SAS-variable-name is the 
name that is specified in the DATEKEYKEY statement. If SAS-variable-name 
is not specified in the DATEKEYKEY statement, then the label is the default 
label for the SAS predefined datekey. The label is stored in the 
DATEKEYDATA OUT= data set.

LOCALE='POSIX locale'
specifies a locale that is associated with the datekey. The locale should be a 
POSIX locale value. There is no default for the locale value.

DATEKEYKEY Statement 721



PERIOD=interval
specifies the interval for the frequency of the datekey. For example, 
PERIOD=YEAR produces a datekey that is periodic in a yearly pattern. If the 
PERIOD= option is omitted, the datekey is not periodic. The PERIOD= option 
does not apply to observation numbers, which are not periodic, or to date 
keywords, which have their own periodicity. For intervals that can be 
specified, see Chapter 4, “Date Intervals, Formats, and Functions” in 
SAS/ETS User’s Guide.

PULSE=interval
specifies the interval to be used with the DURATION= option to determine the 
width of the datekey. If the datekey is evaluated with respect to a time ID 
variable, then the default pulse is one observation. When no DURATION= 
values are specified and the PULSE= option is specified, the DURATION= 
values are set to zero. For intervals that can be specified, see Chapter 4, 
“Date Intervals, Formats, and Functions” in SAS/ETS User’s Guide.

RULE=value
specifies the action to take when the defined datekey has multiple timing 
values that include at least one datekey. When the datekey timing values 
consist only of SAS date, SAS datetime, and observation numbers, the 
RULE= option does not apply. The RULE= option also does not apply when 
the timing value list consists of a single datekey. The RULE= option accepts 
the values AND and OR. The default is RULE=OR. The following examples 
demonstrate the RULE= option:

datekeykey JANUARY / pulse=month;
datekeydef RainyDays='11JUL2013'd '13JUL2013'd '21JUL2013'd;
datekeydef HotDays=  '11JUL2013'd '16JUL2013'd '17JUL2013'd
                     '18JUL2013'd '19JUL2013'd;
datekeydef FridaysInJanuary=JANUARY FRIDAY / rule=and;
datekeydef JanuaryPlusFridays=JANUARY FRIDAY / rule=or;
datekeydef HotandRainyDays=RainyDays HotDays / rule=and;

The RULE= option does not apply to the first statement because the timing 
value list consists of a single datekey. The RULE= option does not apply to 
the second and third statements because the timing value list consists only of 
SAS date values. The operation between two SAS date, datetime, or 
observation values is always OR. In the fourth statement, the RULE=AND 
option identifies dates that are both in January and the day of the week is 
Friday. In the fifth statement, the RULE=OR option identifies all dates in 
January and all dates where the day of the week is Friday. In the sixth 
statement, the RULE=AND option identifies days that are both rainy and hot. 
The RULE=AND applies to the two datekeys, RainyDays and HotDays.

Usually, the result of an AND operation between two discrete time periods is 
an empty value. Therefore, the OR operation is always used between 
discrete time periods. An example is '13JUL2013'D, '01Mar1990:15:03:00'DT, 
3.

Table 18.55 on page 719 explains how the RULE= option is interpreted for 
each observation.

SHIFT=number
specifies the number of pulses to shift the timing value δ. The default is not to 
shift the timing value (δ=0). When the SHIFT= option is used, all timing 
values in the list (including those generated by date keywords) are shifted.

722 Chapter 18 / DATEKEYS Procedure



DATEKEYPERIODS Statement
Writes variables that list the active time periods in the input time ID for datekeys. The active period dates, 
datetime values, or observation numbers, are listed with the associated datekey.

Syntax
DATEKEYPERIODS OUT=SAS-data-set;

Required Argument
OUT=SAS-data-set

names the output data set to contain the active dates, datetime values, or 
observations for the specified datekeys based on the ID information that is 
specified in the ID statement. The OUT= data set also includes variables that are 
specified in the BY and ID statements.

ID Statement
Specifies a numeric variable that identifies observations in the input and output data sets.

See: “Details for the ID Statement” on page 735

Syntax
ID SAS-variable-name INTERVAL=interval <options>;

Summary of Optional Arguments
option

Required Arguments
SAS-variable-name

specifies a numeric variable that identifies observations in the input and output 
data sets. SAS-variable-name can be a SAS date, time, datetime value, or an 
observation number.

ID Statement 723



INTERVAL=interval
specifies the frequency of the input time ID. For example, if the time ID in the 
input data set consists of quarterly observations, then use INTERVAL=QTR. For 
intervals that can be specified, see Chapter 4, “Date Intervals, Formats, and 
Functions” in SAS/ETS User’s Guide.

Optional Argument
option

The following options are available:

ALIGN=option
controls the alignment of SAS dates that are used to identify output 
observations. The ALIGN= option accepts the following values: BEGINNING | 
BEG | B, MIDDLE | MID | M, and ENDING | END | E.

Default BEGINNING

END=option
specifies a SAS date, datetime, or time value that represents the end of the 
data. If the last time ID variable value is less than the END= value, the 
variables in the VAR statement are extended with missing values. If the last 
time ID variable value is greater than the END= value, the variables are 
truncated. For example, END="&sysdate"d uses the automatic macro 
variable SYSDATE to extend or truncate the variables to the current date. 
This option and the START= option can be used to ensure that data 
associated with each BY group contains the same number of observations.

FORMAT=format
specifies the SAS format for the time ID values. If the FORMAT= option is not 
specified, the default format is implied from the INTERVAL= option.

START=option
specifies a SAS date, datetime, or time value that represents the beginning of 
the data. If the first time ID variable value is greater than the START= value, 
the variables in the VAR statement are prefixed with missing values. If the 
first time ID variable value is less than the START= value, the variables are 
truncated. This option and the END= option can be used to ensure that data 
associated with each BY group contains the same number of observations.

VAR Statement
Copies input variables to the output calendar variables data set. If the VAR statement is omitted, all 
numeric variables are selected except those that appear in a BY or ID statement.

Syntax
VAR variable(s);

724 Chapter 18 / DATEKEYS Procedure



Required Argument
variable

specifies numeric input variables to be copied to the output calendar variables 
data set.

Usage: DATEKEYS Procedure

Using the DATEKEYS Procedure

Functional Summary of the DATEKEYS 
Procedure
The following table summarizes the statements and options that control the 
DATEKEYS procedure.

Description Statement Option

Statements

Specifies BY-group processing BY Not applicable

Specifies a calendar variable data set DATEKEYCALENDAR Not applicable

Specifies a datekey data set DATEKEYDATA Not applicable

Specifies a datekey definition DATEKEYDEF Not applicable

Specifies a datekey definition based on an 
existing datekey

DATEKEYKEY Not applicable

Specifies a data set that contains a list of 
active periods by datekey

DATEKEYPERIODS Not applicable

Specifies the time ID variable ID Not applicable

Specifies the variables to be copied to the 
calendar variable data set

VAR Not applicable

Usage: DATEKEYS Procedure 725



Description Statement Option

Data Set Options

Specifies the input data set PROC DATEKEYS DATA=

Specifies an output data set that contains 
calendar variables for datekeys

DATEKEYCALENDAR OUT=

Specifies a datekeys input data set DATEKEYDATA IN=

Specifies a datekeys output data set DATEKEYDATA OUT=

Specifies that the datekeys output data set 
is to be condensed

DATEKEYDATA CONDENSE

Specifies that the datekeys output data set 
contain only a list of datekeys

DATEKEYDATA LIST

Specifies that the datekeys output data set 
contain no SAS predefined datekeys

DATEKEYDATA NODEFAULTS

Specifies that input and output data sets 
process the specified locale

DATEKEYDSOPT LOCALE=

Specifies an output data set that contains 
active dates for datekeys

DATEKEYPERIODS OUT=

Specifies a starting time ID value ID START=

Specifies an ending time ID value ID END=

Specifies the format of the ID variable ID FORMAT=

Calendar Variable Format Options

Extends the calendar variables past the end 
of the input time ID

PROC DATEKEYS LEAD=

Specifies the frequency of the time ID 
variables

ID INTERVAL=

Specifies the interval alignment ID ALIGN=

Miscellaneous Options

Specifies that variables in output data sets 
are to be in sorted order

PROC DATEKEYS SORTNAMES

726 Chapter 18 / DATEKEYS Procedure



Description Statement Option

Limits error and warning messages PROC DATEKEYS MAXERROR=

Datekey Definitions
The purpose of a datekey definition is to define time periods that are associated with 
the reference datekey. These time periods are then interpreted in other SAS 
procedures that define time-dependent features such as events. The time period of 
the datekey definition is compared to the time period of interest. If the time period of 
interest falls within the range of the datekey definition, then appropriate action is 
taken. The datekey definitions can be written to an output file by using the OUT= 
option of the DATEKEYDATA statement.

Once a datekey has been defined, it is referenced using its SAS variable name. 
When the datekey definition is written to an output file by using the DATEKEYDATA 
statement, the datekey is identified by its SAS variable name. As with SAS 
predefined datekeys, when an event is specified using a user-defined datekey 
name, a dummy variable is created using the datekey definition. The dummy 
variable name is the same as the datekey SAS reference name.

Each datekey must have a unique SAS variable name. If two datekey definitions 
have the same name, the following rules apply:

n If two DATEKEYDEF statements exist using the same name, the second 
statement is used.

n If a datekey is defined in both a DATEKEYDEF statement and in a data set 
specified using the DATEKEYDATA statement, the definition in the 
DATEKEYDEF statement is used.

n Any datekey that is defined using a DATEKEYDEF, DATEKKEYKEY, or 
DATEKEYDATA statement is used, rather than a predefined SAS datekey.

Details of the Timing Value List 
Specification
Each DATEKEYDEF statement must be defined using one or more timing values. 
The timing values can be specified using a list. Each item in the list can be a 
predefined SAS date keyword, an integer, a SAS date, a SAS datetime value, or a 
value-list. For example, the following DATEKEYDEF statement specifies timing 
values that use each of these methods in the order listed:

datekeydef datekey1=USINDEPENDENCE 10 '25Dec2000'd
                    '01Mar1990:15:03:00'dt
                    '01Jan2000'd to '01Mar2000'd by month;

The timing values are interpreted as follows: July 4 of any relevant year; the 10th 
observation in a time series or data set; December 25, 2000; March 1, 1990 at 
3:03PM; January 1, 2000; February 1, 2000; and March 1, 2000.

Usage: DATEKEYS Procedure 727



The following two DATEKEYDEF statements specify identical timing values:

datekeydef MyFirstDATEKEY='01Jan2000'd to '01Mar2000'd by month;
datekeydef MyNextDATEKEY=('01Jan2000'd, '01Feb2000'd, '01Mar2000'd );

The timing-value list can be enclosed in parentheses, and commas can separate the 
items in the list. Numbers must be integers and are always interpreted as 
observation numbers. The value-list can be based on observation numbers, SAS 
dates, or SAS datetime values. However, the first and second values in the list must 
be of the same type. SAS always expects the type of the second value to be the 
same as the type of the first value, and tries to interpret the statement in that way. 
The following statement yields erratic results:

datekeydef baddatekey='01Jan2000'd to '01Mar2000:00:00:00'dt by month;

Either the DATEKEYS procedure produces a list much longer than expected or the 
procedure does not have enough memory to execute.

Note: Do not mix date, datetime, integer, and value types in a value-list.

The following table shows the holiday date keywords that can be used in a timing-
value list, and their definitions:

Table 18.2 Holiday Date Keywords and Definitions

Date Keyword Definition

BOXING December 26

CANADA July 1

CANADAOBSERVED July 1, or July 2, if July 1 is a Sunday

CHRISTMAS December 25

COLUMBUS second Monday in October

EASTER1 Easter Sunday

FATHERS third Sunday in June

HALLOWEEN October 31

LABOR first Monday in September

MLK third Monday in January

MEMORIAL last Monday in May

MOTHERS second Sunday in May

1. The date for Easter is calculated using a method described by Montes (2001).

728 Chapter 18 / DATEKEYS Procedure



Date Keyword Definition

N<n>W<w><MON>YR date specified by NWKDOM(n, w, m, year), where m 
corresponds to the month that is specified by MON, and 
year is any year relevant to the data.

Example: N4W5NOVYR is the same as THANKSGIVING

NEWYEAR January 1

THANKSGIVING fourth Thursday in November

THANKSGIVINGCANADA second Monday in October

USINDEPENDENCE July 4

USPRESIDENTS third Monday in February (since 1971)

VALENTINES February 14

VETERANS November 11

VETERANSUSG U.S. government observed date for Monday–Friday 
schedule

VETERANSUSPS U.S. government observed date for Monday–Saturday 
schedule (U.S. Post Office)

VICTORIA Monday on or preceding May 24

The following table shows the seasonal date keywords that can be used in a timing 
value list, and their definitions:

Table 18.3 Seasonal Date Keywords and Definitions

Date Keyword Definition

SECOND_1, ...SECOND_60 the specified second.

MINUTE_1, ...MINUTE_60 the beginning of the specified minute.

HOUR_1, ...HOUR_24 the beginning of the specified hour.

SUNDAY, ...SATURDAY all Sundays, and so on, in the time series.

WEEK_1, ...WEEK_53 the first day of the nth week of the year. 
PULSE=WEEK.n shifts this date for n NE 1.

TENDAY_1, ...TENDAY_36 the 1st, 11th, or 21st day of the appropriate 
month.

Usage: DATEKEYS Procedure 729



Date Keyword Definition

SEMIMONTH_1, ...SEMIMONTH_24 the 1st or 16th day of the appropriate month.

JANUARY, ...DECEMBER the 1st day of the specified month.

QTR_1, QTR_2, QTR_3, QTR_4 the first date of the quarter. PULSE=QTR.n 
shifts this date for n NE 1.

SEMIYEAR_1, SEMIYEAR_2 the first date of the semiyear. 
PULSE=SEMIYEAR.n shifts this date for n NE 
1.

Timing values are evaluated with respect to the application and relevant time 
specified by the user. Select the timing values that are consistent with the usage. In 
particular, date and datetime timing values are ignored when no date or time 
information is specified, and only observation numbers are available for analysis.

Details of Modifying Timing Values Using 
Options
The qualifier options define functional modifications to be applied at each timing 
value. The options are applied in the following order:

1 If a SHIFT= value is specified, the timing values in the list are shifted using the 
SHIFT= value, and the PULSE= value, if specified.

2 If a DURATION= value is specified in the BEFORE= or AFTER= options, then a 
continuous interval is defined around the shifted timing values based on the 
DURATION= and PULSE= values.

3 If PERIOD= values are specified, then periodic values are generated based on 
the timing values that result from steps 1 and 2.

Details of Identifying Active Intervals 
Based on Timing Values and Options
When a datekey is evaluated with respect to a time ID, active intervals are identified 
with respect to the time ID intervals. Therefore, the active periods are dependent on 
both the time ID and the datekey definition.

The observation that is specified by the shifted timing value, ti, is the observation 
that contains the date that is generated by 
INTNX(interval,timing—value,s,'same'), where SHIFT=s and PULSE=interval. 
If no PULSE= value is specified, the default is PULSE=OBS, which is equivalent to 
PULSE=interval, where interval is the interval of the time ID.

730 Chapter 18 / DATEKEYS Procedure



Table 18.4 Calculating the Beginning and Ending Observations for Datekeys When Applied 
to Time Series

BEFORE=(DURATION=valu
e) PULSE=value Definition of tb

ALL Not available tb=1, the first observation 
in the data set, or tb= the 
observation specified by 
START=

m=0 Not specified tb=ti, the observation 
specified by the shifted 
timing value

m>0 Not specified tb=ti-m

m>=0 interval tb= the observation 
specified by the date 
INTNX(interval, 
timing-value,—m, 
'begin')

AFTER=(DURATION=value PULSE=value Definition of te

ALL Not available te= the last observation in 
the data set, or te= the 
observation specified by 
END=

n=0 Not specified te=ti, the observation 
specified by the shifted 
timing value

n>0 Not specified te=ti+n

n>=0 interval te= the observation 
specified by the date 
INTNX(interval, 
timing-value,n,'end')

The following table shows active time periods for datekey definitions:

Table 18.5 Active Time Periods for Datekey Definitions

BEFORE=(DURATION=m) AFTER=(DURATION=n) Active Observation

m=ALL n=ALL ξit, for all t

Usage: DATEKEYS Procedure 731



BEFORE=(DURATION=m) AFTER=(DURATION=n) Active Observation

m=finite n=ALL ξit, for all t>=tb

m=ALL n=finite ξit, for all t<=te

m=finite n=finite ξit, if tb<=t<=te

If an observation is not within an active period for a datekey, then it is not altered by 
the datekey action.

The active period always occurs at the shifted timing value. You specify three 
observations before the timing value, one observation at the timing value, and four 
after the timing value. The total would be 3+1+4=8 observations as follows:

datekeydef E1='01JAN1950'd / before=(duration=3)
                                    after=(duration=4);

In this example, you specify three weeks before the timing value, the week of the 
timing value, and four weeks after the timing value by using a combination of the 
BEFORE=, AFTER=, and PULSE= options as follows:

datekeydef E1='01JAN1950'd / before=(duration=3)
                                    after=(duration=4)
                                    pulse=week;

DURATION=ALL implies that the active period should be extended to the beginning 
(BEFORE=) or end (AFTER=) of time. If only one DURATION= value is specified, 
the other value is assumed to be zero. When neither DURATION= value is 
specified, both DURATION= values are set to zero. DURATION=ALL is represented 
in the datekey definition data set as a special missing value displayed as "A". For 
more information, see “Missing Values” in SAS Language Reference: Concepts.

Using the DATEKEYKEY Statement

Creating New Datekeys from Existing 
Datekey Definitions
A DATEKEYKEY statement can be used with PROC DATEKEYS to create new 
datekeys from existing datekey definitions and make them available for processing. 
SAS events that are based on user-defined datekeys are also available directly 
through PROC HPFDIAGNOSE and PROC HPFENGINE by specifying the 
EVENTDS= system option.

A user-defined datekey variable has timing values and qualifiers that are defined by 
the user. A DATEKEYKEY variable that is defined using a predefined SAS datekey 
has a predefined set of timing values and qualifiers that are associated with the 
predefined datekey keyword. You can redefine the qualifiers by using the statement 
options. The options are the same as in the DATEKEYDEF statement. In “Concepts: 

732 Chapter 18 / DATEKEYS Procedure



The DATEKEYS Procedure” on page 708, the default SAS variable name for an 
event based on a datekey is the datekey keyword. However, you can specify a 
different SAS name for the datekey. For example, you can rename the CHRISTMAS 
predefined datekey to XMAS by using the following statement:

datekeykey xmas=christmas;

If you redefine the qualifiers that are associated with a predefined SAS datekey and 
do not rename the datekey, then that has the impact of redefining the predefined 
SAS datekey. This redefinition occurs because any user definition takes precedence 
over a SAS predefined definition. The following example produces an event named 
FALLHOLIDAYS with a pulse of 1 day at Halloween and a pulse of 1 month at 
Thanksgiving:

datekeykey thanksgiving / pulse=month;
eventcomb fallholidays=halloween thanksgiving;

The following table describes how to construct a predefined SAS datekey keyword. 
It also gives the default qualifier options for those predefined datekeys.

Table 18.6 Definitions for DATEKEYKEY Predefined Event Keywords

Variable Name or 
Variable Name Format Description Qualifier Option

AO<obs>OBS

AO<date>D

AO<datetime>DT

outlier BEFORE=(DURATION=0)

AFTER=(DURATION=0)

LS<obs>OBS

LS<date>D

LS<datetime>DT

level shift BEFORE=(DURATION=0)

AFTER=(DURATION=ALL)

TLS<obs>OBS<n>

TLS<date>D<n>

TLS<datetime>DT<n>

temporary level shift BEFORE=(DURATION=0)

AFTER=(DURATION=<n>)

NLS<obs>OBS

NLS<date>D

NLS<datetime>DT

negative level shift BEFORE=(DURATION=0)

AFTER=(DURATION=ALL)

CBLS<obs>OBS

CBLS<date>D

CBLS<datetime>DT

U.S. Census Bureau 
level shift

SHIFT=–1

BEFORE=(DURATION=ALL)

AFTER=(DURATION=0)

TC<obs>OBS temporary change BEFORE=(DURATION=0)

Usage: DATEKEYS Procedure 733



Variable Name or 
Variable Name Format Description Qualifier Option

TC<date>D

TC<datetime>DT

AFTER=(DURATION=ALL)

<date keyword> date pulse BEFORE=(DURATION=0)

AFTER=(DURATION=0)

LINEAR

QUAD

CUBIC

polynomial trends BEFORE=(DURATION=ALL)

AFTER=(DURATION=ALL)

default timing value is 0 
observation

INVERSE

LOG

trends BEFORE=(DURATION=0)

AFTER=(DURATION=ALL)

default timing value is 0 
observation

<seasonal keywords> seasonal PULSE= depends on 
keyword

BEFORE=(DURATION=0)

AFTER=(DURATION=0)

timing values based on 
keyword

Modifying or Cloning a User-Defined 
Datekey
A DATEKEYKEY statement can be used in a similar manner to modify or clone a 
user-defined datekey. In the following example, the DATEKEYDEF statement is 
used to define a simple event named SPRING. The DATEKEYKEY statement is 
used to modify the SPRING event definition. Then the DATEKEYKEY statement is 
used to create a new event named SPRINGBREAK that is based on the previously 
defined user event named SPRING. Therefore, the example defines a total of two 
datekeys, SPRING and SPRINGBREAK. The DATEKEYKEY statement can be 
used to modify the qualifiers. It cannot be used to modify the timing values.

datekeydef spring='20mar2005'd;
datekeykey spring / pulse=day;
datekeykey SPRINGBREAK=spring / pulse=week;

734 Chapter 18 / DATEKEYS Procedure



If the preceding datekeys are stored in a data set named SPRINGHOLIDAYS, the 
first DATEKEYKEY statement in the following example clones SPRING as a 
datekey named FirstDayOfSpring. The second DATEKEYKEY statement changes 
the case of the SPRINGBREAK datekey name.

datekeydata in=springholidays;
datekeykey FirstDayOfSpring=spring;
datekeykey Springbreak=springbreak;

Datekey names that refer to a previously defined datekey are not case sensitive. 
However, datekey names that are used to create a new datekey preserve the casing 
in the _NAME_ variable of the DATEKEYDATA OUT= data set.

SAS Datekey Keywords
The date keywords that are described in Table 18.56 on page 728 can be used in 
the DATEKEYDEF statement as predefined SAS datekey keywords. The timing 
values are as defined in Table 18.56 on page 728. The default qualifiers are as 
shown in Table 18.60 on page 733. Table 18.57 on page 729 shows the seasonal 
keywords that can be used as predefined SAS datekey keywords. The default 
qualifiers for seasonal keywords are shown in Table 18.60 on page 733. Table 18.61 
on page 735 describes how date and observation numbers are encoded into AO, 
LS, TLS, NLS, CBLS, and TC enter predefined datekeys.

SAS predefined date keywords have only active periods.

Table 18.7 Encoding Data Information into AO, LS, TLS, NLS, CBLS, and TC Type DATEKEYKEY Variable 
Names

Variable Name Format Example Refers To

AO<int>OBS AO15OBS 15th observation

AO<date>D AO01JAN2000D '01JAN2000'D

AO<date>h<hr>m<min>s<sec>DT AO01Jan2000h12m34s56DT '01Jan2000:12:34:56'DT

TLS<int>OBS<n> TLS15OBS10 15th observation

TLS<date>D<n> TLS01JAN2000D10 '01JAN2000'D

TLS<date>h<hr>m<min>s<sec>DT<
n>

TLS01Jan2000h12m34s56DT10 '01Jan2000:12:34:56'DT

Details for the ID Statement
The ID statement accepts a SAS variable name and an interval. The ID variable’s 
values are assumed to be SAS date, time, datetime values, or observation numbers. 
In addition, the ID statement specifies the desired frequency for examining active 

Usage: DATEKEYS Procedure 735



and inactive time periods. The information that is specified affects all variables that 
are generated by using the DATEKEYCALENDAR and DATEKEYPERIODS 
statements. If no DATEKEYCALENDAR or DATEKEYPERIODS statements are 
specified, the ID statement has no impact on processing, because the 
DATEKEYDEF definitions are independent of the time identification values and 
frequencies. If the ID statement is specified, the INTERVAL= option must also be 
specified. If an ID statement is not specified, the observation number (with respect 
to the BY group) is used as the time ID. In this case, only datekey timing values that 
are based on observation numbers are applied to the input time ID to create 
calendar variables. Timing values that are based on SAS date or datetime values 
are ignored.

Data Set Output

Creating Data Set Output
The DATEKEYS procedure can create the DATEKEYCALENDAR OUT=, 
DATEKEYDATA OUT=, and DATEKEYPERIODS OUT= data sets. The 
DATEKEYDATA OUT= data set contains the datekey definitions that can be used for 
input to another SAS procedure. If the LIST option is specified in the 
DATEKEYDATA OUT= statement, then the output data set contains a list of 
available datekeys. The DATEKEYCALENDAR OUT= data set contains calendar 
indicator variables that show the active periods for the datekeys relative to the input 
time ID. The DATEKEYPERIODS OUT= data set contains information about 
datekeys that are active for the input time ID and the associated dates.

Identifying Variables in the 
DATEKEYCALENDAR OUT= Data Set
The DATEKEYCALENDAR OUT= data set contains the variables that are listed in 
the BY statement, the ID variable, any variables that are defined by the VAR 
statement, and any calendar variables that are generated by the procedure. The 
calendar indicator variables show the active periods for the datekeys relative to the 
input time ID. You can specify the SUM= option in the DATEKEYCALENDAR 
statement. In this case, the variable that is specified in the SUM= option is included 
in the DATEKEYCALENDAR OUT= data set and contains the sum of the calendar 
indicator variables.

736 Chapter 18 / DATEKEYS Procedure



Identifying Variables in the DATEKEYDATA 
OUT= Data Set
The DATEKEYDATA OUT= data set contains the following variables. The default 
values for the CONDENSE option are also given. When all the observations in the 
variable are equal to the default value, the variable can be omitted from the datekey 
definition data set.

_CLASS_
specifies that the class for all datekeys is DATEKEY. The default for _CLASS_ is 
DATEKEY.

_DATEINTRVL_
specifies the interval for the date value-list. The default for _DATEINTRVL_ is no 
interval, designated by ".".

_DTINTRVL_
specifies the interval for the datetime value-list. The default for _DTINTRVL_ is 
no interval, designated by ".".

_DUR_AFTER_
specifies the number of durations after the timing value. The default for 
_DUR_AFTER_ is 0.

_DUR_BEFORE_
specifies the number of durations before the timing value. The default for 
_DUR_BEFORE_ is 0.

_ENDDATE_
specifies the last date timing value to use in a value-list. The default for 
_ENDDATE_ is no date, designated by a missing value.

_ENDDT_
specifies the last datetime timing value to use in a value-list. The default for 
_ENDDT_ is no datetime, designated by a missing value.

_ENDOBS_
specifies the last observation number timing value to use in a value-list. The 
default for _ENDOBS_ is no observation number, designated by a missing value.

_KEYNAME_
specifies either a predefined datekey keyword or a user-defined datekey 
keyword. All _KEYNAME_ values are displayed in uppercase. However, if the 
_KEYNAME_ value refers to a user-defined keyword, then the actual name can 
be mixed case. The default for _KEYNAME_ is no keyname, designated by ".".

_LABEL_
specifies a label or description for the datekey. If you do not specify a label, then 
the default label value is displayed as ".". For more information, see the LABEL 
system option in SAS System Options: Reference.

_LOCALE_
specifies the locale for the datekey. _LOCALE_ values are the valid POSIX 
locale values. For more information, see the LOCALE system option in SAS 
National Language Support (NLS): Reference Guide. There is no default.

Usage: DATEKEYS Procedure 737



_NAME_
specifies a datekey reference name. _NAME_ is displayed with the case 
preserved. Because _NAME_ is a SAS variable name, the datekey can be 
referenced using any case. The _NAME_ variable is required. There is no 
default.

_OBSINTRVL_
specifies the interval length of the observation number value-list. The default for 
_OBSINTRVL_ is no interval, designated by ".".

_PERIOD_
specifies the frequency interval at which the datekey should be repeated. If this 
value is missing, then the datekey is not periodic. The default for _PERIOD_ is 
no interval, designated by ".".

_PULSE_
specifies an interval that defines the units for the DURATION values. The default 
for _PULSE_ is no interval (one observation), designated by ".".

_RULE_
specifies the rule to use when you combine the timing values of a datekey. The 
default for _RULE_ for datekeys is OR.

_SHIFT_
specifies the number of PULSE= intervals to shift the timing value. The shift can 
be positive (forward in time) or negative (backward in time). If PULSE= is not 
specified, then the shift occurs in observations. The default for _SHIFT_ is 0.

_STARTDATE_
specifies either the date timing value or the first date timing value to use in a 
value-list. The default for _STARTDATE_ is no date, designated by a missing 
value.

_STARTDT_
specifies either the datetime timing value or the first datetime timing value to use 
in a value-list. The default for _STARTDT_ is no datetime, designated by a 
missing value.

_STARTOBS_
specifies either the observation number timing value or the first observation 
number timing value to use in a value-list. The default for _STARTOBS_ is no 
observation number, designated by a missing value.

Identifying Variables in the 
DATEKEYPERIODS OUT= Data Set
The DATEKEYPERIODS OUT= data set contains the following variables.

_LOCALE_
specifies the locale for the datekey. _LOCALE_ values are the valid POSIX 
locale values. For more information, see the LOCALE system option in SAS 
National Language Support (NLS): Reference Guide. There is no default.

_NAME_
specifies a datekey reference name. _NAME_ is displayed with the case 
preserved. Because _NAME_ is a SAS variable name, the datekey can be 

738 Chapter 18 / DATEKEYS Procedure



referenced using any case. The _NAME_ variable is required. There is no 
default.

_STARTDATE_
specifies either the date timing value or the first date timing value to use in a 
value-list. The default for _STARTDATE_ is no date, designated by a missing 
value.

TIME ID
specifies the date.

Listing the Datekeys By Using the LIST Option
You can use the LIST option in the DATEKEYDATA statement to list datekeys. 
Specifying the LIST option in the DATEKEYDATA OUT= statement alters the output 
data set. The purpose of the LIST option is to create a data set that lists the 
available datekeys that are defined by the data set. When the LIST option is 
specified, the data set contains only the _LOCALE_, _NAME_, and _LABEL_ 
variables. The data set contains one observation for each datekey.

Creating a Data Set of BY Statement Variables
You can create a data set of BY statements by using the DATEKEYPERIODS 
statement. The DATEKEYPERIODS OUT= data set contains the following items:

n variables that are listed in the BY statement

n a list of active datekeys that are associated with the input time ID

n the ID variable dates that are associated with the active datekeys

n the starting date, datetime, or observation value that is associated with the active 
time ID period

In addition to the BY variables and the ID variable, the DATEKEYPERIODS OUT= 
data set contains the following variables:

_NAME_
specifies a datekey reference name. _NAME_ is displayed with the case 
preserved. The datekey that is displayed is active on the dates that are specified 
by the ID variable and the _STARTDATE_, _STARTDT_, or _STARTOBS_ 
values for the observation.

One of the following variables is included, based on the time ID variable:

_STARTDATE_
specifies the date that is associated with the beginning of the period that is 
specified by the INTERVAL= option relative to the value of the time ID variable.

_STARTDT_
specifies the datetime that is associated with the beginning of the period that is 
specified by the INTERVAL= option relative to the value of the time ID variable.

Usage: DATEKEYS Procedure 739



_STARTOBS_
specifies the observation number that is associated with the beginning of the 
period that is specified by the INTERVAL= option relative to the value of the time 
ID variable.

Written Output
The DATEKEYS procedure has no written output other than warning and error 
messages as recorded in the log.

Examples: DATEKEYS Procedure

Example 1: Methods for Constructing a Datekeys 
Definition Data Set
Features: PROC DATEKEYS statement options

ID
DATEKEYDEF
DATEKEYKEY
DATEKEYDATA
DATEKEYPERIODS

Details
This example uses two methods to construct a datekeys definition data set. The first 
method uses the DATA step to construct a datekey data set for Fridays when an 
item was on sale. The second method uses the DATEKEYS procedure to construct 
the datekey definition data set. The TimeSeriesDates data set contains the time ID 
variable for the time series.

The same dates that are defined in WhiteSaleDates in the DATA step can be 
defined using the DATEKEYS procedure. The active dates are the same as in the 
data set that is shown in Output 18.121 on page 742. However, the definitions in 
the DATEKEYS procedure are continuous.

740 Chapter 18 / DATEKEYS Procedure



Program: Using the DATA Step
options eventds=(nodefaults);

data TimeSeriesDates(keep=date);
   set sashelp.citiday;
   format date date.;
run;

data WhiteSaleDates(keep=_name_ _startdate_);
   set TimeSeriesDates;
   _name_='WhiteSale';
   if (month(date)=1) then do;
      if (year(date)=1991 or year(date)=1992) then do;
         if (weekday(date)=6) then do;
            _startdate_=date;
         end;
         else delete;
         end;
      else delete;
      end;
   else delete;
   format _startdate_ date.;
run;

proc print data=WhiteSaleDates;
run;

Program Description
Set the EVENTDS= system option. The EVENTDS= system option specifies the 
data set that defines the event. The NODEFAULTS option specifies not to use 
default event definitions. The only events that are used are specified by the event-
data-set list.

options eventds=(nodefaults);

Create the TimeSeriesDates data set. The DATA step uses sashelp.citiday to 
create the data set for this example:

data TimeSeriesDates(keep=date);
   set sashelp.citiday;
   format date date.;
run;

Construct a datekeys data set, WhiteSalesDates, for use with the EVENTDS= 
system option. When you construct a datekeys data set using a DATA step, all 
observations that define a specific datekey must be consecutive. If necessary, use 
the SORT procedure to sort the data set by the _NAME_ variable. The DATA step 
describes an item that was on sale during January 1991 and January 1992. The 
user-defined datekeys identify the Fridays that the item was on sale.

data WhiteSaleDates(keep=_name_ _startdate_);
   set TimeSeriesDates;
   _name_='WhiteSale';
   if (month(date)=1) then do;

Example 1: Methods for Constructing a Datekeys Definition Data Set 741



      if (year(date)=1991 or year(date)=1992) then do;
         if (weekday(date)=6) then do;
            _startdate_=date;
         end;
         else delete;
         end;
      else delete;
      end;
   else delete;
   format _startdate_ date.;
run;

proc print data=WhiteSaleDates;
run;

Output: HTML
Output 18.1 User-Defined Datekeys Data Set

Program: Using the DATEKEYS Procedure
proc datekeys data=sashelp.citiday;

   id date interval=day;

   datekeydef Years1991_1992='01JAN1991'd / pulse=year 
after=(duration=1);

   datekeykey January / pulse=month;

   datekeydef WhiteSale=JANUARY FRIDAY Years1991_1992 / rule=and;

   datekeydata out=WhiteSaleDefinitions condense;

742 Chapter 18 / DATEKEYS Procedure



   datekeyperiods out=WhiteSaleActiveDates;

run;

proc print data=WhiteSaleActiveDates(where=(_name_='WhiteSale'));
run;

proc print data=WhiteSaleDefinitions;
run;

Program Description

Begin the DATEKEYS procedure. The DATA= option contains the variables that 
are used in the ID statement.

proc datekeys data=sashelp.citiday;

Specify the time ID variable. The ID statement names a numeric variable that 
identifies observations in the data set. If you use the ID statement, the INTERVAL= 
option must be used. In this case, INTERVAL=day.

   id date interval=day;

Define a datekey. The DATEKEYDEF statement defines a datekey. PULSE= 
specifies the interval to be used with the DURATION= option to determine the width 
of the datekey.

   datekeydef Years1991_1992='01JAN1991'd / pulse=year 
after=(duration=1);

Alter or create a new datekey. Because January is used in the timing value list, it 
represents the first day of January. Using DATEKEYKEY with PULSE=MONTH 
creates a datekey for the entire month of January.

   datekeykey January / pulse=month;

Define a datekey. The DATEKEYDEF statement defines a datekey. The 
RULE=AND option identifies days in January that are Fridays.

   datekeydef WhiteSale=JANUARY FRIDAY Years1991_1992 / rule=and;

Write the datekey to an output data set. The DATEKEYDATA OUT= data set 
contains the definitions for the WhiteSale datekey. The CONDENSE option specifies 
that the output data set be condensed. Any variables that contain only default 
values are omitted from the data set.

   datekeydata out=WhiteSaleDefinitions condense;

Write variables that list the active time periods in the input time ID for 
datekeys. The DATEKEYPERIODS OUT= data set contains the active time periods 
for the WhiteSale datekey, as shown in Output 18.122 on page 744.

   datekeyperiods out=WhiteSaleActiveDates;

Execute the example. The RUN statement causes the program to execute.

run;

Write the active sales dates data set. The results are shown in Output 18.122 on 
page 744.

proc print data=WhiteSaleActiveDates(where=(_name_='WhiteSale'));
run;

Example 1: Methods for Constructing a Datekeys Definition Data Set 743



Write the definitions for the WhiteSale datekey. The results are shown in Output 
18.123 on page 744.

proc print data=WhiteSaleDefinitions;
run;

HTML Output
Output 18.2 Datekeys Active Periods Data Set Output

The following output shows the DATEKEYDATA OUT= data set definitions for the 
WhiteSale datekey:

Output 18.3 Datekey Definitions Data Set Output

744 Chapter 18 / DATEKEYS Procedure



Example 2: Using User-Defined SAS Datekey 
Keywords Directly in Other SAS Procedures
Features: PROC DATEKEYS statements

DATEKEYDEF
DATEKEYKEY
DATEKEYDATA

System option
EVENTDS=

Other Procedures
HPFDIAGNOSE

Details
If a procedure supports an EVENT statement, then you can use either data set that 
is shown in “Example 1: Methods for Constructing a Datekeys Definition Data Set” 
on page 740 without using PROC HPFEVENTS. PROC HPFEVENTS enables you 
to use a user-defined datekey. However, when the user-defined datekey is specified 
as an event, the event is created automatically, provided that the user-defined 
datekey definition data set has been specified using the EVENTDS= system option. 
This example uses the data set from “Example 1: Methods for Constructing a 
Datekeys Definition Data Set” on page 740 and the EVENT statement in PROC 
HPFDIAGNOSE.

The output from PROC HPFDIAGNOSE shows that a model that included the 
WhiteSale event was selected. The event was a poor fit, but REQUIRED=YES was 
specified. REQUIRED=YES specifies that the events be included in the model as 
long as the model does not fail to be diagnosed.

Program
proc datekeys;

   datekeydef Years1991_1992='01JAN1991'd / pulse=year 
after=(duration=1);

   datekeykey JANUARY / pulse=month;

   datekeydef WhiteSale=JANUARY FRIDAY Years1991_1992 / rule=and;

   datekeydata out=WhiteSaleDefinitions condense;

run;

options eventds=(WhiteSaleDefinitions);

proc hpfdiagnose data=sashelp.citiday
     print=all;

Example 2: Using User-Defined SAS Datekey Keywords Directly in Other SAS 
Procedures 745



   id date interval=day;

   forecast snysecm;

   event WhiteSale / required=yes;

   arimax;

run;

Program Description

Begin the DATEKEYS procedure.

proc datekeys;

Define a datekey. The DATEKEYDEF statement defines a datekey. PULSE= 
specifies the interval to be used with the DURATION= option to determine the width 
of the datekey.

   datekeydef Years1991_1992='01JAN1991'd / pulse=year 
after=(duration=1);

Alter or create a new datekey. The DATEKEYKEY statement alters a user-defined 
or predefined SAS datekey, or creates a new datekey from another datekey. 
PULSE= specifies the interval to be used with the DURATION= option to determine 
the width of the datekey.

   datekeykey JANUARY / pulse=month;

Define a datekey. The DATEKEYDEF statement defines a datekey. The 
RULE=AND option identifies days in January 1991 and 1992 that are Fridays.

   datekeydef WhiteSale=JANUARY FRIDAY Years1991_1992 / rule=and;

Write the datekey to an output data set. The CONDENSE option specifies that 
the output data set be condensed. Any variables that contain only default values are 
omitted from the data set.

   datekeydata out=WhiteSaleDefinitions condense;

Execute the DATEKEYS procedure.

run;

Set the EVENTDS= system option. The EVENTDS= system option specifies the 
data set that defines the event.

options eventds=(WhiteSaleDefinitions);

Begin the HPFDIAGNOSE procedure. The HPFDIAGNOSE procedure 
automatically diagnoses the statistical characteristics of time series and identifies 
appropriate models.

proc hpfdiagnose data=sashelp.citiday
     print=all;

Specify the ID statement. The ID statement names a numeric variable that 
identifies observations in the input and output data sets. The ID variable’s values 
are SAS date values. In addition, the ID statement specifies the desired frequency 
that is associated with the time series. The INTERVAL= option specifies the 
frequency of the input time ID.

   id date interval=day;

746 Chapter 18 / DATEKEYS Procedure



List the variables in the data set that you want to diagnose. The FORECAST 
statement lists the variables to be diagnosed in the data set that is specified by the 
DATA= option. The variables are dependent variables or response variables that 
you want to forecast in the HPFENGINE procedure.

   forecast snysecm;

Name the event. The EVENT statement name identifies the events. The 
REQUIRED option specifies that the events be included in the model as long as the 
model does not fail to be diagnosed.

   event WhiteSale / required=yes;

Find an appropriate ARIMAX specification. An ARIMAX model specifies trend 
factors, seasonal factors, and regression variables, including events. The 
HPFDIAGNOSE procedure performs the intermittency test first. If the series is not 
intermittent, an ARIMAX model is fitted to the data.

   arimax;

Execute the HPFDIAGNOSE procedure.

run;

HTML Output
The following output shows the results:

Example 2: Using User-Defined SAS Datekey Keywords Directly in Other SAS 
Procedures 747



Output 18.4 Using the EVENT Statement in PROC HPFDIAGNOSE

748 Chapter 18 / DATEKEYS Procedure



Example 3: Obtaining a Calendar Variable By Using 
the DATEKEYS Procedure
Features: PROC DATEKEYS statements

DATEKEYDEF
DATEKEYKEY
DATEKEYDATA
ID
DATEKEYCALENDAR

System option
EVENTDS=

Details
Consider the datekey definitions that are shown in “Concepts: The DATEKEYS 
Procedure” on page 708. The DATEKEYS procedure can be used to create a 
calendar variable that indicates the active periods of the datekey definitions that are 
defined in the data set MyHolidays.

Program
options eventds=(nodefaults);

data Year2010;
   do date='01JAN2010'd to '31DEC2010'd;
      output;
   end;
   format date date.;
run;

proc datekeys;

   datekeydef SuperBowl=
                 '15JAN1967'd '14JAN1968'd '12JAN1969'd '11JAN1970'd
    '17JAN1971'd '16JAN1972'd '14JAN1973'd '13JAN1974'd '12JAN1975'd
    '18JAN1976'd '09JAN1977'd '15JAN1978'd '21JAN1979'd '20JAN1980'd
    '25JAN1981'd '24JAN1982'd '30JAN1983'd '22JAN1984'd '20JAN1985'd
    '26JAN1986'd '25JAN1987'd '31JAN1988'd '22JAN1989'd '28JAN1990'd
    '27JAN1991'd '26JAN1992'd '31JAN1993'd '30JAN1994'd '29JAN1995'd
    '28JAN1996'd '26JAN1997'd '25JAN1998'd '31JAN1999'd '30JAN2000'd
    '28JAN2001'd '03FEB2002'd '26JAN2003'd '01FEB2004'd '06FEB2005'd
    '05FEB2006'd '04FEB2007'd '03FEB2008'd '01FEB2009'd '07FEB2010'd
    '06FEB2011'd '05FEB2012'd '03FEB2013'd '02FEB2014'd
                         / pulse=day;

   datekeydef GoodFriday=Easter / shift=-2 pulse=day;

Example 3: Obtaining a Calendar Variable By Using the DATEKEYS Procedure 749



   datekeykey EasterMonday=Easter / shift=1 pulse=day;

   datekeydata out=MyHolidays condense;

run;

options eventds=(MyHolidays);

proc datekeys data=Year2010;

   id date interval=day;

   datekeycalendar out=MyHolidaysIn2010;
run;

proc print data=MyHolidaysIn2010(where=(month(date)=2));

run;

proc print data=MyHolidaysIn2010(where=(month(date)=4));
run;

Program Description

Set the EVENTDS= system option. The EVENTDS= system option specifies the 
data set that defines the event. The NODEFAULTS option specifies not to use 
default event definitions. The only events that are used are specified by the event-
data-set list.

options eventds=(nodefaults);

Create a SAS data set. Create the Year2010 data set, which contains a series of 
dates.

data Year2010;
   do date='01JAN2010'd to '31DEC2010'd;
      output;
   end;
   format date date.;
run;

Begin the DATEKEYS procedure.

proc datekeys;

Define a datekey. The DATEKEYDEF statement defines a datekey. PULSE= 
specifies the interval to be used with the DURATION= option to determine the width 
of the datekey.

   datekeydef SuperBowl=
                 '15JAN1967'd '14JAN1968'd '12JAN1969'd '11JAN1970'd
    '17JAN1971'd '16JAN1972'd '14JAN1973'd '13JAN1974'd '12JAN1975'd
    '18JAN1976'd '09JAN1977'd '15JAN1978'd '21JAN1979'd '20JAN1980'd
    '25JAN1981'd '24JAN1982'd '30JAN1983'd '22JAN1984'd '20JAN1985'd
    '26JAN1986'd '25JAN1987'd '31JAN1988'd '22JAN1989'd '28JAN1990'd
    '27JAN1991'd '26JAN1992'd '31JAN1993'd '30JAN1994'd '29JAN1995'd
    '28JAN1996'd '26JAN1997'd '25JAN1998'd '31JAN1999'd '30JAN2000'd
    '28JAN2001'd '03FEB2002'd '26JAN2003'd '01FEB2004'd '06FEB2005'd
    '05FEB2006'd '04FEB2007'd '03FEB2008'd '01FEB2009'd '07FEB2010'd
    '06FEB2011'd '05FEB2012'd '03FEB2013'd '02FEB2014'd
                         / pulse=day;

750 Chapter 18 / DATEKEYS Procedure



Define a datekey. The DATEKEYDEF statement defines a datekey named 
GoodFriday and makes it equal to the datekey timing value named Easter. When 
you specify the PULSE= option, DURATION= values are set to zero. SHIFT= 
specifies the number of pulses to shift the timing value. When the SHIFT= option is 
used, all timing values are shifted.

   datekeydef GoodFriday=Easter / shift=-2 pulse=day;

Alter or create a new datekey. The value of the DATEKEYKEY statement with the 
datekey name EasterMonday is equal to the datekey named Easter. When Easter is 
treated as a datekey timing value, only the timing value definition is used, and 
qualifiers (such as SHIFT or PULSE) are not part of the definition. When Easter is 
treated as a datekey, the qualifiers that you select (such as SHIFT and PULSE) are 
part of the new definition. When you specify the PULSE= option, DURATION= 
values are set to zero. SHIFT= specifies the number of pulses to shift the timing 
value. When the SHIFT= option is used, all timing values are shifted.

   datekeykey EasterMonday=Easter / shift=1 pulse=day;

Write the datekey to an output data set. The DATEKEYDATA statement writes 
datekeys to an output data set named MyHolidays. The CONDENSE option 
specifies that the output data set be condensed. Any variables that contain only 
default values are omitted from the data set.

   datekeydata out=MyHolidays condense;

Execute the DATEKEYS procedure.

run;

Set the EVENTSDS= system option. The EVENTSDS system option specifies the 
data set that defines the event.

options eventds=(MyHolidays);

Begin the DATEKEYS procedure. The DATA= option names the data set that 
contains the variables that are used in the ID statement.

proc datekeys data=Year2010;

Specify the time ID variable. The ID statement names a numeric variable that 
identifies observations in the data set. If you use the ID statement, then the 
INTERVAL= option must be used. In this case, INTERVAL= day.

   id date interval=day;

Create a data set that contains variables that indicate the active time periods 
for datekeys. The DATEKEYCALENDAR OUT= statement specifies the data set 
that is created, and contains calendar variables that are based on the information 
that is specified in the ID statement. The DATEKEYCALENDAR OUT= data set 
contains calendar variables that identify the holidays that are defined in the 
MyHolidays data set. Values for the month in which of February 2010 are shown 
Output 18.125 on page 753.Values for the month in which of April 2010 are shown 
Output 18.126 on page 754. Only the active and inactive periods that correspond 
to the input time ID are contained in the DATEKEYCALENDAR OUT= data set 
MyHolidaysIn2010. Because the input time ID has a daily frequency and spans the 
year 2010, the results are calendar variables for the year 2010.

   datekeycalendar out=MyHolidaysIn2010;
run;

Write the output for the MyHolidaysIn2010 data set for February. The results 
are shown in Output 18.125 on page 753.

proc print data=MyHolidaysIn2010(where=(month(date)=2));

Example 3: Obtaining a Calendar Variable By Using the DATEKEYS Procedure 751



Execute the DATEKEYS procedure.

run;

Write the output for the MyHolidaysIn2010 data set for April. The results are 
shown in Output 18.126 on page 754.

proc print data=MyHolidaysIn2010(where=(month(date)=4));
run;

752 Chapter 18 / DATEKEYS Procedure



HTML Output
Output 18.5 Holiday Calendar from the Daily 2010 Time ID for February

Example 3: Obtaining a Calendar Variable By Using the DATEKEYS Procedure 753



Output 18.6 Holiday Calendar from the Daily 2010 Time ID for April

754 Chapter 18 / DATEKEYS Procedure



Example 4: Filtering Data Sets By Using the 
DATEKEYDSOPT Statement
Features: PROC DATEKEYS statements

DATEKEYKEY
DATEKEYDEF
DATEKEYDATA
ID
DATEKEYDSOPT
DATEKEYCALENDAR

System option
EVENTDS=

Details
The DATEKEYS procedure can be used to filter input data sets and create data sets 
that contain only datekey data that is associated with a specified locale. The 
DATEKEYDSOPT statement applies to the data sets that are specified in the 
DATEKEYDATA, DATEKEYPERIODS, and DATEKEYCALENDAR statements.

This example creates the datekey definitions for the following English Canadian 
holidays: Canada, CanadaObserved, and Boxing. It also creates an English U.S. 
datekey definition for USINDEPENDENCE. The definition for NewYearsEve does 
not have a specified locale.

Program
options eventds=(nodefaults);

data December2010;
   do date='01DEC2010'd to '31DEC2010'd;
      output;
   end;
   format date date.;
run;

proc datekeys;

   datekeykey Canada / locale=en_CA;
   datekeykey CanadaObserved / locale=en_CA;
   datekeykey Boxing / locale='en_CA';
   datekeykey USINDEPENDENCE / locale=en_US;

   datekeydef NewYearsEve=NEWYEAR / shift=-1 pulse=day;

   datekeydata out=MyHolidays condense;

run;

Example 4: Filtering Data Sets By Using the DATEKEYDSOPT Statement 755



options eventds=(MyHolidays);

proc datekeys data=December2010;

   id date interval=day;

  datekeydsopt locale=en_CA;

   datekeycalendar out=AllCAHolidaysInDecember2010;

run;

proc datekeys data=December2010;

   id date interval=day;

   datekeydsopt locale=(ONLY)en_CA;

   datekeycalendar out=OnlyCAHolidaysInDecember2010;

run;

proc print data=MyHolidays;
run;

proc print data=AllCAHolidaysInDecember2010;
run;

proc print data=OnlyCAHolidaysInDecember2010;
run;

Program Description

Set the EVENTDS= system option. The EVENTDS= system option specifies the 
data set that defines the event. The NODEFAULTS option specifies not to use 
default event definitions. The only events that are used are specified by the event-
data-set list.

options eventds=(nodefaults);

Create a SAS data set. Create the December2010 data set, which contains a 
series of dates:

data December2010;
   do date='01DEC2010'd to '31DEC2010'd;
      output;
   end;
   format date date.;
run;

Begin the DATEKEYS procedure.

proc datekeys;

Create a new datekey. The DATEKEYKEY statement creates a new datekey. The 
LOCALE= option specifies a locale that is associated with the datekey. The locale 
should be a POSIX locale value.

   datekeykey Canada / locale=en_CA;
   datekeykey CanadaObserved / locale=en_CA;
   datekeykey Boxing / locale='en_CA';
   datekeykey USINDEPENDENCE / locale=en_US;

756 Chapter 18 / DATEKEYS Procedure



Define a datekey. The DATEKEYDEF statement identifies a datekey. The SHIFT= 
option specifies the number of pulses to shift the timing value б. When this option is 
used, all timing values in the list (including those that are generated by date 
keywords) are shifted. The PULSE= option specifies the interval to be used.

   datekeydef NewYearsEve=NEWYEAR / shift=-1 pulse=day;

Write the datekey to an output data set. The DATEKEYDATA statement creates 
an output data set. The CONDENSE option specifies that the output data set be 
condensed. Any variables that contain only default values are omitted from the data 
set.

   datekeydata out=MyHolidays condense;

Execute the DATEKEYS procedure.

run;

Set the EVENTDS= system option. The EVENTDS= system option specifies the 
data set that defines the event.

options eventds=(MyHolidays);

Begin the DATEKEYS procedure. The DATEKEYS procedure creates datekeys 
that are associated with time computations. The DATA= option contains the 
variables that are used in the ID statement.

proc datekeys data=December2010;

Specify the ID statement. The ID statement names a numeric variable that 
identifies observations in the input and output data sets. The ID variable’s values 
are SAS date values. In addition, the ID statement specifies the desired frequency 
that is associated with the time series.

   id date interval=day;

Create a data set for a specific locale. The DATEKEYDSOPT statement limits the 
processing of data sets to a specified locale. When you use this statement, only the 
datekey definitions with a locale value of en_CA, and datekey definitions with no 
specified locale, are used to create the AllCAHolidaysInDecember2010 data set.

  datekeydsopt locale=en_CA;

Create a data set that contains variables that indicate the active time periods 
for datekeys. The DATEKEYCALENDAR statement writes variables that indicate 
the active time periods for datekeys. The OUT= option is the data set that is 
created, and contains calendar variables based on the information that is specified 
in the ID statement.

   datekeycalendar out=AllCAHolidaysInDecember2010;

Execute the DATEKEYS procedure.

run;

Begin the DATEKEYS procedure. The DATA= option contains the variables that 
are used in the ID statement.

proc datekeys data=December2010;

Specify the ID statement. The ID statement names a numeric variable that 
identifies observations in the input and output data sets. The ID variable’s values 
are SAS date values. In addition, the ID statement specifies the desired frequency 
that is associated with the time series.

   id date interval=day;

Example 4: Filtering Data Sets By Using the DATEKEYDSOPT Statement 757



Create a data set for a specific locale. The DATEKEYDSOPT statement creates a 
data set that contains only datekey data that is associated with a specified locale. If 
you specify LOCALE=(ONLY)en_CA, then only the specified locale is processed for 
both input and output data sets. The locale should be a POSIX locale value.

   datekeydsopt locale=(ONLY)en_CA;

Create a data set that contains variables that indicate the active time periods 
for datekeys. The DATEKEYCALENDAR statement writes variables that indicate 
the active time periods for datekeys. The OUT= option specifies the data set that is 
created, and contains calendar variables based on the information that is specified 
in the ID statement.

   datekeycalendar out=OnlyCAHolidaysInDecember2010;

Execute the DATEKEYS procedure.

run;

Write the MyHolidays data set. For results, see Output 18.127 on page 758.

proc print data=MyHolidays;
run;

Write the AllCAHolidaysInDecember2010 data set. For results, see Output 
18.128 on page 759.

proc print data=AllCAHolidaysInDecember2010;
run;

Write the OnlyCAHolidaysInDecember2010 data set. For results, see Output 
18.129 on page 760.

proc print data=OnlyCAHolidaysInDecember2010;
run;

HTML Output
Output 18.7 All Holiday Definitions That Are Specified in MyHolidays

758 Chapter 18 / DATEKEYS Procedure



Output 18.8 Holiday Calendar for All Canadian Holidays in December 2010

Example 4: Filtering Data Sets By Using the DATEKEYDSOPT Statement 759



Output 18.9 Holiday Calendar for Only Canadian Holidays in December 2010

760 Chapter 18 / DATEKEYS Procedure



References
Montes, M. J. “Calculation of the Ecclesiastical Calendar.” 2001. Available at http://

www.smart.net/~mmontes/ec-cal.html.

Montes, M. J. “Algorithm for Calculating the Date of Easter in the Gregorian 
Calendar.” 2001. Available at http://www.smart.net/~mmontes/nature1876.html.

Example 4: Filtering Data Sets By Using the DATEKEYDSOPT Statement 761



762 Chapter 18 / DATEKEYS Procedure



Chapter 19
DELETE Procedure

Overview: DELETE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
What Does the DELETE Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

Concepts: DELETE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
Concepts: DELETE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764

Syntax: DELETE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
PROC DELETE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764

Examples: DELETE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
Example 1: Deleting Several SAS Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
Example 2: Deleting the Base Version and All Historical Versions . . . . . . . . . . . . 768
Example 3: Deleting the Base Version and Renaming the 

Youngest Historical Version to the Base Version . . . . . . . . . . . . . . . . . . . . . . . . 769
Example 4: Deleting a Version with an Absolute Number . . . . . . . . . . . . . . . . . . . 770
Example 5: Deleting All Historical Versions and Leaving the Base Version . . . . . 770
Example 6: Using the MEMTYPE= Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
Example 7: Using the ENCRYPTKEY= Option . . . . . . . . . . . . . . . . . . . . . . . . . . . 771
Example 8: Using the ALTER= Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
Example 9: Using the DATA= List Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772
Example 10: Using the LIBRARY= Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773
Example 11: Using the LIBRARY= Option and List Feature . . . . . . . . . . . . . . . . . 773

Overview: DELETE Procedure

What Does the DELETE Procedure Do?
The DELETE procedure deletes members in a SAS library. Use PROC DELETE to 
do the following:

n delete either permanent or temporary SAS files

763



n delete loaded CAS tables from a caslib. It does not delete the original files from 
the data source specified by the caslib.

n delete a list of data sets with the same name and a numeric suffix, such as 

proc delete data=x1-x3; 
run;

n delete a member type. 

n delete generation data sets using the GENNUM= option.

n delete AES-encrypted data sets when using GENNUM=ALL and 
ENCRYPTKEY= options.

Concepts: DELETE Procedure

Concepts: DELETE Procedure
One of the benefits of using PROC DELETE instead of the DELETE statement in 
the DATASETS procedure is that it does not use the in-memory directory to delete 
SAS data sets. As a result, the DELETE procedure is faster.

Syntax: DELETE Procedure
Tip: You can perform similar functions with the DELETE statement in the DATASETS 

procedure.

PROC DELETE DATA=SAS-file(s) <options>;

Statement Task Example

PROC DELETE Delete SAS files from SAS libraries Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5

PROC DELETE Statement
Deletes SAS files from SAS libraries.

764 Chapter 19 / DELETE Procedure



Syntax
PROC DELETE <LIBRARY=libref> DATA=SAS-file(s)

(<GENNUM=ALL | HIST | REVERT | integer>
<MEMTYPE=member-type>
<ENCRYPTKEY=key-value>
<ALTER=alter-password>);

Summary of Optional Arguments
ALTER=alter-password

provides the Alter password for any alter-protected SAS files.
ENCRYPTKEY=key-value

The ENCRYPTKEY= option unlocks the data sets that are protected by 
an AES-encrypted key value.

GENNUM=ALL | HIST | REVERT | integer
restricts processing for generation data sets.

LIBRARY=libref
specifies the SAS library that contains members to be deleted.

MEMTYPE=(member-type(s))
restricts deletion to a certain type of SAS file.

Required Argument
DATA= SAS-file(s)

specifies one or more SAS files that you want to delete.

Note: You can also use a numbered range list. For more information, see “Data 
Set Name Lists” in SAS Programmer’s Guide: Essentials. You cannot use a 
colon list.

TIP If you want to delete all files in a library, use the PROC DATASETS 
KILL option. Use PROC DATASETS LIB=library name KILL to delete all 
files including catalogs. For more information, see “KILL” on page 569.

Optional Arguments
ALTER=alter-password

provides the Alter password for any alter-protected SAS files. 

See “Using Passwords with the DATASETS Procedure” on page 649 

ENCRYPTKEY=key-value
The ENCRYPTKEY= option unlocks the data sets that are protected by an AES-
encrypted key value. The ENCRYPTKEY= option is needed only when a data 
set must be opened.

PROC DELETE Statement 765

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1nxfbk0gb5qtqn1os370f4n867d.htm&docsetTargetAnchor=n0oru3akf51pi5n1wco2onzr39oz&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p1nxfbk0gb5qtqn1os370f4n867d.htm&docsetTargetAnchor=n0oru3akf51pi5n1wco2onzr39oz&locale=en


See “Example 7: Using the ENCRYPTKEY= Option” on page 771

GENNUM=ALL | HIST | REVERT | integer
restricts processing for generation data sets. You use the option in parentheses 
after the name of each SAS file. The following is a list of valid values: 

ALL refers to the base version and all historical versions in a 
generation group.

HIST refers to all historical versions, but excludes the base version 
in a generation group.

REVERT | 0 deletes the base version and changes the most current 
historical version, if it exists, to the base version.

integer is a number that references a specific version from a 
generation group. Specifying a positive number is an absolute 
reference to a specific generation number that is appended to 
a data set's name (that is, gennum=2 specifies MYDATA#002).

See “Understanding Generation Data Sets” in SAS Language Reference: 
Concepts 

“Restricting Processing for Generation Data Sets” on page 650 

Examples “Example 1: Deleting Several SAS Data Sets” on page 768

“Example 2: Deleting the Base Version and All Historical Versions” 
on page 768

“Example 3: Deleting the Base Version and Renaming the Youngest 
Historical Version to the Base Version” on page 769

“Example 4: Deleting a Version with an Absolute Number” on page 
770

“Example 5: Deleting All Historical Versions and Leaving the Base 
Version” on page 770

LIBRARY=libref
specifies the SAS library that contains members to be deleted.

Alias LIB=

MEMTYPE=(member-type(s))
restricts deleting one or more member types. For example, if you have a data set 
and a catalog named MyFile in the MyLib library and you want to delete only the 
catalog, then use the MEMTYPE= option. 

proc delete lib=MyLib data=MyFile (memtype=catalog);
run;

ACCESS
access descriptor files (created by SAS/ACCESS software)

CATALOG
SAS catalogs

DATA
SAS data files

766 Chapter 19 / DELETE Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en


FDB
financial database

MDDB
multidimensional database

PROGRAM
stored compiled SAS programs

VIEW
SAS views

Aliases MTYPE=

MT=

Default DATA

Example “Example 6: Using the MEMTYPE= Option” on page 771

Details

Working with Generation Groups
When you are working with generation groups, you can use PROC DELETE to 
delete the following versions:

n delete the base version and all historical versions. See “Example 2: Deleting the 
Base Version and All Historical Versions” on page 768.

n delete the base version and rename the youngest historical version to the base 
version. See “Example 3: Deleting the Base Version and Renaming the 
Youngest Historical Version to the Base Version” on page 769.

n delete an absolute version. See “Example 4: Deleting a Version with an Absolute 
Number” on page 770.

n delete all historical versions and leave the base version. See “Example 5: 
Deleting All Historical Versions and Leaving the Base Version” on page 770.

Deleting Specific Member Types
With the MEMTYPE= option, you can specify the member type that you want to 
delete. The default for the MEMTYPE= option is DATA. For more information, see 
“MEMTYPE=(member-type(s))” on page 766.

Working with Integrity Constraints
You cannot use the DELETE procedure to delete a data file that has a foreign key 
integrity constraint or a primary key with foreign key references. For data files that 
have foreign keys, you must remove the foreign keys before you delete the data file. 
For data files that have primary keys with foreign key references, you must remove 
the foreign keys that reference the primary key before you delete the data file.

PROC DELETE Statement 767



Examples: DELETE Procedure

Example 1: Deleting Several SAS Data Sets
Features: PROC DELETE statement options

DATA=
GENNUM=

Details
This example demonstrates the following tasks:

n deletes data sets from a library

n deletes all historical versions of each data set

Program
Delete SAS data sets named A, B, and C from a SAS library named MyLib. The 
GENNUM= option deletes all the historical versions for each of the data sets.

proc delete data=MyLib.A MyLib.B MyLib.C (gennum=all);
run;

Example 2: Deleting the Base Version and All 
Historical Versions
Features: PROC DELETE statement options

DATA=
GENNUM=

768 Chapter 19 / DELETE Procedure



Details
This example demonstrates the following tasks:

n deletes a data set from a library

n deletes all historical versions of the data set

Program
Deletes the data set named MyLib.A and all the historical versions.

proc delete data=MyLib.A (gennum=all);
run;

Example 3: Deleting the Base Version and 
Renaming the Youngest Historical Version to the 
Base Version
Features: PROC DELETE statement options

DATA=
GENNUM=

Details
This example demonstrates the following tasks:

n deletes a data set from a library

n renames the youngest historical version

The following statement deletes the data set named MyLib.A and renames the 
youngest historical version.

Program
Deletes the data set named MyLib.A and renames the youngest historical 
version.

proc delete data=MyLib.A(gennum=revert1);
run;

Example 3: Deleting the Base Version and Renaming the Youngest Historical Version to 
the Base Version 769



Example 4: Deleting a Version with an Absolute 
Number
Features: PROC DELETE statement options

DATA=
GENNUM=

Details
This example deletes the first historical version of the data set.

Program
GENNUM= option deletes the first historical version of the data set names 
MyLib.A. You use GENNUM=integer to select the historical version that you want to 
delete.

proc delete data=MyLib.A(gennum=1);
run;

Example 5: Deleting All Historical Versions and 
Leaving the Base Version
Features: PROC DELETE statement options

DATA=
GENNUM=

Details
This example deletes all historical versions except the base version of a data set.

770 Chapter 19 / DELETE Procedure



Program
Use the GENNUM=HIST option to delete all historical versions and retain the 
base version of the data set MyLib.A.

proc delete data=MyLib.A(gennum=hist);
run;

Example 6: Using the MEMTYPE= Option
Features: PROC DELETE statement options

DATA=
MEMTYPE=

Details
This example deletes the CATALOG file in a specific SAS library.

Program
The MEMTYPE= option names the type of file to delete in a SAS library. If you 
have other member types named MyFile in the MyLib library, they will not be 
deleted. 

proc delete lib=MyLib data=MyFile (memtype=catalog);
run;

Example 7: Using the ENCRYPTKEY= Option
Features: PROC DELETE statement options

DATA=
ENCRYPTKEY=
GENNUM=

Details
This example demonstrates the following tasks:

n unlocks an AES encrypted data set

Example 7: Using the ENCRYPTKEY= Option 771



n deletes all historical versions and the base AES data set named MyLib.A. 

Program
Deletes the base AES data set named MyLib.A and all historical versions. The 
ENCRYPTKEY= option must be used if the data set is AES encrypted.

proc delete data=MyLib.A (gennum=ALL encryptkey=key-value);
run;

Example 8: Using the ALTER= Option
Features: PROC DELETE statement options

ALTER=
DATA=

Details
This example deletes a password protected data set.

Program
Deletes a password protected data set named MyLib.A. If the data set is 
password protected, you must supply the password.

proc delete data=MyLib.A (alter=alter-password);
run;

Example 9: Using the DATA= List Feature
Features: PROC DELETE statement options

DATA=

Program
Deletes multiple data sets named X1, X2, X3, X4, and X5. To use the list feature, 
the data sets must have the same name and end with a numeric suffix. If a 
LIBRARY= option is not specified, the data sets are deleted from the Work library.

772 Chapter 19 / DELETE Procedure



proc delete data=X1-X5;
run;

Example 10: Using the LIBRARY= Option
Features: PROC DELETE statement options

DATA=
LIB=

Details
The following statement deletes a data set from a specific SAS library.

Program
Deletes the A data set that is in the specified SAS library named MyLib. The 
alias for the LIBRARY= option is LIB=.

proc delete lib=MyLib data=A;
run;

Example 11: Using the LIBRARY= Option and List 
Feature
Features: PROC DELETE statement options

DATA=
LIB=

Details
This example deletes data sets X1, X2, X3, X4, and X5 in the specified SAS library 
named MyLib. The alias for the LIBRARY= option is LIB=.

Note:  The data sets must end with a numeric suffix.

Example 11: Using the LIBRARY= Option and List Feature 773



Program
Deletes data sets X1, X2, X3, X4, and X5 from the specified SAS library named 
MyLib. When using the list feature, all the data sets must have the same name and 
end with a numeric suffix. The alias for the LIBRARY= option is LIB=.

proc delete lib=MyLib data=X1-X5;
run;

774 Chapter 19 / DELETE Procedure



Chapter 20
DISPLAY Procedure

Overview: DISPLAY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
What Does the DISPLAY Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775

Syntax: DISPLAY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775
PROC DISPLAY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776

Usage: DISPLAY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
Using the DISPLAY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

Example: Executing a SAS/AF Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

Overview: DISPLAY Procedure

What Does the DISPLAY Procedure Do?
The DISPLAY procedure executes SAS/AF applications. These applications consist 
of a variety of entries that are stored in a SAS catalog and that have been built with 
the BUILD procedure in SAS/AF software. For complete documentation on building 
SAS/AF applications, see Guide to SAS/AF Applications Development.

Syntax: DISPLAY Procedure
PROC DISPLAY CATALOG=libref.catalog.entry.type <BATCH>;

775



PROC DISPLAY Statement
Executes a SAS/AF application.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Example: “Example: Executing a SAS/AF Application” on page 0

Syntax
PROC DISPLAY CATALOG=libref.catalog.entry.type <BATCH>;

Required Argument
CATALOG=libref.catalog.entry.type

specifies a four-level name for the catalog entry.

libref
specifies the SAS library where the catalog is stored.

catalog
specifies the name of the catalog.

entry
specifies the name of the entry.

type
specifies the entry's type, which is one of the following. For details, see the 
description of catalog entry types in the BUILD procedure in online Help.

n CBT

n FRAME

n HELP

n MENU

n PROGRAM

n SCL

Optional Argument
BATCH

runs PROGRAM and SCL entries in batch mode. If a PROGRAM entry contains 
a display, then it will not run, and you will receive the following error message: 
ERROR: Cannot allocate window.

Restriction PROC DISPLAY cannot pass arguments to a PROGRAM, a 
FRAME, or an SCL entry.

776 Chapter 20 / DISPLAY Procedure



Usage: DISPLAY Procedure

Using the DISPLAY Procedure
You can use the DISPLAY procedure to execute an application that runs in NODMS 
batch mode. Be aware that any SAS programming statements that you submit with 
the DISPLAY procedure through the SUBMIT block in SCL are not submitted for 
processing until PROC DISPLAY has executed.

If you use the SAS windowing environment, you can use the AF command to 
execute an application. SUBMIT blocks execute immediately when you use the AF 
command. You can use the AFA command to execute multiple applications 
concurrently.

Example: Executing a SAS/AF 
Application
Features: PROC DISPLAY statement

CATALOG= argument

Details
Suppose that your company has developed a SAS/AF application that compiles 
statistics from an invoice database. Further, suppose that this application is stored in 
the SASUSER library, as a FRAME entry in a catalog named INVOICES.WIDGETS. 
You can execute this application using the following SAS code.

proc display catalog=sasuser.invoices.widgets.frame;
run;

Example: Executing a SAS/AF Application 777



778 Chapter 20 / DISPLAY Procedure



Chapter 21
DS2 Procedure

Overview: DS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
What Does the DS2 Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780

Concepts: DS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
Benefits of the DS2 Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781
Data Source Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781

Syntax: DS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
PROC DS2 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784
RUN CANCEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

Usage: DS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
Data Source Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791
Using PROC DS2 in SAS Cloud Analytic Services . . . . . . . . . . . . . . . . . . . . . . . . 795
RUN-Group Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
Applying DS2 Table Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
Using Macro Variables in a Literal String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 796
DS2 Automatic Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797
Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 798
Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
DS2 Data Type Support for SAS Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 799
DS2 Data Type Support for CAS Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 800

Examples: DS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
Example 1: Introducing DS2 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
Example 2: Creating a SAS Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 804
Example 3: Terminating the Current Step in Line Prompt Mode . . . . . . . . . . . . . . 806
Example 4: Routing Data to Tables Based on Values . . . . . . . . . . . . . . . . . . . . . . 808
Example 5: Run a DS2 Program in CAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810

779



Overview: DS2 Procedure

What Does the DS2 Procedure Do?
The DS2 procedure enables you to submit DS2 language statements from a Base 
SAS session. The DS2 procedure is supported in both SAS 9.4 and SAS Viya.

DS2 is a SAS programming language that is appropriate for advanced data 
manipulation. DS2 is included with Base SAS software and SAS Viya software and 
shares core features with the SAS DATA step. DS2 exceeds the DATA step by 
adding variable scoping, user-defined methods, ANSI SQL data types, and user-
defined packages. The DS2 SET statement accepts embedded FedSQL syntax, 
and the runtime-generated queries can exchange data interactively between DS2 
and any supported database. This allows SQL preprocessing of input tables, which 
effectively combines the power of the two languages. For more information about 
the DS2 language, see SAS DS2 Language Reference and SAS DS2 
Programmer’s Guide.

Using the DS2 procedure, you can submit DS2 language statements to SAS and 
third-party data sources that are accessed with SAS and SAS/ACCESS library 
engines. If you have SAS Cloud Analytic Services (CAS) configured, you can also 
submit DS2 language statements to the CAS server.

To execute DS2 jobs in a SAS library, specify the PROC DS2 statement followed by 
DS2 language statements. Qualify table names in your DS2 language statements 
with a libref. If you do not specify a libref, the request is executed in the SAS Work 
library.

To execute DS2 jobs on the CAS server, specify the SESSREF= (or SESSUUID=) 
option and a CAS session name in the procedure statement. Then, either create 
tables in the CAS session, load tables from external data sources into the CAS 
session, or qualify table names in your DS2 language statements with caslibs. A 
caslib enables you to dynamically load external data into your CAS session for 
processing.

Note: Do not use a CAS engine libref with PROC DS2. When SESSREF= (or 
SESSUUID=) are specified, PROC DS2 makes a direct connection to the CAS 
server. The procedure does not need the CAS engine. The procedure silently 
passes requests to the DS2.runDS2 action and the action executes your DS2 
program on the CAS server. 

780 Chapter 21 / DS2 Procedure

http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Concepts: DS2 Procedure

Benefits of the DS2 Language
DS2 programs are written for applications that

n require the precision that results from using the additional data types that are 
available with the language

n benefit from using the new expressions or write methods or packages available 
in the DS2 syntax 

n need to execute the SAS FedSQL language from within the DS2 program 

n execute outside of a SAS session (for example, on SAS Federation Server or the 
CAS server)

n take advantage of threaded processing in products such as SAS Enterprise 
Miner and the CAS server.

Data Source Support
When submitting DS2 statements to a SAS library, the DS2 procedure can read and 
write from the following data sources. Unless noted otherwise, availability starts with 
SAS 9.4 and SAS Viya 3.3. See SAS/ACCESS documentation for supported 
operating environments.

Table 21.1 Data Sources for Which DS2 Supports SAS Library Access

Data Source SAS V9 SAS Viya 3.5 Release Notes

Amazon Redshift * * Added in SAS 9.4M5

Aster * * Added in SAS 9.4M1

DB2 * * DB2

Greenplum * *

Google BigQuery * * Added in August 
2019, on SAS 9.4M6 
and SAS Viya 3.4

Concepts: DS2 Procedure 781



Data Source SAS V9 SAS Viya 3.5 Release Notes

Hadoop (Hive) * * Added in SAS 9.4M2

HAWQ * * Added in SAS 9.4M3

Impala * * Added in SAS 9.4M3

databases that are 
compliant with 
JDBC

* * Added in February 
2019, on SAS Viya 
3.4 and SAS 9.4M6

Microsoft SQL 
Server

* * Added in SAS 9.4M5

MongoDB * * Read-only support 
available on SAS 
9.4M6, starting in 
April 2019. Write 
support available 
starting in November 
2019.

Read-and-write 
support available in 
SAS Viya 3.5.

MySQL * *

Netezza * *

ODBC-compliant 
databases

* *

Oracle * *

PostgreSQL * * Added in SAS 9.4M2

Salesforce * * Read-only support 
available on SAS 
9.4M6, starting in 
April 2019. Write 
support available 
starting in November 
2019.

Read-and-write 
support available in 
SAS Viya 3.5.

SAP * * Read-only

SAP HANA * * Added in SAS 9.4M1

782 Chapter 21 / DS2 Procedure



Data Source SAS V9 SAS Viya 3.5 Release Notes

SAP IQ * *

SAS data sets * * Added in SAS Viya 
3.1

SAS Scalable 
Performance Data 
(SPD) Engine data 
sets

* *

SAS Scalable 
Performance Data 
(SPD) Server 
tables

* * Added in SAS 9.4M4

SPD Server

SAS Viya access is 
client only

Snowflake * * Added in August 
2019, on SAS 9.4M6 
and SAS Viya 3.4

Spark * Spark execution of 
PROC DS2 with the 
SAS Code 
Accelerator for 
Hadoop can be 
enabled by setting the 
HADOOPPLATFORM
=SPARK system 
option starting in SAS 
9.4M6.

SAS/ACCESS to 
Spark is available on 
Linux only in SAS 
9.4M7.

Teradata * * Teradata

Vertica * * Added in SAS 9.4M5

Yellowbrick * SAS/ACCESS to 
Yellowbrick is limited 
availability for SAS 
9.4 only, starting in 
SAS 9.4M7.

When submitting DS2 statements to the CAS server, the procedure reads data from 
files and in-memory tables and creates CAS session tables. A caslib uses a SAS 
Data Connector (or SAS Data Connector Accelerator) to access data from a 
corresponding data source for processing in CAS. For information about available 
SAS Data Connectors, see SAS Cloud Analytic Services: User’s Guide. DS2 output 

Concepts: DS2 Procedure 783

http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


tables in CAS are in-memory tables. You must use other actions to persist data to 
caslib data sources.

For information about how to connect to a data source with PROC DS2, see “Data 
Source Connection” on page 791.

Syntax: DS2 Procedure
PROC DS2 <connection-option><processing-options>;

…DS2 language statements
RUN;
RUN CANCEL;
QUIT;

Statement Task Example

PROC DS2 Specify that the subsequent input is DS2 
language statements.

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5

RUN CANCEL Cancel the previous DS2 language statements. Ex. 3

PROC DS2 Statement
Specifies that the subsequent input is DS2 language statements.

Requirement: Follow the PROC DS2 statement with DS2 language statements. See SAS DS2 
Language Reference for information about DS2 language statements.

Interactions: The DS2 procedure requires the RUN statement to submit DS2 statements. That is, SAS 
reads the program statements that are associated with one task until it reaches a RUN 
statement.
By default, the procedure processes non-existent numeric values as SAS missing 
values. To request that non-existent values are processed as ANSI SQL null values, 
specify ANSIMODE.
When creating tables with PROC DS2, note that by default, you cannot overwrite an 
existing table. To specify that an output table should be deleted before a replacement 
output table is created, use the OVERWRITE=YES table option. For information about 
the OVERWRITE= table option, see SAS DS2 Language Reference.

Note: As of September 2023, Microsoft Azure Active Directory (Azure AD) was renamed to 
Microsoft Entra ID.

Examples: “Example 1: Introducing DS2 Code” on page 802
“Example 2: Creating a SAS Data Set” on page 804
“Example 3: Terminating the Current Step in Line Prompt Mode” on page 806
“Example 4: Routing Data to Tables Based on Values” on page 808

784 Chapter 21 / DS2 Procedure

http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


“Example 5: Run a DS2 Program in CAS” on page 810

Syntax
PROC DS2 <connection-option ><processing-options>;

Summary of Optional Arguments
Connection

LIBS=libref | (libref1libref2 ...librefn)
restricts the default data source connection to the specified libref(s). All 
other librefs are ignored.

SESSREF=session-name
specifies to run the DS2 statements in a CAS session. The CAS session 
is identified by its session name.

SESSUUID="session-uuid"
specifies to run the DS2 statements in a CAS session. The CAS session 
is identified by its universally unique identifier (UUID).

General Processing
ANSIMODE

specifies that nonexistent values in CHAR and DOUBLE columns are 
processed as ANSI SQL null values.

BYPARTITION=YES | NO
determines whether the input data for the DS2 program is automatically 
re-partitioned when executed inside the database with in-database 
processing.

DS2ACCEL=NO | YES
determines whether DS2 code is enabled for parallel processing in 
supported environments using the SAS In-Database Code Accelerator.

ERRORSTOP | NOERRORSTOP
specifies whether the procedure stops executing if it encounters an error.

LABEL | NOLABEL
specifies whether to use the column label or the column name as the 
column heading.

MEMSIZE=n | nM | nG 
specifies a limit for the amount of memory that is used for an underlying 
query (such as a SELECT statement), so that allocated memory is 
available to support other PROC DS2 operations.

NUMBER
specifies to include a column named Row, which is the row (observation) 
number of the data as the rows are retrieved.

SCOND=WARNING | NONE | NOTE | ERROR
specifies the level of messages that PROC DS2 displays in the SAS log 
for the DS2 variable declaration strict mode, which requires that every 
variable must be declared in the DS2 program.

STIMER

PROC DS2 Statement 785



specifies to write a subset of system performance statistics, such as time-
elapsed statistics, to the SAS log.

XCODE=ERROR | WARNING | IGNORE
controls the behavior of the SAS session when an NLS transcoding failure 
occurs.

Optional Arguments
ANSIMODE

specifies that nonexistent values in CHAR and DOUBLE columns are processed 
as ANSI SQL null values. By default, PROC DS2 processes nonexistent values 
in CHAR and DOUBLE columns as missing values. This is how SAS processes 
nonexistent values. The ANSIMODE option specifies to process nonexistent 
values in CHAR and DOUBLE columns as ANSI SQL null values. It is important 
to understand the differences, or data can be lost. For information about 
processing differences, see “How DS2 Processing Nulls and SAS Missing 
Values” in SAS DS2 Programmer’s Guide. All other data types use ANSI NULL 
semantics all of the time.

Default SAS mode

BYPARTITION=YES | NO
determines whether the input data for the DS2 program is automatically re-
partitioned when executed inside the database with in-database processing. 

YES
specifies that the input data is automatically re-partitioned by the first BY 
variable. All of the BY groups are in the same data partition and processed by 
the same thread. Each thread does the BY processing for the entire group of 
data.

NO
specifies that the input data is not re-partitioned even if there is a BY 
statement in the DS2 program. Each group of data resides on different data 
partitions and is processed by different DS2 threads. Each thread gets partial 
data from a group, and each group is processed by multiple threads. The 
DS2 program must request the final aggregation of data.

Default YES

Restrictions BYPARTITION= is supported only for SAS libraries.

BYPARTITION= is not supported in SAS Viya.

BYPARTITION=NO is not supported in SAS In-Database Code 
Accelerator for Hadoop.

DS2ACCEL=NO | YES
determines whether DS2 code is enabled for parallel processing in supported 
environments using the SAS In-Database Code Accelerator. The SAS In-
Database Code Accelerator enables you to publish a DS2 thread program to the 
database and execute the thread program in parallel inside the database. If you 
are using Hadoop or Teradata, then the DS2 data program is also published and 
executed inside the database. 

NO
disables DS2 code from executing in supported parallel environments. The 
DS2 code is executed in the Base SAS session.

786 Chapter 21 / DS2 Procedure

http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


YES
enables DS2 code to execute in supported parallel environments.

Alias INDB=

Default The default value is determined by the DS2ACCEL= system 
option. The default value for the system option is NO. The SAS In-
Database Code Accelerator is not automatically executed in 
supported parallel environments. For information about the 
DS2ACCEL= system option, see SAS DS2 Language Reference.

Restrictions DS2ACCEL= is supported for SAS libraries only.

DS2ACCEL= is not supported in SAS Viya.

DS2ACCEL= is not supported for all data sources.

Interaction The DS2ACCEL= procedure option takes precedence over the 
DS2ACCEL= system option.

Notes The INDB= option was added in SAS 9.4M1 and was renamed to 
DS2ACCEL= in SAS 9.4M2.

The DS2ACCEL= system option can be restricted by a site 
administrator. If the system option is restricted, then it cannot be 
overridden by the DS2ACCEL= procedure option.

See “Threaded Processing” and “SAS In-Database Code Accelerator” 
in SAS DS2 Programmer’s Guide

“Using the SAS In-Database Code Accelerator” in SAS In-
Database Products: User’s Guide

ERRORSTOP | NOERRORSTOP
specifies whether the procedure stops executing if it encounters an error. In a 
batch or noninteractive session, ERRORSTOP instructs the procedure to stop 
executing the statements but to continue checking the syntax after it has 
encountered an error. NOERRORSTOP instructs the procedure to execute the 
statements and to continue checking the syntax after an error occurs.

Default NOERRORSTOP in an interactive SAS session; ERRORSTOP in a 
batch or noninteractive session

Tips ERRORSTOP has an effect only when SAS is running in a batch or 
noninteractive execution mode.

NOERRORSTOP is useful if you want a batch job to continue executing 
procedure statements after an error is encountered.

LABEL | NOLABEL
specifies whether to use the column label or the column name as the column 
heading.

Default LABEL

Interactions If a column does not have a label, the procedure uses the column's 
name as the column heading.

PROC DS2 Statement 787

http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


A column alias overwrites the label or column name as the column 
heading.

LIBS=libref | (libref1libref2 ...librefn)
restricts the default data source connection to the specified libref(s). All other 
librefs are ignored. When you specify a list of librefs, the order of the list defines 
the library order. 

Alias LIBNAMES=

Restriction LIBS= is supported only for SAS libraries.

Interactions If both LIBS= and SESSREF= (or SESSUID=) are specified in the 
procedure statement, SESSREF= is applied and the other option is 
ignored.

If LIBS= is specified multiple times, the last one on the procedure 
statement is applied.

Note LIBS= is available starting in SAS 9.4M3

Tips LIBS= is useful when multiple LIBNAME statements are defined in 
a SAS session, to limit the scope of the DS2 program to only the 
LIBNAME statement(s) to which the program applies. It can also 
avoid duplicate catalog errors when connecting to data sources 
that support native catalogs, such as Netezza.

If you are curious about how LIBS= affects library assignments, set 
the MSGLEVEL=i system option before running a PROC DS2 
request with LIBS=. The option produces Include and Ignore 
messages for each of the LIBNAME statements that are processed 
in the procedure request.

See “Data Source Connection” on page 791

“About the LIBS= Procedure Option” on page 793

Example The following PROC DS2 procedure statement specifies to create 
a data source connection that uses only librefs MyLib3 and 
MyLib4.
proc ds2 libs=(mylib3 mylib4);

MEMSIZE=n | nM | nG 
specifies a limit for the amount of memory that is used for an underlying query 
(such as a SELECT statement), so that allocated memory is available to support 
other PROC DS2 operations. Specify the memory limit in multiples of 1 (bytes); 
1,048,576 (megabytes); or 1,073,741,824 (gigabytes). For example, the value 
23M specifies 24,117,248 bytes of memory. The value 16G specifies 
17,179,869,184 bytes of memory. 

Default The procedure optimizes the setting based on the amount of memory 
on the host.

Note On the CAS server, MEMSIZE= specifies the memory for a single 
worker.

Tip Generally, specifying a memory limit is not necessary unless DS2 
reports a memory problem error.

788 Chapter 21 / DS2 Procedure



NUMBER
specifies to include a column named Row, which is the row (observation) number 
of the data as the rows are retrieved.

Default No row numbers.

SCOND=WARNING | NONE | NOTE | ERROR
specifies the level of messages that PROC DS2 displays in the SAS log for the 
DS2 variable declaration strict mode, which requires that every variable must be 
declared in the DS2 program. For more information about the DS2 variable 
declaration strict mode, see the SAS DS2 Language Reference.

WARNING
writes warning messages to the SAS log.

NONE
no messages are written to the SAS log.

NOTE
writes notes to the SAS log.

ERROR
writes error messages to the SAS log.

Default The default is determined by the DS2SCOND= system option. The 
default for DS2SCOND= is WARNING. For information about the 
DS2SCOND= system option, see SAS DS2 Language Reference.

Interaction Specifying the SCOND= option in the PROC DS2 statement takes 
precedence over the DS2SCOND= system option.

SESSREF=session-name
specifies to run the DS2 statements in a CAS session. The CAS session is 
identified by its session name. 

Requirements A CAS server must be configured for your system.

The CAS session must have been previously established by 
using the CAS statement. If the specified CAS session does not 
exist, the procedure terminates.

Interactions Use SESSREF= (or SESSUUID=) to connect to the CAS 
session. If both options are specified, the last option in the 
procedure statement is applied.

If both SESSREF= and LIBS= are specified in the procedure 
statement, SESSREF= is applied and the other option is ignored.

Note This option is supported in SAS Viya 3.1 and later and in SAS 
9.4M5 and later.

See “Connecting to the CAS Server” on page 793

“Using PROC DS2 in SAS Cloud Analytic Services” on page 
795

“Example 5: Run a DS2 Program in CAS” on page 810

PROC DS2 Statement 789



SESSUUID="session-uuid"
specifies to run the DS2 statements in a CAS session. The CAS session is 
identified by its universally unique identifier (UUID). 

Requirements A CAS server must be configured for your system.

The CAS session must have been previously established by 
using the CAS statement. The CAS statement generates a UUID 
value. If the specified CAS session does not exist, the procedure 
terminates.

Interactions Use SESSUUID= (or SESSREF=) to connect to the CAS 
session. If both options are specified, the last option in the 
procedure statement is applied.

If both SESSUUID= and LIBS= are specified in the procedure 
statement, SESSUUID= is applied and the other option is 
ignored.

Note This option is supported in SAS Viya 3.1 and later and in SAS 
9.4M5 and later.

See “Connecting to the CAS Server” on page 793

“Using PROC DS2 in SAS Cloud Analytic Services” on page 
795

Example Here is a PROC DS2 procedure statement that specifies 
SESSUUID=:
proc ds2 sessuuid="76904741-fb09-554d-a8de-6cbce2a0e0e5";

The UUID value can be enclosed in single or double quotation 
marks.

STIMER
specifies to write a subset of system performance statistics, such as time-
elapsed statistics, to the SAS log. When STIMER is in effect, the procedure 
writes to the SAS log a list of computer resources used for each step and the 
entire SAS session.

Default No performance statistics are written to the SAS log.

Interaction If the SAS system option FULLSTIMER is in effect, the complete list 
of computer resources is written to the SAS log.

XCODE=ERROR | WARNING | IGNORE
controls the behavior of the SAS session when an NLS transcoding failure 
occurs. Transcoding failures can occur during row input or output operations, or 
during string assignment. Transcoding is the process of converting character 
data from one encoding to another encoding. 

ERROR
specifies that a run-time error occurs, which causes row processing to halt. 
An error message is written to the SAS log. This is the default behavior.

WARNING
specifies that the incompatible character is set to a substitution character. A 
warning message is written to the SAS log.

790 Chapter 21 / DS2 Procedure



IGNORE
specifies that the incompatible character is set to a substitution character. No 
messages are written to the SAS log.

Default ERROR

Note This option was added in SAS 9.4M2.

RUN CANCEL Statement
Cancels the previous DS2 language statements.

Tip: The RUN CANCEL statement is useful if you enter a typographical error.

Example: “Example 3: Terminating the Current Step in Line Prompt Mode” on page 806

Syntax
RUN CANCEL;

Usage: DS2 Procedure

Data Source Connection
PROC DS2 can execute programs in SAS libraries (librefs) and on the CAS server. 
By default, PROC DS2 connects to a data source by using available librefs. You can 
override this default behavior by specifying CAS connection options. The DS2 
procedure is not affected by the CASNAME= system option.

Understanding the Default Data Source 
Connection
PROC DS2 connects to a data source by using the attributes of currently assigned 
librefs. These librefs are defined by LIBNAME statements. Attributes include the 
physical location of the data, and for some data sources, access information such 
as network information used to access the data server, and user identification and 
password.

Usage: DS2 Procedure 791



1 You first submit the LIBNAME statement for a SAS engine. For information to 
define a LIBNAME statement, see: 

SAS data sets
SAS Global Statements: Reference

Relational DBMS data sources
SAS/ACCESS for Relational Databases: Reference

MongoDB and Salesforce
SAS/ACCESS for Nonrelational Databases: Reference

SPD Engine data sets
SAS Scalable Performance Data Engine: Reference

SPD Server tables
SAS Scalable Performance Data Server: User’s Guide

2 In your DS2 program, use a two-part name in the form libref.table-name to refer 
to tables. The libref tells the program where to create or locate a table.

3 Then, submit the DS2 procedure.

This example illustrates how PROC DS2 accesses a data source by using the 
attributes of a previously assigned libref. The LIBNAME statement assigns the libref 
MyFiles, specifies the BASE engine, and then specifies the physical location for the 
SAS data set. The DS2 program then creates the SAS data set MyFiles.Table1 at 
the location specified in the LIBNAME statement.

libname myfiles base 'C:\myfiles'; 
   
proc ds2;        
   data myfiles.table1; 
      dcl double j j2; 
      method run(); 
         do j = 1 to 1000; 
            j2 = 2*j; 
            output; 
         end; 
      end; 
   enddata;
run;
quit; 

The DS2 procedure builds a data source connection string that includes all active 
librefs and sends it to the DS2 program. You reference a particular library by 
specifying its libref in a two-part table name in the form libref.table-name. If you do 
not specify a libref, the table is created in the SAS Work library.

PROC DS2 uses libref attributes for connection information only (such as physical 
location). PROC DS2 generally does not use libref attributes that define behavior. 
For example, if a previously submitted LIBNAME statement for the BASE engine 
specifies that SAS data sets are to be compressed, the compression attribute is not 
used by the procedure. There are exceptions. For example, the 
MAX_BINARY_LEN= and MAX_CHAR_LEN= for Google BigQuery are included in 
the internal connection string.

You can determine which LIBNAME options are used by the procedure by setting 
the MSGLEVEL=i system option before submitting a LIBNAME statement. For many 
data sources, you can specify a DS2 table option to override a LIBNAME option. For 
example, the COMPRESS= table option can be used to request compression of 

792 Chapter 21 / DS2 Procedure

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acnrdb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


SAS data sets. The SCANSTRINGCOLUMNS= table option can be used to override 
the MAX_CHAR_LEN= LIBNAME option. Not all LIBNAME statement options have 
a corresponding table option.

Note: PROC DS2 connects immediately, so an error is generated if the LIBNAME 
statement includes the DEFER=YES option.

z/OS Specifics: The physical location for the libref must be an HFS path 
specification.

About the LIBS= Procedure Option
When multiple librefs are active in the SAS session, you might want to include the 
LIBS= option in the PROC DS2 statement. LIBS= restricts the data source 
connection to the specified libref or librefs and the default library. Work is the default 
library unless a User library is assigned.

You must continue to qualify table names with a libref, even when LIBS= specifies 
only one library; otherwise, the default library is used.

The following example illustrates the use of the LIBS= option. In the example, two 
librefs are assigned in the SAS session: AllFiles and MyFiles. The LIBS= option 
specifies to use libref MyFiles only.

libname allfiles 'C:\sharedfiles'; 
libname myfiles base 'C:\myfiles; 
   
proc ds2 libs=myfiles;        
   data myfiles.table1; 
      dcl double j j2; 
      method run(); 
         do j = 1 to 1000; 
            j2 = 2*j; 
            output; 
         end; 
      end; 
   enddata;
run;
quit; 

For more information, see “LIBS=libref | (libref1 libref2 ...librefn)” on page 788.

Connecting to the CAS Server
You connect to a CAS session on the CAS server by specifying the SESSREF= (or 
SESSUUID=) procedure option with a CAS session name. When SESSREF= (or 
SESSUUID=) is specified, both the default connection mechanism and the 
LIBS=option are ignored. Instead, the procedure connects to the specified CAS 
session.

Usage: DS2 Procedure 793



Note: You must have a CAS server configured. You must first submit the CAS 
statement to establish the CAS session. To interact with data in a CAS session, you 
need a caslib. You must first define a caslib or use a pre-defined caslib. You define a 
caslib and list the caslibs that are available to your CAS session by using the 
CASLIB statement. For syntax information, see SAS Cloud Analytic Services: 
User’s Guide. A caslib uses a SAS Data Connector (or SAS Data Connector 
Accelerator) to access data. For information about SAS Data Connectors, see SAS 
Cloud Analytic Services: User’s Guide.

Use a two-part name in the form caslib.table-name to identify tables in your DS2 
statements. The following example illustrates a PROC DS2 request to the CAS 
server.

options cashost="cloud.example.com" casport=5570; 
cas mysess; 

caslib castera desc='Teradata Caslib'
   datasource=(srctype='teradata'
      username='myname'
      password='mypw'
      server='testserver',
      db='testdb'); 

proc ds2 sessref=mysess; 
   data newtable;
     method run();
       set {select * from castera.employees}; 
     end;
enddata;
run;
quit;

This example establishes a CAS session named MySess on a CAS server on CAS 
host cloud.example.com. It then uses the CASLIB statement to assign caslib 
CASTERA. The PROC DS2 statement specifies the SESSREF= procedure option 
and the CAS session name MySess. The FedSQL SELECT statement in the DS2 
SET statement identifies table Employees using the CASTERA caslib.

SAS Viya data connectors support explicit and automatic (shown here) loading of 
data into CAS. For an example that explicitly loads data, see “Example 5: Run a 
DS2 Program in CAS” on page 810.

The tables that you create with PROC DS2 are in-memory CAS tables. That is, the 
tables are available for the duration of the CAS session and are accessible only to 
the current session. PROC DS2 does not provide a way to persist a table to a data 
source or to share the table with other CAS sessions. To persist or share a CAS 
table, use the CASUTIL procedure.

Note: Although CAS tables are in-memory tables, you must specify the 
OVERWRITE= table option to overwrite an initial output table with a replacement 
output table.

For more information, see:

n SAS Cloud Analytic Services: Fundamentals

n CAS statement, CASLIB statement, and CASUTIL procedure in SAS Cloud 
Analytic Services: User’s Guide

794 Chapter 21 / DS2 Procedure

http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfun&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


Using PROC DS2 in SAS Cloud Analytic Services
SAS Cloud Analytic Services is an alternative environment for processing DS2 
requests. When you specify the SESSREF= (or SESSUUID=) option, PROC DS2 
prepares and executes your DS2 programs on a CAS server. When you run PROC 
DS2 with SESSREF= or SESSUUID=, you are actually using the runDS2 action. 
Unless you are using Lua, Python, or R, it is recommended that you use PROC DS2 
to submit your DS2 programs to the CAS server instead of the runDS2 action. There 
are advantages of using PROC DS2. For more information, see the runDS2 action 
in the SAS Viya: System Programming Guide.

The CAS server is a symmetric multiprocessing (SMP) server. A DS2 program 
executing on the CAS server can perform manipulations on multiple data 
observations concurrently, thereby reducing the time required to process large data 
sets. Based on the structure of the DS2 program, the DS2 compiler determines 
which operations can be performed on multiple observations concurrently. It also 
determines which operations must be applied to each observation sequentially.

A DS2 program is classified as either a serial program, a parallel program, or a 
parallel-serial program. In order to benefit from the CAS server, the DS2 program 
must be structured as either a DS2 parallel program or a DS2 parallel-serial 
program.

n A DS2 parallel program contains no operations with data dependencies across 
observations. Therefore, multiple data observations can be processed in parallel. 
Each CAS worker can process a subset of the input data and generate a subset 
of the result set. 

n A DS2 parallel-serial program contains some operations with data dependencies 
across observations and some operations without data dependencies. The 
processing of the operations is divided into two stages: a parallel stage and a 
serial stage. During the parallel stage, each CAS worker processes a subset of 
the input data set and generates a subset of an intermediate data set. During the 
serial stage, one CAS worker processes the complete intermediate data set and 
generates the complete result set. 

Most of the functionality of the DS2 language is supported for use on the CAS 
server. However, there are some exceptions. For information about the DS2 
functionality that is supported in CAS, see SAS DS2 Programmer’s Guide.

For an example of how a DS2 parallel program is submitted to the CAS server, see 
“Example 5: Run a DS2 Program in CAS” on page 810.

DS2 output tables in CAS are in-memory tables. The tables are created in the user’s 
CAS session. You must use other CAS actions to promote the output tables for 
global use in CAS or to store data to caslib data sources.

RUN-Group Processing
PROC DS2 supports RUN-group processing. RUN-group processing enables you to 
submit RUN groups without ending the procedure.

Usage: DS2 Procedure 795

http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


To use RUN-group processing, you start the procedure and then submit multiple 
RUN-groups. A RUN-group is a group of statements that contains at least one 
action statement and ends with a RUN statement. As long as you do not terminate 
the procedure, it remains active and you do not need to resubmit the PROC 
statement.

Note: When using PROC DS2, DS2 programs are delimited by RUN statements. If 
additional DS2 code is found after a RUN statement, then this code composes a 
new, distinct DS2 program from the DS2 program before the previous RUN 
statement.

To end RUN-group processing, submit a RUN CANCEL statement. Statements that 
have not been submitted are terminated. To stop the procedure, submit a QUIT 
statement. Statements that have not been submitted are terminated as well.

Applying DS2 Table Options
When you access a data source with PROC DS2, you can apply DS2 table options 
in the subsequent DS2 statements. A table option specifies actions that enable you 
to perform operations on a table such as assigning buffer page size or specifying 
passwords. A DS2 table option performs much of the same functionality as a Base 
SAS data set option.

DS2 table options are used to apply options when you access a data source within 
PROC DS2. For example, the following code applies a table option to the SAS data 
set to specify the size of a permanent buffer page for the new table:

libname myfiles base 'C:\myfiles'; 
   
proc ds2;        
   data myfiles.table1 (bufsize=16k); 
      dcl double j j2; 
      method run(); 
         do j = 1 to 1000; 
            j2 = 2*j; 
            output; 
         end; 
      end; 
enddata;
run;
quit; 

For a list of available table options, see SAS DS2 Language Reference.

Using Macro Variables in a Literal String
Note: The information in this section applies to PROC DS2 use in a libref. 

796 Chapter 21 / DS2 Procedure



Macro variables enable you to dynamically modify text in a program through 
symbolic substitution. When you reference a macro variable in a program, the 
macro processor replaces the reference with the value of the specified macro 
variable.

With PROC DS2, you can use a macro variable on a subsequent DS2 statement. 
However, if a macro variable occurs within a literal string, you cannot enclose the 
string in double quotation marks. The macro processor requires double quotation 
marks to resolve the macro variable reference. DS2 statements consider a string 
enclosed in double quotation marks to be a delimited (case sensitive) identifier such 
as a table or column name.

To reference a macro variable in a literal string, use the SAS macro function 
%TSLIT. %TSLIT overrides the need for double quotation marks around the literal 
string and puts single quotation marks around the input value. For example, the 
following statement includes the %TSLIT function to specify the &SYSHOSTNAME 
macro variable, which returns the host name of the computer on which it is 
executed:

if hostname = %tslit(&syshostname) then ...

The %TSLIT macro function is stored in the default autocall macro library. For more 
information, see “Referencing a Macro Variable in a Delimited Identifier” in the SAS 
DS2 Programmer’s Guide.

DS2 Automatic Variables
The DS2 language sets up automatic variables with certain values after it executes 
each statement. These automatic variables are useful for subsetting a problem 
across DS2 threads. They are also useful for providing context when debugging with 
PUT statements.

Table 21.2 DS2 Automatic Variables

Variable Description

_HOSTNAME_ Returns the name of the worker node or host on which the DS2 
program is running.

_NTHREADS_ Returns the total number of DS2 threads running in the program. In 
a parallel environment, _NTHREADS_ is the total number of DS2 
threads across all nodes on which the DS2 program is running.

_THREADID_ Returns the _THREADID_. A serial program (which does not contain 
a thread component) is assigned _THREADID_ = 0. In a parallel 
program, the executing data program is assigned _THREADID_ = 0 
and each executing thread program is assigned a unique 
_THREADID_ from 1 to the number of threads.

Here is an example of how the automatic variables might be used:

proc ds2;
thread thd / overwrite = yes;
  dcl double x;

Usage: DS2 Procedure 797

http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


  method init();
    put 'THREAD: thread' _threadid_ 'on' _hostname_;
  end;
endthread;

data _null_;
  dcl thread thd t;
  method init();
    put 'DATA: thread' _threadid_ 'on' _hostname_;
  end;
  method run();
    set from t threads=8;
  end;
enddata;
run; 
quit;

Passwords
SAS software enables you to restrict access to SAS data sets and SPD Engine data 
sets by assigning SAS passwords to the files. You can specify three levels of 
protection: read, write, and alter.

With PROC DS2, you assign or specify a password for a data source using the DS2 
table options ALTER=, PW=, READ=, and WRITE=. For example, the following 
code applies the DS2 table option PW= in order to assign READ, WRITE, and 
ALTER passwords to a SAS data set:

libname myfiles base 'C:\myfiles'; 

proc ds2;        
   data myfiles.table1 (pw=luke); 
      dcl double j j2; 
      method run(); 
         do j = 1 to 1000; 
            j2 = 2*j; 
            output; 
         end; 
      end; 
enddata;
run;
quit; 

A SAS password does not control access to a SAS file beyond SAS. You should use 
the operating system-supplied utilities and file system security controls to control 
access to SAS files outside SAS. For more information about SAS passwords, see 
“Assigning Passwords” in SAS Programmer’s Guide: Essentials..

CAS tables do not support SAS passwords. Therefore, you cannot assign a 
password for a CAS table. When accessing password-protected data from CAS, 
passwords are specified in the CAS language element used to access the data. For 
example, passwords are supported in the CASUTIL procedure, which loads data 
into CAS, as well as in the CASLIB statement and in the Table.addCaslib action. For 

798 Chapter 21 / DS2 Procedure

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n1lslsvg1oilpxn141ntayj2if1j.htm&locale=en


more information, see the SAS Viya SAS Data Connector documentation in SAS 
Cloud Analytic Services: User’s Guide.

Encryption
SAS software enables you to encrypt the contents of a SAS data set, SPD Engine 
data set, and SPD Server table. SAS supports SAS proprietary encryption and AES 
encryption.

SAS proprietary encryption is performed by specifying the ENCRYPT= table option 
with the PW= or READ= table option. A data set or table encrypted with SAS 
proprietary encryption must be decrypted by specifying the PW= or READ= table 
option with the appropriate password.

AES encryption is performed by specifying the ENCRYPT= table option with the 
ENCRYPTKEY= table option. A data set or table encrypted with AES encryption is 
later decrypted by specifying the ENCRYPTKEY= table option with the appropriate 
key value.

Beginning with SAS 9.4M5, SAS supports two levels of AES encryption: AES and 
AES2. The new AES2 option provides AES encryption to meet newer and more 
secure encryption standards. You must specify the ENCRYPTKEY= table option 
when using AES or AES2 encryption. AES2 encryption is initially supported for SAS 
data sets only. For more information, see “ENCRYPT=” in SAS DS2 Language 
Reference.

DS2 currently does not support the encryption attribute for CAS tables. When 
accessing SAS and AES encrypted data sets from CAS, passwords and encryption 
keys are specified in the CAS language element that is used to access the data. For 
example, passwords and encryption keys are supported in the CASUTIL procedure, 
which loads data into CAS, as well as in the CASLIB statement and in the 
Table.addCaslib action. For more information, see the SAS Viya SAS Data 
Connector documentation in SAS Cloud Analytic Services: User’s Guide.

DS2 Data Type Support for SAS Data Sets
In PROC DS2, when you submit DS2 statements, all DS2 language data types are 
supported. For information about the DS2 data types, see SAS DS2 Language 
Reference. However, when reading and creating data, the DS2 data types are 
translated to and from the data types of the target data source. When submitting 
statements to read or to create a Base SAS data set, DS2 data types are translated 
to and from the SAS numeric and SAS character data types. The following table lists 
the DS2 data types and how they are translated to and from SAS data types:

Table 21.3 DS2 Data Type Translation for SAS Data Sets

DS2 Data Type
Legacy SAS 
Data Type Description

BIGINT SAS numeric Because a SAS numeric is a DOUBLE, 
there is potential for loss of precision. 

Usage: DS2 Procedure 799

http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=p1ajewcg2a58mun1s2ziy7hskxm8.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=p1ajewcg2a58mun1s2ziy7hskxm8.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


DS2 Data Type
Legacy SAS 
Data Type Description

DOUBLE is an approximate numeric data 
type rather than an exact numeric data type

BINARY(n) SAS character Applies the SAS format $n.

CHAR(n) SAS character Applies the SAS format $n.

DATE SAS numeric Applies the SAS format DATE9.

Valid SAS date values are in the range from 
1582-01-01 to 9999-12-31. Dates outside 
the SAS date range are not supported and 
are treated as invalid dates.

DECIMAL|
NUMERIC(p,s)

SAS numeric

DOUBLE SAS numeric

FLOAT SAS numeric

INTEGER SAS numeric

NCHAR(n) SAS character Applies the SAS format $n.

NVARCHAR(n) SAS character Applies the SAS format $n.

REAL SAS numeric

SMALLINT SAS numeric

TIME(p) SAS numeric Applies the SAS format TIME8.

TIMESTAMP(p) SAS numeric Applies the SAS format DATETIME19.2.

TINYINT SAS numeric

VARBINARY(n) SAS character Applies the SAS format $n.

VARCHAR(n) SAS character Applies the SAS format $n.

DS2 Data Type Support for CAS Tables
Beginning with SAS Viya 3.5, DS2 can create, read, and write VARBINARY columns 
in CAS, in addition to BIGINT, CHAR(n), DOUBLE, INTEGER, and VARCHAR 

800 Chapter 21 / DS2 Procedure



columns. When writing data to the CAS server, some DS2 data types are translated 
to and from these data types, but not all of them. The following table lists the DS2 
data types and how they are translated to and from CAS data types.

Table 21.4 DS2 Data Type Translation for CAS Tables

DS2 Data Type CAS Data Type Description

BIGINT1 INT64 Large signed, exact whole number.

BINARY(n) Not supported3

CHAR(n) CHAR Applies the SAS format $n.

Stores a fixed-length character string, where 
n is the maximum number of characters to 
store. The maximum number of characters 
is required to store each value regardless of 
the actual size of the value. If char(10) is 
specified and the character string is only five 
characters long, the value is right-padded 
with spaces.

DATE DOUBLE Applies the SAS format DATE9.

Valid SAS date values are in the range from 
1582-01-01 to 9999-12-31. Dates outside of 
the SAS date range are not supported and 
are treated as invalid dates.

DECIMAL|
NUMERIC(p,s)

Not supported

DOUBLE DOUBLE Stores a signed, approximate, double-
precision, floating-point number. Allows 
numbers of large magnitude and permits 
computations that require many digits of 
precision to the right of the decimal point. 
For SAS Cloud Analytic Services, this is a 
64-bit double precision, floating-point 
number.

FLOAT DOUBLE

INTEGER1 INT32 Regular signed, exact whole number.

NCHAR(n) CHAR Applies the SAS format $n.

NVARCHAR(n) VARCHAR

REAL DOUBLE

SMALLINT INT32 Small signed, exact whole number.

Usage: DS2 Procedure 801



DS2 Data Type CAS Data Type Description

TIME(p) DOUBLE Applies the SAS format TIME8.

TIMESTAMP(p) DOUBLE Applies the SAS format DATETIME25.6.

TINYINT INT32 Very small signed, exact whole number.

VARBINARY(n)2 VARBINARY Varying-length binary opaque data. This 
data type is used to store image data, audio, 
documents, and other unstructured data.

VARCHAR(n) VARCHAR Stores a varying-length character string.

1 Support for the integer data types starts with SAS Viya 3.3.
2 Beginning with SAS Viya 3.5, a DS2 program that runs in CAS can read and create a column with a 

VARBINARY data type in a CAS table. It can also write to an existing VARBINARY column in a CAS 
table. In earlier SAS Viya releases, DS2 does not return an error when reading VARBINARY 
columns. However, the data is incorrectly treated as character data.

3 Beginning with SAS Viya 3.5, a DS2 program that runs in CAS can create a column with a BINARY 
data type. However, it cannot read a BINARY data column from a CAS table or write to an existing 
BINARY column in a CAS table. DS2 returns an error if an attempt is made to do so. Use the DROP 
data set option to exclude BINARY columns when reading or writing to a CAS table that contains a 
BINARY column. In earlier SAS Viya releases, no error was reported when reading BINARY 
columns. However, the data was not read correctly.

CAS tables use the UTF-8 character set by default.

Date, time, and timestamp values in CAS tables are supported as DOUBLEs, with a 
SAS format applied. When SAS Viya Data Connectors read DATE, TIME, and 
TIMESTAMP columns from an ANSI-compliant data source, they convert the 
columns to data type DOUBLE. DS2 applies a DATE. SAS format to date values, a 
TIME. SAS format to time values, and a DATETIME. SAS format to datetime values.

Examples: DS2 Procedure

Example 1: Introducing DS2 Code
Features: PROC DS2 statement

LIBS= procedure option
QUIT statement
DS2 language statements

802 Chapter 21 / DS2 Procedure



Details
This example uses a simple DS2 program that displays Hello World! in the SAS 
log. The example shows basic differences between DS2 and the SAS DATA step. 
The code looks similar to the SAS DATA step, but there are syntax elements that 
are different, such as default system methods (INIT, RUN, and TERM). Also, DS2 
supports the most common SQL data types such as DECIMAL, INTEGER, and 
VARCHAR to make operations more native for DBMS data.

Program
proc ds2 libs=work;

data _null_;
   method init();
      dcl varchar(16) str;
      str = 'Hello World!';
      put str;
   end;
enddata;

run;

quit;

Program Description
Execute the PROC DS2 statement. The LIBS= connection option specifies to 
execute the request in the SAS Work library. The PROC DS2 statement sets up the 
environment to submit DS2 language statements.

proc ds2 libs=work;

Enter the DS2 language statements. _NULL_ on the DS2 DATA statement 
indicates that there is no automatic output generated. The DS2 PUT statement 
writes to the SAS log.

data _null_;
   method init();
      dcl varchar(16) str;
      str = 'Hello World!';
      put str;
   end;
enddata;

Submit the DS2 statements. The RUN statement submits the DS2 statements. 
The RUN statement is required. SAS reads the program statements that are 
associated with one task until it reaches a RUN statement.

run;

Example 1: Introducing DS2 Code 803



Stop the procedure. The QUIT statement stops the procedure.

quit;

Example Code 21.1 SAS Log Showing Hello World!

48   proc ds2 libs=work;
49   data _null_;
50      method init();
51         dcl varchar(16) str;
52         str = 'Hello World!';
53         put str;
54      end;
55   enddata;
56   run;
Hello World!
NOTE: Execution succeeded. No rows affected.
57   quit;

NOTE: PROCEDURE DS2 used (Total process time):
      real time           16.38 seconds
      cpu time            0.15 seconds

Example 2: Creating a SAS Data Set
Features: PROC DS2 statement

LIBS= procedure option
QUIT statement
LIBNAME statement
DS2 language statements
PROC PRINT

Details
This example creates a SAS data set in a Base SAS session by submitting the DS2 
procedure, and then submitting DS2 language statements. The output shows the 
first ten rows of the data set.

Program
libname myfiles base 'C:\myfiles';

804 Chapter 21 / DS2 Procedure



proc ds2 libs=myfiles;

   data myfiles.basetable; 
      declare double j j2;
      method run();
         do j = 1 to 1000;
            j2 = 2*j;
            output;
         end;
      end;
   enddata;

run;

quit;

proc print data=myfiles.basetable (obs=10);
run; 

Program Description
Assign a library reference to the SAS data set to be created. The LIBNAME 
statement assigns the libref MyFiles, specifies the BASE engine, and specifies the 
physical location for the SAS data set.

libname myfiles base 'C:\myfiles';

Execute the PROC DS2 statement. The PROC DS2 statement connects to the 
data source by using the libref MyFiles and sets up the environment to submit DS2 
language statements.

proc ds2 libs=myfiles;

Enter the DS2 language statements. The DS2 DATA statement creates an output 
table named Myfiles.BaseTable. The two-level name in the DATA statement 
specifies the catalog identifier MyFiles. The DECLARE statement assigns the data 
type DOUBLE to the variables J and J2. The METHOD statement identifies the RUN 
system method that is used to create output. The OUTPUT statement writes a row 
to table MyFiles.BaseTable after each execution of the DO loop.

   data myfiles.basetable; 
      declare double j j2;
      method run();
         do j = 1 to 1000;
            j2 = 2*j;
            output;
         end;
      end;
   enddata;

Submit the DS2 language statements. The RUN statement submits the DS2 
statements. The RUN statement is required. SAS reads the program statements 
that are associated with one task until it reaches a RUN statement.

run;

Stop the procedure. The QUIT statement stops the procedure.

Example 2: Creating a SAS Data Set 805



quit;

Print the SAS data set. The PRINT procedure prints the observations in the SAS 
data set. The OBS= data set option limits the output to 10 observations.

proc print data=myfiles.basetable (obs=10);
run; 

Output: Creating a SAS Data Set
Output 21.1 PROC PRINT Output of MyFiles.BaseTable

Example 3: Terminating the Current Step in Line 
Prompt Mode
Features: PROC DS2 statement

RUN CANCEL statement
QUIT statement
DS2 language statements

806 Chapter 21 / DS2 Procedure



Details
The following example shows the usefulness of the RUN CANCEL statement in a 
line prompt mode session. The sixth statement in the code contains an invalid value 
for the column (Z instead of Y). RUN CANCEL ends the PROC DS2 step and 
prevents it from executing.

Program

proc ds2;
data xy_data;
   declare double x y;
   method init();
      do x = 1 to 5;
         z = 2*x;
      end;
   end;
enddata;
run cancel;
quit;

Example Code 21.2 SAS Log Showing the Canceled PROC DS2 Step

17   proc ds2 libs=work;
NOTE: Writing HTML Body file: sashtml1.htm
18   data xy_data;
19      dcl double x y;
20      method init();
21         do x = 1 to 5;
22            z = 2*x;
23         end;
24      end;
25   enddata;
26   run cancel;
NOTE: DS2 query cancelled per user request.
27   quit;

NOTE: PROCEDURE DS2 used (Total process time):
      real time           14.33 seconds
      cpu time            0.71 seconds

Example 3: Terminating the Current Step in Line Prompt Mode 807



Example 4: Routing Data to Tables Based on 
Values
Features: PROC DS2 statement

QUIT statement
DS2 language statements

Details
This example illustrates how to create tables based on a condition. Programs 1 and 
2 create two tables, Dept1_Items and Dept2_Items, that hold costs for items used 
by two departments. The third program creates two tables, Highcosts and Lowcosts, 
based on the costs of the items in the two items tables. Programs 4 and 5 output the 
contents of the costs tables.

Program
proc ds2;
/* Program 1 */
data dept1_items (overwrite=yes);
   dcl varchar(20) item;
   dcl double cost;
   method init();
      item = 'staples';   cost =  1.59; output;
      item = 'pens';      cost =  3.26; output;
      item = 'envelopes'; cost = 11.42; output;
   end;
enddata;
run;
/* Program 2 */
data dept2_items (overwrite=yes);
   dcl varchar(20) item;
   dcl double cost;
   method init();
      item = 'erasers'; cost =  5.43; output;
      item = 'paper';   cost = 26.92; output;
      item = 'toner';   cost = 62.29; output;
   end;
enddata;
run;
/* Program 3 */
data lowCosts (overwrite=yes) highCosts (overwrite=yes);
   method run();
      set dept1_items dept2_items;

808 Chapter 21 / DS2 Procedure



      if cost <= 10.00 then
         output lowCosts;
      else
         output highCosts;
      end;
enddata;
run;
/* Program 4 */
data;
   method run();
      set lowCosts;
   end;
enddata;
run;
/* Program 5 */
data;
   method run();
       set highCosts;
   end;
enddata;
run;
quit;

Output: Creating Tables Based on a 
Condition
Output 21.2 Output of the Costs Tables

Example 4: Routing Data to Tables Based on Values 809



Example 5: Run a DS2 Program in CAS
Features: CAS system options

CAS statement
CASLIB statement
CASUTIL procedure
PROC DS2 statement
SESSREF= procedure option
DS2 language statements

Details
Here is an example of a DS2 parallel program that is run in CAS. A DS2 parallel 
program is a DS2 program that contains a thread program and a data program and 
does not contain any data manipulation statements. That is, the data program does 
not contain any statements besides SET FROM and OUTPUT. Operations in the 
thread program are applied to multiple data observations in parallel. Each CAS 
worker processes a subset of the data set and generates a subset of the result set.

Program
options cashost="cloud.example.com" casport=5570;

cas mysess;

caslib casdata datasource=(srctype=path)
  path="testdata/cas";

proc casutil;
  load casdata="cars_single.sashdat" incaslib="casdata" 
casout="cars_single";
run;

proc ds2 sessref=mysess;

 thread cars_thd / overwrite=yes;
   method run();
     set cars_single;
     if (msrp > 100000) then do;
       put make= model= msrp=;
       output;
     end;
   end;
 endthread;  
 
 data cars_luxury /overwrite=yes;
   dcl thread cars_thd t;

810 Chapter 21 / DS2 Procedure



   method run();
     set from t threads=4;
   end;
 enddata;
 

run;

quit;

Program Description
Connect to the CAS server. The CASHOST= and CASPORT= options specify to 
connect to the CAS server at cloud.example.com using port 5570. This step is not 
required if your network has a pre-configured CAS server connection.

options cashost="cloud.example.com" casport=5570;

Establish a CAS session. The CAS statement specifies to start a CAS session 
named MySess.

cas mysess;

Define a caslib to access your input data. A file named Cars_Single.sashdat is 
located in the Testdata/Cas subdirectory of the computer on which the CAS server is 
running. The CASLIB statement assigns caslib CasData to the directory location. To 
access a directory on a different computer, specify an absolute pathname.

caslib casdata datasource=(srctype=path)
  path="testdata/cas";

Load the table into CAS for processing. The CASUTIL procedure is used to load 
table Cars_Single.sashdat into the CAS session. The CASOUT= parameter assigns 
the loaded table the name Cars_Single.

proc casutil;
  load casdata="cars_single.sashdat" incaslib="casdata" 
casout="cars_single";
run;

Issue the PROC DS2 statement and specify the SESSREF= procedure option. 
SESSREF= instructs the procedure to process the request using CAS session 
MySess.

proc ds2 sessref=mysess;

Enter the DS2 language statements. The DS2 THREAD statement creates a 
thread program named Cars_Thd that specifies criteria for selecting data from 
loaded table Cars_Single. The DS2 DATA statement creates an output table, 
Cars_Luxury, and specifies to set the results of the thread program as the content of 
the new table. The data program specifies to use four threads to execute the thread 
program. 

 thread cars_thd / overwrite=yes;
   method run();
     set cars_single;
     if (msrp > 100000) then do;
       put make= model= msrp=;
       output;
     end;

Example 5: Run a DS2 Program in CAS 811



   end;
 endthread;  
 
 data cars_luxury /overwrite=yes;
   dcl thread cars_thd t;
   method run();
     set from t threads=4;
   end;
 enddata;
 

Submit the DS2 language statements. The RUN statement submits the DS2 
statements. The RUN statement is required. SAS reads the program statements 
that are associated with one task until it reaches a RUN statement.

run;

Stop the procedure. The QUIT statement stops the procedure.

quit;

812 Chapter 21 / DS2 Procedure



Chapter 22
DSTODS2 Procedure

Overview: DSTODS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813
What Does the DSTODS2 Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

Concepts: DSTODS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
Input and Output Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
Supported and Unsupported Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814
Considerations and Limitations with PROC DSTODS2 . . . . . . . . . . . . . . . . . . . . . 817

Syntax: DSTODS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818
PROC DSTODS2 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 818

Examples: DSTODS2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
Example 1: Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
Example 2: PUT Statement with Line Specifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 820
Example 3: Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822

Overview: DSTODS2 Procedure

What Does the DSTODS2 Procedure Do?
The DSTODS2 procedure enables you to translate a subset of your SAS DATA step 
code into DS2 code. Then you can revise your program to take advantage of DS2 
features and submit your program using PROC DS2.

Note: PROC DSTODS2 is not supported in the z/OS operating environment.

For more information, see Chapter 21, “DS2 Procedure,” on page 779.

813



Concepts: DSTODS2 Procedure

Input and Output Files
PROC DSTODS2 works with text files for input and output, and these files are 
presented either as directly named files or as SAS filerefs.

PROC DSTODS2 requires an input file containing the source to be translated. The 
input file is specified via the IN= argument. PROC DSTODS2 also requires an 
output filename where the translated source is to be written. This file is specified via 
the OUT= argument.

Note: The resulting output file might not be syntactically complete. You might have 
to clean up the output file to create a DS2 program that can be compiled and 
executed.

Note: PROC DSTODS2 adds this code lines to your output file. You should not 
remove it from your .ds2 file during cleanup:

_return: ;

Supported and Unsupported Syntax

Overview
PROC DSTODS2 cannot translate all possible DATA step syntax. Its main purpose 
is to support typical SAS Enterprise Miner scoring syntax, which is a subset of the 
full DATA step syntax.

Supported Syntax
The DATA step syntax that PROC DSTODS2 supports includes the following items.

n The following statements are supported:

814 Chapter 22 / DSTODS2 Procedure



ARRAY statements and array initializers. Implicit arrays give a warning.
Assignment statements that use arrays and scalars.
Attribute statements, although they have no semantic meaning in PROC 
DSTODS2. Only the syntax is supported–that is, you do not get a syntax 
error for them.
BY
Comment
CONTINUE
DATA statement and associated data sets
DO (all forms except DO OVER)
DROP
END
FORMAT (only when a LENGTH statement is also included in the program)
GOTO
IF and IF-THEN/ELSE
KEEP
LABEL
LEAVE
LENGTH
MERGE
Null
OUTPUT
Basic PUT statement functionality: printing variables, arrays, _ALL_, and 
formatted values. Other PUT arguments are commented out inline.
RENAME
RETAIN
RETURN
RUN (syntactically supported but has no semantic meaning)
SELECT
SET
STOP
Sum

n Partial support for the hash object. 

n DROP, IN, KEEP, and RENAME data set options

n All DATA step expressions

n All functions and formats are translated as-is. However, only functions and 
formats that are supported by DS2 are valid. For more information, see “DS2 
Functions” in SAS DS2 Language Reference.

n Constant lists (as used in IN clauses)

n Variable lists except for type modifiers in lists, for example, x-numeric-a

Note: Because of the depth of the DATA step language, this list is not exhaustive. 

Concepts: DSTODS2 Procedure 815

http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=n16ozh3c6mx1uwn1feg8exu9vwpz.htm&locale=en
http://documentation.sas.com/?docsetId=ds2ref&docsetVersion=9.4&docsetTarget=n16ozh3c6mx1uwn1feg8exu9vwpz.htm&locale=en


Unsupported Syntax
The DATA step syntax that PROC DSTODS2 does not support includes the 
following items:

n The following statements are not supported:

ABORT INFILE
ATTRIB INFORMAT
CALL INPUT (all forms)
CARDS LINK
CARDS4 LIST
DATALINES LOSTCARD
DATALINES4 MODIFY
DELETE PUT statement with formatting of any 

kind
DESCRIBE PUTLOG
DISPLAY REMOVE
DO OVER REPLACE
ERROR UPDATE
EXECUTE WHERE
FILE WINDOW
FORMAT (undeclared variables)

n Data set options other than DROP, IN, KEEP, and RENAME

n DATA step executable options like DEBUG and PASSTHRU

n The following I/O options are not supported:

CONTROL NOBS
CUROBS OPEN
END POINT
INDSNAME KEYRESET
KEY

n Implicit arrays

n INPUT and PUT modifiers

n All objects other than the Hash object

n Argument tags in any method

n View and stored program syntax

n Constant ranges, such as 1:100, in constant lists

n Format justifiers (L, R, C)

n CALL statements except DMNORM and STREAMINIT

n Bitstring expressions

n Other procedures

816 Chapter 22 / DSTODS2 Procedure



Note: Because of the depth of the DATA step language, this list is not exhaustive. 

Considerations and Limitations with PROC 
DSTODS2

n Only one DATA step program can be converted at a time.

n The resulting DS2 program contains two lines of code that should be removed 
before saving your final DS2 program:

ds2_options sas tkgmac;
_return: ;

n Existing comments are removed.

n Code lines that cannot be translated are placed in comments.

These comments are placed in-line in the original position as much as possible 
to enable you to easily compare the original code with the translated code. But 
there are situations where comments and other code might be moved to other 
positions. For example, the code might be moved to the top of a block (the 
outermost scope).

n The resulting DS2 program might not be syntactically complete. The resulting 
program can result in one of the following outcomes:

o compile and execute without error. This is unlikely if any of the new DATA 
step syntax is used.

o compile but fail to execute. This is particularly true of any programs that 
contain commented-out sections.

o not compile. This could happen because there was a warning, or something 
that translates syntactically but has no corresponding support in DS2. This 
could be the case for certain functions and formats. It could happen for some 
of the variable list features also.

o produce a fatal syntax error. This could happen for some previously 
undiscovered feature or for some aspect of the previously mentioned variable 
list syntax.

n The resulting DS2 program does not invoke the SAS In-Database Code 
Accelerator. You must take the part of the code that can be run in parallel and 
create a thread program to accompany the data program.

n If any code line is longer than 32767 characters, it is truncated.

n DATA step fixed-length characters are measured in bytes. DS2 fixed-length 
characters are measured in characters. If your data has multibyte encoding, you 
might have to adjust your LENGTH statement before running PROC DSTODS2 
to account for the length of the variable in characters to avoid truncation. There 
is no issue with single-byte encodings.

n If you run PROC DSTODS2 on a DATA step program with the SESSREF= option 
to run on the CAS server, you must move the SESSREF= option from the DATA 
statement to the PROC DS2 statement before running on the CAS server.

Concepts: DSTODS2 Procedure 817



Syntax: DSTODS2 Procedure
Restrictions: This procedure is not supported on the CAS server.

PROC DSTODS2 is not supported in the z/OS operating environment.

PROC DSTODS2 IN=datastep-program-filename OUT=ds2-program-filename 
<OUTDIR="output-directory-name">
RUN;
<QUIT;>

Statement Task Example

PROC DSTODS2 Translates DATA step code into DS2 code. Ex. 1, Ex. 2, 
Ex. 3

PROC DSTODS2 Statement
Translates DATA step code into DS2 code.

Syntax
PROC DSTODS2 IN=datastep-program-filename OUT=ds2-program-filename 
<OUTDIR="output-directory-name">

Required Arguments
IN=datastep-program-filename

specifies the name of the DATA step file or a SAS fileref.

Interaction If you use a fileref for the datastep-program-filename, PROC 
DSTODS2 does not look at any fileref options (for example, 
encoding).

Tip You can specify a full pathname.

OUT=ds2-program-filename
specifies the name of the DS2 file that is created.

Restriction You must specify only a single, output filename. It cannot include a 
pathname.

818 Chapter 22 / DSTODS2 Procedure



Note You should remove the following two lines from your output .ds2 
program:

ds2_options sas tkgmac;
_return: ;

Tip If you cannot or do not specify the OUTDIR= directory, the output 
file is automatically written to the current working directory. You can 
use this code to find your current working directory:
data _null_;
file 'name.txt';
put x;
run;

OUTDIR="output-directory-name"
specifies the output directory name for the file.

Restriction This argument is available only in SAS Viya 3.4.

Requirement For UNIX directories, you must include the final directory 
separator(/), for example, outdir="/mydir/files/"

Examples: DSTODS2 Procedure

Example 1: Data Input
Features: PROC DSTODS2 statement

Details
This example uses PROC DSTODS2 to translate the following DATA step program, 
dsEx1.sas, that has a SET statement and a BY statement.

data _null_;
   length x y z w 8;
   set x;
   by x--z w;
   put x=;
run;

Execute the PROC DSTODS2 statement. Without a currently assigned libref, the 
PROC DSTODS2 statement simply sets up the environment to submit DS2 
language statements.

Example 1: Data Input 819



proc dstods2 in="dsEx1.sas" out="ds2Ex1.ds2";

Submit the DSTODS2 statements. The RUN statement submits the DSTODS2 
statements. The RUN statement is required. SAS reads the program statements 
that are associated with one task until it reaches a RUN statement.

run;

Example Code 22.1 SAS Log Showing Results

4    proc dstods2 in="dsEx1.sas" out="ds2Ex1.ds2";
5    run;

NOTE: PROCEDURE DSTODS2 used (Total process time):
      real time           0.20 seconds
      cpu time            0.07 seconds

Output: ds2Ex1.ds2 Program
PROC DSTODS2 translates dsEx1.sas into DS2 code and stores the result in 
dsEx1.ds2. As you can see, the LENGTH statement has been translated to 
DECLARE statements, the METHOD statement has been added, and the variable 
list, X--Z, has been commented out.

data _NULL_;
dcl double X;
dcl double Y;
dcl double Z;
dcl double W;
method run();
set X;
by  /* X--Z */ W;
put X=;
;
_return: ;
end;
enddata;

Example 2: PUT Statement with Line Specifiers
Features: PROC DSTODS2 statement

820 Chapter 22 / DSTODS2 Procedure



Details
This example uses PROC DSTODS2 to translate the following DATA step program, 
dsEx2.sas, that has a DO statement and several PUT statements.

data _null_;
   file temp linesize=32600;
   do i = 1 to 5330;
      put i 6. @;
   end;
   put @31990 'N1=72' @;
   put @32580 'N2=32413' @;
   put @32001 'N4=32 N3=783424123' @;
   put @32477 'N5=1977' @;
   put @32222 'N6=1981' ;
run;

Execute the PROC DSTODS2 statement. Without a currently assigned libref, the 
PROC DSTODS2 statement simply sets up the environment to submit DS2 
language statements.

proc dstods2 in="dsEx2.sas" out="ds2Ex2.ds2";

Submit the DSTODS2 statements. The RUN statement submits the DSTODS2 
statements. The RUN statement is required. SAS reads the program statements 
that are associated with one task until it reaches a RUN statement.

run;

Example Code 22.2 SAS Log Showing Results

4    proc dstods2 in="dsEx2.sas" out="ds2Ex2.ds2";
5    run;

NOTE: PROCEDURE DSTODS2 used (Total process time):
      real time           0.18 seconds
      cpu time            0.06 seconds

Output: ds2Ex2.ds2 Program
PROC DSTODS2 translates dsEx2.sas into DS2 code and stores the result in 
dsEx2.ds2. As you can see, the METHOD statement has been added and the FILE 
statement has been commented out. The PUT statement is translated but the @ 
line-hold specifier and constants have been commented out.

Example 2: PUT Statement with Line Specifiers 821



data _NULL_;
method run();
/* FILE TEMP LINESIZE = 32600 */;
do I = 1.0 to 5330.0;
put I 6. /* Put statement contains unsupported feature(s) @  */ ;
end;
put  /* Put statement contains unsupported feature(s) @  31990  'N1=72' 
 @  */ ;
put  /* Put statement contains unsupported feature(s) @  32580  'N2=32413' 
 @  */ ;
put  /* Put statement contains unsupported feature(s) @  32001  'N4=32 
N3=783424123' 
 @  */ ;
put  /* Put statement contains unsupported feature(s) @  32477  'N5=1977' 
 @  */ ;
put  /* Put statement contains unsupported feature(s) @  32222  'N6=1981' 
 */ ;
;
_return: ;
end;
 enddata;

Example 3: Arrays
Features: PROC DSTODS2 statement

Details
This example uses PROC DSTODS2 to translate the following DATA step program, 
dsEx2.sas, that has an ARRAY statement.

data _null_;
   array a(*) a1-a5;
   retain a1-a5 (1*(10 10 10 10 10));
   put _all_;
run;

Execute the PROC DSTODS2 statement. Without a currently assigned libref, the 
PROC DSTODS2 statement simply sets up the environment to submit DS2 
language statements.

proc dstods2 in="dsEx3.sas" out="ds2Ex3.ds2";

Submit the DSTODS2 statements. The RUN statement submits the DSTODS2 
statements. The RUN statement is required. SAS reads the program statements 
that are associated with one task until it reaches a RUN statement.

run;

822 Chapter 22 / DSTODS2 Procedure



Example Code 22.3 SAS Log Showing Results

6    proc dstods2 in="dsex3.sas" out="ds2ex3.ds2";
7    run;

NOTE: PROCEDURE DSTODS2 used (Total process time):
      real time           1.83 seconds
      cpu time            1.14 seconds

Output: ds2Ex3.ds2 Program
PROC DSTODS2 translates dsEx3.sas into DS2 code and stores the result in 
dsEx3.ds2. As you can see, the METHOD statement has been added and the 
ARRAY statement has been translated into a VARARRAY statement.

data _NULL_;
retain A1-A5 (1 * (10, 10, 10, 10, 10)) ;
vararray double A[*] A1-A5;
 method run();
put _ALL_;
;
_return: ;
end;
 enddata;

Example 3: Arrays 823



824 Chapter 22 / DSTODS2 Procedure



Chapter 23
EXPORT Procedure

Overview: EXPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
What Does the EXPORT Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
Format Catalog Encodings in SAS Viya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826
Support for the VARCHAR Data Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826

Syntax: EXPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827
PROC EXPORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828
DBENCODING Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 831
DELIMITER Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832
FMTLIB Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832
META Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833
PUTNAMES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 833

Examples: EXPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834
Example 1: Exporting to a Delimited External Data Source . . . . . . . . . . . . . . . . . . 834
Example 2: Exporting a Subset of Observations to a CSV File . . . . . . . . . . . . . . . 838
Example 3: Exporting to a Tab Delimited File with the PUTNAMES= Statement . 841

Overview: EXPORT Procedure

What Does the EXPORT Procedure Do?
The EXPORT procedure reads data from a SAS data set and writes it to an external 
data source. In Base SAS 9.4, external data sources include delimited files and JMP 
files.

In delimited files, a delimiter can be a blank, comma, or tab that separates columns 
of data values. If you have a license for SAS/ACCESS Interface to PC Files, you 
can also export to additional file formats, such as to a Microsoft Access database, 
Microsoft Excel workbook, DBF file, and Lotus spreadsheets. For more information, 
see SAS/ACCESS Interface to PC Files: Reference.

825

http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Starting in SAS 9.4, you can export a SAS data set to a JMP 7 or later file, and JMP 
variables can be up to 255 characters long. Extended attributes are now used 
automatically, and the META= statement is no longer supported for JMP files. For 
more information, see “JMP Files” in SAS/ACCESS Interface to PC Files: 
Reference.

The EXPORT procedure uses one of these methods to export data:

n generated DATA step code

n generated SAS/ACCESS code

You control the results with options and statements that are specific to the output 
data source. The EXPORT procedure generates the specified output file and writes 
information about the export to the SAS log. The log displays the DATA step or the 
SAS/ACCESS code that the EXPORT procedure generates. If a translation engine 
is used, then no code is submitted.

The Export Wizard or the External File Interface (EFI) can be used to guide you 
through the steps to export a SAS data set. The Export Wizard can generate 
EXPORT procedure statements, which you can save to a file for subsequent use. 
For more information, see “External File Interface (EFI)” in SAS/ACCESS Interface 
to PC Files: Reference.

The Export Wizard uses EFI methods to read and write data in delimited files, and 
this can affect the behavior when you use the EXPORT procedure or Export Wizard. 
For example, when exporting SAS data to a delimited file, the EXPORT procedure 
discards items that exceed the output line-length. For more information, see the 
DROPOVER option in the FILE Statement in SAS DATA Step Statements: 
Reference.

To open the Export Wizard, from the SAS windowing environment, select File ð 
Export Data. For more information about the Export Wizard, see the Base SAS 
online Help and documentation. For more detail and an example, see “Using SAS 
Import and Export Wizards” in SAS/ACCESS Interface to PC Files: Reference.

Format Catalog Encodings in SAS Viya
SAS Viya supports only the UTF-8 encoding.

For more information about the encodings of format catalogs, see Migrating Data to 
UTF-8 for SAS Viya and SAS/ACCESS Interface to PC Files: Reference.

Support for the VARCHAR Data Type
PROC EXPORT supports the VARCHAR data type in CAS. VARCHAR stores a 
character variable that can have a varying length. The length that you specify for the 
variable represents the maximum number of characters that you want to store.

The VARCHAR data type is similar to the CHAR data type. CHAR variables have a 
length that is measured in terms of bytes. VARCHAR variables have a length that is 
measured in terms of characters rather than bytes. For information about using 
VARCHAR, see SAS Cloud Analytic Services: DATA Step Programming.

826 Chapter 23 / EXPORT Procedure

http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0y75b1x6ffm26n1mf5jgknkmr4t.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0y75b1x6ffm26n1mf5jgknkmr4t.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=p07k868np8cd18n1teen33x5bym7.htm&docsetTargetAnchor=p1y1qj05uhbaran0z93tg89sd4x6&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=p07k868np8cd18n1teen33x5bym7.htm&docsetTargetAnchor=p1y1qj05uhbaran0z93tg89sd4x6&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0cbb3sk7ykinon1inoqyijif8zt.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0cbb3sk7ykinon1inoqyijif8zt.htm&locale=en
http://documentation.sas.com/?docsetId=viyadatamig&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=viyadatamig&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casdspgm&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


In the following example, the CAS engine is used with the LENGTH statement to 
create a VARCHAR variable and a CHAR variable. The VARCHAR variable, X, has 
a length of 30 and the CHAR variable, Y, also has a length of 30.

libname mycas cas;
data mycas.string;
   length x varchar(30); 
   length y $30; 
   x = 'abc'; y = 'def'; 
run;
proc contents data=mycas.string; run;

Here is the output that the code produces.

Syntax: EXPORT Procedure
Restrictions: The EXPORT procedure is available for the following operating environments:

n Windows
n UNIX or Linux
A pathname for a file can have a maximum length of 201 characters.

Tip: Beginning with SAS 9.4M5, PROC EXPORT supports the VARCHAR data type for CAS 
tables. For more information, see “Support for the VARCHAR Data Type” on page 826.

PROC EXPORT DATA=<libref.>SAS data set <(SAS data set options)>
OUTFILE="filename" | OUTTABLE="tablename"
<DBMS=identifier> <REPLACE> <LABEL>;

statements for exporting to delimited files
DELIMITER=char | 'nn’x;
PUTNAMES=YES | NO;

Syntax: EXPORT Procedure 827



statements for exporting to JMP files
DBENCODING=12-char SAS encoding-value;
FMTLIB=<libref.>format-catalog;
META=libref.member-data-set;

Statement Task Example

PROC EXPORT Export SAS data sets to an external data file Ex. 1, Ex. 2

DBENCODING Indicate the encoding used to save data in JMP 
files

DELIMITER Specify the delimiter to separate columns of 
data in the delimited output file

Ex. 1

FMTLIB Write SAS format values defined in the format 
catalog to the JMP file for the value labels

META Write SAS metadata information to the JMP file

PUTNAMES Write the SAS variable names as column 
headings to the first row of the exported data 
file.

Ex. 3

PROC EXPORT Statement
Exports SAS data sets to an external data file.

Tips: Beginning with SAS Viya 3.5, PROC EXPORT supports all access types that are 
available in the FILENAME statement.
Beginning with SAS 9.4M5, PROC EXPORT supports the VARCHAR data type for CAS 
tables. For more information, see “Support for the VARCHAR Data Type” on page 826.

See: “FILENAME” in SAS Global Statements: Reference

Syntax
PROC EXPORT DATA=<libref.>SAS data set <(SAS data set options)>

OUTFILE="filename" | OUTTABLE="tablename"
<DBMS=identifier> <REPLACE> <LABEL>;

Summary of Optional Arguments
(SAS data set options)

specifies SAS data set options.
DBMS=identifier

828 Chapter 23 / EXPORT Procedure

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en


specifies the type of data to export.
LABEL

specifies a variable label name.
REPLACE

overwrites an existing file.

Required Arguments
DATA=<libref.>SAS data set

identifies the input SAS data set with either a one- or two-level SAS name 
(library and member name). If you specify a one-level name, by default, the 
EXPORT procedure uses either the USER library (if assigned) or the WORK 
library.

The EXPORT procedure can export a SAS data set only if the data target 
supports the format of a SAS data set. The amount of data must also be within 
the limitations of the data target. For example, some data files have a maximum 
number of rows or columns. Some data files cannot support SAS user-defined 
formats and informats. If the SAS data set that you want to export exceeds the 
limits of the target file, the EXPORT procedure might not be able to export it 
correctly. In many cases, the procedure attempts to convert the data to the best 
of its ability. However, conversion is not possible for some types.

Beginning with SAS 9.4M1 a SAS data set name can contain a single quotation 
mark when the VALIDMEMNAME=EXTEND system option is also specified. 
Using VALIDMEMNAME= expands the rules for the names of certain SAS 
members, such as a SAS data set name. For more information, see “Rules for 
SAS Data Set Names, View Names, and Item Store Names” in SAS Language 
Reference: Concepts.

Default If you do not specify a SAS data set to export, the EXPORT 
procedure uses the most recently created SAS data set. SAS keeps 
track of the data sets with the system variable _LAST_. To be certain 
that the EXPORT procedure uses the correct data set, you should 
identify the SAS data set.

Examples “Example 1: Exporting to a Delimited External Data Source” on page 
834

“Example 2: Exporting a Subset of Observations to a CSV File” on 
page 838

OUTFILE="filename" | "fileref"
specifies the complete path and filename or a fileref for the output PC file, 
spreadsheet, or delimited external file. A fileref is a SAS name that is associated 
with the physical location of a file. To assign a fileref, use the FILENAME 
statement.

If you specify a fileref, or if the complete path and filename do not include special 
characters (such as the backslash in a path), lowercase characters, or spaces, 
you can omit the quotation marks.

Alias FILE

Restrictions The EXPORT procedure does not support device types or access 
methods for the FILENAME statement except for DISK. For 

PROC EXPORT Statement 829



example, the EXPORT procedure does not support the TEMP 
device type, which creates a temporary external file.

PROC EXPORT does not support the DROP|KEEP data set 
options with Name Range Lists for DBMS=CSV | TAB | DLM.

See SAS/ACCESS Interface to PC Files: Reference for more 
information about PC file formats.

Examples “Example 1: Exporting to a Delimited External Data Source” on 
page 834

“Example 2: Exporting a Subset of Observations to a CSV File” on 
page 838

OUTTABLE="tablename"
specifies the table name of the output DBMS table. If the name does not include 
special characters (such as question marks), lowercase characters, or spaces, 
you can omit the quotation marks. Note that the DBMS table name might be 
case sensitive.

Requirements You must have a license for SAS/ACCESS Interface to PC Files 
to export to a DBMS table.

When you export a DBMS table, you must specify the DBMS 
option.

Optional Arguments
DBMS=identifier

specifies the type of data to export. To export to a DBMS table, you must specify 
the DBMS option by using a valid database identifier. For DBMS=DLM, the 
default delimiter character is a space. However, you can use DELIMITER='char'.

The following values are valid for the DBMS identifier.

Table 23.1 DBMS Identifiers Supported in Base SAS

Identifier Output Data Source Extension

CSV Delimited file (comma-separated values) .csv

DLM Delimited file (default delimiter is a blank)

JMP JMP files, Version 7 or later format .jmp

TAB Delimited file (tab-delimited values) .txt

Restriction The availability of an output external data source depends on these 
conditions:

n the operating environment and, in some 
cases, the platform as specified in the 
previous table.

830 Chapter 23 / EXPORT Procedure



n whether your site has a license for 
SAS/ACCESS Interface to PC Files. If 
you do not have a license, only 
delimited and JMP files are available.

See SAS/ACCESS Interface to PC Files: Reference for a list of 
additional DBMS identifiers when using SAS/ACCESS Interface to 
PC Files.

Example “Example 1: Exporting to a Delimited External Data Source” on 
page 834

LABEL
specifies a variable label name. SAS writes these to the exported table as 
column names. If the label names do not already exist, SAS writes them to the 
exported table.

REPLACE
overwrites an existing file. If you do not specify REPLACE, the EXPORT 
procedure does not overwrite an existing file.

Example “Example 2: Exporting a Subset of Observations to a CSV File” on 
page 838

(SAS data set options)
specifies SAS data set options. For example, if the data set that you are 
exporting has an assigned password, you can use the ALTER=, PW=, READ=, 
or WRITE= data set options. To export a subset of data that meets a specified 
condition, you can use the WHERE option. For information about SAS data set 
options, see SAS Data Set Options: Reference.

Example “Example 2: Exporting a Subset of Observations to a CSV File” on 
page 838

DBENCODING Statement
Indicates the encoding used to save data in JMP files.

Interaction: The DBENCODING statement is valid only when DBMS=JMP.

Syntax
DBENCODING=12-char SAS encoding-value;

Required Argument
12-char SAS encoding-value 

indicates the encoding used to save data in JMP files. Encoding maps each 
character in a character set to a unique numeric representation, which results in 
a table of code points. A single character can have different numeric 

DBENCODING Statement 831



representations in different encodings. This value can be up to 12 characters 
long.

DELIMITER Statement
Specifies the delimiter to separate columns of data in the output file.

Default: Blank space

Interaction: If you specify DBMS=DLM, you must also specify the DELIMITER statement.

Tip: You can enclose nn in single or double quotation marks.

Example: “Example 1: Exporting to a Delimited External Data Source” on page 834

Syntax
DELIMITER=char | 'nn’x;

Required Argument
char | 'nn'x

specifies the delimiter to use to separate values in the output file. You can 
specify the delimiter as a single BYTE character or as a hexadecimal value. For 
example, if you want columns of data to be separated by an ampersand, specify 
DELIMITER='&'. A single character which requires two bytes to be represented 
in a DBCS environment is not valid.

FMTLIB Statement
Write SAS format values defined in the format catalog to the JMP file for the value labels.

Interaction: The FMTLIB statement is valid only when DBMS=JMP.

Syntax
FMTLIB=<libref> format-catalog;

Required Argument
<libref.>format-catalog

specifies the format catalog to be written to the JMP file.

832 Chapter 23 / EXPORT Procedure



META Statement
Writes SAS metadata information to the JMP file. (Deprecated)

Interaction: The META statement is valid only when DBMS=JMP.

Syntax
META=libref.member-data-set;

Required Argument
libref.member-data-set

specifies the SAS data set that contains the metadata information to be written to 
the JMP file.

The META statement is no longer supported and is ignored. Instead, extended 
attributes are automatically used. When exporting a SAS data set to JMP, PROC 
EXPORT looks for extended attributes on the SAS data set. If the attributes 
exist, the procedure uses the attributes to build the new JMP file.

The META statement can remain in your programs, yet it generates a NOTE in 
the log saying that META has been replaced by extended attributes and is 
ignored.

PUTNAMES Statement
Writes SAS variable names as column headings to the first row of the exported data file.

Default: YES

Restriction: Valid only for the EXPORT procedure.

Note: If you specify the LABEL= option, the SAS variable labels (not the variable names) are 
written as column headings.

Example: “Example 3: Exporting to a Tab Delimited File with the PUTNAMES= Statement” on page 
841

Syntax
PUTNAMES=YES | NO;

PUTNAMES Statement 833



Required Arguments
YES

specifies that the EXPORT procedure is to do the following tasks:

n Write the SAS variable names as column names (or headings) to the first row 
of the exported data file.

n Write the first row of the SAS data set to the second row of the exported data 
file.

NO
specifies that the EXPORT procedure is to write the first row of SAS data set 
values to the first row of the exported data file.

Examples: EXPORT Procedure

Example 1: Exporting to a Delimited External Data 
Source
Features: PROC EXPORT statement options

DATA=
DBMS=
OUTFILE=
REPLACE

DELIMITER= statement

Details
This example exports the SASHelp.Class data set to a delimited external file. The 
following example is the SASHelp.Class data set before it is exported:

834 Chapter 23 / EXPORT Procedure



Output 23.1 PROC PRINT of SASHelp.Class

Program

proc export data=sashelp.class
   outfile="c:\myfiles\class"
   dbms=dlm replace;
   

   delimiter='&';
 run;

Example 1: Exporting to a Delimited External Data Source 835



Program Description
Specify the input data set. Note that the filename does not contain an extension. 
DBMS=DLM specifies that the output file is a delimited file. 

proc export data=sashelp.class
   outfile="c:\myfiles\class"
   dbms=dlm replace;
   

The DELIMITER option specifies that an & (ampersand) will delimit data fields 
in the output file. 

   delimiter='&';
 run;

Log
This partial SAS log displays this information about the successful export, including 
the generated SAS DATA step.

836 Chapter 23 / EXPORT Procedure



Example Code 23.1 SAS Log of Creating a Delimited File

1    proc export data=sashelp.class outfile="c:\myfiles\class" dbms=dlm replace;
1  !                                                                     delimiter='&' ; run;

2     /**********************************************************************
3     *   PRODUCT:   SAS
4     *   VERSION:   9.3
5     *   CREATOR:   External File Interface
6     *   DATE:      31JAN11
7     *   DESC:      Generated SAS Datastep Code
8     *   TEMPLATE SOURCE:  (None Specified.)
9     ***********************************************************************/
10       data _null_;
11       %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
12       %let _EFIREC_ = 0;     /* clear export record count macro variable */
13       file 'c:\myfiles\class' delimiter='&' DSD DROPOVER lrecl=32767;
14       if _n_ = 1 then        /* write column names or labels */
15        do;
16          put
17             "Name"
18          '&'
19             "Sex"
20          '&'
21             "Age"
22          '&'
23             "Height"
24          '&'
25             "Weight"
26          ;
27        end;
28      set  SASHELP.CLASS   end=EFIEOD;
29          format Name $8. ;
30          format Sex $1. ;
31          format Age best12. ;
32          format Height best12. ;
33          format Weight best12. ;
34        do;
35          EFIOUT + 1;
36          put Name $ @;
37          put Sex $ @;
38          put Age @;
39          put Height @;
40          put Weight ;
41          ;
42        end;
43       if _ERROR_ then call symputx('_EFIERR_',1);  /* set ERROR detection macro variable */
44       if EFIEOD then call symputx('_EFIREC_',EFIOUT);
45       run;

NOTE: The file 'c:\myfiles\class' is:
      Filename=c:\myfiles\class,
      RECFM=V,LRECL=32767,File Size (bytes)=0,
      Last Modified=31Jan2011:09:37:14,
      Create Time=31Jan2011:09:37:14

Output
The EXPORT procedure produces this external file:

Example 1: Exporting to a Delimited External Data Source 837



Output 23.2 External File

     Name&Sex&Age&Height&Weight     
     Alfred&M&14&69&112.5           
     Alice&F&13&56.5&84             
     Barbara&F&13&65.3&98           
     Carol&F&14&62.8&102.5          
     Henry&M&14&63.5&102.5          
     James&M&12&57.3&83             
     Jane&F&12&59.8&84.5            
     Janet&F&15&62.5&112.5          
     Jeffrey&M&13&62.5&84           
     John&M&12&59&99.5              
     Joyce&F&11&51.3&50.5           
     Judy&F&14&64.3&90              
     Louise&F&12&56.3&77            
     Mary&F&15&66.5&112             
     Philip&M&16&72&150             
     Robert&M&12&64.8&128           
     Ronald&M&15&67&133             
     Thomas&M&11&57.5&85            
     William&M&15&66.5&112          

Example 2: Exporting a Subset of Observations to a 
CSV File
Features: PROC EXPORT statement options

DATA=
DBMS=
OUTFILE=
REPLACE

Details
This example exports the SAS data set SASHelp.Class to a delimited file.

Program
Specify the data set to be exported. The WHERE option requests a subset of the 
observations. The OUTFILE= option specifies the output file. The DBMS= option 
specifies that the output file is a CSV file, and overwrites the target CSV, if it exists.

proc export data=sashelp.class (where=(sex='F'))
     outfile="c:\myfiles\Femalelist.csv"
     dbms=csv 
     replace;

838 Chapter 23 / EXPORT Procedure



run;

Log
This partial SAS log displays this information about the successful export, including 
the generated SAS DATA step.

Example 2: Exporting a Subset of Observations to a CSV File 839



Example Code 23.2 Exporting to a CSV File

579  proc export data=sashelp.class (where=(sex='F'))
580       outfile="c:\myfiles\Femalelist.csv"
581       dbms=csv
582       replace;
583  run;

584   /**********************************************************************
585   *   PRODUCT:   SAS
586   *   VERSION:   9.4
587   *   CREATOR:   External File Interface
588   *   DATE:      18APR14
589   *   DESC:      Generated SAS Datastep Code
590   *   TEMPLATE SOURCE:  (None Specified.)
591   ***********************************************************************/
592      data _null_;
593      %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
594      %let _EFIREC_ = 0;     /* clear export record count macro variable */
595      file 'c:\myfiles\Femalelist.csv' delimiter=',' DSD DROPOVER lrecl=32767
595! ;
596      if _n_ = 1 then        /* write column names or labels */
597       do;
598         put
599            "Name"
600         ','
601            "Sex"
602         ','
603            "Age"
604         ','
605            "Height"
606         ','
607            "Weight"
608         ;
609       end;
610     set  SASHELP.CLASS(where=(sex='F'))   end=EFIEOD;
611         format Name $8. ;
612         format Sex $1. ;
613         format Age best12. ;
614         format Height best12. ;
615         format Weight best12. ;
616       do;
617         EFIOUT + 1;
618         put Name $ @;
619         put Sex $ @;
620         put Age @;
621         put Height @;
622         put Weight ;
623         ;
624       end;
625      if _ERROR_ then call symputx('_EFIERR_',1);  /* set ERROR detection
625! macro variable */
626      if EFIEOD then call symputx('_EFIREC_',EFIOUT);
627      run;

NOTE: The file 'c:\myfiles\Femalelist.csv' is:
      Filename=c:\myfiles\Femalelist.csv,
      RECFM=V,LRECL=32767,File Size (bytes)=0,
      Last Modified=18Apr2014:11:32:07,
      Create Time=18Apr2014:11:32:07

840 Chapter 23 / EXPORT Procedure



Output
The EXPORT procedure produces this external CSV file:

Output 23.3 CSV File

Example 3: Exporting to a Tab Delimited File with 
the PUTNAMES= Statement
Features: PROC EXPORT statement options

DATA=
DBMS=
OUTFILE=
PUTNAMES=
REPLACE

Details
This example shows exporting a SAS data set, WORK.INVOICE, to a tab-delimited 
file. The first program uses PROC EXPORT with the PUTNAMES= statement and 
the second program does not. They show how the use of this statement affects 
column headings in a tab-delimited file.

The following display shows the SAS data set, WORK.INVOICE, before it is 
exported to a tab-delimited file:

Example 3: Exporting to a Tab Delimited File with the PUTNAMES= Statement 841



Output 23.4 PROC PRINT of WORK.INVOICE

Program
PROC PRINT DATA=WORK.INVOICE;
RUN;

PROC EXPORT DATA=WORK.INVOICE
   OUTFILE="c:\temp\invoice_names.txt"
       DBMS=TAB REPLACE;
   PUTNAMES=YES;
RUN;
PROC PRINT; 
RUN;

PROC EXPORT DATA=WORK.INVOICE
   OUTFILE="c:\temp\invoice_data_1st.txt"
      DBMS=TAB REPLACE;
   PUTNAMES=NO;
RUN;

PROC PRINT; 
RUN;

Program Description
Use the PUTNAMES=YES statement in the EXPORT procedure. After 
WORK.INVOICE is printed, using the PUTNAMES=YES statement writes the SAS 
variables names as column names to the first row of the exported delimited file, 

842 Chapter 23 / EXPORT Procedure



Invoice_names.txt. The first row of data is then written to the second row of the 
delimited file.

PROC PRINT DATA=WORK.INVOICE;
RUN;

PROC EXPORT DATA=WORK.INVOICE
   OUTFILE="c:\temp\invoice_names.txt"
       DBMS=TAB REPLACE;
   PUTNAMES=YES;
RUN;
PROC PRINT; 
RUN;

Impact of the PUTNAMES=NO statement. When you set this statement to NO, 
PROC EXPORT writes the first row of data to the first row of the exported delimited 
file. Therefore, the SAS variable names are skipped, and the columns are left 
unlabeled.

PROC EXPORT DATA=WORK.INVOICE
   OUTFILE="c:\temp\invoice_data_1st.txt"
      DBMS=TAB REPLACE;
   PUTNAMES=NO;
RUN;

PROC PRINT; 
RUN;

SAS Log
This SAS log displays information about the successful export, including the 
generated SAS DATA step. The log is divided into sections only for documentation 
appearances.

Example 3: Exporting to a Tab Delimited File with the PUTNAMES= Statement 843



490  PROC EXPORT DATA= WORK.INVOICE
491              OUTFILE= "c:\temp\invoice_names.txt"
492              DBMS=TAB REPLACE;
493       PUTNAMES=YES;
494  RUN;

495   /**********************************************************************
496   *   PRODUCT:   SAS
497   *   VERSION:   9.4
498   *   CREATOR:   External File Interface
499   *   DATE:      24MAY14
500   *   DESC:      Generated SAS Datastep Code
501   *   TEMPLATE SOURCE:  (None Specified.)
502   ***********************************************************************/
503      data _null_;
504      %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
505      %let _EFIREC_ = 0;     /* clear export record count macro variable */
506      file 'c:\temp\invoice_names.txt' delimiter='09'x DSD DROPOVER lrecl=32767;
507      if _n_ = 1 then        /* write column names or labels */
508       do;
509         put
510            "INVNUM"
511         '09'x
512            "BILLEDTO"
513         '09'x
514            "AMTBILL"
515         '09'x
516            "COUNTRY"
517         '09'x
518            "AMTINUS"
519         '09'x
520            "BILLEDBY"
521         '09'x
522            "BILLEDON"
523         '09'x
524            "PAIDON"
525         ;
526       end;
527     set  WORK.INVOICE   end=EFIEOD;
528         format INVNUM best12. ;
529         format BILLEDTO $8. ;
530         format AMTBILL dollar18.2 ;
531         format COUNTRY $20. ;
532         format AMTINUS dollar18.2 ;
533         format BILLEDBY best12. ;
534         format BILLEDON date9. ;
535         format PAIDON date9. ;
536       do;
537         EFIOUT + 1;
538         put INVNUM @;
539         put BILLEDTO $ @;
540         put AMTBILL @;
541         put COUNTRY $ @;
542         put AMTINUS @;
543         put BILLEDBY @;
544         put BILLEDON @;
545         put PAIDON ;
546         ;
547       end;
548      if _ERROR_ then call symputx('_EFIERR_',1);  /* set ERROR detection macro 
variable */
549      if EFIEOD then call symputx('_EFIREC_',EFIOUT);
550      run;

844 Chapter 23 / EXPORT Procedure



NOTE: The file 'c:\temp\invoice_names.txt' is:
      Filename=c:\temp\invoice_names.txt,
      RECFM=V,LRECL=32767,File Size (bytes)=0,
      Last Modified=24May2014:15:46:36,
      Create Time=24May2014:15:46:36

NOTE: 18 records were written to the file 'c:\temp\invoice_names.txt'.
      The minimum record length was 60.
      The maximum record length was 84.
NOTE: There were 17 observations read from the data set WORK.INVOICE.
NOTE: DATA statement used (Total process time):
      real time           0.04 seconds
      cpu time            0.03 seconds

17 records created in c:\temp\invoice_names.txt from WORK.INVOICE.

NOTE: "c:\temp\invoice_names.txt" file was successfully created.
NOTE: PROCEDURE EXPORT used (Total process time):
      real time           0.20 seconds
      cpu time            0.17 seconds

551  PROC PRINT; RUN;

NOTE: No observations in data set SASUSER.SASMBC.
NOTE: PROCEDURE PRINT used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds

552
553
554  PROC EXPORT DATA= WORK.INVOICE
555              OUTFILE= "c:\temp\invoice_data_1st.txt"
556              DBMS=TAB REPLACE;
557       PUTNAMES=NO;
558  RUN;

Example 3: Exporting to a Tab Delimited File with the PUTNAMES= Statement 845



559   /**********************************************************************
560   *   PRODUCT:   SAS
561   *   VERSION:   9.4
562   *   CREATOR:   External File Interface
563   *   DATE:      24MAY14
564   *   DESC:      Generated SAS Datastep Code
565   *   TEMPLATE SOURCE:  (None Specified.)
566   ***********************************************************************/
567      data _null_;
568      %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
569      %let _EFIREC_ = 0;     /* clear export record count macro variable */
570      file 'c:\temp\invoice_data_1st.txt' delimiter='09'x DSD DROPOVER 
lrecl=32767;
571     set  WORK.INVOICE   end=EFIEOD;
572         format INVNUM best12. ;
573         format BILLEDTO $8. ;
574         format AMTBILL dollar18.2 ;
575         format COUNTRY $20. ;
576         format AMTINUS dollar18.2 ;
577         format BILLEDBY best12. ;
578         format BILLEDON date9. ;
579         format PAIDON date9. ;
580       do;
581         EFIOUT + 1;
582         put INVNUM @;
583         put BILLEDTO $ @;
584         put AMTBILL @;
585         put COUNTRY $ @;
586         put AMTINUS @;
587         put BILLEDBY @;
588         put BILLEDON @;
589         put PAIDON ;
590         ;
591       end;
592      if _ERROR_ then call symputx('_EFIERR_',1);  /* set ERROR detection macro 
variable */
593      if EFIEOD then call symputx('_EFIREC_',EFIOUT);
594      run;

NOTE: The file 'c:\temp\invoice_data_1st.txt' is:
      Filename=c:\temp\invoice_data_1st.txt,
      RECFM=V,LRECL=32767,File Size (bytes)=0,
      Last Modified=24May2014:15:46:36,
      Create Time=24May2014:15:46:36

NOTE: 17 records were written to the file 'c:\temp\invoice_data_1st.txt'.
      The minimum record length was 60.
      The maximum record length was 84.
NOTE: There were 17 observations read from the data set WORK.INVOICE.
NOTE: DATA statement used (Total process time):
      real time           0.03 seconds
      cpu time            0.03 seconds

17 records created in c:\temp\invoice_data_1st.txt from WORK.INVOICE.

NOTE: "c:\temp\invoice_data_1st.txt" file was successfully created.
NOTE: PROCEDURE EXPORT used (Total process time):
      real time           0.07 seconds
      cpu time            0.07 seconds

595
596  PROC PRINT; RUN;

NOTE: PROCEDURE PRINT used (Total process time):
      real time           0.00 seconds
      cpu time            0.00 seconds

846 Chapter 23 / EXPORT Procedure



Output Example
Using the PROC EXPORT PUTNAMES=YES statement, the SAS variable names 
are mapped to the column headings in the tab-delimited file. This is the default 
behavior.

Output 23.5 SAS Data Exported to a Tab-Delimited File Using the PUTNAMES=YES Statement

Output Example
Using the PROC EXPORT PUTNAMES=NO statement results in unnamed columns 
in the tab-delimited file.

Output 23.6 SAS Data Exported to a Tab-Delimited File Using the PUTNAMES=NO Statement

Example 3: Exporting to a Tab Delimited File with the PUTNAMES= Statement 847



848 Chapter 23 / EXPORT Procedure



Chapter 24
FCMP Procedure

Overview: FCMP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849
What Does the FCMP Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 850

Concepts: FCMP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
Creating Functions and Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 851
Creating Functions and Subroutines: An Example . . . . . . . . . . . . . . . . . . . . . . . . 851
Writing Your Own Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 853
Using Functions as Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856
Using DATA Step Statements with PROC FCMP . . . . . . . . . . . . . . . . . . . . . . . . . 856

Syntax: FCMP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857
PROC FCMP Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858
ABORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
ARRAY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
ATTRIB Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 864
DELETEFUNC Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865
DELETESUBR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865
FUNCTION Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865
LABEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867
LISTFUNC Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 867
LISTSUBR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
OUTARGS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 868
STATIC Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 869
STRUCT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 871
SUBROUTINE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872

Usage: FCMP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873
PROC FCMP and DATA Step Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873
Working with Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877
Using Macros with PROC FCMP Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878
Variable Scope in PROC FCMP Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 878
Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879
Directory Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881
Identifying the Location of Compiled Functions and Subroutines: 

The CMPLIB= System Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884
Using PROC FCMP Component Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894
PROC FCMP and ASTORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 894
Using Python Functions in PROC FCMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 900

Examples: FCMP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901
Example 1: Creating a Function and Calling the Function from a DATA Step . . . . 901

849



Example 2: Creating and Saving Functions with PROC FCMP . . . . . . . . . . . . . . . 903
Example 3: Using Numeric Data in the FUNCTION Statement . . . . . . . . . . . . . . . 905
Example 4: Using Character Data with the FUNCTION Statement . . . . . . . . . . . . 905
Example 5: Using Variable Arguments with an Array . . . . . . . . . . . . . . . . . . . . . . . 906
Example 6: Using the SUBROUTINE Statement with a CALL Statement . . . . . . . 907
Example 7: Using Graph Template Language (GTL) with User-

Defined Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 908
Example 8: Standardizing Each Row of a Data Set . . . . . . . . . . . . . . . . . . . . . . . . 910

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913

Overview: FCMP Procedure

What Does the FCMP Procedure Do?
The SAS Function Compiler (FCMP) procedure enables you to create, test, and 
store SAS functions, CALL routines, and subroutines before you use them in other 
SAS procedures or DATA steps. PROC FCMP provides the ability to build functions, 
CALL routines, and subroutines using DATA step syntax that is stored in a data set. 
The procedure accepts slight variations of DATA step statements, and you can use 
most features of the SAS programming language in functions and CALL routines 
that are created by PROC FCMP. You can call PROC FCMP functions and CALL 
routines from the DATA step just as you would any other SAS function, CALL 
routine, or subroutine. This feature enables programmers to more easily read, write, 
and maintain complex code with independent and reusable subroutines. You can 
reuse the PROC FCMP routines in any DATA step or SAS procedure that has 
access to their storage location.

The FCMP procedure uses the SAS language compiler to compile and execute SAS 
programs. The compiler subsystem generates machine language code for the 
computer on which SAS is running. By specifying values with the CMPOPT option, 
the machine language code can be optimized for efficient execution. For information 
about the type of code generation optimizations to use in the SAS language 
compiler, see “CMPOPT=” in SAS System Options: Reference.

You can use the functions and subroutines that you create in PROC FCMP with the 
DATA step, the WHERE statement, the Output Delivery System (ODS), and with the 
following procedures:

PROC CALIS PROC OPTMODEL

PROC FORMAT PROC PHREG

PROC GA PROC QUANTREG

PROC GENMOD PROC REPORT COMPUTE blocks

850 Chapter 24 / FCMP Procedure

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n16rhscxem9ljwn1kuhn5170xkbg.htm&locale=en


PROC GLIMMIX SAS Risk Dimensions procedures

PROC MCMC PROC SEVERITY

PROC MODEL PROC SIMILARITY

PROC NLIN PROC SQL (functions with array arguments are not supported)

PROC NLMIXED PROC SURVEYPHREG

PROC NLP PROC TMODEL

PROC OPTLSO PROC VARMAX

Concepts: FCMP Procedure

Creating Functions and Subroutines
PROC FCMP enables you to write functions and CALL routines using DATA step 
syntax. PROC FCMP functions and CALL routines are stored in a data set and can 
be called from the DATA step, as well as several SAS/STAT, SAS/ETS, or SAS/OR 
procedures such as the NLIN, MODEL, and NLP procedures. You can create 
multiple functions and CALL routines in a single FCMP procedure step.

Functions are equivalent to routines that are used in other programming languages. 
They are independent computational blocks that require zero or more arguments. A 
subroutine is a special type of function where return values are optional. All 
variables that are created within a function or subroutine block are local to that 
subroutine.

Creating Functions and Subroutines: An Example
This following example defines a function and a subroutine. The function begins 
with the FUNCTION statement, and the subroutine begins with the SUBROUTINE 
statement. The DAY_DATE function converts a date to a numeric day of the week, 
and the INVERSE subroutine calculates a simple inverse. Each ends with an 
ENDSUB statement.

proc fcmp outlib=sasuser.MySubs.Fncs;
  function day_date(indate);
    wkday=weekday(indate);

Concepts: FCMP Procedure 851



    return(wkday);
  endsub;

  subroutine inverse(in, inv);
    outargs inv;
    if in=0 
       then inv=.;
       else inv=1/in;
    endsub;
quit;

option cmplib=sasuser.MySubs;

data _null_;
daysDate=day_date(today());
put daysDate=;

CALL inverse(12, inverseValue);
put inverseValue=;
run;

These statements produce these results:

daysDate=2
inverseValue=0.0833333333

Note: The output will change based on the value of "today()".

The function and subroutine follow DATA step syntax. Functions and subroutines 
that are already defined in the current FCMP procedure step, as well as most DATA 
step functions, can be called from within these routines as well. In the example 
above, the DATA step function WEEKDAY is called by DAY_DATE.

The routines in the example are saved to the data set Sasuser.MySubs, inside a 
package called MathFncs. A package is any collection of related routines that are 
specified by the user. It is a way of grouping related subroutines and functions within 
the data set. The OUTLIB= option in the PROC FCMP statement tells PROC FCMP 
where to store the subroutines that it compiles, and the LIBRARY= option tells it 
where to read in libraries (C or SAS).

Note: Function and subroutine names must be unique within a package. However, 
different packages can have subroutines and functions with the same names. To 
select a specific subroutine when there is ambiguity, use the package name and a 
period as the prefix to the subroutine name. For example, to access the MthFncs 
version of INVERSE, use MthFncs.inverse.

852 Chapter 24 / FCMP Procedure



Writing Your Own Functions

Advantages of Writing Your Own Functions 
and CALL Routines
PROC FCMP enables you to write functions and CALL routines by using DATA step 
syntax. The advantages of writing user-defined functions and CALL routines include 
the following:

n The function or CALL routine makes a program easier to read, write, and modify.

n The function or CALL routine is independent. A program that calls a routine is 
not affected by the routine's implementation.

n The function or CALL routine is reusable. Any program that has access to the 
data set where the function or routine is stored can call the routine.

Note: PROC FCMP routines that you create cannot have the same name as built-in 
SAS functions. If the names are the same, then SAS generates an error message 
stating that a built-in SAS function or subroutine already exists with the same name.

Writing a User-Defined Function
The following program shows the syntax that is used to create and call a PROC 
FCMP function from a DATA step. This example computes the study day during a 
drug trial.

The example creates a function named STUDY_DAY in a package named TRIAL. A 
package is a collection of routines that have unique names and is stored in the data 
set Sasuser.Funcs. STUDY_DAY accepts two numeric arguments, 
intervention_date and event_date. The body of the routine uses DATA step syntax 
to compute the difference between the two dates, where days that occur before 
intervention_date begin at -1 and become smaller, and days that occur after and 
including intervention_date begin at 1 and become larger. This function never 
returns 0 for a study day.

STUDY_DAY is called from DATA step code as if it were any other function. When 
the DATA step encounters a call to STUDY_DAY, it does not find this function in its 
traditional library of functions. Instead, SAS searches each of the libraries or data 
sets that are specified in the CMPLIB= system option for a package that contains 
STUDY_DAY. In this example, STUDY_DAY is located in Sasuser.Funcs.Trial. The 
program calls the function, passing the variable values for start_date and end_date, 
and returns the result in the variable sd.

proc fcmp outlib=sasuser.funcs.trial;

Concepts: FCMP Procedure 853



   function study_day(intervention_date, event_date);
       n=event_date-intervention_date;
       if n <= 0 then
       n=n+1;
       return(n);
   endsub;

options cmplib=sasuser.funcs;
data _null_;
   start_date='15Feb2006'd;
   end_date='27Mar2006'd;
   sd=study_day(start, today);
   put sd=;
run;

Example Code 24.1 Results from the STUDY_DAY User-Defined Function

sd=40

Using Library Options
You can use PROC FCMP with the OUTLIB= or INLIB= options. The syntax for this 
procedure has the following form:

proc fcmp
outlib=libname.dataset.package
          inlib=in-libraries;
routine-declarations;

The OUTLIB= option is required and specifies the package where routines declared 
in the routine-declarations section are stored.

Routines that are declared in the routine-declarations section can call FCMP 
routines that exist in other packages. To find these routines and to check the validity 
of the call, SAS searches the data sets that are specified in the INLIB= option. The 
format for the INLIB= option is as follows:

inlib=library.dataset
inlib=(library1.dataset1 library2.dataset2 ... libraryN.datasetN)
inlib=library.datasetM - library.datasetN

If the routines that are being declared do not call FCMP routines in other packages, 
then you do not need to specify the INLIB= option.

Declaring Functions
You declare one or more functions or CALL routines in the routine-declarations 
section of the program. A routine consists of four parts:

n a name

n one or more parameters

854 Chapter 24 / FCMP Procedure



n a body of code

n a RETURN statement

You specify these four parts between the FUNCTION or SUBROUTINE keyword 
and an ENDSUB keyword. For functions, the syntax has the following form:

function
name(argument-1 <, argument-2, ...>);
   program-statements;
   return(expression);
endsub;

After the FUNCTION keyword, you specify the name of the function and its 
arguments. Arguments in the function declaration are called formal arguments and 
can be used within the body of the function. To specify a string argument, place a 
dollar sign ($) after the argument name. For functions, all arguments are passed by 
value. This means that the value of the actual argument, variable, or value that is 
passed to the function from the calling environment is copied before being used by 
the function. This copying ensures that any modification of the formal argument by 
the function does not change the original value.

The RETURN statement is used to return a value to a function. The RETURN 
statement accepts an expression that is enclosed in parentheses, and contains the 
value that is returned to the calling environment. The function declaration ends with 
an ENDSUB statement.

Declaring CALL Routines
CALL routines are declared within routine-declarations by using the SUBROUTINE 
keyword instead of the FUNCTION keyword. Functions and CALL routines have the 
same form, except CALL routines do not return a value, and CALL routines can 
modify their parameters. You specify the arguments to be modified in an OUTARGS 
statement. The syntax of a CALL routine declaration is as follows:

subroutine
name(<argument-1 , argument-2, ...>);
   outargs <out-argument-1 , out-argument-2, ...>;
   program-statements;
   return;
endsub;

The formal arguments that are listed in the OUTARGS statement are passed by 
reference instead of by value. This means that any modification of the formal 
argument by the CALL routine modifies the original variable that was passed. It also 
means that the value is not copied when the CALL routine is invoked. Reducing the 
number of copies can improve performance when you pass large amounts of data 
between a CALL routine and the calling environment.

A RETURN statement is optional within the definition of the CALL routine. When a 
RETURN statement executes, execution is immediately returned to the caller. A 
RETURN statement within a CALL routine does not return a value.

Concepts: FCMP Procedure 855



Writing Program Statements
The program-statements section of the program is a series of DATA step and or 
FCMP statements that describe the work to be done by the function or CALL 
routine. Most DATA step statements and functions are accessible from PROC 
FCMP routines. The DATA step file and the data set I/O statements (for example, 
INPUT, FILE, SET, and MERGE) are not available from PROC FCMP routines. 
However, some functionality of the PUT statement is supported. For more 
information, see “PROC FCMP and DATA Step Differences” on page 873.

Using Functions as Formats
PROC FCMP enables you to use functions to format values by first performing a 
function on a value. By using a function to format values, you can create customized 
formats.

Using DATA Step Statements with PROC FCMP
You can use DATA step statements with PROC FCMP. However, there are some 
differences in the syntax and functionality for PROC FCMP. For more information, 
see “PROC FCMP and DATA Step Differences” on page 873.

The behaviors of the DROP, KEEP, FORMAT, and LENGTH statements are the 
same in PROC FCMP and in the DATA step.

The following DATA step statements are not supported in PROC FCMP:

n DATA

n SET

n MERGE

n UPDATE

n MODIFY

n INPUT

n INFILE

The support for the FILE statement is limited to LOG and PRINT destinations in 
PROC FCMP. The OUTPUT statement is supported in PROC FCMP, but it is not 
supported within a function or subroutine.

The following statements are supported in PROC FCMP but not in the DATA step:

n FUNCTION

n STRUCT

n SUBROUTINE

n OUTARGS

856 Chapter 24 / FCMP Procedure



Syntax: FCMP Procedure
PROC FCMP options;

ABORT;
ARRAY array-name[dimensions] </NOSYMBOLS> | <variable(s)> | 

<constant(s)> | <initial-values)>;
ATTRIB variable(s) <FORMAT=format-name ><LABEL='label’>< 

LENGTH=length>;
DELETEFUNC function-name;
DELETESUBR subroutine-name;
FUNCTION function-name(argument(s)) <VARARGS> <$> <length>

<KIND | GROUP='string' <LABEL='string-2'>>;
LABEL variable='label';
LISTFUNC function-name;
LISTSUBR subroutine-name;
STRUCT structure-name variable;
SUBROUTINE subroutine-name (argument(s)) <VARARGS>

<LABEL='label'> <KIND | GROUP='string'>;
OUTARGS out-argument(s);

Statement Task Example

PROC FCMP Create, test, and store SAS functions for use by 
other SAS procedures

Ex. 1, Ex. 2, 
Ex. 8, Ex. 7

ABORT Terminate the execution of the current DATA 
step, SAS job, or SAS session

ARRAY Associate a name with a list of variables and 
constants

Ex. 8

ATTRIB Specify format, label, and length information for 
a variable

DELETEFUNC Delete a function from the function library that 
is specified in the OUTLIB option

DELETESUBR Delete a subroutine from the function library 
that is specified in the OUTLIB option

FUNCTION Return changed variable values Ex. 1, Ex. 2, 
Ex. 7

LABEL Specify a label for variables

LISTFUNC Write the source code of a function in the SAS 
listing

Syntax: FCMP Procedure 857



Statement Task Example

LISTSUBR Write the source code for a subroutine in the 
SAS listing

STATIC retains a variable’s value from a previous call 
until the variable is reassigned.

STRUCT Declare (create) structure types

SUBROUTINE Declare (create) independent computational 
blocks of code

Ex. 8

OUTARGS (Use only with the SUBROUTINE statement.) 
Specify arguments from the argument list that 
the subroutine should update

Ex. 2, Ex. 8

PROC FCMP Statement
Creates, tests, and stores SAS functions, CALL routines, and subroutines.

Examples: “Example 1: Creating a Function and Calling the Function from a DATA Step” on page 
901
“Example 2: Creating and Saving Functions with PROC FCMP” on page 903
“Example 7: Using Graph Template Language (GTL) with User-Defined Functions” on 
page 908
“Example 8: Standardizing Each Row of a Data Set” on page 910

Syntax
PROC FCMP options;

Optional Arguments
DATA=filename

reads an input data set into the PROC FCMP step.

Note: The DATA option can send inputs to a function or subroutine that are 
defined in the PROC FCMP step. The PROC FCMP step iterates through each 
observation and calls the function or subroutine during each iteration.

Note: For more information about the DATA= and OUT= options, see “Data Set 
Input and Output” on page 874.

858 Chapter 24 / FCMP Procedure



Note: This example demonstrates using the DATA= and OUT= options in the 
PROC FCMP statement.

Example proc fcmp outlib=sasuser.funcs.trial;
   function priceWithTax_func(price);
     static taxRate;
      if (taxRate EQ .) then
         taxRate = (7.25 / 100);
     taxedPrice = (price * (1 + taxRate));
      return (taxedPrice);
   endsub;
run;

option CMPLIB=sasuser.funcs;

proc fcmp data=sashelp.cars out=work.carPriceWithTax;
   format msrpWithTax DOLLAR8.;
   msrpWithTax = priceWithTax_func(msrp);
run;

proc print data=work.carPriceWithTax(obs=5 keep=make model 
invoice msrp msrpWithTax);
run;

ENCRYPT
specifies to encode the source code in a data set. The alias HIDE is also valid.

FLOW
specifies printing a message for each statement in a program as it is executed. 
This option produces extensive output.

LIBRARY | INLIB=library.dataset
LIBRARY | INLIB=(library-1.dataset library-2.dataset ... library-n.dataset)
LIBRARY | INLIB=library.datasetM - library.datasetN

specifies that previously compiled libraries are to be linked into the program. 
These libraries are created by a previous PROC FCMP step or by using PROC 
PROTO (for external C routines).

Tips Libraries are created by the OUTLIB= option and are stored as members 
of a SAS library that have the type CMPSUB. Only subroutines and 
functions are read into the program when you use the LIBRARY= option.

If the routines that are being declared do not call PROC FCMP routines in 
other packages, then you do not need to specify the INLIB= option. Use 
the libref.dataset format to specify the two-level name of a library. The 
libref and dataset names must be valid SAS names that are not longer 
than eight characters.

You can specify a list of files with the LIBRARY= option, and you can 
specify a range of names by using numeric suffixes. When you specify 
more than one file, you must enclose the list in parentheses, except in the 
case of a single range of names. The following are syntax examples:
proc fcmp library=sasuser.exsubs;

proc fcmp library=(sasuser.exsubs work.examples);

proc fcmp library=lib1-lib10;

PROC FCMP Statement 859



LIST
specifies that both the LISTSOURCE and LISTPROG options are in effect.

Tip Printing both the source code and the compiled code and then comparing 
the two listings of assignment statements is one way of verifying that the 
assignments were compiled correctly.

LISTALL
specifies that the LISTCODE, LISTPROG, and LISTSOURCE options are in 
effect.

LISTCODE
specifies that the compiled program code be printed. LISTCODE lists the chain 
of operations that are generated by the compiler.

Tip Because LISTCODE output is somewhat difficult to read, use the 
LISTPROG option to obtain a more readable listing of the compiled 
program code.

LISTFUNCS
specifies that prototypes for all visible FCMP functions or subroutines be written 
to the SAS listing.

LISTPROG
specifies that the compiled program be printed. The listing for assignment 
statements is generated from the chain of operations that are generated by the 
compiler. The source statement text is printed for other statements.

Tip The expressions that are printed by the LISTPROG option do not 
necessarily represent how the expression is actually calculated, because 
intermediate results for common subexpressions can be reused. However, 
the expressions are printed in expanded form by the LISTPROG option. To 
see how the expression is actually evaluated, see the listing from the 
LISTCODE option.

LISTSOURCE
specifies that source code statements for the program be printed.

OUT=filename
creates an output data set.

OUTFILE=filename
writes referenced functions and the main program to a text file. Programs that 
have been parsed by PROC FCMP, including macro variables, can be exported.

OUTITEMSTORE=path name
exports symbols, referenced functions, and the main program to the specified 
item store. OUTITEMSTORE does not support a fileref. You must use a quoted 
path.

OUTLIB=libname.dataset.package
specifies the three-level name of an output data set to which the compiled 
subroutines and functions are written when the PROC FCMP step ends. This 
argument is required. The following are syntax examples: 

proc fcmp outlib=sasuser.fcmpsubs.pkt1;

proc fcmp outlib=sasuser.mysubs.math;

Tips Use this option when you want to save subroutines and functions in an 
output library.

860 Chapter 24 / FCMP Procedure



Only those subroutines that are declared inside the current PROC FCMP 
step are saved to the output file. Those subroutines that are loaded by 
using the LIBRARY= option are not saved to the output file. If you do not 
specify the OUTLIB= option, then no subroutines that are declared in the 
current PROC FCMP step are saved.

PRINT
specifies printing the result of each statement in a program as it is executed. 
This option produces extensive output.

TRACE
specifies printing the results of each operation in each statement in a program as 
it is executed. These results are produced in addition to the information that is 
printed by the FLOW option. The TRACE option produces extensive output.

Notes Specifying TRACE is equivalent to specifying FLOW, PRINT, and 
PRINTALL.

The TRACE option works when the data is contained within PROC FCMP, 
not when calling FCMP functions from the DATA step. This example and 
output demonstrate the functionality of the TRACE option.

Example proc fcmp outlib=work.funcs.trial TRACE;
   function study_day(intervention_date, event_date);
   n=event_date - intervention_date;
   if n >= 0 then n=n + 1;
      return(n);
   endsub;
   start='15Feb2010'd;
   today='27Mar2010'd;
   sd=study_day(start, today);
run;

                                        The FCMP Procedure

--- Program Execution Starting.
    1    1 (20:4)    Executing Stmt            : ASSIGN start =
    1      (20:9)    start = 18308
    1    2 (21:4)    Executing Stmt            : ASSIGN today =
    1      (21:9)    today = 18348
    1    3 (22:4)    Executing Stmt            : ASSIGN sd =

--- Subroutine study_day Execution Starting.
    1    1 (15:4)    Executing Stmt            : FUNCTION
    1    2 (16:4)    Executing Stmt            : ASSIGN n =
    1      (16:17)   n = (event_date=18348) - (intervention_date=18308) 
= 40
    1    3 (17:4)    Executing Stmt            : IF
    1      (17:10)   _temp1 = (n=40) >= 0
    1    4 (17:17)   Executing Stmt            : ASSIGN n =
    1      (17:21)   n = (n=41) + 1 = 41
    1    5 (18:7)    Executing Stmt            : RETURN _study_day_ =
    1      (18:14)   _study_day_ = (n=41) = 41
    1    6 (19:4)    Executing Stmt            : ENDSUB
--- Subroutine study_day Execution Finished.

    1      (22:16)   sd = study_day( start=18308, today=18348 ) = 41

PROC FCMP Statement 861



--- Program Execution Finished.

ABORT Statement
Terminates the current DATA step, job, or SAS session.

Syntax
ABORT;

Without Arguments
The ABORT statement in PROC FCMP has no arguments.

ARRAY Statement
Associates a name with a list of variables and constants.

Example: “Example 8: Standardizing Each Row of a Data Set” on page 910

Syntax
ARRAY array-name[dimensions] </NOSYMBOLS> | <variable(s)> | <constant(s)> | 
<initial-values>;

Required Arguments
array-name

specifies the name of the array.

dimensions
is a numeric representation of the number of elements in a one-dimensional 
array or the number of elements in each dimension of a multidimensional array.

Optional Arguments
/NOSYMBOLS

specifies that an array of numeric or character values be created without the 
associated element variables. In this case, the only way that you can access 
elements in the array is by array subscripting.

Tips /NOSYMBOLS is used in exactly the same way as _TEMPORARY_.

862 Chapter 24 / FCMP Procedure



You can save memory if you do not need to access the individual array 
element variables by name.

variable
specifies the variables of the array.

constant
specifies a number or a character string that indicates a fixed value. Enclose 
character constants in quotation marks.

initial-values
gives initial values for the corresponding elements in the array. You can specify 
internal values inside parentheses.

Details

ARRAY Statement Basics
The ARRAY statement in PROC FCMP is similar to the ARRAY statement that is 
used in the DATA step. The ARRAY statement associates a name with a list of 
variables and constants. You use the array name with subscripts to refer to items in 
the array.

The ARRAY statement that is used in PROC FCMP does not support all the 
features of the ARRAY statement in the DATA step. Here is a list of differences that 
apply only to PROC FCMP:

n All array references must have explicit subscript expressions.

n PROC FCMP uses parentheses after a name to represent a function call. When 
you reference an array, use square brackets [ ] or braces { }.

n The ARRAY statement in PROC FCMP does not support lower-bound 
specifications.

n You can use a maximum of six dimensions for an array.

You can use both variables and constants as array elements in the ARRAY 
statement that is used in PROC FCMP. You cannot assign elements to a constant 
array. Although dimension specification and the list of elements are optional, you 
must provide one of these values. If you do not specify a list of elements for the 
array, or if you list fewer elements than the size of the array, PROC FCMP creates 
array variables by adding a numeric suffix to the elements of the array to complete 
the element list.

Passing Array References to PROC FCMP Routines
If you want to pass an array to a CALL routine and the CALL routine modifies the 
values of the array, you must specify the name for the array argument in an 
OUTARGS statement in the CALL routine.

ARRAY Statement 863



Example
Here are some examples of the ARRAY statement:

array spot_rate[3] 1 2 3;
array spot_rate[3] (1 2 3);
array y[4] y1-y4;
array xx[2,3] x11 x12 x13 x21 x22 x23;
array pp p1-p12;
array q[1000] /nosymbols;

ATTRIB Statement
Specifies format, label, and length information for variables.

Syntax
ATTRIB variable(s) <FORMAT=format-name LABEL='label' LENGTH=length>;

Required Argument
variable

specifies the variables that you want to associate with attributes.

Optional Arguments
FORMAT=format-name

associates a format with variables in the variable argument.

LABEL='label'
associates a label with variables in the variable argument.

LENGTH=length
specifies the length of the variable in the variable argument.

Example
Here are some examples of the ATTRIB statement:

attrib x1 format=date7. label='variable x1' length=5;

attrib x1 format=date7. label='variable x1' length=5
       x2 length=5
       x3 label='var x3' format=4.
       x4 length=$2 format=$4.;

864 Chapter 24 / FCMP Procedure



DELETEFUNC Statement
Causes a function to be deleted from the function library that is specified in the OUTLIB option.

Syntax
DELETEFUNC function-name;

Required Argument
function-name

specifies the name of a function to be deleted from the function library that is 
specified in the OUTLIB option.

DELETESUBR Statement
Causes a subroutine to be deleted from the function library that is specified in the OUTLIB option.

Syntax
DELETESUBR subroutine-name;

Required Argument
subroutine-name

specifies the name of a subroutine to be deleted from the function library that is 
specified in the OUTLIB option.

FUNCTION Statement
Specifies a subroutine declaration for a routine that returns a value.

Examples: “Example 1: Creating a Function and Calling the Function from a DATA Step” on page 
901
“Example 2: Creating and Saving Functions with PROC FCMP” on page 903
“Example 3: Using Numeric Data in the FUNCTION Statement” on page 905
“Example 4: Using Character Data with the FUNCTION Statement” on page 905

FUNCTION Statement 865



“Example 5: Using Variable Arguments with an Array” on page 906
“Example 7: Using Graph Template Language (GTL) with User-Defined Functions” on 
page 908

Syntax
FUNCTION function-name(argument-1 <, argument-2, ...>) <VARARGS> <$> 
<length>
<KIND | GROUP='string' ><LABEL='string-2'>;

... more-program-statements ...
RETURN (expression);

ENDSUB;

Required Arguments
function-name

specifies the name of the function.

argument
specifies one or more arguments for the function. You specify character 
arguments by placing a dollar sign ($) after the argument name. In the following 
example, function myfunct(arg1, arg2 $, arg3, arg4 $); arg1 and arg3 
are numeric arguments, and arg2 and arg4 are character arguments.

expression
specifies the value that is returned from the function.

Optional Arguments
VARARGS

specifies that the function supports a variable number of arguments. If you 
specify VARARGS, then the last argument in the function must be an array.

Restriction You must specify a numeric variable with the VARARGS argument.

See “Example 5: Using Variable Arguments with an Array” on page 906

$
specifies that the function returns a character value. If $ is not specified, the 
function returns a numeric value.

length
specifies the length of a character value.

Default 8

KIND='string'
GROUP='string'

specifies a collection of items that have specific attributes and is limited to 32 
characters.

LABEL='string-2'
specifies a label of up to 256 characters, including blanks.

866 Chapter 24 / FCMP Procedure



Details
The FUNCTION statement is a special case of the subroutine declaration that 
returns a value. You do not use a CALL statement to call a function. The definition of 
a function begins with the FUNCTION statement and ends with an ENDSUB 
statement.

LABEL Statement
Specifies a label of up to 256 characters.

Syntax
LABEL variable='label';

Required Arguments
variable

names the variable that you want to label.

'label'
specifies a label of up to 256 characters, including blanks.

Example
Here are some examples of the LABEL statement:

label date='Maturity Date';
label bignum='Very very large numeric value';

LISTFUNC Statement
Causes the source code for a function to be written to the SAS listing.

Syntax
LISTFUNC function-name </NODEPENDENTS>;

LISTFUNC Statement 867



Required Argument
function-name

specifies the name of the function for which source code is written to the SAS 
listing.

Note: All dependent functions are returned in addition to the specified function 
by default.

Optional Argument
/NODEPENDENTS

specifies that only the functions specified by function-name be returned and not 
any dependent functions.

Alias /NODEPS

LISTSUBR Statement
Causes the source code for a subroutine to be written to the SAS listing.

Syntax
LISTSUBR subroutine-name;

Required Argument
subroutine-name

specifies the name of the subroutine for which source code is written to the SAS 
listing.

OUTARGS Statement
Specifies arguments in an argument list that you want a subroutine to update.

Restriction: Many SAS analytical procedures perform analytical differentiation on FCMP functions. If 
you plan to use the function in this way, do not use the OUTARGS statement. In most 
cases, use the OUTARGS statement only with the SUBROUTINE statement.

Examples: “Example 2: Creating and Saving Functions with PROC FCMP” on page 903
“Example 8: Standardizing Each Row of a Data Set” on page 910
“Example 6: Using the SUBROUTINE Statement with a CALL Statement” on page 907

868 Chapter 24 / FCMP Procedure



Syntax
OUTARGS out-argument-1 <, out-argument-2, ...>;

Required Argument
out-argument

specifies arguments from the argument list that you want the subroutine to 
update.

Tip If an array is listed in the OUTARGS statement within a routine, then 
the array is passed "by reference." Otherwise, it is passed "by value."

Example See “SUBROUTINE Statement” on page 872 for an example of how 
to use the OUTARGS statement in a subroutine

STATIC Statement
Retains a variable’s value from a previous call until the variable is reassigned.

Syntax
STATIC variables, <initial-value(s)>;

Required Argument
variables

specifies variable names, variable lists, or array names whose values you want 
to retain.

Optional Argument
initial-values

specifies an initial value, numeric or character, for one or more of the preceding 
elements.

Details
The STATIC statement can be used to initialize variables.

Local variables in a function or subroutine are usually not retained between calls to 
the function or subroutine. If there is an expensive initialization required, a STATIC 
variable can be used to perform the initialization. STATIC variables are not allocated 

STATIC Statement 869



on the stack, so they can be used for large local arrays to avoid reallocations and 
overflows on the stack.

Examples

Example 1
Here is a numeric static example:

proc fcmp;
   function fdef1(in);
      static x1  1;
      if x1 = 1 then do;
         x1 = 2;
      return(in);
   end;

      return (in*2);
   endsub;

   ans = fdef1( 1);
   put "Answer should be 1" ans=;
   ans = fdef1( 1);
   put "Answer should be 2" ans=;

run;

Example 2
Here is a character static example:

proc fcmp;
   function char_func( in $) $;
   length c1 $ 32;  
   static c1  "Elephant";
      if c1 = "Elephant" then
         do;
          c1 = in || c1;
    return (c1);
    end;
    return( in);
   endsub;
   length ans $ 32;
   ans = char_func( "Big ");
   put "Answer should be >>Big Elephant<<" ans=;
   ans = char_func( "Big ");
   put "Answer should be >>Big<<" ans=;
run;
quit;

870 Chapter 24 / FCMP Procedure



Example 3
Here is an array static example:

proc fcmp ;
  function array_func( in ) ;
  array a[5] ;  
  array foo[5];
  static a  first 1;
  put a[1]= foo[1]=;
     If first  then do;
       do i=1 to dim(a);
          a[i]=i;
          foo[i]=i;
  end;
  first =0;
  end;
  else do;
    do i=1 to dim(a);
       a[i]=a[i]+1;
   end;
   end;
   put a[5];
   return( in);

  endsub;

  ans = array_func( 4);

/* should increase by 1 */
   ans = array_func( 4);

run;

STRUCT Statement
Declares (creates) structure types that are defined in C-Language packages.

Syntax
STRUCT structure-name variable;

Required Arguments
structure-name

specifies the name of a structure that is defined in a C-language package and 
declared in PROC FCMP.

variable
specifies the variable that you want to declare as this structure type.

STRUCT Statement 871



Example
Here is an example of the STRUCT statement.

struct DATESTR matdate;
matdate.month=3;
matdate.day=22;
matdate.year=2009;

SUBROUTINE Statement
Declares (creates) an independent computational block of code that you can call using a CALL statement.

Examples: “Example 8: Standardizing Each Row of a Data Set” on page 910
“Example 2: Creating and Saving Functions with PROC FCMP” on page 903

Syntax
SUBROUTINE subroutine-name (argument-1 <, argument-2, ...>) <VARARGS>
<KIND | GROUP='string'>;

OUTARGS out-argument-1 <, out-argument-2, ...>;
... more-program-statements ...
ENDSUB;

Required Arguments
subroutine-name

specifies the name of a subroutine.

argument
specifies one or more arguments for the subroutine. Character arguments are 
specified by placing a dollar sign ($) after the argument name. In the following 
example, subroutine mysub(arg1, arg2 $, arg3, arg4 $); arg1 and arg3 
are numeric arguments, and arg2 and arg4 are character arguments.

OUTARGS
specifies arguments from the argument list that the subroutine should update.

out-argument
specifies arguments from the argument list that you want the subroutine to 
update.

Optional Arguments
VARARGS

specifies that the subroutine supports a variable number of arguments. If you 
specify VARARGS, then the last argument in the subroutine must be an array.

872 Chapter 24 / FCMP Procedure



GROUP='string'
KIND='string'

specifies a collection of items that have specific attributes and is limited to 32 
characters.

Details
The SUBROUTINE statement enables you to declare (create) an independent 
computational block of code that you can call with a CALL statement. The definition 
of a subroutine begins with the SUBROUTINE statement and ends with an 
ENDSUB statement. You can use the OUTARGS statement in a SUBROUTINE 
statement to specify arguments from the argument list that the subroutine should 
update.

Usage: FCMP Procedure

PROC FCMP and DATA Step Differences

Overview of PROC FCMP and DATA Step 
Differences
PROC FCMP was originally developed as a programming language for several 
SAS/STAT, SAS/ETS, and SAS/OR procedures. Because the implementation is not 
identical to the DATA step, differences exist between the two languages. The 
following section describes some of the differences between PROC FCMP and the 
DATA step.

Differences between PROC FCMP and the 
DATA Step

ABORT Statement
The ABORT statement in PROC FCMP does not accept arguments.

Usage: FCMP Procedure 873



The ABORT statement is not valid within functions or subroutines in PROC FCMP. It 
is valid only in the main body of the procedure.

Arrays
PROC FCMP uses parentheses after a name to represent a function call. When 
referencing an array, the recommended practice is to use square brackets [ ] or 
braces { }. For an array named ARR, the code would be ARR[i] or ARR{i}. PROC 
FCMP limits the number of dimensions for an array to six.

For more information about the differences in the ARRAY statement for PROC 
FCMP, see “Details” on page 863.

Data Set Input and Output
PROC FCMP supports the DATA and OUTPUT statements for creating and writing 
to an output data set. The PROC FCMP statement supports the DATA= and OUT= 
options for specifying data input and output data sets. It does not support the SET, 
MERGE, UPDATE, or MODIFY statements for data set input. Data is typically 
transferred into and out of PROC FCMP routines by using parameters. If a large 
amount of data needs to be transferred, you can pass arrays to a PROC FCMP 
routine.

DATA Step Debugger
When you use the DATA step debugger, PROC FCMP routines perform like any 
other routine. That is, it is not possible to step into the function when debugging. 
Instead, use a PUT statement within the routine.

DO Statement
The following type of DO statement is supported by PROC FCMP:

do i=1, 2, 3;

The DO statement in PROC FCMP does not support character loop control 
variables. You can execute the following code in the DATA step, but not in PROC 
FCMP:

do i='a', 'b', 'c';

The DO statement does not support a character index variable. Therefore, the 
following code is not supported in PROC FCMP:

do i='one', 'two', 'three';

File Input and Output
PROC FCMP supports the PUT and FILE statements, but the FILE statement is 
limited to LOG and PRINT destinations. There are no INFILE or INPUT statements 
in PROC FCMP.

874 Chapter 24 / FCMP Procedure



IF Expressions
An IF expression enables IF-THEN/ELSE conditions to be evaluated within an 
expression. IF expressions are supported by PROC FCMP but not by the DATA 
step. You can simplify some expressions with IF expressions by not having to split 
the expression among IF-THEN/ELSE statements. For example, the following two 
pieces of code are equivalent, but the IF expression (the first example) is not as 
complex:

x=if y < 100 then 1 else 0;

if y < 100 then
   x=1;
else
   x=0;

The alternative to IF expressions is expressions. This means that parentheses are 
used to group operations instead of DO/END blocks.

PUT Statement
The syntax of the PUT statement is similar in PROC FCMP and in the DATA step, 
but their operations can be different. In PROC FCMP, the PUT statement is typically 
used for program debugging. In the DATA step, the PUT statement is used as a 
report or file creation tool, as well as a debugging tool. The following list describes 
other differences:

n The PUT statement in PROC FCMP writes output to the SAS Output Window by 
default. The PUT statement in the DATA step writes output to the SAS log by 
default.

n The PUT statement in PROC FCMP does not support line pointers, format 
modifiers, column output, factored lists, iteration factors, overprinting, the 
_INFILE_ option, or the special character $. It does not support features that are 
provided by the FILE statement options, such as DLM= and DSD.

n The PUT statement in PROC FCMP supports evaluating an expression and 
writing the result by placing the expression in parentheses. The DATA step, 
however, does not support the evaluation of expressions in a PUT statement. In 
the following example for PROC FCMP, the expressions x/100 and sqrt(y)/2 
are evaluated and the results are written to the SAS log:

put (x/100) (sqrt(y)/2);

Because parentheses are used for expression evaluation in PROC FCMP, they 
cannot be used for variable or format lists as in the DATA step.

n The PUT statement in PROC FCMP does not support subscripted array names 
unless they are enclosed in parentheses. For example, the statement put 
(A[i]); writes the i-th element of the array A, but the statement put A[i]; 
results in an error message.

n An array name can be used in a PUT statement without subscripts. Therefore, 
the following statements are valid:

o put A=; (when A is an array), writes all of the elements of array A with each 
value labeled with the name of the element variable.

o put (A)*=; writes the same output as put A=;.

Usage: FCMP Procedure 875



o put A; writes all of the elements of array A.

n The PUT statement in PROC FCMP follows the output of each item with a 
space, which is similar to list mode output in the DATA step. Detailed control 
over column and line position are supported to a lesser extent than in the DATA 
step.

n The PUT statement in PROC FCMP supports the print item _PDV_, and prints a 
formatted listing of all of the variables in the routine's program data vector. The 
statement put _PDV_; prints a much more readable listing of the variables than 
is printed by the statement put _ALL_;.

WHEN and OTHERWISE Statements
The WHEN and OTHERWISE statements allow more than one target statement. 
That is, DO/END groups are not necessary for multiple WHEN statements. Here is 
an example:

SELECT;
   WHEN(expression-1)
   statement-1;
   statement-2;
   WHEN (expression-2)
   statement-3;
   statement-4;
END;

Additional Features in PROC FCMP

PROC REPORT and Compute Blocks
PROC REPORT uses the DATA step to evaluate compute blocks. Because the 
DATA step can call PROC FCMP routines, you can also call these routines from 
PROC REPORT compute blocks.

The FCmp Function Editor
The FCmp Function Editor is an application for traversing packages of functions and 
is built into the SAS Explorer. You can access the FCmp Function Editor from the 
Solutions menu in a traditional DMS session.

Computing Implicit Values of a Function
PROC FCMP uses a SOLVE function for computing implicit values of a function.

876 Chapter 24 / FCMP Procedure



PROC FCMP and Microsoft Excel
Many Microsoft Excel functions, not typically available in SAS, are implemented in 
PROC FCMP. You can find these functions in the sashelp.slkwxl data set. You can 
view these functions at Excel functions in SAS.

You can also view these functions by using the following SAS code:

proc fcmp inlib=sashelp.slkwxl listall;
run;

The following example uses the ODD_SLK function:

options cmplib=sashelp.slkwxl;
data _null_;
   num    =4.2;
   odd_num=odd_slk(num);
   put 'Odd number nearest to' num ' is ' odd_num;
run;

Odd number nearest to 4.2  is 5

Working with Arrays

Passing Arrays
By default, PROC FCMP passes arrays "by value" between routines. However, if an 
array is listed in the OUTARGS statement within the routine, the array is passed "by 
reference."

This means that a modification to the formal parameter by the function modifies the 
array that is passed. Passing arrays by reference helps to efficiently pass large 
amounts of data between the function and the calling environment because the data 
does not need to be copied. The syntax for specifying a formal array has the 
following form:

function
name(numeric-array-parameter[*],
character-array-parameter[*] $);

You can pass DATA step temporary arrays to PROC FCMP routines.

Resizing Arrays
You can resize arrays in PROC FCMP routines by calling the built-in CALL routine 
DYNAMIC_ARRAY. The syntax for this CALL routine has the following form:

Usage: FCMP Procedure 877

https://blogs.sas.com/content/sgf/2020/10/15/using-microsoft-excel-functions-in-sas/#lst-excel-sas


call dynamic_array(array, new-dim1-size <, new-dim2-size, ...>);

SAS passes to the DYNAMIC_ARRAY CALL routine both the array that is to be 
resized and a new size for each dimension of the array. A dynamic array enables 
the routine to allocate the amount of memory that is needed, instead of having to 
create an array that is large enough to handle all possible cases.

Support for dynamic arrays is limited to PROC FCMP routines. When an array is 
resized, the array is available only in the routine that resized it. It is not possible to 
resize a DATA step array or to return a PROC FCMP dynamic array to a DATA step.

Using Macros with PROC FCMP Routines
You can use the %SYSFUNC and %SYSCALL macros to call routines that you 
create with PROC FCMP. All SAS CALL routines are accessible with %SYSCALL 
except LABEL, VNAME, SYMPUT, and EXECUTE. %SYSFUNC and %SYSCALL 
macros support SAS function names up to 32 characters.

Variable Scope in PROC FCMP Routines

The Concept of Variable Scope
A critical part of keeping routines and programs independent of one another is 
variable scope. A variable's scope is the section of code where a variable's value 
can be used. In the case of PROC FCMP routines, variables that are declared 
outside a routine are not accessible inside a routine. Variables that are declared 
inside a routine is not accessible outside the routine. Variables that are created 
within a routine are called local variables because their scope is “local” to the 
routine.

Functions use local variables as scratch variables during computations, and the 
variables are not available when the function returns. When a function is called, 
space for local variables is pushed on the call stack. When the function returns, the 
space used by local variables is removed from the call stack.

When Local Variables in Different Routines 
Have the Same Name
The concept of variable scope can be confusing when local variables in different 
routines have the same name. When this occurs, each local variable is distinct. In 
the following example, the DATA step and CALL routines subA and subB contain a 
local variable named x. Each x is distinct from the other x variables. When the 
program executes, the DATA step calls subA and subA calls subB. Each 

878 Chapter 24 / FCMP Procedure



environment writes the value of x to the log. The log output shows how each x is 
distinct from the others.

proc fcmp outlib=sasuser.funcs.math;
   subroutine subA();
      x=5;
      call subB();
      put 'In subA: ' x=;
   endsub;

   subroutine subB();
      x='subB';
      put 'In subB: ' x=;
   endsub;
run;

options cmplib=sasuser.funcs;
data _null_;
   x=99;
   call subA();
   put 'In DATA step: ' x=;
run;

Example Code 24.2 Local Variables in Different Routines That Have the Same Name

In subB:  x=subB
In subA:  x=5
In DATA step: x=99

Recursion
PROC FCMP routines can be recursive. Recursion is a problem-solving technique 
that reduces a problem to a smaller one that is simpler to solve and then combines 
the results of the simpler solution to form a complete solution. A recursive function is 
a function that calls itself, either directly or indirectly.

Each time a routine is called, space for the local variables is pushed on the call 
stack. The space on the call stack ensures independence of local variables for each 
call. When the routine returns, the space allocated on the call stack is removed, 
freeing the space used by local variables. Recursion relies on the call stack to store 
progress toward a complete solution.

When a routine calls itself, both the calling routine and the routine that is being 
called must have their own set of local variables for intermediate results. If the 
calling routine was able to modify the local variables of the routine that is being 
called, it would be difficult to program a recursive solution. A call stack ensures the 
independence of local variables for each call.

In the following example, the ALLPERMK routine in PROC FCMP has two 
arguments, n and k, and writes all C(n, k) = n! /(n - k)! combinations that 
contain exactly k out of the n elements. The elements are represented as binary 
values (0, 1). The function ALLPERMK calls the recursive function PERMK to 
traverse the entire solution space and output only the items that match a particular 
filter:

Usage: FCMP Procedure 879



proc fcmp outlib=sasuser.funcs.math;
   subroutine allpermk(n, k);
      array scratch[1] / nosymbols;
      call dynamic_array(scratch, n);
      call permk(n, k, scratch, 1,0);
   endsub;

subroutine permk(n, k, scratch[*], m, i);
   outargs scratch;
   if m–1=n then do;
      if i=k then
         put scratch[*];
      end;
   else do;
      scratch[m]=1;
      call permk(n, k, scratch, m+1, i+1);
      scratch[m]=0;
      call permk(n, k, scratch, m+1, i);
   end;
endsub;
run;
quit;

options cmplib=sasuser.funcs;
data _null_;
   call allpermk(5,3);
run;

Example Code 24.3 Recursion Example Results

1 1 1 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1
1 0 0 1 1
0 1 1 1 0
0 1 1 0 1
0 1 0 1 1
0 0 1 1 1

This program uses the /NOSYMBOLS option in the ARRAY statement to create an 
array without a variable for each array element. A /NOSYMBOLS array can be 
accessed only with an array reference, scratch[m], and is equivalent to a DATA 
step _temporary_ array. A /NOSYMBOLS array uses less memory than a regular 
array because no space is allocated for variables. ALLPERMK also uses PROC 
FCMP dynamic arrays.

880 Chapter 24 / FCMP Procedure



Directory Traversal

Overview of Directory Traversal
Implementing functionality that enables functions to traverse a directory hierarchy is 
difficult if you use the DATA step or macros. With the DATA step and macro code 
recursion or pseudo-recursion is not easy to code. This section describes how to 
develop a routine named DIR_ENTRIES that fills an array with the full pathname of 
all of the files in a directory hierarchy. This example shows the similarity between 
PROC FCMP and DATA step syntax and underscores how PROC FCMP routines 
simplify a program and produce independent, reusable code. DIR_ENTRIES uses 
as input the following parameters:

n a starting directory

n a result array to fill with pathnames

n an output parameter that is the number of pathnames placed in the result array

n an output parameter that indicates whether the complete result set was 
truncated because the result array was not large enough

The flow of control for DIR_ENTRIES is as follows:

1 Open the starting directory.

2 For each entry in the directory, do one of the following tasks:

n If the entry is a directory, call DIR_ENTRIES to fill the result array with the 
subdirectory's pathnames.

n Otherwise, the entry is a file, and you must add the file's path to the result 
array.

3 Close the starting directory.

Directory Traversal Example

Opening and Closing a Directory
Opening and closing a directory are handled by the CALL routines DIROPEN and 
DIRCLOSE. DIROPEN accepts a directory path and has the following flow of 
control:

1 Create a fileref for the path by using the FILENAME function.

2 If the FILENAME function fails, write an error message to the log and then 
return.

Usage: FCMP Procedure 881



3 Otherwise, use the DOPEN function to open the directory and retrieve a 
directory ID.

4 Clear the directory fileref.

5 Return the directory ID.

The DIRCLOSE CALL routine is passed a directory ID, which is passed to 
DCLOSE. DIRCLOSE sets the passed directory ID to missing so that an error 
occurs if a program tries to use the directory ID after the directory has been closed. 
The following code implements the DIROPEN and DIRCLOSE CALL routines:

proc fcmp outlib=sasuser.funcs.dir;
   function diropen(dir $);
   length dir $ 256 fref $ 8;
   rc=filename(fref, dir);
   if rc=0 then do;
      did=dopen(fref);
      rc=filename(fref);
   end;
   else do;
      msg=sysmsg();
      put msg '(DIROPEN(' dir= ')';
      did=.;
   end;
   return(did);
endsub;

subroutine dirclose(did);
   outargs did;
   rc=dclose(did);
   did=.;
endsub;

Gathering Filenames
File paths are collected by the DIR_ENTRIES CALL routine. DIR_ENTRIES uses 
the following arguments:

n a starting directory

n a result array to fill

n an output parameter to fill with the number of entries in the result array

n an output parameter to set to 0 if all pathnames fit in the result array; or an 
output parameter to set to 1 if some of the pathnames do not fit into the array

The body of DIR_ENTRIES is almost identical to the code that is used to implement 
this functionality in a DATA step. Also, DIR_ENTRIES is a CALL routine that is 
easily reused in several programs.

DIR_ENTRIES calls DIROPEN to open a directory and retrieve a directory ID. The 
routine then calls DNUM to retrieve the number of entries in the directory. For each 
entry in the directory, DREAD is called to retrieve the name of the entry. Now that 
the entry name is available, the routine calls MOPEN to determine whether the entry 
is a file or a directory.

882 Chapter 24 / FCMP Procedure



If the entry is a file, then MOPEN returns a positive value. In this case, the full path 
to the file is added to the result array. If the result array is full, the truncation output 
argument is set to 1.

If the entry is a directory, then MOPEN returns a value that is less than or equal to 0. 
In this case, DIR_ENTRIES gathers the pathnames for the entries in this 
subdirectory. It gathers the pathnames by recursively calling DIR_ENTRIES and 
passing the subdirectory's path as the starting path. When DIR_ENTRIES returns, 
the result array contains the paths of the subdirectory's entries.

subroutine dir_entries(dir $, files[*] $, n, trunc);
   outargs files, n, trunc;
   length dir entry $ 256;

   if trunc then return;

   did=diropen(dir);
   if did <= 0 then return;

   dnum=dnum(did);
   do i=1 to dnum;
      entry=dread(did, i);
         /* If this entry is a file, then add to array, */
         /* else entry is a directory, recurse.         */
      fid=mopen(did, entry);
      entry=trim(dir) || '\' || entry;
      if fid > 0 then do;
         rc=fclose(fid);
         if n < dim(files) then do;
            trunc=0;
            n=n + 1;
            files[n]=entry;
         end;
         else do;
            trunc=1;
            call dirclose(did);
            return;
         end;
      end;
      else
         call dir_entries(entry, files, n, trunc);
   end;

   call dirclose(did);
   return;
endsub;

Calling DIR_ENTRIES from a DATA Step
You invoke DIR_ENTRIES like any other DATA step CALL routine. Declare an array 
with enough entries to hold all the files that might be found. Then call the 
DIR_ENTRIES routine. When the routine returns, the result array is looped over and 
each entry in the array is written to the SAS log.

options cmplib=sasuser.funcs;
data _null_;
   array files[1000] $ 256 _temporary_;

Usage: FCMP Procedure 883



   dnum=0;
   trunc=0;
   call dir_entries("c:\logs", files, dnum, trunc);
   if trunc then put 'ERROR: Not enough result array entries. Increase 
array
size.';
   do i=1 to dnum;
      put files[i];
   end;
run;

Example Code 24.4 Results from Calling DIR_ENTRIES from a DATA Step

c:\logs\2004\qtr1.log
c:\logs\2004\qtr2.log
c:\logs\2004\qtr3.log
c:\logs\2004\qtr4.log
c:\logs\2005\qtr1.log
c:\logs\2005\qtr2.log
c:\logs\2005\qtr3.log
c:\logs\2005\qtr4.log
c:\logs\2006\qtr1.log
c:\logs\2006\qtr2.log

This example shows the similarity between PROC FCMP syntax and the DATA step. 
For example, numeric expressions and flow of control statements are identical. The 
abstraction of DIROPEN into a PROC FCMP function simplifies DIR_ENTRIES. All 
of the PROC FCMP routines that are created can be reused by other DATA steps 
without any need to modify the routines to work in a new context.

Identifying the Location of Compiled Functions and 
Subroutines: The CMPLIB= System Option

Overview of the CMPLIB= System Option
The SAS system option CMPLIB= specifies where to look for previously compiled 
functions and subroutines. All procedures (including FCMP) that support the use of 
FCMP functions and subroutines use this system option.

Instead of specifying the LIBRARY= option on every procedure statement that 
supports functions and subroutines, you can use the CMPLIB= system option to set 
libraries that can be used by all procedures.

The _DISPLAYLOC_ option writes to the log the name of the data set from where 
SAS loaded a function. The _NO_DISPLAYLOC_ option prevents the data set name 
from being written to the log.

884 Chapter 24 / FCMP Procedure



Syntax of the CMPLIB= System Option
The syntax for the CMPLIB= option has the following form:

OPTIONS CMPLIB=library
OPTIONS CMPLIB=(library-1 <, library-2, ...>)
OPTIONS CMPLIB=list-1 <, list-2, ...
OPTIONS CMPLIB=_DISPLAYLOC_
OPTIONS CMPLIB=_NO_DISPLAYLOC_

The following descriptions refer to the preceding syntax:

OPTIONS
identifies the statement as an OPTIONS statement.

library
specifies that the previously compiled libraries be linked into the program.

list
specifies a list of libraries.

_DISPLAYLOC_
when using PROC FCMP, specifies to display in the SAS log the data set from 
where SAS loaded the function.

Default _NO_DISPLAYLOC_

_NO_DISPLAYLOC_
when using PROC FCMP, specifies to not display in the SAS log the data set 
from where SAS loaded the function, and removes any library specifications as 
CMPLIB= option values.

Default _NO_DISPLAYLOC_

Tip When you specify CMPLIB=library-specification without the 
_DISPLAYLOC_ option, SAS does not display the data set name in the 
SAS log.

Example 1: Setting the CMPLIB= System 
Option
The following example shows how to set the CMPLIB= system option.

options cmplib=sasuser.funcs;
options cmplib=(sasuser.funcs work.functions mycat.funcs);
options cmplib=(sasuser.func1 - sasuser.func10);

Usage: FCMP Procedure 885



Example 2: Compiling and Using Functions
In the following example, PROC FCMP compiles the SIMPLE function and stores it 
in the Sasuser.Models data set. Then the CMPLIB= system option is set, and the 
function is called by PROC MODEL.

The output from this example spans several pages. The output is divided into five 
parts.

proc fcmp outlib=sasuser.models.yval;
   function simple(a, b, x);
      y=a+b*x;
      return(y);
   endsub;
run;

options cmplib=sasuser.models nodate ls=80;

data a;
   input y @@;
   x=_n_;
   datalines;
08 06 08 10 08 10
;

proc model data=a;
   y=simple(a, b, x);
   fit y / outest=est1 out=out1;
quit;

886 Chapter 24 / FCMP Procedure



Output 24.1 Compiling and Using Functions: Part 1

Usage: FCMP Procedure 887



Output 24.2 Compiling and Using Functions: Part 2

888 Chapter 24 / FCMP Procedure



Output 24.3 Compiling and Using Functions: Part 3

Usage: FCMP Procedure 889



Output 24.4 Compiling and Using Functions: Part 4

890 Chapter 24 / FCMP Procedure



Output 24.5 Compiling and Using Functions: Part 5

For information about PROC MODEL, see the SAS/ETS User's Guide.

Example 3: Identifying the Data Set Name 
from Where SAS Loaded a Function
The following example uses the _DISPLAYLOC_ and _NO_DISPLAYLOC_ options. 
When you use the _DISPLAYLOC_ option, SAS writes to the log the name of the 
data set from where SAS loaded a function. With the _NO_DISPLAYLOC_ option, 
the name of the data set is not written to the log.

proc fcmp outlib=work.myfuncs1.pkg;
   function myfunc();
      return(1);
   endsub;
run;

proc fcmp outlib=work.myfuncs2.pkg;
   function myfunc();
      return(2);
   endsub;
run;

proc fcmp outlib=work.myfuncs3.pkg;
   function myfunc();

Usage: FCMP Procedure 891



      return(3);
   endsub;
run;

option CMPLIB=(myfuncs1-myfuncs3 _DISPLAYLOC_);

proc fcmp;

  a = myfunc();
  put a=;
run;

/*- turning _DISPLAYLOC_ off -*/
option CMPLIB=(myfuncs1-myfuncs3);

proc fcmp;

  a = myfunc();
  put a=;
run;

option CMPLIB=(myfuncs1 myfuncs2 _DISPLAYLOC_);

proc fcmp;

  a = myfunc();
  put a=;
run;

option CMPLIB=_DISPLAYLOC_;

proc fcmp inlib=work.myfuncs1;
  a = myfunc();
  put a=;
run;

option CMPLIB=_NO_DISPLAYLOC_;

proc fcmp inlib=work.myfuncs1;
  a = myfunc();
  put a=;
run;

The following results show a partial SAS log. The _DISPLAYLOC_ and 
_NO_DISPLAYLOC options produce different results:

892 Chapter 24 / FCMP Procedure



116  option CMPLIB=(myfuncs1-myfuncs3 _DISPLAYLOC_);
117
118  proc fcmp;
119
120    a = myfunc();
121    put a=;
122  run;

NOTE: Function 'myfunc' loaded from WORK.myfuncs3.PKG.
NOTE: PROCEDURE FCMP used (Total process time):
      real time           0.06 seconds
      cpu time            0.04 seconds

123
124  /*- turning _DISPLAYLOC_ off -*/
125  option CMPLIB=(myfuncs1-myfuncs3);
126
127
128  proc fcmp;
129
130    a = myfunc();
131    put a=;
132  run;

NOTE: PROCEDURE FCMP used (Total process time):
      real time           0.06 seconds
      cpu time            0.06 seconds

133
134  option CMPLIB=(myfuncs1 myfuncs2 _DISPLAYLOC_);
135
136  proc fcmp;
137
138    a = myfunc();
139    put a=;
140  run;

NOTE: Function 'myfunc' loaded from WORK.myfuncs2.PKG.
NOTE: PROCEDURE FCMP used (Total process time):
      real time           0.05 seconds
      cpu time            0.04 seconds

141
142  option CMPLIB=_DISPLAYLOC_;
143
144  proc fcmp inlib=work.myfuncs1;
145    a = myfunc();
146    put a=;
147  run;

NOTE: Function 'myfunc' loaded from work.myfuncs1.PKG.
NOTE: PROCEDURE FCMP used (Total process time):
      real time           0.04 seconds
      cpu time            0.03 seconds

Usage: FCMP Procedure 893



149  option CMPLIB=_NO_DISPLAYLOC_;
150
151  proc fcmp inlib=work.myfuncs1;
152    a = myfunc();
153    put a=;
154  run;

NOTE: PROCEDURE FCMP used (Total process time):
      real time           0.04 seconds
      cpu time            0.03 seconds

Using PROC FCMP Component Objects

Hash Object and Hash Iterator Object
Starting with SAS 9.3, hashing is available in user-defined subroutines through the 
FCMP procedure. Hashing enables you to extend the scope of your programs so 
that you can solve larger problems without sacrificing simplicity. Embedding a hash 
object in PROC FCMP functions and subroutines can improve performance and 
streamline existing programs.

For more information about hash and hash iterator component objects, see “Using 
the PROC FCMP Hash Object and PROC FCMP Hash Iterator Object” in SAS 
Component Objects: Reference.

Dictionaries
Dictionaries create references to numeric and character data, and they also give 
you fast in-memory hashing to arrays, other dictionaries, and PROC FCMP hash 
objects.

For information about how to use dictionaries in PROC FCMP, and to review 
examples, see “Using FCMP Dictionary Objects” in SAS Component Objects: 
Reference and Dictionaries: Referencing a New PROC FCMP Data Type.

PROC FCMP and ASTORE
CMP supports ASTORE (Analytic Store) scoring models. Data movement is 
reduced by performing the score and the computations together within the same 
TKCMP program. PROC FCMP supports ASTORE models on the SAS client.

894 Chapter 24 / FCMP Procedure

http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=n0kyejvk2wd2qyn1gch1awbzsyiy.htm&locale=en
http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=n0kyejvk2wd2qyn1gch1awbzsyiy.htm&locale=en
http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=n0kyejvk2wd2qyn1gch1awbzsyiy.htm&locale=en
http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=n1xusfrra2yjd8n1oabknxypgp8u.htm&locale=en
http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=n1xusfrra2yjd8n1oabknxypgp8u.htm&locale=en
http://support.sas.com/resources/papers/proceedings17/SAS0418-2017.pdf


What is an Analytic Store?
An analytic store is a binary file that contains the state from a predictive analytic 
procedure. This state from a predictive analytic procedure, such as a random forest, 
is created using the results from the training phase of model development. A key 
feature of an analytic store is that it is easily transported from one host to another. 
An analytic store is a compact and universal file form. The store names the only 
SAS component that can restore the state of the computation (memory) that can 
restore the post training memory. It is also called a warm restart for scoring.

What is a State?
State is a copy of all the memory items that are relevant to the next task, for 
example, scoring. SAVESTATE takes a snapshot of this information:

n Public information (that is, information common to all analytic engines). 
Examples of public information include the list of input variables, the list of output 
variables, the formats, and other elements.

n Private information (that is, information specific to that particular analysis, for 
example, random forests). Examples of private information include the number of 
trees, the trees themselves, the scores, and other types.

What is Scoring?
Historic data is where the outcomes are known. You train your model with this 
historic data, and then you score the new data by using the input variables. Scoring 
new data is predicting the outcome with new data, using the model that is built using 
the historic data.

What Does PROC ASTORE Do?
PROC ASTORE scores an input data set and produces an output data set using the 
analytic store that you specify. It is an interactive procedure in which each statement 
runs immediately. PROC ASTORE produces these outputs:

n Types of DS2 scoring code that can run locally using the DS2 procedure

n DS2 scoring code that can run in SAS Viya.

PROC ASTORE can also move analytic stores between the client and the server 
and it can provide descriptive information about the analytic store. The syntax is 
shown below:

SCORE
Scores the model.

Usage: FCMP Procedure 895



DESCRIBE
Specifies the name of the analytic store and produces DS2 basic scoring code.

DOWNLOAD
Retrieves from the CAS session the specified analytic store and stores it in the 
local file system

UPLOAD
Moves the specified analytic store from the local file system into a data table in 
CAS.

Note: See The ASTORE Procedure for more information about PROC ASTORE.

Example: Using ASTORE in PROC FCMP
This example demonstrates using ASTORE in PROC FCMP. It also demonstrates 
TKCMP scoring of ASTORE models.

Note: The code for declaring a CMP object is the same for all platforms:

declare object myscore(astore);

Note: In a SAS client, the score() method takes a single parameter file path:

n Windows: 

call myscore.score("C:\models\_va_model208");

n UNIX: 

call myscore.score("/userid/models/_va_model208");

Note: In CAS, the score() method requires two arguments, the caslib and the CAS 
table name:

call myscore.score('CASUSER','_va_model208');

Note: The score object also supports the describe() method, which prints the input/
output variables from the ASTORE to the log. The method takes no arguments:

call myscore.describe();

This code runs a previously created SVM CAS action in FCMP.

Example Code 24.1 ASTORE.SAS

title 'CMP ASTORE Test 1';

libname mydata "C:\project\my_data";
libname mymodel "C:\project\my_models";

896 Chapter 24 / FCMP Procedure

http://documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.11&docsetId=casml&docsetTarget=viyaml_astore_overview.htm


/* Test a simple object model using the describe method */
/* Note: No input dataset is specified.   */
proc fcmp;
   declare object myscore(astore);
   call myscore.score("C:\project\my_models\_va_model208");

   /* Can use Proc FCMP to describe the local model */
   call myscore.describe();
run;quit;

/* Run the ASTORE model over an input dataset.  */
/* Write the results to an output dataset.      */
proc fcmp data=mydata.hmeq out=astore_fcmp_out;
   declare object myscore(astore);
   call myscore.score("C:\project\my_models\_va_model208");
run;quit;

proc print data=astore_fcmp_out(obs=10);
run;

title 'CMP ASTORE Test 2';

/* Using ASTORE scoring from a FCMP function */
proc fcmp outlib=work.score.funcs;

/* Return the probability value */
function astore(clage, clno, debtinc, delinq, ninq, value);
   declare object myscore(astore);
   call myscore.score("C:\project\my_models\_va_model208");
   return(_P_);
endsub;

/* Pass input values as arguments into the function */
/* Return all probability values from the score     */
subroutine astore2(clage, clno, debtinc, delinq, ninq, value,
                  _P_, P__EVENT_0, P__EVENT_1, I__EVENT_ $, _WARN_ $);
   outargs _P_, P__EVENT_0, P__EVENT_1, I__EVENT_, _WARN_;

   declare object myscore(astore);
   call myscore.score("C:\project\my_models\_va_model208");
endsub;
run;
quit;

/* Call these functions from Proc FCMP */

title 'CMP ASTORE Test 3';

proc fcmp data=mydata.hmeq inlib=work.score out=astore_fcmp_out2;
ds_p2 = astore(clage, clno, debtinc, delinq, ninq, value);
run;
quit;
proc print data=astore_fcmp_out2(obs=10);
run;

Usage: FCMP Procedure 897



title 'CMP ASTORE Test 4';

proc fcmp data=mydata.hmeq(obs=10) inlib=work.score 
out=astore_fcmp_out3;
_P_=.;
P__EVENT_0=.;
P__EVENT_1=.;
I__EVENT_="";
_WARN_="";

call astore2(clage, clno, debtinc, delinq, ninq, value,
             _P_, P__EVENT_0, P__EVENT_1, I__EVENT_, _WARN_);
run;
quit;
proc print data=astore_fcmp_out3(obs=10); 
run;

title 'CMP ASTORE Test 5';

/* You can call the function from the data step   */
/* We can perform ASTORE scoring using the data step */
options cmplib=work.score;
data astore_ds_out;
set mydata.hmeq;
ds_p = astore(clage, clno, debtinc, delinq, ninq, value);
run;
proc print data=astore_ds_out(obs=10); 
run;

PROC ASTORE transports data from CAS into a local analytic store (local file). 
Once in that form, the data is used by CMP and the new ASTORE object.

Example Code 24.2 ASTORE_CAS.SAS

title 'CMP ASTORE Test 1';

/* CASPORT=0 means generate a port number for session connection */
/*options casuser=<userid> cashost="<machine>" casport=<port>;*/
options casuser=<userid> cashost="<machine>" casport=<port>;

/* This is how to start a CAS session */
/* CAS sessions live for the life of the SAS session, unless redefined or closed. */
/* Unix: cas mysession AUTHINFO='/userid/.authinfo';*/
/* Windows */
cas mysession authinfo='/userid/.authinfo';
libname sascas1 cas sessref="mysession" caslib="CASUSER";

libname mydata "C:\project\my_data";
libname mymodel "C:\project\my_models";

/* Our input data for SVM; Load into CAS */
data sascas1.hmeq;
set mydata.hmeq;
run;

/* Run action from VDMML */
proc cas;

898 Chapter 24 / FCMP Procedure



    action builtins.loadactionset / actionSet='tkaasvm';
    action tkaasvm.svmtrain result=r /
c=1.0,
code={comment=false,fmtWdth=15,lineSize=200},
includeMissing=false,
maxiter=25,
noscale=false,
savestate={caslib="CASUSER",name="_va_model208"},
table={caslib="CASUSER",compOnDemand="false",compPgm="_va_calculated_208_1=round('BAD'n,1
.0);
if (('_va_calculated_208_1'n = 0.0))then do;
_va_calculated_208_11= 0.0;
end;
else do;
_va_calculated_208_11= 1.0;
end;
;
_EVENT_=_va_calculated_208_11;
_va_FILTER_=(NOT(MISSING('_va_calculated_208_1'n)) 
AND NOT(MISSING('CLAGE'n)) AND NOT(MISSING('CLNO'n)) AND NOT(MISSING('DEBTINC'n)) 
AND NOT(MISSING('DELINQ'n)) AND NOT(MISSING('NINQ'n)) AND NOT(MISSING('VALUE'n)));
_va_calculated_208_14=NOT(('_va_FILTER_'n = 0.0));;",compVars={"_va_calculated_208_1","
_va_calculated_208_11","_EVENT_","_va_FILTER_","_va_calculated_208_14"},name="HMEQ",
onDemand="false",where="NOT('_va_calculated_208_14'n = 0)"},
emtarget={name="_EVENT_",options={levelType="BINARY"}},
tolerance=1.0E-6,
var={"CLAGE","CLNO","DEBTINC","DELINQ","NINQ","VALUE"}
outputTables={names={nobs="NObs",modelinfo="ModelInfo"}, replace="TRUE"};
run;

quit;

/* Use Proc ASTORE to describe the model in CAS */
/* Download the model locally                   */
proc astore;
   describe rstore=sascas1._va_model208;
   download rstore=sascas1._va_model208;
 store="C:\project\my_models\_va_model208";
   describe store="C:\project\my_models\_va_model208";
run;
quit;

options pagesize=max;
proc cas;
    loadactionset "table";
   table.fetch
   format=false
   maxRows=1
   sasTypes=TRUE
   table = {
      compOnDemand=TRUE
      caslib="CASUSER"
       name="hmeq"
      compPgm=
"declare object myscore(astore);
call myscore.score('CASUSER','_va_model208');"

Usage: FCMP Procedure 899



       singlePass=TRUE
       compVars={"_P_", "P__EVENT_0" , "P__EVENT_1" , "I__EVENT_" ,"_WARN_"}
   };
run;
quit;

The SETOPTION Method
The CMP ASTORE method, SETOPTION, passes options to ASTORE objects that 
take different option values. Here is code using PROC FCMP:

routineCode = "
   declare object model_glmstore(astore);
   call model_glmstore.setoption('alpha', 0.05);
   call model_glmstore.setoption('COMPUTE_CONFIDENCE_LIMIT', 1);
   call model_glmstore.score('CASUSER','glmstore');
"
;
run;
quit;

Here is code using the FCMPACT action:

routineCode = "
declare object model_glmstore(astore);
call model_glmstore.setoption('alpha', 0.05);
call model_glmstore.setoption('COMPUTE_CONFIDENCE_LIMIT', 1);
call model_glmstore.score('CASUSER','glmstore');
"
;
run;
quit;

Using Python Functions in PROC FCMP
Starting with SAS 9.4M6, PROC FCMP supports submitting and executing functions 
written in Python by using the Python object. A complete guide for using the Python 
object is located in the Using Python Objects chapter in the SAS Component 
Objects: Reference.

900 Chapter 24 / FCMP Procedure

http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=p1dolx0gyi7be7n1m6q98ygyutk9.htm&locale=en
http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lecompobjref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Examples: FCMP Procedure

Example 1: Creating a Function and Calling the 
Function from a DATA Step
Features: PROC FCMP statement option

OUTLIB=
DATA step

Details
This example shows how to compute a study day during a drug trial by creating a 
function in PROC FCMP and using that function in a DATA step.

Program
proc fcmp outlib=sasuser.funcs.trial;

   function study_day(intervention_date, event_date);

      n=event_date - intervention_date;
         if n >= 0 then
            n=n + 1;
         return(n);
   endsub;

options cmplib=sasuser.funcs;

data _null_;
   start='15Feb2010'd;
   today='27Mar2010'd;
   sd=study_day(start, today);

   put sd=;

run;

Program Description

Example 1: Creating a Function and Calling the Function from a DATA Step 901



Specify the name of an output package to which the compiled function and 
CALL routine are written. The package is stored in the data set Sasuser.Funcs.

proc fcmp outlib=sasuser.funcs.trial;

Create a function called STUDY_DAY. STUDY_DAY is created in a package 
called Trial, and contains two numeric input arguments.

   function study_day(intervention_date, event_date);

Use a DATA step IF statement to calculate EVENT_DATE. Use DATA step syntax 
to compute the difference between EVENT_DATE and INTERVENTION_DATE. The 
days before INTERVENTION_DATE begin at -1 and become smaller. The days after 
and including INTERVENTION_DATE begin at 1 and become larger. (This function 
never returns 0 for a study date.)

      n=event_date - intervention_date;
         if n >= 0 then
            n=n + 1;
         return(n);
   endsub;

Use the CMPLIB= system option to specify a SAS data set that contains the 
compiler subroutine to include during program compilation.

options cmplib=sasuser.funcs;

Create a DATA step to produce a value for the function STUDY_DAY. The 
function uses a start date and today's date to compute the value. STUDY_DAY is 
called from the DATA step. When the DATA step encounters a call to STUDY_DAY, 
it does not find this function in its traditional library of functions. It searches each of 
the data sets that are specified in the CMPLIB system option for a package that 
contains STUDY_DAY. In this case, it finds STUDY_DAY in Sasuser.Funcs.Trial.

data _null_;
   start='15Feb2010'd;
   today='27Mar2010'd;
   sd=study_day(start, today);

Write the output to the SAS log.

   put sd=;

Execute the SAS program.

run;

Log
Example Code 24.5 Results from Creating and Calling a Function from a DATA Step

sd=41

902 Chapter 24 / FCMP Procedure



Example 2: Creating and Saving Functions with 
PROC FCMP
Features: PROC FCMP statement option

OUTLIB=
OUTARGS statement

Details
This example shows how to use PROC FCMP to create and save the functions that 
are used in the example.

Program
proc fcmp outlib=sasuser.exsubs.pkt1;

   subroutine calc_years(maturity, current_date, years);
      outargs years;
      years=(maturity - current_date) / 365.25;
   endsub;

function garkhprc(type$, buysell$, amount,E, t, S, rd, rf, sig);
      if buysell="Buy" then sign=1.;
      else do;
         if buysell="Sell" then sign=-1.;
         else sign=.;
      end;

      if type="Call" then
         garkhprc=sign * amount * garkhptprc(E, t, S, rd, rf, sig);
      else do;
         if type="Put" then
            garkhprc=sign * amount * garkhptprc(E, t, S, rd, rf, sig);
         else garkhprc=.;
      end;

return(garkhprc);

run;

endfunc;

Program Description

Example 2: Creating and Saving Functions with PROC FCMP 903



Specify the entry where the function package information is saved. The 
package is a three-level name.

proc fcmp outlib=sasuser.exsubs.pkt1;

Create a function to calculate years to maturity. A generic function called 
CALC_YEARS is declared to calculate years to maturity from date variables that are 
stored as the number of days. The OUTARGS statement specifies the variable that 
is updated by CALC_YEARS.

   subroutine calc_years(maturity, current_date, years);
      outargs years;
      years=(maturity - current_date) / 365.25;
   endsub;

Create a function for Garman-Kohlhagen pricing for FX options. A function 
called GARKHPRC is declared, which calculates Garman-Kohlhagen pricing for FX 
options. The function uses the SAS functions GARKHCLPRC and GARKHPTPRC.

function garkhprc(type$, buysell$, amount,E, t, S, rd, rf, sig);
      if buysell="Buy" then sign=1.;
      else do;
         if buysell="Sell" then sign=-1.;
         else sign=.;
      end;

      if type="Call" then
         garkhprc=sign * amount * garkhptprc(E, t, S, rd, rf, sig);
      else do;
         if type="Put" then
            garkhprc=sign * amount * garkhptprc(E, t, S, rd, rf, sig);
         else garkhprc=.;
      end;

The RETURN statement returns the value of the GARKHPRC function.

return(garkhprc);

Execute the FCMP procedure. The RUN statement executes the FCMP 
procedure.

run;

Close the function. The endfunc statement closes the function.

endfunc;

Log
Example Code 24.6 Location of Functions That Are Saved

NOTE: Function garkhprc saved to sasuser.exsubs.pkt1.
NOTE: Function calc_years saved to sasuser.exsubs.pkt1.

904 Chapter 24 / FCMP Procedure



Example 3: Using Numeric Data in the FUNCTION 
Statement

Details
The following example uses numeric data as input to the FUNCTION statement of 
PROC FCMP.

Program
proc fcmp;
   function inverse(in);
      if in=0 then inv=.;
      else inv=1/in; 
      return(inv);
   endfunc;
run;

Example 4: Using Character Data with the 
FUNCTION Statement

Details
The following example uses character data as input to the FUNCTION statement of 
PROC FCMP. The output from FUNCTION TEST is assigned a length of 12 bytes.

Program
options cmplib=work.funcs;

proc fcmp outlib=work.funcs.math;
   function test(x $) $ 12;
   if x='yes' then
      return('si si si');

Example 4: Using Character Data with the FUNCTION Statement 905



      else
      return('no');
   endfunc;
run;

data _null_;
   spanish=test('yes');
   put spanish=;
run;

Log
Example Code 24.7 Results from Using Character Data with the FUNCTION Statement in 

PROC FCMP

spanish=si si si

Example 5: Using Variable Arguments with an Array

Details
The following example shows an array that accepts variable arguments. The 
example implies that the summation function can be called as follows: 
sum=summation(1,2,3,4,5);

Note: When calling this function from a DATA step, you must provide the 
VARARGS as an array.

Program
options cmplib=sasuser.funcs;

proc fcmp outlib=sasuser.funcs.temp;
function summation (b[*]) varargs;
    total=0;
    do i=1 to dim(b);
        total=total + b[i];
    end;
return(total);
endfunc;
sum=summation(1, 2, 3, 4, 5);

906 Chapter 24 / FCMP Procedure



   put sum=;
run;

Example 6: Using the SUBROUTINE Statement 
with a CALL Statement

Details
Here is an example of the SUBROUTINE statement. The SUBROUTINE statement 
creates an independent computational block of code that can be used with a CALL 
statement.

Program
proc fcmp outlib=sasuser.funcs.temp;
subroutine inverse(in,inv) group="generic";
   outargs inv;
   if in=0 then inv=.;
   else inv=1/in;
endsub;

options cmplib=sasuser.funcs;
data _null_;
   x=5;
   call inverse(x, y);
   put x= y=;
run;

Log
Example Code 24.8 Results from Using the SUBROUTINE Statement in PROC FCMP

x=5 y=0.2

Example 6: Using the SUBROUTINE Statement with a CALL Statement 907



Example 7: Using Graph Template Language (GTL) 
with User-Defined Functions
Features: PROC FCMP functions

OSCILLATE
OSCILLATEBOUND

Other procedures
PROC TEMPLATE
PROC SGRENDER

Details
The following example shows how to use functions in a GTL EVAL function. It 
shows how to define functions that define new curve types (oscillate and 
oscillateBound). These functions can be used in a GTL EVAL function to compute 
new columns that are presented with a seriesplot and bandplot.

Program
proc fcmp outlib=sasuser.funcs.curves;
   function oscillate(x,amplitude,frequency);
         if amplitude le 0 then amp=1; else amp=amplitude;
            if frequency le 0 then freq=1; else freq=frequency;
         y=sin(freq*x)*constant("e")**(-amp*x);
         return (y);
  endfunc;

 function oscillateBound(x,amplitude);
       if amplitude le 0 then amp=1; else amp=amplitude;
       y=constant("e")**(-amp*x);
       return(y);
  endfunc;
 run;

 options cmplib=sasuser.funcs;

data range;
   do time=0 to 2 by .01;
   output;
   end;
run;

proc template ;
   define statgraph damping;
   dynamic X AMP FREQ;

908 Chapter 24 / FCMP Procedure



   begingraph;
       entrytitle "Damped Harmonic Oscillation";
       layout overlay / yaxisopts=(label="Displacement");
          if (exists(X) and exists(AMP) and exists(FREQ))
                bandplot x=X  limitlower=eval(-oscillateBound(X,AMP))
                limitupper=eval(oscillateBound(X,AMP));
                seriesplot x=X y=eval(oscillate(X,AMP,FREQ));
          endif;
        endlayout;
   endgraph;
   end;
   run;

 proc sgrender data=range template=damping;
      dynamic x="Time" amp=10 freq=50 ;
 run;

Program Description

Create the OSCILLATE function.

proc fcmp outlib=sasuser.funcs.curves;
   function oscillate(x,amplitude,frequency);
         if amplitude le 0 then amp=1; else amp=amplitude;
            if frequency le 0 then freq=1; else freq=frequency;
         y=sin(freq*x)*constant("e")**(-amp*x);
         return (y);
  endfunc;

Create the OSCILLATEBOUND function.

 function oscillateBound(x,amplitude);
       if amplitude le 0 then amp=1; else amp=amplitude;
       y=constant("e")**(-amp*x);
       return(y);
  endfunc;
 run;

Create a data set called Range that is used by PROC SGRENDER.

 options cmplib=sasuser.funcs;

data range;
   do time=0 to 2 by .01;
   output;
   end;
run;

Use the TEMPLATE procedure to customize the appearance of your SAS 
output.

proc template ;
   define statgraph damping;
   dynamic X AMP FREQ;
   begingraph;
       entrytitle "Damped Harmonic Oscillation";

Example 7: Using Graph Template Language (GTL) with User-Defined Functions 909



       layout overlay / yaxisopts=(label="Displacement");
          if (exists(X) and exists(AMP) and exists(FREQ))
                bandplot x=X  limitlower=eval(-oscillateBound(X,AMP))
                limitupper=eval(oscillateBound(X,AMP));
                seriesplot x=X y=eval(oscillate(X,AMP,FREQ));
          endif;
        endlayout;
   endgraph;
   end;
   run;

Use the SGRENDER procedure to identify the data set that contains the input 
variables and to assign a statgraph template for the output.

 proc sgrender data=range template=damping;
      dynamic x="Time" amp=10 freq=50 ;
 run;

Output: Using GTL with Functions
Output 24.6 Results from Using GTL with User-Defined Functions

Example 8: Standardizing Each Row of a Data Set
Features: PROC FCMP functions

RUN_MACRO
RUN_SASFILE
READ_ARRAY
WRITE_ARRAY

910 Chapter 24 / FCMP Procedure



Details
This example shows how to standardize each row of a data set.

Program
data numbers;
   drop i j;
   array a[5];
   do j=1 to 5;
   do i=1 to 5;
         a[i] = ranuni(12345) * (i+123.234);
      end;
      output;
      end;
   run;

%macro standardize;
%let dsname=%sysfunc(dequote(&dsname));
%let colname=%sysfunc(dequote(&colname));
proc standard data=&dsname mean=&MEAN std=&STD out=_out;
   var &colname;
run;
data &dsname;
   set_out;
run;
%mend standardize;

proc fcmp outlib=sasuser.ds.functions;
   subroutine standardize(x[*], mean, std);
      outargs x;

      rc=write_array('work._TMP_', x, 'x1');
      dsname='work._TMP_';
         colname='x1';
         rc=run_macro('standardize', dsname, colname, mean, std);
      array x2[1]_temporary_;
         rc=read_array('work._TMP_', x2);
      if dim(x2)=dim(x) then do;
         do i=1 to dim(x);
            x[i]=x2[i];
          end;
         end;
   endsub;
run;

options cmplib=(sasuser.ds);
data numbers2;
   set numbers;
   array a[5];
   array t[5]_temporary_;

Example 8: Standardizing Each Row of a Data Set 911



   do i=1 to 5;
      t[i]=a[i];
   end;
   call standardize(t, 0, 1);
   do i=1 to 5;
      a[i]=t[i];
   end;
   output;
run;

proc print data=work.numbers2;
run;

Program Description

Create a data set that contains five rows of random numbers.

data numbers;
   drop i j;
   array a[5];
   do j=1 to 5;
   do i=1 to 5;
         a[i] = ranuni(12345) * (i+123.234);
      end;
      output;
      end;
   run;

Create a macro to standardize a data set with a given value for mean and std.

%macro standardize;
%let dsname=%sysfunc(dequote(&dsname));
%let colname=%sysfunc(dequote(&colname));
proc standard data=&dsname mean=&MEAN std=&STD out=_out;
   var &colname;
run;
data &dsname;
   set_out;
run;
%mend standardize;

Use the FCMP function to call WRITE_ARRAY, which writes the data to a data 
set. Call RUN_MACRO to standardize the data in the data set. Call 
WRITE_ARRAY to write data to a data set. Call READ_ARRAY to read the 
standardized data back into the array.

proc fcmp outlib=sasuser.ds.functions;
   subroutine standardize(x[*], mean, std);
      outargs x;

      rc=write_array('work._TMP_', x, 'x1');
      dsname='work._TMP_';
         colname='x1';
         rc=run_macro('standardize', dsname, colname, mean, std);
      array x2[1]_temporary_;
         rc=read_array('work._TMP_', x2);

912 Chapter 24 / FCMP Procedure



      if dim(x2)=dim(x) then do;
         do i=1 to dim(x);
            x[i]=x2[i];
          end;
         end;
   endsub;
run;

Execute the function for each row in the DATA step.

options cmplib=(sasuser.ds);
data numbers2;
   set numbers;
   array a[5];
   array t[5]_temporary_;
   do i=1 to 5;
      t[i]=a[i];
   end;
   call standardize(t, 0, 1);
   do i=1 to 5;
      a[i]=t[i];
   end;
   output;
run;

Write the output.

proc print data=work.numbers2;
run;

Output: Standardizing Rows in a Data Set
Output 24.7 Results from Standardizing Each Row of a Data Set

References
SAS Institute Inc. 2013. SAS Component Objects: Reference. Cary, NC: SAS 

Institute Inc.

Example 8: Standardizing Each Row of a Data Set 913



Henrick, A., D. Erdman, and S. Christian. 2013. “Hashing in PROC FCMP to 
Enhance Your Productivity.” Proceedings of the SAS Global Forum 2013 
Conference, Cary, NC. SAS Institute Inc., 1–15. Available at http://
support.sas.com/resources/papers/proceedings13/129-2013.pdf.

914 Chapter 24 / FCMP Procedure



25
FCMP Special Functions and 
Call Routines

Overview of Special Functions and CALL Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916

Functions and CALL Routines by Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 916

Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918
CALL ADDMATRIX Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 918
CALL CHOL Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919
CALL DET Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 921
CALL DYNAMIC_ARRAY Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922
CALL ELEMMULT Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924
CALL EXPMATRIX Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
CALL FILLMATRIX Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926
CALL IDENTITY Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927
CALL INV Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928
CALL MULT Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929
CALL POWER Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930
CALL SETNULL Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931
CALL STRUCTINDEX Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932
CALL SUBTRACTMATRIX Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 933
CALL TRANSPOSE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934
CALL ZEROMATRIX Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935
INVCDF Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936
ISNULL Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939
LIMMOMENT Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941
READ_ARRAY Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944
RUN_MACRO Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946
RUN_SASFILE Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951
SOLVE Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953
WRITE_ARRAY Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 957

915



Overview of Special Functions and CALL 
Routines

The FCMP procedure provides a small set of special use functions. You can call 
these functions from user-defined FCMP functions but you cannot call these 
functions directly from the DATA step. To use these functions in a DATA step, you 
must wrap the special function inside another user-defined FCMP function.

Note: You can call special functions directly in a procedure, but not in the DATA 
step.

Functions and CALL Routines by 
Category

Table 25.1  Categories of FCMP Functions and CALL Routines

Category Description

Calling SAS 
Code from 
within 
Functions

Two functions are available that enable you to call SAS code from 
within functions. The RUN_MACRO function executes a predefined 
SAS macro. The RUN_SASFILE function executes SAS code from a 
fileref that you specify.

C Helper Several helper functions are provided with the package to handle C-
language constructs in PROC FCMP. Most C-language constructs 
must be defined in a package that is created by PROC PROTO 
before the constructs can be referenced or used by PROC FCMP. 
The ISNULL function and the SETNULL and STRUCTINDEX CALL 
routines have been added to extend the SAS language to handle C-
language constructs that do not naturally fit into the SAS language.

Arrays PROC FCMP provides the READ_ARRAY function to read arrays, 
and the WRITE_ARRAY function to write arrays to a data set. This 
functionality enables PROC FCMP array data to be processed by 
SAS programs, macros, and procedures.

Matrix 
Operations

The FCMP procedure provides you with a number of CALL routines 
for performing simple matrix operations on declared arrays. These 
CALL routines are automatically provided by the FCMP procedure. 

916 Chapter 25 / FCMP Special Functions and Call Routines



Category Description

With the exception of ZEROMATRIX, FILLMATRIX, and IDENTITY, 
the CALL routines listed below do not support matrices or arrays that 
contain missing values.

Special 
Purpose

The FCMP procedure provides two special purpose functions: 
INVCDF and LIMMOMENT. The INVCDF function computes the 
quantile from any distribution for which you have defined a cumulative 
distribution function (CDF). The LIMMOMENT function computes the 
limited moment of any distribution for which you have defined a 
cumulative distribution function (CDF).

Category Language Elements Description

Array CALL DYNAMIC_ARRAY 
Routine (p. 922)

Enables an array that is declared within a function to change 
size in an efficient manner.

READ_ARRAY Function (p. 
944)

Reads data from a SAS data set into a PROC FCMP array 
variable.

WRITE_ARRAY Function (p. 
957)

Writes data from a PROC FCMP array variable to a data set 
that can then be used by SAS programs, macros, and 
procedures.

C Helper CALL SETNULL Routine (p. 
931)

Sets a pointer element of a structure to null.

CALL STRUCTINDEX 
Routine (p. 932)

Enables you to access each structure element in an array of 
structures.

ISNULL Function (p. 939) Determines whether a pointer element of a structure is null.

Calling SAS 
Code from within 
Functions

RUN_MACRO Function (p. 
946)

Executes a predefined SAS macro.

RUN_SASFILE Function (p. 
951)

Executes SAS code in a fileref that you specify.

Compute Implicit 
Values

SOLVE Function (p. 953) Computes implicit values of a function using the Gauss-
Newton method.

Matrix 
Operations

CALL ADDMATRIX Routine 
(p. 918)

Performs an elementwise addition of two matrices or a 
matrix and a scalar.

CALL CHOL Routine (p. 
919)

Calculates the Cholesky decomposition for a given 
symmetric matrix.

CALL DET Routine (p. 921) Calculates the determinant of a specified matrix that should 
be square.

CALL ELEMMULT Routine 
(p. 924)

Performs an elementwise multiplication of two matrices.

Functions and CALL Routines by Category 917



Category Language Elements Description

CALL EXPMATRIX Routine 
(p. 925)

Returns a matrix etA given the input matrix A and a 
multiplier t.

CALL FILLMATRIX Routine 
(p. 926)

Replaces all of the element values of the input matrix with 
the specified value.

CALL IDENTITY Routine (p. 
927)

Converts the input matrix to an identity matrix.

CALL INV Routine (p. 928) Calculates a matrix that is the inverse of the provided input 
matrix that should be a square, non-singular matrix.

CALL MULT Routine (p. 
929)

Calculates the multiplicative product of two input matrices.

CALL POWER Routine (p. 
930)

Raises a square matrix to a given scalar value.

CALL SUBTRACTMATRIX 
Routine (p. 933)

Performs an element-wide subtraction of two matrices or a 
matrix and a scalar.

CALL TRANSPOSE Routine 
(p. 934)

Returns the transpose of a matrix.

CALL ZEROMATRIX Routine 
(p. 935)

Replaces all of the element values of the numeric input 
matrix with 0.

Special Purpose 
Functions

INVCDF Function (p. 936) Computes the quantile from any distribution for which you 
have defined a cumulative distribution function (CDF).

LIMMOMENT Function (p. 
941)

Computes the limited moment of any distribution for which 
you have defined a cumulative distribution function (CDF).

Dictionary

CALL ADDMATRIX Routine
Performs an elementwise addition of two matrices or a matrix and a scalar.

Category: Matrix Operations

Requirement: All input and output matrices must have the same dimensions.

918 Chapter 25 / FCMP Special Functions and Call Routines



Syntax
CALL ADDMATRIX(X, Y, Z);

Required Arguments
X

specifies an input matrix with dimensions m x n (that is, X[m, n]) or a scalar.

Y
specifies an input matrix with dimensions m x n (that is, Y[m, n]) or a scalar.

Z
specifies an output matrix with dimensions m x n (that is, Z[m, n]), such that

Z = X + Y

Example
The following example uses the ADDMATRIX CALL routine:

options pageno=1 nodate;

proc fcmp;
   array mat1[3,2] (0.3, -0.78, -0.82, 0.54, 1.74, 1.2);
   array mat2[3,2] (0.2, 0.38, -0.12, 0.98, 2, 5.2);
   array result[3,2];
   call addmatrix(mat1, mat2, result);
   call addmatrix(2, mat1, result);
   put result=;
quit;

Output 25.1 Results from the ADDMATRIX CALL Routine

                                The SAS System                               1

                              The FCMP Procedure

result[1, 1]=2.3 result[1, 2]=1.22 result[2, 1]=1.18 result[2, 2]=2.54
result[3, 1]=3.74 result[3, 2]=3.2

CALL CHOL Routine
Calculates the Cholesky decomposition for a given symmetric matrix.

Category: Matrix Operations

Alias: CHOLESKY_DECOMP

CALL CHOL Routine 919



Requirement: Both input and output matrices must be square and have the same dimensions. X must 
be symmetric positive-definite, and Y a lower triangle matrix.

Syntax
CALL CHOL(X, Y <, validate>);

Required Arguments
X

specifies a symmetric positive-definite input matrix with dimensions m x m (that 
is, X[m, m]).

Y
specifies an output matrix with dimensions m x m (that is, Y[m, m]). This variable 
contains the Cholesky decomposition, such that

Z = YY*

where Y is a lower triangular matrix with strictly positive diagonal entries and Y* 
denotes the conjugate transpose of Y.

Note: If X is not symmetric positive-definite, then Y is filled with missing values.

Optional Argument
validate

specifies an optional argument that can increase the processing speed by 
avoiding error checking. The argument can take the following values:

0 the matrix X checks for symmetry. This is the default if the validate 
argument is omitted.

1 the matrix is assumed to be symmetric.

Example
The following example uses the CHOL CALL routine:

options pageno=1 nodate;

proc fcmp;
   array xx[3,3] 2 2 3 2 4 2 3 2 6;
   array yy[3,3];
   call chol(xx, yy, 0);
   do i=1 to 3;
      put yy[i, 1] yy[i, 2] yy[i, 3];
   end;
run;

920 Chapter 25 / FCMP Special Functions and Call Routines



Output 25.2 Results from PROC FCMP and the CHOL CALL Routine

                                 The SAS System                                1

                               The FCMP Procedure

1.4142135624 0 0
1.4142135624 1.4142135624 0
2.1213203436 -0.707106781 1

CALL DET Routine
Calculates the determinant of a specified matrix that should be square.

Category: Matrix Operations

Requirement: The input matrix X must be square.

Syntax
CALL DET(X, a);

Required Arguments
X

specifies an input matrix with dimensions m x n (that is, X[m, n]).

a
specifies the returned determinate value, such that

a = X

Details
The determinant, the product of the eigenvalues, is a single numeric value. If the 
determinant of a matrix is zero, then that matrix is singular (that is, it does not have 
an inverse). The method performs an LU decomposition and collects the product of 
the diagonals (Forsythe, Malcolm, and Moler 1967). For more information, see the 
SAS/IML User's Guide.

Example
The following example uses the DET CALL routine:

options pageno=1 nodate;

CALL DET Routine 921



proc fcmp;
   array mat1[3,3] (.03, -0.78, -0.82, 0.54, 1.74,
                     1.2, -1.3, 0.25, 1.49);
   call det(mat1, result);
   put result=;
quit;

Output 25.3 Results from the DET CALL Routine

                                The SAS System                               1

                              The FCMP Procedure

result=-0.052374

CALL DYNAMIC_ARRAY Routine
Enables an array that is declared within a function to change size in an efficient manner.

Category: Array

Syntax
CALL DYNAMIC_ARRAY(array–name, new-dimension1–size <, new-dimension2–
size, ...>);

Required Arguments
array-name

specifies the name of a temporary array.

new-dimension-size
specifies a new size for the temporary array.

Details
Arrays that are declared in functions and CALL routines can be resized, as well as 
arrays that are declared with the /NOSYMBOLS option. No other array can be 
resized.

The DYNAMIC_ARRAY CALL routine attempts to dynamically resize the array to 
match the dimensions of the target that you provide. This means that the array must 
be dynamic. That is, the array must be declared either in a function or subroutine, or 
declared with the /NOSYMBOLS option.

922 Chapter 25 / FCMP Special Functions and Call Routines



The DYNAMIC_ARRAY CALL routine is passed the array to be resized and a new 
size for each dimension of the array. In the ALLPERMK routine, a scratch array that 
is the size of the number of elements being permuted is needed. When the function 
is created, this value is not known because it is passed in as parameter n. A 
dynamic array enables the routine to allocate the amount of memory that is needed, 
instead of having to create an array that is large enough to handle all possible 
cases.

When using dynamic arrays, support is limited to PROC FCMP routines. When an 
array is resized, the resized array is available only within the routine that resized it. It 
is not possible to resize a DATA step array or to return a PROC FCMP dynamic 
array to the DATA step.

Example
The following example creates a temporary array named TEMP. The size of the 
array area depends on parameters that are passed to the function.

proc fcmp;
   function avedev_wacky(data[*]);

   length=dim(data);
   array temp[1] /nosymbols;
   call dynamic_array(temp, length);

   mean=0;
   do i=1 to length;
      mean += data[i];
      if i>1 then temp[i]=data[i-1];
      else temp[i]=0;
   end;
   mean=mean/length;

   avedev=0;
   do i=1 to length;
      avedev += abs((data[i])-temp[i] /2-mean);
   end;
   avedev=avedev/length;

   return(avedev);
endsub;

array data[10];

do i = 1 to 10;

   data[i] = i;
end;

avedev = avedev_wacky(data);
run;

CALL DYNAMIC_ARRAY Routine 923



CALL ELEMMULT Routine
Performs an elementwise multiplication of two matrices.

Category: Matrix Operations

Requirement: All input and output matrices must have the same dimensions.

Syntax
CALL ELEMMULT(X, Y, Z);

Required Arguments
X

specifies an input matrix with dimensions m x n (that is, X[m, n]).

Y
specifies an input matrix with dimensions m x n (that is, Y[m, n]).

Z
specifies an output matrix with dimensions m x n (that is, Z[m, n]).

Example
The following example uses the ELEMMULT CALL routine:

options pageno=1 nodate;

proc fcmp;
   array mat1[3,2] (0.3, -0.78, -0.82, 0.54, 1.74, 1.2);
   array mat2[3,2] (0.2, 0.38, -0.12, 0.98, 2, 5.2);
   array result[3,2];
   call elemmult(mat1, mat2, result);
   call elemmult(2.5, mat1, result);
   put result=;
 quit;

Output 25.4 Results from the ELEMMULT CALL Routine

                                The SAS System                               1

                              The FCMP Procedure

result[1, 1]=0.75 result[1, 2]=-1.95 result[2, 1]=-2.05 result[2, 2]=1.35
result[3, 1]=4.35 result[3, 2]=3

924 Chapter 25 / FCMP Special Functions and Call Routines



CALL EXPMATRIX Routine
Returns a matrix etA given the input matrix A and a multiplier t.

Category: Matrix Operations

Requirement: Both input and output matrices must be square and have the same dimensions. t can be 
any scalar value.

Syntax
CALL EXPMATRIX(X, t, Y);

Required Arguments
X

specifies an input matrix with dimensions m x m (that is, X[m, m]).

t
specifies a double scalar value.

Y
specifies an output matrix with dimensions m x m (that is, Y[m, m]), such that

Y = εtX

Details
The EXPMATRIX CALL routine uses a Padé approximation algorithm as presented 
in Golub and van Loan (1989), p. 558. Note that this module does not exponentiate 
each entry of a matrix. For more information, see the EXPMATRIX documentation in 
the SAS/IML User's Guide.

Example
The following example uses the EXPMATRIX CALL routine:

options pageno=1 nodate;

proc fcmp;
   array mat1[3,3] (0.3, -0.78, -0.82, 0.54, 1.74,
                    1.2, -1.3, 0.25, 1.49);
   array result[3,3];
   call expmatrix(mat1, 3, result);
   put result=;
quit;

CALL EXPMATRIX Routine 925



Output 25.5 Results from the EXPMATRIX CALL Routine

                                The SAS System                               1

                              The FCMP Procedure

result[1, 1]=365.58043585 result[1, 2]=-589.6358476 result[1, 3]=-897.1034008
result[2, 1]=-507.0874798 result[2, 2]=838.64570481 result[2, 3]=1267.3598426
result[3, 1]=-551.588816 result[3, 2]=858.97629382 result[3, 3]=1324.8187125

CALL FILLMATRIX Routine
Replaces all of the element values of the input matrix with the specified value.

Category: Matrix Operations

Note: You can use the FILLMATRIX CALL routine with multidimensional numeric arrays.

Syntax
CALL FILLMATRIX(X, Y);

Required Arguments
X

specifies an input numeric matrix.

Y
specifies the numeric value that fills the matrix.

Example
The following example uses the FILLMATRIX CALL routine.

options pageno=1 nodate ls=80 ps=64;

proc fcmp;
   array mat1[3, 2] (0.3, -0.78, -0.82, 0.54, 1.74, 1.2);
   call fillmatrix(mat1, 99);
   put mat1=;
quit;

926 Chapter 25 / FCMP Special Functions and Call Routines



Output 25.6 Results from the FILLMATRIX CALL Routine

                                The SAS System                                1

                               The FCMP Procedure

mat1[1, 1]=99 mat1[1, 2]=99 mat1[2, 1]=99 mat1[2, 2]=99 mat1[3, 1]=99
mat1[3, 2]=99

CALL IDENTITY Routine
Converts the input matrix to an identity matrix.

Category: Matrix Operations

Requirement: The input matrix must be square.

Note: Diagonal element values of the matrix are set to 1, and the rest of the values are set to 
0.

Syntax
CALL IDENTITY(X);

Required Argument
X

specifies an input matrix with dimensions m x m (that is, X[m, m]).

Example
The following example uses the IDENTITY CALL routine:

options pageno=1 nodate;

proc fcmp;
   array mat1[3,3] (0.3, -0.78, -0.82, 0.54, 1.74, 1.2,
                     -1.3, 0.25, 1.49);
   call identity(mat1);
   put mat1=;
quit;

CALL IDENTITY Routine 927



Output 25.7 Results from the IDENTITY CALL Routine

                                The SAS System                               1

                              The FCMP Procedure

mat1[1, 1]=1 mat1[1, 2]=0 mat1[1, 3]=0 mat1[2, 1]=0 mat1[2, 2]=1 mat1[2, 3]=0
mat1[3, 1]=0 mat1[3, 2]=0 mat1[3, 3]=1

CALL INV Routine
Calculates a matrix that is the inverse of the provided input matrix that should be a square, non-singular 
matrix.

Category: Matrix Operations

Requirement: Both the input and output matrices must be square and have the same dimensions.

Syntax
CALL INV(X, Y);

Required Arguments
X

specifies an input matrix with dimensions m x m (that is, X[m, m]).

Y
specifies an output matrix with dimensions m x m (that is, Y[m, m]), such that

Y m, m = X′ m, m

where ' denotes inverse

X × Y = Y × X = I

and I is the identity matrix.

Example
The following example uses the INV CALL routine:

options pageno=1 nodate;

proc fcmp;
   array mat1[3,3] (0.3, -0.78, -0.82, 0.54, 1.74,
                    1.2, -1.3, 0.25, 1.49);
   array result[3,3];

928 Chapter 25 / FCMP Special Functions and Call Routines



   call inv(mat1, result);
   put result=;
quit;

Output 25.8 Results from the INV CALL Routine

                                The SAS System                               1

                              The FCMP Procedure

result[1, 1]=4.0460407887 result[1, 2]=1.6892917399 result[1, 3]=0.8661767509
result[2, 1]=-4.173108283 result[2, 2]=-1.092427483 result[2, 3]=-1.416802558
result[3, 1]=4.230288655 result[3, 2]=1.6571719011 result[3, 3]=1.6645841716

CALL MULT Routine
Calculates the multiplicative product of two input matrices.

Category: Matrix Operations

Requirement: The number of columns for the first input matrix must be the same as the number of 
rows for the second matrix.

Syntax
CALL MULT(X, Y, Z);

Required Arguments
X

specifies an input matrix with dimensions m x n (that is, X[m, n]).

Y
specifies an input matrix with dimensions n x p (that is, Y[n, p]).

Z
specifies an output matrix with dimensions m x p (that is, Z[m, p]), such that

Z m, p = X m, n × Y n, p

Example
The following example uses the MULT CALL routine:

options pageno=1 nodate;

proc fcmp;
   array mat1[2,3] (0.3, -0.78, -0.82, 0.54, 1.74, 1.2);

CALL MULT Routine 929



   array mat2[3,2] (1, 0, 0, 1, 1, 0);
   array result[2,2];
   call mult(mat1, mat2, result);
   put result=;
quit;

Output 25.9 Results from the MULT CALL Routine

                                The SAS System                               1

                              The FCMP Procedure

result[1, 1]=-0.52 result[1, 2]=-0.78 result[2, 1]=1.74 result[2, 2]=1.74

CALL POWER Routine
Raises a square matrix to a given scalar value.

Category: Matrix Operations

Restriction: Large scalar values should be avoided because the POWER CALL routine's internal use 
of the matrix multiplication routine might cause numerical precision problems.

Requirement: Both input and output matrices must be square and have the same dimensions.

Syntax
CALL POWER(X, a, Y);

Required Arguments
X

specifies an input matrix with dimensions m x m (that is, X[m, m]).

a
specifies an integer scalar value (power).

Y
specifies an output matrix with dimensions m x m (that is, Y[m, m]), such that

Y = Xa

Details
If the scalar is not an integer, it is truncated to an integer. If the scalar is less than 0, 
then it is changed to 0. For more information, see the SAS/IML User's Guide.

930 Chapter 25 / FCMP Special Functions and Call Routines



Example
The following example uses the POWER CALL routine:

options pageno=1 nodate;

proc fcmp;
   array mat1[3,3] (0.3, -0.78, -0.82, 0.54, 1.74,
                    1.2, -1.3, 0.25, 1.49);
   array result[3,3];
   call power(mat1, 3, result);
   put result=;
quit;

Output 25.10 Results from the POWER CALL Routine

                                The SAS System                               1

                              The FCMP Procedure

result[1, 1]=2.375432 result[1, 2]=-4.299482 result[1, 3]=-6.339638
result[2, 1]=-3.031224 result[2, 2]=6.272988 result[2, 3]=8.979036
result[3, 1]=-4.33592 result[3, 2]=5.775695 result[3, 3]=9.326529

CALL SETNULL Routine
Sets a pointer element of a structure to null.

Category: C Helper

Syntax
CALL SETNULL(pointer-element);

Required Argument
pointer-element

is a pointer to a structure.

Example
The following example assumes that the same LINKLIST structure that is described 
in “Example 1: Generating a Linked List” on page 940 is defined using PROC 
PROTO. The CALL SETNULL routine can be used to set the NEXT element to null:

   struct linklist list;

CALL SETNULL Routine 931



   call setnull(list.next);

CALL STRUCTINDEX Routine
Enables you to access each structure element in an array of structures.

Category: C Helper

Syntax
CALL STRUCTINDEX(structure-array, index, structure-element);

Required Arguments
structure-array

specifies an array.

index
is a 1–based index as used in most SAS arrays.

structure-element
points to an element in the array.

Example
In the first part of this example, the following structures and function are defined by 
using PROC PROTO.

proc proto package=sasuser.mylib.str2;
struct point{
   short s;
   int i;
   long l;
   double d;
};

struct point_array {
   int            length;
   struct point p[2];
   char           name[32];
};
run;

In the second part of this example, the PROC FCMP code segment shows how to 
use the STRUCTINDEX CALL routine to retrieve and set each point structure 
element of an array called P in the POINT_ARRAY structure:

options pageno=1 nodate ls=80 ps=64;

proc fcmp libname=sasuser.mylib;

932 Chapter 25 / FCMP Special Functions and Call Routines



   struct point_array pntarray;
   struct point pnt;

   pntarray.length=2;
   pntarray.name="My funny structure";

   /* Get each element using the STRUCTINDEX CALL routine and set 
values. */
do i=1 to 2;
   call structindex(pntarray.p, i, pnt);
   put "Before setting the" i "element: " pnt=;
   pnt.s=1;
   pnt.i=2;
   pnt.l=3;
   pnt.d=4.5;
   put "After setting the" i "element: " pnt=;
end;
run;

Output 25.11 Results of Setting the Point Structure Elements of an Array

                                 The SAS System                                1

                               The FCMP Procedure

Before setting the 1 element:  pnt {s=0, i=0, l=0, d=0}
After setting the 1 element:  pnt {s=1, i=2, l=3, d=4.5}
Before setting the 2 element:  pnt {s=0, i=0, l=0, d=0}
After setting the 2 element:  pnt {s=1, i=2, l=3, d=4.5}

CALL SUBTRACTMATRIX Routine
Performs an element-wide subtraction of two matrices or a matrix and a scalar.

Category: Matrix Operations

Requirement: All input and output matrices must have the same dimensions.

Syntax
CALL SUBTRACTMATRIX(X, Y, Z);

Required Arguments
X

specifies an input matrix with dimensions m x n (that is, X[m, n]) or a scalar.

Y
specifies an input matrix with dimensions m x n (that is, Y[m, n]) or a scalar.

CALL SUBTRACTMATRIX Routine 933



Z
specifies an output matrix with dimensions m x n (that is, Z[m, n]), such that

Z = X − Y

Example
The following example uses the SUBTRACTMATRIX CALL routine:

options pageno=1 nodate;

proc fcmp;
   array mat1[3,2] (0.3, -0.78, -0.82, 0.54, 1.74, 1.2);
   array mat2[3,2] (0.2, 0.38, -0.12, 0.98, 2, 5.2);
   array result[3,2];
   call subtractmatrix(mat1, mat2, result);
   call subtractmatrix(2, mat1, result);
   put result=;
 quit;

Output 25.12 Results from the SUBTRACTMATRIX CALL Routine

                                The SAS System                               1

                              The FCMP Procedure

result[1, 1]=1.7 result[1, 2]=2.78 result[2, 1]=2.82 result[2, 2]=1.46
result[3, 1]=0.26 result[3, 2]=0.8

CALL TRANSPOSE Routine
Returns the transpose of a matrix.

Category: Matrix Operations

Syntax
CALL TRANSPOSE(X, Y);

Required Arguments
X

specifies an input matrix with dimensions m x n (that is, X[m, n]).

Y
specifies an output matrix with dimensions n x m (that is, Y[n, m])

934 Chapter 25 / FCMP Special Functions and Call Routines



Details
Y = X′

Note that the number of rows for the input matrix should be equal to the number of 
columns of the output matrix, and the number of rows for the output matrix should 
be equal to the number of columns of the input matrix.

Example
The following example uses the TRANSPOSE CALL routine:

options pageno=1 nodate;

proc fcmp;
   array mat1[3,2] (0.3, -0.78, -0.82, 0.54, 1.74, 1.2);
   array result[2,3];
   call transpose(mat1, result);
   put result=;
quit;

Output 25.13 Results from the TRANSPOSE CALL Routine

                                The SAS System                               1

                              The FCMP Procedure

result[1, 1]=0.3 result[1, 2]=-0.82 result[1, 3]=1.74 result[2, 1]=-0.78
result[2, 2]=0.54 result[2, 3]=1.2

CALL ZEROMATRIX Routine
Replaces all of the element values of the numeric input matrix with 0.

Category: Matrix Operations

Note: You can use the ZEROMATRIX CALL routine with multi-dimensional numeric arrays.

Syntax
CALL ZEROMATRIX(X);

Required Argument
X

specifies a numeric input matrix.

CALL ZEROMATRIX Routine 935



Example
The following example uses the ZEROMATRIX CALL routine:

options pageno=1 nodate;

proc fcmp;
   array mat1[3,2]  (0.3, -0.78, -0.82, 0.54, 1.74, 1.2);
   call zeromatrix(mat1);
   put mat1=;
quit;

Output 25.14 Results from the ZEROMATRIX CALL Routine

                                 The SAS System                                1

                               The FCMP Procedure

mat1[1, 1]=0 mat1[1, 2]=0 mat1[2, 1]=0 mat1[2, 2]=0 mat1[3, 1]=0 mat1[3,
2]=0

INVCDF Function
Computes the quantile from any distribution for which you have defined a cumulative distribution function 
(CDF).

Category: Special Purpose Functions

Notes: INVCDF is a special purpose function that is automatically provided by the FCMP 
procedure for your convenience.
If you specify a probability p for a distribution with CDF denoted by F(x; <parameters>), 
then the INVCDF function returns a quantile q that satisfies F(q;<parameters>) = p. In 
other words, q=F–1(p).

Syntax
quantile=INVCDF('CDF-function-name', options-array, cumulative-probability,

parameter-1 <, parameter-2, ...>);

Required Arguments
quantile

specifies the quantile that is returned from the INVCDF function.

'CDF-function-name'
specifies the name of the CDF function. Enclose CDF-function-name in quotation 
marks.

936 Chapter 25 / FCMP Special Functions and Call Routines



Requirement CDF-function-name must be a function defined using the FCMP 
procedure. It must have a signature as follows:

function <CDF-function-name> (x, parameter-1 <, parameter-2, …>);

endsub;

Note It is recommended that the CDF be a continuous function. For 
discrete CDF, the INVCDF function might not be able to compute the 
quantile.

options-array
specifies an array of options to use with the INVCDF function. Options-array is 
used to control and monitor the process of inverting the CDF. Options-array can 
be a missing value (.), or it can have up to four of the following elements in the 
following order:

initial-value
specifies the initial guess for the quantile at which the inversion process 
starts. This is useful when you have an idea of the approximate value for 
quantile (for example, from the empirical estimate of the CDF).

Default 0.1

desired-accuracy
specifies the desired relative accuracy of the quantile. You can specify any 
value in the range (0,0.1). If you specify a smaller value, the result is a more 
accurate estimate of the quantile, but it might take longer to invert the CDF.

Default 1.0e-8

domain-type
specifies the domain for the CDF function. A missing value or a value of 0 
indicates a nonnegative support, that is [0,∞). Any other value indicates a 
support over the entire real line, that is (-∞,∞).

Default 0

return-code
specifies the return status. If options-array is of dimension 4 or more, then the 
fourth element contains the return status. Return-code can have one of the 
following values:

<=0
indicates success. If negative, then the absolute value is the number of 
times the CDF function was evaluated in order to compute the quantile. A 
larger absolute value indicates longer convergence time.

1
indicates that the quantile could not be computed.

cumulative-probability
specifies the cumulative probability value for which the quantile is desired.

Range [0,1)

parameter
specifies the parameters of the distribution at which the quantile is desired. You 
must specify exactly the same number of parameters as required by the 

INVCDF Function 937



specified CDF function, and they should appear exactly in the same order as 
required by the specified CDF function.

Details
The INVCDF function finds the quantile for the specified cumulative probability from 
a distribution whose cumulative distribution function is specified by the CDF-
function-name argument. In other words, it inverts the CDF function such that the 
following expression is true:

cumulative-probability = CDF-function-name(quantile,<parameters>)

If ε denotes the desired accuracy of the quantile for cumulative probability p, then 
INVCDF attempts to compute the quantile q such that |p − F(q) | < εp, where F(x) 
denotes the CDF evaluated at x.

You can control the inversion process with various options. Here is an example of 
an options array:

array opts[4] initial epsilon support (1.5 1.0e-6 0);

These values refer to the preceding line of code:

initial(initial-value)=1.5

epsilon(desired-accuracy)=1.0e-6

support(domain-type)=0

You can examine the return status of the function by checking opts[4].

Comparisons
You can regard this function as a generic extension of the QUANTILE function, 
which computes quantiles only from specific distributions. The INVCDF function 
enables you to compute quantiles from any continuous distribution as long as you 
can programmatically define that distribution’s CDF function. Unlike the QUANTILE 
function, this function cannot be used directly in a DATA step. It only can be used 
inside the definition of an FCMP function or subroutine. However, this is not a 
limitation because you can invoke the FCMP function that uses it from a DATA step. 
See the following example.

Example: Generating a Random Sample 
from an Exponential Distribution
The following example demonstrates how you can generate a random sample from 
any parametric distribution in a DATA step using the INVCDF function. The example 
uses the exponential distribution for illustration, but it can be extended to any 
distribution for which you can programmatically define a CDF function. The following 
statements define an FCMP function EXP_QUANTILE that uses the INVCDF 
function and the CDF function to compute a quantile from the exponential 
distribution.

938 Chapter 25 / FCMP Special Functions and Call Routines



proc fcmp library=work.mycdf outlib=work.myquantile.functions;
   function exp_quantile(cdf, theta, rc);
      outargs rc;
      array opts[4] / nosym(0.1 1.0e-8 .);
      q=invcdf("exp_cdf", opts, cdf, theta);
      rc=opts[4];  /* return code */
      return(q);
   endsub;
quit;

The preceding code assumes that you have stored the definition of the EXP_CDF 
function in an FCMP library called Work.Mycdf using a PROC FCMP step as 
follows:

proc fcmp outlib=work.mycdf.functions;
   function exp_cdf(x, theta);
      return(1.0 - exp(-x/Theta));
   endsub;
quit;

Now you can invoke the EXP_QUANTILE function from a DATA step to generate a 
random sample from the exponential distribution with a scale parameter (theta) that 
has a value of 50. Note that the locations of the EXP_CDF and EXP_QUANTILE 
functions need to be specified with the appropriate value for the CMPLIB= option 
before you execute the DATA step:

options cmplib=(work.mycdf work.myquantile);

data exp_sample(keep=q);
   n=0;k=0;
   do k=1 to 500;
      if (n=100) then leave;
      rcode=.;
      q=exp_quantile(rand('UNIFORM'), 50, rcode);
      if (rcode <= 0) then do;
         n=n+1;
         output;
      end;
   end;
run;

ISNULL Function
Determines whether a pointer element of a structure is null.

Category: C Helper

Syntax
numeric-variable = ISNULL (pointer-element);

ISNULL Function 939



Required Arguments
numeric-variable

specifies a numeric value.

pointer-element
specifies a variable that contains the address of another variable.

Examples

Example 1: Generating a Linked List
In the following example, the LINKLIST structure and GET_LIST function are 
defined by using PROC PROTO. The GET_LIST function is an external C routine 
that generates a linked list with as many elements as requested.

struct linklist{
   double value;
   struct linklist * next;
};

struct linklist * get_list(int);

Example 2: Using the ISNULL C Helper Function in 
a Loop
The following code segment shows that the ISNULL C helper function loops over 
the linked list that is created by GET_LIST and writes out the elements.

proc proto package=sasuser.mylib.str2;
struct linklist{
   double value;
   struct linklist * next;
};

struct linklist * get_list(int);

externc get_list;
   struct linklist * get_list(int len){
      int i;
      struct linklist * list=0;
      list=(struct linklist*)
         malloc(len*sizeof(struct linklist));
      for (i=0;i<len-1;i++){
         list[i].value=i;
         list[i].next=&list[i+1];
      }
      list[i].value=i;
      list[i].next=0;
      return list;
   }
externcend;

940 Chapter 25 / FCMP Special Functions and Call Routines



run;

options pageno=1 nodate ls=80 ps=64;
proc fcmp libname=sasuser.mylib;
   struct linklist list;
   list=get_list(3);
   put list.value=;

   do while (^isnull(list.next));
      list=list.next;
      put list.value=;
   end;
run;

Output 25.15 Results from Using the ISNULL C Helper Function

                                 The SAS System                                1

                               The FCMP Procedure

list.value=0
list.value=1
list.value=2

LIMMOMENT Function
Computes the limited moment of any distribution for which you have defined a cumulative distribution 
function (CDF).

Category: Special Purpose Functions

Notes: LIMMOMENT is a special purpose function that is automatically provided by the FCMP 
procedure for your convenience.
If you specify order k and upper limit u, then the LIMMOMENT function computes the 
limited moment as E[min(X,u)k], where E denotes an expectation taken over the 
distribution of a random variable X that is defined by the specified CDF function.

Syntax
imom=LIMMOMENT('CDF-function-name', options-array, order, limit,

parameter-1 <, parameter-2, ...>);

Required Arguments
imom

specifies the limited moment that is returned from the LIMMOMENT function.

LIMMOMENT Function 941



'CDF-function-name'
specifies the name of the CDF function. Enclose CDF-function-name in quotation 
marks.

Requirement CDF-function-name must be a function defined using the FCMP 
procedure. It must have a signature as follows:

function <CDF-function-name> (x, parameter-1 <, parameter-2, …>);

endsub;

Note It is recommended that the CDF be a continuous function. For 
discrete CDF, the LIMMOMENT function might not be able to 
compute the limited moment.

options-array
specifies an array of options to use with the LIMMOMENT function. Options-
array is used to control and monitor the process of numerical integration used to 
compute the limited amount. Options-array can be a missing value (.), or it can 
have up to four of the following elements in the following order:

desired-accuracy
specifies the desired accuracy of the numerical integration. You can specify 
any value in the range (0,0.1). If you specify a smaller value, the result is a 
more accurate estimate of the moment, but it takes longer to compute the 
desired-accuracy.

Default 1.0e-8

initial-step-size
specifies the step size that is used initially by the numerical integration 
process. An increase in the value results in a linear decrease in the number 
of times the integrand is evaluated. Typically, using the default value of 1 
produces good results.

Default 1

maximum-iterations
specifies the maximum number of iterations that are used to refine the 
integration result in order to achieve the desired accuracy. An increase in this 
value results in an exponential increase in the number of times the integrand 
is evaluated.

Default 8

return-code
specifies the return status. If options-array is of dimension 4 or more, then the 
fourth element contains the return status. Return-code can have one of the 
following values:

<=0
indicates success. If negative, then the absolute value is the number of 
times the integrand function was evaluated in order to compute the limited 
moment. A larger absolute value indicates longer convergence time.

1
indicates that the limited moment could not be computed.

order
specifies the order of the desired limited moment.

942 Chapter 25 / FCMP Special Functions and Call Routines



Range [1,10]

limit
specifies the upper limit that is used to compute the desired limited moment.

Requirement The value of limit must be greater than 0.

parameter
specifies the parameters of the distribution at which the limited moment is 
desired. You must specify exactly the same number of parameters as required 
by the specified CDF function, and they should appear exactly in the same order 
as required by the specified CDF function.

Details
Let a random variable X have a probability distribution with probability density 
function f(x;θ) and cumulative distribution function F(x;θ), where θ denotes the 
parameters of the distribution. For a specified upper limit u, the kth–order limited 
moment of this distribution is defined as follows:

E[(X ∧ u)k] = ∫0
uxk f (x)dx + uk∫u

∞ f (x)dx = ∫0
uxk f (x)dx + uk(1 − F(u))

The LIMMOMENT function uses the following alternate expression:

E[(X ∧ u)k] = k∫0
uxk − 1[1 − F(x)]dx

Because the expression needs only F(x), you need to specify only the CDF function 
for the distribution. Limited moments are often used in insurance applications to 
compute the maximum amount expected to be paid if the policy limit is set at a 
certain value.

You can control the numerical integration process with various options. Here is an 
example of an options array:

array opts[4] epsilon initial maxiter (1.0e-5 1 6);

These values refer to the preceding line of code.

epsilon(desired-accuracy)=1.0e-5

initial(initial-step)=1

maxiter(maximum-iterations)=6

You can examine the return status of the function by checking opts[4].

Example: Computing a Limited Moment for 
a Lognormal Distribution
This example demonstrates how you can compute the limited moment for any 
parametric distribution in a DATA step using the LIMMOMENT function. The 
example uses the lognormal distribution for illustration, but it can be extended to any 
distribution for which you can programmatically define a CDF function. The following 

LIMMOMENT Function 943



statements define an FCMP function LOGN_LIMMOMENT that uses the 
LIMMOMENT function and the CDF function to compute limited moments from the 
lognormal distribution:

proc fcmp library=work.mycdf outlib=work.mylimmom.functions;
        function logn_limmoment(order, limit, mu, sigma, rc);
            outargs rc;
            array opts[4] / nosym (1.0e-8 . . .);
    
            m=limmoment("logn_cdf", opts, order, limit, mu, sigma);
            rc=opts[4]; /* return code */

            return(m);
        endsub;
    quit;

The preceding code assumes that you have stored the definition of the LOGN_CDF 
function in an FCMP library called Work.Mycdf using a PROC FCMP step as 
follows:

proc fcmp outlib=work.mycdf.functions;
        function logn_cdf(x, Mu, Sigma);
            if (x >= constant('MACEPS')) then do;
                z=(log(x) - Mu)/Sigma;
                return(CDF('NORMAL',z));
            end;
            return (0);
        endsub;
    quit;

You can now invoke the LOGN_LIMMOMENT function from a DATA step as shown 
below. Note that the location of the LOGN_CDF and LOGN_LIMMOMENT functions 
must be specified with an appropriate value for the CMPLIB= option before you 
execute the DATA step:

options cmplib=(work.mycdf work.mylimmom);

    data _null_;
        do order=1 to 3;
            rcode=.;
            m=logn_limmoment(order, 100, 5, 0.5, rcode);
            if (rcode > 0) then
                put "ERROR: Limited moment could not be computed.";
            else
                put 'Moment of order ' order ' with limit 100 = ' m;
        end;
    run;

READ_ARRAY Function
Reads data from a SAS data set into a PROC FCMP array variable.

Category: Array

944 Chapter 25 / FCMP Special Functions and Call Routines



Syntax
rc = READ_ARRAY(data_set_name, array_variable <, 'column_name_1', 
'column_name_2' , ... >);

Required Arguments
rc

is 0 if the function is able to successfully read the data set.

data_set_name
specifies the name of the data set from which the array data is read. 
Data_set_name must be a character literal or variable that contains the member 
name (libname.memname) of the data set to be read from.

array_variable
specifies the PROC FCMP array variable into which the data is read. 
Array_variable must be a local temporary array variable because the function 
might need to grow or shrink its size to accommodate the size of the data set.

Optional Argument
column_name

specifies optional names for the specific columns of the data set that are read.

If specified, column_name must be a literal string enclosed in quotation marks. 
Column_name cannot be a PROC FCMP variable. If column names are not 
specified, PROC FCMP reads all of the columns in the data set.

Details
When SAS translates between an array and a data set, the array is indexed as 
[row,column].

Arrays that are declared in functions and CALL routines can be resized, as well as 
arrays that are declared with the /NOSYMBOLS option. No other arrays can be 
resized.

The READ_ARRAY function attempts to dynamically resize the array to match the 
dimensions of the input data set. This means that the array must be dynamic. That 
is, the array must be declared either in a function or CALL routine or declared with 
the /NOSYMBOLS option.

Example
This example creates and reads a SAS data set into an FCMP array variable.

options nodate pageno=1;

data account;
   input acct price cost;

READ_ARRAY Function 945



   datalines;
1 2 3
4 5 6
;
run;

proc fcmp;
   array x[2,3] / nosymbols;
   rc=read_array('account',x);
   put x=;
run;

proc fcmp;
   array x[2,2] / nosymbols;
   rc=read_array('account', x, 'price', 'acct');
   put x=;
run;

Output 25.16 Results from the READ_ARRAY Function

                                 The SAS System                                1

                               The FCMP Procedure

x[1, 1]=1 x[1, 2]=2 x[1, 3]=3 x[2, 1]=4 x[2, 2]=5 x[2, 3]=6

                                 The SAS System                                2

                               The FCMP Procedure

x[1, 1]=2 x[1, 2]=1 x[2, 1]=5 x[2, 2]=4

RUN_MACRO Function
Executes a predefined SAS macro.

Category: Calling SAS Code from within Functions

Note: The behavior of this function is similar to executing %macro_name; in SAS.

Syntax
rc = RUN_MACRO ('macro_name' <, variable_1, variable_2, ...>);

946 Chapter 25 / FCMP Special Functions and Call Routines



Required Arguments
rc

is 0 if the function is able to submit the macro. The return code indicates only 
that the macro call was attempted. The macro itself should set the value of a 
SAS macro variable that corresponds to a PROC FCMP variable to determine 
whether the macro executed as expected.

macro_name
specifies the name of the macro to be run.

Requirement Macro_name must be a string enclosed in quotation marks or a 
character variable that contains the macro to be executed.

Optional Argument
variable

specifies optional PROC FCMP variables, which are set by macro variables of 
the same name. These arguments must be PROC FCMP double or character 
variables.

Before SAS executes the macro, SAS macro variables are defined with the 
same name and value as the PROC FCMP variables. After SAS executes the 
macro, the macro variable values are copied back to the corresponding PROC 
FCMP variables.

Examples

Example 1: Executing a Predefined Macro with 
PROC FCMP
This example creates a macro called %TESTMACRO, and then uses the macro 
within PROC FCMP to subtract two numbers.

     /* Create a macro called %TESTMACRO. */
%macro testmacro;
   %let p=%sysevalf(&a - &b);
%mend testmacro;

    /* Use %TESTMACRO within a function in PROC FCMP to subtract two 
numbers. */
proc fcmp outlib=sasuser.ds.functions;
   function subtract_macro(a, b);
      rc=run_macro('testmacro', a, b, p);
      if rc eq 0 then return(p);
      else return(.);
   endsub;
run;

   /* Make a call from the DATA step. */
option cmplib=(sasuser.ds);

RUN_MACRO Function 947



data _null_;
   a=5.3;
   b=0.7;
   p=.;
   p=subtract_macro(a, b);
   put p=;
run;

Example Code 25.1 Results from Executing a Predefined Macro with PROC FCMP

p=4.6

Example 2: Comparing Results from the 
RUN_MACRO and the DOSUBL Functions
This example creates the %TESTMACRO macro, and compares how the DOSUBL 
function invokes the same %TESTMACRO as RUN_MACRO. In the RUN_MACRO 
invocation, all variables are passed as arguments so that they can be set. In the 
DOSUBL invocation, all macro variables are imported to the code to be executed, 
then exported on completion. The macro variables &a and &b are made available to 
%TESTMACRO and the macro variable &p is made available to the caller of 
DOSUBL. For more information, see “DOSUBL Function” in SAS Functions and 
CALL Routines: Reference.

    /* Create a macro called %TESTMACRO. */
%macro testmacro;
   %let p=%sysevalf(&a - &b);
%mend testmacro;

    /* Use %TESTMACRO within a function in PROC FCMP to subtract two 
numbers. */
proc fcmp outlib=sasuser.ds.functions;
   function subtract_macro(a, b);
      rc=run_macro('testmacro', a, b, p);
      if rc eq 0 then return(p);
      else return(.);
   endsub;
run;

   /* Make a call from the DATA step. */
option cmplib=(sasuser.ds);

data _null_;
   a=5.3;
   b=0.7;
   p=.;
   p=subtract_macro(a, b);
   put p= '(RUN_MACRO function and a DATA step)';
run;

%global a b p;
%put p=&p;
    /* The value should not yet be known. */
   %let a=5.3;

948 Chapter 25 / FCMP Special Functions and Call Routines

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p09dcftd1xxg1kn1brnjyc0q93yk.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p09dcftd1xxg1kn1brnjyc0q93yk.htm&locale=en


   %let b=0.7;
data _null_;
   rc=dosubl('%testmacro');
   run;
%put p=&p (DOSUBL function);

Example Code 25.2 Results from the RUN_MACRO and the DOSUBL Functions

p=4.6 (RUN_MACRO function and a DATA step)
p=4.6 (DOSUBL function)

Example 3: Executing a DATA Step within a DATA 
Step
This example shows how to execute a DATA step from within another DATA step. 
The program consists of the following sections:

n The first section of the program creates a macro called APPEND_DS. This 
macro can write to a data set or append a data set to another data set.

n The second section of the program calls the macro from function writeDataset in 
PROC FCMP.

n The third section of the program creates the SALARIES data set and divides the 
data set into four separate data sets depending on the value of the variable 
Department.

n The fourth section of the program writes the results to the output window.

   /* Create a macro called APPEND_DS. */
%macro append_ds;
   /* Character values that are passed to RUN_MACRO are put            
*/
   /* into their corresponding macro variables inside of quotation     
*/
   /* marks. The quotation marks are part of the macro variable value. 
*/
   /* The DEQUOTE function is called to remove the quotation marks.    
*/
   %let dsname=%sysfunc(dequote(&dsname));
   data &dsname;
      %if %sysfunc(exist(&dsname)) %then %do;
         modify &dsname;
      %end;
      Name=&Name;
      WageCategory=&WageCategory;
      WageRate=&WageRate;
      output;
      stop;
   run;
%mend append_ds;

   /* Call the APPEND_DS macro from function writeDataset in PROC 
FCMP. */
proc fcmp outlib=sasuser.ds.functions;
   function writeDataset (DsName $, Name $, WageCategory $, WageRate);
      rc=run_macro('append_ds', DsName, Name, WageCategory, WageRate);
      return(rc);

RUN_MACRO Function 949



   endsub;
run;

   /* Use the DATA step to separate the salaries data set into four 
separate */
   /* departmental data sets (NAD, DDG, PPD, and 
STD).                       */
data salaries;
   input Department $ Name $ WageCategory $ WageRate;
   datalines;
BAD Carol Salaried 20000
BAD Beth Salaried 5000
BAD Linda Salaried 7000
BAD Thomas Salaried 9000
BAD Lynne Hourly 230
DDG Jason Hourly 200
DDG Paul Salaried 4000
PPD Kevin Salaried 5500
PPD Amber Hourly 150
PPD Tina Salaried 13000
STD Helen Hourly 200
STD Jim Salaried 8000
;
run;

options cmplib=(sasuser.ds) pageno=1 nodate;
data _null_;
   set salaries;
   by Department;
   length dsName $ 64;
   retain dsName;
   if first.Department then do;
      dsName='work.' || trim(left(Department));
   end;
   rc=writeDataset(dsName, Name, WageCategory, wageRate);
run;

proc print data=work.BAD; run;
proc print data=work.DDG; run;
proc print data=work.PPD; run;
proc print data=work.STD; run;

Output 25.17 Results for Calling a DATA Step within a DATA Step

                                         The SAS System                         
                                                                     1

                                                  Wage       Wage
                               Obs     Name     Category     Rate

                                1     Carol     Salaried    20000
                                2     Beth      Salaried     5000
                                3     Linda     Salaried     7000
                                4     Thomas    Salaried     9000
                                5     Lynne     Hourly        230

950 Chapter 25 / FCMP Special Functions and Call Routines



                                         The SAS System                         
                                                                     2

                                                  Wage      Wage
                                Obs    Name     Category    Rate

                                 1     Jason    Hourly       200
                                 2     Paul     Salaried    4000

                                         The SAS System                         
                                                                     3

                                                  Wage       Wage
                                Obs    Name     Category     Rate

                                 1     Kevin    Salaried     5500
                                 2     Amber    Hourly        150
                                 3     Tina     Salaried    13000

                                         The SAS System                         
                                                                      4

                                                  Wage      Wage
                                Obs    Name     Category    Rate

                                 1     Helen    Hourly       200
                                 2     Jim      Salaried    8000

RUN_SASFILE Function
Executes SAS code in a fileref that you specify.

Category: Calling SAS Code from within Functions

Syntax
rc = RUN_SASFILE ('fileref_name' <, variable-1, variable-2, ...>);

Required Arguments
rc

is 0 if the function is able to submit a request to execute the code that processes 
the SAS file. The return code indicates only that the call was attempted.

fileref_name
specifies the name of the SAS fileref that points to the SAS code.

RUN_SASFILE Function 951



Requirement Fileref_name must be a string enclosed in quotation marks or a 
character variable that contains the name of the SAS fileref.

Optional Argument
variable

specifies optional PROC FCMP variables that are set by macro variables of the 
same name. These arguments must be PROC FCMP double or character 
variables.

Before SAS executes the code that references the SAS file, the SAS macro 
variables are defined with the same name and value as the PROC FCMP 
variables. After execution, these macro variable values are copied back to the 
corresponding PROC FCMP variables.

Example
The following example is similar to the first example for RUN_MACRO except that 
RUN_SASFILE uses a SAS file instead of a predefined macro. This example 
assumes that test.sas(a, b, c) is located in the current directory.

      /* test.sas(a,b,c) */
data _null_;
   call symput('p', &a * &b);
run;

   /* Set a SAS fileref to point to the data set. */
filename myfileref "test.sas";

   /* Set up a function in PROC FCMP and call it from the DATA step. */
proc fcmp outlib=sasuser.ds.functions;
   function subtract_sasfile(a, b);
   rc=run_sasfile('myfileref', a, b,
p);
   if rc=0 then return(p);
      else return(.);
   endsub;
run;

options cmplib=(sasuser.ds);
data _null_;
   a=5.3;
   b=0.7;
   p=.;
   p=subtract_sasfile(a, b);
   put p=;
run;

952 Chapter 25 / FCMP Special Functions and Call Routines



SOLVE Function
Computes implicit values of a function using the Gauss-Newton method.

Category: Compute Implicit Values

Note: This special purpose function is automatically provided by the FCMP procedure for 
convenience.

Syntax
answer = SOLVE('function-name', options-array, expected-value,
argument-1 <, argument-2, ...>);

Required Arguments
answer

specifies the value that is returned from the SOLVE function.

'function-name'
specifies the name of the function. Enclose function-name in quotation marks.

options-array
specifies an array of options to use with the SOLVE function. Options-array is 
used to control and monitor the root-finding process. Options-array can be a 
missing value (.), or it can have up to five of the following elements in the 
following order:

initial-value
specifies the starting value for the implied value. The default for the first call 
is 0.001. If the same line of code is executed again, then options-array uses 
the previously found implied value.

absolute-criterion
specifies a value for convergence. The absolute value of the difference 
between the expected value and the predicted value must be less than the 
value of absolute-criterion for convergence.

Default 1.0e–12

relative-criterion
specifies a value for convergence. If the change in the computed implied 
value is less than the value of relative-criterion, then convergence is 
assumed.

Default 1.0e–6

maximum-iterations
specifies the maximum number of iterations to use to find the solution.

Default 100

SOLVE Function 953



solve-status
can be one of the following values:

0 successful.

1 could not decrease the error.

2 could not compute a change vector.

3 maximum number of iterations exceeded.

4 initial objective function is missing.

expected-value
specifies the expected value of the function of interest.

argument
specifies the arguments to pass to the function that is being minimized.

Details
The SOLVE function finds the value of the specified argument that makes the 
expression of the following form equal to zero.

expected-value - function-name
(argument-1, argument-2, ...)

You specify the argument of interest with a missing value (.), which appears in place 
of the argument in the parameter list that is shown above. If the SOLVE function 
finds the value, then the value that is returned for this function is the implied value.

Here is an example of an options array:

array opts[5] initial abconv relconv maxiter (.5 .001 1.0e-6 100);

These values refer to the preceding line of code.

n initial (initial-value)=.5

n abconv (absolute-criterion)=.001

n relconv (relative-criterion)=1.0e-6

n maxiter (maximum-iterations)=100

The solve status is the fifth element in the array. You can display this value by 
specifying opts[5] in the output list.

Examples

Example 1: Computing a Square Root Value
The following SOLVE function example computes a value of x that satisfies the 
equation y=1/sqrt(x). Note that you must first define functions and subroutines 
before you can use them in the SOLVE function. In this example, the function 
INVERSESQRT is first defined and then used in the SOLVE function.

options pageno=1 nodate ls=80 ps=64;

954 Chapter 25 / FCMP Special Functions and Call Routines



proc fcmp;
      /* define the function */
   function inversesqrt(x);
      return(1/sqrt(x));
   endsub;

   y=20;
   x=solve("inversesqrt", {.}, y, .);
   put x;
run;

Output 25.18 Results from Computing a Square Root Value

                                 The SAS System                                1

                               The FCMP Procedure

0.0025

Example 2: Calculating the Garman-Kohlhagen 
Implied Volatility
In this example, the subroutine GKIMPVOL calculates the Garman-Kohlhagen 
implied volatility for FX options by using the SOLVE function with the GARKHPRC 
function.

In this example, note the following:

n The options_array is SOLVOPTS, which requires an initial value.

n The expected value is the price of the FX option.

n The missing argument in the subroutine is the volatility (sigma).

proc fcmp;
   function garkhprc(type$, buysell$, amount, E, t, S, rd, rf, sig)
      kind=pricing label='FX option pricing';

   if buysell='Buy' then sign=1.;
   else do;
      if buysell='Sell' then sign=-1.;
      else sign=.;
   end;

   if type='Call' then
      garkhprc=sign*amount*(E+t+S+rd+rf+sig);
   else do;
      if type='Put' then
         garkhprc=sign*amount*(E+t+S+rd+rf+sig);
      else garkhprc=.;
   end;
   return(garkhprc);
   endsub;

   subroutine gkimpvol(n, premium[*], typeflag[*], amt_lc[*],

SOLVE Function 955



                       strike[*], matdate[*], valudate, xrate,
                       rd, rf, sigma);
   outargs sigma;

   array solvopts[1] initial (0.20);
   sigma=0;
   do i=1 to n;
      maturity=(matdate[i] - valudate) / 365.25;
      stk_opt=1./strike[i];
      amt_opt=amt_lc[i] * strike[i];
      price=premium[i] * amt_lc[i];

      if typeflag[i] eq 0 then type="Call";
      if typeflag[i] eq 1 then type="Put";

         /* solve for volatility */
      sigma=sigma + solve("GARKHPRC", solvopts, price,
                            type, "Buy", amt_opt, stk_opt,
                            maturity, xrate, rd, rf, .);
   end;
   sigma=sigma / n;
endsub;
run;

Example 3: Calculating the Black-Scholes Implied 
Volatility
This SOLVE function example defines the function BLKSCH by using the built-in 
SAS function BLKSHCLPRC. The SOLVE function uses the BLKSCH function to 
calculate the Black-Scholes implied volatility of an option.

In this example, note the following:

n The options_array is OPTS.

n The missing argument in the function is the volatility (VOLTY).

n PUT statements are used to write the implied volatility (BSVOLTY), the initial 
value, and the solve status.

options pageno=1 nodate ls=80 ps=64;

proc fcmp;
   opt_price=5;
   strike=50;
   today='20jul2010'd;
   exp='21oct2010'd;
   eq_price=50;
   intrate=.05;
   time=exp - today;
   array opts[5] initial abconv relconv maxiter status
                 (.5 .001 1.0e-6 100 -1);
   function blksch(strike, time, eq_price, intrate, volty);
      return(blkshclprc(strike, time/365.25,
                        eq_price, intrate, volty));
   endsub;
   bsvolty=solve("blksch", opts, opt_price, strike,

956 Chapter 25 / FCMP Special Functions and Call Routines



                             time, eq_price, intrate, .);

   put 'Option Implied Volatility:' bsvolty
       'Initial value: ' opts[1]
       'Solve status: ' opts[5];
run;

Output 25.19 Results of Calculating the Black-Scholes Implied Volatility

                                 The SAS System                                1

                               The FCMP Procedure

Option Implied Volatility: 0.4687011859 Initial value:  0.5 Solve status:  0

Note: SAS functions and external C functions cannot be used directly in the SOLVE 
function. They must be enclosed in a PROC FCMP function. In this example, the 
built-in SAS function BLKSHCLPRC is enclosed in the PROC FCMP function 
BLKSCH, and then BLKSCH is called in the SOLVE function.

WRITE_ARRAY Function
Writes data from a PROC FCMP array variable to a data set that can then be used by SAS programs, 
macros, and procedures.

Category: Array

Note: When SAS translates between an array and a data set, the array is indexed as [row, 
column].

Syntax
rc = WRITE_ARRAY(data_set_name, array_variable <, 'column_name_1', 
'column_name_2', ...>);

Required Arguments
rc

is 0 if the function is able to successfully write the data set.

data_set_name
specifies the name of the data set to which the array data is written. 
Data_set_name must be a character literal or variable that contains the member 
name (libname.memname) of the data set to be created.

array_variable
specifies the PROC FCMP array or matrix variable whose contents are written to 
data_set_name.

WRITE_ARRAY Function 957



Optional Argument
column_name

specifies optional names for the columns of the data set that are created.

If specified, column_name must be a literal string enclosed in quotation marks. 
Column_name cannot be a PROC FCMP variable. If column names are not 
specified, the column name is the array name with a numeric suffix.

Examples

Example 1: Using the WRITE_ARRAY Function with 
a PROC FCMP Array Variable
This example uses the ARRAY statement and the WRITE_ARRAY function with 
PROC FCMP to write output to a data set.

options nodate pageno=1 ls=80 ps=64;

proc fcmp;
   array x[4,5] (11 12 13 14 15 21 22 23 24 25 31 32 33 34 35 41 42 43 
44 45);
   rc=write_array('work.numbers', x);
run;

proc print data=work.numbers;
run;

Output 25.20 Results from Using the WRITE_ARRAY Function

                         The SAS System                                       1
                    Obs    x1    x2    x3    x4    x5

                        1     11    12    13    14    15
                        2     21    22    23    24    25
                        3     31    32    33    34    35
                        4     41    42    43    44    45

Example 2: Using the WRITE_ARRAY Function to 
Specify Column Names
This example uses the optional colN variable to write column names to the data set.

options pageno=1 nodate ps=64 ls=80;

proc fcmp;
   array x[2,3] (1 2 3 4 5 6);
   rc=write_array('numbers2', x, 'col1', 'col2', 'col3');
run;

proc print data=numbers2;

958 Chapter 25 / FCMP Special Functions and Call Routines



run;

Output 25.21 Results from Using the WRITE_ARRAY Function to Specify Column Names

                             The SAS System                                1

                          Obs    col1    col2    col3

                           1       1       2       3
                           2       4       5       6

WRITE_ARRAY Function 959



960 Chapter 25 / FCMP Special Functions and Call Routines



26
FCmp Function Editor

Introduction to the FCmp Function Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 961

Open the FCmp Function Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 962

Working with Existing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
Open a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 963
Opening Multiple Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965
Move a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966
Close a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967
Duplicate a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 967
Rename a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968
Delete a Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968

Creating a New Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 968

Displaying New Libraries in the FCmp Function Editor . . . . . . . . . . . . . . . . . . . . . . . . 971

Viewing the Log Window, Function Browser, and Data Explorer . . . . . . . . . . . . . . . 971
Log Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 971
Tabs and Buttons in the Log Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 972
Function Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
Data Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974

Using Functions in Your DATA Step Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975

Introduction to the FCmp Function Editor
SAS language functions and CALL routines that are created with PROC FCMP are 
stored in SAS data sets that are contained in package declarations. Each package 
declaration contains one or more functions or CALL routines. The FCmp Function 
Editor displays all of the functions and CALL routines that are included in a 
package.

With the FCmp Function Editor, you can view functions in a package declaration as 
well as create new functions. You can add these new functions to an existing 
package, or create a new package declaration.

961



Open the FCmp Function Editor
If you are working in the Windows operating environment and SAS is installed 
locally on your computer, the sign-on dialog box is bypassed because Windows 
supports single sign-on functionality.

If you are not working in the Windows operating environment, or if SAS is not 
installed locally, then you are prompted for your authorization credentials, which are 
your user ID and password.

To open the FCmp Function Editor, select Solutions ð Analysis ð FCmp 
Function Editor from the menu in your SAS session. The following dialog box 
appears:

Figure 26.1 Initial Dialog Box for the FCmp Function Editor

After you enter your user ID and password and click Log On, SAS establishes a 
connection to a port. A window that displays your libraries appears:

962 Chapter 26 / FCmp Function Editor



Figure 26.2 The FCmp Function Editor with Libraries Displayed

In the window above, you can see that the left pane lists the functions that are in the 
SASHELP and SASUSER libraries. The WORK library is empty. You cannot access 
the WORK library directly from a spawning SAS session. The FCmp Function Editor 
remaps the WORK library from the spawning SAS session to the location of 
OLD_WORK so that you can access the contents of WORK from OLD_WORK.

Working with Existing Functions

Open a Function
To open a function, select a library from the left pane, expand the library, and drill 
down until a list of functions appears. Double-click the name of the function that you 
want to open.

If you open a function from a read-only library, a window similar to the following 
appears:

Working with Existing Functions 963



Figure 26.3 A Function in a Library That Has Read-Only Access

In the window above, the AMORLINC_SLK function is selected from the read-only 
SASHELP library. Use the scroll bar to scroll to the top of the function.

If you open a function from a library to which you have Write access, a window 
similar to the following appears:

964 Chapter 26 / FCmp Function Editor



Figure 26.4 A Function in a Library That Has Write Access

In the window above, SUBTRACT_MACRO is selected from the write-enabled 
SASUSER library.

You can see that there is a difference in the windows that appear depending on 
whether the library has Read-Only access or Write access. If the library has Write 
access, you can enter information in the top section of the window that you are 
viewing. These fields are the same fields that you use when you create a new 
function. For a description of the fields, see “Creating a New Function” on page 
968.

Opening Multiple Functions
Opening multiple functions results in multiple windows being opened. For example, 
if you open a second function, a second window appears that shows the code for 
that function.

The upper right corner of the FCmp Function Editor contains a field called Open 
Views. Click the arrow to list the functions that are open. When you select a 
function, the window for that function is brought to the foreground.

Two icons that you can use to alter the display of your functions are located to the 
left of the Open Views field:

Working with Existing Functions 965



cascades the display of the functions that are open.

arranges the functions to display side by side.

Move a Function
You can move a function to a different library, data set, or package. To move a 
function, select a function in the left pane. Right-click the function, and select Move 
from the menu. The following dialog box appears:

Figure 26.5 The Move Function Dialog Box

In the Move Function dialog box, you can perform the following tasks:

n enter a new name for the function

n select a library into which the function is to be moved

n enter a new data set name

n enter a package name

The descriptions of the fields in the Move Function dialog box are listed below:

Name
specifies the new name for the function.

Library
specifies the library that contains the function that you move. Use the menu in 
the Library field to select a library.

Data Set
specifies the data set that contains the function that you move. Enter the name 
of the data set, or click the down arrow in the Data Set field to select a data set. 
If you do not choose a data set, then the value in this field defaults to 
FUNCTIONS.

Package
specifies the name of the package that contains the new function that you move. 
Enter the name of the package, or click the down arrow in the Package field to 
select a package. If you do not choose a package, then the value in this field 
defaults to PACKAGE.

When you click OK, the following dialog box appears, cautioning you about the 
move:

966 Chapter 26 / FCmp Function Editor



Figure 26.6 The Move Function Confirmation Dialog Box

CAUTION
Other functions and macros that reference the function that you want to move 
is not updated with the new function location. This situation can cause 
referencing objects such as macros to be out of synchronization.

Click Yes or No.

Close a Function
When you right-click the function name in the left pane and select Close, the 
window that displays that function closes. You can also close the function by clicking 
OK in the bottom right corner of the window that displays the function.

Duplicate a Function
You can duplicate (copy) a function that you are viewing to an existing or new 
package or library to which you have Write access. To duplicate a function, select 
the function in the left pane. Right-click the function and select Duplicate from the 
menu. The following dialog box appears:

Figure 26.7 The Duplicate Function Dialog Box

The fields in this dialog box automatically display the function name, library, data 
set, and package of the function that you want to duplicate. You can change these 
fields when you duplicate the function.

For a description of these fields, see “Move a Function” on page 966.

Working with Existing Functions 967



Rename a Function
Use the Rename dialog box to rename a function within a given package. You must 
have Write access to the library that contains the function. When you rename a 
function, the new function resides in the same library as the original function.

To rename a function, select the function in the left pane. Right-click the function 
and select Rename from the menu. Enter the new name of the function and click 
OK.

CAUTION
Rename enables you to rename a function within a given package. Just as 
with moving a function, the renaming of a function does not modify 
dependent macros and other entities.

Delete a Function
You can delete a function from a library to which you have Write access. To delete a 
function, select the function that you want to delete. Right-click the function and 
select Delete from the menu. The following dialog box appears, cautioning you 
about the impact that Delete has on other items:

Figure 26.8 Delete Function Confirmation Dialog Box

Click Yes or No.

Creating a New Function
You can create a new function whenever you have a library, data set, or package 
selected. To create a new function in a library, position your cursor on the library into 
which the new function is added. Right-click the library and select New Function. 
You can also select File ð New Function from the menu or click  in the upper 
left corner below the menu bar.

The following window appears:

968 Chapter 26 / FCmp Function Editor



Figure 26.9 The newElement Window

The upper right corner of the window contains two buttons: Function and 
Subroutine. Click one of the buttons depending on whether you want to create a 
new function or a new subroutine.

The newElement window contains the following fields:

Name
specifies the name of the new function or subroutine.

Description
describes the new function or subroutine.

Library
specifies the library that contains the new function or subroutine. Enter the name 
of the library, or click the down arrow in the Library field to select a library.

Data Set
specifies the data set that contains the new function or subroutine. Enter the 
name of the data set, or click the down arrow in the Data Set field to select a 
data set. If you do not specify a value, the value in this field defaults to 
FUNCTIONS.

Package
specifies the name of the package that contains the new function or subroutine. 
Enter the name of the package, or click the down arrow in the Package field to 
select a package. The Package field is a required field. If you do not specify a 
value, the value in this field defaults to PACKAGE.

Creating a New Function 969



Kind
enables you to group functions or subroutines within a given package. Four 
predefined kind groupings are available and are typically used with SAS Risk 
Management:

n Project

n Risk Factor Transformation

n Instrument Pricing

n Instrument Input

You can use one of these four groupings, or enter your own kind value in the 
Kind field. The function tree in the left pane groups the functions in a package 
into their kind grouping, if you specified a value for Kind.

Include Libraries
specifies libraries that contain SAS code that you want to include in your function 
or subroutine.

Input Parameters
specifies the arguments that you use as input to the function or subroutine.

Variable Parameter List
specifies whether the function or subroutine supports a variable number of 
arguments.

Return Type
specifies whether the function or subroutine returns a character or numeric 
value.

Function Body
is the area in the window in which you code your function or subroutine.

Three buttons are located at the bottom left of the newElement window:

Details
provides you with an area in which to write descriptive information (name of the 
new function, list of include libraries, input parameters, and so on) about your 
function or subroutine. You code your new function or subroutine in the Function 
Body section. The Details tab is selected by default.

SAS Code
enables you to view the function or subroutine that you have written. The SAS 
Code selection provides read-only capabilities.

Check Syntax
enables you to check the syntax for the code that you have written. If the syntax 
is correct, a dialog box appears, stating that the syntax is correct. If the syntax 
contains an error, a dialog box appears that describes the error. An error 
message also appears in the lower left bar of the window. Syntax errors are 
written to the log, which you can access from the View ð Show Log menu.

When you enter information in the descriptive portion of the Details tab, as well as 
in the Function Body section, the information is converted to SAS code that you 
can see when you select the SAS Code button.

970 Chapter 26 / FCmp Function Editor



Displaying New Libraries in the FCmp 
Function Editor

You can create a new library in a SAS session while still being logged on to the 
FCmp Function Editor. However, clicking the refresh button in the FCmp Function 
Editor does not display the new library. You must log off from the FCmp Function 
Editor and then log back in to see the new library.

Viewing the Log Window, Function 
Browser, and Data Explorer

Log Window
To display the Log window, select View ð Show Log from the menu. When you 
display the Log window, you can view system, application, and program results by 
selecting the tabs that are located in the upper left corner of the window.

Click the SAS tab to view the contents of the SAS log. The content of the log 
represents output from the SAS server. In addition, commands that are sent to SAS 
are also present to add context to the log output.

The following display shows the Log window with a SAS log displayed:

Viewing the Log Window, Function Browser, and Data Explorer 971



Figure 26.10 The Log Window

Tabs and Buttons in the Log Window
The System tab in the Log window shows detailed information in the form of system 
messages. The window is blank if no messages are logged.

The System window contains two vertical tabs that are located in the upper right 
section of the window. These tabs provide information about messages that might 
be of interest:

System.out
displays system output if messages are routed to this location.

System.err
displays error messages if the messages are routed to this location.

The Log window contains three buttons that are located at the bottom right of the 
window:

Save Log
saves the log output to a file that you choose.

Clear One
clears the results in the active window.

972 Chapter 26 / FCmp Function Editor



Clear Every
clears the results in all three of the windows.

The Find button is located at the bottom left of the window. This button opens a 
dialog box that enables you to search your output. For example, searching for 
ERROR when the SAS tab is selected enables you to quickly find errors in the SAS 
log.

Function Browser
The Function Browser displays all of the functions that are listed in the left pane of 
the window. You can filter this list of functions to display a subset of the functions.

To display the Function Browser, select View ð Show Function Browser from the 
menu. A window similar to the following appears:

Figure 26.11 The Function Browser Window

The partial output that is displayed above shows the functions in the application 
tree. You can filter the output and create a subset of the functions by entering your 
criteria in the Function Browser fields that are located above the list of functions. 
These fields are Library Name, Data Set Name, Package Name, and Function 
Name.

In the following display, the Package Name field is used as the filter. When you 
press the OK button that is located in the bottom right corner of the window, or if you 
press the Find button that is located in the upper right corner, the following window 
appears:

Viewing the Log Window, Function Browser, and Data Explorer 973



Figure 26.12 Filtered Output from the Function Browser

The math functions that are listed are a subset of all of the functions.

You can enter information in the fields that you choose, depending on your filter 
criteria. For example, if you enter a value, such as SASHELP, in the Library Name 
field, then all of the functions that are in the SASHELP library appear.

Data Explorer
The Data Explorer enables you to view the data in a data set that you select.

To display the Data Explorer, select View ð Show Data Explorer from the menu. A 
window similar to the following appears:

974 Chapter 26 / FCmp Function Editor



Figure 26.13 The Data Explorer Window

The Data Explorer window displays data set information based on the data set you 
select from the left pane.

By clicking the column headings, you can move the columns to reposition them in 
the display. When you click OK in the lower right section of the window, the changes 
that you made are saved.

Using Functions in Your DATA Step 
Program

For an example of how PROC FCMP and DATA step syntax work together, see 
“Directory Traversal” on page 881.

Using Functions in Your DATA Step Program 975



976 Chapter 26 / FCmp Function Editor



Chapter 27
FEDSQL Procedure

Overview: FEDSQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977
What Does the FEDSQL Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978

Concepts: FEDSQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979
Benefits of FedSQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979
Data Source Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980

Syntax: FEDSQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983
PROC FEDSQL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 983
QUIT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991

Usage: FEDSQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992
Data Source Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992
Using FedSQL in a SAS Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995
Using FedSQL in SAS Cloud Analytic Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 995
Applying FedSQL Table Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 996
Macro Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997
Passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 998
Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
FedSQL Data Type Support for SAS Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
FedSQL Data Type Support for CAS Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000

Examples: FEDSQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002
Example 1: Creating a SAS Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1002
Example 2: Joining Tables from Multiple SAS Libraries . . . . . . . . . . . . . . . . . . . . 1005
Example 3: Querying Data Using a Correlated Subquery . . . . . . . . . . . . . . . . . . 1007
Example 4: Creating and Using a DBMS Index to Perform a Join . . . . . . . . . . . . 1008
Example 5: Using a DS2 Package in an Expression . . . . . . . . . . . . . . . . . . . . . . 1010
Example 6: Querying Data in CAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1012
Example 7: Explicitly Loading and Joining Tables in CAS . . . . . . . . . . . . . . . . . . 1014
Example 8: Joining Tables from Multiple CAS Libraries . . . . . . . . . . . . . . . . . . . . 1019

977



Overview: FEDSQL Procedure

What Does the FEDSQL Procedure Do?
The FEDSQL procedure enables you to submit FedSQL language statements from 
a Base SAS session. The FEDSQL procedure is supported in both SAS 9.4 and 
SAS Viya.

The FedSQL language is the SAS implementation of the ANSI SQL:1999 core 
standard. It provides support for extended data types, such as DECIMAL, 
INTEGER, and VARCHAR, and other ANSI 1999 core compliance features and 
proprietary extensions. FedSQL provides data access technology that brings a 
scalable, threaded, high-performance way to access, manage, and share relational 
data in multiple data sources. Beginning in April 2019, it also supports some non-
relational data sources. When possible, FedSQL queries are optimized with 
multithreaded algorithms to resolve large-scale operations.

For applications, FedSQL provides a common SQL syntax across all of the data 
sources that it supports. FedSQL is a vendor-neutral SQL dialect. Applications can 
submit the same FedSQL queries to all FedSQL data sources instead of having to 
submit queries in the SQL dialect that is specific to the data source. In addition, a 
single FedSQL query can target data in several data sources and return a single 
result set.

Using the FEDSQL procedure, you can submit FedSQL language statements to 
SAS and third-party data sources that are accessed with SAS and SAS/ACCESS 
library engines. Or, if you have SAS Cloud Analytic Services (CAS) configured, you 
can submit FedSQL language statements to the CAS server.

To execute FedSQL statements in a SAS library, specify the PROC FEDSQL 
statement followed by FedSQL language statements. Qualify table names in your 
FedSQL language statements with a libref. If you do not specify a libref, the request 
is executed in the SAS Work library.

To execute FedSQL statements on the CAS server, specify the SESSREF= (or 
SESSUUID=) connection option with a CAS session name in the procedure 
statement. Either load tables into your CAS session using other tools and query the 
tables with PROC FEDSQL, or set an active caslib for your CAS session and query 
tables from the caslib by name. When you query unloaded tables from the active 
caslib, FedSQL passes requests that are eligible for implicit pass-through to the 
data source for processing or dynamically loads the external data into your CAS 
session for processing.

Note: Do not use a CAS engine libref with PROC FEDSQL. When SESSREF= (or 
SESSUUID=) is specified, PROC FEDSQL makes a direct connection to the CAS 
server. The procedure does not need the CAS engine. PROC FEDSQL silently 
passes requests to the fedSQL.execDirect action and the action executes your 
program on the CAS server. 

978 Chapter 27 / FEDSQL Procedure



The FedSQL language supports limited functionality in CAS. For an overview of the 
FedSQL functionality that is available on the CAS server, see “Using FedSQL in 
SAS Cloud Analytic Services” on page 995.

For information about the FedSQL language statements that are supported for data 
accessed with SAS library engines, see SAS FedSQL Language Reference.

Concepts: FEDSQL Procedure

Benefits of FedSQL
FedSQL provides the following features that are not provided in the SAS SQL 
procedure.

n FedSQL conforms to the SQL 1999 ANSI standard. This conformance allows it 
to process queries in its own language as well as the native languages of other 
DBMSs that conform to the ANSI 1999 standard.

n FedSQL supports many more data types than previous SAS SQL 
implementations. Traditional DBMS access through SAS/ACCESS LIBNAME 
engines translate target DBMS data types to and from two legacy SAS data 
types, which are SAS numeric and SAS character. When FedSQL connects to a 
DBMS with a libref, the language matches or translates the target data source’s 
definition to the FedSQL data types, as appropriate, which allows greater 
precision. When FedSQL connects to a DBMS with a caslib, the language 
translates the data source’s definition to native CAS data types.

n FedSQL handles federated queries, which access data from multiple data 
sources and returns a single result set. A federated query is the ability to 
communicate with more than one data source, access that data, and perform 
operations against that data. FedSQL also has the ability to break apart a single 
SQL query that is connected to multiple databases and send the parts down to 
the individual databases. 

n FedSQL supports implicit SQL pass-through. That is, FedSQL statements are 
translated into data source-specific code internally so that they can be passed 
directly to the data source for processing. There is no need to submit requests in 
the native SQL of each data source to get the benefits of native processing. 
FedSQL implicit pass-through improves query response time and enhances 
security. 

o The volume of data being transferred is reduced by performing the query on 
the data source. The number of rows that are transferred from the data 
source to FedSQL can be significantly reduced, thereby decreasing the 
overall query processing time. 

o The security benefit is that any part of a query that can be is processed on 
the data source side. This eliminates the need to have its associated tables, 
which might contain sensitive information, transmitted over to the FedSQL 
side for query processing. 

Concepts: FEDSQL Procedure 979

http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Implicit SQL pass-through is available for SAS libraries and for caslibs, although 
support in CAS is limited. Support for implicit pass-through in CAS is available 
starting in SAS Viya 3.3. For more information about FedSQL implicit pass-
through in CAS, see SAS Viya: FedSQL Programming for SAS Cloud Analytic 
Services.

n When connecting to a SAS library, you can use PROC FEDSQL to create data in 
any of the supported data sources. This enables you to store data in the data 
source that most closely meets the needs of your application. (FedSQL output 
tables in CAS are in-memory tables. You can use other CAS functionality to 
persist data to caslib data sources.) 

n When connecting to a SAS library, FedSQL can perform heterogeneous 
correlated subqueries. A correlated subquery is when the outer query results 
affect the results of the subquery. FedSQL has the ability to direct a subquery to 
be performed by the data source and limit the result set that is transferred from 
the data source. This is done by using a flexible query textualization technique 
that allows FedSQL to obtain rows that satisfy only the subquery expression. For 
an example, see “Example 3: Querying Data Using a Correlated Subquery” on 
page 1007.

A unique way that FedSQL can perform a heterogeneous operation is to take 
advantage of an index in a third-party DBMS when performing a join. The row 
values from one table involved in the join are copied into FedSQL local space. 
The specific column values are then used to probe the index. Special 
textualization techniques return qualified values, thereby allowing FedSQL 
access to the DBMS index to perform the join. For more information, see 
“Example 4: Creating and Using a DBMS Index to Perform a Join” on page 1008.

For more information about the FedSQL functionality for SAS libraries, see SAS 
FedSQL Language Reference. For information about FedSQL functionality when 
you target the CAS server, see SAS Viya: FedSQL Programming for SAS Cloud 
Analytic Services.

Data Source Support
When submitting FedSQL statements to a SAS library, PROC FEDSQL can read 
and write data from the following data sources. Unless otherwise noted, availability 
starts in SAS 9.4 and SAS Viya 3.3. See SAS/ACCESS documentation for 
supported operating environments.

Table 27.1 Data Sources for Which FedSQL Supports SAS Library Access

Data Source SAS V9 SAS Viya 3.5 Release Notes

Amazon Redshift * * Added in SAS 9.4M5

Aster * * Added in SAS 9.4M1

DB2 * * DB2

Greenplum * *

980 Chapter 27 / FEDSQL Procedure

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


Data Source SAS V9 SAS Viya 3.5 Release Notes

Google BigQuery * * Added in August 
2019, on SAS 9.4M6 
and SAS Viya 3.4

Hadoop (Hive) * * Added in SAS 9.4M2

HAWQ * * Added in SAS 9.4M3

Impala * * Added in SAS 9.4M3

databases that are 
compliant with 
JDBC

* * Added in February 
2019, on SAS Viya 
3.4 and SAS 9.4M6

Microsoft SQL 
Server

* * Added in SAS 9.4M5

MongoDB * * Read-only support 
available on SAS 
9.4M6, starting in 
April 2019. Write 
support available 
starting in November 
2019.

Read-and-write 
support available in 
SAS Viya 3.5.

MySQL * *

Netezza * *

ODBC-compliant 
databases

* *

Oracle * *

PostgreSQL * * Added in SAS 9.4M2

Salesforce * * Read-only support 
available on SAS 
9.4M6, starting in 
April 2019. Write 
support available 
starting in November 
2019.

Read-and-write 
support available in 
SAS Viya 3.5.

Concepts: FEDSQL Procedure 981



Data Source SAS V9 SAS Viya 3.5 Release Notes

SAP * * Read-only

SAP HANA * * Added in SAS 9.4M1

SAP IQ * *

SAS data sets * * Added in SAS Viya 
3.1

SAS Scalable 
Performance Data 
(SPD) Engine data 
sets

* *

SAS Scalable 
Performance Data 
(SPD) Server 
tables

* * Added in SAS 9.4M4

SPD Server in UNIX 
and Windows 
operating 
environments only

SAS Viya access is 
client only

Snowflake * * Added in August 
2019, on SAS 9.4M6 
and SAS Viya 3.4

Spark * SAS/ACCESS to 
Spark is available on 
Linux only in SAS 
9.4M7.

Teradata * * Teradata

Vertica * * Added in SAS 9.4M5

Yellowbrick * SAS/ACCESS to 
Yellowbrick is limited 
availability for SAS 
9.4 only, starting in 
SAS 9.4M7.

For information about the statements and data types supported for each data 
source through a SAS library, see SAS FedSQL Language Reference.

When you submit FedSQL language statements to CAS, the procedure reads data 
from files and in-memory tables and creates CAS session tables. You can preload 
data into your CAS session with PROC CASUTIL. Or you can use a caslib to 
dynamically load data into your CAS session. A caslib uses a SAS Viya Data 
Connector (or SAS Viya Data Connector Accelerator) to access data from a 

982 Chapter 27 / FEDSQL Procedure

http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


corresponding data source for processing in CAS. For information about available 
SAS Viya Data Connectors, see SAS Cloud Analytic Services: User’s Guide.

FedSQL has different functionality on the CAS server than it has in a SAS library. 
For more information, see “Using FedSQL in SAS Cloud Analytic Services” on page 
995.

For information about how to connect to supported data sources with PROC 
FEDSQL, see “Data Source Connection” on page 992.

Syntax: FEDSQL Procedure
PROC FEDSQL <connection-option><processing-options>;

…FedSQL statements
QUIT;

Statement Task Example

PROC FEDSQL Specify that the subsequent input is FedSQL 
language statements.

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5, Ex. 6, 
Ex. 7, Ex. 8

QUIT Stop the execution of the FEDSQL procedure. Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5, Ex. 6, 
Ex. 7, Ex. 8

PROC FEDSQL Statement
Specifies that the subsequent input is FedSQL language statements.

Requirement: Follow the PROC FEDSQL statement with one or more FedSQL language statements. 
See SAS FedSQL Language Reference for information about FedSQL statements that 
are supported in a SAS library. See SAS Viya: FedSQL Programming for SAS Cloud 
Analytic Services for information about FedSQL statements that are supported in a CAS 
session.

Interactions: When creating tables with PROC FEDSQL, note that by default, you cannot overwrite an 
existing table. You must destroy the table with the DROP TABLE statement first. If you 
specify the DROP TABLE statement in the same procedure execution as the CREATE 
TABLE statement, you must specify the FORCE statement option. For more information, 
see “DROP TABLE Statement” in SAS FedSQL Language Reference. In CAS, you can 
overwrite an existing table by specifying the REPLACE= table option in the CREATE 
TABLE statement. For more information, see “REPLACE= Table Option” in SAS Viya: 
FedSQL Programming for SAS Cloud Analytic Services.

PROC FEDSQL Statement 983

http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=n0bkg9ytyy8qk1n1vgyf6g77utk2.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p1i1qiaainzbd8n1g01das4d0ddb.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p1i1qiaainzbd8n1g01das4d0ddb.htm&locale=en


The procedure processes nonexistent values as SAS missing values by default. In a 
SAS library, you can specify ANSIMODE to request that nonexistent values are 
processed as ANSI SQL null values.

Note: As of September 2023, Microsoft Azure Active Directory (Azure AD) was renamed to 
Microsoft Entra ID.

Examples: “Example 1: Creating a SAS Data Set” on page 1002
“Example 2: Joining Tables from Multiple SAS Libraries” on page 1005
“Example 3: Querying Data Using a Correlated Subquery” on page 1007
“Example 4: Creating and Using a DBMS Index to Perform a Join” on page 1008
“Example 5: Using a DS2 Package in an Expression” on page 1010
“Example 6: Querying Data in CAS” on page 1012
“Example 7: Explicitly Loading and Joining Tables in CAS” on page 1014
“Example 8: Joining Tables from Multiple CAS Libraries” on page 1019

Syntax
PROC FEDSQL <connection-option><processing-options>;

Summary of Optional Arguments
Connection

LIBS=libref | (libref1libref2 ...librefn)
restricts the default data source connection to the specified libref(s). All 
other librefs are ignored.

SESSREF=session-name
specifies to run the FedSQL statements in a CAS session. The CAS 
session is identified by its session name.

SESSUUID="session-uuid"
specifies to run the FedSQL statements in a CAS session. The CAS 
session is identified by its universally unique identifier (UUID).

General Processing
_METHOD

prints a brief text description of the FedSQL query plan.
_POSTOPTPLAN

prints an XML tree illustrating the FedSQL query plan.
ANSIMODE

specifies that nonexistent values in CHAR and DOUBLE columns are 
processed as ANSI SQL null values.

AUTOCOMMIT | NOAUTOCOMMIT
specifies whether updates are automatically committed (that is, saved to a 
table) after a default number of rows are updated, and whether rollback is 
available.

CNTL=(parameter)
specifies optional control parameters for FedSQL query planning and 
query execution in CAS.

984 Chapter 27 / FEDSQL Procedure



ERRORSTOP | NOERRORSTOP
specifies whether the procedure stops executing if it encounters an error.

EXEC | NOEXEC
specifies whether a statement should be executed after its syntax is 
checked for accuracy.

LABEL | NOLABEL
specifies whether to use the column label or the column name as the 
column heading.

MEMSIZE=n | nM | nG
specifies a limit for the amount of memory that is used for an underlying 
query (such as a SELECT statement), so that allocated memory is 
available to support other PROC FEDSQL operations.

NOPRINT
suppresses the normal display of results.

NUMBER
specifies to include a column named Row, which is the row (observation) 
number of the data as the rows are retrieved.

STIMER
specifies to write a subset of system performance statistics, such as time-
elapsed statistics, to the SAS log.

XCODE=ERROR | WARNING | IGNORE
controls the behavior of the SAS session when an NLS transcoding failure 
occurs.

Optional Arguments
_METHOD

prints a brief text description of the FedSQL query plan. A FedSQL query is 
broken into stages. Each stage of execution requires a stand-alone SQL query. 
This option generates a brief text description of the nodes and stages in the 
query plan. The information is written to the SAS log. 

Notes _METHOD is supported on the CAS server only.

The behavior of this option changed in SAS Viya 3.5. In previous 
versions of SAS Viya, _METHOD returned the stage query and the 
number of threads used by a request. Beginning in SAS Viya 3.5, that 
information and more can be obtained with a new showStages CNTL= 
option. For more information, see “SHOWSTAGES” on page 987.

See “FedSQL Query Walk-Through” in SAS Viya: FedSQL Programming for 
SAS Cloud Analytic Services

_POSTOPTPLAN
prints an XML tree illustrating the FedSQL query plan. A FedSQL query is 
broken into stages. Each stage of execution requires a stand-alone SQL query. 
This option generates an XML tree that illustrates each stage of the FedSQL 
query plan and the results from each execution stage. The information is written 
to the SAS log. 

Notes _POSTOPTPLAN is supported on the CAS server only.

The XML tree can be very long. You might want to use the _METHOD 
option instead.

PROC FEDSQL Statement 985

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=n02wvmrw286hxsn1rosattuw1dlc.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=n02wvmrw286hxsn1rosattuw1dlc.htm&locale=en


ANSIMODE
specifies that nonexistent values in CHAR and DOUBLE columns are processed 
as ANSI SQL null values. By default, PROC FEDSQL processes nonexistent 
values in CHAR and DOUBLE columns as missing values. This is how SAS 
processes nonexistent values. The ANSIMODE option specifies to process 
nonexistent values in CHAR and DOUBLE columns as ANSI SQL null values. It 
is important to understand the differences, or data can be lost. For information 
about processing differences, see “How FedSQL Processes Nulls and SAS 
Missing Values” in SAS FedSQL Language Reference. All other data types use 
ANSI NULL semantics all of the time.

Default SAS mode

Restriction ANSIMODE is supported for SAS libraries only.

AUTOCOMMIT | NOAUTOCOMMIT
specifies whether updates are automatically committed (that is, saved to a table) 
after a default number of rows are updated, and whether rollback is available. 

Default All updates are committed immediately after each request is 
submitted, and no rollback is possible.

Restriction NOAUTOCOMMIT is supported for SAS libraries only.

Requirement For data sources that do not support transactions, specifying 
NOAUTOCOMMIT returns an error. The data sources that support 
transactions include Aster, DB2 for UNIX and PC Hosts, 
Greenplum, Microsoft SQL Server, MySQL, ODBC databases, 
and SAP IQ.

CNTL=(parameter)
specifies optional control parameters for FedSQL query planning and query 
execution in CAS. Multiple parameters are allowed inside of the parentheses. 
Separate each parameter with a space. The following parameters are supported: 

DISABLEPASSTHROUGH
disables implicit FedSQL pass-through in CAS. FedSQL attempts to use 
implicit pass-through for all SQL data sources by default. In order for a 
FedSQL request to be eligible for implicit pass-through in CAS, all tables 
must exist in the same caslib and the tables cannot have already been 
loaded into the CAS session. For other requirements, see “FedSQL Implicit 
Pass-Through Facility in CAS” in SAS Viya: FedSQL Programming for SAS 
Cloud Analytic Services. This option can save processing time for FedSQL 
requests that contain functions that are specific to SAS, or whose tables have 
already been loaded into the CAS session.

DYNAMICCARDINALITY
instructs the FedSQL query planner to perform cardinality estimations before 
selecting a query plan.

The FedSQL query planner does not perform cardinality estimations before 
selecting a query plan by default. Cardinality estimation can improve the 
accuracy of selectivity estimates for join conditions and WHERE clause 
predicates, which in turn can lead to better join-order decisions and faster 
query execution times for some queries. However, dynamic cardinality does 
not help all queries and adds overhead to the query planning process.

Note The DYNAMICCARDINALITY option is available starting in SAS Viya 
3.5.

986 Chapter 27 / FEDSQL Procedure

http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=n1c5ladx770rq4n11a0mi33q9pad.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=n1c5ladx770rq4n11a0mi33q9pad.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p1jpuyk9ivovawn1e6nhazywded8.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p1jpuyk9ivovawn1e6nhazywded8.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p1jpuyk9ivovawn1e6nhazywded8.htm&locale=en


See “Using the Dynamic Cardinality Instruction” in SAS Viya: FedSQL 
Programming for SAS Cloud Analytic Services

OPTIMIZEVARBINARYPRECISION
optimizes VARBINARY precision by using a precision that is appropriate to 
the actual data, instead of the precision declared for the VARBINARY 
columns.

The precision is optimized both when reading from a table and when creating 
a new table from a result set. The greatest benefits from this option are 
achieved when the declared precision is far larger than the precision of the 
actual data. Then, this option can improve performance, reduce memory 
footprint, and create VARBINARY columns in new tables with the needed 
size rather than propagating the precision from the source table.

Note The OPTIMIZEVARBINARYPRECISION option is available starting in 
SAS Viya 3.5.

OPTIMIZEVARCHARPRECISION
optimizes VARCHAR precision by using a precision that is appropriate to the 
actual data, instead of the precision declared for the VARCHAR columns.

The precision is optimized both when reading from a table and when creating 
a new table from a result set. The greatest benefits from this option are 
achieved when the declared precision is far larger than the precision of the 
actual data. Then, this option can improve performance, reduce memory 
footprint, and create VARCHAR columns in new tables with the needed size 
rather than propagating the precision from the source table.

Note The OPTIMIZEVARCHARPRECISION option is available starting in 
SAS Viya 3.5.

PRESERVEJOINORDER
joins tables in the specified order instead of an order chosen by the FedSQL 
query optimizer.

REQUIREFULLPASSTHROUGH
stops processing the FedSQL request when implicit pass-through of the full 
query cannot be achieved.

SHOWSTAGES
writes query execution details to the SAS log. 

This includes the information returned by the _METHOD option. In addition, 
showStages prints the stage query, the number of SQL threads used by each 
stage, and the following execution details:

n Time for each intermediate stage

n Number of output rows from each intermediate stage

n Elapsed time for each stage and for the entire action

n Whether a table was replicated to all workers, or auto-partitioned.

The information is gathered when the query is executed and is written to the 
client log. Do not specify NOEXEC with showStages. Execution details 
cannot be printed if the query is not executed.

Note The SHOWSTAGES option is available starting in SAS Viya 3.5.

PROC FEDSQL Statement 987

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p0lrihvbn5xnfdn1a86poyhemp9f.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p0lrihvbn5xnfdn1a86poyhemp9f.htm&locale=en


See “Viewing the FedSQL Query Plan” in SAS Viya: FedSQL Programming 
for SAS Cloud Analytic Services

Notes CNTL= is supported on the CAS server only.

CNTL= is available starting in SAS Viya 3.3.

See “Optimizing FedSQL Performance by Modifying the FedSQL Query Plan” 
in SAS Viya: FedSQL Programming for SAS Cloud Analytic Services

ERRORSTOP | NOERRORSTOP
specifies whether the procedure stops executing if it encounters an error. In a 
batch or noninteractive session, ERRORSTOP instructs the procedure to stop 
executing the statements but to continue checking the syntax after it has 
encountered an error. NOERRORSTOP instructs the procedure to execute the 
statements and to continue checking the syntax after an error occurs.

Default NOERRORSTOP in an interactive SAS session; ERRORSTOP in a 
batch or noninteractive session

Tips ERRORSTOP has an effect only when SAS is running in the batch or 
noninteractive execution mode.

NOERRORSTOP is useful if you want a batch job to continue executing 
SQL procedure statements after an error is encountered.

EXEC | NOEXEC
specifies whether a statement should be executed after its syntax is checked for 
accuracy. EXEC specifies to execute the statement. NOEXEC specifies not to 
execute the statement.

Default EXEC

Tip NOEXEC is useful if you want to check the syntax of your FedSQL 
statements without executing the statements.

LABEL | NOLABEL
specifies whether to use the column label or the column name as the column 
heading.

Default LABEL

Interactions If a column does not have a label, the procedure uses the column's 
name as the column heading.

A column alias overwrites the label or column name as the column 
heading.

LIBS=libref | (libref1libref2 ...librefn)
restricts the default data source connection to the specified libref(s). All other 
librefs are ignored. When you specify a list of librefs, the order of the list defines 
the library order. 

Alias LIBNAMES=

Restriction LIBS= is supported only for SAS libraries.

988 Chapter 27 / FEDSQL Procedure

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=n0p9956rad6yi4n1cb3sfd0mjn70.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=n0p9956rad6yi4n1cb3sfd0mjn70.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p0x8x4ja9jeahjn1f0nmu9tx9vvy.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p0x8x4ja9jeahjn1f0nmu9tx9vvy.htm&locale=en


Interactions If both LIBS= and SESSREF= (or SESSUUID=) are specified in 
the procedure statement, SESSREF= is applied and the other 
option is ignored.

If LIBS= is specified multiple times, the last instance on the 
procedure statement is applied.

Note LIBS= is available starting in SAS 9.4M3

Tips LIBS= is useful when multiple LIBNAME statements are defined in 
a SAS session, to limit the scope of the FedSQL request to only 
the LIBNAME statement(s) to which the request applies. It can also 
avoid duplicate catalog errors when connecting to data sources 
that support native catalogs, such as Netezza.

If you are curious about how LIBS= affects library assignments, set 
the MSGLEVEL=i system option before running a PROC FEDSQL 
request with LIBS=. The option produces Include and Ignore 
messages for each of the LIBNAME statements that are processed 
in the procedure request.

See “Data Source Connection” on page 992

“About the LIBS= Procedure Option” on page 993

Example The following PROC FEDSQL procedure statement specifies to 
create a data source connection that uses only librefs MyLib3 and 
MyLib4:
proc fedsql libs=(mylib3 mylib4);

MEMSIZE=n | nM | nG
specifies a limit for the amount of memory that is used for an underlying query 
(such as a SELECT statement), so that allocated memory is available to support 
other PROC FEDSQL operations. Specify the memory limit in multiples of 1 
(bytes); 1,048,576 (megabytes); or 1,073,741,824 (gigabytes). For example, the 
value 23M specifies 24,117,248 bytes of memory. The value 16G specifies 
17,179,869,184 bytes of memory. 

Default The procedure optimizes the setting based on the amount of memory 
on the host.

Note On the CAS server, MEMSIZE= specifies the memory for a single CAS 
worker.

Tip Generally, specifying a memory limit is not necessary unless FedSQL 
reports a memory problem error.

NOPRINT
suppresses the normal display of results. 

Interaction NOPRINT affects the value of the SQLOBS automatic macro 
variable, which contains the number of rows that are executed by a 
statement.

NUMBER
specifies to include a column named Row, which is the row (observation) number 
of the data as the rows are retrieved.

PROC FEDSQL Statement 989



Default No row numbers.

SESSREF=session-name
specifies to run the FedSQL statements in a CAS session. The CAS session is 
identified by its session name. 

Requirements A CAS server must be configured for your system.

The CAS session must have been previously established by 
using the CAS statement. If the specified CAS session does not 
exist, the procedure terminates.

Interactions Use SESSREF= or SESSUUID= to connect to the CAS session. 
If both options are specified, the last option in the procedure 
statement is applied.

If both SESSREF= and LIBS= are specified on the procedure 
statement, SESSREF= is applied and the other option is ignored.

Note This option is supported in SAS Viya 3.1 and later and in SAS 
9.4M5 and later.

See “Connecting to the CAS Server” on page 994

“Using FedSQL in SAS Cloud Analytic Services” on page 995

“Example 7: Explicitly Loading and Joining Tables in CAS” on 
page 1014

SESSUUID="session-uuid"
specifies to run the FedSQL statements in a CAS session. The CAS session is 
identified by its universally unique identifier (UUID). 

Requirements A CAS server must be configured for your system.

The CAS session must have been previously established by 
using the CAS statement. The CAS statement generates a UUID 
value. If the specified CAS session does not exist, the procedure 
terminates.

Interactions Use SESSREF= or SESSUUID= to connect to the CAS session. 
If both options are specified, the last option in the procedure 
statement is applied.

If both SESSUUID= and LIBS= are specified in the procedure 
statement, SESSUUID= is applied and the other option is 
ignored.

Note This option is supported in SAS Viya 3.1 and later and in SAS 
9.4M5 and later.

See “Connecting to the CAS Server” on page 994

“Using FedSQL in SAS Cloud Analytic Services” on page 995

Example Here is a PROC FEDSQL procedure statement that specifies 
SESSUUID=:
proc fedsql sessuuid="76904741-fb09-554d-a8de-6cbce2a0e0e5";

990 Chapter 27 / FEDSQL Procedure



The UUID value can be enclosed in single or double quotation 
marks.

STIMER
specifies to write a subset of system performance statistics, such as time-
elapsed statistics, to the SAS log. When STIMER is in effect, the procedure 
writes to the SAS log a list of computer resources used for each step and the 
entire SAS session.

Default No performance statistics are written to the SAS log.

Interaction If the SAS system option FULLSTIMER is in effect, the complete list 
of computer resources is written to the SAS log.

XCODE=ERROR | WARNING | IGNORE
controls the behavior of the SAS session when an NLS transcoding failure 
occurs. Transcoding failures can occur during row input or output operations, or 
during string assignment. Transcoding is the process of converting character 
data from one encoding to another encoding. 

ERROR
specifies that a run-time error occurs, which causes row processing to halt. 
An error message is written to the SAS log. This is the default behavior.

WARNING
specifies that the incompatible character is set to a substitution character. A 
warning message is written to the SAS log.

IGNORE
specifies that the incompatible character is set to a substitution character. No 
messages are written to the SAS log.

Default ERROR

Note This option was added in SAS 9.4M2.

QUIT Statement
Stops the execution of the FEDSQL procedure.

Interaction: Unlike other SAS procedures, in SAS 9.4, PROC FEDSQL does not recognize step 
boundaries. The QUIT statement is required to stop the FEDSQL procedure before you 
can submit a DATA step or another procedure step.

Syntax
QUIT;

QUIT Statement 991



Details
When the FEDSQL procedure reaches the QUIT statement, all resources allocated 
by the procedure are released. You can no longer execute FedSQL language 
statements without invoking the procedure again. However, the connection to the 
data source server is not lost, because that connection was made through the 
LIBNAME statement. As a result, any subsequent invocation of the procedure that 
uses the same libref executes almost instantaneously because the LIBNAME 
engine is already connected to the server.

Usage: FEDSQL Procedure

Data Source Connection
PROC FEDSQL can execute requests in SAS libraries (librefs) or on the CAS 
server. By default, PROC FEDSQL connects to a data source by using available 
librefs. You can override this default behavior by specifying connection options. The 
FEDSQL procedure is not affected by the CASNAME= system option.

Understanding the Default Data Source 
Connection
PROC FEDSQL connects to a data source by using the attributes of currently 
assigned librefs. Attributes include the physical location of the data, and for some 
data sources, access information such as network information used to access the 
data server, and user identification and password.

1 You first submit the LIBNAME statement for a SAS engine and then submit 
PROC FEDSQL. For information to define a LIBNAME statement, see:

SAS data sets
SAS Global Statements: Reference

Relational DBMS data sources
SAS/ACCESS for Relational Databases: Reference

MongoDB and Salesforce
SAS/ACCESS for Nonrelational Databases: Reference

SPD Engine data sets
SAS Scalable Performance Data Engine: Reference

SPD Server tables
SAS Scalable Performance Data Server: User’s Guide

992 Chapter 27 / FEDSQL Procedure

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acnrdb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


2 In your FedSQL language statements, use a two-part name in the form 
libref.table-name to refer to tables. The libref tells FedSQL where to create or 
locate a table.

3 Then, submit the FEDSQL procedure.

This example illustrates how PROC FEDSQL accesses a data source by using the 
attributes of a previously assigned libref. The LIBNAME statement assigns the libref 
MyFiles, specifies the BASE engine, and then specifies the physical location for the 
SAS data set. The FedSQL program then creates a SAS data set named 
MyFiles.Table1 at the location specified in the LIBNAME statement.

libname myfiles base 'C:\myfiles'; 

proc fedsql;        
   create table myfiles.table1 (x double);
   insert into myfiles.table1 values (1.0);
   insert into myfiles.table1 values (2.0);
   insert into myfiles.table1 values (3.0);
quit; 

The procedure builds a data source connection string that includes all the active 
librefs in the SAS session and sends it to the FedSQL program. You reference a 
particular library by specifying its libref in a two-part table name in the form 
libref.table-name. If you do not specify a libref, the table is created in the SAS Work 
library.

PROC FEDSQL uses libref attributes for connection information only (such as 
physical location). The procedure generally does not use libref attributes that define 
behavior. For example, if a previously submitted LIBNAME statement for the BASE 
engine specifies that SAS data sets are to be compressed, the compression 
attribute is not used by the procedure. There are exceptions. For example, the 
MAX_BINARY_LEN= and MAX_CHAR_LEN= for Google BigQuery are included in 
the internal connection string.

You can determine which LIBNAME options are used by the procedure by setting 
the MSGLEVEL=i system option before submitting a LIBNAME statement. For many 
data sources, you can specify a DS2 table option to override a LIBNAME option. For 
example, the COMPRESS= table option can be used to request compression of 
SAS data sets. The SCANSTRINGCOLUMNS= table option can be used to override 
the MAX_BINARY_LEN= and MAX_CHAR_LEN= LIBNAME options. Not all 
LIBNAME statement options have a corresponding table option.

Note: PROC FEDSQL connects immediately, so an error is generated if the 
LIBNAME statement includes the DEFER=YES option.

z/OS Specifics: The physical location for the libref must be an HFS path 
specification.

About the LIBS= Procedure Option
When multiple librefs are active in the SAS session, you might want to include the 
LIBS= option in the PROC FEDSQL statement. LIBS= restricts the data source 

Usage: FEDSQL Procedure 993



connection to the specified libref or librefs and the default library. Work is the default 
library unless a User library is assigned.

You must continue to qualify table names with a libref, even when LIBS= specifies 
only one library; otherwise, the default library is used.

The following example illustrates the use of the LIBS= option. In the example, the 
LIBS= option specifies to use only libref MyFiles.

libname allfiles base 'C:\sharedfiles';
libname myfiles base 'C:\myfiles'; 

proc fedsql libs=myfiles;        
   create table myfiles.table1 (x double);
   insert into myfiles.table1 values (1.0);
   insert into myfiles.table1 values (2.0);
   insert into myfiles.table1 values (3.0);
quit; 

For more information, see “LIBS=libref | (libref1 libref2 ...librefn)” on page 988.

For information about the FedSQL statements supported in the connections made 
with LIBS=, see SAS FedSQL Language Reference.

Connecting to the CAS Server
You connect to a CAS session on the CAS server by specifying the SESSREF= (or 
SESSUUID=) procedure option with a CAS session name in the PROC FEDSQL 
statement. When SESSREF= (or SESSUUID=) is specified, both the default 
connection mechanism and the LIBS= option are ignored. Instead, the procedure 
connects to the specified CAS session.

Note: You must have a CAS server configured. You must first submit the CAS 
statement to establish the CAS session. To interact with data in a CAS session, you 
need a caslib. You must first define a caslib (or use a pre-defined caslib). You define 
a caslib and list the caslibs that are available to your CAS session by using the 
CASLIB statement. For syntax information, see SAS Cloud Analytic Services: 
User’s Guide. A caslib uses a SAS Data Connector (or SAS Data Connector 
Accelerator) to access data. For information about SAS Data Connectors, see SAS 
Cloud Analytic Services: User’s Guide.

Use a two-part name in the form caslib.table-name to identify tables in your FedSQL 
statements. The following example illustrates a PROC FEDSQL request to the CAS 
server.

options cashost="cloud.example.com" casport=5570;
cas mysess;

caslib castera desc='Teradata Caslib' 
datasource=(srctype='teradata'
username='myname'
password='mypw'
server='testserver',
db='testdb');

994 Chapter 27 / FEDSQL Procedure

http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


proc fedsql sessref=mysess; 
  create table newtable as 
  select * from castera.employees;
quit;

This example establishes a CAS session named MySess on a CAS server on CAS 
host cloud.example.com. It then uses the CASLIB statement to assign caslib 
CASTERA. The PROC FEDSQL statement specifies the SESSREF= procedure 
option with the CAS session name MySess. The FedSQL CREATE TABLE 
statement identifies table Employees using the CASTERA caslib.

SAS Viya data connectors support automatic (shown here) and explicit loading of 
data into CAS. For more examples, see “Example 6: Querying Data in CAS” on 
page 1012, “Example 7: Explicitly Loading and Joining Tables in CAS” on page 
1014, and “Example 8: Joining Tables from Multiple CAS Libraries” on page 1019.

The CAS tables that you create with PROC FEDSQL are in-memory tables. That is, 
the tables are available for the duration of the CAS session and are accessible only 
to the current session. PROC FEDSQL does not provide a way to persist a table to 
a data source or to share the table with other CAS sessions. To persist or share a 
CAS output table, use the CASUTIL procedure.

Note: Although CAS tables are in-memory tables, PROC FEDSQL will not 
overwrite an existing table of the same name. Specify the REPLACE= table option 
to overwrite an existing table with a replacement table. Or, use the DROP TABLE 
statement to remove the initial table before creating the replacement table. 

For more information about SAS Cloud Analytic Services, see SAS Cloud Analytic 
Services: Fundamentals. Also see CAS statement, CASLIB statement, and 
CASUTIL procedure in SAS Cloud Analytic Services: User’s Guide.

Using FedSQL in a SAS Library
The FedSQL language includes statements for reading and writing data. For 
information about the FedSQL statements supported in the default connection and 
with the LIBS= option, see SAS FedSQL Language Reference. When using PROC 
FEDSQL to read and write data in a SAS library, note that not all FedSQL 
statements are supported for third-party DBMS. For information about statement 
support, see “FedSQL Statements” in SAS FedSQL Language Reference.

Data type support and table option support is also data source-specific. For more 
information, see “Data Type Reference” in SAS FedSQL Language Reference and 
“FedSQL Statement Table Options by Data Source” in SAS FedSQL Language 
Reference.

Using FedSQL in SAS Cloud Analytic Services
When you specify the SESSREF= (or SESSUUID=) option, PROC FEDSQL 
submits your FedSQL query on a CAS server. The request is actually executed with 
the fedSQL.execDirect action.

Usage: FEDSQL Procedure 995

http://documentation.sas.com/?docsetId=casfun&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfun&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=n0i3ywnx9i87qdn1dssjgvumi7l5.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=p006s0ukzim6brn16wfjdmg89x7r.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=n1qnwnxtq52mkvn1ky86xv6fms9m.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=n1qnwnxtq52mkvn1ky86xv6fms9m.htm&locale=en


The CAS server is an alternative environment for processing FedSQL queries. The 
CAS server is a multiprocessing server. A FedSQL request executing on the CAS 
server can perform manipulations on multiple table rows concurrently using multiple 
threads and worker nodes. These multiple resources can reduce the time required 
to process large tables.

The FedSQL statements available when you target the CAS server are subset of 
those that are available for a SAS library. The following FedSQL statements are 
supported in CAS:

n CREATE TABLE, with the AS query expression

n SELECT

n DROP TABLE 

The following SELECT statement features are not supported:

n EXCEPT and INTERSECT SET operations (UNION is supported, starting in SAS 
Viya 3.5)

n correlated subqueries

n IN, ANY, and ALL subqueries

n dictionary queries

n views 

n DS2 user-defined functions (also known as DS2 package expressions).

FedSQL output tables in CAS are in-memory tables. The tables are created in the 
user session. You must use other CAS actions to promote the output tables for 
global use in CAS or to store data to caslib data sources. For more information 
about FedSQL functionality on the CAS server, see SAS Viya: FedSQL 
Programming for SAS Cloud Analytic Services.

Applying FedSQL Table Options
When you access a data source with PROC FEDSQL, you can apply FedSQL table 
options in the subsequent FedSQL statements. A table option specifies actions that 
enable you to perform operations on a table such as assigning buffer page size or 
specifying passwords. A FedSQL table option performs much of the same 
functionality as a Base SAS data set option.

FedSQL table options are used to apply options when you access a data source 
within PROC FEDSQL. For example, the following code applies a table option to the 
SAS data set in order to specify the size of a permanent buffer page for the new 
table:

libname myfiles base 'C:\myfiles'; 
   
proc fedsql;
   create table myfiles.table1 {options bufsize=16k}(x double) ;
   insert into myfiles.table1 values (1.0);
   insert into myfiles.table1 values (2.0);
   insert into myfiles.table1 values (3.0);
quit; 

996 Chapter 27 / FEDSQL Procedure

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


A CAS library supports different table options than a SAS library. For a list of table 
options that are supported in SAS libraries, see SAS FedSQL Language Reference. 
For a list of table options that are supported in CAS libraries, see SAS Viya: 
FedSQL Programming for SAS Cloud Analytic Services.

Macro Variables

Using Macro Variables in a Literal String
Note: The information in this section applies to PROC FEDSQL use in SAS 
libraries.

Macro variables enable you to dynamically modify text in a program through 
symbolic substitution. When you reference a macro variable in a program, the 
macro processor replaces the reference with the value of the specified macro 
variable.

With PROC FEDSQL, you can use a macro variable on a subsequent FedSQL 
statement. However, if a macro variable occurs within a literal string, you cannot 
enclose the string in double quotation marks. The macro processor uses double 
quotation marks to resolve macro variable references. FedSQL considers a string 
enclosed in double quotation marks to be a delimited (case sensitive) identifier such 
as a table or column name.

To reference a macro variable in a literal string, use the SAS macro function 
%TSLIT. %TSLIT overrides the need for double quotation marks around the literal 
string and puts single quotation marks around the input value. For example, the 
following statement includes the %TSLIT function to specify the &SYSHOSTNAME 
macro variable, which returns the host name of the computer on which it is 
executed:

select %tslit(&syshostname);

The %TSLIT macro function is stored in the default autocall macro library. For more 
information, see “Referencing a Macro Variable in a Delimited Identifier” in SAS 
FedSQL Language Reference .

Using Macro Variables Set by the 
Procedure
PROC FEDSQL sets up macro variables with certain values after it executes each 
statement. These macro variables can be tested inside a macro to determine 
whether to continue executing the PROC step. After each statement has executed, 
the following macro variable is updated with these values:

Usage: FEDSQL Procedure 997

http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=p0344kp190jy2dn10k004ri17ijx.htm&docsetTargetAnchor=n0f9xrnie3thhdn1j6nxdhozzdtg&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=p0344kp190jy2dn10k004ri17ijx.htm&docsetTargetAnchor=n0f9xrnie3thhdn1j6nxdhozzdtg&locale=en


SQLRC
contains the following status values that indicate the success of the PROC 
FEDSQL statement:

0
PROC statement completed successfully with no errors.

4
PROC statement encountered a situation for which it issued a warning. The 
statement continued to execute.

8
PROC statement encountered an error. The statement stopped execution at 
this point.

16
PROC statement encountered a run-time error. For example, this error code 
is used when a subquery (that can return only a single value) evaluates more 
than one row. These errors can be detected only during run time.

Passwords
SAS software enables you to restrict access to SAS data sets and SPD Engine data 
sets by assigning SAS passwords to the files. When using PROC FEDSQL with 
SAS libraries, you can assign or specify a password for a data source using the 
FedSQL table options ALTER=, PW=, READ=, and WRITE=. For example, the 
following code applies the FedSQL table option PW= in order to assign READ, 
WRITE, and ALTER passwords to a SAS data set:

libname myfiles base 'C:\myfiles'; 
   
proc fedsql;
   create table myfiles.table1 {options pw=luke}(x double) ;
   insert into myfiles.table1 values (1.0);
   insert into myfiles.table1 values (2.0);
   insert into myfiles.table1 values (3.0);
quit; 

This code shows how to specify a table option to read a data set:

select * from myfiles.table1 {options pw=luke};

A SAS password does not control access to a SAS file beyond SAS. You should use 
the operating system-supplied utilities and file system security controls to control 
access to SAS files outside SAS. For more information about SAS passwords, see 
SAS FedSQL Language Reference.

CAS tables do not support SAS passwords. Therefore, you cannot assign a 
password for a CAS table. When accessing password-protected data from CAS, 
passwords are specified in the CAS language element used to access the data. For 
example, passwords are supported in the CASUTIL procedure, which loads data 
into CAS, as well as in the CASLIB statement and in the Table.addCaslib action. For 
more information, see the SAS Data Connector documentation in SAS Cloud 
Analytic Services: User’s Guide.

998 Chapter 27 / FEDSQL Procedure

http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


Encryption
SAS software enables you to encrypt the contents of a SAS data set, SPD Engine 
data set, and SPD Server table. SAS supports SAS proprietary encryption and AES 
encryption.

When using PROC FEDSQL with SAS libraries, you can encrypt output SAS data 
sets, SPD Engine data sets, and SPD Server tables with SAS proprietary 
encryption. This is done by specifying the FedSQL ENCRYPT= table option with the 
PW= or READ= table option. A data set or table encrypted with SAS proprietary 
encryption must be decrypted by specifying the PW= or READ= table option with the 
appropriate password.

AES encryption is performed by specifying the ENCRYPT= table option with the 
ENCRYPTKEY= table option. A data set or table encrypted with AES encryption is 
later decrypted by specifying the ENCRYPTKEY= table option with the appropriate 
key value.

SAS supports two levels of AES encryption: AES and AES2. The new AES2 option 
provides AES encryption to meet newer and more secure encryption standards. 
AES2 encryption is initially supported for SAS data sets only. For more information, 
see “ENCRYPT= Table Option” in SAS FedSQL Language Reference.

FedSQL currently does not support the encryption attribute for CAS tables. When 
accessing SAS and AES encrypted data sets from CAS, passwords and encryption 
keys are specified in the CAS language element that is used to access the data. For 
example, passwords and encryption keys are supported in the CASUTIL procedure, 
which loads data into CAS as well as in the CASLIB statement and in the 
Table.addCaslib action. For more information, see the SAS Data Connector 
documentation in SAS Cloud Analytic Services: User’s Guide.

FedSQL Data Type Support for SAS Data Sets
PROC FEDSQL supports the following data types for reading and writing a SAS 
data set through a SAS library. For a SAS data set, FedSQL data types are 
translated to and from predetermined legacy SAS data types, which are SAS 
numeric and SAS character. For example, when you submit the CONTENTS 
procedure on a table that is created with the FedSQL language, the DATE data type 
is reported as a SAS numeric. The following table lists the FedSQL data types and 
describes how they are translated to and from SAS data types.

Table 27.2 FedSQL Data Type Translation for SAS Data Sets

FedSQL Data Type SAS Data Type Description

BIGINT SAS numeric Because a SAS numeric is a DOUBLE, 
there is potential for loss of precision. 
DOUBLE is an approximate numeric data 
type rather than an exact numeric data 
type.

Usage: FEDSQL Procedure 999

http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=p04hdzobr719evn16yg1vk772o3d.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


FedSQL Data Type SAS Data Type Description

BINARY(n) SAS character Applies the SAS format $n.

CHAR(n) SAS character Applies the SAS format $n.

DATE SAS numeric Applies the SAS format DATE9.

Valid SAS date values are in the range from 
1582-01-01 to 9999-12-31. Dates outside 
the SAS date range are not supported and 
are treated as invalid dates.

DECIMAL|
NUMERIC(p,s)

SAS numeric

DOUBLE SAS numeric

FLOAT(p) SAS numeric

INTEGER SAS numeric

NCHAR(n) SAS character Applies the SAS format $n.

NVARCHAR(n) SAS character Applies the SAS format $n.

REAL SAS numeric

SMALLINT SAS numeric

TIME(p) SAS numeric Applies the SAS format TIME8.

TIMESTAMP(p) SAS numeric Applies the SAS format DATETIME19.2.

TINYINT SAS numeric

VARBINARY(n) SAS character Applies the SAS format $n.

VARCHAR(n) SAS character Applies the SAS format $n.

For information about data type support for DBMS data sources through a SAS 
library, see “Data Type Reference” in SAS FedSQL Language Reference.

FedSQL Data Type Support for CAS Tables
FedSQL supports CAS native data types only in CAS. Beginning with SAS Viya 3.5, 
FedSQL supports the VARBINARY data type in addition to the CHAR(n), DOUBLE, 
INT32, INT64, and VARCHAR(n) data types.

1000 Chapter 27 / FEDSQL Procedure

http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=p006s0ukzim6brn16wfjdmg89x7r.htm&locale=en


Table 27.3 FedSQL Data Type Translation for CAS Tables

FedSQL Data Type CAS Data Type Description

BIGINT1 INT64 Large signed, exact whole number.

CHAR(n) CHAR Fixed-length character string, where n is the 
maximum number of characters to store. 
The maximum number of characters is 
required to store each value regardless of 
the actual size of the value. If char(10) is 
specified and the character string is only 
five characters long, the value is right-
padded with spaces.

DOUBLE DOUBLE Signed, approximate, double-precision, 
floating-point number. Allows numbers of 
large magnitude and permits computations 
that require many digits of precision to the 
right of the decimal point. For the CAS 
server, this is a 64-bit double-precision, 
floating-point number.

INTEGER1 INT32 Regular signed, exact whole number.

VARBINARY2 VARBINARY Varying-length binary opaque data. This 
data type is used to store image data, 
audio, documents, and other unstructured 
data.

VARCHAR(n) VARCHAR Varying-length character string, where n is 
the maximum number of characters to store.

1 Support for the integer data types starts in SAS Viya 3.3.
2 Support for the VARBINARY data type starts in SAS Viya 3.5. FedSQL can read and write 

VARBINARY columns in CAS tables (with CREATE TABLE AS). However, the SELECT statement 
does not display VARBINARY columns in some clients unless you apply the $HEX. format to the 
VARBINARY column with the PUT function. In earlier SAS Viya releases, FedSQL does not return an 
error when reading BINARY and VARBINARY columns. However, the data is incorrectly treated as 
character data. Attempts to read BINARY data now yield an error.

Date, time, and timestamp values in CAS tables are supported as DOUBLEs, with a 
SAS format applied. FedSQL applies the DATE9. SAS format to date values, the 
TIME8. SAS format to time values, and the DATETIME25.6 SAS format to datetime 
values.

CAS tables use the UTF-8 character set by default.

It is important to understand how FedSQL handles missing values in CAS. See 
“Handling of Nonexistent Data” in SAS Viya: FedSQL Programming for SAS Cloud 
Analytic Services.

Usage: FEDSQL Procedure 1001

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p09xd6ne29dmxvn1kf6p23jkssnf.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p09xd6ne29dmxvn1kf6p23jkssnf.htm&locale=en


Examples: FEDSQL Procedure

Example 1: Creating a SAS Data Set
Features: PROC FEDSQL statement

FedSQL CREATE TABLE statement
FedSQL INSERT statement
QUIT statement
LIBNAME statement
PROC CONTENTS

Details
This example creates a SAS data set in a Base SAS session by submitting the 
FEDSQL procedure. The example submits the FedSQL CREATE TABLE and 
INSERT statements. The CONTENTS procedure then is used to describe the 
contents of the SAS data set.

Program
libname mybase base 'C:\My Documents';

proc fedsql;

create table mybase.sales (prodid double not null, 
                             custid double not null, 
                             totals double having format comma8., 
                             country char(30));

insert into mybase.sales values (3234, 1, 189400, 'United States');
insert into mybase.sales values (1424, 3, 555789, 'Japan');
insert into mybase.sales values (3421, 4, 781183, 'Japan');
insert into mybase.sales values (3422, 2, 2789654, 'United States');
insert into mybase.sales values (3975, 5, 899453, 'Argentina');

quit;

proc contents data=mybase.sales;
run;

1002 Chapter 27 / FEDSQL Procedure



Program Description
Assign a library reference to the SAS data set to be created. The LIBNAME 
statement assigns the libref MyFiles, specifies the BASE engine, and specifies the 
physical location for the SAS data set.

libname mybase base 'C:\My Documents';

Execute the PROC FEDSQL statement. The PROC FEDSQL statement sets up 
an environment to submit FedSQL statements. By default, the PROC FEDSQL 
statement generates a connection string to the data source from the librefs that are 
active in the SAS session. 

proc fedsql;

Enter the FedSQL CREATE TABLE statement. The statement specifies to create 
the SAS data set named MyBase.Sales. Note that the two-level name in the 
FedSQL CREATE TABLE statement specifies the catalog identifier MyBase, which 
is the assigned libref. The variable declaration defines a NOT NULL integrity 
constraint on columns ProdId and CustId, and applies the SAS format COMMAw. on 
column Totals. 

create table mybase.sales (prodid double not null, 
                             custid double not null, 
                             totals double having format comma8., 
                             country char(30));

Enter INSERT statements to populate the table with data. Note that the table 
name is qualified with the catalog identifier in each statement. The data values are 
submitted in a comma-delimited string, preceded by the keyword VALUES.

insert into mybase.sales values (3234, 1, 189400, 'United States');
insert into mybase.sales values (1424, 3, 555789, 'Japan');
insert into mybase.sales values (3421, 4, 781183, 'Japan');
insert into mybase.sales values (3422, 2, 2789654, 'United States');
insert into mybase.sales values (3975, 5, 899453, 'Argentina');

Stop the procedure. The QUIT statement stops the procedure.

quit;

List the contents of the SAS data set. The CONTENTS procedure describes the 
contents of the SAS data set.

proc contents data=mybase.sales;
run;

Example 1: Creating a SAS Data Set 1003



Output: Creating a SAS Data Set
Output 27.1 PROC CONTENTS Output of MyBase.Sales

1004 Chapter 27 / FEDSQL Procedure



Example 2: Joining Tables from Multiple SAS 
Libraries
Features: PROC FEDSQL statement

CREATE TABLE statement with AS expression
LIBNAME statements

Details
This example creates a new SAS data set from existing tables by using PROC 
FEDSQL and the CREATE TABLE statement with the AS query expression syntax. 
The query expression selects rows from three existing tables — SAS data set Sales, 
SPD Engine data set Products, and Oracle table Customers — to create the new 
table: Results.

Program
libname mybase v9 'C:\base';
libname myspde spde 'C:\spde';
libname myoracle oracle path=ora11g user=xxxxxx password=xxxxxx 
schema=xxxxxx;

proc fedsql;

Example 2: Joining Tables from Multiple SAS Libraries 1005



   create table mybase.results as
      select products.prodid, products.product, customers.name,
         sales.totals, sales.country
      from myspde.products, mybase.sales, myoracle.customers
      where products.prodid = sales.prodid and 
         customers.custid = sales.custid;

   select * from mybase.results;

quit;

Program Description
Assign three librefs. The first LIBNAME statement assigns the libref MyBase, 
specifies the V9 engine, and specifies the physical location for the SAS data set to 
be created. V9 is an alias for the BASE engine. The second LIBNAME statement 
assigns the libref MySpde, specifies the SPDE engine, and specifies the physical 
location for the existing SPD Engine data set. The third LIBNAME statement assigns 
the libref MyOracle, specifies the ORACLE engine, and specifies the connection 
information to the Oracle database that contains the existing Oracle tables.

libname mybase v9 'C:\base';
libname myspde spde 'C:\spde';
libname myoracle oracle path=ora11g user=xxxxxx password=xxxxxx 
schema=xxxxxx;

Execute the PROC FEDSQL statement. The PROC FEDSQL statement sets up 
an environment for submitting FedSQL statements.

proc fedsql;

Create the new table. The CREATE TABLE statement creates a new SAS data set 
from three existing SAS data sets by using a query expression to select rows from 
the existing data sets. The SELECT statement retrieves the qualified columns and 
rows from the existing data sets to create the new SAS data set. 

   create table mybase.results as
      select products.prodid, products.product, customers.name,
         sales.totals, sales.country
      from myspde.products, mybase.sales, myoracle.customers
      where products.prodid = sales.prodid and 
         customers.custid = sales.custid;

Retrieve data in the SAS data set. This second SELECT statement displays the 
contents of the output data set.

   select * from mybase.results;

Stop the procedure.

quit;

1006 Chapter 27 / FEDSQL Procedure



Output: Joining Tables from Multiple SAS 
Libraries
Output 27.2 Contents of Output Data Set MyBase.Results

Example 3: Querying Data Using a Correlated 
Subquery
Features: PROC FEDSQL statement

FedSQL SELECT statement
LIBNAME statements

Note: This functionality is available in SAS libraries.

Details
This example illustrates querying data using a correlated subquery. In a correlated 
subquery, the WHERE clause in the subquery refers to values in a table in the outer 
query. The correlated subquery is evaluated for each row in the outer query. With 
correlated subqueries, FedSQL executes the subquery and the outer query 
together. FedSQL can perform heterogeneous correlated subqueries. FedSQL 
directs the subquery to be performed by the data source, which limits the result set 
that is transferred from the data source.

Note: Correlated subqueries are not yet supported on the CAS server.

Program
libname myspde spde 'C:\spde';

Example 3: Querying Data Using a Correlated Subquery 1007



libname myoracle oracle path=ora11g user=xxxxxx password=xxxxxx 
schema=xxxxxx;

proc fedsql;

   select * from myspde.product
      where exists (select * from myoracle.sales
      where product.prodid=sales.prodid);

quit;

Program Description
Assign two library references. The first LIBNAME statement assigns the libref 
MySpde, specifies the SPDE engine, and specifies the physical location for the SPD 
Engine data set. The second LIBNAME statement assigns the libref MyOracle, 
specifies the Oracle engine, and specifies the connection information to the Oracle 
database.

libname myspde spde 'C:\spde';
libname myoracle oracle path=ora11g user=xxxxxx password=xxxxxx 
schema=xxxxxx;

Execute the PROC FEDSQL statement. The PROC FEDSQL statement creates 
an environment for submitting FedSQL statements.

proc fedsql;

Submit a correlated query. FedSQL directs the subquery WHERE expression to 
be evaluated by the Oracle database.

   select * from myspde.product
      where exists (select * from myoracle.sales
      where product.prodid=sales.prodid);

Stop the procedure. Specify the QUIT statement to complete the procedure 
request.

quit;

Example 4: Creating and Using a DBMS Index to 
Perform a Join
Features: PROC FEDSQL statement

FedSQL language statements
LIBNAME statements

Note: This functionality is available in SAS libraries.

1008 Chapter 27 / FEDSQL Procedure



Details
This example illustrates how to create an index for an Oracle table. It then illustrates 
how to use the index to perform a join of the Oracle table and an SPD Engine data 
set.

Note: The CREATE INDEX statement is not supported on the CAS server.

Program
libname myspde spde 'C:\spde';
libname myoracle oracle path=ora11g user=xxxxxx password=xxxxxx 
schema=xxxxxx;

proc fedsql;

   create index prodid on myoracle.sales (prodid);

   select * from myspde.product, myoracle.sales 
      where product.prodid=sales.prodid;

quit;

Program Description
Assign two library references. The first LIBNAME statement assigns the libref 
MySpde, specifies the SPDE engine, and specifies the physical location for the SPD 
Engine data set. The second LIBNAME statement assigns the libref MyOracle, 
specifies the ORACLE engine, and specifies the connection information to the 
Oracle database.

libname myspde spde 'C:\spde';
libname myoracle oracle path=ora11g user=xxxxxx password=xxxxxx 
schema=xxxxxx;

Execute the PROC FEDSQL statement. The PROC FEDSQL statement creates 
an environment for submitting FedSQL statements.

proc fedsql;

Create an index for the Oracle table. The CREATE INDEX statement creates an 
index named ProdId in the Oracle table named Sales for the column ProdId.

   create index prodid on myoracle.sales (prodid);

Retrieve columns and rows. The SELECT statement retrieves data from the SPD 
Engine data set named Product and the Oracle table named Sales. Even though the 
index is in the Oracle database, FedSQL can take advantage of the index to 
perform the join.

   select * from myspde.product, myoracle.sales 

Example 4: Creating and Using a DBMS Index to Perform a Join 1009



      where product.prodid=sales.prodid;

Stop the procedure. Specify the QUIT statement to complete the procedure 
request.

quit;

Example 5: Using a DS2 Package in an Expression
Features: FedSQL SELECT statement

Package method declaration
DS2 PACKAGE statement
DS2 METHOD statement
DS2 DATA statement

Note: This functionality is available in SAS libraries.

Details
The FedSQL language supports the ability to invoke user-defined DS2 package 
methods as functions in the SELECT statement. This example creates and submits 
a DS2 package method named Add on a table named Numbers from PROC 
FEDSQL. The package method and table are created in the Work library.

Note: Package methods that are run from PROC FEDSQL can have only input 
arguments in the method. For more information, see “Using DS2 Packages in 
Expressions” in SAS FedSQL Language Reference.

Note: User-defined package methods are not supported on the CAS server.

Program
proc ds2;
   package adder / overwrite =yes;

   method add( double x, double y ) returns double;
   return x + y;
  end;
endpackage;

data numbers / overwrite = yes;
   dcl double x y;
   method init();
   dcl int i;
   do i = 1 to 10;
   x = i; y = i * i;

1010 Chapter 27 / FEDSQL Procedure

http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=n0q73mhn15sfgpn13bmlr0i6l7jg.htm&locale=en
http://documentation.sas.com/?docsetId=fedsqlref&docsetVersion=9.4&docsetTarget=n0q73mhn15sfgpn13bmlr0i6l7jg.htm&locale=en


   output;
 end;
end;
enddata;

run;

quit;

proc fedsql;

   select x, y, work.adder.add( x, y ) as z from work.numbers;

quit;

Program Description
Invoke the DS2 procedure with the PROC DS2 statement and define a 
package. This PACKAGE statement specifies to create a package named Adder. 

proc ds2;
   package adder / overwrite =yes;

Define a method. This METHOD statement specifies to create a method named 
Add. The method Add has two input variables, X and Y, both of type DOUBLE, and 
it returns an output of type DOUBLE. The output variable contains the sum from 
adding the value of variable X to variable Y. The END and ENDPACKAGE 
statements signal the completion of the METHOD and PACKAGE declarations.

   method add( double x, double y ) returns double;
   return x + y;
  end;
endpackage;

Create a table. This DATA statement specifies to create a table named Numbers. A 
library is not specified, so the Work library will be used. The table has two columns, 
X and Y, of type DOUBLE. The system INIT method is called to populate the table 
with values. A variable, I, is defined to hold input values. A DO statement uses 
variable I to insert rows containing the values 1 through 10 into column X. Then, it 
multiplies each instance of I with itself and inserts the result into column Y. The END 
and ENDDATA statements signal the completion of the DO statement, INIT method, 
and DATA statement declarations.

data numbers / overwrite = yes;
   dcl double x y;
   method init();
   dcl int i;
   do i = 1 to 10;
   x = i; y = i * i;
   output;
 end;
end;
enddata;

Submit the DS2 statements. Like in the DATA step, the RUN statement executes 
DS2 language statements.

run;

Stop the DS2 procedure. The QUIT statement completes the procedure request.

Example 5: Using a DS2 Package in an Expression 1011



quit;

Invoke the FEDSQL procedure. The PROC FEDSQL statement invokes the 
FEDSQL procedure.

proc fedsql;

Submit a SELECT statement that invokes the package method on the table. 
The statement specifies to select columns X and Y, and the result of the package 
method expression is column Z from table Numbers. The package method is 
referenced using a three-part name in the form [catalog.][schema.]package.method. 

   select x, y, work.adder.add( x, y ) as z from work.numbers;

Stop the FEDSQL procedure. The QUIT statement completes the PROC FEDSQL 
request.

quit;

Here is the output from the SELECT statement:

Example 6: Querying Data in CAS
Features: PROC FEDSQL statement

SESSREF= procedure option
FedSQL language statements
CAS system options
CAS statement
CASLIB statement

Details
This example illustrates the steps necessary to query a database table named 
Employees from CAS.

Program
options cashost="cloud.example.com" casport=5570;

cas mysess;

1012 Chapter 27 / FEDSQL Procedure



caslib castera desc='Teradata Caslib' 
   datasource=(srctype='teradata',
      dataTransferMode='serial',
      username='myname',
      password='mypw',
      server='testserver',
      db='test');

proc fedsql sessref=mysess;

select Pos, count(Pos) as Count_Pos 
    from castera.employees 
    group by Pos
    having count(Pos) >= 2;

quit;

Program Description
Invoke the CAS server. The CASHOST= and CASPORT= system options specify 
the name and port number of the CAS server. 

options cashost="cloud.example.com" casport=5570;

Establish a session on the CAS server. The CAS statement specifies to create a 
session named MySess on the CAS server.

cas mysess;

Add a caslib for the Teradata database. When submitting a request to the CAS 
server, you must identify your data source with a caslib instead of a libref. The 
CASLIB statement specifies to create caslib CasTera. The caslib specifies the 
SrcType=Teradata, dataTransferMode='serial', and connection details for the 
Teradata database. A data connect accelerator that loads data in parallel is 
available for Teradata, but it is not used here. CasTera becomes the active caslib in 
your CAS session.

caslib castera desc='Teradata Caslib' 
   datasource=(srctype='teradata',
      dataTransferMode='serial',
      username='myname',
      password='mypw',
      server='testserver',
      db='test');

Specify the PROC FEDSQL statement with the SESSREF= procedure option. 
In the SESSREF= procedure option, specify the name CAS session name MySess. 
The SESSREF= option establishes the connection to the CAS session and it 
instructs the procedure to pass FedSQL language statements that follow to the 
fedSQL.execDirect action. 

proc fedsql sessref=mysess;

Specify FEDSQL statements and identify the data source with caslib 
CASTERA. The SELECT statement specifies to list all of the job titles in database 
table Employees that have at least two employees. The table is identified by the 
two-part name CasTera.Employees. When you identify tables using a two-part 
name, the execDirect action responds as follows. The FedSQL language supports 
single-source, full-query implicit SQL pass-through in CAS. If the target tables have 

Example 6: Querying Data in CAS 1013



not yet been loaded into the CAS session, the tables are evaluated for implicit pass-
through. Implicit pass-through passes eligible requests to the data source for 
processing and loads the result set into CAS. SQL implicit pass-through is possible 
only for tables that have not yet been loaded into the CAS session. There are other 
important requirements. For information about these requirements, see “FedSQL 
Implicit Pass-Through Facility in CAS” in SAS Viya: FedSQL Programming for SAS 
Cloud Analytic Services.. Unloaded tables that are not eligible for pass-through are 
automatically loaded into the CAS session for processing by the CAS server. Tables 
already existing in the CAS session are processed by the CAS server.

select Pos, count(Pos) as Count_Pos 
    from castera.employees 
    group by Pos
    having count(Pos) >= 2;

Stop the procedure.

quit;

Output: Result of Database Query from 
CAS
Output 27.3 Output of CAS Database Query

1           OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK
72
73               proc fedsql sessref=mysess;
74               select Pos, count(Pos) as Count_Pos
75                   from castera.employees
76                   groupby Pos
77                   having count(Pos) >=2;
NOTE: The SQL statement was fully offloaded to the underlying data source via
full pass-through 
78                quit;

Example 7: Explicitly Loading and Joining Tables in 
CAS
Features: PROC FEDSQL statement

SESSREF= procedure option

1014 Chapter 27 / FEDSQL Procedure

http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p1jpuyk9ivovawn1e6nhazywded8.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p1jpuyk9ivovawn1e6nhazywded8.htm&locale=en
http://documentation.sas.com/?docsetId=casfedsql&docsetVersion=3.5&docsetTarget=p1jpuyk9ivovawn1e6nhazywded8.htm&locale=en


CAS system options
CAS statement
CASLIB statement
CAS LIBNAME statement
DATA step
CASUTIL procedure

Details
In some cases, some formatting is required before data can be processed 
successfully. This example explicitly loads three files that contain comma-delimited 
data into CAS. The CAS LIBNAME engine and the DATA step are used to format 
and load the tables. Then, after the tables are in CAS, PROC FEDSQL is used to 
join them and to create a new CAS table that contains the result set. The input files 
are named Supplier, Nation, and Customer. The output CAS table is named 
CASDATA.NewTable. All of the CAS tables are in-memory tables. They disappear at 
the end of the CAS session, unless you save or promote them using PROC 
CASUTIL.

The example assigns a caslib and a libref. The libref is mapped to the caslib in the 
CAS LIBNAME statement. The DATA step executes in the libref. When the 
SESSREF= option is specified in the PROC FEDSQL procedure statement, 
FedSQL statements are executed in a caslib.

Note: When formatting your FEDSQL requests, be aware that leading spaces 
before statements and clauses are important. Do not begin statements and clauses 
flush with the left margin. If you put a line break in a quoted string, always follow the 
line break with at least one blank. 

Program
options cashost="cloud.example.com" casport=5570;

cas mysess;

caslib casdata path='/r/ge.unx.company.com/vol/vol210/u21/myID/hold';

libname mycas cas host="cloud.example.com" port=5570 sessref=mysess 
caslib=casdata;

data mycas.supplier;
  infile "/r/ge.unx.company.com/vol/vol210/u21/myID/hold/supplier.tbl" 
delimiter='|';
  length S_SUPPKEY 8. S_NAME VARCHAR(25) S_ADDRESS VARCHAR(40) 
S_NATIONKEY 8. 
S_PHONE VARCHAR(15) S_ACCTBAL 8. S_COMMENT VARCHAR(101);
  input  S_SUPPKEY S_NAME S_ADDRESS S_NATIONKEY S_PHONE S_ACCTBAL 
S_COMMENT;
run;

Example 7: Explicitly Loading and Joining Tables in CAS 1015



data mycas.nation;
  infile "/r/ge.unx.company.com/vol/vol210/u21/myID/hold/nation.tbl" 
delimiter='|';
  length N_NATIONKEY 8. N_NAME VARCHAR(25) N_REGIONKEY 8. N_COMMENT 
VARCHAR(152);
  input  N_NATIONKEY N_NAME N_REGIONKEY N_COMMENT;
run;

data mycas.customer;
  infile "/r/ge.unx.company.com/vol/vol210/u21/myID/hold/customer.tbl" 
delimiter='|';
  length C_CUSTKEY 8. C_NAME VARCHAR(25) C_ADDRESS VARCHAR(40) 
C_NATIONKEY 8.
 C_PHONE VARCHAR(15) C_ACCTBAL 8. C_MKTSEGMENT VARCHAR(10) C_COMMENT 
VARCHAR(117);
  input  C_CUSTKEY C_NAME C_ADDRESS C_NATIONKEY C_PHONE C_ACCTBAL 
C_MKTSEGMENT
  C_COMMENT;
run;

proc casutil;
  list tables incaslib="casdata";
run;

proc fedsql sessref=mysess;

  create table newtable {options replace=true} as
  select
    s_name, s_acctbal, n_name, sum_c_acctbal
  from
    supplier,
    nation,
    (select c_nationkey, sum(c_acctbal) as sum_c_acctbal from customer 
group by
 c_nationkey) C
   where
    s_nationkey = n_nationkey and
    s_nationkey = c_nationkey
  ;

select * from newtable;

quit;

Program Description
Invoke the CAS server. The CASHOST= and CASPORT= system options specify 
the name and port number of the CAS server. 

options cashost="cloud.example.com" casport=5570;

Establish a session on the CAS server. The CAS statement specifies to create a 
CAS session named MySess.

cas mysess;

Assign a caslib that points to your input files. The CASLIB statement assigns 
the caslib CASDATA to the location specified in the PATH= parameter. The path 
specification must use an absolute pathname. 

1016 Chapter 27 / FEDSQL Procedure



caslib casdata path='/r/ge.unx.company.com/vol/vol210/u21/myID/hold';

Assign a CAS engine libref. The LIBNAME statement specifies the libref MyCas, 
the CAS engine, connection parameters for the CAS server, and the CASDATA 
caslib. The LIBNAME statement invokes the CAS engine and maps libref to the 
caslib.

libname mycas cas host="cloud.example.com" port=5570 sessref=mysess 
caslib=casdata;

Use the DATA step to format and load the first file into CAS. The DATA 
statement specifies to create a table named MyCas.Supplier. The CAS engine 
creates the output table as a CAS table. In the SAS session, the table is known as 
MyCas.Supplier. In CAS session MySess, the table is known as CASDATA.Supplier. 
The INFILE= statement specifies to read the contents of the file using a | (pipe 
symbol) as a column delimiter. The LENGTH statement specifies column names 
and lengths for the output table. (Note that the INFILE specification can be relative 
to the path that is specified in the CASLIB statement.) The CAS engine creates 
table Supplier in caslib CASDATA. 

data mycas.supplier;
  infile "/r/ge.unx.company.com/vol/vol210/u21/myID/hold/supplier.tbl" 
delimiter='|';
  length S_SUPPKEY 8. S_NAME VARCHAR(25) S_ADDRESS VARCHAR(40) 
S_NATIONKEY 8. 
S_PHONE VARCHAR(15) S_ACCTBAL 8. S_COMMENT VARCHAR(101);
  input  S_SUPPKEY S_NAME S_ADDRESS S_NATIONKEY S_PHONE S_ACCTBAL 
S_COMMENT;
run;

Format and load the second file into CAS. This DATA statement specifies to 
create a CAS table named MyCas.Nation. The INFILE= statement reads the 
contents of the file using a pipe symbol as a delimiter. The LENGTH statement 
specifies column names and lengths for the output table. The CAS engine creates 
table Nation in caslib CASDATA. 

data mycas.nation;
  infile "/r/ge.unx.company.com/vol/vol210/u21/myID/hold/nation.tbl" 
delimiter='|';
  length N_NATIONKEY 8. N_NAME VARCHAR(25) N_REGIONKEY 8. N_COMMENT 
VARCHAR(152);
  input  N_NATIONKEY N_NAME N_REGIONKEY N_COMMENT;
run;

Format and load the third file into CAS. The DATA step specifies to create a CAS 
table named MyCas.Customer. The INFILE= statement reads the contents of the 
file. The LENGTH statement specifies column names and lengths for the output 
table. The CAS engine creates table Customer in caslib CASDATA. 

data mycas.customer;
  infile "/r/ge.unx.company.com/vol/vol210/u21/myID/hold/customer.tbl" 
delimiter='|';
  length C_CUSTKEY 8. C_NAME VARCHAR(25) C_ADDRESS VARCHAR(40) 
C_NATIONKEY 8.
 C_PHONE VARCHAR(15) C_ACCTBAL 8. C_MKTSEGMENT VARCHAR(10) C_COMMENT 
VARCHAR(117);
  input  C_CUSTKEY C_NAME C_ADDRESS C_NATIONKEY C_PHONE C_ACCTBAL 
C_MKTSEGMENT
  C_COMMENT;
run;

Example 7: Explicitly Loading and Joining Tables in CAS 1017



Verify that the files were created in CAS. Submit the CASUTIL procedure to list 
the tables that are available in caslib CASDATA.

proc casutil;
  list tables incaslib="casdata";
run;

Specify the PROC FEDSQL statement. In the PROC FEDSQL statement, specify 
the SESSREF= procedure option with the name MySess to connect to the CAS 
session and direct the FedSQL statements that follow to the fedSQL.execDirect 
action. Because of earlier activity in the CAS session, CASDATA is the active caslib.

proc fedsql sessref=mysess;

Submit the FedSQL statements. The fedSql.execDirect action enables you to 
identify tables in the active caslib using either a one-part or a two-part name. 
Because the tables already exist in the session, the one-part form is used here. The 
CREATE TABLE statement specifies to create a table named NewTable using 
columns from the Supplier, Nation, and Customer tables. The SELECT statement 
retrieves the columns S_NAME, S_ACCTBAL, N_NAME from the tables and 
creates a new column SUM_C_ACCTBAL by issuing a subquery. The tables are 
joined based on the values in the S_NATIONKEY, N_NATIONKEY, and 
C_NATIONKEY columns. FedSQL combines the data and returns the results in the 
new CAS table.

  create table newtable {options replace=true} as
  select
    s_name, s_acctbal, n_name, sum_c_acctbal
  from
    supplier,
    nation,
    (select c_nationkey, sum(c_acctbal) as sum_c_acctbal from customer 
group by
 c_nationkey) C
   where
    s_nationkey = n_nationkey and
    s_nationkey = c_nationkey
  ;

Display the contents of table NewTable. The SELECT statement specifies to 
display the content of CAS table NewTable. NewTable is an in-memory table. To 
persist or promote it, you must use PROC CASUTIL.

select * from newtable;

Stop the procedure.

quit;

1018 Chapter 27 / FEDSQL Procedure



Output: Joining Tables That Were Explicitly 
Loaded into CAS

Output 27.4 Output of the CASUTIL Procedure LIST Statement

Output 27.5 A Portion of the SELECT Results for Table NewTable

Example 8: Joining Tables from Multiple CAS 
Libraries
Features: PROC FEDSQL statement

Example 8: Joining Tables from Multiple CAS Libraries 1019



SESSREF= procedure option
FedSQL language statements
CAS system options
CAS statement
CASUTIL procedure
CASLIB statements

Details
This example shows how to perform the join in “Example 2: Joining Tables from 
Multiple SAS Libraries” on page 1005 on the CAS server. A difference is that this 
example joins a SAS data set and an SPD Engine data set with a Teradata table 
instead of an Oracle table.

Invoke the CAS server and start a CAS session. These steps are necessary only 
if a CAS server connection and a CAS session do not already exist.

options cashost="cloud.example.com" casport=5570;
cas mysess;

Load the SAS data set Customers into your CAS session. PROC CASUTIL 
loads the data set into default caslib CASUSERHDFS.

proc casutil;
  load data="path-to-customers-data-set" outcaslib="casuserhdfs";
quit;

Add an SPD Engine caslib. The CASLIB statement specifies to create caslib 
spdeCasLib. The caslib specifies SrcType=SPDE and it specifies the path to the 
directory that contains the metadata file for SPD Engine data set Products.

caslib spdecaslib Desc="SPD Engine caslib"
datasource=(srctype="spde", username="", 
mdfpath="path-to-metafile", 
dataTransferMode="serial");
run;

Add a Teradata caslib. This step is necessary only if the caslib has not already 
been assigned in the CAS session.

caslib TDcaslib desc='Teradata Caslib' 
   datasource=(srctype='teradata'
      username='myname'
      password='mypw'
      server='testserver',
      db='test')
      notactive; 

Submit the join request. The PROC FEDSQL statement specifies the SESSREF= 
procedure option. The SESSREF= option specifies CAS session MySess. Each 
table name in the CREATE TABLE statement is identified using a two-part table 
name. A SELECT statement requests to print the contents of table Results.

proc fedsql sessref=mysess;
create table results as
      select products.prodid, products.product, customers.name,

1020 Chapter 27 / FEDSQL Procedure



         sales.totals, sales.country
      from spdecaslib.products, TDcaslib.sales, casuserhdfs.customers
      where products.prodid = sales.prodid and 
         customers.custid = sales.custid;

select * from results;
quit;

Output: Joining Tables from Multiple CAS 
Libraries
Output 27.6 Contents of CAS Table Results

Example 8: Joining Tables from Multiple CAS Libraries 1021



1022 Chapter 27 / FEDSQL Procedure



Chapter 28
FMTC2ITM Procedure

Overview: FMTC2ITM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
What Does the FMTC2ITM Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023

Syntax: FMTC2ITM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024
PROC FMTC2ITM Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1024
SELECT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026

Example: Migrate Formats to a CAS Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026

Overview: FMTC2ITM Procedure

What Does the FMTC2ITM Procedure Do?
The FMTC2ITM procedure converts one or more format catalogs into a single item 
store that can be made available to CAS. PROC FMTC2ITM enables you to create 
an item store that has the following contents:

n all of the formats from one catalog

n a subset of the formats from one catalog

n all of the formats from multiple catalogs

n a subset of the formats from each of multiple catalogs.

After you create an item store with PROC FMTC2ITM, you can use the CAS 
statement with the addFmtLib action to make the item store available to CAS. For 
more information, see “CAS Statement” in SAS Cloud Analytic Services: User’s 
Guide and addFmtLib Action.

1023

http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n0z3r80fjqpobvn1lvegno9gefni.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n0z3r80fjqpobvn1lvegno9gefni.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=caspg&docsetTarget=cas-sessionprop-addfmtlib.htm


Syntax: FMTC2ITM Procedure
PROC FMTC2ITM <options>;

<SELECT member-list>;

Statement Task

PROC FMTC2ITM Converts one or more format catalogs into a single item 
store.

SELECT Lists the formats to be placed in the item store.

PROC FMTC2ITM Statement
Converts one or more format catalogs into a single item store.

Note: The item store is written as a new file. If you specify the name of an existing item store 
with the ITEMSTORE option, it overwrites the contents of the existing item store.

Syntax
PROC FMTC2ITM <options>;

Required Arguments
CATALOG= memname | libname.memname( | list)

specifies a catalog that is to be converted to an item store. If you do not specify 
the CATALOG option, the default catalog is WORK.FORMATS.

You can specify the following values for the CATALOG option:

n A single-level name that SAS interprets as a catalog name in the WORK 
library.

n A two-level name that SAS interprets as a libname.memname for a catalog.

n A list enclosed in parentheses that SAS interprets as a list of catalog names.

SAS opens each catalog in the list in the listed order and writes the members of 
the catalogs to the item store. Only the first occurrence of the member is written. 
For example, if CATALOG A has members X and Y, and CATALOG B has 
members X and Z as specified in this code example:

proc fmtc2itm catalog=(a b) itemstore='itemstoreA'; run;

1024 Chapter 28 / FMTC2ITM Procedure



The resulting item store contains members X and Y from CATALOG A, and 
member Z from CATALOG B.

ITEMSTORE= fileref | 'filename'
specifies the name of the item store. You can specify a fileref, or you can specify 
a pathname in quotation marks.

Note: You can specify only one item store with each invocation of PROC 
FMTC2ITM.

ENCODING=encoding-name
specifies an encoding for a catalog or for all of the catalogs in a list.

To specify an encoding for one catalog, specify the ENCODING= option after the 
catalog name as shown in this example code.

proc fmtc2itm cat=(abc.fmtlib1/encoding=utf8 abc.fmtlib2);

SAS applies the UTF8 encoding to only the Abc.Fmtlib1 catalog. The 
Abc.Fmtlib2 catalog uses the session encoding.

To specify an encoding for a list of format catalogs, specify the ENCODING= 
option at the end of a list of catalogs.

proc fmtc2itm cat=(abc.fmtlib1 abc.fmtlib2) encoding=utf8;

SAS applies the UTF8 encoding to all of the catalogs in the list.

If you do not specify the ENCODING= option for a catalog, then SAS assigns the 
session encoding option to the catalog.

PROC FMTC2ITM validates all of the character data (all labels and character 
range values) in a catalog to ensure that they are valid for the specified 
encoding. SAS issues an error if any of the characters do not transcode 
successfully.

Optional Arguments
PRINT

displays information about each catalog member that is written.

LOCALE
adds locale-sensitive prefixes to the names of members of an item store.

If you specify the LOCALE option, then the processing of the parenthetical list of 
member names is different from the usual processing of member names in a list. 
If any catalog has a locale suffix (of the form _xx or _xx_yy), then the members 
from the catalog are written to the item store with that suffix as a prefix. For 
example, if catalog X_EN_US has members ABC, DEF, and GHI, and catalog 
X_FR_FR also has members ABC, DEF and JKL as specified in this code 
example

proc fmtc2itm catalog=(x_en_us x_fr_fr) itemstore locale; run;

The resulting item store contains the members EN_US-ABC, EN_US-DEF, 
EN_US-GHI, FR_FR-ABC, FR_FR-DEF, and FR_FR-JKL. A subsequent usage 
of the item store in CAS allows for ABC or DEF to be loaded properly based on 
an EN_US or FR_FR locale. If the LOCALE option is not provided, the item store 
contains the members ABC, DEF, and GHI from X_EN_US, and member JKL 
from X_FR_FR.

PROC FMTC2ITM Statement 1025



Note: When you specify PROC FMTC2ITM, your SAS session must use the 
same encoding that was used when the format catalogs were created. For 
example, if the EN_US locale was used when the catalogs were created, then 
the session where you specify PROC FMTC2ITM must also use the EN_US 
locale.

SELECT Statement
Lists the formats to place in the item store.

Tip: If you do not specify the members of the format catalog with a SELECT statement, then 
all formats in the catalog are written to the item store.

Syntax
SELECT <member-list>;

Optional Argument
member-list

Contains the names of the formats to place in the item store.

Details
The SELECT statement enables you to select only the formats from a format library 
that you want to add to an item store. For example, if you had a format library that 
contained the formats CHOICE, SINGLE2, TESTFMTA, WHEN, and WHERE, you 
could specify the WHEN and WHERE formats with the SELECT statement. The 
WHEN and WHERE formats are then added to the item store, but the CHOICE, 
SINGLE2, and TESTFMTA, formats are not added.

Example: Migrate Formats to a CAS 
Session
Features: PROC FMTC2ITM statement options

CATALOG
ITEMSTORE

CAS statement options
LOADFORMATS

1026 Chapter 28 / FMTC2ITM Procedure



LISTFORMAT
SAVEFMTLIB

Details
This example uses the FMTC2ITM procedure to migrate user-defined formats that 
are stored in one or more SAS format catalogs to a format library in a CAS session.

Program
libname orion "path-to-library";

proc format;
   value $codes
      "A" = "Alpha"
      "B" = "Beta"
      "C" = "Charlie"
      "D" = "Delta";
   value response
      1 = "Yes"
      2 = "No"
      3 = "Undecided"
      4 = "No response";
   value MPGrating
      34  - HIGH = "Excellent"
      24  -< 34  = "Good"
      19  -< 24  = "Fair"
      LOW -< 19  = "Poor";
run;

proc format library=orion.mailfmts;
   value $officeCodes
      "CHI" = "Chicago"
      "NYC" = "New York"
      "ATL" = "Atlanta"
      "CUP" = "Cupertino";
   value $regionCodes
      "E" = "East"
      "W" = "West"
      "N" = "North"
      "S" = "South";
run;

cas casauto;

proc fmtc2itm                                    
   catalog=(work.formats orion.mailfmts)
   itemstore="path-to-item-store-file";
run;

cas casauto addfmtlib fmtlibname="myfmtlib"    

Example: Migrate Formats to a CAS Session 1027



   path=path-to-item-store-file
   replacefmtlib;

cas casauto listformat fmtlibname="myfmtlib"     
   members;

cas casauto savefmtlib fmtlibname=myfmtlib       
   caslib=casuser table=myfmtlib replace;

Program Description
Create the Orion library and add the formats.

libname orion "path-to-library";

proc format;
   value $codes
      "A" = "Alpha"
      "B" = "Beta"
      "C" = "Charlie"
      "D" = "Delta";
   value response
      1 = "Yes"
      2 = "No"
      3 = "Undecided"
      4 = "No response";
   value MPGrating
      34  - HIGH = "Excellent"
      24  -< 34  = "Good"
      19  -< 24  = "Fair"
      LOW -< 19  = "Poor";
run;

proc format library=orion.mailfmts;
   value $officeCodes
      "CHI" = "Chicago"
      "NYC" = "New York"
      "ATL" = "Atlanta"
      "CUP" = "Cupertino";
   value $regionCodes
      "E" = "East"
      "W" = "West"
      "N" = "North"
      "S" = "South";
run;

Start a CAS session.

cas casauto;

Create the item store with the formats. The FMTC2ITM procedure writes the 
formats in format catalogs Work.Formats and Orion.Mailfmts to an item store file. 
The CATALOG option specifies to search the format catalogs Work.Formats and 
Orion.Mailfmts. The ITEMSTORE option specifies the path where the item store is 
to be written. To select a subset of the formats in the specified format catalogs, 
specify a SELECT statement in the FMTC2ITM procedure step.

1028 Chapter 28 / FMTC2ITM Procedure



proc fmtc2itm                                    
   catalog=(work.formats orion.mailfmts)
   itemstore="path-to-item-store-file";
run;

Load the Formats The CAS statement ADDFMTLIB option uses the item store file 
that you created with the FMTC2ITM procedure to add the format library Myfmtlib.

cas casauto addfmtlib fmtlibname="myfmtlib"    
   path=path-to-item-store-file
   replacefmtlib;

List the formats. The CAS statement LISTFORMAT option lists the formats in 
format library Myfmtlib to the SAS log for verification. 

cas casauto listformat fmtlibname="myfmtlib"     
   members;

Save the format library. The CAS statement SAVEFMTLIB option saves the format 
library to a SASHDAT file. This step is optional.

For format libraries that you use repeatedly, saving to a caslib is a best practice. 
Use the CAS statement ADDFMTLIB option with parameters CASLIB= and TABLE= 
when adding a format library from a caslib.

cas casauto savefmtlib fmtlibname=myfmtlib       
   caslib=casuser table=myfmtlib replace;

Example: Migrate Formats to a CAS Session 1029



1030 Chapter 28 / FMTC2ITM Procedure



Chapter 29
FONTREG Procedure

Overview: FONTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
What Does the FONTREG Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031

Concepts: FONTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1032
Supported Font Types and Font Naming Conventions . . . . . . . . . . . . . . . . . . . . 1032
Registering Fonts with PROC FONTREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
Removing Fonts from the SAS Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034
Using a Fileref with PROC FONTREG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035
Font Aliases and Locales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035

Syntax: FONTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035
PROC FONTREG Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1036
FONTFILE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038
FONTPATH Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040
REMOVE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1040
TRUETYPE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1042
TYPE1 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043
OPENTYPE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043

Examples: FONTREG Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044
Example 1: Adding a Single Font File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044
Example 2: Adding All Font Files from Multiple Directories . . . . . . . . . . . . . . . . . 1045
Example 3: Replacing Existing TrueType Font Files from a Directory . . . . . . . . . 1047

Overview: FONTREG Procedure

What Does the FONTREG Procedure Do?
The FONTREG procedure enables you to update the SAS registry to include system 
fonts, which can then be used in SAS output. PROC FONTREG uses FreeType 
font-rendering to recognize and incorporate various types of font definitions. Fonts 

1031



of any type that can be incorporated and used by SAS are known collectively in this 
documentation as fonts in the FreeType library.

Note: Including a system font in the SAS registry means that SAS knows where to 
find the font file. The font file is not actually used until the font is called for in a SAS 
program. Therefore, do not move or delete font files after you have included the 
fonts in the SAS registry.

For more information, see the following sources:

n “Specifying Fonts in SAS/GRAPH Programs” in SAS/GRAPH: Reference 

n “GDEVICE Procedure” in SAS/GRAPH: Reference 

n “FONTSLOC=” in SAS System Options: Reference and “SYSPRINTFONT=” in 
SAS System Options: Reference 

n gitlab.freedesktop.org/freetype for information about the FreeType project

Concepts: FONTREG Procedure

Supported Font Types and Font Naming 
Conventions

When a font is added to the SAS registry, the font name is prefixed with a three-
character tag, enclosed in angle brackets (< >). This prefix indicates the font type. 
For example, if you add the TrueType font Arial to the SAS registry, then the name 
in the registry is <ttf> Arial. This naming convention enables you to add and 
distinguish between fonts that have the same name but are of different types.

When you specify a font in a SAS program, use the three-character tag to 
distinguish between fonts that have the same name:

proc report data=sashelp.class nowd
            style(header)=[font_face='<ttf> Palatino Linotype'];
run;

Examples of when you can specify a font in a SAS program are in the TEMPLATE 
procedure or in the STYLE= option in the PROC REPORT.

If you do not include a tag in your font specification, SAS searches the registry for 
fonts with that name. If more than one font with that name is found, SAS uses the 
font that has the highest rank in the following table.

1032 Chapter 29 / FONTREG Procedure

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p06vz77jepufwin0zll2x0sj6i7c.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n0w7rxglw3wc8wn13681sqrko4y7.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0f8g1hh7oku8on1bhkgq8z3ljr0.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0b22s3dxtjbuan1x6qv3g9c6cf5.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0b22s3dxtjbuan1x6qv3g9c6cf5.htm&locale=en
https://gitlab.freedesktop.org/freetype


Table 29.1 Supported Font Types

Rank Type Tag File Extension

1 TrueType <ttf> .ttf

2 Type1 <at1> .pfa

.pfb

3 OpenType <cff> .otf

Note: OpenType font is an extension of TrueType font and is supported by SAS. 
OpenType contains the family values for serif, sans-serif, monospace, and symbol 
fonts. OpenType registers .otf font files.

Note: PDF and PostScript do not support double-byte Type1 fonts.

SAS does not support any type of nonscalable fonts that require FreeType font-
rendering. Even if they are recognized as valid fonts, they will not be added to the 
SAS registry.

Font files that are not produced by major vendors can be unreliable, and in some 
cases SAS might not be able to use them.

The following SAS output methods and device drivers can use FreeType font-
rendering:

SAS/GRAPH GIF, GIFANIM Universal PNG
SAS/GRAPH JPEG Universal Printing GIF
SAS/GRAPH PCL Universal Printing TIFF
SAS/GRAPH PNG Universal Printing PCL
SAS/GRAPH SASEMF Universal Printing PDF
SAS/GRAPH SASWMF Universal PS
SAS/GRAPH TIFFP, TIFFB Universal SVG
Universal EMF

Registering Fonts with PROC FONTREG
PROC FONTREG is used to register fonts in the SAS Registry. For example, if you 
have a Type1 or OpenType font in your Windows font directory, you can register the 
font by submitting the following code:

proc fontreg mode=add;
fontpath '!SYSTEMROOT\fonts';
run;

This code will register all of the other font files in the Windows font directory.

Concepts: FONTREG Procedure 1033



Removing Fonts from the SAS Registry
You can remove a font from the SAS registry in the following ways:

n by using the SAS Registry Editor

n by using PROC REGISTRY

n by using the REMOVE statement in PROC FONTREG

To remove a font by using the SAS Registry Editor, select Solutions ð 
Accessories ð Registry Editor. Alternatively, you can enter regedit in the 
command window or Command ===> prompt.

The following display shows the SAS Registry Editor window.

Figure 29.1 SAS Registry Editor Window

In the left pane of the Registry Editor window, navigate to the [CORE\PRINTING
\FREETYPE\FONTS] key. Select the font that you want to delete, and use one of 
these methods to delete it:

n Right-click the font name and select Delete from the menu.

n Select the Delete button  .

n Select Edit ð Delete ð Key.

To delete a font by using PROC REGISTRY, submit a program similar to the 
following example. This example removes the <ttf> Arial font.

   /* Write the key name for the font to an external file */
proc registry export='external-filename'

1034 Chapter 29 / FONTREG Procedure



              startat='core\printing\freetype\fonts\<ttf> Arial';
run;

   /* Remove the "<ttf> Arial" font from the SAS registry */
proc registry
uninstall='external-filename' fullstatus;
run;

To delete a font by using the REMOVE statement in PROC FONTREG, see 
“REMOVE Statement” on page 1040.

For more information about PROC REGISTRY, see Chapter 57, “REGISTRY 
Procedure,” on page 1963.

Using a Fileref with PROC FONTREG
You can use a fileref with the FONTPATH, TRUETYPE, TYPE1, and OPENTYPE 
statements in PROC FONTREG, if you first define a filename. The following 
examples show how a fileref is used:

filename fonts1 'c:\windows\fonts';
proc fontreg mode=all;
   fontpath fonts1;
run;

proc fontreg mode=all;
   truetype fonts1;
run;

The ability to use a fileref enables you to directly use the FILENAME statement and 
its features. For example, you can register available fonts by using a URL. With 
fileref support, you would use a FILENAME statement and a PROC FONTREG 
step.

Font Aliases and Locales
The FONTFILE, FONTPATH, TRUETYPE, and OPENTYPE statements support 
aliases and locales. If the font that is being processed contains a localized name in 
the same locale as the current SAS session, then an alias of that localized name will 
be added to the SAS registry to reference the font family.

Syntax: FONTREG Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

Interaction: If no statements are specified, then PROC FONTREG searches for TrueType font files in 
the directory that is indicated in the FONTSLOC= SAS system option.

Syntax: FONTREG Procedure 1035



Note: For z/OS sites that do not use the hierarchical file system (HFS), only the FONTFILE 
statement is supported. For more information, see “FONTREG Procedure Statement: 
z/OS” in SAS Companion for z/OS.

Tip: If you specify more than one statement, then the statements are executed in the order in 
which they appear, except for REMOVE statements, which are always executed first. 
You can use the same statement more than once in a single PROC FONTREG step.

See: “FONTREG Procedure Statement: z/OS” in SAS Companion for z/OS 

PROC FONTREG <options>;
FONTFILE 'file' <…'file'> | 'file-1, pfm-file-1, afm-file-1' <...'file-n'> ||;
FONTPATH <fileref> 'directory' <…'directory'>;
OPENTYPE <fileref> 'directory' <…'directory'>
REMOVE 'family-name' | 'alias' | family-type | _ALL_;
TRUETYPE <fileref> 'directory' <…'directory'>;
TYPE1 <fileref> 'directory' <…'directory'>;

Statement Task

PROC FONTREG Specify how to handle new and existing fonts

FONTFILE Identify which font files to process

FONTPATH Search directories to identify valid font files to process

REMOVE Remove a font family, all fonts of a particular type, or all 
fonts from the Core\Printing\Freetype\Fonts location of 
the SAS registry

TRUETYPE Search directories to identify TrueType font files

TYPE1 Search directories to identify valid Type 1 font files

OPENTYPE Search directories to identify valid OpenType font files

PROC FONTREG Statement
Enables you to update the SAS registry to include system fonts, which can then be used in SAS output.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Syntax
PROC FONTREG <options>;

1036 Chapter 29 / FONTREG Procedure

http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p1n32kuoihcoksn1uqodk38irn9q.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p1n32kuoihcoksn1uqodk38irn9q.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p1n32kuoihcoksn1uqodk38irn9q.htm&locale=en


Summary of Optional Arguments
MODE=ADD | REPLACE | ALL

specifies how to handle new and existing fonts.
MSGLEVEL=VERBOSE | NORMAL | TERSE | NONE

specifies the level of detail to include in the SAS log.
NOUPDATE

specifies that the procedure should run without updating the SAS registry.
USESASHELP

specifies that the SAS registry in the Sashelp library be updated.

Optional Arguments
MODE=ADD | REPLACE | ALL

specifies how to handle new and existing fonts in the SAS registry: 

ADD
specifies to add fonts that do not already exist in the SAS registry. Do not 
modify existing fonts.

REPLACE
specifies to replace fonts that already exist in the SAS registry. Do not add 
new fonts.

ALL
specifies to add new fonts that do not already exist in the SAS registry and 
replace fonts that already exist in the SAS registry.

Default ADD

Example “Example 3: Replacing Existing TrueType Font Files from a Directory” 
on page 1047

MSGLEVEL=VERBOSE | NORMAL | TERSE | NONE
specifies the level of detail to include in the SAS log.

Here are the levels:

VERBOSE
SAS log messages include which fonts were added, which fonts were not 
added, and which fonts were not understood. The log also contains a 
summary that indicates the number of fonts that were added, not added, and 
not understood.

NORMAL
SAS log messages include which fonts were added, and a summary that 
indicates the number of fonts that were added, not added, and not 
understood.

TERSE
SAS log messages include only the summary that indicates the number of 
fonts that were added, not added, and not understood.

NONE
No messages are written to the SAS log, except for errors (if encountered).

Default TERSE

PROC FONTREG Statement 1037



Example “Example 2: Adding All Font Files from Multiple Directories” on page 
1045

NOUPDATE
specifies that the procedure should run without actually updating the SAS 
registry. This option enables you to test the procedure on the specified fonts 
before modifying the SAS registry.

USESASHELP
specifies that the SAS registry in the Sashelp library should be updated. You 
must have Write access to the Sashelp library in order to use this option. If the 
USESASHELP option is not specified, then the SAS registry in the Sasuser 
library is updated.

FONTFILE Statement
Specifies one or more font files to be processed.

See: “Example 1: Adding a Single Font File” on page 1044

Syntax
FONTFILE 'file' <…'file'> | 'file-1, pfm-file-1, afm-file-1' <...'file-n'>;

Required Arguments
file

is the complete pathname to a font file. If the file is recognized as a valid font file, 
then the file is processed. Each pathname must be enclosed in quotation marks. 
If you specify more than one pathname, then you must separate the pathnames 
with a space.

pfm-file
specifies a file specific to Windows that contains font metrics as well as the value 
of the Windows font name.

afm-file
specifies a file that contains font metrics.

Details

Processing a Type1 Font
When a valid Type1 font is processed by the TYPE1 statement or the FONTPATH 
statement, SAS attempts to find a corresponding PFM or AFM font metric file in the 
same directory that contains the font file. The font filename prefix is used with 
the .PFM and .AFM extensions to generate metric filenames. If these files are 

1038 Chapter 29 / FONTREG Procedure



opened successfully and are determined to be valid metric files, then they will be 
associated with the font in the font family when they are added to the SAS registry.

If you specify a Type1 font in the FONTFILE statement, and you do not specify a 
PFM or AFM file, then SAS does not search for the PFM or AFM files.

Specifying a PFM or AFM File
If the font file contains a Type1 font, then you can also specify its corresponding 
PFM or AFM file as well. You must specify the full host name (directory and 
filename) for each file, and all files must be grouped together and enclosed in 
quotation marks, as in this example:

fontfile 'c:\winnt\fonts\alpinerg.pfb,
          c:\winnt\fonts\alpinerg.pfm,
          c:\winnt\fonts\alpinerg.afm';

If you specify an AFM file but do not specify a PFM file, then you must use a comma 
as a placeholder for the missing PFM file, as in this example:

fontfile 'c:\winnt\fonts\alpinerg.pfb, ,
c:\winnt\fonts\alpinerg.afm';

If you specify a PFM file but do not specify an AFM file, then you do not need a 
comma as a placeholder for the missing AFM file, as in this example:

fontfile 'c:\winnt\fonts\alpinerg.pfb,
c:\winnt\fonts\alpinerg.pfm';

When you specify a PFM or AFM file, SAS attempts to open the file and determine 
whether the file is of the specified type. If it is not, then SAS writes a message to the 
log and the file is not used.

The PFM file is a file that is specific to Windows, and contains font metrics as well 
as a value for the Windows Font Name field. If you specify a valid PFM file, then 
SAS opens the file, retrieves the value in Windows Font Name, and saves it with the 
font in the SAS registry. SAS uses this field when it creates a file (such as an EMF 
formatted file) to export into a Windows application.

Not Specifying a PFM or AFM File
You do not need to specify a PFM or AFM file along with a Type1 font file in a 
FONTFILE statement. In this case, no metric file information is added to the font in 
the font family in the SAS registry. If an existing font family that contains multiple 
styles and weights already exists in the SAS registry, and the FONTFILE statement 
is used to replace one of the fonts in that family, then all of the information for that 
font will be updated. The replacement also updates the Host Filename, PFM Name, 
AFM Name, and Windows Font Name.

Note: If you replace a font in a family and the font contains values for the PFM 
Name or AFM Name, specifying a missing or invalid value for the metric in the 
FONTFILE statement causes the corresponding metric value to be deleted from the 
font in the registry.

FONTFILE Statement 1039



Note: You cannot use a PFM or AFM file specification if you specify a TrueType 
font.

FONTPATH Statement
Specifies one or more directories to be searched for valid font files to process.

See: “Example 2: Adding All Font Files from Multiple Directories” on page 1045

Syntax
FONTPATH <fileref> 'directory' <…'directory'>;

Required Argument
directory

specifies a directory to search. All files that are recognized as valid font files are 
processed. Each directory must be enclosed in quotation marks. If you specify 
more than one directory, then you must separate the directories with a space.

Operating Environment Information: In the Windows operating environment 
only, you can locate the fonts folder if you do not know where the folder resides. 
In addition, you can register system fonts without having to know where the fonts 
are located. To find this information, submit the following program: 

proc fontreg;
    fontpath "%sysget(systemroot)\fonts"; 
run;

The %SYSGET macro retrieves the value of the Windowing environment 
variable SYSTEMROOT, and resolves to the location of your system directory. 
The fonts subdirectory is located one level below the system directory.

Optional Argument
fileref

specifies a fileref to use with the FONTPATH statement.

REMOVE Statement
Removes a font family, all fonts of a particular type (such as TrueType or Type1), or all fonts from the Core
\Printing\Freetype\Fonts location of the SAS registry.

1040 Chapter 29 / FONTREG Procedure



Syntax
REMOVE ‘family-name’ | ‘alias’ | family-type | _ALL_;

Required Arguments
family-name

specifies the family name of the font that you want to remove from the 
Core\Printing\Freetype\Fonts key in the SAS registry. Enclose family-name in 
quotation marks if the value contains one or more spaces.

alias
specifies an alternative name, usually in a shortened form, for family-name. 
Enclose the alias name in quotation marks if the value contains one or more 
spaces.

Note The valid values that can be specified as an alias are listed in the 
Core\Printing\Alias\Fonts\Freetype key in the SAS registry.

family-type
specifies the name of a font type (such as TrueType or Type1) that SAS supports 
and that you want removed from the SAS registry.

Note: The font type is not removed from the operating system location in which 
they reside. The registration of the font type from the SAS registry is removed so 
that SAS does not recognize the fonts.

_ALL_
specifies that all font families in the Core\Printing\Freetype\Fonts key in the SAS 
registry will be deleted.

Details

Removing Fonts from the Registry
The REMOVE statement removes a font family, all fonts of a particular type, or all 
fonts from the Core\Printing\Freetype\Fonts location in the SAS registry. If you 
specify the USESASHELP procedure option, then fonts are removed from the 
Sashelp portion of the registry. If you do not specify USESASHELP, then fonts are 
removed from the Sasuser portion of the registry. Removal from the Sasuser portion 
of the registry is the default.

Note that when you specify the family-name argument in the REMOVE statement, 
SAS removes font families rather than individual fonts within the family. For 
example, you might register several fonts within the Arial family. When you use the 
REMOVE Arial; statement, all fonts in the Arial family are removed from the 
registry. Similarly, when you specify the family-type argument and use the REMOVE 
Type1; statement, all Type1 font families are removed from the registry.

REMOVE Statement 1041



The Order in Which Fonts Are Added or Removed
Fonts are removed from the SAS registry before any fonts are added or replaced in 
the registry using other procedure statements. The REMOVE statement removes a 
font family from the registry as soon as the statement is processed. Other font 
statements, such as FONTFILE, FONTPATH, TRUETYPE, and TYPE1, are 
processed in the order in which they are received. The font information is stored 
until all of the statements are processed. SAS then updates the registry.

Searching for a Font That Is Specified in the 
REMOVE Statement
If the name that you specify in a REMOVE statement does not exist, then SAS adds 
a font tag prefix (for example, <ttf>) to the specified name to determine whether it 
exists in the SAS registry. For example, if you specify Arial, SAS uses the <ttf> 
prefix tag and first searches for a TrueType font type so that it can be removed from 
the registry. If the search is not successful, then SAS uses the <at1> prefix tag and 
searches for a Type1 font type so that it can be removed from the registry.

When SAS Is Unable to Remove a Font Family
If SAS is unable to remove a font family after processing the information in the 
_ALL_, family-type, or family-name arguments, then SAS looks in the 
Core\Printing\Alias\Fonts\Freetype key in the SAS registry to determine whether the 
specified value is an alias. If the specified value exists as an alias in this key, then 
SAS deletes the font family that corresponds to the alias and deletes the alias as 
well. For example, if an alias of Test refers to the Arial font family, and you specify 
the REMOVE test; statement with PROC FONTREG, then SAS determines that Test 
is an alias for Arial. SAS removes the Arial font family from the 
Core\Printing\Freetype\Fonts key and the Test alias from the 
Core\Printing\Alias\Fonts\Freetype key in the SAS registry.

If SAS is unable to remove a font family at this point, then SAS writes a message to 
the log indicating that the specified value in the REMOVE statement is invalid.

TRUETYPE Statement
Specifies one or more directories to be searched for TrueType font files.

See: “Example 3: Replacing Existing TrueType Font Files from a Directory” on page 1047

Syntax
TRUETYPE <fileref> 'directory' <…'directory'>;

1042 Chapter 29 / FONTREG Procedure



Required Argument
directory

specifies a directory to search. Only files that are recognized as valid TrueType 
font files are processed. Each directory must be enclosed in quotation marks. If 
you specify more than one directory, then you must separate the directories with 
a space.

Optional Argument
fileref

specifies a fileref to use with the TRUETYPE statement.

TYPE1 Statement
Specifies one or more directories to be searched for valid Type1 font files.

Syntax
TYPE1 <fileref> 'directory' <…'directory'>;

Required Argument
directory

specifies a directory to search. Only files that are recognized as valid Type1 font 
files are processed. Each directory must be enclosed in quotation marks. If you 
specify more than one directory, then you must separate the directories with a 
space.

Optional Argument
fileref

specifies a fileref to use with the TYPE1 statement.

OPENTYPE Statement
Specifies one or more directories to be searched for valid OpenType font files.

Syntax
OPENTYPE <fileref> 'directory' <…'directory'>;

OPENTYPE Statement 1043



Required Argument
directory

specifies a directory to search. Only files that are recognized as valid OpenType 
font files are processed. Each directory must be enclosed in quotation marks. If 
you specify more than one directory, then you must separate the directories with 
a space.

Optional Argument
fileref

specifies a fileref to use with the OPENTYPE statement.

Examples: FONTREG Procedure

Example 1: Adding a Single Font File
Features: FONTFILE statement

Details
This example shows how to add a single font file to the SAS registry. The 
FONTFILE statement specifies the complete path to a single font file.

Program
proc fontreg;
   fontfile '<ttf> Arial';
run;

1044 Chapter 29 / FONTREG Procedure



Log
Example Code 29.1 Adding a Single Font File to the SAS Registry

SUMMARY:
  Files processed: 1
  Unusable files: 0
  Files identified as fonts: 1
  Fonts that were processed: 1
  Fonts replaced in the SAS registry: 0
  Fonts added to the SAS registry: 1
  Fonts that could not be used: 0
  Font Families removed from SAS registry: 0

Example 2: Adding All Font Files from Multiple 
Directories
Features: MSGLEVEL= option

FONTPATH statement

Details
This example shows how to add all valid font files from two different directories and 
how to write detailed information to the SAS log.

Program
proc fontreg msglevel=verbose;

fontpath 'your-font-directory-1' 'your-font-directory-2';
run;

Program Description
Write complete details to the SAS log. The MSGLEVEL=VERBOSE option writes 
complete details about what fonts were added, what fonts were not added, and what 
font files were not understood.

proc fontreg msglevel=verbose;

Specify the directories to search for valid fonts. You can specify more than one 
directory in the FONTPATH statement. Each directory must be enclosed in quotation 

Example 2: Adding All Font Files from Multiple Directories 1045



marks. If you specify more than one directory, then you must separate the 
directories with a space.

fontpath 'your-font-directory-1' 'your-font-directory-2';
run;

Log
Example Code 29.2 Messages from Adding All Font Files from Multiple Directories

1    proc fontreg msglevel=verbose;
2    fontpath 'your-font-directory-1'
3              'your-font-directory-2';
4    run;

ERROR: FreeType base module FT_New_Face -- unknown file format.
ERROR: A problem was encountered with file      
"your-font-directory-2\MODERN.FON".

. . .  more log entries . . .

WARNING: The "Sasfont" font in file
         "your-font-directory-2\SAS1252.FON" is non-scalable.     Only scalable 
fonts are supported.

. . .  more log entries . . .

NOTE: The font "Albertus Medium" (Style: Regular, Weight: Normal) has been
      added to the SAS Registry at
      [CORE\PRINTING\FREETYPE\FONTS\<ttf>Albertus Medium]. Because it is a
      TRUETYPE font, it can be referenced as "Albertus Medium" or 
      "<ttf>Albertus Medium" in SAS. The font resides in file     
      "your-font-directory-1\albr55w.ttf".

. . .  more log entries . . .

WARNING: The font "Georgia" (Style: Regular, Weight: Normal) will not be added
because it already exists in the "<ttf>Georgia" font family of the SAS Registry.

. . .  more log entries . . .

SUMMARY:
  Files processed: 138
  Unusable files: 3
  Files identified as fonts: 135
  Fonts that were processed: 135
  Fonts replaced in the SAS registry: 0
  Fonts added to the SAS registry: 91
  Fonts that could not be used: 44
  Font Families removed from SAS registry: 0

NOTE: PROCEDURE FONTREG used (Total process time):
      real time           27.81 seconds
      cpu time            1.18 seconds

1046 Chapter 29 / FONTREG Procedure



Example 3: Replacing Existing TrueType Font Files 
from a Directory
Features: MODE= option

TRUETYPE statement

Details
This example reads all the TrueType fonts in the specified directory and replaces 
the ones that already exist in the SAS registry.

Program
proc fontreg mode=replace;

   truetype 'your-font-directory';
run;

Program Description
Replace existing fonts only. The MODE=REPLACE option limits the action of the 
procedure to replacing fonts that are already defined in the SAS registry. New fonts 
will not be added.

proc fontreg mode=replace;

Specify a directory that contains TrueType font files. Files in the directory that 
are not recognized as being TrueType font files are ignored.

   truetype 'your-font-directory';
run;

Example 3: Replacing Existing TrueType Font Files from a Directory 1047



Log
Example Code 29.3 Replacing Existing TrueType Font Files from a Directory

SUMMARY:
  Files processed: 49
  Unusable files: 3
  Files identified as fonts: 46
  Fonts that were processed: 40
  Fonts replaced in the SAS registry: 40
  Fonts added to the SAS registry: 0
  Fonts that could not be used: 0
  Font Families removed from SAS registry: 0

1048 Chapter 29 / FONTREG Procedure



Chapter 30
FORMAT Procedure

Overview: FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049
What Does the FORMAT Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050
Format Encodings in SAS Viya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1050
What Are Formats and Informats? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1051
How Are Formats and Informats Associated with a Variable? . . . . . . . . . . . . . . . 1051

Concepts: FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1052
Associating Informats and Formats with Variables . . . . . . . . . . . . . . . . . . . . . . . 1052
Storing Informats and Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1054
Printing Informats and Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056
Using Formats in a CAS Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056
A Binary Search Determines the User-Defined Format or Informat for a Value . . 1057

Syntax: FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058
PROC FORMAT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1059
EXCLUDE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064
INVALUE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1065
PICTURE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072
SELECT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093
VALUE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1094

Usage: FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101
Specifying Values or Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1101
Using a Function to Format Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1105
Viewing a Format Definition Using SAS Explorer . . . . . . . . . . . . . . . . . . . . . . . . . 1106

Results: FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107
Output Control Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107
Input Control Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1111
Procedure Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1112

Examples: FORMAT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1115
Example 1: Create a Format Library in a CAS Session . . . . . . . . . . . . . . . . . . . . 1115
Example 2: Create the Example Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1121
Example 3: Creating a Picture Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122
Example 4: Creating a Picture Format for Large Dollar Amounts . . . . . . . . . . . . 1124
Example 5: Filling a Picture Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127
Example 6: Create a Date or Time Format with Directives . . . . . . . . . . . . . . . . . 1129
Example 7: Change the 24–Hour Clock to 00:00:01–24:00:00 . . . . . . . . . . . . . . 1131
Example 8: Creating a Format for Character Values . . . . . . . . . . . . . . . . . . . . . . 1132
Example 9: Creating a Format for Missing and Nonmissing Variable Values . . . . 1134

1049



Example 10: Creating an Informat Using Perl Regular Expressions . . . . . . . . . . 1137
Example 11: Writing a Format for Dates Using a Standard SAS 

Format and a Color Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1139
Example 12: Converting Raw Character Data to Numeric Values . . . . . . . . . . . . 1142
Example 13: Creating a Format from a CNTLIN= Data Set . . . . . . . . . . . . . . . . . 1145
Example 14: Creating an Informat from a CNTLIN= Data Set . . . . . . . . . . . . . . . 1150
Example 15: Printing the Description of Informats and Formats . . . . . . . . . . . . . 1155
Example 16: Retrieving a Permanent Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156
Example 17: Writing Ranges for Character Strings . . . . . . . . . . . . . . . . . . . . . . . 1159
Example 18: Creating a Format in a non-English Language . . . . . . . . . . . . . . . . 1162
Example 19: Creating a Locale-Specific Format Catalog . . . . . . . . . . . . . . . . . . . 1164
Example 20: Creating a Function to Use as a Format . . . . . . . . . . . . . . . . . . . . . 1169
Example 21: Using a Format to Create a Drill-down Table . . . . . . . . . . . . . . . . . 1172

Overview: FORMAT Procedure

What Does the FORMAT Procedure Do?
The FORMAT procedure enables you to define your own informats and formats for 
variables. In addition, you can perform these actions:

n print the parts of a catalog that contain informats or formats

n store descriptions of informats or formats in a SAS data set

n use a SAS data set to create informats or formats.

Format Encodings in SAS Viya
SAS Viya supports only UTF-8 encoding.

When you store formats in a library, SAS uses the session encoding in which the 
formats were created. If the original encoding is not UTF-8, then truncation of 
characters might occur if you convert the format library to an encoding that requires 
more bytes to represent the characters.

Note: Moving format libraries between previous versions of SAS and CAS might 
have some risk. SAS recommends that you use CNTLOUT data sets to reduce this 
risk.

For more information about using format libraries in SAS Viya, see Migrating Data to 
UTF-8 for SAS Viya and SAS Viya FAQ for Processing UTF-8 Data.

1050 Chapter 30 / FORMAT Procedure

http://documentation.sas.com/?docsetId=viyadatamig&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=viyadatamig&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=viyadatafaq&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


What Are Formats and Informats?
Informats determine how raw data values are read and stored. Formats determine 
how variable values are printed. For simplicity, this section uses the terminology the 
informat converts and the format prints.

Informats and formats tell SAS the data's type (character or numeric) and form 
(such as how many bytes it occupies; decimal placement for numbers; how to 
handle leading, trailing, or embedded blanks and zeros; and so on). SAS provides 
informats and formats for reading and writing variables. For a thorough description 
of informats and formats that SAS provides, see SAS Formats and Informats: 
Reference.

With informats, you can do the following:

n Convert a number to a character string (for example, convert 1 to YES).

n Convert a character string to a different character string (for example, convert 
'YES' to 'OUI').

n Convert a character string to a number (for example, convert YES to 1).

n Convert a number to another number (for example, convert 0–9 to 1, 10–100 to 
2, and so on).

Note: User-defined informats read-only character data. They can convert character 
values into real numeric values, but they cannot convert real numbers into 
characters.

With formats, you can do the following:

n Print numeric values as character values (for example, print 1 as MALE and 2 as 
FEMALE).

n Print one character string as a different character string (for example, print YES 
as OUI).

n Print numeric values using a template (for example, print 9458763450 as 
945-876-3450).

How Are Formats and Informats Associated with a 
Variable?

The following figure summarizes what occurs when you associate an informat and 
format with a variable. The COMMAw.d informat and the DOLLARw.d format are 
provided by SAS.

Overview: FORMAT Procedure 1051

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Figure 30.1 Associating an Informat and a Format with a Variable

raw data v alue $1,544.32

converted value 1544.32

printed value $1,544.32

read with
COMMA9.2
informat

printed using
DOLLAR9.2
format

In the figure, SAS reads the raw data value that contains the dollar sign and comma. 
The COMMA9.2 informat ignores the dollar sign and comma and converts the value 
to 1544.32. The DOLLAR9.2 format prints the value, adding the dollar sign and 
comma. For more information about associating informats and formats with 
variables, see “Associating Informats and Formats with Variables ” on page 1052. 

Concepts: FORMAT Procedure

Associating Informats and Formats with Variables

Methods of Associating Informats and 
Formats with Variables
The following table summarizes the different methods for associating informats and 
formats with variables.

1052 Chapter 30 / FORMAT Procedure



Table 30.1 Associating Informats and Formats with Variables

Step Informats Formats

In a DATA step Use the ATTRIB or INFORMAT 
statement to permanently associate 
an informat with a variable. Use the 
INPUT function or INPUT statement 
to associate the informat with the 
variable only for the duration of the 
DATA step.

Use the ATTRIB or FORMAT 
statement to permanently associate a 
format with a variable. Use the PUT 
function or PUT statement to 
associate the format with the variable 
only for the duration of the DATA 
step.

In a PROC step The ATTRIB and INFORMAT 
statements are valid in Base SAS 
procedures. However, in Base SAS 
software, typically you do not assign 
informats in PROC steps because 
the data has already been read into 
SAS variables.

Use the ATTRIB statement or the 
FORMAT statement to associate 
formats with variables. If you use 
either statement in a procedure that 
produces an output data set, then the 
format is permanently associated 
with the variable in the output data 
set. If you use either statement in a 
procedure that does not produce an 
output data set or modify an existing 
data set, the statement associates 
the format with the variable only for 
the duration of the PROC step.

Differences between the FORMAT 
Statement and PROC FORMAT
Do not confuse the FORMAT statement with the FORMAT procedure. The FORMAT 
and INFORMAT statements associate an existing format or informat (either standard 
SAS or user-defined) with one or more variables. PROC FORMAT creates user-
defined formats or informats.

Assigning Formats and Informats to a 
Variable
Assigning your own format or informat to a variable is a two-step process:

1 creating the format or informat with the FORMAT procedure

2 assigning the format or informat with the ATTRIB, FORMAT,or INFORMAT 
statements, or the INPUT or PUT functions

For complete documentation on the ATTRIB, INFORMAT, and FORMAT statements, 
see SAS DATA Step Statements: Reference. For complete documentation on the 
INPUT and PUT functions, see SAS Functions and CALL Routines: Reference. For 

Concepts: FORMAT Procedure 1053

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


more information and example of using formats in Base SAS procedures, see 
“Formatted Values” on page 63 .

Storing Informats and Formats

Format Catalogs
PROC FORMAT stores user-defined informats and formats as entries in SAS 
catalogs.1 You use the LIBRARY= option in the PROC FORMAT statement to 
specify the catalog. If you omit the LIBRARY= option, then formats and informats 
are stored in the Work.Formats catalog. If you specify LIBRARY=libref but do not 
specify a catalog name, then formats and informats are stored in the 
libref.FORMATS catalog. Note that this use of a one-level name differs from the use 
of a one-level name elsewhere in SAS. With the LIBRARY= option, a one-level 
name indicates a library; elsewhere in SAS, a one-level name indicates a file in the 
WORK library.

The name of the catalog entry is the name of the format or informat. The entry types 
are as follows:

n FORMAT for numeric formats

n FORMATC for character formats

n INFMT for numeric informats

n INFMTC for character informats

Temporary Informats and Formats
Informats and formats are temporary when they are stored in a catalog in the 
WORK library. If you omit the LIBRARY= option, then PROC FORMAT stores the 
informats and formats in the temporary catalog Work.Formats. You can retrieve 
temporary informats and formats only in the same SAS session or job in which they 
are created. To retrieve a temporary format or informat, simply include the name of 
the format or informat in the appropriate SAS statement. SAS automatically looks for 
the format or informat in the Work.Formats catalog.

Permanent Informats and Formats
If you want to use a format or informat that is created in one SAS job or session in a 
subsequent job or session, then you must permanently store the format or informat 
in a SAS catalog.

1. Catalogs are a type of SAS file and reside in a SAS library. If you are unfamiliar with the types of SAS files or the SAS 
library structure, then see the section on SAS files in SAS Language Reference: Concepts.

1054 Chapter 30 / FORMAT Procedure



You permanently store informats and formats by using the LIBRARY= option in the 
PROC FORMAT statement. See the discussion of the LIBRARY= option in the 
PROC FORMAT Statement on page 1059.

Accessing Permanent Informats and 
Formats
After you have permanently stored an informat or format, you can use it in later SAS 
sessions or jobs. If you associate permanent informats or formats with variables in a 
later SAS session or job, then SAS must be able to access the informats and 
formats. Thus, you must use a LIBNAME statement to assign a libref to the library 
that stores the catalog that stores the informats or formats.

SAS uses one of two methods when searching for user-defined formats and 
informats:

n By default, SAS always searches a library that is referenced by the Library libref 
for a FORMATS catalog. If you have only one format catalog, then do the 
following: 

1 Assign the Library libref to a SAS library in the SAS session in which you are 
running the PROC FORMAT step.

2 Specify the option library=library in the PROC FORMAT statement. 
PROC FORMAT stores the informats and formats that are defined in that 
step in the Library.Formats catalog.

3 In the SAS program that uses your user-defined formats and informats, 
include a LIBNAME statement to assign the Library libref to the library that 
contains the permanent format catalog.

n If you have more than one format catalog, or if the format catalog is named 
something other than Formats, then do the following: 

1 Assign a libref to a SAS library in the SAS session in which you are running 
the PROC FORMAT step.

2 Specify the option library=libref or library=libref.catalog in the 
PROC FORMAT step, where libref is the libref that you assigned in step 1.

3 In the SAS program that uses your user-defined formats and informats, use 
the FMTSEARCH= option in an OPTIONS statement, and include libref or 
libref.catalog in the list of format catalogs.

The syntax for specifying a list of format catalogs to search is

OPTIONS FMTSEARCH=(catalog-specification-1<catalog-specification-2 … >);

Each catalog-specification can be libref or libref.catalog. If only libref is specified, 
then SAS assumes that the catalog name is Formats.

When searching for a format or informat, SAS always searches in Work.Formats 
first, and then Library.Formats, unless one of them appears in the FMTSEARCH= 
list. SAS searches the catalogs in the FMTSEARCH= list in the order in which they 
are listed until the format or informat is found.

Concepts: FORMAT Procedure 1055



For more information, see “FMTSEARCH=” in SAS System Options: Reference. For 
an example that uses the LIBRARY= and FMTSEARCH= options together, see 
“Example 17: Writing Ranges for Character Strings” on page 1159. 

Missing Informats and Formats
If you reference an informat or format that SAS cannot find, then you receive an 
error message and processing stops unless the SAS system option NOFMTERR is 
in effect. When NOFMTERR is in effect, SAS uses the w. or $w. default format to 
print values for variables with formats that it cannot find. For example, to use 
NOFMTERR, use this OPTIONS statement:

options nofmterr;

For more information, see “FMTERR” in SAS System Options: Reference.

If SAS encounters a missing variable to format using a user-defined format and the 
MISSING= system option defines a character to be printed for missing values, the 
missing value is determined as follows:

n If the user-defined format or informat has a value-range-set for missing values, 
the missing value is defined by the user-defined format.

n If the user-defined format does not have a value-range-set defined for missing 
values, the missing value is defined by the MISSING= system option. The 
default value for the MISSING= system option is . (period).

Printing Informats and Formats
The output that is provided when you use the FMTLIB option in the PROC FORMAT 
statement is intended to present a brief view of the informat and format values.

Instead of using the FMTLIB option, you can use the CNTLOUT= option to create 
an output data set that stores information about informats and formats. You can then 
use PROC PRINT or PROC REPORT to print the data set. In this case, labels are 
not truncated.

Note: You can use data set options to keep or drop references to additional 
variables that were added by using the CNTLOUT= option.

Using Formats in a CAS Session
PROC FORMAT supports creating format libraries in catalogs in a SAS client 
session and loading format libraries to a SAS Cloud Analytic Services (CAS) 
session. When you use the SESSREF system option to specify a CAS session, and 
you also specify the CASFMTLIB option, then PROC FORMAT loads the format 
libraries to the specified CAS session. Otherwise, PROC FORMAT stores the format 

1056 Chapter 30 / FORMAT Procedure

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1fvn6rwmpf1njn1whkud1hmsc97.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1djbl02hfnoe3n0zh2i3uu2aqrf.htm&locale=en


libraries where the SAS client session is running. For more information, see 
“CASFMTLIB='name'” on page 1060.

The SAS client session and the CAS session can interact through the session 
reference that you establish with the SESSREF system option or the SESSREF 
argument in the CASLIB statement. When you use a SAS language element that 
can take advantage of processing in CAS, the session reference identifies where 
that processing should occur. If you do not specify a session reference, then 
processing occurs in the client session. If the language element is not supported in 
CAS, then processing occurs in the client session.

For more information about SESSREF, see:

n “SESSREF= System Option” in SAS Cloud Analytic Services: User’s Guide

n “CASLIB Statement” in SAS Cloud Analytic Services: User’s Guide

For more information about using formats in a CAS session, see:

n “Example 1: Create a Format Library in a CAS Session” on page 1115

n “Using User-Defined Formats In SAS Cloud Analytic Services” in SAS Cloud 
Analytic Services: User-Defined Formats

A Binary Search Determines the User-Defined 
Format or Informat for a Value

PROC FORMAT uses a binary search to determine the correct user-defined format 
or informat to use for a value. In comparison, using IF-THEN/ELSE statements is 
essentially a sequential search for a value. Because of the search method that the 
binary search uses, PROC FORMAT can provide a more efficient search for making 
a large number of comparisons.

Here are some user-defined format values that could be written using PROC 
FORMAT:

1='Yes'
2='No'
3='Possibly'

If you use these IF-THEN/ELSE statements, SAS begins searching with the first 
value in the range, x=1, and steps through the values until it finds a matching value. 
This type of search can be more efficient if the value that you want is near the 
beginning of the range of values.

if x=1 then label='Yes';
else if x=2 then label='No';
else if x=3 then label='Possibly'; 

If you are searching for the value 3, there will be 3 comparisons before a match is 
found. If you are searching for the value 1, there will be only one comparison made.

If you use the VALUE statement of PROC FORMAT, SAS begins searching at the 
middle value in the range. In this example, SAS begins by comparing the value to 
the middle range value, 2='No'. It then compares the value to the higher range, 
value 3="Possibly", and then compares the value to the lower range value, 
1="Yes".

value

Concepts: FORMAT Procedure 1057

http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=p1ubn5s5ylmecin16deas1jtytln.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n0kizq68ojk7vzn1fh3c9eg3jl33.htm&locale=en
http://documentation.sas.com/?docsetId=casformats&docsetVersion=3.5&docsetTarget=n0p4eupscop5n3n1vzib9iflu82g.htm&locale=en
http://documentation.sas.com/?docsetId=casformats&docsetVersion=3.5&docsetTarget=n0p4eupscop5n3n1vzib9iflu82g.htm&locale=en


    1="Yes"
    2="No"
    3="Possibly";

A binary search like PROC FORMAT uses is more efficient when the range has a 
large number of values to search.

Syntax: FORMAT Procedure
Restrictions: You cannot use a SELECT statement and an EXCLUDE statement within the same 

PROC FORMAT step.
When the CASFMTLIB option is specified, the SELECT and EXCLUDE statements 
ignore format libraries in SAS Cloud Analytics Services (CAS) sessions and refer only to 
catalogs.
Formats that are not enabled for threaded-kernel processing are not written to CAS.
Informats cannot be written to a CAS session. Informats included in your SAS code are 
ignored.
Formats that use functions-as-labels or formats-as-labels cannot be written to CAS.

Tips: User–defined format names cannot end in a number. For more information, see “User-
Defined Formats” in SAS Formats and Informats: Reference and “Names in the SAS 
Language” in SAS Language Reference: Concepts.
You can use appropriate global statements with this procedure. See “Global Statements” 
on page 24 for a list.
For information about generating a list of user-defined formats that are related to a SAS 
library, see the documentation for the %UDFSEL macro in SAS Cloud Analytic Services: 
User-Defined Formats.

See: “Using Formats in a CAS Session” on page 1056
“FORMAT Procedure Statement: z/OS” in SAS Companion for z/OS 

PROC FORMAT <options>;
EXCLUDE entry(s);
INVALUE <$>name <(informat-options)> <value-range-set(s)>;
PICTURE name <(format-options)>

<value-range-set-1 <(picture-1-options)>
<value-range-set-2 <(picture-2-options)>> …>;

SELECT entry(s);
VALUE <$>name <(format-options)> <value-range-set(s)>;

Statement Task Example

PROC FORMAT Define formats and informats for variables Ex. 3, Ex. 
13, Ex. 15, 
Ex. 16

EXCLUDE Exclude catalog entries from processing by the 
FMTLIB and CNTLOUT= options

1058 Chapter 30 / FORMAT Procedure

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0ivpbwvkfwguqn12eew51gtu7y1.htm&docsetTargetAnchor=p078g62hu7v2n5n1s9oqhezbvq5s&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0ivpbwvkfwguqn12eew51gtu7y1.htm&docsetTargetAnchor=p078g62hu7v2n5n1s9oqhezbvq5s&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p04gooqdeg4376n1jmciedpb8ezw.htm&locale=en


Statement Task Example

INVALUE Create an informat for reading and converting 
raw data values

Ex. 12

PICTURE Create a template for printing numbers Ex. 3, Ex. 5, 
Ex. 18

SELECT Select catalog entries for processing by the 
FMTLIB and CNTLOUT= options

Ex. 15

VALUE Create a format that specifies character strings 
to use to print variable values

Ex. 8, Ex. 
11, Ex. 17

PROC FORMAT Statement
Creates user-specified formats and informats for variables.

Tips: User–defined format names cannot end in a number. For more information, see “User-
Defined Formats” in SAS Formats and Informats: Reference and “Names in the SAS 
Language” in SAS Language Reference: Concepts.
You can use data set options with the CNTLIN= and CNTLOUT= data set options. See 
“Data Set Options” on page 23 for a list. 
Moving catalogs between previous versions of SAS and CAS might have some risk. 
SAS recommends that you use CNTLOUT data sets to reduce this risk.

Examples: “Example 3: Creating a Picture Format” on page 1122
“Example 13: Creating a Format from a CNTLIN= Data Set” on page 1145
“Example 15: Printing the Description of Informats and Formats” on page 1155
“Example 16: Retrieving a Permanent Format” on page 1156

Syntax
PROC FORMAT <options>;

Summary of Optional Arguments
CASFMTLIB='name'

adds a format library to a CAS session.
CNTLIN=input-control-SAS-data-set

specifies a SAS data set from which PROC FORMAT builds informats or 
formats.

CNTLOUT=output-control-SAS-data-set
creates a SAS data set that stores information about informats or formats 
that are contained in the catalog specified in the LIBRARY= option.

FMTLIB

PROC FORMAT Statement 1059

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0ivpbwvkfwguqn12eew51gtu7y1.htm&docsetTargetAnchor=p078g62hu7v2n5n1s9oqhezbvq5s&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0ivpbwvkfwguqn12eew51gtu7y1.htm&docsetTargetAnchor=p078g62hu7v2n5n1s9oqhezbvq5s&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en


prints information about informats or formats in the catalog that is 
specified in the LIBRARY= option.

LIBRARY=libref<.catalog>
specifies a SAS library or catalog that contains the informats or formats 
that you are creating in the PROC FORMAT step.

LOCALE
specifies to create a format catalog that corresponds to the current SAS 
locale.

MAXLABLEN=number-of-characters
specifies the number of characters of the informatted or formatted value 
that appear in PROC FORMAT output.

MAXSELEN=number-of-characters
specifies the number of characters of the start and end values that appear 
in the PROC FORMAT output.

NOREPLACE
prevents a new informat or format from replacing an existing one of the 
same name.

PAGE
prints information about each format and informat in the catalog.

Optional Arguments
CASFMTLIB='name'

adds a format library to a CAS session.

You can specify the CASFMTLIB option only in an active SAS Cloud Analytic 
Services (CAS) session. PROC FORMAT connects to the CAS session and 
loads a format library. If the format library already exists in the CAS session, then 
SAS updates it. SAS also appends the format library to the search list for any 
subsequent referencing by procedures that are operating in CAS in that session. 
That is, if a format library already exists and you create a new library with 
CASFMTLIB, then the new library is appended to the search order. The library 
name should be a one-level name that does not contain any slashes. 

Note: A CAS session can have more than one format library. The libraries are 
available only to that CAS session. For information about using a CAS action to 
promote a format library to a global scope, see “Promote format library” in SAS 
Viya: System Programming Guide.

You can specify additional CAS sessions with the SESSREF= option. For 
information about the SESSREF= option and other CAS language elements, see 
SAS Cloud Analytic Services: User’s Guide.

SAS formats are available in the local SAS client regardless of whether you add 
them to a format library in CAS. When the CASFMTLIB option is specified, the 
EXCLUDE and SELECT statements are applied to the local SAS session format 
catalogs, not to the CAS session format library. Informats cannot be loaded into 
a CAS session. If you specify an INVALUE statement with CASFMTLIB, then a 
note is written to the log and nothing is written to the CAS format library.

Restriction The format library name that you specify with the CASFMTLIB 
option cannot have a length of more than 63 characters.

1060 Chapter 30 / FORMAT Procedure

http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.5&docsetTarget=cas-sessionprop-promotefmtlib.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.5&docsetTarget=cas-sessionprop-promotefmtlib.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


Notes The specified value of the CASFMTLIB option must be enclosed in 
single or double quotation marks.

The library name that you specify is case-sensitive. It has to be a 
valid SAS name, and cannot contain blank spaces.

Formats defined in the VALUE or PICTURE statements are also 
written to the format catalog that is specified by the LIBRARY= 
option. If you do not specify a library, then SAS uses the 
WORK.FORMATS library.

Tip You can use the CAS action addFmtLib=fmtsearch to control the 
order in which SAS searches for format libraries. For more 
information, see “Manage User-Defined Formats with CAS Actions” 
in SAS Cloud Analytic Services: User’s Guide

See “Using Formats in a CAS Session” on page 1056

CNTLIN=input-control-SAS-data-set
specifies a SAS data set from which PROC FORMAT builds informats or 
formats.

CNTLIN= builds formats and informats without using a VALUE, PICTURE, or 
INVALUE statement. If you specify a one-level name, then the procedure 
searches only the default library (either the WORK library or USER library) for 
the data set, regardless of whether you specify the LIBRARY= option.

Notes When using PROC FORMAT with a CNTLIN data set the START and 
END columns must have the same length. If the lengths are different, 
an error might occur.

LIBRARY= can point to either a library or a catalog. If only a libref is 
specified, a catalog name of FORMATS is assumed.

Tip A common source for an input control data set is the output from the 
CNTLOUT= option of another PROC FORMAT step.

See “Input Control Data Set” on page 1111

Example “Example 13: Creating a Format from a CNTLIN= Data Set” on page 
1145

CNTLOUT=output-control-SAS-data-set
creates a SAS data set that stores information about informats or formats that 
are contained in the catalog specified in the LIBRARY= option. If you are 
creating an informat or format in the same step that the CNTLOUT= option 
appears, then the informat or format that you are creating is included in the 
CNTLOUT= data set.

If you specify a one-level name, then the procedure stores the data set in the 
default library (either the WORK library or the USER library), regardless of 
whether you specify the LIBRARY= option.

If you issue CNTLOUT= with an ENCODING option to create an output data set 
that has a different encoding, Cross Environment Data Access (CEDA) might 
issue a truncation error, SAS stops processing, and the CNTLOUT= data set is 
created with 0 observations. SAS writes an error to the log such as the following 
about the truncation of data:

ERROR: Some character data was lost during transcoding in the dataset 

PROC FORMAT Statement 1061

http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


       WORK.TEST. Either the data contains characters that are not 
       representable in the new encoding or truncation occurred during 
       transcoding.

Suppose you are using a data set that contains monetary values in Euros. You 
are using the Wlatin1 session encoding, and you specify UTF-8 encoding for the 
CNTLOUT= data set. In Wlatin1 the LABEL variable is predetermined to be 5 
bytes long and have a value of €1234 (in hexadecimal representation, 
'803132334'x). When you attempt to store the variable in the CNTLOUT= data 
set with UTF-8 encoding, the length of that string must be 7 bytes (in 
hexadecimal representation, 'E282AC3132334'x). The two additional bytes are 
needed in UTF-8 encoding for the Euro sign. Without the additional two bytes, 
the string is truncated. You can use the %COPY_TO_NEW_ENCODING macro 
to prevent this error. For information about the %COPY_TO_NEW_ENCODING 
macro, see “Avoiding Character Truncation Using the 
%COPY_TO_NEW_ENCODING Macro” in SAS National Language Support 
(NLS): Reference Guide.

The macro examines the CNTLOUT data set and re-creates it in the new 
encoding with the necessary lengths. If a width is stored as part of the 
associated format, the value is not expanded by the CVP engine. The format can 
cause truncation when the formatted value is displayed.

The DEFAULT value for the format width in the CNTLOUT data set is the default 
width (in bytes) for the format. The user can specify DEFAULT=, MIN=, and 
MAX= when they create the format, or the default is computed based on the 
largest label. If the START, MIN, MAX, or LABEL variable, in characters, is larger 
in UTF-8 encoding, then these widths are not expanded by the CVP engine. Use 
the %COPY_TO_NEW_ENCODING macro instead. For more information about 
using CNTLOUT= with PROC FORMAT to convert catalogs to UTF-8, see 
“Converting Format Catalogs to UTF-8 Encoding” in Moving and Accessing SAS 
Files.

Note LIBRARY= can point to either library or a catalog. If only a libref is 
specified, SAS uses the catalog name FORMATS.

Tip You can use an output control data set as an input control data set in 
subsequent PROC FORMAT steps.

See “Output Control Data Set” on page 1107

SAS Viya supports only UTF-8 encoding. For information about the 
encoding of your format catalogs in SAS Viya, see Migrating Data to 
UTF-8 for SAS Viya and SAS Viya FAQ for Processing UTF-8 Data.

FMTLIB
prints information about informats or formats in the catalog that is specified in the 
LIBRARY= option. To get information about specific informats or formats, subset 
the catalog using the SELECT or EXCLUDE statement.

Note: FMTLIB is not supported for CASFMTLIB.

Interaction The PAGE option invokes FMTLIB.

Tips If your output from FMTLIB is not formatted correctly in the ODS 
LISTING destination, then try increasing the value of the LINESIZE= 
system option.

1062 Chapter 30 / FORMAT Procedure

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1dez5dce8y3mdn1hwnaraq1jskw.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1dez5dce8y3mdn1hwnaraq1jskw.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1dez5dce8y3mdn1hwnaraq1jskw.htm&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=n06qan4j3ffr6fn11bs4q11r8r56.htm&docsetTargetAnchor=p1vka8exugwuqbn1kofbgqk7im8v&locale=en
http://documentation.sas.com/?docsetId=movefile&docsetVersion=9.4&docsetTarget=n06qan4j3ffr6fn11bs4q11r8r56.htm&docsetTargetAnchor=p1vka8exugwuqbn1kofbgqk7im8v&locale=en
http://documentation.sas.com/?docsetId=viyadatamig&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=viyadatamig&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=viyadatafaq&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


If you use a SELECT or EXCLUDE statement in your code without 
including a CNTLOUT= option, the FMTLIB option is automatically 
invoked and the FMTLIB report is generated. If necessary, this 
report can be suppressed by placing the following ODS EXCLUDE 
statement immediately before the PROC FORMAT statement:
ods exclude FORMAT; 

Example “Example 15: Printing the Description of Informats and Formats” on 
page 1155

LIBRARY=libref<.catalog>
specifies a SAS library or catalog that contains the informats or formats that you 
are creating in the PROC FORMAT step. The procedure stores these informats 
and formats in the catalog that you specify so that you can use them in 
subsequent SAS sessions or jobs. 

Alias LIB=

Default If you omit the LIBRARY= option, then formats and informats are 
stored in the Work.Formats catalog. If you specify the LIBRARY= 
option but do not specify a name for catalog, then formats and 
informats are stored in the libref.FORMATS catalog.

Note LIBRARY= can point to either a library or a catalog. If only a libref is 
specified, then SAS uses the catalog name FORMATS.

Tips SAS automatically searches Library.Formats. You might want to 
define and use the LIBRARY libref for your format catalog.

You can control the order in which SAS searches for format catalogs 
with the FMTSEARCH= system option. For more information, see 
“FMTSEARCH=” in SAS System Options: Reference. 

See “Storing Informats and Formats ” on page 1054

Example “Example 3: Creating a Picture Format” on page 1122

LOCALE
specifies to create a format catalog that corresponds to the current SAS locale. 
The name of the catalog that SAS creates is the SAS library or catalog that is 
specified in the LIBRARY= option appended with the five-character POSIX 
locale value for the current SAS locale.

See For a list of POSIX locale values, see “LOCALE= Values for 
PAPERSIZE and DFLANG, Options” in SAS National Language 
Support (NLS): Reference Guide.

Example If the SAS locale is German_Germany, the POSIX locale value is 
de_DE. Using the following PROC FORMAT statement, SAS creates 
the catalog mylib.formats_de_DE to store formats and informats 
created by this procedure:
proc format locale lib=mylib.formats;

MAXLABLEN=number-of-characters
specifies the number of characters in the informatted or formatted value that you 
want to appear in the CNTLOUT= data set or in the output of the FMTLIB option. 
The FMTLIB option prints a maximum of 40 characters for the informatted or 
formatted value.

PROC FORMAT Statement 1063

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1fvn6rwmpf1njn1whkud1hmsc97.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0kcqbj7zsjq23n1lfyrcgtwiy5q.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0kcqbj7zsjq23n1lfyrcgtwiy5q.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0kcqbj7zsjq23n1lfyrcgtwiy5q.htm&locale=en


MAXSELEN=number-of-characters
specifies the number of characters in the start and end values that you want to 
appear in the CNTLOUT= data set or in the output of the FMTLIB option. The 
FMTLIB option prints a maximum of 16 characters for start and end values.

NOREPLACE
prevents a new informat or format from replacing an existing one of the same 
name. If you omit NOREPLACE, then the procedure warns you that the informat 
or format already exists and replaces it. 

Note You can have a format and an informat of the same name.

PAGE
prints information about each format and informat in the catalog.

Interaction The PAGE option activates the FMTLIB option.

Tip In the ODS LISTING destination, the information about each format 
and informat appears on separate pages in the Output window.

EXCLUDE Statement
Excludes entries from processing by the FMTLIB and CNTLOUT= options.

Restrictions: Only one EXCLUDE statement can appear in a PROC FORMAT step.
You cannot use a SELECT statement and an EXCLUDE statement within the same 
PROC FORMAT step.
When the CASFMTLIB option is specified, the EXCLUDE statement ignores format 
libraries in CAS sessions and refers only to catalogs in the SAS session.

Syntax
EXCLUDE entry(s);

Required Argument
entry(s)

specifies one or more catalog entries to exclude from processing. Catalog entry 
names are the same as the name of the informat or format that they store. 
Because informats and formats can have the same name, and because 
character and numeric informats or formats can have the same name, you must 
use certain prefixes when specifying informats and formats in the EXCLUDE 
statement. Follow these rules when specifying entries in the EXCLUDE 
statement:

n Precede names of entries that contain character formats with a dollar sign 
($).

n Precede names of entries that contain character informats with an at sign and 
a dollar sign (for example, @$entry-name).

1064 Chapter 30 / FORMAT Procedure



n Precede names of entries that contain numeric informats with an at sign (@).

n Specify names of entries that contain numeric formats without a prefix.

Details

Shortcuts to Specifying Names
You can use the colon (:) and hyphen (-) wildcard characters to exclude entries. For 
example, the following EXCLUDE statement excludes all formats or informats that 
begin with the letter a.

exclude a:;

In addition, the following EXCLUDE statement excludes all formats or informats that 
occur alphabetically between apple and pear, inclusive:

exclude apple-pear;

FMTLIB Output
If you use the EXCLUDE statement without either FMTLIB or CNTLOUT= in the 
PROC FORMAT statement, then the procedure invokes the FMTLIB option and you 
receive FMTLIB option output.

INVALUE Statement
Creates an informat for reading and converting raw data values.

See: SAS Formats and Informats: Reference for documentation on informats supplied by 
SAS.

Example: “Example 12: Converting Raw Character Data to Numeric Values” on page 1142

Syntax
INVALUE <$>name <(informat-options)> <value-range-set(s)>;

Summary of Optional Arguments
DEFAULT=length

specifies the default length of the informat.
FUZZ=fuzz-factor

specifies a fuzz factor for matching values to a range.
JUST

left-justifies all input strings before they are compared to ranges.

INVALUE Statement 1065

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


MAX=length
specifies a maximum length for the informat.

MIN=length
specifies a minimum length for the informat.

NOTSORTED
stores values or ranges in the order in which you define them.

REGEXP
REGEXPE

specifies that the preceding range is to be treated as a Perl regular 
expression.

UPCASE
upper cases all input strings before they are compared to ranges.

Control the input template.
value-range-set(s)

specifies the variable template for reading data.

Required Argument
name

names the informat that you are creating.

Restriction A user-defined informat name cannot be the same as an informat 
name that is supplied by SAS.

Requirement The name must be a valid SAS name. A numeric informat name 
can be up to 31 characters in length; a character informat name 
can be up to 30 characters in length and cannot end in a number. 
If you are creating a character informat, then use a dollar sign ($) 
as the first character. Adding the dollar sign to the name is why a 
character informat is limited to 30 characters.

Interaction The maximum length of an informat name is controlled by the 
VALIDFMTNAME= system option. See SAS System Options: 
Reference for details.

Tips Refer to the informat later by using the name followed by a period. 
However, do not use a period after the informat name in the 
INVALUE statement.

When SAS prints messages that refer to a user-written informat, 
the name is prefixed by an at sign (@). When the informat is 
stored, the at sign is prefixed to the name that you specify for the 
informat. The addition of the at sign to the name is why the name 
is limited to 31 or 30 characters. You need to use the at sign only 
when you are using the name in an EXCLUDE or SELECT 
statement; do not prefix the name with an at sign when you are 
associating the informat with a variable.

1066 Chapter 30 / FORMAT Procedure

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1kopotcrfuwy5n1chcjmb8hbmrd.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Optional Arguments
DEFAULT=length

specifies the default length of the informat. The value for DEFAULT= becomes 
the length of the informat if you do not give a specific length when you associate 
the informat with a variable.

Defaults For character informats, the length of the longest label

For numeric informats, 12 if you have numeric data to the left of the 
equal sign

For quoted strings, the length of the longest string

Note If you specify an invalid value for DEFAULT=, SAS ignores the value 
and writes an error to the log.

Tip As a best practice, if you specify an existing informat in a value-range 
set, always specify the DEFAULT= option.

FUZZ=fuzz-factor
specifies a fuzz factor for matching values to a range. If a number does not 
match or fall in a range exactly but comes within fuzz-factor, then the informat 
considers it a match. For example, the following INVALUE statement creates the 
LEVELS. informat, which uses a fuzz factor of .2: 

invalue levels (fuzz=.2) 1='A'
                       2='B'
                       3='C';

FUZZ=.2 means that if a variable value falls within .2 of a value on either end of 
the range, then the informat uses the corresponding formatted value to store the 
variable value. So the LEVELS. informat saves the value 2.1 as B.

Tips Specify FUZZ=0 to save storage space when you use the INVALUE 
statement to create numeric informats.

Use a nonzero fuzz factor only with numbers that are very close but not an 
exact match. Ranges are stored internally in sorted order (unless the 
NOTSORTED option is used), in order to perform a binary search. When a 
fuzz-factor is added to the end of one range and subtracted from the 
beginning of the next range, and the ranges overlap, the results can be 
unpredictable. A value is placed in the first range that is a match in the 
binary search. The exclusion operator is insufficient to override this binary 
search algorithm. As a best practice, when you use the exclusion operator, 
set FUZZ=0 or the NOTSORTED option.

A best practice is to use FUZZ=0 when you use the < exclusion operator 
with numeric informats.

JUST
left-justifies all input strings before they are compared to ranges.

MAX=length
specifies a maximum length for the informat. When you associate the informat 
with a variable, you cannot specify a width greater than the MAX= value.

Default 40

INVALUE Statement 1067



Range 1–32767

Note If you specify an invalid value for MAX=, SAS ignores the value and 
writes an error to the log.

MIN=length
specifies a minimum length for the informat. If a CNTLIN= data set contains a 
value for MIN that rounds to 0 or less, SAS ignores the invalid value and 
substitutes 1 for it. When you specify the CNTLIN= data set in SAS code, SAS 
continues processing the code step and does not write an error to the log.

The following example specifies a data set that has a MIN value of -1 and uses 
CNTLIN= to call the data set on the subsequent PROC FORMAT statement.

data temp;
   fmtname=’abc’;
   start=1; 
   label=’xyz’;
   min=–1; 
run;

proc format cntlin=temp;
run;

If you specify an invalid value for MIN in code, SAS does not ignore the invalid 
value or substitute another value for it. SAS stops processing the code step and 
writes an error to the log.

The following example specifies min=–1 for the NEWABC data set, which causes 
SAS to stop processing and issue an error.

proc format;
    value newabc (min=–1) 1=’yes’;
run;

Default 1

Range 1–32767

NOTSORTED
stores values or ranges in the order in which you define them.

If you do not specify NOTSORTED, then values or ranges are stored in sorted 
order by default, and SAS uses a binary searching algorithm to locate the range 
that a particular value falls into. If you specify NOTSORTED, then SAS searches 
each range in the order in which you define them until a match is found.

Use NOTSORTED if one of the following is true:

n You know the likelihood of certain ranges occurring, and you want your 
informat to search those ranges first to save processing time.

n You want to preserve the order that you define ranges when you print a 
description of the informat using the FMTLIB option.

n You want to preserve the order that you define ranges when you use the 
ORDER=DATA option and the PRELOADFMT option to analyze class 
variables in PROC MEANS, PROC SUMMARY, or PROC TABULATE.

Do not use NOTSORTED if the distribution of values is uniform or unknown, or if 
the number of values is relatively small. The binary searching algorithm that SAS 

1068 Chapter 30 / FORMAT Procedure



uses when NOTSORTED is not specified optimizes the performance of the 
search under these conditions.

SAS automatically sets the NOTSORTED option when you use the CPORT and 
CIMPORT procedures to transport informats or formats between operating 
environments with different standard collating sequences. This automatic setting 
of NOTSORTED can occur when you transport informats or formats between 
ASCII and EBCDIC operating environments. If this situation is undesirable, then 
do the following:

n Use the CNTLOUT= option in the PROC FORMAT statement to create an 
output control data set.

n Use the CPORT procedure to create a transport file for the control data set.

n Use the CIMPORT procedure in the target operating environment to import 
the transport file.

n In the target operating environment, use PROC FORMAT with the CNTLIN= 
option to build the formats and informats from the imported control data set.

REGEXP
REGEXPE

specifies that the preceding range is to be treated as a Perl regular expression. If 
you specify REGEXPE, the regular expression is expected to produce a modified 
result, as in using the substitute action.

During execution, all regular expressions are compiled and the input data is 
passed to the first expression to confirm a match. If there is a match, the 
corresponding label is used. If there is no match, the next range is compared. 
Ranges are not sorted and are processed in the order in which they were 
defined in the INVALUE statement or in the order in which they appear in the 
CNTLIN= data set.

The rules for regular expressions using the REGEXP option are the same as 
they are for the PRXPARSE function in the DATA step. The rules for the 
REGEXPE option are the same as they are for the PRXCHANGE function. 

Interaction If you are using a CNTLIN= data set, the HLO variable contains P 
for REGEXP and E for REGEXPE.

See “Example 10: Creating an Informat Using Perl Regular Expressions” 
on page 1137

UPCASE
converts all raw data values to uppercase before they are compared to the 
possible ranges. If you use UPCASE, then make sure the values or ranges that 
you specify are in uppercase.

value-range-set(s)
specifies raw data and values that the raw data becomes. The value-range-
set(s) can be one or more of the following: 

value-or-range-1<, value-or-range-2 …>=informatted-value | [existing-informat]

The informat converts the raw data to the values of informatted-value on the right 
side of the equal sign.

value-or-range
See “Specifying Values or Ranges” on page 1101. 

INVALUE Statement 1069

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p06i7305izsnvcn1ru9147suzyv5.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=n0r8h2fa8djqf1n1cnenrvm573br.htm&locale=en


informatted-value
is the value that you want the raw data in value-or-range to become. Use one 
of the following forms for informatted-value:

'character-string'
is a character string up to 32,767 characters long. Typically, character-
string becomes the value of a character variable when you use the 
informat to convert raw data. Use character-string for informatted-value 
only when you are creating a character informat. If you omit the single or 
double quotation marks around character-string, then the INVALUE 
statement assumes that the quotation marks are there.

For hexadecimal literals, you can use up to 32,767 typed characters, or 
up to 16,382 represented characters at two hexadecimal characters per 
represented character.

number
is a number that becomes the informatted value. Typically, number 
becomes the value of a numeric variable when you use the informat to 
convert raw data. Use number for informatted-value when you are 
creating a numeric informat. The maximum for number depends on the 
host operating environment.

_ERROR_
treats data values in the designated range as invalid data. SAS assigns a 
missing value to the variable, prints the data line in the SAS log, and 
issues a warning message.

_SAME_
prevents the informat from converting the raw data as any other value. 
For example, the following GROUP informat converts values 01 through 
20 and assigns the numbers 1 through 20 as the result. All other values 
are assigned a missing value.

   invalue group 01-20= _same_
                 other= .;

existing-informat
is an informat that is supplied by SAS or an existing user-defined informat. 
The informat that you are creating uses the existing informat to convert the 
raw data that match value-or-range on the left side of the equal sign. If you 
use an existing informat, then enclose the informat name in square brackets 
(for example, [date9.]) or with parentheses and vertical bars (for example, (|
date9.|)). Do not enclose the name of the existing informat in single quotation 
marks.

Tip As a best practice, if you specify an existing informat in a value-range-
set, always specify a default value by using the DEFAULT= option.

1070 Chapter 30 / FORMAT Procedure



Examples

Example 1: Create a Character Informat for Raw 
Data Values
The $GENDER. character informat converts the raw data values F and M to 
character values '1' and '2':

invalue $gender 'F'='1'
                'M'='2';

The dollar sign prefix indicates that the informat converts character data.

Example 2: Create Character and Numeric Values 
or a Range of Values
When you create numeric informats, you can specify character strings or numbers 
for value-or-range. For example, the TRIAL. informat converts any character string 
that sorts between A and M to the number 1 and any character string that sorts 
between N and Z to the number 2. The informat treats the unquoted range 1–3000 
as a numeric range, which includes all numeric values between 1 and 3000:

invalue trial 'A'-'M'=1
              'N'-'Z'=2
               1-3000=3;

Example 3: Convert Input Strings to Uppercase and 
Left-justify
The EVALUATION. informat uses the UPCASE and JUST options to uppercase and 
left-justify all input strings before they are converted to numbers.

invalue evaluation (upcase just) 'O'=4
                                 'S'=3
                                 'E'=2
                                 'C'=1
                                 'N'=0;

Note: Options in the INVALUE statement must be specified in parentheses. 

Example 4: Create an Informat Using _ERROR_ 
and _SAME_
The CHECK. informat uses _ERROR_ and _SAME_ to convert values of 1 through 
4 and 99. All other values are invalid:

invalue check 1-4=_same_
               99=.
            other=_error_;

INVALUE Statement 1071



If you use a numeric informat to convert character strings that do not correspond to 
any values or ranges, then you receive an error message.

PICTURE Statement
Creates a template for printing numbers.

Tips: As a best practice, if you specify an existing format in a value-range-set, always specify 
a default value by using the DEFAULT= option on page 1096. 
If you are using the DATATYPE= option, use the DEFAULT= option to set the default 
format width to be large enough to format these characters. Without setting the 
DEFAULT= option, the default width of a format is the width of the largest value to the 
right of the equation symbol.
The DEFAULT, FUZZ, MAX, MIN, MULTILABEL, NOTSORTED, and ROUND options 
are valid before the value range specification.
The DATATYPE, DECSEP, DIG3SEP, FILL, LANGUAGE, MULT, NOEDIT, and PREFIX 
options are valid in parentheses after the user-supplied value label.
The DATATYPE, DECSEP, DIG3SEP, FILL, LANGUAGE, MULT, NOEDIT, PREFIX, and 
ROUND options are valid only with the PICTURE statement.

See: SAS Formats and Informats: Reference and SAS National Language Support (NLS): 
Reference Guide for documentation about formats that are supplied by SAS.

Examples: “Example 3: Creating a Picture Format” on page 1122
“Example 5: Filling a Picture Format” on page 1127
“Example 18: Creating a Format in a non-English Language” on page 1162

Syntax
PICTURE name <(format-options)>
<value-range-set-1 <(picture-1-options)>
<value-range-set-2 <(picture-2-options)>> …>;

Summary of Optional Arguments
Control the attributes of each picture in the format

FILL='character'
specifies a character that completes the formatted value.

MULTIPLIER=n
specifies a number to multiply the variable's value by before it is 
formatted.

NOEDIT
specifies that numbers are message characters rather than digit selectors.

PREFIX='prefix'
specifies a character prefix to place in front of the formatted value.

Control the attributes of the format

1072 Chapter 30 / FORMAT Procedure

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


DATATYPE=DATE | TIME | DATETIME | DATETIME_UTIL
enables the use of directives in the picture as a template to format date, 
time, or datetime values.

DECSEP='character'
specifies the separator character for the fractional part of a number.

DEFAULT=length
specifies the default length of the picture.

DIG3SEP='character'
specifies the three-digit separator character for a number.

FUZZ=fuzz-factor
specifies a fuzz factor for matching values to a range.

LANGUAGE=
specifies the language that is used for weekdays and months that you can 
substitute in a date, time, or datetime picture.

MAX=length
specifies a maximum length for the format.

MIN=length
specifies a minimum length for the format.

MULTILABEL
enables the assignment of labels to multiple values-or-range values that 
might have the same or overlapping values.

NOTSORTED
stores values or ranges in the order in which you define them.

ROUND
rounds the value to the nearest integer before formatting.

Control the template for printing
value-range-set

specifies one or more variable values and a template for printing those 
values.

Required Argument
name

names the format that you are creating.

Restriction A user-defined format cannot be the name of a format supplied by 
SAS.

Requirement The name must be a valid SAS name. A numeric format name 
can be up to 32 characters in length; a character format name can 
be up to 31 characters in length, not ending in a number. If you 
are creating a character format, you use a dollar sign ($) as the 
first character, which is why a character informat is limited to 31 
characters. For information about SAS names, see “Rules for 
Words and Names in the SAS Language” in SAS Language 
Reference: Concepts.

Interaction The maximum length of a format name is controlled by the 
VALIDFMTNAME= system option. See SAS System Options: 
Reference for details.

PICTURE Statement 1073

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0m7v8i6xka1r1n1lwb6efyewu10.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0m7v8i6xka1r1n1lwb6efyewu10.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0m7v8i6xka1r1n1lwb6efyewu10.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1kopotcrfuwy5n1chcjmb8hbmrd.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Tip Refer to the format later by using the name followed by a period. 
However, do not put a period after the format name in the VALUE 
statement.

Optional Arguments
DATATYPE=DATE | TIME | DATETIME | DATETIME_UTIL

enables the use of directives in the picture as a template to format date, time, or 
datetime values. Specify either DATE, TIME, DATETIME, or DATETIME_UTIL 
based on the directive that you use in the picture format. See the definition and 
list of directives on page 1080 in the description of picture.

Interaction DATATYPE=DATETIME results in datetime hours 00:00:00–
23:59:59. DATATYPE=DATETIME_UTIL results in datetime hours 
between 00:00:01–24:00:00.

Tip If you format a numeric missing value, then the resulting label is 
ERROR. Adding a clause to your program that checks for missing 
values can eliminate the ERROR label.

DEFAULT=length
specifies the default length of the picture. The value for DEFAULT= becomes the 
length of picture if you do not give a specific length when you associate the 
format with a variable.

Default The length of the longest picture value

Range 1–32767

Tip If you are using the DATATYPE= option, use the DEFAULT= option to 
set the default format width large enough to format these characters.

DECSEP='character'
specifies the separator character for the fractional part of a number.

Default . (a decimal point)

DIG3SEP='character'
specifies the three-digit separator character for a number.

Default , (a comma)

FILL='character'
specifies a character that completes the formatted value.

If the number of significant digits is less than the length of the format, then the 
format must complete, or fill, the formatted value: 

n The format uses character to fill the formatted value if you specify zeros as 
digit selectors.

n The format uses zeros to fill the formatted value if you specify nonzero-digit 
selectors. The FILL= option has no effect.

If the picture includes other characters, such as a comma, which appear to the 
left of the digit selector that maps to the last significant digit placed, then the 
characters are replaced by the fill character or leading zeros.

1074 Chapter 30 / FORMAT Procedure



Default ' ' (a blank)

Restriction The FILL= option is not valid when you use a function to format a 
value.

Interaction If you use the FILL= and PREFIX= options in the same picture, then 
the format places the prefix and then the fill characters.

Example “Example 5: Filling a Picture Format” on page 1127

FUZZ=fuzz-factor
specifies a fuzz factor for matching values to a range. If a number does not 
match or fall in a range exactly but comes within fuzz-factor, on either end of the 
range, then the format considers it a match. For example, the following VALUE 
statement creates the LEVELS. format, which uses a fuzz factor of .2: 

value levels (fuzz=.2) 1='A'
                       2='B'
                       3='C';

FUZZ=.2 means that if a variable value falls within .2 of a value on either end of 
the range, then the format uses the corresponding formatted value to print the 
variable value. The LEVELS format formats the value 2.1 as B.

Default 1E−12 for numeric formats.

Tips Specify FUZZ=0 to save storage space when you use the VALUE 
statement to create numeric formats.

Use a nonzero fuzz factor only with numbers that are very close but not 
an exact match. If fuzz-factor is added to the end of one range and 
subtracted from the beginning of the next range, and the ranges 
overlap, the results can be unpredictable. A value is placed in the first 
range that is a match in a binary search.

A best practice is to use FUZZ=0 when you use the < exclusion 
operator with numeric formats.

LANGUAGE=
specifies the language that is used for weekdays and months that you can 
substitute in a date, time, or datetime picture. If you specify a language that is 
not supported or is invalid, English is used. 

These are the valid values for the LANGUAGE= option:

Afrikaans English Macedonian Spanish
Catalan Finnish Norwegian Swedish
Croatian French Polish Swiss_French
Czech German Portuguese Swiss_German
Danish Hungarian Russian
Dutch Italian Slovenian

Defaults For single-byte character sets, the language that is specified by 
DFLANG= system option

For double-byte and UTF-8 character sets, the language that is 
specified by the LOCALE= system option

PICTURE Statement 1075



Tip To use a user-defined format in languages other than those that are 
supported by the LANGUAGE= option, set the LOCALE= system 
option to the locale for the language. In PROC FORMAT, do not 
specify the LANGUAGE= option. The language of a picture format is 
determined by the locale setting. For a list of locales, see “LOCALE= 
Values for PAPERSIZE and DFLANG, Options” in SAS National 
Language Support (NLS): Reference Guide.

See “DFLANG= System Option: UNIX, Windows, and z/OS” in SAS 
National Language Support (NLS): Reference Guide

MAX=length
specifies a maximum length for the format. When you associate the format with a 
variable, you cannot specify a width greater than the MAX= value.

Default 40

Range 1–32767

MIN=length
specifies a minimum length for the format.

Default 1

Range 1–32767

MULTILABEL
enables the assignment of labels to multiple values-or-range values that might 
have the same or overlapping values. The label is the formatted value that is 
determined by the picture definition on the right of the equal sign in a value-
range-set. Here is an example of how MULTILABEL is used:

The following PICTURE statements show the two uses of the MULTILABEL 
option. In each case, number formats are assigned as labels. The first PICTURE 
statement assigns multiple labels to a single value. Multiple labels can also be 
assigned to a single range of values. The second PICTURE statement assigns 
labels to overlapping ranges of values. The MULTILABEL option enables the 
assignment of multiple labels to the overlapped values.

picture abc (multilabel)
    1000='9,999'
    1000='9999';

  picture overlap (multilabel)
    /* without decimals */
    0-999='999'
    1000-9999='9,999'

     /* with decimals */
    0-9='9.999'
    10-99='99.99'
    100-999='999.9';

Only multilabel-enabled procedures such as PROC MEANS, PROC SUMMARY, 
and PROC TABULATE can use multiple labels. All other procedures and the 
DATA step recognize only the primary label.

The primary label for a given entry is the formatted value (based on the picture) 
that is assigned to the first value or range-of-values (left side of the equal sign) 

1076 Chapter 30 / FORMAT Procedure

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0kcqbj7zsjq23n1lfyrcgtwiy5q.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0kcqbj7zsjq23n1lfyrcgtwiy5q.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0kcqbj7zsjq23n1lfyrcgtwiy5q.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n18m5lfc5965ejn0z54mujcjq9zx.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n18m5lfc5965ejn0z54mujcjq9zx.htm&locale=en


that matches or contains the entry when all values (on the left side of the equal 
sign) are ordered sequentially. Here is an example:

n In the first PICTURE statement, the primary label for 1000 is 1,000 because 
the picture 9,999 is the first value that is assigned to 1000. The secondary 
label for 1000 is 1000, based on the 9999 picture. 

n In the second PICTURE statement, the primary label for 5 is 5.000 based on 
the 9.999 picture that is assigned to the range 0–9 because 0–9 is 
sequentially the first range of values that contain 5. The secondary label for 5 
is 005 because the range 0–999 occurs in sequence after the range 0–9. 

Consider carefully when you assign multiple labels to a value.

Unless you use the NOTSORTED option when you assign value-range-sets, 
SAS stores the value-range-sets in sorted order. This order can produce 
unexpected results when value-range-sets with the MULTILABEL format are 
processed. Here is an example:

In the second PICTURE statement, the primary label for 15 is 015, and the 
secondary label for 15 is 15.00 because the range 0–999 occurs in sequence 
before the range 10–99. If you want the primary label for 15 to use the 99.99 
format, then you might want to change the range 10–99 to 0–99 in the PICTURE 
statement. The range 0–99 occurs in sequence before the range 0–999 and 
produces the desired result.

Restriction The maximum number of labels that can be created for a single 
format or informat is 255.

MULTIPLIER=n
specifies a number to multiply the variable's value by before it is formatted. The 
value of the MULTIPLIER= option depends both on the result of the 
multiplication and on the digit selectors in the picture portion of the value-range-
set. For example, the following PICTURE statement creates the MILLION. 
format, which formats the variable value 1600000 as $1.6M: 

picture million low-high='09.9M'
        (prefix='$' mult=.00001);

1600000 is first multiplied by .00001, which equals 16. Note that there is a digit 
selector after the decimal. The value 16 is placed into the picture beginning on 
the right. The value 16 overlays 09.9, and results in 01.6. Leading zeros are 
dropped, and the final result is 1.6M.

If the value of low-high is equal to '000M', then the result would be 16M.

Alias MULT=

Default 10n, where n is the number of digits after the first decimal point in 
the picture. For example, suppose your data contains a value 
123.456 and you want to print it using a picture of '999.999'. The 
format multiplies 123.456 by 103 to obtain a value of 123456, 
which results in a formatted value of 123.456.

Restrictions The MULT= option is not valid when you use a function to format a 
value.

The MULT= option is ignored when you specify the DATATYPE= 
option.

Examples “Example 3: Creating a Picture Format” on page 1122

PICTURE Statement 1077



“Example 4: Creating a Picture Format for Large Dollar Amounts” 
on page 1124

NOEDIT
specifies that numbers are message characters rather than digit selectors. That 
is, the format prints the numbers as they appear in the picture. For example, the 
following PICTURE statement creates the MILES. format, which formats any 
variable value greater than 1000 as >1000 miles: 

picture miles 1-1000='0000'
           1000<-high='>1000 miles'(noedit);

Restriction The NOEDIT= option is not valid when you use a function to format 
a value.

NOTSORTED
stores values or ranges in the order in which you define them. If you do not 
specify NOTSORTED, then values or ranges are stored in sorted order by 
default, and SAS uses a binary searching algorithm to locate the range that a 
particular value falls into. If you specify NOTSORTED, then SAS searches each 
range in the order in which you define them until a match is found.

Use NOTSORTED if one of the following is true:

n You know the likelihood of certain ranges occurring, and you want your 
format to search those ranges first to save processing time.

n You want to preserve the order that you define ranges when you print a 
description of the format using the FMTLIB option.

n You want to preserve the order that you define ranges when you use the 
ORDER=DATA option and the PRELOADFMT option to analyze class 
variables in PROC MEANS, PROC SUMMARY, or PROC TABULATE.

Do not use NOTSORTED if the distribution of values is uniform or unknown, or if 
the number of values is relatively small. The binary searching algorithm that SAS 
uses when NOTSORTED is not specified optimizes the performance of the 
search under these conditions.

SAS automatically sets the NOTSORTED option when you use the CPORT and 
CIMPORT procedures to transport informats or formats between operating 
environments with different standard collating sequences. This automatic setting 
of NOTSORTED can occur when you transport informats or formats between 
ASCII and EBCDIC operating environments. If this situation is undesirable, then 
do the following:

n Use the CNTLOUT= option in the PROC FORMAT statement to create an 
output control data set.

n Use the CPORT procedure to create a transport file for the control data set.

n Use the CIMPORT procedure in the target operating environment to import 
the transport file.

n In the target operating environment, use PROC FORMAT with the CNTLIN= 
option to build the formats and informats from the imported control data set.

PREFIX='prefix'
specifies a character prefix to place in front of the formatted value. The prefix is 
placed in front of the value's first significant digit. You must use zero-digit 
selectors or the prefix is not used.

1078 Chapter 30 / FORMAT Procedure



Typical uses for PREFIX= are printing leading currency symbols and minus 
signs. For example, the PAY format prints the variable value 25500 as 
$25,500.00:

picture pay
   low-high='000,009.99' (prefix='$');

Default no prefix

Restriction The PREFIX= option is not valid when you use a function to format 
a value.

Interaction If you use the FILL= and PREFIX= options in the same picture, then 
the format places the prefix and then the fill characters.

Examples “Example 3: Creating a Picture Format” on page 1122

“Example 5: Filling a Picture Format” on page 1127

CAUTION If the picture is not wide enough to contain both the value and 
the prefix, then the format truncates or omits the prefix, which 
results in inaccurate data.

ROUND
rounds the value to the nearest integer before formatting. Without the ROUND 
option, the format multiplies the variable value by the multiplier, truncates the 
decimal portion (if any), and prints the result according to the template that you 
define. With the ROUND option, the format multiplies the variable value by the 
multiplier, rounds that result to the nearest integer, and then formats the value 
according to the template. Note that if the FUZZ= option is also specified, the 
rounding takes place after SAS has used the fuzz factor to determine which 
range the value belongs to.

Tip The ROUND option rounds a value of .5 to the next highest integer.

CAUTION The picture must be wide enough for an additional digit if 
rounding a number adds a digit to the number. For example, the 
picture for the number .996 could be ‘99’ (prefix ‘.’ mult=100). After 
rounding the number and multiplying it by 100, the resulting number is 100. 
When the picture is applied, the result is .00, an inaccurate number. In order 
to ensure accuracy of numbers when you round numbers, make the picture 
wide enough to accommodate larger numbers.

value-range-set
specifies one or more variable values and a template for printing those values. 
value-range-set has the following form: 

value-or-range-1 <, value-or-range-2, …>='picture'

value-or-range
See “Specifying Values or Ranges” on page 1101. 

picture
specifies a template for formatting values of numeric variables. The picture is 
a sequence of characters in single quotation marks. The maximum length for 
a picture is 40 characters. Pictures are specified with three types of 
characters: digit selectors, message characters, and directives. You can have 
a maximum of 16 digit selectors in a picture.

PICTURE Statement 1079



digit selectors
are numeric characters (0 through 9) that define positions for numeric 
values. A picture format with nonzero-digit selectors prints any leading 
zeros in variable values; picture digit selectors of 0 do not print leading 
zeros in variable values. If the picture format contains digit selectors, then 
a digit selector must be the first character in the picture.

Note This section uses 9s as nonzero-digit selectors.

message characters
are nonnumeric characters that are printed as specified in the picture. The 
following PICTURE statement contains both digit selectors (99) and 
message characters (illegal day value). Because the DAYS. format 
has nonzero-digit selectors, values are printed with leading zeros. The 
special range OTHER prints the message characters for any values that 
do not fall into the specified range (1 through 31).

picture days 
           01-31='99'
           other='99-illegal day value';

Example The values 02 and 67 are printed as
                             02
       67-illegal day value

directives
are special characters that you can use in the picture to format date, time, 
or datetime values.

Note: You can use directives only when you specify the DATATYPE= 
option on page 1074 in the PICTURE statement. Ensure that the value of 
the DATATYPE= option is appropriate for the type of directive that you 
want to use. If you use an inappropriate value, the data does not format. 
For example, for the %a directive, use DATATYPE=DATE.

The DFLANG datetime handler and the National Language (NL) datetime 
handler are the two methods to control character casing in user format 
handling. The DFLANG datetime handler is the default method under 
non–UTF8 and non–DBCS sessions. The NL datetime handler is the 
default method under UTF8 and DBCS sessions.

Note: The DFLANG datetime handler is used if you specify it for UTF8 
and DBCS sessions. Otherwise, the NL datetime handler is used.

Note: The following are handled by the DFLANG datetime handler: a A b 
B d H I j m M p q S w U y Y. 

If you specify the DFLANG datetime handler, then month names are in all 
uppercase if you specify English (for example, JAN), they are in all 
lowercase if you specify French (for example, jan), and they are in mixed 
case if you specify German (for example, Jan).

If you specify the NL datetime handler, then month names are in mixed 
case if you specify English or German (Jan), and they are in lowercase if 
you specify French (for example, jan).

1080 Chapter 30 / FORMAT Procedure



The DFLANG datetime handler is used only if a supported language is 
specified with the DFLANG= system option and all of the specified 
datetime elements are supported by the DFLANG format handler. 
Otherwise, the NL datetime handler is used.

The casing of the month names is determined by the DFLANG= system 
option and the LANGUAGE= argument of the PICTURE statement. 
Otherwise, the casing is determined by the language elements in the 
locale data. For example, if the language specified by the LOCALE= 
option is English, then only the first character is in uppercase because it is 
defined as mixed–case strings in the locale data. For more information, 
see “DFLANG= System Option: UNIX, Windows, and z/OS” in SAS 
National Language Support (NLS): Reference Guide.

Note: The DFLANG option supports only 22 languages. Use the 
DFLANG= option only for compatibility purposes. When you specify the 
DFLANG= option, support for the datetime directive is limited and some 
elements such as %I are not supported.

Specify the LANGUAGE= argument if you need to use it in the FORMAT 
procedure, or you need month names in all uppercase for a locale such 
as English.

If you mainly use the EUR* datetime formats and you need support for 
European languages only for compatibility, then you can use the 
DFLANG= option to specify the language.

Use the LOCALE= system option to set the locale for double-byte and 
UTF-8 character sets. The %b directive formats month names with only 
the first letter in uppercase when the locale is set with LOCALE=. For 
more information, see “LOCALE System Option” in SAS National 
Language Support (NLS): Reference Guide.

If you specify a format element that is supported by only the NL datetime 
handler, then the NL format handler is used regardless of whether the 
DFLANG= option is used. %b also produces abbreviated month names in 
mixed case for English if there is an unsupported directive such as %I.

The permitted directives are as follows:

%a
abbreviated weekday name (for example, Wed).

%A
full weekday name (for example, Wednesday).

%b
abbreviated month name (for example, JAN or Jan).

The default value for the LANGUAGE= argument in UTF-8 sessions is 
LOCALE. To format month names in all upper–case characters in 
UTF-8 sessions, specify the locale on the LANGUAGE= argument. For 
more information, see “LANGUAGE=” on page 1075.

Tip For the English language, use the directive %3B to create an 
abbreviated month with only an uppercase initial letter (for 
example, Jan).

PICTURE Statement 1081

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n18m5lfc5965ejn0z54mujcjq9zx.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n18m5lfc5965ejn0z54mujcjq9zx.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1n9bwctsthuqbn1xgipyw5xwujl.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1n9bwctsthuqbn1xgipyw5xwujl.htm&locale=en


%<n>B
the full month name (for example, January) if n is not included in the 
directive. n specifies the number of characters that appear for the 
month name. In comparison, the %b directive writes a three-character 
month abbreviation in uppercase letters for some locales.

Restriction n is not supported in DBCS and Unicode SAS sessions.

Example %3B would write Oct for the month of October

%C
long month name with blank padding (January through December) (for 
example, December).

%d
day of the month.

Note To add a leading zero before a single-digit number, insert a 0 
before the directive (for example, %0d).

%e
day of the month as a two-character decimal number with leading 
spaces (" 1"- "31") (for example, “ 2”).

%F
full weekday name with blank padding.

%G
year as a four-digit decimal number (for example, 2008). If the week 
that contains January 1 has four or more days in the new year, then it 
is considered week 1 in the new year. Otherwise, it is the last week of 
the previous year and the year is considered the previous year.

%H
hour (24-hour clock).

Note To add a leading zero before a single-digit number, insert a 
0 before the directive (for example, %0H).

Tip When DATETYPE=DATETIME, SAS uses datetime hours 
00:00–23:59. When DATETYPE=DATETIME_UTIL, SAS 
uses datetime hours 00:00:01–24:00:00 and 24:00:00 is 
midnight at the end of the day. The hour 00:00:00 is not in 
the hour range and if used, converts to 24:00:00 of the 
previous day. When you specify DATETIME, 00:00:00 is 
midnight of a new day and the value 24:00:00 is midnight of 
the next day.

Example “Example 7: Change the 24–Hour Clock to 00:00:01–
24:00:00” on page 1131

%I
hour (12-hour clock).

Alias %i

Note To add a leading zero before a single-digit number, insert a 0 
before the directive (for example, %0I).

1082 Chapter 30 / FORMAT Procedure



%j
day of the year as a decimal number (1–366), with leading zero.

Note To add a leading zero before a single-digit number, insert a 0 
before the directive (for example, %0j).

%m
month (1–12).

Note To add a leading zero before a single-digit number, insert a 0 
before the directive (for example, %0m).

%M
minute (0–59).

Note To add a leading zero before a single-digit number, insert a 0 
before the directive (for example, %0M).

%n
number of days in a duration as a decimal number (maximum of 10 
digits) (for example, 25).

Restriction This directive is not valid for DBCS and Unicode SAS 
sessions.

%o
month (1-12) with blank padding (for example, " 2").

%p
equivalent to either a.m. or p.m.

%q
abbreviated quarter of the year string such as 1, 2, 3, or 4.

%Q
quarter of the year string, such as Quarter1, Quarter2, Quarter3, or 
Quarter4.

%s
fractional seconds as decimal digits (for example, .39555). The 
number of digits formatted is the number of digits to the right of the 
decimal point that is specified when you use the format. SAS rounds 
fractional seconds to accommodate the number of digits specified for 
fractional seconds.

Restriction This directive is not valid for DBCS and Unicode SAS 
sessions.

Interaction The %s and %S directives cannot be used together.

Tips The %s directive displays both whole and fractional 
seconds.

To add a leading zero before a single-digit number, insert 
a 0 before the directive (for example, %0s).

%S
seconds (0–59), allowing for possible leap seconds.

Interaction The %s and %S directives cannot be used together.

PICTURE Statement 1083



Tips The %S directive displays whole seconds. It does not 
display fractional seconds.

To add a leading zero before a single-digit number, insert 
a 0 before the directive (for example, %0S).

Example 58 and 59.07

%u
weekday as a one-digit decimal number (1–7 (Monday - Sunday)) (for 
example, Sunday=7).

%U
week number of the year as a decimal number (0–53). Sunday is 
considered the first day of the week.

Note To add a leading zero before a single-digit number, insert a 0 
before the directive (for example, %0U).

%V
week number (01–53) with the first Monday as the start day of the first 
week. Minimum days of the first week is 4.

Note To add a leading zero before a single-digit number, insert a 0 
before the directive (for example, %0SV).

%w
weekday as a one-digit decimal number (0–6 (Sunday through 
Saturday)) (for example, Sunday=0).

Note To add a leading zero before a single-digit number, insert a 0 
before the directive (for example, %0w).

%W
week number (0–53) with the first Monday as the start day of the first 
week.

Note To add a leading zero before a single-digit number, insert a 0 
before the directive (for example, %0W).

%y
year without century (0–99) (for example, 93).

Note To add a leading zero before a single-digit number, insert a 0 
before the directive (for example, %0y).

%Y
year with century as a four-digit decimal number (1970–2069) (for 
example, 1994).

%z
UTC time-zone offset.

%Z
time-zone name.

%%
the % character.

1084 Chapter 30 / FORMAT Procedure



Tip Add code to your program to direct how you want missing values to be 
displayed.

Interaction If you specify LANGUAGE= and PICTURE= in the format definition, 
the format supports only English and the European languages. To 
use a user-defined format in languages other than those that are 
supported by the LANGUAGE= option, use the PICTURE= 
statement. Do not specify the LANGUAGE= option. The language of 
a picture format is determined by the locale setting.

Details

Building a Picture Format: Step by Step
This section shows how to write a picture format that eliminates leading zeros. In the 
SAMPLE data set, the default printing of the variable Amount has leading zeros on 
numbers between 1 and –1. The PICTURE statement defines two similar formats 
that eliminate leading zeros on numbers between 1 and –1. The difference between 
the two formats is that the NOZEROSR. format specifies the ROUND option to 
round numbers and the NOZEROS. format does not round numbers.

This program creates, sorts, and prints the sample data set:

data sample;
   input Amount;
   datalines;
-2.051
-.05
-.017
  0
.093
.54
.556
6.6
14.63
0.996
-0.999
-45.00
;
run;

proc sort data=sample;
   by amount;
run;

proc print data=sample;
   title 'Default Printing of the Variable Amount';
run;

PICTURE Statement 1085



Here is the PROC FORMAT step that creates the NOZEROSR. and NOZEROS. 
formats. Both formats eliminate leading zeros in the formatted values. The 
NOZEROSR. format specifies the ROUND option to round numbers. The 
NOZEROS. format does not perform rounding.

libname library 'SAS-library';

proc format;
   picture nozerosR (round fuzz=0)
     low -  -1      =  '000.00' (prefix='-')
     -1 < - < -.99  =  '0.99'  (prefix='-' mult=100)
     -0.99 <-<  0   =  '99'    (prefix='-.' mult=100)
                0   =  '9.99'
      0 <  -< .99   =  '99'    (prefix='.' mult=100)
      0.99 - < 1    =  '0.99'  (mult=100)
      1  - high     =  '09.99';

   picture nozeros (fuzz=0)
     low -  -1      =  '000.00' (prefix='-')
     -1 < - < -.99  =  '0.99'  (prefix='-.' mult=100)
     -0.99 <-<  0   =  '99'    (prefix='-.' mult=100)
                0   =  '9.99'
      0 <  -< .99   =  '99'    (prefix='.' mult=100)
      0.99 - < 1    =  '0.99'  (prefix='.' mult=100)
      1  - high     =  '09.99';

run;

The following table explains how one value from each range is formatted. For an 
illustration of each step, see Table 30.74 on page 1089.

1086 Chapter 30 / FORMAT Procedure



Table 30.2 Building a Picture Format

Step
Rules for Processing the 
PICTURE Statement In This Example

1 Determine into which range 
the value falls and use that 
picture.

In the second range, the exclusion operator < 
appears on both sides of the hyphen and 
excludes −1 and -.99 from the range. The third 
range excludes 0 and .99. The fourth range 
excludes 1.

Because exclusion operators are used, the 
FUZZ=0 option is specified.

2 Take the absolute value of 
the numeric value.

Because the absolute value is used, you need a 
separate range and picture for the negative 
numbers in order to prefix the minus sign.

3 Multiply the number by the 
MULT= value. If you do not 
specify the MULT= option, 
then the PICTURE statement 
uses the default. The default 
is 10n, where n is the number 
of digit selectors to the right 
of the decimal in the picture. 
(Step 6 discusses digit 
selectors further.) 1

Specifying a MULT= value is necessary for 
numbers between 0 and 1 and numbers 
between 0 and −1 because no decimal appears 
in the pictures for those ranges. Because 
MULT= defaults to 1, truncation of the significant 
digits results without a MULT= value specified. 
(Truncation is explained in the next step.) For 
the three ranges that do not have MULT= values 
specified, the MULT= value defaults to 100 
because the corresponding picture has two digit 
selectors to the right of the decimal. After the 
MULT= value is applied, all significant digits are 
moved to the left of the decimal.

4 If the number is within 10–8 of 
a higher integer, round the 
number up. This operation is 
performed before the 
ROUND option is performed.

The ROUND option is in 
effect. The format rounds the 
number after the decimal to 
the next highest integer if the 
number after the decimal is 
greater than or equal to .5.

Because the example uses MULT= values that 
ensured that all of the significant digits were 
moved to the left of the decimal, no significant 
digits are lost. The zeros are truncated.

205.1 is rounded to 205.

55.6 is rounded up to 56.

99.6 is rounded up to 100.

Rounding is not performed on 5 and 660.

4a When the ROUND option is 
not performed, the numbers 
after the decimal are 
truncated.

205.1 is truncated to 205.

55.6 is truncated to 55.

99.6 is truncated to 99.

5 Turn the number into a 
character string. If the 
number is shorter than the 
picture, then the length of the 
character string is equal to 
the number of digit selectors 

205 becomes the character string 00205.

5 becomes the character string 05.

56 becomes the character string 56.

100 becomes the character string 100.

PICTURE Statement 1087



Step
Rules for Processing the 
PICTURE Statement In This Example

in the picture. Pad the 
character string with leading 
zeros. (The results are 
equivalent to using the Zw. 
format. Zw. is explained in 
the section on SAS formats 
in SAS Formats and 
Informats: Reference.

660 becomes the character string 0660.

When the picture is longer than the numbers, the 
format adds a leading zero to the value. The 
format does not add leading zeros to the 
character string 56 and 100 because the 
corresponding picture has the same number of 
selectors.

5a 205 becomes the character string 00205.

5 becomes the character string 05.

55 becomes the character string 55.

99 becomes the character string 099.

660 becomes the character string 0660.

When the picture is longer than the numbers, the 
format adds a leading zero to the value. The 
format does not add leading zeros to the 
character string 55 because the corresponding 
picture has the same number of selectors.

6 Apply the character string to 
the picture. The format maps 
only the rightmost n 
characters in the character 
string, where n is the number 
of digit selectors in the 
picture. Thus, it is important 
to make sure that the picture 
has enough digit selectors to 
accommodate the characters 
in the string.

After the format takes the 
right-most n characters, it 
then maps those characters 
to the picture from left to 
right. Choosing a zero or 
nonzero-digit selector is 
important if the character 
string contains leading zeros. 
If one of the leading zeros in 
the character string maps to 
a nonzero-digit selector, then 
it and all subsequent leading 
zeros and message 
characters become part of 
the formatted value. If all of 
the leading zeros map to 
zero-digit selectors, then 
none of the leading zeros or 
message characters become 

00205 is mapped to 2.05.

05 is mapped to 05.

56 is mapped to 56.

100 is mapped to 1.00.

0660 is mapped to 6.60.

The leading zero is dropped from the character 
strings 00205 and 0660 because the leading 
zero maps to a zero-digit selector in the picture.

1088 Chapter 30 / FORMAT Procedure

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Step
Rules for Processing the 
PICTURE Statement In This Example

part of the formatted value. 
The format replaces the 
leading zeros in the character 
string with blanks. 2

6a 00205 is mapped to 2.05.

05 is mapped to 05.

55 is mapped to 55.

099 is mapped to 99.

0660 is mapped to 6.60.

The leading zero is dropped from the character 
strings 00205, 099, and 0660, because the 
leading zero maps to a zero-digit selector in the 
picture.

The period (.) message character in the 0.99 
picture is dropped because the leading zero 
maps to a zero-digit selector.

Because the period message character is 
dropped, the format definition for the range 0.99 
– < 1 requires a prefix of '.' in the NOZEROS. 
format to format a decimal number.

7 Prefix any characters that are 
specified in the PREFIX= 
option. You need the 
PREFIX= option because 
when a picture contains any 
digit selectors, the picture 
must begin with a digit 
selector. Thus, you cannot 
begin your picture with a 
decimal point, minus sign, or 
any other character that is 
not a digit selector.

The PREFIX= option reclaims the decimal point 
and the negative sign, as shown with the 
formatted values -2.05, -.05 and .56.

7a The PREFIX= option reclaims the decimal point 
and the negative sign, as shown with the 
formatted values -2.05, -.05, .55, and .99.

1 A decimal in a PREFIX= option is not part of the picture.
2 You can use the FILL= option to specify a character other than a blank to become part of the formatted value.

Table 30.3 Steps to Format Various Values

Step Action -2.051 -.05 .556 .996 6.6

1 Range low – –1 –0.99 < – < 0 0 < – < .99 0.99 – < 1 1 – high

Picture 000.00 99 99 0.99 09.99

PICTURE Statement 1089



Step Action -2.051 -.05 .556 .996 6.6

2 Absolute 
value

2.051 .05 .556 .996 6.6

3 MULT= 2.051×10
2=205.1

.05×100=5 .556×100=55.
6

.996×100=99.
6

6.6×102=660

4 Round 205 5 56 100 660

4a No 
Roundin
g

205 5 55 99 660

5 Charact
er string, 
rounding

00205 05 56 100 0660

5a Charact
er string, 
no 
rounding

00205 05 55 099 0660

6 Templat
e, 
rounding

2.05 05 56 1.00 6.60

6a Templat
e, no 
rounding

2.05 05 55 99 6.60

7 Prefix, 
rounding

prefix='–' prefix='–.' prefix='.' none none

7a Prefix, 
no 
rounding

prefix='–' prefix='–.' prefix='.' prefix='.' none

Formatte
d result, 
rounding

–2.05 –.05 .56 1.00 6.60

Formatte
d 
results, 
no 
rounding

–2.05 –.05 .55 .99 6.60

The following PROC PRINT steps associates the NOZEROSR. format and the 
NOZEROS. format with the AMOUNT variable in SAMPLE. The first output shows 
the result of rounding.

proc print data=sample;
   format amount nozerosr.;
   title 'Formatting the Variable Amount';
   title2 'with the NOZEROSR. Format Using Rounding';

1090 Chapter 30 / FORMAT Procedure



run;

proc print data=sample;
   format amount nozeros.;
   title 'Formatting the Variable Amount';
   title2 'with the NOZEROS. Format, No Rounding';
run;

PICTURE Statement 1091



1092 Chapter 30 / FORMAT Procedure



CAUTION
The picture must be wide enough for the prefix and the numbers. In this 
example, if the value –45.00 were formatted with NOZEROS., then the result would be 
45.00 because it falls into the first range, low – –1, and the picture for that range is not 
wide enough to accommodate the prefixed minus sign and the number.

CAUTION
The picture must be wide enough for an additional digit if rounding a number 
adds a digit to the number. For example, the picture for the number .996 could be 
‘99’ (prefix ‘.’ mult=100). After rounding the number and multiplying it by 100, the 
resulting number is 100. When the picture is applied, the result is .00, an inaccurate 
number. In order to ensure accuracy of numbers when you round numbers, make the 
picture wide enough to accommodate larger numbers.

Specifying No Picture
This PICTURE statement creates a picture-name format that has no picture:

picture picture-name;

Using this format has the effect of applying the default SAS format to the values.

SELECT Statement
Selects entries for processing by the FMTLIB and CNTLOUT= options.

Restrictions: Only one SELECT statement can appear in a PROC FORMAT step.
You cannot use a SELECT statement and an EXCLUDE statement within the same 
PROC FORMAT step.

Example: “Example 15: Printing the Description of Informats and Formats” on page 1155

Syntax
SELECT entry(s);

Required Argument
entry(s)

specifies one or more catalog entries for processing. Catalog entry names are 
the same as the name of the informat or format that they store. Because 
informats and formats can have the same name, and because character and 
numeric informats or formats can have the same name, you must use certain 
prefixes when specifying informats and formats in the SELECT statement. 
Follow these rules when specifying entries in the SELECT statement:

n Precede names of entries that contain character formats with a dollar sign 
($).

SELECT Statement 1093



n Precede names of entries that contain character informats with an at sign and 
a dollar sign (for example, @$entry-name).

n Precede names of entries that contain numeric informats with an at sign (@).

n Specify names of entries that contain numeric formats without a prefix.

Details

Shortcuts to Specifying Names
You can use the colon (:) and hyphen (-) wildcard characters to select entries. For 
example, the following SELECT statement selects all formats or informats that begin 
with the letter a.

select a:;

In addition, the following SELECT statement selects all formats or informats that 
occur alphabetically between apple and pear, inclusive:

select apple-pear;

How the FMTLIB and CNTLOUT= Options Affect 
Whether a Catalog Is Opened in Read or Update 
Mode
Using the FMTLIB and CNTLOUT= options in the SELECT statement indicates 
whether a catalog is opened for Read or Update mode. The following rules apply:

n If you use the SELECT statement and do not specify the FMTLIB option or the 
CNTLOUT= option, PROC FORMAT assumes that the catalog is opened in 
Update mode. 

n If you use the SELECT statement and specify the FMTLIB option or the 
CNTLOUT= option, the catalog is opened for Read access. 

n If you use the SELECT statement without the FMTLIB option or the CNTLOUT= 
option, and the SAS program does not have Write access to the catalog, the 
following error is written to the SAS log: 

ERROR: User does not have appropriate authorization level
       for file libref.FORMATS.CATALOG.

VALUE Statement
Creates a format that specifies character strings to use to print variable values.

See: SAS Formats and Informats: Reference for documentation about SAS formats.

Examples: “Example 8: Creating a Format for Character Values” on page 1132
“Example 11: Writing a Format for Dates Using a Standard SAS Format and a Color 
Background” on page 1139

1094 Chapter 30 / FORMAT Procedure

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


“Example 17: Writing Ranges for Character Strings” on page 1159

Syntax
VALUE <$>name <(format-options)> <value-range-set(s)>;

Summary of Optional Arguments
DEFAULT=length

specifies the default length of the format.
FUZZ=fuzz-factor

specifies a fuzz factor for matching values to a range.
MAX=length

specifies a maximum length for the format.
MIN=length

specifies a minimum length for the format.
MULTILABEL

enables the assignment of multiple labels or external values to internal 
values.

NOTSORTED
stores values or ranges in the order in which you define them.

value-range-set(s)
specifies the assignment of a value or a range of values to a formatted 
value.

Required Argument
name

names the format that you are creating. If you created a function using the 
FCMP procedure to use as a format, name is the function name without 
parenthesis.

Restrictions The name of a user-defined format cannot be the same as the 
name of a format that is supplied by SAS.

Format names cannot end in a number. For more information, see 
“User-Defined Formats” in SAS Formats and Informats: 
Reference and “Names in the SAS Language” in SAS Language 
Reference: Concepts.

Requirement The name must be a valid SAS name. A numeric format name 
can be up to 32 characters in length. A character format name 
can be up to 31 characters in length. If you are creating a 
character format, then use a dollar sign ($) as the first character.

Interaction The maximum length of a format name is controlled by the 
VALIDFMTNAME= system option. See SAS System Options: 
Reference for details.

VALUE Statement 1095

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0ivpbwvkfwguqn12eew51gtu7y1.htm&docsetTargetAnchor=p078g62hu7v2n5n1s9oqhezbvq5s&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0ivpbwvkfwguqn12eew51gtu7y1.htm&docsetTargetAnchor=p078g62hu7v2n5n1s9oqhezbvq5s&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1kopotcrfuwy5n1chcjmb8hbmrd.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Tip Refer to the format later by using the name followed by a period. 
However, do not use a period after the format name in the VALUE 
statement.

See “Using a Function to Format Values” on page 1105

Optional Arguments
DEFAULT=length

specifies the default length of the format. The value for DEFAULT= becomes the 
length of the format if you do not give a specific length when you associate the 
format with a variable.

Default The length of the longest label that is assigned to the right of the equal 
sign

Range 1–32767

Tip As a best practice, always specify the DEFAULT= option if you specify 
a format as a label.

FUZZ=fuzz-factor
specifies a fuzz factor for matching values to a range. If a number does not 
match or fall in a range exactly but comes within fuzz-factor, then the format 
considers it a match. For example, the following VALUE statement creates the 
LEVELS. format, which uses a fuzz factor of .2: 

value levels (fuzz=.2) 1='A'
                       2='B'
                       3='C';

FUZZ=.2 means that if a variable value falls within .2 of a value on either end of 
the range, then the format uses the corresponding formatted value to print the 
variable value. So the LEVELS. format formats the value 2.1 as B.

Default 1E−12 for numeric formats and 0 for character formats.

Tips Specify FUZZ=0 to save storage space when you use the VALUE 
statement to create numeric formats.

Use a nonzero fuzz factor only with numbers that are very close but not 
an exact match. Ranges are stored internally in sorted order (unless the 
NOTSORTED option is used), in order to perform a binary search. 
When a fuzz-factor is added to the end of one range and subtracted 
from the beginning of the next range, and the ranges overlap, the 
results can be unpredictable. A value is placed in the first range that is 
a match in the binary search. The exclusion operator is insufficient to 
override this binary search algorithm. As a best practice, when you use 
the exclusion operator, set FUZZ=0 or the NOTSORTED option

A best practice is to use FUZZ=0 when you use the < exclusion 
operator with numeric formats.

MAX=length
specifies a maximum length for the format. When you associate the format with a 
variable, you cannot specify a width greater than the MAX= value.

1096 Chapter 30 / FORMAT Procedure



Default 40

Range 1–32767

MIN=length
specifies a minimum length for the format.

Default 1

Range 1–32767

MULTILABEL
enables the assignment of multiple labels or external values to internal values. 
The following VALUE statements show the two uses of the MULTILABEL option. 
The first VALUE statement assigns multiple labels to a single internal value. 
Multiple labels can also be assigned to a single range of internal values. The 
second VALUE statement assigns labels to overlapping ranges of internal 
values. The MULTILABEL option allows the assignment of multiple labels to the 
overlapped internal values.

value one (multilabel)
    1='ONE'
    1='UNO'
    1='UN';

  value agefmt (multilabel)
    15-29='below 30 years'
    30-50='between 30 and 50'
    51-high='over 50 years'
    15-19='15 to 19'
    20-25='20 to 25'
    25-39='25 to 39'
    40-55='40 to 55'
    56-high='56 and above';

Only multilabel-enabled procedures such as PROC MEANS, PROC SUMMARY, 
and PROC TABULATE can use multiple labels. All other procedures and the 
DATA step recognize only the primary label.

The primary label for a given entry is the external value that is assigned to the 
first internal value or range of internal values that matches or contains the entry 
when all internal values are ordered sequentially. Here is an example:

n In the first VALUE statement, the primary label for 1 is ONE because ONE is 
the first external value that is assigned to 1. The secondary labels for 1 are 
UNO and UN.

n In the second VALUE statement, the primary label for 33 is 25 to 39 
because the range 25–39 is sequentially the first range of internal values that 
contains 33. The secondary label for 33 is between 30 and 50 because the 
range 30–50 occurs in sequence after the range 25–39.

Restriction The maximum number of labels that can be created for a single 
format is 255.

NOTSORTED
stores values or ranges in the order in which you define them. If you do not 
specify NOTSORTED, then values or ranges are stored in sorted order by 
default, and SAS uses a binary searching algorithm to locate the range that a 

VALUE Statement 1097



particular value falls into. If you specify NOTSORTED, then SAS searches each 
range in the order in which you define them until a match is found.

Use NOTSORTED if one of the following is true:

n You know the likelihood of certain ranges occurring, and you want your 
format to search those ranges first to save processing time.

n You want to preserve the order that you define ranges when you print a 
description of the format using the FMTLIB option.

n You want to preserve the order that you define ranges when you use the 
ORDER=DATA option and the PRELOADFMT option to analyze class 
variables in PROC MEANS, PROC SUMMARY, or PROC TABULATE.

Do not use NOTSORTED if the distribution of values is uniform or unknown, or if 
the number of values is relatively small. The binary searching algorithm that SAS 
uses when NOTSORTED is not specified optimizes the performance of the 
search under these conditions.

SAS automatically sets the NOTSORTED option when you use the CPORT and 
CIMPORT procedures to transport formats between operating environments with 
different standard collating sequences. This automatic setting of NOTSORTED 
can occur when you transport formats between ASCII and EBCDIC operating 
environments. If this situation is undesirable, then do the following:

n Use the CNTLOUT= option in the PROC FORMAT statement to create an 
output control data set.

n Use the CPORT procedure to create a transport file for the control data set.

n Use the CIMPORT procedure in the target operating environment to import 
the transport file.

n In the target operating environment, use PROC FORMAT with the CNTLIN= 
option to build the formats from the imported control data set.

value-range-set(s)
specifies the assignment of a value or a range of values to a formatted value. 
The value-range-set(s) have the following form: 

value-or-range-1 <, value-or-range-2, …>=formatted-value | [existing-format] | 
[functionname]

The variable values on the left side of the equal sign prints as the character 
string on the right side of the equal sign. The maximum length of each value-or-
range to the left of the equal sign is 32,767 characters.

value-or-range
For details about how to specify value-or-range, see “Specifying Values or 
Ranges” on page 1101.

formatted-value
specifies a character string that becomes the printed value of the variable 
value that appears on the left side of the equal sign. Formatted values are 
always character strings, regardless of whether you are creating a character 
or numeric format.

Formatted values can be up to 32,767 characters. For hexadecimal literals, 
you can use up to 32,767 typed characters, or up to 16,382 represented 
characters at 2 hexadecimal characters per represented character. Some 
procedures, however, use only the first 8 or 16 characters of a formatted 
value.

1098 Chapter 30 / FORMAT Procedure



Requirements You must enclose a formatted value in single or double 
quotation marks. The following example shows a formatted 
value that is enclosed in double quotation marks:

value $ score    
   'M'="Male"
   'F'="Female";

If a formatted value contains a single quotation mark, then 
enclose the value in double quotation marks:

value sect 
   1="Smith's class" 
   2="Leung's class";

Tip Formatting numeric variables does not preclude the use of 
those variables in arithmetic operations. SAS uses stored 
values for arithmetic operations.

existing-format
specifies a format that is supplied by SAS or an existing user-defined format. 
The format that you are creating uses the existing format to convert the raw 
data that is a match for value-or-range on the left side of the equal sign.

Using an existing format can be thought of as nesting formats. A nested level 
of one means that if you are creating the format A with the format B as a 
formatted value, then the procedure has to use only one existing format to 
create A.

Requirement If you use an existing format, then enclose the format name in 
square brackets (for example, [date9.]) or with parentheses 
and vertical bars (for example, (|date9.|)). Do not enclose the 
name of the existing format in single quotation marks.

Tips Avoid nesting formats more than one level. The resource 
requirements can increase dramatically with each additional 
level.

As a best practice, if you specify an existing format in value-
range-set, always specify a default value by using the 
DEFAULT= option on page 1096. 

functionname
specifies a function that is supplied by SAS or an existing user-defined 
function.

Tips As a best practice, you should define the default length.

If you create a function using the FCMP procedure to use as a format, 
name is the function name without parenthesis.

See “Using a Function to Format Values”

VALUE Statement 1099



Examples

Example 1: Create a Format to Print Postal Codes 
for Selected States
The $STATE. character format prints the postal code for selected states:

value $state 'Delaware'='DE'
              'Florida'='FL'
              'Ohio'='OH';

The variable value Delaware prints as DE, the variable value Florida prints as FL, 
and the variable value Ohio prints as OH. Note that the $STATE. format begins with a 
dollar sign.

Note: Range specifications are case sensitive. In the $STATE. format above, the 
value OHIO would not match any of the specified ranges. If you are not certain what 
case the data values are in, then one solution is to use the UPCASE function on the 
data values and specify all uppercase characters for the ranges.

Example 2: Write Numeric Values as Character 
Values
The numeric format ANSWER. writes the values 1 and 2 as yes and no:

value answer 1='yes'
             2='no';

Example 3: Specifying No Ranges
This VALUE statement creates a format-name format that has no ranges:

value format-name;

Using this format has the effect of applying the default SAS format to the values.

Example 4: Create a Format Using Existing SAS 
Formats as Labels
This program creates the MYfmt. format to format dates based on the year.

Note: If the format-as-label or function-as-label is within square brackets, then it is 
referred to as nested. A format specification in square brackets is followed by at 
least a period, for example, [year.]. A function specification in square brackets is 
followed by parentheses, for example, [year()]. SAS uses the nested format to 
format the values in the range. For example, see low-'31DEC2011'd=[year4.] in 
the following example. For another example that uses nested formats, see “Example 
5: Create a Format for Missing and Nonmissing Values Using an Existing SAS 
Format as a Label” on page 1101.

1100 Chapter 30 / FORMAT Procedure



data test;
  do Date='01jan2006'd to '31dec2013'd;
    do j=1 to rannor(0)*100;
       output;
    end;
  end;
run;
proc format;
   value MYfmt
        /* Format dates prior to 31DEC2011 using only a year. */
        low-'31DEC2011'd=[year4.]

        /* Format 2012 dates using the month and year. */
        '01jan2012'd-'31DEC12'd=[monyy7.]

        /* Format dates 01JAN2013 and beyond using the day, month, and 
year. */
        '01JAN2013'd-high=[date9.]

        /* Catch missing values. */
        other='n/a';
run;

proc freq data=test;
      table date /missing;
      format date myfmt.;
run;

Example 5: Create a Format for Missing and 
Nonmissing Values Using an Existing SAS Format 
as a Label
This program formats missing numeric values with the label N/A, and formats 
nonmissing values with the existing SAS format 12.1.

proc format;
      value myfmt .='N/A' other=[12.1];
run;

Usage: FORMAT Procedure

Specifying Values or Ranges
As the syntax of the INVALUE, PICTURE, and VALUE statements indicates, you 
must specify values as value-range-sets. On the left side of the equal sign, you 
specify the values that you want to convert to other values. On the right side of the 

Usage: FORMAT Procedure 1101



equal sign, you specify the values that you want the values on the left side to 
become. This section discusses the different forms that you can use for value-or-
range, which represents the values on the left side of the equal sign. For details 
about how to specify values for the right side of the equal sign, see the “Required 
Arguments” section for the appropriate statement.

The INVALUE, PICTURE, and VALUE statements accept numeric values on the left 
side of the equal sign. In character informats, numeric ranges are treated as 
character strings. INVALUE and VALUE also accept character strings on the left 
side of the equal sign.

As the syntax shows, you can have multiple occurrences of value-or-range in each 
value-range-set, using a comma to separate the occurrences. Each occurrence of 
value-or-range is either one of the following:

value
a single value, such as 12 or 'CA'. For character formats and informats, enclose 
the character values in single quotation marks.

You can use the keyword OTHER= as a single value. OTHER= matches all 
values that do not match any other value or range. OTHER= includes missing 
values for both numeric and character user-defined formats. You cannot nest a 
user-defined format by using the format as the value of OTHER=, unless the 
format is a function that formats values.

If you specify a format that is too narrow to represent a value, then SAS tries to 
fit the longer label into the available space. SAS truncates character values on 
the right, and it sometimes reverts numeric values to the BESTw.d format. If you 
do not specify an adequate width for a format, then SAS prints asterisks in the 
output. In this example, the specified value is two characters, DK. The width of 
DK is not adequate for the five-character 99999 value, and SAS prints two 
asterisks in the output.

proc format;
   value fmtzip 99999="DK";

data testzip;
   zip=27609;
   output;
   zip=99999;
   output;
run;

proc print data=testzip;
   format Zip fmtzip.;
run;

The result of zip=99999; is that ** appears in the first observation of the column 
labeled “Zip” in the output table.

One way to prevent this problem from occurring is to assign a width when you 
apply the format, as in this example.

proc format;
   value fmtzip 99999="DK";

data testzip;
   zip=27609;
   output;
   zip=99999;
   output;

1102 Chapter 30 / FORMAT Procedure



run;

proc print data=testzip;
   format Zip fmtzip5.;
run;

The result of format Zip fmtzip5.; is that adequate space is specified for 
27609 to appear correctly in the first observation of the column labeled “Zip” in 
the output table.

You can also prevent the problem by specifying the DEFAULT or MIN options 
when you create the format, as in this example.

proc format;
   value fmtzip (default=5) 99999="DK";

data testzip;
   zip=27609;
   output;
   zip=99999;
   output;
run;

proc print data=testzip;
   format Zip fmtzip5.;
run;

The result of including (default=5) in the value specification is that adequate 
space is specified for 27609 to appear correctly in the first observation of the 
column labeled “Zip” in the output table.

Adding blank spaces at the end of a specified value increases the width of the 
value. For example, the specified value DK is not wide enough for 99999. Adding 
three blank spaces to the value when you specify DK provides five spaces for 
the 99999 value.

Note: If you add blank spaces to a specified value, be sure to add enough blank 
spaces to accommodate the longest value that the format might handle.

For more information about how SAS formats widths, see “Syntax ” in SAS 
Formats and Informats: Reference.

For more information about format values, see “Using a Function to Format 
Values” on page 1105. For examples, see “Example 8: Creating a Format for 
Character Values” on page 1132 and “Example 20: Creating a Function to Use 
as a Format” on page 1169.

range
a list of values (for example, 12–68 or 'A'-'Z'). For ranges with character 
strings, be sure to enclose each string in single quotation marks. For example, if 
you want a range that includes character strings from A to Z, then specify the 
range as 'A'-'Z', with single quotation marks around the A and around the Z.

If you specify 'A-Z', then the procedure interprets it as a three-character string 
with A as the first character, a hyphen (-) as the second character, and a Z as the 
third character.

In numeric user-defined informats, the procedure interprets an unquoted numeric 
range on the left side of a value-range-set as a numeric range. In a character 
user-defined informat, the procedure interprets an unquoted numeric range on 

Usage: FORMAT Procedure 1103

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n134ahpcz8murvn1x7went6p2czo.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n134ahpcz8murvn1x7went6p2czo.htm&locale=en


the left side of a value-range-set as a character string. For example, in a 
character informat, the range 12–86 is interpreted as '12'–'86'.

You can use LOW or HIGH as one value in a range, and you can use the range 
LOW-HIGH to encompass all values. For example, the following are valid 
ranges:

low-'ZZ' 
35-high
low-high
other

In numeric ranges, LOW includes the lowest numeric value, excluding missing 
values. HIGH includes the largest value in the range. In character ranges, LOW 
includes missing values. OTHER includes missing values for both numeric and 
character formats.

You can use the less than (<) symbol to exclude values from ranges. If you are 
excluding the first value in a range, then put the < exclusion operator after the 
value. If you are excluding the last value in a range, then put the < exclusion 
operator before the value. For example, the following range does not include 0:

0<-100

Likewise, the following range does not include 100:

0-<100

TIP When you use the < exclusion operator to place values in ranges, 
use the option FUZZ=0 in the VALUE statement for numeric formats. This 
is not necessary for character formats because FUZZ=0 is the default.

If a value at the high end of one range also appears at the low end of another 
range, and you do not use the < exclusion operator, then PROC FORMAT 
assigns the value to the first range. For example, in the following ranges, the 
value AJ is part of the first range:

'AA'-'AJ'=1 'AJ'-'AZ'=2

In this example, to include the value AJ in the second range, use the < exclusion 
operator on the first range:

'AA'-<'AJ'=1 'AJ'-'AZ'=2

If you overlap values in ranges, then PROC FORMAT returns an error message 
unless, for the VALUE statement, the MULTILABEL option is specified. For 
example, the following ranges will cause an error: 'AA'-'AK'=1 'AJ'-'AZ'=2.

Each value-or-range can be up to 32,767 characters. If value-or-range has more 
than 32,767 characters, then the procedure truncates the value after it processes 
the first 32,767 characters.

Note: You do not have to account for every value on the left side of the equal sign. 
Those values are converted using the default informat or format. For example, the 
following VALUE statement creates the TEMP. format, which prints all occurrences 
of 98.6 as NORMAL: 

value temp 98.6='NORMAL';

If the value were 96.9, then the printed result would be 96.9.

1104 Chapter 30 / FORMAT Procedure



Using a Function to Format Values
SAS provides a way to format a value by first performing a function on a value. By 
using a function to format values, you can create customized formats. For example, 
SAS provides four formats to format dates by quarters, YYQw., YYQxw., YYQRw., 
and YYQRxw. None of these formats satisfy your requirement to use Q1, Q2, Q3, or 
Q4. You can create a function using the FCMP procedure that creates the Q1, Q2, 
Q3, and Q4 values based on a date and a SAS format, and then use that function in 
the FORMAT procedure to create a format.

Here are the steps to create and use a function to format values:

1 Use the FCMP procedure to create the function.

2 Use the OPTIONS statement to make the function available to SAS by 
specifying the location of the function in the CMPLIB= system option.

3 Use the FORMAT procedure to create a new format.

4 Use the new format in your SAS program.

Here is an example:

/* Create a function that creates the value Qx from a formatted value. 
*/

proc fcmp outlib=work.functions.smd;

   function qfmt(date) $;
      length qnum $4;
      qnum=put(date,yyq4.);
      if substr(qnum,3,1)='Q'
         then return(substr(qnum,3,2));
      else return(qnum);
   endsub;
run;

/* Make the function available to SAS. */

options cmplib=(work.functions);

/* Create a format using the function created by the FCMP procedure. */

proc format; 
   value qfmt 
         other=[qfmt()]; run;

/* Use the format in a SAS program.  */

data djia2013;
      input closeDate date7. close;
      datalines;
01jan13 800.86
02feb13 7062.93
02mar13 7608.92

Usage: FORMAT Procedure 1105



01apr13 8168.12
01may13 8500.33
01jun13 8447.00
01jul13 9171.61
03aug13 9496.28
01sep13 9712.28
01oct13 9712.73
02nov13 10344.84
02dec13 10428.05
run;

proc print data=djia2013;
format closedate qfmt. close dollar9.;
run;

Here is the output:

Output 30.1 Dow Jones Closings by Quarter

You can use the function format as the value to OTHER=.

Viewing a Format Definition Using SAS Explorer
After you create a format, you can view the definition for the format using SAS 
Explorer.

1 Select View ð Explorer.

1106 Chapter 30 / FORMAT Procedure



2 Open the format folder. To view the default format folder, expand Libraries ð 
Work and select Formats.

3 To view the format description, do one of the following actions on the format 
name in the contents pane:

n double-click the format name

n right-click the format name and select View

The format description appears in the Results Viewer window.

Results: FORMAT Procedure

Output Control Data Set
The output control data set contains information that describes informats or formats. 
Output control data sets have a number of uses. For example, an output control 
data set can be edited with a DATA step to programmatically change value ranges 
or can be subset with a DATA step to create new formats and informats. In addition, 
you can move formats and informats from one operating environment to another by 

Results: FORMAT Procedure 1107



creating an output control data set, using the CPORT procedure to create a transfer 
file of the data set. Then, use the CIMPORT and FORMAT procedures in the target 
operating environment to create the formats and informats there.

You create an output control data set with the CNTLOUT= option in the PROC 
FORMAT statement. You use output control data sets, or a set of observations from 
an output control data set, as an input control data set in a subsequent PROC 
FORMAT step using the CNTLIN= option.

Output control data sets contain an observation for every value or range in each of 
the informats or formats in the LIBRARY= catalog. The data set consists of 
variables that give either global information about each format and informat created 
in the PROC FORMAT step or specific information about each range and value.

The variables in the output control data set are as follows:

DATATYPE
enables the use of directives in a picture as a template to format date, time, or 
datetime values.

DECP
specifies the separator character for the fractional part of a number.

DEFAULT
specifies a numeric variable that indicates the default length for format or 
informat.

DIG3SEP
specifies the three-digit separator character for a number.

END
specifies a character variable that gives the range's ending value.

EEXCL
specifies a character variable that indicates whether the range's ending value is 
excluded. Valid values are as follows:

Y
specifies that the range's ending value is excluded.

N
specifies that the range's ending value is not excluded.

FILL
for picture formats, specifies a numeric variable whose value is the value of the 
FILL= option.

FMTNAME
specifies a character variable whose value is the format or informat name.

FUZZ
specifies a numeric variable whose value is the value of the FUZZ= option.

HLO
specifies a character variable that contains range information about the format or 
informat. The following valid values can appear in any combination:

F
specifies a standard SAS format or informat that is used with a value.

H
specifies that a range's ending value is HIGH.

I
specifies a numeric informat range.

1108 Chapter 30 / FORMAT Procedure



J
specifies justification for an informat.

L
specifies that a range's starting value is LOW.

M
specifies that the MULTILABEL option is in effect.

N
specifies that the format or informat has no ranges, including no OTHER= 
range.

O
specifies that the range is OTHER.

R
specifies that the ROUND option is in effect.

S
specifies that the NOTSORTED option is in effect.

U
specifies that the UPCASE option for an informat be used.

LABEL
specifies a character variable whose value is associated with a format or an 
informat.

LANGUAGE
specifies the language that is used for weekdays and months that you can 
substitute in a date, time, or datetime picture. If you specify a language that is 
not supported or is invalid, English is used.

LENGTH
specifies a numeric variable whose value is the value of the LENGTH= option.

MAX
specifies a numeric variable whose value is the value of the MAX= option.

MIN
specifies a numeric variable whose value is the value of the MIN= option.

MULT
specifies a numeric variable whose value is the value of the MULT= option.

NOEDIT
for picture formats, specifies a numeric variable whose value indicates whether 
the NOEDIT option is in effect. Valid values are as follows:

1
specifies that the NOEDIT option is in effect.

0
specifies that the NOEDIT option is not in effect.

PREFIX
for picture formats, specifies a character variable whose value is the value of the 
PREFIX= option.

SEXCL
specifies a character variable that indicates whether the range's starting value is 
excluded. Valid values are as follows:

Results: FORMAT Procedure 1109



Y
specifies that the range's starting value is excluded.

N
specifies that the range's starting value is not excluded.

START
specifies a character variable that gives the range's starting value.

TYPE
specifies a character variable that indicates the type of format. Possible values 
are as follows:

C
specifies a character format.

I
specifies a numeric informat.

J
specifies a character informat.

N
specifies a numeric format (excluding pictures).

P
specifies a picture format.

This table specifies TYPE values for creating formats and informats using PROC 
FORMAT and the CNTLIN option. For example, in Scenario 1 if START=Numeric 
and LABEL=Numeric, then TYPE=I and you can use the INPUT function to create a 
numeric column. See “Example 13: Creating a Format from a CNTLIN= Data Set” 
for an example of creating a format using PROC FORMAT and the CNTLIN option.

Table 30.4 TYPE Values

Scenarios Format/Informat START LABEL TYPE

1 Format Numeric Character N

2 Format Character Character C

3 Informat Character Numeric I

4 Informat Character Character J

The following output shows an output control data set that contains information 
about all the informats and formats created in the FORMAT procedure examples.

1110 Chapter 30 / FORMAT Procedure



Output 30.2 Output Control Data Set for PROC FORMAT Examples

You can use the SELECT or EXCLUDE statement to control which formats and 
informats are represented in the output control data set. For details, see “SELECT 
Statement” on page 1093 and “EXCLUDE Statement” on page 1064.

Input Control Data Set
You specify an input control data set with the CNTLIN= option in the PROC 
FORMAT statement. The FORMAT procedure uses the data in the input control data 
set to construct informats and formats. Thus, you can create informats and formats 
without writing INVALUE, PICTURE, or VALUE statements.

The input control data set must have these characteristics:

n For both numeric and character formats, the data set must contain the variables 
FMTNAME, START, and LABEL, which are described in “Output Control Data 
Set” on page 1107. The remaining variables are not always required.

n If you are creating a character format or informat, then you must either begin the 
format or informat name with a dollar sign ($) or specify a TYPE variable with the 
value C.

n If you are creating a PICTURE statement format, then you must specify a TYPE 
variable with the value P.

n If you are creating a format with ranges of input values, then you must specify 
the END variable. If range values are to be noninclusive, then the variables 
SEXCL and EEXCL must each have a value of Y. Inclusion is the default.

n If you are creating a format with the CNTLIN= option, the value of LOW or 
OTHER for the START variable and the value of HIGH for the END variable are 
interpreted as their corresponding keywords of LOW, OTHER, or HIGH. This 
interpretation occurs whether you specify the values in uppercase or lowercase. 
If you want the explicit values of LOW, OTHER, or HIGH to be used, then specify 
the HLO variable with the values as described below.

If you specify START='LOW', and the HLO variable does not contain 'L', then the 
literal value of LOW is used. If you specify START='OTHER', and the HLO variable 
does not contain 'O', then the literal value of OTHER is used. If you specify 

Results: FORMAT Procedure 1111



END='HIGH', and the HLO variable does not contain 'H', then the literal value of 
HIGH is used.

You can create more than one format from an input control data set if the 
observations for each format are grouped together.

You can use a VALUE, INVALUE, or PICTURE statement in the same PROC 
FORMAT step with the CNTLIN= option. If the VALUE, INVALUE, or PICTURE 
statement is creating the same informat or format that the CNTLIN= option is 
creating, then the VALUE, INVALUE, or PICTURE statement creates the informat or 
format and the CNTLIN= data set is not used. However, you can create an informat 
or format with VALUE, INVALUE, or PICTURE and create a different informat or 
format with CNTLIN= in the same PROC FORMAT step.

For an example featuring an input control data set, see “Example 13: Creating a 
Format from a CNTLIN= Data Set” on page 1145. 

Procedure Output
The FORMAT procedure prints output only when you specify the FMTLIB option or 
the PAGE option in the PROC FORMAT statement. The printed output is a table for 
each format or informat entry in the catalog that is specified in the LIBRARY= 
option. The output also contains global information and the specifics of each value 
or range that is defined for the format or informat. You can use the SELECT or 
EXCLUDE statement to control which formats and informats are represented in the 
FMTLIB output. For details, see “SELECT Statement” on page 1093 and 
“EXCLUDE Statement” on page 1064. For an example, see “Example 15: Printing 
the Description of Informats and Formats” on page 1155. 

The FMTLIB output shown in the following output contains a description of the 
$CITY. format, which is created in “Example 8: Creating a Format for Character 
Values” on page 1132, and the EVALUATION. informat, which is created in 
“Example 12: Converting Raw Character Data to Numeric Values” on page 1142. 

1112 Chapter 30 / FORMAT Procedure



Output 30.3 Output from PROC FORMAT with the FMTLIB Option

The fields are described below in the order in which they appear in the output, from 
left to right:

INFORMAT NAME or FORMAT NAME
the name of the informat or format. Informat names begin with an at-sign (@).

LENGTH
the length of the informat or format. PROC FORMAT determines the length in 
the following ways:

n For character informats, the value for LENGTH is the length of the longest 
raw data value on the left side of the equal sign.

n For numeric informats, the following is true:

o LENGTH is 12 if all values on the left side of the equal sign are numeric.

o LENGTH is the same as the longest raw data value on the left side of the 
equal sign.

Results: FORMAT Procedure 1113



n For formats, the value for LENGTH is the length of the longest value on the 
right side of the equal sign.

In the output for $CITY., the LENGTH is 14 because the longest picture is 14 
characters.

In the output for @EVALUATION., the length is 1 because 1 is the longest raw 
data value on the left side of the equal sign.

NUMBER OF VALUES
the number of values or ranges associated with the informat or format. 
NOZEROS. has 4 ranges, and EVAL. has 5.

MIN LENGTH
the minimum length of the informat or format. The value for MIN LENGTH is 1 
unless you specify a different minimum length with the MIN= option.

MAX LENGTH
the maximum length of the informat or format. The value for MAX LENGTH is 40 
unless you specify a different maximum length with the MAX= option.

DEFAULT LENGTH
the length of the longest value in the INVALUE or LABEL field, or the value of the 
DEFAULT= option.

FUZZ
the fuzz factor. For informats, FUZZ always is 0. For formats, the value for this 
field is STD if you do not use the FUZZ= option. STD signifies the default fuzz 
value.

START
the beginning value of a range. FMTLIB prints only the first 16 characters of a 
value in the START and END columns.

END
the ending value of a range. The exclusion sign (<) appears after the values in 
START and END, if the value is excluded from the range.

INVALUE
appears only for informats and contains the values that have informats. The SAS 
version specifies the version in which the informat is compatible. The date 
indicates the date in which the informat was created.

Note: If SAS displays version numbers V7 | V8, then the informat is compatible 
with those versions. If it is not compatible with earlier releases, the release that 
created the informat is shown. Version V9 supports long informat names (more 
than eight characters), and V7 | V8 do not.

LABEL
LABEL appears only for formats and contains either the formatted value or 
picture. The SAS version specifies the version in which the format is compatible. 
The date indicates the date in which the format was created.

Note: If SAS displays version numbers V7 | V8, then the format is compatible 
with those versions. If it is not compatible with earlier releases, the release that 
created the format is shown. Version V9 supports long format names (more than 
eight characters), and V7 | V8 do not.

For picture formats, such as NOZEROS., the LABEL section contains the 
PREFIX=, FILL=, and MULT= values. To note these values, FMTLIB prints the 

1114 Chapter 30 / FORMAT Procedure



letters P, F, and M to represent each option, followed by the value. For example, 
in the LABEL section, P-. indicates that the prefix value is a hyphen followed by 
a period.

FMTLIB prints only 40 characters in the LABEL column.

Examples: FORMAT Procedure

Example 1: Create a Format Library in a CAS 
Session
Features: PROC FORMAT statement option

CASFMTLIB
CAS statement

Details
This example uses the CASFMTLIB option to create a format library in a CAS 
session. It associates the format library with a table in the WORK directory and 
assigns a CAS engine libref.

Program
cas casauto sessopts=(caslib="casuser"); 
caslib _all_ assign;

libname proclib cas;
proc format casfmtlib='myformats';
     value hospx 
       1='New_York            ' 
       2='Massachusetts_General'
       3='Los_Angeles' 
       4='Mary_Fletcher';
run;

data clinicalTrial;
  input hospital treatment $ @@;
  severity=rannor(1323)*5 + 10;
  format hospital hospx.; 
  cards;

Example 1: Create a Format Library in a CAS Session 1115



3 B  3 B  3 C   3 C 
1 A  1 A  1 A   1 B 
1 B  1 B  1 C   1 C 
1 C  1 D  1 D   1 D 
2 A  2 A  2 A   2 B 
2 B  2 B  2 C   2 C 
2 C  2 D  2 D   2 D 
3 A  3 A  3 A   3 B 
3 C  3 D  3 D   3 D 
4 A  4 A  4 A   4 B 
4 B  4 B  4 C   4 C 
4 C  4 D  4 D   4 D 
;

data proclib.clinicalTrial; 
        set work.clinicalTrial; 
run;

proc regselect data=proclib.clinicalTrial;   class treatment hospital;
   model severity=treatment hospital;
run;

Program Description
Create a format library in a CAS session. Assign a library with the LIBNAME 
statement. PROC FORMAT creates a format named hospx. The CASFMTLIB option 
specifies the name of the format library myformats in the CAS session. 

cas casauto sessopts=(caslib="casuser"); 
caslib _all_ assign;

libname proclib cas;
proc format casfmtlib='myformats';
     value hospx 
       1='New_York            ' 
       2='Massachusetts_General'
       3='Los_Angeles' 
       4='Mary_Fletcher';
run;

Associate the HOSPX format with a column or variable.

data clinicalTrial;
  input hospital treatment $ @@;
  severity=rannor(1323)*5 + 10;
  format hospital hospx.; 
  cards;
3 B  3 B  3 C   3 C 
1 A  1 A  1 A   1 B 
1 B  1 B  1 C   1 C 
1 C  1 D  1 D   1 D 
2 A  2 A  2 A   2 B 
2 B  2 B  2 C   2 C 
2 C  2 D  2 D   2 D 
3 A  3 A  3 A   3 B 
3 C  3 D  3 D   3 D 

1116 Chapter 30 / FORMAT Procedure



4 A  4 A  4 A   4 B 
4 B  4 B  4 C   4 C 
4 C  4 D  4 D   4 D 
;

Send actions to the CAS session. The LIBNAME statement assigns a CAS 
engine libref that is used to identify the table in the REGSELECT procedure step.

data proclib.clinicalTrial; 
        set work.clinicalTrial; 
run;

proc regselect data=proclib.clinicalTrial;   class treatment hospital;
   model severity=treatment hospital;
run;

Example 1: Create a Format Library in a CAS Session 1117



LOG
Example Code 30.1 Create a Format Library in a CAS Session, Part 1

1          OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
 56         
 57         cas casauto sessopts=(caslib="casuser");
 NOTE: 'CASUSER(userid)' is now the active caslib.
 NOTE: The CAS statement request to update one or more session options        for 
session CASAUTO completed.
 58         caslib _all_ assign;
 NOTE: A SAS Library associated with a caslib can only reference library member 
       names that conform to SAS Library naming conventions.
 NOTE: CASLIB CASUSER(userid) for session CASAUTO will be mapped to SAS Library 
CASUSER.
 NOTE: CASLIB Formats for session CASAUTO will be mapped to SAS Library FORMATS.
 NOTE: CASLIB Models for session CASAUTO will be mapped to SAS Library MODELS.
 NOTE: CASLIB Public for session CASAUTO will be mapped to SAS Library PUBLIC.
 59         
 60         libname proclib cas;
 NOTE: Libref PROCLIB was successfully assigned as follows: 
       Engine:        CAS 
       Physical Name: c0d2aee4-4628-5b42-b740-513df8d08070
 61         proc format casfmtlib='myformats';
 NOTE: Both CAS based formats and catalog-based formats will be written. 
       The CAS based formats will be written to the session 
       CASAUTO.
 62              value hospx
 63                1='New_York            '
 64                2='Massachusetts_General'
 65                3='Los_Angeles'
 66                4='Mary_Fletcher';
 NOTE: Format library MYFORMATS added. Format search update using parameter 
       APPEND completed.
 NOTE: Format HOSPX has been output.
 67         run;
 
 NOTE: PROCEDURE FORMAT used (Total process time):
       real time           0.04 seconds
       cpu time            0.00 seconds
       
 68         
 69         data clinicalTrial;
 70           input hospital treatment $ @@;
 71           severity=rannor(1323)*5 + 10;
 72           format hospital hospx.;
 73           datalines;
 
 NOTE: SAS went to a new line when INPUT statement reached past the end 
       of a line.
 NOTE: The data set WORK.CLINICALTRIAL has 48 observations and 3 variables.
 NOTE: DATA statement used (Total process time):
       real time           0.00 seconds
       cpu time            0.01 seconds

1118 Chapter 30 / FORMAT Procedure



Example Code 30.2 Create a Format Library in a CAS Session, Part 2

 88         data proclib.clinicalTrial;
 89                 set work.clinicalTrial;
 90         run;
 
 NOTE: There were 48 observations read from the data set WORK.CLINICALTRIAL.
 NOTE: The data set PROCLIB.CLINICALTRIAL has 48 observations and 3 variables.
 NOTE: DATA statement used (Total process time):
       real time           0.08 seconds
       cpu time            0.01 seconds
 
 91         
 92         proc regselect data=proclib.clinicalTrial;
 93            class treatment hospital;
 94            model severity=treatment hospital;
 95         run;
 
 NOTE: The Cloud Analytic Services server processed the request in 
       0.065319 seconds.
 NOTE: PROCEDURE REGSELECT used (Total process time):
       real time           0.25 seconds
       cpu time            0.10 seconds
 
 96         
 97         
 98         OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;

Creating a Format Library in a CAS 
Session
The output is divided into sections only for documentation appearances.

Example 1: Create a Format Library in a CAS Session 1119



1120 Chapter 30 / FORMAT Procedure



Example 2: Create the Example Data Set

Details
Several examples in this section use the PROCLIB.STAFF data set. In addition, 
many of the informats and formats that are created in these examples are stored in 
Library.Formats. The output data set shown in “Output Control Data Set” on page 
1107 contains a description of these informats and the formats.

The variables are about a small subset of employees who work for a corporation 
that has sites in the U.S. and Britain. The data contain the name, identification 
number, salary (in British pounds), location, and date of hire for each employee.

Program
libname proclib 'SAS-library';

data proclib.staff;
   infile datalines dlm='#';
   input Name & $16. IdNumber $ Salary
         Site $ HireDate date8.;
   format hiredate date8.;
   datalines;
Capalleti, Jimmy#  2355# 21163# BR1# 30JAN13
Chen, Len#         5889# 20976# BR1# 18JUN06
Davis, Brad#       3878# 19571# BR2# 20MAR04
Leung, Brenda#     4409# 34321# BR2# 18SEP94
Martinez, Maria#   3985# 49056# US2# 10JAN93
Orfali, Philip#    0740# 50092# US2# 16FEB03
Patel, Mary#       2398# 35182# BR3# 02FEB90
Smith, Robert#     5162# 40100# BR5# 15APR06
Sorrell, Joseph#   4421# 38760# US1# 19JUN11
Zook, Carla#       7385# 22988# BR3# 18DEC10
;

Program Description
libname proclib 'SAS-library';

Create the data set PROCLIB.STAFF. The INPUT statement assigns the names 
Name, IdNumber, Salary, Site, and HireDate to the variables that appear after the 
DATALINES statement. The FORMAT statement assigns the standard SAS format 
DATE7. to the variable HireDate.

data proclib.staff;

Example 2: Create the Example Data Set 1121



   infile datalines dlm='#';
   input Name & $16. IdNumber $ Salary
         Site $ HireDate date8.;
   format hiredate date8.;
   datalines;
Capalleti, Jimmy#  2355# 21163# BR1# 30JAN13
Chen, Len#         5889# 20976# BR1# 18JUN06
Davis, Brad#       3878# 19571# BR2# 20MAR04
Leung, Brenda#     4409# 34321# BR2# 18SEP94
Martinez, Maria#   3985# 49056# US2# 10JAN93
Orfali, Philip#    0740# 50092# US2# 16FEB03
Patel, Mary#       2398# 35182# BR3# 02FEB90
Smith, Robert#     5162# 40100# BR5# 15APR06
Sorrell, Joseph#   4421# 38760# US1# 19JUN11
Zook, Carla#       7385# 22988# BR3# 18DEC10
;

Example 3: Creating a Picture Format
Features: PROC FORMAT statement options

LIBRARY=
PICTURE statement options

MULT=
PREFIX=

LIBRARY libref
LOW and HIGH keywords

Data set: PROCIB.STAFF from Example 1

Details
This example uses a PICTURE statement to create a format that prints the values 
for the variable Salary in the data set PROCLIB.STAFF in U.S. dollars.

Program
libname proclib 'SAS-library-1';
libname library 'SAS-library-2';

options nodate pageno=1 linesize=80 pagesize=40;

   proc format library=library;

      picture uscurrency low-high='000,000' (mult=1.61 prefix='$');
   run;

proc print data=proclib.staff noobs label;

   label salary='Salary in U.S. Dollars';

1122 Chapter 30 / FORMAT Procedure



   format salary uscurrency.;

   title 'PROCLIB.STAFF with a Format for the Variable Salary';
run;

Program Description

Assign two SAS library references (PROCLIB and LIBRARY). Assigning a library 
reference LIBRARY is useful in this case because if you use PROC FORMAT, then 
SAS automatically searches for informats and formats in any library that is 
referenced with the LIBRARY libref.

libname proclib 'SAS-library-1';
libname library 'SAS-library-2';

Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Specify that user-defined formats will be stored in the catalog 
Library.Formats. The LIBRARY= option specifies a SAS catalog that will contain 
the formats or informats that you create with PROC FORMAT. When you create the 
library named LIBRARY, SAS automatically creates a catalog named FORMATS 
inside LIBRARY.

   proc format library=library;

Define the USCURRENCY. picture format. The PICTURE statement creates a 
template for printing numbers. LOW-HIGH ensures that all values are included in 
the range. The MULT= statement option specifies that each value is multiplied by 
1.61. The PREFIX= statement adds a US dollar sign to any number that you format. 
The picture contains six digit selectors, five for the salary and one for the dollar sign 
prefix. 

      picture uscurrency low-high='000,000' (mult=1.61 prefix='$');
   run;

Print the PROCLIB.STAFF data set. The NOOBS option suppresses the printing of 
observation numbers. The LABEL option uses variable labels instead of variable 
names for column headings.

proc print data=proclib.staff noobs label;

Specify a label and format for the Salary variable. The LABEL statement 
substitutes the specific label for the variable in the report. In this case, “Salary in US 
Dollars” is substituted for the variable Salary for this print job only. The FORMAT 
statement associates the USCurrency. format with the variable name Salary for the 
duration of this procedure step.

   label salary='Salary in U.S. Dollars';
   format salary uscurrency.;

Specify the title.

   title 'PROCLIB.STAFF with a Format for the Variable Salary';
run;

Example 3: Creating a Picture Format 1123



Output
Output 30.4 PROCLIB.STAFF with a Format for the Variable Salary

Example 4: Creating a Picture Format for Large 
Dollar Amounts
Features: PICTURE statement option

MULT

Format: BIGMONEY.

Details
This example uses the MULT option of the PICTURE statement to format dollars 
that displays M, B, or T to indicate millions, billions, and trillions of dollars, 
respectively. The example uses exponential notation as well as decimal notation in 
the format definition.

1124 Chapter 30 / FORMAT Procedure



TIP This example uses dollar values without cents and rounding is not 
necessary. If your dollar values include cents, you can use the ROUND 
option in the PICTURE statement to round values to the nearest dollar value. 
For more information, see “ROUND” on page 1079.

Program
proc format;   
   picture bigmoney (fuzz=0)
      1E06-<1000000000='0000 M' (prefix='$' mult=.000001)
      1E09-<1000000000000='0000 B' (prefix='$' mult=1E-09)
      1E12-<1000000000000000='0000 T' (prefix='$' mult=1E-012);
run;

data mult;
   do i=5 to 12;
      x=16**i;
      put x=comma20. x= bigmoney.;
   end;
run;

Program Description
Create the BIGMONEY format. The BIGMONEY. format defines three value-range 
sets to format millions, billions, and trillions of dollars. 1E06 is one million, 1E09 is 
one billion, and 1E12 is one trillion. The < exclusion operator indicates not to include 
the number that follows in the range. A best practice is to use the FUZZ=0 option 
when you use the exclusion operator to ensure accurate numbers. For a million 
dollars, the range is 1,000,000 to 999,999,999. The label that is specified on the 
right side of the equal sign uses 4 zeros as digit selectors. The zero-digit selector 
specifies not to print leading zeros. The first digit selector is necessary to print the $ 
prefix symbol when the value is three digits. The value .000001 for the MULT= 
option is another way to write 1E-06, which is one millionth. Multiplying a value by 
the millionth, billionth, and trillionth multipliers return the number of millions, billions, 
and trillions of dollars. 

proc format;   
   picture bigmoney (fuzz=0)
      1E06-<1000000000='0000 M' (prefix='$' mult=.000001)
      1E09-<1000000000000='0000 B' (prefix='$' mult=1E-09)
      1E12-<1000000000000000='0000 T' (prefix='$' mult=1E-012);
run;

Generate large numbers to format as dollars.

data mult;
   do i=5 to 12;
      x=16**i;
      put x=comma20. x= bigmoney.;
   end;
run;

Example 4: Creating a Picture Format for Large Dollar Amounts 1125



LOG
Example Code 30.3 Formatted Millions, Billions, and Trillions Dollar Amounts

x=1,048,576 x=$1 M
x=16,777,216 x=$16 M
x=268,435,456 x=$268 M
x=4,294,967,296 x=$4 B
x=68,719,476,736 x=$68 B
x=1,099,511,627,776 x=$1 T
x=17,592,186,044,416 x=$17 T
x=281,474,976,710,656 x=$281 T

Program
proc format;   
   picture bigmoney (fuzz=0)
      1E06-<1000000000='0000.99 M' (prefix='$' mult=.0001)
      1E09-<1000000000000='0000.99 B' (prefix='$' mult=1E-07)
      1E12-<1000000000000000='0000.99 T' (prefix='$' mult=1E-010);
run;

data mult;
   do i=5 to 12;
      x=16**i;
      put x=comma20. x= bigmoney.;
   end;
run;

Program Description
In this program, the BIGMONEY. format is modified to display a more accurate 
number by adding decimal values.

Modify the BIGMONEY format. To display a more accurate number, the picture 
value and the MULT= value are modified. To display two decimal values, .99 is 
added to the picture. To calculate two decimal values, the value in the MULT= option 
is reduced from one millionth to one ten-thousandth. When 165 is multiplied 
by .0001, the results is 104.8576. The decimal values are truncated and the 104 is 
placed in the picture beginning on the right. The resulting formatted value is 1.04 M.

proc format;   
   picture bigmoney (fuzz=0)
      1E06-<1000000000='0000.99 M' (prefix='$' mult=.0001)
      1E09-<1000000000000='0000.99 B' (prefix='$' mult=1E-07)
      1E12-<1000000000000000='0000.99 T' (prefix='$' mult=1E-010);
run;

Generate large numbers to format as dollars.

data mult;
   do i=5 to 12;
      x=16**i;

1126 Chapter 30 / FORMAT Procedure



      put x=comma20. x= bigmoney.;
   end;
run;

LOG
Example Code 30.4 More Precisely Formatted Large Dollar Amounts

x=1,048,576 x=$1.04 M
x=16,777,216 x=$16.77 M
x=268,435,456 x=$268.43 M
x=4,294,967,296 x=$4.29 B
x=68,719,476,736 x=$68.71 B
x=1,099,511,627,776 x=$1.09 T
x=17,592,186,044,416 x=$17.59 T
x=281,474,976,710,656 x=$281.47 T

Example 5: Filling a Picture Format
Features: PICTURE statement options

FILL=
PREFIX=

Details
This example does the following tasks:

n prefixes the formatted value with a specified character

n fills the leading blanks with a specified character

n shows the interaction between the FILL= and PREFIX= options 

Program
data pay;
   input Name $ MonthlySalary;
   datalines;
Liu   1259.45
Lars  1289.33
Kim   1439.02
Wendy 1675.21
Alex  1623.73
;

proc format;

Example 5: Filling a Picture Format 1127



   picture salary low-high='00,000,000.00' (fill='*' prefix='$');
run;

proc print data=pay noobs;
   format monthlysalary salary.;

   title 'Printing Salaries for a Check';
run;

Program Description
Create the PAY data set. The PAY data set contains the monthly salary for each 
employee.

data pay;
   input Name $ MonthlySalary;
   datalines;
Liu   1259.45
Lars  1289.33
Kim   1439.02
Wendy 1675.21
Alex  1623.73
;

Define the SALARY. picture format and specify how the picture will be filled. 
When FILL= and PREFIX= PICTURE statement options appear in the same picture, 
the format places the prefix and then the fill characters. The SALARY. format fills the 
picture with the fill character because the picture has zeros as digit selectors. The 
left-most comma in the picture is replaced by the fill character.

proc format;
   picture salary low-high='00,000,000.00' (fill='*' prefix='$');
run;

Print the PAY data set. The NOOBS option suppresses the printing of observation 
numbers. The FORMAT statement temporarily associates the SALARY. format with 
the variable MonthlySalary.

proc print data=pay noobs;
   format monthlysalary salary.;

Specify the title.

   title 'Printing Salaries for a Check';
run;

1128 Chapter 30 / FORMAT Procedure



Output
Output 30.5 Printing Salaries for a Check

Example 6: Create a Date or Time Format with 
Directives
Features: PICTURE statement option

DATATYPE=TIME
directives

Details
This example uses directives to format date, time, and datetime values. It also uses 
directives on more than one value-range pair.

Program
proc format;                                                         
   picture mytime  (round)                                           
      low-<86400='%H hours, %M minutes'          (datatype=time)   1     
      86400-high='%n days, %H hours, %M minutes' (datatype=time) ; 2   
      /*  86400=number of seconds in one day */                      
run;                                                                 

data test;                                                           
   input xtime;                                                      
   newtime=put(xtime,mytime.);                                       
datalines;                                                               
12345                                                                

Example 6: Create a Date or Time Format with Directives 1129



46987                                                                
86400                                                                
99999                                                                
172800                                                               
1012345                                                              
3333333                                                              
; 
                                                            
run;                                                                 

proc print data=test;                                                
run; 

Program Description
Use directives with the keywords LOW, HIGH, and LOW–HIGH. The directives 
format the date, time, and datetime values.

proc format;                                                         
   picture mytime  (round)                                           
      low-<86400='%H hours, %M minutes'          (datatype=time)   1     
      86400-high='%n days, %H hours, %M minutes' (datatype=time) ; 2   
      /*  86400=number of seconds in one day */                      
run;                                                                 

1 The %H and %M directives specify that the hours and minutes are identified in 
the output. The DATATYPE option enables the use of directives in the picture.

2 The %n, %H, %M directives specify that the days, hours, and minutes are 
identified in the output.

Create the data set.

data test;                                                           
   input xtime;                                                      
   newtime=put(xtime,mytime.);                                       
datalines;                                                               
12345                                                                
46987                                                                
86400                                                                
99999                                                                
172800                                                               
1012345                                                              
3333333                                                              
; 
                                                            
run;                                                                 

Print the contents of the data set.

proc print data=test;                                                
run; 

1130 Chapter 30 / FORMAT Procedure



Output 30.6 The Test data set with formatted values

Example 7: Change the 24–Hour Clock to 
00:00:01–24:00:00
Features: PICTURE statement option

DATATYPE=DATETIME_UTIL

Details
At times, you might need to express midnight as 24:00, or you need to use a 
datetime hour range 00:00:01–24:00:00. The hour value range for 
DATATYPE=DATETIME is 00:00:00–23:59:59. This example uses the option 
DATATYPE=DATETIME_UTIL to express hours in the range 00:00:01–24:00:00, 
and shows a date change if you use 00:00:00.

Program
proc format; 
  picture  hours (default=19)
          other='%Y-%0m-%0d %0H:%0M:%0S' (datatype=datetime_util);
run;

data _null_; 
  x = '01jul2015:00:00:01'dt; put x=hours.; 
  x = '01jul2015:00:00:00'dt; put x=hours.; 
run;

Example 7: Change the 24–Hour Clock to 00:00:01–24:00:00 1131



Program Description
Use the DATATYPE=DATETIME_UTIL option to use the hour range 00:00:01–
24:00:00.

proc format; 
  picture  hours (default=19)
          other='%Y-%0m-%0d %0H:%0M:%0S' (datatype=datetime_util);
run;

Compare Date Values. The first datetime value is in the range 00:00:01 and shows 
the day as July 1. The second datetime value is not in the range 00:00:01–24:00:00 
and shows results as midnight of the previous day.

data _null_; 
  x = '01jul2015:00:00:01'dt; put x=hours.; 
  x = '01jul2015:00:00:00'dt; put x=hours.; 
run;

Log
Example Code 30.5 Using Hour Range 00:00:01–24:00:00

x=2015-07-01 00:01:00
x=2015-06-30 24:00:00

Example 8: Creating a Format for Character Values
Features: VALUE statement option

OTHER

Data set: PROCLIB.STAFF

Format: USCURRENCY. from Example 2

Details
This example uses a VALUE statement to create a character format that prints a 
value of a character variable as a different character string.

Program
libname proclib 'SAS-library-1';
libname library 'SAS-library-2';

1132 Chapter 30 / FORMAT Procedure



   

   proc format library=library;

      value  $city 'BR1'='Birmingham UK'
                   'BR2'='Plymouth UK'
                   'BR3'='York UK'
                   'US1'='Denver USA'
                   'US2'='Miami USA'
                   other='INCORRECT CODE';
   run;

proc print data=proclib.staff noobs label;

   label salary='Salary in U.S. Dollars';

   format salary uscurrency. site $city.;

   title 'PROCLIB.STAFF with a Format for the Variables';
   title2 'Salary and Site';
run;

Program Description
Assign two SAS library references (PROCLIB and LIBRARY). Assigning a library 
reference LIBRARY is useful in this case because if you use PROC FORMAT, then 
SAS automatically searches for informats and formats in any library that is 
referenced with the LIBRARY libref.

libname proclib 'SAS-library-1';
libname library 'SAS-library-2';
   

Create the catalog named Library.Formats, where the user-defined formats 
will be stored. The LIBRARY= option specifies a permanent storage location for 
the formats that you create. It also creates a catalog named FORMAT in the 
specified library. If you do not use LIBRARY=, then SAS temporarily stores formats 
and informats that you create in a catalog named Work.Formats.

   proc format library=library;

Define the $CITY. format. The special codes BR1, BR2, and so on, are converted 
to the names of the corresponding cities. The keyword OTHER specifies that values 
in the data set that do not match any of the listed city code values are converted to 
the value INCORRECT CODE. 

      value  $city 'BR1'='Birmingham UK'
                   'BR2'='Plymouth UK'
                   'BR3'='York UK'
                   'US1'='Denver USA'
                   'US2'='Miami USA'
                   other='INCORRECT CODE';
   run;

Print the PROCLIB.STAFF data set. The NOOBS option suppresses the printing of 
observation numbers. The LABEL option uses variable labels instead of variable 
names for column headings.

proc print data=proclib.staff noobs label;

Example 8: Creating a Format for Character Values 1133



Specify a label for the Salary variable. The LABEL statement substitutes the label 
“Salary in U.S. Dollars” for the name SALARY.

   label salary='Salary in U.S. Dollars';

Specify formats for Salary and Site. The FORMAT statement temporarily 
associates the USCURRENCY. format with the variable SALARY and also 
temporarily associates the format $CITY. with the variable SITE. 

   format salary uscurrency. site $city.;

Specify the titles.

   title 'PROCLIB.STAFF with a Format for the Variables';
   title2 'Salary and Site';
run;

Output
Output 30.7 PROCLIB.STAFF with Formatted Variables for Salary and Site

Example 9: Creating a Format for Missing and 
Nonmissing Variable Values
Features: VALUE statement

VALUE statement option
OTHER

1134 Chapter 30 / FORMAT Procedure



Data set: EDUCATION

Details
The EDUCATION data set reports dropout rates and math scores for several states, 
and indicates a region for each state.

In this example, you use the VALUE statement to create the text value n/a for all 
math score missing values. All nonmissing math score values are formatted using 
the 5.1 format.

The example then prints the dropout rate and math scores for each state, by region.

Program
options obs=20;

proc format;
   value myfmt .='n/a' other=[5.1];
run;

proc sort data=education;
   by region;
run;

proc print data=education;
   by region;
   var state dropOutRate mathScore;
   format mathScore myfmt.;
run;

Program Description
Set the number of observations to print.

options obs=20;

Create a format for the Mathscore variable values. Use the VALUE statement to 
create the format MYFMT. for the Mathscore variable. When the program 
encounters a missing Mathscore value, the value is formatted as n/a. All other 
values for Mathscore are formatted using the 5.1 format.

proc format;
   value myfmt .='n/a' other=[5.1];
run;

Sort and print the data. Use PROC SORT to sort the data set by region. To print 
the data by region, specify the region variable in the PROC PRINT BY statement. To 
report the state, dropout rate, and math scores, use the VAR statement and specify 

Example 9: Creating a Format for Missing and Nonmissing Variable Values 1135



the state, dropOutRate, and mathScore variables. Finally, use the FORMAT 
statement to tell SAS to format the mathScore variable using the MYFMT. format.

proc sort data=education;
   by region;
run;

proc print data=education;
   by region;
   var state dropOutRate mathScore;
   format mathScore myfmt.;
run;

Output
Output 30.8 Dropout Rates and Math Scores for Each State in a Region

1136 Chapter 30 / FORMAT Procedure



Example 10: Creating an Informat Using Perl 
Regular Expressions
Features: INVALUE statement options

REGEXP
REGEXPE

Details
This example uses two Perl regular expressions to create an informat. The informat 
using the first expression verifies that the input is an integer and reads the integer. 
The second informat uses a regular expression that invokes substitution to read a 
number different from the input value.

Program
proc format;
   invalue isnum (default=5) '/[0-9]/' (regexp) = _same_ other=_error_; 

Example 10: Creating an Informat Using Perl Regular Expressions 1137



   invalue x1to2x(default=5) 's/1/2/' (regexpe) = _same_ other=_same_; 
run;

data _null_; 
   input x:isnum. y:x1to2x.; 
   put x= y=; 
   datalines; 
1 121
2 145
a 232
run;

Program Description
Create new informats. If the input is a decimal integer, the ISNUM. format reads 
the number. Otherwise, SAS writes an error to the log. The X1TO2X. informat 
substitutes all 1s in the input value with a 2.

proc format;
   invalue isnum (default=5) '/[0-9]/' (regexp) = _same_ other=_error_; 
   invalue x1to2x(default=5) 's/1/2/' (regexpe) = _same_ other=_same_; 
run;

Read the data. The first two lines of data are valid. The first input value 121 is 
formatted as 222 because a 1 is substituted with a 2. The input value of 145 is 
formatted as 245 using the same substitution rule. The third line produces an error 
because the value for x is a character.

data _null_; 
   input x:isnum. y:x1to2x.; 
   put x= y=; 
   datalines; 
1 121
2 145
a 232
run;

1138 Chapter 30 / FORMAT Procedure



LOG
1    proc format;
2         invalue isnum (default=5) '/[0-9]/' (regexp) = _same_ other=_error_;
NOTE: Informat ISNUM has been output.
3         invalue x1to2x(default=5) 's/1/2/' (regexpe) = _same_ other=_same_;
NOTE: Informat X1TO2X has been output.
4         run;

NOTE: PROCEDURE FORMAT used (Total process time):
      real time           0.32 seconds
      cpu time            0.07 seconds

5
6    data _null_;
7        input x:isnum. y:x1to2x.;
8        put x= y=;
9        datalines;

x=1 y=222
x=2 y=245
NOTE: Invalid data for x in line 12 1-1.
x=. y=232
RULE:      ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----
+----8----+--
12         a 232
x=. y=232 _ERROR_=1 _N_=3

Example 11: Writing a Format for Dates Using a 
Standard SAS Format and a Color Background
Features: VALUE statement option

HIGH
PROC PRINT statement

VAR statement STYLE option

Data set: PROCLIB.STAFF

Format: USCURRENCY. from Example 3

Format: $CITY. from Example 7

Details
This example uses an existing format that is supplied by SAS as a formatted value 
and color codes values based on dates.

Tasks include the following:

n creating a numeric format

n nesting formats

Example 11: Writing a Format for Dates Using a Standard SAS Format and a Color 
Background 1139



n writing a format using a standard SAS format

n formatting dates using a color scheme

Program
libname proclib 'SAS-library-1';
libname library 'SAS-library-2';

proc format library=library;

   value benefit
      low-'31DEC2008'd=[worddate20.]
      '01JAN2009'd-high='  ** Not Eligible **';

   value color
      low-'31DEC2008'd='light green'
      '01JAN2009'd-high='light red';
run;

proc print data=proclib.staff noobs label;
   var name idnumber salary site;
   var hiredate /style=[background=color.];

   label salary='Salary in U.S. Dollars';

   format salary uscurrency. site $city. hiredate benefit.;

   title 'PROCLIB.STAFF with a Format for the Variables';
   title2 'Salary, Site, and HireDate';
run;

Program Description
This program defines a format called BENEFIT., which differentiates between 
employees hired on or before 31DEC2008. The purpose of this program is to 
indicate any employees who are eligible to receive a benefit, based on a hire date 
on or before December 31, 2008. All other employees with a later hire date are 
listed as ineligible for the benefit.

Assign two SAS library references (PROCLIB and LIBRARY). Assigning a library 
reference LIBRARY is useful in this case because if you use PROC FORMAT, then 
SAS automatically searches for informats and formats in any library that is 
referenced with the LIBRARY libref.

libname proclib 'SAS-library-1';
libname library 'SAS-library-2';

Store the BENEFIT. format in the catalog Library.Formats. The LIBRARY= 
option specifies the permanent storage location LIBRARY for the formats that you 
create. If you do not use LIBRARY=, then SAS temporarily stores formats and 
informats that you create in the catalog Work.Formats.

proc format library=library;

Define the first range in the BENEFIT. format. This first range differentiates 
between the employees who were hired on or before 31DEC2008 and those who 

1140 Chapter 30 / FORMAT Procedure



were hired after that date. The keyword LOW and the SAS date constant 
'31DEC2008'd create the first range, which includes all date values that occur on or 
before December 31, 2008. For values that fall into this range, SAS applies the 
WORDDATEw. format. For more information about SAS date constants, see “Dates, 
Times, and Intervals” in SAS Language Reference: Concepts. For more information 
about the WORDDATE formats, see “WORDDATEw.” in SAS Formats and 
Informats: Reference.

   value benefit
      low-'31DEC2008'd=[worddate20.]
      '01JAN2009'd-high='  ** Not Eligible **';

Define the colors for the ranges. Using the same date ranges, employees who 
are eligible for a benefit based on the dates are color coded in light green. 
Employees who are not eligible for a benefit are color coded in a light red.

   value color
      low-'31DEC2008'd='light green'
      '01JAN2009'd-high='light red';
run;

Print the data set PROCLIB.STAFF. The NOOBS option suppresses the printing of 
observation numbers. The LABEL option uses variable labels instead of variable 
names for column headings. The VAR statement names the variables to be printed. 
The second VAR statement uses the STYLE= option to name the color. format as 
the background color for the Hiredate variable.

proc print data=proclib.staff noobs label;
   var name idnumber salary site;
   var hiredate /style=[background=color.];

Specify a label for the Salary variable. The LABEL statement substitutes the label 
“Salary in U.S. Dollars” for the name SALARY.

   label salary='Salary in U.S. Dollars';

Specify formats for Salary, Site, and Hiredate. The FORMAT statement 
associates the USCURRENCY. format (created in “Example 3: Creating a Picture 
Format” on page 1122) with SALARY, the $CITY. format (created in “Example 8: 
Creating a Format for Character Values” on page 1132) with SITE, and the 
BENEFIT. format with HIREDATE.

   format salary uscurrency. site $city. hiredate benefit.;

Specify the titles.

   title 'PROCLIB.STAFF with a Format for the Variables';
   title2 'Salary, Site, and HireDate';
run;

Example 11: Writing a Format for Dates Using a Standard SAS Format and a Color 
Background 1141

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0q9ylcaccjgjrn19hvqnd9cte8p.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0q9ylcaccjgjrn19hvqnd9cte8p.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0ls13my9ksj76n13qptgimvjm5u.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p0ls13my9ksj76n13qptgimvjm5u.htm&locale=en


Output
Output 30.9 PROCLIB.STAFF with a Format for the Variables Salary, Site, and HireDate

Example 12: Converting Raw Character Data to 
Numeric Values
Features: INVALUE statement

Details
This example uses an INVALUE statement to create a numeric informat that 
converts numeric and character raw data to numeric data.

Program
libname proclib 'SAS-library-1';
libname library 'SAS-library-2';

proc format library=library;

   invalue evaluation 'O'=4
                      'S'=3
                      'E'=2

1142 Chapter 30 / FORMAT Procedure



                      'C'=1
                      'N'=0;
run;

data proclib.points;
   input EmployeeId $ (Q1-Q4) (evaluation.,+1);
   TotalPoints=sum(of q1-q4);
   datalines;
2355 S O O S
5889 2 2 2 2
3878 C E E E
4409 0 1 1 1
3985 3 3 3 2
0740 S E E S
2398 E E C C
5162 C C C E
4421 3 2 2 2
7385 C C C N
;

proc print data=proclib.points noobs;

   title 'The PROCLIB.POINTS Data Set';
run;

Program Description
This program converts quarterly employee evaluation grades, which are alphabetic, 
into numeric values so that reports can be generated that sum the grades up as 
points.

Set up two SAS library references, one named PROCLIB and the other named 
LIBRARY.

libname proclib 'SAS-library-1';
libname library 'SAS-library-2';

Store the EVALUATION. informat in the catalog Library.Formats.

proc format library=library;

Create the numeric informat EVALUATION.. The INVALUE statement converts 
the specified values. The letters O (Outstanding), S (Superior), E (Excellent), C 
(Commendable), and N (None) correspond to the numbers 4, 3, 2, 1, and 0, 
respectively. 

   invalue evaluation 'O'=4
                      'S'=3
                      'E'=2
                      'C'=1
                      'N'=0;
run;

Create the PROCLIB.POINTS data set. The instream data, which immediately 
follows the DATALINES statement, contains a unique identification number 
(EmployeeId) and bonus evaluations for each employee for each quarter of the year 
(Q1–Q4). Some of the bonus evaluation values that are listed in the data lines are 
numbers; others are character values. Where character values are listed in the data 
lines, the EVALUATION. informat converts the value O to 4, the value S to 3, and so 

Example 12: Converting Raw Character Data to Numeric Values 1143



on. The raw data values 0 through 4 are read as themselves because they are not 
referenced in the definition of the informat. Converting the letter values to numbers 
makes it possible to calculate the total number of bonus points for each employee 
for the year. TotalPoints is the total number of bonus points. 

data proclib.points;
   input EmployeeId $ (Q1-Q4) (evaluation.,+1);
   TotalPoints=sum(of q1-q4);
   datalines;
2355 S O O S
5889 2 2 2 2
3878 C E E E
4409 0 1 1 1
3985 3 3 3 2
0740 S E E S
2398 E E C C
5162 C C C E
4421 3 2 2 2
7385 C C C N
;

Print the PROCLIB.POINTS data set. The NOOBS option suppresses the printing 
of observation numbers.

proc print data=proclib.points noobs;

Specify the title.

   title 'The PROCLIB.POINTS Data Set';
run;

1144 Chapter 30 / FORMAT Procedure



Output
Output 30.10 The PROCLIB.POINT Data Set

Example 13: Creating a Format from a CNTLIN= 
Data Set
Features: PROC FORMAT statement option

CNTLIN=
Input control data set

Details
This example shows how to create a format from a SAS data set.

Here are the tasks:

n create a format from an input control data set

n create an input control data set from an existing SAS data set

Example 13: Creating a Format from a CNTLIN= Data Set 1145



Program To Create a Temporary Data Set
data scale;
   input begin: $char2. end: $char2. amount: $char2.;
   datalines;
0   3    0%
4   6    3%
7   8    6%
9   10   8%
11  16   10%
;

data ctrl;
   length label $ 11;

   set scale(rename=(begin=start amount=label)) end=last;

   retain fmtname 'PercentageFormat' type 'n';

   output;

   if last then do;
      hlo='O';
      label='***ERROR***';
      output;
   end;
run;

proc print data=ctrl noobs;

   title 'The CTRL Data Set';
run;

Program Description
Create a temporary data set named scale. The first two variables in the data lines, 
called BEGIN and END, will be used to specify a range in the format. The third 
variable in the data lines, called AMOUNT, contains a percentage that will be used 
as the formatted value in the format. Note that all three variables are character 
variables as required for PROC FORMAT input control data sets.

data scale;
   input begin: $char2. end: $char2. amount: $char2.;
   datalines;
0   3    0%
4   6    3%
7   8    6%
9   10   8%
11  16   10%
;

Create the input control data set CTRL and set the length of the LABEL 
variable. The LENGTH statement ensures that the LABEL variable is long enough 
to accommodate the label ***ERROR***.

data ctrl;
   length label $ 11;

1146 Chapter 30 / FORMAT Procedure



Rename variables and create an end-of-file flag. The data set CTRL is derived 
from WORK.SCALE. RENAME= renames BEGIN and AMOUNT as START and 
LABEL, respectively. The END= option creates the variable LAST, whose value is 
set to 1 when the last observation is processed.

   set scale(rename=(begin=start amount=label)) end=last;

Create the variables Fmtname and Type with fixed values. The RETAIN 
statement is more efficient than an assignment statement in this case. RETAIN 
retains the value of Fmtname and Type in the program data vector and eliminates 
the need for the value to be written on every iteration of the DATA step. Fmtname 
specifies the name PercentageFormat, which is the format that the input control 
data set creates. The Type variable specifies that the input control data set will 
create a numeric format.

   retain fmtname 'PercentageFormat' type 'n';

Write the observation to the output data set.

   output;

Create an “other” category. Because the only valid values for this application are 
0–16, any other value (such as missing) should be indicated as an error to the user. 
The IF statement executes only after the DATA step has processed the last 
observation from the input data set. When IF executes, HLO receives a value of O 
to indicate that the range is OTHER, and LABEL receives a value of ***ERROR***. 
The OUTPUT statement writes these values as the last observation in the data set. 
HLO has missing values for all other observations.

   if last then do;
      hlo='O';
      label='***ERROR***';
      output;
   end;
run;

Print the control data set, CTRL. The NOOBS option suppresses the printing of 
observation numbers.

proc print data=ctrl noobs;

Specify the title.

   title 'The CTRL Data Set';
run;

Example 13: Creating a Format from a CNTLIN= Data Set 1147



Output
Output 30.11 The CTRL Data Set

Program To Create the Format
proc format library=work cntlin=ctrl;
run;

proc format library=library;
   invalue evaluation 'O'=4
                      'S'=3
                      'E'=2
                      'C'=1
                      'N'=0;
run;

data points;
   input EmployeeId $ (Q1-Q4) (evaluation.,+1);
   TotalPoints=q1+q2+q3+q4;
   datalines;
2355 S O O S
5889 2 . 2 2
3878 C E E E
4409 0 1 1 1
3985 3 3 3 2
0740 S E E S
2398 E E   C
5162 C C C E
4421 3 2 2 2
7385 C C C N
;

proc report data=work.points nowd headskip split='#';
   column employeeid totalpoints totalpoints=Pctage;
   define employeeid / right;
   define totalpoints / 'Total#Points' right;
   define pctage / format=PercentageFormat12. 'Percentage' left;

1148 Chapter 30 / FORMAT Procedure



   title 'The Percentage of Salary for Calculating Bonus';
run;

Program Description
Store the created format in the catalog Work.Formats and specify the source 
for the format. The CNTLIN= option specifies that the data set CTRL is the source 
for the format PercentageFormat.

proc format library=work cntlin=ctrl;
run;

Create the numeric informat EVALUATION.. The INVALUE statement converts 
the specified values. The letters O (Outstanding), S (Superior), E (Excellent), C 
(Commendable), and N (None) correspond to the numbers 4, 3, 2, 1, and 0, 
respectively. 

proc format library=library;
   invalue evaluation 'O'=4
                      'S'=3
                      'E'=2
                      'C'=1
                      'N'=0;
run;

Create the WORK.POINTS data set. The instream data, which immediately follows 
the DATALINES statement, contains a unique identification number (EmployeeId) 
and bonus evaluations for each employee for each quarter of the year (Q1–Q4). 
Some of the bonus evaluation values that are listed in the data lines are numbers; 
others are character values. Where character values are listed in the data lines, the 
Evaluation. informat converts the value O to 4, the value S to 3, and so on. The raw 
data values 0 through 4 are read as themselves because they are not referenced in 
the definition of the informat. Converting the letter values to numbers makes it 
possible to calculate the total number of bonus points for each employee for the 
year. TotalPoints is the total number of bonus points. The addition operator is used 
instead of the SUM function so that any missing value will result in a missing value 
for TotalPoints.

data points;
   input EmployeeId $ (Q1-Q4) (evaluation.,+1);
   TotalPoints=q1+q2+q3+q4;
   datalines;
2355 S O O S
5889 2 . 2 2
3878 C E E E
4409 0 1 1 1
3985 3 3 3 2
0740 S E E S
2398 E E   C
5162 C C C E
4421 3 2 2 2
7385 C C C N
;

Generate a report for WORK.POINTS and associate the 
PERCENTAGEFORMAT. format with the TotalPoints variable. The DEFINE 
statement performs the association. The column that contains the formatted values 

Example 13: Creating a Format from a CNTLIN= Data Set 1149



of TotalPoints is using the alias Pctage. Using an alias enables you to print a 
variable twice, once with a format and once with the default format. For more 
information about the REPORT procedure, see Chapter 58, “REPORT Procedure,” 
on page 1981.

proc report data=work.points nowd headskip split='#';
   column employeeid totalpoints totalpoints=Pctage;
   define employeeid / right;
   define totalpoints / 'Total#Points' right;
   define pctage / format=PercentageFormat12. 'Percentage' left;
   title 'The Percentage of Salary for Calculating Bonus';
run;

Output
Output 30.12 The Percentage of Salary for Calculating Bonus

Example 14: Creating an Informat from a CNTLIN= 
Data Set
Features: PROC FORMAT statement option

CNTLIN=
Input control data set

1150 Chapter 30 / FORMAT Procedure



Details
This example shows how to create an informat from a CNTLIN= data set.

Here are the tasks:

n create an informat from an input control data set

n create an input control data set from an existing SAS data set

Program
proc format; 
     invalue mytest 
       'abc'=1
       'xyz'=2 
       other=3; 
     invalue $chrtest 
       'abc'='xyz' 
       other='else'; 
     run;

data _null_; 
     input value:mytest. @@; 
     put value=; 
     datalines; 
abc xyz ghi 4 
     run;

data _null_; 
     input value:$chrtest. @@; 
     put value=; 
     datalines; 
abc xyz ghi 4 
     run;

data temp;
     length start $8 type $1 hlo $1;  
     fmtname='newtest'; type='i'; 
     start='abc'; label=1; hlo=' '; output; 
     start='xyz'; label=2; hlo=' '; output; 
     start=' ';   label=3; hlo='O'; output; 
     run;

proc format cntlin=temp; run;

data temp;
     length start label $8 type $1 hlo $1;  
     fmtname='$newchr'; type='j'; 
     start='abc'; label='xyz'; hlo=' '; output; 
     start=' ';   label='else'; hlo='O'; output; 
     run;

proc format cntlin=temp; run;

Example 14: Creating an Informat from a CNTLIN= Data Set 1151



data _null_; 
     input value:newtest. @@; 
     put value=; 
     datalines; 
abc xyz ghi 4 
     run;

data _null_; 
     input value:$newchr. @@; 
     put value=; 
     datalines; 
abc xyz ghi 4 
     run;

data temp;
     length start label $8 hlo $1;  
     fmtname='@new2test'; 
     start='abc'; label='1'; hlo=' '; output; 
     start='xyz'; label='2'; hlo=' '; output; 
     start=' ';   label='3'; hlo='O'; output; 
     fmtname='@$new2chr'; 
     start='abc'; label='xyz'; hlo=' '; output; 
     start=' ';   label='else'; hlo='O'; output; 
     run;

proc format cntlin=temp; run;
                     
data _null_; 
     input value:new2test. @@; 
     put value=; 
     datalines; 
abc xyz ghi 4 
     run;

data _null_; 
     input value:$new2chr. @@; 
     put value=; 
     datalines; 
abc xyz ghi 4 
     run;

proc print data=temp noobs;
title 'The CTRL Data Set';
run;

Program Description
Create informats with an INVALUE statement. Create a numeric informat and a 
character informat.

proc format; 
     invalue mytest 
       'abc'=1
       'xyz'=2 

1152 Chapter 30 / FORMAT Procedure



       other=3; 
     invalue $chrtest 
       'abc'='xyz' 
       other='else'; 
     run;

Use the numeric informat with instream data. The code should produce 1, 2, 3, 
and 3 again as the results of VALUE.

data _null_; 
     input value:mytest. @@; 
     put value=; 
     datalines; 
abc xyz ghi 4 
     run;

Use the character informat with instream data. The code should produce xyz, 
else, else, and else as the results of VALUE.

data _null_; 
     input value:$chrtest. @@; 
     put value=; 
     datalines; 
abc xyz ghi 4 
     run;

Create the equivalent of the MYTEST numeric informat using a CNTLIN= data 
set, and use the informat name of NEWTEST. Specify that the FMTNAME 
variable has the value NEWTEST. Specify the value 'i' or 'I' for the TYPE variable to 
indicate that it is a numeric informat. Specify a value of O for other, or a blank value, 
for the HLO variable.

data temp;
     length start $8 type $1 hlo $1;  
     fmtname='newtest'; type='i'; 
     start='abc'; label=1; hlo=' '; output; 
     start='xyz'; label=2; hlo=' '; output; 
     start=' ';   label=3; hlo='O'; output; 
     run;

Use the character informat with instream data. The code should produce xyz, 
else, else, and else as the results of VALUE.

proc format cntlin=temp; run;

Create a CNTLIN= data set for the character informat. The informat is the 
equivalent to the $CHRTEST informat that was created above. Specify the name 
$NEWCHR for it. The value of TYPE should be 'j' or 'J' to indicate that it is a 
character informat.

data temp;
     length start label $8 type $1 hlo $1;  
     fmtname='$newchr'; type='j'; 
     start='abc'; label='xyz'; hlo=' '; output; 
     start=' ';   label='else'; hlo='O'; output; 
     run;

Read in the CNTLIN= data set to create the character informat. This example 
uses temp as the value for CNTLIN. If you are saving the code example, specify a 
more descriptive name.

proc format cntlin=temp; run;

Example 14: Creating an Informat from a CNTLIN= Data Set 1153



Create two DATA steps that are the same as the previously created versions. 
Use the informat names NEWTEST and $NEWCHR for these versions.

data _null_; 
     input value:newtest. @@; 
     put value=; 
     datalines; 
abc xyz ghi 4 
     run;

data _null_; 
     input value:$newchr. @@; 
     put value=; 
     datalines; 
abc xyz ghi 4 
     run;

Show that the FMTNAME value can start with an @ to indicate that it is an 
informat, and that the type variable is not necessary. Numeric and character 
informats can be created in the same CNTLIN= data set. The label variable must be 
a character because character formats are being defined. Numeric values are saved 
as character strings that contain numeric values.

data temp;
     length start label $8 hlo $1;  
     fmtname='@new2test'; 
     start='abc'; label='1'; hlo=' '; output; 
     start='xyz'; label='2'; hlo=' '; output; 
     start=' ';   label='3'; hlo='O'; output; 
     fmtname='@$new2chr'; 
     start='abc'; label='xyz'; hlo=' '; output; 
     start=' ';   label='else'; hlo='O'; output; 
     run;

proc format cntlin=temp; run;
                     
data _null_; 
     input value:new2test. @@; 
     put value=; 
     datalines; 
abc xyz ghi 4 
     run;

data _null_; 
     input value:$new2chr. @@; 
     put value=; 
     datalines; 
abc xyz ghi 4 
     run;

Print the contents of the CNTLIN= data set. Label the table “The CTRL Data Set.”

proc print data=temp noobs;
title 'The CTRL Data Set';
run;

1154 Chapter 30 / FORMAT Procedure



Output 30.13 Contents of the CRTL Data Set

Example 15: Printing the Description of Informats 
and Formats
Features: PROC FORMAT statement option

FMTLIB
SELECT statement

Format: BENEFIT. from Example 4

Informat: EVALUATION. from Example 6

Details
This example illustrates how to print a description of an informat and a format. The 
description shows the values that are read in and written.

Program
libname library 'SAS-library';

proc format library=library fmtlib;

   select @evaluation benefit;

   title 'FMTLIB Output for the BENEFIT. Format and the';
   title2 'EVALUATION. Informat';
run;

Program Description
Set up a SAS library reference named LIBRARY.

Example 15: Printing the Description of Informats and Formats 1155



libname library 'SAS-library';

Print a description of EVALUATION. and BENEFIT. The FMTLIB option prints 
information about the formats and informats in the catalog that the LIBRARY= 
option specifies. LIBRARY=LIBRARY points to the Library.Formats catalog.

proc format library=library fmtlib;

Select an informat and a format. The SELECT statement selects EVALUATION. 
and BENEFIT., which were created in previous examples. The at sign (@) in front of 
EVALUATION. indicates that EVALUATION. is an informat.

   select @evaluation benefit;

Specify the titles.

   title 'FMTLIB Output for the BENEFIT. Format and the';
   title2 'EVALUATION. Informat';
run;

Output
Output 30.14 FMTLIB Output for the BENEFIT Format and the EVALUATION Informat

Example 16: Retrieving a Permanent Format
Features: PROC FORMAT statement option

LIBRARY=
FMTSEARCH= system option

1156 Chapter 30 / FORMAT Procedure



Data set: SAMPLE

This example uses the LIBRARY= option and the FMTSEARCH= system option to 
store and retrieve a format stored in a catalog other than Work.Formats or 
Library.Formats.

Program
libname proclib 'SAS-library';

proc format library=proclib;

picture nozeros (fuzz=0)
           low -  -1  = '000.00'(prefix='-')
       -1 < - < -.99  = '0.99' (prefix='-.' mult=100)
       -0.99 < - < 0  = '99'    (prefix='-.' mult=100)
                   0  = '0.99'
        0 < - < .99   = '99'    (prefix='.'  mult=100)
           0.99 - <1  = '0.99'  (prefix='.'  mult=100)
            1  - high = '00.99'; 
run;

options  fmtsearch=(proclib);

data sample;
  input Amount;
   datalines;
-2.051
-.05
-.017
  0
.093
.54
.556
6.6
14.63
0.996
-0.999
-45.00
;
run;

proc print data=sample;
   format amount nozeros.;

   title1 'Retrieving the NOZEROS. Format from PROCLIB.FORMATS';
   title2 'The SAMPLE Data Set';
run;

Program Description
Set up a SAS library reference named PROCLIB.

libname proclib 'SAS-library';

Example 16: Retrieving a Permanent Format 1157



Store the NOZEROS. format in the PROCLIB.FORMATS catalog.

proc format library=proclib;

Create the NOZEROS. format. The PICTURE statement defines the picture format 
NOZEROS. See “Details” on page 1085.

picture nozeros (fuzz=0)
           low -  -1  = '000.00'(prefix='-')
       -1 < - < -.99  = '0.99' (prefix='-.' mult=100)
       -0.99 < - < 0  = '99'    (prefix='-.' mult=100)
                   0  = '0.99'
        0 < - < .99   = '99'    (prefix='.'  mult=100)
           0.99 - <1  = '0.99'  (prefix='.'  mult=100)
            1  - high = '00.99'; 
run;

Add the PROCLIB.FORMATS catalog to the search path that SAS uses to find 
user-defined formats. The FMTSEARCH= system option defines the search path. 
The FMTSEARCH= system option requires only a libref. FMTSEARCH= assumes 
that the catalog name is FORMATS if no catalog name appears. Without the 
FMTSEARCH= option, SAS would not find the NOZEROS. format. For more 
information, see “FMTSEARCH=” in SAS System Options: Reference.

options  fmtsearch=(proclib);

Create the sample data set.

data sample;
  input Amount;
   datalines;
-2.051
-.05
-.017
  0
.093
.54
.556
6.6
14.63
0.996
-0.999
-45.00
;
run;

Print the SAMPLE data set. The FORMAT statement associates the NOZEROS. 
format with the Amount variable.

proc print data=sample;
   format amount nozeros.;

Specify the titles.

   title1 'Retrieving the NOZEROS. Format from PROCLIB.FORMATS';
   title2 'The SAMPLE Data Set';
run;

1158 Chapter 30 / FORMAT Procedure

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1fvn6rwmpf1njn1whkud1hmsc97.htm&locale=en


Output
Output 30.15 Retrieving the NOZEROS. Format from PROCLIB.FORMATS

Example 17: Writing Ranges for Character Strings
Features: VALUE statement

Data set: PROCLIB.STAFF

This example creates a format and shows how to use ranges with character strings.

Program
libname proclib'SAS-library';

data train;
   set proclib.staff(keep=name idnumber);
run;

proc print data=train noobs;

   title 'The TRAIN Data Set without a Format';
run;

Example 17: Writing Ranges for Character Strings 1159



Program Description
libname proclib'SAS-library';

Create the TRAIN data set from the PROCLIB.STAFF data set. PROCLIB.STAFF 
was created in “Example 2: Create the Example Data Set” on page 1121.

data train;
   set proclib.staff(keep=name idnumber);
run;

Print the data set TRAIN without a format. The NOOBS option suppresses the 
printing of observation numbers.

proc print data=train noobs;

Specify the title.

   title 'The TRAIN Data Set without a Format';
run;

Output
Output 30.16 The TRAIN Data Set without a Format

Store the format in Work.Formats. Because the LIBRARY= option does not 
appear, the format is stored in Work.Formats and is available only for the current 
SAS session.

proc format;

Create the $SKILLTEST. format. The $SKILLTEST. format prints each employee's 
identification number and the skills test that they have been assigned. Employees 

1160 Chapter 30 / FORMAT Procedure



must take either TEST A, TEST B, or TEST C, depending on their last name. The 
exclusion operator (<) excludes the last value in the range. Thus, the first range 
includes employees whose last name begins with any letter from A through D, and 
the second range includes employees whose last name begins with any letter from 
E through M. The tilde (~) in the last range is necessary to include an entire string 
that begins with the letter Z.

   value $skilltest  'a'-<'e','A'-<'E'='Test A'
                 'e'-<'m','E'-<'M'='Test B'
                 'm'-'z~','M'-'Z~'='Test C';
run;

Generate a report of the TRAIN data set. The FORMAT= option in the DEFINE 
statement associates the $SKILLTEST. format with the Name variable. The column 
that contains the formatted values of Name is using the alias Test. Using an alias 
enables you to print a variable twice, once with a format and once with the default 
format. For more information, see Chapter 58, “REPORT Procedure,” on page 1981.

proc report data=train nowd headskip;
   column name name=test idnumber;
   define test / display format=$skilltest. 'Test';
   define idnumber / center;
   title 'Test Assignment for Each Employee';
run;

Output
Output 30.17 Test Assignment for Each Employee

Example 17: Writing Ranges for Character Strings 1161



Example 18: Creating a Format in a non-English 
Language
Features: PICTURE statement options

DATATYPE=
LANGUAGE=

LOCALE= system option

Details
This example does the following tasks:

n Creates picture formats using directives for formatting date and datetime values 
by using the DATATYPE= statement option.

n Uses the LOCALE= system option to specify the locale for German.

n Prints date and datetime values to the SAS log in German using the picture 
formats.

n Prints a datetime value in French to the log by using the picture format that 
specifies LANGUAGE=French.

Program
proc format;
   picture mdy(default=8) other='%0d%0m%Y' (datatype=date);
   picture langtsda (default=50) other='%A, %d %B, %Y' (datatype=date);
   picture langtsdt (default=50) other='%A, %d,%B, %Y %H %M %S' 
                                 (datatype=datetime);
   picture langtsfr (default=50) other='%A, %d %B, %Y %H %M %S' 
                                 (datatype=datetime language=french);
   picture alltest (default=100)
           other='%a %A %b %B %d %H %I %j %m %M %p %S %w %U %y %%' 
           (datatype=datetime);
run;

option locale = de_DE;

data _null_ ;
   a= 18903;
   b = 1633239000;
   put a= mdy.;
   put a= langtsda.;
   put b= langtsdt.;
   put b= langtsfr.;
   put b= alltest.;

1162 Chapter 30 / FORMAT Procedure

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1n9bwctsthuqbn1xgipyw5xwujl.htm&locale=en


run ;

Program Description
Create formats using the PICTURE statement. Each PICTURE statement 
specifies the date or datetime values to format using directives. %A prints a full 
weekday name. %B prints a full month name. %d prints the day of the month. %Y 
prints the year. %H prints the hour (24–hour clock). %M prints the minute. %S prints 
the seconds. The first three formats print the date or datetime in the language 
specified by the current value of the LOCALE= system option. The format 
LANGTSFT. prints the datetime in French. For the remaining directives, see the 
PICTURE statement on page 1072.

proc format;
   picture mdy(default=8) other='%0d%0m%Y' (datatype=date);
   picture langtsda (default=50) other='%A, %d %B, %Y' (datatype=date);
   picture langtsdt (default=50) other='%A, %d,%B, %Y %H %M %S' 
                                 (datatype=datetime);
   picture langtsfr (default=50) other='%A, %d %B, %Y %H %M %S' 
                                 (datatype=datetime language=french);
   picture alltest (default=100)
           other='%a %A %b %B %d %H %I %j %m %M %p %S %w %U %y %%' 
           (datatype=datetime);
run;

Set the LOCALE= system option. de_DE is the locale value for Germany. 

option locale = de_DE;

Print date and datetime values in German and French. The DATA step prints to 
the SAS log the date and datetime information for 3 October, 2011, 05:30:00 AM. All 
values are written in German except for the value of b when it is formatted using the 
LANGTSFR. format. The LANGSTSFR. format prints the datetime value in French.

data _null_ ;
   a= 18903;
   b = 1633239000;
   put a= mdy.;
   put a= langtsda.;
   put b= langtsdt.;
   put b= langtsfr.;
   put b= alltest.;
run ;

Example 18: Creating a Format in a non-English Language 1163



The SAS Log Displaying Picture Format 
Output in German and French
1    proc format;
2       picture mdy(default=8) other='%0d%0m%Y' (datatype=date);
NOTE: Format MDY has been output.
3       picture langtsda (default=50) other='%A, %d %B, %Y' (datatype=date);
NOTE: Format LANGTSDA has been output.
4       picture langtsdt (default=50) other='%A, %d,%B, %Y %H %M %S'
5                                     (datatype=datetime);
NOTE: Format LANGTSDT has been output.
6       picture langtsfr (default=50) other='%A, %d %B, %Y %H %M %S'
7                                     (datatype=datetime language=french);
NOTE: Format LANGTSFR has been output.
8       picture alltest (default=100)
9               other='%a %A %b %B %d %H %I %j %m %M %p %S %w %U %y %%'
10              (datatype=datetime);
NOTE: Format ALLTEST has been output.
11   run;

NOTE: PROCEDURE FORMAT used (Total process time):
      real time           0.03 seconds
      cpu time            0.03 seconds

12
13   option locale = de_DE;
14
15   data _null_ ;
16      a= 18903;
17      b = 1633239000;
18      put a= mdy.;
19      put a= langtsda.;
20      put b= langtsdt.;
21      put b= langtsfr.;
22      put b= alltest.;
23   run ;

a=03102011
a=Montag, 3 Oktober, 2011
b=Montag, 3,Oktober, 2011 5 30 0
b=Lundi, 3 octobre, 2011 5 30 0
b=Mo  Montag Okt Oktober 3 5 5 276 10 30 AM 0 2 40 11 %

Example 19: Creating a Locale-Specific Format 
Catalog
Features: PROC FORMAT LOCALE option

FMTSEARCH= system option

1164 Chapter 30 / FORMAT Procedure



Details
This example demonstrates how to create a format in two languages, English and 
Romanian, and how to access the English and Romanian format catalogs to print a 
data set in the two languages. The example works best if the SAS session encoding 
is a latin 2 encoding that supports the Romanian locale.

Program
/*no locale information*/
proc format lib=work.formats;
value age low - 5 = 'baby'
6 - 12 = 'child'
13 - 15 = 'teen'
16 - 30 = 'youth'
31 - 50 = 'midlife'
51 - high = 'older';
run;

options locale=ro_RO;

proc format lib = work.formats locale;
value age low - 5 = 'Copil'
6 - 12 = 'Copil'
13 - 15 = 'Adolescent'
16 - 30 = 'Tineretului'
31 - 50 = 'Asta vrei'
51 - high = 'Mai vechi';
run;

options fmtsearch=(work/locale);

/* Set the locale back to English(US) */
options locale=en_US;

data datatst;
input age sex $;
attrib age format= age.;
cards;
5 M 
6 F 
12 M 
13 F 
15 M 
16 F 
30 M 
35 F 
51 M 
100 F
;

Example 19: Creating a Locale-Specific Format Catalog 1165



run;
/* Use the English format catalog*/
title "Locale is English, Use the Original Format Catalog";
proc print data=datatst; run;

/* Use the Romanian format catalog*/
options locale=ro_RO;
title 'Locale is ro_RO, Use the Romanian Format Catalog';
proc print data=datatst;run;

Program Description
Create the AGE. format in English.

/*no locale information*/
proc format lib=work.formats;
value age low - 5 = 'baby'
6 - 12 = 'child'
13 - 15 = 'teen'
16 - 30 = 'youth'
31 - 50 = 'midlife'
51 - high = 'older';
run;

Change the locale and create the AGE. format in a locale-specific format 
catalog. Using the LOCALE= system option, the locale is change to the Romanian 
locale. In the PROC FORMAT statement, the LOCALE option specifies to create a 
format catalog that corresponds to the current locale, which is for the Romanian 
language.

options locale=ro_RO;

proc format lib = work.formats locale;
value age low - 5 = 'Copil'
6 - 12 = 'Copil'
13 - 15 = 'Adolescent'
16 - 30 = 'Tineretului'
31 - 50 = 'Asta vrei'
51 - high = 'Mai vechi';
run;

Add the locale-specific format catalogs to the format search path. The 
FMTSEARCH= system option specifies the format catalog to search. Because you 
can create more than one locale-specific catalog, when /LOCALE is added to a 
libref in the search list, SAS searches for a catalog that is associated with the 
current locale. 

options fmtsearch=(work/locale);

Create a data set and print it using the English format catalog. The LOCALE= 
system option sets the locale to English. 

/* Set the locale back to English(US) */
options locale=en_US;

data datatst;
input age sex $;

1166 Chapter 30 / FORMAT Procedure



attrib age format= age.;
cards;
5 M 
6 F 
12 M 
13 F 
15 M 
16 F 
30 M 
35 F 
51 M 
100 F
;
run;
/* Use the English format catalog*/
title "Locale is English, Use the Original Format Catalog";
proc print data=datatst; run;

Print the data set Using the Romanian format catalog. Using the LOCALE= 
system option, the locale is set to the Romanian locale. 

/* Use the Romanian format catalog*/
options locale=ro_RO;
title 'Locale is ro_RO, Use the Romanian Format Catalog';
proc print data=datatst;run;

Here is the data set printed using the English and Romanian format catalogs:

Example 19: Creating a Locale-Specific Format Catalog 1167



Output 30.18 A Data Set Printed Using an English and Romanian Format Catalog

1168 Chapter 30 / FORMAT Procedure



Example 20: Creating a Function to Use as a 
Format
Features: PROC FCMP statement

CMPLIB= system option
PROC FORMAT statement
Function as a format feature

Details
This example creates a function that converts temperatures from Celsius to 
Fahrenheit and Fahrenheit to Celsius. The program uses the function as a function 
in one DATA step and then as a format in another DATA step.

Program
proc fcmp outlib=library.functions.smd;
   function ctof(c) $;
      return(cats(((9*c)/5)+32,'F'));
   endsub;

   function ftoc(f) $;
      return(cats((f-32)*5/9,'C'));
   endsub;

run;

options cmplib=(library.functions);

data _null_; 
   f=ctof(100); 
   put f=; 
run;

proc format;
   value ctof (default=10) other=[ctof()];
   value ftoc (default=10) other=[ftoc()];
 run;

data _null_; 
   c=100; 
   put c=ctof.; 
   f=212; 
   put f=ftoc.;  
run;

Example 20: Creating a Function to Use as a Format 1169



Program Description
Create the functions that change temperature from Celsius to Fahrenheit and 
Fahrenheit to Celsius. The FCMP procedure creates the CTOF function to convert 
Celsius temperatures to Fahrenheit and the FTOC to convert Fahrenheit 
temperatures to Celsius.

proc fcmp outlib=library.functions.smd;
   function ctof(c) $;
      return(cats(((9*c)/5)+32,'F'));
   endsub;

   function ftoc(f) $;
      return(cats((f-32)*5/9,'C'));
   endsub;

run;

Access the function library. The CMPLIB system option enables the functions to 
be included during program compilation.

options cmplib=(library.functions);

Use the function as a function in a SAS program.

data _null_; 
   f=ctof(100); 
   put f=; 
run;

Create user-defined formats using the functions. The name of the format is the 
name of the function. When you use a function as a format, you can nest the format 
as shown by the OTHER keyword.

proc format;
   value ctof (default=10) other=[ctof()];
   value ftoc (default=10) other=[ftoc()];
 run;

Use the function as a format. This DATA step formats temperatures using a 
named PUT statement, where you assign a format to a variable in the PUT 
statement.

data _null_; 
   c=100; 
   put c=ctof.; 
   f=212; 
   put f=ftoc.;  
run;

1170 Chapter 30 / FORMAT Procedure



Output: Log
Example Code 30.6 The SAS Log After Creating a Function to Use as a Format

323  proc fcmp outlib=library.functions.smd;
324     function ctof(c) $;
325        return(cats(((9*c)/5)+32,'F'));
326     endsub;
327
328     function ftoc(f) $;
329        return(cats((f-32)*5/9,'C'));
330     endsub;
331
332  run;

NOTE: Function ftoc saved to library.functions.smd.
NOTE: Function ctof saved to library.functions.smd.
NOTE: PROCEDURE FCMP used (Total process time):
      real time           17.59 seconds
      cpu time            1.26 seconds

333
334  options cmplib=(library.functions);
335
336  data _null_;
337     f=ctof(100);
338     put f=;
339  run;

f=212F
NOTE: DATA statement used (Total process time):
      real time           0.50 seconds
      cpu time            0.01 seconds

340
341  proc format;
342       value ctof (default=10) other=[ctof()];
NOTE: Format CTOF has been output.
343       value ftoc (default=10) other=[ftoc()];
NOTE: Format FTOC has been output.
344       run;

NOTE: PROCEDURE FORMAT used (Total process time):
      real time           0.00 seconds
      cpu time            0.00 seconds

345
346  data _null_;
347     c=100;
348     put c=ctof.;
349     f=212;
350     put f=ftoc.;
351  run;

c=212F
f=100C

Example 20: Creating a Function to Use as a Format 1171



Example 21: Using a Format to Create a Drill-down 
Table
Features: VALUE statement

PROC PRINT FORMAT statement

Details
This example creates an HTML table that has population information about five U.S. 
states. The name of the state is a link to the state’s website. The link is created 
using a user-defined format to format the state name. This example does the 
following:

n creates the data set that contains the state population information

n creates a user-defined format using the VALUE statement, where the value is an 
HTML link (&lt;a&gt;) element

n defines the name of the HTML file and the titles for the HTML file

n prints the HTML table using the user-defined format

Program
data mydata;
   format population comma12.0;
   label st='State';
   label population='Population';
   input st $ 1-2 population;
   year=2000;
   datalines;
VA  7078515
NC  8049313
SC  4012012
GA  8186453
FL 15982378
;
run;

proc format;
value $COMPND
'VA'='<a href=http://www.va.gov>VA</a>'
'NC'='<a href=http://www.nc.gov>NC</a>'
'SC'='<a href=http://www.sc.gov>SC</a>'
'GA'='<a href=http://www.ga.gov>GA</a>'
'FL'='<a href=http://www.fl.gov>FL</a>';
run;

1172 Chapter 30 / FORMAT Procedure



ods html file="c:\mySAS\html\Drilldown.htm" 
 (title="An ODS HTML Drill-down Table Using a User-defined Format in 
the PRINT
 Procedure");

title h=.25in "Year 2000 U.S. Census Population";
title2 color=gray "An ODS HTML Drill-down Table Using a User-defined 
Format in 
the PRINT Procedure";
footnote color=gray "(Click the underlined text to drill down.)";

options nodate;
proc print data=mydata label noobs;
 var st population;
 format st $compnd. ;
run;

ods html close;
ods html;

Program Description
Create the data set. The mydata DATA step creates a data set that contains 
information about five U.S. state populations based on the census taken in the year 
2000. The variables that are created assign data for the year of the census, the 
state abbreviations, and the state population.

data mydata;
   format population comma12.0;
   label st='State';
   label population='Population';
   input st $ 1-2 population;
   year=2000;
   datalines;
VA  7078515
NC  8049313
SC  4012012
GA  8186453
FL 15982378
;
run;

Create the $COMPND. format. The $COMPND. format formats each state as a link 
to the state’s respective website.

proc format;
value $COMPND
'VA'='<a href=http://www.va.gov>VA</a>'
'NC'='<a href=http://www.nc.gov>NC</a>'
'SC'='<a href=http://www.sc.gov>SC</a>'
'GA'='<a href=http://www.ga.gov>GA</a>'
'FL'='<a href=http://www.fl.gov>FL</a>';
run;

Set up the table filename and table titles. The ODS HTML FILE= option names 
the directory and filename where SAS saves the HTML output.

Example 21: Using a Format to Create a Drill-down Table 1173



ods html file="c:\mySAS\html\Drilldown.htm" 
 (title="An ODS HTML Drill-down Table Using a User-defined Format in 
the PRINT
 Procedure");

title h=.25in "Year 2000 U.S. Census Population";
title2 color=gray "An ODS HTML Drill-down Table Using a User-defined 
Format in 
the PRINT Procedure";
footnote color=gray "(Click the underlined text to drill down.)";

Print the table and close and reopen the HTML destination. The PRINT 
procedure uses the format $COMPND. to format the state name. The formatted 
name is a link to the state’s respective website. The ODS HTML statements close 
and reopen the HTML destination so that future output does not overwrite the HTML 
file that you just created.

options nodate;
proc print data=mydata label noobs;
 var st population;
 format st $compnd. ;
run;

ods html close;
ods html;

Output
Output 30.19 Using a Format to Create Drill-down Text in an HTML Table

1174 Chapter 30 / FORMAT Procedure



Chapter 31
FSLIST Procedure

Overview: FSLIST Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
What Does the FSLIST Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175

Syntax: FSLIST Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
PROC FSLIST Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1176

Usage: FSLIST Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179
FSLIST Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1179
Using the FSLIST Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1181

Overview: FSLIST Procedure

What Does the FSLIST Procedure Do?
The FSLIST procedure enables you to browse, within a SAS session, external files 
that are not SAS data sets. Because the files are displayed in an interactive window, 
the procedure provides a highly convenient mechanism for examining file contents. 
In addition, you can copy text from the FSLIST window into any window that uses 
the SAS Text Editor.

Syntax: FSLIST Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

PROC FSLIST FILEREF=file-specification | UNIT=nn <options>;

1175



PROC FSLIST DDNAME=file-specification | UNIT=nn <options>;
PROC FSLIST DD=file-specification | UNIT=nn <options>;

Statement Task

PROC FSLIST Initiate the FSLIST procedure and specify the external 
file to browse

PROC FSLIST Statement
Enables you to browse external files that are not SAS data sets within a SAS session.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Syntax
PROC FSLIST FILEREF=file-specification | UNIT=nn <options>;
PROC FSLIST DDNAME=file-specification | UNIT=nn <options>;
PROC FSLIST DD=file-specification | UNIT=nn <options>;

Summary of Optional Arguments
CAPS
NOCAPS

controls how search strings for the FIND command are treated.
CC
FORTCC
NOCC

indicates whether carriage-control characters are used to format the 
display.

HSCROLL=n | HALF | PAGE
indicates the default horizontal scroll amount for the LEFT and RIGHT 
commands.

NOBORDER
suppresses the sides and bottom of the FSLIST window's border.

NUM
NONUM

controls the display of line sequence numbers.
OVP
NOOVP

indicates whether the carriage-control code for overprinting is in effect.

1176 Chapter 31 / FSLIST Procedure



Required Arguments
FILEREF | DDNAME | DD=file-specification

specifies the external file to browse. File-specification can be one of the 
following:

'external-file'
is the complete operating environment file specification (called the fully 
qualified pathname under some operating environments) for the external file. 
You must enclose the name in quotation marks.

fileref
is a fileref that has been previously assigned to the external file. You can use 
the FILENAME statement to associate a fileref with an actual filename. For 
more information, see “FILENAME” in SAS Global Statements: Reference.

UNIT=nn
defines the FORTRAN-style logical unit number of the external file to browse. 
This option is useful when the file to browse has a fileref of the form FTnnF001, 
where nn is the logical unit number that is specified in the UNIT= argument. For 
example, you can specify the following: proc fslist unit=20; instead of 
proc fslist fileref=ft20f001;

Optional Arguments
CAPS | NOCAPS

controls how search strings for the FIND command are treated:

CAPS
converts search strings into uppercase unless they are enclosed in quotation 
marks. For example, with this option in effect, the command find nclocates 
occurrences of NC, but not nc. To locate lowercase characters, enclose the 
search string in quotation marks: find 'nc'

NOCAPS
does not perform a translation. The FIND command locates only those text 
strings that exactly match the search string.

The default is NOCAPS. You can use the CAPS command in the FSLIST 
window to change the behavior of the procedure while you are browsing a file.

CC | FORTCC | NOCC
indicates whether carriage-control characters are used to format the display. You 
can specify one of the following values for this option: 

CC
uses the native carriage-control characters of the operating environment.

FORTCC
uses FORTRAN-style carriage control. The first column of each line in the 
external file is not displayed. The character in this column is interpreted as a 
carriage-control code. The FSLIST procedure recognizes the following 
carriage-control characters:

+
skip zero lines and print (overprint).

blank
skip one line and print (single space).

PROC FSLIST Statement 1177

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en


0
skip two lines and print (double space).

-
skip three lines and print (triple space).

1
go to new page and print.

NOCC
treats carriage-control characters as regular text.

If the FSLIST procedure can determine from the file's attributes that the file 
contains carriage-control information, then that carriage-control information is 
used to format the displayed text. In this case, the CC option is the default. 
Otherwise, the entire contents of the file are treated as text. In this case, the 
NOCC option is the default.

Note: Under some operating environments, FORTRAN-style carriage control is 
the native carriage control. For these environments, the FORTCC and CC 
options produce the same behavior.

HSCROLL=n | HALF | PAGE
indicates the default horizontal scroll amount for the LEFT and RIGHT 
commands. The following values are valid:

n
sets the default scroll amount to n columns.

HALF
sets the default scroll amount to half the window width.

PAGE
sets the default scroll amount to the full window width.

The default is HSCROLL=HALF. You can use the HSCROLL command in the 
FSLIST window to change the default scroll amount.

NOBORDER
suppresses the sides and bottom of the FSLIST window's border. When this 
option is used, text can appear in the columns and row that are normally 
occupied by the border.

NUM | NONUM
controls the display of line sequence numbers in files that have a record length 
of 80 and contain sequence numbers in columns 73 through 80. NUM displays 
the line sequence numbers. NONUM suppresses them. 

Default NONUM

OVP | NOOVP
indicates whether the carriage-control code for overprinting is in effect:

OVP
causes the procedure to honor the overprint code and print the current line 
over the previous line when the code is encountered.

NOOVP
causes the procedure to ignore the overprint code and print each line from 
the file on a separate line of the display.

1178 Chapter 31 / FSLIST Procedure



Usage: FSLIST Procedure

FSLIST Command
Initiates an FSLIST session from any SAS window. The command enables you to 
use either a fileref or a filename to specify the file to browse. It also enables you to 
specify how carriage-control information is interpreted.

Syntax
FSLIST <* | ? | file-specification <carriage-control-option <overprinting-option>>>

Without Arguments
If you do not specify any of these three arguments, then a selection window appears 
that enables you to select an external filename.

Optional Arguments
*

opens a dialog box in which you can specify the name of the file to browse, 
along with various FSLIST procedure options. In the dialog box, you can specify 
either a physical filename, a fileref, or a directory name. If you specify a directory 
name, then a selection list of the files in the directory appears, from which you 
can choose the desired file.

?
opens a selection window from which you can choose the external file to browse. 
The selection list in the window includes all external files that are identified in the 
current SAS session (all files with defined filerefs).

To select a file, position the cursor on the corresponding fileref and press Enter.

Notes Only filerefs that are defined within the current SAS session appear in 
the selection list. Under some operating environments, it is possible to 
allocate filerefs outside of SAS. Such filerefs do not appear in the 
selection list that is displayed by the FSLIST command.

Usage: FSLIST Procedure 1179



The selection window is not opened if no filerefs have been defined in 
the current SAS session. Instead, an error message is written, instructing 
you to enter a filename with the FSLIST command.

file-specification
identifies the external file to browse. File-specification can be one of the 
following:

'external-file'
the complete operating environment file specification (called the fully qualified 
pathname under some operating environments) for the external file. You must 
enclose the name in quotation marks.

If the specified file is not found, then a selection window appears that shows 
all available filerefs.

fileref
a fileref that is currently assigned to an external file. If you specify a fileref 
that is not currently defined, then a selection window appears that shows all 
available filerefs. An error message in the selection window indicates that the 
specified fileref is not defined.

If you specify file-specification with the FSLIST command, then you can also 
use the following carriage control or overprinting options. These options are 
not valid with the ? argument, or when no argument is used:

CC
FORTCC
NOCC

indicates whether carriage-control characters are used to format the 
display.

If the FSLIST procedure can determine from the file's attributes that the 
file contains carriage-control information, then that carriage-control 
information is used to format the displayed text. In this case, the CC 
option is the default. Otherwise, the entire contents of the file are treated 
as text. In this case, the NOCC option is the default.

You can specify one of the following values for this option:

CC
uses the native carriage-control characters of the operating 
environment.

FORTCC
uses FORTRAN-style carriage control. See the discussion of the 
PROC FSLIST statement's FORTCC option for details.

NOCC
treats carriage-control characters as regular text.

OVP | NOOVP
indicates whether the carriage-control code for overprinting is honored. OVP 
causes the overprint code to be honored. NOOVP causes it to be ignored. The 
OVP option is ignored if NOCC is in effect.

Default NOOVP

1180 Chapter 31 / FSLIST Procedure



Using the FSLIST Window

Overview of the FSLIST Window
The FSLIST window displays files for browsing only. You cannot edit files in the 
FSLIST window. However, you can copy text from the FSLIST window into a paste 
buffer in the following ways, depending on your operating environment:

n Use a mouse to select text, and select Copy from the Edit menu.

n Use the global MARK and STORE commands.

Depending on your operating environment, the text that you copy can then be 
pasted into any SAS window that uses the SAS text editor, including the FSLETTER 
window in SAS/FSP software, or into any other application that allows pasting of 
text.

You can use commands in the command window or command line to control the 
FSLIST window.

FSLIST Window Commands

Global Commands
In the FSLIST window, you can use any of the global commands that are described 
in the SAS/FSP Procedures Guide.

Scrolling Commands
n

scrolls the window so that line n of text is at the top of the window. Type the 
desired line number in the command window or on the command line and press 
Enter. If n is greater than the number of lines in the file, then the last few lines of 
the file are displayed at the top of the window.

BACKWARD <n|HALF | PAGE | MAX>
scrolls vertically toward the first line of the file. The following scroll amounts can 
be specified:

n
scrolls upward by the specified number of lines.

HALF
scrolls upward by half the number of lines in the window.

PAGE
scrolls upward by the number of lines in the window.

Usage: FSLIST Procedure 1181

http://support.sas.com/documentation/cdl/en/afproc/66773/HTML/default/viewer.htm#titlepage.htm


MAX
scrolls upward until the first line of the file is displayed.

If the scroll amount is not explicitly specified, then the window is scrolled by the 
amount that was specified in the most recent VSCROLL command. The default 
VSCROLL amount is PAGE.

BOTTOM
scrolls downward until the last line of the file is displayed.

FORWARD <n|HALF | PAGE | MAX>
scrolls vertically toward the end of the file. The following scroll amounts can be 
specified:

n
scrolls downward by the specified number of lines.

HALF
scrolls downward by half the number of lines in the window.

PAGE
scrolls downward by the number of lines in the window.

MAX
scrolls downward until the first line of the file is displayed.

If the scroll amount is not explicitly specified, then the window is scrolled by the 
amount that was specified in the most recent VSCROLL command. The default 
VSCROLL amount is PAGE. Regardless of the scroll amount, this command 
does not scroll beyond the last line of the file.

HSCROLL <n|HALF | PAGE>
sets the default horizontal scrolling amount for the LEFT and RIGHT commands. 
The following scroll amounts can be specified:

n
sets the default scroll amount to the specified number of columns.

HALF
sets the default scroll amount to half the number of columns in the window.

PAGE
sets the default scroll amount to the number of columns in the window.

The default HSCROLL amount is HALF.

LEFT <n|HALF | PAGE | MAX>
scrolls horizontally toward the left margin of the text. This command is ignored 
unless the file width is greater than the window width. The following scroll 
amounts can be specified:

n
scrolls left by the specified number of columns.

HALF
scrolls left by half the number of columns in the window.

PAGE
scrolls left by the number of columns in the window.

MAX
scrolls left until the left margin of the text is displayed at the left edge of the 
window.

If the scroll amount is not explicitly specified, then the window is scrolled by the 
amount that was specified in the most recent HSCROLL command. The default 

1182 Chapter 31 / FSLIST Procedure



HSCROLL amount is HALF. Regardless of the scroll amount, this command 
does not scroll beyond the left margin of the text.

RIGHT <n|HALF | PAGE | MAX>
scrolls horizontally toward the right margin of the text. This command is ignored 
unless the file width is greater than the window width. The following scroll 
amounts can be specified:

n
scrolls right by the specified number of columns.

HALF
scrolls right by half the number of columns in the window.

PAGE
scrolls right by the number of columns in the window.

MAX
scrolls right until the right margin of the text is displayed at the left edge of the 
window.

If the scroll amount is not explicitly specified, then the window is scrolled by the 
amount that was specified in the most recent HSCROLL command. The default 
HSCROLL amount is HALF. Regardless of the scroll amount, this command 
does not scroll beyond the right margin of the text.

TOP
scrolls upward until the first line of text from the file is displayed.

VSCROLL <n | HALF | PAGE>
sets the default vertical scrolling amount for the FORWARD and BACKWARD 
commands. The following scroll amounts can be specified:

n
sets the default scroll amount to the specified number of lines.

HALF
sets the default scroll amount to half the number of lines in the window.

PAGE
sets the default scroll amount to the number of lines in the window.

The default VSCROLL amount is PAGE.

Searching Commands
BFIND <search-string <PREFIX | SUFFIX | WORD>>

locates the previous occurrence of the specified string in the file, starting at the 
current cursor position and proceeding backward toward the beginning of the file. 
The search-string value must be enclosed in quotation marks if it contains 
embedded blanks.

If a FIND command has previously been issued, then you can use the BFIND 
command without arguments to repeat the search in the opposite direction.

The CAPS option in the PROC FSLIST statement and the CAPS ON command 
cause search strings to be converted to uppercase for the purposes of the 
search, unless the strings are enclosed in quotation marks. See the discussion 
of the FIND command for details.

Usage: FSLIST Procedure 1183



By default, the BFIND command locates any occurrence of the specified string, 
even where the string is embedded in other strings. You can use any one of the 
following options to alter the command's behavior:

PREFIX
causes the search string to match the text string only when the text string 
occurs at the beginning of a word.

SUFFIX
causes the search string to match the text string only when the text string 
occurs at the end of a word.

WORD
causes the search string to match the text string only when the text string is a 
distinct word.

You can use the RFIND command to repeat the most recent BFIND command.

CAPS <ON | OFF>
controls how the FIND, BFIND, and RFIND commands locate matches for a 
search string. By default, the FIND, BFIND, and RFIND commands locate only 
those text strings that exactly match the search string as it was entered. When 
you issue the CAPS command, the FIND, BFIND, and RFIND commands 
convert search strings into uppercase for the purposes of searching (displayed 
text is not affected), unless the strings are enclosed in quotation marks. Strings 
in quotation marks are not affected.

For example, after you issue a CAPS ON command, both of the following 
commands locate occurrences of NC but not occurrences of nc: find NC, find 
nc. If you omit the ON or OFF argument, then the CAPS command acts as a 
toggle, turning the attribute on if it was off or off if it was on.

FIND search-string <NEXT | FIRST | LAST | PREV | ALL> <PREFIX | SUFFIX | 
WORD>

locates an occurrence of the specified search-string in the file. The search-string 
must be enclosed in quotation marks if it contains embedded blanks.

The text in the search-string must match the text in the file in terms of both 
characters and case. For example, the following command locates occurrences 
of raleigh: find raleigh. The following command locates occurrences of 
Raleigh: find Raleigh.

When the CAPS option is used with the PROC FSLIST statement or when a 
CAPS ON command is issued in the window, the search string is converted to 
uppercase for the purposes of the search, unless the string is enclosed in 
quotation marks. In that case, the command find raleigh will locate only the 
text RALEIGH in the file. You must instead use the command find 'Raleigh' to 
locate the text Raleigh.

You can modify the behavior of the FIND command by adding any one of the 
following options:

ALL
reports the total number of occurrences of the string in the file in the window's 
message line and moves the cursor to the first occurrence.

FIRST
moves the cursor to the first occurrence of the string in the file.

LAST
moves the cursor to the last occurrence of the string in the file.

1184 Chapter 31 / FSLIST Procedure



NEXT
moves the cursor to the next occurrence of the string in the file.

PREV
moves the cursor to the previous occurrence of the string in the file.

The default option is NEXT.

By default, the FIND command locates any occurrence of the specified string, 
even where the string is embedded in other strings. You can use any one of the 
following options to alter the command's behavior:

PREFIX
causes the search string to match the text string only when the text string 
occurs at the beginning of a word.

SUFFIX
causes the search string to match the text string only when the text string 
occurs at the end of a word.

WORD
causes the search string to match the text string only when the text string is a 
distinct word.

After you issue a FIND command, you can use the RFIND command to repeat 
the search for the next occurrence of the string, or you can use the BFIND 
command to repeat the search for the previous occurrence.

RFIND
repeats the most recent FIND command, starting at the current cursor position 
and proceeding forward toward the end of the file.

Display Commands
COLUMN <ON | OFF>

displays a column ruler below the message line in the FSLIST window. The ruler 
is helpful when you need to determine the column in which a particular character 
is located. If you omit the ON or OFF specification, then the COLUMN command 
acts as a toggle, turning the ruler on if it was off and off if it was on.

HEX <ON | OFF>
controls the special hexadecimal display format of the FSLIST window. When the 
hexadecimal format is turned on, each line of characters from the file occupies 
three lines of the display. The first is the line displayed as characters. The next 
two lines of the display show the hexadecimal value of the operating 
environment's character codes for the characters in the line of text. The 
hexadecimal values are displayed vertically, with the most significant byte on top. 
If you omit the ON or OFF specification, then the HEX command acts as a 
toggle, turning the hexadecimal format on if it was off and off if it was on.

NUMS <ON | OFF>
controls whether line numbers are shown at the left side of the window. By 
default, line numbers are not displayed. If line numbers are turned on, then they 
remain at the left side of the display when text in the window is scrolled right and 
left. If you omit the ON or OFF argument, then the NUMS command acts as a 
toggle, turning line numbering on if it was off or off if it was on.

Usage: FSLIST Procedure 1185



Other Commands
BROWSE fileref | 'actual-filename' <CC | FORTCC | NOCC <OVP | NOOVP>>

closes the current file and displays the specified file in the FSVIEW window. You 
can specify either a fileref previously associated with a file or an actual filename 
enclosed in quotation marks. The BROWSE command also accepts the same 
carriage-control options as the FSLIST command. See “Optional Arguments” on 
page 1179 for details.

END
closes the FSLIST window and ends the FSLIST session.

HELP <command>
opens a Help window that provides information about the FSLIST procedure and 
about the commands available in the FSLIST window. To get information about a 
specific FSLIST window command, follow the HELP command with the name of 
the desired command.

KEYS
opens the KEYS window for browsing and editing function key definitions for the 
FSLIST window. The default key definitions for the FSLIST window are stored in 
the FSLIST.KEYS entry in the Sashelp.Fsp catalog.

If you change any key definitions in the KEYS window, then a new FSLIST.KEYS 
entry is created in your personal PROFILE catalog (Sasuser.Profile, or 
Work.Profile if the Sasuser library is not allocated).

When the FSLIST procedure is initiated, it looks for function key definitions first 
in the FSLIST.KEYS entry in your personal PROFILE catalog. If that entry does 
not exist, then the default entry in the Sashelp.Fsp catalog is used.

1186 Chapter 31 / FSLIST Procedure



Chapter 32
GROOVY Procedure

Overview: GROOVY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
What Does the GROOVY Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
Special Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188

Syntax: GROOVY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188
PROC GROOVY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1189
ADD Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1190
EVALUATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1191
EXECUTE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1192
SUBMIT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1193
ENDSUBMIT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194
CLEAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1194

Usage: GROOVY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195
Special Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1195

Examples: GROOVY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197
Example 1: Define Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197
Example 2: Pass a Macro Variable to PROC GROOVY . . . . . . . . . . . . . . . . . . . 1199

Overview: GROOVY Procedure

What Does the GROOVY Procedure Do?
Groovy is a dynamic language that runs on the Java Virtual Machine (JVM). PROC 
GROOVY enables SAS code to execute Groovy code on the JVM.

PROC GROOVY can run Groovy statements that are written as part of your SAS 
code, and it can run statements that are in files that you specify with PROC 
GROOVY commands. It can parse Groovy statements into Groovy Class objects, 
and it can run these objects or make them available to other PROC GROOVY 
statements or Java DATA Step Objects. You can also use PROC GROOVY to 

1187



update your CLASSPATH environment variable with additional CLASSPATH strings 
or filerefs to JAR files.

Special Considerations
Groovy code that is submitted with PROC GROOVY runs as the process owner, and 
has the same access to resources (file system, network, and so on) as any process 
owner. Groovy code access to resources can cause problems when SAS code is 
running inside multiuser servers like the Stored Process Server. To give 
administrators some control over this functionality, PROC GROOVY runs only if the 
NOXCMD option is turned off. All SAS servers are shipped with the NOXCMD 
option turned on.

The use of a percent character (%) in the first byte of the text that is written by Java 
to the SAS log is reserved by SAS. If you need to write a percent character in the 
first byte of a Java text line, then you must immediately follow it with another percent 
character (%%).

PROC GROOVY does not support the THREADS | NOTHREADS SAS system 
option. However, Groovy code that you submit with PROC GROOVY can use 
threaded processing in the JVM.

Syntax: GROOVY Procedure
Restrictions: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.
PROC GROOVY does not run if the NOXCMD option is turned on.

Interaction: When a SAS server is in a locked-down state, PROC GROOVY will not execute. For 
more information, see “SAS Processing Restrictions for Servers in a Locked-Down 
State” in SAS Language Reference: Concepts.

PROC GROOVY <classpath options>;
ADD classpath options;
EVALUATE <(LOAD | PARSEONLY | NORUN)>

"Groovy statement string" <argument(s)>;
EXECUTE <(LOAD | PARSEONLY | NORUN)>

Groovy filename | fileref <argument(s)>;
SUBMIT <(LOAD | PARSEONLY | NORUN)> <argument(s)>;

Groovy statement(s)
ENDSUBMIT;
CLEAR;

QUIT;

Statement Task Example

PROC GROOVY Enable SAS code to run Groovy code on the 
JVM

Ex. 1

1188 Chapter 32 / GROOVY Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en


Statement Task Example

ADD Append the given classpath to the current 
CLASSPATH environment variable

EVALUATE Parse the Groovy statement in the quoted 
string and call the Run method on the Script

EXECUTE Read the contents of the file that is specified as 
either a quoted string path or as a fileref and 
call the Run method on the Script

SUBMIT Parse the Groovy statements between the 
SUBMIT and ENDSUBMIT commands and call 
the Run method on the Script

ENDSUBMIT End the Groovy statements that begin with the 
SUBMIT command

CLEAR Empty the binding and unload the Groovy 
classloader

PROC GROOVY Statement
Enables SAS code to run Groovy code on the JVM.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Syntax
PROC GROOVY <classpath options>;

Optional Argument
classpath options

can be one of the following:

CLASSPATH=
specifies a quoted CLASSPATH string or a fileref to a specific JAR file that is 
to be added to the current classpath. This path is searched after the paths 
that are in the user’s CLASSPATH environment variable.

Alias PATH=

SASJAR=<version=> | <range=>
specifies a quoted string that identifies a JAR in the Versioned JAR 
Repository (VJR) that should be added to the current classpath. The 
VERSION and RANGE values are optional. RANGE takes precedence over 
VERSION, as in the following example:

PROC GROOVY Statement 1189



ADD SASJAR="sas.core";
ADD SASJAR="sas.core" version="903000.9.0.20100810190000_v930";
ADD SASJAR="sas.core" range="[0,909000]";

Note: SAS JAR files do not have a source compatibility guarantee across 
versions of SAS. Future versions of this JAR can change without notice. To 
ensure continued functionality, contact SAS Technical Support.

Details
PROC GROOVY uses the current user’s CLASSPATH environment variable as the 
base for building its classpath. You can use the CLASSPATH and SASJAR options 
to add paths to the current classpath.

When a class is loaded, the paths are searched in the following order:

1 CLASSPATH environment variable when process started

2 paths added with the ADD CLASSPATH and ADD SASJAR statements in the 
order in which they were executed

ADD Statement
Appends the given classpath to the current CLASSPATH environment variable.

Syntax
ADD classpath options;

Required Argument
classpath options

can be one of the following:

CLASSPATH=
specifies a quoted CLASSPATH string or a fileref to a specific JAR file that is 
to be added to the current classpath. This path is searched after the paths 
that are in the user’s CLASSPATH environment variable.

Alias PATH=

SASJAR=<version=> | <range=>
specifies a quoted string that identifies a JAR file in the Versioned JAR 
Repository (VJR) that should be added to the current classpath. The 
VERSION and RANGE values are optional. RANGE takes precedence over 
VERSION, as in the following example:

ADD SASJAR="sas.core";

1190 Chapter 32 / GROOVY Procedure



ADD SASJAR="sas.core" version="903000.9.0.20100810190000_v930";
ADD SASJAR="sas.core" range="[0,909000]";

Note: SAS JAR files do not have a source compatibility guarantee across 
versions of SAS. Future versions of this JAR file can change without notice. 
To ensure continued functionality, contact SAS Technical Support.

Details
The ADD statement appends the given classpath to the current CLASSPATH 
environment variable.

You must specify at least one CLASSPATH or one SASJAR. You can specify 
multiple CLASSPATHs or SASJARs.

EVALUATE Statement
Parses the Groovy statement that is provided in the quoted string into a groovy.lang.Script object and calls 
the Run method on the Script.

Syntax
EVALUATE <(LOAD | PARSEONLY | NORUN)>
"Groovy statement string" <argument(s)>;

Required Argument
Groovy statement string

specifies a Groovy statement string that is to be parsed by the EVALUATE 
statement.

Optional Arguments
LOAD | PARSEONLY | NORUN

parses the Groovy statement into a groovy.lang.Script object, but does not run it. 
The arguments are aliases for each other.

argument(s)
specifies arguments that are passed to the code that is being evaluated.

EVALUATE Statement 1191



Details
The EVALUATE statement parses the Groovy statement that is provided in the 
quoted string into a groovy.lang.Script object and calls the Run method on the 
Script. If one of the LOAD, PARSEONLY, or NORUN options is present, then this 
statement parses the Groovy statement into a Class object but does not run it. Any 
classes that are defined by the Groovy code are then available for use by PROC 
GROOVY statements or by Java DATA Step Objects.

EVAL is an alias for the EVALUATE statement.

EXECUTE Statement
Reads the contents of the file that is specified as either a quoted string path or as a fileref.

Syntax
EXECUTE <(LOAD | PARSEONLY | NORUN)>
Groovy filename | fileref <argument(s)>;

Required Arguments
Groovy filename

specifies the name of the Groovy file that is to be parsed by the EXECUTE 
statement.

fileref
specifies the name of a fileref that is to be parsed by the EXECUTE statement.

Optional Arguments
LOAD | PARSEONLY | NORUN

parses the Groovy statement in the specified Groovy file or fileref into a 
groovy.lang.Script object, but does not run it. The arguments are aliases for each 
other.

argument(s)
specifies arguments that are passed to the code that is being executed.

Details
The EXECUTE statement reads the contents of the file that is specified as either a 
quoted string path or as a fileref. The contents are then parsed into a 
groovy.lang.Script object, and the Run method is called on the Script. If one of the 
LOAD, PARSEONLY, or NORUN options is present, then this statement parses the 
file contents into a Class object but does not run it. Any classes that are defined by 

1192 Chapter 32 / GROOVY Procedure



the Groovy code are then available for use by PROC GROOVY statements or by 
Java DATA Step Objects.

EXEC is an alias for the EXECUTE statement.

Note: If you used an EXEC PARSEONLY statement to compile a file into a Class, 
then you must submit a CLASS statement so that changes to that file are honored 
by future EXEC PARSEONLY commands. If you do not submit the CLEAR 
statement, then any changes that you made to the file after you issued the EXEC 
PARSEONLY statement are not included by subsequent submissions of the EXEC 
PARSEONLY statement. You can use the GroovyScriptEngine Class if you need to 
use reloadable scripts.

SUBMIT Statement
Parses the Groovy statements that are between the SUBMIT and ENDSUBMIT commands into a 
groovy.lang.Script object and calls the Run method on the Script.

Syntax
SUBMIT <(LOAD | PARSEONLY | NORUN)> <argument(s)>;
Groovy statement(s)
ENDSUBMIT;

Required Argument
Groovy statement(s)

specifies Groovy statements that are to be parsed by the SUBMIT statement into 
a groovy.lang.Script object.

Optional Arguments
LOAD | PARSEONLY | NORUN

parses the Groovy statements into a groovy.lang.Script object, but does not run 
it. The arguments are aliases for each other.

argument(s)
specifies arguments that are passed to the code that is being submitted.

Details
The SUBMIT statement parses the Groovy statements that are between the 
SUBMIT and ENDSUBMIT commands into a groovy.lang.Script object and calls the 
Run method on the Script. If one of the LOAD, PARSEONLY, or NORUN options is 
present, then this statement parses the Groovy statements into a Class object but 

SUBMIT Statement 1193



does not run it. Any classes that are defined by the Groovy code are then available 
for use by PROC GROOVY statements or by Java DATA Step Objects.

Note:

n The ENDSUBMIT statement must be on a line by itself and preceded by only 
blank space.

n Macro substitution is disabled between the SUBMIT and ENDSUBMIT 
commands.

n PROC GROOVY with multi-line submit commands cannot be used inside a 
macro.

ENDSUBMIT Statement
Ends the Groovy statements that begin with the SUBMIT command.

Syntax
ENDSUBMIT;

Details
Ends the Groovy statements that begin with the SUBMIT statement.

Note: The ENDSUBMIT statement must be on a line by itself and preceded by only 
blank space.

CLEAR Statement
Empties the binding and unloads the Groovy classloader.

Syntax
CLEAR;

1194 Chapter 32 / GROOVY Procedure



Details
The CLEAR statement empties the binding and unloads the Groovy classloader. 
When this statement is executed, any variables that are saved in the binding are 
rendered unavailable. Any classes that are loaded into the Groovy classloader are 
also rendered unavailable.

RESET is an alias for the CLEAR statement.

Note: Neither the CLEAR statement nor the RESET statement resets the 
System.Properties collection or the CLASSPATH.

Usage: GROOVY Procedure

Special Variables
PROC GROOVY has four special variables: BINDING, ARGS, EXPORTS, and 
SHELL. It makes these variables available to any Groovy code that it is running.

BINDING
The BINDING special variable is used to share the state of objects between 
executions of PROC GROOVY. It is populated by any variables that are created 
without scope or that are explicitly stored in the binding. BINDING also holds all of 
the other special variables that are discussed in this section. The binding can be 
cleared with the CLEAR statement.

Note: The BINDING special variable is available to any Groovy code that PROC 
GROOVY is running.

proc groovy;
  eval "a = 42";
  eval "binding.b = 84";
  eval "binding.setProperty( 'c', 168 )";
quit;
proc groovy;
  eval "println ""----> ${binding.getProperty('a')}""";
  eval "println ""----> ${b}""";
  eval "println ""----> ${binding.c}""";
quit;

Usage: GROOVY Procedure 1195



ARGS
Arguments are passed to Groovy code in the ARGS special variable in the binding.

Note: The ARGS special variable is available to any Groovy code that PROC 
GROOVY is running.

proc groovy;
  eval "args.each{ println ""----> ev ${it}"" }" "arg1" "arg2" "arg3";
 
  exec "args.groovy" "arg1" "arg2" "arg3";
 
  submit "arg1" "arg2" "arg3";
    args.each{
      println "----> su ${it}"
    }
  endsubmit;
quit;

EXPORTS
The EXPORTS special variable contains a map in the binding. Adding a key or 
value pair to this map will create a SAS macro variable when PROC GROOVY 
ends. Groovy is case sensitive, but macros are not. If two keys exist in the map that 
differ only by their case, then the one that is exported into a SAS macro is not 
determined. You can also replace the EXPORTS variable in the binding with any 
object that inherits from java.util.Map. If you replace the variable, all of the key or 
value pairs in that object will be exported.

Note: The EXPORTS special variable is available to any Groovy code that PROC 
GROOVY is running.

proc groovy;
  eval "exports.fname = ""first name""";
  eval "binding.exports.lname = ""last name""";
  eval "exports.put('state', 'NC')";
quit;
 
data _NULL_;
  put "----> &fname &lname: &state";
run;

proc groovy;
  submit;
    exports = [fname:"first name", lname: "last name", state: "NC"]
  endsubmit;
quit;
 
data _NULL_;

1196 Chapter 32 / GROOVY Procedure



  put "----> &fname &lname: &state";
run;

SHELL
The SHELL special variable in the binding is set to the groovy.lang.GroovyShell that 
was used to compile the current script. You must submit a CLEAR statement before 
changes that were made to the execution.groovy file in this example are reflected in 
subsequent runs of the code.

Note: The SHELL special variable is available to any Groovy code that PROC 
GROOVY is running.

proc groovy;
  eval "shell.run(
              new File(""execution.groovy""),
              [] as String[] )";
quit;

Note: If you need Groovy scripts that will be reloaded automatically when they are 
modified, then create a new instance of the GroovyScriptEngine class.

Examples: GROOVY Procedure

Example 1: Define Classes
Features: PROC GROOVY statement option

CLASSPATH
SUBMIT statement option

PARSEONLY
SUBMIT Statement
ENDSUBMIT Statement

The following three examples show how to use PROC GROOVY to define a class.

Example 1: Define Classes 1197



Program
Groovy code is run by default. If your script does not have any executable code, 
then an error is returned. The following example defines a class, but it does not 
have any executable code, and an error is returned.

proc groovy classpath=cp;
  submit;
    class Speaker {
      def say( word ) {
        println "----> \"${word}\""
      }
    }
  endsubmit;
quit;

Program
The following example shows how to define a class that can be run by including a 
main method.

proc groovy classpath=cp;
  submit;
    class Speaker {
      def Speaker() {
        println "----> ctor"
      }
      def main( args ) {
        println "----> main"
      }
    }
  endsubmit;
quit;

Program
The following example shows how to use the PARSEONLY option to avoid a run 
call. You can then use the new class in another execution of PROC GROOVY.

proc groovy classpath=cp;
  submit parseonly;
    class Speaker {
      def say( word ) {
        println "----> \"${word}\""
      }
    }
  endsubmit;
quit;

proc groovy classpath=cp;
  eval "s = new Speaker(); s.say( ""Hi"" )";

1198 Chapter 32 / GROOVY Procedure



quit;

Example 2: Pass a Macro Variable to PROC 
GROOVY
Features: SUBMIT Statement

ENDSUBMIT Statement

The following example shows how to define a macro variable and pass it to PROC 
GROOVY.

%let _inzip = C:/path/example.zip;
proc groovy;
   submit "&_inzip.";
      def zipFile = new java.util.zip.ZipFile(new File(args[0]))
         zipFile.entries().each {
            println zipFile.getInputStream(it).text
         }

   endsubmit;
quit;

Example 2: Pass a Macro Variable to PROC GROOVY 1199



1200 Chapter 32 / GROOVY Procedure



Chapter 33
HADOOP Procedure

Overview: HADOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201
What Does the HADOOP Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201

Syntax: HADOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1202
PROC HADOOP Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1203
HDFS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206
MAPREDUCE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1210
PIG Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1213
PROPERTIES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1215

Usage: HADOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216
Submitting Hadoop Distributed File System Commands . . . . . . . . . . . . . . . . . . . 1216
Submitting MapReduce Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216
Submitting Pig Language Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216
Submitting Configuration Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217

Examples: HADOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217
Example 1: Submitting HDFS Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217
Example 2: Submitting HDFS Commands with Wildcard Characters . . . . . . . . . 1218
Example 3: Submitting a MapReduce Program . . . . . . . . . . . . . . . . . . . . . . . . . . 1220
Example 4: Submitting Pig Language Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1222
Example 5: Submitting Configuration Properties . . . . . . . . . . . . . . . . . . . . . . . . . 1223

Overview: HADOOP Procedure

What Does the HADOOP Procedure Do?
The HADOOP procedure enables SAS to interact with Hadoop data by running 
Apache Hadoop code. Apache Hadoop is an open-source framework, written in 
Java, that provides distributed data storage and processing of large amounts of 
data.

1201



PROC HADOOP interfaces with the Hadoop JobTracker. This is the service within 
Hadoop that controls tasks to specific nodes in the cluster. PROC HADOOP enables 
you to submit the following:

n Hadoop Distributed File System (HDFS) commands

n MapReduce programs

n Pig language code

The HADOOP procedure is supported in SAS 9.4 and in SAS Viya.

Syntax: HADOOP Procedure
Restrictions: This procedure is not supported in the z/OS operating environment.

This procedure is not supported on the CAS server.
When SAS is in a locked-down state, PROC HADOOP is not available. Your server 
administrator can re-enable this procedure so that it is accessible in the lockdown state. 
When the FILENAME Hadoop access method is re-enabled by using the LOCKDOWN 
ENABLE_AMS= statement, PROC HADOOP is automatically re-enabled. For more 
information, see “SAS Processing Restrictions for Servers in a Locked-Down State” in 
SAS Programmer’s Guide: Essentials.

Requirement: Java Runtime Environment (JRE) 1.6 and higher

Interactions: Beginning with SAS 9.4M3, to connect to the Hadoop cluster, the Hadoop cluster 
configuration files must be accessible to the SAS client machine. You can copy the 
configuration files to a physical location that is accessible to the SAS client machine and 
then set the SAS environment variable SAS_HADOOP_CONFIG_PATH to the location. 
Or, you can create a single configuration file by merging the properties from the multiple 
Hadoop cluster configuration files and then identify the configuration file with the PROC 
HADOOP statement CFG= argument. For more information, see the SAS Hadoop 
Configuration Guide for Base SAS and SAS/ACCESS.
To submit HDFS commands, MapReduce programs, and Pig language code using the 
Java API, the Hadoop distribution JAR files must be copied to a physical location that is 
accessible to the SAS client machine. The SAS environment variable 
SAS_HADOOP_JAR_PATH must be set to the location of the Hadoop JAR files. For 
more information, see the SAS Hadoop Configuration Guide for Base SAS and 
SAS/ACCESS.
To submit HDFS commands through WebHDFS, the SAS environment variable 
SAS_HADOOP_RESTFUL must be set to 1. In addition, the Hadoop configuration file 
hdfs-site.xml must include the properties for the WebHDFS location. For more 
information, see the SAS Hadoop Configuration Guide for Base SAS and SAS/ACCESS.
Beginning with SAS 9.4M3, to submit MapReduce programs and Pig language code 
through the Apache Oozie RESTful API, the SAS environment variable 
SAS_HADOOP_RESTFUL must be set to 1. You must also set the SAS environment 
variable SAS_HADOOP_CONFIG_PATH to the location where the hdfs-site.xml and 
core-site.xml configuration files exist. The hdfs-site.xml must include the property for the 
WebHDFS location. You also need to specify Oozie specific properties in a configuration 
file and identify the configuration file with the PROC HADOOP statement CFG= 
argument. The Oozie specific properties include oozie_http_port, fs.default.name, and 
mapred.job.tracker. For more information, see the SAS Hadoop Configuration Guide for 

1202 Chapter 33 / HADOOP Procedure

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en


Base SAS and SAS/ACCESS. PROC HADOOP does not support running an Oozie job 
(MAPREDUCE or PIG) on a server that has Kerberos enabled.

Note: For a list of Hadoop distributions that are supported in SAS 9.4, see SAS 9.4 Supported 
Hadoop Distributions. For a list of Hadoop distributions that are supported in SAS Viya, 
see SAS Viya: Deployment Guide. For information about configuration, see SAS Hadoop 
Configuration Guide for Base SAS and SAS/ACCESS.

PROC HADOOP <hadoop-server-options>;
HDFS <hadoop-server-options> <hdfs-command-options>;
MAPREDUCE <hadoop-server-options> <mapreduce-options>;
PIG <hadoop-server-options> <pig-code-options>;
PROPERTIES <configuration-properties>;

Statement Task Example

PROC HADOOP Control access to the Hadoop server Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5

HDFS Submit Hadoop Distributed File System (HDFS) 
commands

Ex. 1, Ex. 2

MAPREDUCE Submit MapReduce programs into a Hadoop 
cluster

Ex. 3

PIG Submit Pig language code into a Hadoop 
cluster

Ex. 4

PROPERTIES Submit configuration properties Ex. 5

PROC HADOOP Statement
Controls access to the Hadoop server.

Examples: “Example 1: Submitting HDFS Commands” on page 1217
“Example 2: Submitting HDFS Commands with Wildcard Characters” on page 1218
“Example 3: Submitting a MapReduce Program” on page 1220
“Example 4: Submitting Pig Language Code” on page 1222
“Example 5: Submitting Configuration Properties” on page 1223

Syntax
PROC HADOOP <hadoop-server-options>;

PROC HADOOP Statement 1203

https://support.sas.com/resources/thirdpartysupport/v94/hadoop/hadoop-distributions.html
https://support.sas.com/resources/thirdpartysupport/v94/hadoop/hadoop-distributions.html
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hadoopbacg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hadoopbacg&docsetTarget=titlepage.htm


Summary of Optional Arguments
AUTHDOMAIN='authentication-domain'

specifies the name of an authentication domain metadata object in order 
to connect to the Hadoop server.

CFG=fileref | 'external-file'
identifies the Hadoop configuration file to use in order to connect to the 
Hadoop server.

MAXWAIT=wait-interval
specifies the HTTP status response time when using WebHDFS.

PASSWORD='password'
is the password for the user ID on the Hadoop server.

USERNAME='ID'
is an authorized user ID on the Hadoop server.

VERBOSE
enables additional messages that are displayed on the SAS log.

Hadoop Server Options
These options control access to the Hadoop server and can be specified in all 
HADOOP procedure statements.

AUTHDOMAIN='authentication-domain'
specifies the name of an authentication domain metadata object in order to 
connect to the Hadoop server. The authentication domain references credentials 
(user ID and password) without your explicitly specifying the credentials. 

An administrator creates authentication domain definitions while creating a user 
definition with the User Manager in SAS Management Console. The 
authentication domain is associated with one or more login metadata objects that 
provide access to the Hadoop server. The metadata objects are resolved by SAS 
calling the SAS Metadata Server and returning the authentication credentials.

Restriction This option is not valid in SAS Viya.

Requirements Enclose the authentication-domain name in single or double 
quotation marks.

The authentication domain and the associated login definition 
must be stored in a metadata repository, and the metadata 
server must be running to resolve the metadata object 
specification.

Interaction If you specify AUTHDOMAIN=, do not specify USERNAME= and 
PASSWORD=.

See For more information about creating and using authentication 
domains, see the discussion about credential management in the 
SAS Intelligence Platform: Security Administration Guide.

CFG=fileref | 'external-file'
identifies the Hadoop configuration file to use in order to connect to the Hadoop 
server. The configuration file contains entries for Hadoop system information, 
including file system properties such as fs.defaultFS. The configuration file can 
be a copy of the Hadoop core-site.xml file. However, if your Hadoop cluster is 

1204 Chapter 33 / HADOOP Procedure



running with HDFS failover enabled, you need to create a file that combines the 
properties of the Hadoop core-site.xml and hdfs-site.xml. The configuration file 
must specify the name and JobTracker addresses for the specific server. 

fileref
specifies the SAS fileref that is assigned to the Hadoop configuration file. To 
assign a fileref, use the FILENAME statement.

'external-file'
is the physical location of the XML document. Include the complete pathname 
and the filename. The maximum length is 200 characters.

Requirement Enclose the physical name in single or double quotation 
marks.

Alias OPTIONS=

Requirement The file must be an XML document.

Interaction The CFG= option is required for a configuration file that is specific 
to Apache Oozie. You must also set the SAS environment 
variable SAS_HADOOP_CONFIG_PATH. For more information, 
see SAS Hadoop Configuration Guide for Base SAS and 
SAS/ACCESS. For other uses, specify the location of 
configuration files by setting the SAS_HADOOP_CONFIG_PATH 
environment variable only. The environment variable is used by 
several SAS components.

Note For more information about Hadoop configuration, see SAS 
Hadoop Configuration Guide for Base SAS and SAS/ACCESS.

MAXWAIT=wait-interval
specifies the HTTP status response time when using WebHDFS.

Default 40000 milliseconds

Requirement The environment variable SAS_HADOOP_RESTFUL must be set 
to 1.

Tip If you receive a time-out message in the log, use MAXWAIT= to 
increase the wait period.

PASSWORD='password'
is the password for the user ID on the Hadoop server. The user ID and password 
are added to the set of options that are identified by CFG=.

Alias PASS=

Interaction To specify PASSWORD=, you must also specify USERNAME=.

USERNAME='ID'
is an authorized user ID on the Hadoop server. The user ID and password are 
added to the set of options that are identified by CFG=. 

Alias USER=

VERBOSE
enables additional messages that are displayed on the SAS log. VERBOSE is a 
good error diagnostic tool. If you receive an error message when you invoke 

PROC HADOOP Statement 1205

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hadoopbacg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hadoopbacg&docsetTarget=titlepage.htm


SAS, you can use this option to see whether you have an error in your system 
option specifications. 

HDFS Statement
Submits Hadoop Distributed File System (HDFS) commands.

Restrictions: The HDFS statement supports only one operation per invocation.
The CAT, CHMOD, and LS commands are available only when submitting HDFS 
commands through webHDFS.
The RECURSE option and use of wildcards are permitted only when submitting HDFS 
commands through webHDFS.

Requirements: To submit HDFS commands through WebHDFS, the SAS environment variable 
SAS_HADOOP_RESTFUL must be set to 1. In addition, the Hadoop configuration file 
must include the properties for the WebHDFS location. For more information, see the 
SAS Hadoop Configuration Guide for Base SAS and SAS/ACCESS.
To submit HDFS commands using the Java API, the Hadoop distribution JAR files must 
be copied to a physical location that is accessible to the SAS client machine. The SAS 
environment variable SAS_HADOOP_JAR_PATH must be set to the location of the 
Hadoop JAR files. For more information, see the SAS Hadoop Configuration Guide for 
Base SAS and SAS/ACCESS.

Note: For more information about Hadoop configuration, see SAS Hadoop Configuration Guide 
for Base SAS and SAS/ACCESS.

Examples: “Example 1: Submitting HDFS Commands” on page 1217
“Example 2: Submitting HDFS Commands with Wildcard Characters” on page 1218

Syntax
HDFS <hadoop-server-options> <hdfs-command-options>;

Summary of Optional Arguments
CAT='HDFS-file' <ONLY=n> <OUT='output-location'> <RECURSE> 

<SHOW_FILENAME>
displays the contents of the specified file or files.

CHMOD='HDFS-file' PERMISSION=<'>value<'> <RECURSE>
changes file access permissions for one or more HDFS files.

COPYFROMLOCAL='local-file' OUT='output-location' <DELETESOURCE> 
<OVERWRITE> <RECURSE> 

copies the specified local file to an HDFS output location.
COPYTOLOCAL='HDFS-file' OUT='output-location' <DELETESOURCE> 

<KEEPCRC> <OVERWRITE> <RECURSE> 
copies the specified HDFS file to a local output location.

DELETE='HDFS-file' <NOWARN> 

1206 Chapter 33 / HADOOP Procedure

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hadoopbacg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hadoopbacg&docsetTarget=titlepage.htm


deletes the specified HDFS file.
LS='HDFS-pathname' <OUT=output-location><RECURSE>

lists the files in the specified HDFS pathname.
MKDIR='HDFS-pathname'

creates the specified HDFS pathname. Specify the complete HDFS 
pathname.

RENAME='HDFS-file' OUT='output-location'
renames the specified HDFS file.

HDFS Command Options
These options support commands that interact with the HDFS. Include only one 
operation per HDFS statement.

CAT='HDFS-file' <ONLY=n> <OUT='output-location'> <RECURSE> 
<SHOW_FILENAME>

displays the contents of the specified file or files.

'HDFS-file'
specifies a pathname or a pathname and a filename. You can use wildcard 
characters to substitute for any other character or characters in the pathname 
or the filename. Use * to match one or more characters, or ? to match a 
single character.

ONLY=n
displays only the specified number of lines from the beginning of the file. For 
example, only=10 displays the first ten lines of a file. This option is helpful to 
determine the contents of a file.

OUT='output-location'
specifies the output location for the contents, which can be an external file for 
your machine or a fileref that is assigned with the FILENAME statement. By 
default, the output location is the SAS log.

RECURSE
specifies to display the contents for all files in the specified pathname and all 
files that are in subdirectories. RECURSE has no effect if the specified HDFS 
file is not a directory.

SHOW_FILENAME
includes the name of the file in the output. For example, hdfs cat='/tmp/
*.txt' show_filename only=10 recurse; displays in the SAS log the 
name of the file and the first ten lines of all .txt files that are found in the /tmp 
directory and all of its subdirectories.

Note The CAT= option is supported beginning with SAS 9.4M3.

CHMOD='HDFS-file' PERMISSION=<'>value<'> <RECURSE>
changes file access permissions for one or more HDFS files. 

'HDFS-file'
specifies a pathname or a pathname and a filename. You can use a wildcard 
character to substitute for any character or characters in the pathname or 
filename. Use * to match any number of characters, or ? to match a single 
character.

PERMISSION=value
specifies a value that represents three levels of permissions, which are 
owner, group, and user. All three permission levels are required. You can 

HDFS Statement 1207



specify the permissions in read, write, and execute (rwx) symbolic notation or 
octal notation.

n For the rwx symbolic notation, use nine characters. The first set of three 
characters represents what the owner can do, the second set represents 
what a group can do, and the third set represents what a user can do. For 
each set of three characters, the first position must be r or - (for read), the 
second position must be w or - (for write), and the third position must be x 
or - (for execute). For example, permission=rwxr-xr-x specifies that the 
owner has Read, Write, and Execute permission, group members have 
Read and Execute permission, and users have Read and Execute 
permission. 

n For octal notation, use three digits. Each digit represents the permissions 
for owner, group, and user. Each digit must be from 0 to 7. The octal 
notation represents the same numeric value as the rwx symbolic notation. 
That is, 4 is r, 2 is w, 1 is x, and 0 is -. For example, permission=755; 
specifies that the owner has Read, Write, and Execute permission, group 
members have Read and Execute permission, and users have Read and 
Execute permission.

RECURSE
specifies to change the access permissions to all files and directories in the 
specified pathname and all files and directories that are in subdirectories. 
RECURSE has no effect if the specified HDFS file is not a directory. For 
example, hdfs chmod='/tmp' permission=755 recurse; changes the 
permissions to the specified directory and all files and subdirectories within 
the directory.

Note The CHMOD= option is supported beginning with SAS 9.4M3.

COPYFROMLOCAL='local-file' OUT='output-location' <DELETESOURCE> 
<OVERWRITE> <RECURSE>

copies the specified local file to an HDFS output location. 

'local-file'
specifies the complete pathname and the filename. Beginning with SAS 
9.4M3, you can use a wildcard character to substitute for any other character 
or characters in the pathname or the filename. Use * to match any number of 
characters, or ? to match a single character.

OUT='output-location'
specifies the output location for the copied file, which is a complete HDFS 
pathname and the filename.

DELETESOURCE
deletes the input source file after a copy command.

OVERWRITE
specifies to overwrite an existing output location.

RECURSE
specifies to copy all the files in the specified pathname and all files that are in 
subdirectories. RECURSE has no effect if the specified file is not a directory.

Note The RECURSE option is supported beginning with SAS 9.4M3.

COPYTOLOCAL='HDFS-file' OUT='output-location' <DELETESOURCE> 
<KEEPCRC> <OVERWRITE> <RECURSE>

copies the specified HDFS file to a local output location. 

1208 Chapter 33 / HADOOP Procedure



'HDFS-file'
specifies the complete pathname and the filename. Beginning with SAS 
9.4M3, you can use a wildcard character to substitute for any other character 
or characters in the pathname or the filename. Use * to match any number of 
characters, or ? to match a single character.

OUT='output-location'
specifies the output location for the copied file, which is an external file for 
your machine.

DELETESOURCE
deletes the input source file after a copy command.

KEEPCRC
saves the Cyclic Redundancy Check (CRC) file after the copy command to a 
local output location. The CRC file is saved to the same location that is 
specified in the OUT= option. The CRC file is used to ensure the correctness 
of the file being copied. By default, the CRC file is deleted.

OVERWRITE
specifies to overwrite an existing output location.

RECURSE
specifies to copy all the files in the specified pathname and all files that are in 
subdirectories. RECURSE has no effect if the specified HDFS file is not a 
directory.

Note The RECURSE option is available beginning with SAS 9.4M3.

DELETE='HDFS-file' <NOWARN>
deletes the specified HDFS file.

HDFS-file
specifies a pathname or a pathname and a filename. If you include the 
filename, then only that file is deleted. If you do not include a filename, then 
all the files in the specified pathname and all the files that are in 
subdirectories are deleted. Beginning with SAS 9.4M3, you can use a 
wildcard character to substitute for any other character or characters in the 
pathname or the filename. Use * to match any number of characters, or ? to 
match a single character.

NOWARN
suppresses the warning message when there is an attempt to delete a file 
that does not exist.

LS='HDFS-pathname' <OUT=output-location><RECURSE>
lists the files in the specified HDFS pathname. The output for each file consists 
of its permissions, User ID, User ID group, file size, creation date, creation time, 
and the filename.

HDFS-pathname
specifies a pathname. You can use a wildcard character to substitute for any 
character or characters in the pathname. Use * to match any number of 
characters, or ? to match a single character.

OUT=output-location
specifies the output location for the list of files, which can be an external file 
for your machine or a fileref that is assigned with the FILENAME statement. 
By default, the output location is the SAS log.

HDFS Statement 1209



RECURSE
specifies to list the files in the specified pathname and all files that are in 
subdirectories. RECURSE has no effect if the specified file is not a directory.

Default The default output location is the SAS log.

Note The LS= option is supported beginning with SAS 9.4M3.

MKDIR='HDFS-pathname'
creates the specified HDFS pathname. Specify the complete HDFS pathname.

RENAME='HDFS-file' OUT='output-location'
renames the specified HDFS file. 

'HDFS-file'
specifies the pathname and the filename to rename.

OUT='output-location'
specifies the new HDFS pathname and filename.

MAPREDUCE Statement
Submits MapReduce programs into a Hadoop cluster.

Requirement: To submit MapReduce programs to a Hadoop server, the Hadoop configuration file must 
include the properties to run MapReduce (MR1) or MapReduce 2 (MR2) and YARN.

Interactions: To submit MapReduce programs using the Java API, the Hadoop distribution JAR files 
must be copied to a physical location that is accessible to the SAS client machine. The 
SAS environment variable SAS_HADOOP_JAR_PATH must be set to the location of the 
Hadoop JAR files. For more information, see the SAS Hadoop Configuration Guide for 
Base SAS and SAS/ACCESS.
Beginning with SAS 9.4M3, to submit MapReduce programs through the Apache Oozie 
RESTful API, the SAS environment variable SAS_HADOOP_RESTFUL must be set to 
1. You must also set the SAS environment variable SAS_HADOOP_CONFIG_PATH to 
the location where the hdfs-site.xml and core-site.xml configuration files exist. The hdfs-
site.xml file must include the property for the WebHDFS location. You also need to 
specify Oozie specific properties in a configuration file and identify the configuration file 
with the PROC HADOOP statement CFG= argument. The Oozie specific properties 
include oozie_http_port, fs.default.name, and mapred.job.tracker. For more information, 
see the SAS Hadoop Configuration Guide for Base SAS and SAS/ACCESS.

Note: For more information about Hadoop configuration, see SAS Hadoop Configuration Guide 
for Base SAS and SAS/ACCESS.

Example: “Example 3: Submitting a MapReduce Program” on page 1220

Syntax
MAPREDUCE<hadoop-server-options> <mapreduce-options>;

1210 Chapter 33 / HADOOP Procedure

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hadoopbacg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hadoopbacg&docsetTarget=titlepage.htm


Summary of Optional Arguments
COMBINE='class-name'

specifies the name of the combiner class in dot notation.
DELETERESULTS

specifies to delete the output directory, if it exists, before starting the 
MapReduce job.

GROUPCOMPARE='class-name'
specifies the name of the grouping comparator (GroupComparator) class 
in dot notation.

INPUT='HDFS-pathname'
specifies the HDFS pathname to the MapReduce input file.

INPUTFORMAT='class-name'
specifies the name of the input format class in dot notation.

JAR='external-file(s)'
specifies the locations of the JAR files that contain the MapReduce 
program and named classes.

MAP='class-name'
specifies the name of the map class in dot notation.

OUTPUT='HDFS-pathname'
when connecting to the Hadoop server, specifies a new HDFS pathname 
for the MapReduce output.

OUTPUTFORMAT='class-name'
specifies the name of the output format class in dot notation.

OUTPUTKEY='class-name'
specifies the name of the output key class in dot notation.

OUTPUTVALUE='class-name'
is the name of the output value class in dot notation.

PARTITIONER='class-name'
specifies the name of the partitioner class in dot notation.

REDUCE='class-name'
specifies the name of the reducer class in dot notation.

REDUCETASKS=integer
specifies the number of reduce tasks.

REPLACE
when connecting to Hadoop through the Oozie RESTful API, specifies to 
delete any existing workflow and JAR file(s) in the Oozie application 
before copying new files to the working directory.

SORTCOMPARE='class-name'
specifies the name of the sort comparator class in dot notation.

WORKINGDIR='HDFS-pathname'
specifies the name of the HDFS working directory pathname.

MapReduce Options
COMBINE='class-name'

specifies the name of the combiner class in dot notation.

DELETERESULTS
specifies to delete the output directory, if it exists, before starting the MapReduce 
job.

MAPREDUCE Statement 1211



Note This option is supported beginning with SAS 9.4M3.

GROUPCOMPARE='class-name'
specifies the name of the grouping comparator (GroupComparator) class in dot 
notation.

INPUT='HDFS-pathname'
specifies the HDFS pathname to the MapReduce input file.

INPUTFORMAT='class-name'
specifies the name of the input format class in dot notation.

JAR='external-file(s)'
specifies the locations of the JAR files that contain the MapReduce program and 
named classes. Include the complete pathname and the filename. 

Requirement Enclose each location in single or double quotation marks.

MAP='class-name'
specifies the name of the map class in dot notation. A map class contains 
elements that are formed by the combination of a key value and a mapped 
value.

OUTPUT='HDFS-pathname'
when connecting to the Hadoop server, specifies a new HDFS pathname for the 
MapReduce output.

Requirements You must specify the MapReduce output location.

Enclose the physical name in single or double quotation marks.

OUTPUTFORMAT='class-name'
specifies the name of the output format class in dot notation.

OUTPUTKEY='class-name'
specifies the name of the output key class in dot notation.

OUTPUTVALUE='class-name'
is the name of the output value class in dot notation.

PARTITIONER='class-name'
specifies the name of the partitioner class in dot notation. A partitioner class 
controls the partitioning of the keys of the intermediate map outputs.

REDUCE='class-name'
specifies the name of the reducer class in dot notation. The reduce class 
reduces a set of intermediate values that share a key to a smaller set of values.

REDUCETASKS=integer
specifies the number of reduce tasks.

REPLACE
when connecting to Hadoop through the Oozie RESTful API, specifies to delete 
any existing workflow and JAR file(s) in the Oozie application before copying 
new files to the working directory.

Note The REPLACE option is supported beginning with SAS 9.4M3.

SORTCOMPARE='class-name'
specifies the name of the sort comparator class in dot notation.

WORKINGDIR='HDFS-pathname'
specifies the name of the HDFS working directory pathname.

1212 Chapter 33 / HADOOP Procedure



Requirements Beginning with SAS 9.4M3, when connecting to Hadoop through 
the Oozie RESTful API, this argument is required and specifies 
the HDFS pathname for the Oozie workflow application directory.

Enclose the HDFS-pathname name in single or double quotation 
marks.

PIG Statement
Submits Pig language code into a Hadoop cluster.

Interactions: To submit Pig language code using the Java API, the Hadoop distribution JAR files must 
be copied to a physical location that is accessible to the SAS client machine. The SAS 
environment variable SAS_HADOOP_JAR_PATH must be set to the location of the 
Hadoop JAR files. For more information, see the SAS Hadoop Configuration Guide for 
Base SAS and SAS/ACCESS.
Beginning with SAS 9.4M3, to submit Pig language code through the Apache Oozie 
RESTful API, the SAS environment variable SAS_HADOOP_RESTFUL must be set to 
1. You must also set the SAS environment variable SAS_HADOOP_CONFIG_PATH to 
the location where the hdfs-site.xml and core-site.xml configuration files exist. The hdfs-
site.xml file must include the property for the WebHDFS location. You also need to 
specify Oozie specific properties in a configuration file and identify the configuration file 
with the PROC HADOOP statement CFG= argument. The Oozie specific properties 
include oozie_http_port, fs.default.name, and mapred.job.tracker. For more information, 
see the SAS Hadoop Configuration Guide for Base SAS and SAS/ACCESS.

Note: For more information about Hadoop configuration, see SAS Hadoop Configuration Guide 
for Base SAS and SAS/ACCESS.

Example: “Example 4: Submitting Pig Language Code” on page 1222

Syntax
PIG <hadoop-server-options> <pig-code-options>;

Summary of Optional Arguments
CODE=fileref | 'external-file'

specifies the source that contains the Pig language code to execute.
DELETERESULTS

when connecting to the Hadoop server through the Oozie RESTful API, 
specifies to delete the existing output location before starting the Oozie 
job.

OUTPUT='HDFS-pathname'
when connecting to the Hadoop server through the Oozie RESTful API, 
specifies the existing output location to delete before starting the Oozie 
job.

PIG Statement 1213

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hadoopbacg&docsetTarget=titlepage.htm
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=hadoopbacg&docsetTarget=titlepage.htm


PARAMETERS=fileref | 'external-file'
specifies the source that contains parameters to be passed as arguments 
when the Pig code executes.

REGISTERJAR='external-file(s)'
specifies the locations of the JAR files that contain the Pig scripts to 
execute.

REPLACE
when connecting to Hadoop through the Oozie RESTful API, specifies to 
delete any existing workflow and JAR file(s) in the Oozie application 
before copying new files to the working directory.

WORKINGDIR='HDFS-pathname'
when connecting to Hadoop through the Oozie RESTful API, specifies the 
HDFS pathname for the Oozie workflow application directory.

Pig Code Options
CODE=fileref | 'external-file'

specifies the source that contains the Pig language code to execute.

fileref
is a SAS fileref that is assigned to the source file. To assign a fileref, use the 
FILENAME statement.

'external-file'
is the physical location of the source file. Specify the complete pathname and 
the filename.

Requirement Enclose the physical name in single or double quotation 
marks.

DELETERESULTS
when connecting to the Hadoop server through the Oozie RESTful API, specifies 
to delete the existing output location before starting the Oozie job.

Interaction Use the DELETERESULTS option with the OUTPUT= option.

Note The DELETERESULTS option is supported beginning with SAS 
9.4M3.

OUTPUT='HDFS-pathname'
when connecting to the Hadoop server through the Oozie RESTful API, specifies 
the existing output location to delete before starting the Oozie job.

Requirement Enclose the physical name in single or double quotation marks.

Interaction Use the OUTPUT= option with the DELETERESULTS option.

Note The OUTPUT= option is supported beginning with SAS 9.4M3.

PARAMETERS=fileref | 'external-file'
specifies the source that contains parameters to be passed as arguments when 
the Pig code executes.

fileref
is a SAS fileref that is assigned to the source file. To assign a fileref, use the 
FILENAME statement.

1214 Chapter 33 / HADOOP Procedure



'external-file'
is the physical location of the source file. Specify the complete pathname and 
the filename.

Requirement Enclose the physical name in single or double quotation 
marks.

REGISTERJAR='external-file(s)'
specifies the locations of the JAR files that contain the Pig scripts to execute. 
Specify the complete pathname and the filename.

Requirement Enclose each location in single or double quotation marks.

REPLACE
when connecting to Hadoop through the Oozie RESTful API, specifies to delete 
any existing workflow and JAR file(s) in the Oozie application before copying 
new files to the working directory.

Note The REPLACE option is supported beginning with SAS 9.4M3.

WORKINGDIR='HDFS-pathname'
when connecting to Hadoop through the Oozie RESTful API, specifies the HDFS 
pathname for the Oozie workflow application directory. 

Requirements When connecting to Hadoop through the Oozie RESTFUL API, 
this argument is required.

Enclose the HDFS-pathname name in single or double quotation 
marks.

Note The WORKINGDIR= option is supported beginning with SAS 
9.4M3.

PROPERTIES Statement
Submits configuration properties to the Hadoop server.

Alias: PROP

Example: “Example 5: Submitting Configuration Properties” on page 1223

Syntax
PROPERTIES 'configuration-property-1' <'configuration-property-2'> …;

Required Argument
configuration-property

specifies any property that can be specified in a Hadoop configuration file.

PROPERTIES Statement 1215



Requirement Enclose each property in single or double quotation marks, and 
enclose each value in single or double quotation marks. For 
example, prop 
'mapred.job.tracker'='xxx.us.company.com:8021' 
'fs.default.name'='hdfs://xxx.us.company.com:8020';

Usage: HADOOP Procedure

Submitting Hadoop Distributed File System 
Commands

The Hadoop Distributed File System (HDFS) is a distributed, scalable, and portable 
file system for the Hadoop framework. HDFS is designed to hold large amounts of 
data that is distributed across a network and to provide access to the data by many 
clients.

The PROC HADOOP HDFS statement submits HDFS commands to the Hadoop 
server. HDFS commands are like the Hadoop shell commands that interact with 
HDFS and manipulate files. For the list of HDFS commands, see “HDFS Statement” 
on page 1206.

Submitting MapReduce Programs
MapReduce is a parallel processing framework that enables developers to write 
programs to process vast amounts of data. There are two types of key functions in 
the MapReduce framework:

n map function that separates the data to be processed into independent chunks

n reduce function that performs analysis on that data

The PROC HADOOP MAPREDUCE statement submits a MapReduce program into 
a Hadoop cluster. For more information, see “MAPREDUCE Statement” on page 
1210.

Submitting Pig Language Code
The Apache Pig language is a high-level programming language that creates 
MapReduce programs that are used with Hadoop.

1216 Chapter 33 / HADOOP Procedure



The PROC HADOOP PIG statement submits Pig language code into a Hadoop 
cluster. For more information, see “PIG Statement” on page 1213.

Submitting Configuration Properties
Rather than specifying a Hadoop configuration file, you can submit configuration 
properties with the PROC HADOOP PROPERTIES statement. For more 
information, see “PROPERTIES Statement” on page 1215.

Examples: HADOOP Procedure

Example 1: Submitting HDFS Commands
Features: SAS_HADOOP_CONFIG_PATH environment variable

SAS_HADOOP_JAR_PATH environment variable
PROC HADOOP statement
HDFS statement
OPTIONS statement
SET system option

Details
This PROC HADOOP example submits HDFS commands to a Hadoop server. The 
statements create a directory, delete a directory, and copy a file from HDFS to a 
local output location.

Program
options set=SAS_HADOOP_CONFIG_PATH="\\sashq\root\u\abcdef\cdh45p1";
options set=SAS_HADOOP_JAR_PATH="\\sashq\root\u\abcdef\cdh45";

proc hadoop username='sasabc' password='sasabc' verbose;

   hdfs mkdir='/user/sasabc/new_directory';

   hdfs delete='/user/sasabc/temp2_directory';

   hdfs copytolocal='/user/sasabc/testdata.txt'

Example 1: Submitting HDFS Commands 1217



        out='C:\Users\sasabc\Hadoop\testdata.txt' overwrite;
run;

Program Description
Define the SAS_HADOOP_CONFIG_PATH environment variable and the 
SAS_HADOOP_JAR_PATH environment variable. The OPTIONS statements 
include the SET system option to define the environment variables. The 
environment variables set the location of the Hadoop cluster configuration files and 
the Hadoop JAR files so that the required files are available to the SAS session.

options set=SAS_HADOOP_CONFIG_PATH="\\sashq\root\u\abcdef\cdh45p1";
options set=SAS_HADOOP_JAR_PATH="\\sashq\root\u\abcdef\cdh45";

Execute the PROC HADOOP statement. The PROC HADOOP statement controls 
access to the Hadoop server by identifying the user ID and password on the 
Hadoop server. The statement specifies the VERBOSE option, which enables 
additional messages to be written to the SAS log.

proc hadoop username='sasabc' password='sasabc' verbose;

Create an HDFS pathname. The first HDFS statement specifies the MKDIR= 
option to create an HDFS pathname. 

   hdfs mkdir='/user/sasabc/new_directory';

Delete an HDFS file. The second HDFS statement specifies the DELETE= option 
to delete an HDFS file. 

   hdfs delete='/user/sasabc/temp2_directory';

Copy an HDFS file. The third HDFS statement specifies the COPYTOLOCAL= 
option to specify the HDFS file to copy, the OUT= option to specify the output 
location on the local machine, and the OVERWRITE option to specify that if the 
output location exists, write over it. 

   hdfs copytolocal='/user/sasabc/testdata.txt'
        out='C:\Users\sasabc\Hadoop\testdata.txt' overwrite;
run;

Example 2: Submitting HDFS Commands with 
Wildcard Characters
Features: SAS_HADOOP_CONFIG_PATH environment variable

SAS_HADOOP_JAR_PATH environment variable
SAS_HADOOP_RESTFUL environment variable
PROC HADOOP statement
HDFS statement
Wildcard characters
OPTIONS statement
SET system option

1218 Chapter 33 / HADOOP Procedure



Details
This PROC HADOOP example submits HDFS commands to a Hadoop server. The 
statements display the contents of the specified files, change the permissions for 
one HDFS file, and list the files in a specified HDFS pathname.

Program
options set=SAS_HADOOP_CONFIG_PATH="\\sashq\root\u\abcdef\cdh45p1";
options set=SAS_HADOOP_JAR_PATH="\\sashq\root\u\abcdef\cdh45";
options set=SAS_HADOOP_RESTFUL 1;

proc hadoop username='sasabc' password='sasabc' verbose;

   hdfs cat='/user/sasabc/*';

   hdfs chmod='/user/sasabc/' permission=rwxr-xr-x;

   hdfs ls='/user/sasabc/*';
run;

Program Description
Define the SAS_HADOOP_CONFIG_PATH environment variable, the 
SAS_HADOOP_JAR_PATH environment variable, and the 
SAS_HADOOP_RESTFUL environment variable. The OPTIONS statements 
include the SET system option to define the environment variables. The first two 
environment variables set the location of the Hadoop cluster configuration files and 
the Hadoop JAR files so that the required files are available to the SAS session. The 
SAS_HADOOP_RESTFUL environment variable specifies to connect to the Hadoop 
server by using the WebHDFS REST API.

options set=SAS_HADOOP_CONFIG_PATH="\\sashq\root\u\abcdef\cdh45p1";
options set=SAS_HADOOP_JAR_PATH="\\sashq\root\u\abcdef\cdh45";
options set=SAS_HADOOP_RESTFUL 1;

Execute the PROC HADOOP statement. The PROC HADOOP statement controls 
access to the Hadoop server by identifying the user ID and password on the 
Hadoop server. The statement specifies the VERBOSE option, which enables 
additional messages to be written to the SAS log.

proc hadoop username='sasabc' password='sasabc' verbose;

Display the contents of HDFS files. The first HDFS statement specifies the CAT= 
option to display the contents of HDFS files. The wildcard character * specifies to 
match one or more characters. All files that are contained in the directory /user/
sasabc/ are displayed in the SAS log.

   hdfs cat='/user/sasabc/*';

Change the file access permissions. The second HDFS statement specifies the 
CHMOD= option to change the file access permissions for the specified HDFS 

Example 2: Submitting HDFS Commands with Wildcard Characters 1219



pathname. The file access permissions provide the owner with Read, Write, and 
Execute permission, group members with Read and Execute permission, and users 
with Read and Execute permission. 

   hdfs chmod='/user/sasabc/' permission=rwxr-xr-x;

List the files in an HDFS pathname. The third HDFS statement specifies the LS= 
option to list the files in the specified HDFS pathname to the SAS log. The wildcard 
character * specifies to match one or more characters. All files that are contained in 
the directory /user/sasabc/ are displayed in the SAS log. The output for each file 
consists of its permissions, User ID, User ID group, file size, creation date, creation 
time, and the filename.

   hdfs ls='/user/sasabc/*';
run;

Example 3: Submitting a MapReduce Program
Features: SAS_HADOOP_CONFIG_PATH environment variable

SAS_HADOOP_JAR_PATH environment variable
PROC HADOOP statement
MAPREDUCE statement
FILENAME statement

Details
This PROC HADOOP example submits a MapReduce program to a Hadoop server. 
This code runs the MapReduce job by using the Java API. To run the job by using 
the Apache Oozie RESTful API would require additional setup.

The example uses the Hadoop MapReduce application WordCount that reads a text 
input file, breaks each line into words, counts the words, and then writes the word 
counts to the output text file.

Program
options set=SAS_HADOOP_CONFIG_PATH="pathname";
options set=SAS_HADOOP_JAR_PATH="pathname";

proc hadoop username='sasabc' password='sasabc' verbose;

   mapreduce input='/user/sasabc/architectdoc.txt'

      output='/user/sasabc/outputtest'

      jar='pathname/WordCount.jar'

      outputkey='org.apache.hadoop.io.Text'

      outputvalue='org.apache.hadoop.io.IntWritable'

1220 Chapter 33 / HADOOP Procedure



      reduce='org.apache.hadoop.examples.WordCount$IntSumReducer'

      combine='org.apache.hadoop.examples.WordCount$IntSumReducer'

      map='org.apache.hadoop.examples.WordCount$TokenizerMapper';
run;

Program Description
Define the SAS_HADOOP_CONFIG_PATH environment variable and the 
SAS_HADOOP_JAR_PATH environment variable. The OPTIONS statements 
include the SET system option to define the environment variables. The 
environment variables set the location of the Hadoop cluster configuration files and 
the Hadoop JAR files so that the required files are available to the SAS session.

options set=SAS_HADOOP_CONFIG_PATH="pathname";
options set=SAS_HADOOP_JAR_PATH="pathname";

Execute the PROC HADOOP statement. The PROC HADOOP statement controls 
access to the Hadoop server by identifying the user ID and password on the 
Hadoop server. The statement specifies the VERBOSE option, which enables 
additional messages to be written to the SAS log.

proc hadoop username='sasabc' password='sasabc' verbose;

Submit a MapReduce program. The MAPREDUCE statement includes several 
options. INPUT= specifies the HDFS pathname and the filename of the input 
Hadoop file named ArchitectDoc.txt.

   mapreduce input='/user/sasabc/architectdoc.txt'

Create an HDFS pathname. OUTPUT= creates the HDFS pathname for the 
program output location named OutputTest.

      output='/user/sasabc/outputtest'

Specify the JAR file. JAR= specifies the location of the JAR file that contains the 
MapReduce program named WordCount.jar.

      jar='pathname/WordCount.jar'

Specify an output key class. OUTPUTKEY= specifies the name of the output key 
class org.apache.hadoop.io.Text. 

      outputkey='org.apache.hadoop.io.Text'

Specify an output value class. OUTPUTVALUE= specifies the name of the output 
value class org.apache.hadoop.io.IntWritable.

      outputvalue='org.apache.hadoop.io.IntWritable'

Specify a reducer class. REDUCE= specifies the name of the reducer class 
org.apache.hadoop.examples.WordCount$IntSumReducer.

      reduce='org.apache.hadoop.examples.WordCount$IntSumReducer'

Specify a combiner class. COMBINE= specifies the name of the combiner class 
org.apache.hadoop.examples.WordCount$IntSumReducer.

      combine='org.apache.hadoop.examples.WordCount$IntSumReducer'

Specify a map class. MAP= specifies the name of the map class 
org.apache.hadoop.examples.WordCount$TokenizerMapper.

Example 3: Submitting a MapReduce Program 1221



      map='org.apache.hadoop.examples.WordCount$TokenizerMapper';
run;

Example 4: Submitting Pig Language Code
Features: SAS_HADOOP_CONFIG_PATH environment variable

SAS_HADOOP_JAR_PATH environment variable
PROC HADOOP statement
PIG statement
FILENAME statement

Details
This PROC HADOOP example submits Pig language code into a Hadoop cluster. 
This code runs the Pig job by using the Java API. To run the job by using the 
Apache Oozie RESTful API would require additional setup.

Here is the Pig language code, which is stored in a text file named sample_pig.txt.

A = LOAD '/user/sasabc/class.txt' USING PigStorage(' ') 
AS (name,grade,age,height,weight);
B = FOREACH A GENERATE name, grade, some.custom.class.promotionDecision(grade) as promote;
store B into '/user/sasabc/pigout' USING PigStorage(',');

The Pig code references a data file named class.txt. The Pig code also calls a user-
defined Java function named some.custom.class.promotionDecision() to manipulate 
the data. The user has created that function and made it available in a JAR file.

Program
options set=SAS_HADOOP_CONFIG_PATH="pathname";
options set=SAS_HADOOP_JAR_PATH="pathname";

filename mycode 'pathname/sample_pig.txt';

proc hadoop username='sasabc' password='sasabc' verbose;

   pig code=mycode registerjar='pathname/gradeAnalysis.jar';
run;

Program Description
Define the SAS_HADOOP_CONFIG_PATH environment variable and the 
SAS_HADOOP_JAR_PATH environment variable. The OPTIONS statements 
include the SET system option to define the environment variables. The 

1222 Chapter 33 / HADOOP Procedure



environment variables set the location of the Hadoop cluster configuration files and 
the Hadoop JAR files so that the required files are available to the SAS session.

options set=SAS_HADOOP_CONFIG_PATH="pathname";
options set=SAS_HADOOP_JAR_PATH="pathname";

Assign a file reference to the Pig language code. The FILENAME statement 
assigns the file reference MYCODE to the physical location of the file that contains 
the Pig language code that is named Sample_Pig.txt, which is shown above. 

filename mycode 'pathname/sample_pig.txt';

Execute the PROC HADOOP statement. The PROC HADOOP statement controls 
access to the Hadoop server by identifying the user ID and password on the 
Hadoop server with the USERNAME= and PASSWORD= options. The statement 
specifies the VERBOSE option, which enables additional messages to be written to 
the SAS log.

proc hadoop username='sasabc' password='sasabc' verbose;

Execute the PIG statement. The CODE= option specifies the SAS fileref 
MYCODE, which is assigned to the physical location of the file that contains the Pig 
language code. The REGISTERJAR= option specifies the JAR file 
gradeAnalysis.jar, which the user has created, to provide user-defined functions.

   pig code=mycode registerjar='pathname/gradeAnalysis.jar';
run;

Example 5: Submitting Configuration Properties
Features: PROC HADOOP statement

PROPERTIES statement
MAPREDUCE statement

Details
This PROC HADOOP example submits a MapReduce program to a Hadoop server. 
Rather than specifying a Hadoop configuration file in the PROC HADOOP 
statement, the configuration properties are submitted in the PROPERTIES 
statement.

Program
proc hadoop username='sasabc' password='sasabc' verbose;

   prop 'mapred.job.tracker'='xxx.us.company.com:8021' 
      'fs.default.name'='hdfs://xxx.us.company.com:8020';

   mapreduce jar="&mapreducejar."
      input="&inputfile."
      output="&outdatadir."

Example 5: Submitting Configuration Properties 1223



      deleteresults;
run;

Program Description
Execute the PROC HADOOP statement. The PROC HADOOP statement controls 
access to the Hadoop server by identifying the user ID and password on the 
Hadoop server. The statement specifies the VERBOSE option, which enables 
additional messages to be written to the SAS log.

proc hadoop username='sasabc' password='sasabc' verbose;

Submit configuration properties. The PROPERTIES statement submits 
properties to specify the name and JobTracker addresses in order to connect to the 
Hadoop server.

   prop 'mapred.job.tracker'='xxx.us.company.com:8021' 
      'fs.default.name'='hdfs://xxx.us.company.com:8020';

Submit a MapReduce program. The MAPREDUCE statement includes several 
options.

   mapreduce jar="&mapreducejar."
      input="&inputfile."
      output="&outdatadir."
      deleteresults;
run;

1224 Chapter 33 / HADOOP Procedure



Chapter 34
HDMD Procedure

Overview: HDMD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225
What Does the HDMD Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225
File Readers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226

Concepts: HDMD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226
Accessing Data Independently from Hive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226
Working with Hive 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227

Syntax: HDMD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1232
PROC HDMD Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1232
COLUMN Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236

Examples: HDMD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1239
Example 1: Create Hadoop Metadata from a Delimited File . . . . . . . . . . . . . . . . 1239
Example 2: Define Metadata for a Delimited File . . . . . . . . . . . . . . . . . . . . . . . . . 1240
Example 3: Define Metadata for a Delimited File with Column Headings . . . . . . 1240
Example 4: Extract Columns from Binary Data . . . . . . . . . . . . . . . . . . . . . . . . . . 1241
Example 5: Extract Columns from MVS Binary Data . . . . . . . . . . . . . . . . . . . . . . 1241
Example 6: Extract Columns from a Binary File with Chinese Encoding . . . . . . . 1242
Example 7: Extract Columns from XML Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1242
Example 8: Use the DESCRIBE Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1242
Example 9: Define a Custom Reader and Use a Data File . . . . . . . . . . . . . . . . . 1243

Overview: HDMD Procedure

What Does the HDMD Procedure Do?
Use PROC HDMD to generate XML-based metadata that describes the contents of 
files that are stored in HDFS. This metadata enables SAS/ACCESS Interface to 
Hadoop, SAS/ACCESS Interface to Spark, and SAS high-performance procedures 

1225



to read Hadoop data directly without an intermediate metadata repository such as 
Hive.

File Readers
You can use PROC HDMD to describe tabular HDFS files for these formats:

n fixed-record length (binary) data

n delimited text

n XML-encoded text

PROC HDMD can also associate a custom MapReduce reader (one that is based in 
Java) with a file. The custom reader is able to produce delimited text or fixed length 
binary records that can be described using the PROC HDMD syntax. You can use 
custom MapReduce readers only with SAS high-performance procedures for 
Hadoop. SAS/ACCESS Interface to Hadoop does not currently use custom readers.

Concepts: HDMD Procedure

Accessing Data Independently from Hive
When you specify the HDFS_METADIR= connection option, SAS/ACCESS does 
not connect to Hive. It instead accesses data through HDFS. SAS can create and 
use XML-based metadata descriptions of HDFS files and tables. You can create 
XML-based metadata with PROC HDMD. The filetype for an XML-based metadata 
description that PROC HDMD produces is SASHDMD (for example, 
product_table.sashdmd). Another name for this metadata is a SASHDMD 
descriptor.

Similar to HiveQL data definition language (DDL), SASHDMD descriptors describe 
the columns in an HDFS file or table, and it contains the file or table location. If it 
describes one file, a SASHDMD descriptor contains a complete HDFS file path.

/corp/files/product_codes.dat

When it describes a table, the SASHDMD descriptor contains an HDFS directory:

/corp/tables/purchases/franchise_201

Similar to Hive, it is expected that the directory contains identically structured files. 
These files have identical column layout:

/corp/tables/purchases/franchise_201/income_2012-01-02.dat

/corp/tables/purchases/franchise_201/income_2012-01-03.dat

/corp/tables/purchases/franchise_201/income_2012-01-04.dat

1226 Chapter 34 / HDMD Procedure

http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n1h398otek0j00n1itib5k7ch738.htm&docsetTargetAnchor=p12b4yk6ltedhln15s5c6ev9fa9v&locale=en


In this example, PROC HDMD creates a SASHDMD descriptor for this income table 
data. The income table has four comma-separated columns, a product code, the 
quantity purchased, the price, and the total purchase amount including tax.

libname hdplib hadoop server=mysrv1
   user=myusr1 pass=mypwd1
   hdfs_metadir="/corp/metadata"
   hdfs_datadir="/corp/tables/purchases/franchise_201";

proc hdmd hdplib.meta_income
   file_format=delimited encoding=utf8 sep=','
   data_file='file01.ebcd'
;

column product_code int;
column quantity_purchased int;
column price real;
column total_purchase_amount real;
run;

Working with Hive 3.0

Overview
Apache Hive 3.0 provides better support for transactional data. Changes to improve 
transaction support for Hive managed tables also mean that PROC HDMD users 
must perform extra steps to create and use metadata descriptions (.HDMD files) for 
existing Hive tables.

Managed and External Tables
Hive has two types of tables: managed and external. By default, a table that you 
create in Hive is always a managed table, which means that Hive manages its life 
cycle. To create an external table, you specify the EXTERNAL keyword in the 
CREATE TABLE query and include the LOCATION.

The difference between the two tables is what Hive deletes when you drop the table.

n managed: table metadata from the Hive MetaStore and physical data from the 
Hadoop file system

n external: only table metadata; table data from the Hadoop file system is retained

Concepts: HDMD Procedure 1227



Managed Tables and Transactional 
Support
By default in Apache 3.0, all new tables are created with transactional support. 
Apache 3.0 also introduces a new restriction that Hive managed tables must be 
transactional. However, you can override this by setting the 
hive.strict.managed.tables Hive property to FALSE.

Therefore, in Apache Hive 3.0, by default a new table is both managed and 
transactional.

This example shows how to create the CLASS managed, transactional table.

0: jdbc:hive2:> create table class (name varchar(8), sex varchar(1), 
   age double, weight double);
INFO  : OK
No rows affected (0.045 seconds)
0: jdbc:hive2:> describe formatted class;
INFO  : OK

1228 Chapter 34 / HDMD Procedure



+----------------------+------------------------------------------------------------+--------------------+

|       col_name       |                     data_type                              |       comment      |

+----------------------+------------------------------------------------------------+--------------------+

| # col_name           | data_type                                                  |                    |

| name                 | varchar(8)                                                 |                    |

| sex                  | varchar(1)                                                 |                    |

| age                  | double                                                     |                    |

| height               | double                                                     |                    |

| weight               | double                                                     |                    |

|                      | NULL                                                       | NULL               |

| # Detailed Table     |                                                            |                    |

| # Information        | NULL                                                       | NULL               |

| Database:            | default                                                    | NULL               |

| OwnerType:           | USER                                                       | NULL               |

| Owner:               | hadoop                                                     | NULL               |

| CreateTime:          | Fri Sep 28 09:30:10 EDT 2018                               | NULL               |

| LastAccessTime:      | UNKNOWN                                                    | NULL               |

| Retention:           | 0                                                          | NULL               |

| Location:            | hdfs://server16.corp.com:8020/warehouse                    |                    |

|                      |    /tablespace/managed/hive/class                          | NULL               |

| Table Type:          | MANAGED_TABLE                                              | NULL               |

| Table Parameters:    | NULL                                                       | NULL               |

|                      | SAS OS Name                                                | Linux              |

|                      | SAS Version                                                | 9.04.01M6D09272018 |

|                      | bucketing_version                                          | 2                  |

|                      | numFiles                                                   | 1                  |

|                      | numRows                                                    | 0                  |

|                      | rawDataSize                                                | 0                  |

|                      | totalSize                                                  | 496                |

|                      | transactional                                              | true               |

|                      | transactional_properties                                   | insert_only        |

|                      | transient_lastDdlTime                                      | 1538141416         |

|                      | NULL                                                       | NULL               |

| # Storage            |                                                            |                    |

| # Information        | NULL                                                       | NULL               |

| SerDe Library:       | org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe         | NULL               |

| InputFormat:         | org.apache.hadoop.mapred.TextInputFormat                   | NULL               |

| OutputFormat:        | org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat | NULL               |

| Compressed:          | No                                                         | NULL               |

| Num Buckets:         | -1                                                         | NULL               |

| Bucket Columns:      | []                                                         | NULL               |

| Sort Columns:        | []                                                         | NULL               |

| Storage Desc Params: | NULL                                                       | NULL               |

|                      | field.delim                                                | \u0001             |

|                      | line.delim                                                 | \n                 |

|                      | serialization.format                                       | \u0001             |

+----------------------+------------------------------------------------------------+--------------------+

40 rows selected (0.163 seconds)

Transactional, Managed, and PROC 
HDMD
When a text file is created with transactional support, the on-disk structure of the file 
is different from a non-transactional table. When PROC HDMD creates metadata 
about a Hive transactional table, it stores metadata in the .HDMD file such that the 
table cannot be directly read by downstream operations. For example, attempting to 
run PROC PRINT using an HDMD table reference to a transactional table fails and 
generates this error message:

Concepts: HDMD Procedure 1229



ERROR:  Cannot read the HDMD-defined data file NLSCARS in CUSTOM 
        format.  The table is managed by Hive and is either a Hive 
        transactional table or represented in a "non-native" HDMD format.

To resolve this issue, you must create the table as non-transactional. Because of the 
restriction that managed tables must be transactional, the table must also be 
created as external.

Here is an example using the Beeline client. Note that DESCRIBE FORMATTED 
does not show transactional in the table parameters.

0: jdbc:hive2:> create external table class 
   (name varchar(8), sex varchar(1), age double, weight double) 
      location '/tmp' tblproperties ("transactional"="false");
INFO  : OK
No rows affected (0.267 seconds)
0: jdbc:hive2://server18.corp.com:2181,srv> describe formatted class;
INFO  : OK

+----------------------+------------------------------------------------------------+--------------------+

|       col_name       |                     data_type                              |       comment      |

+----------------------+------------------------------------------------------------+--------------------+

| # col_name           | data_type                                                  |                    |

| name                 | varchar(8)                                                 |                    |

| sex                  | varchar(1)                                                 |                    |

| age                  | double                                                     |                    |

| weight               | double                                                     |                    |

|                      | NULL                                                       | NULL               |

| # Detailed Table     |                                                            |                    |

| # Information        | NULL                                                       | NULL               |

| Database:            | default                                                    | NULL               |

| OwnerType:           | USER                                                       | NULL               |

| Owner:               | hadoop                                                     | NULL               |

| CreateTime:          | Tue Oct 02 13:10:11 EDT 2018                               | NULL               |

| LastAccessTime:      | UNKNOWN                                                    | NULL               |

| Retention:           | 0                                                          | NULL               |

| Location:            | hdfs://server16.corp.com:8020/tmp                          | NULL               |

| Table Type:          | EXTERNAL_TABLE                                             | NULL               |

| Table Parameters:    | NULL                                                       | NULL               |

|                      | EXTERNAL                                                   | TRUE               |

|                      | bucketing_version                                          | 2                  |

|                      | numFiles                                                   | 0                  |

|                      | totalSize                                                  | 0                  |

|                      | transient_lastDdlTime                                      | 1538500211         |

|                      | NULL                                                       | NULL               |

| # Storage            |                                                            |                    |

| # Information        | NULL                                                       | NULL               |

| SerDe Library:       | org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe         | NULL               |

| InputFormat:         | org.apache.hadoop.mapred.TextInputFormat                   | NULL               |

| OutputFormat:        | org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat | NULL               |

| Compressed:          | No                                                         | NULL               |

| Num Buckets:         | -1                                                         | NULL               |

| Bucket Columns:      | []                                                         | NULL               |

| Sort Columns:        | []                                                         | NULL               |

| Storage Desc Params: | NULL                                                       | NULL               |

|                      | serialization.format                                       | 1                  |

+----------------------+------------------------------------------------------------+--------------------+

32 rows selected (0.055 seconds)

1230 Chapter 34 / HDMD Procedure



Creating External, Non-Transactional 
Tables with SAS
To use PROC HDMD to describe a Hive source table, you must create the table as 
both managed and non-transactional. You can create it readily with PROC SQL 
using explicit SQL.

Here is an example that uses a LIBNAME statement.

options sastrace=',,,d' sastraceloc=saslog nostsuffix 
   sql_ip_trace=(note,source) msglevel=i;
options set=SAS_HADOOP_JAR_PATH=
   "/u/corpadmin/viya/hadoopjars/hdp30/prod";
options set=SAS_HADOOP_CONFIG_PATH=
   "/u/corpadmin/viya/hadoopcfg/hdp30d1/test";
options set=SAS_HADOOP_JAR_PATH=
   "\\newwinsrc\u\corpadmin\viya\hadoopjars\hdp30\prod";
options set=SAS_HADOOP_CONFIG_PATH=
   "\\newwinsrc\u\corpadmin\viya\hadoopcfg\hdp30d1\test";

libname x hadoop user=abc pwd=abc;
libname nohive hadoop hdfs_tempdir='/tmp/' 
   hdfs_datadir='/tmp' hdfs_metadir='/tmp' server=server18;

proc delete data=x.class;run;

proc sql;
connect using x;
execute (create external table if not exists default.class 
   (name varchar(8), sex varchar(1), age double, weight double) 
      location '/tmp/class' tblproperties ("transactional"="false")
   ) by x;               
quit;

proc delete data=nohive.classhdmd;run;
proc hdmd from=x.class nohive.classhdmd;run;
proc print data=nohive.classhdmd;run;

Summary
When you know how to use PROC HDMD to create a metadata description of a 
Hive table, you can use PROC PRINT and other SAS tools to reference the table. 
The example shows how to specify the EXTERNAL and LOCATION keywords along 
with the table properties set to FALSE to create the source Hive table.

Concepts: HDMD Procedure 1231



Syntax: HDMD Procedure
Restriction: This procedure is not supported on the CAS server.

Requirements: To be able to work with Hive 3.0 data, you must first set external table properties. For 
details, see “Working with Hive 3.0” on page 1227.
At least one COLUMN statement is required in a PROC HDMD procedure step.

Supports: Hadoop, Spark

See: “LIBNAME Statement for the Hadoop Engine” in SAS/ACCESS for Relational 
Databases: Reference

PROC HDMD <hadoop-metadata-options;>
COLUMN <column-specifications>;

Statement Task Example

PROC HDMD Generate and use metadata descriptions of 
HDFS files and tables.

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5, Ex. 6, 
Ex. 7, Ex. 8, 
Ex. 9

COLUMN Specifies the columns of HDFS files and tables 
with which to work.

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5, Ex. 6, 
Ex. 7, Ex. 8, 
Ex. 9

PROC HDMD Statement
Generates the XML metadata for tables or files that are not registered in Hive.

Syntax
PROC HDMD
<BYTE_ORDER=LITTLEENDIAN | BIGENDIAN>
<DATA_FILE='input-filename'>
<ENCODING=encoding>
<FILE_FORMAT=file-format>
<FILE_TYPE='custom-input-file-type'>
<FROM=Hive-table>
<HEADER_LINES=n>
<INPUT_CLASS='java.class'>

1232 Chapter 34 / HDMD Procedure

http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n1h398otek0j00n1itib5k7ch738.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n1h398otek0j00n1itib5k7ch738.htm&locale=en


<MANAGED>
<NAME=libref.filename <hadoop | spark>>
<RECORD_LENGTH=record-length>
<ROW_TAG='row-tag'>
<SEP='character-separator'>
<TEXT_QUALIFIER='character-qualifier'>;

COLUMN column-specifications;

run;

Optional Hadoop Metadata Options
These options control how metadata is generated.

BYTE_ORDER=< LITTLEENDIAN | BIGENDIAN >
specifies how numeric data is stored. If LITTLEENDIAN, it is stored with the least 
significant byte first, such as a PC. If BIGENDIAN,, it is stored with the most 
significant byte first.

Type optional

Default client

Applies to BINARY

DATA_FILE='input-filename'
specifies the path to the input data file relative to the HDFS_DATADIR= option in 
the Hadoop engine LIB statement.

Type required

Default none

Applies to BINARY, DELIMITED, XML

ENCODING=encoding
specifies the encoding for text for the input data file or folder.

Type optional

Default UTF8 (if you do not specify a value)

Applies to BINARY

FILE_FORMAT=file-format
specifies the format of the input data that is passed to the SAS Embedded 
Process for Hadoop.

file-format can be one of the following values:

BINARY
specifies a file with fixed length records where numeric data is stored in 
machine-specific binary form.

DELIMITED
specifies a file that contains only text-based data where fields are separated 
by a specific delimiter. Delimited records can vary in length.

See “SEP='character-separator'” on page 1235

PROC HDMD Statement 1233



XML
specifies a text-based data file in XML format.

Type required

Alias FILE_FMT=

Default none

Applies to BINARY, DELIMITED, XML

FILE_TYPE='custom-input-file-type'
specifies the file type that is used in the MapReduce framework to load the data 
into the SAS Embedded Process. The file type maps to a SAS provided 
MapReduce input format classes name. The input format classes that is 
provided by SAS for a particular file type creates specific input readers. For 
example, the DELIMITED file type is mapped to the MapReduce input format 
class, com.sas.access.hadoop.ep.delimited.DelimitedInputFormat.

Type optional

Default none

Applies to BINARY, DELIMITED, XML

Requirement To use a custom-sequence file type, you must specify 
INPUT_CLASS= and also FILE_TYPE=CUSTOM_SEQUENCE.

Interaction If you specify an input class, FILE_TYPE= defaults to CUSTOM.

FROM=Hive-table
specifies the name of a Hive table that you want to use for in-database scoring. 
SAS creates the metadata file Hive-table.sashdmd in the target’s metadata 
directory.

Example proc hdmd hdfs.&modelnm. from=hive.&modelnm.; run;

HEADER_LINES=n
specifies the number of lines that are skipped when parsing delimited files.

Type optional

Default none

Applies to DELIMITED

INPUT_CLASS='java.class'
specifies the fully qualified class name that implements the Java custom 
MapReduce reader to use.

Type optional

Default none

Applies to BINARY, DELIMITED, XML

Requirement The class must be in the class path of the Hadoop server.

1234 Chapter 34 / HDMD Procedure



Interaction The DBCREATE_EXTERNAL_TABLE= LIBNAME option ignores 
this option.

MANAGED
specifies that the file is deleted when its metadata is deleted (for example, by 
using PROC DELETE).

Type optional

Default By default, data files are not managed—namely, they are not 
deleted when the metadata is deleted..

Applies to BINARY, DELIMITED, XML

Interaction The DBCREATE_EXTERNAL_TABLE= LIBNAME option ignores 
this option.

NAME=libref.filename <hadoop | spark>
specifies the name of the metadata file to create. The HDFS_METADIR= 
connection option specifies where metadata is located.

Type required

Default none

Applies to BINARY, DELIMITED, XML

Requirement The libref must be a valid Hadoop or Spark engine libref for which 
HDFS_METADIR= and HDFS_DATADIR= options have been 
specified.

Data source Hadoop, Spark

RECORD_LENGTH=record-length
specifies the record length of the BINARY file.

Type required

Default none

Applies to BINARY

ROW_TAG='row-tag'
specifies the XML tag that identifies records in the input XML.

Type required

Default none

Applies to XML

Restriction This option is case sensitive.

SEP='character-separator'
specifies the character to separate the columns for the records in the delimited 
input file. Here is how you can specify values.

n SEP=^A

n SEP=','

PROC HDMD Statement 1235

http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n1h398otek0j00n1itib5k7ch738.htm&docsetTargetAnchor=p12b4yk6ltedhln15s5c6ev9fa9v&locale=en


n SEP=TAB

n SEP=^Z

n SEP='09'x

n SEP=32

Type required

Default ^A (if you do not specify a value)

Range You can specify only a single character between the Unicode range 
of U+0001 to U+007F.

Applies to DELIMITED

Restriction The value of this option cannot be the same character as for 
TEXT_QUALIFIER= and cannot be a newline ('0a'x).

TEXT_QUALIFIER='character-qualifier'
specifies the text qualifier for the input data file or folder. Here is how you can 
specify values.

Type optional

Default none

Range You can specify only a single character between the Unicode 
range of U+0001 to U+007F.

Applies to DELIMITED

Restriction The value of this option cannot be the same character as for 
SEP= and cannot be a newline ('0a'x).

Requirement You must specify either a double quotation mark enclosed in 
single quotation marks(' ” ') or a single quotation mark enclosed in 
double quotation marks (“ ' ”).

COLUMN Statement
Provides specifications for one or more columns.

Requirement: One or more of these statements is required.

Syntax
COLUMN <column-options> <data-type> <name>;

1236 Chapter 34 / HDMD Procedure



Column Specifications
column-options

specifies one or more column options.

BYTES=byte-length
for BINARY files, specifies the number of bytes that the data occupies in the 
record.

Type required

Default none

Applies to BINARY

CTYPE=ctype
for BINARY files, specifies the actual binary type of data that to be stored in 
the record. Here are the valid binary data types:

n CHAR

n DOUBLE

n FLOAT

n INT8

n INT16

n INT32

n INT64

n UINT8

n UINT16

n UINT32

n UINT64

Type optional

Default none

Applies to BINARY

ENCODING=encoding
for BINARY files, specifies the encoding for the character data if it differs from 
the overall file encoding.

Type optional

Default none

Applies to BINARY

FORMAT=format-specification
specifies the format that is associated with the column.

Type optional

Default none

COLUMN Statement 1237



Applies to BINARY, DELIMITED, XML

See SAS Formats and Informats: Reference

INFORMAT=informat-specification
specifies the informat to use to read the input data.

Type optional

Default none

Applies to BINARY, DELIMITED, XML

See SAS Formats and Informats: Reference

OFFSET=bytes
specifies the offset of the column data in the record.

Type required

Default none

Applies to BINARY

TAG='tag'
specifies the XML element that encloses the column data.

Type required

Default none

Applies to XML

data-type
specifies a valid data type:

n BIGINT

n CHAR(n)

n DATE

n DOUBLE

n INT

n REAL

n SMALLINT

n TIME[(prec)]

n TIMESTAMP[(prec)]

n TINYINT

n VARCHAR(n)

Type required

Default none

Applies to BINARY, DELIMITED, XML

1238 Chapter 34 / HDMD Procedure

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Interaction The Hadoop engine converts all numeric types to DOUBLE.

name
specifies a name for the column.

Type required (when specified)

Default none

Applies to BINARY, DELIMITED

Examples: HDMD Procedure

Example 1: Create Hadoop Metadata from a 
Delimited File

You can use the HDMD procedure to create metadata in a Hadoop file or directory 
of files. This example starts with a comma-delimited file with three columns.

Name,Age,Weight
John,32,180
Jane,27,112
Tim,54,210

By assigning a data type for each column that is retrieved, here is how you can 
create the metadata.

libname hdplib hadoop server=mysrv1_cluster1
user=myusr1 pass=mypwd1
/* connection options */
config='/user/configs/hadoop_cluster1.xml'
hdfs_tempdir='/corp/tempdir'
hdfs_metadir='/corp/metadata'
hdfs_datadir='/corp/tables/purchases';

proc hdmd hdplib.people
   file_format=delimited sep=',' encoding=utf8 
   data_file='people.csv' header_lines=1;
column name char(8);
column age int;
column weight int;
run;

Example 1: Create Hadoop Metadata from a Delimited File 1239



Example 2: Define Metadata for a Delimited File

This example uses the Hadoop LIBNAME statement to define metadata for a 
delimited file. The file contains this data:

12.34 23f45 "This shows quotes" 4.5 2013-05-05 
unquoted 11:12:13 09:05:12.2345 "2013-03-04 
12:13:12.12345678" 3 10240 1298378438743

A blank character and a double quotation mark are used to parse the file.

libname hdplib hadoop server=mysrv1_cluster1
user=myusr1 pass=mypwd1
/* connection options */
config='/user/configs/hadoop_cluster1.xml'
hdfs_tempdir='/corp/tempdir'
hdfs_metadir='/corp/metadata'
hdfs_datadir='/corp/tables/purchases';

proc hdmd hdp.foo file_format=delimited
encoding=utf8 sep='20'x text_qualifier='"'
data_dir='franchise_201';
column col1 double file_format=dollar6.2;
column col2 int informat=hex5.;
column 'col3 has a blank'n char(20) file_format=$revers20.;
column col4 real;
column col5 date;
column col5 varchar(42);
column col6 time;
column col7 time(4);
column col8 timestamp(8);
column col9 tinyint;
column col10 smallint;
column col11 bigint;
run;

Example 3: Define Metadata for a Delimited File 
with Column Headings

This example starts with a comma-delimited file with two columns.

ID,Full Name
1,"Doe, John"
2,"Smith, Sally"

1240 Chapter 34 / HDMD Procedure



Here is the syntax for the HDMD procedure.

proc hdmd hdplib.text_qualifer_example 
   file_format=delimited sep=',' text_qualifier='"' 
   header_lines=1 input_dir="text_qualifier.csv";

column id double;
column fullname char(32);
run;

Here is the resulting PROC PRINT output.

proc print data=hdplib.text_qualifer_example;run;

The SAS System
 
Obs    id    fullname
1    1    Doe, John
2    2    Smith, Sally

Example 4: Extract Columns from Binary Data
In this example, two columns are extracted from a binary file.

proc hdmd hdp.foo file_format=binary
record_length=80
data_file='foo.bin';
column size double ctype=double bytes=8;
column id bigint ctype=int64 offset=8;
column name char(42) ctype=char offset=16 bytes=42;
run;

Example 5: Extract Columns from MVS Binary Data
This example is similar to the previous one. However, because the data was 
extracted from MVS, it contains DOUBLE data types and EBCDIC characters.

proc hdmd hdp.foo file_format=binary
record_length=80 encoding=ebcdic037
data_file='foo.bin';
column size double ctype=double bytes=8 informat=s370frb8.;
column name char(42) ctype=char offset=8 bytes=42 encoding=ebcdic037;
run;

Example 5: Extract Columns from MVS Binary Data 1241



Example 6: Extract Columns from a Binary File with 
Chinese Encoding

In this example, two columns are extracted from the beginning of a binary 80 ASCII 
file. The character column is encoded in Chinese.

proc hdmd hdp.foo file_format=binary
record_length=80 encoding=utf8
data_file='foo.bin';
column size double ctype=double bytes=8;
column name char(42) ctype=char offset=8 bytes=42 encoding='euc-cn';
run;

Example 7: Extract Columns from XML Data

In this example, two columns are extracted from an XML file that contains these 
XML tags:

<row><Size>42.5</Size><Name>Julius Caesar</Name></row>

Here is the syntax for the HDMD procedure.

proc hdmd hdp.foo file_format=xml
row_tag='row'data_file='foo.xml';
column size double tag='Size';
column name char(42) tag='Name';
run;

Example 8: Use the DESCRIBE Option
This example uses the HDMD procedure to describe the syntax and output.

proc hdmd libname.data
   file_format=delimited sep=','
   input_dir="mydata.csv"
;

column I   double;
column J   double;
column W   double;
run;

proc hdmd libname.data describe;
run;

1242 Chapter 34 / HDMD Procedure



Here is the resulting log file.

1103  proc hdmd libname.data
1104  describe;
1105  run;

Here is the resulting output.

PROC HDMD HDPLIB.REAL2
    FILE_FORMAT=DELIMITED ENCODING=UTF8 SEP=',' BYTE_ORDER=LITTLEENDIAN
    FILE_TYPE=DELIMITED
    DATA_DIR='/user/data/csv/data/mydasta.csv'
    META_DIR='/user/data/csv/meta';
COLUMN /* 1 */ I DOUBLE OFFSET=0 BYTES=8 CTYPE=DOUBLE;
COLUMN /* 2 */ J DOUBLE OFFSET=0 BYTES=8 CTYPE=DOUBLE;
COLUMN /* 3 */ W DOUBLE OFFSET=0 BYTES=8 CTYPE=DOUBLE;

Example 9: Define a Custom Reader and Use a 
Data File

Before PROC HDMD runs, this example starts by defining the 
SAS_HADOOP_JAR_PATH environment variable within SAS by entering this 
OPTION SET statement. The variable points to folders with all Hadoop JAR files.

option set=SAS_HADOOP_JAR_PATH="/users/SAS/JARS:/users/SAS/JARS/
cdh420";

It then defines a LIBNAME statement to point to Hadoop.

libname hdplib hadoop
   user=myusr1 pw=mypwd1 server="mysrv1"
   HDFS_TEMPDIR="/user/hdmddemo/temp"
   HDFS_DATADIR="/user/hdmddemo/data"
   HDFS_METADIR="/user/hdmddemo/meta"
   DBCREATE_TABLE_EXTERNAL=NO
   CONFIG="/user/mycfg1.xml";

Last, it creates the HDMD file.

proc hdmd hdplib.peopleseq
   file_format=delimited sep=tab
   file_type=custom_sequence
   input_class=
      
'com.abc.hadoop.ep.inputformat.sequence.PeopleCustomSequenceInputFormat
'
   data_file='people.seq';

column name varchar(20);
column sex varchar(1);
column age int;
column height double;
column weight double;

Example 9: Define a Custom Reader and Use a Data File 1243



run;

1244 Chapter 34 / HDMD Procedure



Chapter 35
HTTP Procedure

Overview: HTTP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1245
What Does the HTTP Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246

Syntax: HTTP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1246
PROC HTTP Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1247
DEBUG Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257
HEADERS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1259
SSLPARMS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1260

Usage: HTTP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261
Using Hypertext Transfer Protocol Secure (HTTPS) . . . . . . . . . . . . . . . . . . . . . . 1261
Using Authentication Other Than Basic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262
Wire Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1262
Using Encodings with PROC HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1263
Using the FORM and QUERY Options with PROC HTTP . . . . . . . . . . . . . . . . . . 1263
Using the MULTI Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1264
Using HEADERS= to Send Chunked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1265
PROC HTTP Response Status Macro Variables . . . . . . . . . . . . . . . . . . . . . . . . . 1265
Macro Variables for Setting Global Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266

Examples: HTTP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267
Example 1: A Simple GET Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267
Example 2: A Simple POST Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1267
Example 3: Specify a Proxy In the HTTP Request . . . . . . . . . . . . . . . . . . . . . . . 1268
Example 4: Specifying Input Data as a String . . . . . . . . . . . . . . . . . . . . . . . . . . . 1269
Example 5: Specify A Proxy In a Macro Variable . . . . . . . . . . . . . . . . . . . . . . . . . 1270
Example 6: A POST That Captures the Response Headers . . . . . . . . . . . . . . . . 1271
Example 7: A GET That Specifies HEADEROUT_OVERWRITE . . . . . . . . . . . . 1272
Example 8: A GET That Uses the HEADERS Statement . . . . . . . . . . . . . . . . . . 1274
Example 9: A Nonstandard Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1275
Example 10: A Request That Specifies an Authentication Type . . . . . . . . . . . . . 1275
Example 11: A PUT That Specifies EXPECT_100_CONTINUE . . . . . . . . . . . . . 1276
Example 12: Create A Program That Captures Status Response Values . . . . . . 1277
Example 13: Use the DEBUG Statement with the LEVEL= Option . . . . . . . . . . . 1281
Example 14: Specify Local Options for Two-Way Encryption in Windows . . . . . . 1283
Example 15: Specify Local Options for Two-Way Encryption in UNIX . . . . . . . . . 1284

1245



Overview: HTTP Procedure

What Does the HTTP Procedure Do?
The HTTP procedure issues Hypertext Transfer Protocol (HTTP) requests. The 
procedure is supported in both SAS 9.4 and SAS Viya.

PROC HTTP allows an open-ended set of methods. In addition to standard HTTP 
methods, PROC HTTP accepts any method that conforms to the HTTP/1.1 standard 
and that is recognized by the target web server. PROC HTTP also implements 
HTTP/1.1 features such as persistent connections, cookie caching, 
EXPECT_100_CONTINUE support, and it provides authentication type 
specification.

For web servers that support it, PROC HTTP uses connection caching and cookie 
caching by default. You can toggle the behavior of both types of caching and clear 
the caches within the procedure by specifying procedure arguments. Or you can 
turn cookie caching off by using a macro variable.

The authentication specification feature enables you to specify one or multiple 
authentication types for a request.

Beginning with the November 2019 release of SAS 9.4M6 and SAS Viya 3.5, you 
can easily post form data as well as perform HTTP multipart requests. A new 
QUERY= procedure option simplifies the process of submitting query parameters for 
the URL= argument. For more information, see “Using the FORM and QUERY 
Options with PROC HTTP” on page 1263 and “Using the MULTI Option” on page 
1264.

The procedure includes a DEBUG statement, response status macro variables, and 
the ability to specify a time-out period for requests. Beginning with SAS 9.4M6 and 
SAS Viya 3.5, a new statement, SSLPARMS, enables you to override global SAS 
system options for encryption with local options for a specific PROC HTTP request.

Syntax: HTTP Procedure
Restrictions: This procedure is not supported on the CAS server.

When SAS is in a locked-down state, the HTTP procedure is not available. Your server 
administrator can re-enable this procedure so that it is accessible in the lockdown state. 
When the FILENAME, URL access method is re-enabled by using the LOCKDOWN 
ENABLE_AMS= statement, the HTTP procedure is automatically re-enabled. For more 
information, see “SAS Processing Restrictions for Servers in a Locked-Down State” in 
SAS Programmer’s Guide: Essentials

1246 Chapter 35 / HTTP Procedure

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en


Tip: PROC HTTP sets up macro variables with certain values after it executes each 
statement. These macro variables can be used inside a macro to test for HTTP errors. 
For more information, see “PROC HTTP Response Status Macro Variables” on page 
1265.

PROC HTTP URL="URL-to-target" <options>;
DEBUG options;
HEADERS "HeaderName"="HeaderValue"

<"HeaderName-n"="HeaderValue-n">;
SSLPARMS encryption-options;

Statement Task Example

PROC HTTP Issue HTTP requests Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5, Ex. 6, 
Ex. 7, Ex. 9, 
Ex. 10, Ex. 
11, Ex. 12

DEBUG Display debugging messages Ex. 13

HEADERS Specify request headers for the HTTP request Ex. 8

SSLPARMS Set encryption options for the PROC HTTP 
request

Ex. 14

PROC HTTP Statement
Invokes a web service that issues requests.

Examples: “Example 1: A Simple GET Request” on page 1267
“Example 2: A Simple POST Request” on page 1267
“Example 3: Specify a Proxy In the HTTP Request” on page 1268
“Example 4: Specifying Input Data as a String” on page 1269
“Example 5: Specify A Proxy In a Macro Variable” on page 1270
“Example 6: A POST That Captures the Response Headers” on page 1271
“Example 7: A GET That Specifies HEADEROUT_OVERWRITE” on page 1272
“Example 8: A GET That Uses the HEADERS Statement” on page 1274
“Example 9: A Nonstandard Method” on page 1275
“Example 10: A Request That Specifies an Authentication Type” on page 1275
“Example 11: A PUT That Specifies EXPECT_100_CONTINUE” on page 1276
“Example 12: Create A Program That Captures Status Response Values” on page 1277
“Example 13: Use the DEBUG Statement with the LEVEL= Option” on page 1281
“Example 14: Specify Local Options for Two-Way Encryption in Windows” on page 1283

PROC HTTP Statement 1247



Syntax
PROC HTTP URL="URL-to-target</redirect/n>"

<METHOD=<">http-method<">>
<authentication-type-options>
<caching-options>
<header-options>
<proxy-server-connection-options>
<web-server-authentication-options>
<EXPECT_100_CONTINUE>
<FOLLOWLOC | NOFOLLOWLOC>
<HTTP_TOKENAUTH>
<IN=<fileref | FORM (arguments) | MULTI <options> (parts) | "string">>
<MAXREDIRECTS=n>
<OUT=fileref>
<QUERY=("parm1"="value1" "parm2="value2" …)>

;

Summary of Optional Arguments
EXPECT_100_CONTINUE

enables a client to determine whether the target server is willing to accept 
the request.

FOLLOWLOC
enables write methods to automatically follow URL redirections.

HTTP_TOKENAUTH
generates a one-time password from the metadata server that can be 
used to access the SAS Content Server.

IN=fileref | FORM (arguments) | MULTI <options > | "string"
specifies the input data.

MAXREDIRECTS=n
specifies the maximum number of redirects that are allowed.

METHOD=<">http-method<">
specifies an HTTP method.

NOFOLLOWLOC
prevents the GET method from following URL redirections.

OUT=fileref-to-response-data
specifies a fileref where output is written.

QUERY=(<NOENCODE>"parm1"="value1" "parm2"="value2")
provides an alternate method for submitting query parameters for the 
URL= argument.

TIMEOUT=integer
specifies the number of seconds of inactivity to wait before canceling an 
HTTP request.

Authenticate to Web Server
WEBAUTHDOMAIN="web-credentials-from-metadata"

1248 Chapter 35 / HTTP Procedure



specifies the web authentication domain.
WEBPASSWORD="basic-authentication-password"

specifies a password for basic authentication.
WEBUSERNAME="basic-authentication-name"

specifies a user name for basic authentication.

Connect to Proxy Server
PROXYHOST="proxy-host-name"

specifies the Internet host name of an HTTP proxy server.
PROXYPASSWORD="proxy-passwd"

specifies an HTTP proxy server password.
PROXYPORT=proxy-port-number

specifies an HTTP proxy server port.
PROXYUSERNAME="proxy-user-name"

Disable Shared Connection and Cookie Caching
CLEAR_CACHE

specifies to clear both the shared connection and cookie caches before 
the HTTP request is executed.

CLEAR_CONN_CACHE
specifies to clear the shared connection cache before the HTTP request is 
executed.

CLEAR_COOKIES
specifies to clear the shared cookie cache before the HTTP request is 
executed.

NO_CONN_CACHE
disables connection caching for this procedure execution.

NO_COOKIES
specifies cached cookies will not be used for this procedure execution.

Specify Authentication Type
AUTH_ANY

specifies that any type of authentication can be used to authenticate to 
the connected server.

AUTH_BASIC
specifies to use user identity authentication to authenticate to the 
connected server.

AUTH_NEGOTIATE
specifies to use NTLM, Kerberos. or some other type of HTTP 
authentication to authenticate to the connected server.

AUTH_NONE
specifies not to use basic authentication, NTLM authentication, or to 
negotiate authentication, even when authentication with one of these 
methods is possible.

AUTH_NTLM
specifies to use NTLM authentication to authenticate to the connected 
server.

OAUTH_BEARER=token
sends an OAuth access token along with the HTTP call.

PROXY_AUTH_BASIC
specifies to perform user identity authentication through a proxy server.

PROXY_AUTH_NEGOTIATE

PROC HTTP Statement 1249



specifies to perform NTLM, Kerberos, or some other type of HTTP 
authentication through a proxy server.

PROXY_AUTH_NTLM
specifies to perform NTLM authentication through a proxy server.

Specify HTTP Headers
CT="content-type"

specifies the HTTP content-type to be set in the request headers.
HEADERIN=fileref-to-request-header-file

specifies a fileref to a text file that contains one line per request header in 
the format key:value.

HEADEROUT_OVERWRITE
causes the response header to record only the last header block sent by 
the web server when a redirect occurs.

HEADEROUT=fileref-to-response-header-file
specifies a fileref to a text file to which the response headers are written in 
the format key:value.

Required Argument
URL="URL-to-target"

specifies a fully qualified URL path that identifies the endpoint for the HTTP 
request. 

Note The URL that is passed to PROC HTTP is assumed to be URL encoded. 
To ensure correct encoding, use an appropriate connection class for the 
target web server. For example, use the AWSV4Signer class for Amazon 
Web Services. Or, encode reserved characters as described in RFC3986.

Tip Beginning with SAS 9.4M3, you do not have to specify the protocol. If you 
set just the path (for example, "httpbin.org" ), the actual URL used is 
http://httpbin.org.

Optional Arguments
AUTH_ANY

When a user name and password are supplied, they are used to authenticate 
the connected server. Otherwise, any other form of authentication that is 
available is used. Specifying AUTH_ANY is equivalent to specifying 
AUTH_NEGOTIATE, AUTH_NTLM, and AUTH_BASIC on the procedure 
statement. 

Default This is the default authentication type if an authentication type is not 
specified.

Note This option is supported beginning with SAS 9.4M3.

Tip Since there is a chance of more than one trip to the HTTP server, 
specify EXPECT_100_CONTINUE to prevent data from being uploaded 
multiple times.

1250 Chapter 35 / HTTP Procedure

https://tools.ietf.org/html/rfc3986


AUTH_BASIC
specifies to use user identity authentication to authenticate the connected server. 
The user name and password are supplied with the WEBUSERNAME and 
WEBPASSWORD arguments. 

Note This option is supported beginning with SAS 9.4M3.

AUTH_NTLM
specifies to use NTLM authentication to authenticate to the connected server. As 
long as your current user identity has permissions, authentication is established.

Restriction NTLM is currently available only on Windows clients.

Note This option is supported beginning with SAS 9.4M3.

Example “Example 10: A Request That Specifies an Authentication Type” on 
page 1275

AUTH_NEGOTIATE
specifies to use NTLM, Kerberos. or some other type of HTTP authentication to 
authenticate to the connected server. As long as your current user identity has 
permissions, authentication is established.

Note This option is supported beginning with SAS 9.4M3.

Example “Example 10: A Request That Specifies an Authentication Type” on 
page 1275

AUTH_NONE
specifies not to use basic authentication, NTLM authentication, or to negotiate 
authentication, even when authentication with one of these methods is possible. 
The OAUTH_BEARER= procedure option can be used with NO_AUTH.

Note This option is supported beginning with SAS 9.4M3.

CLEAR_CACHE
specifies to clear both the shared connection and cookie caches before the 
HTTP request is executed.

Note This option is supported beginning with SAS 9.4M3.

CLEAR_CONN_CACHE
specifies to clear the shared connection cache before the HTTP request is 
executed.

Note This option is supported beginning with SAS 9.4M3.

CLEAR_COOKIES
specifies to clear the shared cookie cache before the HTTP request is executed.

Note This option is supported beginning with SAS 9.4M3.

CT="content-type"
used in conjunction with the HEADERIN= argument, specifies the HTTP content-
type to be set in the request headers. The content-type describes the data 
contained in the body fully enough that the receiving user agent can present the 
data to the user. 

Examples of content-type specifications are:

PROC HTTP Statement 1251



CT="Text/HTML; charset=ISO-8859-4"

CT="Text/plain; charset=us-ascii"

CT="Application/x-www-form-urlencoded"

Note Beginning with SAS 9.4M3, this option is supported for compatibility with 
previous versions of SAS software. Use the “HEADERS Statement” on 
page 1259 instead of CT= .

EXPECT_100_CONTINUE
enables a client that is sending a request message with a request body to 
determine whether the target server is willing to accept the request, based on the 
request headers. Use EXPECT_100_CONTINUE when you are sending large 
amounts of data and want to make sure that no unnecessary transfers of the 
data occur. For more information, see http://www.w3.org/Protocols/rfc2616/
rfc2616-sec8.html#sec8.2.3. 

Valid in HTTP requests that specify the IN= argument, most commonly with 
PUT.

Interaction This option is used in conjunction with the HEADEROUT= 
argument.

Note This option is supported beginning with SAS 9.4M3.

Example “Example 11: A PUT That Specifies EXPECT_100_CONTINUE” on 
page 1276

FOLLOWLOC
enables write methods to automatically follow URL redirections. By default, 
PROC HTTP methods that write data, like POST and PUT, terminate processing 
when they are redirected to an alternate location. When FOLLOWLOC is 
specified, PROC HTTP initially returns a 300-level response, then submits the 
POST or PUT again to the redirected location. 

FOLLOWLOC is the default behavior for the GET method.

Note This option is supported beginning with SAS 9.4M5.

See “NOFOLLOWLOC” on page 1255

HEADERIN=fileref-to-request-header-file
specifies a fileref to a text file that contains one line per request header in the 
format key:value.

z/OS Specifics: In the z/OS operating environment, HEADERIN= files must be 
created with a variable record length.

Note Beginning with SAS 9.4M3, this option is supported for compatibility 
with previous versions of SAS software. Use the “HEADERS 
Statement” on page 1259 instead of HEADERIN=

CAUTION Do not specify both the HEADERS statement and the 
HEADERIN= argument. The behavior that results from specifying both 
options together is not defined.

HEADEROUT=fileref-to-response-header-file
specifies a fileref to a text file to which the response headers are written in the 
format key:value.

1252 Chapter 35 / HTTP Procedure



Examples “Example 6: A POST That Captures the Response Headers” on 
page 1271

“Example 11: A PUT That Specifies EXPECT_100_CONTINUE” on 
page 1276

HEADEROUT_OVERWRITE
used in conjunction with the HEADEROUT= argument, causes the response 
header to record only the last header block sent by the web server when a 
redirect occurs. 

Example “Example 7: A GET That Specifies HEADEROUT_OVERWRITE” on 
page 1272

HTTP_TOKENAUTH
generates a one-time password from the metadata server that can be used to 
access the SAS Content Server.

IN=fileref | FORM (arguments) | MULTI <options > | "string"
specifies the input data. There are multiple ways to submit input data:

fileref
specifies a fileref. The fileref is a pointer to data that exists in another 
location. A fileref is assigned with the FILENAME statement.

Example “Example 2: A Simple POST Request” on page 1267

FORM ("name1"="value1" "name2"="value2" …)
sends input data as a standard HTML form. 

The data is input as name=value pairs. The FORM option URL-encodes and 
delimits the pairs with an & (ampersand) as is standard for form submissions. 
If a name=value pair should not be URL-encoded, you can specify a 
NOENCODE flag before the name=value pair.

Note The FORM option is available beginning with the November 2019 
release of SAS 9.4M6 and SAS Viya 3.5.

See “Using the FORM and QUERY Options with PROC HTTP” on page 
1263

MULTI <FORM | "type" > (parts)
specifies the upload is performed as a multipart request. 

You can specify form data or generic data as input. These options do not 
include support for nested multipart uploads. See https://www.w3.org/
Protocols/rfc1341/7_2_Multipart.html for more information about the multipart 
content-type.

When the FORM option is used, the upload is performed using the 
specialized multipart type known as multipart/form-data. More information 
can be found at https://tools.ietf.org/html/rfc7578#section-4.

Note The MULTI option is available beginning with the November 2019 
release of SAS 9.4M6 and SAS Viya 3.5.

See “Using the MULTI Option” on page 1264

“string"
specifies input data in a quoted string.

PROC HTTP Statement 1253

https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html
https://www.w3.org/Protocols/rfc1341/7_2_Multipart.html
https://tools.ietf.org/html/rfc7578#section-4


Note This method of submission is available beginning with SAS 9.4M3.

Example “Example 4: Specifying Input Data as a String” on page 1269

Requirement The IN= option is required when the POST and PUT methods are 
used.

MAXREDIRECTS=n
specifies the maximum number of redirects that are allowed. PROC HTTP 
automatically follows redirects coming from a 300-level response code, as long 
as the NOFOLLOWLOC option is not specified. This option enables you to limit 
the number of redirects that are performed.

Default 5

Note The MAXREDIRECTS= option is available beginning with the 
November 2019 release of SAS 9.4M6 and SAS Viya 3.5.

METHOD=<">http-method<">
specifies an HTTP method. Standard methods include HEAD, TRACE, GET, 
POST, PUT, and DELETE. Beginning with SAS 9.4M3, the method is open-
ended. Any method that conforms to the HTTP/1.1 standard and is recognizable 
by the target web server is acceptable. For information, see the HTTP/1.1 
specification at www.w3.org.

Default Beginning with SAS 9.4M3, if you omit the METHOD argument 
and do not specify the IN argument, the default method is GET. If 
you omit METHOD and do specify the IN argument — and in SAS 
releases prior to SAS 9.4M3 — the default method is POST.

Restriction Software releases prior to SAS 9.4M3 support only the standard 
methods.

Requirement Quotation marks continue to be required around http-method in 
SAS versions before the November 2019 release of SAS 9.4M6 
and SAS Viya versions before SAS Viya 3.5.

Examples “Example 1: A Simple GET Request” on page 1267

“Example 2: A Simple POST Request” on page 1267

“Example 9: A Nonstandard Method” on page 1275

NO_CONN_CACHE
disables connection caching for this HTTP request. The connection will be made 
with the specified connection parameters.

Notes This option is supported beginning with SAS 9.4M3.

When you enable NO_CONN_CACHE, you forgo all benefits of cached 
connections, including cached authentication. Each call that uses 
authentication must re-authenticate, which can take time.

NO_COOKIES
specifies that cached cookies will not be used for this HTTP request. This option 
does not prevent cookies from being sent manually with the "Cookie" header.

Note This option is supported beginning with SAS 9.4M3.

1254 Chapter 35 / HTTP Procedure

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616


NOFOLLOWLOC
prevents the GET method from following URL redirections.

NOFOLLOWLOC is the default behavior for HTTP methods that write data.

Note This option is supported beginning with SAS 9.4M5.

See “FOLLOWLOC” on page 1252

OAUTH_BEARER=token
sends an OAuth access token along with the HTTP call. Valid token values are a 
string, a fileref, or the constant SAS_SERVICES. String values must be quoted. 
For all token types, the argument sends an authorization header in the form: 
Authorization: Bearer Value. 

In addition to adding a header, OAUTH_BEARER= disables other types of HTTP 
authentication. Any HTTP-Authenticate headers that come back will be ignored.

Notes This option is supported beginning with SAS 9.4M5 and SAS Viya 3.3.

The SAS_SERVICES constant is supported only in SAS Viya.

OUT=fileref-to-response-data
specifies a fileref that indicates where output is written.

Example “Example 2: A Simple POST Request” on page 1267

PROXY_AUTH_BASIC
specifies to perform user identity authentication through a proxy server. The user 
name and password are supplied with the PROXYUSERNAME and 
PROXYPASSWORD arguments. 

Note This option is supported beginning with SAS 9.4M3.

PROXY_AUTH_NTLM
specifies to perform NTLM authentication through a proxy server. As long as 
your current user identity has permissions, authentication is established.

Restriction NTLM is currently available only on Windows clients.

Note This option is supported beginning with SAS 9.4M3.

PROXY_AUTH_NEGOTIATE
specifies to perform NTLM, Kerberos, or some other type of HTTP authentication 
through a proxy server. As long as your current user identity has permissions, 
authentication is established. 

Note This option is supported beginning with SAS 9.4M3.

PROXYHOST="proxy-host-name"
specifies the Internet host name of an HTTP proxy server. Beginning with SAS 
9.4M3, you can specify both the host name and the port number in the 
PROXYHOST argument in the form:

host-name:port-number

When this syntax is used, there is no need to specify the PROXYPORT 
argument.

Earlier SAS versions require you to specify both the PROXYHOST and 
PROXYPORT arguments. For the earlier releases, specify PROXYHOST= as:

PROC HTTP Statement 1255



host-name

Example “Example 3: Specify a Proxy In the HTTP Request” on page 1268

PROXYPASSWORD="proxy-passwd"
specifies an HTTP proxy server password. 

Tips The password is required only if your proxy server requires credentials.

Encodings that are produced by PROC PWENCODE are supported.

PROXYPORT=proxy-port-number
specifies an HTTP proxy server port. Beginning with SAS 9.4M3, PROXYPORT 
is an optional argument. You are not required to specify PROXYPORT if you 
specified both the HTTP proxy server host name and port number in the 
PROXYHOST argument. 

Note Earlier SAS releases require that the HTTP proxy server host name and 
port number are specified separately in the PROXYHOST and 
PROXYPORT arguments. See “Example 3: Specify a Proxy In the HTTP 
Request” on page 1268.

PROXYUSERNAME="proxy-user-name"
specifies an HTTP proxy server user name.

Tip The user name is required only if your proxy server requires credentials.

QUERY=(<NOENCODE>"parm1"="value1" "parm2"="value2")
provides an alternate method for submitting query parameters for the URL= 
argument.

Typically, query strings are placed on the URL in the URL= option. This can be 
cumbersome when a value must be URL-encoded and arguments need to be 
separated with an & (ampersand). You must encode the values in advance. SAS 
interprets values preceded by an & as a macro. The QUERY= option enables 
you to specify query arguments as name=value pairs in a list, which is 
automatically URL-encoded and added to the query string on the URL.

When QUERY= is specified, if the input URL already has an existing query 
string, the entire generated replacement string uses an & instead of a ?.

The keyword NOENCODE can be specified before a name=value pair to indicate 
the pair should not be URL-encoded. NOENCODE applies only to the pair that it 
precedes. Other characters that normally are encoded are still encoded, like 
spaces.

Note The QUERY= option is available beginning with the November 2019 
release of SAS 9.4M6 and SAS Viya 3.5.

See “Using the FORM and QUERY Options with PROC HTTP” on page 1263

TIMEOUT=integer
specifies the number of seconds of inactivity to wait before canceling an HTTP 
request. Use this option to prevent hangs if there is a chance that the server will 
not respond. The default value, 0 (zero), means no time-out period.

WEBAUTHDOMAIN="web-credentials-from-metadata"
specifies the web authentication domain. If specified, a user name and password 
are retrieved from metadata for the specified authentication domain.

1256 Chapter 35 / HTTP Procedure



Restriction This option applies to SAS 9 only.

WEBPASSWORD="basic-authentication-password"
specifies a password for basic authentication.

Alias PASSWORD

Tip Encodings that are produced by PROC PWENCODE are supported.

WEBUSERNAME="basic-authentication-name"
specifies a user name for basic authentication.

Alias USERNAME

DEBUG Statement
Writes debugging information to the SAS log.

Supports: All HTTP methods

Notes: This statement is supported beginning with SAS 9.4M5 and SAS Viya 3.3.
The OUTPUT_TEXT, REQUEST_BODY, RESPONSE_BODY, REQUEST_HEADERS, 
RESPONSE_HEADERS, NO_REQUEST_BODY, NO_RESPONSE_BODY, 
NO_REQUEST_HEADERS, and NO_RESPONSE_HEADERS options are new in SAS 
9.4M6. SAS 9.4M6 enhancements are currently not supported in SAS Viya.

Example: “Example 13: Use the DEBUG Statement with the LEVEL= Option” on page 1281

Syntax
DEBUG options;

Optional Arguments
Level= 0 | 1 | 2 | 3 

0 no debugging. This is the same as specifying PROC HTTP without the 
DEBUG statement.

1 displays request and response headers in the log. Setting a debug level 
of 1 equates to setting the REQUEST_HEADERS and 
RESPONSE_HEADERS options in the DEBUG statement.

2 displays request data as well as level 1 messages in the log. Setting a 
debug level of 2 equates to setting the REQUEST_HEADERS, 
RESPONSE_HEADERS, and REQUEST_BODY options in the DEBUG 
statement.

3 displays response data as well as level 2 messages in the log. Setting a 
debug level of 3 equates to setting the REQUEST_HEADERS, 
RESPONSE_HEADERS, REQUEST_BODY, and RESPONSE_BODY 
options in the DEBUG statement.

DEBUG Statement 1257



CAUTION
Use level 3 with care in SAS 9.4M5 and SAS Viya. The system may become 
unstable when the response is binary data.

NO_REQUEST_BODY
suppresses the request body from the information displayed when a debug level 
of 2 or greater is specified.

NO_REQUEST_HEADERS
suppresses the request header from the information displayed when a debug 
level of 1 or greater is specified.

NO_RESPONSE_BODY
suppresses the response body from the information displayed when a debug 
level of 3 is specified.

NO_RESPONSE_HEADERS
suppresses the response header from the information displayed when a debug 
level of 1 or greater is specified.

OUTPUT_TEXT
displays the request body and response body as if they are text.

REQUEST_BODY
displays the request body in the log.

REQUEST_HEADERS
displays the request header in the log.

RESPONSE_BODY
displays the response body in the log.

RESPONSE_HEADERS
displays the response header in the log.

Details
You must specify at least one option in the DEBUG statement for debugging 
information to be written to the log.

In SAS 9.4M5 and in SAS Viya, you control the amount of information that is printed 
with the LEVEL= option. A value of 1 or greater in the LEVEL= option is required to 
display debugging information. All DEBUG statement output in these software 
versions is written as text.

Beginning with SAS 9.4M6:

n the HTTP request body and response body are written as binary by default. You 
can set the OUTPUT_TEXT option to print the information as text.

n you have a choice of options, in addition to LEVEL=, which can be specified 
alone or in combination. For example, you can specify RESPONSE_HEADERS 
to display debugging information for response headers only, or 
RESPONSE_HEADERS and RESPONSE_BODY to display response 
information only. Or, you can specify LEVEL=3 to display all debugging 
information, and also to specify NO_RESPONSE_BODY to omit the response 
body. The options that control individual components can be used to limit or 
expand the information displayed for a particular LEVEL= value.

1258 Chapter 35 / HTTP Procedure



HEADERS Statement
Specifies request headers for the HTTP request.

Supports: All HTTP methods

Notes: This statement is supported beginning with SAS 9.4M3.
Use the HEADERS statement instead of the PROC HTTP CT= and HEADERIN= 
arguments.

Example: “Example 8: A GET That Uses the HEADERS Statement” on page 1274

Syntax
HEADERS "HeaderName"="HeaderValue" <"HeaderName-n"="HeaderValue-n">;

Required Argument
"HeaderName"="HeaderValue"

is a name and value pair that represents a header name and its value. The 
HeaderName can be a standard header name or a custom header name. For 
information about header field definitions, see the HTTP/1.1 specification at 
www.w3.org.

Note: Do not specify a colon (:) in the header name. The name=value pairs are 
automatically translated into the following form:

HeaderName : HeaderValue

Details
The HEADERS statement enables you to specify header values easily within the 
procedure request, instead of having to provide a fully formatted input file via a 
fileref. Use the HEADERS statement to specify the content-type and character set of 
the document that you are uploading when the values are different from the default 
values for the method.

Table 35.1 Default Content-Type for the POST and PUT Methods

HTTP Method Default Content-Type

POST application/x-www-form-urlencoded

PUT application/octet-stream

HEADERS Statement 1259

https://tools.ietf.org/html/rfc2616


SSLPARMS Statement
Sets encryption options for the PROC HTTP request.

Supports: All HTTP methods

Note: Support for this statement starts in SAS 9.4M6 and SAS Viya 3.5.

See: “Using Hypertext Transfer Protocol Secure (HTTPS) ” on page 1261

Example: “Example 14: Specify Local Options for Two-Way Encryption in Windows” on page 1283

Syntax
SSLPARMS encryption-options;

Required Argument
encryption-options

specifies SAS system options for encryption that enable a secure client-server 
connection with the target server. For a listing of available system options, see 
“SAS System Options for Encryption” in Encryption in SAS.

Note: Only system options for encryption that begin with “SSL” are supported.

The SAS system options for encryption can be specified in either of the following 
ways:

"SystemOption"="OptionValue"
SystemOption="OptionValue"

Note SAS system options for encryption are host-specific.

Details
Use the SSLPARMS statement to apply a SAS system option for encryption locally 
instead of globally.

1260 Chapter 35 / HTTP Procedure

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Usage: HTTP Procedure

Using Hypertext Transfer Protocol Secure (HTTPS)

HTTP Security: TLS and Data Encryption
Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), 
enables web browsers and web servers to communicate over a secured connection 
by encrypting data. Both browsers and servers encrypt data before the data is 
transmitted. The receiving browser or server then decrypts the data before it is 
processed.

Note: All discussion of TLS is also applicable to the predecessor protocol, SSL.

Using HTTPS with PROC HTTP
For both SAS 9.4 (beginning with SAS 9.4M3) and the full SAS Viya deployment, 
secure communication over HTTP (HTTPS) is provided globally by default. HTTPS 
is controlled by a Trusted Root CA bundle. A default Trusted Root CA bundle is laid 
down at installation and pointed to by the SSLCALISTLOC= system option. The 
SSLCALISTLOC= system option sets secure communications globally for the SAS 
system. Do not change the value of the SSLCALISTLOC= system option unless you 
are instructed to do so by SAS Technical Support. “SSLCALISTLOC=” in Encryption 
in SAS.

Some UNIX installations require the Server Name Indicator (SNI) to be set so that 
they can serve up the proper certificate. Beginning with SAS 9.4M5, the SNI is also 
set by default. Earlier SAS 9.4 releases and SAS Viya require you to set the SNI 
with environment variables. For information about setting environment variables for 
a SAS 9.4 installation, see Encryption in SAS. For information about setting 
environment variables for SAS Viya, see Encryption in SAS Viya: Data in Motion.

Beginning with SAS 9.4M6 and SAS Viya 3.5, PROC HTTP enables you to override 
the global communication security settings with local communication security 
settings with the SSLPARMS statement. In the SSLPARMS statement, specify SAS 
system options for encryption. The options that are set in the SSLPARMS statement 
apply only to the PROC HTTP request in which they are specified. For more 
information, see “SSLPARMS Statement” on page 1260 and “Example 14: Specify 
Local Options for Two-Way Encryption in Windows” on page 1283.

Usage: HTTP Procedure 1261

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p0pul4j64w0mg0n1h1k6z8zhfvaf.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=p0pul4j64w0mg0n1h1k6z8zhfvaf.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Using Authentication Other Than Basic
Beginning with SAS 9.4M3, PROC HTTP enables you to specify the authentication 
type. The ability to specify the authentication type is useful when you know which 
authentication type is required for a request to succeed in advance. Specifying the 
correct type, rather than requiring the procedure to negotiate it, optimizes procedure 
execution. For example, if you know that the server supports only Kerberos 
authentication, it is a good idea to specify the AUTH_NEGOTIATE argument. If you 
know that the server supports only NTLM authentication, then specify AUTH_NTLM.

If you do not specify the authentication type, the default type (which is the type of 
authentication that is available in SAS releases prior to the third maintenance 
release), is AUTH_ANY. AUTH_ANY is equivalent to specifying AUTH_NTLM, 
AUTH_NEGOTIATE, and AUTH_BASIC together in the request. AUTH_NTLM 
authentication is attempted first (for Windows only), then AUTH_NEGOTIATE, and 
so on, although the server ultimately determines which authentication type is used. 
If the server that you are connecting to supports the NTLM authentication protocol 
or the Kerberos authentication protocol, it usually is not necessary to specify a user 
name and password. As long as your current user identity has permissions, 
authentication is established.

EXPECT_100_CONTINUE support is provided to optimize requests that must make 
more than one trip to the server. This option prevents the data from being uploaded 
multiple times.

Note: When using authentication, do not enable NO_CONN_CACHE. When 
NO_CONN_CACHE is enabled, each call that uses authentication must re-
authenticate, which can take time.

HTTP_TOKENAUTH enables you to access SAS Content Servers from PROC 
HTTP without having to supply a user name and password.

WEBAUTHDOMAIN is also used in lieu of a user name and password. However, 
you must set up a metadata entry that stores the user name and password for the 
specified web authentication domain.

Wire Logging
Wire logging logs packets of information as they appear on the network. This 
information is normally referred to as a dump. Wire dumps enable you to see what 
information is being sent to the server and what information the server is sending 
back. Because you can see the raw data, wire dumps can be useful in debugging 
your programs.

Beginning with SAS 9.4M3, logger APP.TK.HTTPC is used to log HTTP-specific 
messages. The wire dumps that the logger generates can be enabled by setting 
logger APP.TK.HTTPC to the DEBUG level or higher. In earlier versions of SAS 9.4, 
logger HTTP is used to log HTTP-specific messages. Set logger HTTP to the 
DEBUG level or higher. At the DEBUG level, the first 64 bytes of incoming and 

1262 Chapter 35 / HTTP Procedure



outgoing data is logged. At the TRACE level, all of the data is written to the log. 
Note that at the TRACE level, performance can be greatly diminished.

For more information, see “SAS Logging” in SAS Logging: Configuration and 
Programming Reference.

Using Encodings with PROC HTTP
Responses are not encoded to session encodings. You must supply the request 
with the encoding that you want to use, and set the content type.

Beginning with the November 2019 release of SAS 9.4M6 and SAS Viya 3.5, you 
can send post URL-encoded data with the FORM parameter in the IN= argument. 
The QUERY= procedure option enables you to submit URL-encoded query 
parameters.

Using the FORM and QUERY Options with PROC 
HTTP

Beginning with the November 2019 release of SAS 9.4M6 and SAS Viya 3.5, 
uploading standard URL encoded form data has been made more convenient. The 
FORM option enables you to submit a single-part form with PROC HTTP. For 
example, in order to post values to this form in previous SAS releases, you had to 
prepare your PROC HTTP request as follows:

%let firstname=Mickey;
%let lastname=Mouse;

data _null_;
      firstname = urlencode("&firstname");
      lastname = urlencode("&lastname");
      call symputx("firstname",firstname,'G');
      call symputx("lastname",lastname,'G');
run;

proc http url="http://httpbin.org/post"
in="firstname=&firstname.%nrstr(&lastname)=&lastname";
run;

The URLENCODE function and the SYMPUTX call routine were necessary to 
encode the data before submitting the PROC HTTP request.

With the new FORM option, the same request can now be submitted as follows:

%let firstname=Mickey;
%let lastname=Mouse;
proc http url="http://httpbin.org/post"
in = form ("firstname"="&firstname"
            "lastname"="&lastname");
run;

The QUERY= option makes adding query parameters to a URL easier. You can still 
add query parameters to a URL manually as shown below. However, when you 

Usage: HTTP Procedure 1263

https://www.w3schools.com/html/tryit.asp?filename=tryhtml_form_submit


modify the URL manually you are responsible for URL encoding any special 
characters and making sure that the & (ampersand) appears correctly and is not 
mistaken for a macro variable.

url="http://httpbin.org/GET?firstname=&firstname
%nrstr(&lastname)=&lastname";

With the new QUERY= procedure option, the above request can now be submitted 
as follows:

%let firstname=Mickey;
%let lastname=Mouse;
proc http url="http://httpbin.org/get"
query = ("firstname"="&firstname"
            "lastname"="&lastname");
run;

Both options URL-encode the input data by default unless you specify the 
NOENCODE option before a name=value pair.

Using the MULTI Option
A multipart upload enables you to upload multiple entities in a single request. The 
PROC HTTP MULTI option provides support for sending multipart form data as well 
as generic multipart uploads. The multipart feature is useful for uploading files to an 
HTTP server. For example, you might use it to upload a JSON file that contains the 
metadata about a file followed by the binary code of the file.

Note: The new functionality does not include support for nested multipart uploads. 

Here is an example of a multipart form post:

filename input1 "input1.txt";
filename input2 "input2.txt";
filename resp "multi_resp.json";

proc http
url="httpbin.org/post"
in = MULTI FORM ( "Name1" = "Raw Input 1" ,
                  "Name2" = input1 header="Foo: Bar" header="Foo2: Bar2" ,
                  "Name3" = input2 FILENAME="Different Filename"
                    header="Content-Type: text/plain")
out=resp
;
run;

This HTTP request sends a three-part form.

In a multipart form post:

n the MULTI keyword is specified in the IN= statement. The keyword must follow 
the equal sign.

n the FORM keyword indicates that this upload is of type multipart/form-data.

n the parts of the form are submitted within parenthesis

n Each part of the form includes the following components:

1264 Chapter 35 / HTTP Procedure



o a unique identifier that indicates the beginning of the part. In this example, 
that is “Namen”.

o one or more optional HTTP headers. The HTTP headers must be specified 
before the input data. For a form, it is a good idea to specify a content-type 
header to indicate the type of content that will follow. The Content-Disposition 
header is derived from Name= and FILENAME= values. If the input is a 
fileref, and a FILENAME value is not specified, the FILENAME= value is 
derived from the fileref.

o input data, supplied as a string or a fileref.

Here is an example of a generic multipart request:

proc http
   url="httpbin.org/post"
   method=POST
   in = MULTI "related" ( input1 header="content-type: text/plain",
         "some text data with no header");
run;

In a generic multipart request:

n The quoted value after the MULTI keyword is used to derive the Content-
Disposition header. For this request, a header of Content-Type: multipart/related 
is sent.

n The input data for each part can come from a fileref or be specified in a quoted 
string. 

n Headers are optional on each part. When a header is specified, the specification 
must contain a full header in proper form.

n Parts are separated by commas.

The preceding example uploads two entities.

Using HEADERS= to Send Chunked Data
To force chunked data to be sent, specify a header as follows:

proc http url="httpbin.org/post"
 in="hello";
 headers "Transfer-Encoding"="chunked";
 debug level=3;
run;

PROC HTTP Response Status Macro Variables
Beginning with SAS 9.4M5, PROC HTTP sets up macro variables with certain 
values after it executes each statement. These macro variables can be used inside 
a macro to test for HTTP errors. An HTTP error is an error that is encountered after 
a successful host connection has been made and the HTTP request has been 
successfully parsed by the HTTP procedure. The macro variables do not store 

Usage: HTTP Procedure 1265



values for host connection errors or for PROC HTTP syntax errors. The macro 
variables are reset on each invocation of PROC HTTP.

SYS_PROCHTTP_STATUS_CODE
stores the status code of the HTTP request.

SYS_PROCHTTP_STATUS_PHRASE
stores the descriptive phrase that is associated with the status code.

Consider this example:

HTTP/1.1 200 OK

The SYS_PROCHTTP_STATUS_CODE macro variable stores the value 200. The 
SYS_PROCHTTP_STATUS_PHRASE macro variable stores OK, which indicates 
that this HTTP request was successful.

For more information, see “Example 12: Create A Program That Captures Status 
Response Values” on page 1277.

Macro Variables for Setting Global Values
Beginning with SAS 9.4M3, PROC HTTP produces two automatic macro variables 
to enable you to set or change default PROC HTTP settings.

PROCHTTP_PROXY=proxy-server-name-and-port-number;
sets a default proxy server for PROC HTTP requests. Once set, the specified 
proxy server establishes a proxy for all PROC HTTP requests in the SAS 
session, unless you specify the PROXYHOST= argument in the PROC HTTP 
request. The value that is specified in the procedure argument overrides the 
value that is specified in the macro variable. Specify the PROXYHOST= 
argument with a value that is different from the macro variable to use a different 
proxy server for a request. Specify PROXYHOST= without a value to disable 
proxy use for a request. For more information, see “Example 5: Specify A Proxy 
In a Macro Variable” on page 1270.

PROCHTTP_NOCOOKIES= blank | integer;
provides global control of cookie caching for PROC HTTP requests. Omitting the 
macro variable or specifying the macro variable without a value enables cookie 
caching (cookie caching is on by default). To globally disable cookie caching, 
specify a nonzero value in the macro variable. Cookie caching can be disabled 
for a specific PROC HTTP request by specifying the NO_COOKIES procedure 
option in the PROC HTTP request along with the CLEAR_COOKIES or 
CLEAR_CACHE arguments.

The macro variables are set with the %LET statement. In the event that you disable 
cookie caching, you can delete the macro variable from the symbol table with the 
%SYMDEL statement.

1266 Chapter 35 / HTTP Procedure



Examples: HTTP Procedure

Example 1: A Simple GET Request
Features: METHOD= argument

URL= Argument
OUT= Argument

Details
This example makes a GET request to a server on the local network. GET is the 
simplest and most common request that you can make with PROC HTTP. Beginning 
with SAS 9.4M3, GET is the default METHOD value when the IN argument is 
omitted for a PROC HTTP request, making the argument optional. A GET request 
must specify METHOD=GET in earlier releases of SAS software.

Program
filename resp TEMP;

proc http 
   url="http://httpbin.org/get" 
   out=resp;
run;

Example 2: A Simple POST Request
Features: METHOD= Argument

IN= Argument
OUT= Argument

Example 2: A Simple POST Request 1267



Details
This example makes a simple POST request to a server on the local network. The 
file to upload is identified by a fileref in the IN argument. When the IN argument is 
specified, the default METHOD= value in all SAS releases is POST. The response 
and the output headers are written to filerefs.

Program
filename resp TEMP;
filename headout TEMP;
filename input TEMP;

data _null_;
   file input;
   put "this is some sample text";
run;

proc http 
   url="http://httpbin.org/post" 
   in=input 
   out=resp 
   headerout=headout;
run;

Example 3: Specify a Proxy In the HTTP Request
Features: PROXYHOST= Argument

PROXYPORT= Argument

Note: The PROXYHOST and PROXYPORT arguments are the only way to specify a proxy 
server in software releases before SAS 9.4M3.

Details
This example makes the same request as in “Example 2: A Simple POST Request” 
on page 1267, except the call is sent to an external server and therefore requires 
the use of a proxy server. This example uses the PROXYHOST argument to specify 
the name of the external server and the PROXYPORT argument to specify the port 
number.

1268 Chapter 35 / HTTP Procedure



Program
filename out "u:\prochttp\Testware\ProxyTest_out.txt";
filename input TEMP;

data _null_;
   file input;
   put "this is some sample text";
run;

proc http
   url="http://httpbin.org/post"
   method=post
   in=input
   out=out
   proxyhost="proxyhost.company.com"
   proxyport=889;
run;

Example 4: Specifying Input Data as a String
Features: IN= "string”

Note: The ability to specify input text as a string is supported beginning with SAS 9.4M3.

Details
The PROC HTTP IN= argument accepts a quoted input string or a fileref to submit 
input data. Specifying input in a string makes it easier to send text posts and form-
based posts. This example submits the form that can be found at http://httpbin.org/
forms/post. The response is written to a response file.

Program
filename resp TEMP;
 
proc http
   method=post
   url="http://httpbin.org/post"
   in='custname=Sas+User&custtel=919-555-5555&custemail=sas.user%40
   sas.com&size=medium&topping=cheese&delivery=12%3A00&comments=Dont
+Drop+It'
   out=resp;
run;
 
data _null_;

Example 4: Specifying Input Data as a String 1269



   infile resp;
   input;
   put _infile_;
run;

This is the content of the Resp file:

{
  "args": {},
  "data": "",
  "files": {},
  "form": {
    "comments": "Dont Drop It",
    "custemail": "sas.user@sas.com",
    "custname": "Sas User",
    "custtel": "919-555-5555",
    "delivery": "12:00",
    "size": "medium",
    "topping": "cheese"
  },
  "headers": {
    "Accept": "*/*",
    "Content-Length": "133",
    "Content-Type": "application/x-www-form-urlencoded",
    "Host": "httpbin.org",
    "User-Agent": "SAS/9",
  },
  "json": null,
  "origin": "149.173.1.80, 104.129.194.85",
  "url": "http://httpbin.org/post"
}

Example 5: Specify A Proxy In a Macro Variable
Features: PROCHTTP_PROXY= Macro Variable

IN=”string”

Note: The PROCHTTP_PROXY= macro variable and the ability to specify input text as a string 
are supported beginning with SAS 9.4M3.

Details
This example makes the same request as in “Example 3: Specify a Proxy In the 
HTTP Request” on page 1268, except the proxy server is specified in a macro 
variable and the input text is specified as a string in the IN argument. The 
PROCHTTP_PROXY macro variable specifies the proxy server’s Internet host 
name and port number as one value. Because the proxy is set in the macro 
variable, it is available to all subsequent HTTP requests that are made in the SAS 
session. In this request, parameters to the POST are read from a string that is 
specified in the IN argument.

1270 Chapter 35 / HTTP Procedure



Program
%let PROCHTTP_PROXY=proxyhost.company.com:889;
 
filename out "u:\prochttp\Testware\ProxyTest_out.txt";
filename input TEMP;

proc http
   url="http://httpbin.org/post"
   method=post
   in="text to write out"
   out=out;
run;

Example 6: A POST That Captures the Response 
Headers
Features: IN=”string”

HEADEROUT= Argument

Details
This example makes the same POST request as in “Example 5: Specify A Proxy In 
a Macro Variable” on page 1270 but captures the response headers in a file called 
headerOut.txt.

Program
%let PROCHTTP_PROXY=proxyhost.company.com:889;

filename out "u:\prochttp\Testware\ProxyTest_out.txt";
filename hdrout "u:\prochttp\Testware\headerOut.txt";

 proc http
   url="http://httpbin.org/post"
   method=post
   in="text to write out"
   out=out
   headerout=hdrout;
run;

Example 6: A POST That Captures the Response Headers 1271



Example 7: A GET That Specifies 
HEADEROUT_OVERWRITE
Features: HEADEROUT argument

HEADEROUT_OVERWRITE argument

Note: The HEADEROUT_OVERWRITE argument is supported beginning with SAS 9.4M3.

Details
This example shows the effects of the HEADEROUT_OVERWRITE argument. The 
GET requests redirect twice before reaching their destination. 
HEADEROUT_OVERWRITE causes only the last output header to be recorded.

Example of Normal HEADEROUT Output 
after a Redirect

filename hdrs "u:\prochttp\Testware\GetHdr_out.txt";
filename out "u:\prochttp\Testware\GetTest_out.txt";

proc http 
   url="http://httpbin.org/redirect/2"
   method=GET
   headerout=hdrs
   out=out;
run;

This is the content of GetHdr_out.txt:

1272 Chapter 35 / HTTP Procedure



HTTP/1.1 302 FOUND
Server: nginx
Date: Mon, 20 Apr 2015 14:19:52 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 247
Connection: keep-alive
Location: /relative-redirect/1
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

HTTP/1.1 302 FOUND
Server: nginx
Date: Mon, 20 Apr 2015 14:19:53 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 0
Connection: keep-alive
Location: /get
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

HTTP/1.1 200 OK
Server: nginx
Date: Mon, 20 Apr 2015 14:19:53 GMT
Content-Type: application/json
Content-Length: 195
Connection: keep-alive
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

Example of HEADEROUT Request with 
HEADEROUT_OVERWRITE

filename hdrs "u:\prochttp\Testware\GetHdr2_out.txt";
filename out "u:\prochttp\Testware\GetTest2_out.txt";

proc http 
 url="http://httpbin.org/redirect/2"
method=GET
headerout=hdrs
out=out
HEADEROUT_OVERWRITE;
run;

This is the content of GetHdr2_out.txt:

HTTP/1.1 200 OK
Server: nginx
Date: Mon, 20 Apr 2015 14:22:48 GMT
Content-Type: application/json
Content-Length: 195
Connection: keep-alive
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

Example 7: A GET That Specifies HEADEROUT_OVERWRITE 1273



Example 8: A GET That Uses the HEADERS 
Statement
Features: HEADERS Statement

GET Method

Note: The HEADERS statement is supported beginning with SAS 9.4M3.

Details
The following is an example of a GET method request that specifies the HEADERS 
statement. As of SAS 9.4M3, GET is also the default method when the IN argument 
is not specified.

Program
filename resp TEMP;

proc http
   url="http://httpbin.org/headers"
   out=resp;
 headers
   "Accept"="application/json";
run;

data _null_;
   infile resp;
   input;
   put _infile_;
run;

The output looks like this:

  "headers": {
    "Accept": "*/*,application/json",
    "Host": "httpbin.org",
    "User-Agent": "SAS/9",
  }
}

1274 Chapter 35 / HTTP Procedure



Example 9: A Nonstandard Method
Features: METHOD Argument

Note: Nonstandard methods are supported in SAS 9.4M3 and later releases.

Details
This example submits the MKCOL WEBDAV http method. Output is written to a 
temporary file named Resp. There are no input and output requirements for 
nonstandard methods. As long as the target server returns data and you have 
specified a valid OUT, data will be written to your OUT fileref. Here, output is written 
to Resp.

Program
filename resp TEMP;

proc http 
   url="http://hostname/directory/"
   method=MKCOL
   out=resp;
run;

Example 10: A Request That Specifies an 
Authentication Type
Features: AUTH_NEGOTIATE Argument

AUTH_NTLM Argument

Note: The ability to specify an authentication type is supported beginning with SAS 9.4M3.

Details
This example specifies an authentication type for a PROC HTTP request. Two 
authentication types are specified, indicating that only Negotiate or NTLM 
authentication are allowed.

Example 10: A Request That Specifies an Authentication Type 1275



Program
proc http
   url="http://securesite.com"
   AUTH_NEGOTIATE
   AUTH_NTLM;
run;

Example 11: A PUT That Specifies 
EXPECT_100_CONTINUE
Features: EXPECT_100_CONTINUE Argument

HEADEROUT= Argument

Note: The EXPECT_100_CONTINUE argument is supported beginning with SAS 9.4M3.

Details
This example specifies the EXPECT_100_CONTINUE header.

Program
filename resp TEMP;
filename hdrs TEMP;

proc http
   url="http://httpbin.org/put"
   method=PUT
   in='Some Put Data'
   out=resp
   headerout=hdrs
   EXPECT_100_CONTINUE;
run;

data _null_;
   infile hdrs;
   input;
   put _infile_;
run;

data _null_;
   infile resp;
   input;
   put _infile_;
run;

1276 Chapter 35 / HTTP Procedure



The output in the HDRS looks like this:

HTTP/1.1 100 Continue

HTTP/1.1 200 OK
Server: myserver/18.0
Date: Mon, 24 Nov 2014 20:18:29 GMT
Content-Type: application/json
Content-Length: 652
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
X-Cache: MISS from transproxy
Via: 1.1 vegur, 1.1 transproxy (squid)
Connection: keep-alive

The output in the Resp file looks like this:

{
  "args": {},
  "data": "Some Put Data",
  "files": {},
  "form": {},
  "headers": {
    "Accept": "*/*",
    "Content-Length": "13",
    "Content-Type": "application/octet-stream",
    "Host": "httpbin.org",
    "User-Agent": "SAS/9",
    "Xxpect": "100-continue",
  },
  "json": null,
  "origin": "149.173.1.80, 104.129.194.85",
  "url": "http://httpbin.org/put"
}

Example 12: Create A Program That Captures 
Status Response Values
Features: SYS_PROCHTTP_STATUS_CODE macro variable

SYS_PROCHTTP_STATUS_PHRASE macro variable

Details
This example creates a simple macro program that tests the value set in the 
SYS_PROCHTTP_STATUS_CODE macro variable. The program specifies to print 
an error message when the result code does not match a specified value for the 
SYS_PROCHTTP_STATUS_CODE macro variable. The program also specifies to 
print the actual values returned by the SYS_PROCHTTP_STATUS_CODE and 
SYS_PROCHTTP_STATUS_PHRASE macro variables in any error messages.

Example 12: Create A Program That Captures Status Response Values 1277



The macro program is then invoked after various PROC HTTP requests to illustrate 
the results that you can expect under various circumstances. The macro program is 
invoked with a value of 200 in each execution. A value of 200 indicates successful 
completion of the HTTP request.

Program
The following code creates the macro program.

%macro prochttp_check_return(code);
%if %symexist(SYS_PROCHTTP_STATUS_CODE) ne 1 %then %do;
  %put ERROR: Expected &code., but a response was not received from
 the HTTP Procedure;
  %abort;
  %end;
%else %do;
  %if &SYS_PROCHTTP_STATUS_CODE. ne &code. %then %do;
   %put ERROR: Expected &code., but received &SYS_PROCHTTP_STATUS_CODE.
 &SYS_PROCHTTP_STATUS_PHRASE.;
   %abort;%end;
%end;
%mend;

Result for a Successful HTTP Request
Here is an example of a successful PROC HTTP request. The macro program 
specifies to print an error message and the return code and status values for any 
HTTP request that does not return the code value 200.

proc http url="httpbin.org/get";
run;
%prochttp_check_return(200);

Here is the log for the request. The request returned 200. For PROC HTTP requests 
whose return code matches the code value specified in the macro program, the 
values of the macro variables are ignored. There is no error message; therefore, no 
need to print the value of the status reporting macro variables.

173  proc http url="httpbin.org/get";
174  run;

NOTE: PROCEDURE HTTP used (Total process time):
      real time           3.40 seconds
      cpu time            0.03 seconds

NOTE: 200 OK

175
176  %prochttp_check_return(200);
177
178

1278 Chapter 35 / HTTP Procedure



Result for Failed Host Connection
The following is an example of a PROC HTTP request that cannot establish a host 
connection:

proc http url="foo.bar";
run;
%prochttp_check_return(200);

When a server connection cannot be made, the procedure returns an error 
message. However, the error message does not include a return code or a status 
phrase.

179  proc http url="foo.bar";
180  run;

ERROR: Host name resolution failed
NOTE: PROCEDURE HTTP used (Total process time):
      real time           2.28 seconds
      cpu time            0.00 seconds

NOTE: The SAS System stopped processing this step because of errors.
181
182  %prochttp_check_return(200);
ERROR: Expected 200, but a response was not received from the HTTP Procedure
ERROR: Execution terminated by an %ABORT statement.
183

Result for a Valid HTTP Error
The following is an example of a PROC HTTP request that connects but specifies 
an invalid secondary path:

proc http url="httpbin.org/get2";
run;
%prochttp_check_return(200);

When a server connection is made, but the HTTP request fails, the error message 
prints the actual return code and its corresponding status phrase.

Example 12: Create A Program That Captures Status Response Values 1279



184  proc http url="httpbin.org/get2";
185  run;

NOTE: PROCEDURE HTTP used (Total process time):
      real time           0.04 seconds
      cpu time            0.00 seconds

NOTE: 404 Not Found

186
187  %prochttp_check_return(200);
ERROR: Expected 200, but received 404 Not Found
ERROR: Execution terminated by an %ABORT statement.
188

Results for a Parsing Error
The following is an example of a PROC HTTP request that specifies an invalid 
argument:

proc http url="httpbin.org/get" foo;
run;
%prochttp_check_return(200);

When a server connection is made, but the PROC HTTP request cannot be parsed, 
the macro returns an error message. The message does not include a return code 
or status phrase.

189  proc http url="httpbin.org/get" foo;
                                     ---
                                     22
                                     202
ERROR 22-322: Syntax error, expecting one of the following: ;, AUTH_ANY, AUTH_BASIC,
              AUTH_NEGOTIATE, AUTH_NONE, AUTH_NTLM, CLEAR_CACHE, CLEAR_CONN_CACHE,
              CLEAR_COOKIES, CT, EXPECT_100_CONTINUE, FOLLOWLOC, HEADERIN, HEADEROUT,
              HEADEROUT_OVERWRITE, HTTP_TOKENAUTH, IN, METHOD, NOFOLLOW, NOFOLLOWLOC,
              NO_CONN_CACHE, NO_COOKIES, OAUTH_BEARER, OUT, PASSWORD, PROXYHOST,
              PROXYPASSWORD, PROXYPORT, PROXYUSERNAME, PROXY_AUTH_BASIC, 
PROXY_AUTH_NEGOTIATE,
              PROXY_AUTH_NONE, PROXY_AUTH_NTLM, TIMEOUT, URL, USERNAME, VERBOSE,
              WEBAUTHDOMAIN, WEBPASSWORD, WEBUSERNAME.
ERROR 202-322: The option or parameter is not recognized and will be ignored.
190  run;
191
192  %prochttp_check_return(200);
ERROR: Expected 200, but a response was not received from the HTTP Procedure
NOTE: PROCEDURE HTTP used (Total process time):
      real time           0.07 seconds
      cpu time            0.07 seconds

ERROR: Execution terminated by an %ABORT statement.
NOTE: The SAS System stopped processing this step because of errors.

1280 Chapter 35 / HTTP Procedure



Example 13: Use the DEBUG Statement with the 
LEVEL= Option
Features: DEBUG statement

LEVEL= statement option
Statement output

Details
This example shows the information returned by the DEBUG statement Level= 
option.

Debug Level 1
A debug level of 1 displays the HTTP request and response headers.

proc http
   in = "*************testing prochttp****************"
   method=POST
   url="http://httpbin.org/post";
   debug level = 1;
run;

The following information is displayed in the log:

> POST /post HTTP/1.1
> User-Agent: SAS/9
> Host: httpbin.org
> Accept: */*
> Connection: Keep-Alive
> Content-Length: 45
> Content-Type: application/x-www-form-urlencoded
> 
< HTTP/1.1 200 OK
< Connection: keep-alive
< Server: myserver/19.9.0
< Date: Tue, 07 Aug 2018 19:12:34 GMT
< Content-Type: application/json
< Content-Length: 418
< Access-Control-Allow-Origin: *
< Access-Control-Allow-Credentials: true
< Via: 1.1 vegur
< 

Example 13: Use the DEBUG Statement with the LEVEL= Option 1281



Debug Level 2
A debug level of 2 displays the HTTP request and response headers and the HTTP 
request body.

proc http
   in = "*************testing prochttp****************"
   method=POST
   url="http://httpbin.org/post";
   debug level = 2;
run;

Beginning with SAS 9.4M6, the following information is displayed in the log. The 
request body is written as binary by default. Use the OUTPUT_TEXT DEBUG 
statement option if you want to write the information as text.

> POST /post HTTP/1.1
> User-Agent: SAS/9
> Host: httpbin.org
> Accept: */*
> Connection: Keep-Alive
> Content-Length: 45
> Content-Type: application/x-www-form-urlencoded
> 
> 000000000A9FC4C0: 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 74 65 73 
*************tes
> 000000000A9FC4D0: 74 69 6E 67 20 70 72 6F 63 68 74 74 70 2A 2A 2A ting 
prochttp***
> 000000000A9FC4E0: 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A          *************
< HTTP/1.1 200 OK
< Connection: keep-alive
< Server: myserver/19.9.0
< Date: Thu, 06 Sep 2018 14:21:26 GMT
< Content-Type: application/json
< Content-Length: 418
< Access-Control-Allow-Origin: *
< Access-Control-Allow-Credentials: true
< Via: 1.1 vegur
< 

Debug Level 3
A debug level of 3 displays the request header, response header, request body, and 
response body.

proc http
   in = "*************testing prochttp****************"
   method=POST
   url="http://httpbin.org/post";
   debug level = 3;
run;

Beginning with SAS 9.4M6, the following information is displayed in the log. The 
request and response body are written as binary by default.

1282 Chapter 35 / HTTP Procedure



> POST /post HTTP/1.1

> User-Agent: SAS/9

> Host: httpbin.org

> Accept: */*

> Connection: Keep-Alive

> Content-Length: 45

> Content-Type: application/x-www-form-urlencoded

> 

> 000000000A9FC4C0: 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 74 65 73 *************tes

> 000000000A9FC4D0: 74 69 6E 67 20 70 72 6F 63 68 74 74 70 2A 2A 2A ting prochttp***

> 000000000A9FC4E0: 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A          *************

< HTTP/1.1 200 OK

< Connection: keep-alive

< Server: myserver/19.9.0

< Date: Thu, 06 Sep 2018 14:25:41 GMT

< Content-Type: application/json

< Content-Length: 418

< Access-Control-Allow-Origin: *

< Access-Control-Allow-Credentials: true

< Via: 1.1 vegur

< 

< 000000000A9FC5B6: 7B 0A 20 20 22 61 72 67 73 22 3A 20 7B 7D 2C 20 {.  "args": {},

< 000000000A9FC5C6: 0A 20 20 22 64 61 74 61 22 3A 20 22 22 2C 20 0A .  "data": "", .

< 000000000A9FC5D6: 20 20 22 66 69 6C 65 73 22 3A 20 7B 7D 2C 20 0A   "files": {}, .

< 000000000A9FC5E6: 20 20 22 66 6F 72 6D 22 3A 20 7B 0A 20 20 20 20   "form": {.

< 000000000A9FC5F6: 22 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 74 65 "*************te

< 000000000A9FC606: 73 74 69 6E 67 20 70 72 6F 63 68 74 74 70 2A 2A sting prochttp**

< 000000000A9FC616: 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 22 3A **************":

< 000000000A9FC626: 20 22 22 0A 20 20 7D 2C 20 0A 20 20 22 68 65 61  "".  }, .  "hea

< 000000000A9FC636: 64 65 72 73 22 3A 20 7B 0A 20 20 20 20 22 41 63 ders": {.    "Ac

< 000000000A9FC646: 63 65 70 74 22 3A 20 22 2A 2F 2A 22 2C 20 0A 20 cept": "*/*", .

< 000000000A9FC656: 20 20 20 22 43 6F 6E 6E 65 63 74 69 6F 6E 22 3A    "Connection":

< 000000000A9FC666: 20 22 63 6C 6F 73 65 22 2C 20 0A 20 20 20 20 22  "close", .    "

< 000000000A9FC676: 43 6F 6E 74 65 6E 74 2D 4C 65 6E 67 74 68 22 3A Content-Length":

< 000000000A9FC686: 20 22 34 35 22 2C 20 0A 20 20 20 20 22 43 6F 6E  "45", .    "Con

< 000000000A9FC696: 74 65 6E 74 2D 54 79 70 65 22 3A 20 22 61 70 70 tent-Type": "app

< 000000000A9FC6A6: 6C 69 63 61 74 69 6F 6E 2F 78 2D 77 77 77 2D 66 lication/x-www-f

< 000000000A9FC6B6: 6F 72 6D 2D 75 72 6C 65 6E 63 6F 64 65 64 22 2C orm-urlencoded",

< 000000000A9FC6C6: 20 0A 20 20 20 20 22 48 6F 73 74 22 3A 20 22 68  .    "Host": "h

< 000000000A9FC6D6: 74 74 70 62 69 6E 2E 6F 72 67 22 2C 20 0A 20 20 ttpbin.org", .

< 000000000A9FC6E6: 20 20 22 55 73 65 72 2D 41 67 65 6E 74 22 3A 20   "User-Agent":

< 000000000A9FC6F6: 22 53 41 53 2F 39 22 0A 20 20 7D 2C 20 0A 20 20 "SAS/9".  }, .

< 000000000A9FC706: 22 6A 73 6F 6E 22 3A 20 6E 75 6C 6C 2C 20 0A 20 "json": null, .

< 000000000A9FC716: 20 22 6F 72 69 67 69 6E 22 3A 20 22 31 32 2E 37  "origin": "12.7

< 000000000A9FC726: 30 2E 31 30 31 2E 31 31 34 22 2C 20 0A 20 20 22 0.101.114", .  "

< 000000000A9FC736: 75 72 6C 22 3A 20 22 68 74 74 70 3A 2F 2F 68 74 url": "http://ht

< 000000000A9FC746: 74 70 62 69 6E 2E 6F 72 67 2F 70 6F 73 74 22 0A tpbin.org/post".

< 000000000A9FC756: 7D 0A                                           }.

Example 14: Specify Local Options for Two-Way 
Encryption in Windows
Features: SSLPARMS statement

SSLCERTISS= system option
SSLCERTSERIAL= system option

Example 14: Specify Local Options for Two-Way Encryption in Windows 1283



Details
The following is an example of a PROC HTTP request that specifies local encryption 
options to send a client certificate for two-way TLS authentication on Windows. The 
name of the Certificate Authority (CA) that issued the client certificate is named 
Glenn’s CA.

The system options used are host dependent. For more information about the 
system options in a SAS 9.4 installation, see Encryption in SAS. For more 
information about system options in SAS Viya, see Encryption in SAS Viya: Data in 
Motion.

This request specifies the Windows system options SSLCERTISS and 
SSLCERTSERIAL.

proc http
  method=GET
  url="https://internal.site.com/";
  sslparms
    sslcertiss="Glenn's CA"
    sslcertserial="0a1dcfa3000000000015"
  ;
run;

Example 15: Specify Local Options for Two-Way 
Encryption in UNIX
Features: SSLPARMS statement

SSLCERTLOC= system option
SSLPVTKEYLOC= system option
SSLPVTKEYPASS= system option
SSLPKCS12LOC= system option
SSLPKCS12PASS= system option

Details
The following is an example of a PROC HTTP request that specifies local encryption 
options to send a client certificate for two-way TLS authentication on UNIX. On 
UNIX, the encryption options that you use depend on whether the certificate is in 
PEM or DER format. This example shows how to specify the location of PEM and 
DER certificates for user John Doe.

1284 Chapter 35 / HTTP Procedure



Note: The paths to the certificates are relative to the location where the web server 
is running. Therefore, the certificates must be accessible on disk. 

For more information about the system options, see Encryption in SAS.

SSLPARMS Arguments for a PEM 
Certificate
The SSLCERTLOC= and SSLPVTKEYLOC= system options specify the location of 
a PEM certificate. SSLPVTKEYPASS= is specified only if needed.

proc http
  method=GET
  url="https://internal.site.com/";
  sslparms
    sslcertloc="/users/johndoe/certificates/server.pem"
    sslpvtkeyloc="/users/johndoe/certificates/serverkey.pem"
    sslpvtkeypass="password"
  ;
run;

SSLPARMS Arguments for a DER 
Certificate
The SSLPKCS12LOC= and SSLPKCS12PASS= system options specify the location 
of a DER certificate.

Example Code 35.1 System Options for a DER-Encoded Certificate

proc http
  method=GET
  url=https://internal.site.com/;
  sslparms
    sslpkcs12loc="/users/server/certificates/server.p12"
    sslpkcs12pass="password"
  ;
run;

Example 15: Specify Local Options for Two-Way Encryption in UNIX 1285

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


1286 Chapter 35 / HTTP Procedure



Chapter 36
IMPORT Procedure

Overview: IMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287
What Does the IMPORT Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1287
Format Catalog Encodings in SAS Viya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290
Support for the VARCHAR Data Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1290
External File Interface (EFI) Macro Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 1291

Syntax: IMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1292
PROC IMPORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294
DATAROW Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298
DBENCODING Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1298
DELIMITER Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1299
FMTLIB Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300
GETNAMES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1300
GUESSINGROWS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1301
META Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302

Examples: IMPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302
Example 1: Importing a Delimited File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1302
Example 2: Importing a Specific Delimited File Using a Fileref . . . . . . . . . . . . . . 1306
Example 3: Importing a Tab-Delimited File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309
Example 4: Importing a Comma-Delimited File with a CSV Extension . . . . . . . . 1313

Overview: IMPORT Procedure

What Does the IMPORT Procedure Do?
The IMPORT procedure reads data from an external data source and writes it to a 
SAS data set. In Base SAS 9.4, you can import JMP files and delimited files.

In delimited files, a delimiter (such as a blank, comma, or tab) separates columns of 
data values. If you license SAS/ACCESS Interface to PC Files, additional external 

1287



data sources can include Microsoft Access database files, Microsoft Excel files, and 
Lotus spreadsheets. For more information, see SAS/ACCESS Interface to PC Files: 
Reference.

Starting in SAS 9.4, you can import data from JMP 7 or later files, and JMP 
variables can be up to 255 characters long. You can also import value labels to a 
SAS format catalog. Extended attributes are now used automatically, and the 
META= statement is no longer supported. For more information, see “JMP Files” in 
SAS/ACCESS Interface to PC Files: Reference.

When you run the IMPORT procedure, it reads the input file and writes the data to 
the specified SAS data set. By default, IMPORT procedure expects the variable 
names to appear in the first row. The procedure scans the first 20 rows to count the 
variables, and it attempts to determine the correct informat and format for each 
variable. You can use the IMPORT procedure’s statements to do the following:

n indicate how many rows SAS scans for variables to determine the type and 
length (GUESSINGROWS=)

n indicate at which row SAS begins to read the data (DATAROW=)

n modify whether SAS extracts the variable names (GETNAMES=).

You can also use these same statements to change the default values.

When the IMPORT procedure reads a delimited file, it generates a DATA step to 
import the data. You control the results with options and statements that are specific 
to the input data source. The IMPORT procedure generates the specified output 
SAS data set and writes information about the import to the SAS log. The log 
displays the DATA step code that is generated by the IMPORT procedure.

If you need to revise your code after the procedure runs, issue the RECALL 
command (or press F4) to recall the generated DATA step. At this point, you can 
add or remove options from the INFILE statement and customize the INFORMAT, 
FORMAT, and INPUT statements to your data.

If you use this method and modify an informat, also modify the format for that same 
variable. The informat and format for a given variable also must be of the same type 
(either character or numeric). In addition, if the type is character, the assigned 
format should be as long as the variable to avoid truncation when the data is 
displayed. For example, if a character variable is 400 characters long but has a 
format of $char50, then only the first 50 characters are shown when the data is 
displayed.

To recall your PROC IMPORT code, issue a second RECALL command (or press 
F4 again).

Note: By default, the IMPORT procedure reads delimited files as varying record-
length files. If your external file has a fixed-length format, use a SAS DATA step with 
an INFILE statement that includes the RECFM=F and LRECL= options. For more 
information, see the INFILE statement, RECFM= option in SAS DATA Step 
Statements: Reference.

The Import Wizard or the External File Interface (EFI) can also be used to import 
data. They can guide you through the steps to import an external data source. You 
can use the Import Wizard to generate IMPORT procedure statements, which you 
can save to a file for subsequent use.

To open the Import Wizard or EFI from the SAS windowing environment, select File 
ð Import Data. For more information about the Import Wizard or EFI, see the Base 

1288 Chapter 36 / IMPORT Procedure

http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0y75b1x6ffm26n1mf5jgknkmr4t.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0y75b1x6ffm26n1mf5jgknkmr4t.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


SAS online Help and documentation. For more detail and an example, see “Using 
SAS Import and Export Wizards” in SAS/ACCESS Interface to PC Files: Reference.

Note: EFI does not recognize non-ASCII characters when SAS Registry contains 
"UseDateStyle"="Yes".

CAUTION
Sequential access is not allowed when you use EFI.

TIP Sharing Delimited Files Across Hosts: When a delimited file is read 
into SAS using the IMPORT procedure, each row must end with a host-
specific, end-of-line delimiter. If you share delimited files that were created on 
one host with another host, the default end-of-line delimiters will not match. 
When this occurs, you must specify the new host’s end-of-line delimiter for 
your files. 

n Microsoft Windows: The default newline delimiter is Carriage Return/
Linefeed (CRLF). To read a file that is native to UNIX or Linux, use a 
FILENAME statement with the TERMSTR=LF option. For more 
information, see the FILENAME statement inSAS DATA Step Statements: 
Reference.

n UNIX or Linux: The default end-of-row delimiter is Linefeed (LF). To read 
a file that is native to Windows, use a FILENAME statement with the 
TERMSTR=CRLF option. For more information, see the FILENAME 
statement in SAS DATA Step Statements: Reference.

Beginning with SAS 9.4M3, PROC IMPORT uses the NLNUM informat instead of 
the COMMA informat. When you import a file that contains values such as 
14,000.01 that have commas, the COMMA informat removes the commas and other 
non-numeric characters from the numerical values. Removing these characters can 
cause interpretation errors in the values. NLNUM prevents these errors by using the 
specified value of the LOCALE system option to interpret numerical values that have 
commas.

For example, to enter the numerical equivalent of fourteen thousand and one 
hundredth, a person specifying LOCALE=English_UnitedStates would enter 
14,000.01. A person specifying LOCALE=French_France would enter 14.000,01. 
NLNUM interprets either input value correctly and writes the correct value based on 
the specified locale. If you read in 14.000,01 with NLNUM and 
LOCALE=French_France, store it in a data set, and then write it with NLNUM and 
LOCALE=English_UnitedStates, it is displayed as 14,000.01.

If you want to import a character value such as AAFFGG_ 06JAN2016:10:04:26 into 
a SAS data set, SAS might try to read it as a date. You can use the Registry Editor 
window to ensure that SAS imports such values as character values.

1 Type REGEDIT in the SAS command line to open the Registry Editor.

2 Click on Products ð Base ð EFI.

3 Change the value of AllChars to Yes.

For more information, see:

Overview: IMPORT Procedure 1289

http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0cbb3sk7ykinon1inoqyijif8zt.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0cbb3sk7ykinon1inoqyijif8zt.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


n “COMMAw.d” in SAS Formats and Informats: Reference

n “NLNUMw.d Informat” in SAS National Language Support (NLS): Reference 
Guide

n “Overview of Locale Concepts for NLS” in SAS National Language Support 
(NLS): Reference Guide

Format Catalog Encodings in SAS Viya
SAS Viya supports only the UTF-8 encoding.

For more information about the encodings of format catalogs, see Migrating Data to 
UTF-8 for SAS Viya and SAS Viya FAQ for Processing UTF-8 Data.

TIP

n Use the XLSX engine to read UTF–8 data. For more information, see 
“LIBNAME: XLSX Engine” in SAS/ACCESS Interface to PC Files: 
Reference.

n Do not use the DBMS=xls option to import spreadsheets that contain 
UTF-8 data.

n Use Microsoft Excel to convert your .xls spreadsheets to .xlsx 
spreadsheets before you import them with the DBMS=xlsx option.

Support for the VARCHAR Data Type
PROC IMPORT supports the VARCHAR data type in CAS. VARCHAR stores a 
character variable that can have a varying length. The length that you specify for the 
variable represents the maximum number of characters that you want to store.

The VARCHAR data type is similar to the CHAR data type. CHAR variables have a 
length that is measured in terms of bytes. VARCHAR variables have a length that is 
measured in terms of characters rather than bytes. For information about using 
VARCHAR, see “Data Types Supported in the CAS DATA Step” in SAS Cloud 
Analytic Services: User’s Guide.

In the following example, the CAS engine is used with the LENGTH statement to 
create a VARCHAR variable and a CHAR variable. The VARCHAR variable, X, has 
a length of 30 and the CHAR variable, Y, also has a length of 30.

libname mycas cas;
data mycas.string;
   length x varchar(30); 
   length y $30; 
   x = 'abc'; y = 'def'; 
run;
proc contents data=mycas.string; run;

Here is the output that the code produces.

1290 Chapter 36 / IMPORT Procedure

http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=n1dvsmv8t9o60gn1dk1gkev91nan.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ac33x4hswnr1n1ivc9p4rx2i9c.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0ac33x4hswnr1n1ivc9p4rx2i9c.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0b7o0cr0lbtdin11ssvbbpsmv6k.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0b7o0cr0lbtdin11ssvbbpsmv6k.htm&locale=en
http://documentation.sas.com/?docsetId=viyadatamig&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=viyadatamig&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=viyadatafaq&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0oj9f6i838mymn148890ckla700.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0oj9f6i838mymn148890ckla700.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en


External File Interface (EFI) Macro Variables
External File Interface (EFI) macro variables can be used to control how PROC 
IMPORT reads and interprets character values.

EFI_ALLCHARS=YES | NO
Default NO

Notes The value of EFI_ALLCHARS applies to all PROC IMPORT steps that 
follow.

The AllChars SAS Registry option has the same effect as the 
EFI_ALLCHARS macro variable.

Example %let EFI_ALLCHARS=YES;

specifies whether all columns default to a CHAR data type to avoid 
misinterpretation of a SAS datetime. Beginning in SAS 9.4TS1M4, you can 
specify the EFI macro variable, EFI_ALLCHARS, which causes PROC IMPORT 
to define all of the variables as character. Here is an example of how to use 
EFI_ALLCHARS with PROC IMPORT:

%let EFI_ALLCHARS=YES;
proc import datafile='c:\temp\class.csv' out=class dbms=csv replace;
run;
%let EFI_ALLCHARS=NO;

Reset the value of EFI_ALLCHARS after the PROC IMPORT step. Otherwise, all 
PROC IMPORT steps that follow EFI_ALLCHARS=YES define all variables as 
character.

Overview: IMPORT Procedure 1291



EFI_MISSING_NUMERICS=YES | NO
Default NO

Note The MissingNumerics SAS Registry option has the same effect as the 
EFI_MISSING_NUMERICS macro variable.

Example %let EFI_MISSING_NUMERICS=YES;

specifies whether a single period is numeric or character. When 
MissingNumerics is set to No, the single period is interpreted as a character.

EFI_NOQUOTED_DELIMITER=YES | NO
Default NO

Note The QuotedDelimiter SAS Registry option has the same effect as the 
EFI_NOQUOTED_DELIMITER macro variable.

Example %let EFI_NOQUOTED_DELIMITER=YES;

specifies whether single quotation marks within a variable value are read as 
delimiters inside open quotation marks or as part of the variable value. If your 
variables contain delimiters, or to read in a single quotation mark as part of the 
variable value, set EFI_NOQUOTED_DELIMITER to Yes.

EFI_QUOTED_NUMERICS=YES | NO
Default NO

Note The QuotedNumerics SAS Registry option has the same effect as the 
EFI_QUOTED_NUMERICS macro variable.

Example %let EFI_QUOTED_NUMERICS=YES;

specifies whether to read numbers that are enclosed in quotation marks as 
character or numeric values. When PROC IMPORT reads an external file, 
values that are enclosed in quotation marks are automatically created as 
character values. Setting EFI_QUOTED_NUMERICS to Yes enables you to read 
quoted numbers as numeric. For example, "10MAY14" is a character value, but 
with EFI_QUOTED_NUMERICS set to Yes, it becomes 10MAY14, which is a 
date value.

Syntax: IMPORT Procedure
Restrictions: The IMPORT procedure is available for the following operating environments:

n Microsoft Windows
n UNIX or Linux
A pathname for a file can have a maximum length of 201 characters.

Interaction: All data with the percent sign (%) is considered character data to avoid misinterpretation. 
Percentage data is considered character data because of the danger of 
misinterpretation.

Supports: PROC IMPORT supports the CSV, TAB, DLM, and JMP file types in CAS.

1292 Chapter 36 / IMPORT Procedure



Note: You can use PROC IMPORT to import an external file to a SAS data set or to a CAS 
table.

Tips: Beginning with SAS 9.4M5, PROC IMPORT supports the VARCHAR data type for CAS 
tables. For more information, see “Support for the VARCHAR Data Type” on page 1290.
Use the XLSX engine to read UTF–8 data. For more information, see “LIBNAME: XLSX 
Engine” in SAS/ACCESS Interface to PC Files: Reference.
Do not use the DBMS=xls option to import spreadsheets that contain UTF-8 data.
Use Microsoft Excel to convert your .xls spreadsheets to .xlsx spreadsheets before you 
import them with DBMS=xlsx.

See: “ANYDTDTMw.” in SAS Formats and Informats: Reference

PROC IMPORT
DATAFILE="filename" | TABLE="tablename"
OUT=<libref.>SAS data set <(SAS data set options)>
<DBMS=identifier> <REPLACE>;

statements for importing from delimited files
DATAROW=n;
DELIMITER=char'' | 'nnx;
GETNAMES=YES | NO;
GUESSINGROWS=n | MAX;

statements for importing from JMP files
DBENCODING=12-char SAS encoding-value;
FMTLIB=<libref.>format-catalog;
META=libref.member-data-set;

Statement Task Example

PROC IMPORT Import an external data file to a SAS data set Ex. 1, Ex. 2, 
Ex. 3, Ex. 4

DATAROW Start reading data from a specific row in the 
delimited text file

Ex. 3

DBENCODING Indicate the encoding character set to use for 
the JMP file

DELIMITER Specify the delimiter that separates columns of 
data in the input file

Ex. 1, Ex. 3, 
Ex. 4

FMTLIB Save value labels to the specified SAS format 
catalog

GETNAMES Generate SAS variable names from the data 
values in the first row in the input file

Ex. 1, Ex. 2

GUESSINGROWS Specify the number of rows of the input file to 
scan to determine the appropriate data type 
and length for the variables

META Save JMP metadata information to the 
specified SAS data set

Syntax: IMPORT Procedure 1293

http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0oj9f6i838mymn148890ckla700.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0oj9f6i838mymn148890ckla700.htm&locale=en
http://documentation.sas.com/?docsetId=leforinforref&docsetVersion=9.4&docsetTarget=p1hsn1ji141r4zn0z3xm2dthop6a.htm&locale=en


PROC IMPORT Statement
Imports an external data file to a SAS data set.

Restriction: A pathname for a file can have a maximum length of 201 characters.

Tips: Beginning with SAS Viya 3.5, PROC IMPORT supports all access types that are 
available in the FILENAME statement.
Beginning with SAS 9.4M5, PROC IMPORT supports the VARCHAR data type for CAS 
tables. For more information, see “Support for the VARCHAR Data Type” on page 1290.
Use the XLSX engine to read UTF–8 data. For more information, see “LIBNAME: XLSX 
Engine” in SAS/ACCESS Interface to PC Files: Reference.
Do not use the DBMS=xls option to import spreadsheets that contain UTF-8 data.
Use Microsoft Excel to convert your .xls spreadsheets to .xlsx spreadsheets before you 
import them with DBMS=xlsx.

Syntax
PROC IMPORT

DATAFILE="filename " | TABLE="tablename "
OUT=<libref .>SAS data set <(SAS data set options)>
<DBMS=identifier> <REPLACE>;

Summary of Optional Arguments
DBMS=identifier

specifies the type of data to import.
REPLACE

overwrites an existing SAS data set.
SAS data set options

specifies SAS data set options.

Required Arguments
DATAFILE="filename" | "fileref"

specifies the complete path and filename or fileref for the input PC file, 
spreadsheet, or delimited external file. A fileref is a SAS name that is associated 
with the physical location of the output file. To assign a fileref, use the 
FILENAME statement. For more information about the FILENAME statement, 
see SAS Global Statements: Reference. For more information about PC file 
formats, see SAS/ACCESS Interface to PC Files: Reference

If you specify a fileref or if the complete path and filename does not include 
special characters such as the backslash in a path, lowercase characters, or 
spaces, then you can omit the quotation marks.

1294 Chapter 36 / IMPORT Procedure

http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0oj9f6i838mymn148890ckla700.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=n0oj9f6i838mymn148890ckla700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Alias FILE=

Restrictions The IMPORT procedure does not support device types or access 
methods for the FILENAME statement except for DISK. For 
example, the IMPORT procedure does not support the TEMP 
device type, which creates a temporary external file.

The IMPORT procedure can import data only if SAS supports the 
data type. SAS supports numeric and character types of data but 
not (for example) binary objects. If the data that you want to import 
is a type that SAS does not support, the IMPORT procedure might 
not be able to import it correctly. In many cases, the procedure 
attempts to convert the data to the best of its ability. However, 
conversion is not possible for some types.

Interactions By default, the IMPORT procedure reads delimited files as varying 
record-length files. If your external file has a fixed-length format, 
use a SAS DATA step with an INFILE statement that includes the 
RECFM=F and LRECL= options. For more information, see the 
INFILE statement.

When you use a fileref to specify a delimited file to import, the 
logical record length (LRECL) defaults to 256, unless you specify 
the LRECL= option in the FILENAME statement. The maximum 
LRECL that the IMPORT procedure supports is 32767.

For delimited files, the first 20 rows are scanned to determine the 
variable attributes. You can increase the number of rows that are 
scanned by using the GUESSINGROWS= statement. All values 
are read in as character strings. If a Date and Time format or a 
numeric informat can be applied to the data value, the type is 
declared as numeric. Otherwise, the type remains character.

Examples “Example 1: Importing a Delimited File” on page 1302

“Example 2: Importing a Specific Delimited File Using a Fileref” on 
page 1306

“Example 3: Importing a Tab-Delimited File” on page 1309

“Example 4: Importing a Comma-Delimited File with a CSV 
Extension” on page 1313

OUT=<libref.>SAS data set
identifies the output SAS data set with either a one or two-level SAS name 
(library and member name). If the specified SAS data set does not exist, the 
IMPORT procedure creates it. If you specify a one-level name, by default the 
IMPORT procedure uses either the USER library (if assigned) or the WORK 
library (if USER is not assigned).

In the first maintenance release of SAS 9.4, a SAS data set name can contain a 
single quotation mark when the VALIDMEMNAME=EXTEND system option is 
also specified. Using VALIDMEMNAME= expands the rules for the names of 
certain SAS members, such as a SAS data set name. For more information, see 
“Rules for SAS Data Set Names, View Names, and Item Store Names” in SAS 
Language Reference: Concepts.

Examples “Example 1: Importing a Delimited File” on page 1302

PROC IMPORT Statement 1295

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1rill4udj0tfun1fvce3j401plo.htm&docsetTargetAnchor=p1969nk1hchys4n15xzi4ipsx0tu&locale=en


“Example 2: Importing a Specific Delimited File Using a Fileref” on 
page 1306

“Example 3: Importing a Tab-Delimited File” on page 1309

“Example 4: Importing a Comma-Delimited File with a CSV 
Extension” on page 1313

TABLE="tablename"
specifies the name of the input DBMS table. If the name does not include special 
characters (such as question marks), lowercase characters, or spaces, you can 
omit the quotation marks. Note that the DBMS table name might be case 
sensitive.

Requirements You must have a license for SAS/ACCESS Interface to PC Files 
to import from a DBMS table.

When you import a DBMS table, you must specify the DBMS= 
option.

Optional Arguments
DBMS=identifier

specifies the type of data to import. You can import delimited files or JMP files 
(DBMS=JMP) in Base SAS. The JMP file format must be Version 7 or later, and 
JMP variable names can be up to 255 characters long. SAS supports importing 
JMP files that have more than 32,767 variables.

To import a tab-delimited file, specify TAB as the identifier. To import any other 
delimited file that does not end in .CSV, specify DLM as the identifier. For a 
comma-separated file with a .CSV extension, DBMS= is optional. The IMPORT 
procedure recognizes .CSV as an extension for a comma-separated file.

The DBMS argument is required if you are importing a file that does not have an 
extension, and the data is delimited by tabs. It is also required if you are 
importing a TXT file that has data that is delimited with a comma.

The following values are valid for the DBMS identifier.

Table 36.1 DBMS Identifiers Supported in Base SAS

Identifier Output Data Source Extension

CSV Delimited file (comma-separated values) .csv

DLM Delimited file (default delimiter is a blank) .dat or .txt

JMP JMP files, Version 7 or later format .jmp

TAB Delimited file (tab-delimited values) .txt

See Table 23.66 on page 830 for more information about identifiers for 
this option.

1296 Chapter 36 / IMPORT Procedure



“LIBNAME: Options for Excel and Access Engines” in SAS/ACCESS 
Interface to PC Files: Reference for a list of additional DBMS values 
when using SAS/ACCESS Interface to PC Files.

“DELIMITER Statement” on page 1299

Examples “Example 1: Importing a Delimited File” on page 1302

“Example 2: Importing a Specific Delimited File Using a Fileref” on 
page 1306

“Example 3: Importing a Tab-Delimited File” on page 1309

“Example 4: Importing a Comma-Delimited File with a CSV 
Extension” on page 1313

REPLACE
overwrites an existing SAS data set. If you omit REPLACE, the IMPORT 
procedure does not overwrite an existing data set.

CAUTION
Using the IMPORT procedure with the REPLACE option to write to an 
existing SAS generation data set causes the most recent (base) generation 
data set or group of generation data sets to be deleted. 

If you write to an existing generation data set using the IMPORT procedure with 
the REPLACE option and you do one of the following:

n specify the GENMAX= data set option to increase or decrease the number of 
generations, then all existing generations are deleted and replaced with a 
single new base generation data set

n omit the GENMAX= data set option, then all existing generations are deleted 
and replaced with a single new data set by the same name, but it is not a 
generation data set

Instead, use a SAS DATA step with the REPLACE= data set option to replace a 
permanent SAS data set and to maintain the generation group for that SAS data 
set. For more information, see “Understanding Generation Data Sets” in SAS 
Language Reference: Concepts.

Examples “Example 1: Importing a Delimited File” on page 1302

“Example 2: Importing a Specific Delimited File Using a Fileref” on 
page 1306

“Example 3: Importing a Tab-Delimited File” on page 1309

“Example 4: Importing a Comma-Delimited File with a CSV 
Extension” on page 1313

SAS data set options
specifies SAS data set options. For example, to assign a password to the 
resulting SAS data set, you can use the ALTER=, PW=, READ=, or WRITE= 
data set option. To import only data that meets a specified condition, you can use 
the WHERE= data set option.

PROC IMPORT Statement 1297

http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=p1gbem6un8cr3jn10ppxkt0imtdu.htm&locale=en
http://documentation.sas.com/?docsetId=acpcref&docsetVersion=9.4&docsetTarget=p1gbem6un8cr3jn10ppxkt0imtdu.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0apy93gsj2bzmn1awyqfe7kklkp.htm&locale=en


Restriction You cannot specify data set options when importing delimited, 
comma-separated, or tab-delimited external files.

See SAS Data Set Options: Reference

DATAROW Statement
Starts reading data from the specified row number in the delimited text file.

Default: When GETNAMES=NO: 1, when GETNAMES=YES: 2

Restriction: When GETNAMES=NO, DATAROW must be equal to or greater than 1. When 
GETNAMES=YES, DATAROW must be equal to or greater than 2.

Interaction: The DATAROW statement is valid only for delimited and XLSX files.

See: “GETNAMES Statement” on page 1300

Example: “Example 3: Importing a Tab-Delimited File” on page 1309

Syntax
DATAROW=n;

Required Argument
n

specifies the row number in the input file for the IMPORT procedure to start 
reading data.

DBENCODING Statement
Indicates the encoding character set to use for the JMP file.

Interaction: The DBENCODING statement is valid only when DBMS=JMP.

Syntax
DBENCODING=12-char SAS encoding-value;

1298 Chapter 36 / IMPORT Procedure



Required Argument
12-char SAS encoding-value 

indicates the encoding to use with JMP files. Encoding maps each character in a 
character set to a unique numeric representation, which results in a table of code 
points. A single character can have different numeric representations in different 
encodings. This value can be up to 12 characters long.

DELIMITER Statement
Specifies the delimiter that separates columns of data in the input file.

Defaults: Comma for .CSV files
Blank space for all other file types

Interaction: If you specify DBMS=DLM, you must also specify the DELIMITER= statement.

See: Table 36.77 on page 1296 for a list of DBMS identifiers supported in Base SAS.
“DBMS=identifier” on page 1296

Example: “Example 1: Importing a Delimited File” on page 1302

Syntax
DELIMITER=char'' | 'nnx;

Required Argument
char | 'nn'x

specifies the delimiter that separates columns of data in the input file. You can 
specify the delimiter as a single character or as a hexadecimal value. For 
example, if columns of data are separated by an ampersand, specify 
DELIMITER='&'.

Note: If you omit DELIMITER=, the IMPORT procedure assumes that the 
delimiter is a space.

The DELIMITER statement is required when you import a file that meets any of 
these criteria:

n a file that does not have a file extension

n a file that has a .TXT extension and contains data that is delimited by 
anything other than tabs

n a file that has a .TXT, .CSV, or .JMP extension and contains data that is 
delimited by blank spaces

This example shows how to use the DBMS argument and the DELIMITER 
statement to specify a comma delimiter for a file that has a .TXT extension.

proc import datafile="C:\temp\test.txt"

DELIMITER Statement 1299



   out=test
   dbms=dlm
   replace;
   delimiter=',';
run;

FMTLIB Statement
Saves value labels to the specified SAS format catalog.

Interaction: The FMTLIB statement is valid only when DBMS=JMP.

Syntax
FMTLIB=<libref.>format-catalog;

Required Argument
<libref.>format-catalog

specifies the format catalog where the value labels are saved.

GETNAMES Statement
Specifies whether the IMPORT procedure generates SAS variable names from the data values in the first 
row in the input file.

Default: YES

Restrictions: Valid only with the IMPORT procedure.
If VALIDVARNAME=ANY is used, GETNAMES= might not prefix an underscore to the 
data value.

Interaction: The GETNAMES statement is valid only for delimited files.

Examples: “Example 1: Importing a Delimited File” on page 1302
“Example 2: Importing a Specific Delimited File Using a Fileref” on page 1306
“Example 4: Importing a Comma-Delimited File with a CSV Extension” on page 1313

Syntax
GETNAMES=YES | NO;

1300 Chapter 36 / IMPORT Procedure



Required Argument
YES | NO

YES specifies that the IMPORT procedure generate SAS variable names 
from the data values in the first row of the imported delimited file.

NO specifies that the IMPORT procedure generate SAS variable names 
as VAR1, VAR2, and so on.

Note: If a data value in the first row in the input file is read and it contains 
special characters that are not valid in a SAS name, such as a blank, then SAS 
converts the character to an underscore. For example, the variable name 
Occupancy Code would become the SAS variable name Occupancy_Code. 
Because SAS variable names cannot begin with a number, GETNAMES= 
prefixes an underscore to a variable name rather than replace the value’s first 
character. For example, 2014.CHANGES becomes _2014_CHANGES.

GUESSINGROWS Statement
Specifies the number of rows of the file to scan to determine the appropriate data type and length for the 
variables.

Default: 20

Restriction: This value should be greater than the value specified for DATAROW.

Interaction: The GUESSINGROWS statement is valid only for delimited files.

Syntax
GUESSINGROWS=n | MAX;

Required Arguments
n

indicates the number of rows the IMPORT procedure scans in the input file to 
determine the appropriate data type and length of variables. The range is 1 to 
2147483647 (or MAX). The scan data process scans from row 1 to the number 
that is specified by the GUESSINGROWS option.

Note: You can change the default row value in the SAS Registry. From the SAS 
command line, enter regedit. When the Registry Editor opens, select 
Products ð BASE ð EFI ð GuessingRows.

MAX
can be specified instead of 2147483647. Specifying the maximum value could 
adversely affect performance.

GUESSINGROWS Statement 1301



META Statement
Saves JMP metadata information to the specified SAS data set. (Deprecated)

Interaction: The META statement is valid only when DBMS=JMP.

Syntax
META=libref.member-data-set;

Required Argument
libref.member-data-set

specifies the SAS data set that contains the metadata information is to be 
written.

The META statement is no longer supported for importing a JMP file and is 
ignored. Instead, extended attributes are automatically used. When importing a 
JMP file with extended attributes, the attributes are automatically attached to the 
new SAS data set.

The META statement can remain in programs, yet it generates a NOTE in the log 
saying that META has been replaced by extended attributes and is ignored.

Examples: IMPORT Procedure

Example 1: Importing a Delimited File
Features: PROC IMPORT statement options

DATAFILE=
DBMS=
GETNAMES=
OUT=
REPLACE

DELIMITER= statement
OPTIONS statement
PRINT procedure

1302 Chapter 36 / IMPORT Procedure



Details
This example imports the following delimited external file and creates a temporary 
SAS data set named WORK.MYDATA:

Region&State&Month&Expenses&Revenue
Southern&GA&JAN2001&2000&8000
Southern&GA&FEB2001&1200&6000
Southern&FL&FEB2001&8500&11000
Northern&NY&FEB2001&3000&4000
Northern&NY&MAR2001&6000&5000
Southern&FL&MAR2001&9800&13500
Northern&MA&MAR2001&1500&1000
;

Program
options nodate ps=60 ls=80;

proc import datafile="C:\My Documents\myfiles\delimiter.txt"
            dbms=dlm
            out=mydata
            replace;

     delimiter='&';

     getnames=yes;

run;

proc print data=mydata;
run;

Program Description
Set your system options. The NODATE option suppresses the display of the date 
and time in the output. The LINESIZE= option specifies the output line length, and 
the PAGESIZE= option specifies the number of lines on an output page. 

options nodate ps=60 ls=80;

Specify the input file. Specify that the input file is a delimited file. Replace the data 
set if it exists. Identify the output SAS data set.

proc import datafile="C:\My Documents\myfiles\delimiter.txt"
            dbms=dlm
            out=mydata
            replace;

Example 1: Importing a Delimited File 1303



Specify delimiter as an & (ampersand).

     delimiter='&';

Generate variable names from first row of data.

     getnames=yes;

run;

Print out the output data set.

proc print data=mydata;
run;

Log
The SAS log displays information about the successful import. For this example, the 
IMPORT procedure generates a SAS DATA step, as shown in the partial log that 
follows.

1304 Chapter 36 / IMPORT Procedure



Example Code 36.1 External File Imported to Create a SAS Data Set

1    options nodate ps=60 ls=80; proc import datafile="C:\My
1  ! Documents\myfiles\delimiter.txt" dbms=dlm out=mydata replace; delimiter='&'
1  !  delimiter='&'; getnames=yes;run;

2     /**********************************************************************
3     *   PRODUCT:   SAS
4     *   VERSION:   9.3
5     *   CREATOR:   External File Interface
6     *   DATE:      31JAN11
7     *   DESC:      Generated SAS Datastep Code
8     *   TEMPLATE SOURCE:  (None Specified.)
9     ***********************************************************************/
10       data WORK.MYDATA    ;
11       %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
12       infile 'C:\My Documents\myfiles\delimiter.txt' delimiter = '&' MISSOVER
12 !  DSD lrecl=32767 firstobs=2 ;
13          informat Region $8. ;
14          informat State $2. ;
15          informat Month MONYY7. ;
16          informat Expenses best32. ;
17          informat Revenue best32. ;
18          format Region $8. ;
19          format State $2. ;
20          format Month MONYY7. ;
21          format Expenses best12. ;
22          format Revenue best12. ;
23       input
24                   Region $
25                   State $
26                   Month
27                   Expenses
28                   Revenue
29       ;
30       if _ERROR_ then call symputx('_EFIERR_',1);  /* set ERROR detection
30 ! macro variable */
31       run;

NOTE: The infile 'C:\My Documents\myfiles\delimiter.txt' is:
      Filename=C:\My Documents\myfiles\delimiter.txt,
      RECFM=V,LRECL=32767,File Size (bytes)=254,
      Last Modified=31Jan2011:11:44:29,
      Create Time=31Jan2011:11:44:29

NOTE: 7 records were read from the infile 'C:\My Documents\myfiles\delimiter.txt'.
      The minimum record length was 29.
      The maximum record length was 30.
NOTE: The data set WORK.MYDATA has 7 observations and 5 variables.
NOTE: DATA statement used (Total process time):
      real time           0.06 seconds
      cpu time            0.03 seconds

7 rows created in WORK.MYDATA from C:\My Documents\myfiles\delimiter.txt.

NOTE: WORK.MYDATA data set was successfully created.

Example 1: Importing a Delimited File 1305



Output
Output 36.1 Data Set Work.MyData

Example 2: Importing a Specific Delimited File 
Using a Fileref
Features: PROC IMPORT statement options

DATAFILE=
DBMS=
GETNAMES=
OUT=
REPLACE

FILENAME statement
PRINT procedure

Details
This example imports the following space-delimited file and creates a temporary 
SAS data set named Work.States.

Region State Capital Bird
South Georgia Atlanta 'Brown Thrasher'
South 'North Carolina' Raleigh Cardinal
North Connecticut Hartford Robin
West Washington Olympia 'American Goldfinch'
Midwest Illinois Springfield Cardinal

1306 Chapter 36 / IMPORT Procedure



Program
filename stdata 'c:\temp\state_data.txt' lrecl=100;

proc import datafile=stdata
        dbms=dlm
        out=states
        replace;

     delimiter=' ';
     getnames=yes;
run;

proc print data=states;
run;

Program Description
Specify a filename.

filename stdata 'c:\temp\state_data.txt' lrecl=100;

Specify the input file. Specify the input file is a delimited file. Replace the data set 
if it exists. Identify the output SAS data set. 

proc import datafile=stdata
        dbms=dlm
        out=states
        replace;

Specify a blank value for the DELIMITER statement. Generate variable names 
from the first row of data with the GETNAMES statement.

     delimiter=' ';
     getnames=yes;
run;

Print out the data set.

proc print data=states;
run;

Log
The SAS log displays information about the successful import. For this example, the 
IMPORT procedure generates a SAS DATA step, as shown in the partial log that 
follows.

Example 2: Importing a Specific Delimited File Using a Fileref 1307



Example Code 36.2 Importing a Specific Delimited File Using a Fileref

324  filename stdata 'c:\myfiles\state_data.txt' lrecl=100;
325
326  proc import datafile=stdata
327              dbms=dlm
328              out=states
329              replace;
330       delimiter=' ';
331       getnames=yes;
332
333  run;

334   /**********************************************************************
335   *   PRODUCT:   SAS
336   *   VERSION:   9.4
337   *   CREATOR:   External File Interface
338   *   DATE:      18APR14
339   *   DESC:      Generated SAS Datastep Code
340   *   TEMPLATE SOURCE:  (None Specified.)
341   ***********************************************************************/
342      data WORK.STATES    ;
343      %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
344      infile STDATA delimiter = ' ' MISSOVER DSD lrecl=32767 firstobs=2 ;
345         informat Region $7. ;
346         informat State $16. ;
347         informat Capital $11. ;
348         informat Bird $20. ;
349         format Region $7. ;
350         format State $16. ;
351         format Capital $11. ;
352         format Bird $20. ;
353      input
354                  Region $
355                  State $
356                  Capital $
357                  Bird $
358      ;
359      if _ERROR_ then call symputx('_EFIERR_',1);  /* set ERROR detection
359! macro variable */
360      run;

NOTE: The infile STDATA is:
      Filename=c:\myfiles\state_data.txt,
      RECFM=V,LRECL=32767,File Size (bytes)=225,
      Last Modified=15Apr2014:11:27:14,
      Create Time=15Apr2014:11:25:38

NOTE: 5 records were read from the infile STDATA.
      The minimum record length was 32.
      The maximum record length was 44.
NOTE: The data set WORK.STATES has 5 observations and 4 variables.
NOTE: DATA statement used (Total process time):
      real time           0.03 seconds
      cpu time            0.03 seconds

5 rows created in WORK.STATES from STDATA.

NOTE: WORK.STATES data set was successfully created.

1308 Chapter 36 / IMPORT Procedure



Output
Output 36.2 Work.States Data Set

Example 3: Importing a Tab-Delimited File
Features: PROC IMPORT statement options

DATAFILE=
DATAROW=
DBMS=
OUT=
REPLACE

DELIMITER= statement
PRINT procedure

Details
This example imports the following tab-delimited file and creates a temporary SAS 
data set named Work.Class.

Input Data 36.1 Input

Name     Gender   Age
Joyce    F        11
Thomas   M        11
Jane     F        12
Louise   F        12
James    M        12
John     M        12
Robert   M        12
Alice    F        13
Barbara  F        13

Example 3: Importing a Tab-Delimited File 1309



Jeffery  M        13
Carol    F        14
Judy     F        14
Alfred   M        14
Henry    M        14
Jenet    F        15
Mary     F        15
Ronald   M        15
William  M        15
Philip   M        16

Program
proc import datafile='C:\userid\pathname\Class.txt'
            out=class
            dbms=dlm
            replace;

       datarow=5;

     delimiter='09'x;
run;

proc print data=class;
run;

Program Description
Specify the input file. The GETNAMES= option defaults to 'yes'. Specify the input 
file as a delimited file. Replace the data set if it exists. Specify the output data set.

proc import datafile='C:\userid\pathname\Class.txt'
            out=class
            dbms=dlm
            replace;

The first row read will be row 5 due to the DATAROW= option specification. 

       datarow=5;

Specify the delimiter. On an ASCII platform, the hexadecimal representation of a 
tab is '09'x. On an EBCDIC platform, the hexadecimal representation of a tab is a 
'05'x. 

     delimiter='09'x;
run;

Print out the output data set.

proc print data=class;
run;

1310 Chapter 36 / IMPORT Procedure



Log
The SAS log displays information about the successful import. For this example, the 
IMPORT procedure generates a SAS DATA step, as shown in the partial log that 
follows.

Example 3: Importing a Tab-Delimited File 1311



Example Code 36.3 Importing a Tab-Delimited File

1    proc import datafile='C:\userid\pathname\Class.txt'
2                out=class
3                dbms=dlm
4                replace;
5           datarow=5;
6         delimiter='09'x;
7    run;
8     /**********************************************************************
9     *   PRODUCT:   SAS
10    *   VERSION:   9.4
11    *   CREATOR:   External File Interface
12    *   DATE:      04DEC18
13    *   DESC:      Generated SAS Datastep Code
14    *   TEMPLATE SOURCE:  (None Specified.)
15    ***********************************************************************/
16       data WORK.CLASS    ;
17       %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
18       infile 'C:\userid\pathname\Class.txt' delimiter='09'x MISSOVER DSD 
lrecl=32767
18 ! firstobs=5 ;
19          informat Name $7. ;
20          informat Gender $1. ;
21          informat Age $3. ;
22          format Name $7. ;
23          format Gender $1. ;
24          format Age $3. ;
25       input
26                   Name  $
27                   Gender  $
28                   Age  $
29       ;
30       if _ERROR_ then call symputx('_EFIERR_',1);  /* set ERROR detection macro 
variable */
31       run;

NOTE: The infile 'C:\userid\pathname\Class.txt' is:
      Filename=C:\userid\pathname\Class.txt,
      RECFM=V,LRECL=32767,File Size (bytes)=253,
      Last Modified=26Nov2018:14:06:26,
      Create Time=26Nov2018:13:50:27

NOTE: 16 records were read from the infile 'C:\userid\pathname\Class.txt'.
      The minimum record length was 9.
      The maximum record length was 12.
NOTE: The data set WORK.CLASS has 16 observations and 3 variables.
NOTE: DATA statement used (Total process time):
      real time           0.04 seconds
      cpu time            0.01 seconds

16 rows created in WORK.CLASS from C:\userid\pathname\Class.txt.

NOTE: WORK.CLASS data set was successfully created.
NOTE: The data set WORK.CLASS has 16 observations and 3 variables.
NOTE: PROCEDURE IMPORT used (Total process time):
      real time           0.45 seconds
      cpu time            0.20 seconds

1312 Chapter 36 / IMPORT Procedure



Output
Output 36.3 Work.Class Data Set

Example 4: Importing a Comma-Delimited File with 
a CSV Extension
Features: PROC IMPORT statement options

DATAFILE=
DBMS=
GETNAMES=
OUT=
REPLACE

PRINT procedure

Example 4: Importing a Comma-Delimited File with a CSV Extension 1313



Details
This example imports the following comma-delimited file and creates a temporary 
SAS data set named Work.Shoes.

Note: In SAS, the default delimiter for a CSV file is a comma.

"Africa","Boot","Addis Ababa","12","$29,761","$191,821","$769"
"Asia","Boot","Bangkok","1","$1,996","$9,576","$80"
"Canada","Boot","Calgary","8","$17,720","$63,280","$472"
"Central America/Caribbean","Boot","Kingston","33","$102,372","$393,376","$4,454"
"Eastern Europe","Boot","Budapest","22","$74,102","$317,515","$3,341"
"Middle East","Boot","Al-Khobar","10","$15,062","$44,658","$765"
"Pacific","Boot","Auckland","12","$20,141","$97,919","$962"
"South America","Boot","Bogota","19","$15,312","$35,805","$1,229"
"United States","Boot","Chicago","16","$82,483","$305,061","$3,735"
"Western Europe","Boot","Copenhagen","2","$1,663","$4,657","$129"

Program
proc import datafile="C:\temp\test.csv"
        out=shoes
        dbms=csv
        replace;
    

     getnames=no;
run;

proc print data=work.shoes;
run;

Program Description
Specify the input data file. Replace the data set if it exists. Specify the output data 
set. 

proc import datafile="C:\temp\test.csv"
        out=shoes
        dbms=csv
        replace;
    

Setting the GETNAMES= option to 'no' causes the variable names in record 1 
are not used. 

     getnames=no;
run;

1314 Chapter 36 / IMPORT Procedure



Print the data set.

proc print data=work.shoes;
run;

Log
The SAS log displays information about the successful import. For this example, the 
IMPORT procedure generates a SAS DATA step, as shown in the partial log that 
follows.

Example 4: Importing a Comma-Delimited File with a CSV Extension 1315



Example Code 36.4 Importing a Comma-Delimited File

457  proc import datafile="C:\myfiles\test.csv"
458       dbms=csv
459       out=shoes
460       replace;
461       getnames=no;
462  run;

463   /**********************************************************************
464   *   PRODUCT:   SAS
465   *   VERSION:   9.4
466   *   CREATOR:   External File Interface
467   *   DATE:      18APR14
468   *   DESC:      Generated SAS Datastep Code
469   *   TEMPLATE SOURCE:  (None Specified.)
470   ***********************************************************************/
471      data WORK.SHOES    ;
472      %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
473      infile 'C:\myfiles\test.csv' delimiter = ',' MISSOVER DSD lrecl=32767 ;
474         informat VAR1 $27. ;
475         informat VAR2 $6. ;
476         informat VAR3 $13. ;
477         informat VAR4 $4. ;
478         informat VAR5 $10. ;
479         informat VAR6 $10. ;
480         informat VAR7 $8. ;
481         format VAR1 $27. ;
482         format VAR2 $6. ;
483         format VAR3 $13. ;
484         format VAR4 $4. ;
485         format VAR5 $10. ;
486         format VAR6 $10. ;
487         format VAR7 $8. ;
488      input
489                  VAR1 $
490                  VAR2 $
491                  VAR3 $
492                  VAR4 $
493                  VAR5 $
494                  VAR6 $
495                  VAR7 $
496      ;
497      if _ERROR_ then call symputx('_EFIERR_',1);  /* set ERROR detection
497! macro variable */
498      run;

NOTE: The infile 'C:\myfiles\test.csv' is:
      Filename=C:\myfiles\test.csv,
      RECFM=V,LRECL=32767,File Size (bytes)=657,
      Last Modified=18Apr2014:10:34:47,
      Create Time=18Apr2014:10:33:23

NOTE: 10 records were read from the infile 'C:\myfiles\test.csv'.
      The minimum record length was 51.
      The maximum record length was 81.
NOTE: The data set WORK.SHOES has 10 observations and 7 variables.

1316 Chapter 36 / IMPORT Procedure



Output
Output 36.4 Work.Shoes Data Set

Example 4: Importing a Comma-Delimited File with a CSV Extension 1317



1318 Chapter 36 / IMPORT Procedure



Chapter 37
JAVAINFO Procedure

Overview: JAVAINFO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319
What Does the JAVAINFO Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319

Syntax: JAVAINFO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1319
PROC JAVAINFO Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1320

Overview: JAVAINFO Procedure

What Does the JAVAINFO Procedure Do?
The JAVAINFO procedure conveys diagnostic information to the user about the 
Java environment that SAS is using. The diagnostic information can be used to 
confirm that the SAS Java environment has been configured correctly, and can be 
helpful when reporting problems to SAS technical support. Also, PROC JAVAINFO 
is often used to verify that the SAS Java environment is working correctly because 
PROC JAVAINFO uses Java to report its diagnostics.

Syntax: JAVAINFO Procedure
PROC JAVAINFO <options>;

1319



Statement Task

PROC JAVAINFO Display diagnostic information about the SAS Java 
environment

PROC JAVAINFO Statement
Displays diagnostic information about the SAS Java environment.

Interaction: When a SAS server is in a locked-down state, the JAVAINFO procedure does not 
execute. For more information, see “SAS Processing Restrictions for Servers in a 
Locked-Down State” in SAS Language Reference: Concepts.

Syntax
PROC JAVAINFO <options>;

Optional Arguments
ALL

lists current information about the SAS Java environment.

CLASSPATHS
lists information about the classpaths that Java is using.

HELP
provides usage assistance in using the JAVAINFO procedure.

JREOPTIONS
lists the Java properties that are set when the JREOPTIONS configuration option 
is specified.

n When used in PROC JAVAINFO, JREOPTIONS specifies the JREOPTIONS 
Java properties that are set when Java is started.

n When used in PROC OPTIONS, JREOPTIONS specifies the Java options 
that are in the configuration file when SAS is started.

Note: SAS.cfg is the configuration file specified during installation, but other 
configuration files can be specified.

OS
lists information about the operating system that SAS is running under.

version
lists the Java Runtime Environment (JRE) that SAS is using.

1320 Chapter 37 / JAVAINFO Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0ez235imkrngan1frvwgfsm2l45.htm&locale=en


Chapter 38
JSON Procedure

Overview: JSON Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1321
What Does the JSON Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322

Concepts: JSON Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322
JSON Output File Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1322
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1325
Scanning Input Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1325
JSON Output File Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326

Syntax: JSON Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326
PROC JSON Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1327
EXPORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1331
WRITE VALUES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1335
WRITE OPEN Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1337
WRITE CLOSE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1338

Usage: JSON Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1339
Exporting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1339
Writing Values to a JSON Output File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1339
Controlling JSON Output with Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1340
PROC JSON Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1342

Examples: JSON Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1343
Example 1: Exporting a JSON File Using Default Options . . . . . . . . . . . . . . . . . . 1343
Example 2: Exporting Data to a Top-Level JSON Array Container . . . . . . . . . . . 1344
Example 3: Suppressing SAS Variable Names in Observation Data 

When Using the EXPORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1345
Example 4: Writing JSON Output without Exporting a SAS Data Set . . . . . . . . . 1347
Example 5: Writing Values and Exporting Data in the Same Program . . . . . . . . 1349
Example 6: Writing Values and Controlling Containers in Exported Data . . . . . . 1353
Example 7: Applying SAS Formats to the Resulting Output . . . . . . . . . . . . . . . . 1357
Example 8: Exporting Multiple SAS Data Sets to a JSON File . . . . . . . . . . . . . . 1359

1321



Overview: JSON Procedure

What Does the JSON Procedure Do?
The JSON procedure reads data from a SAS data set and writes it to an external file 
in JSON1 representation. You can control the exported data with several options 
that remove content and affect the format. In addition to exporting data from a SAS 
data set, PROC JSON provides statements that enable you to write additional data 
to the external file and control JSON containers.

SAS provides the JSON engine to read a JSON file. For more information, see 
“LIBNAME: JSON Engine” in SAS Global Statements: Reference.

Concepts: JSON Procedure

JSON Output File Containers

Structure of the JSON Output File
The JSON output file consists of a minimum of one container, which is referred to as 
the top-level container. All of the data, metadata, and additional containers are 
within the top-level container. The type of top-level container is determined by the 
statement that immediately follows the PROC JSON statement and the options that 
are enabled in that statement.

JSON Containers
JSON output consists of two types of data structure containers:

1. Java Script Object Notation (JSON) is a text-based, open standard data format that is designed for human-readable data 
interchange. JSON is based on a subset of the JavaScript programming language and uses JavaScript syntax for 
describing data objects.

1322 Chapter 38 / JSON Procedure

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1jfdetszx99ban1rl4zll6tej7j.htm&locale=en


JSON object container ({ })
begins with a left brace ({) and ends with a right brace (}). An object container 
collects key-value pairs that are written as pairs of names and values. A value 
can be any of the supported JSON data types, an object, or an array. Each name 
is followed a colon and then the value. The key-value pairs are separated by a 
comma.

JSON array container ([ ])
begins with a left bracket ([) and ends with a right bracket (]). An array container 
collects a list of values that are written as a list of values without names. A value 
can be any of the supported JSON data types, an object, or an array. Values are 
separated by a comma.

Creating Object Containers
The following statements create object containers:

n The EXPORT statement with default options enabled implicitly opens an object 
container as the top-level container. This object container is implicitly opened 
and automatically closed.

proc json out="example.json";
   export sashelp.class (where=(age=11));
...

n The WRITE VALUES statement opens an object container as the top-level 
container when it is the first statement after the PROC JSON statement. This 
object container is implicitly opened and automatically closed.

proc json out="example.json";
   write values "container" "object"; 
   write values "created" "implicitly"; 
...

n The WRITE OPEN OBJECT statement explicitly opens an object container, 
which you must explicitly close with the WRITE CLOSE statement.

proc json out="example.json"
   write open object;
   write values "container" "object";
   write values "created" "explicitly";
   write close;
...

Creating Array Containers
The following statements create array containers:

n The EXPORT statement with the NOSASTAGS option enabled opens an array 
container as the top-level container when it is the first statement after the PROC 

Concepts: JSON Procedure 1323



JSON statement. This top-level array container is implicitly opened and 
automatically closed.

proc json out="example.json";
   export sashelp.class (where=(age=11)) / nosastags;
...

n The WRITE OPEN ARRAY statement explicitly opens an array container, which 
you must explicitly close with the WRITE CLOSE statement.

proc json out="example.json";
   write open array;
   write values "container" "array";
   write values "created" "explictly";
   write close;
...

Nesting Containers
The top-level container can include any number of containers. Containers, likewise, 
can nest containers to an arbitrary depth. When nesting containers, be careful to 
observe the data structure requirements of the current container.

n Objects require a list of key-value pairs, where the value can itself be an object 
or array.

n Arrays have no such structural requirement of key-value pairs and are merely a 
list of values, objects, or arrays.

n The WRITE VALUES statement or statements for an object container must result 
in an even number of values, and the name portion of the key-value pair must be 
a string.

In this example, an array is nested within an implicitly opened object:

proc json out="example.json";
   write values "level" 1;              /* implicit open of object         */
   write values "container" "object";   /* write data to object            */
   write values "created" "implicitly"; /* write data to object            */
   write values "nest";                 /* required string to start object */
   write open array;                    /* explicit open of array          */
   write values "level" 2;              /* write data to array             */
   write values "container" "array";    /* write data to array             */
   write values "created" "explicitly"; /* write data to array             */
   write close;                         /* close explicit open             */
run;

{"level":1,"container":"object","created":"implicitly","nest":["level",2,
"container","array","created","explicitly"]}

In this example, the exported data is nested within three array containers.

proc json out="example.json";
   write open array;                                /* explicit open of array */
   write values "level" 1;                          /* write data to array    */

1324 Chapter 38 / JSON Procedure



   write values "container" "array";                /* write data to array    */
   write values "created" "explicitly";             /* write data to array    */
   write open array;                                /* explicit open of array */
   write values "level" 2;                          /* write data to array    */
   write values "container" "array";                /* write data to array    */
   write values "created" "explicitly";             /* write data to array    */
   export sashelp.class (where=(age=11))/nokeys;    /* export SAS data  */
   write close;                                     /* close explicit open    */
   write close;                                     /* close explicit open    */
run;

["level",1,"container","array","created","explicitly",["level",2,"container",
"array","created","explicitly","SASJSONExport","1.0 NOKEYS",
"SASTableData+CLASS",[["Joyce","F",11,51.3,50.5],["Thomas","M",11,57.5,85]]]]

Missing Values
A missing value in SAS is a type of value for a variable that contains no data for a 
particular observation or variable. By default, SAS represents a missing numeric 
value as a single period and a missing character value as a blank space.

JSON also has the concept of missing values referred to as a null value, which is a 
special value that indicates the absence of information.

PROC JSON writes a JSON null value to the JSON output file when the following is 
true:

n a SAS data set numeric variable contains a missing value

n the WRITE VALUES statement writes the NULL keyword as a value

By default, SAS writes an empty string ("") to the JSON output file when a SAS data 
set character variable contains a missing value. However, if you specify the 
NOTRIMBLANKS option, the entire string of blanks is written to the JSON output 
file.

Scanning Input Strings
A JSON string is a sequence of zero or more characters that are wrapped in double 
quotation marks. A JSON string can be any Unicode character except double 
quotation marks ("), backslash (\), or a control character. A JSON string can contain 
a backslash as an escape character, which invokes an alternative interpretation on 
subsequent characters in a character sequence. For example, to allow a JSON 
string to contain double quotation marks, the " can be escaped by preceding the 
character with a \.

By default, PROC JSON scans input strings to ensure that they contain only 
characters that are acceptable as JSON strings. Unacceptable characters in an 
input string are replaced with the proper escape sequence.

You can specify the NOSCAN option to indicate that the input string is known to 
contain acceptable characters or has already been scanned. NOSCAN is supported 

Concepts: JSON Procedure 1325



in the PROC JSON statement, the EXPORT statement, and the WRITE VALUES 
statement.

JSON Output File Encoding
By default, the resulting JSON output file uses the Unicode encoding UTF-8. To 
override the encoding of a JSON output file, you can use the ENCODING= option in 
the FILENAME statement. However, you can do so only in the following situations:

n If the current SAS session encoding is UTF-8, you can specify one of the 
following Unicode encoding forms. Only UTF-8 and the following encoding forms 
are JSON standards compliant. Other encoding forms might not be recognized 
by standards-compliant JSON parsers.

Table 38.1 Encodings That Are Valid in UTF-8 SAS Session

Name Description

utf-16be Unicode (UTF-16BE)

utf-32be Unicode (UTF-32BE)

utf-32le Unicode (UTF-32LE)

n If the current SAS session encoding is not UTF-8, you can override the encoding 
of a JSON output file only if the current SAS session encoding is compatible with 
US-ASCII and all strings written to the JSON output file contain only low-range 
Latin1 characters (that is, code points 0-127).

For example, the following code exports a JSON output file that uses the Unicode 
UTF-16BE character set encoding. The current SAS session encoding is Wlatin1. 
The ENCODING= option in the FILENAME statement tells PROC JSON to 
transcode the data from Wlatin1 to the specified Unicode UTF-16BE form when 
writing to the external file.

filename jsonout "C:\JsonOutput.json" encoding="utf-16be";

proc json out=jsonout;
   export sashelp.class;
quit;

Syntax: JSON Procedure
PROC JSON OUT=fileref | "external-file" <options>;

EXPORT <libref.>SAS-data-set <(SAS-data-set-options)> </options>;
WRITE VALUES value(s) </options>;

1326 Chapter 38 / JSON Procedure



WRITE OPEN type;
WRITE CLOSE;

Statement Task Example

PROC JSON Exports a SAS data set to a JSON file. Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5, Ex. 6, 
Ex. 7, Ex. 8

EXPORT Identify the SAS data set to export and control 
the resulting output

Ex. 1, Ex. 2, 
Ex. 3, Ex. 5, 
Ex. 6, Ex. 7, 
Ex. 8

WRITE VALUES Write one or more values to the output file Ex. 4, Ex. 5, 
Ex. 6, Ex. 8

WRITE OPEN Open and nest a JSON container in the output 
file

Ex. 4, Ex. 5, 
Ex. 6, Ex. 8

WRITE CLOSE Close a JSON container that is open in the 
output file

Ex. 4, Ex. 5, 
Ex. 6, Ex. 8

PROC JSON Statement
Specifies the JSON output file and controls the resulting output.

Examples: “Example 1: Exporting a JSON File Using Default Options” on page 1343
“Example 2: Exporting Data to a Top-Level JSON Array Container” on page 1344
“Example 3: Suppressing SAS Variable Names in Observation Data When Using the 
EXPORT Statement” on page 1345
“Example 4: Writing JSON Output without Exporting a SAS Data Set” on page 1347
“Example 5: Writing Values and Exporting Data in the Same Program” on page 1349
“Example 6: Writing Values and Controlling Containers in Exported Data” on page 1353
“Example 7: Applying SAS Formats to the Resulting Output” on page 1357
“Example 8: Exporting Multiple SAS Data Sets to a JSON File” on page 1359

Syntax
PROC JSON OUT=fileref | "external-file" <options>;

Summary of Optional Arguments
FMTCHARACTER | NOFMTCHARACTER

PROC JSON Statement 1327



determines whether to apply a character SAS format to the resulting 
output if a character SAS format is associated with a SAS data set 
variable.

FMTDATETIME | NOFMTDATETIME
determines whether to apply a date, time, or datetime SAS format to the 
resulting output if a date, time, or datetime SAS format is associated with 
a SAS data set variable.

FMTNUMERIC | NOFMTNUMERIC
determines whether to apply a numeric SAS format to the resulting output 
if a numeric SAS format is associated with a SAS data set variable.

KEYS | NOKEYS
determines whether exported observations are written as JSON objects or 
as JSON arrays.

PRETTY | NOPRETTY
determines how to format the JSON output.

SASTAGS | NOSASTAGS
determines whether to include or suppress SAS metadata when using the 
EXPORT statement.

SCAN | NOSCAN
determines whether PROC JSON scans and encodes input strings to 
ensure that only characters that are acceptable are exported to the JSON 
output file.

TRIMBLANKS | NOTRIMBLANKS
determines whether to remove or retain trailing blanks from the end of 
character data in the JSON output.

Required Argument
OUT=fileref | "external-file"

identifies the JSON output file.

fileref
specifies the SAS fileref that is assigned to the JSON output file. To assign a 
fileref, use the FILENAME statement.

"external-file"
is the physical location of the JSON output file. Include the complete 
pathname and the filename. Enclose the physical name in single or double 
quotation marks. The maximum length is 200 characters.

Optional Arguments
FMTCHARACTER | NOFMTCHARACTER

determines whether to apply a character SAS format to the resulting output if a 
character SAS format is associated with a SAS data set variable.

Alias FMTCHAR | NOFMTCHAR

Default NOFMTCHARACTER

Interaction You can specify FMTCHARACTER | NOFMTCHARACTER in the 
PROC JSON statement, the EXPORT statement, or both. If the 
option is specified in both statements, the EXPORT statement 
specification takes precedence.

1328 Chapter 38 / JSON Procedure



Note User-defined formats are also supported.

FMTDATETIME | NOFMTDATETIME
determines whether to apply a date, time, or datetime SAS format to the 
resulting output if a date, time, or datetime SAS format is associated with a SAS 
data set variable. Applying a SAS format makes the date and time values in the 
resulting JSON output more readable.

Alias FMTDT | NOFMTDT

Default FMTDATETIME

Interaction You can specify FMTDATETIME | NOFMTDATETIME in the PROC 
JSON statement, the EXPORT statement, or both. If the option is 
specified in both statements, the EXPORT statement specification 
takes precedence.

Tip User-defined formats are also supported.

FMTNUMERIC | NOFMTNUMERIC
determines whether to apply a numeric SAS format to the resulting output if a 
numeric SAS format is associated with a SAS data set variable.

Alias FMTNUM | NOFMTNUM

Default NOFMTNUMERIC

Restriction Only the SAS formats BESTw., Ew., and w.d write a JSON 
number to the output file. All other numeric SAS formats result in 
a JSON string.

Requirement FMTNUMERIC applies numeric SAS formats. For date, time, and 
datetime SAS formats, use the FMTDATETIME option.

Interactions With NOFMTNUMERIC or when a numeric variable does not 
have an associated SAS format, numeric values are written to the 
output file with a maximum of 12 digits.

You can specify FMTNUMERIC | NOFMTNUMERIC in the PROC 
JSON statement, the EXPORT statement, or both. If the option is 
specified in both statements, the EXPORT statement specification 
takes precedence.

Tip User-defined formats are also supported.

KEYS | NOKEYS
determines whether exported observations are written as JSON objects or as 
JSON arrays.

A JSON object stores SAS variable values from observations as key-value pairs. 
The SAS variable name is the key. A JSON array stores variable values only.

Default KEYS

Interaction You can specify NOKEYS in the PROC JSON statement, the 
EXPORT statement, or both. If the option is specified in both 
statements, the EXPORT statement specification takes precedence.

PROC JSON Statement 1329



Tip Use NOKEYS to suppress SAS variable names in observation data 
when using the EXPORT statement.

See “Example 3: Suppressing SAS Variable Names in Observation Data 
When Using the EXPORT Statement” on page 1345and “Example 
5: Writing Values and Exporting Data in the Same Program” on 
page 1349.

PRETTY | NOPRETTY
determines how to format the JSON output. PRETTY creates a more human-
readable format that uses indention to illustrate the JSON container structure. 
NOPRETTY writes the output in a single line.

Default NOPRETTY

Restriction You can specify PRETTY | NOPRETTY in the PROC JSON 
statement only.

SASTAGS | NOSASTAGS
determines whether to include or suppress SAS metadata when using the 
EXPORT statement. The metadata consists of the SAS export version, exported 
SAS data set name, and any non-default option specification, such as PRETTY. 

When EXPORT is the first statement in the procedure request, the top-level 
container for the exported data is a JSON object container. The SAS metadata 
precedes the exported data. When NOSASTAGS is specified, the top-level 
container is a JSON array container and the SAS metadata is suppressed.

See the following topics for information about what happens when the EXPORT 
statement is preceded by a WRITE OPEN statement in the PROC JSON 
request:

n WRITE OPEN ARRAY — “Example 5: Writing Values and Exporting Data in 
the Same Program” on page 1349.

n WRITE OPEN OBJECT — “Example 8: Exporting Multiple SAS Data Sets to 
a JSON File” on page 1359. 

Default SASTAGS

Interactions NOSASTAGS affects the outermost container for exported data. 
The top-level JSON container is affected only when the EXPORT 
statement is the first statement in the procedure request.

You can specify NOSASTAGS in the PROC JSON statement, the 
EXPORT statement, or both. If the option is specified in both 
statements, the EXPORT statement specification takes 
precedence.

Note To modify the format of the exported observations, use the “KEYS | 
NOKEYS” option.

See “Example 2: Exporting Data to a Top-Level JSON Array Container” 
on page 1344 and “Example 6: Writing Values and Controlling 
Containers in Exported Data” on page 1353.

SCAN | NOSCAN
determines whether PROC JSON scans and encodes input strings to ensure 
that only characters that are acceptable are exported to the JSON output file.

1330 Chapter 38 / JSON Procedure



Default SCAN

Interactions NOSCAN indicates that the input string is known to contain 
acceptable JSON text or has already been scanned. When 
NOSCAN is in effect, the input string or character value is taken as 
is, and the output JSON string is enclosed in quotation marks.

You can specify SCAN | NOSCAN in the PROC JSON statement, 
the EXPORT statement, the WRITE VALUES statement, or all 
three. If the option is specified in multiple statements, the EXPORT 
statement specification takes precedence.

See “Scanning Input Strings” on page 1325

TRIMBLANKS | NOTRIMBLANKS
determines whether to remove or retain trailing blanks from the end of character 
data in the JSON output. Only space characters are removed.

Default TRIMBLANKS

Interaction You can specify TRIMBLANKS | NOTRIMBLANKS in the PROC 
JSON statement, the EXPORT statement, the WRITE VALUES 
statement, or all three. If the option is specified in multiple 
statements, the EXPORT statement specification takes precedence.

EXPORT Statement
Identifies the SAS data set to be exported and controls the resulting output.

Alias: EX

Interaction: If the EXPORT statement is the first statement after the PROC JSON statement, the top-
level container is a JSON object. However, if the NOSASTAGS option is specified in 
either the PROC JSON or the EXPORT statement, the top-level container is a JSON 
array. PROC JSON automatically closes the implicitly opened top-level container.

Notes: You can export multiple SAS data sets to the JSON output file by submitting multiple 
EXPORT statements.
The resulting JSON output uses the Unicode encoding form UTF-8. You cannot override 
the encoding in the output file with the ENCODING= data set option in the EXPORT 
statement. For information about overriding the encoding, see “JSON Output File 
Encoding” on page 1326.

Examples: “Example 1: Exporting a JSON File Using Default Options” on page 1343
“Example 2: Exporting Data to a Top-Level JSON Array Container” on page 1344
“Example 3: Suppressing SAS Variable Names in Observation Data When Using the 
EXPORT Statement” on page 1345
“Example 5: Writing Values and Exporting Data in the Same Program” on page 1349
“Example 6: Writing Values and Controlling Containers in Exported Data” on page 1353
“Example 7: Applying SAS Formats to the Resulting Output” on page 1357
“Example 8: Exporting Multiple SAS Data Sets to a JSON File” on page 1359

EXPORT Statement 1331



Syntax
EXPORT <libref.>SAS-data-set <(SAS-data-set-options)> </options>;

Summary of Optional Arguments
(SAS-data-set-options)

specifies SAS data set options that apply to the input SAS data set.
FMTCHARACTER | NOFMTCHARACTER

determines whether to apply a character SAS format to the resulting 
output if a character SAS format is associated with a SAS data set 
variable.

FMTDATETIME | NOFMTDATETIME
determines whether to apply a date, time, or datetime SAS format to the 
resulting output if a date, time, or datetime SAS format is associated with 
a SAS data set variable.

FMTNUMERIC | NOFMTNUMERIC
determines whether to apply a numeric SAS format to the resulting output 
if a numeric SAS format is associated with a SAS data set variable.

KEYS | NOKEYS
determines whether exported observations are written as JSON objects or 
as JSON arrays.

SASTAGS | NOSASTAGS
determines whether to include or suppress SAS metadata when using the 
EXPORT statement.

SCAN | NOSCAN
determines whether PROC JSON scans and encodes input strings to 
ensure that only characters that are acceptable are exported to the JSON 
output.

TABLENAME="name"
specifies a name for the exported SAS data set.

TRIMBLANKS | NOTRIMBLANKS
determines whether to remove or retain trailing blanks from the end of 
character data in the JSON output.

Required Argument
<libref.>SAS-data-set

identifies the SAS data set to be exported with either a one- or two-level SAS 
name (library and member name). If you specify a one-level name, by default, 
the JSON procedure uses either the User library (if assigned) or the Work library.

Optional Arguments
(SAS-data-set-options)

specifies SAS data set options that apply to the input SAS data set. For 
example, if the data set that you are exporting has an assigned password, you 
can use the ALTER=, PW=, READ=, or WRITE= data set options. To export a 
subset of data that meets a specified condition, you can use the WHERE= 

1332 Chapter 38 / JSON Procedure



option. For information about SAS data set options, see SAS Data Set Options: 
Reference.

FMTCHARACTER | NOFMTCHARACTER
determines whether to apply a character SAS format to the resulting output if a 
character SAS format is associated with a SAS data set variable.

Alias FMTCHAR | NOFMTCHAR

Default NOFMTCHARACTER

Interaction You can specify FMTCHARACTER | NOFMTCHARACTER in the 
PROC JSON statement, the EXPORT statement, or both. If the 
option is specified in both statements, the EXPORT statement 
specification takes precedence.

FMTDATETIME | NOFMTDATETIME
determines whether to apply a date, time, or datetime SAS format to the 
resulting output if a date, time, or datetime SAS format is associated with a SAS 
data set variable. Applying a SAS format makes the date and time values in the 
resulting JSON output more readable.

Alias FMTDT | NOFMTDT

Default FMTDATETIME

Interaction You can specify FMTDATETIME | NOFMTDATETIME in the PROC 
JSON statement, the EXPORT statement, or both. If the option is 
specified in both statements, the EXPORT statement specification 
takes precedence.

FMTNUMERIC | NOFMTNUMERIC
determines whether to apply a numeric SAS format to the resulting output if a 
numeric SAS format is associated with a SAS data set variable.

Alias FMTNUM | NOFMTNUM

Default NOFMTNUMERIC

Restriction Only the SAS formats BESTw., Ew., and w.d write a JSON 
number to the output file. All other numeric SAS formats result in 
a JSON string.

Requirement FMTNUMERIC applies numeric SAS formats. For date, time, and 
datetime SAS formats, use the FMTDATETIME option.

Interactions With NOFMTNUMERIC or when a numeric variable does not 
have an associated SAS format, numeric values are written to the 
output file with a maximum of 12 digits.

You can specify FMTNUMERIC | NOFMTNUMERIC in the PROC 
JSON statement, the EXPORT statement, or both. If the option is 
specified in both statements, the EXPORT statement specification 
takes precedence.

KEYS | NOKEYS
determines whether exported observations are written as JSON objects or as 
JSON arrays.

EXPORT Statement 1333

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


A JSON object stores SAS variable values from observations as key-value pairs. 
The variable names are the keys. A JSON array stores variable values only.

Default KEYS

Interaction You can specify NOKEYS in the PROC JSON statement, the 
EXPORT statement, or both. If the option is specified in both 
statements, the EXPORT statement specification takes precedence.

Tip Use NOKEYS to suppress SAS variable names in observation data 
when using the EXPORT statement.

See “Example 3: Suppressing SAS Variable Names in Observation Data 
When Using the EXPORT Statement” on page 1345and “Example 
5: Writing Values and Exporting Data in the Same Program” on 
page 1349.

SASTAGS | NOSASTAGS
determines whether to include or suppress SAS metadata when using the 
EXPORT statement. The metadata consists of the SAS export version, exported 
SAS data set name, and any non-default option specification, such as PRETTY. 

When EXPORT is the first statement in the procedure request, the top-level 
container for the exported data is a JSON object container. The SAS metadata 
precedes the exported data. When NOSASTAGS is specified, the top-level 
container is a JSON array container and the SAS metadata is suppressed.

See the following topics for information about what happens when the EXPORT 
statement is preceded by a WRITE OPEN statement in the PROC JSON 
request:

n WRITE OPEN ARRAY — “Example 5: Writing Values and Exporting Data in 
the Same Program” on page 1349.

n WRITE OPEN OBJECT — “Example 8: Exporting Multiple SAS Data Sets to 
a JSON File” on page 1359. 

Default SASTAGS

Interactions NOSASTAGS affects the outermost container for exported data. 
The top-level JSON container is affected only when the EXPORT 
statement is the first statement in the procedure request.

You can specify SASTAGS | NOSASTAGS in the PROC JSON 
statement, the EXPORT statement, or both. If the option is 
specified in both statements, the EXPORT statement specification 
takes precedence.

Note To modify the format of the exported observations, use the “KEYS | 
NOKEYS” option.

See “Example 2: Exporting Data to a Top-Level JSON Array Container” 
on page 1344 and “Example 6: Writing Values and Controlling 
Containers in Exported Data” on page 1353.

SCAN | NOSCAN
determines whether PROC JSON scans and encodes input strings to ensure 
that only characters that are acceptable are exported to the JSON output.

Default SCAN

1334 Chapter 38 / JSON Procedure



Interactions NOSCAN indicates that the input string is known to contain 
acceptable JSON text or has already been scanned. When 
NOSCAN is in effect, the input string or character value is taken as 
is, and the output JSON string is enclosed in quotation marks.

You can specify SCAN | NOSCAN in the PROC JSON statement, 
the EXPORT statement, the WRITE VALUES statement, or all 
three statements. If the option is specified in multiple statements, 
the EXPORT statement specification takes precedence.

See “Scanning Input Strings” on page 1325

TABLENAME="name"
specifies a name for the exported SAS data set. The name is exported as SAS 
metadata in the JSON output file. Enclose the name in single or double 
quotation marks.

Default The default is the SAS data set member name.

Requirement The TABLENAME= option requires the SASTAGS option to 
include the SAS metadata in the JSON output.

TRIMBLANKS | NOTRIMBLANKS
determines whether to remove or retain trailing blanks from the end of character 
data in the JSON output. Only space characters are removed.

Default TRIMBLANKS

Interaction You can specify TRIMBLANKS | NOTRIMBLANKS in the PROC 
JSON statement, the EXPORT statement, the WRITE VALUES 
statement, or all three statements. If the option is specified in 
multiple statements, the EXPORT statement specification takes 
precedence.

WRITE VALUES Statement
Writes one or more values to the JSON output file.

Alias: W V

Interaction: If the WRITE VALUES statement is the first statement after the PROC JSON statement, 
PROC JSON opens a JSON object as the top-level container. PROC JSON 
automatically closes the implicitly opened top-level container.

Note: Specifying multiple values in one WRITE VALUES statement is equivalent to submitting 
multiple WRITE VALUES statements with only one value each. Only the order of the 
values is significant.

Examples: “Example 4: Writing JSON Output without Exporting a SAS Data Set” on page 1347
“Example 5: Writing Values and Exporting Data in the Same Program” on page 1349
“Example 6: Writing Values and Controlling Containers in Exported Data” on page 1353
“Example 8: Exporting Multiple SAS Data Sets to a JSON File” on page 1359

WRITE VALUES Statement 1335



Syntax
WRITE VALUES value(s) </options>;

Summary of Optional Arguments
SCAN | NOSCAN

determines whether PROC JSON scans and encodes input strings to 
ensure that only characters that are acceptable are exported to the JSON 
output.

TRIMBLANKS | NOTRIMBLANKS
determines whether to remove or retain trailing blanks from the end of 
character data in the JSON output.

Required Argument
value(s)

specifies one or more values to write to the JSON output file. Separate values 
with a blank space. A value can be one of the following:

n a string, which can be enclosed in single or double quotation marks. If the 
string is enclosed in quotation marks, there are no restrictions regarding 
content or length. However, if the string is not enclosed in quotation marks, 
the following rules apply:

o The length of the string cannot exceed 256 bytes.

o The first character must begin with a letter of the Latin alphabet (A–Z, a–z) or 
the underscore. Subsequent characters can be letters of the Latin alphabet, 
numerals, or underscores.

o The string cannot contain blanks or special characters except for the 
underscore. A string can contain mixed-case letters. 

n a number represented in integer, floating point, or exponential format.

n the Boolean value TRUE | T or FALSE | F.

n NULL | N.

For example, the statement write values "success" true; causes the 
following results to be written to the JSON output file:

n "success": true if the current container is a JSON object

n “success”, true if the current container is a JSON array

Requirement When writing values to a JSON object container, the name portion 
of the key-value pair must be a string. For example, the statement 
write values "abcd" "1"; is appropriate. However, the 
statement write values 1 "abcd"; produces an error.

1336 Chapter 38 / JSON Procedure



Optional Arguments
SCAN | NOSCAN

determines whether PROC JSON scans and encodes input strings to ensure 
that only characters that are acceptable are exported to the JSON output.

Default SCAN

Interactions NOSCAN indicates that the input string is known to contain 
acceptable JSON text or has already been scanned. When 
NOSCAN is in effect, the input string or character value is taken as 
is, and the output JSON string is enclosed in quotation marks.

You can specify SCAN | NOSCAN in the PROC JSON statement, 
the EXPORT statement, the WRITE VALUES statement, or all 
three statements. If the option is specified in multiple statements, 
the EXPORT statement specification takes precedence.

See “Scanning Input Strings” on page 1325

TRIMBLANKS | NOTRIMBLANKS
determines whether to remove or retain trailing blanks from the end of character 
data in the JSON output. Only space characters are removed.

Default TRIMBLANKS

Interaction You can specify TRIMBLANKS | NOTRIMBLANKS in the PROC 
JSON statement, the EXPORT statement, the WRITE VALUES 
statement, or all three statements. If the option is specified in 
multiple statements, the EXPORT statement specification takes 
precedence.

WRITE OPEN Statement
Opens and nests a JSON container in the output file.

Alias: W O

Interactions: If the WRITE OPEN statement is the first statement after the PROC JSON statement, 
the WRITE OPEN statement establishes the top-level container.
Submit the WRITE CLOSE statement for containers that you explicitly open with the 
WRITE OPEN statement.

Examples: “Example 6: Writing Values and Controlling Containers in Exported Data” on page 1353
“Example 8: Exporting Multiple SAS Data Sets to a JSON File” on page 1359

Syntax
WRITE OPEN type;

WRITE OPEN Statement 1337



Required Argument
type

specifies the type of JSON container:

ARRAY
specifies that the JSON container is an array, which collects a list of values. 
An example statement is write open array;.

Alias A

OBJECT
specifies that the JSON container is an object, which collects key-value pairs. 
An example statement is write open object;.

Alias O

WRITE CLOSE Statement
Closes a JSON container that is open in the JSON output file.

Alias: W C

Restriction: The WRITE CLOSE statement cannot be the first statement after the PROC JSON 
statement.

Interaction: The WRITE CLOSE statement closes the most recently opened container of either type 
that was explicitly opened with the WRITE OPEN statement. You should submit the 
WRITE CLOSE statement for containers only if you explicitly opened the container with 
the WRITE OPEN statement.

Examples: “Example 6: Writing Values and Controlling Containers in Exported Data” on page 1353
“Example 8: Exporting Multiple SAS Data Sets to a JSON File” on page 1359

Syntax
WRITE CLOSE;

1338 Chapter 38 / JSON Procedure



Usage: JSON Procedure

Exporting Data
The JSON procedure enables you to export one or more SAS data sets to a JSON 
output file. In the procedure statements, you specify the name of the JSON output 
file and the name of the SAS data set to be exported. For example, the following 
PROC JSON code writes the data in a SAS data set named Sashelp.Class to a 
JSON output file named Output.json.

proc json out="C:\Users\sasabc\JSON\Output.json";
   export sashelp.class;
run;

The exported data is written to a JSON object container ({ }) by default. Each 
observation of the data set is also put into a JSON object container. Options are 
available to enable you to create both the outer container and the observation 
containers as arrays. The SASTAGS (or NOSASTAGS) argument controls the outer 
container. The KEYS (or NOKEYS) argument controls the observation containers. 
For more information, see “Example 1: Exporting a JSON File Using Default 
Options” on page 1343, “Example 2: Exporting Data to a Top-Level JSON Array 
Container” on page 1344, and “Example 3: Suppressing SAS Variable Names in 
Observation Data When Using the EXPORT Statement” on page 1345.

Writing Values to a JSON Output File
PROC JSON provides the WRITE VALUES statement to explicitly write data to a 
JSON output file. The WRITE VALUES statement can be used to write one or more 
values to a JSON object container or a JSON array container. A value can be a 
string, a number, the Boolean value TRUE or FALSE, or the NULL keyword.

When the WRITE VALUES statement is the first statement specified under the 
PROC JSON statement, the statement implicitly creates a JSON object container to 
collect the specified values. In this way, you can use the WRITE VALUES statement 
in PROC JSON to create your own JSON output file without exporting a SAS data 
set. SAS variable values are collected in this object container as key and value 
pairs. For example:

proc json out="example.json";
   write values "container" "object"; 
   write values "created" "implicitly"; 
run;  

{"container":"object","created":"implicitly"}

Usage: JSON Procedure 1339



The WRITE VALUES statement cannot directly add values to a JSON container that 
contains data from an exported SAS data set. The EXPORT statement implicitly 
opens and automatically closes a JSON object. You cannot write values to a closed 
JSON container with the WRITE VALUES statement. To add values to a JSON 
object that includes exported data, you must precede the WRITE VALUES 
statement with a WRITE OPEN statement.

The WRITE OPEN statement explicitly opens a JSON container. It also enables you 
to specify the JSON container type: object or array.

When the WRITE VALUES statement follows a WRITE OPEN OBJECT statement, 
then the first value in the pair is considered to be a key name. The second value is 
the key’s value. For example:

proc json out="example.json"
   write open object;
   write values "container" "object";
   write values "created" "explicitly";
   write close;
run;

{"container":"object","created":"explicitly"}

When the WRITE VALUES statement follows a WRITE OPEN ARRAY statement, 
then the WRITE VALUES statement creates a comma-separated list of values in the 
JSON array container.

proc json out="example.out";
   write open array;
   write values "container" "array";
   write values "created" "explictly";
   write close;
run;

["container","array","created","explictly"]

Use the WRITE OPEN statement when you want to add information to the JSON file 
that contains exported SAS data and when you want to nest JSON containers. For 
more information, see “Example 4: Writing JSON Output without Exporting a SAS 
Data Set” on page 1347, “Example 5: Writing Values and Exporting Data in the 
Same Program” on page 1349, “Example 6: Writing Values and Controlling 
Containers in Exported Data” on page 1353, and “Example 8: Exporting Multiple 
SAS Data Sets to a JSON File” on page 1359.

Controlling JSON Output with Options
PROC JSON supports several options that control the resulting JSON output. You 
can specify the options in the PROC JSON, EXPORT, and WRITE VALUES 
statements.

The following table lists the options and whether they are supported in a statement.

Note: Default option keywords appear in bold.

1340 Chapter 38 / JSON Procedure



Table 38.2 Statement Option Availability in the PROC JSON, EXPORT, and WRITE VALUES Statements

Option Function
PROC JSON 
Statement

EXPORT 
Statement

WRITE VALUES 
Statement

FMTCHARACTER | 
NOFMTCHARACTER

Determines 
whether to apply 
an associated 
character SAS 
format.

Yes Yes No

FMTDATETIME | 
NOFMTDATETIME

Determines 
whether to apply 
an associated 
date, time, or 
datetime SAS 
format.

Yes Yes No

FMTNUMERIC | 
NOFMTNUMERIC

Determines 
whether to apply 
an associated 
numeric SAS 
format (excluding 
date, time, and 
datetime SAS 
formats).

Yes Yes No

KEYS | NOKEYS Determines 
whether exported 
observations are 
written as JSON 
object or array 
containers.

Yes Yes No

PRETTY | NOPRETTY Determines how to 
format the JSON 
output.

Yes No No

SASTAGS | 
NOSASTAGS

Determines 
whether to include 
or suppress SAS 
metadata when 
using the EXPORT 
statement. When 
EXPORT is the 
first statement in 
the procedure 
request, also 
determines 
whether the top-
level JSON 
container is an 
object container or 
an array container.

Yes Yes No

Usage: JSON Procedure 1341



Option Function
PROC JSON 
Statement

EXPORT 
Statement

WRITE VALUES 
Statement

SAS-data-set-options Specify actions 
that apply to the 
SAS data set.

No Yes No

SCAN | NOSCAN Determines 
whether PROC 
JSON scans and 
encodes input 
strings.

Yes Yes Yes

TABLENAME="name" Specifies a name 
in the SAS 
metadata for the 
exported SAS data 
set.

No Yes No

TRIMBLANKS | 
NOTRIMBLANKS

Determines 
whether to remove 
or retain trailing 
blanks.

Yes Yes Yes

Note: Options specified in the PROC JSON statement apply for the duration of the 
procedure. Options specified in the EXPORT and WRITE VALUES statement apply 
only to that statement. If options are specified in more than one statement, the 
options specified in the EXPORT statement or WRITE VALUES statement take 
precedence.

For an example, see “Example 2: Exporting Data to a Top-Level JSON Array 
Container” on page 1344.

PROC JSON Video
For a video that demos how to use PROC JSON, see How to Write JSON Output 
from SAS. The video shows you how to export a SAS data set to a JSON output file, 
how to export a subset of data and control the JSON output, and how to write free-
form JSON output, control and nest JSON containers, and export multiple SAS data 
sets.

1342 Chapter 38 / JSON Procedure

https://www.youtube.com/watch?v=KW6O9R23mtk
https://www.youtube.com/watch?v=KW6O9R23mtk


Examples: JSON Procedure

Example 1: Exporting a JSON File Using Default 
Options
Features: PROC JSON statement

PROC JSON PRETTYstatement option
EXPORT statement
WHERE data set option

Details
This PROC JSON example exports a subset of the Sashelp.Class data set to a 
JSON output file. The PROC JSON PRETTY procedure option is specified to return 
the output in a format that uses indention to illustrate the default JSON container 
structure. Otherwise, the default export options are enabled.

Program
Specify the JSON output file and the EXPORT statement. The PROC JSON 
statement specifies the physical location of the JSON output file with the complete 
pathname and JSON filename. When the .json extension is omitted, the output is 
written to a text file. 

proc json out="C:\Users\sasabc\JSON\DefaultOutput.json" pretty;
   export sashelp.class (where=(age=11));
run;

Output: Exporting a JSON File Using 
Default Options
The top-level container in the output file is a JSON object container ({ }). Each 
observation in the SAS data set is exported to a JSON object container; variable 
values in each object container are key-value pairs. The set of observations is in a 

Example 1: Exporting a JSON File Using Default Options 1343



JSON array container ([ ] ). SAS metadata is included in the top of the top-level 
container.

Output 38.1 Content of PROC JSON Output File DefaultOutput.json

{
  "SASJSONExport": "1.0 PRETTY",
  "SASTableData+CLASS": [
    {
      "Name": "Joyce",
      "Sex": "F",
      "Age": 11,
      "Height": 51.3,
      "Weight": 50.5
    },
    {
      "Name": "Thomas",
      "Sex": "M",
      "Age": 11,
      "Height": 57.5,
      "Weight": 85
    }
  ]
}

Example 2: Exporting Data to a Top-Level JSON 
Array Container
Features: PROC JSON statement options

PRETTY
EXPORT statement options

WHERE= data set option
NOSASTAGS

Details
This example exports a subset of the Sashelp.Class data set to a JSON output file 
and specifies to write the exported data to a JSON array container.

Program
proc json out="C:\Users\sasabc\JSON\NosastagsOutput.json" pretty;

   export sashelp.class (where=(age=11)) / nosastags;
run;

1344 Chapter 38 / JSON Procedure



Program Description
Specify the JSON output file. The PROC JSON statement specifies the physical 
location of the JSON output file with the complete pathname and a JSON filename. 
The PRETTY option creates a more readable format.

proc json out="C:\Users\sasabc\JSON\NosastagsOutput.json" pretty;

Identify the SAS data set to be exported and control the top-level JSON 
container. NOSASTAGS in the EXPORT statement suppresses SAS metadata and 
specifies that the top-level container is an array container. The NOSASTAGS option 
can be specified on the PROC JSON statement or on the EXPORT statement.

   export sashelp.class (where=(age=11)) / nosastags;
run;

Output: Exporting Data to a Top-Level 
JSON Array Container
The top-level container in the output file is an array container ([ ]). There is no SAS 
metadata. Each observation in the SAS data set is a JSON object ({ }) container. 
Variable values within the object containers are key-value pairs.

Output 38.2 Content of PROC JSON Output File NosastagsOutput.json

[
  {
    "Name": "Joyce",
    "Sex": "F",
    "Age": 11,
    "Height": 51.3,
    "Weight": 50.5
  },
  {
    "Name": "Thomas",
    "Sex": "M",
    "Age": 11,
    "Height": 57.5,
    "Weight": 85
  }
]

Example 3: Suppressing SAS Variable Names in 
Observation Data When Using the EXPORT 
Statement
Features: PROC JSON statement options

PRETTY
EXPORT statement options

Example 3: Suppressing SAS Variable Names in Observation Data When Using the 
EXPORT Statement 1345



WHERE= data set option
NOKEYS

Details
This example exports a subset of the Sashelp.Class data set to a JSON output file 
and specifies to write the exported data set observations as an array. Array 
containers store variable values only.

Program
proc json out="C:\Users\sasabc\JSON\NokeysOutput.json" pretty;

   export sashelp.class (where=(age=11)) / nokeys;
run;

Program Description
Specify the JSON output file. The PROC JSON statement specifies the physical 
location of the JSON output file with the complete pathname and a JSON filename. 
The PRETTY option creates a more readable format.

proc json out="C:\Users\sasabc\JSON\NokeysOutput.json" pretty;

Identify the SAS data set to be exported and control the observation 
container. NOKEYS in the EXPORT statement writes data set observations as 
values in an array container instead of to object containers. The NOKEYS option 
can be specified on the PROC JSON statement or on the EXPORT statement.

   export sashelp.class (where=(age=11)) / nokeys;
run;

Output: Suppressing SAS Variable Names 
in Observation Data When Using the 
EXPORT Statement
The top-level container in the output file is a JSON object container ({ }). SAS 
metadata is included in the top-level container. Each selected observation in the 
SAS data set is exported in an array container ([ ]) that is nested in the top-level 
container. The arrays contain a list of variable values and no variable names.

1346 Chapter 38 / JSON Procedure



Output 38.3 Content of PROC JSON Output File NokeysOutput.json

{
  "SASJSONExport": "1.0 NOKEYS PRETTY",
  "SASTableData+CLASS": [
    [
      "Joyce",
      "F",
      11,
      51.3,
      50.5
    ],
    [
      "Thomas",
      "M",
      11,
      57.5,
      85
    ]
  ]
}

Example 4: Writing JSON Output without Exporting 
a SAS Data Set
Features: PROC JSON statement options

PRETTY
WRITE OPEN statement
WRITE VALUES statement
WRITE CLOSE statement

Details
This PROC JSON example illustrates how to write JSON output from SAS without 
exporting data from a SAS data set. This gives you complete control over the 
content of the JSON output, which enables you to produce arbitrary JSON output.

Program
proc json out="C:\Users\sasabc\JSON\WriteOpenOutput.json" pretty;

   write open object;
      write values "Nested object sample";

      write open object;
         write values "Comment" "In a nested object";
         write close;

Example 4: Writing JSON Output without Exporting a SAS Data Set 1347



   write values "Nested array sample";
   write open array;
      write open array;
         write values "In a nested array";
         write values 1 true null;
         write close;
      write close;

   write values "Finished" "End of samples";

   write close;
run;

Program Description
Specify the JSON output file. The PRETTY option creates the output in a more 
readable format.

proc json out="C:\Users\sasabc\JSON\WriteOpenOutput.json" pretty;

Open a JSON object container and write a value. The WRITE OPEN OBJECT 
statement explicitly opens a JSON object container ({ }) as the top-level container. 
The WRITE VALUES statement writes a string to the object container. 

   write open object;
      write values "Nested object sample";

Nest an object container with values, and then close the nested object 
container. The WRITE OPEN OBJECT statement explicitly opens a second object 
container in the top-level container. The WRITE VALUES statement writes two 
strings in the second-level object container. The WRITE CLOSE statement closes 
the most recently opened container.

      write open object;
         write values "Comment" "In a nested object";
         write close;

Write a value to the JSON output file, open an array container, nest an array 
container with values, and then close the two array containers. The WRITE 
VALUES statement writes a string in the top-level container. The WRITE OPEN 
ARRAY statements create an array container in the top-level container, and then 
nests a second array container in the previously opened array container. The 
WRITE VALUES statements write a string, a number, the Boolean value TRUE, and 
the NULL keyword to the second-level array container. Two WRITE CLOSE 
statements close the array containers.

   write values "Nested array sample";
   write open array;
      write open array;
         write values "In a nested array";
         write values 1 true null;
         write close;
      write close;

Write a final value. The WRITE VALUES statement writes two strings to the top-
level container.

   write values "Finished" "End of samples";

1348 Chapter 38 / JSON Procedure



Close the top-level container. The WRITE CLOSE statement closes the remaining 
open container, which is the top-level container. 

   write close;
run;

Output: Writing JSON Output without 
Exporting a SAS Data Set
Because the top-level container was specified as an object container, SAS expects 
the first WRITE VALUES statement to specify key-value pairs. The first WRITE 
VALUES statement specifies only one value. Therefore, the string “Nested object 
sample” is output as the key in a key-value pair. The first nested object is the value 
of this key-value pair. Because the nested container is also an object container, the 
nested WRITE VALUES statement is output as a key-value pair. The key in the 
string is “Comment” and the value is the string “In a nested object”. Because the 
nested object container is explicitly closed, the specified data is again being written 
to the top-level container, an object container, which is expected to contain a key-
value pair. The string “Nested array sample” is the key in this key-value pair; the first 
array container is the value. The second, nested array container is an actual array. 
The nested WRITE VALUES statements define a list of four values in the second-
level array container. Because the two array containers are explicitly closed, the 
final WRITE VALUES statement again is being written to the top-level container, 
which is expected to contain a key-value pair. The string “Finished” is the key in this 
key-value pair; the string “End of samples” is the value.

Output 38.4 Content of PROC JSON Output File WriteOpenOutput.json

{
  "Nested object sample": {
    "Comment": "In a nested object"
  },
  "Nested array sample": [
    [
      "In a nested array",
      1,
      true,
      null
    ]
  ],
  "Finished": "End of samples"
}

Example 5: Writing Values and Exporting Data in 
the Same Program
Features: PROC JSON statement options

PRETTY
WRITE OPEN ARRAY statement

Example 5: Writing Values and Exporting Data in the Same Program 1349



WRITE VALUES statement
EXPORT statement
WRITE CLOSE statement

Details
This example writes values and performs three exports of the same data to show 
the behavior of the default export settings, the NOSASTAGS option, and the 
NOKEYS option. The exported data is inserted into a top-level array container, to 
show the effect of NOSASTAGS on the exported data.

Program
proc json out="C:\Users\sasabc\JSON\WriteAndExport.json" pretty;

   write open array;
      write values "level" 1;
      write values "container" "array";
      write values "created" "explicitly";
      

      write values "Default Export";
      export sashelp.class (where=(age=11));

    write values "Export with NOSASTAGS Options";
     export sashelp.class (where=(age=11)) / nosastags;

     write values "Export with NOSASTAGS and NOKEYS Option";
      export sashelp.class (where=(age=11)) / nosastags nokeys;

      write close;
   run;

Program Description
Specify the JSON output file in the PROC JSON statement. The PRETTY option 
creates the output in a more readable format. 

proc json out="C:\Users\sasabc\JSON\WriteAndExport.json" pretty;

Open a top-level JSON array container and specify values. The WRITE OPEN 
ARRAY statement explicitly opens a JSON array container ([ ]) as the top-level 
container. WRITE VALUES statements specify a string, a numeric value, and 
additional strings as values for the array. 

   write open array;
      write values "level" 1;
      write values "container" "array";
      write values "created" "explicitly";
      

1350 Chapter 38 / JSON Procedure



Specify an EXPORT statement. The EXPORT statement specifies to export a 
subset of the observations from the SAS data set Sashelp.Class. The WHERE data 
set option limits the observations that are included in the output file. There are no 
export options specified. The EXPORT statement implicitly opens and closes the 
container that holds the exported data. A WRITE VALUES statement that contains a 
string of descriptive text is specified before the EXPORT statement.

      write values "Default Export";
      export sashelp.class (where=(age=11));

Specify an EXPORT statement that specifies the NOSASTAGS option. The 
EXPORT statement specifies to export the same data as the preceding EXPORT 
statement. NOSASTAGS suppresses the SAS metadata. The EXPORT statement 
implicitly opens and closes the container that holds the exported data. A WRITE 
VALUES statement that contains a string of descriptive text is specified before the 
EXPORT statement.

    write values "Export with NOSASTAGS Options";
     export sashelp.class (where=(age=11)) / nosastags;

Specify an EXPORT statement that specifies the NOSASTAGS and NOKEYS 
options. The EXPORT statement specifies to export the same data as the 
preceding EXPORT statements. NOSASTAGS suppresses the SAS metadata. The 
NOKEYS option specified to export each data set observation to an array container, 
instead of an object container. The EXPORT statement implicitly opens and closes 
the container that holds the exported data. A WRITE VALUES statement is specified 
before the EXPORT statement to print a string containing descriptive text.

     write values "Export with NOSASTAGS and NOKEYS Option";
      export sashelp.class (where=(age=11)) / nosastags nokeys;

Close the outer JSON array container.

      write close;
   run;

Output: Writing Values and Exporting Data 
in the Same Program
The default export behavior writes SAS metadata as variable values in the open 
array container. The exported data is added as an array value in the open array 
container. The exported observations are comma-separated JSON object containers 
within the new array. NOSASTAGS suppresses the SAS metadata, as well as the 
outer array container from the exported observations. The observations are added 
as comma-separated object containers in the existing array. When the NOKEYS 
and NOSASTAGS options are specified together, the exported observations are 
added to the existing array as comma-separated array values.

Example 5: Writing Values and Exporting Data in the Same Program 1351



Output 38.5 Content of PROC JSON Output File WriteAndExport.json

[
  "level",
  1,
  "container",
  "array",
  "created",
  "explicitly",
  "Default Export",
  "SASJSONExport",
  "1.0 PRETTY",
  "SASTableData+CLASS",
  [
    {
      "Name": "Joyce",
      "Sex": "F",
      "Age": 11,
      "Height": 51.3,
      "Weight": 50.5
    },
    {
      "Name": "Thomas",
      "Sex": "M",
      "Age": 11,
      "Height": 57.5,
      "Weight": 85
    }
  ],
  "Export with NOSASTAGS Option",
  {
    "Name": "Joyce",
    "Sex": "F",
    "Age": 11,
    "Height": 51.3,
    "Weight": 50.5
  },
  {
    "Name": "Thomas",
    "Sex": "M",
    "Age": 11,
    "Height": 57.5,
    "Weight": 85
  },
  "Export with NOSASTAGS and NOKEYS Option",
  [
    "Joyce",
    "F",
    11,
    51.3,
    50.5
  ],
  [
    "Thomas",
    "M",
    11,
    57.5,
    85
  ]
]

1352 Chapter 38 / JSON Procedure



Example 6: Writing Values and Controlling 
Containers in Exported Data
Features: PROC JSON statement options

NOSASTAGS
PRETTY

WRITE OPEN statement
WRITE VALUES statement
EXPORT statement
WRITE CLOSE statement

Details
This PROC JSON example illustrates how to write additional values to a JSON 
output file and control and nest JSON containers. The example exports a subset of 
the Sashelp.Cars data set to the JSON output file.

Program
%let vehicleType=Truck;
%let minCost=26000;

proc json out="C:\Users\sasabc\JSON\WriteOpenArrayOutput.json" 
nosastags pretty;

   write open array;
   write values "Vehicles";
   write open array;
   write values "&vehicleType";
   write open array;
   write values "Greater than $&minCost";
   /*********** Asian ***********************/
   %let originator=Asia;
   write open object;
   write values "&originator";
   write open array;
   export sashelp.cars(where=((origin = "&originator")  and 
                              (type   = "&vehicleType") and 
                              (MSRP   > &minCost)           )
                       keep=make model type origin MSRP);
   write close; /* data values */
   write close; /* Asia */
   /*********** European ***********************/
   %let originator=Europe;
   write open object;

Example 6: Writing Values and Controlling Containers in Exported Data 1353



   write values "&originator";
   write open array;
   export sashelp.cars(where=((origin = "&originator")  and 
                              (type   = "&vehicleType") and 
                              (MSRP   > &minCost)           )
                       keep=make model type origin MSRP);
   write close; /* data values */
   write close; /* Europe */
   /*********** American ***********************/
   %let originator=USA;
   write open object;
   write values "&originator";
   write open array;
   export sashelp.cars(where=((origin = "&originator")  and 
                              (type   = "&vehicleType") and 
                              (MSRP   > &minCost)           )
                       keep=make model type origin MSRP);
   write close; /* data values */
   write close; /* USA */
   write close; /* expensive */
   write close; /* vehicleType */
   write close; /* cars */
run;

Program Description
Assign macro variables. The %LET statements create macro variables and assign 
values to be used throughout the code.

%let vehicleType=Truck;
%let minCost=26000;

Specify the JSON output file and control the resulting output. The PROC JSON 
statement specifies the physical location of the JSON output file with the complete 
pathname and filename. The NOSASTAGS option suppresses the SAS metadata 
and the PRETTY option creates a more readable format. 

proc json out="C:\Users\sasabc\JSON\WriteOpenArrayOutput.json" 
nosastags pretty;

Include additional PROC JSON statements. These statements open a series of 
nested containers for each type of car and write values as labels for the containers. 
The EXPORT statements specifies the SAS data set to export, selects specific 
observations, and requests only certain SAS variables.

   write open array;
   write values "Vehicles";
   write open array;
   write values "&vehicleType";
   write open array;
   write values "Greater than $&minCost";
   /*********** Asian ***********************/
   %let originator=Asia;
   write open object;
   write values "&originator";
   write open array;

1354 Chapter 38 / JSON Procedure



   export sashelp.cars(where=((origin = "&originator")  and 
                              (type   = "&vehicleType") and 
                              (MSRP   > &minCost)           )
                       keep=make model type origin MSRP);
   write close; /* data values */
   write close; /* Asia */
   /*********** European ***********************/
   %let originator=Europe;
   write open object;
   write values "&originator";
   write open array;
   export sashelp.cars(where=((origin = "&originator")  and 
                              (type   = "&vehicleType") and 
                              (MSRP   > &minCost)           )
                       keep=make model type origin MSRP);
   write close; /* data values */
   write close; /* Europe */
   /*********** American ***********************/
   %let originator=USA;
   write open object;
   write values "&originator";
   write open array;
   export sashelp.cars(where=((origin = "&originator")  and 
                              (type   = "&vehicleType") and 
                              (MSRP   > &minCost)           )
                       keep=make model type origin MSRP);
   write close; /* data values */
   write close; /* USA */
   write close; /* expensive */
   write close; /* vehicleType */
   write close; /* cars */
run;

Example 6: Writing Values and Controlling Containers in Exported Data 1355



Output: Controlling JSON Containers and 
Writing Values
Output 38.6 PROC JSON Output File WriteOutput.json

[
  "Vehicles",
  [
    "Truck",
    [
      "Greater than $26000",
      {
        "Asia": [
          {
            "Make": "Nissan",
            "Model": " Titan King Cab XE",
            "Type": "Truck",
            "Origin": "Asia",
            "MSRP": 26650
          }
        ]
      },
      {
        "Europe": [
        ]
      },
      {
        "USA": [
          {
            "Make": "Cadillac",
            "Model": " Escalade EXT",
            "Type": "Truck",
            "Origin": "USA",
            "MSRP": 52975
          },
          {
            "Make": "Chevrolet",
            "Model": " Avalanche 1500",
            "Type": "Truck",
            "Origin": "USA",
            "MSRP": 36100
          },
          {
            "Make": "Chevrolet",
            "Model": " Silverado SS",
            "Type": "Truck",
            "Origin": "USA",
            "MSRP": 40340
          },
          {
            "Make": "Chevrolet",
            "Model": " SSR",
            "Type": "Truck",
            "Origin": "USA",
            "MSRP": 41995
          },

1356 Chapter 38 / JSON Procedure



          {
            "Make": "Ford",
            "Model": " F-150 Supercab Lariat",
            "Type": "Truck",
            "Origin": "USA",
            "MSRP": 33540
          },
          {
            "Make": "GMC",
            "Model": " Sierra HD 2500",
            "Type": "Truck",
            "Origin": "USA",
            "MSRP": 29322
          }
        ]
      }
    ]
  ]
]

Example 7: Applying SAS Formats to the Resulting 
Output
Features: PROC JSON statement options

PRETTY
EXPORT statement options

FMTDATETIME
FMTNUMERIC

DATA step

Details
This PROC JSON example exports a SAS data set named Work.Formats that 
contains variables with associated SAS formats. The resulting JSON output file 
applies the SAS formats, which makes the output values more readable.

Program
data formats;
   input name $ idnumber $ salary hiredate mmddyy10.;
   format salary dollar7. hiredate date9.;
   datalines;
   Brad 0755 21163 9/24/2012
   Lindzey 0767 34321 9/04/2012
   ;

proc json out="C:\Users\sasabc\JSON\FormatsOutput.json" pretty;

Example 7: Applying SAS Formats to the Resulting Output 1357



   export work.formats / fmtnumeric;
run;

Program Description
Create a SAS data set with variables that have associated SAS formats. The 
DATA step creates a SAS data set named Work.Formats with four variables. The 
FORMAT statement associates the DOLLAR7. SAS numeric format with the 
variable Salary and the SAS date format DATE9. with the variable HireDate.

data formats;
   input name $ idnumber $ salary hiredate mmddyy10.;
   format salary dollar7. hiredate date9.;
   datalines;
   Brad 0755 21163 9/24/2012
   Lindzey 0767 34321 9/04/2012
   ;

Specify the JSON output file and control the resulting output file. The PROC 
JSON statement specifies the physical location of the JSON output file with the 
complete pathname and filename and includes the PRETTY option to create a more 
readable format.

proc json out="C:\Users\sasabc\JSON\FormatsOutput.json" pretty;

Identify the SAS data set to be exported. The EXPORT statement specifies the 
SAS data set name. The FMTDATETIME option is available by default to apply the 
date SAS format that is associated with the HireDate variable. The FMTNUMERIC 
option is specified to apply the numeric SAS format DOLLAR7. that is associated 
with the Salary variable.

   export work.formats / fmtnumeric;
run;

1358 Chapter 38 / JSON Procedure



Output: Applying SAS Formats to the 
Resulting Output
Output 38.7 PROC JSON Output File FormatsOutput.json with FMTDATETIME and 

FMTNUMERIC

{            
  "SASJSONExport": "1.0 PRETTY FMTNUMERIC",            
  "SASTableData+FORMATS": [            
    {
      "name": "Brad",
      "idnumber": "0755",
      "salary": "$21,163",
      "hiredate": "24SEP2012"
    },
    {
      "name": "Lindzey",
      "idnumber": "0767",
      "salary": "$34,321",
      "hiredate": "04SEP2012"
    }
  ]
}

If the EXPORT statement specified the option NOFMTDATETIME and did not 
specify the option FMTNUMERIC, the resulting JSON output file would include 
Salary and HireDate values that are less readable.

Output 38.8 PROC JSON Output File FormatsOutput.json with NOFMTDATETIME and 
NOFMTNUMERIC

{
  "SASJSONExport": "1.0 PRETTY NOFMTDATETIME",
  "SASTableData+FORMATS": [
    {
      "name": "Brad",
      "idnumber": "0755",
      "salary": 21163,
      "hiredate": 19260
    },
    {
      "name": "Lindzey",
      "idnumber": "0767",
      "salary": 34321,
      "hiredate": 19240
    }
  ]
}

Example 8: Exporting Multiple SAS Data Sets to a 
JSON File
Features: PROC JSON statement options

Example 8: Exporting Multiple SAS Data Sets to a JSON File 1359



PRETTY
NOKEYS
NOSASTAGS

WRITE OPEN statement
WRITE VALUES statement
EXPORT statement options

WHERE= data set option
DROP= data set option
KEYS option

WRITE CLOSE statement

Details
This PROC JSON example exports two SAS data sets to a JSON output file. The 
SasHelp.Class data set contains student information such as their names, ages, 
and gender. The MyFiles.Fitness data set contains the student’s fitness 
achievements, such as the number of crunches and push-ups that they can do. The 
example also illustrates how to control and nest JSON containers and write 
additional values to the JSON output file.

The resulting JSON output file contains the following content:

n The output begins by opening an object container ({ }) as the top-level container, 
because the first statement after the PROC JSON statement is WRITE OPEN 
OBJECT.

n There is no SAS metadata at the beginning of the output file.

n The output is in a more human-readable format that uses indention to illustrate 
the JSON container structure.

n User-defined strings are written as labels for the containers.

n A series of JSON containers are opened and nested.

n A subset of two SAS data sets is exported. The values for the first SAS data set 
are exported as nested array containers and consist of a list of values. The 
values for the second SAS data set are exported as nested object containers 
and consist of key-value pairs.

n The explicitly opened JSON containers are closed.

Program

proc json out='C:\Users\sasabc\\JSON\MultipleDataSets.json' pretty 
nokeys;

   write open object; /* top-level object */
     write value "Fitness";
     write open array; /* fitness array */
       write value "Class List";

1360 Chapter 38 / JSON Procedure



       write open array; /* class list array */

         export sashelp.class (where=(age eq 11) drop=height weight);

       write close; /* class list array */
     write close;  /* fitness array */

     write value "Results";
     write open array; /* results array */

       export myfiles.fitness (where=(age eq 11) drop=name)/ keys;

     write close; /* results array */
   write close; /* top-level object */
run;

Program Description
Specify the JSON output file and control the resulting output. The PROC JSON 
statement specifies the physical location of the JSON output file with the complete 
pathname and filename. The PRETTY option creates a more readable format. The 
NOKEYS option specifies to write the exported observations in array containers.

proc json out='C:\Users\sasabc\\JSON\MultipleDataSets.json' pretty 
nokeys;

Open and nest labeled containers. The statements open a series of nested 
containers and write values as labels for the containers.

   write open object; /* top-level object */
     write value "Fitness";
     write open array; /* fitness array */
       write value "Class List";
       write open array; /* class list array */

Identify the first SAS data set to be exported. The EXPORT statement specifies 
the two-level SAS name. The WHERE= data set option specifies conditions for 
selecting observations. The DROP= data set option excludes the specified variables 
from being written to the output file. The selected observations are exported as 
nested array containers and consist of a list of values.

         export sashelp.class (where=(age eq 11) drop=height weight);

Close the two array containers. The two WRITE CLOSE statements close the two 
array containers. Note that when you explicitly open a container, you must explicitly 
close it. 

       write close; /* class list array */
     write close;  /* fitness array */

Label and open a nested array container. The WRITE VALUE statement nests 
the user-defined string Results in the top-level container. The WRITE OPEN ARRAY 
statement opens a nested array container.

Example 8: Exporting Multiple SAS Data Sets to a JSON File 1361



     write value "Results";
     write open array; /* results array */

Identify the second SAS data set to be exported. The EXPORT statement 
specifies the two-level SAS name. The WHERE= data set option specifies 
conditions for selecting observations. The DROP= data set option excludes the 
specified variable from being written to the output file. The KEYS option causes the 
selected observations to be exported as nested object containers and consist of 
key-value pairs. Note that for the EXPORT statement, the KEYS option overrides 
the NOKEYS option that is specified in the PROC JSON statement. 

       export myfiles.fitness (where=(age eq 11) drop=name)/ keys;

Close the two open containers. Two WRITE CLOSE statements explicitly close 
the array container and the object container for the top-level container.

     write close; /* results array */
   write close; /* top-level object */
run;

Output: Exporting Multiple SAS Data Sets 
to a JSON File
Output 38.9 PROC JSON Output File MultipleDataSets.json

{
  "Fitness": [
    "Class List",
    [
      [
        "Joyce",
        "F",
        11
      ],
      [
        "Thomas",
        "M",
        11
      ]
    ]
  ],
  "Results": [
    {
      "Age": 11,
      "Push-ups": 15,
      "Crunches": 20
    },
    {
      "Age": 11,
      "Push-ups": 22,
      "Crunches": 33
    }
  ]
}

1362 Chapter 38 / JSON Procedure



Chapter 39
LUA Procedure

Overview: LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1363
What Does the LUA Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1364

Concepts: LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365
Specifying the Input Location for Lua Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1365
Running External Lua Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1366
Calling CAS Actions with PROC LUA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1367
Calling Standard SAS Functions within Lua Statements . . . . . . . . . . . . . . . . . . . 1368
Submitting SAS Code within Lua Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 1369
Scope for PROC LUA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1370
How PROC LUA Interprets Math.Huge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1370
How Lua Interprets Boolean Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1370
Data Set Functions for the LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1371
Processing Data Set Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1374
System Functions for the LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1375
About Lua Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376
Table Functions for PROC LUA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376
Functions That Manipulate Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377
Object Syntax within Lua Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1378
Calling PROC FCMP Functions within Lua Statements . . . . . . . . . . . . . . . . . . . . 1379
Using the FULLSTIMER Option with PROC LUA . . . . . . . . . . . . . . . . . . . . . . . . 1379

Syntax: LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1380
PROC LUA Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1381
SUBMIT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1382
ENDSUBMIT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1382

Usage: LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1383
Submitting Lua Statements within a SAS Program . . . . . . . . . . . . . . . . . . . . . . . 1383
Opening a SAS Data Set within Lua Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1384

Examples: LUA Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1385
Example 1: Create a Sample Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1385
Example 2: Specifying Input from an External Lua Script . . . . . . . . . . . . . . . . . . 1385
Example 3: Loading a SAS Data Set and Viewing the Resulting Lua Table . . . . 1386
Example 4: Writing a SAS Data Set from a Lua Table . . . . . . . . . . . . . . . . . . . . . 1389
Example 5: Using Table Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1392
Example 6: Using String Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1394
Example 7: Adding an Observation to a Lua Table . . . . . . . . . . . . . . . . . . . . . . . 1397
Example 8: Using SAS Macro Variable Values within Lua Statements . . . . . . . . 1400
Example 9: Submitting SAS Code with Lua Variable Substitutions . . . . . . . . . . . 1402

1363



Example 10: Using an Iterator Function for a Small Table . . . . . . . . . . . . . . . . . . 1404
Example 11: Using Iterator Functions for a Large Table . . . . . . . . . . . . . . . . . . . 1406
Example 12: Defining and Adding Variables to a Data Set . . . . . . . . . . . . . . . . . 1408
Example 13: Connecting to the CAS Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1410
Example 14: Running PROC FCMP Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 1414

Overview: LUA Procedure

What Does the LUA Procedure Do?
The Lua programming language is an embeddable scripting language that runs on 
any platform that has a standard C compiler. This includes all versions of UNIX, 
Windows, and mobile operating systems, including Android, iOS, and others. Lua 
uses simple syntax, runs fast computations, and automatically manages memory 
allocation.

The LUA procedure enables you to run statements from the Lua programming 
language within SAS code. You can submit Lua statements from an external Lua 
script, or enter Lua statements directly in SAS code.

Note: Support for the LUA procedure was added in SAS 9.4M3.

PROC LUA enables you to perform these tasks:

n run Lua code within a SAS session

n call most SAS functions within Lua statements

n call PROC FCMP functions within Lua statements

n submit SAS code from Lua

n call CAS actions

Note: Support for calling CAS actions was added in SAS 9.4M5.

n read VARCHAR data

Note: Support for VARCHAR data was added in SAS Viya 3.3.

1364 Chapter 39 / LUA Procedure



Concepts: LUA Procedure

Specifying the Input Location for Lua Scripts

Using the LUAPATH Fileref
Typically, you store long blocks of Lua code in separate script files. This practice 
enables you to more easily manage your Lua code. The examples in this chapter 
use the SUBMIT and ENDSUBMIT statements to identify Lua code. However, any 
Lua code can be stored in a separate Lua script.

You run the code from the scripts by specifying the following information:

n the location of the Lua script

n the name of the Lua script to execute

You specify the location of your Lua scripts by using the FILENAME statement to 
define the LUAPATH fileref. To define a single location, enter a SAS statement that 
is similar to this one:

filename LUAPATH "/usr/local/scripts/lua";

You can specify more than one location for your Lua scripts. The system searches 
for the input Lua script from the locations that are listed, in the order in which you 
specify them. One of these locations must contain the Lua system scripts. To specify 
more than one location, enclose the list in parentheses and separate values with a 
comma:

filename LUAPATH ("/usr/local/scripts/lua","/user/my_name/my_lua_scripts");

Using a single or double quotation mark in your path might cause unexpected 
results. If there are quotation marks or apostrophes, such as Mark’s dir, use the 
LUA_PATH environment variable. For more information, see “Using the LUA_PATH 
Environment Variable with Special Characters”.

Note: If you change the value of LUAPATH during a SAS session, call the LUA 
procedure and specify the RESTART option. The RESTART option resets the status 
of Lua in SAS and picks up the last value for LUAPATH. 

You specify the name of the Lua script to execute by using the INFILE= option in the 
PROC LUA statement. For more information, see “Example 2: Specifying Input from 
an External Lua Script” on page 1385.

Concepts: LUA Procedure 1365



Using the LUA_PATH Environment 
Variable with Special Characters
To specify a special character, such as a single or double quotation mark, in the 
path to your Lua scripts, use the LUA_PATH environment variable. To set 
LUA_PATH for multiple paths, use Lua syntax, where each path is separated by a 
semicolon (;). The Lua syntax also uses a ‘?’ for wildcard matching with LUA or LUC 
files. For example, you might specify a path that includes a single quotation mark 
like this:

options set=LUA_PATH="/usr/local/lua/?.lua;/usr/local/lua/
lua'files/?.luc";
proc lua infile="script";
run;

Running External Lua Files
You can run external scripts that are written in the Lua programming language from 
the SAS command line. You can run both uncompiled Lua scripts (*.lua files) or 
precompiled Lua scripts (*.luc files). Support for running external Lua files directly in 
SAS invocation was added in SAS 9.4M3.

Note: To create a precompiled *.luc file, you must have Lua 5.2 or higher. See your 
Lua documentation about how to use the Lua compiler.

To run Lua files at invocation, use the -SYSIN option. For example, to run the file 
abc.lua, submit this command:

sas -sysin abc.lua

You can also run external Lua scripts (*.lua or *.luc files) by using the %INCLUDE 
statement in a SAS session. For example, to run the Lua script abc.luc, enter the 
following line in your SAS program:

%include "./tmp/abc.luc";

1366 Chapter 39 / LUA Procedure



Calling CAS Actions with PROC LUA

Requirements to Connect to the CAS 
Server
If your system runs a CAS server (most often, as part of SAS Viya), you can call 
CAS actions from PROC LUA. You need to know the following information to 
connect to the CAS server:

n the name of the server (host) that is running the CAS server

n the CAS server port

n your user ID, which must have permission to access the CAS server

The following resources must also be in place. These files are typically installed 
automatically as part of your SAS Viya installation:

n middleclass.lua

n swat.lua

n tkluaswat.so

For more information, see “Requirements” in Getting Started with SAS Viya for Lua.

To connect to the CAS server and run Lua code, you must load the appropriate 
settings and utilities in your SAS program. You must also load the SAS Scripting 
Wrapper for Analytics Transfer (SWAT) library. For more information, see “Example 
13: Connecting to the CAS Server” on page 1410.

Functions That Interact with the CAS 
Server
Here are the functions that interact with the CAS server. For an example that shows 
how to connect to the CAS server, see “Example 13: Connecting to the CAS Server” 
on page 1410.

Note: It is a SAS convention to document function names in all capitals. However, 
when you call these functions within the LUA procedure, you must use all lower-
case letters.

Lua-var:HELP{}
requests the list of available CAS actions for the CAS session that is associated 
with the Lua variable. For example, you might specify s:help{} if you have 
assigned your CAS session to the Lua variable s.

Concepts: LUA Procedure 1367

http://documentation.sas.com/?docsetId=caspg3lua&docsetVersion=3.5&docsetTarget=n18oyhz6fkbw0in145s02i1v5rjj.htm&locale=en


CAS.OPEN("host-name", port, "user-ID")
opens a session on the CAS server. You provide the host name and port for the 
CAS server, and you supply your user ID. Your user ID must have permission to 
access the CAS server.

Assign the result of CAS.OPEN to a Lua variable that represents the CAS 
session:

s = cas.open("host.mycompany.com", 5570, "myuserid")

After you establish the connection, you can refer to the attributes of s, such as 
s.port or s.hostname.

Lua-var:SHUTDOWN{}
ends the CAS session that is associated with the Lua variable and closes the 
connection to the CAS server. For example, to close the CAS session 
represented by the Lua variable s, use this command:

s:shutdown{}

Support for VARCHAR Data with PROC 
LUA
Support for reading VARCHAR data was added in SAS Viya 3.3. VARCHAR data is 
supported on the CAS server only. This means that DATA steps that run entirely on 
the CAS server and any actions that support VARCHAR data can use VARCHAR 
values. For other tasks, VARCHAR data is first converted to fixed-length character 
data.

For more information, see “Determining Where the DATA Step Is Running” in SAS 
Cloud Analytic Services: DATA Step Programming and the documentation for an 
action, procedure, or function to ensure that VARCHAR data is supported.

Calling Standard SAS Functions within Lua 
Statements

You can run most standard SAS functions within Lua statements by preceding the 
function call with a “SAS.” prefix. For example, to call the SAS function MAX, 
precede it with “SAS.” as shown here:

local max = sas.max(a,b,c)

Note: Functions that run only in the DATA step, such as ADDRLONG, do not run in 
Lua code.

If you do not supply a value for a required argument in a SAS function, then the 
SAS function converts that argument to a missing value.

1368 Chapter 39 / LUA Procedure

http://documentation.sas.com/?docsetId=casdspgm&docsetVersion=3.5&docsetTarget=p0d70xmtjkfsp9n1dy21hjh911ph.htm&docsetTargetAnchor=p0jmaxpbdn6flsn1541rfwscelkl&locale=en
http://documentation.sas.com/?docsetId=casdspgm&docsetVersion=3.5&docsetTarget=p0d70xmtjkfsp9n1dy21hjh911ph.htm&docsetTargetAnchor=p0jmaxpbdn6flsn1541rfwscelkl&locale=en


Submitting SAS Code within Lua Statements

Functions That Submit SAS Code
Because Lua is a scripting language within SAS, you can submit SAS code and 
substitute SAS values within Lua statements. You submit SAS code by using the 
following functions:

Note: It is a SAS convention to document function names in all capitals. However, 
when you call these functions within the LUA procedure, you must use all lower-
case letters.

SAS.SUBMIT([[ SAS code ]], {substitution(s)})
submits and executes the specified SAS code when the function is issued within 
Lua statements. Enclose SAS code within [[ and ]] brackets.

When substitutions are provided, they are assigned first. Any remaining 
substitutions are supplied by local variables.

If no substitution values are submitted, then local variables from the calling 
function environment are used. Enclose variables for substitution within @ 
symbols. For example, to assign the value of a variable called userID to a 
variable user, issue the following assignment:

user = @userID@

Here is an example that shows the use of a substitution with the call to 
SAS.SUBMIT.

sas.submit([[
   data @name@;
   x = @x@;
run;
]],{name="foo"})

When you submit SAS code, do not include these keywords within SAS 
comments:

run; %macro
quit; %mend

The presence of these keywords within comments in a SAS code block might 
trigger warnings or errors in the SAS log and might cause unexpected results. To 
avoid this situation, modify the keywords by placing blank spaces or escape 
characters within them. For example, run ; or \%\macro within a comment 
would not trigger unexpected behavior.

The return value from SAS.SUBMIT is assigned to the value of the SYSERR 
automatic macro variable.

Concepts: LUA Procedure 1369



SAS.SUBMIT_(SAS code, substitution(s))
submits SAS code and substitution values but does not execute the code. You 
must issue the SAS.SUBMIT function (no underscore) to run all submitted SAS 
commands and end preceding calls to SAS.SUBMIT_.

If no substitution values are submitted, then local variables from the calling 
function environment are used. Enclose variables for substitution within @ 
symbols.

For more information, see “Opening a SAS Data Set within Lua Code” on page 
1384.

About Lua Variable Substitution within SAS 
Statements
Variable substitutions are made via a hash table that contains key-value pairs. The 
key-value pairs are defined by the Lua variable assignments that are made within 
the submitted Lua statements. To substitute a value, enclose a key within @ 
symbols, such as @key@. The value of @key@ is replaced with its corresponding 
value. All substitutions are case sensitive, so @key@ and @Key@ are different key 
values.

Scope for PROC LUA
Any filerefs, librefs, and local variables that are defined within a call to PROC LUA 
are defined only for the duration of that procedure call. Similarly, macro variables 
and macro definitions that are created within a PROC LUA call can be used only 
within that procedure call. You cannot refer to these objects outside of the LUA 
procedure.

How PROC LUA Interprets Math.Huge
In Lua, the constant math.huge is a computer representation of infinity. SAS 
represents this value with the constant value 1.7976931348623E308.

How Lua Interprets Boolean Values
Lua has two data types that are used in the Boolean context. There is a Nil type, 
which can take the single value of nil. There is a Boolean type, which can take 
values true or false. In Lua, the values nil or false are considered to be false. All 
other values, including 0, are considered to be true.

In SAS, there are many numeric functions that return a value of 1 if a condition is 
true and 0 if that condition is false. Examples of these functions include SYMEXIST, 
SYMLOCAL, SYMGLOBAL, and MISSING. Other SAS functions, such as the ANY* 

1370 Chapter 39 / LUA Procedure



character functions, search a string for given characters and return the position of 
the first occurrence in the string. These functions return 0 if the characters are not 
found.

If you call any of these SAS functions in your Lua code, make sure that your Lua 
code interprets the results as intended.

For example, suppose that the macro variable FOOBAR is not defined. Therefore, it 
does not exist in a local symbol table. The following code incorrectly states that the 
variable does exist and is local.

/* INCORRECT use of SAS Boolean functions */
proc lua;
   submit;
      if sas.symexist("foobar") then
         if sas.symlocal("foobar") then 
            print("In Proc LUA, foobar exists and is LOCAL.")
         else
            print("In Proc LUA, foobar exists but is not LOCAL.")
         end
      else
         print(In Proc LUA, foobar does not exist.")
      end
   endsubmit;
run;

The preceding code incorrectly states that FOOBAR exists and is local, because the 
0 value that is returned by the SAS functions SYMEXIST and SYMLOCAL are 
interpreted as true in Lua.

Instead, when you call SAS Boolean functions, explicitly test for the desired return 
value in your Lua code. The following code correctly tests to see whether the macro 
variable FOOBAR exists and is local.

/* CORRECT use of SAS Boolean functions */
proc lua;
   submit;
      if sas.symexist("foobar") == 1 then
         if sas.symlocal("foobar") == 1 then
            print("In Proc LUA, foobar exists and is LOCAL.")
         else
            print("In Proc LUA, foobar exists but is not LOCAL.")
         end
      else
         print("In Proc LUA, foobar does not exist.")
      end
   endsubmit;
run;

The preceding code correctly states that the macro variable FOOBAR does not exist 
and is not local, because it was never defined. The return value of 0 from the SAS 
function SYMEXIST is now explicitly compared to the value 1.

Data Set Functions for the LUA Procedure
The following functions have been defined to run in the LUA procedure. These 
functions interact with SAS or with data sets.

Concepts: LUA Procedure 1371



For small data sets, you can read an entire SAS data set into a Lua table. You can 
then modify or query the Lua table, and you can write changes to a new SAS data 
set. However, for large data sets, it is more efficient to process the data one 
observation at a time, as you would with a DATA step. For this reason, you should 
submit a DATA step within your Lua code for large data sets.

Here are the data set functions that run within the LUA procedure:

Note: It is a SAS convention to document function names in all capitals. However, 
when you call these functions within the LUA procedure, you must use all lower-
case letters.

SAS.ADD_VARS(data-set-ID, variable-definitions)
adds the specified Lua variables to a new data set. That is, use SAS.ADD_VARS 
only when you open a data set using SAS.OPEN with mode ‘o’.

The format for defining variables is as follows:

{ {name="varname", type="N|C",

format="format.", length="value",

label="varlabel", informat="informat."},

{additional variable definition}, ...

}

Only the variable name is required. The default variable type is numeric (N) if the 
Lua variable with the same name is also numeric. The default length of character 
variables is 200.

You can specify full SAS formats, such as format="best12.3". If you supply a 
format that includes a period ( . ), then the system expects that the format is 
complete and additional format attributes are ignored. If you do not supply a full 
SAS format, you can use a combination of these variable attributes to provide 
the format of a variable:

n FORMAT specifies no length nor decimal specification (for example, 
format="best")

n FORMAT_WIDTH specifies the number of characters or digits (for example, 
format_width=12)

n FORMAT_DEC specifies the number of decimal places (for example, 
format_dec=3)

For more information, see “Example 12: Defining and Adding Variables to a Data 
Set” on page 1408.

SAS.ATTR(data-set-ID, attribute-name)
returns the value of attribute-name for a data set. For example, sas.attr(data-
set-ID, 'label') returns the label for the specified data set.

SAS.CLOSE(data-set-ID)
closes an open data set. This function exits if the data set ID is not valid.

SAS.EXISTS(SAS-data-set-name)
returns the Boolean value true if the data set exists or false if the data set does 
not exist.

Note: This function is different from the standard SAS function EXIST (with no 
‘s’ as the end), which returns a 0 or 1 value. In Lua code, 0 and 1 are interpreted 

1372 Chapter 39 / LUA Procedure



as true. As an alternative, test whether the condition (sas.exist("work.test") 
> 0) is true. The SAS.EXISTS function is available only within Lua code blocks. 

SAS.NOBS(data-set-ID)
returns the number of observations in a data set.

SAS.NVARS(data-set-ID)
returns the number of variables in a data set.

SAS.OPEN(SAS-data-set-name<, mode>)
opens a SAS data set and returns a data set ID if the data set opens 
successfully. If the data set does not open, then the function returns nil. 
Therefore, use the SAS.EXISTS function before calling the SAS.OPEN function.

In SAS 9.4M5, support was added for specifying data set options, such as 
KEEP=, DROP=, or WHERE=. For example, you can open the data set 
Sashelp.Class and keep only the variable Age with the following code:

local dsid = sas.open('sashelp.class(keep=age)')

Valid data set modes are I (for reading), O (for creating), and U (for updating). If 
you do not supply a value for data set mode, then the default value of I is used.

SAS.READ_DS(SAS-data-set-name)
returns a Lua table that contains the data from the specified SAS data set. If the 
data set does not exist, the function returns nil. Therefore, use the 
SAS.EXISTS function before calling the SAS.READ_DS function.

As a best practice, use the SAS.READ_DS function for small data sets only. For 
large data sets, iterate over observations with the functions that process 
individual observations. For more information, see “Functions That Process 
Observations” on page 1374.

Alias: SAS.LOAD_DS(SAS-data-set-name)

SAS.SET_ATTR(data-set-ID, attribute-name, value)
assigns a value to an attribute of a data set.

SAS.WHERE(data-set-ID, where-clause)
applies a WHERE clause to a data set. If there is a previously existing WHERE 
clause for the data set, then the specified WHERE clause is added to the 
previous one. However, if the Boolean value for the optional replace-where-
clause argument is true, then the specified WHERE clause replaces a previously 
existing WHERE clause.

The return code from this function is an integer value. Because Lua interprets all 
integer values as true, explicitly test the return value to see whether it is equal to 
0 (false in SAS).

Operations such as sas.where(dsid, "also <new condition>"), 
sas.where(dsid, "undo"), and sas.where(dsid, "clear") are supported. 
For more information, see SAS Component Language: Reference.

You can submit Lua statements similar to the following to apply a WHERE 
clause to a data set:

sas.submit("data work.air; set sashelp.air; run;")
dsid = sas.open("work.air")
rc, msg = sas.where(dsid,"air=222 or air=999")
print(rc, msg)
rc=sas.close(dsid)

Concepts: LUA Procedure 1373



SAS.WRITE_DS(Lua-table, SAS-data-set-name)
creates a SAS data set from a Lua table. You can specify a two-level name for 
the SAS data set, such as Work.Random. The Lua table must conform to the 
same structure that is returned by the SAS.READ_DS function.

Processing Data Set Observations

Functions That Process Observations
You can use the following Lua functions to process individual observations within a 
data set. You must first open the data set in Update mode (‘u’).

Note: It is a SAS convention to document function names in all capitals. However, 
when you call these functions within the LUA procedure, you must use all lower-
case letters.

SAS.APPEND(data-set-ID)
appends a newly created observation to a data set.

SAS.DELOBS(data-set-ID)
deletes the current observation in a data set.

SAS.GET_VALUE(data-set-ID, variable-number | variable-name)
returns the value of the specified variable in the current observation. Identify the 
variable by its position (number) in the data set or by its name.

SAS.NEXT(data-set-ID)
moves to the next observation in a data set for processing. If you have not yet 
begun processing a data set, the SAS.NEXT function moves to the first 
observation in that data set. The SAS.NEXT function enables you to work 
directly with a SAS data set without needing to first read the data into a Lua 
table. This function is useful for large data sets.

SAS.PUT_VALUE(data-set-ID, variable-name, value)
loads a value into the specified variable in a data set.

Note: The SAS.PUT_VALUE function and syntax replaced the SAS.PUT 
function and syntax in SAS 9.4M5. Use only the name to identify a variable, not 
the position in the data set, which was allowed with the SAS.PUT function.

SAS.ROWS(data-set-ID)
iterates over the observations in a data set, loads each row into a Lua table for 
processing, and adds a Lua nil at the end of processing. This function is useful 
for data sets with relatively few variables.

SAS.UPDATE(data-set-ID)
updates an observation with values that were added by calling the 
SAS.PUT_VALUE function.

1374 Chapter 39 / LUA Procedure



SAS.VARS(data-set-ID)
iterates over the variables in a data set.

Sequence to Add an Observation
To add a new observation, call the observation-processing functions in the following 
order:

1 SAS.APPEND.

2 SAS.PUT_VALUE. Repeat this function call until values are set for all desired 
variables in an observation.

3 SAS.UPDATE.

Out of Scope Warning
If a data set ID (handle) goes out of scope, then the associated SAS data set is 
automatically closed if it has not been closed already. A warning similar to the 
following appears in the SAS log:

WARNING: Closing SASHELP.CLASS - handle has gone out of scope.

A data set ID goes out of scope when the program is no longer able to access it. For 
example, when a data set ID is defined as a local variable in a user-defined function, 
the data set ID becomes out of scope at the end of that function definition. As a best 
practice, close a data set before the data set ID goes out of scope.

System Functions for the LUA Procedure
The following functions control the behavior of SAS code that is submitted from 
within the LUA procedure. For more information, see “Submitting SAS Code within 
Lua Statements” on page 1369.

Note: It is a SAS convention to document function names in all capitals. However, 
when you call these functions within the LUA procedure, you must use all lower-
case letters.

SAS.GET_MAX_SYSERR()
returns the current maximum SYSERR value that can be returned from calls to 
SAS.SUBMIT without triggering an error in the SAS log.

SAS.IS_QUIET()
returns true or false, depending on the value that was set using the 
SAS.SET_QUIET function. This Boolean value indicates whether SAS language 
statements that are submitted to the SAS.SUBMIT function are written to the 
SAS log.

Concepts: LUA Procedure 1375



SAS.SET_MAX_SYSERR(value)
specifies the maximum allowable SYSERR value that can be returned by 
SAS.SUBMIT calls. If SAS returns a SYSERR value greater than the specified 
value, an error is printed in the SAS log. The default is zero, and possible values 
include positive integers.

SAS.SET_QUIET(value)
specifies whether SAS language statements that are submitted to the 
SAS.SUBMIT function are written to the SAS log.

Possible argument values are true or false. The default value is false.

About Lua Libraries

Lua Libraries and SAS Extensions to Lua
The Lua programming language contains several libraries that can be used to 
manipulate tables and strings and to perform common math functions. Most of these 
functions are available to the LUA procedure. In addition, there are functions that 
were created for PROC LUA as an extension of the Lua language. These functions 
enable you to work with tables and strings and to perform calculations on your data. 
These extension functions are available within PROC LUA, but they are not part of 
the Lua programming language and cannot be used outside of PROC LUA.

Restrictions to the Lua IO Library
When SAS is running in lockdown mode (in a locked-down state), access to 
functions in the Lua IO library is restricted. It is possible for a SAS administrator to 
disable this restriction. For more information, see LOCKDOWN Statement.

Table Functions for PROC LUA
Here some of the table functions that are available with PROC LUA. You call these 
functions by preceding them with ‘TABLE’, such as table.size(t).

Note: It is a SAS convention to document function names in all capitals. However, 
when you call these functions within the LUA procedure, you must use all lower-
case letters.

Here are some of the commonly used table functions from the Lua table library that 
are available to PROC LUA.

TABLE.CONCAT(Lua-table<, "delimiter"><, start-position<, end-position>>)

1376 Chapter 39 / LUA Procedure

https://documentation.sas.com/?cdcId=bicdc&cdcVersion=9.4&docsetId=biasag&docsetTarget=n23000intelplatform00srvradm.htm


TABLE.INSERT(Lua-table, <position, > value)
TABLE.REMOVE(Lua-table<, position>)
TABLE.SORT(Lua-table<, comparison-function>)

Here are table functions that have been created specifically for PROC LUA. These 
functions can be called only within PROC LUA.

TABLE.CONTAINS(Lua-table-name,v)
returns the Boolean value true if the specified table contains the value v. 
Enclose character values in single or double quotation marks.

For example, suppose you have created table T with a list of names. You can 
check to see whether a text string is contained in that table and print an 
appropriate message to the log.

local t = {"John", "Paul", "George", "Ringo"}

if (table.contains(t,"Ringo")) then 
   print ("The table contains 'Ringo'.")
else 
   print ("The table does not contain 'Ringo'.")
end

TABLE.SIZE(Lua-table-name)
returns the number of elements in the specified table.

TABLE.TOSTRING(Lua-table-name)
returns a formatted string representation of the specified table.

For more information, see “Example 3: Loading a SAS Data Set and Viewing the 
Resulting Lua Table” on page 1386 and “Example 5: Using Table Functions” on 
page 1392.

Functions That Manipulate Strings
Here are the string functions that are available with PROC LUA. You call these 
functions by preceding them with ‘STRING’, such as string.trim(text-
variable).

Note: It is a SAS convention to document function names in all capitals. However, 
when you call these functions within the LUA procedure, you must use all lower-
case letters.

These string functions have been created specifically for PROC LUA. These 
functions can be called only within PROC LUA.

STRING.ENDS_WITH(string1, string2)
returns a Boolean that indicates whether the end of String1 matches the value of 
String2. The comparison is case sensitive. Enclose a literal text value in 
quotation marks.

Note: Support for STRING.ENDS_WITH was added in SAS Viya 3.4.

Concepts: LUA Procedure 1377



STRING.RESOLVE(string, {token1="text-value1"<, token2="text-value2"<, ...>>});
returns a string with tokens substituted into it. You provide a string variable with a 
value that contains substitution tokens in the format @token-name@. For each 
token, you provide a text value to substitute into the returned string value.

For example, suppose you have declared the variable Code:

local code="data @results@; set @in@; where @where@; run;"

You can provide substitute values for the tokens results, in, and where:

string.resolve(code, {results="work.foo", in="bar", where="x > 2"})

This call to STRING.RESOLVE returns this string:

data work.foo; set bar; where x > 2; run;

Note: Support for STRING.RESOLVE was added in SAS Viya 3.4.

STRING.SPLIT(string, delimiter, remove-empty-strings)
separates a string value into a table of substrings by using the specified delimiter 
value. Enclose the delimiter value in single or double quotation marks or inside 
double square brackets ([[ ]]). Use the last argument, a Boolean value, to specify 
whether to remove empty strings from the resulting table. By default, the last 
argument is TRUE.

Note: Support for STRING.SPLIT was added in SAS Viya 3.4.

STRING.STARTS_WITH(string1, string2)
returns a Boolean that indicates whether the beginning of String1 matches the 
value of String2. The comparison is case sensitive. Enclose a literal text value in 
single or double quotation marks or inside double square brackets ([[ ]]).

Note: Support for STRING.STARTS_WITH was added in SAS Viya 3.4.

STRING.TRIM(string)
returns a string with whitespace characters removed from the beginning and end 
of the original string value. Enclose literal text in single or double quotation 
marks or inside double square brackets ([[ ]]).

Note: Support for STRING.TRIM was added in SAS Viya 3.4.

For more information, see “Example 6: Using String Functions” on page 1394.

Object Syntax within Lua Statements
For some objects, such as data set IDs, Lua code supports object syntax, where 
you specify a function preceded by the object that the function is to act upon. For 
example, the following Lua statements are equivalent:

local luavar = sas.get_value(dsid, 'some_var')

local luavar = dsid:get_value('some_var')

1378 Chapter 39 / LUA Procedure



Make sure that you use a colon (:) when placing the object name before the function 
that it acts upon.

Similarly, the following code block from “Example 11: Using Iterator Functions for a 
Large Table” on page 1406 could be written in two ways.

   -- Iterate over the rows of the data set   
   local i=0 
   while sas.next(dsid) do
      i=i+1
      print("OBS=" .. i)
      for vname,var in pairs(vars) do
         print(vname, '=', sas.get_value(dsid, vname) )
      end
   end

The SAS.NEXT and SAS.GET_VALUE functions can both be represented with 
object syntax.

   -- Iterate over the rows of the data set   
   local i=0 
   while dsid:next() do
      i=i+1
      print("OBS=" .. i)
      for vname,var in pairs(vars) do
         print(vname, '=', dsid:get_value(vname) )
      end
   end

Calling PROC FCMP Functions within Lua 
Statements

You can submit functions that are created using the FCMP procedure within Lua 
code. When you call PROC FCMP functions, you must specify the package in which 
the function is stored in the SAS OPTIONS statement.

If a PROC FCMP function modifies one of its arguments, that argument is specified 
in the OUTARGS statement. To retrieve changes to an argument in the OUTARGS 
statement within Lua code, that argument must be defined as an array.

For more information, see the following information:

n Chapter 24, “FCMP Procedure,” on page 849 

n “Example 14: Running PROC FCMP Functions” on page 1414

Using the FULLSTIMER Option with PROC LUA
When you use the FULLSTIMER option with PROC LUA, the run times that 
FULLSTIMER reports in the log reflect the aggregate of run times for SAS code that 
is called within the LUA procedure. The run times include the run time of the LUA 
procedure itself.

Concepts: LUA Procedure 1379



For example, consider PROC LUA code that calls the SORT procedure three times. 
You might see the following output in the SAS log.

Output 39.1 PROC LUA Output Using FULLSTIMER

proc sort data=one; by i; run;
NOTE: There were 10000 observations read from the data set WORK.ONE.
NOTE: The data set WORK.ONE has 10000 observations and 2 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time           0.03 seconds
user cpu time       0.03 seconds
system cpu time     0.00 seconds
memory              2252.60k
OS Memory           14492.00k
Timestamp           10/20/2015 11:43:40 AM
Step Count                        10  Switch Count  0

proc sort data=two; by i; run;
NOTE: There were 10000000 observations read from the data set WORK.TWO.
NOTE: The data set WORK.TWO has 10000000 observations and 2 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time           8.03 seconds
user cpu time       12.34 seconds
system cpu time     0.70 seconds
memory              71231.17k
OS Memory           83136.00k
Timestamp           10/20/2015 11:43:48 AM
Step Count                        10  Switch Count  0

proc sort data=three; by i; run;
NOTE: There were 100 observations read from the data set WORK.THREE.
NOTE: The data set WORK.THREE has 100 observations and 2 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time           0.01 seconds
user cpu time       0.00 seconds
system cpu time     0.01 seconds
memory              71231.17k
OS Memory           83136.00k
Timestamp           10/20/2015 11:43:48 AM
Step Count                        10  Switch Count  0

NOTE: PROCEDURE LUA used (Total process time):
real time           8.15 seconds
user cpu time       12.37 seconds
system cpu time     0.78 seconds
memory              71231.17k
OS Memory           83136.00k
Timestamp           10/20/2015 11:43:48 AM
Step Count                        10  Switch Count  0

In the output, the system CPU time, 0.78 seconds, reflects the aggregate of the calls 
to PROC SORT and additional CPU time that is used by PROC LUA.

Syntax: LUA Procedure
PROC LUA <INFILE='filename'> <RESTART> <TERMINATE>;

<SUBMIT <"assignment(s);">;>

1380 Chapter 39 / LUA Procedure



... Lua statements ...
<ENDSUBMIT;>

run;

Statement Task

PROC LUA Execute Lua statements within SAS code or specify a file 
that contains Lua statements to execute

SUBMIT Identify the beginning of a block of Lua statements

ENDSUBMIT Identify the end of a block of Lua statements

PROC LUA Statement
Runs Lua statements within a SAS session.

Syntax
PROC LUA <INFILE='filename'> <RESTART> <TERMINATE>;

Optional Arguments
INFILE= 'filename'

identifies a source file that contains Lua statements to run within a SAS session. 
SAS expects this file to end with a .lua file extension, but do not include the 
extension in the filename that you specify.

Requirements Enclose the filename in single or double quotation marks.

If you use the INFILE= option, then you must specify the path to 
the Lua script. Define the path to your Lua scripts by providing a 
value for the LUAPATH filename before the PROC LUA 
statement. For more information, see “Example 2: Specifying 
Input from an External Lua Script” on page 1385.

Example Specify
INFILE='open_data'

to use the code in the open_data.lua Lua script file.

RESTART
resets the state of Lua code submissions for a SAS session. The LUA procedure 
is a reentrant procedure that maintains the state for Lua code across calls to the 
LUA procedure. This means that global Lua variable assignments or function 
definitions remain in memory until you issue the RESTART option, issue the 
TERMINATE option, or end the SAS session.

You can specify RESTART at the beginning of a new block of Lua code.

PROC LUA Statement 1381



Example proc lua restart;
submit;
  <lua statements...>
endsubmit;
run;

TERMINATE
stops maintaining the Lua code state in memory and terminates the Lua state 
when the LUA procedure completes. Subsequent calls to the LUA procedure 
begin a new instance of the Lua code state.

SUBMIT Statement
Identifies the beginning of a block of Lua code. Enter Lua statements between the SUBMIT and 
ENDSUBMIT statements.

Requirement: Each SUBMIT statement must have a corresponding ENDSUBMIT statement.

Syntax
SUBMIT <'assignment(s);'>;

Optional Argument
assignment(s)

identifies one or more macro variable assignments that are passed to the block 
of Lua statements. If only one assignment is listed, then the semicolon (;) within 
the quotation marks is not required. SAS does not expand macro variables within 
a block of Lua statements. Therefore, macro values must be passed within the 
list of assignments for the SUBMIT statement.

Example To assign the value of macro variable N to the Lua variable Name, 
enter the following SUBMIT statement:
SUBMIT "name=&n";

ENDSUBMIT Statement
Identifies the end of a block of Lua statements. Do not enter any other statement on the same line as the 
ENDSUBMIT statement.

Syntax
ENDSUBMIT;

1382 Chapter 39 / LUA Procedure



Usage: LUA Procedure

Submitting Lua Statements within a SAS Program
You can submit Lua statements within the PROC LUA invocation, between SUBMIT 
and ENDSUBMIT statements. The following code executes a single Lua print 
statement.

proc lua;
submit;
   print("Hello from Lua")
endsubmit;
run;

Any filerefs, librefs, macro variables, and so on, that you define within a SUBMIT 
and ENDSUBMIT block are available only within that block of code.

For example, the macro variable Mymacrovar is defined within the SUBMIT and 
ENSUBMIT block in the following call to PROC LUA. However, the variable is not 
defined in the %PUT statement at the end of the example.

proc lua restart;
submit;
   sas.submit([[%let mymacrovar=Hi there;]])
   txt = sas.symget("mymacrovar")
   print(txt)
endsubmit;
run;

%put &mymacrovar;

Output 39.2 Scope for Macro Variable in PROC LUA

%let mymacrovar=Hi there;
Hi there
NOTE: PROCEDURE LUA used (Total process time):
      real time           0.14 seconds
      cpu time            0.07 seconds

WARNING: Apparent symbolic reference MYMACROVAR not resolved.
17
18   %put &mymacrovar;
&mymacrovar

Usage: LUA Procedure 1383



Opening a SAS Data Set within Lua Code
Calling the SAS.SUBMIT function enables you to submit a block of SAS code. 
Enclose the SAS code within [[ and ]] brackets. The submitted code in this sample 
first verifies that the SAS data set exists. You can make any changes to the data, via 
the submitted DATA step, that you would in Base SAS code.

/* Test whether a data set exists */
proc lua;
submit;
   if sas.exists("sashelp.air") then 
      print("The data set SASHELP.AIR exists.")
   else
      print("The data set SASHELP.AIR does not exist.")
   end
endsubmit;
run;

If the data set exists, then you can open the data set and read it into a new data set, 
WORK.AIR. You can make any changes to the data via the submitted DATA step 
that you would in a typical DATA step.

Note: Longer blocks of SAS code are typically assigned to a Lua variable.

proc lua;
submit; 
   sas.submit( [[ data work.air; set sashelp.air; run; ]] )
endsubmit;
run;

You can also substitute Lua variable values within the SAS code. The following code 
shows simple substitutions. For more information, see “Example 9: Submitting SAS 
Code with Lua Variable Substitutions” on page 1402.

proc lua;
submit;
   local dest = 'work.class'
   local source = 'sashelp.class'

   sas.submit( [[ data @dest@; set @source@; run; ]] )
endsubmit;
run;

1384 Chapter 39 / LUA Procedure



Examples: LUA Procedure

Example 1: Create a Sample Data Set
This example creates a sample SAS data set, Homes, that contains several 
variables and 20 observations. This data set is the input for some of the examples 
that follow.

Here is the code to create a sample data set that can be accessed using PROC 
LUA.

data homes;
  input bad loan mortdue value reason $ job $ yoj derog delinq
        clage ninq clno debtinc;
datalines;
1 1100  25860  39025  HomeImp Other  10.5 0 0 94.37  1 9  .
0 4700  71855  88566  HomeImp Other  2.0  2 0 283.96 0 5  36.475
0 5500  72147  69918  HomeImp Sales  4.0  2 0 158.53 0 23 43.404
1 6400  25144  45200  HomeImp Other  25.0 0 2 128.00 4 17 .
0 7000  58114  93391  HomeImp ProfEx 6.0  0 0 200.08 1 24 31.737
1 7900  67222  75189  HomeImp Other  4.0  0 0 95.68  0 23 36.980
0 8300  54039  89301  HomeImp Other  18.0 0 0 173.19 0 28 26.267
0 8800  .      32221  DebtCon Other  0.0  0 0 276.84 0 14 24.199
0 9400  71600  99682  DebtCon Other  16.0 . . 159.04 4 16 25.607
0 10000 68807  76581  HomeImp Office 14.0 0 0 237.65 0 32 42.336
0 10200 16322  86505  DebtCon Other  8.0  0 0 259.16 0 14 21.253
0 10700 115118 124198 DebtCon Self   6.0  1 0 174.34 0 19 31.758
0 11100 148235 182053 HomeImp Office 4.0  0 0 198.81 0 55 33.539
0 11700 56441  86987  HomeImp Other  17.0 0 0 198.03 0 16 33.931
0 12100 58556  76724  HomeImp Other  3.0  0 1 234.66 1 16 37.639
0 12500 81865  101048 DebtCon Other  1.0  0 0 147.40 0 23 38.855
0 12900 18106  37881  DebtCon Mgr    8.0  0 0 134.38 0 10 20.516
0 13400 98701  129679 HomeImp ProfEx 10.0 0 0 179.13 2 32 29.549
1 13900 .      .      HomeImp Other  4.0  0 2 209.48 0 15 35.775
0 14400 45516  63924  DebtCon Other  .    0 0 109.33 1 19 40.872
;

Example 2: Specifying Input from an External Lua 
Script
Features: FILENAME statement

PROC LUA statement, INFILE= option

Example 2: Specifying Input from an External Lua Script 1385



Details
This example specifies an external Lua script and one or more possible paths to that 
script by using the FILENAME statement and the INFILE= option in the PROC LUA 
statement.

Program
filename LUAPATH ('/usr/local/scripts/lua','/home/user/myname/
my_scripts');

proc lua infile='my_script';
run;

Program Description
Specify the directories to search for the input Lua script. The FILENAME 
statement defines the directories in which Lua scripts are stored and assigns them 
to the LUAPATH fileref. Enclose a directory path within single or double quotation 
marks.

filename LUAPATH ('/usr/local/scripts/lua','/home/user/myname/
my_scripts');

Execute the PROC LUA statement and specify the Lua script name. The 
INFILE= option provides the name of the Lua script that contains Lua statements. In 
this example, SAS executes the Lua statements in the my_script.lua file. Do not 
specify the ‘.lua’ or ‘.luc’ file extension. Check the package.path variable for your 
system to see whether LUA or LUC files are opened first.

proc lua infile='my_script';
run;

Example 3: Loading a SAS Data Set and Viewing 
the Resulting Lua Table
Features: SAS.EXISTS function

SAS.READ_DS function
Observation processing: WHILE and FOR loops

1386 Chapter 39 / LUA Procedure



Details
This example uses the Homes data set that you created in Example 1.

In this example, you read the SAS data set Homes and print the data to the SAS 
log. Treat individual observations as an entry in an array. Each array entry contains 
associated attributes that are derived from the variables in the original SAS data set. 
For example, the value of t[2].loan is 4700.

Program
proc lua;
submit;
   if (sas.exists("work.homes")) then
      local t = sas.read_ds("work.homes")
      i=1

      while(t[i] ~= nil) do
         print("Obs #" .. i)
         for k,v in pairs(t[i]) do 
             print(k,v) 
         end
         print("\n")
         i = i+1
      end

   end
endsubmit;
run;

Program Description
Verify that the SAS data set Homes exists and read it into the Lua table T. Each 
observation in the data set can be accessed as if it were in an array, such as t[i].

proc lua;
submit;
   if (sas.exists("work.homes")) then
      local t = sas.read_ds("work.homes")
      i=1

Process each observation in the data set. Initialize an iterator, i, and process 
each observation by using a WHILE loop. Check to see whether the next 
observation exists and then print each variable-value pair. Use a FOR loop to 
process each variable name and value, printing both to the SAS log. At the end of 
each observation, print a newline character and increment i.

      while(t[i] ~= nil) do
         print("Obs #" .. i)
         for k,v in pairs(t[i]) do 

Example 3: Loading a SAS Data Set and Viewing the Resulting Lua Table 1387



             print(k,v) 
         end
         print("\n")
         i = i+1
      end

Submit the PROC LUA call to SAS.

   end
endsubmit;
run;

Output: Lua Table
Output 39.3 Sample Lua Data

Obs #1
reason    HomeImp
derog    0
job    Other
yoj    10.5
clno    9
loan    1100
bad    1
debtinc    .
mortdue    25860
value    39025
clage    94.37
ninq    1
delinq    0

...
Obs #20
reason    DebtCon
derog    0
job    Other
yoj    .
clno    19
loan    14400
bad    0
debtinc    40.872
mortdue    45516
value    63924
clage    109.33
ninq    1
delinq    0

NOTE: PROCEDURE LUA used (Total process time):
      real time           0.17 seconds
      cpu time            0.18 seconds

1388 Chapter 39 / LUA Procedure



Example 4: Writing a SAS Data Set from a Lua 
Table
Features: PROC LUA statement

SUBMIT and ENDSUBMIT statements
SAS.WRITE_DS function
TABLE.TOSTRING function

Details
This example creates a Lua table and then writes that table to a SAS data set. The 
values in the Lua table are generated by calling the SAS RANNOR and RANUNI 
random number generator functions. This code also uses Lua conventions for 
processing arrays.

Program
proc lua;
submit;
   local tbl = {}
 

   for i=1,10 do
       vars = {}
       vars.seed = 1234 * i;
       vars.randnor = sas.rannor( vars.seed )
       vars.randuni = sas.ranuni( vars.seed )
       vars.color = "purple"
       tbl[#tbl+1] = vars      
   end
 

   print("Lua table:", table.tostring(tbl))

   sas.write_ds(tbl, "work.random")
endsubmit;
run;
 

proc print data=random;run;

Example 4: Writing a SAS Data Set from a Lua Table 1389



Program Description
Execute the PROC LUA statement and begin a block of Lua code. Declare a 
local Lua array called TBL.

proc lua;
submit;
   local tbl = {}
 

Generate the contents of the Lua table. This example generates the content for 
the array TBL. The variables Seed, Randnor, Randuni, and Color are created and 
assigned a value over ten iterations of a FOR loop.

   for i=1,10 do
       vars = {}
       vars.seed = 1234 * i;
       vars.randnor = sas.rannor( vars.seed )
       vars.randuni = sas.ranuni( vars.seed )
       vars.color = "purple"
       tbl[#tbl+1] = vars      
   end
 

Print the generated Lua table. The resulting Lua table is printed to the SAS log.

   print("Lua table:", table.tostring(tbl))

Write the Lua table to a SAS data set. This example writes the Lua table to a SAS 
data set called Random in the Work library. By saving the data set to the Work 
library, it is accessible only within the same SAS session. You can save the data set 
permanently by saving it to a library, such as Sasuser.

   sas.write_ds(tbl, "work.random")
endsubmit;
run;
 

Print the SAS data set. After you have written the SAS data set, you can access it 
outside of the LUA procedure. If you save the data set to a library, such as Sasuser, 
then the data set is accessible in later SAS sessions.

proc print data=random;run;

1390 Chapter 39 / LUA Procedure



Output: SAS Table from a Lua Table
Output 39.4 Partial Lua Table from the SAS Log

Lua table:    table: 000000002892EAE0=
{
  [1]=table: 00000000289359A0=
  {
    ["color"]="purple"
    ["randuni"]=0.3831937143
    ["randnor"]=1.4215132075
    ["seed"]=1234
  }
  [2]=table: 0000000028937640=
  {
    ["color"]="purple"
    ["randuni"]=0.088249594
    ["randnor"]=-0.102644377
    ["seed"]=2468
  }
  [3]=table: 000000000C195400=
  {
    ["color"]="purple"
    ["randuni"]=0.4458283407
    ["randnor"]=2.0089305781
    ["seed"]=3702
  }
  [4]=table: 0000000028928FE0=
  {
    ["color"]="purple"
    ["randuni"]=0.4562234927
    ["randnor"]=1.9125666228
...

Output 39.5 Generated SAS Table

Example 4: Writing a SAS Data Set from a Lua Table 1391



Example 5: Using Table Functions
Features: PROC LUA statement

SUBMIT and ENDSUBMIT statements
TABLE.CONCAT function
TABLE.INSERT function
TABLE.REMOVE function
TABLE.SIZE function
TABLE.SORT function
TABLE.TOSTRING function

Details
This example creates a simple table, prints the number of elements, and prints the 
table to the SAS log.

Program
proc lua;

submit;

  local t={"a", "b", "c", "foo", "bar"}

  print(table.size(t))
  print("Output with function TABLE.TOSTRING")
  print(table.tostring(t))
  print("Output with function TABLE.CONCAT")
  print(table.concat(t, ", "))

  
  print("Inserting and Removing Values")
  table.insert(t,5,"new")
  print("Table with new value: ", table.concat(t,", "))
  table.remove(t,4)
  print("Table after removing value at position 4: ", 
table.concat(t,", "))

  print("Sorting a Table")
  table.sort(t)
  print("Table with sorted values: ",table.concat(t,", "))
  table.sort(t, function(a,b) return a>b end)
  print("Table sorted in descending order: ",table.concat(t,", "))

1392 Chapter 39 / LUA Procedure



endsubmit;
run;

Program Description
Execute the PROC LUA statement. The PROC LUA statement enables you to call 
Lua code within your SAS session.

proc lua;

Identify the beginning of a block of Lua statements. The SUBMIT statement 
identifies the beginning of a block of Lua statements.

submit;

Create a simple table. Assign elements in a table T. 

  local t={"a", "b", "c", "foo", "bar"}

Print information about the table. Print the number of elements in the table and 
then print the table using the TABLE.TOSTRING function and the TABLE.CONCAT 
function.

  print(table.size(t))
  print("Output with function TABLE.TOSTRING")
  print(table.tostring(t))
  print("Output with function TABLE.CONCAT")
  print(table.concat(t, ", "))

Insert and remove items in the table. Print a label, and then insert the value "new" 
into the table in the fifth position using the TABLE.INSERT function. Print the table 
to see the added value. Remove the value in the fourth position in the table, "foo", 
using the TABLE.REMOVE function. Print the resulting table.

  
  print("Inserting and Removing Values")
  table.insert(t,5,"new")
  print("Table with new value: ", table.concat(t,", "))
  table.remove(t,4)
  print("Table after removing value at position 4: ", 
table.concat(t,", "))

Sort values in the table. Print a label, and then sort the table in ascending order 
using the TABLE.SORT function. Print the resulting table to see the sorted values. 
Next, sort the table again and specify a function that sorts the table in descending 
order. Print the resulting table.

  print("Sorting a Table")
  table.sort(t)
  print("Table with sorted values: ",table.concat(t,", "))
  table.sort(t, function(a,b) return a>b end)
  print("Table sorted in descending order: ",table.concat(t,", "))

Identify the end of a block of Lua statements with the ENDSUBMIT statement.

endsubmit;
run;

Example 5: Using Table Functions 1393



Output: SAS Log That Shows Table Details
Output 39.6 Results of TABLE Functions

Output with function TABLE.TOSTRING
table: 00000000289200E0=
{
  [1]="a"
  [2]="b"
  [3]="c"
  [4]="foo"
  [5]="bar"
}
Output with function TABLE.CONCAT
a, b, c, foo, bar
Inserting and Removing Values
Table with new value:     a, b, c, foo, new, bar
Table after removing value at position 4:     a, b, c, new, bar
Sorting a Table
Table with sorted values:     a, b, bar, c, new
Table sorted in descending order:     new, c, bar, b, a
NOTE: PROCEDURE LUA used (Total process time):
      real time           0.03 seconds
      cpu time            0.01 seconds

Example 6: Using String Functions
Features: PROC LUA statement

SUBMIT and ENDSUBMIT statements
STRING.ENDS_WITH function
STRING.RESOLVE function
STRING.SPLIT function
STRING.STARTS_WITH function
STRING.TRIM function

Details
This example uses the STRING functions to manipulate text values.

Program
proc lua;
   submit;

   mystring = "@noun@ @verb@ the @object@"

1394 Chapter 39 / LUA Procedure



   
   newstring1 = string.resolve(mystring, 
{noun="Pigs",verb="eat",object="pie"})
   newstring2 = string.resolve(mystring, {noun="Cars",verb="guzzle",
                               object="gasoline"})

   print ("Original string: " .. mystring)
   print ("New string 1: " .. newstring1)
   print ("New string 2: " .. newstring2)

   if string.starts_with(newstring2, "Cars") then
      print("Could be about cars: " .. newstring2)
   else
      print("Not about cars: " .. newstring2)
   end

   if string.ends_with(newstring2, "pie") then
      print ("I love pie!" .. newstring2)
   else 
      print("Too bad. No pie: " .. newstring2)
   end

   mystring = "     The fox ate the chicken.  "
   trimmedstring = string.trim(mystring)

   print ("Original string between ***s: ***" .. mystring .. "***")
   print ("Trimmed string between ***s:  ***" .. trimmedstring .. 
"***")

   t = string.split(mystring," ")

   for element in pairs(t) do
      print("Table index " .. element .. ", Value is: " .. 
t[element] .. "\n")
   end

   endsubmit;
run;

Program Description
Execute the PROC LUA statement and begin processing Lua statements. The 
PROC LUA statement enables you to call Lua code within your SAS session. The 
SUBMIT statement identifies the beginning of a block of Lua statements.

proc lua;
   submit;

Create a string variable and substitute different values in it. Create a string, 
Mystring, that contains substitution tokens Noun, Verb, and Object. Use the 
STRING.RESOLVE function to generate new strings, Newstring1 and Newstring2. 
Print the original string and the new strings to the SAS log.

Example 6: Using String Functions 1395



   mystring = "@noun@ @verb@ the @object@"
   
   newstring1 = string.resolve(mystring, 
{noun="Pigs",verb="eat",object="pie"})
   newstring2 = string.resolve(mystring, {noun="Cars",verb="guzzle",
                               object="gasoline"})

   print ("Original string: " .. mystring)
   print ("New string 1: " .. newstring1)
   print ("New string 2: " .. newstring2)

Look for matching at the beginning and end of string variables. Use the 
STRING.STARTS_WITH function to check whether Newstring2 begins with “Cars” 
and then print the appropriate message. Next, use the STRING.ENDS_WITH 
function to check whether Newstring2 ends with “pie” and then print the appropriate 
message.

   if string.starts_with(newstring2, "Cars") then
      print("Could be about cars: " .. newstring2)
   else
      print("Not about cars: " .. newstring2)
   end

   if string.ends_with(newstring2, "pie") then
      print ("I love pie!" .. newstring2)
   else 
      print("Too bad. No pie: " .. newstring2)
   end

Trim leading and trailing whitespace characters from a string value. Assign a 
new value to Mystring. Use the STRING.TRIM function to remove leading and 
trailing whitespace characters. Print the original and trimmed strings for comparison.

   mystring = "     The fox ate the chicken.  "
   trimmedstring = string.trim(mystring)

   print ("Original string between ***s: ***" .. mystring .. "***")
   print ("Trimmed string between ***s:  ***" .. trimmedstring .. 
"***")

Create a list of words in a sentence string. Use the STRING.SPLIT function to 
generate a list of individual words from the string Mystring. By default, blank values 
are not included in the resulting list. Print the list of words in Mystring.

   t = string.split(mystring," ")

   for element in pairs(t) do
      print("Table index " .. element .. ", Value is: " .. 
t[element] .. "\n")
   end

End the block of Lua statements and run the LUA procedure. End the block of 
Lua statements with the ENDSUBMIT statement.

   endsubmit;
run;

1396 Chapter 39 / LUA Procedure



Output: SAS Log That Shows String 
Function Results
Output 39.7 Results of STRING Functions

NOTE: Lua initialized.
Original string: @noun@ @verb@ the @object@
New string 1: Pigs eat the pie
New string 2: Cars guzzle the gasoline
Could be about cars: Cars guzzle the gasoline
Too bad. No pie: Cars guzzle the gasoline
Original string between ***s: ***    The fox ate the chicken.    ***
Trimmed string between ***s: ***The fox ate the chicken.***
Table index 1, Value is: The

Table index 2, Value is: fox

Table index 3, Value is: ate

Table index 4, Value is: the

Table index 5, Value is: chicken.

NOTE: PROCEDURE LUA used (Total process time):
      real time           0.20 seconds
      cpu time            0.06 seconds

Example 7: Adding an Observation to a Lua Table
Features: SAS.APPEND function

SAS.CLOSE function
SAS.GET_VALUE function
SAS.PUT_VALUE function
SAS.UPDATE function
Concatenation operator (..)

Details
This example demonstrates how to add an observation using the SAS functions in 
PROC LUA. First, create a simple data set, and add a record to it using the 
SAS.APPEND, SAS.PUT_VALUE, and SAS.UPDATE functions. Next, retrieve and 
print the values from the updated data set.

Example 7: Adding an Observation to a Lua Table 1397



Program
data foo;
  input x y;
  id+1;
  datalines;
1 10
2 20
3 30
;

proc lua;
submit;
   dsid = sas.open("work.foo",'u')

   while(sas.next(dsid) ~= nil) do
      myid = sas.get_value(dsid,"id")
      myx = sas.get_value(dsid,"x")
      myy = sas.get_value(dsid,"y")
      print("ID: " .. myid .. " x: " .. myx .. " y: " .. myy)
   end

   while(sas.next(dsid) ~= nil) do
      myid = sas.get_value(dsid,"id")
      myx = sas.get_value(dsid,"x")
      myy = sas.get_value(dsid,"y")
      print("ID: " .. myid .. " x: " .. myx .. " y: " .. myy)
   end

   sas.append(dsid)
   sas.put_value(dsid,"id",4)
   sas.put_value(dsid,"x",4)
   sas.put_value(dsid,"y",40)
   sas.update(dsid)
   rc=sas.close(dsid)
endsubmit;
run;

proc lua restart;
submit;
   dsid=sas.open("work.foo")
   

   while(sas.next(dsid) ~= nil) do   
      myid = sas.get_value(dsid,"id")
      myx = sas.get_value(dsid,"x")
      myy = sas.get_value(dsid,"y")
      print("ID: " .. myid .. " x: " .. myx .. " y: " .. myy)
   end

   rc=sas.close(dsid)
endsubmit;
run;

1398 Chapter 39 / LUA Procedure



Program Description
Create a data set. Use the DATA step to create a small data set called Foo.

data foo;
  input x y;
  id+1;
  datalines;
1 10
2 20
3 30
;

Invoke PROC LUA and open the Foo data set for updating. Use the SAS.OPEN 
function to assign the contents of the Foo data set to the Dsid Lua variable. By 
specifying that you want to open the data set in Update mode (by using the 'u' 
argument), you are able to write to the data set. If you do not specify Update mode, 
the data set opens in Read-Only mode by default.

proc lua;
submit;
   dsid = sas.open("work.foo",'u')

   while(sas.next(dsid) ~= nil) do
      myid = sas.get_value(dsid,"id")
      myx = sas.get_value(dsid,"x")
      myy = sas.get_value(dsid,"y")
      print("ID: " .. myid .. " x: " .. myx .. " y: " .. myy)
   end

Read the values in Foo and print them to the SAS log. Use the WHILE loop with 
the SAS.NEXT function to iterate through observations in the data set. For each 
observation, retrieve the values for Myid, Myx, and Myy from the ID, X, and Y 
variables, respectively. Print these values to the SAS log.

   while(sas.next(dsid) ~= nil) do
      myid = sas.get_value(dsid,"id")
      myx = sas.get_value(dsid,"x")
      myy = sas.get_value(dsid,"y")
      print("ID: " .. myid .. " x: " .. myx .. " y: " .. myy)
   end

Append a new observation and assign a value to each variable. Call the 
SAS.APPEND function to prepare the data set for a new observation. Assign values 
using the SAS.PUT_VALUE function and finally update the data set with the 
SAS.UPDATE function. Close the data set.

   sas.append(dsid)
   sas.put_value(dsid,"id",4)
   sas.put_value(dsid,"x",4)
   sas.put_value(dsid,"y",40)
   sas.update(dsid)
   rc=sas.close(dsid)
endsubmit;
run;

Example 7: Adding an Observation to a Lua Table 1399



Restart PROC LUA and open the Work.Foo data set. Assign the contents of 
Work.Foo to the Dsid Lua variable.

proc lua restart;
submit;
   dsid=sas.open("work.foo")
   

Retrieve the data from the Work.Foo data set. Use a WHILE loop to process 
observations in the Work.Foo data set. Retrieve the values using the 
SAS.GET_VALUE function, and print the values to the SAS log.

   while(sas.next(dsid) ~= nil) do   
      myid = sas.get_value(dsid,"id")
      myx = sas.get_value(dsid,"x")
      myy = sas.get_value(dsid,"y")
      print("ID: " .. myid .. " x: " .. myx .. " y: " .. myy)
   end

Close the Work.Foo data set.

   rc=sas.close(dsid)
endsubmit;
run;

Output 39.8 Listing of Original Work.Foo Data Set

ID: 1 x: 1 y: 10
ID: 2 x: 2 y: 20
ID: 3 x: 3 y: 30
NOTE: PROCEDURE LUA used (Total process time):
      real time           0.02 seconds
      cpu time            0.01 seconds

Output 39.9 Listing of Work.Foo Data Set Appended with New Observation

ID: 1 x: 1 y: 10
ID: 2 x: 2 y: 20
ID: 3 x: 3 y: 30
ID: 4 x: 4 y: 40
NOTE: PROCEDURE LUA used (Total process time):
      real time           0.16 seconds
      cpu time            0.06 seconds

Example 8: Using SAS Macro Variable Values 
within Lua Statements
Features: PROC LUA statement

SUBMIT and ENDSUBMIT statements
Macro variable assignments
Concatenation operator (..)

1400 Chapter 39 / LUA Procedure



Details
No macro substitution occurs between the semicolon (;) at the end of the SUBMIT 
statement and the beginning of the ENDSUBMIT statement, except for those within 
a SAS.SUBMIT code block. You must specify macro value assignments for Lua 
commands within the SUBMIT statement. This example shows how to assign macro 
variable values for use within Lua code.

Separate multiple assignments with a semicolon (;) and place all assignments within 
a single pair of quotation marks. This example prints the following text to the SAS 
log: Hello, George. Have a nice day.

Program
%let g='George';
%let h='Have a nice day.';

proc lua;

submit "name=&g; msg=&h";

   print('Hello, ' .. name .. '. ' .. msg)

endsubmit;
run;

Program Description
Define macro variable values. The macro variables G and H are assigned to 
character values. The use of single quotation marks in the macro variable 
assignment is required for Lua. Single quotation marks are not normally required for 
macro variable assignments in SAS.

%let g='George';
%let h='Have a nice day.';

Execute the PROC LUA statement. The PROC LUA statement enables you to call 
Lua code within your SAS session.

proc lua;

Identify the beginning of a block of Lua statements and assign any macro 
variables. The SUBMIT statement identifies the beginning of a block of Lua 
statements. This example assigns the values of the macro variables g and h to the 
local Lua variables name and msg, respectively. No macro expansion occurs between 
the end of the SUBMIT statement and the beginning of the ENDSUBMIT statement. 
The Lua code refers to the local Lua variables.

submit "name=&g; msg=&h";

Execute Lua statements. Enter Lua statements between the SUBMIT and 
ENDSUBMIT statements. Lua statements are not required to end with a semicolon 

Example 8: Using SAS Macro Variable Values within Lua Statements 1401



(;). This example prints text values to the SAS log. Concatenate strings using the ‘..’ 
operator. Each print statement that you use begins on a new line in the log.

   print('Hello, ' .. name .. '. ' .. msg)

Identify the end of a block of Lua statements with the ENDSUBMIT statement.

endsubmit;
run;

Example 9: Submitting SAS Code with Lua Variable 
Substitutions
Features: PROC LUA statement

SUBMIT and ENDSUBMIT statements
SAS.SUBMIT function
Variable substitution

Details
This example submits a block of Lua statements. Within the Lua statements, assign 
a block of SAS code to a local variable. The example then invokes the SAS code 
with the SAS.SUBMIT function and substitutes variable values.

The example uses the Work.Answer data set as input to the local Lua variable 
Code.

Figure 39.1 Work.Answer Data Set

Program
proc lua;

1402 Chapter 39 / LUA Procedure



submit;

   local rc

   local code = [[
         data sample; set answer;
         where CCUID = @ccuid@;
         y = @subValue@;
         run;
   ]]

   rc = sas.submit(code, {ccuid="67", subValue=72})

endsubmit;
run;

proc print data=sample;
run;

Program Description
Execute the LUA procedure.

proc lua;

Identify the beginning of the block of Lua statements to execute. Use the 
SUBMIT statement to identify the Lua statements. Declare a local variable Rc. 
Semicolons (;) are not required at the end of Lua statements.

submit;

   local rc

Assign a block of SAS code to a local Lua variable. A block of SAS code, 
indicated by the [[ and ]] brackets, is assigned to the local Lua variable Code. The 
SAS code opens the WORK.ANSWER data set and keeps only records where the 
value of CCUID matches the value that is specified by @ccuid@. When the SAS 
code is executed, a value is assigned to the key @ccuid@. A new variable Y is 
assigned to the value that is specified by @subValue@. The resulting data set is 
saved to the WORK.SAMPLE data set.

   local code = [[
         data sample; set answer;
         where CCUID = @ccuid@;
         y = @subValue@;
         run;
   ]]

Execute the SAS code and assign the result to the Lua variable Rc. The 
SAS.SUBMIT function tells the system to run SAS code. The code block that was 
assigned to the Code variable is now executed. The call to the SAS.SUBMIT 
function includes two variable substitutions. When the SAS code executes, the 
character value "67" is substituted for @ccuid@, and the value 72 is substituted for 
@subValue@.

   rc = sas.submit(code, {ccuid="67", subValue=72})

The ENDSUBMIT statement identifies the end of the block of Lua statements. 
The RUN statement completes the call to PROC LUA.

Example 9: Submitting SAS Code with Lua Variable Substitutions 1403



endsubmit;
run;

Print the resulting data set, Work.Sample.

proc print data=sample;
run;

Output: SAS Table Resulting from 
Substituted Lua Values
Output 39.10 Generated Work.Sample Table

Example 10: Using an Iterator Function for a Small 
Table
Features: SAS.OPEN function

SAS.ROWS function
SAS.CLOSE function

Details
This example traverses a data set and prints the variable names and corresponding 
values for each observation. Use the SAS.ROWS function when there are relatively 
few variables.

Program
proc lua;

1404 Chapter 39 / LUA Procedure



submit;

   local dsid = sas.open("sashelp.class")

   for row in sas.rows(dsid) do
      for n,v in pairs(row) do
         if type(n)=="string" then
            print(n,'=', v)
         end
      end
   end

   sas.close(dsid)
endsubmit;
run;

Program Description
Execute the PROC LUA and SUBMIT statements to begin a block of Lua code.

proc lua;
submit;

Open the Sashelp.Class SAS data set and load the contents into the Lua 
variable Dsid. By default, the data set is opened for reading.

   local dsid = sas.open("sashelp.class")

Process the rows of the data set. The outer FOR loop processes each row in the 
data set. The PAIRS function pulls the variable name and value pairs from each row 
in the Sashelp.Class data set. The pairs of variable names and values are then 
printed to the SAS log. Note that in Lua, a double equal sign (==) is used to assess 
whether two values are equal in the IF condition.

   for row in sas.rows(dsid) do
      for n,v in pairs(row) do
         if type(n)=="string" then
            print(n,'=', v)
         end
      end
   end

Close the data set, end the block of Lua code, and complete the call to the 
LUA procedure.

   sas.close(dsid)
endsubmit;
run;

Example 10: Using an Iterator Function for a Small Table 1405



Output: ROWS Iterator for a Small Data 
Set
Output 39.11 Iterating over a Small Data Set with the ROWS Function (Partial Output)

sex    =    M
height    =    69
name    =    Alfred
weight    =    112.5
age    =    14
sex    =    F
height    =    56.5
name    =    Alice
weight    =    84
age    =    13
sex    =    F
height    =    65.3
name    =    Barbara
weight    =    98
age    =    13
sex    =    F
height    =    62.8
name    =    Carol
weight    =    102.5
age    =    14
...
sex    =    M
height    =    66.5
name    =    William
weight    =    112
age    =    15
NOTE: PROCEDURE LUA used (Total process time):
      real time           0.08 seconds
      cpu time            0.06 seconds

Example 11: Using Iterator Functions for a Large 
Table
Features: SAS.OPEN function

SAS.VARS function
SAS.NEXT function
SAS.GET_VALUE function
SAS.CLOSE function

Details
This example uses the SAS.VARS and SAS.NEXT functions to traverse a SAS data 
set and print its contents.

1406 Chapter 39 / LUA Procedure



Program
proc lua;
submit;

   local dsid = sas.open("sashelp.company") -- open for input            

   local vars = {}
   -- Iterate over the variables in the data set
   for var in sas.vars(dsid) do
      vars[var.name:lower()] = var               
   end

   -- Iterate over the rows of the data set   
   local i=0 
   while (sas.next(dsid) ~= nil) do
      i=i+1
      print("OBS=" .. i)
      for vname,var in pairs(vars) do
         print(vname, '=', sas.get_value(dsid, vname) )
      end
   end

   sas.close(dsid)
endsubmit;
run;

Program Description
Execute the PROC LUA and SUBMIT statements to begin a block of Lua code.

proc lua;
submit;

Open the Sashelp.Company data set.

   local dsid = sas.open("sashelp.company") -- open for input            

Declare a local Lua array, VARS, and populate it with the values of the 
variables in the data set. The brackets ({ }) identify an array in Lua. Use the 
SAS.VARS function to iterate over all the variables in the data set. The example 
assigns the value of each variable to the Vars array, where the array key is the 
variable name in lowercase.

   local vars = {}
   -- Iterate over the variables in the data set
   for var in sas.vars(dsid) do
      vars[var.name:lower()] = var               
   end

Iterate over each data set observation and print the values for each variable. 
The example initializes an iterator variable, I, to 0. The SAS.NEXT iterator function 
then cycles through the observations in the data set. For each observation, the 
example prints the variable name and corresponding value for each variable.

   -- Iterate over the rows of the data set   
   local i=0 
   while (sas.next(dsid) ~= nil) do

Example 11: Using Iterator Functions for a Large Table 1407



      i=i+1
      print("OBS=" .. i)
      for vname,var in pairs(vars) do
         print(vname, '=', sas.get_value(dsid, vname) )
      end
   end

Close the data set and end the call to the LUA procedure.

   sas.close(dsid)
endsubmit;
run;

Output: Iterators with a Large Data Set
Output 39.12 Using Iterator Functions with a Large Data Set

OBS=1
level4    =    CONTRACTS
job1    =    MANAGER
level3    =    ADMIN
level2    =    TOKYO
n    =    1
depthead    =    1
level1    =    International Ai
level5    =    So Suumi
OBS=2
level4    =    CONTRACTS
job1    =    ASSISTANT
level3    =    ADMIN
level2    =    TOKYO
n    =    1
depthead    =    2
level1    =    International Ai
level5    =    Steffen Graff
...
OBS=48
level4    =    MIS
job1    =    TECH. CONS.
level3    =    TECHN. SERVICES
level2    =    NEW YORK
n    =    1
depthead    =    2
level1    =    International Ai
level5    =    Roy Hobbs
NOTE: PROCEDURE LUA used (Total process time):
      real time           0.23 seconds
      cpu time            0.21 seconds

Example 12: Defining and Adding Variables to a 
Data Set
Features: PROC LUA statement

SAS.OPEN function with ‘o’ option

1408 Chapter 39 / LUA Procedure



SAS.ADD_VARS function
SAS.CLOSE function

Details
This example defines new variables within Lua code and adds them to a data set. 
The example uses the SAS.ADD_VARS function to define the variables and add 
them to the output data set.

Program
proc lua;
submit;

   local dsid = sas.open("work.sample","o")

   sas.add_vars(dsid, {  {name="var1", type="N", format="BEST12.2"},
                         {name="var2", type="C", length=500, 
format="$char80."},
                         {name="var3", type="C", label="Character 
Data"}
                       })

   sas.close(dsid)
endsubmit;
run;

Program Description
Execute the PROC LUA statement and begin the block of Lua statements. The 
PROC LUA statement enables you to call Lua code within your SAS session. The 
SUBMIT statement identifies the beginning of the block of Lua statements.

proc lua;
submit;

Open the data set and assign its contents to a local Lua variable. Invoke the 
SAS.OPEN function to open the WORK.SAMPLE data set. Use the ‘o’ mode to 
create the data set if it does not already exist.

   local dsid = sas.open("work.sample","o")

Define variables to add to the data set. This example invokes the 
SAS.ADD_VARS function to add three variables—Var1, Var2, and Var3—to the data 
set. The type, numeric (N) or character (C), is specified for each variable. Various 
additional attributes are assigned to the variables. Only the name attribute is 
required. For more information, see “Data Set Functions for the LUA Procedure” on 
page 1371.

   sas.add_vars(dsid, {  {name="var1", type="N", format="BEST12.2"},

Example 12: Defining and Adding Variables to a Data Set 1409



                         {name="var2", type="C", length=500, 
format="$char80."},
                         {name="var3", type="C", label="Character 
Data"}
                       })

Close the data set and end the call to the LUA procedure. This example 
executes the SAS.CLOSE function to close the data set that is associated with the 
Lua variable Dsid.

   sas.close(dsid)
endsubmit;
run;

Output: Adding Variables to a Data Set
Output 39.13 Partial Output from PROC CONTENTS for Work.Sample

Example 13: Connecting to the CAS Server
Features: CAS.OPEN function

CLOSE function
SUBMIT and ENDSUBMIT statements

Details
This example shows how to connect to a CAS server. The host name is 
server.mycompany.com, the port is 5570.

Note: This example assumes that you have SAS Viya 3.5 installed.

1410 Chapter 39 / LUA Procedure



Program
proc lua;
submit;

-- Show the content of the swat_enabled variable
print("NOTE: swat_enabled=", swat_enabled)

-- Show path and cpath info at start
print("NOTE: before")
print("NOTE: package.path=\n" .. package.path)
print("NOTE: package.cpath=\n" .. package.cpath)

-- Add required directories to path and cpath
if swat_enabled == false or swat_enabled == nil then
  print("NOTE: changing path and cpath")
package.path = package.path .. 
    ';/opt/sas/viya/home/SASFoundation/misc/casluaclnt/lua/?.lua'
package.path = package.path .. 
    ';/opt/sas/viya/home/SASFoundation/misc/casluaclnt/lua/deps/?.lua'
package.cpath = package.cpath .. 
    ';/opt/sas/viya/home/SASFoundation/misc/casluaclnt/lua/lib/?.so'

swat_enabled = true

-- Show updated path and cpath values
print("NOTE: after")
print("NOTE: package.path=\n" .. package.path)
print("NOTE: package.cpath=\n" .. package.cpath)
end

-- Preload library
cas = require "swat"

-- Connect to the CAS server on your host
s=cas.open("server.mycompany.com",5570)

-- Print the session ID
print("NOTE: s=", s)

-- Run the builtins.serverStatus action
-- and display session information
result = s:builtins_serverStatus
print("NOTE: server=\n",result['server'])
print("NOTE: nodestatus=\n",result['nodestatus'])

-- Run the addFmtLib action to add a format library
s:addFmtLib{fmtlibname="myformats"}

-- Create a format called demo in the myformats library
s:addFormat{fmtLibName="myformats",
            fmtname="demo",
            ranges={"0-17='demo1'","18-34='demo2'",
                    "35-49='demo3'","50-64='demo4'"
                   }}

Example 13: Connecting to the CAS Server 1411



-- Format some values with the newly created format
result = s:listFmtValues{fmtname = "demo",
              nvals = {15,23,39,61}}

-- Display the results
print(result)

-- Shutdown the CAS session
s:close{}

endsubmit;
run;

Program Description
Start PROC LUA and load utility resources. Use the concatenation operator to 
append the middleclass.lua location to the package.path value. Similarly, add the 
location of the tkluaswat.so file to the package.cpath value. A variable called 
Swat_enabled is created to prevent updating the package.path and package.cpath 
values if you run this program more than once. For more information about SWAT, 
see “Requirements” in Getting Started with SAS Viya for Lua.

proc lua;
submit;

-- Show the content of the swat_enabled variable
print("NOTE: swat_enabled=", swat_enabled)

-- Show path and cpath info at start
print("NOTE: before")
print("NOTE: package.path=\n" .. package.path)
print("NOTE: package.cpath=\n" .. package.cpath)

-- Add required directories to path and cpath
if swat_enabled == false or swat_enabled == nil then
  print("NOTE: changing path and cpath")
package.path = package.path .. 
    ';/opt/sas/viya/home/SASFoundation/misc/casluaclnt/lua/?.lua'
package.path = package.path .. 
    ';/opt/sas/viya/home/SASFoundation/misc/casluaclnt/lua/deps/?.lua'
package.cpath = package.cpath .. 
    ';/opt/sas/viya/home/SASFoundation/misc/casluaclnt/lua/lib/?.so'

swat_enabled = true

-- Show updated path and cpath values
print("NOTE: after")
print("NOTE: package.path=\n" .. package.path)
print("NOTE: package.cpath=\n" .. package.cpath)
end

Load the SWAT library.

-- Preload library

1412 Chapter 39 / LUA Procedure

http://documentation.sas.com/?docsetId=caspg3lua&docsetVersion=3.5&docsetTarget=n18oyhz6fkbw0in145s02i1v5rjj.htm&locale=en


cas = require "swat"

Connect to the CAS server. Use the CAS.OPEN function to start a CAS session 
on the CAS server. Assign the CAS session to the Lua variable S. Verify that the 
connection was successful and print session information. This version of the 
CAS.OPEN function assumes that you have created an authinfo file. For more 
information, see “Connect and Start a Session” in Getting Started with SAS Viya for 
Lua.

-- Connect to the CAS server on your host
s=cas.open("server.mycompany.com",5570)

-- Print the session ID
print("NOTE: s=", s)

-- Run the builtins.serverStatus action
-- and display session information
result = s:builtins_serverStatus
print("NOTE: server=\n",result['server'])
print("NOTE: nodestatus=\n",result['nodestatus'])

Run a CAS action. Run the addFmtLib action to add a new format library. Add a 
new format definition with the addFormat action. Then apply the format to some 
values and check the output to see the formatted values.

-- Run the addFmtLib action to add a format library
s:addFmtLib{fmtlibname="myformats"}

-- Create a format called demo in the myformats library
s:addFormat{fmtLibName="myformats",
            fmtname="demo",
            ranges={"0-17='demo1'","18-34='demo2'",
                    "35-49='demo3'","50-64='demo4'"
                   }}

-- Format some values with the newly created format
result = s:listFmtValues{fmtname = "demo",
              nvals = {15,23,39,61}}

-- Display the results
print(result)

Shut down the CAS session and disconnect from the CAS server with the 
CLOSE function. End the Lua code block and submit the call to PROC LUA.

-- Shutdown the CAS session
s:close{}

endsubmit;
run;

Example 13: Connecting to the CAS Server 1413

http://documentation.sas.com/?docsetId=caspg3lua&docsetVersion=3.5&docsetTarget=p1cu6ug7lv401in16odcurmry4y6.htm&locale=en
http://documentation.sas.com/?docsetId=caspg3lua&docsetVersion=3.5&docsetTarget=p1cu6ug7lv401in16odcurmry4y6.htm&locale=en


Output 39.14 Connecting to the CAS Server Output

NOTE: Lua initialized.

NOTE: swat_enabled=    nil

NOTE: before

NOTE: package.path=
/usr/local/.../init.lua;./?.lua

NOTE: package.cpath=
/usr/local/.../loadall.so;./?.so

NOTE: changing path and cpath

NOTE: after

NOTE: package.path=
/usr/local/.../init.lua;./?.lua;SASHOME/SASFoundation/misc/casluaclnt/lua/?.lua;
SASHOME/SASFoundation/misc/casluaclnt/lua/deps/?.lua

NOTE: package.cpath=
/usr/local/.../loadall.so;./?.so;SASHOME/SASFoundation/misc/casluaclnt/lua/
lib/?.so

NOTE: s=    CAS{'server.mycompany.com', 5570, 'myuserID', 
session='7239a98g3-1l5c-6932-7jjc-9ez39s0d1'}

NOTE: server=
          Server Status
Node Count  Total Actions
         1              1

NOTE: nodestatus=
                              Node Status
Node Name             Role        Uptime (Sec)  Running  Stalled
server.mycompany.com  controller         0.647        0        0
[listFmtValues]

                  ListFmtValues
Format Name  Number Value  Dest   Character value
demo                   15  demo1                 
                       23  demo2                 
                       39  demo3                 
                       61  demo4                 

Example 14: Running PROC FCMP Functions
Features: PROC FCMP statement

PROC LUA statement
FILENAME statement
SUBMIT and ENDSUBMIT statements

Restriction: When you call a function that was created with the FCMP procedure, you can modify 
only OUTARG arguments that are arrays.

1414 Chapter 39 / LUA Procedure



Details
This example calls functions that have been defined using the FCMP procedure, 
similar to calling standard SAS functions. The function definitions do not need to be 
included in the same SAS program. PROC FCMP functions can be stored in a 
function library for use by any program if the CMPLIB system option has been 
defined within that program. This example defines the SUMX and ADD_SCALAR 
functions and saves them to the Sasuser.myFuncs data set in the ArrayFuncs 
package. A package is a collection of related routines that are specified by a user. 
The package name groups related functions in the data set that contains the PROC 
FCMP functions.

Program
proc fcmp outlib=sasuser.myFuncs.ArrayFuncs;
function sumx(x[*]);
  sum = 0;
  do i = 1 to dim(x);
     sum = sum + x[i];
  end;
  return(sum );
endsub;
 
function add_scalar( scalar, x[*] );
   outargs x;
   do i = 1 to dim(x);
      x[i] = x[i] + scalar;
   end;
   return( dim(x) );
endsub;
run;

options cmplib=sasuser.myFuncs;
 

proc lua;
submit;
   array = { 1, 2, 3, 4, 5 }
   sum = sas.sumx(array)
   print(sum)
endsubmit;
run;

proc lua;
submit; 
   array = { 1, 2, 3, 4, 5 }
   dim = sas.add_scalar(5, array)
   a1 = array[1]
   a2 = array[2]

Example 14: Running PROC FCMP Functions 1415



   print(a1)
   print(a2) 
endsubmit;
run;

Program Description
Define functions using the FCMP procedure. The SUMX function sums the 
values of an array and returns that value. The ADD_SCALAR function adds a scalar 
value to each member of an array. Because the OUTARGS argument for 
ADD_SCALAR specifies an array, the call to this function using PROC LUA can 
change the value of the submitted array. The ADD_SCALAR function returns the 
number of elements in the array.

proc fcmp outlib=sasuser.myFuncs.ArrayFuncs;
function sumx(x[*]);
  sum = 0;
  do i = 1 to dim(x);
     sum = sum + x[i];
  end;
  return(sum );
endsub;
 
function add_scalar( scalar, x[*] );
   outargs x;
   do i = 1 to dim(x);
      x[i] = x[i] + scalar;
   end;
   return( dim(x) );
endsub;
run;

Specify the location of the compiled functions. This example finds the previously 
defined functions in the Sasuser.myFuncs data set. The call to the FCMP procedure 
does not need to be included in the same program with the LUA procedure if the 
functions are stored. Use the OPTIONS statement to specify the function location 
before calling the function within the LUA procedure.

options cmplib=sasuser.myFuncs;
 

Call the SUMX function within the LUA procedure. You call the SUMX function 
by preceding the call with “SAS.”, similar to calling any standard SAS function. 

proc lua;
submit;
   array = { 1, 2, 3, 4, 5 }
   sum = sas.sumx(array)
   print(sum)
endsubmit;
run;

Call the ADD_SCALAR function within the LUA procedure. You call the 
ADD_SCALAR function by preceding the call with “SAS.”, similar to calling any 

1416 Chapter 39 / LUA Procedure



standard SAS function. The calls to SUMX and ADD_SCALAR can come within the 
same LUA procedure.

proc lua;
submit; 
   array = { 1, 2, 3, 4, 5 }
   dim = sas.add_scalar(5, array)
   a1 = array[1]
   a2 = array[2]
   print(a1)
   print(a2) 
endsubmit;
run;

Example 14: Running PROC FCMP Functions 1417



Output: Working with User-Defined Array 
Functions
Output 39.15 Calling Functions That Were Created By Using PROC FCMP

388  proc fcmp outlib=sasuser.myFuncs.ArrayFuncs;
389  function sumx(x[*]);
390    sum = 0;
391    do i = 1 to dim(x);
392      sum = sum + x[i];
393    end;
394    return(sum );
395  endsub;
396
397  function add_scalar( scalar, x[*] );
398    outargs x;
399    do i = 1 to dim(x);
400      x[i] = x[i] + scalar;
401    end;
402    return( dim(x) );
403  endsub;
404  run;

NOTE: Function add_scalar saved to sasuser.myFuncs.ArrayFuncs.
NOTE: Function sumx saved to sasuser.myFuncs.ArrayFuncs.
NOTE: PROCEDURE FCMP used (Total process time):
      real time           1.06 seconds
      cpu time            0.15 seconds

405
406  options cmplib=sasuser.myFuncs;
407
408  proc lua;
409  submit;
410    array = { 1, 2, 3, 4, 5 }
411    sum = sas.sumx(array)
412    print(sum)
413  endsubmit;
414  run;

NOTE: Resuming Lua state from previous PROC LUA invocation.
15
NOTE: PROCEDURE LUA used (Total process time):
      real time           0.30 seconds
      cpu time            0.07 seconds

415
416  proc lua;
417  submit;
418    array = { 1, 2, 3, 4, 5 }
419    dim = sas.add_scalar(5, array)
420    a1 = array[1]
421    a2 = array[2]
422    print(a1)
423    print(a2)
424  endsubmit;
425  run;

NOTE: Resuming Lua state from previous PROC LUA invocation.
6
7
NOTE: PROCEDURE LUA used (Total process time):
      real time           0.05 seconds
      cpu time            0.04 seconds

1418 Chapter 39 / LUA Procedure



Chapter 40
MEANS Procedure

Overview: MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1419
What Does the MEANS Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1420
What Types of Output Does PROC MEANS Produce? . . . . . . . . . . . . . . . . . . . . 1421
PROC MEANS and the ODS OUTPUT Statement . . . . . . . . . . . . . . . . . . . . . . . 1423

Concepts: MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1423
Using Class Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1423
Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1425
In-Database Processing for PROC MEANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1427
Threaded Processing of Input DATA Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1428
CAS Processing for PROC MEANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1429

Syntax: MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1430
PROC MEANS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1432
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1443
CLASS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1445
FREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1450
ID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1451
OUTPUT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1452
TYPES Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1459
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1461
WAYS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1462
WEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1463

Usage: MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465
Computation of Moment Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465
Confidence Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1465
Student's t Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1466
Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1466

Results: MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1467
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1467
Column Width for the Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1467
The N Obs Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1468
Output Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1468

Examples: MEANS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1470
Example 1: Computing Specific Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . 1470
Example 2: Computing Descriptive Statistics with Class Variables . . . . . . . . . . . 1472
Example 3: Using the BY Statement with Class Variables . . . . . . . . . . . . . . . . . . 1474
Example 4: Using a CLASSDATA= Data Set with Class Variables . . . . . . . . . . . 1477

1419



Example 5: Using Multilabel Value Formats with Class Variables . . . . . . . . . . . . 1480
Example 6: Using Preloaded Formats with Class Variables . . . . . . . . . . . . . . . . 1485
Example 7: Computing a Confidence Limit for the Mean . . . . . . . . . . . . . . . . . . . 1489
Example 8: Computing Output Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1491
Example 9: Computing Different Output Statistics for Several Variables . . . . . . . 1493
Example 10: Computing Output Statistics with Missing Class Variable Values . . 1496
Example 11: Identifying an Extreme Value with the Output Statistics . . . . . . . . . 1498
Example 12: Identifying the Top Three Extreme Values with the 

Output Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1501
Example 13: Using the STACKODSOUTPUT Option to Control Data . . . . . . . . . 1506

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1512

Overview: MEANS Procedure

What Does the MEANS Procedure Do?
The MEANS procedure provides data summarization tools to compute descriptive 
statistics for variables across all observations and within groups of observations. For 
example, PROC MEANS does the following:

n calculates descriptive statistics based on moments

n estimates quantiles, which includes the median

n calculates confidence limits for the mean

n identifies extreme values

n performs a t test

By default, PROC MEANS displays output. You can also use the OUTPUT 
statement to store the statistics in a SAS data set.

PROC MEANS and PROC SUMMARY are very similar; see Chapter 69, 
“SUMMARY Procedure,” on page 2373 for an explanation of the differences.

1420 Chapter 40 / MEANS Procedure



What Types of Output Does PROC MEANS 
Produce?

PROC MEANS Default Output
Output 1.1 shows the default output that PROC MEANS displays. The data set that 
PROC MEANS analyzes contains the integers 1 through 10. The output reports the 
number of observations, the mean, the standard deviation, the minimum value, and 
the maximum value. The statements that produce the output follow:

proc means data=OnetoTen;
run;

Output 40.1 The Default Descriptive Statistics

                                 The SAS System                                1

                              The MEANS Procedure

                          Analysis Variable : Integer

        N            Mean         Std Dev         Minimum         Maximum
----------------------------------------------------------------------------------
       10       5.5000000       3.0276504       1.0000000      10.0000000
----------------------------------------------------------------------------------

PROC MEANS Customized Output
The following output shows the results of a more extensive analysis of two 
variables, MoneyRaised and HoursVolunteered. The analysis data set contains 
information about the amount of money raised and the number of hours volunteered 
by high-school students for a local charity. PROC MEANS uses six combinations of 
two categorical variables to compute the number of observations, the mean, and the 
range. The first variable, School, has two values and the other variable, Year, has 
three values. For an explanation of the program that produces the output, see 
“Example 11: Identifying an Extreme Value with the Output Statistics” on page 1498.

Overview: MEANS Procedure 1421



Output 40.2 Specified Statistics for Class Levels and Identification of Maximum Values

                 Summary of Volunteer Work by School and Year                 1

                              The MEANS Procedure

                          N
 School           Year  Obs  Variable            N          Mean         Range
 -----------------------------------------------------------------------------
 Kennedy          1992   15  MoneyRaised        15    29.0800000    39.7500000
                             HoursVolunteered   15    22.1333333    30.0000000

                  1993   20  MoneyRaised        20    28.5660000    23.5600000
                             HoursVolunteered   20    19.2000000    20.0000000

                  1994   18  MoneyRaised        18    31.5794444    65.4400000
                             HoursVolunteered   18    24.2777778    15.0000000

 Monroe           1992   16  MoneyRaised        16    28.5450000    48.2700000
                             HoursVolunteered   16    18.8125000    38.0000000

                  1993   12  MoneyRaised        12    28.0500000    52.4600000
                             HoursVolunteered   12    15.8333333    21.0000000

                  1994   28  MoneyRaised        28    29.4100000    73.5300000
                             HoursVolunteered   28    19.1428571    26.0000000

-----------------------------------------------------------------------------

             Best Results: Most Money Raised and Most Hours Worked             2

                                       Most     Most      Money     Hours
   Obs  School   Year  _TYPE_  _FREQ_  Cash     Time     Raised  Volunteered

     1              .     0      109   Willard  Tonya     78.65       40
     2           1992     1       31   Tonya    Tonya     55.16       40
     3           1993     1       32   Cameron  Amy       65.44       31
     4           1994     1       46   Willard  L.T.      78.65       33
     5  Kennedy     .     2       53   Luther   Jay       72.22       35
     6  Monroe      .     2       56   Willard  Tonya     78.65       40
     7  Kennedy  1992     3       15   Thelma   Jay       52.63       35
     8  Kennedy  1993     3       20   Bill     Amy       42.23       31
     9  Kennedy  1994     3       18   Luther   Che-Min   72.22       33
    10  Monroe   1992     3       16   Tonya    Tonya     55.16       40
    11  Monroe   1993     3       12   Cameron  Myrtle    65.44       26
    12  Monroe   1994     3       28   Willard  L.T.      78.65       33

In addition to the report, the program also creates an output data set (located on 
page 2 of the output) that identifies the students who raised the most money and 
who volunteered the most time over all the observations and within the 
combinations of School and Year:

n The first observation in the data set shows the students with the maximum 
values overall for MoneyRaised and HoursVolunteered.

n Observations 2 through 4 show the students with the maximum values for each 
year, regardless of school.

n Observations 5 and 6 show the students with the maximum values for each 
school, regardless of year.

1422 Chapter 40 / MEANS Procedure



n Observations 7 through 12 show the students with the maximum values for each 
school-year combination.

PROC MEANS and the ODS OUTPUT Statement
The template for procedures MEANS and SUMMARY causes ODS to apply default 
formats and format attributes to its output, overriding any formats associated and 
applied to variables of the input data set, because the option 
USE_FORMAT_DEFAULTS is specified in the template. This option affects the 
width and alignment of ODS–formatted output, which can vary from the width and 
alignment of formats found in the input data set or those specified on a FORMAT or 
ATTRIB statement. These format defaults affect ODS output and not internal–
numeric representation or calculations.

For example, numeric format outputs can be wider and have more characters than 
expected when the default–format width is greater than the specified width specified 
in the data set or the statement.

You can prevent default formats being applied to the output data set by creating 
your output data set using the OUTPUT statement instead of the ODS OUTPUT 
statement.

If you prefer that format defaults not be applied to ODS output, you can modify the 
Base.Summary ODS table template with the following code:

proc template;
   edit base.summary;
   use_format_defaults=off;
end;
run;

Concepts: MEANS Procedure

Using Class Variables

Using TYPES and WAYS Statements
The TYPES statement controls which of the available class variables PROC 
MEANS uses to subgroup the data. The unique combinations of these active class 
variable values that occur together in any single observation of the input data set 
determine the data subgroups. Each subgroup that PROC MEANS generates for a 
given type is called a level of that type. Note that for all types, the inactive class 

Concepts: MEANS Procedure 1423



variables can still affect the total observation count of the rejection of observations 
with missing values.

When you use a WAYS statement, PROC MEANS generates types that correspond 
to every possible unique combination of n class variables chosen from the complete 
set of class variables. For example

proc means;
 class a b c d e;
 ways 2 3;
 run;

is equivalent to

proc means;
 class a b c d e;
 types a*b a*c a*d a*e b*c b*d b*e c*d c*e d*e
       a*b*c a*b*d a*b*e a*c*d a*c*e a*d*e
       b*c*d b*c*e c*d*e;
 run;

If you omit the TYPES statement and the WAYS statement, then PROC MEANS 
uses all class variables to subgroup the data (the NWAY type) for displayed output 
and computes all types ( 2k ) for the output data set.

Ordering the Class Values
PROC MEANS determines the order of each class variable in any type by 
examining the order of that class variable in the corresponding one-way type. You 
see the effect of this behavior in the options ORDER=DATA or ORDER=FREQ. If 
you specify the ORDER=DATA option for input data in a DBMS table, PROC 
MEANS computation might produce different results for separate runs of the same 
analysis. In addition to determining the order of variable levels in crosstabulation 
table displays, the ORDER= option can also affect the values of many of the test 
statistics and measures that PROC MEANS computes. When PROC MEANS 
subdivides the input data set into subsets, the classification process does not apply 
the options ORDER=DATA or ORDER=FREQ independently for each subgroup. 
Instead, one frequency and data order is established for all output based on a non-
subdivided view of the entire data set. For example, consider the following 
statements:

data pets;
 input Pet $ Gender $;
 datalines;
dog  m
dog  f
dog  f
dog  f
cat  m
cat  m
cat  f
;

proc means data=pets order=freq;
   class pet gender;
run;

1424 Chapter 40 / MEANS Procedure



The statements produce this output.

Output 40.3 Ordering Class Values

                                 The SAS System                                1

                              The MEANS Procedure

                                                    N
                          Pet         Gender      Obs
                          ---------------------------
                          dog         f             3

                                      m             1

                          cat         f             1

                                      m             2
                          ---------------------------

In the example, PROC MEANS does not list male cats before female cats. Instead, 
it determines the order of gender for all types over the entire data set. PROC 
MEANS found more observations for female pets (f=4, m=3). The default for 
ORDER is ORDER=INTERNAL.

Computational Resources
PROC MEANS uses the same memory allocation scheme across all operating 
environments. When class variables are involved, PROC MEANS must keep a copy 
of each unique value of each class variable in memory. You can estimate the 
memory requirements to group the class variable by calculating

Nc1 Lc1 + K + Nc2 Lc2 + K + ... + Ncn Lcn + K

where

Nci
is the number of unique values for the class variable.

Lci
is the combined unformatted and formatted length of ci .

K
is some constant on the order of 32 bytes (64 for 64-bit architectures).

When you use the GROUPINTERNAL option in the CLASS statement, Lci is simply 
the unformatted length of ci .

Each unique combination of class variables, c1i c2 j for a given type forms a level in 
that type. See “TYPES Statement” on page 1459. You can estimate the maximum 
potential space requirements for all levels of a given type, when all combinations 
actually exist in the data (a complete type), by calculating

W * Nc1 * Nc2 * ... * Ncn

where

Concepts: MEANS Procedure 1425



W
is a constant based on the number of variables analyzed and the number of 
statistics calculated (unless you request QMETHOD=OS to compute the 
quantiles).

Nc1...Ncn
are the number of unique levels for the active class variables of the given type.

Clearly, the memory requirements of the levels overwhelm the levels of the class 
variables. For this reason, PROC MEANS can open one or more utility files and 
write the levels of one or more types to disk. These types are either the primary 
types that PROC MEANS built during the input data scan or the derived types.

If PROC MEANS must write partially complete primary types to disk while it 
processes input data, then one or more merge passes can be required to combine 
type levels in memory with the levels on disk. In addition, if you use an order other 
than DATA for any class variable, then PROC MEANS groups the completed types 
on disk. For this reason, the peak disk space requirements can be more than twice 
the memory requirements for a given type.

When PROC MEANS uses a temporary work file, you receive the following note in 
the SAS log:

Processing on disk occurred during summarization.
Peak disk usage was approximately nnn
Mbytes.
Adjusting MEMSIZE or REALMEMSIZE may improve performance.

In most cases processing ends normally.

When you specify class variables in a CLASS statement, the amount of data-
dependent memory that PROC MEANS uses before it writes to a utility file is 
controlled by the SAS system option REALMEMSIZE=. The value of 
REALMEMSIZE= indicates the amount of real as opposed to virtual memory that 
SAS can expect to allocate. PROC MEANS determines how much data-dependent 
memory to use before writing to utility files by calculating the lesser of these two 
values:

n the value of REALMEMSIZE=

n 0.8*(M-U), where M is the value of MEMSIZE= and U is the amount of memory 
that is already in use

REALMEMSIZE also affects the behavior of other memory intensive PROCs such 
as PROC SORT.

As an alternative, you can use the PROC option SUMSIZE=. Like the PROC option 
SORTSIZE=, SUMSIZE= sets the memory threshold where disk-based operations 
begin. For best results, set SUMSIZE= to less than the amount of real memory that 
is likely to be available for the task. For efficiency reasons, PROC MEANS can 
internally round up the value of SUMSIZE=. SUMSIZE= has no effect unless you 
specify class variables.

Operating Environment Information: The REALMEMSIZE= SAS system option is 
not available in all operating environments. For details, see the SAS Companion for 
your operating environment.

If PROC MEANS reports that there is insufficient memory, then increase SUMSIZE= 
(or REALMEMSIZE=). A SUMSIZE= (or REALMEMSIZE=) value that is greater than 
MEMSIZE= has no effect. Therefore, you might also need to increase MEMSIZE=. If 
PROC MEANS reports insufficient disk space, then increase the WORK space 
allocation. See the SAS documentation for your operating environment for more 
information about how to adjust your computation resource parameters.

1426 Chapter 40 / MEANS Procedure



Another way to enhance performance is by carefully applying the TYPES or WAYS 
statement, limiting the computations to only those combinations of class variables 
that you are interested in. In particular, significant resource savings can be achieved 
by not requesting the combination of all class variables.

In-Database Processing for PROC MEANS
When large data sets are stored in an external database, the transfer of the data 
sets to computers that run SAS can be impacted by performance, security, and 
resource management issues. SAS in-database processing can greatly reduce data 
transfer by having the database perform the initial data aggregation.

In-database processing for PROC MEANS supports the following database 
management systems:

n Amazon Redshift

n Aster

n DB2

n Google BigQuery

n Greenplum

n Hadoop

n HAWQ

n Impala

n Microsoft SQL Server

n Netezza

n Oracle

n PostgreSQL

n SAP HANA

n Snowflake

n Teradata

n Vertica

n Yellowbrick

Under the correct conditions, PROC MEANS generates an SQL query based on the 
statements that are used and the output statistics that are specified in the PROC 
step. If class variables are specified, the procedure creates an SQL GROUP BY 
clause that represents the n-way type. The result set that is created when the 
aggregation query executes in the database is read by SAS into the internal PROC 
MEANS data structure, and all subsequent types are derived from the original n-way 
type to form the final analysis results. When SAS format definitions have been 
deployed in the database, formatting of class variables occurs in the database. If the 
SAS format definitions have not been deployed in the database, the in-database 
aggregation occurs on the raw values, and the relevant formats are applied by SAS 
as the results' set is merged into the PROC MEANS internal structures. Multi-label 
formatting is always done by SAS using the initially aggregated result set that is 
returned by the database. The CLASS, TYPES, WAYS, VAR, BY, FORMAT, and 
WHERE statements are supported when PROC MEANS is processed inside the 

Concepts: MEANS Procedure 1427



database. FREQ, ID, IDMIN, IDMAX, and IDGROUPS are not supported. The 
following statistics are supported for in-database processing: N, NMISS, MIN, MAX, 
RANGE, SUM, SUMWGT, MEAN, CSS, USS, VAR, STD, STDERR, PRET, UCLM, 
LCLM, CLM, and CV.

Weighting for in-database processing is supported only for N, NMISS, MIN, MAX, 
RANGE, SUM, SUMWGT, and MEAN.

The following statistics are currently not supported for in-database processing: 
SKEW, KURT, P1, P5, P10, P20, P25/Q1, P30, P40, P50/MEDIAN, P60, P70, 
P75/Q3, P80, P90, P95, P99, and MODE.

The SQLGENERATION system option or LIBNAME statement option controls 
whether and how in-database procedures are run inside the database. By default, 
the in-database procedures are run inside the database when possible. There are 
many data set options that prevent in-database processing, such as, OBS=, 
FIRSTOBS=, RENAME=, and DBCONDITION=. For a complete listing, see Data 
Set-Related Options

In-database processing can greatly reduce the volume of data transferred to the 
procedure if there are no class variables (one row is returned) or if the selected 
class variables have a small number of unique values. However, because PROC 
MEANS loads the result set into its internal structures, the memory requirements for 
the SAS process are equivalent to what would have been required without in-
database processing. The CPU requirements for the SAS process should be 
significantly reduced if the bulk of the data summarization occurs inside the 
database. The real time required for summarization should be significantly reduced 
because many database-process queries are in parallel.

For more information about in-database processing, see SAS/ACCESS for 
Relational Databases: Reference.

Threaded Processing of Input DATA Sets
The THREADS option enables or disables parallel processing of the input data set. 
Threaded processing achieves a degree of parallelism in the processing operations. 
This parallelism is intended to reduce the real time to completion for a given 
operation and therefore limit the cost of additional CPU resources. For more 
information, see “Support for Parallel Processing in SAS Language Reference: 
Concepts.

The value of the SAS system option CPUCOUNT= affects the performance of the 
threaded sort. CPUCOUNT= suggests how many system CPUs are available for 
use by the threaded procedures.

For more information see the “THREADS System Option” and “CPUCOUNT= 
System Option” in the SAS System Options: Reference.

Calculated statistics can vary slightly, depending on the order in which observations 
are processed. Such variations are due to numerical errors that are introduced by 
floating–point arithmetic, the results of which should be considered approximate and 
not exact. The order of observation processing can be affected by nondeterministic 
effects of multithreaded or parallel processing. The order of processing can also be 
affected by inconsistent or nondeterministic ordering of observations that are 
produced by a data source, such as a DBMS that delivers query results through an 
ACCESS engine. For more information, see “Numerical Accuracy in SAS Software” 

1428 Chapter 40 / MEANS Procedure

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docserId=indbug&docsetTarget=n15dba2aqsr5lan1pzhh9cvvkwoi
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docserId=indbug&docsetTarget=n15dba2aqsr5lan1pzhh9cvvkwoi
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0ji1unv6thm0dn1gp4t01a1u0g6.htm&locale=en


in SAS Language Reference: Concepts and “Threading in Base SAS” in SAS 
Language Reference: Concepts.

CAS Processing for PROC MEANS
When analyzing a data table that resides on a CAS server, a portion of the work that 
is performed by PROC MEANS is done within CAS. The work that is done in CAS is 
similar to work performed within a DBMS by in-database processing. If your input 
data set originates from CAS, some of the PROC MEANS processing can be 
performed by the CAS server. Running PROC MEANS with CAS actions has 
several advantages over processing within SAS. These advantages include reduced 
network traffic, and the potential for faster processing. Faster processing is possible 
because in-memory tables are manipulated locally on the server instead of being 
transferred across a relatively slow network connection. CAS is used because it 
might have more processing resources.

Under the correct conditions, PROC MEANS generates and executes a CAS action 
based on the statements that are used and the output statistics that are specified in 
the PROC step. If class variables are specified, the procedure creates a GROUPBY 
input table parameter that represents the n-way type. The result set that is created 
when the action executes on the CAS server is read by SAS into the internal PROC 
MEANS data structure. All subsequent types are derived from the original n-way 
type to form the final analysis results.

For intrinsic formats, formatting of class variables occurs in CAS. For user-defined 
formats, formatting of class variables occurs in CAS if the formats have been 
defined in or copied to the server. If formats are not available on the CAS server, 
initial aggregation occurs on the server using raw values, and the relevant formats 
are applied by SAS as the result set is merged into PROC MEANS internal 
structure. Multilabel formatting is always done by SAS using the initially aggregated 
result set that is returned by CAS.

The CLASS, TYPES, WAYS, VAR, BY, FORMAT, and WHERE statements are 
supported when PROC MEANS is processed inside the CAS server. FREQ, ID, 
IDMIN, IDMAX, and IDGROUPS are not supported.

The following statistics are supported for processing: N, NMISS, MIN, MAX, 
RANGE, SUM, SUMWGT, MEAN, CSS, USS, VAR, STD, STDERR, PRET, UCLM, 
LCLM, CLM, and CV.

Weighting for CAS processing is supported only for N, NMISS, MIN, MAX, RANGE, 
SUM, SUMWGT, and MEAN.

The following statistics are currently not supported in CAS: SKEW, KURT, P1, P5, 
P10, P20, P25/Q1, P30, P40, P50/MEDIAN, P60, P70, P75/Q3, P80, P90, P95, 
P99, and MODE.

By default, when the DATA= input data set references an in-memory table or view in 
CAS, the MEANS procedure runs on the CAS server when possible. There are 
many data set options that prevent processing in CAS, such as OBS=, FIRSTOBS=, 
and RENAME=.

Processing in CAS can reduce the volume of data that is transferred to the 
procedure if there are no class variables (one row is returned) or if the selected 
class variables have a small number of unique values. However, because PROC 
MEANS loads the result set into its internal structure, the memory requirements for 
the SAS process are equivalent to what would have been required when not 

Concepts: MEANS Procedure 1429

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0ji1unv6thm0dn1gp4t01a1u0g6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0czb9vxe72693n1lom0qmns6zlj.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0czb9vxe72693n1lom0qmns6zlj.htm&locale=en


processing in CAS. The CPU requirements for the SAS process should be 
significantly reduced if the bulk of the data summarization occurs inside the CAS 
server. The real-time processing required for summarization should be significantly 
reduced because CAS can process the data in parallel. If the results of PROC 
MEANS are directed back to the CAS server using an OUTPUT statement, 
processing of intermediate aggregates must still be performed by the MEANS 
procedure in SAS. If you want all processing to be performed in CAS, you can 
invoke an appropriate action directly, using PROC CAS or one of the many other 
CAS clients and languages.

Note: Intermediate results are always processed by the client regardless of the final 
destination–CAS or the client.

Here is an example of how to run PROC MEANS with CAS. The CAS LIBNAME 
engine is used to connect a SAS 9.4 session to an existing CAS session through 
the CAS session name or the CAS session UUID. The resulting libref is then used 
by SAS to communicate with the specific CAS session.

/* Connect to a CAS server */
cas casauto host="cloud.example.com" port=5570;
/* Specify the CAS engine LIBNAME statement and use the CAS engine 
libref*/
libname mycas cas sessref=casauto;
/* Enable INFO messages so that the SAS log reports the use of CAS 
actions. */
options msglevel=i;
/*For demonstration purposes, move Grade to CAS and rename it to 
GradeBySection.*/
proc casutil;
load data=Grade casout=GradeBySection;
quit;
/*Execute the PROC MEANS procedure*/
/* A SORT step is not needed for BY-processing when running in CAS */
proc means data=cas.GradeBySection min max mean;
   by Section;
   var Score;
   class Status Year;
   title1 'Final Exam Scores for Student Status and Year of 
Graduation';
   title2 'Within Each Section';
run;
cas casauto terminate;

Syntax: MEANS Procedure
Tip: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. For more 

information, see “Statements with the Same Function in Multiple Procedures” on page 
73. You can also use any global statement. For a list, see “Global Statements” in SAS 
DATA Step Statements: Reference.

PROC MEANS <options> <statistic-keyword(s)>;

1430 Chapter 40 / MEANS Procedure



BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …> 
<NOTSORTED>;

CLASS variable(s) </ options>;
FREQ variable;
ID variable(s);
OUTPUT <OUT=SAS-data-set> <output-statistic-specification(s)>

<id-group-specification(s)> <maximum-id-specification(s)>
<minimum-id-specification(s)> </ options> ;

TYPES request(s);
VAR variable(s) </ WEIGHT=weight-variable>;
WAYS list;
WEIGHT variable;

Statement Task Example

PROC MEANS Compute descriptive statistics for variables Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5, Ex. 6, 
Ex. 7, Ex. 8, 
Ex. 9, Ex. 
10, Ex. 12, 
Ex. 13

BY Calculate separate statistics for each BY group Ex. 3

CLASS Identify variables whose values define 
subgroups for the analysis

Ex. 2, Ex. 3, 
Ex. 4, Ex. 5, 
Ex. 6, Ex. 7, 
Ex. 8, Ex. 9, 
Ex. 10, Ex. 
11, Ex. 12

FREQ Identify a variable whose values represent the 
frequency of each observation

ID Include additional identification variables in the 
output data set

OUTPUT Create an output data set that contains 
specified statistics and identification variables

Ex. 8, Ex. 9, 
Ex. 10, Ex. 
11, Ex. 12

TYPES Identify specific combinations of class variables 
to use to subdivide the data

Ex. 2, Ex. 5, 
Ex. 12

VAR Identify the analysis variables and their order in 
the results

Ex. 1

WAYS Specify the number of ways to make unique 
combinations of class variables

Ex. 6

WEIGHT Identify a variable whose values weight each 
observation in the statistical calculations

Ex. 6

Syntax: MEANS Procedure 1431



PROC MEANS Statement
Computes descriptive statistics for variables.

See: Chapter 69, “SUMMARY Procedure,” on page 2373

Examples: “Example 1: Computing Specific Descriptive Statistics” on page 1470
“Example 2: Computing Descriptive Statistics with Class Variables” on page 1472
“Example 3: Using the BY Statement with Class Variables” on page 1474
“Example 4: Using a CLASSDATA= Data Set with Class Variables” on page 1477
“Example 5: Using Multilabel Value Formats with Class Variables” on page 1480
“Example 6: Using Preloaded Formats with Class Variables” on page 1485
“Example 7: Computing a Confidence Limit for the Mean” on page 1489
“Example 8: Computing Output Statistics” on page 1491
“Example 9: Computing Different Output Statistics for Several Variables” on page 1493
“Example 10: Computing Output Statistics with Missing Class Variable Values” on page 
1496
“Example 11: Identifying an Extreme Value with the Output Statistics” on page 1498
“Example 12: Identifying the Top Three Extreme Values with the Output Statistics” on 
page 1501
“Example 13: Using the STACKODSOUTPUT Option to Control Data” on page 1506

Syntax
PROC MEANS <options> <statistic-keyword(s)>;

Summary of Optional Arguments
DATA=SAS-data-set

specifies the input data set.
INCAS=(YES | NO)

specifies whether to allow in-CAS processing.
NOTHREADS

overrides the SAS system option THREADS | NOTHREADS.
NOTRAP

disables floating point exception recovery.
SUMSIZE=value

specifies the amount of memory to use for data summarization with class 
variables.

THREADS | NOTHREADS
overrides the SAS system option THREADS | NOTHREADS.

Control the classification levels

1432 Chapter 40 / MEANS Procedure



CLASSDATA=SAS-data-set
specifies a secondary data set that contains the combinations of class 
variables to analyze.

COMPLETETYPES
creates all possible combinations of class variable values.

EXCLUSIVE
excludes from the analysis all combinations of class variable values that 
are not in the CLASSDATA= data set.

MISSING
uses missing values as valid values to create combinations of class 
variables.

Control the output
FW=field-width

specifies the field width for the statistics.
MAXDEC=number

specifies the number of decimal places for the statistics.
NONOBS

suppresses reporting the total number of observations for each unique 
combination of the class variables.

NOPRINT
suppresses all displayed output.

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
orders the values of the class variables according to the specified order.

PRINTALLTYPES
displays the analysis for all requested combinations of class variables.

PRINTIDVARS
displays the values of the ID variables.

PRINT | NOPRINT
displays the output.

STACKODSOUTPUT
produces an ODS output object

Control the output data set
CHARTYPE

specifies that the _TYPE_ variable contain character values.
DESCENDTYPES

orders the output data set by descending _TYPE_ value.
IDMIN

selects ID variables based on minimum values.
NWAY

limits the output statistics to the observations with the highest _TYPE_ 
value.

Control the statistical analysis
ALPHA=value

specifies the confidence level for the confidence limits.
EXCLNPWGT

excludes observations with nonpositive weights from the analysis.
QMARKERS=number

specifies the sample size to use for the P2 quantile estimation method.

PROC MEANS Statement 1433



QMETHOD=OS | P2
specifies the quantile estimation method.

QNTLDEF=1 | 2 | 3 | 4 | 5
specifies the mathematical definition used to compute quantiles.

statistic-keyword(s)
selects the statistics.

VARDEF=divisor
specifies the variance divisor.

Optional Arguments
ALPHA=value

specifies the confidence level to compute the confidence limits for the mean. The 
percentage for the confidence limits is (1−value)×100. An example is 
(ALPHA=.05 results in a 95% confidence limit).

Default .05

Range between 0 and 1

Interaction To compute confidence limits specify the statistic-keyword CLM, 
LCLM, or UCLM.

See “Confidence Limits” on page 1465

“Example 7: Computing a Confidence Limit for the Mean” on page 
1489

CHARTYPE
specifies that the _TYPE_ variable in the output data set is a character 
representation of the binary value of _TYPE_. The length of the variable equals 
the number of class variables. 

Interaction When you specify more than 32 class variables, _TYPE_ 
automatically becomes a character variable.

See “Output Data Set” on page 1468

“Example 10: Computing Output Statistics with Missing Class 
Variable Values” on page 1496

CLASSDATA=SAS-data-set
specifies a data set that contains the combinations of values of the class 
variables that must be present in the output. Any combinations of values of the 
class variables that occur in the CLASSDATA= data set but not in the input data 
set appear in the output and have a frequency of zero.

Restriction The CLASSDATA= data set must contain all class variables. Their 
data type and format must match the corresponding class variables 
in the input data set.

Interaction If you use the EXCLUSIVE option, then PROC MEANS excludes 
any observation in the input data set whose combination of class 
variables is not in the CLASSDATA= data set.

1434 Chapter 40 / MEANS Procedure



Tip Use the CLASSDATA= data set to filter or to supplement the input 
data set.

See “Example 4: Using a CLASSDATA= Data Set with Class Variables” 
on page 1477

COMPLETETYPES
creates all possible combinations of class variables even if the combination does 
not occur in the input data set.

Interaction The PRELOADFMT option in the CLASS statement ensures that 
PROC MEANS writes all user-defined format ranges or values for 
the combinations of class variables to the output, even when a 
frequency is zero.

Tip Using COMPLETETYPES does not increase the memory 
requirements.

See “Example 6: Using Preloaded Formats with Class Variables” on 
page 1485

DATA=SAS-data-set
identifies the input SAS data set.

See “Input Data Sets” on page 26

DESCENDTYPES
orders observations in the output data set by descending _TYPE_ value. 

Aliases DESCENDING

DESCEND

Interaction Descending has no effect if you specify NWAY.

Tip Use DESCENDTYPES to make the overall total (_TYPE_=0) the 
last observation in each BY group.

See “Output Data Set” on page 1468

“Example 9: Computing Different Output Statistics for Several 
Variables” on page 1493

EXCLNPWGT
excludes observations with nonpositive weight values (zero or negative) from the 
analysis. By default, PROC MEANS treats observations with negative weights 
like observations with zero weights and counts them in the total number of 
observations.

Alias EXCLNPWGTS

See “WEIGHT Statement” on page 1463

WEIGHT= option on the VAR statement on page 1461

EXCLUSIVE
excludes from the analysis all combinations of the class variables that are not 
found in the CLASSDATA= data set. 

PROC MEANS Statement 1435



Requirement If a CLASSDATA= data set is not specified, then this option is 
ignored.

See “Example 4: Using a CLASSDATA= Data Set with Class 
Variables” on page 1477

FW=field-width
specifies the field width to display the statistics in printed or displayed output. 
FW= has no effect on statistics that are saved in an output data set.

Default 12

Tip If PROC MEANS truncates column labels in the output, then increase 
the field width.

See “Example 1: Computing Specific Descriptive Statistics” on page 1470

“Example 4: Using a CLASSDATA= Data Set with Class Variables” on 
page 1477

“Example 5: Using Multilabel Value Formats with Class Variables” on 
page 1480

INCAS=(YES | NO)
specifies whether to allow in-CAS processing.

YES
Use in-CAS processing. YES is the default.

NO
Do not use in-CAS processing.

IDMIN
specifies that the output data set contain the minimum value of the ID variables.

Interaction Specify PRINTIDVARS to display the value of the ID variables in the 
output.

See “ID Statement” on page 1451

MAXDEC=number
specifies the maximum number of decimal places to display the statistics in the 
printed or displayed output. MAXDEC= has no effect on statistics that are saved 
in an output data set.

Default BEST. width for columnar format, typically about 7.

Range 0-8

See “Example 2: Computing Descriptive Statistics with Class Variables” on 
page 1472

“Example 4: Using a CLASSDATA= Data Set with Class Variables” on 
page 1477

MISSING
considers missing values as valid values to create the combinations of class 
variables. Special missing values that represent numeric values (the letters A 
through Z and the underscore (_) character) are each considered as a separate 
value.

1436 Chapter 40 / MEANS Procedure



Default If you omit MISSING, then PROC MEANS excludes the observations 
with a missing class variable value from the analysis.

See SAS Language Reference: Concepts for a discussion of missing values 
that have special meaning.

“Example 6: Using Preloaded Formats with Class Variables” on page 
1485

NONOBS
suppresses the column that displays the total number of observations for each 
unique combination of the values of the class variables. This column 
corresponds to the _FREQ_ variable in the output data set.

See “The N Obs Statistic” on page 1468

“Example 5: Using Multilabel Value Formats with Class Variables” on page 
1480

“Example 6: Using Preloaded Formats with Class Variables” on page 1485

NOPRINT
See the `“PRINT | NOPRINT” option.

NOTHREADS
See the “THREADS | NOTHREADS” option.

NOTRAP
disables floating point exception (FPE) recovery during data processing. By 
default, PROC MEANS traps these errors and sets the statistic to missing.

In operating environments where the overhead of FPE recovery is significant, 
NOTRAP can improve performance. Note that normal SAS FPE handling is still 
in effect so that PROC MEANS terminates in the case of math exceptions.

NWAY
specifies that the output data set contain only statistics for the observations with 
the highest _TYPE_ and _WAY_ values. When you specify class variables, 
NWAY corresponds to the combination of all class variables.

Interaction If you specify a TYPES statement or a WAYS statement, then 
PROC MEANS ignores this option.

See “Output Data Set” on page 1468

“Example 10: Computing Output Statistics with Missing Class 
Variable Values” on page 1496

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the sort order to create the unique combinations for the values of the 
class variables in the output, where 

DATA
orders values according to their order in the input data set.

Interaction If you use PRELOADFMT in the CLASS statement, then the 
order for the values of each class variable matches the order 
that PROC FORMAT uses to store the values of the associated 
user-defined format. If you use the CLASSDATA= option, then 
PROC MEANS uses the order of the unique values of each 

PROC MEANS Statement 1437



class variable in the CLASSDATA= data set to order the output 
levels. If you use both options, then PROC MEANS first uses the 
user-defined formats to order the output. If you omit 
EXCLUSIVE, then PROC MEANS appends after the user-
defined format and the CLASSDATA= values the unique values 
of the class variables in the input data set based on the order in 
which they are encountered.

Tip By default, PROC FORMAT stores a format definition in sorted 
order. Use the NOTSORTED option to store the values or 
ranges of a user-defined format in the order in which you define 
them.

FORMATTED
orders values by their ascending formatted values. This order depends on 
your operating environment.

Aliases FMT

EXTERNAL

FREQ
orders values by descending frequency count so that levels with the most 
observations are listed first.

Interactions For multiway combinations of the class variables, PROC 
MEANS determines the order of a class variable combination 
from the individual class variable frequencies.

Use the ASCENDING option in the CLASS statement to order 
values by ascending frequency count.

UNFORMATTED
orders values by their unformatted values. This order depends on your 
operating environment. This sort sequence is particularly useful for displaying 
dates chronologically.

Specifying ORDER=UNFORMATTED usually, but not always, produces the 
same results as PROC SORT. For more information about ordering data, see 
“Controlling the Order of Data Values” on page 27.

Aliases UNFMT

INTERNAL

See “Ordering the Class Values” on page 1424

Default UNFORMATTED

PRINT | NOPRINT
specifies whether PROC MEANS displays the statistical analysis. NOPRINT 
suppresses all the output.

Default PRINT

Tip Use NOPRINT when you want to create only an OUT= output data set.

See “Example 8: Computing Output Statistics” on page 1491

1438 Chapter 40 / MEANS Procedure



“Example 12: Identifying the Top Three Extreme Values with the Output 
Statistics” on page 1501

PRINTALLTYPES
displays all requested combinations of class variables (all _TYPE_ values) in the 
printed or displayed output. Normally, PROC MEANS shows only the NWAY 
type.

Alias PRINTALL

Interaction If you use the NWAY option, the TYPES statement, or the WAYS 
statement, then PROC MEANS ignores this option.

See “Example 4: Using a CLASSDATA= Data Set with Class Variables” 
on page 1477

PRINTIDVARS
displays the values of the ID variables in printed or displayed output.

Alias PRINTIDS

Interaction Specify IDMIN to display the minimum value of the ID variables.

See “ID Statement” on page 1451

QMARKERS=number
specifies the default number of markers to use for the P² quantile estimation 
method. The number of markers controls the size of fixed memory space.

Default The default value depends on which quantiles you request. For the 
median (P50), number is 7. For the quantiles (P25 and P50), number is 
25. For the quantiles P1, P5, P10, P75 P90, P95, or P99, number is 
105. If you request several quantiles, then PROC MEANS uses the 
largest value of number.

Range an odd integer greater than 3

Tip Increase the number of markers above the defaults settings to improve 
the accuracy of the estimate; reduce the number of markers to 
conserve memory and computing time.

See “Quantiles” on page 1466

QMETHOD=OS | P2
specifies the method that PROC MEANS uses to process the input data when it 
computes quantiles. If the number of observations is less than or equal to the 
QMARKERS= value and QNTLDEF=5, then both methods produce the same 
results. 

OS
uses order statistics. This method is the same method that PROC 
UNIVARIATE uses.

Note: This technique can be very memory-intensive.

P2
uses the P² method to approximate the quantile.

PROC MEANS Statement 1439



Default OS

Restriction When QMETHOD=P2, PROC MEANS does not compute MODE or 
weighted quantiles.

Tip When QMETHOD=P2, reliable estimations of some quantiles 
(P1,P5,P95,P99) might not be possible for some data sets.

See “Quantiles” on page 1466

QNTLDEF=1 | 2 | 3 | 4 | 5
specifies the mathematical definition that PROC MEANS uses to calculate 
quantiles when QMETHOD=OS. To use QMETHOD=P2, you must use 
QNTLDEF=5.

Alias PCTLDEF=

Default 5

See “Quantile and Related Statistics” on page 2615

statistic-keyword(s)
specifies which statistics to compute and the order to display them in the output. 
The available keywords in the PROC statement are

Descriptive statistic keywords

CLM NMISS

CSS RANGE

CV SKEWNESS | SKEW

KURTOSIS | KURT STDDEV | STD

LCLM STDERR

MAX SUM

MEAN SUMWGT

MIN UCLM

MODE USS

N VAR

Quantile statistic keywords

MEDIAN | P50 Q3 | P75

P1 P90

1440 Chapter 40 / MEANS Procedure



P5 P95

P10 P99

P20 P30

P40 P60

P70 P80

Q1 | P25 QRANGE

Hypothesis testing keywords

PROBT | PRT T

Default N, MEAN, STD, MIN, and MAX

Requirement To compute standard error, confidence limits for the mean, and 
the Student's t-test, you must use the default value of the 
VARDEF= option, which is DF. To compute skewness or kurtosis, 
you must use VARDEF=N or VARDEF=DF.

Tip Use CLM or both LCLM and UCLM to compute a two-sided 
confidence limit for the mean. Use only LCLM or UCLM, to 
compute a one-sided confidence limit.

See The definitions of the keywords and the formulas for the 
associated statistics are listed in “Keywords and Formulas” on 
page 2610.

“Example 1: Computing Specific Descriptive Statistics” on page 
1470

“Example 3: Using the BY Statement with Class Variables” on 
page 1474

STACKODSOUTPUT
produces an ODS output object whose data set resembles the printed output.

The STACKODSOUTPUT option affects output data sets created by ODS 
OUTPUT statements, not the PROC MEANS OUTPUT statement.

Alias STACKODS

See “Example 13: Using the STACKODSOUTPUT Option to Control Data” on 
page 1506

SUMSIZE=value
specifies the amount of memory that is available for data summarization when 
you use class variables. value might be one of the following: 

PROC MEANS Statement 1441



n
nK
nM
nG

specifies the amount of memory available in bytes, kilobytes, megabytes, or 
gigabytes, respectively. If n is 0, then PROC MEANS use the value of the 
SAS system option SUMSIZE=.

MAXIMUM
MAX

specifies the maximum amount of memory that is available.

Default The value of the SUMSIZE= system option.

Note Specifying SUMSIZE=0 enables PROC MEANS to use the preferred 
global REALMEMSIZE option.

Tip For best results, do not make SUMSIZE= larger than the amount of 
physical memory that is available for the PROC step. If additional space 
is needed, then PROC MEANS uses utility files.

See The SAS system option SUMSIZE= in SAS System Options: 
Reference.

THREADS | NOTHREADS
enables or disables parallel processing of the input data set. This option 
overrides the SAS system option THREADS | NOTHREADS unless the system 
option is restricted. (See Restriction.) For more information, see “Support for 
Parallel Processing” in the SAS Language Reference: Concepts.

Default value of SAS system option THREADS | NOTHREADS.

Restriction Your site administrator can create a restricted options table. A 
restricted options table specifies SAS system option values that are 
established at start-up and cannot be overridden. If the THREADS | 
NOTHREADS system option is listed in the restricted options table, 
any attempt to set these system options is ignored and a warning 
message is written to the SAS log.

Interaction PROC MEANS honors the SAS system option THREADS except 
when a BY statement is specified or the value of the SAS system 
option CPUCOUNT is less than 2. You can use THREADS in the 
PROC MEANS statement to force PROC MEANS to use parallel 
processing in these situations.

Note If THREADS is specified (either as a SAS system option or in the 
PROC MEANS statement) and another program has the input data 
set open for reading, writing, or updating, then PROC MEANS 
might fail to open the input data set. In this case, PROC MEANS 
stops processing and writes a message to the SAS log.

VARDEF=divisor
specifies the divisor to use in the calculation of the variance and standard 
deviation. The following table shows the possible values for divisor and 
associated divisors. 

1442 Chapter 40 / MEANS Procedure



Table 40.1 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF Degrees of freedom n − 1

N Number of observations n

WDF Sum of weights minus one (Σi wi) − 1

WEIGHT | WGT Sum of weights Σi wi

The procedure computes the variance as CSS/divisor , where CSS is the 
corrected sums of squares and equals Σ xi − x 2 . When you weight the analysis 

variables, CSS equals Σ wi xi − xw
2 , where xw is the weighted mean.

Default DF

Requirement To compute the standard error of the mean, confidence limits for 
the mean, or the Student's t-test, use the default value of 
VARDEF=.

Tips When you use the WEIGHT statement and VARDEF=DF, the 
variance is an estimate of σ2 , where the variance of the ith 
observation is var xi = σ2/wi and wi is the weight for the ith 
observation. This method yields an estimate of the variance of an 
observation with unit weight.

When you use the WEIGHT statement and VARDEF=WGT, the 
computed variance is asymptotically (for large n) an estimate of 
σ2/w , where w is the average weight. This method yields an 
asymptotic estimate of the variance of an observation with 
average weight.

See “Keywords and Formulas” on page 2610

“Weighted Statistics Example” on page 84

BY Statement
Produces separate statistics for each BY group.

See: “BY” on page 74
“Comparison of the BY and CLASS Statements” on page 1449

Example: “Example 3: Using the BY Statement with Class Variables” on page 1474

BY Statement 1443



Syntax
BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …> 
<NOTSORTED>;

Required Argument
variable

specifies the variable that the procedure uses to form BY groups. You can 
specify more than one variable. If you omit the NOTSORTED option in the BY 
statement, then the observations in the data set either must be sorted by all the 
variables that you specify or must be indexed appropriately. Variables in a BY 
statement are called BY variables.

Optional Arguments
DESCENDING

specifies that the observations are sorted in descending order by the variable 
that immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. The observations are sorted in another way (for example, chronological 
order).

The requirement for ordering or indexing observations according to the values of 
BY variables is suspended for BY-group processing when you use the 
NOTSORTED option. The procedure does not use an index if you specify 
NOTSORTED. The procedure defines a BY group as a set of contiguous 
observations that have the same values for all BY variables. If observations with 
the same values for the BY variables are not contiguous, then the procedure 
treats each contiguous set as a separate BY group.

Details

Using the BY Statement with the SAS System 
Option NOBYLINE
If you use the BY statement with the SAS system option NOBYLINE, which 
suppresses the BY line that normally appears in output that is produced with BY-
group processing, then PROC MEANS always starts a new page for each BY group. 
This behavior ensures that if you create customized BY lines by putting BY-group 
information in the title and suppressing the default BY lines with NOBYLINE, then 
the information in the titles matches the report on the pages. See “Creating Titles 
That Contain BY-Group Information ” on page 57. Also see “Suppressing the Default 
BY Line” on page 57.

1444 Chapter 40 / MEANS Procedure



CLASS Statement
Specifies the variables whose values define the subgroup combinations for the analysis.

Note: CLASS statements without options use ORDER=INTERNAL, which is the default, or the 
value specified by the ORDER= option in the PROC MEANS statement. For example, in 
the following code, variables c and d would use ORDER=INTERNAL. If an ORDER= 
option had been specified in the PROC MEANS statement, then variables c and d would 
use the value specified by the ORDER= option in the PROC MEANS statement.

class a b / order=data;
 class c d;

Tips: You can use multiple CLASS statements.
Some CLASS statement options are also available in the PROC MEANS statement. 
They affect all CLASS variables. Options that you specify in a CLASS statement apply 
only to the variables in that CLASS statement.

See: For information about how the CLASS statement groups formatted values, see 
“Formatted Values” on page 63.

Examples: “Example 2: Computing Descriptive Statistics with Class Variables” on page 1472
“Example 3: Using the BY Statement with Class Variables” on page 1474
“Example 4: Using a CLASSDATA= Data Set with Class Variables” on page 1477
“Example 5: Using Multilabel Value Formats with Class Variables” on page 1480
“Example 6: Using Preloaded Formats with Class Variables” on page 1485
“Example 7: Computing a Confidence Limit for the Mean” on page 1489
“Example 8: Computing Output Statistics” on page 1491
“Example 9: Computing Different Output Statistics for Several Variables” on page 1493
“Example 10: Computing Output Statistics with Missing Class Variable Values” on page 
1496
“Example 11: Identifying an Extreme Value with the Output Statistics” on page 1498
“Example 12: Identifying the Top Three Extreme Values with the Output Statistics” on 
page 1501

Syntax
CLASS variable(s) </ options>;

Required Argument
variable(s)

specifies one or more variables that the procedure uses to group the data. 
Variables in a CLASS statement are referred to as class variables. Class 
variables are numeric or character. Class variables can have continuous values, 
but they typically have a few discrete values that define levels of the variable. 
You do not have to sort the data by class variables.

CLASS Statement 1445



Interaction Use the TYPES statement or the WAYS statement to control which 
class variables PROC MEANS uses to group the data.

Tip To reduce the number of class variable levels, use a FORMAT 
statement to combine variable values. When a format combines 
several internal values into one formatted value, PROC MEANS 
outputs the lowest internal value.

See “Using Class Variables ” on page 1423

Optional Arguments
ASCENDING

specifies to sort the class variable levels in ascending order.

Alias ASCEND

Interaction PROC MEANS issues a warning message if you specify both 
ASCENDING and DESCENDING and ignores both options.

See “Example 10: Computing Output Statistics with Missing Class 
Variable Values” on page 1496

DESCENDING
specifies to sort the class variable levels in descending order.

Alias DESCEND

Interaction PROC MEANS issues a warning message if you specify both 
ASCENDING and DESCENDING and ignores both options.

EXCLUSIVE
excludes from the analysis all combinations of the class variables that are not 
found in the preloaded range of user-defined formats.

Requirement You must specify PRELOADFMT to preload the class variable 
formats.

See “Example 6: Using Preloaded Formats with Class Variables” on 
page 1485

GROUPINTERNAL
specifies not to apply formats to the class variables when PROC MEANS groups 
the values to create combinations of class variables.

Interactions If you specify the PRELOADFMT option, then PROC MEANS 
ignores the GROUPINTERNAL option and uses the formatted 
values.

If you specify the ORDER=FORMATTED option, then PROC 
MEANS ignores the GROUPINTERNAL option and uses the 
formatted values.

Tip This option saves computer resources when the numeric class 
variables contain discrete values.

See “Computer Resources” on page 1450

1446 Chapter 40 / MEANS Procedure



MISSING
considers missing values as valid values for the class variable levels. Special 
missing values that represent numeric values (the letters A through Z and the 
underscore (_) character) are each considered as a separate value.

Default If you omit MISSING, then PROC MEANS excludes the observations 
with a missing class variable value from the analysis.

See SAS Language Reference: Concepts for a discussion of missing values 
with special meanings.

“Example 10: Computing Output Statistics with Missing Class Variable 
Values” on page 1496

MLF
enables PROC MEANS to use the primary and secondary format labels for a 
given range or overlapping ranges to create subgroup combinations when a 
multilabel format is assigned to a class variable.

Requirement You must use PROC FORMAT and the MULTILABEL option in the 
VALUE statement to create a multilabel format.

Interactions If you use the OUTPUT statement with MLF, then the class 
variable contains a character string that corresponds to the 
formatted value. Because the formatted value becomes the 
internal value, the length of this variable is the number of 
characters in the longest format label.

Using MLF with ORDER=FREQ might not produce the order that 
you expect for the formatted values. You might not get the 
expected results when you use MLF with CLASSDATA and 
EXCLUSIVE because MLF processing requires that each TYPE 
be computed independently. Types other than NWAY might 
contain more levels than expected.

Note When the formatted values overlap, one internal class variable 
value maps to more than one class variable subgroup 
combination. Therefore, the sum of the N statistics for all 
subgroups is greater than the number of observations in the data 
set (the overall N statistic).

Tip If you omit MLF, then PROC MEANS uses the primary format 
labels. This action corresponds to using the first external format 
value to determine the subgroup combinations.

See The MULTILABEL option in the VALUE statement of the FORMAT 
procedure “Optional Arguments” on page 1074.

“Example 5: Using Multilabel Value Formats with Class Variables” 
on page 1480

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the order to group the levels of the class variables in the output, where

DATA
orders values according to their order in the input data set.

Interaction If you use PRELOADFMT, then the order of the values of each 
class variable matches the order that PROC FORMAT uses to 

CLASS Statement 1447



store the values of the associated user-defined format. If you 
use the CLASSDATA= option in the PROC statement, then 
PROC MEANS uses the order of the unique values of each 
class variable in the CLASSDATA= data set to order the output 
levels. If you use both options, then PROC MEANS first uses the 
user-defined formats to order the output. If you omit EXCLUSIVE 
in the PROC statement, then PROC MEANS appends after the 
user-defined format and the CLASSDATA= values the unique 
values of the class variables in the input data set based on the 
order in which they are encountered.

Tip By default, PROC FORMAT stores a format definition in sorted 
order. Use the NOTSORTED option to store the values or 
ranges of a user-defined format in the order in which you define 
them.

See “Example 10: Computing Output Statistics with Missing Class 
Variable Values” on page 1496

FORMATTED
orders values by their ascending formatted values. This order depends on 
your operating environment. If no format has been assigned to a class 
variable, then the default format, BEST12., is used.

Aliases FMT

EXTERNAL

See “Example 5: Using Multilabel Value Formats with Class Variables” 
on page 1480

FREQ
orders values by descending frequency count so that levels with the most 
observations are listed first.

Interactions For multiway combinations of the class variables, PROC 
MEANS determines the order of a level from the individual 
class variable frequencies.

Use the ASCENDING option to order values by ascending 
frequency count.

See “Example 5: Using Multilabel Value Formats with Class 
Variables” on page 1480

UNFORMATTED
orders values by their unformatted values. This order depends on your 
operating environment. This sort sequence is particularly useful for displaying 
dates chronologically.

Specifying ORDER=UNFORMATTED usually, but not always, produces the 
same results as PROC SORT. For more information about ordering data, see 
“Controlling the Order of Data Values” on page 27.

Aliases UNFMT

INTERNAL

See “Ordering the Class Values” on page 1424

1448 Chapter 40 / MEANS Procedure



Default UNFORMATTED

PRELOADFMT
specifies that all formats are preloaded for the class variables.

Requirement PRELOADFMT has no effect unless you specify either 
COMPLETETYPES, EXCLUSIVE, or ORDER=DATA and you 
assign formats to the class variables.

Interactions The combination of PRELOADFMT and COMPLETETYPES 
generates values that might not appear within the input data set. 
In some cases, for a character class variable, extremely low or 
high sentinel values are generated. These values might not 
represent valid characters of the session encoding. These values 
should not be printed in their raw form but should be printed using 
the associated format. Use of the OTHER= value in the format 
definition can prevent the raw sentinel values from printing when 
using the format.

To limit PROC MEANS output to the combinations of formatted 
class variable values present in the input data set, use the 
EXCLUSIVE option in the CLASS statement.

To include all ranges and values of the user-defined formats in the 
output, even when the frequency is zero, use COMPLETETYPES 
in the PROC statement.

Note When preloading a character format, there must be at least one 
representative raw value that produces the label. If a range does 
not have any raw values, the range is considered unreachable 
and an error is generated. For example, you cannot preload a 
multi-label character format with both Other= and Low-High 
ranges. Other is a special keyword that refers to values or ranges 
that remain after all labels have been defined. For character 
formats, missing values are included in the low range so that 
there are no raw values left to occupy the Other range.

See “Example 6: Using Preloaded Formats with Class Variables” on 
page 1485

Details

Comparison of the BY and CLASS Statements
Using the BY statement is similar to using the CLASS statement and the NWAY 
option in that PROC MEANS summarizes each BY group as an independent subset 
of the input data. Therefore, no overall summarization of the input data is available. 
However, unlike the CLASS statement, the BY statement requires that the data is 
pre-sorted or indexed by the variables in the BY statement.

When you use the NWAY option, PROC MEANS might encounter insufficient 
memory for the summarization of all the class variables. You can move some class 
variables to the BY statement. For maximum benefit, move class variables to the BY 

CLASS Statement 1449



statement that are already sorted or that have the greatest number of unique 
values.

You can use the CLASS and BY statements together to analyze the data by the 
levels of class variables within BY groups. See “Example 3: Using the BY Statement 
with Class Variables” on page 1474. 

How PROC MEANS Handles Missing Values for 
Class Variables
By default, if an observation contains a missing value for any class variable, then 
PROC MEANS excludes that observation from the analysis. If you specify the 
MISSING option in the PROC statement, then the procedure considers missing 
values as valid levels for the combination of class variables.

Specifying the MISSING option in the CLASS statement enables you to control the 
acceptance of missing values for individual class variables.

Computer Resources
The total of unique class variable values that PROC MEANS allows depends on the 
amount of computer memory that is available. See “Computational Resources” on 
page 1425 for more information.

The GROUPINTERNAL option can improve computer performance because the 
grouping process is based on the internal values of the class variables. If a numeric 
class variable is not assigned a format and you do not specify GROUPINTERNAL, 
then PROC MEANS uses the default format, BEST12., to format numeric values as 
character strings. Then PROC MEANS groups these numeric variables by their 
character values, which takes additional time and computer memory.

FREQ Statement
Specifies a numeric variable that contains the frequency of each observation.

See: “FREQ” on page 79

Syntax
FREQ variable;

Required Argument
variable

specifies a numeric variable whose value represents the frequency of the 
observation. If you use the FREQ statement, then the procedure assumes that 
each observation represents n observations, where n is the value of variable. If n 
is not an integer, then SAS truncates it. If n is less than 1 or is missing, then the 
procedure does not use that observation to calculate statistics.

1450 Chapter 40 / MEANS Procedure



The sum of the frequency variable represents the total number of observations.

Note: The FREQ variable does not affect how PROC MEANS identifies multiple 
extremes when you use the IDGROUP syntax in the OUTPUT statement.

ID Statement
Includes additional variables in the output data set.

See: Discussion of id-group-specification in “OUTPUT Statement” on page 1452.

Syntax
ID variable(s);

Required Argument
variable(s)

identifies one or more variables from the input data set whose maximum values 
for groups of observations PROC MEANS includes in the output data set.

Interaction Use IDMIN in the PROC statement to include the minimum value of 
the ID variables in the output data set.

Tip Use the PRINTIDVARS option in the PROC statement to include the 
value of the ID variable in the displayed output.

Details

Selecting the Values of the ID Variables
When you specify only one variable in the ID statement, the value of the ID variable 
for a given observation is the maximum (minimum) value found in the corresponding 
group of observations in the input data set. When you specify multiple variables in 
the ID statement, PROC MEANS selects the maximum value by processing the 
variables in the ID statement in the order in which you list them. PROC MEANS 
determines which observation to use from all the ID variables by comparing the 
values of the first ID variable. If more than one observation contains the same 
maximum (minimum) ID value, then PROC MEANS uses the second and 
subsequent ID variable values as “tiebreakers.” In any case, all ID values are taken 
from the same observation for any given BY group or classification level within a 
type.

See “Sorting Orders for Character Variables ” on page 2281 for information about 
how PROC MEANS compares character values to determine the maximum value.

ID Statement 1451



OUTPUT Statement
Writes statistics to a new SAS data set.

Tip: You can use multiple OUTPUT statements to create several OUT= data sets.

Examples: “Example 8: Computing Output Statistics” on page 1491
“Example 9: Computing Different Output Statistics for Several Variables” on page 1493
“Example 10: Computing Output Statistics with Missing Class Variable Values” on page 
1496
“Example 11: Identifying an Extreme Value with the Output Statistics” on page 1498
“Example 12: Identifying the Top Three Extreme Values with the Output Statistics” on 
page 1501

Syntax
OUTPUT <OUT=SAS-data-set> <output-statistic-specification(s)>
<id-group-specification(s)> <maximum-id-specification(s)>
<minimum-id-specification(s)> </ options>;

Optional Arguments
OUT=SAS-data-set

names the new output data set. If SAS-data-set does not exist, then PROC 
MEANS creates it. If you omit OUT=, then the data set is named DATAn, where 
n is the smallest integer that makes the name unique.

Default DATAn

Tip You can use data set options with the OUT= option.

output-statistic-specification(s)
specifies the statistics to store in the OUT= data set and names one or more 
variables that contain the statistics. The form of the output-statistic-specification 
is

statistic-keyword<(variable-list)>=<name(s)>

where

statistic-keyword
specifies which statistic to store in the output data set. The available statistic 
keywords are

Descriptive statistics keyword

CLM NMISS

CSS RANGE

1452 Chapter 40 / MEANS Procedure



CV SKEWNESS | SKEW

KURTOSIS | KURT STDDEV | STD

LCLM STDERR

MAX SUM

MEAN SUMWGT

MIN UCLM

MODE USS

N VAR

Quantile statistics keyword

MEDIAN | P50 Q3 | P75

P1 P90

P5 P95

P10 P99

P20 P30

P40 P60

P70 P80

Q1 | P25 QRANGE

Hypothesis testing keyword

PROBT | PRT T

By default the statistics in the output data set automatically inherit the 
analysis variable's format, informat, and label. However, statistics computed 
for N, NMISS, SUMWGT, USS, CSS, VAR, CV, T, PROBT, PRT, 
SKEWNESS, and KURTOSIS do not inherit the analysis variable's format 
because this format might be invalid for these statistics (for example, dollar or 
datetime formats).

Restriction If you omit variable and name(s), then PROC MEANS allows the 
statistic-keyword only once in a single OUTPUT statement, 
unless you also use the AUTONAME option.

See “Example 8: Computing Output Statistics” on page 1491

OUTPUT Statement 1453



“Example 9: Computing Different Output Statistics for Several 
Variables” on page 1493

“Example 11: Identifying an Extreme Value with the Output 
Statistics” on page 1498

“Example 12: Identifying the Top Three Extreme Values with the 
Output Statistics” on page 1501

variable-list
specifies the names of one or more numeric analysis variables whose 
statistics you want to store in the output data set.

Default all numeric analysis variables

name(s)
specifies one or more names for the variables in the output data set that 
contain the analysis variable statistics. The first name contains the statistic 
for the first analysis variable; the second name contains the statistic for the 
second analysis variable; and so on.

Default the analysis variable name. If you specify AUTONAME, then the 
default is the combination of the analysis variable name and the 
statistic-keyword. If you use the CLASS statement and an 
OUTPUT statement without an output-statistic-specification, then 
the output data set contains five observations for each 
combination of class variables: the value of N, MIN, MAX, 
MEAN, and STD. If you use the WEIGHT statement or the 
WEIGHT option in the VAR statement, then the output data set 
also contains an observation with the sum of weights 
(SUMWGT) for each combination of class variables.

Interaction If you specify variable-list, then PROC MEANS uses the order in 
which you specify the analysis variables to store the statistics in 
the output data set variables.

Tip Use the AUTONAME option to have PROC MEANS generate 
unique names for multiple variables and statistics.

See “Example 8: Computing Output Statistics” on page 1491

id-group-specification
combines the features and extends the ID statement, the IDMIN option in the 
PROC statement, and the MAXID and MINID options in the OUTPUT statement 
to create an OUT= data set that identifies multiple extreme values. The form of 
the id-group-specification is

IDGROUP (<MIN | MAX (variable-list-1) <…MIN | MAX (variable-list-n)>> 
<<MISSING>
<OBS> <LAST>> OUT <[n]>
(id-variable-list)=<name(s)>)

MIN
MAX(variable-list)

specifies the selection criteria to determine the extreme values of one or 
more input data set variables specified in variable-list. Use MIN to determine 
the minimum extreme value and MAX to determine the maximum extreme 
value.

1454 Chapter 40 / MEANS Procedure



When you specify multiple selection variables, the ordering of observations 
for the selection of n extremes is done the same way that PROC SORT sorts 
data with multiple BY variables. PROC MEANS concatenates the variable 
values into a single key. The MAX(variable-list) selection criterion is similar to 
using PROC SORT and the DESCENDING option in the BY statement.

Default If you do not specify MIN or MAX, then PROC MEANS uses the 
observation number as the selection criterion to output 
observations.

Restriction If you specify criteria that are contradictory, then PROC MEANS 
uses only the first selection criterion.

Interaction When multiple observations contain the same extreme values in 
all the MIN or MAX variables, PROC MEANS uses the 
observation number to resolve which observation to write to the 
output. By default, PROC MEANS uses the first observation to 
resolve any ties. However, if you specify the LAST option, then 
PROC MEANS uses the last observation to resolve any ties.

LAST
specifies that the OUT= data set contains values from the last observation (or 
the last n observations, if n is specified). If you do not specify LAST, then the 
OUT= data set contains values from the first observation (or the first n 
observations, if n is specified). The OUT= data set might contain several 
observations because in addition to the value of the last (first) observation, 
the OUT= data set contains values from the last (first) observation of each 
subgroup level that is defined by combinations of class variable values.

Interaction When you specify MIN or MAX and when multiple observations 
contain the same extreme values, PROC MEANS uses the 
observation number to resolve which observation to save to the 
OUT= data set. If you specify LAST, then PROC MEANS uses 
the later observations to resolve any ties. If you do not specify 
LAST, then PROC MEANS uses the earlier observations to 
resolve any ties.

MISSING
specifies that missing values be used in selection criteria.

Alias MISS

OBS
includes an _OBS_ variable in the OUT= data set that contains the number of 
the observation in the input data set where the extreme value was found.

Interactions If you use WHERE processing, then the value of _OBS_ might 
not correspond to the location of the observation in the input 
data set.

If you use [n] to write multiple extreme values to the output, 
then PROC MEANS creates n _OBS_ variables and uses the 
suffix n to create the variable names, where n is a sequential 
integer from 1 to n.

[n]
specifies the number of extreme values for each variable in id-variable-list to 
include in the OUT= data set. PROC MEANS creates n new variables and 

OUTPUT Statement 1455



uses the suffix _n to create the variable names, where n is a sequential 
integer from 1 to n.

By default, PROC MEANS determines one extreme value for each level of 
each requested type. If n is greater than one, then n extremes are generated 
for each level of each type. When n is greater than one and you request 
extreme value selection, the time complexity is O T * N log 2n  , where T is 
the number of types requested and N is the number of observations in the 
input data set. By comparison, to group the entire data set, the time 
complexity is O N log 2N  .

Default 1

Range an integer between 1 and 100

Example For example, to generate two minimum extreme values for each 
variable, use
idgroup(min(x) out[2](x y z)=MinX MinY MinZ);

The OUT= data set contains the variables MinX_1, MinX_2, 
MinY_1, MinY_2, MinZ_1, and MinZ_2.

(id-variable-list)
identifies one or more input data set variables whose values PROC MEANS 
includes in the OUT= data set. PROC MEANS determines which 
observations to generate by the selection criteria that you specify (MIN, MAX, 
and LAST).

Alias IDGRP

Requirement You must specify the MIN | MAX selection criteria first and 
OUT(id-variable-list)= after the suboptions MISSING, OBS, 
and LAST.

Tips You can use id-group-specification to mimic the behavior of 
the ID statement and a maximum-id-specification or minimum-
id-specification in the OUTPUT statement.

When you want the output data set to contain extreme values 
along with other ID variables, it is more efficient to include 
them in the id-variable-list than to request separate statistics. 
For example, the statement output idgrp(max(x) out(x a 
b)= ); is more efficient than the statement output 
idgrp(max(x) out(a b)= ) max(x)=;

See “Example 8: Computing Output Statistics” on page 1491

“Example 12: Identifying the Top Three Extreme Values with 
the Output Statistics” on page 1501

name(s)
specifies one or more names for variables in the OUT= data set.

Default If you omit name, then PROC MEANS uses the names of variables 
in the id-variable-list.

Tip Use the AUTONAME option to automatically resolve naming 
conflicts.

1456 Chapter 40 / MEANS Procedure



CAUTION
The IDGROUP syntax enables you to create output variables with the same 
name. When this action happens, only the first variable appears in the output data 
set. Use the AUTONAME option to automatically resolve these naming conflicts.

Note: If you specify fewer new variable names than the combination of analysis 
variables and identification variables, then the remaining output variables use the 
corresponding names of the ID variables as soon as PROC MEANS exhausts 
the list of new variable names. 

maximum-id-specification(s)
specifies that one or more identification variables be associated with the 
maximum values of the analysis variables. The form of the maximum-id-
specification is

MAXID <(variable-1 <(id-variable-list-1)> <…variable-n <(id-variable-list-n)>>)> = 
name(s)

variable
identifies the numeric analysis variable whose maximum values PROC 
MEANS determines. PROC MEANS can determine several maximum values 
for a variable because, in addition to the overall maximum value, subgroup 
levels, which are defined by combinations of class variables values, also 
have maximum values.

Tip If you use an ID statement and omit variable, then PROC MEANS uses 
all analysis variables.

id-variable-list
identifies one or more variables whose values identify the observations with 
the maximum values of the analysis variable.

Default the ID statement variables

name(s)
specifies the names for new variables that contain the values of the 
identification variable associated with the maximum value of each analysis 
variable.

Note If multiple observations contain the maximum value within a class 
level, then PROC MEANS saves the value of the ID variable for only 
the first of those observations in the output data set.

Tips If you use an ID statement, and omit variable and id-variable, then 
PROC MEANS associates all ID statement variables with each 
analysis variable. Thus, for each analysis variable, the number of 
variables that are created in the output data set equals the number of 
variables that you specify in the ID statement.

Use the AUTONAME option to automatically resolve naming conflicts.

See “Example 11: Identifying an Extreme Value with the Output Statistics” 
on page 1498

CAUTION

OUTPUT Statement 1457



The MAXID syntax enables you to create output variables with the same 
name. When this action happens, only the first variable appears in the output data 
set. Use the AUTONAME option to automatically resolve these naming conflicts. 

Note: If you specify fewer new variable names than the combination of analysis 
variables and identification variables, then the remaining output variables use the 
corresponding names of the ID variables as soon as PROC MEANS exhausts 
the list of new variable names. 

minimum-id-specification
See the description of maximum-id-specification. This option behaves in exactly 
the same way, except that PROC MEANS determines the minimum values 
instead of the maximum values. The form of the minid-specification is

MINID<(variable-1 <(id-variable-list-1)> <…variable-n <(id-variable-list-n)>>)> = 
name(s)

When MINID is used without an explicit variable list, it is similar to the following 
more advanced IDGROUP syntax example:

IDGRP( min(x) missing out(id_variable)=idminx) idgrp( min(y) missing 
out(id_variable)=idminy)

If one or more of the analysis variables has a missing value, the id_variable 
value corresponds to the observation with the missing value not the observation 
with the value for the MIN statistic.

option
can be one of the following items:

AUTOLABEL
specifies that PROC MEANS appends the statistic name to the end of the 
variable label. If an analysis variable has no label, then PROC MEANS 
creates a label by appending the statistic name to the analysis variable 
name.

See “Example 12: Identifying the Top Three Extreme Values with the Output 
Statistics” on page 1501

AUTONAME
specifies that PROC MEANS creates a unique variable name for an output 
statistic when you do not assign the variable name in the OUTPUT 
statement. This action is accomplished by appending to the statistic-keyword 
to the end of the input variable name from which the statistic was derived.

For example, the statement output min(x)=/autoname;produces the x_Min 
variable in the output data set.

AUTONAME activates the SAS internal mechanism to automatically resolve 
conflicts in the variable names in the output data set. Duplicate variables do 
not generate errors.

As a result, the statement output min(x)= min(x)=/autoname; produces 
two variables, x_Min and x_Min2, in the output data set.

If the new variable name exceeds 32 characters, then the variable-name 
portion is truncated.

See “Example 12: Identifying the Top Three Extreme Values with the Output 
Statistics” on page 1501

1458 Chapter 40 / MEANS Procedure



KEEPLEN
specifies that statistics in the output data set inherit the length of the analysis 
variable that PROC MEANS uses to derive them.

CAUTION
You permanently lose numeric precision when the length of the 
analysis variable causes PROC MEANS to truncate or round the value 
of the statistic. However, the precision of the statistic matches that of 
the input.

LEVELS
includes a variable named _LEVEL_ in the output data set. This variable 
contains a value from 1 to n that indicates a unique combination of the values 
of class variables (the values of _TYPE_ variable).

See “Output Data Set” on page 1468

“Example 8: Computing Output Statistics” on page 1491

NOINHERIT
specifies that the variables in the output data set that contain statistics do not 
inherit the attributes (label and format) of the analysis variables that are used 
to derive them.

Interaction When no option is used (implied INHERIT) then the statistics 
inherit the attributes, label and format, of the input analysis 
variable(s). If the INHERIT option is used in the OUTPUT 
statement, then the statistics inherit the length of the input 
analysis variable(s), the label and format.

Tip By default, the output data set includes an output variable for 
each analysis variable and for five observations that contain N, 
MIN, MAX, MEAN, and STDDEV. Unless you specify 
NOINHERIT, this variable inherits the format of the analysis 
variable, which can be invalid for the N statistic (for example, 
datetime formats).

WAYS
includes a variable named _WAY_ in the output data set. This variable 
contains a value from 1 to the maximum number of class variables that 
indicates how many class variables PROC MEANS combines to create the 
TYPE value.

See “Output Data Set” on page 1468

“WAYS Statement” on page 1462

“Example 8: Computing Output Statistics” on page 1491

TYPES Statement
Identifies which of the possible combinations of class variables to generate.

Requirement: CLASS statement

TYPES Statement 1459



See: “Output Data Set” on page 1468

Examples: “Example 2: Computing Descriptive Statistics with Class Variables” on page 1472
“Example 5: Using Multilabel Value Formats with Class Variables” on page 1480
“Example 12: Identifying the Top Three Extreme Values with the Output Statistics” on 
page 1501

Syntax
TYPES request(s);

Required Argument
request(s)

specifies which of the 2k combinations of class variables PROC MEANS uses to 
create the types, where k is the number of class variables. A request includes 
one class variable name, several class variable names separated by asterisks, 
or ().

To request class variable combinations quickly, use a grouping syntax by placing 
parentheses around several variables and joining other variables or variable 
combinations. For example, the following statements illustrate grouping syntax:

Request Equivalent to

types A*(B C); types A*B A*C;

types (A B)*(C D); types A*C A*D B*C B*D;

types (A B C)*D; types A*D B*D C*D;

Interaction The CLASSDATA= option places constraints on the NWAY type. 
PROC MEANS generates all other types as if derived from the 
resulting NWAY type.

Tips Use ( ) to request the overall total (_TYPE_=0).

If you do not need all types in the output data set, then use the 
TYPES statement to specify particular subtypes rather than 
applying a WHERE clause to the data set. Doing so saves time and 
computer memory.

1460 Chapter 40 / MEANS Procedure



Details

Order of Analyses in the Output
The analyses are written to the output in order of increasing values of the _TYPE_ 
variable, which is calculated by PROC MEANS. The _TYPE_ variable has a unique 
value for each combination of class variables; the values are determined by how 
you specify the CLASS statement, not the TYPES statement. Therefore, if you 
specify

class A B C;
types (A B)*C;

then the B*C analysis (_TYPE_=3) is written first, followed by the A*C analysis 
(_TYPE_=5). However, if you specify

class B A C;
types (A B)*C;

then the A*C analysis comes first.

The _TYPE_ variable is calculated even if no output data set is requested. For more 
information about the _TYPE_ variable, see “Output Data Set” on page 1468.

VAR Statement
Identifies the analysis variables and their order in the output.

Default: If you omit the VAR statement, then PROC MEANS analyzes all numeric variables that 
are not listed in the other statements. When all variables are character variables, PROC 
MEANS produces a simple count of observations.

Tip: You can use multiple VAR statements.

See: Chapter 69, “SUMMARY Procedure,” on page 2373

Example: “Example 1: Computing Specific Descriptive Statistics” on page 1470

Syntax
VAR variable(s) </ WEIGHT=weight-variable>;

Required Argument
variable(s)

identifies the analysis variables and specifies their order in the results.

VAR Statement 1461



Optional Argument
WEIGHT=weight-variable

specifies a numeric variable whose values weight the values of the variables that 
are specified in the VAR statement. The variable does not have to be an integer. 
The following table describes how PROC MEANS treats various values of the 
WEIGHT variable.

Weight Value PROC MEANS Response

0 Counts the observation in the total number of observations

Less than 0 Converts the value to zero and counts the observation in 
the total number of observations

Missing Excludes the observation

To exclude observations that contain negative and zero weights from the 
analysis, use EXCLNPWGT. Note that most SAS/STAT procedures, such as 
PROC GLM, exclude negative and zero weights by default.

The weight variable does not change how the procedure determines the range, 
extreme values, or number of missing values.

Restrictions To compute weighted quantiles, use QMETHOD=OS in the PROC 
statement.

Skewness and kurtosis are not available with the WEIGHT option.

Note Prior to Version 7 of SAS, the procedure did not exclude the 
observations with missing weights from the count of observations.

Tips When you use the WEIGHT option, consider which value of the 
VARDEF= option is appropriate. See the discussion of VARDEF=.

Use the WEIGHT option in multiple VAR statements to specify 
different weights for the analysis variables.

WAYS Statement
Specifies the number of ways to make unique combinations of class variables.

Tip: Use the TYPES statement to specify additional combinations of class variables.

Example: “Example 6: Using Preloaded Formats with Class Variables” on page 1485

Syntax
WAYS list;

1462 Chapter 40 / MEANS Procedure



Required Argument
list

specifies one or more integers that define the number of class variables to 
combine to form all the unique combinations of class variables. For example, you 
can specify 2 for all possible pairs and 3 for all possible triples. The list can be 
specified in the following ways:

n m

n m1 m2 … mn 

n m1,m2,…,mn 

n m TO n <BY increment> 

n m1,m2 TO m3 <BY increment>, m4

Range 0 to maximum number of class variables

See WAYS option

Example The following code is an example of creating two-way types for the 
classification variables A, B, and C. This WAYS statement is 
equivalent to specifying a*b, a*c, and b*c in the TYPES statement.
class A B C ; ways 2;

WEIGHT Statement
Specifies weights for observations in the statistical calculations.

See: For information about how to calculate weighted statistics and for an example that uses 
the WEIGHT statement, see “WEIGHT” on page 82.

Syntax
WEIGHT variable;

Required Argument
variable

specifies a numeric variable whose values weight the values of the analysis 
variables. The values of the variable do not have to be integers. The following 
table describes how PROC MEANS treats various values of the WEIGHT 
variable.

Weight Value PROC MEANS Response

0 Counts the observation in the total number of 
observations

WEIGHT Statement 1463



Less than 0 Converts the value to zero and counts the observation 
in the total number of observations

Missing Excludes the observation

To exclude observations that contain negative and zero weights from the 
analysis, use EXCLNPWGT. Note that most SAS/STAT procedures, such as 
PROC GLM, exclude negative and zero weights by default.

CAUTION
Single extreme weight values can cause inaccurate results. When one (and 
only one) weight value is many orders of magnitude larger than the other weight 
values (for example, 49 weight values of 1 and one weight value of 1×1014), certain 
statistics might not be within acceptable accuracy limits. The affected statistics are 
based on the second moment (such as standard deviation, corrected sum of 
squares, variance, and standard error of the mean). Under certain circumstances, no 
warning is written to the SAS log.

Restrictions To compute weighted quantiles, use QMETHOD=OS in the PROC 
statement.

Skewness and kurtosis are not available with the WEIGHT 
statement.

PROC MEANS does not compute MODE when a weight variable 
is active. Instead, try using the UNIVARIATE procedure when 
MODE needs to be computed and a weight variable is active.

Interaction If you use the WEIGHT= option in a VAR statement to specify a 
weight variable, then PROC MEANS uses this variable instead to 
weight those VAR statement variables.

Note Prior to Version 7 of SAS, the procedure did not exclude the 
observations with missing weights from the count of observations.

Tip When you use the WEIGHT statement, consider which value of 
the VARDEF= option is appropriate. See the discussion of 
VARDEF= and the calculation of weighted statistics in “Keywords 
and Formulas” on page 2610 for more information.

1464 Chapter 40 / MEANS Procedure



Usage: MEANS Procedure

Computation of Moment Statistics
PROC MEANS uses single-pass algorithms to compute the moment statistics (such 
as mean, variance, skewness, and kurtosis). See “Keywords and Formulas” on 
page 2610 for the statistical formulas.

The computational details for confidence limits, hypothesis test statistics, and 
quantile statistics follow.

Confidence Limits
With the keywords CLM, LCLM, and UCLM, you can compute confidence limits for 
the mean. A confidence limit is a range, constructed around the value of a sample 
statistic, that contains the corresponding true population value with given probability 
(ALPHA=) in repeated sampling.

A two-sided 100 1 − α  % confidence interval for the mean has upper and lower 
limits

x ± t 1 − α/2; n − 1
s
n

where s is 1
n − 1 Σ xi − x 2 and t 1 − α/2; n − 1  is the ( 1 − α/2 ) critical value of the 

Student's t statistics with n − 1 degrees of freedom.

A one-sided 100 1 − α  % confidence interval is computed as

x + t 1 − α; n − 1
s
n

upper

x − t 1 − α; n − 1
s
n

lower

If you use the WEIGHT statement or WEIGHT= in a VAR statement and the default 
value of VARDEF=, which is DF, the 100 1 − α  % confidence interval for the 
weighted mean has upper and lower limits

yw ± t 1 − α/2
sw

Σ
i = 1

n
wi

where yw is the weighted mean, sw is the weighted standard deviation, wi is the 
weight for ith observation, and t 1 − α/2  is the 1 − α/2  critical value for the Student's 
t distribution with n − 1 degrees of freedom.

Usage: MEANS Procedure 1465



Student's t Test
PROC MEANS calculates the t statistic as

t =
x − μ0
s/ n

where x is the sample mean, n is the number of nonmissing values for a variable, 
and s is the sample standard deviation. Under the null hypothesis, the population 
mean equals μ0 . When the data values are approximately normally distributed, the 
probability under the null hypothesis of a t statistic as extreme as, or more extreme 
than, the observed value (the p-value) is obtained from the t distribution with n − 1
degrees of freedom. For large n , the t statistic is asymptotically equivalent to a z 
test.

When you use the WEIGHT statement or WEIGHT= in a VAR statement and the 
default value of VARDEF=, which is DF, the Student's t statistic is calculated as

tw =
yw − μ0

sw/ Σ
i = 1

n
wi

where yw is the weighted mean, sw is the weighted standard deviation, and wi is the 
weight for ith observation. The tw statistic is treated as having a Student's t 
distribution with n − 1 degrees of freedom. If you specify the EXCLNPWGT option in 
the PROC statement, then n is the number of nonmissing observations when the 
value of the WEIGHT variable is positive. By default, n is the number of nonmissing 
observations for the WEIGHT variable.

Quantiles
The options QMETHOD=, QNTLDEF=, and QMARKERS= determine how PROC 
MEANS calculates quantiles. QNTLDEF= deals with the mathematical definition of a 
quantile. See “Quantile and Related Statistics” on page 2615. QMETHOD= deals 
with the mechanics of how PROC MEANS handles the input data. The two methods 
are

OS
reads all data into memory and sorts it by unique value.

P2
accumulates all data into a fixed sample size that is used to approximate the 
quantile.

If data set A has 100 unique values for a numeric variable X and data set B has 
1000 unique values for numeric variable X, then QMETHOD=OS for data set B 
takes 10 times as much memory as it does for data set A. If QMETHOD=P2, then 
both data sets A and B requires the same memory space to generate quantiles.

The QMETHOD=P2 technique is based on the piecewise-parabolic (P²) algorithm 
invented by Jain and Chlamtac (1985). P² is a one-pass algorithm to determine 
quantiles for a large data set. It requires a fixed amount of memory for each variable 

1466 Chapter 40 / MEANS Procedure



for each level within the type. However, using simulation studies, reliable 
estimations of some quantiles (P1, P5, P95, P99) cannot be possible for some data 
sets such as data sets with heavily tailed or skewed distributions.

If the number of observations is less than the QMARKERS= value, then 
QMETHOD=P2 produces the same results as QMETHOD=OS when QNTLDEF=5. 
To compute weighted quantiles, you must use QMETHOD=OS.

Results: MEANS Procedure

Missing Values
PROC MEANS excludes missing values for the analysis variables before calculating 
statistics. Each analysis variable is treated individually; a missing value for an 
observation in one variable does not affect the calculations for other variables. The 
statements handle missing values as follows:

n If a class variable has a missing value for an observation, then PROC MEANS 
excludes that observation from the analysis unless you use the MISSING option 
in the PROC statement or CLASS statement.

n If a BY or ID variable value is missing, then PROC MEANS treats it like any 
other BY or ID variable value. The missing values form a separate BY group.

n If a FREQ variable value is missing or nonpositive, then PROC MEANS excludes 
the observation from the analysis.

n If a WEIGHT variable value is missing, then PROC MEANS excludes the 
observation from the analysis.

PROC MEANS tabulates the number of the missing values. Before the number of 
missing values are tabulated, PROC MEANS excludes observations with 
frequencies that are nonpositive when you use the FREQ statement and 
observations with weights that are missing or nonpositive (when you use the 
EXCLNPWGT option) when you use the WEIGHT statement. To report this 
information in the procedure output use the NMISS statistical keyword in the PROC 
statement.

Column Width for the Output
You control the column width for the displayed statistics with the FW= option in the 
PROC statement. Unless you assign a format to a numeric class or an ID variable, 
PROC MEANS uses the value of the FW= option. When you assign a format to a 
numeric class or an ID variable, PROC MEANS determines the column width 
directly from the format. If you use the PRELOADFMT option in the CLASS 
statement, then PROC MEANS determines the column width for a class variable 
from the assigned format.

Results: MEANS Procedure 1467



The N Obs Statistic
By default when you use a CLASS statement, PROC MEANS displays an additional 
statistic called N Obs. This statistic reports the total number of observations or the 
sum of the observations of the FREQ variable that PROC MEANS processes for 
each class level. PROC MEANS might omit observations from this total because of 
missing values in one or more class variables or because of the effect of the 
EXCLUSIVE option when you use it with the PRELOADFMT option or the 
CLASSDATA= option. Because of this action and the exclusion of observations 
when the WEIGHT variable contains missing values, there is not always a direct 
relationship between N Obs, N, and NMISS.

In the output data set, the value of N Obs is stored in the _FREQ_ variable. Use the 
NONOBS option in the PROC statement to suppress this information in the 
displayed output.

Output Data Set
PROC MEANS can create one or more output data sets. The procedure does not 
print the output data set. Use PROC PRINT, PROC REPORT, or another SAS 
reporting tool to display the output data set.

Note: By default the statistics in the output data set automatically inherit the 
analysis variable's format and label. However, statistics computed for N, NMISS, 
SUMWGT, USS, CSS, VAR, CV, T, PROBT, PRT,SKEWNESS, and KURTOSIS do 
not inherit the analysis variable's format because this format can be invalid for these 
statistics. Use the NOINHERIT option in the OUTPUT statement to prevent the 
other statistics from inheriting the format and label attributes.

The output data set can contain these variables:

n the variables specified in the BY statement.

n the variables specified in the ID statement.

n the variables specified in the CLASS statement.

n the variable _TYPE_ that contains information about the class variables. By 
default _TYPE_ is a numeric variable. If you specify CHARTYPE in the PROC 
statement, then _TYPE_ is a character variable. When you use more than 32 
class variables, _TYPE_ is automatically a character variable.

n the variable _FREQ_ that contains the number of observations that a given 
output level represents.

n the variables requested in the OUTPUT statement that contain the output 
statistics and extreme values.

n the variable _STAT_ that contains the names of the default statistics if you omit 
statistic keywords.

n the variable _LEVEL_ if you specify the LEVEL option.

1468 Chapter 40 / MEANS Procedure



n the variable _WAY_ if you specify the WAYS option.

The value of _TYPE_ indicates which combination of the class variables PROC 
MEANS uses to compute the statistics. The character value of _TYPE_ is a series 
of zeros and ones, where each value of one indicates an active class variable in the 
type. For example, with three class variables, PROC MEANS represents type 1 as 
001, type 5 as 101, and so on.

Usually, the output data set contains one observation per level per type. However, if 
you omit statistical keywords in the OUTPUT statement, then the output data set 
contains five observations per level (six if you specify a WEIGHT variable). 
Therefore, the total number of observations in the output data set is equal to the 
sum of the levels for all the types that you request multiplied by 1, 5, or 6, whichever 
is applicable.

If you omit the CLASS statement (_TYPE_= 0), then there is always exactly one 
level of output per BY group. If you use a CLASS statement, then the number of 
levels for each type that are requested have an upper bound equal to the number of 
observations in the input data set. By default, PROC MEANS generates all possible 
types. In this case the total number of levels for each BY group has an upper bound 
equal to

m ⋅ 2k − 1 ⋅ n + 1

where k is the number of class variables and n is the number of observations for the 
given BY group in the input data set and m is 1, 5, or 6.

PROC MEANS determines the actual number of levels for a given type from the 
number of unique combinations of each active class variable. A single level consists 
of all input observations whose formatted class values match.

The following figure shows the values of _TYPE_ and the number of observations in 
the data set when you specify one, two, and three class variables.

Figure 40.1 The Effect of Class Variables on the OUTPUT Data Set

Character binary
equivalent of
_TYPE_
(CHARTYPE
option )

A , B ,C=CLASS a, b, c,=number of levels of A, B, C,
variables respectively

on
e

CL
AS

S
va

ria
ble

thr
ee

CL
AS

S
va

ria
ble

s

tw
o

CL
AS

S
va

ria
ble

s

Number of observations Total number of
Subgroup of this _TYPE_ and _W AY _ observation s

C B A _ WA Y_ _TYPE_ defined by in the data set in the data set

0 0 0 0 0 T otal 1

0 0 1 1 1 A a 1+a

0 1 0 1 2 B b

0 1 1 2 3 A*B a*b 1+a+b+a*b

1 0 0 1 4 C c

1 0 1 2 5 A*C a*c

1 1 0 2 6 B*C b*c 1+a+b+a*b+c

1 1 1 3 7 A *B*C a*b*c +a*c+b*c+a*b*c

Results: MEANS Procedure 1469



Examples: MEANS Procedure

Example 1: Computing Specific Descriptive 
Statistics
Features: PROC MEANS statement options

statistic keywords
FW=

VAR statement

Data set: CAKE

Details
This example does the following:

n specifies the analysis variables

n computes the statistics for the specified keywords and displays them in order

n specifies the field width of the statistics

Program
options nodate pageno=1 linesize=80 pagesize=60;

data cake;
   input LastName $ 1-12 Age 13-14 PresentScore 16-17
         TasteScore 19-20 Flavor $ 23-32 Layers 34 ;
   datalines;
Orlando     27 93 80  Vanilla    1
Ramey       32 84 72  Rum        2
Goldston    46 68 75  Vanilla    1
Roe         38 79 73  Vanilla    2
Larsen      23 77 84  Chocolate  .
Davis       51 86 91  Spice      3
Strickland  19 82 79  Chocolate  1
Nguyen      57 77 84  Vanilla    .
Hildenbrand 33 81 83  Chocolate  1
Byron       62 72 87  Vanilla    2
Sanders     26 56 79  Chocolate  1

1470 Chapter 40 / MEANS Procedure



Jaeger      43 66 74             1
Davis       28 69 75  Chocolate  2
Conrad      69 85 94  Vanilla    1
Walters     55 67 72  Chocolate  2
Rossburger  28 78 81  Spice      2
Matthew     42 81 92  Chocolate  2
Becker      36 62 83  Spice      2
Anderson    27 87 85  Chocolate  1
Merritt     62 73 84  Chocolate  1
;

proc means data=cake n mean max min range std fw=8;

   var PresentScore TasteScore;

   title 'Summary of Presentation and Taste Scores';
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the CAKE data set. CAKE contains data from a cake-baking contest: each 
participant's last name, age, score for presentation, score for taste, cake flavor, and 
number of cake layers. The number of cake layers is missing for two observations. 
The cake flavor is missing for another observation. 

data cake;
   input LastName $ 1-12 Age 13-14 PresentScore 16-17
         TasteScore 19-20 Flavor $ 23-32 Layers 34 ;
   datalines;
Orlando     27 93 80  Vanilla    1
Ramey       32 84 72  Rum        2
Goldston    46 68 75  Vanilla    1
Roe         38 79 73  Vanilla    2
Larsen      23 77 84  Chocolate  .
Davis       51 86 91  Spice      3
Strickland  19 82 79  Chocolate  1
Nguyen      57 77 84  Vanilla    .
Hildenbrand 33 81 83  Chocolate  1
Byron       62 72 87  Vanilla    2
Sanders     26 56 79  Chocolate  1
Jaeger      43 66 74             1
Davis       28 69 75  Chocolate  2
Conrad      69 85 94  Vanilla    1
Walters     55 67 72  Chocolate  2
Rossburger  28 78 81  Spice      2
Matthew     42 81 92  Chocolate  2
Becker      36 62 83  Spice      2
Anderson    27 87 85  Chocolate  1
Merritt     62 73 84  Chocolate  1
;

Example 1: Computing Specific Descriptive Statistics 1471



Specify the statistics and the statistic options. The statistic keywords specify the 
statistics and their order in the output. FW= uses a field width of eight to display the 
statistics.

proc means data=cake n mean max min range std fw=8;

Specify the analysis variables. The VAR statement specifies that PROC MEANS 
calculate statistics on the PresentScore and TasteScore variables.

   var PresentScore TasteScore;

Specify the title. 

   title 'Summary of Presentation and Taste Scores';
run;

Example 2: Computing Descriptive Statistics with 
Class Variables
Features: PROC MEANS statement option

MAXDEC=
CLASS statement
TYPES statement

Data set: GRADE

Details
This example does the following:

n analyzes the data for the two-way combination of class variables and across all 
observations

n limits the number of decimal places for the displayed statistics

Program
options nodate pageno=1 linesize=80 pagesize=60;

data grade;
   input Name $ 1-8 Gender $ 11 Status $13 Year $ 15-16
         Section $ 18 Score 20-21 FinalGrade 23-24;
   datalines;
Abbott    F 2 97 A 90 87
Branford  M 1 98 A 92 97
Crandell  M 2 98 B 81 71
Dennison  M 1 97 A 85 72
Edgar     F 1 98 B 89 80
Faust     M 1 97 B 78 73
Greeley   F 2 97 A 82 91

1472 Chapter 40 / MEANS Procedure



Hart      F 1 98 B 84 80
Isley     M 2 97 A 88 86
Jasper    M 1 97 B 91 93
;

proc means data=grade maxdec=3;

   var Score;

   class Status Year;

   types () status*year;

   title 'Final Exam Grades for Student Status and Year of Graduation';
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the GRADE data set. GRADE contains each student's last name, gender, 
status of either undergraduate (1) or graduate (2), expected year of graduation, 
class section (A or B), final exam score, and final grade for the course. 

data grade;
   input Name $ 1-8 Gender $ 11 Status $13 Year $ 15-16
         Section $ 18 Score 20-21 FinalGrade 23-24;
   datalines;
Abbott    F 2 97 A 90 87
Branford  M 1 98 A 92 97
Crandell  M 2 98 B 81 71
Dennison  M 1 97 A 85 72
Edgar     F 1 98 B 89 80
Faust     M 1 97 B 78 73
Greeley   F 2 97 A 82 91
Hart      F 1 98 B 84 80
Isley     M 2 97 A 88 86
Jasper    M 1 97 B 91 93
;

Generate the default statistics and specify the analysis options. Because no 
statistics are specified in the PROC MEANS statement, all default statistics (N, 
MEAN, STD, MIN, MAX) are generated. MAXDEC= limits the displayed statistics to 
three decimal places.

proc means data=grade maxdec=3;

Specify the analysis variable. The VAR statement specifies that PROC MEANS 
calculate statistics on the Score variable.

   var Score;

Specify subgroups for the analysis. The CLASS statement separates the 
analysis into subgroups. Each combination of unique values for Status and Year 
represents a subgroup.

Example 2: Computing Descriptive Statistics with Class Variables 1473



   class Status Year;

Specify which subgroups to analyze. The TYPES statement requests that the 
analysis be performed on all the observations in the GRADE data set as well as the 
two-way combination of Status and Year, which results in four subgroups (because 
Status and Year each have two unique values).

   types () status*year;

Specify the title. 

   title 'Final Exam Grades for Student Status and Year of Graduation';
run;

Output
PROC MEANS displays the default statistics for all the observations (_TYPE_=0) 
and the four class levels of the Status and Year combination (Status=1, Year=97; 
Status=1, Year=98; Status=2, Year=97; Status=2, Year=98).

Output 40.4 Final Exam Grades

Example 3: Using the BY Statement with Class 
Variables
Features: PROC MEANS statement option

statistic keywords
BY statement
CLASS statement

1474 Chapter 40 / MEANS Procedure



SORT procedure

Data set: GRADE 

Details
This example does the following:

n separates the analysis for the combination of class variables within BY values

n shows the sort order requirement for the BY statement

n calculates the minimum, maximum, and median

Program
options nodate pageno=1 linesize=80 pagesize=60;

proc sort data=Grade out=GradeBySection;
   by section;
run;

proc means data=GradeBySection min max median;

   by Section;

   var Score;

   class Status Year;

   title1 'Final Exam Scores for Student Status and Year of 
Graduation';
   title2 ' Within Each Section';
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Sort the GRADE data set. PROC SORT sorts the observations by the variable 
Section. Sorting is required in order to use Section as a BY variable in the PROC 
MEANS step.

proc sort data=Grade out=GradeBySection;
   by section;
run;

Specify the analyses. The statistic keywords specify the statistics and their order in 
the output.

Example 3: Using the BY Statement with Class Variables 1475



proc means data=GradeBySection min max median;

Divide the data set into BY groups. The BY statement produces a separate 
analysis for each value of Section.

   by Section;

Specify the analysis variable. The VAR statement specifies that PROC MEANS 
calculate statistics on the Score variable.

   var Score;

Specify subgroups for the analysis. The CLASS statement separates the 
analysis by the values of Status and Year. Because there is no TYPES statement in 
this program, analyses are performed for each subgroup, within each BY group.

   class Status Year;

Specify the titles. 

   title1 'Final Exam Scores for Student Status and Year of 
Graduation';
   title2 ' Within Each Section';
run;

1476 Chapter 40 / MEANS Procedure



Output
Output 40.5 Final Exam Scores

Example 4: Using a CLASSDATA= Data Set with 
Class Variables
Features: PROC MEANS statement options

CLASSDATA=
EXCLUSIVE
FW=
MAXDEC=
PRINTALLTYPES

CLASS statement

Data sets: CAKE 
CAKETYPE

Example 4: Using a CLASSDATA= Data Set with Class Variables 1477



Details
This example does the following:

n specifies the field width and decimal places of the displayed statistics

n uses only the values in CLASSDATA= data set as the levels of the combinations 
of class variables

n calculates the range, median, minimum, and maximum

n displays all combinations of the class variables in the analysis

Program
options nodate pageno=1 linesize=80 pagesize=60;

data caketype;
   input Flavor $ 1-10  Layers 12;
   datalines;
Vanilla    1
Vanilla    2
Vanilla    3
Chocolate  1
Chocolate  2
Chocolate  3
;

proc means data=cake range median min max fw=7 maxdec=0
           classdata=caketype exclusive printalltypes;

   var TasteScore;
   

   class flavor layers;

   title 'Taste Score For Number of Layers and Cake Flavor';
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the CAKETYPE data set. CAKETYPE contains the cake flavors and 
number of layers that must occur in the PROC MEANS output.

data caketype;
   input Flavor $ 1-10  Layers 12;

1478 Chapter 40 / MEANS Procedure



   datalines;
Vanilla    1
Vanilla    2
Vanilla    3
Chocolate  1
Chocolate  2
Chocolate  3
;

Specify the analyses and the analysis options. The FW= option uses a field 
width of seven and the MAXDEC= option uses zero decimal places to display the 
statistics. CLASSDATA= and EXCLUSIVE restrict the class levels to the values that 
are in the CAKETYPE data set. PRINTALLTYPES displays all combinations of class 
variables in the output.

proc means data=cake range median min max fw=7 maxdec=0
           classdata=caketype exclusive printalltypes;

Specify the analysis variable. The VAR statement specifies that PROC MEANS 
calculate statistics on the TasteScore variable.

   var TasteScore;
   

Specify subgroups for analysis. The CLASS statement separates the analysis by 
the values of Flavor and Layers. Note that these variables, and only these variables, 
must appear in the CAKETYPE data set.

   class flavor layers;

Specify the title. 

   title 'Taste Score For Number of Layers and Cake Flavor';
run;

Output
PROC MEANS calculates statistics for the 13 chocolate and vanilla cakes. Because 
the CLASSDATA= data set contains 3 as the value of Layers, PROC MEANS uses 3 
as a class value even though the frequency is zero.

Example 4: Using a CLASSDATA= Data Set with Class Variables 1479



Output 40.6 Taste Score

Example 5: Using Multilabel Value Formats with 
Class Variables
Features: PROC MEANS statement options

statistic keywords
FW=
NONOBS

CLASS statement options

1480 Chapter 40 / MEANS Procedure



MLF
ORDER=

TYPES statement
FORMAT procedure
FORMAT statement

Data set: CAKE

Details
This example does the following:

n computes the statistics for the specified keywords and displays them in order

n specifies the field width of the statistics

n suppresses the column with the total number of observations

n analyzes the data for the one-way combination of cake flavor and the two-way 
combination of cake flavor and participant's age

n assigns user-defined formats to the class variables

n uses multilabel formats as the levels of class variables

n orders the levels of the cake flavors by the descending frequency count and 
orders the levels of age by the ascending formatted values

Program
options nodate pageno=1 linesize=80 pagesize=64;

proc format;
   value $flvrfmt
                'Chocolate'='Chocolate'
                'Vanilla'='Vanilla'
                'Rum','Spice'='Other Flavor';
   value agefmt (multilabel)
                  15 - 29='below 30 years'
                  30 - 50='between 30 and 50'
                  51 - high='over 50 years'
                  15 - 19='15 to 19'
                  20 - 25='20 to 25'
                  25 - 39='25 to 39'
                  40 - 55='40 to 55'
                  56 - high='56 and above';
run;   

proc means data=cake fw=6 n min max median nonobs;

   class flavor/order=data;
   class  age /mlf order=fmt;

    types flavor flavor*age;

Example 5: Using Multilabel Value Formats with Class Variables 1481



   var TasteScore;

   format age agefmt. flavor $flvrfmt.;

   title 'Taste Score for Cake Flavors and Participant''s Age';
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=64;

Create the $FLVRFMT. and AGEFMT. formats. PROC FORMAT creates user-
defined formats to categorize the cake flavors and ages of the participants. 
MULTILABEL creates a multilabel format for Age. A multilabel format is one in which 
multiple labels can be assigned to the same value, in this case because of 
overlapping ranges. Each value is represented in the output for each range in which 
it occurs.

proc format;
   value $flvrfmt
                'Chocolate'='Chocolate'
                'Vanilla'='Vanilla'
                'Rum','Spice'='Other Flavor';
   value agefmt (multilabel)
                  15 - 29='below 30 years'
                  30 - 50='between 30 and 50'
                  51 - high='over 50 years'
                  15 - 19='15 to 19'
                  20 - 25='20 to 25'
                  25 - 39='25 to 39'
                  40 - 55='40 to 55'
                  56 - high='56 and above';
run;   

Specify the analyses and the analysis options. FW= uses a field width of six to 
display the statistics. The statistic keywords specify the statistics and their order in 
the output. NONOBS suppresses the N Obs column.

proc means data=cake fw=6 n min max median nonobs;

Specify subgroups for the analysis. The CLASS statements separate the 
analysis by values of Flavor and Age. ORDER=DATA orders values according to 
their order in the input data set. ORDER=FMT orders the levels of Age by 
ascending formatted values. MLF specifies that multilabel value formats be used for 
Age.

   class flavor/order=data;
   class  age /mlf order=fmt;

Specify which subgroups to analyze. The TYPES statement requests the 
analysis for the one-way combination of Flavor and the two-way combination of 
Flavor and Age. 

    types flavor flavor*age;

1482 Chapter 40 / MEANS Procedure



Specify the analysis variable. The VAR statement specifies that PROC MEANS 
calculate statistics on the TasteScore variable.

   var TasteScore;

Format the output. The FORMAT statement assigns user-defined formats to the 
Age and Flavor variables for this analysis. 

   format age agefmt. flavor $flvrfmt.;

Specify the title. 

   title 'Taste Score for Cake Flavors and Participant''s Age';
run;

Output
The one-way combination of class variables appears before the two-way 
combination. A field width of six truncates the statistics to four decimal places. For 
the two-way combination of Age and Flavor, the total number of observations is 
greater than the one-way combination of Flavor. This situation arises because of the 
multilabel format for age, which maps one internal value to more than one formatted 
value. The order of the levels of Flavor is based on the frequency count for each 
level. The order of the levels of Age is based on the order of the user-defined 
formats.

Example 5: Using Multilabel Value Formats with Class Variables 1483



Output 40.7 Taste Score for Cake Flavors

1484 Chapter 40 / MEANS Procedure



Example 6: Using Preloaded Formats with Class 
Variables
Features: PROC MEANS statement options

COMPLETETYPES
FW=
MISSING
NONOBS

CLASS statement options
EXCLUSIVE
ORDER=
PRELOADFMT

WAYS statement
FORMAT procedure
FORMAT statement

Data set: CAKE

Details
This example does the following:

n specifies the field width of the statistics

n suppresses the column with the total number of observations

n includes all possible combinations of class variables values in the analysis even 
if the frequency is zero

n considers missing values as valid class levels

n analyzes the one-way and two-way combinations of class variables

n assigns user-defined formats to the class variables

n uses only the preloaded range of user-defined formats as the levels of class 
variables

n orders the results by the value of the formatted data

Program
options nodate pageno=1 linesize=80 pagesize=64;

proc format;
   value layerfmt 1='single layer'
                  2-3='multi-layer'
                  .='unknown';
   value $flvrfmt (notsorted)

Example 6: Using Preloaded Formats with Class Variables 1485



                  'Vanilla'='Vanilla'
                  'Orange','Lemon'='Citrus'
                  'Spice'='Spice'
                  'Rum','Mint','Almond'='Other Flavor';
run;

proc means data=cake fw=7 completetypes missing nonobs;

   class flavor layers/preloadfmt exclusive order=data;

   ways 1 2;

   var TasteScore;

   format layers layerfmt. flavor $flvrfmt.;

   title 'Taste Score For Number of Layers and Cake Flavors';
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=64;

Create the LAYERFMT. and $FLVRFMT. formats. PROC FORMAT creates user-
defined formats to categorize the number of cake layers and the cake flavors. 
NOTSORTED keeps $FLVRFMT unsorted to preserve the original order of the 
format values.

proc format;
   value layerfmt 1='single layer'
                  2-3='multi-layer'
                  .='unknown';
   value $flvrfmt (notsorted)
                  'Vanilla'='Vanilla'
                  'Orange','Lemon'='Citrus'
                  'Spice'='Spice'
                  'Rum','Mint','Almond'='Other Flavor';
run;

Generate the default statistics and specify the analysis options. FW= uses a 
field width of seven to display the statistics. COMPLETETYPES includes class 
levels with a frequency of zero. MISSING considers missing values valid values for 
all class variables. NONOBS suppresses the N Obs column. Because no specific 
analyses are requested, all default analyses are performed.

proc means data=cake fw=7 completetypes missing nonobs;

Specify subgroups for the analysis. The CLASS statement separates the 
analysis by values of Flavor and Layers. PRELOADFMT and EXCLUSIVE restrict 
the levels to the preloaded values of the user-defined formats. ORDER=DATA 
orders the levels of Flavor and Layer by formatted data values.

   class flavor layers/preloadfmt exclusive order=data;

Specify which subgroups to analyze. The WAYS statement requests one-way 
and two-way combinations of class variables.

1486 Chapter 40 / MEANS Procedure



   ways 1 2;

Specify the analysis variable. The VAR statement specifies that PROC MEANS 
calculate statistics on the TasteScore variable.

   var TasteScore;

Format the output. The FORMAT statement assigns user-defined formats to the 
Flavor and Layers variables for this analysis.

   format layers layerfmt. flavor $flvrfmt.;

Specify the title. 

   title 'Taste Score For Number of Layers and Cake Flavors';
run;

Output
The one-way combination of class variables appears before the two-way 
combination. PROC MEANS reports only the level values that are listed in the 
preloaded range of user-defined formats even when the frequency of observations 
is zero (in this case, citrus). PROC MEANS rejects entire observations based on the 
exclusion of any single class value in a given observation. Therefore, when the 
number of layers is unknown, statistics are calculated for only one observation. The 
other observation is excluded because the flavor chocolate was not included in the 
preloaded user-defined format for Flavor. The order of the levels is based on the 
order of the user-defined formats. PROC FORMAT automatically sorted the Layers 
format and did not sort the Flavor format.

Example 6: Using Preloaded Formats with Class Variables 1487



Output 40.8 Taste Score for Number of Layers

1488 Chapter 40 / MEANS Procedure



Example 7: Computing a Confidence Limit for the 
Mean
Features: PROC MEANS statement options

ALPHA=
FW=
MAXDEC=

CLASS statement

Data set: Charity

Details
This example does the following:

n specifies the field width and number of decimal places of the statistics

n computes a two-sided 90% confidence limit for the mean values of MoneyRaised 
and HoursVolunteered for the three years of data

If this data is representative of a larger population of volunteers, then the confidence 
limits provide ranges of likely values for the true population means.

Program
data charity;
   input School $ 1-7 Year 9-12 Name $ 14-20 MoneyRaised 22-26
         HoursVolunteered 28-29;
   datalines;
Monroe  2016 Allison 31.65 19
Monroe  2016 Barry   23.76 16
Monroe  2016 Candace 21.11  5

     . . . more data lines . . .
Kennedy 2018 Sid     27.45 25
Kennedy 2018 Will    28.88 21
Kennedy 2018 Morty   34.44 25;

proc means data=charity fw=8 maxdec=2 alpha=0.1 clm mean std;

   class Year;

   var MoneyRaised HoursVolunteered;

   title 'Confidence Limits for Fund Raising Statistics';
   title2 '20016-18';
run;

Example 7: Computing a Confidence Limit for the Mean 1489



Program Description
Create the CHARITY data set. CHARITY contains information about high-school 
students' volunteer work for a charity. The variables give the name of the high 
school, the year of the fund-raiser, the first name of each student, the amount of 
money each student raised, and the number of hours each student volunteered. A 
DATA step creates this data set.

data charity;
   input School $ 1-7 Year 9-12 Name $ 14-20 MoneyRaised 22-26
         HoursVolunteered 28-29;
   datalines;
Monroe  2016 Allison 31.65 19
Monroe  2016 Barry   23.76 16
Monroe  2016 Candace 21.11  5

     . . . more data lines . . .
Kennedy 2018 Sid     27.45 25
Kennedy 2018 Will    28.88 21
Kennedy 2018 Morty   34.44 25;

Specify the analyses and the analysis options. FW= uses a field width of eight 
and MAXDEC= uses two decimal places to display the statistics. ALPHA=0.1 
specifies a 90% confidence limit, and the CLM keyword requests two-sided 
confidence limits. MEAN and STD request the mean and the standard deviation, 
respectively.

proc means data=charity fw=8 maxdec=2 alpha=0.1 clm mean std;

Specify subgroups for the analysis. The CLASS statement separates the 
analysis by values of Year.

   class Year;

Specify the analysis variables. The VAR statement specifies that PROC MEANS 
calculate statistics on the MoneyRaised and HoursVolunteered variables.

   var MoneyRaised HoursVolunteered;

Specify the titles. 

   title 'Confidence Limits for Fund Raising Statistics';
   title2 '20016-18';
run;

Output
PROC MEANS displays the lower and upper confidence limits for both variables for 
each year.

1490 Chapter 40 / MEANS Procedure



Output 40.9 Confidence Limits

Example 8: Computing Output Statistics
Features: PROC MEANS statement option

NOPRINT
CLASS statement
OUTPUT statement options

statistic keywords
IDGROUP
LEVELS
WAYS

PRINT procedure

Data set: GRADE 

Details
This example does the following:

n suppresses the display of PROC MEANS output

n stores the average final grade in a new variable

n stores the name of the student with the best final exam scores in a new variable

n stores the number of class variables that are combined in the _WAY_ variable

n stores the value of the class level in the _LEVEL_ variable 

n displays the output data set

Example 8: Computing Output Statistics 1491



Program
options nodate pageno=1 linesize=80 pagesize=60;

proc means data=Grade noprint;

   class Status Year;

   var FinalGrade;

   output out=sumstat mean=AverageGrade
          idgroup (max(score) obs out (name)=BestScore)
          / ways levels;
run;

proc print data=sumstat noobs;
   title1 'Average Undergraduate and Graduate Course Grades';
   title2 'For Two Years';
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the analysis options. NOPRINT suppresses the display of all PROC 
MEANS output.

proc means data=Grade noprint;

Specify subgroups for the analysis. The CLASS statement separates the 
analysis by values of Status and Year.

   class Status Year;

Specify the analysis variable. The VAR statement specifies that PROC MEANS 
calculate statistics on the FinalGrade variable.

   var FinalGrade;

Specify the output data set options. The OUTPUT statement creates the 
SUMSTAT data set and writes the mean value for the final grade to the new variable 
AverageGrade. IDGROUP writes the name of the student with the top exam score 
to the variable BestScore and the observation number that contained the top score. 
WAYS and LEVELS write information about how the class variables are combined.

   output out=sumstat mean=AverageGrade
          idgroup (max(score) obs out (name)=BestScore)
          / ways levels;
run;

Print the output data set WORK.SUMSTAT. The NOOBS option suppresses the 
observation numbers.

proc print data=sumstat noobs;
   title1 'Average Undergraduate and Graduate Course Grades';
   title2 'For Two Years';

1492 Chapter 40 / MEANS Procedure



run;

Output
The first observation contains the average course grade and the name of the 
student with the highest exam score over the two-year period. The next four 
observations contain values for each class variable value. The remaining four 
observations contain values for the Year and Status combination. The variables 
_WAY_, _TYPE_, and _LEVEL_ show how PROC MEANS created the class 
variable combinations. The variable _OBS_ contains the observation number in the 
GRADE data set that contained the highest exam score.

Output 40.10 Average Course Grades

Example 9: Computing Different Output Statistics 
for Several Variables
Features: PROC MEANS statement options

DESCEND
NOPRINT

CLASS statement
OUTPUT statement options

statistic keywords
PRINT procedure
WHERE= data set option

Data set: GRADE 

Example 9: Computing Different Output Statistics for Several Variables 1493



Details
This example does the following:

n suppresses the display of PROC MEANS output

n stores the statistics for the class level and combinations of class variables that 
are specified by WHERE= in the output data set

n orders observations in the output data set by descending _TYPE_ value

n stores the mean exam scores and mean final grades without assigning new 
variables names

n stores the median final grade in a new variable

n displays the output data set

Program
options nodate pageno=1 linesize=80 pagesize=60;

proc means data=Grade noprint descend;

   class Status Year;

   var Score FinalGrade;

   output out=Sumdata (where=(status='1' or _type_=0))
          mean= median(finalgrade)=MedianGrade;
run;

proc print data=Sumdata;
   title 'Exam and Course Grades for Undergraduates Only';
   title2 'and for All Students';
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the analysis options. NOPRINT suppresses the display of all PROC 
MEANS output. DESCEND orders the observations in the OUT= data set by 
descending _TYPE_ value.

proc means data=Grade noprint descend;

1494 Chapter 40 / MEANS Procedure



Specify subgroups for the analysis. The CLASS statement separates the 
analysis by values of Status and Year. 

   class Status Year;

Specify the analysis variables. The VAR statement specifies that PROC MEANS 
calculate statistics on the Score and FinalGrade variables.

   var Score FinalGrade;

Specify the output data set options. The OUTPUT statement writes the mean for 
Score and FinalGrade to variables of the same name. The median final grade is 
written to the variable MedianGrade. The WHERE= data set option restricts the 
observations in SUMDATA. One observation contains overall statistics (_TYPE_=0). 
The remainder must have a status of 1.

   output out=Sumdata (where=(status='1' or _type_=0))
          mean= median(finalgrade)=MedianGrade;
run;

Print the output data set WORK.SUMDATA. 

proc print data=Sumdata;
   title 'Exam and Course Grades for Undergraduates Only';
   title2 'and for All Students';
run;

Output
The first three observations contain statistics for the class variable levels with a 
status of 1. The last observation contains the statistics for all the observations (no 
subgroup). Score contains the mean test score and FinalGrade contains the mean 
final grade.

Output 40.11 Exam and Course Grades

Example 9: Computing Different Output Statistics for Several Variables 1495



Example 10: Computing Output Statistics with 
Missing Class Variable Values
Features: PROC MEANS statement options

CHARTYPE
NOPRINT
NWAY

CLASS statement options
ASCENDING
MISSING
ORDER=

OUTPUT statement
PRINT procedure

Data set: CAKE 

Details
This example does the following:

n suppresses the display of PROC MEANS output

n considers missing values as valid level values for only one class variable

n orders observations in the output data set by the ascending frequency for a 
single class variable

n stores observations for only the highest _TYPE_ value

n stores _TYPE_ as binary character values

n stores the maximum taste score in a new variable

n displays the output data set

Program
options nodate pageno=1 linesize=80 pagesize=60;

proc means data=cake chartype nway noprint;

   class flavor /order=freq ascending;
   class layers /missing;

   var TasteScore;

   output out=cakestat max=HighScore;
run;

proc print data=cakestat;

1496 Chapter 40 / MEANS Procedure



   title 'Maximum Taste Score for Flavor and Cake Layers';
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the analysis options. NWAY prints observations with the highest _TYPE_ 
value. NOPRINT suppresses the display of all PROC MEANS output.

proc means data=cake chartype nway noprint;

Specify subgroups for the analysis. The CLASS statements separate the 
analysis by Flavor and Layers. ORDER=FREQ and ASCENDING order the levels of 
Flavor by ascending frequency. MISSING uses missing values of Layers as a valid 
class level value.

   class flavor /order=freq ascending;
   class layers /missing;

Specify the analysis variable. The VAR statement specifies that PROC MEANS 
calculate statistics on the TasteScore variable.

   var TasteScore;

Specify the output data set options. The OUTPUT statement creates the 
CAKESTAT data set and generates the maximum value for the taste score to the 
new variable HighScore.

   output out=cakestat max=HighScore;
run;

Print the output data set WORK.CAKESTAT. 

proc print data=cakestat;
   title 'Maximum Taste Score for Flavor and Cake Layers';
run;

Output
The CAKESTAT output data set contains only observations for the combination of 
the two class variables, Flavor and Layers. Therefore, the value of _TYPE_ is 11 for 
all observations. The observations are ordered by ascending frequency of Flavor. 
The missing value in Layers is a valid value for this class variable. PROC MEANS 
excludes the observation with the missing flavor because it is an invalid value for 
Flavor.

Example 10: Computing Output Statistics with Missing Class Variable Values 1497



Output 40.12 Maximum Taste Score

Example 11: Identifying an Extreme Value with the 
Output Statistics
Features: CLASS statement

OUTPUT statement options
statistic keyword
MAXID

PRINT procedure

Data set: Charity

Details
This example does the following:

n identifies the observations with maximum values for two variables

n creates new variables for the maximum values

n displays the output data set

Program
proc means data=Charity n mean range chartype;

1498 Chapter 40 / MEANS Procedure



   class School Year;

   var MoneyRaised HoursVolunteered;

   output out=Prize maxid(MoneyRaised(name)
          HoursVolunteered(name))= MostCash MostTime
          max= ;
   

   title 'Summary of Volunteer Work by School and Year';
run;

proc print data=Prize;
   title 'Best Results: Most Money Raised and Most Hours Worked';
run;

Program Description
Specify the analyses. The statistic keywords specify the statistics and their order in 
the output. CHARTYPE writes the _TYPE_ values as binary characters in the output 
data set

proc means data=Charity n mean range chartype;

Specify subgroups for the analysis. The CLASS statement separates the 
analysis by School and Year.

   class School Year;

Specify the analysis variables. The VAR statement specifies that PROC MEANS 
calculate statistics on the MoneyRaised and HoursVolunteered variables.

   var MoneyRaised HoursVolunteered;

Specify the output data set options. The OUTPUT statement writes the new 
variables, MostCash, and MostTime, which contain the names of the students who 
collected the most money and volunteered the most time, respectively, to the PRIZE 
data set.

   output out=Prize maxid(MoneyRaised(name)
          HoursVolunteered(name))= MostCash MostTime
          max= ;
   

Specify the title. 

   title 'Summary of Volunteer Work by School and Year';
run;

Print the WORK.PRIZE output data set. 

proc print data=Prize;
   title 'Best Results: Most Money Raised and Most Hours Worked';
run;

Example 11: Identifying an Extreme Value with the Output Statistics 1499



Output
The first page of output shows the output from PROC MEANS with the statistics for 
six class levels: one for Monroe High for the years 1992, 1993, and 1994; and one 
for Kennedy High for the same three years.

Output 40.13 Summary of Volunteer Work

The output from PROC PRINT shows the maximum MoneyRaised and 
HoursVolunteered values and the names of the students who are responsible for 
them. The first observation contains the overall results, the next three contain the 
results by year, the next two contain the results by school, and the final six contain 
the results by School and Year.

1500 Chapter 40 / MEANS Procedure



Output 40.14 Best Results

Example 12: Identifying the Top Three Extreme 
Values with the Output Statistics
Features: PROC MEANS statement option

NOPRINT
CLASS statement
OUTPUT statement options

statistic keywords
AUTOLABEL
AUTONAME
IDGROUP

TYPES statement
FORMAT procedure
FORMAT statement
PRINT procedure
RENAME= data set option

Data set: Charity

Details
This example does the following:

Example 12: Identifying the Top Three Extreme Values with the Output Statistics 1501



n suppresses the display of PROC MEANS output

n analyzes the data for the one-way combination of the class variables and across 
all observations

n stores the total and average amount of money raised in new variables

n stores in new variables the top three amounts of money raised, the names of the 
three students who raised the money, the years when it occurred, and the 
schools the students attended

n automatically resolves conflicts in the variable names when names are assigned 
to the new variables in the output data set

n appends the statistic name to the label of the variables in the output data set that 
contain statistics that were computed for the analysis variable

n assigns a format to the analysis variable so that the statistics that are computed 
from this variable inherit the attribute in the output data set 

n renames the _FREQ_ variable in the output data set

n displays the output data set and its contents

Program
proc format;
   value yrFmt . = " All";
   value $schFmt ' ' = "All    ";
run;

proc means data=Charity noprint;

   class School Year;

   types () school year;

   var MoneyRaised;

   output out=top3list(rename=(_freq_=NumberStudents))sum= mean=
          idgroup( max(moneyraised) out[3] (moneyraised name
            school year)=)/autolabel autoname;

   label MoneyRaised='Amount Raised';
   format year yrfmt. school $schfmt.
          moneyraised dollar8.2;
  run;

proc print data=top3list;
   title1 'School Fund Raising Report';
   title2 'Top Three Students';
run;

proc datasets library=work nolist;
   contents data=top3list;
   title1 'Contents of the PROC MEANS Output Data Set';
run;

1502 Chapter 40 / MEANS Procedure



Program Description
Create the YRFMT. and $SCHFMT. formats. PROC FORMAT creates user-defined 
formats that assign the value of All to the missing levels of the class variables.

proc format;
   value yrFmt . = " All";
   value $schFmt ' ' = "All    ";
run;

Generate the default statistics and specify the analysis options. NOPRINT 
suppresses the display of all PROC MEANS output.

proc means data=Charity noprint;

Specify subgroups for the analysis. The CLASS statement separates the 
analysis by values of School and Year.

   class School Year;

Specify which subgroups to analyze. The TYPES statement requests the 
analysis across all the observations and for each one-way combination of School 
and Year.

   types () school year;

Specify the analysis variable. The VAR statement specifies that PROC MEANS 
calculate statistics on the MoneyRaised variable.

   var MoneyRaised;

Specify the output data set options. The OUTPUT statement creates the 
TOP3LIST data set. RENAME= renames the _FREQ_ variable that contains the 
frequency count for each class level. SUM= and MEAN= specify that the sum and 
mean of the analysis variable (MoneyRaised) are written to the output data set. 
IDGROUP writes 12 variables that contain the top three amounts of money raised 
and the three corresponding students, schools, and years. AUTOLABEL appends 
the analysis variable name to the label for the output variables that contain the sum 
and mean. AUTONAME resolves naming conflicts for these variables.

   output out=top3list(rename=(_freq_=NumberStudents))sum= mean=
          idgroup( max(moneyraised) out[3] (moneyraised name
            school year)=)/autolabel autoname;

Format the output. The LABEL statement assigns a label to the analysis variable 
MoneyRaised. The FORMAT statement assigns user-defined formats to the Year 
and School variables and a SAS dollar format to the MoneyRaised variable.

   label MoneyRaised='Amount Raised';
   format year yrfmt. school $schfmt.
          moneyraised dollar8.2;
  run;

Print the output data set WORK.TOP3LIST. 

proc print data=top3list;
   title1 'School Fund Raising Report';
   title2 'Top Three Students';
run;

Display information about the TOP3LIST data set. PROC DATASETS displays 
the contents of the TOP3LIST data set. NOLIST suppresses the directory listing for 
the WORK data library.

Example 12: Identifying the Top Three Extreme Values with the Output Statistics 1503



proc datasets library=work nolist;
   contents data=top3list;
   title1 'Contents of the PROC MEANS Output Data Set';
run;

Output
The output from PROC PRINT shows the top three values of MoneyRaised, the 
names of the students who raised these amounts, the schools the students 
attended, and the years when the money was raised. The first observation contains 
the overall results, the next three contain the results by year, and the final two 
contain the results by school. The missing class levels for School and Year are 
replaced with the value ALL. The labels for the variables that contain statistics that 
were computed from MoneyRaised include the statistic name at the end of the label.

Output 40.15 School Fund Raising

See the TEMPLATE procedure in SAS Output Delivery System: User’s Guide for an 
example of how to create a custom table template for this output data set.

Output 40.16 PROC MEANS Output Data Set

1504 Chapter 40 / MEANS Procedure



Example 12: Identifying the Top Three Extreme Values with the Output Statistics 1505



Example 13: Using the STACKODSOUTPUT 
Option to Control Data
Features: PROC PRINT

PROC CONTENTS

The first example does not use the STACKODSOUTPUT option. The second 
example uses the STACKODSOUTPUT option.

1506 Chapter 40 / MEANS Procedure



Program
proc means data=sashelp.class;
class sex;
var weight height;
ods output summary=default;
run;

proc print data=default; run;
proc contents data=default; run;

Program Description
This code processes the data without using the STACKODSOUTPUT option.

proc means data=sashelp.class;
class sex;
var weight height;
ods output summary=default;
run;

Prints the data using PROC PRINT. Print the contents of the procedure using 
PROC CONTENTS.

proc print data=default; run;
proc contents data=default; run;

OUTPUT
The following outputs show the difference in processing data using the 
STACKODSOUTPUT option and then not using the option.

This output is generated without the STACKODSOUTPUT option.

Output 40.17 Output without Using the STACKODSOUTPUT Option

Example 13: Using the STACKODSOUTPUT Option to Control Data 1507



1508 Chapter 40 / MEANS Procedure



This code processes the data using the STACKODSOUTPUT option.

proc means data=sashelp.class STACKODSOUTPUT;
class sex;

Example 13: Using the STACKODSOUTPUT Option to Control Data 1509



var weight height;
ods output summary=stacked;
run;

Print the data using PROC PRINT. Print the contents of the procedure using 
PROC CONTENTS.

proc print data=stacked; run;
proc contents data=stacked; run;

This output is generated with the STACKODSOUTPUT option.

Output 40.18 Output Using the STACKODSOUTPUT Option

1510 Chapter 40 / MEANS Procedure



Example 13: Using the STACKODSOUTPUT Option to Control Data 1511



References
Jain R., and I. Chlamtac. 1985. “The P² Algorithm for Dynamic Calculation of 

Quantiles and Histograms without Sorting Observations.” Communications of the 
Association of Computing Machinery 28 (10): 1076–0185.

1512 Chapter 40 / MEANS Procedure



Chapter 41
MIGRATE Procedure

Overview: MIGRATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1513
What Does the MIGRATE Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1514

Concepts: MIGRATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1514
Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1514
Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1515
Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1516
MDDBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1517
Items Stores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1517
Not Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1517

Syntax: MIGRATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1517
PROC MIGRATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1518

Usage: MIGRATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1521
Migrating a Data Set with Audit Trails, Generations, Indexes, or 

Integrity Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1521
Migrating a SAS Data Set with NODUPKEY Sort Indicator . . . . . . . . . . . . . . . . . 1521
Migrating a SAS 6 Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1522
Migrating Files with Short Extensions on PC Operating Environments . . . . . . . . 1523
Using a SAS/CONNECT or SAS/SHARE Server . . . . . . . . . . . . . . . . . . . . . . . . . 1524
Additional Steps for Unsupported Catalogs or Libraries . . . . . . . . . . . . . . . . . . . 1526

Examples: MIGRATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1528
Example 1: Migrating from a SAS®9 Release by Using SAS/CONNECT . . . . . . 1528
Example 2: Migrating with Direct Access and No Incompatible Catalogs . . . . . . 1530
Example 3: Migrating with Incompatible Catalogs When the 

SLIBREF= Option Is Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1530

1513



Overview: MIGRATE Procedure

What Does the MIGRATE Procedure Do?
The MIGRATE procedure migrates members in a SAS library to the current SAS 
version.

The procedure migrates a library from most SAS 6, SAS 7, SAS 8, and SAS®9 
operating environments to the current release of SAS. The migration must occur 
within the same engine family. For example, V6, V7, or V8 can migrate to V9, but 
V6TAPE must migrate to V9TAPE.

The procedure migrates the following library members:

n data sets with alternate collating sequence, audit trails, compression, created 
and modified datetimes, deleted observations, encryption (except AES 
encryption), extended attributes, generations, indexes, integrity constraints, and 
passwords

n in many cases, views, catalogs, item stores, and multidimensional databases 
(MDDBs) (see Concepts: MIGRATE Procedure on page 1514)

The procedure does not support stored compiled DATA step programs or stored 
compiled macros. (Instead, move the source code to the target, where you can 
compile and store it.) The procedure does not support SAS program files. The 
procedure does not support Scalable Performance Data (SPD) engine data sets. 
(See SAS Scalable Performance Data Engine: Reference.) The procedure does not 
support the extended observation count attribute.

Concepts: MIGRATE Procedure

Data Sets
PROC MIGRATE retains alternate collating sequence, compression, created and 
modified datetimes, deleted observations, encryption, extended attributes, indexes, 
integrity constraints, and passwords. See several important restrictions at the 
beginning of the syntax on page 1517.

1514 Chapter 41 / MIGRATE Procedure

http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


The audit trail and generations are also migrated. Indexes and integrity constraints 
are rebuilt on the member in the target library. See “Migrating a Data Set with Audit 
Trails, Generations, Indexes, or Integrity Constraints” on page 1521.

Migrated data sets take on the data representation and encoding attributes of the 
target library. When you migrate a data set to an encoding where the characters are 
represented by more bytes, truncation might occur if the column length does not 
accommodate the larger character size. For example, a character might be 
represented in Wlatin1 encoding as one byte but in UTF-8 as two bytes. The best 
solution is to expand the column length with the CVP engine and PROC COPY 
before you migrate. (PROC MIGRATE does not currently support the CVP engine.) 
The CVPMULTIPLIER=2.5 value is usually sufficient to avoid truncation. If your data 
contains Asian characters, CVPMULTIPLIER=4 is recommended. For more 
information, read about the CVPMULTIPLIER= option and avoiding character data 
truncation in SAS National Language Support (NLS): Reference Guide. See also 
the paper “Multilingual Computing with SAS® 9.4” on support.sas.com.

For SAS data sets that use the ASCII-OEM character set, PROC MIGRATE does 
not translate non-English characters. This issue is very uncommon. To migrate a 
SAS data set with ASCII-OEM characters, use the CPORT and CIMPORT 
procedures with the TRANTAB option. Specify the appropriate TRANTAB values for 
the source and target data sets.

Views
As with data sets, migrated data views take on the data representation and 
encoding attributes of the target library. When you migrate a library that contains 
DATA step views to a different operating environment, and the views were created 
prior to SAS 9.2, you might need to set the proper encoding. In releases prior to 
SAS 9.2, DATA step views did not save encoding information. Therefore, if the view 
has a different encoding than the target session, you must specify the 
INENCODING= option for the source library's LIBNAME statement. Here is an 
example:

libname Srclib 'source-library-pathname' inencoding="OPEN_ED-1047";
libname Lib1 'target-library-pathname';
proc migrate in=Srclib out=Lib1;
run;

In addition, embedded librefs associated with a view are not updated during 
migration. The following example illustrates the issue. In this example, Lib1.MyView 
contains a view of the data set Lib1.MyData:

data Lib1.MyData;x=1;
run;
proc sql;
   create view Lib1.MyView as select * from Lib1.MyData;
quit;

After you migrate Lib1 to Lib2, you have Lib2.MyView and Lib2.MyData. However, 
because Lib2.MyView was originally created with an embedded libref of Lib1, it still 
references the data set Lib1.MyData, not Lib2.MyData. The following example fails 
with an error message that Lib1 cannot be found:

proc print data=Lib2.MyView;
run;

Concepts: MIGRATE Procedure 1515

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://support.sas.com


PROC MIGRATE supports three types of views: DATA step views, SQL views, and 
SAS/ACCESS views:

DATA Step Views
When you create a DATA step view, you can specify the SOURCE= option to 
store the DATA step code along with the view. PROC MIGRATE supports DATA 
step views with stored code. The stored code is recompiled the first time the 
DATA step view is accessed by SAS in the target environment. PROC MIGRATE 
does not support DATA step views that were created prior to SAS 8 or DATA 
step views without stored code. For DATA step views without stored code, use 
the DESCRIBE statement in the source session to recover the DATA step code. 
Then submit the DATA step code in the target session and recompile it.

PROC SQL Views
PROC MIGRATE supports PROC SQL views with no known issues.

SAS/ACCESS Views
PROC MIGRATE supports SAS/ACCESS views that were written with the 
Oracle, SAP, or DB2 engine. PROC MIGRATE automatically uses the CV2VIEW 
procedure, which converts SAS/ACCESS views into SQL views. Migrating 
SAS/ACCESS views to a different operating environment is not supported. For 
more information about the conversion, see the overview of the CV2VIEW 
procedure in SAS/ACCESS for Relational Databases: Reference.

Catalogs
To migrate catalogs, PROC MIGRATE calls PROC CPORT and PROC CIMPORT. 
You might notice that CPORT and CIMPORT notes are written to the SAS log during 
migration. PROC CPORT and CIMPORT restrictions apply. For example, catalogs in 
sequential libraries are not migrated. Stored compiled macros that are stored in 
catalogs are not supported. (Instead, move the source code to the target, where you 
can compile and store it.) Catalog entries might need to be updated after migrating 
(for example, code that contains hardcoded pathnames).

IMPORTANT PROC MIGRATE is not supported for SAS 6 AIX catalogs. 
Use PROC CPORT and PROC CIMPORT instead. See “Additional Steps for 
Unsupported Catalogs or Libraries” on page 1526.

IMPORTANT If cross-environment data access (CEDA) processing is 
invoked, and if the IN= source library contains catalogs, then you must 
specify a SAS/CONNECT or SAS/SHARE libref in the IN= option or in the 
SLIBREF= option. To determine whether to specify the libref in the IN= or 
SLIBREF= argument, see “Using a SAS/CONNECT or SAS/SHARE Server” 
on page 1524. If the catalogs were created in SAS 6 or SAS 8, SLIBREF= 
must be assigned through a SAS 8 server.

1516 Chapter 41 / MIGRATE Procedure

http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


MDDBs
PROC MIGRATE supports MDDBs with no known issues.

Items Stores
PROC MIGRATE supports item stores unless you migrate from a 32-bit to a 64-bit 
environment. Migrations from 32-bit to 64-bit environments use Remote Library 
Services (RLS), which does not support item stores. In that case, an error message 
is not written to the SAS log, but item stores might not work correctly in the target 
library.

Not Supported
PROC MIGRATE does not support stored compiled DATA step programs or stored 
compiled macros. (Instead, move the source code to the target, where you can 
compile and store it.) PROC MIGRATE does not support SAS program files. PROC 
MIGRATE does not support SPD Engine data sets. (See SAS Scalable 
Performance Data Engine: Reference.) See also restrictions above for each 
member type.

Syntax: MIGRATE Procedure
Restrictions: SAS data set options are not supported with PROC MIGRATE.

The CVP engine is not currently supported with PROC MIGRATE. You can use the CVP 
engine with the COPY procedure (or the COPY statement of the DATASETS procedure) 
to expand column lengths in the source library before you use PROC MIGRATE.
The source and target libraries must be in different physical locations.
When PROC MIGRATE creates a member in the target library, the member does not 
retain its permissions from the source library. It has the permissions that are associated 
with the user ID of the person who ran PROC MIGRATE.
SAS 8.2 source libraries from the following operating environments are not supported: 
CMS, OS/2, OpenVMS VAX, or 64-bit AIX. See “Additional Steps for Unsupported 
Catalogs or Libraries” on page 1526.
Catalogs that were created under a Tru64 UNIX source environment are not supported 
for a Linux for x64 or a Solaris for x64 target environment. To migrate catalogs under 
those conditions, see “Additional Steps for Unsupported Catalogs or Libraries” on page 
1526.

Syntax: MIGRATE Procedure 1517

http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=engspde&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


SAS files that were created prior to SAS 6.12 (SAS 6.09E for z/OS) must be converted 
to SAS 6.12 before they can be migrated to the current release of SAS. Some SAS 6 
source environments are not supported; see “Migrating a SAS 6 Library” on page 1522.
This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Interaction: The International Components for Unicode (ICU) version is used to sort data sets with a 
linguistic collating sequence. If a linguistically sorted data set has a different ICU version 
number than that of the current SAS session, the following occurs: PROC MIGRATE 
retains the data set's sort order in the OUT= destination library. However, the data set is 
no longer marked as sorted, and a message is written to the SAS log. For more 
information about linguistic sorting, see Chapter 64, “SORT Procedure,” on page 2277.

Tips: Assign the OUT= target library to an empty location. If a member already exists in the 
target library that has the same name and member type as a member in the source 
library, the member is not migrated. An error message is written to the SAS log, and 
PROC MIGRATE continues with the next member. Note that members in a sequential 
library are an exception, because PROC MIGRATE does not read the entire tape to 
determine existence.
For encoding and transcoding issues, see the SAS National Language Support (NLS): 
Reference Guide.

PROC MIGRATE IN=libref-1 OUT=libref-2 <options>;

Statement Task Example

PROC MIGRATE Migrate members in a SAS library to the current 
SAS version

Ex. 1, Ex. 2, 
Ex. 3

PROC MIGRATE Statement
Migrates a SAS library forward to the current release of SAS.

Syntax
PROC MIGRATE IN=libref-1 OUT=libref-2
<BUFSIZE=KEEPSIZE | n | nK | nM | nG>
<MOVE>
<SLIBREF=libref>
<KEEPNODUPKEY>;

Required Arguments
IN=libref-1

names the source SAS library from which to migrate members. 

Restriction Concatenated libraries are not supported. See SAS Note 24539 
at https://support.sas.com/kb/24/539.html.

1518 Chapter 41 / MIGRATE Procedure

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
https://support.sas.com/kb/24/539.html


Requirements If you use a server, such as SAS/CONNECT or SAS/SHARE, the 
server must be SAS 9.1.3 or later.

If cross-environment data access (CEDA) processing is invoked, 
and if the IN= source library contains catalogs, then you must 
specify a SAS/CONNECT libref or a SAS/SHARE libref in the 
IN= option or in the SLIBREF= option. To determine whether to 
specify the libref in the IN= or the SLIBREF= argument, see 
“Using a SAS/CONNECT or SAS/SHARE Server” on page 1524.

If CATALOG is the only member type in the library and you are 
using the SLIBREF= option, then omit the IN= argument.

OUT=libref-2
names the target SAS library to contain the migrated members. 

Restriction Do not assign the OUT= target library to a server, such as 
SAS/CONNECT or SAS/SHARE. The REMOTE engine is not 
supported for the target library. The following example causes an 
error:

libname Lib1 'source-library-pathname';
libname Lib2 server=server id;
proc migrate in=Lib1 out=Lib2;
run;

Requirement Assign the OUT= target library to a different physical location than 
the IN= source library.

Interaction PROC MIGRATE can use the LIBNAME option OUTREP= for 
DATA, VIEW, ACCESS, MDDB, and DMDB member types. If you 
specify the OUTREP= option, you might also want to specify the 
EXTENDOBSCOUNTER= option. These options are appropriate 
in the LIBNAME statement for the OUT= library. See SAS DATA 
Step Statements: Reference.

Tip Assign the target library to an empty location. If a member already 
exists in the target library that has the same name and member 
type as a member in the source library, the member is not 
migrated. An error message is written to the SAS log, and PROC 
MIGRATE continues with the next member. Note that members in 
a sequential library are an exception, because PROC MIGRATE 
does not read the entire tape to determine existence.

Optional Arguments
BUFSIZE=KEEPSIZE | n | nK | nM | nG

specifies the buffer page size of the members that are written to the target 
library. For example, a value of 10000 specifies a page size of 10,000 bytes, and 
a value of 4k specifies a page size of 4096 bytes. A value of 0 results in the 
default. Setting the page size can help optimize SAS performance. In SAS 
9.4M3, the BUFSIZE default is changed. The new default is the buffer page size 
of the current session. To continue using the previous behavior, which is to clone 
the page size of the members from the source library, specify 
BUFSIZE=KEEPSIZE.

PROC MIGRATE Statement 1519

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


For more details about the BUFSIZE= data set option or system option, see the 
documentation for your operating environment.

KEEPSIZE
retains (clones) the page size of members from the source library.

n
specifies the number of bytes.

nK
specifies the number of kilobytes.

nM
specifies the number of megabytes.

nG
specifies the number of gigabytes.

Default the buffer page size of the current session

MOVE
deletes the original members from the source library. If a member already exists 
in the target library, the member is not deleted from the source library and a 
message is sent to the SAS log. If a catalog already exists in the target library, 
then no catalogs are deleted from the source library and a message is sent to 
the log. If a data set has referential integrity constraints, the data set is not 
deleted from the source library and an error is sent to the log. 

Restriction The engine that is associated with the IN= source library must 
support the deletion of tables. Sequential engines do not support 
the deletion of tables.

Tip Use the MOVE option only if your system is space-constrained. It is 
preferable to verify the migration of the member before it is deleted.

SLIBREF=libref
specifies a libref that is assigned through a SAS/CONNECT or SAS/SHARE 
server. If cross-environment data access (CEDA) processing is invoked, and if 
the IN= source library contains catalogs, then you must specify a 
SAS/CONNECT or SAS/SHARE libref in the IN= option or in the SLIBREF= 
option. To determine whether to specify the libref in the IN= or SLIBREF= 
argument, see “Using a SAS/CONNECT or SAS/SHARE Server” on page 1524.

Requirements If the catalogs were created in SAS 6 or SAS 8, SLIBREF= must 
be assigned through a SAS 8 server.

The SLIBREF= server must be running on the same type of 
operating environment as the source library. For example, if the 
source session is running under UNIX, then the server must be 
running under UNIX.

Interactions If CATALOG is the only member type in the library and you are 
using the SLIBREF= option, then omit the IN= argument.

If you are migrating from a SAS®9 release or later (for example, 
migrating from SAS 9.1.3 to SAS 9.4), then SLIBREF= is not 
required. If you have incompatible catalogs, specify the 
SAS/CONNECT or SAS/SHARE server libref in the IN= 
argument and omit the SLIBREF= argument. For the IN= 
argument, the server must be SAS 9.1.3 or later.

1520 Chapter 41 / MIGRATE Procedure



KEEPNODUPKEY
specifies to retain the NODUPKEY sort order. See “Migrating a SAS Data Set 
with NODUPKEY Sort Indicator” on page 1521.

Usage: MIGRATE Procedure

Migrating a Data Set with Audit Trails, Generations, 
Indexes, or Integrity Constraints

In all cases, the data set migrates first, and then the audit trails, generations, index, 
or integrity constraints are applied. Errors are handled in the following ways:

n If an error occurs while an index is created for a migrated data set, the data set 
might migrate without the index, or processing might stop. A message is written 
to the SAS log. If an index fails to migrate, resolve the error and re-create the 
index in the target library.

If an index is missing from the source library, then depending on the environment 
and system options, SAS might try to repair the data set during migration by re-
creating the index. If the data set is incompatible with the session encoding or 
data representation, re-creating the index produces an error. To resolve the error, 
re-create the index in the source library using the original operating system or 
move the index from its original location, and submit the PROC MIGRATE again. 
The error can occur when a customer has moved a data set using the operating 
system and failed to include an index in the move.

n If an error occurs while integrity constraints are applied to a migrated data set, or 
while an audit trail or generations are migrated, the data set is removed from the 
target library. A note is written to the SAS log. If the MOVE option is specified, it 
does not delete the data set from the source library.

n For a data set with referential integrity constraints, the MOVE option does not 
delete any members in the source library, even when the migration is successful. 
You must remove referential integrity constraints before the member can be 
deleted. An error message is written to the SAS log.

Migrating a SAS Data Set with NODUPKEY Sort 
Indicator

When you migrate a SAS data set that was sorted with the NODUPKEY option, you 
can either use the default behavior or specify the KEEPNODUPKEY option.

Under the default behavior (without the KEEPNODUPKEY option), the SAS data set 
retains its sort indicator in the target library. However, the NODUPKEY attribute is 

Usage: MIGRATE Procedure 1521



removed, and a warning message is written to the SAS log. This is the default 
behavior because SAS data sets that were sorted with the NODUPKEY option in 
previous releases might retain observations with duplicate keys. You can re-sort the 
migrated SAS data set by the key variables in PROC SORT so that observations 
with duplicate keys are eliminated and the correct attributes are recorded.

If you specify the KEEPNODUPKEY option, you must examine your migrated data 
to determine whether observations with duplicate keys exist. If so, you must re-sort 
the SAS data set to have the data and NODUPKEY sort attribute match.

Migrating a SAS 6 Library
For SAS 6 source libraries, the following operating environments are supported. 
Find your source operating environment in the first column and read across the row 
for information about the supported target operating environments.

If your catalogs or libraries are not supported, see “Additional Steps for Unsupported 
Catalogs or Libraries” on page 1526. For important information about the SLIBREF= 
option, see “Using a SAS/CONNECT or SAS/SHARE Server” on page 1524.

Table 41.1 Supported SAS 6 Libraries

Source Library Target Library
Instructions for Libraries 
with Catalogs

SAS 6.12 AIX, HP-UX, or 
Solaris SPARC

AIX, HP-UX, or Solaris 
SPARC

PROC MIGRATE does not 
support catalogs from SAS 
6 AIX.

For HP-UX or Solaris 
libraries that contain 
catalogs, specify the 
SLIBREF= option.

SAS 6.12 Windows 32-bit Windows Catalogs are supported. 
Do not use the SLIBREF= 
option.

SAS 6.12 Windows 64-bit Windows For libraries that contain 
catalogs, specify the 
SLIBREF= option.

SAS 6.09E z/OS z/OS Catalogs are supported. 
Do not use the SLIBREF= 
option.

SAS files that were created prior to SAS 6.12 (SAS 6.09E for z/OS) must be 
converted to SAS 6.12 before they can be migrated to the current release of SAS. 
See “Additional Steps for Unsupported Catalogs or Libraries” on page 1526.

1522 Chapter 41 / MIGRATE Procedure



Migrating Files with Short Extensions on PC 
Operating Environments

Overview
In SAS 7 and 8, the SHORTFILEEXT option creates a file with a shortened, three-
character extension on PC operating environments only. This feature is necessary 
for operating systems that use a file allocation table (FAT) file system. The FAT file 
system is also referred to as 8.3 because a file name can include up to eight 
characters and a file extension can include up to three characters. These files are 
created on PC environments. They are not usable by SAS on other environments.

Note: SAS 6 files all have three-character extensions but are not affected by this 
issue. You can distinguish SAS 6 files because their extensions do not contain the 
number 7. 

Below is a table of the short and standard extensions for SAS 7 and 8 files. To 
determine whether a library contains files with short extensions, look at the file 
names in the SAS Explorer or use the file management tools of your operating 
environment.

Table 41.2 Short and Standard File Extensions for SAS 7 and 8 Files

Memtype Short Extension Standard Extension

ACCESS sa7 sas7bacs

AUDIT st7 sas7baud

CATALOG sc7 sas7bcat

DATA sd7 sas7bdat

DMDB s7m sas7bdmd

FDB sf7 sas7bfdb

INDEX si7 sas7bndx

ITEMSTOR sr7 sas7bitm

MDDB sm7 sas7bmdb

PROGRAM ss7 sas7bpgm

Usage: MIGRATE Procedure 1523



Memtype Short Extension Standard Extension

PUTILITY sp7 sas7bput

UTILITY su7 sas7butl

VIEW sv7 sas7bvew

SAS®9 Compatibility with Short-Extension 
Files
Read-Only access is supported for short-extension files from earlier releases. You 
can migrate your library to the current release of SAS by using PROC MIGRATE. 
You must specify the SHORTFILEEXT option in the LIBNAME statement for the 
source library. The files are written to the target library with standard extensions; the 
files support full access.

For example, a library named MyLib contains two files with short extensions: a SAS 
data set named MyData.sd7 and a catalog named MyCat.sc7. Use the following 
code to migrate the library to SAS®9:

libname MyLib v8 'source-library-pathname' shortfileext;
libname NewLib v9 'target-library-pathname';

proc migrate in=MyLib out=NewLib;
run;

After migration, the target library NewLib contains two files with standard 
extensions: a SAS data set named MyData.sas7bdat and a catalog named 
MyCat.sas7bcat.

If your library also contains standard-extension files, then perform an additional 
migration without the SHORTFILEEXT option in the LIBNAME statement to migrate 
those files. Make sure that no short-extension files have the same name as a 
standard-extension file. In the target library, all files have a standard extension. If a 
short-extension file and a standard-extension file have the same name and same 
member type in the target library, the second one fails to migrate.

Using a SAS/CONNECT or SAS/SHARE Server

When to Use a SAS/CONNECT or 
SAS/SHARE Server
Here are two reasons to use a SAS/CONNECT or SAS/SHARE server:

1524 Chapter 41 / MIGRATE Procedure



n You can use a server to migrate across computers when you do not have direct 
access. 

n You are required to use a server if the following two conditions are both met: 

o the source library contains catalogs

o processing would invoke CEDA on the target session

In general, CEDA is invoked when you migrate to an incompatible operating 
environment. For more information, see “Cross-Environment Data Access” in 
SAS Programmer’s Guide: Essentials.

Here are two ways to determine whether a SAS library contains catalogs:

n Use operating system tools to examine the file system. The file extension for 
SAS catalogs is .sas7bcat.

n Submit a DATASETS procedure with MEMTYPE=CAT. Examine the SAS log for 
a list of catalogs.

When to Specify the Server in the IN= 
Option or in the SLIBREF= Option
Specify the SAS/CONNECT or SAS/SHARE server libref in the IN= option when the 
source library contains catalogs that were created in SAS 9.1.3 or later. See 
“Example 1: Migrating from a SAS®9 Release by Using SAS/CONNECT” on page 
1528.

Specify the SAS/CONNECT or SAS/SHARE server libref in the SLIBREF= option 
when the source library contains catalogs that were created prior to SAS 9.1.3. See 
“Example 3: Migrating with Incompatible Catalogs When the SLIBREF= Option Is 
Required” on page 1530.

For SAS 6 files, use the SLIBREF= option for SAS 6 HP-UX or Solaris libraries that 
contain catalogs. See “Migrating a SAS 6 Library” on page 1522.

Requirements for the SAS/CONNECT or 
SAS/SHARE Server
The SAS/CONNECT or SAS/SHARE server must be running on the same type of 
operating environment as the source library. For example, if the source session is 
running under UNIX, then the server must be running under UNIX.

If the catalogs were created in SAS 6 or SAS 8, SLIBREF= must be assigned 
through a SAS 8 server. (Note that this is not the same server that you assign 
through the IN= argument. If you assign a server through the IN= argument, the IN= 
server must be SAS 9.1.3 or later.)

If you cannot meet these requirements, use the alternate method described in 
“Additional Steps for Unsupported Catalogs or Libraries” on page 1526.

Usage: MIGRATE Procedure 1525

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en


Restrictions for the SLIBREF= Option
If CATALOG is the only member type in the library and you are using the SLIBREF= 
option, then omit the IN= argument.

When you use the SLIBREF= option for a SAS 8.2 library, multilabel formats are not 
supported. If a catalog contains a multilabel format, the format is not created on the 
target and an error is printed to the log. See SAS Note 20052, which is available 
from SAS customer support.

Additional Steps for Unsupported Catalogs or 
Libraries

When to Use Additional Steps
PROC MIGRATE is not supported for libraries that were created under the following 
source environments:

n SAS 8.2 libraries from CMS, OS/2, OpenVMS VAX, or 64-bit AIX.

n any unsupported SAS 6 operating environment. For a list of supported SAS 6 
operating environments, see “Migrating a SAS 6 Library” on page 1522.

PROC MIGRATE is not supported for migrating catalogs under the following 
circumstances:

n SAS 6 AIX catalogs to any target library.

n Tru64 UNIX catalogs to either Linux for x64 or Solaris for x64 target library.

n stored compiled macros, which are stored in a catalog.

n incompatible catalogs if SAS/CONNECT or SAS/SHARE software is required, 
and you do not have access to the software. See “Using a SAS/CONNECT or 
SAS/SHARE Server” on page 1524.

You can use additional steps for just the catalogs, if unsupported catalogs are the 
only issue. By using PROC MIGRATE for other members of the library, you can 
retain those members' attributes.The CPORT and CIMPORT method below has 
some limitations. For example, when transcoding to a new encoding, truncation can 
occur. If truncation occurs, you must expand variable lengths. You can either use 
the CVP engine with PROC CPORT or use the EXTENDVAR= option with PROC 
CIMPORT.

1526 Chapter 41 / MIGRATE Procedure

http://support.sas.com


Process
1 In the source session, create a transport file with PROC CPORT. (See Chapter 

16, “CPORT Procedure,” on page 525.)

2 Move the transport file to the target environment. Do not use RLS (a feature of 
SAS/CONNECT and SAS/SHARE software) to move catalogs, or you will 
encounter errors. You must use binary FTP, the DOWNLOAD procedure, 
Network File System (NFS), or another method of directly accessing files.

3 In the target session, use CIMPORT to import the transport file. (See Chapter 
12, “CIMPORT Procedure,” on page 381.)

Process for a Formats Catalog When 
Encoding Is Not Compatible
Catalog entries do not include encoding in the metadata. SAS assumes that any 
imported catalog entries have the session encoding or a compatible encoding.

If a catalog entry contains 7-bit ASCII characters only, then the catalog entry can be 
used in any other ASCII session, including UTF-8. (7-bit ASCII characters include 
the letters of the English alphabet, digits, and symbols that are frequently used in 
punctuation or SAS syntax.)

See these examples that change the encoding of a formats catalog:

n “Example: Migrate Catalogs to Avoid CEDA Limitations” in SAS V9 LIBNAME 
Engine: Reference 

n “Example: Avoid Truncation in Formats When Migrating Catalogs” in SAS V9 
LIBNAME Engine: Reference 

The CVP engine can help avoid truncation when you re-create a formats catalog in 
an encoding where the characters are represented by more bytes. Truncation might 
occur if a format length does not accommodate the larger character size. In the 
target session, specify the CVPMULT= option in the source LIBNAME statement. 
Note that the CVP engine cannot increase the values of the START, MIN, MAX, or 
LABEL variables in the CNTLOUT= data set. In addition, when you use CNTLIN= to 
import catalogs, you might experience transcoding errors that are not written to the 
log. For example, a character might not be available in the target encoding, or the 
code point could be used for a different character in the target encoding. If you 
continue to experience transcoding problems, re-create the format in the target 
session. If you do not have access to the SAS program statements that were used 
to create the original format, you can print the CNTLOUT= data set in the source 
session and use that information as a guide.

For an overview of potential transcoding errors, see “Transcoding Considerations” in 
SAS National Language Support (NLS): Reference Guide.

Usage: MIGRATE Procedure 1527

http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=p1bgiq5ci57uuon1sshqrqomjbuxa&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=p1bgiq5ci57uuon1sshqrqomjbuxa&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=n15yg3x16ir5cwn1hq0s2bvl6zyha&locale=en
http://documentation.sas.com/?docsetId=engsas7bdat&docsetVersion=9.4&docsetTarget=n1biz9uvi6cnj2n13t4eq96y58bj.htm&docsetTargetAnchor=n15yg3x16ir5cwn1hq0s2bvl6zyha&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p03nl2a94puseon1n81moy12rh3u.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p03nl2a94puseon1n81moy12rh3u.htm&locale=en


Examples: MIGRATE Procedure

Example 1: Migrating from a SAS®9 Release by 
Using SAS/CONNECT
Features: PROC MIGRATE statement options

IN=
OUT=

Details
In this example, the following is demonstrated:

n A spawner starts a session on the SAS/CONNECT server to access remote SAS 
data. Here are two reasons to use a SAS/CONNECT or SAS/SHARE server: 

o You can use a server to migrate across machines when you do not have 
direct access. 

o You are required to use a server if both of the following conditions are met: 

n The source library contains catalogs. 

n Processing would invoke CEDA in the target session. 

In general, CEDA is invoked when you migrate to an incompatible 
operating environment. For more information about CEDA, see “Cross-
Environment Data Access” in SAS Programmer’s Guide: Essentials.

n The SLIBREF= argument is not used. (To learn whether SLIBREF= is required, 
see “Using a SAS/CONNECT or SAS/SHARE Server” on page 1524.)

n The IN= argument accesses all of the supported file types in the source library, 
including incompatible catalogs, by using SAS/CONNECT or SAS/SHARE 
software. This example uses SAS/CONNECT software. The SAS/CONNECT or 
SAS/SHARE server that you assign to the IN= argument must be SAS 9.1.3 or 
later.

Program
options comamid=tcp;
%let myserver=host.name.com;
signon myserver.__1234 user=userid password='mypw'; 

1528 Chapter 41 / MIGRATE Procedure

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=n0otujcntm5fton19nt6auzwiyfi.htm&locale=en


libname source 'source-library-pathname' server=myserver.__1234;
libname target 'target-library-pathname';

proc migrate in=source out=target <options>;
run;
signoff myserver.__1234;

Program Description
In the target session, submit the following code to invoke a SAS/CONNECT 
spawner. The COMAMID= system option specifies TCP/IP as the communications 
access method. The myserver macro variable is assigned to the host name of the 
remote SAS/CONNECT server. The SIGNON statement references the myserver 
macro variable followed by the port number that the SAS/CONNECT spawner is 
listening on. If your port number or service name is defined in the macro variable, 
then omit it from the SIGNON.

options comamid=tcp;
%let myserver=host.name.com;
signon myserver.__1234 user=userid password='mypw'; 

Assign the source and target libraries. Substitute your library paths, and specify 
the myserver macro variable for SERVER= in the source library. Include the port 
number if it is specified in the SIGNON statement. 

libname source 'source-library-pathname' server=myserver.__1234;
libname target 'target-library-pathname';

Submit PROC MIGRATE, and include any options you want.

proc migrate in=source out=target <options>;
run;
signoff myserver.__1234;

Log Messages
The following SAS log messages indicate that a data set and a formats catalog are 
migrated. PROC MIGRATE calls the CPORT and CIMPORT procedures to migrate 
catalogs. Normally CEDA does not support catalogs, but using a SAS/CONNECT 
server avoids CEDA restrictions. The server must have the same data 
representation and encoding as the data.

NOTE: Migrating SOURCE.TEST to TARGET.TEST (memtype=DATA).
NOTE: There were 3 observations read from the data set SOURCE.TEST.
NOTE: The data set TARGET.TEST has 3 observations and 2 variables.
NOTE: PROC CPORT begins to transport catalog SOURCE.FORMATS
NOTE: Entry MYFMT.FORMAT has been transported.
NOTE: Entry MYABC.FORMATC has been transported.

Example 1: Migrating from a SAS®9 Release by Using SAS/CONNECT 1529



Example 2: Migrating with Direct Access and No 
Incompatible Catalogs
Features: PROC MIGRATE statement options

IN=
OUT=

Details
In this example, the following is demonstrated:

n The source and target libraries are directly accessible by the target computer. 
For example, you might use NFS, which is a standard protocol of UNIX operating 
environments. See the documentation for NFS and for your operating 
environment.

n A SAS/CONNECT or SAS/SHARE server is not used. To learn whether a server 
is required, see “Using a SAS/CONNECT or SAS/SHARE Server” on page 1524.

n If CEDA processing is not invoked, then any catalogs in the library are included 
in the migration. If CEDA is invoked, then catalogs are not migrated.

Program
From a session in the current release of SAS, submit the following.

libname Source 'source-library-pathname';
libname Target 'target-library-pathname';

proc migrate in=Source out=Target;
run;

Example 3: Migrating with Incompatible Catalogs 
When the SLIBREF= Option Is Required
Features: PROC MIGRATE statement options

IN=
OUT=
SLIBREF=

1530 Chapter 41 / MIGRATE Procedure



Details
In this example, the following is demonstrated:

n The source and target libraries are on different computers.

n The SLIBREF= argument accesses the catalogs in the source library. (To learn 
whether SLIBREF= is required, see “Using a SAS/CONNECT or SAS/SHARE 
Server” on page 1524.) The SLIBREF= argument must be assigned to a 
SAS/CONNECT or SAS/SHARE server running in a session of SAS that can 
access the catalogs. For example, if the source library contains SAS 8.2 
catalogs created by 32-bit Solaris, SLIBREF= must be assigned to a SAS 8.2 
32-bit Solaris server. If catalogs were created in SAS 6, SLIBREF= must be 
assigned through a SAS 8.2 server that is compatible with the data 
representation of the SAS 6 catalogs.

n The IN= argument accesses the rest of the supported file types in the source 
library. You can assign the source library to the IN= argument in one of the 
following two ways:

o directly via a Network File System (NFS)

o via a SAS/CONNECT or SAS/SHARE server

This example uses NFS, which is a standard protocol of UNIX operating 
environments. See the documentation for NFS and for your operating 
environment.

Program
signon v8srv sascmd='my-v8–sas-invocation-command';

rsubmit;
libname Srclib <engine> 'source-library-pathname';
endrsubmit;

libname Source <engine> '/nfs/v8machine-name/source-library-pathname';

libname Srclib <engine> server=v8srv;

libname Target <engine> 'target-library-pathname';

proc migrate in=Source out=Target slibref=Srclib <options>;
run;

proc migrate out=Target slibref=Srclib <options>;
run;

Program Description
From a session in the current release of SAS, submit the SIGNON command 
to invoke a SAS/CONNECT server session. Note that because you are working 
across computers, you might specify a machine name in the server ID.

Example 3: Migrating with Incompatible Catalogs When the SLIBREF= Option Is 
Required 1531



signon v8srv sascmd='my-v8–sas-invocation-command';

Within this remote SAS 8.2 session, assign a libref to the source library that 
contains the library members to be migrated. Use the RSUBMIT and 
ENDRSUBMIT commands for SAS/CONNECT.

rsubmit;
libname Srclib <engine> 'source-library-pathname';
endrsubmit;

In the local (client) session in the current release, assign to the same source 
library through NFS.

libname Source <engine> '/nfs/v8machine-name/source-library-pathname';

Assign the same libref to the same source libref as in step 2 (in this example, 
Srclib). But do not assign the libref to a physical location. Instead, specify the 
SERVER= option with the server ID (in this example, V8SRV) that you assigned in 
the SIGNON command in step 1.

libname Srclib <engine> server=v8srv;

Assign the target library.

libname Target <engine> 'target-library-pathname';

Use PROC MIGRATE with the SLIBREF= option. For the IN= and OUT= options, 
specify the usual source and target librefs (in this example, Source and Target, 
respectively). Set SLIBREF= to the libref that uses the SERVER= option (in this 
example, Srclib).

proc migrate in=Source out=Target slibref=Srclib <options>;
run;

Alternatively, if CATALOG is the only member type in the library and you are 
using the SLIBREF= option, then omit the IN= argument.

proc migrate out=Target slibref=Srclib <options>;
run;

1532 Chapter 41 / MIGRATE Procedure



Chapter 42
OPTIONS Procedure

Overview: OPTIONS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1533
What Does the OPTIONS Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1533

Syntax: OPTIONS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1534
PROC OPTIONS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1534

Usage: OPTIONS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1539
Display a List of System Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1539
Display Information about One or More Options . . . . . . . . . . . . . . . . . . . . . . . . . 1541
Display Information about System Option Groups . . . . . . . . . . . . . . . . . . . . . . . . 1542
Display Restricted Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1546
Display Options That Can Be Saved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1547

Results: OPTIONS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1548
View PROC OPTIONS Output in the SAS Log . . . . . . . . . . . . . . . . . . . . . . . . . . 1548

Examples: OPTIONS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1549
Example 1: Producing the Short Form of the Options Listing . . . . . . . . . . . . . . . 1549
Example 2: Displaying the Setting of a Single Option . . . . . . . . . . . . . . . . . . . . . 1550
Example 3: Displaying Expanded Path Environment Variables . . . . . . . . . . . . . . 1551
Example 4: List the Options That Can Be Specified by the INSERT 

and APPEND Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1552

Overview: OPTIONS Procedure

What Does the OPTIONS Procedure Do?
The OPTIONS procedure lists the current settings of SAS system options in the 
SAS log.

SAS system options control how SAS formats output, handles files, processes data 
sets, interacts with the operating environment, and does other tasks that are not 

1533



specific to a single SAS program or data set. You use the OPTIONS procedure to 
obtain information about an option or a group of options. Here is some of the 
information that the OPTIONS procedure provides:

n the current value of an option and how it was set

n a description of an option

n valid syntax for the option, valid option values, and the range of values

n where you can set the system option

n if the option can be restricted by your site administrator

n if the option has been restricted

n system options that belong to a system option group

n system options that are specific for an operating environment

n if an option value has been modified by the INSERT or APPEND system options

n system options that can be saved by the OPTSAVE procedure or the 
DMOPTSAVE command (not valid in SAS Viya)

For additional information about SAS system options, see SAS System Options: 
Reference.

Syntax: OPTIONS Procedure
Note: SAS system options are documented in several publications. You can access all system 

options from “SAS System Options Documented in Other SAS Publications” in SAS 
System Options: Reference.

See: “OPTIONS Procedure: UNIX” in SAS Companion for UNIX Environments 
“OPTIONS Procedure: Windows” in SAS Companion for Windows 
“OPTIONS Procedure Statement: z/OS” in SAS Companion for z/OS 

PROC OPTIONS <options>;

Statement Task Example

PROC OPTIONS List the current system option settings to the 
SAS Log

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4

PROC OPTIONS Statement
Lists the current settings of SAS system options in the SAS log.

Examples: “Example 1: Producing the Short Form of the Options Listing” on page 1549
“Example 2: Displaying the Setting of a Single Option” on page 1550
“Example 3: Displaying Expanded Path Environment Variables” on page 1551

1534 Chapter 42 / OPTIONS Procedure

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0aujuqjldgs7wn16xor1xqv9dld.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0aujuqjldgs7wn16xor1xqv9dld.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1txqhztz39mwnn1kqkw869nf54x.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n09dp03czlc0yen1mcihrofo6a7n.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p1rg6hydxdf01an16ojyayc5ndiz.htm&locale=en


“Example 4: List the Options That Can Be Specified by the INSERT and APPEND 
Options” on page 1552

Syntax
PROC OPTIONS <options>;

Summary of Optional Arguments
LISTGROUPS

lists the system option groups as well as a description of each group.

Choose the format of the listing
DEFINE

displays the short description of the option, the option group, and the 
option type.

EXPAND
when displaying a character option, replaces an environment variable in 
the option value with the value of the environment variable. EXPAND is 
ignored if the option is a Boolean option, such as CENTER or 
NOCENTER, or if the value of the option is numeric.

HEXVALUE
displays system option character values as hexadecimal values.

LOGNUMBERFORMAT
displays numeric system option values using locale-specific punctuation.

LONG
lists each system option on a separate line with a description.

NOEXPAND
when displaying a path, displays the path using environment variable(s) 
and not the value of the environment variable(s). This is the default.

NOLOGNUMBERFORMAT
displays numeric system option values without using punctuation, such as 
a comma or a period. This is the default.

SHORT
specifies to display a compressed listing of options without descriptions.

VALUE
displays the option's value and scope, as well as how the value was set.

Restrict the number of options displayed
GROUP=group-name
GROUP=(group-name–1 ... group-name-n)

displays the options in one or more groups specified by group-name.
HOST

displays only host options.
LISTINSERTAPPEND

lists the system options whose value can be modified by the INSERT and 
APPEND system options.

PROC OPTIONS Statement 1535



LISTOPTSAVE
lists the system options that can be saved with PROC OPTSAVE or the 
DMOPTSAVE command.

LISTRESTRICT
lists the system options that can be restricted by your site administrator.

NOHOST
displays only portable options.

OPTION=option-name
OPTION=(option-name-1 … option-name-n)

displays information about one or more system options.
RESTRICT

displays system options that the site administrator has restricted from 
being updated.

Optional Arguments
DEFINE

displays the short description of the option, the option group, and the option 
type. SAS displays information about when the option can be set, whether an 
option can be restricted, the valid values for the option, and whether the 
OPTSAVE procedure will save the option. 

Restriction Saving and loading system options is not valid in SAS Viya. 
Information about whether the option can be saved or loaded is 
displayed only for SAS 9.4.

Interaction This option is ignored when SHORT is specified.

Example “Example 2: Displaying the Setting of a Single Option” on page 
1550

EXPAND
when displaying a character option, replaces an environment variable in the 
option value with the value of the environment variable. EXPAND is ignored if the 
option is a Boolean option, such as CENTER or NOCENTER, or if the value of 
the option is numeric.

Restriction Variable expansion is valid only in the Windows and UNIX operating 
environments.

Tip By default, some option values are displayed with expanded 
variables. Other options require the EXPAND option in the PROC 
OPTIONS statement. Use the DEFINE option in the PROC 
OPTIONS statement to determine whether an option value expands 
variables by default or if the EXPAND option is required. If the 
output from PROC OPTIONS DEFINE shows the following 
information, you must use the EXPAND option to expand variable 
values:
Expansion: Environment variables, within the option value, 
           are not expanded

See “NOEXPAND” on page 1538 option to view paths that display the 
environment variable

1536 Chapter 42 / OPTIONS Procedure



Example “Example 3: Displaying Expanded Path Environment Variables” on 
page 1551

GROUP=group-name
GROUP=(group-name–1 ... group-name-n)

displays the options in one or more groups specified by group-name.

Requirement When you specify more than one group, enclose the group names 
in parenthesis and separate the group names by a space.

See “Display Information about System Option Groups” on page 1542

HEXVALUE
displays system option character values as hexadecimal values.

HOST
displays only host options.

See “NOHOST” on page 1538 option to display only portable options.

LISTINSERTAPPEND
lists the system options whose value can be modified by the INSERT and 
APPEND system options. The INSERT option specifies a value that is inserted 
as the first value of a system option value list. The APPEND option specifies a 
value that is appended as the last value of a system option value list. Use the 
LISTINERTAPPEND option to display which system options can have values 
inserted at the beginning or appended at the end of their value lists.

See “INSERT=” in SAS System Options: Reference 

“APPEND=” in SAS System Options: Reference

Example “Example 4: List the Options That Can Be Specified by the INSERT 
and APPEND Options” on page 1552

LISTGROUPS
lists the system option groups as well as a description of each group. 

See “Display Information about System Option Groups” on page 1542

LISTOPTSAVE
lists the system options that can be saved with PROC OPTSAVE or the 
DMOPTSAVE command.

Restriction This option is not valid in SAS Viya. PROC OPTSAVE and the 
DMOPTSAVE command are not valid in SAS Viya.

LISTRESTRICT
lists the system options that can be restricted by your site administrator.

See “RESTRICT” on page 1538 option to list options that have been restricted 
by the site administrator

LONG
lists each system option on a separate line with a description. This is the default. 
Alternatively, you can create a compressed listing without descriptions. 

PROC OPTIONS Statement 1537

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0pcr99h6vex16n1lhgfwgm347wr.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1q9ay0ai0h2ein1n68qxomnm3q7.htm&locale=en


See “SHORT” on page 1539 option to produce a compressed listing 
without descriptions

Example “Example 1: Producing the Short Form of the Options Listing” on page 
1549

LOGNUMBERFORMAT
displays numeric system option values using locale-specific punctuation. 

See “NOLOGNUMBERFORMAT” on page 1538 option to display numeric 
option values without using commas

Example “Example 2: Displaying the Setting of a Single Option” on page 1550

NOEXPAND
when displaying a path, displays the path using environment variable(s) and not 
the value of the environment variable(s). This is the default. 

See “EXPAND” on page 1536 option to display a path by expanding the value 
of environment variables

NOHOST
displays only portable options. 

Alias PORTABLE or PORT

See “HOST” on page 1537 option to display only host options

NOLOGNUMBERFORMAT
displays numeric system option values without using punctuation, such as a 
comma or a period. This is the default. 

See “LOGNUMBERFORMAT” on page 1538 option to display numeric system 
options using commas

OPTION=option-name
OPTION=(option-name-1 … option-name-n)

displays a short description and the value (if any) of the option specified by 
option-name. DEFINE and VALUE options provide additional information about 
the option. 

option-name 
specifies the option to use as input to the procedure.

Requirement If a SAS system option uses an equal sign, such as PAGESIZE=, 
do not include the equal sign when specifying the option to 
OPTION=.

Example “Example 2: Displaying the Setting of a Single Option” on page 
1550

RESTRICT
displays the system options that have been set by your site administrator in a 
restricted options configuration file. These options cannot be changed by the 
user. For each option that is restricted, the RESTRICT option displays the 
option's value, scope, and how it was set.

If your site administrator has not restricted any options, then the following 
message appears in the SAS log:

1538 Chapter 42 / OPTIONS Procedure



Your Site Administrator has not restricted any SAS options.

See “LISTRESTRICT” on page 1537 option to list options that can be restricted 
by the site administrator

SHORT
specifies to display a compressed listing of options without descriptions.

See “LONG” on page 1537 option to create a listing with descriptions of the 
options.

VALUE
displays the option's value and scope, as well as how the value was set. If the 
value was set using a configuration file, the SAS log displays the name of the 
configuration file. If the option was set using the INSERT or APPEND system 
options, the SAS log displays the value that was inserted or appended.

Interactions This option has no effect when SHORT is specified.

When the option is in the Threaded Kernel (TK) system options 
group, the value of How option value set is displayed as 
Internal

Note SAS options that are passwords, such as EMAILPW and 
METAPASS, return the value xxxxxxxx and not the actual 
password.

Example “Example 2: Displaying the Setting of a Single Option” on page 
1550

Usage: OPTIONS Procedure

Display a List of System Options
The log that results from running PROC OPTIONS can show the system options for 
the options that are available for all operating environment and those that are 
specific to a single operating environment. Options that are available for all 
operating environments are referred to as portable options. Options that are specific 
to a single operating environment are referred to as host options.

The following example shows a partial log that displays the settings of portable 
options.

proc options;
run;

Usage: OPTIONS Procedure 1539



Example Code 42.1 The SAS Log Showing a Partial Listing of SAS System Options

Portable Options:

 NOACCESSIBLECHECK Do not detect and log ODS output that is not accessible.
 NOACCESSIBLEGRAPH Do not create accessible ODS graphics by default.
 NOACCESSIBLEPDF   Do not create accessible PDF files by default.
 NOACCESSIBLETABLE Do not create accessible tables for enabled procedures, by default.

 ANIMATION=STOP    Specifies whether to start or stop animation.
 ANIMDURATION=MIN  Specifies the number of seconds that each animation frame displays.
 ANIMLOOP=YES      Specifies the number of iterations that animated images repeat.
 ANIMOVERLAY       Specifies that animation frames are overlaid in order to view all frames.
 APPEND=           Specifies an option=value pair to insert the value at the end of the existing
                   option value.
 APPLETLOC=site-specific-path
                   Specifies the location of Java applets, which is typically a URL.
 ARMAGENT=         Specifies an ARM agent (which is an executable module or keyword, such as
                   LOG4SAS) that contains a specific implementation of the ARM API.
 ARMLOC=ARMLOG.LOG Specifies the location of the ARM log.
 ARMSUBSYS=(ARM_NONE)
                   Specifies the SAS ARM subsystems to enable or disable.
 AUTOCORRECT       Automatically corrects misspelled procedure names and keywords, and global
                   statement names.
  
  

The log displays both portable and host options when you submit proc options;.

To view only host options, use this version of the OPTIONS procedure:

proc options host;
run;

Example Code 42.2 The SAS Log Showing a Partial List of Host Options

Host Options:

 ACCESSIBILITY=STANDARD
                   Specifies whether accessibility features are enabled in the Customize Tool
                   dialog box and in some Properties dialog boxes.
 ALIGNSASIOFILES   Aligns SAS files on a page boundary for improved performance.
 ALTLOG=           Specifies the location for a copy of the SAS log when SAS is running in batch
                   mode.
 ALTPRINT=         Specifies the location for a copy of the SAS procedure output when SAS is
                   running in batch mode.
 AUTHPROVIDERDOMAIN=
                   Specifies the authentication provider that is associated with a domain.
 AUTHSERVER=       Specifies the domain server that finds and authenticates secure server logins.
 AWSCONTROL=(SYSTEMMENU MINMAX TITLE)
                   Specifies whether the main SAS window includes a title bar, a system control
                   menu, and minimize and maximize buttons.
 AWSDEF=(0 0 79 80)
                   Specifies the location and dimensions of the main SAS window when SAS
                   initializes.
 AWSMENU           Displays the menu bar in the main SAS window.

1540 Chapter 42 / OPTIONS Procedure



Display Information about One or More Options
To view the setting of one or more particular options, you can use the OPTION= and 
DEFINE options in the PROC OPTIONS statement. The following example shows a 
log that PROC OPTIONS produces for a single SAS system option.

proc options option=errorcheck define;
run; 

Example Code 42.3 The Setting of a Single SAS System Option

5    proc options option=errorcheck define;
6    run;

    SAS (r) Proprietary Software Release 9.4  TS1M6

 ERRORCHECK=NORMAL
Option Definition Information for SAS Option ERRORCHECK
    Group= ERRORHANDLING
    Group Description: Error messages and error conditions settings
    Description: Specifies whether SAS enters syntax-check mode when errors are found in the
                 LIBNAME, FILENAME,  %INCLUDE, and LOCK statements.
    Type: The option value is of type CHARACTER
          Maximum Number of Characters: 10
          Casing: The option value is retained uppercased
          Quotes: If present during "set", start and end quotes are removed
          Parentheses: The option value does not require enclosure within parentheses. If
          present, the parentheses are retained.
          Expansion: Environment variables, within the option value, are not expanded
          Number of valid values: 2
               Valid value: NORMAL
               Valid value: STRICT
    When Can Set: Startup or anytime during the SAS Session
    Restricted: Your Site Administrator can restrict modification of this option
    Optsave: PROC Optsave or command Dmoptsave will save this option

To view the settings for more than one option, enclose the options in parentheses 
and separate the options with a space:

proc options option=(pdfsecurity pdfpassword) define;
run;

Usage: OPTIONS Procedure 1541



Example Code 42.4 The Settings of Two SAS System Options

7    proc options option=(pdfsecurity pdfpassword) define;
8    run;

    SAS (r) Proprietary Software Release 9.4  TS1M6

 PDFSECURITY=NONE
Option Definition Information for SAS Option PDFSECURITY
    Group= PDF
    Group Description: PDF settings
    Group= SECURITY
    Group Description: Security settings
    Description: Specifies the level of encryption to use for PDF documents.
    Type: The option value is of type CHARACTER
          Maximum Number of Characters: 4
          Casing: The option value is retained uppercased
          Quotes: If present during "set", start and end quotes are removed
          Parentheses: The option value does not require enclosure within parentheses. If
          present, the parentheses are retained.
          Expansion: Environment variables, within the option value, are not expanded
          Number of valid values: 3
               Valid value: HIGH
               Valid value: LOW
               Valid value: NONE
    When Can Set: Startup or anytime during the SAS Session
    Restricted: Your Site Administrator can restrict modification of this option
    Optsave: PROC Optsave or command Dmoptsave will save this option

 PDFPASSWORD=xxxxxxxx
Option Definition Information for SAS Option PDFPASSWORD
    Group= PDF
    Group Description: PDF settings
    Group= SECURITY
    Group Description: Security settings
    Description: Specifies the password to use to open a PDF document and the password used by a
                 PDF document owner.
    Type: The option value is of type CHARACTER
          Maximum Number of Characters: 2048
          Casing: The option value is retained with original casing
          Quotes: If present during "set", start and end quotes are removed
          Parentheses: The option value must be enclosed within parentheses. The parentheses are
          retained.
          Expansion: Environment variables, within the option value, are not expanded
          Number of valid values: 2
               Valid value: OPEN
               Valid value: OWNER
    When Can Set: Startup or anytime during the SAS Session
    Restricted: Your Site Administrator cannot restrict modification of this option
    Optsave: PROC Optsave or command Dmoptsave will not save this option

Display Information about System Option Groups
Each SAS system option belongs to one or more groups, which are based on 
functionality, such as error handling or sorting. You can display a list of system-
option groups and the system options that belong to one or more of the groups.

Use the LISTGROUPS option to display a list of system-option groups.

1542 Chapter 42 / OPTIONS Procedure



proc options listgroups;
run;

Example Code 42.5 List of SAS System Option Groups

26   proc options listgroups;
27   run;

    SAS (r) Proprietary Software Release 9.4  TS1M6

    Option Groups
       GROUP=ADABAS                 ADABAS

       GROUP=ANIMATION              Animation

       GROUP=CAS                    CAS Options

       GROUP=CODEGEN                Code generation

       GROUP=COMMUNICATIONS         Networking and encryption

       GROUP=DATACOM                Datacom

       GROUP=DATAQUALITY            Data Quality

       GROUP=DB2                    DB2

       GROUP=EMAIL                  E-mail

       GROUP=ENVDISPLAY             Display

Usage: OPTIONS Procedure 1543



       GROUP=ENVFILES               Files

       GROUP=ERRORHANDLING          Error handling

       GROUP=EXECMODES              Initialization and operation

       GROUP=EXTFILES               External files

       GROUP=GRAPHICS               Driver settings

       GROUP=HELP                   Help

       GROUP=IDMS                   IDMS

       GROUP=IMS                    IMS

       GROUP=INPUTCONTROL           Data Processing

       GROUP=INSTALL                Installation

       GROUP=ISPF                   ISPF

       GROUP=LANGUAGECONTROL        Language control

       GROUP=LISTCONTROL            Procedure output

       GROUP=LOGCONTROL             SAS log

       GROUP=LOG_LISTCONTROL        SAS log and procedure output

       GROUP=MACRO                  SAS macro

       GROUP=MEMORY                 Memory

       GROUP=META                   Metadata

       GROUP=ODSPRINT               ODS Printing

       GROUP=PDF                    PDF

       GROUP=PERFORMANCE            Performance

       GROUP=REXX                   REXX

       GROUP=SASFILES               SAS Files

       GROUP=SECURITY               Security

       GROUP=SMF                    SMF

       GROUP=SORT                   Procedure options

       GROUP=SQL                    SQL

       GROUP=SVG                    SVG

       GROUP=TK                     TK

Use the GROUP= option to display system options that belong to a particular group. 
You can specify one or more groups.

proc options group=(svg graphics);
run;

1544 Chapter 42 / OPTIONS Procedure



Example Code 42.6 Sample Output Using the GROUP= Option

5    proc options group=(svg graphics);
6    run;

    SAS (r) Proprietary Software Release 9.4  TS1M6

Group=SVG
 ANIMATION=STOP    Specifies whether to start or stop animation.
 ANIMDURATION=MIN  Specifies the number of seconds that each animation frame displays.
 ANIMLOOP=YES      Specifies the number of iterations that animated images repeat.
 ANIMOVERLAY       Specifies that animation frames are overlaid in order to view all frames.
 SVGAUTOPLAY       Starts animation when the page is loaded in the browser.
 NOSVGCONTROLBUTTONS
                   Does not display the paging control buttons and an index in a multipage SVG
                   document.
 SVGFADEIN=0       Specifies the number of seconds for the fade-in effect for a graph.
 SVGFADEMODE=OVERLAP
                   Specifies whether to use sequential frames or to overlap frames for the
                   fade-in effect of a graph.
 SVGFADEOUT=0      Specifies the number of seconds for a graph to fade out of view.
 SVGHEIGHT=        Specifies the height of the viewport. Specifies the value of the height
                   attribute of the outermost SVG element.
 NOSVGMAGNIFYBUTTON
                   Disables the SVG magnifier tool.
 SVGPRESERVEASPECTRATIO=
                   Specifies whether to force uniform scaling of SVG output. Specifies the
                   preserveAspectRatio attribute on the outermost SVG element.
 SVGTITLE=         Specifies the text in the title bar of the SVG output. Specifies the value of
                   the TITLE element in the SVG file.
 SVGVIEWBOX=       Specifies the coordinates, width, and height that are used to set the viewBox
                   attribute on the outermost SVG element.
 SVGWIDTH=         Specifies the width of the viewport. Specifies the value of the width
                   attribute of the outermost SVG element.
 SVGX=             Specifies the x-axis coordinate of one corner of the rectangular region for
                   an embedded SVG element. Specifies the x attribute in the outermost SVG
                   element.
 SVGY=             Specifies the y-axis coordinate of one corner of the rectangular region for
                   an embedded SVG element. Specifies the y attribute in the outermost SVG
                   element.

Group=GRAPHICS
 DEVICE=           Specifies the device driver to which SAS/GRAPH sends procedure output.
 GSTYLE            Uses ODS styles to generate graphs that are stored as GRSEG catalog entries.
 GWINDOW           Displays SAS/GRAPH output in the GRAPH window.
 MAPS=("!sasroot\path-to-maps")
                   Specifies the location of SAS/GRAPH map data sets.
 MAPSGFK=(          "!sasroot\path-to-maps"  )
                   Specifies the location of GfK maps.
 MAPSSAS=(          "!sasroot\path-to-maps"  )
                   Specifies the location of SAS map data sets.
 FONTALIAS=        Assigns a Windows font to one of the SAS fonts.

You can use the following group names as values for the GROUP= option to list the 
system options in a group:

ANIMATION GRAPHICS META
CAS HELP ODSPRINT
COMMUNICATIONS INPUTCONTROL PDF
DATAQUALITY INSTALL PERFORMANCE
EMAIL LANGUAGECONTROL SASFILES
ENVDISPLAY LISTCONTROL SECURITY

Usage: OPTIONS Procedure 1545



ENVFILES LOGCONTROL SORT
ERRORHANDLING LOG_LISTCONTROL SQL
EXECMODES MACRO SVG
EXTFILES MEMORY TK

You can use the following groups to list operating environment–specific values that 
might be available when you use the GROUP= option with PROC OPTIONS.

ADABAS IDMS REXX
CODEGEN IMS SMF
DATACOM ISPF
DB2 ORACLE

Operating Environment Information: Refer to the SAS documentation for your 
operating environment for more information about these host-specific options.

Display Restricted Options
Your site administrator can restrict some system options so that your SAS session 
conforms to options that are set for your site. Restricted options can be modified 
only by your site administrator. The OPTIONS procedure provides two options that 
display information about restricted options. The RESTRICT option lists the system 
options that your site administrator has restricted. The LISTRESTRICT option lists 
the options that can be restricted by your site administrator. For a listing of options 
that cannot be restricted, see “System Options That Cannot Be Restricted” in SAS 
System Options: Reference.

The following SAS logs shows the output when the RESTRICT option is specified 
and partial output when the LISTRESTRICT option is specified.

Example Code 42.7 A List of Options That Have Been Restricted by the Site Administrator

1
   proc options restrict;
2    run;
    SAS (r) Proprietary Software Release 9.4  TS1M6

Option Value Information For SAS Option CMPOPT
    Option Value: (NOEXTRAMATH NOMISSCHECK NOPRECISE NOGUARDCHECK
NOGENSYMNAMES NOFUNCDIFFERENCING)
    Option Scope: SAS Session
    How option value set:  Site Administrator Restricted

1546 Chapter 42 / OPTIONS Procedure

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n16uh91hhdtzt0n1a0yzvv169rgr&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1ag2fud7ue3aln1xiqqtev7ergg.htm&docsetTargetAnchor=n16uh91hhdtzt0n1a0yzvv169rgr&locale=en


Example Code 42.8 A Partial Log That Lists Options That Can Be Restricted

13   proc options listrestrict;
14   run;

    SAS (r) Proprietary Software Release 9.4  TS1M6

    Your Site Administrator can restrict the ability to modify the following Portable Options:

     ACCESSIBLECHECK    Detect and log ODS output that is not accessible.
     ACCESSIBLEGRAPH    Create accessible ODS graphics by default.
     ACCESSIBLEPDF      Create accessible PDF files by default.
     ACCESSIBLETABLE    Create accessible tables for enabled procedures, by default.
     ANIMATION          Specifies whether to start or stop animation.
     ANIMDURATION       Specifies the number of seconds that each animation frame displays.
     ANIMLOOP           Specifies the number of iterations that animated images repeat.
     ANIMOVERLAY        Specifies that animation frames are overlaid in order to view all frames.
     APPLETLOC          Specifies the location of Java applets, which is typically a URL.
     ARMAGENT           Specifies an ARM agent (which is an executable module or keyword, such
                        as LOG4SAS) that contains a specific implementation of the ARM API.
     ARMLOC             Specifies the location of the ARM log.
     ARMSUBSYS          Specifies the SAS ARM subsystems to enable or disable.
     AUTOCORRECT        Automatically corrects misspelled procedure names and keywords, and
                        global statement names.
     AUTOSAVELOC        Specifies the location of the Program Editor auto-saved file.

Display Options That Can Be Saved
Many system options can be saved by using PROC OPTSAVE or the DMOPTSAVE 
command. The options can later be restored by using PROC OPTLOAD or the 
DMOPTLOAD command. You can list the system options that can be saved and 
later restored by using the LISTOPTSAVE option on PROC OPTIONS.

Note: PROC OPTSAVE does not save these types of system options:

n SAS invocation options

n SAS environment variable options 

n SAS system options that include passwords

n SAS system options that are read-only and cannot be set

Note: PROC OPTSAVE and PROC OPTLOAD, as well as the DMOPTSAVE and 
DMOPTLOAD commands are valid only in SAS 9.4. They are not valid in SAS Viya.

The following SAS log shows a partial list of the options that can be saved by using 
PROC OPTSAVE or the DMOPTSAVE command:

Usage: OPTIONS Procedure 1547



Example Code 42.9 A Partial List of System Options That Can Be Saved

11   proc options listoptsave;
     run;

    SAS (r) Proprietary Software Release 9.4  TS1M6

    Core options that can be saved with OPTSAVE

     ACCESSIBLECHECK    Detect and log ODS output that is not accessible.
     ACCESSIBLEGRAPH    Create accessible ODS graphics by default.
     ACCESSIBLEPDF      Create accessible PDF files by default.
     ACCESSIBLETABLE    Create accessible tables for enabled procedures, by default.
     ANIMATION          Specifies whether to start or stop animation.
     ANIMDURATION       Specifies the number of seconds that each animation frame displays.
     ANIMLOOP           Specifies the number of iterations that animated images repeat.
     ANIMOVERLAY        Specifies that animation frames are overlaid in order to view all frames.
     APPLETLOC          Specifies the location of Java applets, which is typically a URL.
     AUTOCORRECT        Automatically corrects misspelled procedure names and keywords, and
                        global statement names.
     AUTOSAVELOC        Specifies the location of the Program Editor auto-saved file.
     AUTOSIGNON         Enables a SAS/CONNECT client to automatically submit the SIGNON command
                        remotely with the RSUBMIT command.
     BINDING            Specifies the binding edge type of duplexed printed output.
     BOMFILE            Writes the byte order mark (BOM) prefix when a Unicode-encoded file is
                        written to an external file.
     BOTTOMMARGIN       Specifies the size of the margin at the bottom of a printed page.
     BUFNO              Specifies the number of buffers for processing SAS data sets.
     BUFSIZE            Specifies the size of a buffer page for output SAS data sets.
    

Results: OPTIONS Procedure

View PROC OPTIONS Output in the SAS Log
SAS writes the options list to the SAS log.

SAS system options of the form option | NOoption are listed as either option or 
NOoption, depending on the current setting. They are always sorted by the positive 
form. For example, NOCAPS would be listed under the Cs.

The OPTIONS procedure displays passwords in the SAS log as eight Xs, regardless 
of the actual password length.

Operating Environment Information: PROC OPTIONS produces additional 
information that is specific to the environment under which you are running SAS. For 
more information about this and for descriptions of host-specific options, refer to the 
SAS documentation for your operating environment.

1548 Chapter 42 / OPTIONS Procedure



See Also
n SAS Companion for UNIX Environments

n SAS Companion for Windows

n SAS Companion for z/OS

Examples: OPTIONS Procedure

Example 1: Producing the Short Form of the 
Options Listing
Features: PROC OPTIONS statement option

SHORT

Details
This example shows how to generate the short form of the listing of SAS system 
option settings. Compare this short form with the long form that is shown in “Display 
a List of System Options” on page 1539. 

Program
List all options and their settings. SHORT lists the SAS system options and their 
settings without any descriptions.

proc options short;
run;

Example 1: Producing the Short Form of the Options Listing 1549

http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Log
Example Code 42.10 Partial Listing of the SHORT Option

6    proc options short;
7    run;
    SAS (r) Proprietary Software Release 9.4  TS1M6

Portable Options:

 NOACCESSIBLECHECK NOACCESSIBLEGRAPH NOACCESSIBLEPDF NOACCESSIBLETABLE ANIMATION=STOP
ANIMDURATION=MIN ANIMLOOP=YES ANIMOVERLAY APPEND=
APPLETLOC=//bb03smb01/sasgen/dev/mva-v940m6/avdobj/jar/wx6no ARMAGENT= ARMLOC=ARMLOG.LOG
ARMSUBSYS=(ARM_NONE) AUTOCORRECT AUTOEXEC= AUTOSAVELOC= NOAUTOSIGNON BINDING=DEFAULT BOMFILE
BOTTOMMARGIN=0.000 IN BUFNO=1 BUFSIZE=0 BYERR BYLINE BYSORTED NOCAPS NOCARDIMAGE CASAUTHINFO=
CASDATALIMIT=100M CASHOST= CASLIB= CASNCHARMULTIPLIER=1 CASNWORKERS=ALL CASPORT=0 CASSESSOPTS=
CASTIMEOUT=60 CASUSER= CATCACHE=0 CBUFNO=0 CENTER CGOPTIMIZE=3 NOCHARCODE NOCHKPTCLEAN CLEANUP
NOCMDMAC CMPLIB= CMPMODEL=BOTH CMPOPT=(NOEXTRAMATH NOMISSCHECK NOPRECISE NOGUARDCHECK
NOGENSYMNAMES NOFUNCDIFFERENCING SHORTCIRCUIT NOPROFILE) NOCOLLATE COLOPHON= COLORPRINTING

Example 2: Displaying the Setting of a Single 
Option
Features: PROC OPTIONS statement option

OPTION=
DEFINE
LOGNUMBERFORMAT
VALUE

Details
This example shows how to display the setting of a single SAS system option. The 
log shows the current setting of the SAS system option MEMBLKSZ. The DEFINE 
and VALUE options display additional information. The LOGNUMBERFORMAT 
displays the value using commas.

Program
Specify the MEMBLKSZ SAS system option. OPTION=MEMBLKSZ displays 
option value information. DEFINE and VALUE display additional information. 
LOGNUMBERFORMAT specifies to format the value using commas.

proc options option=memblksz define value lognumberformat;
run;

1550 Chapter 42 / OPTIONS Procedure



Log
Example Code 42.11 Log Output from Specifying the MEMBLKSZ Option

13   proc options option=memblksz define value lognumberformat;
14   run;

    SAS (r) Proprietary Software Release 9.4 TS1M6

Option Value Information For SAS Option MEMBLKSZ
    Value: 16,777,216
    Scope: Default
    How option value set: Shipped Default

Option Definition Information for SAS Option MEMBLKSZ
    Group= MEMORY
    Group Description: Memory settings
    Description: Specifies the memory block size for Windows memory-based libraries.
    Type: The option value is of type INTMAX
          Range of Values: The minimum is 0 and the maximum is 9223372036854775807
          Valid Syntax(any casing): MIN|MAX|n|nK|nM|nG|nT|hexadecimal
    Numeric Format: Usage of LOGNUMBERFORMAT impacts the value format
    When Can Set: Session startup (command line or config) only
    Restricted: Your Site Administrator can restrict modification of this option
    Optsave: PROC Optsave or command Dmoptsave will not save this option

Example 3: Displaying Expanded Path Environment 
Variables
Features: PROC OPTIONS statement options

OPTION=
EXPAND
NOEXPAND
HOST

Details
This example shows the value of an environment variable when the path is 
displayed.

Program
Show the value of the environment variables: The EXPAND option causes the 
values of environment variables to display in place of the environment variable. The 

Example 3: Displaying Expanded Path Environment Variables 1551



NOEXPAND option causes the environment variable to display. In this example, the 
environment variable is !sasroot

proc options option=msg expand;
run;
proc options option=msg noexpand;
run;

Log
Example Code 42.12 Displaying an Expanded and Nonexpanded Pathname Using the 

OPTIONS Procedure

6    proc options option=msg expand;
7    run;
    SAS (r) Proprietary Software Release 9.4  TS1M6

 MSG=( 'C:\Program Files\SASHome\SASFoundation\9.4\sasmsg' )
                   The path to the sasmsg directory
NOTE: PROCEDURE OPTIONS used (Total process time):
      real time           0.01 seconds
      cpu time            0.00 seconds

8    proc options option=msg noexpand;
9    run;
    SAS (r) Proprietary Software Release 9.4  TS1M6
0

 MSG=( '!sasroot\sasmsg')
                   The path to the sasmsg directory

Example 4: List the Options That Can Be Specified 
by the INSERT and APPEND Options
Features: PROC OPTIONS statement option

LISTINSERTAPPEND

Details
This example shows how to display the options that can be specified by the INSERT 
and APPEND system options.

1552 Chapter 42 / OPTIONS Procedure



Program
List all options that can be specified by the INSERT and APPEND options in 
SAS 9.4. The LISTINSERTAPPEND option provides a list and a description of these 
options.

proc options listinsertappend;
run;

Log
Example Code 42.13 Displaying the Options That Can Be Specified by the INSERT and 

APPEND Options

9    proc options listinsertappend;
10   run;

    SAS (r) Proprietary Software Release 9.4   TS1M6
p

    Core options that can utilize INSERT and APPEND

     AUTOEXEC           Specifies the location of the SAS AUTOEXEC files.
     CMPLIB             Specifies one or more SAS data sets that contain compiler subroutines to
                        include during compilation.
     FMTSEARCH          Specifies the order in which format catalogs are searched.
     MAPS               Specifies the location of SAS/GRAPH map data sets
     MAPSGFK            Specifies the location of GfK maps.
.
     SASAUTOS           Specifies the location of one or more autocall libraries.
     SASHELP            Specifies the location of the Sashelp library.
     SASSCRIPT          Specifies one or more locations of SAS/CONNECT server sign-on script
                        files.

    Host options that can utilize INSERT and APPEND

     HELPLOC            Specifies the location of the text and index files for the facility that
                        is used to view the online SAS Help and Documentation.
     MSG                Specifies the path to the library that contains SAS error messages.
     SET                Defines a SAS environment variable.

Example 4: List the Options That Can Be Specified by the INSERT and APPEND Options
1553



1554 Chapter 42 / OPTIONS Procedure



Chapter 43
OPTLOAD Procedure

Overview: OPTLOAD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555
What Does the OPTLOAD Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1555

Syntax: OPTLOAD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556
PROC OPTLOAD Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556

Example: Load a Data Set of Saved System Options . . . . . . . . . . . . . . . . . . . . . 1557

Overview: OPTLOAD Procedure

What Does the OPTLOAD Procedure Do?
The OPTLOAD procedure reads SAS system option settings that are stored in the 
SAS registry or a SAS data set and puts them into effect.

You can load SAS system option settings from a SAS data set or registry key by 
using one of these methods:

n the DMOPTLOAD command from a command line in the SAS windowing 
environment. For example, the command loads system options from the registry: 
DMOPTLOAD key= “core\options”.

n the PROC OPTLOAD statement.

When an option is restricted by the site administrator, and the option value that is 
being set by PROC OPTLOAD differs from the option value that was established by 
the site administrator, SAS issues a warning message to the log.

1555



Syntax: OPTLOAD Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

PROC OPTLOAD <options>;

Statement Task Example

PROC OPTLOAD Use SAS system option settings that are stored 
in the SAS registry or in a SAS data set

Ex. 1

PROC OPTLOAD Statement
Loads saved setting of SAS system options that are stored in the SAS registry or in a SAS data set.

Syntax
PROC OPTLOAD <options>;

Summary of Optional Arguments
DATA=libref.dataset

Load SAS system option settings from an existing data set.
KEY="SAS registry key"

Load SAS system option settings from an existing registry key.

Optional Arguments
DATA=libref.dataset

specifies the library and data set name from where SAS system option settings 
are loaded. The SAS variable OPTNAME contains the character value of the 
SAS system option name, and the SAS variable OPTVALUE contains the 
character value of the SAS system option setting. 

Default If you omit the DATA= option and the KEY= option, the procedure 
will use the default SAS library and data set. The default library is 
where the current user profile resides. Unless you specify a 
library, the default library is SASUSER. If SASUSER is being used 
by another active SAS session, then the temporary WORK library 

1556 Chapter 43 / OPTLOAD Procedure



is the default location from which the data set is loaded. The 
default data set name is MYOPTS.

Requirement The SAS library and data set must exist.

KEY="SAS registry key"
specifies the location in the SAS registry of stored SAS system option settings. 
The registry is retained in SASUSER. If SASUSER is not available, then the 
temporary WORK library is used. For example, KEY="OPTIONS" loads system 
options from the OPTIONS registry key.

Requirements "SAS registry key" must be an existing SAS registry key.

You must use quotation marks around the "SAS registry key" 
name. Separate the names in a sequence of key names with a 
backslash (\). For example, KEY="CORE\OPTIONS" loads 
system options from the CORE\OPTIONS registry key.

Example: Load a Data Set of Saved 
System Options
Features: PROC OPTLOAD statement option

DATA=

Details
This example saves the current system option settings using the OPTSAVE 
procedure, modifies the YEARCUTOFF system option, and then loads the original 
set of system options.

Program
libname mysas "c:\mysas";

proc options option=yearcutoff;
run;

proc optsave out=mysas.options;
run;

options yearcutoff=2000;

proc options option=yearcutoff;
run;

Example: Load a Data Set of Saved System Options 1557



proc optload data=mysas.options;
run;

proc options option=yearcutoff;
run;

Program Description
These statements and procedures were submitted one at a time and not run as a 
SAS program to allow the display of the YEARCUTOFF option.

Assign the libref.

libname mysas "c:\mysas";

Display the value of the YEARCUTOFF= system option.

proc options option=yearcutoff;
run;

Save the current system option settings in mysas.options.

proc optsave out=mysas.options;
run;

Use the OPTIONS statement to set the YEARCUTOFF= system option to the 
value 2000.

options yearcutoff=2000;

Display the value of the YEARCUTOFF= system option.

proc options option=yearcutoff;
run;

Load the saved system option settings.

proc optload data=mysas.options;
run;

Display the value of the YEARCUTOFF= system option. After loading the saved 
system option settings, the value of the YEARCUTOFF= option has been restored 
to the original value.

proc options option=yearcutoff;
run;

1558 Chapter 43 / OPTLOAD Procedure



Log
Example Code 43.1 The SAS Log Shows the YEARCUTOFF= Value After Loading Options 

Using PROC OPTLOAD

1    libname mysas "c:\mysas";
NOTE: Libref MYSAS was successfully assigned as follows:
      Engine:        V9
      Physical Name: c:\mysas

2    proc options option=yearcutoff;
3    run;

    SAS (r) Proprietary Software Release 9.4  TS1M6

 YEARCUTOFF=1926   Specifies the first year of a 100-year span that is used by date 
informats
                   and functions to read a two-digit year.

NOTE: PROCEDURE OPTIONS used (Total process time):
      real time           0.00 seconds
      cpu time            0.00 seconds

4    proc optsave out=mysas.options;
5    run;

NOTE: The data set MYSAS.OPTIONS has 259 observations and 2 variables.
NOTE: PROCEDURE OPTSAVE used (Total process time):
      real time           0.03 seconds
      cpu time            0.03 seconds

6    options yearcutoff=2000;

7    proc options option=yearcutoff;
8    run;

    SAS (r) Proprietary Software Release 9.4  TS1M6

 YEARCUTOFF=2000   Specifies the first year of a 100-year span that is used by date 
informats
                   and functions to read a two-digit year.

NOTE: PROCEDURE OPTIONS used (Total process time):
      real time           0.00 seconds
      cpu time            0.00 seconds

9    proc optload data=mysas.options;
10   run;

NOTE: PROCEDURE OPTLOAD used (Total process time):
      real time           0.06 seconds
      cpu time            0.01 seconds

Example: Load a Data Set of Saved System Options 1559



11   proc options option=yearcutoff;
12   run;

    SAS (r) Proprietary Software Release 9.4  TS1M6

 YEARCUTOFF=1926   Specifies the first year of a 100-year span that is used by date 
informats
                   and functions to read a two-digit year.

NOTE: PROCEDURE OPTIONS used (Total process time):
      real time           0.00 seconds
      cpu time            0.00 seconds

1560 Chapter 43 / OPTLOAD Procedure



Chapter 44
OPTSAVE Procedure

Overview: OPTSAVE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1561
What Does the OPTSAVE Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1561

Syntax: OPTSAVE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1562
PROC OPTSAVE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1562

Usage: OPTSAVE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1563
Determine If a Single Option Can Be Saved . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1563
Create a List of Options That Can Be Saved . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1564

Example: Saving System Options in a Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 1566

Overview: OPTSAVE Procedure

What Does the OPTSAVE Procedure Do?
PROC OPTSAVE saves the current SAS system option settings in the SAS registry 
or in a SAS data set.

SAS system options can be saved across SAS sessions. You can save the settings 
of the SAS system options in a SAS data set or registry key by using one of these 
methods:

n the DMOPTSAVE command from a command line in the SAS windowing 
environment. Use the command like this: DMOPTSAVE <save-location>.

n the PROC OPTSAVE statement.

1561



Syntax: OPTSAVE Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

PROC OPTSAVE <options >;

Statement Task Example

PROC OPTSAVE Save the current SAS system option settings to 
the SAS registry or to a SAS data set

Ex. 1

PROC OPTSAVE Statement
Saves the current SAS system option settings in the SAS registry or in a SAS data set.

Syntax
PROC OPTSAVE <options >;

Summary of Optional Arguments
KEY="SAS registry key"

Save SAS system option settings to a registry key.
OUT=libref.dataset

Save SAS system option settings to a SAS data set.

Optional Arguments
KEY="SAS registry key"

specifies the location in the SAS registry of stored SAS system option settings. 
The registry is retained in SASUSER. If SASUSER is not available, then the 
temporary WORK library is used. For example, KEY="OPTIONS" saves the 
system options in the OPTIONS registry key.

Restriction “SAS registry key” names cannot span multiple lines.

1562 Chapter 44 / OPTSAVE Procedure



Requirements Separate the names in a sequence of key names with a 
backslash (\). Individual key names can contain any character 
except a backslash.

The length of a key name cannot exceed 255 characters 
(including the backslashes).

You must use quotation marks around the “SAS registry key” 
name.

Tip To specify a subkey, enter multiple key names starting with the 
root key.

CAUTION If the key already exists, it will be overwritten. If the specified 
key does not already exist in the current SAS registry, then the key is 
automatically created when option settings are saved in the SAS 
registry. 

OUT=libref.dataset
specifies the names of the library and data set where SAS system option 
settings are saved. The SAS variable OPTNAME contains the character value of 
the SAS system option name. The SAS variable OPTVALUE contains the 
character value of the SAS system option setting.

Default If you omit the OUT= and the KEY= options, the procedure will use 
the default SAS library and data set. The default SAS library is where 
the current user profile resides. Unless you specify a SAS library, the 
default library is SASUSER. If SASUSER is in use by another active 
SAS session, then the temporary WORK library is the default location 
where the data set is saved. The default data set name is MYOPTS.

CAUTION If the data set already exists, it will be overwritten.

Usage: OPTSAVE Procedure

Determine If a Single Option Can Be Saved
You can specify DEFINE in the OPTIONS procedure to determine whether an option 
can be saved. In the log output, the line beginning with Optsave: indicates whether 
the option can be saved.

proc options option=pageno define;
run;

Usage: OPTSAVE Procedure 1563



Example Code 44.1 The SAS Log Displaying Output for the Option Procedure DEFINE 
Option

8    proc options option=pageno define;
9    run;

    SAS (r) Proprietary Software Release 9.4  TS1M6

 PAGENO=1
Option Definition Information for SAS Option PAGENO
    Group= LISTCONTROL
    Group Description: Procedure output and display settings
    Description: Resets the SAS output page number.
    Type: The option value is of type LONG
          Range of Values: The minimum is 1 and the maximum is 2147483647
          Valid Syntax(any casing): MIN|MAX|n|nK|nM|nG|nT|hexadecimal
    Numeric Format: Usage of LOGNUMBERFORMAT impacts the value format
    When Can Set: Startup or anytime during the SAS Session
    Restricted: Your Site Administrator can restrict modification of this option
    Optsave: PROC Optsave or command Dmoptsave will save this option

Create a List of Options That Can Be Saved
Some system options cannot be saved. To create a list of options that can be saved, 
submit this SAS code:

proc options listoptsave;
run;

Note: PROC OPTSAVE does not save these types of system options:

n SAS invocation options

n SAS environment variable options 

n SAS system options that include passwords

n SAS system options that are read-only and cannot be set

Here is a partial listing of options that can be saved:

1564 Chapter 44 / OPTSAVE Procedure



Example Code 44.2 A Partial Listing of Options That Can Be Saved

51   proc options listoptsave;
52   run;

    SAS (r) Proprietary Software Release 9.4  TS1M6

    Core options that can be saved with OPTSAVE

     ACCESSIBLECHECK    Detect and log ODS output that is not accessible.
     ACCESSIBLEGRAPH    Create accessible ODS graphics by default.
     ACCESSIBLEPDF      Create accessible PDF files by default.
     ACCESSIBLETABLE    Create accessible tables for enabled procedures, by default.
     ANIMATION          Specifies whether to start or stop animation.
     ANIMDURATION       Specifies the number of seconds that each animation frame 
displays.
     ANIMLOOP           Specifies the number of iterations that animated images 
repeat.
     ANIMOVERLAY        Specifies that animation frames are overlaid in order to 
view all frames.
     APPLETLOC          Specifies the location of Java applets, which is typically a 
URL.
     AUTOCORRECT        Automatically corrects misspelled procedure names and 
keywords, and
                        global statement names.
     AUTOSAVELOC        Specifies the location of the Program Editor auto-saved file.
     AUTOSIGNON         Enables a SAS/CONNECT client to automatically submit the 
SIGNON command
                        remotely with the RSUBMIT command.
     BINDING            Specifies the binding edge type of duplexed printed output.
     BOMFILE            Writes the byte order mark (BOM) prefix when a Unicode-
encoded file is
                        written to an external file.
     BOTTOMMARGIN       Specifies the size of the margin at the bottom of a printed 
page.
     BUFNO              Specifies the number of buffers for processing SAS data sets.
     BUFSIZE            Specifies the size of a buffer page for output SAS data sets.
     BYERR              SAS issues an error message and stops processing if the SORT 
procedure
                        attempts to sort a _NULL_ data set.
     BYLINE             Prints the BY line above each BY group.
     BYSORTED           Requires observations in one or more data sets to be sorted 
in
                        alphabetic or numeric order.
     CAPS               Converts certain types of input, and all data lines, into 
uppercase
                        characters.
     CARDIMAGE          Processes SAS source code and data lines as 80-byte records.
     CBUFNO             Specifies the number of extra page buffers to allocate for 
each open SAS
                        catalog.
     CENTER             Center SAS procedure output.

Usage: OPTSAVE Procedure 1565



Example: Saving System Options in a 
Data Set
Features: PROC OPTSAVE statement option

OUT=

Details
This example saves the current system option settings using the OPTSAVE 
procedure.

Program
libname mysas "c:\mysas";

proc optsave out=mysas.options;
run;

Program Description
Create a libref.

libname mysas "c:\mysas";

Save the current system option settings.

proc optsave out=mysas.options;
run;

1566 Chapter 44 / OPTSAVE Procedure



Log
Example Code 44.3 The SAS Log Shows Processing of PROC OPTSAVE

1    libname mysas "c:\mysas";
NOTE: Libref MYSAS was successfully assigned as follows:
      Engine:        V9
      Physical Name: c:\mysas

2    proc optsave out=mysas.options;
3    run;

NOTE: The data set MYSAS.OPTIONS has 289 observations and 2 variables.
NOTE: PROCEDURE OPTSAVE used (Total process time):
      real time           0.03 seconds
      cpu time            0.03 seconds

Example: Saving System Options in a Data Set 1567



1568 Chapter 44 / OPTSAVE Procedure



Chapter 45
PLOT Procedure

Overview: PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1569
What Does the PLOT Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1570

Concepts: PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1573
RUN Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1573
Labels and Plot Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1574

Syntax: PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1578
PROC PLOT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1579
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1583
PLOT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1583

Usage: PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1597
Generating Data with Program Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1597
Specifying Variable Lists in Plot Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1597
Specifying Combinations of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1598
Using the PENALTIES= Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1598

Results: PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1599
Scale of the Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1599
Printed Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1599
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1599
Portability of ODS Output with PROC PLOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1600
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1600
Hidden Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1600

Examples: PLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1601
Example 1: Specifying a Plotting Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1601
Example 2: Controlling the Horizontal Axis and Adding a Reference Line . . . . . 1603
Example 3: Overlaying Two Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1606
Example 4: Producing Multiple Plots per Page . . . . . . . . . . . . . . . . . . . . . . . . . . 1608
Example 5: Plotting Data on a Logarithmic Scale . . . . . . . . . . . . . . . . . . . . . . . . 1611
Example 6: Plotting Date Values on an Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1613
Example 7: Producing a Contour Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1616
Example 8: Plotting BY Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1619
Example 9: Adding Labels to a Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1623
Example 10: Excluding Observations That Have Missing Values . . . . . . . . . . . . 1626
Example 11: Adjusting Labels on a Plot with the PLACEMENT= Option . . . . . . . 1629
Example 12: Adjusting Labeling on a Plot with a Macro . . . . . . . . . . . . . . . . . . . 1634
Example 13: Changing a Default Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1637

1569



Overview: PLOT Procedure

What Does the PLOT Procedure Do?
The PLOT procedure plots the values of two variables for each observation in an 
input SAS data set. The coordinates of each point on the plot correspond to the two 
variables' values in one or more observations of the input data set.

The following output is a simple plot of the high values of the Dow Jones Industrial 
Average between 1968 and 2008. PROC PLOT determines the plotting symbol and 
the scales for the axes. Here are the statements that produce the output:

options nodate pageno=1 linesize=64
   pagesize=25;

proc plot data=djia;
   plot high*year;
   title 'High Values of the Dow Jones';
   title2 'Industrial Average';
   title3 'from 1968 to 2008';
run;

1570 Chapter 45 / PLOT Procedure



Output 45.1 A Simple Plot

You can also overlay two plots, as shown in the following output. One plot shows the 
high values of the DJIA data set; the other plot shows the low values. The plot also 
shows that you can specify plotting symbols and put a box around a plot. The 
statements that produce the following output are shown in “Example 3: Overlaying 
Two Plots” on page 1606.

Overview: PLOT Procedure 1571



Output 45.2 Plotting Two Sets of Values at Once

PROC PLOT can also label points on a plot with the values of a variable, as shown 
in the following output. The plotted data represents population density and crime 
rates for selected U.S. states.The SAS code that produces the following output is 
shown in “Example 11: Adjusting Labels on a Plot with the PLACEMENT= Option” 
on page 1629.

1572 Chapter 45 / PLOT Procedure



Output 45.3 Labeling Points on a Plot

Concepts: PLOT Procedure

RUN Groups
PROC PLOT is an interactive procedure. It remains active after a RUN statement is 
executed. Usually, SAS terminates a procedure after executing a RUN statement. 
When you start the PLOT procedure, you can continue to submit any valid 
statements without resubmitting the PROC PLOT statement. Thus, you can easily 
experiment with changing labels, values of tick marks, and so on. Any options 
submitted in the PROC PLOT statement remain in effect until you submit another 
PROC PLOT statement.

When you submit a RUN statement, PROC PLOT executes all the statements 
submitted since the last PROC PLOT or RUN statement. Each group of statements 
is called a RUN group. With each RUN group, PROC PLOT begins a new page and 
begins with the first item in the VPERCENT= and HPERCENT= lists, if any.

Concepts: PLOT Procedure 1573



To terminate the procedure, submit a QUIT statement, a DATA statement, or a 
PROC statement. Like the RUN statement, each of these statements completes a 
RUN group. If you do not want to execute the statements in the RUN group, then 
use the RUN CANCEL statement, which terminates the procedure immediately.

You can use the BY statement interactively. The BY statement remains in effect until 
you submit another BY statement or terminate the procedure.

See “Example 11: Adjusting Labels on a Plot with the PLACEMENT= Option” on 
page 1629 for an example of using RUN-group processing with PROC PLOT. 

Labels and Plot Points

Pointer Symbols
Pointer symbols associate a point with its label by pointing in the general direction of 
the label placement. When you use a label variable and do not specify a plotting 
symbol or if the variable value is null ('00'x), PROC PLOT uses pointer symbols as 
plotting symbols. PROC PLOT uses four different pointer symbols based on the 
value of the S= and V= suboptions in the PLACEMENT= option. The table below 
shows the pointer symbols:

Table 45.1 Pointer Symbols

S= V= Symbol

LEFT any <

RIGHT any >

CENTER >0 ∘

CENTER <=0 v

If you are using pointer symbols and multiple points coincide, then PROC PLOT 
uses the number of points, 2-9, as the plotting symbol. If the number of points is 
more than 9, then the procedure uses an asterisk (*).

Note: Because of character set differences among operating environments, the 
pointer symbol for S=CENTER and V>0 might differ from the one shown here.

1574 Chapter 45 / PLOT Procedure



Understanding Penalties
PROC PLOT assesses the quality of placements with penalties. If all labels are 
plotted with zero penalty, then no labels collide and all labels are near their symbols. 
When it is not possible to place all labels with zero penalty, PROC PLOT tries to 
minimize the total penalty.

The following table lists the penalty, its default value, the index used to reference the 
penalty, and the range of values that can be assigned to the penalty. Each penalty is 
described in more detail in Table 45.85 on page 1575.

Table 45.2 Penalties Table

Penalty
Default 
Penalty Index Range

Not placing a blank 1 1 0-500

Bad split, no split character specified 1 2 0-500

Bad split with split character 50 3 0-500

Free horizontal shift, fhs 2 4 0-500

Free vertical shift, fvs 1 5 0-500

Vertical shift weight, vsw 2 6 0-500

Vertical or horizontal shift denominator, vhsd 5 7 1-500

Collision state 500 8 0-10,000

(Reserved for future use) 9-14

Not placing the first character 11 15 0-500

Not placing the second character 10 16 0-500

Not placing the third character 8 17 0-500

Not placing the fourth character 5 18 0-500

Not placing the fifth through 200th character 2 19-214 0-500

The following table contains the index values from the previous table with a 
description of the corresponding penalty.

Table 45.3 Index Values for Penalties

1 A nonblank character in the plot collides with an embedded blank in a label, or there is not a 
blank or a plot boundary before or after each label fragment.

Concepts: PLOT Procedure 1575



2 A split occurs on a nonblank or nonpunctuation character when you do not specify a split 
character.

3 A label is placed with a different number of lines than the L= suboption specifies, when you 
specify a split character.

4-7 A label is placed far away from the corresponding point. PROC PLOT calculates the penalty 
according to this (integer arithmetic) formula: 
MAX H − f hs, 0 + vsw × MAX V − L+ f vs+ V > 0 /2, 0 /vhsd

Notice that penalties 4 through 7 are actually just components of the formula used to 
determine the penalty. Changing the penalty for a free horizontal or free vertical shift to a 
large value such as 500 removes any penalty for a large horizontal or vertical shift. “Example 
6: Plotting Date Values on an Axis” on page 1613 illustrates a case in which removing the 
horizontal shift penalty is useful.

8 A label might collide with its own plotting symbol. If the plotting symbol is blank, then a 
collision state cannot occur. See “Collision States” on page 1576 for more information.

15-214 A label character does not appear in the plot. By default, the penalty for not printing the first 
character is greater than the penalty for not printing the second character, and so on. By 
default, the penalty for not printing the fifth and subsequent characters is the same.

Note: Labels can share characters without penalty.

Changing Penalties
You can change the default penalties with the PENALTIES= option in the PLOT 
statement. Because PROC PLOT considers penalties when it places labels, 
changing the default penalties can change the placement of the labels.

For example, if you have labels that all begin with the same two-letters, then you 
can increase the default penalty for not printing the third, fourth, and fifth characters 
and decrease the penalty for not printing the first and second characters. See 
“Using the PENALTIES= Option” on page 1598 for an example of how to use the 
PENALTIES= option.

Collision States
Collision states are placement states that can cause a label to collide with its own 
plotting symbol. PROC PLOT usually avoids using collision states because of the 
large default penalty of 500 that is associated with them. PROC PLOT does not 
consider the actual length or splitting of any particular label when determining if a 
placement state is a collision state.

Here are the rules that PROC PLOT uses to determine collision states:

1576 Chapter 45 / PLOT Procedure



n When S=CENTER, placement states that do not shift the label up or down 
sufficiently so that all of the label is shifted onto completely different lines from 
the symbol are collision states. 

n When S=RIGHT, placement states that shift the label zero or more positions to 
the left without first shifting the label up or down onto completely different lines 
from the symbol are collision states.

n When S=LEFT, placement states that shift the label zero or more positions to the 
right without first shifting the label up or down onto completely different lines from 
the symbol are collision states.

Note: A collision state cannot occur if you do not use a plotting symbol.

Reference Lines
PROC PLOT places labels and computes penalties before placing reference lines 
on a plot. The procedure does not attempt to avoid rows and columns that contain 
reference lines.

Hidden Label Characters
In addition to the number of hidden observations and hidden plotting symbols, 
PROC PLOT prints the number of hidden label characters. Label characters can be 
hidden by plotting symbols or other label characters.

Overlaid Label Plots
When you overlay a label plot and a nonlabel plot, PROC PLOT tries to avoid 
collisions between the labels and the characters of the nonlabel plot. When a label 
character collides with a character in a nonlabel plot, PROC PLOT adds the usual 
penalty to the penalty sum.

When you overlay two or more label plots, all label plots are treated as a single plot 
in avoiding collisions and computing hidden character counts. Labels of different 
plots never overprint, even with the OVP system option in effect.

Computational Resources Used for Label 
Plots
This section uses the following variables to discuss how much time and memory 
PROC PLOT uses to construct label plots:

n
number of points with labels.

Concepts: PLOT Procedure 1577



len
constant length of labels.

s
number of label pieces, or fragments.

p
number of placement states specified in the PLACE= option.

Time
For a given plot size, the time that is required to construct the plot is approximately 
proportional to n × len . The amount of time required to split the labels is 
approximately proportional to ns2 . Generally, the more placement states that you 
specify, the more time that PROC PLOT needs to place the labels. However, 
increasing the number of horizontal and vertical shifts gives PROC PLOT more 
flexibility to avoid collisions, often resulting in less time used to place labels.

Memory
PROC PLOT uses 24p bytes of memory for the internal placement state list. PROC 
PLOT uses n 84 + 5len + 4s 1 + 1.5 s + 1  bytes for the internal list of labels. PROC 
PLOT builds all plots in memory; each printing position uses one byte of memory.

If you run out of memory, then request fewer plots in each PLOT statement and put 
a RUN statement after each PLOT statement.

Syntax: PLOT Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

Requirement: At least one PLOT statement is required.

Tips: PROC PLOT supports RUN-group processing.
You can use the ATTRIB, FORMAT, LABEL, and WHERE statements with PROC PLOT.

PROC PLOT<options>;
BY<DESCENDING>variable-1<<DESCENDING>variable-2…><NOTSORTED>;
PLOTplot-request(s)</ options>;

Statement Task Example

PROC PLOT Request the plots be produced Ex. 10

BY Produce a separate plot for each BY group Ex. 8

1578 Chapter 45 / PLOT Procedure



Statement Task Example

PLOT Describe the plots that you want Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5, Ex. 6, 
Ex. 7, Ex. 8, 
Ex. 9, Ex. 
11, Ex. 12, 
Ex. 13

PROC PLOT Statement
Requests that the plots be produced.

Tip: You can use data set options with the DATA= option. SAS Data Set Options: Reference

Example: “Example 10: Excluding Observations That Have Missing Values” on page 1626

Syntax
PROC PLOT<options>;

Summary of Optional Arguments
DATA=<SAS-data-set>

specifies the input data set.
ENCRYPTKEY=<key-value>

specifies the key value needed for plotting an AES-encrypted data set.

Control the appearance of the plot
FORMCHAR <(position(s))>'formatting-character(s)'

specifies the characters that construct the borders of the plot.
NOLEGEND

suppresses the legend at the top of the plot.
VTOH=aspect-ratio

specifies the aspect ratio of the characters on the output device.

Control the axes
MISSING

includes missing character variable values.
NOMISS

excludes observations with missing values.
UNIFORM

uniformly scales axes across BY groups.

Control the size of the plot

PROC PLOT Statement 1579



HPERCENT=percent(s)
specifies the percentage of the available horizontal space for each plot.

VPERCENT=percent(s)
specifies the percentage of the available vertical space for each plot.

Optional Arguments
DATA=<SAS-data-set>

specifies the input data set. specifies the input SAS data set.

ENCRYPTKEY=<key-value>
specifies the key value needed for plotting an AES-encrypted data set. specifies 
the key value needed for plotting an AES-encrypted data set. If the input data set 
was created with ENCRYPT=AES, then you must specify the ENCRYPTKEY= 
value to plot its data. For example, if a data set named secretPlot is created 
using the DATA statement

data secretPlot(encrypt=AES encryptkey=Ib007)

then you must specify the following PROC statement to plot the data in 
secretPlot:

proc plot data=secretPlot(encryptkey=Ib007);

See “ENCRYPTKEY= Data Set Option” in SAS Data Set Options: Reference 
for more information about the ENCRYPTKEY= data set option.

FORMCHAR <(position(s))>'formatting-character(s)'
specifies the characters that construct the borders of the plot. defines the 
characters to use for constructing the borders of the plot.

position(s)
identifies the position of one or more characters in the SAS formatting-
character string. A space or a comma separates the positions.

Default Omitting (position(s)) is the same as specifying all twenty possible 
SAS formatting characters, in order.

Range PROC PLOT uses formatting characters 1, 2, 3, 5, 7, 9, and 11. The 
following table shows the formatting characters that PROC PLOT 
uses.

Table 45.4 Character Positions

Position Default Used to Draw

1 | Vertical separators

2 - Horizontal separators

3 5 9 1 1 - Corners

7 + Intersection of vertical 
and horizontal 
separators

1580 Chapter 45 / PLOT Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en


formatting-character(s)
lists the characters to use for the specified positions. PROC PLOT assigns 
characters in formatting-character(s) to position(s), in the order in which they 
are listed. For example, the following option assigns the asterisk (*) to the 
third formatting character, the number sign (#) to the seventh character, and 
does not alter the remaining characters: formchar(3,7)='*#'

Interaction The SAS system option FORMCHAR= specifies the default 
formatting characters. The system option defines the entire string of 
formatting characters. The FORMCHAR= option in a procedure can 
redefine selected characters.

Tips You can use any character in formatting-characters, including 
hexadecimal characters. If you use hexadecimal characters, then 
you must put x after the closing quotation mark. For example, the 
following option assigns the hexadecimal character 2-D to the third 
formatting character, the hexadecimal character 7C to the seventh 
character, and does not alter the remaining characters: 
formchar(3,7)='2D7C'x

Specifying all blanks for formatting-character(s) produces plots with 
no borders. For example, the following code specifies all blanks: 
formchar (1,2,7)=''.

HPERCENT=percent(s)
specifies the percentage of the available horizontal space for each plot. specifies 
one or more percentages of the available horizontal space to use for each plot. 
HPERCENT= enables you to put multiple plots on one page. PROC PLOT tries 
to fit as many plots as possible on a page. After using each of the percent(s), 
PROC PLOT cycles back to the beginning of the list. A zero in the list forces 
PROC PLOT to go to a new page even if it could fit the next plot on the same 
page.

HPERCENT=33
prints three plots per page horizontally; each plot is one-third of a page wide.

HPERCENT=50 25 25
prints three plots per page; the first is twice as wide as the other two.

HPERCENT=33 0
produces plots that are one-third of a page wide; each plot is on a separate 
page.

HPERCENT=300
produces plots three pages wide.

At the beginning of every BY group and after each RUN statement, PROC PLOT 
returns to the beginning of the percent(s) and starts printing a new page.

Alias HPCT=

Default 100

Example “Example 4: Producing Multiple Plots per Page” on page 1608

MISSING
includes missing character variable values in the construction of the axes. It has 
no effect on numeric variables.

Interaction overrides the NOMISS option for character variables.

PROC PLOT Statement 1581



NOLEGEND
suppresses the legend at the top of each plot. The legend lists the names of the 
variables being plotted and the plotting symbols used in the plot.

NOMISS
excludes observations for which either variable is missing from the calculation of 
the axes. Normally, PROC PLOT draws an axis based on all the values of the 
variable being plotted, including points for which the other variable is missing.

Interactions The HAXIS= option overrides the effect of NOMISS on the 
horizontal axis. The VAXIS= option overrides the effect on the 
vertical axis.

NOMISS is overridden by MISSING for character variables.

Example “Example 10: Excluding Observations That Have Missing Values” 
on page 1626

UNIFORM
uniformly scales axes across BY groups. Uniform scaling enables you to directly 
compare the plots for different values of the BY variables.

Restriction You cannot use PROC PLOT with the UNIFORM option with an 
engine that supports concurrent access if another user is updating 
the data set at the same time.

VPERCENT=percent(s)
specifies one or more percentages of the available vertical space to use for each 
plot. If you use a percentage greater than 100, then PROC PLOT prints sections 
of the plot on successive pages.

Alias VPCT=

Default 100

See “HPERCENT=percent(s)” on page 1581 

Example “Example 4: Producing Multiple Plots per Page” on page 1608

VTOH=aspect-ratio
specifies the aspect ratio (vertical to horizontal) of the characters on the output 
device. aspect-ratio is a positive real number. If you use the VTOH= option, then 
PROC PLOT spaces tick marks so that the distance between horizontal tick 
marks is nearly equal to the distance between vertical tick marks. For example, if 
characters are twice as high as they are wide, then specify VTOH=2.

Interaction VTOH= has no effect if you use the HSPACE= and VSPACE= 
options in the PLOT statement.

Note The minimum value allowed is 0.

See “HAXIS=axis-specification” on page 1587 for a way to equate axes 
so that the given distance represents the same data range on both 
axes.

1582 Chapter 45 / PLOT Procedure



BY Statement
Produces a separate plot and starts a new page for each BY group.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

See: “BY” on page 74

Example: “Example 8: Plotting BY Groups” on page 1619

Syntax
BY<DESCENDING>variable-1<<DESCENDING>variable-2…><NOTSORTED>;

Required Argument
variable

specifies the variable that the procedure uses to form BY groups. You can 
specify more than one variable. If you do not use the NOTSORTED option in the 
BY statement, then you must sort or index the data set by the values of the 
variables specified in the BY statement. Variables in a BY statement are called 
BY variables.

Optional Arguments
DESCENDING

specifies that the observations are sorted in descending order by the variable 
that immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. The data is grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of 
BY variables is suspended for BY-group processing when you use the 
NOTSORTED option. In fact, the procedure does not use an index if you specify 
NOTSORTED. The procedure defines a BY group as a set of contiguous 
observations that have the same values for all BY variables. If observations with 
the same values for the BY variables are not contiguous, then the procedure 
treats each contiguous set as a separate BY group.

PLOT Statement
Requests the plots to be produced by PROC PLOT.

PLOT Statement 1583



Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Tip: You can use multiple PLOT statements.

Examples: “Example 1: Specifying a Plotting Symbol” on page 1601
“Example 2: Controlling the Horizontal Axis and Adding a Reference Line” on page 1603
“Example 3: Overlaying Two Plots” on page 1606
“Example 4: Producing Multiple Plots per Page” on page 1608
“Example 5: Plotting Data on a Logarithmic Scale” on page 1611
“Example 6: Plotting Date Values on an Axis” on page 1613
“Example 7: Producing a Contour Plot” on page 1616
“Example 8: Plotting BY Groups” on page 1619
“Example 9: Adding Labels to a Plot” on page 1623
“Example 11: Adjusting Labels on a Plot with the PLACEMENT= Option” on page 1629
“Example 12: Adjusting Labeling on a Plot with a Macro” on page 1634
“Example 13: Changing a Default Penalty” on page 1637

Syntax
PLOTplot-request(s)</ options>;

Summary of Optional Arguments
BOX

puts a box around the plot.
OVERLAY

overlays plots.

Control the axes
HAXIS=axis-specification

specifies the tick-mark values for the horizontal axis.
HEXPAND

expands the horizontal axis.
HPOS=axis-length

specifies the number of print positions on the horizontal axis.
HREVERSE

reverses the order of the values on the horizontal axis.
HSPACE=n

specifies the distance between tick marks on the horizontal axis.
HZERO

assigns a value of zero to the first tick mark on the horizontal axis.
VAXIS=axis-specification

specifies the tick-mark values for the vertical axis.
VEXPAND

expands the vertical axis.
VPOS=axis-length

1584 Chapter 45 / PLOT Procedure



specifies the number of print positions on the vertical axis.
VREVERSE

reverses the order of the values on the vertical axis.
VSPACE=n

specifies the distance between tick marks on the vertical axis.
VZERO

assigns a value of zero to the first tick mark on the vertical axis.

Label points on a plot
LIST<=penalty-value>

lists the penalty and the placement state of the points.
OUTWARD='character'

forces the labels away from the origin.
PENALTIES<(index-list)>=penalty-list

changes default penalties.
PLACEMENT=(expression(s))

specifies locations for the placement of the labels.
SPLIT='split-character'

specifies a split character for the label.
STATES

lists all placement states in effect.

Produce a contour plot
CONTOUR<=number-of-levels>

draws a contour plot.
Scontour-level='character-list'

specifies the plotting symbol for one contour level.

Produce a countour plot
SLIST='character-list-1' <'character-list-2 …'>

specifies the plotting symbol for multiple contour levels.

Specify reference lines
HREF=value-specification

draws a line perpendicular to the specified values on the horizontal axis.
HREFCHAR='character'

specifies a character to use to draw the horizontal reference line.
VREF=value-specification

draws a line perpendicular to the specified values on the vertical axis.
VREFCHAR='character'

specifies a character to use to draw the vertical reference line.

Required Argument
plot-request(s)

specifies the variables (vertical and horizontal) to plot and the plotting symbol to 
use to mark the points on the plot.

Each form of plot-request(s) supports a label variable. A label variable is 
preceded by a dollar sign ($) and specifies a variable whose values label the 
points on the plot.

PLOT Statement 1585



plot y*x $ label-variable

plot y*x='*' $ label-variable

For more information, see “Labels and Plot Points” on page 1574. In addition, 
see “Example 9: Adding Labels to a Plot” on page 1623 and all the examples 
that follow it.

The plot-request(s) can be one or more of the following:

vertical*horizontal <$ label-variable>
specifies the variable to plot on the vertical axis and the variable to plot on 
the horizontal axis.

For example, the following statement requests a plot of Y by X:

plot y*x;

Y appears on the vertical axis, X on the horizontal axis.

This form of the plot request uses the default method of choosing a plotting 
symbol to mark plot points. When a point on the plot represents the values of 
one observation in the data set, PROC PLOT puts the character A at that 
point. When a point represents the values of two observations, the character 
B appears. When a point represents values of three observations, the 
character C appears, and so on, through the alphabet. The character Z is 
used for the occurrence of 26 or more observations at the same printing 
position.

vertical*horizontal='character' <$ label-variable>
specifies the variables to plot on the vertical and horizontal axes and 
specifies a plotting symbol to mark each point on the plot. A single character 
is used to represent values from one or more observations.

For example, the following statement requests a plot of Y by X, with each 
point on the plot represented by a plus sign (+):

plot y*x='+';

vertical*horizontal=variable <$ label-variable>
specifies the variables to plot on the vertical and horizontal axes and 
specifies a variable whose values are to mark each point on the plot. The 
variable can be either numeric or character. The first (left-most) nonblank 
character in the formatted value of the variable is used as the plotting symbol 
(even if more than one value starts with the same letter). When more than 
one observation maps to the same plotting position, the value from the first 
observation marks the point. For example, in the following statement 
GENDER is a character variable with values of FEMALE and MALE; the values 
F and M mark each observation on the plot.

plot height*weight=gender;

See “Specifying Variable Lists in Plot Requests” on page 1597 and “Specifying 
Combinations of Variables” on page 1598

Optional Arguments
BOX

draws a border around the entire plot, rather than just on the left side and 
bottom.

1586 Chapter 45 / PLOT Procedure



Example “Example 3: Overlaying Two Plots” on page 1606

CONTOUR<=number-of-levels>
draws a contour plot using plotting symbols with varying degrees of shading 
where number-of-levels is the number of levels for dividing the range of variable. 
The plot request must be of the form vertical*horizontal=variable where variable 
is a numeric variable in the data set. The intensity of shading is determined by 
the values of this variable.

When you use CONTOUR, PROC PLOT does not plot observations with missing 
values for variable.

Overprinting, if it is enabled by the OVP system option, is used to produce the 
shading. Otherwise, single characters varying in darkness are used. The 
CONTOUR option is most effective when the plot is dense.

Default 10

Range 1-10

Example “Example 7: Producing a Contour Plot” on page 1616

HAXIS=axis-specification
specifies the tick-mark values for the horizontal axis.

n< … n>
BY increment
n TO n BY increment

n For numeric values, axis-specification is either an explicit list of values, a BY 
increment, or a combination of both: 

The values must be in either ascending or descending order. Use a negative 
value for increment to specify descending order. The specified values are 
spaced evenly along the horizontal axis even if the values are not uniformly 
distributed. Numeric values can be specified in the following ways:

Table 45.5 Specifying Numeric HAXIS= Values

HAXIS= value Comments

10 to 100 by 5 Values appear in increments of 5, 
starting at 10 and ending at 100.

by 5 Values are incremented by 5. PROC 
PLOT determines the minimum and 
maximum values for the tick marks.

10 100 1000 10000 Values are not uniformly distributed. 
This specification produces a 
logarithmic plot. If PROC PLOT cannot 
determine the function implied by the 
axis specification, it uses simple linear 
interpolation between the points. To 
determine whether PROC PLOT 
correctly interpolates a function, you 
can use the DATA step to generate data 
that determines the function and see 

PLOT Statement 1587



HAXIS= value Comments

whether it appears linear when plotted. 
See “Example 5: Plotting Data on a 
Logarithmic Scale” on page 1611 for an 
example.

1 2 10 to 100 by 5 A combination of the previous 
specifications.

n For character variables, axis-specification is a list of unique values that are 
enclosed in quotation marks: 

'value-1' <…'value-n'>

For example, the following statement assigns three cities to represent the 
tick-mark values for the horizontal axis:

haxis='Paris' 'London' 'Tokyo'

The character strings are case sensitive. If a character variable has an 
associated format, then axis-specification must specify the formatted value. 
The values can appear in any order.

n For axis variables that contain date-time values, axis-specification is either an 
explicit list of values or a starting value and an ending value with an 
increment specified: 

'date-time-value'i<…'date-time-value'i>

'date-time-value'i TO <…'date-time-value'i><BY increment>

'date-time-value'i
any SAS date, time, or datetime value described for the SAS functions 
INTCK and INTNX. The suffix i is one of the following:

D
date

T
time

DT
datetime

increment
one of the valid arguments for the INTCK or INTNX functions. increment can 
be one of the following:

Table 45.6 INTCK and INTNX Values

For dates For datetimes For times

DAY
WEEK
MONTH
QTR
YEAR

DTDAY
DTWEEK
DTMONTH
DTQTR
DTYEAR

HOUR
MINUTE
SECOND

1588 Chapter 45 / PLOT Procedure



The following example includes the date increment:

   haxis='01JAN95'd to '01JAN96'd       
   by month     

haxis='01JAN95'd to '01JAN96'd       
   by qtr

Note:  You must use a FORMAT statement to print the tick-mark values in an 
understandable form.

Interaction You can use the HAXIS= and VAXIS= options with the VTOH= 
option to equate axes. If your data is suitable, then use HAXIS=BY 
n and VAXIS=BY n with the same value for n and specify a value for 
the VTOH= option. The number of columns that separate the 
horizontal tick marks is nearly equal to the number of lines that 
separate the vertical tick marks times the value of the VTOH= 
option. In some cases, PROC PLOT cannot simultaneously use all 
three values and changes one or more of the values.

Examples “Example 2: Controlling the Horizontal Axis and Adding a Reference 
Line” on page 1603

“Example 5: Plotting Data on a Logarithmic Scale” on page 1611

“Example 6: Plotting Date Values on an Axis” on page 1613

HEXPAND
expands the horizontal axis to minimize the margins at the sides of the plot and 
to maximize the distance between tick marks, if possible.

HEXPAND causes PROC PLOT to ignore information about the spacing of the 
data. Plots produced with this option waste less space but can obscure the 
nature of the relationship between the variables.

HPOS=axis-length
specifies the number of print positions on the horizontal axis. The maximum 
value of axis-length that allows a plot to fit on one page is three positions less 
than the value of the LINESIZE= system option. This maximum ensures that 
there is enough space for the procedure to print information next to the vertical 
axis. The exact maximum depends on the number of characters that are in the 
vertical variable's values. If axis-length is too large to fit on a line, then PROC 
PLOT ignores the option.

HREF=value-specification
draws lines on the plot perpendicular to the specified values on the horizontal 
axis. PROC PLOT includes the values that you specify with the HREF= option 
on the horizontal axis unless you specify otherwise with the HAXIS= option.

For the syntax for value-specification, see “HAXIS=axis-specification” on page 
1587.

Example “Example 8: Plotting BY Groups” on page 1619

HREFCHAR='character'
specifies the character to use to draw the horizontal reference line.

Default vertical bar (|)

PLOT Statement 1589



See “FORMCHAR <(position(s))>'formatting-character(s)'” on page 1580 
and “HREF=value-specification” on page 1589 

HREVERSE
reverses the order of the values on the horizontal axis.

HSPACE=n
specifies that a tick mark will occur on the horizontal axis at every nth print 
position, where n is the value of HSPACE=.

HZERO
assigns a value of zero to the first tick mark on the horizontal axis.

Interaction PROC PLOT ignores HZERO if the horizontal variable has negative 
values or if the HAXIS= option specifies a range that does not begin 
with zero.

LIST<=penalty-value>
lists the horizontal and vertical axis values, the penalty, and the placement state 
of all points plotted with a penalty greater than or equal to penalty-value. If no 
plotted points have a penalty greater than or equal to penalty-value, then no list 
is printed.

Tip LIST is equivalent to LIST=0.

See “Understanding Penalties” on page 1575

Example “Example 11: Adjusting Labels on a Plot with the PLACEMENT= 
Option” on page 1629

OUTWARD='character'
tries to force the point labels outward, away from the origin of the plot, by 
protecting positions next to symbols that match character that are in the direction 
of the origin (0,0). The algorithm tries to avoid putting the labels in the protected 
positions, so they usually move outward.

Tip This option is useful only when you are labeling points with the values of a 
variable.

OVERLAY
overlays all plots that are specified in the PLOT statement on one set of axes. 
The variable names, or variable labels if they exist, from the first plot are used to 
label the axes. Unless you use the HAXIS= option or the VAXIS= option, PROC 
PLOT automatically scales the axes in the way that best fits all the variables.

When the SAS system option OVP is in effect and overprinting is allowed, the 
plots are superimposed. Otherwise, when NOOVP is in effect, PROC PLOT uses 
the plotting symbol from the first plot to represent points that appear in more than 
one plot. In such a case, the output includes a message telling you how many 
observations are hidden.

Example “Example 3: Overlaying Two Plots” on page 1606

PENALTIES<(index-list)>=penalty-list
changes the default penalties. The index-list provides the positions of the 
penalties in the list of penalties. The penalty-list contains the values that you are 
specifying for the penalties that are indicated in the index-list. The index-list and 
the penalty-list can contain one or more integers. In addition, both index-list and 
penalty-list accept the form: value TO value

1590 Chapter 45 / PLOT Procedure



See “Understanding Penalties” on page 1575

Example “Example 13: Changing a Default Penalty” on page 1637

PLACEMENT=(expression(s))
controls the placement of labels by specifying possible locations of the labels 
relative to their coordinates. Each expression consists of a list of one or more 
suboptions (H=, L=, S=, or V=) that are joined by an asterisk (*) or a colon (:). 
PROC PLOT uses the asterisk and colon to expand each expression into 
combinations of values for the four possible suboptions. The asterisk creates 
every possible combination of values in the expression list. A colon creates only 
pairwise combinations. The colon takes precedence over the asterisk. With the 
colon, if one list is shorter than the other, then the values in the shorter list are 
reused as necessary.

Use the following suboptions to control the placement:

H=integer(s)
specifies the number of horizontal spaces (columns) to shift the label relative 
to the starting position. Both positive and negative integers are valid. Positive 
integers shift the label to the right; negative integers shift it to the left. For 
example, you can use the H= suboption in the following way:

place=(h=0 1 -1 2 -2)

You can use the keywords BY ALT in this list. BY ALT produces a series of 
numbers whose signs alternate between positive and negative and whose 
absolute values change by one after each pair. For example, the following 
PLACE= specifications are equivalent:

place=(h=0 -1 to -3 by alt)  
place=(h=0 -1 1 -2 2 -3 3)

If the series includes zero, then the zero appears twice. For example, the 
following PLACE= options are equivalent:

place=(h= 0 to 2 by alt)  
place=(h=0 0 1 -1 2 -2)

Default H=0

Range −500 to 500

L=integer(s)
specifies the number of lines onto which the label can be split.

Default L=1

Range 1-200

S=start-position(s)
specifies where to start printing the label. The value for start-position can be 
one or more of the following:

CENTER
the procedure centers the label around the plotting symbol.

RIGHT
the label starts at the plotting symbol location and continues to the right.

PLOT Statement 1591



LEFT
the label starts to the left of the plotting symbol and ends at the plotting 
symbol location.

Default CENTER

V=integer(s)
specifies the number of vertical spaces (lines) to shift the label relative to the 
starting position. V= behaves the same as the H= suboption, described 
earlier.

A new expression begins when a suboption is not preceded by an operator. 
Parentheses around each expression are optional. They make it easier to 
recognize individual expressions in the list. However, the entire expression list 
must be in parentheses, as shown in the following example. The following table 
shows how this expression is expanded and describes each placement state.

      place=((v=1)
          (s=right left : h=2 -2)
          (v=-1)
          (h=0 1 to 2 by alt * v=1 -1)
          (l=1 to 3 * v=1 to 2 by alt *
           h=0 1 to 2 by alt))

Each combination of values is a placement state. The procedure uses the 
placement states in the order in which they appear in the placement states list, 
so specify your most preferred placements first. For each label, the procedure 
tries all states, then it uses the first state that places the label with minimum 
penalty. When all labels are initially placed, the procedure cycles through the plot 
multiple times, systematically refining the placements. The refinement step tries 
to both minimize the penalties and to use placements nearer to the beginning of 
the states list. However, PROC PLOT uses a heuristic approach for placements, 
so the procedure does not always find the best set of placements.

Table 45.7 Expanding an Expression List into Placement States

Expression Placement State Meaning

(V=1) S=CENTER L=1 H=0 V=1 Center the label, relative to 
the point, on the line above 
the point. Use one line for 
the label.

(S=RIGHT LEFT : H=2 −2) S=RIGHT L=1 H=2 V=0 Begin the label in the 
second column to the right 
of the point. Use one line for 
the label.

S=LEFT L=1 H=−2 V=0 End the label in the second 
column to the left of the 
point. Use one line for the 
label.

(V=−1) S=CENTER L=1 H=0 V=− 1 Center the label, relative to 
the point, on the line below 

1592 Chapter 45 / PLOT Procedure



Expression Placement State Meaning

the point. Use one line for 
the label.

(H=0 1 to 2 BY ALT * V=1 −1) S=CENTER L=1 H=0 V=1 Center the label, relative to 
the point, on the line above 
the point.

S=CENTER L=1 H=0 V=−1 Center the label, relative to 
the point, on the line below 
the point.

S=CENTER L=1 H=1 V=1 From center, shift the label 
one column to the right on 
the line above the point.

S=CENTER L=1 H=1 V=−1 From center, shift the label 
one column to the right on 
the line below the point.

S=CENTER L=1 H=−1 V=1 From center, shift the label 
one column to the left on the 
line above the point.

S=CENTER L=1 H=− 1 V=−1 From center, shift the label 
one column to the left on the 
line below the point.

S=CENTER L=1 H=2 V=1 
S=CENTER L=1 H=2 V=−1

From center, shift the labels 
two columns to the right, 
first on the line above the 
point, then on the line below.

S=CENTER L=1 H=−2 V=1

S=CENTER L=1 H=−2 V=−1

From center, shift the labels 
two columns to the left, first 
on the line above the point, 
then on the line below.

(L=1 to 3 * V=1 to 2 BY ALT * H=0 
1 to 2 BY ALT)

S=CENTER L=1 H=0 V=1 Center the label, relative to 
the point, on the line above 
the point. Use one line for 
the label.

S=CENTER L=1 H=1 V=1 
S=CENTER L=1 H=−1 V=1 
S=CENTER L=1 H=2 V=1 
S=CENTER L=1 H=−2 V=1

From center, shift the label 
one or two columns to the 
right or left on the line above 
the point. Use one line for 
the label.

S=CENTER L=1 H=0 V=−1 Center the label, relative to 
the point, on the line below 

PLOT Statement 1593



Expression Placement State Meaning

the point. Use one line for 
the label.

S=CENTER L=1 H=1 V=−1 
S=CENTER L=1 H=−1 V=−1 
S=CENTER L=1 H=2 V=−1 
S=CENTER L=1 H=−2 V=−1

From center, shift the label 
one or two columns to the 
right and the left on the line 
below the point.

. Use the same horizontal 
shifts on the line two lines 
above the point and on the 
line two lines below the 
point.

S=CENTER L=1 H=− 2 V=−2

S=CENTER L=2 H=0 V=1 Repeat the whole process 
splitting the label across two 
lines. Then repeat it splitting 
the label across three lines.

S=CENTER L=3 H=− 2 V=−2

Alias PLACE=

Default There are two defaults for the PLACE= option. If you are using a 
blank as the plotting symbol, then the default placement state is 
PLACE=(S=CENTER : V=0 : H=0 : L=1), which centers the label. If 
you are using anything other than a blank, then the default is 
PLACE=((S=RIGHT LEFT : H=2 −2) (V=1 −1 * H=0 1 -1 2 -2)). The 
default for labels placed with symbols includes multiple positions 
around the plotting symbol so the procedure has flexibility when 
placing labels on a crowded plot.

Tip Use the STATES option to print a list of placement states.

See “Labels and Plot Points” on page 1574

Examples “Example 11: Adjusting Labels on a Plot with the PLACEMENT= 
Option” on page 1629

“Example 12: Adjusting Labeling on a Plot with a Macro” on page 
1634

Scontour-level='character-list'
specifies the plotting symbol to use for a single contour level. When PROC 
PLOT produces contour plots, it automatically chooses the symbols to use for 
each level of intensity. You can use the S= option to override these symbols and 
specify your own. You can include up to three characters in character-list. If 
overprinting is not allowed, then PROC PLOT uses only the first character.

For example, to specify three levels of shading for the Z variable, use the 
following statement:

1594 Chapter 45 / PLOT Procedure



plot y*x=z /
    contour=3 s1='A' s2='+' s3='X0A';

You can also specify the plotting symbols as hexadecimal constants:

plot y*x=z /
    contour=3 s1='7A'x  s2='7F'x s3='A6'x;

This feature was designed especially for printers where the hexadecimal 
constants can represent gray scale fill characters.

Range 1 to the highest contour level (determined by the CONTOUR option).

See “SLIST='character-list-1' <'character-list-2 …'>” on page 1595 and 
“CONTOUR<=number-of-levels>” on page 1587 

SLIST='character-list-1' <'character-list-2 …'>
specifies plotting symbols for multiple contour levels. Each character-list 
specifies the plotting symbol for one contour level: the first character-list for the 
first level, the second character-list for the second level, and so on. The following 
example shows how to assign 5 different plotting symbols to 5 contour levels:

plot y*x=z /    
     contour=5  slist='.' ':' '!' '=' '+O';

If you omit a plotting symbol for each contour level, then PROC PLOT uses the 
default symbols:

slist='.' ',' '-' '=' '+' 'O' 'X'       'W' '*' '#'

Restriction If you use the SLIST= option, then it must be listed last in the PLOT 
statement.

See “Scontour-level='character-list'” on page 1594 and 
“CONTOUR<=number-of-levels>” on page 1587 

SPLIT='split-character'
when labeling plot points, specifies where to split the label when the label spans 
two or more lines. The label is split onto the number of lines that is specified in 
the L= suboption to the PLACEMENT= option. If you specify a split character, 
then the procedure always splits the label on each occurrence of that character, 
even if it cannot find a suitable placement. If you specify L=2 or more but do not 
specify a split character, then the procedure tries to split the label on blanks or 
punctuation but will split words if necessary.

PROC PLOT shifts split labels as a block, not as individual fragments (a 
fragment is the part of the split label that is contained on one line). For example, 
to force This is a label to split after the a, change it to This is a*label and 
specify SPLIT='*' .

See “Labels and Plot Points” on page 1574 

STATES
lists all the placement states in effect. STATES prints the placement states in the 
order in which you specify them in the PLACE= option.

VAXIS=axis-specification
specifies tick mark values for the vertical axis. VAXIS= follows the same rules as 
the HAXIS= option.

Examples “Example 7: Producing a Contour Plot” on page 1616

PLOT Statement 1595



“Example 12: Adjusting Labeling on a Plot with a Macro” on page 
1634

VEXPAND
expands the vertical axis to minimize the margins above and below the plot and 
to maximize the space between vertical tick marks, if possible.

See “HEXPAND” on page 1589

VPOS=axis-length
specifies the number of print positions on the vertical axis. The maximum value 
for axis-length that allows a plot to fit on one page is eight lines less than the 
value of the SAS system option PAGESIZE= because you must allow room for 
the procedure to print information under the horizontal axis. The exact maximum 
depends on the titles that are used, whether plots are overlaid, and whether 
CONTOUR is specified. If the value of axis-length specifies a plot that cannot fit 
on one page, then the plot spans multiple pages.

See “HPOS=axis-length” on page 1589

VREF=value-specification
draws lines on the plot perpendicular to the specified values on the vertical axis. 
PROC PLOT includes the values that you specify with the VREF= option on the 
vertical axis unless you specify otherwise with the VAXIS= option. For the syntax 
for value-specification, see “HAXIS=axis-specification” on page 1587.

Example “Example 2: Controlling the Horizontal Axis and Adding a Reference 
Line” on page 1603

VREFCHAR='character'
specifies the character to use to draw the vertical reference lines.

Default horizontal bar (-)

See “FORMCHAR <(position(s))>'formatting-character(s)'” on page 1580, 
“HREFCHAR='character'” on page 1589, and “VREF=value-
specification” on page 1596 

VREVERSE
reverses the order of the values on the vertical axis.

VSPACE=n
specifies that a tick mark will occur on the vertical axis at every nth print position, 
where n is the value of VSPACE=.

VZERO
assigns a value of zero to the first tick mark on the vertical axis.

Interaction PROC PLOT ignores the VZERO option if the vertical variable has 
negative values or if the VAXIS= option specifies a range that does 
not begin with zero.

1596 Chapter 45 / PLOT Procedure



Usage: PLOT Procedure

Generating Data with Program Statements
When you generate data to be plotted, a good rule is to generate fewer 
observations than the number of positions on the horizontal axis. PROC PLOT then 
uses the increment of the horizontal variable as the interval between tick marks.

Because PROC PLOT prints one character for each observation, using SAS 
program statements to generate the data set for PROC PLOT can enhance the 
effectiveness of continuous plots. For example, suppose that you want to generate 
data in order to plot the following equation, for x ranging from 0 to 100:

y = 2.54 + 3.83x

You can submit these statements:

  options linesize=80;
   data generate;
      do x=0 to 100 by 2;
         y=2.54+3.83*x;
         output;
      end;
   run;
   proc plot data=generate;
      plot y*x;
   run;

If the plot is printed with a LINESIZE= value of 80, then about 75 positions are 
available on the horizontal axis for the X values. Thus, 2 is a good increment: 51 
observations are generated, which is fewer than the 75 available positions on the 
horizontal axis.

However, if the plot is printed with a LINESIZE= value of 132, then an increment of 2 
produces a plot in which the plotting symbols have space between them. For a 
smoother line, a better increment is 1, because 101 observations are generated.

Specifying Variable Lists in Plot Requests
You can use SAS variable lists in plot requests. For example, the following are valid 
plot requests:

Table 45.8 Plot Requests

Plot Request What is Plotted

Usage: PLOT Procedure 1597



(a - - d) a*b a*c a*d b*c b*d
c*d

(x1 - x4) x1*x2
x1*x3 x1*x4 x2*x3
x2*x4 x3*x4

(_numeric_) All combinations of numeric variables

y*(x1 - x4) y*x1
y*x2 y*x4 y*x4

If both the vertical and horizontal specifications request more than one variable and 
if a variable appears in both lists, then it will not be plotted against itself. For 
example, the following statement does not plot B*B and C*C:

plot (a b c)*(b c d);

Specifying Combinations of Variables
The operator in request is either an asterisk (*) or a colon (:). An asterisk combines 
the variables in the lists to produce all possible combinations of x and y variables. 
For example, the following plot requests are equivalent:

plot (y1-y2) * (x1-x2);

plot y1*x1 y1*x2 y2*x1 y2*x2;

A colon combines the variables pairwise. Thus, the first variables of each list 
combine to request a plot, as do the second, third, and so on. For example, the 
following plot requests are equivalent:

plot (y1-y2) : (x1-x2);

plot y1*x1 y2*x2;

Using the PENALTIES= Option
In the following example, the PENALTIES= option increases the default penalty for 
not printing the third, fourth, and fifth label characters to 11, 10, and 8, and it 
decreases the penalties for not printing the first and second characters to 2:

penalties(15 to 20)=2 2 11 10 8 2

This example extends the penalty list. The 20th penalty of 2 is the penalty for not 
printing the sixth through 200th character. When the last index i is greater than 18, 
the last penalty is used for the (i − 14th character and beyond.

You can also extend the penalty list by just specifying the starting index. For 
example, the following PENALTIES= option is equivalent to the one above:

penalties(15)=2 2 11 10 8 2

1598 Chapter 45 / PLOT Procedure



Results: PLOT Procedure

Scale of the Axes
Normally, PROC PLOT looks at the minimum difference between each pair of the 
five lowest ordered values of each variable (the delta) and ensures that there is no 
more than one of these intervals per print position on the final scaled axis, if 
possible. If there is not enough room for this interval arrangement, and if PROC 
PLOT guesses that the data was artificially generated, then it puts a fixed number of 
deltas in each print position. Otherwise, PROC PLOT ignores the value.

Printed Output
Each plot uses one full page unless the plot's size is changed by the VPOS= and 
HPOS= options in the PLOT statement, the VPERCENT= or HPERCENT= options 
in the PROC PLOT statement, or the PAGESIZE= and LINESIZE= system options. 
Titles, legends, and variable labels are printed at the top of each page. Each axis is 
labeled with the variable's name or, if it exists, the variable's label.

Normally, PROC PLOT begins a new plot on a new page. However, the 
VPERCENT= and HPERCENT= options enable you to print more than one plot on a 
page. VPERCENT= and HPERCENT= are described earlier in “PROC PLOT 
Statement” on page 1579 .

PROC PLOT always begins a new page after a RUN statement and at the 
beginning of a BY group.

ODS Table Names
The PLOT procedure assigns a name to each table that it creates. You can use 
these names to reference the table when using the Output Delivery System (ODS) 
to select tables and create output data sets. For more information, see “ODS Table 
Names Produced by Base SAS Procedures” in SAS Output Delivery System: 
Procedures Guide. 

Results: PLOT Procedure 1599

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p037wkiv6e4hqln1snmfk9b7c9it.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p037wkiv6e4hqln1snmfk9b7c9it.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p037wkiv6e4hqln1snmfk9b7c9it.htm&locale=en


Table 45.9 ODS Tables Produced by the PLOT Procedure

Table Name Description
Conditions When Table 
Is Generated

Plot A single plot When you do not specify 
the OVERLAY option.

Overlaid Two or more plots on a 
single set of axes

When you specify the 
OVERLAY option.

Portability of ODS Output with PROC PLOT
Under certain circumstances, using PROC PLOT with the Output Delivery System 
produces files that are not portable. If the SAS system option FORMCHAR= in your 
SAS session uses nonstandard line-drawing characters, then the output might 
include strange characters instead of lines in operating environments in which the 
SAS Monospace font is not installed. To avoid this problem, specify the following 
OPTIONS statement before executing PROC PLOT:

options formchar="|----|+|---+=|-/\<>*";

Missing Values
If values of either of the plotting variables are missing, then PROC PLOT does not 
include the observation in the plot. However, in a plot of Y*X, values of X with 
corresponding missing values of Y are included in scaling the X axis, unless the 
NOMISS option is specified in the PROC PLOT statement.

Hidden Observations
By default, PROC PLOT uses different plotting symbols (A, B, C, and so on) to 
represent observations whose values coincide on a plot. However, if you specify 
your own plotting symbol or if you use the OVERLAY option, then you might not be 
able to recognize coinciding values.

If you specify a plotting symbol, then PROC PLOT uses the same symbol 
regardless of the number of observations whose values coincide. If you use the 
OVERLAY option and overprinting is not in effect, then PROC PLOT uses the 
symbol from the first plot request. In both cases, the output includes a message 
telling you how many observations are hidden.

1600 Chapter 45 / PLOT Procedure



Examples: PLOT Procedure

Example 1: Specifying a Plotting Symbol
Features: PROC PLOT statement option

FORMCHAR
PLOT statement

Data set: DJIA

Details
This example expands on Output 45.237 on page 1571 by specifying a different 
plotting symbol.

Program
options formchar="|----|+|---+=|-/\<>*";

data djia;
      input Year HighDate date7. High LowDate date7. Low;
      format highdate lowdate date7.;
      datalines;
1968 03DEC68   985.21 21MAR68   825.13
1969 14MAY69   968.85 17DEC69   769.93
...more data lines...
2006 27DEC06 12510.57 20JAN06 10667.39
2007 09OCT07 14164.53 05MAR07 12050.41
2008 02MAY08 13058.20 10OCT08  8451.19
;

proc plot data=djia;
      plot high*year='*'
      / vspace=5 vaxis=by 1000;

   title 'High Values of the Dow Jones Industrial Average';
   title2 'from 1968 to 2008';
run;

Example 1: Specifying a Plotting Symbol 1601



Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Create the DJIA data set. DJIA contains the high and low closing marks for the 
Dow Jones Industrial Average from 1968 to 2008 . The DATA step creates this data 
set.

data djia;
      input Year HighDate date7. High LowDate date7. Low;
      format highdate lowdate date7.;
      datalines;
1968 03DEC68   985.21 21MAR68   825.13
1969 14MAY69   968.85 17DEC69   769.93
...more data lines...
2006 27DEC06 12510.57 20JAN06 10667.39
2007 09OCT07 14164.53 05MAR07 12050.41
2008 02MAY08 13058.20 10OCT08  8451.19
;

Create the plot. The plot request plots the values of High on the vertical axis and 
the values of Year on the horizontal axis. It also specifies an asterisk as the plotting 
symbol. The VAXIS= option and the VSPACE= option. The VAXIS=by 1000 option 
specifies tick mark values for the vertical axis in increments of 1,000. The VSPACE= 
option specifies the amount of print space between tick marks on the vertical axis.

proc plot data=djia;
      plot high*year='*'
      / vspace=5 vaxis=by 1000;

Specify the titles. 

   title 'High Values of the Dow Jones Industrial Average';
   title2 'from 1968 to 2008';
run;

Output
PROC PLOT determines the tick marks and the scale of both axes.

1602 Chapter 45 / PLOT Procedure



Output 45.4 Plot with Asterisk as the Plotting Symbol

Example 2: Controlling the Horizontal Axis and 
Adding a Reference Line
Features: PROC PLOT statement option

FORMCHAR
PLOT statement
PLOT statement options

HAXIS=
VREF=

Data set: DJIA

Example 2: Controlling the Horizontal Axis and Adding a Reference Line 1603



Details
This example specifies values for the horizontal axis and draws a reference line 
from the vertical axis.

Program
options formchar="|----|+|---+=|-/\<>*";

data djia;
      input Year HighDate date7. High LowDate date7. Low;
      format highdate lowdate date7.;
      datalines;
1968 03DEC68   985.21 21MAR68   825.13
1969 14MAY69   968.85 17DEC69   769.93
...more data lines...
2006 27DEC06 12510.57 20JAN06 10667.39
2007 09OCT07 14164.53 05MAR07 12050.41
2008 02MAY08 13058.20 10OCT08  8451.19
;

proc plot data=djia;
   plot high*year='*'

     / haxis=1965 to 2020 by 10 vref=3000;

   
title 'High Values of Dow Jones Industrial Average';
title2 'from 1968 to 2008';
run;

Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Create the DJIA data set. DJIA contains the high and low closing marks for the 
Dow Jones Industrial Average from 1968 to 2008. The DATA step creates this data 
set.

data djia;
      input Year HighDate date7. High LowDate date7. Low;
      format highdate lowdate date7.;
      datalines;
1968 03DEC68   985.21 21MAR68   825.13

1604 Chapter 45 / PLOT Procedure



1969 14MAY69   968.85 17DEC69   769.93
...more data lines...
2006 27DEC06 12510.57 20JAN06 10667.39
2007 09OCT07 14164.53 05MAR07 12050.41
2008 02MAY08 13058.20 10OCT08  8451.19
;

Create the plot. The plot request plots the values of High on the vertical axis and 
the values of Year on the horizontal axis. It also specifies an asterisk as the plotting 
symbol.

proc plot data=djia;
   plot high*year='*'

Customize the horizontal axis and draw a reference line. HAXIS= specifies that 
the horizontal axis will show the values 1968 to 2008 in ten-year increments. VREF= 
draws a reference line that extends from the value 3000 on the vertical axis.

     / haxis=1965 to 2020 by 10 vref=3000;

Specify the titles. 

   
title 'High Values of Dow Jones Industrial Average';
title2 'from 1968 to 2008';
run;

Output
Output 45.5 Plot with Reference Line

Example 2: Controlling the Horizontal Axis and Adding a Reference Line 1605



Example 3: Overlaying Two Plots
Features: PROC PLOT statement option

FORMCHAR
PLOT statement
PLOT statement options

BOX
HAXIS
OVERLAY
VAXIS

Data set: DJIA

Details
This example overlays two plots and puts a box around the plot.

Program
options formchar="|";

data djia;
      input Year HighDate date7. High LowDate date7. Low;
      format highdate lowdate date7.;
      datalines;
1968 03DEC68   985.21 21MAR68   825.13
1969 14MAY69   968.85 17DEC69   769.93
...more data lines...
2006 27DEC06 12510.57 20JAN06 10667.39
2007 09OCT07 14164.53 05MAR07 12050.41
2008 02MAY08 13058.20 10OCT08  8451.19
;

proc plot data=djia formchar="|----|+|---+=|-/\<>*";
   plot high*year='*'
        low*year='o' / overlay box
        haxis=by 10
        vaxis=by 5000;

   title 'Plot of Highs and Lows';
   title2 'for the Dow Jones Industrial Average';
run;

1606 Chapter 45 / PLOT Procedure



Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|";

Create the DJIA data set. DJIA contains the high and low closing marks for the 
Dow Jones Industrial Average from 1968 to 2008. The DATA step creates this data 
set.

data djia;
      input Year HighDate date7. High LowDate date7. Low;
      format highdate lowdate date7.;
      datalines;
1968 03DEC68   985.21 21MAR68   825.13
1969 14MAY69   968.85 17DEC69   769.93
...more data lines...
2006 27DEC06 12510.57 20JAN06 10667.39
2007 09OCT07 14164.53 05MAR07 12050.41
2008 02MAY08 13058.20 10OCT08  8451.19
;

Create the plot. Create the plot using the PROC statement. Set the FORMCHAR 
option. Setting the FORMCHAR option to this exact string renders better HTML 
output when it is viewed outside of the SAS environment where SAS Monospace 
fonts are not available. The first plot request plots High on the vertical axis, plots 
Year on the horizontal axis, and specifies an asterisk as a plotting symbol. The 
second plot request plots Low on the vertical axis, plots Year on the horizontal axis, 
and specifies an 'o' as a plotting symbol. OVERLAY superimposes the second plot 
onto the first. BOX draws a box around the plot. OVERLAY and BOX apply to both 
plot requests. HAXIS= specifies that the horizontal axis will show the values 1968 to 
2008 in ten-year increments. VAXIS= specifies that the vertical axis will show the 
values in increments of 5,000.

proc plot data=djia formchar="|----|+|---+=|-/\<>*";
   plot high*year='*'
        low*year='o' / overlay box
        haxis=by 10
        vaxis=by 5000;

Specify the titles. 

   title 'Plot of Highs and Lows';
   title2 'for the Dow Jones Industrial Average';
run;

Example 3: Overlaying Two Plots 1607



Output
Output 45.6 Two Plots Overlaid Using Different Plotting Symbols

Example 4: Producing Multiple Plots per Page
Features: PROC PLOT statement options

FORMCHAR
HPERCENT=
VPERCENT=

PLOT statement

Data set: DJIA

Details
This example places three plots on one page of output.

1608 Chapter 45 / PLOT Procedure



Program
options formchar="|----|+|---+=|-/\<>*" pagesize=40 linesize=120;

data djia;
      input Year HighDate date7. High LowDate date7. Low;
      format highdate lowdate date7.;
      datalines;
1968 03DEC68   985.21 21MAR68   825.13
1969 14MAY69   968.85 17DEC69   769.93
...more data lines...
2006 27DEC06 12510.57 20JAN06 10667.39
2007 09OCT07 14164.53 05MAR07 12050.41
2008 02MAY08 13058.20 10OCT08  8451.19
;

proc plot data=djia vpercent=50 hpercent=50;

   plot high*year='*';

   plot low*year='o';

   plot high*year='*' low*year='o' / overlay box;

   title 'Plots of the Dow Jones Industrial Average';
   title2 'from 1968 to 2008';
run;

Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available. The PAGESIZE= option sets the number of lines 
of output to 40, and the LINESIZE= option sets the line size in the output window to 
120 characters.

options formchar="|----|+|---+=|-/\<>*" pagesize=40 linesize=120;

Create the DJIA data set. DJIA contains the high and low closing marks for the 
Dow Jones Industrial Average from 1968 to 2008. The DATA step creates this data 
set.

data djia;
      input Year HighDate date7. High LowDate date7. Low;
      format highdate lowdate date7.;
      datalines;
1968 03DEC68   985.21 21MAR68   825.13
1969 14MAY69   968.85 17DEC69   769.93
...more data lines...
2006 27DEC06 12510.57 20JAN06 10667.39
2007 09OCT07 14164.53 05MAR07 12050.41
2008 02MAY08 13058.20 10OCT08  8451.19
;

Specify the plot sizes. VPERCENT= specifies that 50% of the vertical space on 
the page of output is used for each plot. HPERCENT= specifies that 50% of the 
horizontal space is used for each plot.

Example 4: Producing Multiple Plots per Page 1609



proc plot data=djia vpercent=50 hpercent=50;

Create the first plot. This plot request plots the values of High on the vertical axis 
and the values of Year on the horizontal axis. It also specifies an asterisk as the 
plotting symbol.

   plot high*year='*';

Create the second plot. This plot request plots the values of Low on the vertical 
axis and the values of Year on the horizontal axis. It also specifies an asterisk as the 
plotting symbol.

   plot low*year='o';

Create the third plot. The first plot request plots High on the vertical axis, plots 
Year on the horizontal axis, and specifies an asterisk as a plotting symbol. The 
second plot request plots Low on the vertical axis, plots Year on the horizontal axis, 
and specifies an 'o' as a plotting symbol. OVERLAY superimposes the second plot 
onto the first. BOX draws a box around the plot. OVERLAY and BOX apply to both 
plot requests.

   plot high*year='*' low*year='o' / overlay box;

Specify the titles. 

   title 'Plots of the Dow Jones Industrial Average';
   title2 'from 1968 to 2008';
run;

1610 Chapter 45 / PLOT Procedure



Output
Output 45.7 Three Plots on One Page

Example 5: Plotting Data on a Logarithmic Scale
Features: PROC PLOT statement option

PLOT statement
PLOT statement options

HAXIS=
VSPACE=

DATA step

Data set: EQUA

Example 5: Plotting Data on a Logarithmic Scale 1611



Details
This example uses a DATA step to generate the data set EQUA. The DATA step 
creates the data by using an iterative DO statement. The PROC PLOT step shows 
two plots of the same data: one plot without a horizontal axis specification and one 
plot with a logarithmic scale specified for the horizontal axis.

Program
data equa;
   do Y=1 to 3 by .1;
      X=10**y;
      output;
   end;
run;

proc plot data=equa hpercent=50;

    plot y*x / vspace=1;
    plot y*x / haxis=10 100 1000 vspace=1;

    title 'Two Plots with Different';
    title2 'Horizontal Axis Specifications';
run;

Program Description
Create the EQUA data set. EQUA creates values of X and Y by incrementing the 
variable Y from 1 to 3 by increments of .1. Each value of X is calculated as 10Y.

data equa;
   do Y=1 to 3 by .1;
      X=10**y;
      output;
   end;
run;

Specify the plot sizes. HPERCENT= makes room for two plots side-by-side by 
specifying that 50% of the horizontal space is used for each plot.

proc plot data=equa hpercent=50;

Create the plots. The PLOT statement requests plot Y on the vertical axis and X on 
the horizontal axis. HAXIS= specifies a logarithmic scale for the horizontal axis for 
the second plot. The VSPACE= option specifies the amount of print space between 
the tick marks.

    plot y*x / vspace=1;
    plot y*x / haxis=10 100 1000 vspace=1;

1612 Chapter 45 / PLOT Procedure



Specify the titles. 

    title 'Two Plots with Different';
    title2 'Horizontal Axis Specifications';
run;

Output
Output 45.8 Two Plots with Different Horizontal Axis Specifications

Example 6: Plotting Date Values on an Axis
Features: PROC PLOT statement options

FORMCHAR
PLOT statement
PLOT statement options

HAXIS=
DATA step

Example 6: Plotting Date Values on an Axis 1613



Data set: EMERGENCY_CALLS

Details
This example uses a DATA step to create the data set EMERGENCY_CALLS and 
shows how you can specify date values on an axis.

Program
options formchar="|----|+|---+=|-/\<>*";

data emergency_calls;
   input Date : date7. Calls @@;
   label calls='Number of Calls';
   datalines;
1APR94 134   11APR94 384  13FEB94 488
2MAR94 289   21MAR94 201  14MAR94 460
3JUN94 184   13JUN94 152  30APR94 356
4JAN94 179   14JAN94 128  16JUN94 480
5APR94 360   15APR94 350  24JUL94 388
6MAY94 245   15DEC94 150  17NOV94 328
7JUL94 280   16MAY94 240  25AUG94 280
8AUG94 494   17JUL94 499  26SEP94 394
9SEP94 309   18AUG94 248  23NOV94 590
19SEP94 356  24FEB94 201  29JUL94 330
10OCT94 222  25MAR94 183  30AUG94 321
11NOV94 294  26APR94 412   2DEC94 511
27MAY94 294  22DEC94 413  28JUN94 309
;

proc plot data=emergency_calls;
   plot calls*date / haxis='1JAN94'd to '1JAN95'd by month vaxis=by 
100 vspace=5;

   format date mmyyd5.;

   title 'Calls to City Emergency Services Number';
   title2 'Sample of Days for 1994';
run;

Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Create the EMERGENCY_CALLS data set. EMERGENCY_CALLS contains the 
number of telephone calls to an emergency help line for each date.

1614 Chapter 45 / PLOT Procedure



data emergency_calls;
   input Date : date7. Calls @@;
   label calls='Number of Calls';
   datalines;
1APR94 134   11APR94 384  13FEB94 488
2MAR94 289   21MAR94 201  14MAR94 460
3JUN94 184   13JUN94 152  30APR94 356
4JAN94 179   14JAN94 128  16JUN94 480
5APR94 360   15APR94 350  24JUL94 388
6MAY94 245   15DEC94 150  17NOV94 328
7JUL94 280   16MAY94 240  25AUG94 280
8AUG94 494   17JUL94 499  26SEP94 394
9SEP94 309   18AUG94 248  23NOV94 590
19SEP94 356  24FEB94 201  29JUL94 330
10OCT94 222  25MAR94 183  30AUG94 321
11NOV94 294  26APR94 412   2DEC94 511
27MAY94 294  22DEC94 413  28JUN94 309
;

Create the plot. The plot request plots Calls on the vertical axis and Date on the 
horizontal axis. HAXIS= uses a monthly time for the horizontal axis. The notation 
'1JAN94'd is a date constant. The value '1JAN95'd ensures that the axis will have 
enough room for observations from December.

proc plot data=emergency_calls;
   plot calls*date / haxis='1JAN94'd to '1JAN95'd by month vaxis=by 
100 vspace=5;

Format the DATE values. The FORMAT statement assigns the MMYYD5. format to 
Date, which uses 2-digit month and 2-digit year values separated by a hyphen.

   format date mmyyd5.;

Specify the titles. 

   title 'Calls to City Emergency Services Number';
   title2 'Sample of Days for 1994';
run;

Example 6: Plotting Date Values on an Axis 1615



Output
Output 45.9 Plot with Date Values along the Horizontal Axis

Example 7: Producing a Contour Plot
Features: PROC PLOT statement option

FORMCHAR
PLOT statement
PLOT statement option

CONTOUR=
DATA step
PROC PRINT
OBS= data set option
NOOBS system option

Data set: CONTOURS

1616 Chapter 45 / PLOT Procedure



Details
This example uses a DATA step to create the data set CONTOURS. It shows how to 
represent the values of three variables with a two-dimensional plot by setting one of 
the variables as the CONTOUR variable. The variables X and Y appear on the axes, 
and Z is the contour variable. Program statements are used to generate the 
observations for the plot, and the following equation describes the contour surface: 
z = 46.2 + .09x − .0005x2 + .1y − .0005y2 + .0004xy

Program
options formchar="|----|+|---+=|-/\<>*";

data contours;
   format Z 5.1;
   do X=0 to 400 by 5;
      do Y=0 to 350 by 10;
         z=46.2+.09*x-.0005*x**2+.1*y-.0005*y**2+.0004*x*y;
         output;
      end;
   end;
run;

proc print data=contours(obs=5) noobs;
   title 'CONTOURS Data Set';
   title2 'First 5 Observations Only';
run;

proc plot data=contours;
plot y*x=z / contour=10;

    title 'A Contour Plot';
run;

Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Create the CONTOURS data set. The CONTOURS data set contains observations 
with values of X that range from 0 to 400 by 5 and with values of Y that range from 0 
to 350 by 10.

data contours;
   format Z 5.1;
   do X=0 to 400 by 5;
      do Y=0 to 350 by 10;

Example 7: Producing a Contour Plot 1617



         z=46.2+.09*x-.0005*x**2+.1*y-.0005*y**2+.0004*x*y;
         output;
      end;
   end;
run;

Print the CONTOURS data set. The OBS= data set option limits the printing to only 
the first 5 observations. NOOBS suppresses printing of the observation numbers.

proc print data=contours(obs=5) noobs;
   title 'CONTOURS Data Set';
   title2 'First 5 Observations Only';
run;

Create the plot. The PLOT statement plots Y on the vertical axis, plots X on the 
horizontal axis, and specifies Z as the contour variable. CONTOUR=10 specifies 
that the plot will divide the values of Z into ten increments, and each increment will 
have a different plotting symbol.

proc plot data=contours;
plot y*x=z / contour=10;

Specify the title. 

    title 'A Contour Plot';
run;

Output
The shadings associated with the values of Z appear at the bottom of the plot. The 
plotting symbol # shows where high values of Z occur.

Output 45.10 CONTOURS Data Set, First Five Observations

1618 Chapter 45 / PLOT Procedure



Output 45.11 Contour Plot of Y*X

Example 8: Plotting BY Groups
Features: PROC PLOT statement option

FORMCHAR
BY statement
PLOT statement

Example 8: Plotting BY Groups 1619



PLOT statement options
HAXIS=
HREF=
HSPACE=
VAXIS=
VSPACE=

PROC SORT
DATA step

Data set: EDUCATION

Details
This example uses the data set “EDUCATION” on page 2693 to show BY-group 
processing in PROC PLOT.

Program
options formchar=|----|+|---+=|-/\<>*";

data education;
   input State $14. +1 Code $ DropoutRate Expenditures MathScore
         Region $;
   label dropout='Dropout Percentage - 1989'
          expend='Expenditure Per Pupil - 1989'
            math='8th Grade Math Exam - 1990';
   datalines;
Alabama        AL 22.3 3197 252 SE
Alaska         AK 35.8 7716 .   W
...more data lines...
New York       NY 35.0 .    261 NE
North Carolina NC 31.2 3874 250 SE
North Dakota   ND 12.1 3952 281 MW
Ohio           OH 24.4 4649 264 MW
;

proc sort data=education;
   by region;
run;

proc plot data=education;
   by region;

    plot expenditures*dropoutrate='*' / href=28.6
         vaxis=by 500 vspace=5
         haxis=by 5 hspace=12;

    title 'Plot of Dropout Rate and Expenditure Per Pupil';
 run;

1620 Chapter 45 / PLOT Procedure



Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar=|----|+|---+=|-/\<>*";

Create the EDUCATION data set. “EDUCATION” on page 2693 contains 
educational data (Source: U.S. Department of Education) about some U.S. states. 
DropoutRate is the percentage of high school dropouts. Expenditures is the dollar 
amount the state spends on each pupil. MathScore is the score of eighth-grade 
students on a standardized math test. Not all states participated in the math test.

data education;
   input State $14. +1 Code $ DropoutRate Expenditures MathScore
         Region $;
   label dropout='Dropout Percentage - 1989'
          expend='Expenditure Per Pupil - 1989'
            math='8th Grade Math Exam - 1990';
   datalines;
Alabama        AL 22.3 3197 252 SE
Alaska         AK 35.8 7716 .   W
...more data lines...
New York       NY 35.0 .    261 NE
North Carolina NC 31.2 3874 250 SE
North Dakota   ND 12.1 3952 281 MW
Ohio           OH 24.4 4649 264 MW
;

Sort the EDUCATION data set. PROC SORT sorts EDUCATION by Region so that 
Region can be used as the BY variable in PROC PLOT.

proc sort data=education;
   by region;
run;

Create a separate plot for each BY group. The BY statement creates a separate 
plot for each value of Region.

proc plot data=education;
   by region;

Create the plot with a reference line. The PLOT statement plots Expenditures on 
the vertical axis, plots DropoutRate on the horizontal axis, and specifies an asterisk 
as the plotting symbol. HREF= draws a reference line that extends from 28.6 on the 
horizontal axis. The reference line represents the national average. VAXIS and 
HAXIS are used to set the tick marks along the vertical and horizontal axes. The 
VSPACE= option specifies the amount of print space between the vertical tick 
marks.

    plot expenditures*dropoutrate='*' / href=28.6
         vaxis=by 500 vspace=5
         haxis=by 5 hspace=12;

Specify the title. 

    title 'Plot of Dropout Rate and Expenditure Per Pupil';
 run;

Example 8: Plotting BY Groups 1621



Output
PROC PLOT produces a plot for each BY group. Only the plots for Midwest and 
Northeast are shown.

Output 45.12 Plot for Each BY Group, Midwest Region

1622 Chapter 45 / PLOT Procedure



Output 45.13 Plot for Each BY Group, Northeast Region

Example 9: Adding Labels to a Plot
Features: PROC PLOT statement option

FORMCHAR
BY statement
PLOT statement
PROC SORT

Example 9: Adding Labels to a Plot 1623



Data set: EDUCATION

Details
This example shows how to use variables in a data set to label the points on a plot. 
The example adds labels to the output from the example “Example 8: Plotting BY 
Groups” on page 1619 . PROC SORT is used first to sort the data set by Region so 
that Region can be used as the BY variable in the first PLOT statement.

Program
options formchar="|----|+|---+=|-/\<>*";

proc sort data=education;
   by region;
run;

proc plot data=education;
   by region;

   plot expenditures*dropoutrate='*' $ state / href=28.6
        vaxis=by 500 vspace=5
        haxis=by 5 hspace=12;

   title 'Plot of Dropout Rate and Expenditure Per Pupil';
run;

Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Sort the EDUCATION data set. PROC SORT sorts EDUCATION by Region so that 
Region can be used as the BY variable in PROC PLOT.

proc sort data=education;
   by region;
run;

Create a separate plot for each BY group. The BY statement creates a separate 
plot for each value of Region.

proc plot data=education;
   by region;

Create the plot with a reference line and a label for each data point. The plot 
request plots Expenditures on the vertical axis, plots DropoutRate on the horizontal 
axis, and specifies an asterisk as the plotting symbol. The label variable 
specification ($ state) in the PLOT statement labels each point on the plot with the 

1624 Chapter 45 / PLOT Procedure



name of the corresponding state. HREF= draws a reference line that extends from 
28.6 on the horizontal axis. The reference line represents the national average. 
VAXIS and HAXIS are used to set the tick marks along the vertical and horizontal 
axes. The HSPACE=12 option specifies that there are 12 print spaces between the 
horizontal tick marks.

   plot expenditures*dropoutrate='*' $ state / href=28.6
        vaxis=by 500 vspace=5
        haxis=by 5 hspace=12;

Specify the title. 

   title 'Plot of Dropout Rate and Expenditure Per Pupil';
run;

Output
PROC PLOT produces a plot for each BY group. Only the plots for Midwest and 
Northeast are shown.

Output 45.14 Plot with Labels, Midwest Region

Example 9: Adding Labels to a Plot 1625



Output 45.15 Plot with Labels, Northeast Region

Example 10: Excluding Observations That Have 
Missing Values
Features: PROC PLOT statement options

FORMCHAR
NOMISS

BY statement

1626 Chapter 45 / PLOT Procedure



PLOT statement
PLOT statement options

HAXIS=
HREF=
HSPACE=
VAXIS=
VSPACE=

PROC SORT
WHERE statement

Data set: EDUCATION

Details
This example shows how missing values affect the calculation of the axes. The 
example uses the “EDUCATION” on page 2693 data set.

Program
options formchar="|----|+|---+=|-/\<>*";

proc sort data=education;
   by region;
run;

proc plot data=education nomiss;

    by region;

    plot expenditures*dropoutrate='*' $ state / href=28.6
         vaxis=by 500 vspace=5
         haxis=by 5 hspace=12;

    title 'Plot of Dropout Rate and Expenditure Per Pupil';
run;

Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Sort the EDUCATION data set. PROC SORT sorts EDUCATION by Region so that 
Region can be used as the BY variable in PROC PLOT.

proc sort data=education;
   by region;
run;

Example 10: Excluding Observations That Have Missing Values 1627



Exclude data points with missing values. NOMISS excludes observations that 
have a missing value for either of the axis variables.

proc plot data=education nomiss;

Create a separate plot for each BY group. The BY statement creates a separate 
plot for each value of Region.

    by region;

Create the plot with a reference line and a label for each data point. The plot 
request plots Expenditures on the vertical axis, plots DropoutRate on the horizontal 
axis, and specifies an asterisk as the plotting symbol. The label variable 
specification ($ state) in the PLOT statement labels each point on the plot with the 
name of the corresponding state. HREF= draws a reference line extending from 
28.6 on the horizontal axis. The reference line represents the national average. 
VAXIS and HAXIS are used to set the tick marks along the vertical and horizontal 
axes. The VSPACE=5 option specifies that there are 5 spaces between tick marks 
on the vertical axis and HSPACE=12 specifies that there are 12 spaces between the 
horizontal tick marks.

    plot expenditures*dropoutrate='*' $ state / href=28.6
         vaxis=by 500 vspace=5
         haxis=by 5 hspace=12;

Specify the title. 

    title 'Plot of Dropout Rate and Expenditure Per Pupil';
run;

Output
PROC PLOT produces a plot for each BY group. Only the plot for the Northeast is 
shown. Because New York has a missing value for Expenditures, the observation is 
excluded and PROC PLOT does not use the value 35 for DropoutRate to calculate 
the horizontal axis. Compare the horizontal axis in this output with the horizontal 
axis in the plot for Northeast in “Example 9: Adding Labels to a Plot” on page 1623.

1628 Chapter 45 / PLOT Procedure



Output 45.16 Plot with Missing Values Excluded

Example 11: Adjusting Labels on a Plot with the 
PLACEMENT= Option
Features: PROC PLOT statement option

FORMCHAR
PLOT statement
PLOT statement options

BOX=
LIST=
PLACEMENT=
HAXIS=
HSPACE=
VAXIS=
VSPACE=

DATA step
RUN-group processing

Data set: CENSUS

Example 11: Adjusting Labels on a Plot with the PLACEMENT= Option 1629



Details
This example illustrates the default placement of labels and how to adjust the 
placement of labels on a crowded plot. The labels are values of variables in the data 
set “CENSUS” on page 2656.1

This example also shows RUN group processing in PROC PLOT.

Program
options formchar="|----|+|---+=|-/\<>*";

data census;
   input Density CrimeRate State $ 14-27 PostalCode $ 29-30;
   datalines;
263.3 4575.3 Ohio           OH
62.1 7017.1  Washington     WA

...more data lines...

111.6 4665.6 Tennessee      TN
120.4 4649.9 North Carolina NC
;

   
proc plot data=census;
   plot density*crimerate=state $ state /

   box
   list=1
   haxis=by 1000
   vaxis=by 250
   vspace=10
   hspace=10;

    plot density*crimerate=state $ state /
              box
              list=1
              haxis=by 1000
              vaxis=by 250
              vspace=10

           placement=((v=2 1 : l=2 1)
                 ((l=2 2 1 : v=0 1 0) * (s=right left : h=2 -2))
                 (s=center right left * l=2 1 * v=0 1 -1 2 *
                  h=0 1 to 5 by alt));

   title 'A Plot of Population Density and Crime Rates';
run;

1. Source: U.S. Bureau of the Census and the 1987 Uniform Crime Reports, FBI.

1630 Chapter 45 / PLOT Procedure



Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Create the CENSUS data set. CENSUS contains the variables CrimeRate and 
Density for selected states. CrimeRate is the number of crimes per 100,000 people. 
Density is the population density per square mile in the 1980 census. A DATA step, 
“CENSUS” on page 2656 creates this data set.

data census;
   input Density CrimeRate State $ 14-27 PostalCode $ 29-30;
   datalines;
263.3 4575.3 Ohio           OH
62.1 7017.1  Washington     WA

...more data lines...

111.6 4665.6 Tennessee      TN
120.4 4649.9 North Carolina NC
;

Create the plot with a label for each data point. The plot request plots Density on 
the vertical axis, CrimeRate on the horizontal axis, and uses the first letter of the 
value of State as the plotting symbol. This makes it easier to match the symbol with 
its label. The label variable specification ($ state) in the PLOT statement labels 
each point with the corresponding state name.

   
proc plot data=census;
   plot density*crimerate=state $ state /

Specify plot options. BOX draws a box around the plot. LIST= lists the labels that 
have penalties greater than or equal to 1. HAXIS= and VAXIS= specify increments 
only. PROC PLOT uses the data to determine the range for the axes. The 
VSPACE=10 option specifies that there are 10 spaces between tick marks on the 
vertical axis and HSPACE=10 specifies that there are 10 spaces between the 
horizontal tick marks.

   box
   list=1
   haxis=by 1000
   vaxis=by 250
   vspace=10
   hspace=10;

Request a second plot. Because PROC PLOT is interactive, the procedure is still 
running at this point in the program. It is not necessary to restart the procedure to 
submit another plot request. LIST=1 produces no output because there are no 
penalties of 1 or greater.

    plot density*crimerate=state $ state /
              box
              list=1
              haxis=by 1000
              vaxis=by 250
              vspace=10

Example 11: Adjusting Labels on a Plot with the PLACEMENT= Option 1631



Specify placement options. PLACEMENT= gives PROC PLOT more placement 
states to use to place the labels. PLACEMENT= contains three expressions. The 
first expression specifies the preferred positions for the label. The first expression 
resolves to placement states centered above the plotting symbol, with the label on 
one or two lines. The second and third expressions resolve to placement states that 
enable PROC PLOT to place the label in multiple positions around the plotting 
symbol.

           placement=((v=2 1 : l=2 1)
                 ((l=2 2 1 : v=0 1 0) * (s=right left : h=2 -2))
                 (s=center right left * l=2 1 * v=0 1 -1 2 *
                  h=0 1 to 5 by alt));

Specify the title. 

   title 'A Plot of Population Density and Crime Rates';
run;

Output
The labels Tennessee, South Carolina, Arkansas, Minnesota, and South Dakota 
have penalties. The default placement states do not provide enough possibilities for 
PROC PLOT to avoid penalties given the proximity of the points. Four label 
characters are hidden.

1632 Chapter 45 / PLOT Procedure



Output 45.17 Plot with Penalties

No collisions occur in the plot.

Example 11: Adjusting Labels on a Plot with the PLACEMENT= Option 1633



Output 45.18 Plot with Labels Placed to Avoid Collisions

Example 12: Adjusting Labeling on a Plot with a 
Macro
Features: PROC PLOT statement option

FORMCHAR
PLOT statement
PLOT statement option

BOX=
LIST=
HAXIS=
VAXIS=
VSPACE=

%IF statement
%MACRO statement

Data set: CENSUS

1634 Chapter 45 / PLOT Procedure



Details
This example illustrates the default placement of labels and uses a macro to adjust 
the placement of labels. The labels are values of a variable in the data set 
“CENSUS” on page 2656.

Program
options formchar="|----|+|---+=|-/\<>*";

%macro place(n);
   %if &n > 13 %then %let n = 13;
       placement=(
   %if &n <= 0 %then (s=center); %else (h=2 -2 : s=right left);
   %if &n = 1 %then (v=1 * h=0 -1 to -2 by alt);
   %else %if &n = 2 %then (v=1 -1 * h=0 -1 to -5 by alt);
   %else %if &n > 2 %then (v=1 to 2 by alt * h=0 -1 to -10 by alt);
   %if &n > 3 %then
       (s=center right left * v=0 1 to %eval(&n - 2) by alt *
       h=0 -1 to %eval(-3 * (&n - 2)) by alt *
       l=1 to %eval(2 + (10 * &n - 35) / 30)); )
   %if &n > 4 %then penalty(7)=%eval((3 * &n) / 2);
%mend;

proc plot data=census;
   plot density*crimerate=state $ state /

           box
           list=1
           haxis=by 1000
           vaxis=by 250
           vspace=12
           %place(4);

   title 'A Plot of Population Density and Crime Rates';
run;

Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

Use conditional logic to determine placement. The %PLACE macro provides an 
alternative to using the PLACEMENT= option. The higher the value of n , the more 
freedom PROC PLOT has to place labels.

%macro place(n);

Example 12: Adjusting Labeling on a Plot with a Macro 1635



   %if &n > 13 %then %let n = 13;
       placement=(
   %if &n <= 0 %then (s=center); %else (h=2 -2 : s=right left);
   %if &n = 1 %then (v=1 * h=0 -1 to -2 by alt);
   %else %if &n = 2 %then (v=1 -1 * h=0 -1 to -5 by alt);
   %else %if &n > 2 %then (v=1 to 2 by alt * h=0 -1 to -10 by alt);
   %if &n > 3 %then
       (s=center right left * v=0 1 to %eval(&n - 2) by alt *
       h=0 -1 to %eval(-3 * (&n - 2)) by alt *
       l=1 to %eval(2 + (10 * &n - 35) / 30)); )
   %if &n > 4 %then penalty(7)=%eval((3 * &n) / 2);
%mend;

Create the plot. The plot request plots Density on the vertical axis, CrimeRate on 
the horizontal axis, and uses the first letter of the value of State as the plotting 
symbol. The label variable specification ($ state ) in the PLOT statement t labels 
each point with the corresponding state name.

proc plot data=census;
   plot density*crimerate=state $ state /

Specify plot options. BOX draws a box around the plot. LIST= lists the labels that 
have penalties greater than or equal to 1. HAXIS= and VAXIS= specify increments 
only. PROC PLOT uses the data to determine the range for the axes. The 
VSPACE=12 option specifies that there are 12 spaces between tick marks on the 
vertical axis. The PLACE macro determines the placement of the labels.

           box
           list=1
           haxis=by 1000
           vaxis=by 250
           vspace=12
           %place(4);

Specify the title. 

   title 'A Plot of Population Density and Crime Rates';
run;

1636 Chapter 45 / PLOT Procedure



Output
Output 45.19 Plot with Labels Placed Using a Macro

Example 13: Changing a Default Penalty
Features: PROC PLOT statement option

FORMCHAR
PLOT statement
PLOT statement option

HAXIS=
LIST=
PENALTIES=
PLACEMENT=
VAXIS=
VSPACE=

Data set: CENSUS

Example 13: Changing a Default Penalty 1637



Details
This example demonstrates how changing a default penalty affects the placement of 
labels. The goal is to produce a plot that has labels that do not detract from how the 
points are scattered.

Program
options formchar="|----|+|---+=|-/\<>*";

   proc plot data=census;
      plot density*crimerate=state $ state /

           placement=(h=100 to 10 by alt * s=left right)

           penalties(4)=500  list=0

           haxis=0 to 13000 by 1000
           vaxis=by 100
           vspace=5;

   title 'A Plot of Population Density and Crime Rates';
run;

Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available.

options formchar="|----|+|---+=|-/\<>*";

   proc plot data=census;
      plot density*crimerate=state $ state /

Specify the placement. PLACEMENT= specifies that the preferred placement 
states are 100 columns to the left and the right of the point, on the same line with 
the point.

           placement=(h=100 to 10 by alt * s=left right)

Change the default penalty. PENALTIES(4)= changes the default penalty for a free 
horizontal shift to 500, which removes all penalties for a horizontal shift. LIST= 
shows how far PROC PLOT shifted the labels away from their respective points.

           penalties(4)=500  list=0

Customize the axes. HAXIS= creates a horizontal axis long enough to leave space 
for the labels on the sides of the plot. VAXIS= specifies that the values on the 
vertical axis be in increments of 100. The VSPACE=5 option specifies that there are 
5 spaces between tick marks on the vertical axis.

           haxis=0 to 13000 by 1000

1638 Chapter 45 / PLOT Procedure



           vaxis=by 100
           vspace=5;

Specify the title. 

   title 'A Plot of Population Density and Crime Rates';
run;

Output
Output 45.20 Plot with Default Penalties Adjusted

Example 13: Changing a Default Penalty 1639



Output 45.21 List of Point Locations, Penalties, and Placement States

1640 Chapter 45 / PLOT Procedure



Chapter 46
PMENU Procedure

Overview: PMENU Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1641
What Does the PMENU Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1642
SAS Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1642

Concepts: PMENU Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1643
Procedure Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1643
Steps for Building and Using PMENU Catalog Entries . . . . . . . . . . . . . . . . . . . . 1644
Templates for Coding PROC PMENU Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1644

Syntax: PMENU Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1646
PROC PMENU Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1647
CHECKBOX Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1648
DIALOG Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1649
ITEM Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1651
MENU Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1654
RADIOBOX Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1656
RBUTTON Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1657
SELECTION Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1658
SEPARATOR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659
SUBMENU Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1659
TEXT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1660

Examples: PMENU Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1661
Example 1: Building a Menu Bar for an FSEDIT Application . . . . . . . . . . . . . . . . 1661
Example 2: Collecting User Input in a Dialog Box . . . . . . . . . . . . . . . . . . . . . . . . 1664
Example 3: Creating a Dialog Box to Search Multiple Variables . . . . . . . . . . . . . 1668
Example 4: Creating Menus for a DATA Step Window Application . . . . . . . . . . . 1675
Example 5: Associating Menus with a FRAME Application . . . . . . . . . . . . . . . . . 1682

1641



Overview: PMENU Procedure

What Does the PMENU Procedure Do?
The PMENU procedure defines menus that can be used in DATA step windows, 
macro windows, both SAS/AF and SAS/FSP windows, or in any SAS application 
that enables you to specify customized menus.

Menus can replace the command line as a way to execute commands. To activate 
menus, issue the PMENU command from any command line. Menus must be 
activated in order for them to appear.

The PMENU procedure produces no immediately visible output. It simply builds a 
catalog entry of type PMENU that can be used later in an application.

SAS Menus
When menus are activated, each active window has a menu bar, which lists items 
that you can select. Depending on which item you select, SAS either processes a 
command, displays a menu or a submenu, or requests that you complete 
information in a dialog box. The dialog box is simply a box of questions or choices 
that require answers before an action can be performed. The following figure 
illustrates features that you can create with PROC PMENU.

Figure 46.1 Menu Bar, Menu, and Dialog Box

1642 Chapter 46 / PMENU Procedure



Note: A menu bar in some operating environments might appear as a pop-up menu 
or might appear at the bottom of the window.

Concepts: PMENU Procedure

Procedure Execution

Initiating the Procedure
You can define multiple menus by separating their definitions with RUN statements. 
A group of statements that ends with a RUN statement is called a RUN group. You 
must completely define a PMENU catalog entry before submitting a RUN statement. 
You do not have to restart the procedure after a RUN statement.

You must include an initial MENU statement that defines the menu bar, and you 
must include all ITEM statements and any SELECTION, MENU, SUBMENU, and 
DIALOG statements as well as statements that are associated with the DIALOG 
statement within the same RUN group. For example, the following statements define 
two separate PMENU catalog entries. Both are stored in the same catalog, but each 
PMENU catalog entry is independent of the other. In the example, both PMENU 
catalog entries create menu bars that simply list windowing environment commands 
the user can select and execute:

   libname proclib 'SAS-data-library';

   proc pmenu catalog=proclib.mycat;
      menu menu1;
      item end;
      item bye;
   run;

      menu menu2;
      item end;
      item pgm;
      item log;
      item output;
   run;

When you submit these statements, you receive a message that says that the 
PMENU entries have been created. To display one of these menu bars, you must 
associate the PMENU catalog entry with a window and then activate the window 
with the menus turned on, as described in “Steps for Building and Using PMENU 
Catalog Entries” on page 1644.

Concepts: PMENU Procedure 1643



Ending the Procedure
Submit a QUIT, DATA, or new PROC statement to execute any statements that 
have not executed and end the PMENU procedure. Submit a RUN CANCEL 
statement to cancel any statements that have not executed and end the PMENU 
procedure.

Steps for Building and Using PMENU Catalog 
Entries

In most cases, building and using PMENU entries requires the following steps:

1 Use PROC PMENU to define the menu bars, menus, and other features that you 
want. Store the output of PROC PMENU in a SAS catalog. For more information, 
see “Associating a Menu with a Window” on page 1679.

2 Define a window using SAS/AF and SAS/FSP software, or the WINDOW or 
%WINDOW statement in Base SAS software.

3 Associate the PMENU catalog entry created in step 1 with a window by using 
one of the following: 

n the MENU= option in the WINDOW statement in Base SAS software. For 
more information, see “Associating a Menu with a Window” on page 1679.

n the MENU= option in the %WINDOW statement in the macro facility.

n the Command Menu field in the GATTR window in PROGRAM entries in 
SAS/AF software.

n the Keys, Pmenu, and Commands window in a FRAME entry in SAS/AF 
software. See “Example 5: Associating Menus with a FRAME Application” on 
page 1682.

n the PMENU function in SAS/AF and SAS/FSP software.

n the SETPMENU command in SAS/FSP software. See “Example 1: Building a 
Menu Bar for an FSEDIT Application” on page 1661.

4 Activate the window that you created. Make sure that the menus are turned on.

Templates for Coding PROC PMENU Steps
The following coding templates summarize how to use the statements in the 
PMENU procedure. Refer to descriptions of the statements for more information:

n Build a simple menu bar. All items on the menu bar are windowing environment 
commands: 

proc pmenu;

1644 Chapter 46 / PMENU Procedure



   menu menu-bar;
   item command;
   ...more-ITEM-statements...
run;

n Create a menu bar with an item that produces a menu: 

proc pmenu;
    menu menu-bar;
    item 'menu-item' menu=pull-down-menu;
    ...more-ITEM-statements...
    menu pull-down-menu;
    ...ITEM-statements-for-pull-down-menu...
run;

n Create a menu bar with an item that submits a command other than the one that 
appears on the menu bar: 

proc pmenu;
   menu menu-bar;
   item 'menu-item' selection=selection;
   ...more-ITEM-statements...
   selection selection 'command-string';
run;

n Create a menu bar with an item that opens a dialog box, which displays 
information and requests text input: 

proc pmenu;
   menu menu-bar;
   item 'menu-item' menu=pull-down-menu;
   ...more-ITEM-statements...
   menu pull-down-menu;
      item 'menu-item' dialog=dialog-box;
      dialog dialog-box 'command @1';
         text #line @column 'text';
         text #line @column LEN=field-length;
run;

n Create a menu bar with an item that opens a dialog box, which permits one 
choice from a list of possible values: 

proc pmenu;
   menu menu-bar;
   item 'menu-item' menu=pull-down-menu;
   ...more-ITEM-statements...
   menu pull-down-menu;
      item 'menu-item' dialog=dialog-box;
      dialog dialog-box 'command %1';
         text #line @column 'text';
         radiobox default=button-number;
         rbutton #line @column
                 'text-for-selection';
         ...more-RBUTTON-statements...
run;

n Create a menu bar with an item that opens a dialog box, which permits several 
independent choices: 

proc pmenu;
   menu menu-bar;

Concepts: PMENU Procedure 1645



   item 'menu-item' menu=pull-down-menu;
   ...more-ITEM-statements...
   menu pull-down-menu;
      item 'menu-item' dialog=dialog-box;
      dialog dialog-box 'command &1';
         text #line @column 'text';
         checkbox #line @column 'text';
         ...more-CHECKBOX-statements...
run;

Syntax: PMENU Procedure
Restriction: You must use at least one MENU statement followed by at least one ITEM statement.

Tips: Supports RUN group processing
You can also use any global statement. For a list, see “Global Statements” on page 24 
and “Dictionary of SAS Global Statements” in SAS Global Statements: Reference. 

See: “PMENU Procedure: Windows” in SAS Companion for Windows
“PMENU Procedure: UNIX” in SAS Companion for UNIX Environments
“PMENU Procedure Statement: z/OS” in SAS Companion for z/OS

PROC PMENU <CATALOG=<libref.>catalog>
<DESC 'entry-description'>;

MENU menu-bar;
ITEM command <options> <action-options>;
ITEM 'menu-item' <options> <action-options>;

DIALOG dialog-box 'command-string field-number-specification';
CHECKBOX <ON> #line @column 'text-for-selection'

<COLOR=color> <SUBSTITUTE='text-for-substitution'>;
RADIOBOX DEFAULT=button-number;

RBUTTON <NONE> #line @column'text-for-selection'
<COLOR=color> <SUBSTITUTE='text-for-substitution'>;

TEXT #line @column field-description
<ATTR=attribute> <COLOR=color>;

MENU pull-down-menu;
SELECTION selection 'command-string';
SEPARATOR;
SUBMENU submenu-name SAS-file;

Statement Task Example

PROC PMENU Define customized menus Ex. 1

CHECKBOX Define choices a user can make in a dialog box

DIALOG Describe a dialog box that is associated with an 
item in a menu

Ex. 2, Ex. 3, 
Ex. 4

1646 Chapter 46 / PMENU Procedure

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0e7kamd4b486zn10o4lcseg4qvd.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p0w80urdaicm0nn196u6rlro8908.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n08488t5gh4is2n12ou9oa1u5um3.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n0cavll8e1d6pdn1dum713bpq6s3.htm&locale=en


Statement Task Example

ITEM Identify an item to be listed in a menu bar or in 
a menu

Ex. 1, Ex. 3, 
Ex. 5

MENU Name the catalog entry or define a menu Ex. 1, Ex. 5

RADIOBOX List and define mutually exclusive choices 
within a dialog box

Ex. 3

RBUTTON List and define mutually exclusive choices 
within a dialog box

Ex. 3

SELECTION Define a command that is submitted when an 
item is selected

Ex. 1, Ex. 4

SEPARATOR Draw a line between items in a menu

SUBMENU Define a common submenu associated with an 
item

Ex. 1

TEXT Specify text and the input fields for a dialog box Ex. 2

PROC PMENU Statement
Invokes the PMENU procedure and specifies where to store all PMENU catalog entries that are created in 
the PROC PMENU step.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Example: “Example 1: Building a Menu Bar for an FSEDIT Application” on page 1661

Syntax
PROC PMENU <CATALOG=<libref.>catalog>
<DESC 'entry-description'>;

Optional Arguments
CATALOG=<libref.>catalog

specifies the catalog in which you want to store PMENU entries.

Default If you omit libref, then the PMENU entries are stored in a catalog in 
the SASUSER library. If you omit CATALOG=, then the entries are 
stored in the SASUSER.PROFILE catalog.

Example “Example 1: Building a Menu Bar for an FSEDIT Application” on page 
1661

PROC PMENU Statement 1647



DESC 'entry-description'
provides a description for the PMENU catalog entries created in the step.

Default Menu description

Note These descriptions are displayed when you use the CATALOG window 
in the windowing environment or the CONTENTS statement in the 
CATALOG procedure.

CHECKBOX Statement
Defines choices that a user can make within a dialog box.

Restriction: Must be used after a DIALOG statement.

Syntax
CHECKBOX <ON> #line @column 'text-for-selection'

<COLOR=color> <SUBSTITUTE='text-for-substitution'>;

Required Arguments
column

specifies the column in the dialog box where the check box and text are placed.

line
specifies the line in the dialog box where the check box and text are placed.

text-for-selection
defines the text that describes this check box. This text appears in the window 
and, if the SUBSTITUTE= option is not used, is also inserted into the command 
in the preceding DIALOG statement when the user selects the check box.

Optional Arguments
COLOR=color

defines the color of the check box and the text that describes it.

ON
indicates that by default this check box is active. If you use this option, then you 
must specify it immediately after the CHECKBOX keyword.

SUBSTITUTE='text-for-substitution'
specifies the text that is to be inserted into the command in the DIALOG 
statement.

1648 Chapter 46 / PMENU Procedure



Details

Check Boxes in a Dialog Box
Each CHECKBOX statement defines a single item that the user can select 
independent of other selections. That is, if you define five choices with five 
CHECKBOX statements, then the user can select any combination of these choices. 
When the user selects choices, the text-for-selection values that are associated with 
the selections are inserted into the command string of the previous DIALOG 
statement at field locations prefixed by an ampersand (&).

DIALOG Statement
Describes a dialog box that is associated with an item on a menu.

Restriction: Must be followed by at least one TEXT statement.

Examples: “Example 2: Collecting User Input in a Dialog Box” on page 1664
“Example 3: Creating a Dialog Box to Search Multiple Variables” on page 1668
“Example 4: Creating Menus for a DATA Step Window Application” on page 1675

Syntax
DIALOG dialog-box 'command-string field-number-specification';

Required Arguments
command-string

is the command or partial command that is executed when the item is selected. 
The limit of the command-string that results after the substitutions are made is 
the command-line limit for your operating environment. Typically, the command-
line limit is approximately 80 characters.

The limit for 'command-string field-number-specification' is 200 characters.

Note: If you are using PROC PMENU to submit any command that is valid only 
in the PROGRAM EDITOR window (such as the INCLUDE command), then you 
must have the windowing environment running, and you must return control to 
the PROGRAM EDITOR window.

dialog-box
is the same name specified for the DIALOG= option in a previous ITEM 
statement.

field-number-specification
can be one or more of the following:

@1…@n %1…%n &1…&n

DIALOG Statement 1649



You can embed the field numbers, for example, @1, %1, or &1, in the command 
string and mix different types of field numbers within a command string. The 
numeric portion of the field number corresponds to the relative position of TEXT, 
RADIOBOX, and CHECKBOX statements, not to any actual number in these 
statements.

@1…@n
are optional TEXT statement numbers that can add information to the 
command before it is submitted. Numbers preceded by an at sign (@) 
correspond to TEXT statements that use the LEN= option to define input 
fields.

%1…%n
are optional RADIOBOX statement numbers that can add information to the 
command before it is submitted. Numbers preceded by a percent sign (%) 
correspond to RADIOBOX statements following the DIALOG statement.

Note Keep in mind that the numbers correspond to RADIOBOX statements, 
not to RBUTTON statements.

&1…&n
are optional CHECKBOX statement numbers that can add information to the 
command before it is submitted. Numbers preceded by an ampersand (&) 
correspond to CHECKBOX statements following the DIALOG statement.

Note To specify a literal @ (at sign), % (percent sign), or & (ampersand) in the 
command-string, use a double character: @@ (at signs), %% (percent 
signs), or && (ampersands).

Details
n You cannot control the placement of the dialog box. The dialog box is not 

scrollable. The size and placement of the dialog box are determined by your 
windowing environment.

n To use the DIALOG statement, specify an ITEM statement with the DIALOG= 
option in the ITEM statement.

n The ITEM statement creates an entry in a menu bar or in a menu, and the 
DIALOG= option specifies which DIALOG statement describes the dialog box.

n You can use CHECKBOX, RADIOBOX, and RBUTTON statements to define the 
contents of the dialog box.

n The following figure shows a typical dialog box. A dialog box can request 
information in three ways: 

o Fill in a field. Fields that accept text from a user are called text fields.

o Choose from a list of mutually exclusive choices. A group of selections of this 
type is called a radio button, and each individual selection is called a radio 
button.

o Indicate whether you want to select other independent choices. For example, 
you could choose to use various options by selecting any or all of the listed 
selections. A selection of this type is called a check box.

1650 Chapter 46 / PMENU Procedure



Figure 46.2 A Typical Dialog Box

Dialog boxes have two or more buttons, such as OK and Cancel, automatically 
built into the box. A button causes an action to occur.

Note: The actual names of the buttons vary in different windowing 
environments.

ITEM Statement
Identifies an item to be listed in a menu bar or in a menu.

Examples: “Example 1: Building a Menu Bar for an FSEDIT Application” on page 1661
“Example 3: Creating a Dialog Box to Search Multiple Variables” on page 1668
“Example 5: Associating Menus with a FRAME Application” on page 1682

Syntax
ITEM command <options> <action-options>;
ITEM 'menu-item' <options> <action-options>;

Summary of Optional Arguments
ACCELERATE=name-of-key

defines a key sequence that can be used instead of selecting an item.
action-option

specifies the action for the item.
GRAY

indicates that the item is not an active choice in this window.
HELP='help-text'

ITEM Statement 1651



specifies text that is displayed when the user displays the menu item.
ID=integer

specifies a value that is used as an identifier for an item in a menu.
MNEMONIC=character

defines a single character that can select the item.
STATE=CHECK | RADIO

places a check box or a radio button next to an item.

Required Arguments
command

a single word that is a valid SAS command for the window in which the menu 
appears. Commands that are more than one word, such as WHERE CLEAR, 
must be enclosed in single quotation marks. The command appears in 
uppercase letters on the menu bar.

If you want to control the case of a SAS command on the menu, then enclose 
the command in single quotation marks. The case that you use then appears on 
the menu.

'menu-item'
a word or text string, enclosed in quotation marks, that describes the action that 
occurs when the user selects this item. A menu item should not begin with a 
percent sign (%).

Optional Arguments
ACCELERATE=name-of-key

defines a key sequence that can be used instead of selecting an item. When the 
user presses the key sequence, it has the same effect as selecting the item from 
the menu bar or menu.

Restrictions The functionality of this option is limited to only a few characters. 
For details, see the SAS documentation for your operating 
environment.

This option is not available in all operating environments. If you 
include this option and it is not available in your operating 
environment, then the option is ignored.

action-option
is one of the following: 

DIALOG=dialog-box
specifies the name of an associated DIALOG statement, which displays a 
dialog box when the user selects this item.

Example “Example 3: Creating a Dialog Box to Search Multiple Variables” 
on page 1668

MENU=pull-down-menu
specifies the name of an associated MENU statement, which displays a 
menu when the user selects this item.

See “Example 1: Building a Menu Bar for an FSEDIT Application” on page 
1661

1652 Chapter 46 / PMENU Procedure



SELECTION=selection
specifies the name of an associated SELECTION statement, which submits a 
command when the user selects this item.

See “Example 1: Building a Menu Bar for an FSEDIT Application” on page 
1661

SUBMENU=submenu
associates the item with a common submenu.

specifies the name of an associated SUBMENU statement, which displays a 
pmenu entry when the user selects this item.

See “Example 1: Building a Menu Bar for an FSEDIT Application” on page 
1661

If no DIALOG=, MENU=, SELECTION=, or SUBMENU= option is specified, then 
the command or menu-item text string is submitted as a command-line 
command when the user selects the item.

GRAY
indicates that the item is not an active choice in this window. This option is useful 
when you want to define standard lists of items for many windows, but not all 
items are valid in all windows. When this option is set and the user selects the 
item, no action occurs.

HELP='help-text'
specifies text that is displayed when the user displays the menu item. For 
example, if you use a mouse to pull down a menu, then position the mouse 
pointer over the item and the text is displayed.

Restriction This option is not available in all operating environments. If you 
include this option and it is not available in your operating 
environment, then the option is ignored.

Tip The place where the text is displayed is operating environment-
specific.

ID=integer
specifies a value that is used as an identifier for an item in a menu. This identifier 
is used within a SAS/AF application to selectively activate or deactivate items in 
a menu or to set the state of an item as a check box or a radio button.

Restrictions Integers from 0 to 3000 are reserved for operating environment 
and SAS use.

This option is not available in all operating environments. If you 
include this option and it is not available in your operating 
environment, then the option is ignored.

Note The minimum value allowed is 3001.

Tips ID= is useful with the WINFO function in SAS Component 
Language.

You can use the same ID for more than one item.

See “STATE=CHECK | RADIO” on page 1654

ITEM Statement 1653



MNEMONIC=character
underlines the first occurrence of character in the text string that appears on the 
menu. The character must be in the text string.

The character is typically used in combination with another key, such as Alt. 
When you use the key sequence, it has the same effect as putting your cursor 
on the item. But it does not invoke the action that the item controls.

Restriction This option is not available in all operating environments. If you 
include this option and it is not available in your operating 
environment, then the option is ignored.

STATE=CHECK | RADIO
provides the ability to place a check box or a radio button next to an item that 
has been selected.

Restriction This option is not available in all operating environments. If you 
include this option and it is not available in your operating 
environment, then the option is ignored.

Tip STATE= is used with the ID= option and the WINFO function in SAS 
Component Language.

Details

Defining Items on the Menu Bar
You must use ITEM statements to name all the items that appear in a menu bar. You 
also use the ITEM statement to name the items that appear in any menus. The 
items that you specify in the ITEM statement can be commands that are issued 
when the user selects the item, or they can be descriptions of other actions that are 
performed by associated DIALOG, MENU, SELECTION, or SUBMENU statements.

All ITEM statements for a menu must be placed immediately after the MENU 
statement and before any DIALOG, SELECTION, SUBMENU, or other MENU 
statements. In some operating environments, you can insert SEPARATOR 
statements between ITEM statements to produce lines separating groups of items in 
a menu. For more information, see “SEPARATOR Statement” on page 1659.

Note: If you specify a menu bar that is too long for the window, then it might be 
truncated or wrapped to multiple lines.

MENU Statement
Names the catalog entry that stores the menus or defines a menu.

Examples: “Example 1: Building a Menu Bar for an FSEDIT Application” on page 1661
“Example 5: Associating Menus with a FRAME Application” on page 1682

1654 Chapter 46 / PMENU Procedure



Syntax
MENU menu-bar;
MENU pull-down-menu;

Required Arguments
One of the following arguments is required:

menu-bar
names the catalog entry that stores the menus.

pull-down-menu
names the menu that appears when the user selects an item in the menu bar. 
The value of pull-down-menu must match the pull-down-menu name that is 
specified in the MENU= option in a previous ITEM statement.

Details

Defining Menus
When used to define a menu, the MENU statement must follow an ITEM statement 
that specifies the MENU= option. Both the ITEM statement and the MENU 
statement for the menu must be in the same RUN group as the MENU statement 
that defines the menu bar for the PMENU catalog entry.

For both menu bars and menus, follow the MENU statement with ITEM statements 
that define each of the items that appear on the menu. Group all ITEM statements 
for a menu together. For example, the following PROC PMENU step creates one 
catalog entry, WINDOWS, which produces a menu bar with two items, Primary 
windows and Other windows. When you select one of these items, a menu is 
displayed.

   libname proclib 'SAS-data-library';

   proc pmenu cat=proclib.mycat;

         /* create catalog entry */
      menu windows;
      item 'Primary windows' menu=prime;
      item 'Other windows' menu=other;

         /* create first menu */
      menu prime;
      item output;
      item manager;
      item log;
      item pgm;

         /* create second menu */
      menu other;
      item keys;

MENU Statement 1655



      item help;
      item pmenu;
      item bye;

      /* end of run group */
   run;

The following figure shows the resulting menu selections.

Figure 46.3 Menu

RADIOBOX Statement
Defines a box that contains mutually exclusive choices within a dialog box.

Restrictions: Must be used after a DIALOG statement.
Must be followed by one or more RBUTTON statements.

Example: “Example 3: Creating a Dialog Box to Search Multiple Variables” on page 1668

Syntax
RADIOBOX DEFAULT=button-number;

Required Argument
DEFAULT=button-number

indicates which radio button is the default.

Default 1

Details
The RADIOBOX statement indicates the beginning of a list of selections. 
Immediately after the RADIOBOX statement, you must list an RBUTTON statement 
for each of the selections the user can make. When the user makes a choice, the 
text value that is associated with the selection is inserted into the command string of 
the previous DIALOG statement at field locations prefixed by a percent sign (%).

1656 Chapter 46 / PMENU Procedure



RBUTTON Statement
Lists mutually exclusive choices within a dialog box.

Restriction: Must be used after a RADIOBOX statement.

Example: “Example 3: Creating a Dialog Box to Search Multiple Variables” on page 1668

Syntax
RBUTTON <NONE> #line @column'text-for-selection'
<COLOR=color> <SUBSTITUTE='text-for-substitution'>;

Required Arguments
column

specifies the column in the dialog box where the radio button and text are 
placed.

line
specifies the line in the dialog box where the radio button and text are placed.

text-for-selection
defines the text that appears in the dialog box and, if the SUBSTITUTE= option 
is not used, defines the text that is inserted into the command in the preceding 
DIALOG statement.

Note: Be careful not to overlap columns and lines when placing text and radio 
buttons. If you overlap text and buttons, Then you will get an error message. 
Also, specify space between other text and a radio button.

Optional Arguments
COLOR=color

defines the color of the radio button and the text that describes the button.

Restriction This option is not available in all operating environments. If you 
include this option and it is not available in your operating 
environment, then the option is ignored.

NONE
defines a button that indicates none of the other choices. Defining this button 
enables the user to ignore any of the other choices. No characters, including 
blanks, are inserted into the DIALOG statement.

Restriction If you use this option, then it must appear immediately after the 
RBUTTON keyword.

RBUTTON Statement 1657



SUBSTITUTE='text-for-substitution'
specifies the text that is to be inserted into the command in the DIALOG 
statement.

See “Example 3: Creating a Dialog Box to Search Multiple Variables” on page 
1668

SELECTION Statement
Defines a command that is submitted when an item is selected.

Restriction: Must be used after an ITEM statement

Examples: “Example 1: Building a Menu Bar for an FSEDIT Application” on page 1661
“Example 4: Creating Menus for a DATA Step Window Application” on page 1675

Syntax
SELECTION selection 'command-string';

Required Arguments
selection

is the same name specified for the SELECTION= option in a previous ITEM 
statement.

command-string
is a text string, enclosed in quotation marks, that is submitted as a command-line 
command when the user selects this item. There is a limit of 200 characters for 
command-string. However, the command-line limit of approximately 80 
characters cannot be exceeded. The command-line limit differs slightly for 
various operating environments.

Note: SAS uses only the first eight characters of an item that is specified with a 
SELECTION statement. When a user selects an item from a menu list, the first 
eight characters of each item name in the list must be unique so that SAS can 
select the correct item in the list. If the first eight characters are not unique, SAS 
selects the last item in the list.

Details
You define the name of the item in the ITEM statement and specify the 
SELECTION= option to associate the item with a subsequent SELECTION 
statement. The SELECTION statement then defines the actual command that is 
submitted when the user chooses the item in the menu bar or menu.

1658 Chapter 46 / PMENU Procedure



You are likely to use the SELECTION statement to define a command string. You 
create a simple alias by using the ITEM statement, which invokes a longer 
command string that is defined in the SELECTION statement. For example, you 
could include an item in the menu bar that invokes a WINDOW statement to enable 
data entry. The actual commands that are processed when the user selects this item 
are the commands to include and submit the application.

Note: If you are using PROC PMENU to issue any command that is valid only in 
the PROGRAM EDITOR window (such as the INCLUDE command), then you must 
have the windowing environment running. Also, you must return control to the 
PROGRAM EDITOR window.

SEPARATOR Statement
Draws a line between items on a menu.

Restrictions: Must be used after an ITEM statement.
Not available in all operating environments.

Syntax
SEPARATOR; 

SUBMENU Statement
Specifies the SAS file that contains a common submenu associated with an item.

Example: “Example 1: Building a Menu Bar for an FSEDIT Application” on page 1661

Syntax
SUBMENU submenu-name SAS-file;

Required Arguments
submenu-name

specifies a name for the submenu statement. To associate a submenu with a 
menu item, submenu-name must match the submenu name specified in the 
SUBMENU= action-option in the ITEM statement.

SAS-file
specifies the name of the SAS file that contains the common submenu.

SUBMENU Statement 1659



TEXT Statement
Specifies text and the input fields for a dialog box.

Restriction: Can be used only after a DIALOG statement.

Example: “Example 2: Collecting User Input in a Dialog Box” on page 1664

Syntax
TEXT #line @column field-description
<ATTR=attribute> <COLOR=color>;

Required Arguments
column

specifies the starting column for the text or input field.

field-description
defines how the TEXT statement is used. The field-description can be one of the 
following:

LEN=field-length
is the length of an input field in which the user can enter information. If the 
LEN= argument is used, then the information entered in the field is inserted 
into the command string of the previous DIALOG statement at field locations 
that are prefixed by an at sign (@).

See “Example 2: Collecting User Input in a Dialog Box” on page 1664

'text'
is the text string that appears inside the dialog box at the location defined by 
line and column.

line
specifies the line number for the text or input field.

Optional Arguments
ATTR=attribute

defines the attribute for the text or input field. These are valid attribute values:

n BLINK

n HIGHLIGH

n REV_VIDE

n UNDERLIN

1660 Chapter 46 / PMENU Procedure



Restrictions This option is not available in all operating environments. If you 
include this option and it is not available in your operating 
environment, then the option is ignored.

Your hardware might not support all of these attributes.

COLOR=color
defines the color for the text or input field characters. Here are the color values 
that you can use:

BLACK BROWN

GRAY MAGENTA

PINK WHITE

BLUE CYAN

GREEN ORANGE

RED YELLOW

Restrictions This option is not available in all operating environments. If you 
include this option and it is not available in your operating 
environment, then the option is ignored.

Your hardware might not support all of these colors.

Examples: PMENU Procedure

Example 1: Building a Menu Bar for an FSEDIT 
Application
Features: PROC PMENU statement option

CATALOG=
ITEM statement options

MENU=
SELECTION=
SUBMENU=

MENU statement
SELECTION statement

Example 1: Building a Menu Bar for an FSEDIT Application 1661



SUBMENU statement

Details
This example creates a menu bar that can be used in an FSEDIT application to 
replace the default menu bar. The selections available on these menus do not 
enable end users to delete or duplicate observations.

Note:

n The windows in the PROC PMENU examples were produced in the UNIX 
environment and might appear slightly different from the same windows in other 
operating environments.

n You should know the operating environment-specific system options that can 
affect how menus are displayed and merged with existing SAS menus. For 
details, see the SAS documentation for your operating environment.

Program
libname proclib
'SAS-data-library';

proc pmenu catalog=proclib.menucat;

   menu project;

      item 'File' menu=f;
      item 'Edit' submenu=editmnu;
      item 'Scroll' menu=s;
      item 'Help' menu=h;

      menu f;
         item 'Goback' selection=g;
         item 'Save';
         selection g 'end';

      submenu editmnu sashelp.core.edit;

      menu s;
         item 'Next Obs' selection=n;
         item 'Prev Obs' selection=p;
         item 'Top';
         item 'Bottom';
         selection n 'forward';
         selection p 'backward';

      menu h;
         item 'Keys';
         item 'About this application' selection=hlp;
         selection hlp 'sethelp user.menucat.staffhlp.help;help';
quit;

1662 Chapter 46 / PMENU Procedure



Program Description
Declare the PROCLIB library. The PROCLIB library is used to store menu 
definitions.

libname proclib
'SAS-data-library';

Specify the catalog for storing menu definitions. Menu definitions will be stored 
in the PROCLIB.MENUCAT catalog.

proc pmenu catalog=proclib.menucat;

Specify the name of the catalog entry. The MENU statement specifies PROJECT 
as the name of the catalog entry. The menus are stored in the catalog entry 
PROCLIB.MENUCAT.PROJECT.PMENU.

   menu project;

Design the menu bar. The ITEM statements specify the items for the menu bar. 
The value of the MENU= option is used in a subsequent MENU statement. The Edit 
item uses a common predefined submenu; the menus for the other items are 
defined in this PROC step.

      item 'File' menu=f;
      item 'Edit' submenu=editmnu;
      item 'Scroll' menu=s;
      item 'Help' menu=h;

Design the File menu. This group of statements defines the selections available 
under File on the menu bar. The first ITEM statement specifies Goback as the first 
selection under File. The value of the SELECTION= option corresponds to the 
subsequent SELECTION statement, which specifies END as the command that is 
issued for that selection. The second ITEM statement specifies that the SAVE 
command is issued for that selection.

      menu f;
         item 'Goback' selection=g;
         item 'Save';
         selection g 'end';

Add the EDITMNU submenu. The SUBMENU statement associates a predefined 
submenu that is located in the SAS file SASHELP.CORE.EDIT with the Edit item on 
the menu bar. The name of this SUBMENU statement is EDITMNU, which 
corresponds with the name in the SUBMENU= action-option in the ITEM statement 
for the Edit item.

      submenu editmnu sashelp.core.edit;

Design the Scroll menu. This group of statements defines the selections available 
under Scroll on the menu bar.

      menu s;
         item 'Next Obs' selection=n;
         item 'Prev Obs' selection=p;
         item 'Top';
         item 'Bottom';
         selection n 'forward';
         selection p 'backward';

Design the Help menu. This group of statements defines the selections available 
under Help on the menu bar. The SETHELP command specifies a HELP entry that 

Example 1: Building a Menu Bar for an FSEDIT Application 1663



contains user-written information for this FSEDIT application. The semicolon that 
appears after the HELP entry name enables the HELP command to be included in 
the string. The HELP command invokes the HELP entry.

      menu h;
         item 'Keys';
         item 'About this application' selection=hlp;
         selection hlp 'sethelp user.menucat.staffhlp.help;help';
quit;

Associating a Menu Bar with an FSEDIT Session
The following SETPMENU command associates the customized menu bar with the 
FSEDIT window.

setpmenu proclib.menucat.project.pmenu;pmenu on

You can also specify the menu bar on the command line in the FSEDIT session or 
by issuing a CALL EXECCMD command in SAS Component Language (SCL).

For other methods of associating the customized menu bar with the FSEDIT 
window, see “Associating a Menu Bar with an FSEDIT Session” on page 1673.

The following FSEDIT window shows the menu bar:

Figure 46.4 Example of a Menu Bar in an FSEDIT Window

Example 2: Collecting User Input in a Dialog Box
Features: DIALOG statement

TEXT statement option
LEN=

1664 Chapter 46 / PMENU Procedure



Details
This example adds a dialog box to the menus created in “Example 1: Building a 
Menu Bar for an FSEDIT Application” on page 1661. The dialog box enables the 
user to use a WHERE clause to subset the SAS data set.

Tasks include these:

n collecting user input in a dialog box

n creating customized menus for an FSEDIT application

Program
libname proclib
'SAS-data-library';

proc pmenu catalog=proclib.menucat;

   menu project;

      item 'File' menu=f;
      item 'Edit' menu=e;
      item 'Scroll' menu=s;
      item 'Subset' menu=sub;
      item 'Help' menu=h;

      menu f;
         item 'Goback' selection=g;
         item 'Save';
         selection g 'end';

      menu e;
         item 'Cancel';
         item 'Add';

      menu s;
         item 'Next Obs' selection=n;
         item 'Prev Obs' selection=p;
         item 'Top';
         item 'Bottom';
         selection n 'forward';
         selection p 'backward';

      menu sub;
         item 'Where' dialog=d1;
         item 'Where Clear';

      menu h;
         item 'Keys';
         item 'About this application' selection=hlp;
         selection hlp 'sethelp proclib.menucat.staffhlp.help;help';

      dialog d1 'where @1';
         text #2 @3 'Enter a valid WHERE clause or UNDO';
         text #4 @3 'WHERE ';

Example 2: Collecting User Input in a Dialog Box 1665



         text #4 @10 len=40;
quit;

Program Description
Declare the PROCLIB library. The PROCLIB library is used to store menu 
definitions.

libname proclib
'SAS-data-library';

Specify the catalog for storing menu definitions. Menu definitions will be stored 
in the PROCLIB.MENUCAT catalog.

proc pmenu catalog=proclib.menucat;

Specify the name of the catalog entry. The MENU statement specifies PROJECT 
as the name of the catalog entry. The menus are stored in the catalog entry 
PROCLIB.MENUCAT.PROJECT.PMENU.

   menu project;

Design the menu bar. The ITEM statements specify the items for the menu bar. 
The value of the MENU= option is used in a subsequent MENU statement.

      item 'File' menu=f;
      item 'Edit' menu=e;
      item 'Scroll' menu=s;
      item 'Subset' menu=sub;
      item 'Help' menu=h;

Design the File menu. This group of statements defines the selections under File 
on the menu bar. The first ITEM statement specifies Goback as the first selection 
under File. The value of the SELECTION= option corresponds to the subsequent 
SELECTION statement, which specifies END as the command that is issued for that 
selection. The second ITEM statement specifies that the SAVE command is issued 
for that selection.

      menu f;
         item 'Goback' selection=g;
         item 'Save';
         selection g 'end';

Design the Edit menu. This group of statements defines the selections available 
under Edit on the menu bar.

      menu e;
         item 'Cancel';
         item 'Add';

Design the Scroll menu. This group of statements defines the selections available 
under Scroll on the menu bar.

      menu s;
         item 'Next Obs' selection=n;
         item 'Prev Obs' selection=p;
         item 'Top';
         item 'Bottom';
         selection n 'forward';
         selection p 'backward';

1666 Chapter 46 / PMENU Procedure



Design the Subset menu. This group of statements defines the selections 
available under Subset on the menu bar. The value d1 in the DIALOG= option is 
used in the subsequent DIALOG statement.

      menu sub;
         item 'Where' dialog=d1;
         item 'Where Clear';

Design the Help menu. This group of statements defines the selections available 
under Help on the menu bar. The SETHELP command specifies a HELP entry that 
contains user-written information for this FSEDIT application. The semicolon 
enables the HELP command to be included in the string. The HELP command 
invokes the HELP entry.

      menu h;
         item 'Keys';
         item 'About this application' selection=hlp;
         selection hlp 'sethelp proclib.menucat.staffhlp.help;help';

Design the dialog box. The DIALOG statement builds a WHERE command. The 
arguments for the WHERE command are provided by user input into the text entry 
fields described by the three TEXT statements. The @1 notation is a placeholder for 
user input in the text field. The TEXT statements specify the text in the dialog box 
and the length of the input field.

      dialog d1 'where @1';
         text #2 @3 'Enter a valid WHERE clause or UNDO';
         text #4 @3 'WHERE ';
         text #4 @10 len=40;
quit;

Associating a Menu Bar with an FSEDIT Window
The following SETPMENU command associates the customized menu bar with the 
FSEDIT window.

setpmenu proclib.menucat.project.pmenu;pmenu on

You can also specify the menu bar on the command line in the FSEDIT session or 
by issuing a CALL EXECCMD command in SAS Component Language (SCL). 
Refer to SAS(R) Component Language 9.3: Reference for complete documentation 
on SCL.

For other methods of associating the customized menu bar with the FSEDIT 
window, see “Associating a Menu Bar with an FSEDIT Session” on page 1673.

The following dialog box appears when the user chooses Subset and then Where.

Example 2: Collecting User Input in a Dialog Box 1667



Figure 46.5 Example of a Where Dialog Box

Example 3: Creating a Dialog Box to Search 
Multiple Variables
Features: DIALOG statement

SAS macro invocation
ITEM statement

DIALOG= option
RADIOBOX statement option

DEFAULT=
RBUTTON statement option

SUBSTITUTE=
SAS macro invocation

Details
This example shows how to modify the menu bar in an FSEDIT session to enable a 
search for one value across multiple variables. The example creates customized 
menus to use in an FSEDIT session. The menu structure is the same as in the 
preceding example, except for the WHERE dialog box.

When selected, the menu item invokes a macro. The user input becomes values for 
macro parameters. The macro generates a WHERE command that expands to 
include all the variables needed for the search.

Tasks include these:

n associating customized menus with an FSEDIT session

n searching multiple variables with a WHERE clause

n extending PROC PMENU functionality with a SAS macro

1668 Chapter 46 / PMENU Procedure



Program
libname proclib
'SAS-data-library';

proc pmenu catalog=proclib.menucat;

   menu project;

      item 'File' menu=f;
      item 'Edit' menu=e;
      item 'Scroll' menu=s;
      item 'Subset' menu=sub;
      item 'Help' menu=h;

      menu f;
         item 'Goback' selection=g;
         item 'Save';
         selection g 'end';

      menu e;
         item 'Cancel';
         item 'Add';

      menu s;
         item 'Next Obs' selection=n;
         item 'Prev Obs' selection=p;
         item 'Top';
         item 'Bottom';
         selection n 'forward';
         selection p 'backward';

      menu sub;
         item 'Where' dialog=d1;
         item 'Where Clear';

      menu h;
         item 'Keys';
         item 'About this application' selection=hlp;
         selection hlp 'sethelp proclib.menucat.staffhlp.help;help';

       dialog d1 '%%wbuild(%1,%2,@1,%3)';

          text #1 @1 'Choose a region:';
          radiobox default=1;
             rbutton #3 @5 'Northeast' substitute='NE';
             rbutton #4 @5 'Northwest' substitute='NW';
             rbutton #5 @5 'Southeast' substitute='SE';
             rbutton #6 @5 'Southwest' substitute='SW';

          text #8 @1 'Choose a contaminant:';
          radiobox default=1;
             rbutton #10 @5  'Pollutant A' substitute='pol_a,2';
             rbutton #11 @5  'Pollutant B' substitute='pol_b,4';

          text #13 @1 'Enter Value for Search:';
          text #13 @25 len=6;

          text #15 @1 'Choose a comparison criterion:';
          radiobox default=1;
             rbutton #16 @5 'Greater Than or Equal To'
                             substitute='GE';

Example 3: Creating a Dialog Box to Search Multiple Variables 1669



             rbutton #17 @5 'Less Than or Equal To'
                             substitute='LE';
             rbutton #18 @5 'Equal To' substitute='EQ';
quit;

Program Description
Declare the PROCLIB library. The PROCLIB library is used to store menu 
definitions.

libname proclib
'SAS-data-library';

Specify the catalog for storing menu definitions. Menu definitions will be stored 
in the PROCLIB.MENUCAT catalog.

proc pmenu catalog=proclib.menucat;

Specify the name of the catalog entry. The MENU statement specifies STAFF as 
the name of the catalog entry. The menus are stored in the catalog entry 
PROCLIB.MENUCAT.PROJECT.PMENU.

   menu project;

Design the menu bar. The ITEM statements specify the items for the menu bar. 
The value of the MENU= option is used in a subsequent MENU statement.

      item 'File' menu=f;
      item 'Edit' menu=e;
      item 'Scroll' menu=s;
      item 'Subset' menu=sub;
      item 'Help' menu=h;

Design the File menu. This group of statements defines the selections under File 
on the menu bar. The first ITEM statement specifies Goback as the first selection 
under File. The value of the SELECTION= option corresponds to the subsequent 
SELECTION statement, which specifies END as the command that is issued for that 
selection. The second ITEM statement specifies that the SAVE command is issued 
for that selection.

      menu f;
         item 'Goback' selection=g;
         item 'Save';
         selection g 'end';

Design the Edit menu. The ITEM statements define the selections under Edit on 
the menu bar.

      menu e;
         item 'Cancel';
         item 'Add';

Design the Scroll menu. This group of statements defines the selections under 
Scroll on the menu bar. If the quoted string in the ITEM statement is not a valid 
command, then the SELECTION= option corresponds to a subsequent SELECTION 
statement, which specifies a valid command.

      menu s;
         item 'Next Obs' selection=n;
         item 'Prev Obs' selection=p;

1670 Chapter 46 / PMENU Procedure



         item 'Top';
         item 'Bottom';
         selection n 'forward';
         selection p 'backward';

Design the Subset menu. This group of statements defines the selections under 
Subset on the menu bar. The DIALOG= option names a dialog box that is defined in 
a subsequent DIALOG statement.

      menu sub;
         item 'Where' dialog=d1;
         item 'Where Clear';

Design the Help menu. This group of statements defines the selections under Help 
on the menu bar. The SETHELP command specifies a HELP entry that contains 
user-written information for this FSEDIT application. The semicolon that appears 
after the HELP entry name enables the HELP command to be included in the string. 
The HELP command invokes the HELP entry.

      menu h;
         item 'Keys';
         item 'About this application' selection=hlp;
         selection hlp 'sethelp proclib.menucat.staffhlp.help;help';

Design the dialog box. WBUILD is a SAS macro. The double percent sign that 
precedes WBUILD is necessary to prevent PROC PMENU from expecting a field 
number to follow. The field numbers %1, %2, and %3 equate to the values that the 
user specified with the radio buttons. The field number @1 equates to the search 
value that the user enters. 

       dialog d1 '%%wbuild(%1,%2,@1,%3)';

Add a radio button for region selection. The TEXT statement specifies text for 
the dialog box that appears on line 1 and begins in column 1. The RADIOBOX 
statement specifies that a radio button will appear in the dialog box. DEFAULT= 
specifies that the first radio button (Northeast) will be selected by default. The 
RBUTTON statements specify the mutually exclusive choices for the radio buttons: 
Northeast, Northwest, Southeast, or Southwest. SUBSTITUTE= gives the value that 
is substituted for the %1 in the DIALOG statement above if that radio button is 
selected.

          text #1 @1 'Choose a region:';
          radiobox default=1;
             rbutton #3 @5 'Northeast' substitute='NE';
             rbutton #4 @5 'Northwest' substitute='NW';
             rbutton #5 @5 'Southeast' substitute='SE';
             rbutton #6 @5 'Southwest' substitute='SW';

Add a radio button for pollutant selection. The TEXT statement specifies text for 
the dialog box that appears on line 8 (#8) and begins in column 1 (@1). The 
RADIOBOX statement specifies that a radio button will appear in the dialog box. 
DEFAULT= specifies that the first radio button (Pollutant A) will be selected by 
default. The RBUTTON statements specify the mutually exclusive choices for the 
radio buttons: Pollutant A or Pollutant B. SUBSTITUTE= gives the value that is 
substituted for the %2 in the preceding DIALOG statement if that radio button is 
selected.

          text #8 @1 'Choose a contaminant:';
          radiobox default=1;
             rbutton #10 @5  'Pollutant A' substitute='pol_a,2';
             rbutton #11 @5  'Pollutant B' substitute='pol_b,4';

Example 3: Creating a Dialog Box to Search Multiple Variables 1671



Add an input field. The first TEXT statement specifies text for the dialog box that 
appears on line 13 and begins in column 1. The second TEXT statement specifies 
an input field that is 6 bytes long that appears on line 13 and begins in column 25. 
The value that the user enters in the field is substituted for the @1 in the preceding 
DIALOG statement.

          text #13 @1 'Enter Value for Search:';
          text #13 @25 len=6;

Add a radio button for comparison operator selection. The TEXT statement 
specifies text for the dialog box that appears on line 15 and begins in column 1. The 
RADIOBOX statement specifies that a radio button will appear in the dialog box. 
DEFAULT= specifies that the first radio button (Greater Than or Equal To) will be 
selected by default. The RBUTTON statements specify the mutually exclusive 
choices for the radio buttons. SUBSTITUTE= gives the value that is substituted for 
the %3 in the preceding DIALOG statement if that radio button is selected.

          text #15 @1 'Choose a comparison criterion:';
          radiobox default=1;
             rbutton #16 @5 'Greater Than or Equal To'
                             substitute='GE';
             rbutton #17 @5 'Less Than or Equal To'
                             substitute='LE';
             rbutton #18 @5 'Equal To' substitute='EQ';
quit;

The following dialog box appears when the user selects Subset and then Where.

Output 46.1 Example of a Where Dialog Box

1672 Chapter 46 / PMENU Procedure



Details

Associating a Menu Bar with an FSEDIT 
Session
The SAS data set Proclib.Lakes has data about several lakes. Two pollutants, 
pollutant A and pollutant B, were tested at each lake. Tests were conducted for 
pollutant A twice at each lake, and the results are recorded in the variables POL_A1 
and POL_A2. Tests were conducted for pollutant B four times at each lake, and the 
results are recorded in the variables POL_B1 - POL_B4. Each lake is located in one 
of four regions. The following example lists the contents of Proclib.Lakes:

Example Code 46.1 Contents of the Proclib.Lakes Data Set

                                 PROCLIB.LAKES                                 1

region    lake         pol_a1    pol_a2    pol_b1    pol_b2    pol_b3    pol_b4

  NE      Carr          0.24      0.99      0.95      0.36      0.44      0.67
  NE      Duraleigh     0.34      0.01      0.48      0.58      0.12      0.56
  NE      Charlie       0.40      0.48      0.29      0.56      0.52      0.95
  NE      Farmer        0.60      0.65      0.25      0.20      0.30      0.64
  NW      Canyon        0.63      0.44      0.20      0.98      0.19      0.01
  NW      Morris        0.85      0.95      0.80      0.67      0.32      0.81
  NW      Golf          0.69      0.37      0.08      0.72      0.71      0.32
  NW      Falls         0.01      0.02      0.59      0.58      0.67      0.02
  SE      Pleasant      0.16      0.96      0.71      0.35      0.35      0.48
  SE      Juliette      0.82      0.35      0.09      0.03      0.59      0.90
  SE      Massey        1.01      0.77      0.45      0.32      0.55      0.66
  SE      Delta         0.84      1.05      0.90      0.09      0.64      0.03
  SW      Alumni        0.45      0.32      0.45      0.44      0.55      0.12
  SW      New Dam       0.80      0.70      0.31      0.98      1.00      0.22
  SW      Border        0.51      0.04      0.55      0.35      0.45      0.78
  SW      Red           0.22      0.09      0.02      0.10      0.32     
0.01

The “PROCLIB.LAKES” on page 2706 DATA step creates Proclib.Lakes.

The following statements initiate a PROC FSEDIT session for Proclib.Lakes:

proc fsedit data=proclib.lakes screen=proclib.lakes;
run;

To associate the customized menu bar menu with the FSEDIT session, do any one 
of the following:

n enter a SETPMENU command on the command line. The command for this 
example is 

setpmenu proclib.menucat.project.pmenu

Turn on the menus by entering PMENU ON on the command line.

n enter the SETPMENU command in a Command window.

Example 3: Creating a Dialog Box to Search Multiple Variables 1673



n include an SCL program with the FSEDIT session that uses the customized 
menus and turns on the menus, for example: 

fseinit:
  call execcmd('setpmenu proclib.menucat.project.pmenu;
                pmenu on;');
return;
init:
return;
main:
return;
term:
return;

How the WBUILD Macro Works
Consider how you would learn whether any of the lakes in the Southwest region 
tested for a value of .50 or greater for pollutant A. Without the customized menu 
item, you would issue the following WHERE command in the FSEDIT window:

where region="SW" and (pol_a1 ge .50 or pol_a2 ge .50);

Using the custom menu item, you would select Southwest, Pollutant A, enter .50 
as the value, and choose Greater Than or Equal To as the comparison criterion. 
Two lakes, New Dam and Border, meet the criteria.

The WBUILD macro uses the four pieces of information from the dialog box to 
generate a WHERE command:

n One of the values for region, either NE, NW, SE, or SW, becomes the value of the 
macro parameter REGION.

n Either pol_a,2 or pol_b,4 become the values of the PREFIX and NUMVAR 
macro parameters. The comma is part of the value that is passed to the WBUILD 
macro and serves to delimit the two parameters, PREFIX and NUMVAR.

n The value that the user enters for the search becomes the value of the macro 
parameter VALUE.

n The operator that the user chooses becomes the value of the macro parameter 
OPERATOR.

To see how the macro works, again consider the following example, in which you 
want to know whether any of the lakes in the southwest tested for a value of .50 or 
greater for pollutant A. The following table contains the values of the macro 
parameters:

Table 46.1 Values of the Macro Parameters

REGION SW

PREFIX pol_a

NUMVAR 2

VALUE .50

1674 Chapter 46 / PMENU Procedure



REGION SW

OPERATOR GE

The first %IF statement checks to make sure that the user entered a value. If a 
value has been entered, then the macro begins to generate the WHERE command. 
First, the macro creates the beginning of the WHERE command:

where region="SW" and (

Next, the %DO loop executes. For pollutant A, it executes twice because 
NUMVAR=2. In the macro definition, the period in &prefix.&i concatenates pol_a 
with 1 and with 2. At each iteration of the loop, the macro resolves PREFIX, 
OPERATOR, and VALUE, and it generates a part of the WHERE command. On the 
first iteration, it generates pol_a1 GE .50

The %IF statement in the loop checks to determine whether the loop is working on 
its last iteration. If it is not working, then the macro makes a compound WHERE 
command by putting an OR between the individual clauses. The next part of the 
WHERE command becomes OR pol_a2 GE .50

The loop ends after two executions for pollutant A, and the macro generates the end 
of the WHERE command:

)

Results from the macro are placed on the command line. The following code is the 
definition of the WBUILD macro. The underlined code shows the parts of the 
WHERE command that are text strings that the macro does not resolve:

%macro wbuild(region,prefix,numvar,value,operator);
       /* check to see if value is present */
    %if &value ne %then %do;
       where region="&region" AND (
               /* If the values are character,     */
               /* enclose &value in double quotation marks. */
         %do i=1 %to &numvar;
             &prefix.&i &operator &value
                /* if not on last variable,  */
                /* generate 'OR'             */
            %if &i ne &numvar %then %do;
                 OR
            %end;
         %end;
          )
    %end;

%mend wbuild;

Example 4: Creating Menus for a DATA Step 
Window Application
Features: DIALOG statement

SELECTION statement

Example 4: Creating Menus for a DATA Step Window Application 1675



FILENAME statement

Details
This example defines an application that enables the user to enter human resources 
data for various departments, and to request reports from the data sets that are 
created by the data entry.

The first part of the example describes the PROC PMENU step that creates the 
menus. The subsequent sections describe how to use the menus in a DATA step 
window application.

Tasks include these:

n associating customized menus with a DATA step window

n creating menus for a DATA step window

n submitting SAS code from a menu selection

n creating a menu selection that calls a dialog box

Program
libname proclib
'SAS-data-library';

filename de     'external-file';
filename prt    'external-file';

 proc pmenu catalog=proclib.menus;

    menu select;

   item 'File' menu=f;
   item 'Data_Entry' menu=deptsde;
   item 'Print_Report' menu=deptsprt;

   menu f;
      item 'End this window' selection=endwdw;
      item 'End this SAS session' selection=endsas;
      selection endwdw 'end';
      selection endsas 'bye';

    menu deptsde;
       item 'For Dept01' selection=de1;
       item 'For Dept02' selection=de2;
       item 'Other Departments' dialog=deother;

       selection de1 'end;pgm;include de;change xx 01;submit';
       selection de2 'end;pgm;include de;change xx 02;submit';

       dialog deother 'end;pgm;include de;c deptxx @1;submit';
          text #1 @1 'Enter department name';
          text #2 @3 'in the form DEPT99:';
          text #2 @25 len=7;

1676 Chapter 46 / PMENU Procedure



      menu deptsprt;
         item 'For Dept01' selection=prt1;
         item 'For Dept02' selection=prt2;
         item 'Other Departments' dialog=prother;

         selection prt1
               'end;pgm;include prt;change xx 01 all;submit';
         selection prt2
               'end;pgm;include prt;change xx 02 all;submit';

      dialog prother 'end;pgm;include prt;c deptxx @1 all;submit';
         text #1 @1 'Enter department name';
         text #2 @3 'in the form DEPT99:';
         text #2 @25 len=7;

   run;

     menu entrdata;
        item 'File' menu=f;
        menu f;
           item 'End this window' selection=endwdw;
           item 'End this SAS session' selection=endsas;
           selection endwdw 'end';
           selection endsas 'bye';
   run;
quit;

Program Description
Declare the PROCLIB library. The PROCLIB library is used to store menu 
definitions.

libname proclib
'SAS-data-library';

Declare the DE and PRT filenames. The FILENAME statements define the 
external files in which the programs to create the windows are stored. 

filename de     'external-file';
filename prt    'external-file';

Specify the catalog for storing menu definitions. Menu definitions will be stored 
in the PROCLIB.MENUCAT catalog.

 proc pmenu catalog=proclib.menus;

Specify the name of the catalog entry. The MENU statement specifies SELECT 
as the name of the catalog entry. The menus are stored in the catalog entry 
PROCLIB.MENUS.SELECT.PMENU.

    menu select;

Design the menu bar. The ITEM statements specify the three items on the menu 
bar. The value of the MENU= option is used in a subsequent MENU statement.

   item 'File' menu=f;
   item 'Data_Entry' menu=deptsde;
   item 'Print_Report' menu=deptsprt;

Example 4: Creating Menus for a DATA Step Window Application 1677



Design the File menu. This group of statements defines the selections under File. 
The value of the SELECTION= option is used in a subsequent SELECTION 
statement.

   menu f;
      item 'End this window' selection=endwdw;
      item 'End this SAS session' selection=endsas;
      selection endwdw 'end';
      selection endsas 'bye';

Design the Data_Entry menu. This group of statements defines the selections 
under Data_Entry on the menu bar. The ITEM statements specify that For Dept01 
and For Dept02 appear under Data_Entry. The value of the SELECTION= option 
equates to a subsequent SELECTION statement, which contains the string of 
commands that are actually submitted. The value of the DIALOG= option equates to 
a subsequent DIALOG statement, which describes the dialog box that appears 
when this item is selected.

    menu deptsde;
       item 'For Dept01' selection=de1;
       item 'For Dept02' selection=de2;
       item 'Other Departments' dialog=deother;

Specify commands under the Data_Entry menu. The commands in single 
quotation marks are submitted when the user selects For Dept01 or For Dept02. 
The END command ends the current window and returns to the PROGRAM 
EDITOR window so that further commands can be submitted. The INCLUDE 
command includes the SAS statements that create the data entry window. The 
CHANGE command modifies the DATA statement in the included program so that it 
creates the correct data set. The SUBMIT command submits the DATA step 
program.

       selection de1 'end;pgm;include de;change xx 01;submit';
       selection de2 'end;pgm;include de;change xx 02;submit';

Design the DEOTHER dialog box. The DIALOG statement defines the dialog box 
that appears when the user selects Other Departments. The DIALOG statement 
modifies the command string so that the name of the department that is entered by 
the user is used to change deptxx in the SAS program that is included. The first two 
TEXT statements specify text that appears in the dialog box. The third TEXT 
statement specifies an input field. The name that is entered in this field is substituted 
for the @1 in the DIALOG statement.

       dialog deother 'end;pgm;include de;c deptxx @1;submit';
          text #1 @1 'Enter department name';
          text #2 @3 'in the form DEPT99:';
          text #2 @25 len=7;

Design the Print_Report menu. This group of statements defines the choices 
under the Print_Report item. These ITEM statements specify that For Dept01 and 
For Dept02 appear in the menu. The value of the SELECTION= option equates to a 
subsequent SELECTION statement, which contains the string of commands that are 
actually submitted.

      menu deptsprt;
         item 'For Dept01' selection=prt1;
         item 'For Dept02' selection=prt2;
         item 'Other Departments' dialog=prother;

Specify commands for the Print_Report menu. The commands in single 
quotation marks are submitted when the user selects For Dept01 or For Dept02. 

1678 Chapter 46 / PMENU Procedure



The END command ends the current window and returns to the PROGRAM 
EDITOR window so that further commands can be submitted. The INCLUDE 
command includes the SAS statements that print the report. (For more information, 
see “Printing a Program” on page 1681.) The CHANGE command modifies the 
PROC PRINT step in the included program so that it prints the correct data set. The 
SUBMIT command submits the PROC PRINT program.

         selection prt1
               'end;pgm;include prt;change xx 01 all;submit';
         selection prt2
               'end;pgm;include prt;change xx 02 all;submit';

Design the PROTHER dialog box. The DIALOG statement defines the dialog box 
that appears when the user selects Other Departments. The DIALOG statement 
modifies the command string so that the name of the department that is entered by 
the user is used to change deptxx in the SAS program that is included. The first two 
TEXT statements specify text that appears in the dialog box. The third TEXT 
statement specifies an input field. The name entered in this field is substituted for 
the @1 in the DIALOG statement.

      dialog prother 'end;pgm;include prt;c deptxx @1 all;submit';
         text #1 @1 'Enter department name';
         text #2 @3 'in the form DEPT99:';
         text #2 @25 len=7;

End this RUN group. 

   run;

Specify a second catalog entry and menu bar. The MENU statement specifies 
ENTRDATA as the name of the catalog entry that this RUN group is creating. File is 
the only item on the menu bar. The selections available are End this window and 
End this SAS session.

     menu entrdata;
        item 'File' menu=f;
        menu f;
           item 'End this window' selection=endwdw;
           item 'End this SAS session' selection=endsas;
           selection endwdw 'end';
           selection endsas 'bye';
   run;
quit;

Other Examples

Associating a Menu with a Window
The first group of statements defines the primary window for the application. These 
statements are stored in the file that is referenced by the HRWDW fileref:

The WINDOW statement creates the HRSELECT window. MENU= associates the 
PROCLIB.MENUS.SELECT.PMENU entry with this window.

Example 4: Creating Menus for a DATA Step Window Application 1679



   data _null_;
      window hrselect menu=proclib.menus.select
      #4  @10 'This application allows you to'
      #6  @13 '- Enter human resources data for'
      #7  @15 'one department at a time.'
      #9  @13 '- Print reports on human resources data for'
      #10 @15 'one department at a time.'
      #12 @13 '- End the application and return to the PGM window.'
      #14 @13 '- Exit from the SAS System.'
      #19 @10 'You must have the menus turned on.';

The DISPLAY statement displays the HRSELECT window.

      display hrselect;
   run;

The HRSELECT window that is displayed by the DISPLAY statement:

Figure 46.6 The HRSELECT Window

Using a Data Entry Program
When the user selects Data_Entry from the menu bar in the HRSELECT window, a 
menu is displayed. When the user selects one of the listed departments or chooses 
to enter a different department, the following statements are invoked. These 
statements are stored in the file that is referenced by the DE fileref.

The WINDOW statement creates the HRDATA window. MENU= associates the 
PROCLIB.MENUS.ENTRDATA.PMENU entry with the window.

  data proclib.deptxx;
      window hrdata menu=proclib.menus.entrdata
      #5  @10 'Employee Number'
      #8  @10 'Salary'
      #11 @10 'Employee Name'
      #5  @31 empno $4.
      #8  @31 salary 10.
      #11 @31 name $30.
      #19 @10 'Press ENTER to add the observation to the data set.';

1680 Chapter 46 / PMENU Procedure



The DISPLAY statement displays the HRDATA window.

      display hrdata;
  run;

The %INCLUDE statement recalls the statements in the file HRWDW. The 
statements in HRWDW redisplay the primary window. See the HRSELECT window 
on page 1680 

  filename hrwdw 'external-file';
  %include hrwdw;
  run;

The SELECTION and DIALOG statements in the PROC PMENU step modify the 
DATA statement in this program so that the correct department name is used when 
the data set is created. That is, if the user selects Other Departments and enters 
DEPT05, then the DATA statement is changed by the command string in the DIALOG 
statement to

   data proclib.dept05;

The following display contains the data entry window, HRDATA.

Figure 46.7 The HRDATA Window

Printing a Program
When the user selects Print_Report from the menu bar, a menu is displayed. 
When the user selects one of the listed departments or chooses to enter a different 
department, the following statements are invoked. These statements are stored in 
the external file referenced by the PRT fileref.

PROC PRINTTO routes the output to an external file.

   proc printto
file='external-file' new;
   run;

   libname proclib

Example 4: Creating Menus for a DATA Step Window Application 1681



'SAS-data-library';

   proc print data=proclib.deptxx;
      title 'Information for deptxx';
   run;

This PROC PRINTTO step restores the default output destination. See Chapter 49, 
“PRINTTO Procedure,” on page 1797. 

   proc printto;
   run;

The %INCLUDE statement recalls the statements in the file HRWDW. The 
statements in HRWDW redisplay the primary window.

   filename hrwdw 'external-file';
   %include hrwdw;
   run;

Example 5: Associating Menus with a FRAME 
Application
Features: ITEM statement

MENU statement
SAS/AF software

Details
This example creates menus for a FRAME entry and gives the steps necessary to 
associate the menus with a FRAME entry from SAS/AF software.

Program
libname proclib
'SAS-data-library';

proc pmenu catalog=proclib.menucat;

   menu frame;

      item 'File' menu=f;
      item 'Help' menu=h;

      menu f;
         item 'Cancel';
         item 'End';

      menu h;
         item 'About the application' selection=a;
         item 'About the keys'   selection=k;

1682 Chapter 46 / PMENU Procedure



            selection a 'sethelp proclib.menucat.app.help;help';
            selection k 'sethelp proclib.menucat.keys.help;help';
run;
quit;

Program Description
Declare the PROCLIB library. The PROCLIB library is used to store menu 
definitions.

libname proclib
'SAS-data-library';

Specify the catalog for storing menu definitions. Menu definitions will be stored 
in the PROCLIB.MENUCAT catalog.

proc pmenu catalog=proclib.menucat;

Specify the name of the catalog entry. The MENU statement specifies FRAME as 
the name of the catalog entry. The menus are stored in the catalog entry 
PROCLIB.MENUS.FRAME.PMENU.

   menu frame;

Design the menu bar. The ITEM statements specify the items in the menu bar. The 
value of MENU= corresponds to a subsequent MENU statement.

      item 'File' menu=f;
      item 'Help' menu=h;

Design the File menu. The MENU statement equates to the MENU= option in a 
preceding ITEM statement. The ITEM statements specify the selections that are 
available under File on the menu bar.

      menu f;
         item 'Cancel';
         item 'End';

Design the Help menu. The MENU statement equates to the MENU= option in a 
preceding ITEM statement. The ITEM statements specify the selections that are 
available under Help on the menu bar. The value of the SELECTION= option 
equates to a subsequent SELECTION statement. 

      menu h;
         item 'About the application' selection=a;
         item 'About the keys'   selection=k;

Specify commands for the Help menu. The SETHELP command specifies a 
HELP entry that contains user-written information for this application. The semicolon 
that appears after the HELP entry name enables the HELP command to be included 
in the string. The HELP command invokes the HELP entry.

            selection a 'sethelp proclib.menucat.app.help;help';
            selection k 'sethelp proclib.menucat.keys.help;help';
run;
quit;

Example 5: Associating Menus with a FRAME Application 1683



Steps to Associate Menus with a FRAME
1 In the BUILD environment for the FRAME entry, from the menu bar, select View 
ð Properties Window.

2 In the Properties window, select the Value field for the pmenuEntry Attribute 
Name. The Select An Entry window appears.

3 In the Select An Entry window, enter the name of the catalog entry that is 
specified in the PROC PMENU step that creates the menus.

4 Test the FRAME as follows from the menu bar of the FRAME:Build ð Test 
Notice in the following display that the menus are now associated with the 
FRAME.

Figure 46.8 The FRAME Window

For more information about programming with FRAME entries, see Getting 
Started with SAS/AF(R) 9.3 and Frames.

1684 Chapter 46 / PMENU Procedure



Chapter 47
PRESENV Procedure

Overview: PRESENV Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1685
What Does the PRESENV Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1685

Concepts: PRESENV Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1686
Global Statements That Can Be Saved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1686

Syntax: PRESENV Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1687
PROC PRESENV Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1687

Usage: PRESENV Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1688
Executing PROC PRESENV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1688
Restoring the Environment in a Subsequent Job . . . . . . . . . . . . . . . . . . . . . . . . . 1688

Examples: PRESENV Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1688
Example 1: Preserve a SAS Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1688
Example 2: Restore a SAS Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1691

Overview: PRESENV Procedure

What Does the PRESENV Procedure Do?
The PRESENV procedure preserves all global statements and macro variables in 
your SAS code from one SAS session to another. When this procedure is invoked at 
the end of a SAS session, all of the global statements and macro variables are 
written to a file. The Work data sets and the macro catalog are written to an auxiliary 
directory. You can then terminate the SAS session. You can restart the session at a 
later time, and the saved global statements and macro variable settings can be re-
executed. The Work data sets can be copied back to the current Work directory, 
thereby allowing the session to resume.

1685



Note: This procedure is not available in SAS Viya orders that include only SAS 
Visual Analytics.

The PRESENV procedure works with the PRESENV system option to preserve your 
SAS program and data sets. You can turn the option on or off at any time. When the 
PRESENV system option is turned off, the global statements collection is 
suspended. When turned back on, the collection resumes. At no point is the 
collection discarded. However, the collection does not begin until the first time the 
option is turned on.

This functionality is very useful in a grid environment where an Enterprise Guide 
(EG) session needs to be terminated and started again on another node at a later 
time.

Concepts: PRESENV Procedure

Global Statements That Can Be Saved
If you turn on the PRESENV system option in an OPTIONS statement or at 
invocation time, and execute PROC PRESENV at the end of your job, then all of the 
following global statements that are used in your program are collected in memory:

n AXIS 

n CATNAME 

n FILENAME 

n FOOTNOTE 

n GOPTIONS 

n LEGEND 

n LIBNAME 

n LOCK 

n MISSING 

n OPTIONS 

n PATTERN 

n SASFILE 

n SYMBOL 

n TITLE 

Macro variables that are used in your program are also collected in memory, but 
other global statements, such as the X command, are not collected. Macros that are 
compiled during the program execution are stored in a Work directory, and that 
directory is copied as part of the PROC PRESENV execution.

1686 Chapter 47 / PRESENV Procedure

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0rvgwbkch5iqsn1rghqth2dl59y.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1rzdih703whb4n1j619msahs5o0.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0wh407rnaleinn1rqyudxuzhkhu.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0vu32btexjo29n1jqrva2glsyns.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0anvu6ux4d0ijn1mt06fn9yl0wx.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n1nk65k2vsfmxfn1wu17fntzszbp.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p0pc4mpj7xzxs4n1257fgz2tkuyb.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0ewjmosjtyjbtn1t5zabfkrof4f.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0xqwo95drfa24n1hm5nlss33a3s.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p02daopdgx5yh4n1vmffk4ud4697.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0osyhi338pfaan1plin9ioilduk.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n0c0j84n1e2jz9n1bhkn41o3v0d6.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p10gcmrmf83iaxn1ilrx4pra969n.htm&locale=en


Syntax: PRESENV Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

Requirement: You must set the PRESENV system option to PRESENV (the default is NOPRESENV) 
to preserve the global statements. PROC PRESENV then saves a copy of those global 
statements to a file that you specify. Global statements are preserved from the time that 
the PRESENV system option is in effect.

PROC PRESENV PERMDIR=libref SASCODE=fileref <SHOW_COMMENTS>;
RUN;

Statement Task Example

PROC PRESENV Preserve all global statements and macro 
variables from one SAS session to another

Ex. 1

PROC PRESENV Statement
Preserves all global statements and macro variables from one SAS session to another.

Syntax
PROC PRESENV PERMDIR=libref SASCODE=fileref <SHOW_COMMENTS>;

Required Arguments
PERMDIR=libref

specifies a libref where all of the Work data sets, catalogs, and macros are 
written.

SASCODE=fileref
specifies a fileref where a SAS program is written. The SAS program contains all 
of the code that is necessary to restore the environment.

Optional Argument
SHOW_COMMENTS

displays all global statements. Redundant global statements are commented out.

If this option is not used, then the global statements are suppressed.

PROC PRESENV Statement 1687



Tip Use this option only for debugging your program, because this option can 
greatly increase the amount of text that is being generated.

Usage: PRESENV Procedure

Executing PROC PRESENV
To preserve your environment, execute the PRESENV procedure at the end of your 
job:

proc presenv save permdir=permdir sascode=sascode;
run;

The value of PERMDIR is a libref where all of the Work data sets and catalogs 
(including work.sasmacr) are written. The value of SASCODE is a fileref where a 
SAS program is written. The SAS program contains all of the code that is necessary 
to restore the environment.

Restoring the Environment in a Subsequent Job
To restore the environment in a subsequent job, invoke SAS without the PRESENV 
system option and submit the following code:

%include 'restore-file';
run;

Restore-file is the filename that is associated with the fileref in the SASCODE= 
argument of the original job. When you execute the program, all macros, macro 
variables, options, and global statements are restored to their original values.

Examples: PRESENV Procedure

Example 1: Preserve a SAS Environment
Features: PROC PRESENV statement

Macro variable definition

1688 Chapter 47 / PRESENV Procedure



Macro definition
OPTIONS statement
DATA step

Details
This example shows a program with features that you want to save to use again in a 
later SAS session. Before you run this program, you invoke SAS and specify the 
PRESENV system option. Your SAS invocation command might look like this:

sas -presenv

Alternatively, you could specify the PRESENV system option in an OPTIONS 
statement at the beginning of your program.

This program sets the PS= and LS= system options and creates a data set called 
Mydata1 in the Work directory. This program also defines a macro variable 
MYMACVAR, defines a macro SOMEMAC, and creates a protected data set called 
Protected in the Work directory. At the end of the program, you define the location to 
save any data sets and variable definitions and you specify the name of the SAS 
code that restores these items in a subsequent SAS session.

Program
options ps=100 ls=100;

data mydata1;
a=1; b=2; c=3;
run;          

%let mymacvar=123;

%macro somemac;                                                     
data mydata2;                                                       
y=3;                                                                
run;                                                                
%put Data set Mydata2 is from the saved macro somemac;              
%mend;                                                              

data protected (read=mypass alter=mypass);
  x=1;
  y=2;
run;

libname preslib 'C:\Users\<userid>\sasuser\projectA\';         
filename prescode 'my_sas_env';   

proc presenv permdir=preslib sascode=prescode ; 
run;

Example 1: Preserve a SAS Environment 1689



Program Description
Define system options. In the OPTIONS statement, you define the PS= and LS= 
system options.

options ps=100 ls=100;

Create a data set in the Work directory. You use a DATA step to create the 
Mydata1 data set. This data set contains one observation and three variables: A, B, 
and C.

data mydata1;
a=1; b=2; c=3;
run;          

Define a macro variable and a macro. Use the %LET statement to define the 
macro variable MYMACVAR. Use the %MACRO and %MEND statements to define 
a new macro called SOMEMAC. The SOMEMAC macro creates a data set called 
Mydata2 with one observation and one variable. Then the function prints a message 
to the log.

%let mymacvar=123;

%macro somemac;                                                     
data mydata2;                                                       
y=3;                                                                
run;                                                                
%put Data set Mydata2 is from the saved macro somemac;              
%mend;                                                              

Create a protected data set. Use a DATA step to create a data set called Protected 
that requires a password for Read and Write access. The data set contains one 
observation with two variables.

data protected (read=mypass alter=mypass);
  x=1;
  y=2;
run;

Save the data sets, variable definition, and macro definition for use in a later 
SAS session. Use the LIBNAME statement to define a location in which to save the 
data sets and macro definitions. Specify a fileref, Prescode, to use as a reference 
that you use to restore the current SAS environment. Call the PRESENV procedure 
and specify the Preslib and Prescode values that correspond to the current SAS 
environment. Remember the name my_sas_env so that you can restore the SAS 
environment in a later session.

libname preslib 'C:\Users\<userid>\sasuser\projectA\';         
filename prescode 'my_sas_env';   

proc presenv permdir=preslib sascode=prescode ; 
run;

1690 Chapter 47 / PRESENV Procedure



Output 47.1 Output from Program That Calls PROC PRESENV

Example 2: Restore a SAS Environment
Features: %INCLUDE statement

Details
This example shows how to restore the SAS environment to the state that it was in 
after running the previous example program.

Program
%include 'my_sas_env';

data _null_;
optval = getoption('ps');
put " ps = " optval;
optval = getoption('ls');
put " ls = " optval;
run;

%somemac;

data newdata;
x=&mymacvar;
y=2;
run;

proc print data=newdata; run;

Example 2: Restore a SAS Environment 1691



data mydata3;
set mydata1;
run;

proc print data=mydata3; run;

proc print data=protected (read=mypass); run;

Program Description
Restore the previous SAS environment. Use the %INCLUDE statement to restore 
the SAS environment that is associated with the my_sas_env file. This restores the 
SAS environment to match the state when PROC PRESENV was run in a previous 
SAS session.

%include 'my_sas_env';

Verify the system options that were set for the my_sas_env environment. Use 
the GETOPTION function to request the values for the PS= and LS= system 
options. The PUT statement prints the values to the SAS log. These values match 
the values that were set in the previous example.

data _null_;
optval = getoption('ps');
put " ps = " optval;
optval = getoption('ls');
put " ls = " optval;
run;

Use a macro and a macro variable that were defined in the my_sas_env 
environment. Run the %SOMEMAC macro to generate the Mydata2 data set and 
print a message to the SAS log. Use the DATA step to create a data set called 
Newdata that contains the value of the MYMACVAR macro variable. Call PROC 
PRINT to print the contents of Newdata.

%somemac;

data newdata;
x=&mymacvar;
y=2;
run;

proc print data=newdata; run;

Work with data sets that were created in the my_sas_env environment. Use 
the DATA step to create a data set Mydata3 from the existing data set Mydata1. 
Mydata1 was created in the previous example. Call PROC PRINT to print the 
contents of the new data set Mydata3. Call PROC PRINT again to print the contents 
of the existing data set Protected. The Protected data set was created in the 
previous example and the protected status of the data set, which requires a 
password to Read or Alter it, remains in place.

data mydata3;

1692 Chapter 47 / PRESENV Procedure



set mydata1;
run;

proc print data=mydata3; run;

proc print data=protected (read=mypass); run;

Output 47.2 SAS Log That Shows Saved System Options

1
2    %include 'my_sas_env';
NOTE: Libref PRESLIB was successfully assigned as follows:
      Engine:        V9
      Physical Name: C:\Users\<userid>\sasuser\projectA
40
41   data _null_;
42   optval = getoption('ps');
43   put " ps = " optval;
44   optval = getoption('ls');
45   put " ls = " optval;
46   run;

 ps = 100
 ls = 100
NOTE: DATA statement used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds

Output 47.3 SAS Log That Shows Saved Macro Data

47
48   %somemac;

NOTE: The data set WORK.MYDATA2 has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
      real time           0.01 seconds
      cpu time            0.00 seconds

Data set Mydata2 is from the saved macro somemac
49
50   data newdata;
51   x=&mymacvar;
52   y=2;
53   run;

NOTE: The data set WORK.NEWDATA has 1 observations and 2 variables.
NOTE: DATA statement used (Total process time):
      real time           0.01 seconds
      cpu time            0.00 seconds
54
55   proc print data=newdata; run;

NOTE: There were 1 observations read from the data set WORK.NEWDATA.
NOTE: PROCEDURE PRINT used (Total process time):
      real time           0.01 seconds
      cpu time            0.00 seconds

Example 2: Restore a SAS Environment 1693



Output 47.4 SAS Log That Shows Saved Data Sets

56
57   data mydata3;
58   set mydata1;
59   run;

NOTE: There were 1 observations read from the data set WORK.MYDATA1.
NOTE: The data set WORK.MYDATA3 has 1 observations and 3 variables.
NOTE: DATA statement used (Total process time):
      real time           0.01 seconds
      cpu time            0.00 seconds

60
61   proc print data=mydata3; run;

NOTE: There were 1 observations read from the data set WORK.MYDATA3.
NOTE: PROCEDURE PRINT used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds

62
63   proc print data=protected (read=XXXXXX); run;

NOTE: There were 1 observations read from the data set WORK.PROTECTED.
NOTE: PROCEDURE PRINT used (Total process time):
      real time           0.03 seconds
      cpu time            0.00 seconds

Output 47.5 Results from Program to Restore a SAS Environment

1694 Chapter 47 / PRESENV Procedure



Chapter 48
PRINT Procedure

Overview: PRINT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1695
What Does the PRINT Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1696
A Simple Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1696
Customized Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1698

Syntax: PRINT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1699
PROC PRINT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1700
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1715
ID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1717
PAGEBY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1718
SUM Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1719
SUMBY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1721
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1721

Usage: PRINT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1723
Use ODS Styles with PROC PRINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1723
Error Processing in the PRINT Procedure Output . . . . . . . . . . . . . . . . . . . . . . . . 1733

Results: PRINT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1733
About PROC PRINT Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1733
Page Layout for HTML, the Default ODS Destination . . . . . . . . . . . . . . . . . . . . . 1733
Page Layout for Limited Page Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1734

Examples: PRINT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1737
Example 1: Print a CAS Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1737
Example 2: Selecting Variables to Print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1739
Example 3: Customizing Text in Column Headings . . . . . . . . . . . . . . . . . . . . . . . 1745
Example 4: Creating Separate Sections of a Report for Groups of Observations 1751
Example 5: Summing Numeric Variables with One BY Group . . . . . . . . . . . . . . . 1761
Example 6: Summing Numeric Variables with Multiple BY Variables . . . . . . . . . 1766
Example 7: Limiting the Number of Sums in a Report . . . . . . . . . . . . . . . . . . . . . 1776
Example 8: Controlling the Layout of a Report with Many Variables . . . . . . . . . . 1780
Example 9: Creating a Customized Layout with BY Groups and ID Variables . . 1785
Example 10: Printing All the Data Sets in a SAS Library . . . . . . . . . . . . . . . . . . . 1792

1695



Overview: PRINT Procedure

What Does the PRINT Procedure Do?
The PRINT procedure prints the observations in a SAS data set or rows from a SAS 
Cloud Analytic Services (CAS) table using all or some of the variables. You can 
create a variety of reports ranging from a simple table to a highly customized report 
that groups the data and calculates totals and subtotals for numeric variables.

A Simple Report
The following output illustrates the simplest type of report that you can produce. The 
statements that produce the output follow. “Example 2: Selecting Variables to Print” 
on page 1739 creates the data set EXPREV.

options obs=10;
proc print data=exprev;
run;

TIP The OBS= system option is valid for all steps during your current SAS 
session or until you change the setting. To set the number of observations for 
a single PROC step, use the OBS= data set option:

proc print data=exprev(obs=10);

For more information, see “OBS= Data Set Option” in SAS Data Set Options: 
Reference and “OBS=” in SAS System Options: Reference .

1696 Chapter 48 / PRINT Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p0h5nwbig8mobbn1u0dwtdo0c0a0.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n06qlo77ayax2kn1xobou72cdz20.htm&locale=en


This next example creates the CAS table Mycas.Cars as a subset of the 
Sashelp.cars data set:

options cashost="cloud.example.com" casport=5555;
cas casauto;
libname mycas cas;

proc casutil outcaslib="casuser";
load data=sashelp.cars replace;
run;

data mycas.cars;
   set mycas.cars(where=(weight>6000));
   keep make model type;
run; 

proc print data=mycas.cars;
   title "Cars Greater Than 6000 Pounds";
run;

Overview: PRINT Procedure 1697



Customized Report
The following HTML report is a customized report that is produced by PROC PRINT 
using ODS. The statements that create this report do the following:

n customize the title and the column headings

n customize the appearance of the report

n place dollar signs and commas in numeric output

n selectively include and control the order of variables in the report

n group the data by JobCode

n sum the values for Salary for each job code and for all job codes, and add a 
label for the summary line and the grand total line

For an explanation of the program that produces this report, see “Program: Creating 
an HTML Report with the STYLE Option” on page 1790.

1698 Chapter 48 / PRINT Procedure



Figure 48.1 Customized Report Produced by PROC PRINT Using ODS

Syntax: PRINT Procedure
Interaction: A common practice is to sort a data set using PROC SORT before you use the PROC 

PRINT BY statement. If you sort a CAS table with VARCHAR variables using PROC 
SORT, VARCHAR variables are converted to CHAR variables.

Note: PROC PRINT supports the VARCHAR data type for CAS tables.

Tips: Each password and encryption key option must be coded on a separate line to ensure 
that they are properly blotted in the log.

Syntax: PRINT Procedure 1699



Supports the Output Delivery System. For details, see “Output Delivery System: Basic 
Concepts” in SAS Output Delivery System: User’s Guide. 
You can use the ATTRIB, FORMAT, LABEL, TITLE, and WHERE statements. See SAS 
DATA Step Statements: Reference. For more information, see “Statements with the 
Same Function in Multiple Procedures” on page 73.
SAS includes checks to verify that the PROC PRINT output is accessible for the visually 
impaired. You can set the ACCESSIBLECHECK system option to have SAS verify if the 
output is accessible. For best practices about creating accessible output, see Creating 
Accessible Output in SAS Using ODS and ODS Graphics.

PROC PRINT <options>;
BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …> 

<NOTSORTED>;
PAGEBY BY-variable;
SUMBY BY-variable;

ID variable(s)
</ STYLE <(location(s))>=<style-override>>;

SUM variable(s)
</ STYLE <(location(s))>=<style-override>>;

VAR variable(s)
</ STYLE <(location(s))>=<style-override> >;

Statement Task Example

PROC PRINT Print observations in a data set Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 6, Ex. 9

BY Produce a separate section of the report for 
each BY group

Ex. 4, Ex. 5, 
Ex. 6, Ex. 7, 
Ex. 9

ID Identify observations by the formatted values of 
the variables that you list instead of by 
observation numbers

Ex. 8

PAGEBY Control page ejects that occur before a page is 
full

Ex. 4

SUMBY Limit the number of sums that appear in the 
report

Ex. 5, Ex. 6, 
Ex. 7, Ex. 9

SUM Total values of numeric variables Ex. 7

VAR Select variables that appear in the report and 
determine their order

Ex. 2, Ex. 3, 
Ex. 9

PROC PRINT Statement
Prints observations in a SAS data set using some or all of the variables.

1700 Chapter 48 / PRINT Procedure

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0qzwimb5swq2jn15m15c81ugd2t.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0qzwimb5swq2jn15m15c81ugd2t.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0b6ah1xwx1qp7n1ac24r33z9o0s.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=titlepage.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=titlepage.htm


Syntax
PROC PRINT <options>;

Summary of Optional Arguments
CONTENTS=link-text <#BYLINE> <#BYVAL> <#BYVAR>

specifies text for the links in the table of contents.
DATA=SAS-data-set 

specifies the SAS data set to print.

Control column format
GRANDTOTAL_LABEL='label'

displays a label on the grand total line.
HEADING=HORIZONTAL | VERTICAL

controls the orientation of the column headings.
LABEL

specifies to use the variables' labels as column headings.
SPLIT='split-character'

specifies the split character, which controls line breaks in column 
headings.

STYLE <(location(s))>=<style-override(s)>
specify one or more ODS style overrides to modify the default style 
element and attributes in a specific area of a report.

SUMLABEL
NOSUMLABEL
SUMLABEL='label'

specifies whether to display a label on the summary line for a BY group.

Control general format
BLANKLINE=n
BLANKLINE=(COUNT=n <STYLE=[style-attibute-specification(s)]>)

writes a blank line after n observations.
DOUBLE

writes a blank line between observations.
N<=“string-1” <“string-2”>>

prints the number of observations in the data set, in BY groups, or both 
and specifies explanatory text to print with the number.

NOOBS
suppresses the column in the output that identifies each observation by 
number.

OBS=“column-header”
specifies a column heading for the column that identifies each observation 
by number.

ROUND
rounds unformatted numeric values to two decimal places.

Control page format

PROC PRINT Statement 1701



ROWS=page-format
formats the rows on a page.

UNIFORM
specifies to use each variable's formatted width as its column width on all 
pages.

WIDTH=FULL | MINIMUM | UNIFORM | UNIFORMBY
determines the column width for each variable.

Optional Arguments
BLANKLINE=n
BLANKLINE=(COUNT=n <STYLE=[style-attibute-specification(s)]>)

specifies to insert a blank line after every n observations. The observation count 
is reset to 0 at the beginning of each BY group for all ODS destinations. 

n
COUNT=n

specifies the observation number after which SAS inserts a blank line.

STYLE=[style-attribute-specification(s)]
specifies the style attribute to use for the blank line.

Default DATA

Tip You can use the BACKGROUNDCOLOR style attribute to make a 
visual distinction between observations using color.

See The STYLE= option on page 1708 for valid style attributes.

Example “Example 2: Selecting Variables to Print” on page 1739

Tip SAS includes checks to verify that the PROC PRINT output is accessible 
for the visually impaired. When you specify the BLANKLINE= option, the 
output that PROC PRINT creates includes one or more lines that are not 
data. Screen readers and users might interpret these lines incorrectly. 
When you set the ACCESSIBLECHECK system option, SAS checks to see 
if the BLANKLINE option has been used to add blank lines to the output. If 
blank lines are in the output, SAS writes a warning message to the SAS 
log. For best practices about creating accessible output, see Creating 
Accessible Output in SAS Using ODS and ODS Graphics.

CONTENTS=link-text <#BYLINE> <#BYVAL> <#BYVAR>
specifies the text for the links in the table contents file to the output produced by 
the PROC PRINT statement. 

link-text
specifies text to use in the table of contents.

#BYLINE
substitutes the entire BY line without leading or trailing blanks for #BYLINE in 
the text string. The BY line uses the format variable-name=value.

#BYVALn
#BYVAL(BY-variable-name)

substitutes the current value of the specified BY variable for #BYVAL in the 
text string. Specify the variable with one of these values:

1702 Chapter 48 / PRINT Procedure

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0b6ah1xwx1qp7n1ac24r33z9o0s.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=titlepage.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=titlepage.htm


n
specifies a variable by its position in the BY statement. For example, 
#BYVAL2 specifies the second variable in the BY statement.

BY-variable-name
specifies a variable from the BY statement by its name. For example, 
#BYVAL(YEAR) specifies the BY variable, YEAR. variable-name is not 
case sensitive.

#BYVARn
#BYVAR(BY-variable-name)

substitutes the name of the BY variable or the label associated with the 
variable (whatever the BY line would normally display) for #BYVAR in the text 
string. Specify the variable with one of these values:

n
specifies a variable by its position in the BY statement. For example, 
#BYVAR2 specifies the second variable in the BY statement.

BY-variable-name
specifies a variable from the BY statement by its name. For example, 
#BYVAR(SITES) specifies the BY variable, SITES. variable-name is not 
case sensitive.

Restrictions CONTENTS= does not affect the HTML body file. It affects only 
the HTML contents file.

CONTENTS= is not valid for the ODS LISTING destination.

See For information about HTML output, see Files Produced by the 
HTML Destination and “ODS HTML” in SAS Output Delivery 
System: User’s Guide.

DATA=SAS-data-set 
specifies the SAS data set to print.

See “Input Data Sets” on page 26 

DOUBLE
writes a blank line between observations.

Alias D

Restriction DOUBLE is valid only for the ODS LISTING destination.

Example “Example 2: Selecting Variables to Print” on page 1739

GRANDTOTAL_LABEL='label'
displays a label on the grand total line. You can include the #BYVAR and 
#BYVAL variables in 'label'.

Aliases GRAND_LABEL

GRANDTOT_LABEL

GTOT_LABEL

GTOTAL_LABEL

PROC PRINT Statement 1703

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p1x72nowrw2lr2n143r0ihbu2hth.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p1x72nowrw2lr2n143r0ihbu2hth.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n0f5s1zezthhbrn1u0z71mh3wx64.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n0f5s1zezthhbrn1u0z71mh3wx64.htm&locale=en


Restriction The #BYVAR and #BYVAL variables are not sup ported for the 
LISTING destination.

Tip SAS includes checks to verify that the PROC PRINT output is 
accessible for the visually impaired. When you set the 
ACCESSIBLECHECK system option, SAS verifies whether a label 
is available for both the SUMLABEL and the 
GRANDTOTAL_LABEL options. If SAS detects that the output does 
not have a label for the summary and grand total values, SAS 
writes a message to the log. For best practices about creating 
accessible output, see Creating Accessible Output in SAS Using 
ODS and ODS Graphics.

Example “Example 6: Summing Numeric Variables with Multiple BY 
Variables” on page 1766

HEADING=HORIZONTAL | VERTICAL
controls the orientation of the column headings.

HORIZONTAL
prints all column headings horizontally.

Alias H

VERTICAL
prints all column headings vertically.

Alias V

Restriction For LISTING output, if the column heading is too long for the 
page, the variable name is used in place of a label.

Default Headings are either all horizontal or all vertical. If you omit HEADING=, 
PROC PRINT determines the direction of the column headings as 
follows:

If you do not use LABEL, spacing specifies whether column 
headings are vertical or horizontal.
If you use LABEL and at least one variable has a label, all headings 
are horizontal.

LABEL
specifies to use the variables' labels as column headings.

Alias L

Default PROC PRINT uses the name of the variable as the column 
heading in the following two circumstances:
1. if you omit the LABEL option in the PROC PRINT statement, 

even if the PROC PRINT step contains a LABEL statement
2. if a variable does not have a label

Interactions By default, if you specify LABEL and at least one variable has a 
label, PROC PRINT prints all column headings horizontally. 
Therefore, using LABEL might increase the number of pages of 
output. (Use HEADING=VERTICAL in the PROC PRINT statement 
to print vertical column headings.)

1704 Chapter 48 / PRINT Procedure

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0b6ah1xwx1qp7n1ac24r33z9o0s.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=titlepage.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=titlepage.htm


PROC PRINT sometimes conserves space by splitting labels 
across multiple lines. Use SPLIT= in the PROC PRINT statement 
to control where these splits occur. You do not need to use LABEL 
if you use SPLIT=.

Note The SAS system option LABEL must be in effect in order for any 
procedure to use labels. For more information see “LABEL” in SAS 
System Options: Reference. 

Tip To create a blank column heading for a variable, use this LABEL 
statement in your PROC PRINT step:
   label variable-name='00'x;

See For information about using the LABEL statement to create 
temporary labels in procedures, see Chapter 3, “Statements with 
the Same Function in Multiple Procedures,” on page 73.

For information about using the LABEL statement in a DATA step 
to create permanent labels, see “LABEL” in SAS DATA Step 
Statements: Reference. 

Example “Example 4: Creating Separate Sections of a Report for Groups of 
Observations” on page 1751

N<=“string-1” <“string-2”>>
prints the number of observations in the data set, in BY groups, or both and 
specifies explanatory text to print with the number. 

N Option 
Use PROC PRINT Action

With neither 
a BY nor a 
SUM 
statement

Prints the number of observations in the data set at the end of the 
report and labels the number with the value of string-1.

With a BY 
statement

Prints the number of observations in the BY group at the end of 
each BY group and labels the number with the value of string-1.

With a BY 
statement 
and a SUM 
statement

Prints the number of observations in the BY group at the end of 
each BY group and prints the number of observations in the data 
set at the end of the report. The numbers for BY groups are labeled 
with string-1; the number for the entire data set is labeled with 
string-2.

Tip SAS includes checks to verify that the PROC PRINT output is 
accessible for the visually impaired. When you specify the N= option, 
the output that PROC PRINT creates includes a text line that is not 
data. Screen readers might interpret this line of text as data. When 
you set the ACCESSIBLECHECK system option, SAS verifies 
whether the output is accessible. If the output contains the text that is 
not data, SAS writes a warning message to the SAS log. For best 
practices about creating accessible output, see Creating Accessible 
Output in SAS Using ODS and ODS Graphics.

PROC PRINT Statement 1705

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p02de158iswt9tn1eu1nt59jmoae.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p02de158iswt9tn1eu1nt59jmoae.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1r8ub0jx34xfsn1ppcjfe0u16pc.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1r8ub0jx34xfsn1ppcjfe0u16pc.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0b6ah1xwx1qp7n1ac24r33z9o0s.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=titlepage.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=titlepage.htm


Examples “Example 3: Customizing Text in Column Headings” on page 1745

“Example 4: Creating Separate Sections of a Report for Groups of 
Observations” on page 1751

“Example 5: Summing Numeric Variables with One BY Group” on 
page 1761

NOOBS
suppresses the column in the output that identifies each observation by number.

Example “Example 4: Creating Separate Sections of a Report for Groups of 
Observations” on page 1751

OBS=“column-header”
specifies a column heading for the column that identifies each observation by 
number.

Tip OBS= honors the split character. (See the discussion of the SPLIT= 
option on page 1707.) 

Example “Example 3: Customizing Text in Column Headings” on page 1745

ROUND
rounds unformatted numeric values to two decimal places. (Formatted values 
are already rounded by the format to the specified number of decimal places.) 
For both formatted and unformatted variables, PROC PRINT uses these 
rounded values to calculate any sums in the report.

If you omit ROUND, PROC PRINT adds the actual values of the rows to obtain 
the sum even though it displays the formatted (rounded) values. Any sums are 
also rounded by the format, but they include only one rounding error, that of 
rounding the sum of the actual values. The ROUND option, on the other hand, 
rounds values before summing them, so there might be multiple rounding errors. 
The results without ROUND are more accurate, but ROUND is useful for 
published reports where it is important for the total to be the sum of the printed 
(rounded) values.

Be aware that the results from PROC PRINT with the ROUND option might differ 
from the results of summing the same data with other methods such as PROC 
MEANS or the DATA step. Consider a simple case in which the following is true:

n The data set contains three values for X: .003, .004, and .009.

n X has a format of 5.2.

Depending on how you calculate the sum, you can get three different answers: 
0.02, 0.01, and 0.016. The following figure shows the results of calculating the 
sum with PROC PRINT (without and with the ROUND option) and PROC 
MEANS.

1706 Chapter 48 / PRINT Procedure



Figure 48.2 Three Methods of Summing Variables

OBS X

1 0 . 0 0
2 0 . 0 0
3 0 . 0 1

=====
0 . 0 2

PROC PRINT without PROC PRINT with
Actual Va lues the ROUND optio n t he ROUND option PROC MEANS

. 0 0 3

. 0 0 4

. 0 0 9
=====

. 0 1 6

A n a l y s i s V a r i a b l e : X

Sum
- - - - - - - - - - --

0 . 0 1 6 0 0 0 0
- - - - - - - - - - --

OB S X

1 0 . 0 0
2 0 . 0 0
3 0 . 0 1

=====
0 . 0 1

===================================================================================

===================================================================================

| |
| |
| |
| |
| |
| |
| |
| |
| |

| |
| |
| |
| |
| |
| |
| |
| |
| |

| |
| |
| |
| |
| |
| |
| |
| |
| |

Notice that the sum produced without the ROUND option (.02) is closer to the 
actual result (0.16) than the sum produced with ROUND (0.01). However, the 
sum produced with ROUND reflects the numbers that are displayed in the report.

Alias R

CAUTION Do not use ROUND with PICTURE formats. ROUND is for use with 
numeric values. SAS procedures treat variables that have picture formats as 
character variables. Using ROUND with such variables might lead to 
unexpected results.

ROWS=page-format
formats the rows on a page. Currently, PAGE is the only value that you can use 
for page-format: 

PAGE
prints only one row of variables for each observation per page. When you use 
ROWS=PAGE, PROC PRINT does not divide the page into sections; it prints 
as many observations as possible on each page. If the observations do not 
fill the last page of the output, PROC PRINT divides the last page into 
sections and prints all the variables for the last few observations.

Restriction ROWS= is valid only for the ODS LISTING destination. Therefore, 
HTML output from PROC PRINT appears the same if you use 
ROWS=.

Tip The PAGE value can reduce the number of pages in the output if 
the data set contains large numbers of variables and observations. 
However, if the data set contains a large number of variables but 
few observations, the PAGE value can increase the number of 
pages in the output.

See “Page Layout for Limited Page Sizes” on page 1734 for discussion 
of the default layout.

Example “Example 8: Controlling the Layout of a Report with Many Variables” 
on page 1780

SPLIT='split-character'
specifies the split character, which controls line breaks in column headings. It 
also uses labels as column headings. PROC PRINT breaks a column heading 
when it reaches the split character and continues the header on the next line. 
The split character is not part of the column heading although each occurrence 
of the split character counts toward the 256-character maximum for a label.

PROC PRINT Statement 1707



Alias S=

Interactions You do not need to use both LABEL and SPLIT= because SPLIT= 
implies the use of labels.

The OBS= option honors the split character. (See the discussion of 
“OBS=“column-header”” on page 1706.) 

Note PROC PRINT does not split labels of BY variables in the heading 
preceding each BY group, a summary label, or a grand total level, 
even if you specify SPLIT=. Instead, PROC PRINT replaces the 
split character with a blank.

Example “Example 3: Customizing Text in Column Headings” on page 1745

STYLE <(location(s))>=<style-override(s)>
specify one or more ODS style overrides to modify the default style element and 
attributes in a specific area of a report. 

You can specify a style override in two ways:

n Specify a style element. A style element is a collection of style attributes that 
apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that describes 
a single behavioral or visual aspect of a piece of output. This is the most 
specific method of changing the appearance of your output. 

style-override has the following form:

style-element-name | [style-attribute-name-1=style-attribute-value-1
<style-attribute-name-2=style-attribute-value-2 …>]

location
identifies the part of the report that the STYLE option affects. If location(s) is 
not specified, PROC PRINT determines the location to where the style 
override is applied based on the statement, the specified style element, and 
the style attribute.

The following table shows the available locations and the other statements in 
which you can specify them.

Table 48.1 Specifying Locations in the STYLE Option

Location Location Alias
Affected Report 
Part

Can Also Be 
Used in These 
Statements

BYLABEL BYSUMLABEL

BYLBL

BYSUMLBL

Label for the BY 
variable on the 
line containing the 
SUM totals

None

DATA COLUMN

COL

All data except for 
data in the OBS 
column or the ID 
columns

Or

VAR

ID

SUM

1708 Chapter 48 / PRINT Procedure



Location Location Alias
Affected Report 
Part

Can Also Be 
Used in These 
Statements

Data in the ID 
columns when the 
DATA location is 
specified in the 
STYLE= option of 
the ID statement

GRANDTOTAL GRANDTOT

GRAND

GTOTAL

GTOT

SUM line 
containing the 
grand totals for the 
whole report

SUM

HEADER HEAD

HDR

All column 
headings except 
for the OBS 
column or the ID 
columns 1

Or

All column 
headings of the ID 
columns when the 
HEADER location 
is specified in the 
STYLE= option of 
the ID statement

VAR

ID

SUM

N None N= table and 
contents

None

OBS OBSDATA

OBSCOLUMN

OBSCOL

Data in the OBS 
column or the ID 
columns unless 
the DATA location 
is specified in the 
STYLE= option of 
the ID statement

None

OBSHEADER OBSHEAD

OBSHDR

Header of the 
OBS column or 
the ID columns 
unless the 
HEADER location 
is specified in the 
STYLE= option of 
the ID statement 1

None

TABLE REPORT Structural part of 
the report - that is, 
the underlying 

None

PROC PRINT Statement 1709



Location Location Alias
Affected Report 
Part

Can Also Be 
Used in These 
Statements

table used to set 
things like the 
width of the border 
and the space 
between cells

TOTAL TOT

BYSUMLINE

BYLINE

BYSUM

SUM line 
containing totals 
for each BY group

SUM

1 Prior to SAS 9.4, if you specified the HEADER location in the STYLE= option of the PROC 
PRINT statement, all column headings rendered using the HEADER style attributes. In SAS 9.4, 
you use the OBSHEADER location in the STYLE= option of the PROC PRINT statement to 
format the OBS column and the ID columns. The PROC PRINT statement STYLE= option in 
your existing programs might need to include the OBSHEADER location as well as the HEADER 
location.

Figure 48.3 PROC PRINT Areas and Corresponding Statements

Style specifications in a statement other than the PROC PRINT statement 
override the same style specification in the PROC PRINT statement. 
However, style attributes that you specify in the PROC PRINT statement are 
inherited, provided that you do not override the style with style specifications 
in another statement. For example, if you specify a blue background and a 
white foreground for all column headings in the PROC PRINT statement, and 

1710 Chapter 48 / PRINT Procedure



you specify a light gray background for an ID column heading, the 
background for the ID column heading is light gray, and the foreground is 
white (as specified in the PROC PRINT statement). This PRINT procedure 
shows the inheritance of the color white in the ID column heading:

proc print data=exprev style(header)={backgroundcolor=blue color=white};
   id country / style(obsheader)=[backgroundcolor=light gray];
run;

If the same style attributes appear for the OBSHEADER location in the 
PROC PRINT statement and the HEADER location in the ID statement, the 
HEADER location attributes override the OBSHEADER attributes. All other 
style attributes for the ID columns in both the PROC PRINT statement and 
the ID statement are merged to create the style for the ID columns. For 
example, in the PROC PRINT statement, the attributes for the OBSHEADER 
location are {fontsize=5 fontweight=bold}. In the ID statement, the 
attributes for the HEADER location are [fontsize=6 fontstyle=italic]. 
The resulting style for the ID column is [fontsize=6 fontweight=bold 
fontstyle=italic].

proc print data=exprev style(obsheader)={fontsize=5 fontweight=bold};
   id country / style(header)=[fontsize=6 fontstyle=italic];
run;

If the same style attributes appear for the OBS location in the PROC PRINT 
statement and the DATA location in the ID statement, the DATA location 
attributes override the OBS attributes. All other style attributes for the ID 
columns in both the PROC PRINT statement and the ID statement are 
merged to create the style for the ID columns. For example, in the PROC 
PRINT statement, the attributes for the OBS location are 
{backgroundcolor=light gray color=blue}. In the ID statement, the 
attributes for the DATA location are [color=white fontstyle=italic]. The 
resulting style for the ID column is [backgroundcolor=light gray 
color=white fontstyle=italic].

proc print data=exprev style(obs)={backgroundcolor=light gray color=blue};
   id country / style(data)=[color=white fontstyle=italic];
run;

PROC PRINT Statement 1711



style-element-name
is the name of a style element in a style template that is registered with the 
Output Delivery System. SAS provides some style templates. Users can 
create their own style templates with the TEMPLATE procedure. See SAS 
Output Delivery System: Procedures Guide.

When style elements are processed, more specific style elements override 
less specific style elements. For a table of default style elements and style 
attributes for each PROC PRINT location, see Table 48.95 on page 1731.

Tip You can use compound names and formats for style element names. An 
example of using a compound style element name is 
style(obsheader)=data.italic.red;. An example of using a format 
element name is style=$cities. For more information about using 
formats, see the SAS Output Delivery System: Procedures Guide.

style-attribute-specification
describes the style attribute to change. Each style-attribute-specification has 
this general form:

style-attribute-name=style-attribute-value

You can set these style attributes in the TABLE location:

BACKGROUNDCOLOR= FONTWIDTH= 1

BACKGROUNDIMAGE= COLOR= 1

BORDERCOLOR= FRAME=

BORDERCOLORDARK= HTMLCLASS=

BORDERCOLORLIGHT= TEXTALIGN=

BORDERWIDTH= OUTPUTWIDTH=

CELLPADDING= POSTHTML=

CELLSPACING= POSTIMAGE=

FONT= 1 POSTTEXT=

FONTFAMILY= 1 PREHTML=

FONTSIZE= 1 PREIMAGE=

FONTSTYLE= 1 PRETEXT=

FONTWEIGHT= 1 RULES=

1 When you use these attributes, they affect only the text that is specified with the PRETEXT=, 
POSTTEXT=, PREHTML=, and POSTHTML= attributes. To alter the foreground color or the font 
for the text that appears in the table, you must set the corresponding attribute in a location that 
affects the cells rather than the table.

1712 Chapter 48 / PRINT Procedure

http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0c5qpdczbofn4n1i6qfkew7p57h.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


You can set these style attributes in all locations other than TABLE:

ASIS= FONTWIDTH=

BACKGROUNDCOLOR= HREFTARGET=

BACKGROUNDIMAGE= CLASS=

BORDERCOLOR= TEXTALIGN=

BORDERCOLORDARK= NOBREAKSPACE=

BORDERCOLORLIGHT= POSTHTML=

BORDERWIDTH= POSTIMAGE=

HEIGHT= POSTTEXT=

CELLWIDTH= PREHTML=

FLYOVER= PREIMAGE=

FONT= PRETEXT=

FONTFAMILY= PROTECTSPECIALCHARACTERS=

FONTSIZE= TAGATTR=

FONTSTYLE= URL=

FONTWEIGHT= VERTICALALIGN=

Restriction STYLE= is not valid for the ODS LISTING or ODS OUTPUT 
destinations.

See For a table of style attributes that can be used with PROC 
TABULATE, PROC REPORT, and PROC PRINT, see Table 48.94 
on page 1728.

For a table of default style elements and style attributes for each 
PROC PRINT location, see Table 48.95 on page 1731.

For more information about using styles with PROC PRINT, see 
“Use ODS Styles with PROC PRINT” on page 1723.

For information about style attributes and PROC TEMPLATE, see 
DEFINE Style Statement in SAS Output Delivery System: 
Procedures Guide.

PROC PRINT Statement 1713

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n17x28hg8d4fjfn11t9cggpcumsx.htm&locale=en


SUMLABEL
NOSUMLABEL
SUMLABEL='label'

specifies whether to display a label on the summary line for a BY group.

SUMLABEL
specifies to use the variable label, if it exists, as the label on the summary 
line in place of the variable name.

NOSUMLABEL
specifies to leave the label on the summary line blank. Alternatively, you can 
use SUMLABEL="" (two single or double quotation marks with no space 
between them) to indicate a blank on the summary line.

SUMLABEL='label'
specifies the text to use as a label on the summary line of a BY group. You 
can include the #BYVAR and #BYVAL variables in 'label'.

Restriction The #BYVAR and #BYVAL variables are not supported for the 
LISTING destination.

Default If you omit SUMLABEL, PROC PRINT uses the BY variable names 
in the summary line.

Tip SAS includes checks to verify that the PROC PRINT output is 
accessible for the visually impaired. When you set the 
ACCESSIBLECHECK system option, SAS verifies whether a label is 
available for both the SUMLABEL and the GRANDTOTAL_LABEL 
options. If SAS detects that the output does not have a label for the 
summary and grand total values, SAS writes a message to the log. 
For best practices about creating accessible output, see Creating 
Accessible Output in SAS Using ODS and ODS Graphics.

Examples “Example 5: Summing Numeric Variables with One BY Group” on 
page 1761

“Example 6: Summing Numeric Variables with Multiple BY Variables” 
on page 1766

UNIFORM
See WIDTH=UNIFORM on page 1714. 

WIDTH=FULL | MINIMUM | UNIFORM | UNIFORMBY
determines the column width for each variable.

FULL
uses a variable's formatted width as the column width. If the variable does 
not have a format that explicitly specifies a field width, PROC PRINT uses the 
default width. For a character variable, the default width is the length of the 
variable. For a numeric variable, the default width is 12. When you use 
WIDTH=FULL, the column widths do not vary from page to page.

Tip Using WIDTH=FULL can reduce execution time.

MINIMUM
uses for each variable the minimum column width that accommodates all 
values of the variable.

Alias MIN

1714 Chapter 48 / PRINT Procedure

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0b6ah1xwx1qp7n1ac24r33z9o0s.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=titlepage.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=titlepage.htm


UNIFORM
uses each variable's formatted width as its column width on all pages. If the 
variable does not have a format that explicitly specifies a field width, PROC 
PRINT uses the widest data value as the column width. When you specify 
WIDTH=UNIFORM, PROC PRINT normally needs to read the data set twice. 
However, if all the variables in the data set have formats that explicitly specify 
a field width (for example, BEST12. but not BEST.), PROC PRINT reads the 
data set only once.

Alias U

Restriction When not all variables have formats that explicitly specify a 
width, you cannot use WIDTH=UNIFORM with an engine that 
supports concurrent access if another user is updating the data 
set at the same time.

Tips If the data set is large and you want a uniform report, you can 
save computer resources by using formats that explicitly specify 
a field width so that PROC PRINT reads the data only once.

WIDTH=UNIFORM is the same as UNIFORM.

UNIFORMBY
formats all columns uniformly within a BY group, using each variable's 
formatted width as its column width. If the variable does not have a format 
that explicitly specifies a field width, PROC PRINT uses the widest data value 
as the column width.

Alias UBY

Restriction You cannot use UNIFORMBY with a sequential data set.

Default If you omit WIDTH= and do not specify the UNIFORM option, 
PROC PRINT individually constructs each page of output. The 
procedure analyzes the data for a page and decides how best to 
display them. Therefore, column widths might differ from one page 
to another.

Restriction WIDTH= is valid only for the LISTING destination.

Tip Column width is affected not only by variable width but also by the 
length of column headings. Long column headings might lessen the 
usefulness of WIDTH=.

See For a discussion of default column widths, see “Column Width” on 
page 1736. 

BY Statement
Produces a separate section of the report for each BY group.

See: Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 73

Examples: “Example 4: Creating Separate Sections of a Report for Groups of Observations” on 
page 1751

BY Statement 1715



“Example 5: Summing Numeric Variables with One BY Group” on page 1761
“Example 6: Summing Numeric Variables with Multiple BY Variables” on page 1766
“Example 7: Limiting the Number of Sums in a Report” on page 1776
“Example 9: Creating a Customized Layout with BY Groups and ID Variables” on page 
1785

Syntax
BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …> 

<NOTSORTED>;

Required Argument
variable

specifies the variable that the procedure uses to form BY groups. You can 
specify more than one variable. If you do not use the NOTSORTED option in the 
BY statement, the observations in the data set must either be sorted using 
PROC SORT by all the variables that you specify, or they must be indexed 
appropriately. Variables in a BY statement are called BY variables.

See PROC DATASETS MODIFY statement SORTEDBY option

Optional Arguments
DESCENDING

specifies that the data set is sorted in descending order by the variable that 
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. The data is grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of 
BY variables is suspended for BY-group processing when you use the 
NOTSORTED option. In fact, the procedure does not use an index if you specify 
NOTSORTED. The procedure defines a BY group as a set of contiguous 
observations that have the same values for all BY variables. If observations with 
the same values for the BY variables are not contiguous, the procedure treats 
each contiguous set as a separate BY group.

Details

Use the BY Statement with an ID Statement
PROC PRINT uses a special layout if all BY variables appear in the same order at 
the beginning of the ID statement. (See “Example 9: Creating a Customized Layout 
with BY Groups and ID Variables” on page 1785.) 

1716 Chapter 48 / PRINT Procedure



Use the BY Statement with the NOBYLINE Option
If you use the BY statement with the SAS system option NOBYLINE, which 
suppresses the BY line that normally appears in output produced with BY-group 
processing, PROC PRINT always starts a new page for each BY group. This 
behavior ensures that if you create customized BY lines by putting BY-group 
information in the title and suppressing the default BY lines with NOBYLINE, the 
information in the titles matches the report on the pages.

Use a BY Variable When You Print Unsorted Data
If you specify a BY variable whose values are not sorted, SAS stops printing the 
data set when it processes the first unsorted group. A message is written to the SAS 
log.

ID Statement
Identifies observations by using the formatted values of the variables that you list instead of by using 
observation numbers.

Examples: “Example 8: Controlling the Layout of a Report with Many Variables” on page 1780
“Example 9: Creating a Customized Layout with BY Groups and ID Variables” on page 
1785

Syntax
ID variable(s)
</ STYLE <(location(s))>=<style-override(s)> >;

Required Argument
variable(s)

specifies one or more variables to print instead of the observation number at the 
beginning of each row of the report.

Restriction If the ID variables occupy so much space that no room remains on 
the line for at least one other variable, PROC PRINT writes a 
warning to the SAS log and does not treat all ID variables as ID 
variables.

Interaction If a variable in the ID statement also appears in the VAR statement, 
the output contains two columns for that variable.

Optional Argument
STYLE <(location(s))>=<style-override(s)>

specifies one or more style overrides to use for ID columns created with the ID 
statement.

ID Statement 1717



You can specify a style override in two ways:

n Specify a style element. A style element is a collection of style attributes that 
apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that describes 
a single behavioral or visual aspect of a piece of output. This is the most 
specific method of changing the appearance of your output. 

style-override has the following form:

style-element-name | [style-attribute-name-1=style-attribute-value-1
<style-attribute-name-2=style-attribute-value-2 …>]

Restriction Style specifications for the OBSHEADER location is not valid in the 
ID statement.

Interaction If the STYLE(HEADER)= option is specified in the ID statement and 
the STYLE(OBSHEADER)= is specified in the PROC PRINT 
statement, the style attributes that are specified for the ID statement 
take precedence over the style elements that are specified in the 
PROC PRINT statement. Then, the style attributes in the PROC 
PRINT statement STYLE(OBSHEADER)= option are merged with 
the style attributes in the ID statement STYLE(HEADER)= option to 
render the output for the ID column heading.

Tip To specify different style overrides for different ID columns, use a 
separate ID statement for each variable and add a different STYLE 
option to each ID statement.

See For information about the arguments of this option and how it is 
used, see the STYLE= on page 1708 option in the PROC PRINT 
statement. 

Details

Use the BY Statement with an ID Statement
PROC PRINT uses a special layout if all BY variables appear in the same order at 
the beginning of the ID statement. (See “Example 9: Creating a Customized Layout 
with BY Groups and ID Variables” on page 1785.) 

PAGEBY Statement
Controls page ejects that occur before a page is full.

Requirement: BY statement

Example: “Example 4: Creating Separate Sections of a Report for Groups of Observations” on 
page 1751

1718 Chapter 48 / PRINT Procedure



Syntax
PAGEBY BY-variable;

Required Argument
BY-variable

identifies a variable appearing in the BY statement in the PROC PRINT step. If 
the value of the BY variable changes, or if the value of any BY variable that 
precedes it in the BY statement changes, PROC PRINT begins printing a new 
page.

Interaction If you use the BY statement with the SAS system option 
NOBYLINE, which suppresses the BY line that normally appears in 
output produced with BY-group processing, PROC PRINT always 
starts a new page for each BY group. This behavior ensures that if 
you create customized BY lines by putting BY-group information in 
the title and suppressing the default BY lines with NOBYLINE, the 
information in the titles matches the report on the pages. (See 
“Creating Titles That Contain BY-Group Information ” on page 57.) 

SUM Statement
Totals values of numeric variables.

Tip: SAS includes checks to verify that the PROC PRINT output is accessible for the visually 
impaired. When you use the SUM statement and set the ACCESSIBLECHECK system 
option, SAS verifies whether a label has been specified for both the SUMLABEL and the 
GRANDTOTAL_LABEL options in the PROC PRINT statement. If the output does not 
have labels for the summary and grand total values, SAS writes a message to the SAS 
log. For best practices about creating accessible output, see Creating Accessible Output 
in SAS Using ODS and ODS Graphics.

Examples: “Example 5: Summing Numeric Variables with One BY Group” on page 1761
“Example 6: Summing Numeric Variables with Multiple BY Variables” on page 1766
“Example 7: Limiting the Number of Sums in a Report” on page 1776
“Example 9: Creating a Customized Layout with BY Groups and ID Variables” on page 
1785

Syntax
SUM variable(s)
</ STYLE <(location(s))>=<style-override(s)> >;

SUM Statement 1719

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0b6ah1xwx1qp7n1ac24r33z9o0s.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0b6ah1xwx1qp7n1ac24r33z9o0s.htm&locale=en
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=titlepage.htm
http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=titlepage.htm


Required Argument
variable(s)

identifies the numeric variables to total in the report.

Optional Argument
STYLE <(location(s))>=<style-override(s)>

specifies one or more style overrides to use for cells containing sums that are 
created with the SUM statement.

You can specify a style override in two ways:

n Specify a style element. A style element is a collection of style attributes that 
apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that describes 
a single behavioral or visual aspect of a piece of output. This is the most 
specific method of changing the appearance of your output. 

style-override has the following form:

style-element-name | [style-attribute-name-1=style-attribute-value-1
<style-attribute-name-2=style-attribute-value-2 …>]

Tips To specify different style overrides for different cells reporting sums, use a 
separate SUM statement for each variable and add a different STYLE 
option to each SUM statement.

If the STYLE option is used in multiple SUM statements that affect the 
same location, the STYLE option in the last SUM statement will be used.

See For information about the arguments of this option and how it is used, see 
the option STYLE= on page 1702 in the PROC PRINT statement.

Details

Use the SUM and BY Statements Together
When you use a SUM statement and a BY statement with one BY variable, PROC 
PRINT sums the SUM variables for each BY group that contains more than one 
observation and totals them over all BY groups. (See “Example 5: Summing 
Numeric Variables with One BY Group” on page 1761.) 

When you use a SUM statement and a BY statement with multiple BY variables, 
PROC PRINT sums the SUM variables for each BY group that contains more than 
one observation, just as it does if you use only one BY variable. However, it 
provides sums only for those BY variables whose values change when the BY group 
changes. (See “Example 6: Summing Numeric Variables with Multiple BY Variables” 
on page 1766.) 

Note: When the value of a BY variable changes, the SAS System considers that 
the values of all variables listed after it in the BY statement also change.

1720 Chapter 48 / PRINT Procedure



SUMBY Statement
Limits the number of sums that appear in the report.

Requirement: BY statement

Example: “Example 7: Limiting the Number of Sums in a Report” on page 1776

Syntax
SUMBY BY-variable;

Required Argument
BY-variable

identifies a variable that appears in the BY statement in the PROC PRINT step. 
If the value of the BY variable changes, or if the value of any BY variable that 
precedes it in the BY statement changes, PROC PRINT prints the sums of all 
variables listed in the SUM statement.

Details

What Variables Are Summed?
If you use a SUM statement, PROC PRINT subtotals only the SUM variables. 
Otherwise, PROC PRINT subtotals all the numeric variables in the data set except 
for the variables listed in the ID and BY statements.

VAR Statement
Selects variables that appear in the report and determines their order.

Tip: If you omit the VAR statement, PROC PRINT prints all variables in the data set.

Examples: “Example 2: Selecting Variables to Print” on page 1739
“Example 9: Creating a Customized Layout with BY Groups and ID Variables” on page 
1785

Syntax
VAR variable(s)

VAR Statement 1721



</ STYLE <(location(s))>=<style-override(s)> >;

Required Argument
variable(s)

identifies the variables to print. PROC PRINT prints the variables in the order in 
which you list them.

Interaction In the PROC PRINT output, variables that are listed in the ID 
statement precede variables that are listed in the VAR statement. If 
a variable in the ID statement also appears in the VAR statement, 
the output contains two columns for that variable.

Optional Argument
STYLE <(location(s))>=<style-override(s)>

specifies one or more style overrides to use for all columns that are created by a 
VAR statement.

You can specify a style override in two ways:

n Specify a style element. A style element is a collection of style attributes that 
apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that describes 
a single behavioral or visual aspect of a piece of output. This is the most 
specific method of changing the appearance of your output. 

style-override has the following form:

style-element-name | [style-attribute-name-1=style-attribute-value-1
<style-attribute-name-2=style-attribute-value-2 …>]

Tip To specify different style overrides for different columns, use a separate 
VAR statement to create a column for each variable and add a different 
STYLE option to each VAR statement.

See For information about the arguments of this option and how it is used, see 
the option STYLE= on page 1708 in the PROC PRINT statement.

1722 Chapter 48 / PRINT Procedure



Usage: PRINT Procedure

Use ODS Styles with PROC PRINT

Using Styles with Base SAS Procedures
Most Base SAS procedures that support ODS use one or more table templates to 
produce output objects. These table templates include templates for table elements: 
columns, headers, and footers. Each table element can specify the use of one or 
more style elements for various parts of the output. These style elements cannot be 
specified within the syntax of the procedure, but you can use customized styles for 
the ODS destinations that you use. For more information about customizing tables 
and styles, see “TEMPLATE Procedure: Creating a Style Template” in SAS Output 
Delivery System: Procedures Guide.

The Base SAS reporting procedures, PROC PRINT, PROC REPORT, and PROC 
TABULATE, enable you to quickly analyze your data and organize it into easy-to-
read tables. You can use the STYLE= option with these procedure statements to 
modify the appearance of your report. The STYLE= option enables you to make 
changes in sections of output without changing the default style for all of the output. 
You can customize specific sections of procedure output by specifying the STYLE= 
option in specific statements within the procedure.

The following program uses the STYLE= option to create the colors in the PROC 
PRINT output below. For the complete input data set, see “EXPREV” on page 2698.

proc print data=exprev noobs sumlabel='Total' GRANDTOTAL_LABEL="Grand 
Total"
      style(table)=[frame=box rules=groups]
      style(bysumline)=[background=red foreground=linen]
      style(grandtotal)=[foreground=green]
      style(header)=[font_style=italic background=orange];
   by sale_type order_date;
   sum price quantity;
   sumby sale_type;
   label sale_type='Sale Type' order_date='Sale Date';
format price dollar10.2 cost dollar10.2;  
   var Country / style(data)=[font_face=arial font_weight=bold 
background=linen];
   var Price / style(data)=[font_style=italic background=yellow];
   var Cost / style(data)=[foreground=hgt. background=lightgreen];
title 'Retail and Quantity Totals for Each Sale Type';
run;

Usage: PRINT Procedure 1723

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p0cgtsocrm3ei3n1uqw9v4mbswkh.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p0cgtsocrm3ei3n1uqw9v4mbswkh.htm&locale=en


Output 48.1 Enhanced PROC PRINT Output

1724 Chapter 48 / PRINT Procedure



Styles, Style Elements, and Style 
Attributes

Understanding Styles, Style Elements, and Style 
Attributes
The appearance of SAS output is controlled by ODS style templates (ODS styles). 
ODS styles are produced from compiled STYLE templates written in PROC 
TEMPLATE style syntax. An ODS style template is a collection of style elements 
that provides specific visual attributes for your SAS output.

n A style element is a named collection of style attributes that apply to a particular 
part of the output. Each area of ODS output has a style element name that is 
associated with it. The style element name specifies where the style attributes 
are applied. For example, a style element might contain instructions for the 
presentation of column headings or for the presentation of the data inside the 
cells. Style elements might also specify default colors and fonts for output that 
uses the style.

n A style attribute is a visual property, such as color, font properties, and line 
characteristics, that is defined in ODS with a reserved name and value. Style 
attributes are collectively referenced by a style element within a style template. 
Each style attribute specifies a value for one aspect of the presentation. For 
example, the BACKGROUNDCOLOR= attribute specifies the color for the 
background of an HTML table or for a colored table in printed output. The 
FONTSTYLE= attribute specifies whether to use a Roman font or an italic font. 

Note: Because styles control the presentation of the data, they have no effect on 
output objects that go to the LISTING, DOCUMENT, or OUTPUT destination.

Available styles are in the SASHELP.TMPLMST item store. In SAS Enterprise 
Guide, the list of style sheets is shown by the Style Wizard. In batch mode or SAS 
Studio, you can display the list of available style templates by using the LIST 
statement in PROC TEMPLATE:

proc template;
   list styles / store=sashelp.tmplmst;
run;

For complete information about viewing ODS styles, see “Viewing ODS Styles 
Supplied by SAS” in SAS Output Delivery System: Advanced Topics.

By default, HTML 4 output uses the HTMLBlue style template and HTML 5 output 
uses the HTMLEncore style template. To help you become familiar with styles, style 
elements, and style attributes, look at the relationship between them.

You can use the SOURCE statement in PROC TEMPLATE to display the structure 
of a style template. The following code prints the structure of the HTMLBlue style 
template to the SAS log:

proc template;
   source styles.HTMLBlue; 

Usage: PRINT Procedure 1725

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n0o6exd0dndm4bn1wtgmaesohow2.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n00tlpqdpto39yn1lth6vmz80jr1.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n00tlpqdpto39yn1lth6vmz80jr1.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p196ilkbe71ravn1b549rrzxzyqv.htm&locale=en


run;

The following figure illustrates the structure of a style. The figure shows the 
relationship between the style, the style elements, and the style attributes.

Figure 48.4 Diagram of the HtmlBlue Style

1726 Chapter 48 / PRINT Procedure



The following list corresponds to the numbered items in the preceding figure:

1 Styles.HtmlBlue is the style. Styles describe how to display presentation aspects 
(color, font, font size, and so on) of the SAS output. A style determines the 
overall appearance of the ODS documents that use it. The default style for 
HTML output is HtmlBlue. Each style consists of style elements.

You can create new styles with the “DEFINE STYLE Statement” in SAS Output 
Delivery System: Procedures Guide. New styles can be created independently or 
from an existing style. You can use “PARENT= Statement” in SAS Output 
Delivery System: Procedures Guide to create a new style from an existing style. 
For complete documentation about ODS styles, see “Style Templates” in SAS 
Output Delivery System: Advanced Topics.

2 Header and Footer are examples of style elements. A style element is a 
collection of style attributes that apply to a particular part of the output for a SAS 
program. For example, a style element might contain instructions for the 
presentation of column headings or for the presentation of the data inside table 
cells. Style elements might also specify default colors and fonts for output that 
uses the style. Style elements exist inside styles and consist of one or more style 
attributes. Style elements can be user-defined or supplied by SAS. User-defined 
style elements can be created by the “STYLE Statement” in SAS Output Delivery 
System: Procedures Guide. 

Note: For a list of the default style elements used for HTML and markup 
languages and their inheritance, see “Style Elements” in SAS Output Delivery 
System: Advanced Topics. 

3 BORDERCOLOR=, BACKGROUNDCOLOR=, and COLOR= are examples of 
style attributes. Style attributes specify a value for one aspect of the area of the 
output that its style element applies to. For example, the COLOR= attribute 
specifies the value cx112277 for the font color. For a list of style attributes 
supplied by SAS, see “Style Attributes” in SAS Output Delivery System: 
Advanced Topics. 

Style attributes can be referenced with style references. See “style-reference” in 
SAS Output Delivery System: Advanced Topics for more information about style 
references.

The following table shows commonly used style attributes that you can set with the 
STYLE= option in PROC PRINT, PROC TABULATE, and PROC REPORT. Most of 
these attributes apply to parts of the table other than cells (for example, table 
borders and the lines between columns and rows). Note that not all attributes are 
valid in all destinations. For more information about these style attributes, their valid 
values, and their applicable destinations, see “Style Attributes Tables” in SAS 
Output Delivery System: Advanced Topics.

Usage: PRINT Procedure 1727

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n17x28hg8d4fjfn11t9cggpcumsx.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n17x28hg8d4fjfn11t9cggpcumsx.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1wicvcabwn684n1xvpgemmkxa19.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1wicvcabwn684n1xvpgemmkxa19.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0c5qpdczbofn4n1i6qfkew7p57h.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0c5qpdczbofn4n1i6qfkew7p57h.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1g9uebd55he4on1b213etlcn3jo.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1g9uebd55he4on1b213etlcn3jo.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=p0pm4ysu0fb68dn1d8uj78wcie6o.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=p0pm4ysu0fb68dn1d8uj78wcie6o.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n1b4339kviqrrcn1lt1lbm68e8xx.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n1b4339kviqrrcn1lt1lbm68e8xx.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=p0jrvtifiwse7qn1kgce32eg83dl.htm&docsetTargetAnchor=n1qhk2oq8dumgkn1q4izwr7dp46s&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=p0jrvtifiwse7qn1kgce32eg83dl.htm&docsetTargetAnchor=n1qhk2oq8dumgkn1q4izwr7dp46s&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0otdo2g12obp3n0zmnghcn7p4vu.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0otdo2g12obp3n0zmnghcn7p4vu.htm&locale=en


Table 48.2 Style Attributes for PROC REPORT, PROC TABULATE, and PROC PRINT

Attribute

PROC 
REPORT 

STATEMENT
REPORT 

Area

PROC 
REPORT 
Areas: 

CALLDEF
, 

COLUMN, 
HEADER, 

LINES, 
SUMMARY

PROC 
TABULATE 

STATEMENT
TABLE

PROC 
TABULATE 

STATEMENTS
VAR, 

CLASS, 
BOX, 

CLASSLEV, 
KEYWORD

PROC 
PRINT 
TABLE 

location

PROC 
PRINT: 

all 
locations 

other 
than 

TABLE

ASIS= X X X X

BACKGROUNDCOL
OR=

X X X X X X

BACKGROUNDIMAG
E=

X X X X X X

BORDERBOTTOMC
OLOR=

X X X

BORDERBOTTOMS
TYLE=

X X X X

BORDERBOTTOMWI
DTH=

X X X X

BORDERLEFTCOLO
R=

X X X

BORDERLEFTSTYL
E=

X X X X

BORDERLEFTWIDT
H=

X X X X

BORDERCOLOR= X X X X X

BORDERCOLORDA
RK=

X X X X X X

BORDERCOLORLIG
HT=

X X X X X X

BORDERRIGHTCOL
OR=

X X X

BORDERRIGHTSTY
LE=

X X X X

BORDERRIGHTWID
TH=

X X X X

1728 Chapter 48 / PRINT Procedure



Attribute

PROC 
REPORT 

STATEMENT
REPORT 

Area

PROC 
REPORT 
Areas: 

CALLDEF
, 

COLUMN, 
HEADER, 

LINES, 
SUMMARY

PROC 
TABULATE 

STATEMENT
TABLE

PROC 
TABULATE 

STATEMENTS
VAR, 

CLASS, 
BOX, 

CLASSLEV, 
KEYWORD

PROC 
PRINT 
TABLE 

location

PROC 
PRINT: 

all 
locations 

other 
than 

TABLE

BORDERTOPCOLO
R=

X X X

BORDERTOPSTYLE
=

X X X X

BORDERTOPWIDTH
=

X X X X

BORDERWIDTH= X X X X X X

CELLPADDING= X X X

CELLSPACING= X X X

CELLWIDTH= X X X X X

CLASS= X X X X X X

COLOR= X X X

FLYOVER= X X X X

FONT= X X X X X X

FONTFAMILY= X X X X X X

FONTSIZE= X X X X X X

FONTSTYLE= X X X X X X

FONTWEIGHT= X X X X X X

FONTWIDTH= X X X X X

FRAME= X X X

HEIGHT= X X X X X

HREFTARGET= X X X

HTMLSTYLE= X X X X X

NOBREAKSPACE=2 X X X X

OUTPUTWIDTH= X X X X X

Usage: PRINT Procedure 1729



Attribute

PROC 
REPORT 

STATEMENT
REPORT 

Area

PROC 
REPORT 
Areas: 

CALLDEF
, 

COLUMN, 
HEADER, 

LINES, 
SUMMARY

PROC 
TABULATE 

STATEMENT
TABLE

PROC 
TABULATE 

STATEMENTS
VAR, 

CLASS, 
BOX, 

CLASSLEV, 
KEYWORD

PROC 
PRINT 
TABLE 

location

PROC 
PRINT: 

all 
locations 

other 
than 

TABLE

POSTHTML=1 X X X X X X

POSTIMAGE= X X X X X X

POSTTEXT=1 X X X X X X

PREHTML=1 X X X X X X

PREIMAGE= X X X X X X

PRETEXT=1 X X X X X X

PROTECTSPECIALC
HARS=

X X X X

RULES= X X X

TAGATTR= X X X X X X

TEXTALIGN= X X X X X X

URL= X X X

VERTICALALIGN= X X X

WIDTH= X X X X X

1 When you use these attributes in this location, they affect only the text that is specified with the PRETEXT=, POSTTEXT=, 
PREHTML=, and POSTHTML= attributes. To alter the foreground color or the font for the text that appears in the table, you 
must set the corresponding attribute in a location that affects the cells rather than the table. For complete documentation 
about style attributes and their values, see “Style Attributes” in SAS Output Delivery System: Advanced Topics.

2 To help prevent unexpected wrapping of long text strings when using PROC REPORT with the ODS RTF destination, set 
NOBREAKSPACE=OFF in a location that affects the LINE statement. The NOBREAKSPACE=OFF attribute must be set in 
the PROC REPORT code either on the LINE statement or on the PROC REPORT statement where style(lines) is 
specified.

Default Style Elements and Style Attributes 
for Table Regions
The following table lists the default style elements and style attributes for various 
locations of PROC PRINT output. The locations in this table correspond to the 
locations in Table 48.93 on page 1708. The table lists defaults for the most 

1730 Chapter 48 / PRINT Procedure

http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n1b4339kviqrrcn1lt1lbm68e8xx.htm&locale=en


commonly used ODS destinations: HTML, PDF, and RTF. Each destination has a 
default style template that is applied to all output that is written to the destination.

n The default style for HTML output is HTMLBlue.

n The default style for PRINTER output is Pearl.

n The default style for RTF output is RTF.

For complete documentation about the ODS destinations and their default styles, 
see “Style Templates” in SAS Output Delivery System: Advanced Topics.

Table 48.3 Default Style Elements and Style Attributes for Report Regions

Location
Style 
Element

HTML Style 
Attributes PDF Style Attributes RTF Style Attributes

BYLABEL Byline FONTFAMILY = "Arial, 
'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 2

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR = cx112277

BACKGROUNDCOLO
R = cxedf2f9

FONTFAMILY = "Arial, 
'Albany AMT’"

FONTSIZE = 8pt

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR =cx000000

BACKGROUNDCOLO
R = cxffffff

FONTFAMILY 
="'Times New Roman', 
'Times Roman'"

FONTSIZE = 11pt

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR =cx000000

BORDERWIDTH = 
NaN

GRANDTOT
AL

OBSHEADE
R

HEADER

TOTAL

Header FONTFAMILY = "Arial, 
'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 2

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR = cx112277

BACKGROUNDCOLO
R = cxedf2f9

FONTFAMILY = "Arial, 
'Albany AMT’"

FONTSIZE = 8pt

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR =cx000000

BACKGROUNDCOLO
R = cxffffff

BORDERWIDTH = 
NaN

FONTFAMILY 
="'Times New Roman', 
'Times Roman'"

FONTSIZE = 11pt

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR =cx000000

BACKGROUNDCOLO
R = cxbbbbbb

N Linecontent FONTFAMILY = "Arial, 
'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 2

FONTWEIGHT = 
medium

FONTSTYLE = roman

COLOR = cx112277

BACKGROUNDCOLO
R = cxfafbfe

FONTFAMILY = "Arial, 
'Albany AMT’"

FONTSIZE = 8pt

FONTWEIGHT 
=medium

FONTSTYLE = roman

COLOR =cx000000

BACKGROUNDCOLO
R = cxffffff

BORDERWIDTH = 
NaN

FONTFAMILY 
="'Times New Roman', 
'Times Roman'"

FONTSIZE = 10pt

FONTWEIGHT = 
medium

FONTSTYLE = roman

COLOR =cx000000

Usage: PRINT Procedure 1731

http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0c5qpdczbofn4n1i6qfkew7p57h.htm&locale=en


Location
Style 
Element

HTML Style 
Attributes PDF Style Attributes RTF Style Attributes

OBS Rowheader FONTFAMILY = "Arial, 
'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 2

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR = cx112277

BACKGROUNDCOLO
R = cxedf2f9

FONTFAMILY = "Arial, 
'Albany AMT’"

FONTSIZE = 8pt

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR =cx000000

BACKGROUNDCOLO
R = cxffffff

BORDERWIDTH = 
NaN

FONTFAMILY 
="'Times New Roman', 
'Times Roman'"

FONTSIZE = 11pt

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR =cx000000

BACKGROUNDCOLO
R = cxbbbbbb

DATA Data FONTFAMILY = "Arial, 
'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 2

FONTWEIGHT = 
medium

FONTSTYLE = roman

BACKGROUNDCOLO
R = cxffffff

FONTFAMILY 
="’Albany AMT’, 
Albany"

FONTSIZE = 8pt

FONTWEIGHT = 
medium

FONTSTYLE = roman

COLOR = cx000000

BORDERWIDTH = 
NaN

COLOR = cx000000

FONTFAMILY 
="'Times New Roman', 
'Times Roman'"

FONTSIZE = 10pt

FONTWEIGHT = 
medium

FONTSTYLE = roman

COLOR = cx000000

Titles SystemTitle FONTFAMILY = "Arial, 
'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 3

FONTWEIGHT = bold

FONTSTYLE = roman

BACKGROUNDCOLO
R = cxfafbfe

FONTFAMILY 
="’Albany AMT’, 
Albany"

FONTSIZE = 11pt

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR = cx000000

BACKGROUNDCOLO
R = cxffffff

FONTFAMILY 
="'Times New Roman', 
'Times Roman'"

FONTSIZE = 13pt

FONTWEIGHT = bold

FONTSTYLE = italic

COLOR = cx000000

Footnotes Footers FONTFAMILY = "Arial, 
'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 2

FONTWEIGHT = 
medium

FONTSTYLE = roman

BACKGROUNDCOLO
R = cxffffff

FONTFAMILY 
="’Albany AMT’, 
Albany"

FONTSIZE = 11pt

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR = cx000000

BACKGROUNDCOLO
R = cxffffff

FONTFAMILY 
="'Times New Roman', 
'Times Roman'"

FONTSIZE = 13pt

FONTWEIGHT = bold

FONTSTYLE = italic

COLOR = cx000000

1732 Chapter 48 / PRINT Procedure



Error Processing in the PRINT Procedure Output
If an error occurs in the PRINT procedure or if the procedure is halted, output might 
be created for the observations that were processed until the error. SAS writes a 
message to the SAS log and ends the PRINT procedure.

For LISTING output, if the page size is set too small, SAS cannot print both the data 
and any titles or footnotes on the same page. If this happens, only the data is 
printed to the LISTING destination and SAS writes a warning message to the log. To 
write both the data and titles or footnotes on the same page, make sure that the 
page size is adequate.

Results: PRINT Procedure

About PROC PRINT Output
By default, PROC PRINT produces an HTML5 report when you run SAS in the 
windowing environment. In all other operating modes, the default destination is 
LISTING. The PRINT procedure statements, PROC PRINT, BY, PAGEBY, SUMBY, 
ID, SUM, and VAR control the content of the report. The options for each statement 
control the appearance of the report.

To change the ODS destination for the report, use ODS statements before the 
PROC PRINT statement. If you do not want HTML output, be sure to close the ODS 
HTML destination before you run the procedure. For more information about using 
ODS, see the SAS Output Delivery System: User’s Guide.

See the PRINT procedure examples on page 1739 for a sampling of the types of 
reports that the procedure produces.

Page Layout for HTML, the Default ODS 
Destination

A page of ODS HTML output is not limited in width or length. Therefore, each 
observation in a table is printed on a single line and all observations that are 
specified to print by the report appear on a single page of HTML output.

Each time that PROC PRINT runs, by default, SAS adds a page break after the 
output. A page break is rendered by separating output with a horizontal rule. For 
more information, see “ODS HTML” in SAS Output Delivery System: User’s Guide.

Results: PRINT Procedure 1733

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=n0f5s1zezthhbrn1u0z71mh3wx64.htm&locale=en


Page Layout for Limited Page Sizes

Observations
PROC PRINT uses an identical layout for all observations on a page for ODS 
destinations that produce output whose page size is limited in width and length. 
Some of these ODS destinations are RTF, PDF, and LISTING. First, it attempts to 
print observations on a single line, as shown in the following figure.

Figure 48.5 Printing Observations on a Single Line

1
Obs Va r_1 Va r_2 Va r_3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

If PROC PRINT cannot fit all the variables on a single line, it splits the observations 
into two or more sections and prints the observation number or the ID variables at 
the beginning of each line. For example, in the following figure, PROC PRINT prints 
the values for the first three variables in the first section of each page and the values 
for the second three variables in the second section of each page.

Figure 48.6 Splitting Observations into Multiple Sections on One Page

2
Obs Va r_1 Va r_2 Va r_3

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Obs Va r_4 Va r_5 Va r_6

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

1
Obs Va r_1 Va r_2 Va r_3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

Obs Va r_4 Va r_5 Va r_6

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

1734 Chapter 48 / PRINT Procedure



If PROC PRINT cannot fit all the variables on one page, the procedure prints 
subsequent pages with the same observations until it has printed all the variables. 
For example, in the following figure, PROC PRINT uses the first two pages to print 
values for the first three observations and the second two pages to print values for 
the rest of the observations.

Figure 48.7 Splitting Observations across Multiple Pages

2

Ob s V ar_7 Va r_8 Va r_9

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

Ob s V ar_10 Va r_ 11 V ar_12

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

1

Ob s V ar_1 Va r_ 2 V ar_3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

Ob s V ar_4 Va r_ 5 V ar_6

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

4

Ob s V ar_7 Va r_8 Va r_9

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Ob s V ar_10 Va r_ 11 V ar_12

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

3

Ob s V ar_1 Va r_ 2 V ar_3

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Ob s V ar_4 Va r_ 5 V ar_6

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Note: For the LISTING destination, you can alter the page layout with the ROWS= 
option in the PROC PRINT statement. (See the discussion of ROWS= option on 
page 1707.)

Column Headings
The amount of spacing specifies whether PROC PRINT prints column headings 
horizontally or vertically. Figure 48.55 on page 1734, Figure 48.56 on page 1734, 
and Figure 48.57 on page 1735 all illustrate horizontal headings. The following 
figure illustrates vertical headings.

Results: PRINT Procedure 1735



Figure 48.8 Using Vertical Headings

1
V V V
a a a

O r r r
b – – –
s 1 2 3

1 ~~~~ ~~~~ ~~~~

2 ~~~~ ~~~~ ~~~~

3 ~~~~ ~~~~ ~~~~

4 ~~~~ ~~~~ ~~~~

5 ~~~~ ~~~~ ~~~~

6 ~~~~ ~~~~ ~~~~

Note: If you use LABEL and at least one variable has a label, PROC PRINT prints 
all column headings horizontally unless you specify HEADING=VERTICAL.

Column Width
By default, PROC PRINT uses a variable's formatted width as the column width. 
(The WIDTH= option overrides this default behavior for the LISTING destination.) If 
the variable does not have a format that explicitly specifies a field width, PROC 
PRINT uses the widest data value for that variable on that page as the column 
width.

If the formatted value of a character variable or the data width of an unformatted 
character variable exceeds the line size minus the length of all the ID variables, 
PROC PRINT might truncate the value. Consider the following situation:

n The line size is 80.

n IdNumber is a character variable with a length of 10. It is used as an ID variable.

n State is a character variable with a length of 2. It is used as an ID variable.

n Comment is a character variable with a length of 200.

When PROC PRINT prints these three variables on a line, it uses 14 print positions 
for the two ID variables and the space after each one. This arrangement leaves 80–
14, or 66, print positions for COMMENT. Longer values of COMMENT are truncated.

WIDTH= controls the column width for the LISTING destination.

Note: Column width is affected not only by variable width but also by the length of 
column headings. Long column headings might lessen the usefulness of WIDTH=.

1736 Chapter 48 / PRINT Procedure



Examples: PRINT Procedure

Example 1: Print a CAS Table
Features: PROC PRINT DATA=CAS-table

CAS language elements:
CAS statement
LIBNAME statement for the CAS engine
PROC CASUTIL
PROC MDSUMMARY

Data set: Sashelp.cars

Details
This example demonstrates the following tasks:

n establishes a CAS session

n associates the Mycas libref with the CAS engine and the CAS session

n creates the CAS table mycas.cars

n uses PROC MDSUMMARY to summarize the cars data

n prints 15 rows of the summarized CAS table

Program: Run in the SAS Windowing 
Environment

options cashost="cloud.example.com" casport=5555;
cas mysess sessopts=(caslib='casuser');
libname mycas cas sessref=mysess;

proc casutil outcaslib="casuser";
  load data=sashelp.cars replace;
run;

proc mdsummary data=mycas.cars; 
  var mpg_highway;
  groupby origin type / out=mycas.mpghw_sum;
run;

Example 1: Print a CAS Table 1737



options obs=15;
proc print data=mycas.mpghw_sum;
   var origin type _mean_;
   title "Average Highway Milages";
run;

Program Description
Start the CAS server, set up the CAS session, create a libref for the CAS 
engine, and connect the engine to the CAS session. The OPTIONS statement 
connects SAS to the CAS server. The CAS statement creates the Mysess session 
using the CASUSER caslib. The LIBNAME statement creates the Mycas libref for 
the CAS engine, which uses the Mysess CAS session.

options cashost="cloud.example.com" casport=5555;
cas mysess sessopts=(caslib='casuser');
libname mycas cas sessref=mysess;

Load the table Sashelp.cars into the caslib Casuser. The OUTCASLIB= option 
names the caslib to where the table is loaded. Use the LOAD statement to load the 
table from Sashelp.cars. The REPLACE option replaces the table and names the 
table to load.

proc casutil outcaslib="casuser";
  load data=sashelp.cars replace;
run;

Summarize the data using PROC MDSUMMARY. The VAR statement specifies 
the analysis variable to order the results. The GROUPBY statement creates BY 
groups and saves the output to the table Mycas.mpghw_sum.

proc mdsummary data=mycas.cars; 
  var mpg_highway;
  groupby origin type / out=mycas.mpghw_sum;
run;

Print the first 15 rows of the summary results. With OBS=15, PROC PRINT 
prints only 15 rows of the CAS table. The VAR statement limits the output table to 
three columns, Origin, Type, and _Mean_.

options obs=15;
proc print data=mycas.mpghw_sum;
   var origin type _mean_;
   title "Average Highway Milages";
run;

1738 Chapter 48 / PRINT Procedure



Example 2: Selecting Variables to Print
Features: PROC PRINT statement options

BLANKLINE
DOUBLE
STYLE

VAR statement
DATA step
FOOTNOTE statement
ODS HTML statement
OPTIONS statement
TITLE statement

Data set: EXPREV 

ODS 
destinations:

HTML, LISTING

Details
This example demonstrates the following tasks:

n selects three variables for the reports

n uses variable labels as column headings

Example 2: Selecting Variables to Print 1739



n double spaces between rows of the report in the LISTING output

n creates a report for the default HTML destination and the LISTING destination at 
the same time

n creates a stylized HTML report

Program: Creating an HTML Report
options obs=10;

ods listing;

proc print data=exprev;

   var country price sale_type;
   title 'Monthly Price Per Unit and Sale Type for Each Country';
   footnote '*prices in USD';
run;

Program Description
HTML is the default destination when SAS opens in the windowing environment.

Set the OBS= system option to process 10 observations.

options obs=10;

Open the LISTING destination. By default in the windowing environment, the 
HTML default is open. The ODS LISTING statement opens the LISTING destination 
in order to create HTML and LISTING output at the same time.

ods listing;

Print the output The VAR statement specifies the variables to print.

proc print data=exprev;

   var country price sale_type;
   title 'Monthly Price Per Unit and Sale Type for Each Country';
   footnote '*prices in USD';
run;

1740 Chapter 48 / PRINT Procedure



Output: HTML and LISTING
Output 48.2 Selecting Variables: Default HTML Output

Output 48.3 Selecting Variables: LISTING Output

                      Monthly Price Per Unit and Sale Type for Each 
Country                     

                                                                  Sale_
                       Obs    Country                   Price      Type

                         1    Antarctica                 92.6    Internet

                         2    Puerto Rico                51.2    Catalog

                         3    Virgin Islands (U.S.)      31.1    In Store

                         4    Aruba                     123.7    Catalog

                         5    Bahamas                   113.4    Catalog

                         6    Bermuda                    41.0    Catalog

                         7    Belize                    146.4    In Store

                         8    British Virgin Islands     40.2    Catalog

                         9    Canada                     11.8    Catalog

                        10    Cayman Islands             71.0    In Store

                                         *prices in USD

Example 2: Selecting Variables to Print 1741



Program: Create an HTML Report with the 
STYLE and BLANKLINE Options

options obs=5;

ods html file='your_file_styles.html';

proc print data=exprev
   style(header)={fontstyle=italic color= green}
   style(obs)={backgroundcolor=#a8a44ff8a color=blue}
   blankline=(count= 1 style={backgroundcolor=cx456789});

   var country price sale_type;

   title 'Monthly Price Per Unit and Sale Type for Each Country';
   footnote '*prices in USD';
run;

Program Description
You can go a step further and add more formatting to your HTML output. The 
following example uses the STYLE option to add shading and spacing to your HTML 
report.

options obs=5;

ods html file='your_file_styles.html';

Create stylized HTML output. The first STYLE option specifies that the column 
headings are written in green italic font. The second STYLE option specifies that 
observation number column has a background color of the RGB color a8a44ff8a 
and a text color of blue. The BLANKLINE option specifies to add a blank line 
between each observation and use a background color of the CMYK color 
cx456789. Because a style has not been defined for the OBSHEADER location, the 
Obs column heading in the output uses the default style color and not green.

proc print data=exprev
   style(header)={fontstyle=italic color= green}
   style(obs)={backgroundcolor=#a8a44ff8a color=blue}
   blankline=(count= 1 style={backgroundcolor=cx456789});

   var country price sale_type;

   title 'Monthly Price Per Unit and Sale Type for Each Country';
   footnote '*prices in USD';
run;

1742 Chapter 48 / PRINT Procedure



Output: HTML Output with Styles
Output 48.4 Selecting Variables: HTML Output Using Styles

Program: Create a LISTING Report
options nodate pageno=1 linesize=80 pagesize=30 obs=10;

ods html close;
ods listing;

proc print data=exprev double;

   var country price sale_type;

   title 'Monthly Price Per Unit and Sale Type for Each Country';
   footnote '*prices in USD';
run;

ods listing close;
ods html;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. The PAGENO= option specifies the starting page 
number. The LINESIZE= option specifies the output line length, and the 
PAGESIZE= option specifies the number of lines on an output page. The OBS= 
option specifies the number of observations to display.

options nodate pageno=1 linesize=80 pagesize=30 obs=10;

Example 2: Selecting Variables to Print 1743



Close the HTML destination and open the LISTING destination. HTML is the 
default destination when you start SAS. To create only a LISTING report, you can 
close the HTML destination and open the LISTING destination. 

ods html close;
ods listing;

Print the data set EXPREV. EXPREV contains information about a company's 
product order type and price per unit for two months. DOUBLE inserts a blank line 
between observations. The DOUBLE option has no effect on the HTML output. 

proc print data=exprev double;

Select the variables to include in the report. The VAR statement creates columns 
for Country, Price, and Sale_Type, in that order.

   var country price sale_type;

Specify a title and a footnote. The TITLE statement specifies the title for the 
report. The FOOTNOTE statement specifies a footnote for the report.

   title 'Monthly Price Per Unit and Sale Type for Each Country';
   footnote '*prices in USD';
run;

Close the LISTING destination and reopen the HTML destination. When you 
close and reopen the HTML destination, SAS saves HTML output to the current 
directory and not the Work library.

ods listing close;
ods html;

Output: LISTING
By default, PROC PRINT identifies each observation by number under the column 
heading Obs.

1744 Chapter 48 / PRINT Procedure



Output 48.5 Selecting Variables: LISTING Output

             Monthly Price Per Unit and Sale Type for Each Country             1

                                                          Sale_
               Obs    Country                   Price      Type

                 1    Antarctica                 92.6    Internet

                 2    Puerto Rico                51.2    Catalog

                 3    Virgin Islands (U.S.)      31.1    In Store

                 4    Aruba                     123.7    Catalog

                 5    Bahamas                   113.4    Catalog

                 6    Bermuda                    41.0    Catalog

                 7    Belize                    146.4    In Store

                 8    British Virgin Islands     40.2    Catalog

                 9    Canada                     11.8    Catalog

                10    Cayman Islands             71.0    In Store

                                 *prices in USD

Example 3: Customizing Text in Column Headings
Features: PROC PRINT statement options

N
OBS=
SPLIT=
STYLE

VAR statement option
STYLE

LABEL statement
ODS PDF statement
FORMAT statement
TITLE statement

Data set: EXPREV 

ODS 
destinations:

LISTING, PDF

Example 3: Customizing Text in Column Headings 1745



Details
This example demonstrates the following tasks:

n underlines the text in column headings for variables in LISTING output

n adds background color to the column headings for variables in PDF output

n customizes the column heading for the column that identifies observations by 
number

n shows the number of observations in the report

n writes the values of the variable Price with dollar signs and periods

Program: Create a LISTING Report
options nodate pageno=1 linesize=80 pagesize=30 obs=10;

ods html close;
ods listing;

proc print data=exprev split='*' n
obs='Observation*Number*===========';

   var country sale_type price;

   label country='Country Name**============'
         sale_type='Order Type**=========='
         price='Price Per Unit*in USD*==============';

   format price dollar10.2;
   title 'Order Type and Price Per Unit in Each Country';
run;

ods listing close;
ods html;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. The PAGENO= option specifies the starting page 
number. The LINESIZE= option specifies the output line length, and the 
PAGESIZE= option specifies the number of lines on an output page. The OBS= 
option specifies the number of observations to be displayed.

options nodate pageno=1 linesize=80 pagesize=30 obs=10;

Close the HTML destination and open the LISTING destination. By default, the 
HTML destination is open.

ods html close;
ods listing;

1746 Chapter 48 / PRINT Procedure



Print the report and define the column headings. SPLIT= identifies the asterisk 
as the character that starts a new line in column headings. The N option prints the 
number of observations at the end of the report. OBS= specifies the column heading 
for the column that identifies each observation by number. The split character (*) 
starts a new line in the column heading. The equal signs (=) in the value of OBS= 
underlines the column heading.

proc print data=exprev split='*' n
obs='Observation*Number*===========';

Select the variables to include in the report. The VAR statement creates columns 
for Country, Sale_Type, and Price, in that order.

   var country sale_type price;

Assign the variables' labels as column headings. The LABEL statement 
associates a label with each variable for the duration of the PROC PRINT step. 
When you use the SPLIT= option in the PROC PRINT statement, the procedure 
uses labels for column headings. The split character (*) starts a new line in the 
column heading. The equal signs (=) in the labels underlines the column headings.

   label country='Country Name**============'
         sale_type='Order Type**=========='
         price='Price Per Unit*in USD*==============';

Specify a title for the report, and format any variable containing numbers. The 
FORMAT statement assigns the DOLLAR10.2 format to the variable Price in the 
report. The TITLE statement specifies a title.

   format price dollar10.2;
   title 'Order Type and Price Per Unit in Each Country';
run;

Close the LISTING destination and re-open the HTML destination.

ods listing close;
ods html;

Example 3: Customizing Text in Column Headings 1747



Output: LISTING
Output 48.6 Customizing Column Headings: LISTING Output

                Order Type and Price Per Unit in Each Country                 1

     Observation    Country Name              Order Type    Price Per Unit
        Number                                                  in USD
     ===========    ============              ==========    ==============

           1        Antarctica                 Internet           $92.60
           2        Puerto Rico                Catalog            $51.20
           3        Virgin Islands (U.S.)      In Store           $31.10
           4        Aruba                      Catalog           $123.70
           5        Bahamas                    Catalog           $113.40
           6        Bermuda                    Catalog            $41.00
           7        Belize                     In Store          $146.40
           8        British Virgin Islands     Catalog            $40.20
           9        Canada                     Catalog            $11.80
          10        Cayman Islands             In Store           $71.00

                                     N = 10

Program: Creating a PDF Report
options obs=10;

ods pdf file='your_file.pdf';

proc print data=exprev n obs='Observation Number';
      

   var country sale_type price;
         label country='Country Name'
               sale_type='Order Type'
               price='Price Per Unit in USD';
         format price dollar10.2;
         title 'Order Type and Price Per Unit in Each Country';
run;

ods pdf close;

Program Description
You can easily create PDF output by adding a few ODS statements. In the following 
example, ODS statements were added to produce PDF output.

The OBS= system option specifies to process 10 observations.

options obs=10;

Create PDF output and specify the file to store the output in. The ODS PDF 
statement opens the PDF destination and creates PDF output. The FILE= argument 
specifies the external file that contains the PDF output.

1748 Chapter 48 / PRINT Procedure



ods pdf file='your_file.pdf';

Set the procedure options. The N option prints the number of observations at the 
end of the report. OBS= specifies the column heading for the column that identifies 
each observation by number. 

proc print data=exprev n obs='Observation Number';
      

Process the variables in the data set. The VAR statement specifies the variables 
to print. The LABEL statement creates text to print in place of the variable names. 
The FORMAT statement specifies to format the price variables using the DOLLARw. 
format. The TITLE statement creates a title for the report.

   var country sale_type price;
         label country='Country Name'
               sale_type='Order Type'
               price='Price Per Unit in USD';
         format price dollar10.2;
         title 'Order Type and Price Per Unit in Each Country';
run;

Close the PDF destination. The ODS PDF CLOSE statement closes the PDF 
destination.

ods pdf close;

Output: PDF
Output 48.7 Customizing Column Heading: Default PDF Output

Example 3: Customizing Text in Column Headings 1749



Program: Creating a PDF Report with the 
STYLE Option

options obs=10;

ods pdf file='your_file.pdf';

proc print data=exprev n obs='Observation Number'
     style(n)={backgroundcolor=light blue fontstyle=italic}
     style(header obs obsheader)={backgroundcolor=light yellow 
color=blue 
      fontstyle=italic};
     style(data)={backgroundcolor=very light blue}

   var country sale_type price / style(data)=[backgroundcolor=very 
light blue];
   label country='Country Name'
         sale_type='Order Type'
         price='Price Per Unit in USD';
   format price dollar10.2;
run;

title 'Order Type and Price Per Unit in Each Country';

ods pdf close;

Program Description
The OBS= system option specifies to process 10 observations.

options obs=10;

ods pdf file='your_file.pdf';

Create stylized PDF output. The first STYLE option specifies that the background 
color of the cell containing the value for N be changed to light blue and that the font 
style be changed to italic. The second STYLE option specifies that the background 
color of the observation column, the observation header, and the other variable's 
headers be changed to a light yellow, the text color is changed to blue, and the font 
style is changed to italic.

proc print data=exprev n obs='Observation Number'
     style(n)={backgroundcolor=light blue fontstyle=italic}
     style(header obs obsheader)={backgroundcolor=light yellow 
color=blue 
      fontstyle=italic};
     style(data)={backgroundcolor=very light blue}

Create stylized PDF output. The STYLE option changes the color of the cells 
containing data to a very light blue.

   var country sale_type price / style(data)=[backgroundcolor=very 
light blue];
   label country='Country Name'
         sale_type='Order Type'
         price='Price Per Unit in USD';
   format price dollar10.2;

1750 Chapter 48 / PRINT Procedure



run;

title 'Order Type and Price Per Unit in Each Country';

Close the PDF destination. The ODS PDF CLOSE statement closes the PDF 
destination.

ods pdf close;

Output: PDF Report with Styles
Output 48.8 Customizing Column Headings: PDF Using Styles

Example 4: Creating Separate Sections of a Report 
for Groups of Observations
Features: PROC PRINT statement options

LABEL
N=
NOOBS
STYLE

BY statement
PAGEBY statement
SORT procedure
FORMAT statement
LABEL statement

Example 4: Creating Separate Sections of a Report for Groups of Observations 1751



ODS RTF statement
TITLE statement

Data set: EXPREV 

ODS 
destinations:

HTML, RTF

Details
This example demonstrates the following:

n suppresses the printing of observation numbers at the beginning of each row

n presents the data for each sale type in a separate section of the report

n creates a default HTML report

n creates default and stylized RTF reports

Program: Creating an HTML Report
options obs=10;

proc sort data=exprev;
   by sale_type order_date quantity;
run;

proc print data=exprev n='Number of observations for the month: '
           noobs label;

   var quantity cost price;

   by sale_type order_date;
   pageby order_date;

   label sale_type='Order Type' order_date='Order Date';

   format price dollar7.2 cost dollar7.2;
   title 'Prices and Cost Grouped by Date and Order Type';
   title2 'in USD';
run;

proc options option=bufno define;
run;

Program Description
The HTML destination is open by default. No ODS HTML statement is needed.

The OBS= system option specifies to process 10 observations.

options obs=10;

1752 Chapter 48 / PRINT Procedure



Sort the EXPREV data set. PROC SORT sorts the observations by Sale_Type, 
Order_Date, and Quantity.

proc sort data=exprev;
   by sale_type order_date quantity;
run;

Print the report, specify the total number of observations in each BY group, 
and suppress the printing of observation numbers. N= prints the number of 
observations in a BY group at the end of that BY group. The explanatory text that 
the N= option provides precedes the number. NOOBS suppresses the printing of 
observation numbers at the beginning of the rows. LABEL uses the variables' labels 
as column headings.

proc print data=exprev n='Number of observations for the month: '
           noobs label;

Specify the variables to include in the report. The VAR statement creates 
columns for Quantity, Cost, and Price, in that order.

   var quantity cost price;

Create a separate section for each order type and specify page breaks for 
each BY group of Order_Date. The BY statement produces a separate section of 
the report for each BY group and prints a heading above each one. The PAGEBY 
statement starts a new page each time the value of Order_Date changes.

   by sale_type order_date;
   pageby order_date;

Establish the column headings. The LABEL statement associates labels with the 
variables Sale_Type and Order_Date for the duration of the PROC PRINT step. 
When you use the LABEL option in the PROC PRINT statement, the procedure 
uses labels for column headings.

   label sale_type='Order Type' order_date='Order Date';

Format the columns that contain numbers and specify a title and footnote. The 
FORMAT statement assigns a format to Price and Cost for this report. The TITLE 
statement specifies a title. The TITLE2 statement specifies a second title.

   format price dollar7.2 cost dollar7.2;
   title 'Prices and Cost Grouped by Date and Order Type';
   title2 'in USD';
run;

proc options option=bufno define;
run;

Example 4: Creating Separate Sections of a Report for Groups of Observations 1753



Output: HTML
Output 48.9 Creating Separate Sections of a Report for Groups of Observations: HTML 

Output

1754 Chapter 48 / PRINT Procedure



Program: Creating an RTF Report
options obs=10;

ods rtf file='your_file.rtf' startpage=no;

proc sort data=exprev;
   by sale_type order_date quantity;
run;

proc print data=exprev n='Number of observations for each order type:'
           noobs label;
   var quantity cost price;
   by sale_type order_date;
   pageby order_date;
   label sale_type='Order Type' order_date='Order Date';

Example 4: Creating Separate Sections of a Report for Groups of Observations 1755



   format price dollar7.2 cost dollar7.2;
   title 'Price and Cost Grouped by Date and Order Type';
   title2 'in USD';
run;

ods rtf close;

Program Description
The OBS= system option specifies to process 10 observations.

options obs=10;

Create output for Microsoft Word and specify the file to store the output in. 
The ODS RTF statement opens the RTF destination and creates output formatted 
for Microsoft Word. The FILE= option specifies the external file that contains the 
RTF output. The STARTPAGE=NO option specifies that no new pages be inserted 
explicitly at the start of each by group.

ods rtf file='your_file.rtf' startpage=no;

proc sort data=exprev;
   by sale_type order_date quantity;
run;

proc print data=exprev n='Number of observations for each order type:'
           noobs label;
   var quantity cost price;
   by sale_type order_date;
   pageby order_date;
   label sale_type='Order Type' order_date='Order Date';
   format price dollar7.2 cost dollar7.2;
   title 'Price and Cost Grouped by Date and Order Type';
   title2 'in USD';
run;

Close the RTF destination. The ODS RTF CLOSE statement closes the RTF 
destination. 

ods rtf close;

1756 Chapter 48 / PRINT Procedure



Output: RTF
Output 48.10 Creating Separate Sections of a Report for Groups of Observations: Default 

RTF Output

Example 4: Creating Separate Sections of a Report for Groups of Observations 1757



Program: Creating an RTF Report with the 
STYLE Option

options obs=10;

ods rtf file='your_file.rtf' startpage=no;

proc sort data=exprev;
   by sale_type order_date quantity;
run;

proc print data=exprev n='Number of observations for the month: '
           noobs label style(N)={backgroundcolor=very light gray};
   var quantity / style(header)=[backgroundcolor=light yellow];
   var cost / style(header)=[backgroundcolor=light blue foreground =
white];
   var price / style(header)=[backgroundcolor=light green];
   by sale_type order_date;
   pageby order_date;
   label sale_type='Order Type' order_date='Order Date';
   format price dollar7.2 cost dollar7.2;

title 'Prices and Cost Grouped by Date and Order Type';
title2 '*prices in USD';
run;

ods rtf close;

Program Description
The OBS= system option specifies to process 10 observations.

options obs=10;

ods rtf file='your_file.rtf' startpage=no;

proc sort data=exprev;
   by sale_type order_date quantity;
run;

Create a stylized RTF report. The first STYLE option specifies that the background 
color of the cell containing the number of observations be changed to light gray. The 
second STYLE option specifies that the background color of the column heading for 
the variable Quantity be changed to light yellow. The third STYLE option specifies 
that the background color of the column heading for the variable Cost be changed to 
light blue and the font color be changed to white. The fourth STYLE option specifies 
that the background color of the column heading for the variable Price be changed 
to light green.

proc print data=exprev n='Number of observations for the month: '
           noobs label style(N)={backgroundcolor=very light gray};
   var quantity / style(header)=[backgroundcolor=light yellow];
   var cost / style(header)=[backgroundcolor=light blue foreground =
white];
   var price / style(header)=[backgroundcolor=light green];
   by sale_type order_date;

1758 Chapter 48 / PRINT Procedure



   pageby order_date;
   label sale_type='Order Type' order_date='Order Date';
   format price dollar7.2 cost dollar7.2;

title 'Prices and Cost Grouped by Date and Order Type';
title2 '*prices in USD';
run;

ods rtf close;

Example 4: Creating Separate Sections of a Report for Groups of Observations 1759



Output: RTF with Styles
Output 48.11 Creating Separate Sections of a Report for Groups of Observations: RTF 

Output Using Styles

1760 Chapter 48 / PRINT Procedure



Example 5: Summing Numeric Variables with One 
BY Group
Features: PROC PRINT statement options

N=
SUMLABEL

BY statement
SUM statement
ODS CSVALL statement
SORT procedure
TITLE statement

#BYVAL specification
SAS system options:

BYLINE
NOBYLINE

Data set: EXPREV

ODS 
destinations:

HTML, CSV

Details
This example demonstrates the following tasks:

n sums expenses and revenues for each region and for all regions.

n shows the number of observations in each BY group and in the whole report.

n creates a customized title, containing the name of the region. This title replaces 
the default BY line for each BY group.

n creates a default HTML file.

n creates a CSV file.

Program: Creating an HTML Report
options obs=10 nobyline;

proc sort data=exprev;
   by sale_type;
run;

proc print data=exprev noobs label sumlabel
           n='Number of observations for the order type: '
           'Number of observations for the data set: ';

Example 5: Summing Numeric Variables with One BY Group 1761



   var country order_date quantity price;

   label  sale_type='Sale Type'
          price='Total Retail Price* in USD'
          country='Country' order_date='Date' quantity='Quantity';

   sum price quantity;
   by sale_type;

   format price dollar7.2;

   title 'Retail and Quantity Totals for #byval(sale_type) Sales';
run;

options byline;

Program Description
The HTML destination is open by default. This program uses the default filename for 
the HTML output. No ODS HTML statement is needed.

Start each BY group on a new page and suppress the printing of the default 
BY line. The SAS system option NOBYLINE suppresses the printing of the default 
BY line. When you use PROC PRINT with the NOBYLINE option, each BY group 
starts on a new page. The OBS= option specifies the number of observations to 
process.

options obs=10 nobyline;

Sort the data set. PROC SORT sorts the observations by Sale_Type. 

proc sort data=exprev;
   by sale_type;
run;

Print the report, suppress the printing of observation numbers, and print the 
total number of observations for the selected variables. NOOBS suppresses the 
printing of observation numbers at the beginning of the rows. SUMLABEL prints the 
BY variable label on the summary line of each. N= prints the number of 
observations in a BY group at the end of that BY group and (because of the SUM 
statement) prints the number of observations in the data set at the end of the report. 
The first piece of explanatory text that N= provides precedes the number for each 
BY group. The second piece of explanatory text that N= provides precedes the 
number for the entire data set. 

proc print data=exprev noobs label sumlabel
           n='Number of observations for the order type: '
           'Number of observations for the data set: ';

Select the variables to include in the report. The VAR statement creates columns 
for Country, Order_Date, Quantity, and Price, in that order.

   var country order_date quantity price;

Assign the variables' labels as column headings. The LABEL statement 
associates a label with each variable for the duration of the PROC PRINT step. 

   label  sale_type='Sale Type'
          price='Total Retail Price* in USD'
          country='Country' order_date='Date' quantity='Quantity';

1762 Chapter 48 / PRINT Procedure



Sum the values for the selected variables. The SUM statement alone sums the 
values of Price and Quantity for the entire data set. Because the PROC PRINT step 
contains a BY statement, the SUM statement also sums the values of Price and 
Quantity for each sale type that contains more than one observation.

   sum price quantity;
   by sale_type;

Format the numeric values for a specified column. The FORMAT statement 
assigns the DOLLAR7.2. format to Price for this report.

   format price dollar7.2;

Specify and format a dynamic (or current) title. The TITLE statement specifies a 
title. The #BYVAL specification places the current value of the BY variable 
Sale_Type in the title. Because NOBYLINE is in effect, each BY group starts on a 
new page, and the title serves as a BY line.

   title 'Retail and Quantity Totals for #byval(sale_type) Sales';
run;

Generate the default BY line. The SAS system option BYLINE resets the printing 
of the default BY line.

options byline;

Output: HTML
Output 48.12 Summing Numeric Variables with One BY Group HTML Output

Example 5: Summing Numeric Variables with One BY Group 1763



Program: Creating a CSV File
options obs=10 nobyline;

ods csvall file='your_file.csv';

proc sort data=exprev;
   by sale_type;
run;

proc print data=exprev noobs label sumlabel
           n='Number of observations for the order type: '
           'Number of observations for the data set: ';

var country order_date quantity price;

   label  price='Total Retail Price* in USD'
          country='Country' order_date='Date' quantity='Quantity';

   sum price quantity;
   by sale_type;

   format price dollar7.2;

   title 'Retail and Quantity Totals for #byval(sale_type) Sales';
run;

options byline;

ods csvall close;

1764 Chapter 48 / PRINT Procedure



Program Description
options obs=10 nobyline;

Produce CSV formatted output and specify the file to store it in. The ODS 
CSVALL statement opens the CSVALL destination and creates a file containing 
tabular output with titles, notes, and BY lines. The FILE= argument specifies the 
external file that contains the CSV output. 

ods csvall file='your_file.csv';

proc sort data=exprev;
   by sale_type;
run;

proc print data=exprev noobs label sumlabel
           n='Number of observations for the order type: '
           'Number of observations for the data set: ';

var country order_date quantity price;

   label  price='Total Retail Price* in USD'
          country='Country' order_date='Date' quantity='Quantity';

   sum price quantity;
   by sale_type;

   format price dollar7.2;

   title 'Retail and Quantity Totals for #byval(sale_type) Sales';
run;

options byline;

Close the CSVALL destination. The ODS CSVALL CLOSE statement closes the 
CSVALL destination. 

ods csvall close;

Example 5: Summing Numeric Variables with One BY Group 1765



Output: CSV File
Output 48.13 Summing Numeric Variables with One BY Group: CSV Output Viewed with 

Microsoft Excel

Example 6: Summing Numeric Variables with 
Multiple BY Variables
Features: PROC PRINT statement options

GRANDTOTAL_LABEL=
N=
NOOBS
STYLE
SUMLABEL=

BY statement
SUM statement
ODS HTML statement
LABEL statement

1766 Chapter 48 / PRINT Procedure



FORMAT statement
SORT procedure
TITLE statement

Data set: EXPREV 

ODS 
destinations:

HTML, LISTING

Details
This example demonstrates the following tasks:

n sums quantities and retail prices for the following items: 

o each order date 

o each sale type with more than one row in the report

o all rows in the report

n shows the number of observations in each BY group and in the whole report

n displays a customized label in place of the BY group variable name on the 
summary line

n displays a customized label for the grand total line

n creates a default HTML report

n creates a stylized HTML report

Program: Creating an HTML Report
options obs=10;

proc sort data=exprev;
   by sale_type order_date;
run;

proc print data=exprev n noobs sumlabel='Totals' 
grandtotal_label='Grand Total';
   by sale_type order_date;
   sum price quantity cost;

   label  sale_type='Sale Type' order_date='Sale Date';
   format price dollar10.2 cost dollar10.2;
   title 'Retail and Quantity Totals for Each Sale Date and Sale Type';
run;

Program Description
options obs=10;

Example 6: Summing Numeric Variables with Multiple BY Variables 1767



Produce HTML output and specify the file to store the output in. The HTML 
destination is open by default. The ODS HTML FILE= statement creates a file that 
contains HTML output. The FILE= argument specifies the external file that contains 
the HTML output. 

proc sort data=exprev;
   by sale_type order_date;
run;

proc print data=exprev n noobs sumlabel='Totals' 
grandtotal_label='Grand Total';
   by sale_type order_date;
   sum price quantity cost;

   label  sale_type='Sale Type' order_date='Sale Date';
   format price dollar10.2 cost dollar10.2;
   title 'Retail and Quantity Totals for Each Sale Date and Sale Type';
run;

Output: HTML
Output 48.14 Summing Numeric Variables with Multiple BY Variables: In Store Sales: 

Default HTML Output

1768 Chapter 48 / PRINT Procedure



Program: Creating an HTML Report with 
the STYLE Option

options obs=10;

proc sort data=exprev;
   by sale_type order_date;
run;

proc print data=exprev n noobs sumlabel='Totals' 
grandtotal_label='Grand Total;

   by sale_type order_date;
sum price / style(GRANDTOTAL)=[backgroundcolor=white color=blue];
sum quantity / style(TOTAL)=[backgroundcolor=dark blue color=white];

   label  sale_type='Sale Type' order_date='Sale Date';
   format price dollar10.2 cost dollar10.2;
   title 'Retail and Quantity Totals for Each Sale Date and Sale Type';

Example 6: Summing Numeric Variables with Multiple BY Variables 1769



run;

Program Description
options obs=10;

proc sort data=exprev;
   by sale_type order_date;
run;

proc print data=exprev n noobs sumlabel='Totals' 
grandtotal_label='Grand Total;

Create stylized HTML output. The STYLE option in the first SUM statement 
specifies that the background color of the cell containing the grand total for the 
variable Price be changed to white and the font color be changed to blue. The 
STYLE option in the second SUM statement specifies that the background color of 
cells containing totals for the variable Quantity be changed to dark blue and the font 
color be changed to white.

   by sale_type order_date;
sum price / style(GRANDTOTAL)=[backgroundcolor=white color=blue];
sum quantity / style(TOTAL)=[backgroundcolor=dark blue color=white];

   label  sale_type='Sale Type' order_date='Sale Date';
   format price dollar10.2 cost dollar10.2;
   title 'Retail and Quantity Totals for Each Sale Date and Sale Type';
run;

1770 Chapter 48 / PRINT Procedure



Output: HTML with Styles
Output 48.15 Summing Numeric Variables with Multiple BY Variables: Catalog Sales: 

HTML Output Using Styles

Example 6: Summing Numeric Variables with Multiple BY Variables 1771



Program: Creating a LISTING Report
options nodate pageno=1 linesize=80 pagesize=40 obs=15;

ods html close;
ods listing;

proc sort data=exprev;
   by sale_type order_date;
run;

proc print data=exprev n noobs sumlabel=Totals' 
grandtotal_label='Grand Total';

   by sale_type order_date;
   sum price quantity;

   label  sale_type='Sale Type'
          order_date='Sale Date';
   format price dollar10.2 cost dollar10.2;
   title 'Retail and Quantity Totals for Each Sale Date and Sale Type';
run;

1772 Chapter 48 / PRINT Procedure



ods listing close;
ods html;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. The PAGENO= option specifies the starting page 
number. The LINESIZE= option specifies the output line length, and the 
PAGESIZE= option specifies the number of lines on an output page. OBS= specifies 
to stop process in the data set after observation 15.

options nodate pageno=1 linesize=80 pagesize=40 obs=15;

Close the HTML destination and open the LISTING destination. The HTML 
destination is open by default.

ods html close;
ods listing;

Sort the data set. PROC SORT sorts the observations by Sale_Type and 
Order_Date.

proc sort data=exprev;
   by sale_type order_date;
run;

Print the report, suppress the printing of observation numbers, print the total 
number of observations for the selected variables and use the BY variable 
labels in place of the BY variable names in the summary line. The N option 
prints the number of observations in a BY group at the end of that BY group and 
prints the total number of observations used in the report at the bottom of the report. 
NOOBS suppresses the printing of observation numbers at the beginning of the 
rows. The SUMLABEL option prints ‘Totals’ in the summary line in place of the BY 
variable labels.

proc print data=exprev n noobs sumlabel=Totals' 
grandtotal_label='Grand Total';

Create a separate section of the report for each BY group, and sum the values 
for the selected variables. The BY statement produces a separate section of the 
report for each BY group. The SUM statement alone sums the values of Price and 
Quantity for the entire data set. Because the program contains a BY statement, the 
SUM statement also sums the values of Price and Quantity for each BY group that 
contains more than one observation.

   by sale_type order_date;
   sum price quantity;

Establish a label for selected variables, format the values of specified 
variables, and create a title. The LABEL statement associates a label with the 
variables Sale_Type and Order_Date for the duration of the PROC PRINT step. The 
labels are used in the BY line at the beginning of each BY group and in the 
summary line in place of BY variables. The FORMAT statement assigns a format to 
the variables Price and Cost for this report. The TITLE statement specifies a title.

   label  sale_type='Sale Type'
          order_date='Sale Date';
   format price dollar10.2 cost dollar10.2;

Example 6: Summing Numeric Variables with Multiple BY Variables 1773



   title 'Retail and Quantity Totals for Each Sale Date and Sale Type';
run;

Close the LISTING destination and re-open the HTML destination.

ods listing close;
ods html;

Output: LISTING
The report uses default column headings (variable names) because neither the 
SPLIT= nor the LABEL option is used. Nevertheless, the BY line at the top of each 
section of the report shows the BY variables' labels and their values. The BY 
variables' labels identifies the subtotals in the report summary line.

PROC PRINT sums Price and Quantity for each BY group that contains more than 
one observation. However, sums are shown only for the BY variables whose values 
change from one BY group to the next. For example, in the first BY group, where the 
sale type is Catalog Sale and the sale date is >1/1/12, Quantity and Price are 
summed only for the sale date because the next BY group is for the same sale type.

Output 48.16 PROC PRINT LISTING Output Showing Total Values for Price and Quantity

          Retail and Quantity Totals for Each Sale Date and Sale Type          1

---------------------- Sale Type=Catalog Sale Date=1/1/12 ----------------------

                              Ship_
   Country         Emp_ID      Date     Quantity         Price          Cost

   Puerto Rico    99999999    1/5/12       14           $51.20        $12.10
   Aruba          99999999    1/4/12       30          $123.70        $59.00
   Bahamas        99999999    1/4/12        8          $113.40        $28.45
   Bermuda        99999999    1/4/12        7           $41.00         $9.25
   -----------                          --------    ----------
   Totals                                  59          $329.30

                                     N = 4

---------------------- Sale Type=Catalog Sale Date=1/2/12 ----------------------

                                    Ship_
Country                   Emp_ID     Date    Quantity        Price         Cost

British Virgin Islands   99999999   1/5/12       11         $40.20       $20.20
Canada                   99999999   1/5/12      100         $11.80        $5.00
El Salvador              99999999   1/6/12       21        $266.40       $66.70
----------------------                       --------   ----------
Totals                                          132        $318.40
Totals                                          191        $647.70

                                     N = 3

1774 Chapter 48 / PRINT Procedure



 Retail and Quantity Totals for Each Sale Date and Sale Type          2

--------------------- Sale Type=In Store Sale Date=1/1/12 ----------------------

                                    Ship_
        Country           Emp_ID     Date    Quantity        Price         Cost

 Virgin Islands (U.S.)   99999999   1/4/12      25          $31.10       $15.65

                                     N = 1

--------------------- Sale Type=In Store Sale Date=1/2/12 ----------------------

                               Ship_
   Country           Emp_ID     Date     Quantity         Price          Cost

   Belize            120458    1/2/12        2          $146.40        $36.70
   Cayman Islands    120454    1/2/12       20           $71.00        $32.30
   Guatemala         120931    1/2/12       13          $144.40        $65.70
   --------------                        --------    ----------
   Totals                                   35          $361.80
   Totals                                   60          $392.90

                                     N = 3

--------------------- Sale Type=Internet Sale Date=1/1/12 ----------------------

                              Ship_
     Country       Emp_ID      Date     Quantity         Price          Cost

    Antarctica    99999999    1/7/12        2           $92.60        $20.70

                                     N = 1

Retail and Quantity Totals for Each Sale Date and Sale Type          3

--------------------- Sale Type=Internet Sale Date=1/2/12 ----------------------

                                  Ship_
Country                Emp_ID      Date     Quantity         Price          Cost

Costa Rica            99999999    1/6/12        31          $53.00        $26.60
Cuba                  121044      1/2/12        12          $42.40        $19.35
Dominican Republic    121040      1/2/12        13          $48.00        $23.95
------------------                          --------    ----------
Totals                                          56         $143.40
Totals                                          58         $236.00
==================                          ========    ==========
Grand Total                                    309       $1,276.60

                                    N = 3
                              Total N = 15

Example 6: Summing Numeric Variables with Multiple BY Variables 1775



Example 7: Limiting the Number of Sums in a 
Report
Features: BY statement

SUM statement
SUMBY statement
FORMAT statement
LABEL statement
ODS PDF statement
SORT procedure
TITLE statement

Data set: EXPREV 

ODS 
destination:

PDF

Details
This example demonstrates the following tasks:

n creates a separate section of the report for each combination of sale type and 
sale date

n sums quantities and retail prices only for each sale type and for all sale types, 
not for individual dates

n creates a PDF file

Program: Creating a PDF File
options obs=10;

ods html close;
ods pdf file='your_file.pdf';

proc sort data=exprev;
   by sale_type order_date;
run;

proc print data=exprev noobs sumlabel='Total' grandtotal_label='Grand 
Total';

   by sale_type order_date;
   sum price quantity;
   sumby sale_type;

   label sale_type='Sale Type' order_date='Sale Date';

1776 Chapter 48 / PRINT Procedure



   format price dollar10.2 cost dollar10.2;
   title 'Retail and Quantity Totals for Each Sale Type';
run;

ods pdf close;

Program Description
The OBS= system option specifies to process 10 observations.

options obs=10;

Produce PDF output and specify the file to store the output in. The ODS HTML 
CLOSE statement closes the default destination. The ODS PDF statement opens 
the PDF destination and creates a file that contains PDF output. The FILE= 
argument specifies the external file that contains the PDF output. 

ods html close;
ods pdf file='your_file.pdf';

Sort the data set. PROC SORT sorts the observations by Sales_Type and 
Order_Date.

proc sort data=exprev;
   by sale_type order_date;
run;

Print the report and remove the observation numbers. NOOBS suppresses the 
printing of observation numbers at the beginning of the rows. SUMLABEL uses the 
label for the BY variables on the summary line of each BY group.

proc print data=exprev noobs sumlabel='Total' grandtotal_label='Grand 
Total';

Sum the values for each region. The SUM and BY statements work together to 
sum the values of Price and Quantity for each BY group as well as for the whole 
report. The SUMBY statement limits the subtotals to one for each type of sale.

   by sale_type order_date;
   sum price quantity;
   sumby sale_type;

Assign labels to specific variables. The LABEL statement associates a label with 
the variables Sale_Type and Order_Date for the duration of the PROC PRINT step. 
These labels are used in the BY group title or the summary line.

   label sale_type='Sale Type' order_date='Sale Date';

Assign a format to the necessary variables and specify a title. The FORMAT 
statement assigns the COMMA10. format to Cost and Price for this report. The 
TITLE statement specifies a title.

   format price dollar10.2 cost dollar10.2;
   title 'Retail and Quantity Totals for Each Sale Type';
run;

Close the PDF destination. The ODS PDF CLOSE statement closes the PDF 
destination.

ods pdf close;

Example 7: Limiting the Number of Sums in a Report 1777



Output: PDF
Output 48.17 Limiting the Number of Sums in a Report: PDF Output

Program: Creating a PDF Report with the 
STYLE Option

options obs=10;

ods pdf file='your_file.pdf';

proc sort data=exprev;
   by sale_type order_date;
run;

1778 Chapter 48 / PRINT Procedure



proc print data=exprev noobs sumlabel='Total' grandtotal_label='Grand 
Total';

   by sale_type order_date;
   

   sum quantity price / style(TOTAL)=[backgroundcolor=light blue 
color=white];
   sum quantity price / style(GRANDTOTAL)=[backgroundcolor=green 
color=white];
   sumby sale_type;

   label sale_type='Sale Type' order_date='Sale Date';

   format price dollar10.2 cost dollar10.2;
   title 'Retail and Quantity Totals for Each Sale Type';
run;

ods pdf close;

Program Description
options obs=10;

ods pdf file='your_file.pdf';

proc sort data=exprev;
   by sale_type order_date;
run;

proc print data=exprev noobs sumlabel='Total' grandtotal_label='Grand 
Total';

   by sale_type order_date;
   

Create stylized PDF output. The STYLE option in the first SUM statement 
specifies that the background color of cells containing totals for the variable Price be 
changed to light blue and the font color be changed to white. The STYLE option in 
the second SUM statement specifies that the background color of the cell containing 
the grand total for the Quantity variable be changed to yellow and the font color be 
changed to red. 

   sum quantity price / style(TOTAL)=[backgroundcolor=light blue 
color=white];
   sum quantity price / style(GRANDTOTAL)=[backgroundcolor=green 
color=white];
   sumby sale_type;

   label sale_type='Sale Type' order_date='Sale Date';

   format price dollar10.2 cost dollar10.2;
   title 'Retail and Quantity Totals for Each Sale Type';
run;

ods pdf close;

Example 7: Limiting the Number of Sums in a Report 1779



Output: PDF with Styles
Output 48.18 Limiting the Number of Sums in a Report: PostScript Output Using Styles

Example 8: Controlling the Layout of a Report with 
Many Variables
Features: PROC PRINT statement options

ROWS=
ID statement options

STYLE
ODS RTF statement
SAS data set options

OBS=

1780 Chapter 48 / PRINT Procedure



Data set: EMPDATA 

ODS 
destinations:

LISTING, RTF

Details
This example shows two ways of printing a data set with a large number of 
variables: one is the default, printing multiple rows when there are a large number of 
variables, and the other uses ROWS= option to print one row. The ROWS= option is 
valid only for the LISTING destination. For detailed explanations of the layouts of 
these two reports, see the option ROWS= on page 1707 and “Page Layout for 
Limited Page Sizes” on page 1734. 

These reports use a page size of 24 and a line size of 64 to help illustrate the 
different layouts.

Program: Creating a LISTING Report
data empdata;
   input IdNumber $ 1-4 LastName $ 8-18 FirstName $ 19-28
      City $ 29-41 State $ 42-43 
      Gender $ 45 JobCode $ 49-51 Salary 55-60 @63 Birth date7.
      @73 Hired date7. HomePhone $ 83-95;
   format birth hired date9.;
   datalines;
1919   Adams      Gerald    Stamford     CT M   TA2   34376   15SEP70   07JUN05   
203/781-1255
1653   Alexander  Susan     Bridgeport   CT F   ME2   35108   18OCT72   12AUG98   
203/675-7715

. . . more lines of data . . .

1407   Grant      Daniel    Mt. Vernon   NY M   PT1   68096   26MAR77   21MAR98   
914/468-1616
1114   Green      Janice    New York     NY F   TA2   32928   21SEP77   30JUN06   
212/588-1092
;

proc print data=empdata(obs=12);
   id idnumber;
   title 'Personnel Data';
run;

proc print data=empdata(obs=12) rows=page;
   id idnumber;
   title 'Personnel Data';
run;

Example 8: Controlling the Layout of a Report with Many Variables 1781



Program Description

Create the EMPDATA data set. The data set EMPDATA contains personal and job-
related information about a company's employees. The DATA step creates this data 
set.

data empdata;
   input IdNumber $ 1-4 LastName $ 8-18 FirstName $ 19-28
      City $ 29-41 State $ 42-43 
      Gender $ 45 JobCode $ 49-51 Salary 55-60 @63 Birth date7.
      @73 Hired date7. HomePhone $ 83-95;
   format birth hired date9.;
   datalines;
1919   Adams      Gerald    Stamford     CT M   TA2   34376   15SEP70   07JUN05   
203/781-1255
1653   Alexander  Susan     Bridgeport   CT F   ME2   35108   18OCT72   12AUG98   
203/675-7715

. . . more lines of data . . .

1407   Grant      Daniel    Mt. Vernon   NY M   PT1   68096   26MAR77   21MAR98   
914/468-1616
1114   Green      Janice    New York     NY F   TA2   32928   21SEP77   30JUN06   
212/588-1092
;

Print only the first 12 observations in a data set. The OBS= data set option uses 
only the first 12 observations to create the report. (This is just to conserve space 
here.) The ID statement identifies observations with the formatted value of 
IdNumber rather than with the observation number. This report is shown in “Output: 
LISTING” on page 1782.

proc print data=empdata(obs=12);
   id idnumber;
   title 'Personnel Data';
run;

Print a report that contains only one row of variables on each page. 
ROWS=PAGE prints only one row of variables for each observation on a page. This 
report is shown in Output 48.283 on page 1784.

proc print data=empdata(obs=12) rows=page;
   id idnumber;
   title 'Personnel Data';
run;

Output: LISTING
In the traditional procedure output, each page of this report contains values for all 
variables in each observation. In the HTML output, this report is identical to the 
report that uses ROWS=PAGE.

Note that PROC PRINT automatically splits the variable names that are used as 
column headings at a change in capitalization if the entire name does not fit in the 

1782 Chapter 48 / PRINT Procedure



column. Compare the column headings for LastName (which fits in the column) and 
FirstName (which does not fit in the column).

Output 48.19 Default Layout for a Report with Many Variables: LISTING Output

                Personnel Data                        1

  Id                   First
Number    LastName     Name           City       State    Gender

 1919     Adams        Gerald      Stamford       CT        M
 1653     Alexander    Susan       Bridgeport     CT        F
 1400     Apple        Troy        New York       NY        M
 1350     Arthur       Barbara     New York       NY        F
 1401     Avery        Jerry       Paterson       NJ        M
 1499     Barefoot     Joseph      Princeton      NJ        M
 1101     Baucom       Walter      New York       NY        M

  Id      Job
Number    Code    Salary      Birth      Hired     HomePhone

 1919     TA2      34376    15SEP70    07JUN05    203/781-1255
 1653     ME2      35108    18OCT72    12AUG98    203/675-7715
 1400     ME1      29769    08NOV85    19OCT06    212/586-0808
 1350     FA3      32886    03SEP63    01AUG00    718/383-1549
 1401     TA3      38822    16DEC68    20NOV93    201/732-8787
 1499     ME3      43025    29APR62    10JUN95    201/812-5665
 1101     SCP      18723    09JUN80    04OCT98    212/586-8060

                Personnel Data                        2

  Id                   First
Number    LastName     Name           City       State    Gender

 1333     Blair        Justin      Stamford       CT        M
 1402     Blalock      Ralph       New York       NY        M
 1479     Bostic       Marie       New York       NY        F
 1403     Bowden       Earl        Bridgeport     CT        M
 1739     Boyce        Jonathan    New York       NY        M

  Id      Job
Number    Code    Salary      Birth      Hired     HomePhone

 1333     PT2      88606    02APR79    13FEB03    203/781-1777
 1402     TA2      32615    20JAN71    05DEC98    718/384-2849
 1479     TA3      38785    25DEC66    08OCT03    718/384-8816
 1403     ME1      28072    31JAN79    24DEC99    203/675-3434
 1739     PT1      66517    28DEC82    30JAN00    212/587-1247

Each page of this report contains values for only some of the variables in each 
observation. However, each page contains values for more observations than the 
default report does.

Example 8: Controlling the Layout of a Report with Many Variables 1783



Output 48.20 Layout Produced by the ROWS=PAGE Option: LISTING Output

                         Personnel Data                        3

  Id                   First
Number    LastName     Name           City       State    Gender

 1919     Adams        Gerald      Stamford       CT        M
 1653     Alexander    Susan       Bridgeport     CT        F
 1400     Apple        Troy        New York       NY        M
 1350     Arthur       Barbara     New York       NY        F
 1401     Avery        Jerry       Paterson       NJ        M
 1499     Barefoot     Joseph      Princeton      NJ        M
 1101     Baucom       Walter      New York       NY        M
 1333     Blair        Justin      Stamford       CT        M
 1402     Blalock      Ralph       New York       NY        M
 1479     Bostic       Marie       New York       NY        F
 1403     Bowden       Earl        Bridgeport     CT        M
 1739     Boyce        Jonathan    New York       NY        M

                        Personnel Data                        4

  Id      Job
Number    Code    Salary      Birth      Hired     HomePhone

 1919     TA2      34376    15SEP70    07JUN05    203/781-1255
 1653     ME2      35108    18OCT72    12AUG98    203/675-7715
 1400     ME1      29769    08NOV85    19OCT06    212/586-0808
 1350     FA3      32886    03SEP63    01AUG00    718/383-1549
 1401     TA3      38822    16DEC68    20NOV93    201/732-8787
 1499     ME3      43025    29APR62    10JUN95    201/812-5665
 1101     SCP      18723    09JUN80    04OCT98    212/586-8060
 1333     PT2      88606    02APR79    13FEB03    203/781-1777
 1402     TA2      32615    20JAN71    05DEC98    718/384-2849
 1479     TA3      38785    25DEC66    08OCT03    718/384-8816
 1403     ME1      28072    31JAN79    24DEC99    203/675-3434
 1739     PT1      66517    28DEC82    30JAN00    212/587-1247

Program: Creating an RTF Report
options pageno=1;

ods rtf file='your_file.rtf';

proc print data=empdata(obs=12);
   id idnumber;
   title 'Personnel Data';
run;

ods rtf close;

Program Description
The RTF output shows all data in one row. The ROWS= option is valid only for the 
LISTING destination.

1784 Chapter 48 / PRINT Procedure



options pageno=1;

Create output for Microsoft Word and specify the file to store the output in. 
The ODS RTF statement opens the RTF destination and creates output formatted 
for Microsoft Word. The FILE= argument specifies the external file that contains the 
RTF output. 

ods rtf file='your_file.rtf';

proc print data=empdata(obs=12);
   id idnumber;
   title 'Personnel Data';
run;

Close the RTF destination. The ODS RTF CLOSE statement closes the RTF 
destination. 

ods rtf close;

Output: RTF
Output 48.21 Layout for a Report with Many Variables: RTF Output

Example 9: Creating a Customized Layout with BY 
Groups and ID Variables
Features: PROC PRINT statement options

SUMLABEL
GRANDTOTAL_LABEL

BY statement

Example 9: Creating a Customized Layout with BY Groups and ID Variables 1785



ID statement
SUM statement
VAR statement
SORT procedure

Data set: EMPDATA

ODS 
destinations:

LISTING, HTML

Details
This customized report demonstrates the following tasks:

n selects variables to include in the report and the order in which they appear

n selects observations to include in the report

n groups the selected observations by JobCode

n sums the salaries for each job code and for all job codes

n displays numeric data with commas and dollar signs

Program: Creating a LISTING Report
options nodate pageno=1 linesize=64 pagesize=60;
proc sort data=empdata out=tempemp;
   by jobcode gender;
run;

proc print data=tempemp split='*' sumlabel='Total' 
grandtotal_label='Grand Total';

   id jobcode;
   by jobcode;
   var gender salary;

   sum salary;

   label jobcode='Job Code*========'
         gender='Gender*======'
         salary='Annual Salary*=============';

   format salary dollar11.2;
   where jobcode contains 'FA' or jobcode contains 'ME';
   title 'Salary Expenses';
run;

1786 Chapter 48 / PRINT Procedure



Program Description
Create and sort a temporary data set. PROC SORT creates a temporary data set 
in which the observations are sorted by JobCode and Gender.

options nodate pageno=1 linesize=64 pagesize=60;
proc sort data=empdata out=tempemp;
   by jobcode gender;
run;

Identify the character that starts a new line in column headings. SPLIT= 
identifies the asterisk as the character that starts a new line in column headings.

proc print data=tempemp split='*' sumlabel='Total' 
grandtotal_label='Grand Total';

Specify the variables to include in the report. The VAR statement and the ID 
statement together select the variables to include in the report. The ID statement 
and the BY statement produce the special format.

   id jobcode;
   by jobcode;
   var gender salary;

Calculate the total value for each BY group. The SUM statement totals the 
values of Salary for each BY group and for the whole report.

   sum salary;

Assign labels to the appropriate variables. The LABEL statement associates a 
label with each variable for the duration of the PROC PRINT step. When you use 
SPLIT= in the PROC PRINT statement, the procedure uses labels for column 
headings.

   label jobcode='Job Code*========'
         gender='Gender*======'
         salary='Annual Salary*=============';

Create formatted columns. The FORMAT statement assigns a format to Salary for 
this report. The WHERE statement selects for the report only the observations for 
job codes that contain the letters 'FA' or 'ME'. The TITLE statement specifies the 
report title.

   format salary dollar11.2;
   where jobcode contains 'FA' or jobcode contains 'ME';
   title 'Salary Expenses';
run;

Output: LISTING
The ID and BY statements work together to produce this layout. The ID variable is 
listed only once for each BY group. The BY lines are suppressed. Instead, the value 
of the ID variable, JobCode, identifies each BY group.

Example 9: Creating a Customized Layout with BY Groups and ID Variables 1787



Output 48.22 Creating a Customized Layout with BY Groups and ID Variables: LISTING 
Output

           Salary Expenses                        1

              Job Code      Gender    Annual Salary
              ========      ======    =============

             FA1              F         $23,177.00
                              F         $22,454.00
                              M         $22,268.00
             -----------              -------------
             Total                      $67,899.00

             FA2              F         $28,888.00
                              F         $27,787.00
                              M         $28,572.00
             -----------              -------------
             Total                      $85,247.00

             FA3              F         $32,886.00
                              F         $33,419.00
                              M         $32,217.00
             -----------              -------------
             Total                      $98,522.00

             ME1              M         $29,769.00
                              M         $28,072.00
                              M         $28,619.00
             -----------              -------------
             Total                      $86,460.00

             ME2              F         $35,108.00
                              F         $34,929.00
                              M         $35,345.00
                              M         $36,925.00
                              M         $35,090.00
                              M         $35,185.00
             -----------              -------------
             Total                     $212,582.00

             ME3              M         $43,025.00
             ===========              =============
             Grand Total               $593,735.00

Program: Creating an HTML Report
proc sort data=empdata out=tempemp;
   by jobcode gender;
run;

ods html file='your_file.html';

proc print data=tempemp (obs=10) sumlabel='Total' 
grandtotal_lable='Grand Total';

 id jobcode;

1788 Chapter 48 / PRINT Procedure



   by jobcode;
   var gender salary;

   sum salary;

   label jobcode='Job Code'
         gender='Gender'
         salary='Annual Salary';

   format salary dollar11.2;
   where jobcode contains 'FA' or jobcode contains 'ME';
   title 'Salary Expenses';
run;

Program Description
proc sort data=empdata out=tempemp;
   by jobcode gender;
run;

Produce HTML output and specify the file to store the output in. The HTML 
destination is the default ODS destination. The ODS HTML statement FILE= option 
specifies the external file that contains the HTML output. 

ods html file='your_file.html';

Define the procedure options. The (obs=10) data set option sets the number of 
observations to process. The SUMLABEL option indicates to use the label 'Total' on 
the summary line for each BY group. The GRANDTOTAL_LABEL option indicates to 
use the label 'Grand Total' on the grand total line after all BY groups in the report.

proc print data=tempemp (obs=10) sumlabel='Total' 
grandtotal_lable='Grand Total';

 id jobcode;
   by jobcode;
   var gender salary;

   sum salary;

   label jobcode='Job Code'
         gender='Gender'
         salary='Annual Salary';

   format salary dollar11.2;
   where jobcode contains 'FA' or jobcode contains 'ME';
   title 'Salary Expenses';
run;

Example 9: Creating a Customized Layout with BY Groups and ID Variables 1789



Output: HTML
Output 48.23 Creating a Customized Layout with BY Groups and ID Variables: Default 

HTML Output

Program: Creating an HTML Report with 
the STYLE Option

proc sort data=empdata out=tempemp;
   by jobcode gender;
run;

proc print data=tempemp (obs=10)sumlabel='Total' 
grandtotal_label='Grand Total' 

1790 Chapter 48 / PRINT Procedure



   style(HEADER)={fontstyle=italic}
   style(DATA)={backgroundcolor=blue foreground=white};

 id jobcode;
   by jobcode;
   var gender salary;

   sum salary  / style(total)={color=red};

   label jobcode='Job Code'
         gender='Gender'
         salary='Annual Salary';

   format salary dollar11.2;
   where jobcode contains 'FA' or jobcode contains 'ME';
   title 'Expenses Incurred for';
   title2 'Salaries for Flight Attendants and Mechanics';
run;

Program Description
proc sort data=empdata out=tempemp;
   by jobcode gender;
run;

Create stylized HTML output. The first STYLE option specifies that the font of the 
headers be changed to italic. The second STYLE option specifies that the 
background of cells that contain data be changed to blue and the foreground of 
these cells be changed to white. The SUMLABEL and GRANDTOTAL_LABEL 
options use a label in the summary and grand total lines, respectively, in place of 
variable names.

proc print data=tempemp (obs=10)sumlabel='Total' 
grandtotal_label='Grand Total' 
   style(HEADER)={fontstyle=italic}
   style(DATA)={backgroundcolor=blue foreground=white};

 id jobcode;
   by jobcode;
   var gender salary;

Create total values that are written in red. The STYLE option specifies that the 
color of the foreground of the cell that contain the totals be changed to red. 

   sum salary  / style(total)={color=red};

   label jobcode='Job Code'
         gender='Gender'
         salary='Annual Salary';

   format salary dollar11.2;
   where jobcode contains 'FA' or jobcode contains 'ME';
   title 'Expenses Incurred for';
   title2 'Salaries for Flight Attendants and Mechanics';
run;

Example 9: Creating a Customized Layout with BY Groups and ID Variables 1791



Output: HTML with Styles
Output 48.24 Creating a Customized Layout with BY Groups and ID Variables: HTML 

Output Using Styles

Example 10: Printing All the Data Sets in a SAS 
Library
Features: Macro facility

DATASETS procedure
PRINT procedure

1792 Chapter 48 / PRINT Procedure



Data sets: PROCLIB.DELAY and 
PROCLIB.INTERNAT from the Raw Data and DATA Steps appendix

ODS 
destination:

HTML

Details
This example prints all the data sets in a SAS library. You can use the same 
programming logic with any procedure. Just replace the PROC PRINT step near the 
end of the example with whatever procedure step you want to execute. The 
example uses the macro language. For details about the macro language, see SAS 
Macro Language: Reference.

Program: Printing All of the Data Sets in a 
Library

libname printlib 'SAS-data-library';
libname proclib 'SAS-data-library';
options nodate pageno=1;

proc datasets library=proclib memtype=data nolist;
   copy out=printlib;
      select delay internat;
run;

%macro printall(libname,worklib=work);

   %local num i;

   proc datasets library=&libname memtype=data nodetails;
      contents out=&worklib..temp1(keep=memname) data=_all_ noprint;
   run;

   data _null_;
      set &worklib..temp1 end=final;
      by memname notsorted;
      if last.memname;
      n+1;
      call symput('ds'||left(put(n,8.)),trim(memname));

      if final then call symput('num',put(n,8.));

   run;

   %do i=1 %to &num;
      proc print data=&libname..&&ds&i noobs;
         title "Data Set &libname..&&ds&i";
      run;
   %end;
%mend printall;

%printall(printlib)

Example 10: Printing All the Data Sets in a SAS Library 1793

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Program Description
libname printlib 'SAS-data-library';
libname proclib 'SAS-data-library';
options nodate pageno=1;

Copy the desired data sets from the WORK library to a permanent library. 
PROC DATASETS copies two data sets from the WORK library to the PRINTLIB 
library in order to limit the number of data sets available to the example.

proc datasets library=proclib memtype=data nolist;
   copy out=printlib;
      select delay internat;
run;

Create a macro and specify the parameters. The %MACRO statement creates 
the macro PRINTALL. When you call the macro, you can pass one or two 
parameters to it. The first parameter is the name of the library whose data set you 
want to print. The second parameter is a library used by the macro. If you do not 
specify this parameter, the WORK library is the default.

%macro printall(libname,worklib=work);

Create the local macro variables. The %LOCAL statement creates two local 
macro variables, NUM and I, to use in a loop.

   %local num i;

Produce an output data set. This PROC DATASETS step reads the library that 
you specify as a parameter when you invoke the macro. The CONTENTS statement 
produces an output data set called TEMP1 in WORKLIB. This data set contains an 
observation for each variable in each data set in the library LIBNAME. By default, 
each observation includes the name of the data set that the variable is included in 
as well as other information about the variable. However, the KEEP= data set option 
writes only the name of the data set to TEMP1.

   proc datasets library=&libname memtype=data nodetails;
      contents out=&worklib..temp1(keep=memname) data=_all_ noprint;
   run;

Specify the unique values in the data set, assign a macro variable to each one, 
and assign DATA step information to a macro variable. This DATA step 
increments the value of N each time it reads the last occurrence of a data set name 
(when IF LAST.MEMNAME is true). The CALL SYMPUT statement uses the current 
value of N to create a macro variable for each unique value of MEMNAME in the 
data set TEMP1. The TRIM function removes extra blanks in the TITLE statement in 
the PROC PRINT step that follows. 

   data _null_;
      set &worklib..temp1 end=final;
      by memname notsorted;
      if last.memname;
      n+1;
      call symput('ds'||left(put(n,8.)),trim(memname));

Determine the number of observations in the DATA step. When it reads the last 
observation in the data set (when FINAL is true), the DATA step assigns the value of 
N to the macro variable NUM. At this point in the program, the value of N is the 
number of observations in the data set.

      if final then call symput('num',put(n,8.));

1794 Chapter 48 / PRINT Procedure



Run the DATA step. The RUN statement is crucial. It forces the DATA step to run, 
thus creating the macro variables that are used in the CALL SYMPUT statements 
before the %DO loop, which uses them, executes.

   run;

Print the data sets and end the macro. The %DO loop issues a PROC PRINT 
step for each data set. The %MEND statement ends the macro.

   %do i=1 %to &num;
      proc print data=&libname..&&ds&i noobs;
         title "Data Set &libname..&&ds&i";
      run;
   %end;
%mend printall;

Print all the data sets in the PRINTLIB library. This invocation of the PRINTALL 
macro prints all the data sets in the library PRINTLIB.

%printall(printlib)

Output: HTML
Output 48.25 Data Set PRINTLIB.DELAY

Example 10: Printing All the Data Sets in a SAS Library 1795



Output 48.26 Data Set PRINTLIB.INTERNAT

1796 Chapter 48 / PRINT Procedure



Chapter 49
PRINTTO Procedure

Overview: PRINTTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1797
What Does the PRINTTO Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1797

Syntax: PRINTTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1798
PROC PRINTTO Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1798

Usage: PRINTTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1803
Set Page Numbers Using SAS System Options . . . . . . . . . . . . . . . . . . . . . . . . . 1803
Route SAS Log or Procedure Output Directly to a Printer . . . . . . . . . . . . . . . . . . 1804
PROC PRINTTO and the LISTING Destination . . . . . . . . . . . . . . . . . . . . . . . . . . 1804
Restore the Previous SAS Log or LISTING Output File Location . . . . . . . . . . . . 1804

Examples: PRINTTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1805
Example 1: Routing to External Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1805
Example 2: Routing to SAS Catalog Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1809
Example 3: Using Procedure Output as an Input File . . . . . . . . . . . . . . . . . . . . . 1813
Example 4: Routing to a Printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1818

Overview: PRINTTO Procedure

What Does the PRINTTO Procedure Do?
The PRINTTO procedure defines destinations, other than ODS destinations, for 
SAS procedure output and for the SAS log. By default, SAS procedure output and 
the SAS log are routed to the default procedure output file and the default SAS log 
file for your method of operation. The PRINTTO procedure does not define ODS 
destinations. See the following table for SAS log and procedure output default 
destinations.

You can store the SAS log or procedure output in an external file or in a SAS 
catalog entry. To write SAS output to a file or a catalog entry, the ODS LISTING 

1797



destination must be open. With additional programming, you can use SAS output as 
input data within the same job.

Table 49.1 Default Destinations for SAS Log and Procedure Output

Method of Running SAS
Default SAS Log 
Destination

Default Procedure 
Output Destination

Windowing environment LOG window Results Viewer window

Interactive line mode Display monitor (as 
statements are entered)

Display monitor (as each 
step executes)

Noninteractive mode or batch 
mode

Depends on the host 
operating system

Depends on the 
operating environment

Operating Environment Information: For information and examples specific to 
your operating system or environment, see the documentation for your operating 
environment.

Syntax: PRINTTO Procedure
See: “PRINTTO Procedure: UNIX” in SAS Companion for UNIX Environments

“PRINTTO Procedure: Windows” in SAS Companion for Windows
“PRINTTO Procedure Statement: z/OS” in SAS Companion for z/OS

PROC PRINTTO <options>;

Statement Task Example

PROC PRINTTO Define destinations, other than ODS 
destinations, for SAS procedure output and for 
the SAS log

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4

PROC PRINTTO Statement
Defines destinations, other than ODS destinations, for SAS procedure output and for the SAS log.

Restrictions: To route SAS log and procedure output directly to a printer, you must use a FILENAME 
statement with the PROC PRINTTO statement. See “Route SAS Log or Procedure 
Output Directly to a Printer” on page 1804 and “Example 4: Routing to a Printer” on page 
1818. 
The PRINTTO procedure does not define ODS destinations.

1798 Chapter 49 / PRINTTO Procedure

http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n17bp001b9i7scn0zvbx3jar94kb.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p1pztho7myptytn1cqnsjgs0k6b3.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n19ubkreex8wx1n1dsv0zly9z92q.htm&locale=en


When SAS is started in objectserver mode, the PRINTTO procedure does not route log 
messages to the log specified by the ALTLOG= system option.

Note: LOG=LOG and PRINT=PRINT route the log and procedure output to the default 
destinations. However, specifying LOG=PRINT or PRINT=LOG to route log or procedure 
output to the same default destination is not valid.

Tips: To reset the destination for the SAS log and procedure output to the default, use the 
PROC PRINTTO statement without options.
To route the SAS log and procedure output to the same file, specify the same file with 
both the LOG= and PRINT= options.

Examples: “Example 1: Routing to External Files” on page 1805
“Example 2: Routing to SAS Catalog Entries” on page 1809
“Example 3: Using Procedure Output as an Input File” on page 1813
“Example 4: Routing to a Printer” on page 1818

Syntax
PROC PRINTTO <options>;

Summary of Optional Arguments
LABEL='description'

provides a description for a SAS log or procedure output stored in a SAS 
catalog entry.

LOG=LOG | file-specification | SAS-catalog-entry
routes the SAS log to a permanent external file or SAS catalog entry.

NEW
replaces the file instead of appending to it.

PRINT= PRINT | file-specification | SAS-catalog-entry
routes procedure output to a permanent external file or SAS catalog entry 
or printer.

UNIT=nn
routes the output to the file identified by the fileref.

Without Arguments
When no options are specified, the PROC PRINTTO statement does the following:

n closes any files opened by a PROC PRINTTO statement

n points both the SAS log and SAS procedure output to their default destinations

n closes the LISTING destination

Interaction: To close the appropriate file and to return only the SAS log or procedure output 
to its default destination, use LOG=LOG or PRINT=PRINT.

Examples:
“Example 1: Routing to External Files” on page 1805
“Example 2: Routing to SAS Catalog Entries” on page 1809

PROC PRINTTO Statement 1799



Optional Arguments
LABEL='description'

provides a description for a catalog entry that contains a SAS log or procedure 
output.

Range 1–256 characters

Interaction Use the LABEL= option only when you specify a catalog entry as 
the value for the LOG= option or the PRINT= option.

Example “Example 2: Routing to SAS Catalog Entries” on page 1809

LOG=LOG | file-specification | SAS-catalog-entry
routes the SAS log to one of three locations: 

LOG
routes the SAS log to its default destination.

file-specification
routes the SAS log to an external file. file-specification can be one of the 
following:

'external-file'
the name of an external file specified in quotation marks.

Restriction external-file cannot be longer than 1024 characters.

log-filename
is an unquoted alphanumeric text string. SAS creates a log that uses log-
filename.log as the log filename.

Operating 
environment

For more information about log-filename, see the 
documentation for your operating environment.

fileref
a fileref previously assigned to an external file.

SAS-catalog-entry
routes the SAS log to a SAS catalog entry. By default, libref is SASUSER, 
catalog is PROFILE, and type is LOG. Express SAS-catalog-entry in one of 
the following ways:

libref.catalog.entry<.LOG>
a SAS catalog entry stored in the SAS library and SAS catalog specified.

catalog.entry<.LOG>
a SAS catalog entry stored in the specified SAS catalog in the default 
SAS library SASUSER.

entry.LOG
a SAS catalog entry stored in the default SAS library and catalog: 
SASUSER.PROFILE.

fileref
a fileref previously assigned to a SAS catalog entry. Search for 
"FILENAME, CATALOG Access Method" in the SAS online 
documentation.

Default LOG

1800 Chapter 49 / PRINTTO Procedure



Interactions The SAS log and procedure output cannot be routed to the same 
catalog entry at the same time.

The NEW option replaces the existing contents of a file with the 
new log. Otherwise, the new log is appended to the file.

To route the SAS log and procedure output to the same file, specify 
the same file with both the LOG= and PRINT= options.

When routing the log to a SAS catalog entry, you can use the 
LABEL option to provide a description for the entry in the catalog 
directory.

When the log is routed to a file other than the default log file and 
programs are submitted from multiple sources, the final SAS 
system messages that contain the real and CPU times are written 
to the default SAS log.

Tips After routing the log to an external file or a catalog entry, you can 
specify LOG to route the SAS log back to its default destination.

When routing the SAS log, include a RUN statement in the PROC 
PRINTTO statement. If you omit the RUN statement, the first line 
of the following DATA or PROC step is not routed to the new file. 
(This occurs because a statement does not execute until a step 
boundary is crossed.)

If you create a macro that contains a password and you do not 
want the password to appear in the SAS log, use the LOG=file-
specification option to redirect the log to an external file.

When you specify LOG=, SAS stores the path of the SAS log file in 
the &SYSPRINTTOLOG automatic macro variable. You can use 
this macro variable to restore the previous SAS log file location. 
For more information, see “Restore the Previous SAS Log or 
LISTING Output File Location” on page 1804.

Examples “Example 1: Routing to External Files” on page 1805

“Example 2: Routing to SAS Catalog Entries” on page 1809

“Example 3: Using Procedure Output as an Input File” on page 
1813

NEW
clears any information that exists in a file and prepares the file to receive the 
SAS log or procedure output.

Default If you omit NEW, the new information is appended to the existing 
file.

Interaction If you specify both LOG= and PRINT=, NEW applies to both.

Examples “Example 1: Routing to External Files” on page 1805

“Example 2: Routing to SAS Catalog Entries” on page 1809

“Example 3: Using Procedure Output as an Input File” on page 1813

PROC PRINTTO Statement 1801



PRINT= PRINT | file-specification | SAS-catalog-entry
routes procedure output to one of three locations: 

PRINT
routes procedure output to its default destination.

Tip After routing it to an external file or a catalog entry, you can specify 
PRINT to route subsequent procedure output to its default destination.

file-specification
routes procedure output to an external file. file-specification can be one of the 
following:

'external-file'
the name of an external file specified in quotation marks.

Restriction external-file cannot be longer than 1024 characters.

print-filename
is an unquoted alphanumeric text string. SAS creates a print file that uses 
print-filename as the print filename.

Operating Environment Information: For more information about using 
print-filename, see the documentation for your operating environment.

fileref
a fileref previously assigned to an external file.

Operating Environment Information: For additional information about file-
specification for the PRINT option, see the documentation for your operating 
environment.

SAS-catalog-entry
routes procedure output to a SAS catalog entry. By default, libref is 
SASUSER, catalog is PROFILE, and type is OUTPUT. Express SAS-catalog-
entry in one of the following ways:

libref.catalog.entry<.OUTPUT>
a SAS catalog entry stored in the SAS library and SAS catalog specified.

catalog.entry<.OUTPUT>
a SAS catalog entry stored in the specified SAS catalog in the default 
SAS library SASUSER.

entry.OUTPUT
a SAS catalog entry stored in the default SAS library and catalog: 
SASUSER.PROFILE.

fileref
a fileref previously assigned to a SAS catalog entry. Search for 
"FILENAME, CATALOG Access Method" in the SAS online 
documentation.

Alias FILE=, NAME=

Default PRINT

Interactions When you specify PRINT, FILE=, or NAME=, and the LISTING 
destination is not open, the PRINTTO procedure opens the 
LISTING destination for the duration of routing the procedure 
output. If the LISTING destination was open before PRINT, FILE=, 

1802 Chapter 49 / PRINTTO Procedure



or NAME= was specified, it remains open after the output has 
been routed to its destination.

The procedure output and the SAS log cannot be routed to the 
same catalog entry at the same time.

The NEW option replaces the existing contents of a file with the 
new procedure output. If you omit NEW, the new output is 
appended to the file.

To route the SAS log and procedure output to the same file, specify 
the same file with both the LOG= and PRINT= options.

When routing procedure output to a SAS catalog entry, you can 
use the LABEL option to provide a description for the entry in the 
catalog directory.

Tip When you specify PRINT=, SAS stores the path of the LISTING 
output file in the &SYSPRINTTOLIST automatic macro variable. 
You can use this macro variable to restore the previous LISTING 
output file location. For more information, see “Restore the 
Previous SAS Log or LISTING Output File Location” on page 1804.

Example “Example 3: Using Procedure Output as an Input File” on page 
1813

UNIT=nn
routes the output to the file identified by the fileref FTnnF001, where nn is an 
integer between 1 and 99.

Range 1–99, integer only.

Tips You can define this fileref yourself. However, some operating systems 
predefine certain filerefs in this form.

When you specify UNIT=, SAS stores the path of the LISTING output 
file in the &SYSPRINTTOLIST automatic macro variable. You can use 
this macro variable to restore the previous LISTING output file location. 
For more information, see “Restore the Previous SAS Log or LISTING 
Output File Location” on page 1804.

Usage: PRINTTO Procedure

Set Page Numbers Using SAS System Options
When the NUMBER SAS system option is in effect, there is a single page-
numbering sequence for all output in the current job or session. When NONUMBER 
is in effect, output pages are not numbered.

Usage: PRINTTO Procedure 1803



You can specify the beginning page number for the output that you are currently 
producing by using the PAGENO= in an OPTIONS statement.

Route SAS Log or Procedure Output Directly to a 
Printer

To route SAS log or procedure output directly to a printer, use a FILENAME 
statement to associate a fileref with the printer name, and then use that fileref in the 
LOG= or PRINT= option. For an example, see “Example 4: Routing to a Printer” on 
page 1818.

For more information, see “FILENAME” in SAS Global Statements: Reference.

Operating Environment Information: For examples of printer names, see the 
documentation for your operating system.

The PRINTTO procedure does not support the COLORPRINTING system option. If 
you route the SAS log or procedure output to a color printer, the output does not 
print in color.

PROC PRINTTO and the LISTING Destination
The LISTING destination must be opened to route procedure output to an external 
file. When you specify the PRINT= option, SAS opens the LISTING destination if it 
is not already open. After the procedure output has been routed to the external file, 
SAS closes the LISTING destination. The LISTING destination is also closed if it is 
opened when you use proc printto; to reset the output destinations. SAS does 
not open the LISTING destination when you specify the LOG= option.

If the LISTING destination is open before the PROC PRINTTO PRINT= option 
executes, it remains open after the output is routed to the external file.

Restore the Previous SAS Log or LISTING Output 
File Location

When you specify the LOG=, PRINT=, or the UNIT= options in the PROC PRINTTO 
statement, SAS stores the appropriate file location in automatic macro variables:

SYSPRINTTOLOG contains the path of the SAS log file location prior to 
redirection by the PRINTTO procedure

SYSPRINTTOLIST contains the path of the LISTING output file location prior 
to redirection by the PRINTTO procedure

To restore the previous file locations, you specify the appropriate automatic macro 
variable as the value of the LOG=, PRINT=, or UNIT= options. Here are some 
examples:

1804 Chapter 49 / PRINTTO Procedure

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en


/* Restore the previous log and the listing file locations. */
proc printto log=&sysprinttolog print=&sysprinttolist;
   run;

/* Restore the previous listing file location. */
proc printto unit=&sysprinttolist;
   run;

Examples: PRINTTO Procedure

Example 1: Routing to External Files
Features: PRINTTO statement without options

PRINTTO statement options
LOG=
NEW
PRINT=

Details
This example uses PROC PRINTTO to route the log and procedure output to an 
external file and then reset both destinations to the default.

Program
options nodate pageno=1 linesize=80 pagesize=60 source;

proc printto log='log-file';
   run;

data numbers;
   input x y z;
   datalines;
 14.2   25.2   96.8
 10.8   51.6   96.8
  9.5   34.2  138.2
  8.8   27.6   83.2
 11.5   49.4  287.0
  6.3   42.0  170.7
;

Example 1: Routing to External Files 1805



proc printto print='output-file'
new;
run;

proc print data=numbers;
   title 'Listing of NUMBERS Data Set';
run;

proc printto;
run;

Program Description

Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page. The SOURCE option writes lines of source code to the 
default destination for the SAS log. 

options nodate pageno=1 linesize=80 pagesize=60 source;

Route the SAS log to an external file. PROC PRINTTO uses the LOG= option to 
route the SAS log to an external file. By default, this log is appended to the current 
contents of log-file.

proc printto log='log-file';
   run;

Create the NUMBERS data set. The DATA step uses list input to create the 
NUMBERS data set.

data numbers;
   input x y z;
   datalines;
 14.2   25.2   96.8
 10.8   51.6   96.8
  9.5   34.2  138.2
  8.8   27.6   83.2
 11.5   49.4  287.0
  6.3   42.0  170.7
;

Route the procedure output to an external file. PROC PRINTTO routes output to 
an external file. Because the LISTING destination must be open in order to route 
SAS output to an external file, SAS opens the LISTING destination if it is not already 
open. You do not need to include the ODS LISTING statement. Because NEW is 
specified, any output written to output-file will overwrite the file's current contents. If 
SAS opened the LISTING destination to process the PROC PRINTTO output, SAS 
closes the LISTING destination after the output is written to output-file. 

proc printto print='output-file'
new;
run;

Print the NUMBERS data set. The PROC PRINT output is written to the specified 
external file. 

proc print data=numbers;
   title 'Listing of NUMBERS Data Set';

1806 Chapter 49 / PRINTTO Procedure



run;

Reset the SAS log and procedure output destinations to default. PROC 
PRINTTO routes subsequent logs and procedure output to their default destinations 
and closes both of the current files. 

proc printto;
run;

Log
Example Code 49.1 Portion of Log Routed to the Default Destination

01   options nodate pageno=1 linesize=80 pagesize=60 source;
02
03   proc printto log='c:\em\log1.log';
04   run;

NOTE: PROCEDURE PRINTTO used (Total process time):
      real time           0.01 seconds
      cpu time            0.00 seconds

Example 1: Routing to External Files 1807



Example Code 49.2 Portion of Log Routed to an External File

NOTE: PROCEDURE PRINTTO used (Total process time):
      real time           0.00 seconds
      cpu time            0.00 seconds
      

5    
6    data numbers;
7       input x y z;
8       datalines;

NOTE: The data set WORK.NUMBERS has 6 observations and 3 variables.
NOTE: DATA statement used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds
      

15   ;
16   
17   proc printto print='print1.out' new;
18   run;

NOTE: Writing HTML Body file: sashtml.htm
NOTE: PROCEDURE PRINTTO used (Total process time):
      real time           4.04 seconds
      cpu time            0.62 seconds
      

19   
20   proc print data=numbers;
21      title 'Listing of NUMBERS Data Set';
22   run;

NOTE: There were 6 observations read from the data set WORK.NUMBERS.
NOTE: PROCEDURE PRINT used (Total process time):
      real time           0.56 seconds
      cpu time            0.09 seconds
      

23   
24   proc printto;
25   run;

1808 Chapter 49 / PRINTTO Procedure



Output
Output 49.1 Procedure Output Routed to an External File

Example 2: Routing to SAS Catalog Entries
Features: PRINTTO statement without options

PRINTTO statement options
LABEL=
LOG=
NEW
PRINT=

Details
This example uses PROC PRINTTO to route the SAS log and procedure output to a 
SAS catalog entry and then to reset both destinations to the default.

Example 2: Routing to SAS Catalog Entries 1809



Program
options source;

libname lib1 'SAS-library';

proc printto log=test.log label='Inventory program' new;
run;

data lib1.inventry;
   length Dept $ 4 Item $ 6 Season $ 6 Year 4;
   input dept item season year @@;
   datalines;
3070 20410  spring 2011 3070 20411  spring 2012
3070 20412  spring 2012 3070 20413  spring 2012
3070 20414  spring 2011 3070 20416  spring 2009
3071 20500  spring 2011 3071 20501  spring 2009
3071 20502  spring 2011 3071 20503  spring 2011
3071 20505  spring 2010 3071 20506  spring 2009
3071 20507  spring 2009 3071 20424  spring 2011
;

proc printto print=lib1.cat1.inventry.output
             label='Inventory program' new;
run;

proc report data=lib1.inventry nowindows headskip;
   column dept item season year;
   title 'Current Inventory Listing';
run;

proc printto;
run;

Program Description

Set the SAS system options. The SOURCE option specifies to write source 
statements to the SAS log.

options source;

Assign a libref. 

libname lib1 'SAS-library';

Route the SAS log to a SAS catalog entry. PROC PRINTTO routes the SAS log 
to a SAS catalog entry named SASUSER.PROFILE.TEST.LOG. The PRINTTO 
procedure uses the default libref and catalog SASUSER.PROFILE because only the 
entry name and type are specified. LABEL= assigns a description for the catalog 
entry. 

proc printto log=test.log label='Inventory program' new;
run;

Create the LIB1.INVENTORY data set. The DATA step creates a permanent SAS 
data set.

data lib1.inventry;

1810 Chapter 49 / PRINTTO Procedure



   length Dept $ 4 Item $ 6 Season $ 6 Year 4;
   input dept item season year @@;
   datalines;
3070 20410  spring 2011 3070 20411  spring 2012
3070 20412  spring 2012 3070 20413  spring 2012
3070 20414  spring 2011 3070 20416  spring 2009
3071 20500  spring 2011 3071 20501  spring 2009
3071 20502  spring 2011 3071 20503  spring 2011
3071 20505  spring 2010 3071 20506  spring 2009
3071 20507  spring 2009 3071 20424  spring 2011
;

Route the procedure output to a SAS catalog entry. PROC PRINTTO routes 
opens the LISTING destination in order to route the procedure output from the 
subsequent PROC REPORT step to the SAS catalog entry 
LIB1.CAT1.INVENTRY.OUTPUT. LABEL= assigns a description for the catalog 
entry. After the procedure output is routed to the SAS catalog, PROC PRINTTO 
closes the LISTING destination.

proc printto print=lib1.cat1.inventry.output
             label='Inventory program' new;
run;

proc report data=lib1.inventry nowindows headskip;
   column dept item season year;
   title 'Current Inventory Listing';
run;

Reset the SAS log and procedure output back to the default and close the file. 
PROC PRINTTO closes the current files that were opened by the previous PROC 
PRINTTO step and reroutes subsequent SAS logs and procedure output to their 
default destinations.

proc printto;
run;

Log
To view this log using SAS Explorer, select Sasuser ð Profile. Double-click Test. 
The log opens in NOTEPAD.

Example 2: Routing to SAS Catalog Entries 1811



Example Code 49.3 SAS Log Routed to SAS Catalog Entry 
SASUSER.PROFILE.TEST.LOG.

NOTE: PROCEDURE PRINTTO used (Total process time):                        
      real time           0.00 seconds                                         
      cpu time            0.00 seconds                                         
                                                                               
                                                                               
49                                                                             
50   data lib1.inventry;                                                       
51      length Dept $ 4 Item $ 6 Season $ 6 Year 4;                            
52      input dept item season year @@;                                        
53      datalines;                                                             
                                                                               
NOTE: SAS went to a new line when INPUT statement reached past the end of a    
      line.                                                                    
NOTE: The data set LIB1.INVENTRY has 14 observations and 4 variables.          
NOTE: DATA statement used (Total process time):                                
      real time           0.03 seconds                                         
      cpu time            0.00 seconds                                         
                                                                               
                                                                               
61   ;                                                                         
62   ods listing;                                                              
63   proc printto print=lib1.cat1.inventry.output                              
64                label='Inventory program' new;                               
65   run;                                                                      
                                                                               
NOTE: PROCEDURE PRINTTO used (Total process time):                             
      real time           0.00 seconds                                         
      cpu time            0.00 seconds                                         
                                                                               
                                                                               
66                                                                             
67   proc report data=lib1.inventry nowindows headskip;                        
68      column dept item season year;                                          
69      title 'Current Inventory Listing';                                     
70   run;                                                                      
                                                                               
NOTE: There were 14 observations read from the data set LIB1.INVENTRY.         
NOTE: PROCEDURE REPORT used (Total process time):                              
      real time           0.09 seconds                                         
      cpu time            0.04 seconds                                         
                                                                               
                                                                               
71                                                                             
72   proc printto;                                                             
73   run;          
NOTE: PROCEDURE PRINTTO used (Total process time):
      real time           0.00 seconds
      cpu time            0.00 seconds

74   ods listing close;

Output
To view this log using SAS Explorer, select Lib1 ð Cat1. Double-click Inventry. The 
output opens in NOTEPAD.

1812 Chapter 49 / PRINTTO Procedure



Output 49.2 Procedure Output Routed to SAS Catalog Entry 
LIB1.CAT1.INVENTRY.OUTPUT.

Example 3: Using Procedure Output as an Input 
File
Features: PRINTTO statement without options

PRINTTO statement options
LOG=
NEW
PRINT=

Details
This example uses PROC PRINTTO to route procedure output to an external file 
and then uses that file as input to a DATA step.

Program
   data test;
      do n=1 to 1000;
         x=int(ranuni(77777)*7);
         y=int(ranuni(77777)*5);

Example 3: Using Procedure Output as an Input File 1813



         output;
      end;
   run;

filename routed 'output-filename';

proc printto print=routed new;
   run;

   proc freq data=test;
      tables x*y / chisq;
   run;

   proc printto print=print;
   run;

   data probtest;
      infile routed;
      input word1 $ @;
      if word1='Chi-Squa' then
         do;
            input df chisq prob;
            keep chisq prob;
            output;
         end;
   run;

   proc print data=probtest;
      title 'Chi-Square Analysis for Table of X by Y';
   run;

Program Description

Generate random values for the variables. The DATA step uses the RANUNI 
function to randomly generate values for the variables X and Y in the data set A.

   data test;
      do n=1 to 1000;
         x=int(ranuni(77777)*7);
         y=int(ranuni(77777)*5);
         output;
      end;
   run;

Assign a fileref and route procedure output to the file that is referenced. The 
FILENAME statement assigns a fileref to an external file. PROC PRINTTO routes 
subsequent procedure output to the file that is referenced by the fileref ROUTED. 
PROC PRINTTO opens the LISTING destination for the duration of routing the 
procedure option. See PROC FREQ Output Routed to the External File Referenced 
as ROUTED below.

filename routed 'output-filename';

proc printto print=routed new;
   run;

Produce the frequency counts. PROC FREQ computes frequency counts and a 
chi-square analysis of the variables X and Y in the data set TEST. This output is 
routed to the file that is referenced as ROUTED.

1814 Chapter 49 / PRINTTO Procedure



   proc freq data=test;
      tables x*y / chisq;
   run;

Close the file. You must use another PROC PRINTTO to close the file that is 
referenced by fileref ROUTED so that the following DATA step can read it. The step 
also routes subsequent procedure output to the default destination. PRINT= causes 
the step to affect only procedure output, not the SAS log.

   proc printto print=print;
   run;

Create the data set PROBTEST. The DATA step uses ROUTED, the file containing 
PROC FREQ output, as an input file and creates the data set PROBTEST. This 
DATA step reads all records in ROUTED but creates an observation only from a 
record that begins with Chi-Squa.

   data probtest;
      infile routed;
      input word1 $ @;
      if word1='Chi-Squa' then
         do;
            input df chisq prob;
            keep chisq prob;
            output;
         end;
   run;

Print the PROBTEST data set. PROC PRINT produces a simple listing of data set 
PROBTEST. This output is routed to the default destination. See PROC PRINT 
Output of Data Set PROBTEST, Routed to Default Destination in the Output section.

   proc print data=probtest;
      title 'Chi-Square Analysis for Table of X by Y';
   run;

Example 3: Using Procedure Output as an Input File 1815



Output
Output 49.3 PROC FREQ Output Routed to the External File Referenced as ROUTED

1816 Chapter 49 / PRINTTO Procedure



Example 3: Using Procedure Output as an Input File 1817



Output 49.4 PROC PRINT Output of Data Set PROBTEST, Routed to the Default 
Destination

Example 4: Routing to a Printer
Features: PRINTTO statement option

PRINT=

Details
This example uses PROC PRINTTO to route procedure output directly to a printer.

1818 Chapter 49 / PRINTTO Procedure



Program
options nodate pageno=1 linesize=80 pagesize=60;

filename your_fileref printer
'printer-name';

proc printto print=your_fileref;
run;

Program Description

Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Associate a fileref with the printer name. The FILENAME statement associates a 
fileref with the printer name that you specify. If you want to associate a fileref with 
the default printer, omit 'printer-name'. 

filename your_fileref printer
'printer-name';

Specify the file to route to the printer. The PRINT= option specifies the file that 
PROC PRINTTO routes to the printer.

proc printto print=your_fileref;
run;

Example 4: Routing to a Printer 1819



1820 Chapter 49 / PRINTTO Procedure



Chapter 50
PRODUCT_STATUS Procedure

Overview: PRODUCT_STATUS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1821
What Does the PRODUCT_STATUS Procedure Do? . . . . . . . . . . . . . . . . . . . . . 1821
Special Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1821

Syntax: PRODUCT_STATUS Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1822
PROC PRODUCT_STATUS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1822

Example: Results from PROC PRODUCT_STATUS . . . . . . . . . . . . . . . . . . . . . . . 1823

Overview: PRODUCT_STATUS 
Procedure

What Does the PRODUCT_STATUS Procedure 
Do?

PROC PRODUCT_STATUS returns a list of the SAS Foundation products that are 
installed on your system, along with the version numbers of those products. It 
provides a quick method to determine whether a SAS product is available for your 
use. The results from PROC PRODUCT_STATUS are returned to the SAS log.

Special Considerations
PROC PRODUCT_STATUS does not return information about web applications or 
other Java-based products.

1821



If your site has installed a SAS Metadata Server, then you should use the SAS 
ViewRegistry utility instead of PROC PRODUCT_STATUS.

The SYSVLONG and SYSVLONG4 automatic macro variables return only the 
version information for the SAS host image that is installed at your site. They do not 
return information for all of the SAS Foundation products that are installed at your 
site. For more information, see “SYSVLONG” in SAS Macro Language: Reference 
and “SYSVLONG4” in SAS Macro Language: Reference.

Syntax: PRODUCT_STATUS Procedure
PROC PRODUCT_STATUS;

Statement Task

“Example: Results from 
PROC 
PRODUCT_STATUS”

Specify the names and versions of the SAS Foundation 
products that are installed on your operating system.

PROC PRODUCT_STATUS Statement
Returns the names and versions of the SAS Foundation products that are installed on your operating 
system.

Restriction: PROC PRODUCT_STATUS is deprecated for SAS Viya 3.5 and will not be available in 
future SAS Viya releases. PROC PRODUCT_STATUS is available to SAS 9.4 users.

Syntax
PROC PRODUCT_STATUS;

Details
The PROC PRODUCT STATUS statement does not have any arguments.

1822 Chapter 50 / PRODUCT_STATUS Procedure

http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=p1ndaux74luob2n1pqhyy0wsg2rk.htm&locale=en
http://documentation.sas.com/?docsetId=mcrolref&docsetVersion=9.4&docsetTarget=n0nbobryhqzxnjn1fzif11t7u6gp.htm&locale=en


Example: Results from PROC 
PRODUCT_STATUS

proc product_status;
run;

Here is a partial output that contains an example of the results that are produced by 
PROC PRODUCT_STATUS.

For Base SAS Software ...
   Custom version information: 9.4_M3
   Image version information: 9.04.01M3D041815
For SAS/STAT ...
   Custom version information: 14.1
For SAS/GRAPH ...
   Custom version information: 9.4_M3
For SAS/ETS ...
   Custom version information: 14.1
For SAS/FSP ...
   Custom version information: 9.4_M3
For SAS/OR ...
   Custom version information: 14.1
For SAS/AF ...
   Custom version information: 9.4_M3
For SAS/IML ...
   Custom version information: 14.1
For SAS/QC ...
   Custom version information: 14.1
For SAS/ASSIST ...
   Custom version information: 9.4
For SAS/CONNECT ...
   Custom version information: 9.4_M3
For SAS/TOOLKIT ...
   Custom version information: 9.4
For SAS/GIS ...
   Custom version information: 9.4_M3
For SAS Table Server ...
   Custom version information: 9.4
For SAS/ACCESS Interface to Netezza ...
   Custom version information: 9.4_M3

Example: Results from PROC PRODUCT_STATUS 1823



1824 Chapter 50 / PRODUCT_STATUS Procedure



Chapter 51
PROTO Procedure

Overview: PROTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1825
What Does the PROTO Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1826

Concepts: PROTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1826
Registering Function Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1826
Supported C Return Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1826
Supported C Argument Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1827
C Structures in SAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1828

Syntax: PROTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1833
PROC PROTO Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1834
LINK Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1835
MAPMISS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1837
FUNCTION-PROTOTYPE-N Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1838

Usage: PROTO Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1839
Basic C Language Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1839
Working with Character Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1840
Working with Numeric Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1840
Working with Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1840
Function Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1841
Interfacing with External C Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1841
Scope of Packages in PROC PROTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1844
C Helper Functions and CALL Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1846

Example: Splitter Function Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1849

1825



Overview: PROTO Procedure

What Does the PROTO Procedure Do?
The PROTO procedure enables you to register, in batch mode, external functions 
that are written in the C or C++ programming languages. You can use these 
functions in SAS as well as in C-language structures and types. After the C-
language functions are registered in PROC PROTO, they can be called from any 
SAS function or subroutine that is declared in the FCMP procedure.

Concepts: PROTO Procedure

Registering Function Prototypes
Function prototypes are registered (declared) in the PROTO procedure. For more 
information, see “FUNCTION-PROTOTYPE-N Statement” on page 1838.

Supported C Return Types
The following C return types are supported in the PROTO procedure.

Table 51.1 Supported C Return Types

Function Prototype SAS Variable Type C Variable Type

short numeric short, short *, short **

short * numeric, array short, short *, short **

int numeric int, int *, int **

int * numeric, array int, int *, int **

1826 Chapter 51 / PROTO Procedure



Function Prototype SAS Variable Type C Variable Type

long numeric long, long *, long **

long * numeric, array long, long *, long **

double numeric double, double *, double **

double * numeric, array double, double *, double **

char * character char *, char **

struct * struct struct *, struct **

void void

Supported C Argument Types
The following C argument types are supported in the PROTO procedure.

Table 51.2 Supported C Argument Types

Function Prototype SAS Variable Type C Variable Type

short numeric short, short *, short **

short * numeric, array short, short *, short **

short ** array short *, short **

int numeric int, int *, int **

int * numeric, array int, int *, int **

int ** array int *, int **

long numeric long, long *, long **

long * numeric, array long, long *, long **

long ** array long *, long **

double numeric double, double *, double **

double * numeric, array double, double *, double **

Concepts: PROTO Procedure 1827



Function Prototype SAS Variable Type C Variable Type

double ** array double *, double **

char * character char *, char **

char ** character char *, char **

struct * structure struct *, struct **

struct ** structure struct *, struct **

C Structures in SAS

Basic Concepts
Many C language libraries contain functions that have structure pointers as 
arguments. In SAS, structures can be defined only in PROC PROTO. After being 
defined, they can be declared and instantiated within many PROC PROTO 
compatible procedures, such as PROC COMPILE.

A C structure is a template that is applied to a contiguous piece of memory. Each 
entry in the template is given a name and a type. The type of each element 
determines the number of bytes that are associated with each entry and how each 
entry is to be used. Because of various alignment rules and base type sizes, SAS 
relies on the current machine compiler to determine the location of each entry in the 
memory of the structure.

Declaring and Referencing Structures in 
SAS
The syntax of a structure declaration in SAS is the same as for C non-pointer 
structure declarations. A structure declaration has the following form:

struct structure_name structure_instance;

Each structure is set to zero values at declaration time. The structure retains the 
value from the previous pass through the data to start the next pass.

Structure elements are referenced by using the static period (.) notation of C. There 
is no pointer syntax for SAS. If a structure points to another structure, the only way 
to reference the structure that is pointed to is by assigning the pointer to a declared 
structure of the same type. You use that declared structure to access the elements.

1828 Chapter 51 / PROTO Procedure



If a structure entry is a short, int, or long type, and it is referenced in an expression, 
it is first cast to a double type and then used in the calculations. If a structure entry 
is a pointer to a base type, then the pointer is dereferenced and the value is 
returned. If the pointer is null, then a missing value is returned. The missing value 
assignments that are made in the PROC PROTO code are used when conversions 
fail or when missing values are assigned to non-double structure entities.

The length of arrays must be known to SAS so that an array entry in a structure can 
be used in the same way as an array in SAS, as long as its dimension is declared in 
the structure. This requirement includes arrays of short, int, and long types. If the 
entry is actually a pointer to an array of a double type, then the array elements can 
be accessed by assigning that pointer to a SAS array. Pointers to arrays of other 
types cannot be accessed by using the array syntax.

Structure Example
proc proto package =
sasuser.mylib.struct
   label = "package of structures";

   #define MAX_IN 20;

   typedef char * ptr;
   struct foo {
      double hi;
      int mid;
      ptr buf1;
      long * low;
      struct {
         short ans[MAX_IN + 1];
         struct {     /* inner */
            int inner;
         } n2;
         short outer;
      } n;
   };

   typedef struct foo *str;

   struct foo2 {
      str tom;
   };

   str get_record(char *name, int userid);
run;

proc fcmp library = sasuser.mylib;
   struct foo result;
   result = get_record("Mary", 32);
   put result=;
run;

Concepts: PROTO Procedure 1829



Enumerations in SAS
Enumerations are mnemonics for integer numbers. Enumerations enable you to set 
a literal name as a specific number and aid in the readability and supportability of C 
programs. Enumerations are used in C language libraries to simplify the return 
codes. After a C program is compiled, you can no longer access enumeration 
names.

Enumerated Types Example
The following example shows how to set up two enumerated value types in PROC 
PROTO: YesNoMaybeType, and Tens. Both are referenced in the structure 
ESTRUCTURE:

proc proto package=sasuser.mylib.str2
   label="package of structures";

   #define E_ROW 52;
   #define L_ROW 124;
   #define S_ROW 15;

   typedef double ExerciseArray[S_ROW][2];
   typedef double LadderArray[L_ROW];
   typedef double SamplingArray[S_Row];

   typedef enum
   {
      True, False, Maybe
   }  YesNoMaybeType;

   typedef enum {
      Ten=10, Twenty=20, Thirty=30, Forty=40, Fifty=50
      } Tens;

   typedef struct {
      short           rows;
      short           cols;
      YesNoMaybeType  type;
      Tens            dollar;
      ExerciseArray   dates;
    } EStructure;
run;

The following PROC FCMP example shows how to access these enumerated types. 
In this example, the enumerated values that are set up in PROC PROTO are 
implemented in SAS as macro variables. Therefore, they must be accessed using 
the & symbol:

proc fcmp library=sasuser.mylib;
   struct EStructure mystruct;

1830 Chapter 51 / PROTO Procedure



   mystruct.type=&True;
   mystruct.dollar=&Twenty;
run;

C-Source Code in SAS
You can use PROC PROTO in a limited way to compile external C functions. The C 
source code can be specified in PROC PROTO in the following way:

C-function-prototype;
externc function-name;
   ... C-source-statements ...
externcend;

The function name tells PROC PROTO which function's source code is specified 
between the EXTERNC and EXTERNCEND statements. When PROC PROTO 
compiles source code, it includes any structure definitions and C function prototypes 
that are currently declared. However, typedef and #define are not included.

This functionality is provided to enable the creation of simple “helper” functions that 
facilitate the interface to preexisting external C libraries. Any valid C statement is 
permitted except for the #include statement. Only a limited subset of the C-stdlib 
functions is available. However, you can call any other C function that is already 
declared within the current PROC PROTO step.

The following C-stdlib functions are supported:

Table 51.3 Supported stdlib Functions

Function Description

double sin(double x) returns the sine of x (radians)

double cos(double x) returns the cosine of x (radians)

double tan(double x) returns the tangent of x (radians)

double asin(double x) returns the arcsine of x (-pi/2 to pi/2 radians)

double acos(double x) returns the arccosine of x (0 to pi radians)

double atan(double x) returns the arctangent of x (-pi/2 to pi/2 
radians)

double atan2(double x, double y) returns the arctangent of y/x (-pi to pi radians)

double sinh(double x) returns the hyperbolic sine of x (radians)

double cosh(double x) returns the hyperbolic cosine of x (radians)

double tanh(double x) returns the hyperbolic tangent of x (radians)

Concepts: PROTO Procedure 1831



Function Description

double exp(double x) returns the exponential value of x

double log(double x) returns the logarithm of x

double log2(double x) returns the logarithm of x base-2

double log10(double x) returns the logarithm of x base-10

double pow(double x, double y) returns x raised to the y power of x**y

double sqrt(double x) returns the square root of x

double ceil(double x) returns the smallest integer not less than x

double fmod(double x, double y) returns the remainder of (x/y)

double floor(double x) returns the largest integer not greater than x

int abs(int x) returns the absolute value of x

double fabs(double) returns the absolute value of x

int min(int x, int y) returns the minimum of x and y

double fmin(double x, double y) returns the minimum of x and y

int max(int x, int y) returns the maximum of x and y

double fmax(double x, double y) returns the maximum of x and y

char* malloc(int x) allocates memory of size x

void free(char*) frees memory allocated with malloc

The following example shows a simple C function written directly in PROC PROTO:

proc proto
package=sasuser.mylib.foo;
   struct mystruct {
      short a;
      long b;
   };
   int fillMyStruct(short a, short b,
struct mystruct * s);
   externc  fillMyStruct;
      int fillMyStruct(short a, short b,
struct mystruct * s) {
         s ->a = a;
         s ->b = b;
         return(0);

1832 Chapter 51 / PROTO Procedure



      }
   externcend;
run;

Limitations for C Language Specifications
The limitations for the C language specifications in the PROTO procedure are as 
follows:

n #define statements must be followed by a semicolon (;) and must be numeric in 
value.

n The #define statement functionality is limited to simple replacement and 
unnested expressions. The only symbols that are affected are array dimension 
references.

n The C preprocessor statements #include and #if are not supported. The SAS 
macro %INC can be used in place of #include.

n A maximum of two levels of indirection are allowed for structure elements. 
Elements like "double ***" are not allowed. If these element types are needed in 
the structure, but are not accessed in SAS, you can use placeholders.

n The float type is not supported.

n Unsigned is the only type specifier that is currently supported.

n A specified bit size for structure variables is not supported.

n Function pointers and definitions of function pointers are not supported.

n The union type is not supported. However, if you plan to use only one element of 
the union, you can declare the variable for the union as the type for that element.

n All non-pointer references to other structures must be defined before they are 
used.

n You cannot use the ENUM key word in a structure. In order to specify ENUM in a 
structure, use the TYPEDEF key word.

n Structure elements with the same alphanumeric name but with different cases 
(for example, ALPHA, Alpha, and alpha) are not supported. SAS is not case-
sensitive. Therefore, all structure elements must be unique when compared in a 
case-insensitive program.

Syntax: PROTO Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

PROC PROTO PACKAGE=entry <options>;
MAPMISS type1=value1 type2=value2 ...;
LINK load-module <NOUNLOAD>;
function–prototype–1 <function-prototype-n …;>

Syntax: PROTO Procedure 1833



Statement Task Example

PROC PROTO Register, in batch mode, external functions that 
are written in the C or C++ programming 
languages

Ex. 1

LINK Specify the name, path, and load module that 
contains your functions

MAPMISS Specify alternative values, by type, to pass to 
functions if values are missing

FUNCTION-
PROTOTYPE-N

Registers function prototypes in the PROTO 
procedure.

PROC PROTO Statement
Register, in batch mode, external functions that are written in the C or C++ programming languages.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Example: “Example: Splitter Function Example” on page 0

Syntax
PROC PROTO PACKAGE=entry <options>;

Summary of Optional Arguments
ENCRYPT
HIDE

for XML databases only, enables the code to be encoded within a data 
set.

LABEL=package-label
specifies a text string to describe or label a package.

NOSIGNALS
specifies that none of the functions in a package will produce exceptions.

STDCALL
for Windows PC platforms only, indicates that functions be called using 
the "_ stdcall" convention.

STRUCTPACKn
PACKn

for 32 bit Windows PC platforms or Power Architecture platform running 
on Linux only, specifies that all structures in a package be compiled with a 
specific N-BYTE packing pragma.

1834 Chapter 51 / PROTO Procedure



Required Arguments
PACKAGE=entry

specifies the SAS entry where the prototype information is saved. Entry is a 
three-level name having the following form: library.dataset.package. 
Package enables you to specify grouping in the GUI. Package must be unique 
for the first 8 characters.

function-prototype-1
function-prototype-n

contains the C code of the function prototypes.

Optional Arguments
ENCRYPT | HIDE

specifies that encoding within a database is allowed. 

Restriction This option is available for XML databases only.

LABEL=package-label
specifies a text string that is used to describe or label the package. The 
maximum length of the label is 256 characters.

NOSIGNALS
specifies that none of the functions in a package will produce exceptions or 
signals.

STDCALL
for Windows PC platforms only, indicates that all functions in the package are 
called using the "_stdcall" convention. 

STRUCTPACKn | PACKn
for 32 bit Windows PC platforms or the Power Architecture platform running on 
Linux only, specifies that all structures in this package were compiled with the 
given N-BYTE packing pragma. That is, STRUCTURE4 specifies that all 
structures in the package were compiled with the “#pragma pack(4)” option. 

LINK Statement
Specifies the name of the load module that contains your functions. Specifying the path is optional.

Restriction: The LINK statement is not supported for z/OS or MVS environments.

Windows 
specifics:

The image specified in the LINK statement must not contain an extension for the image 
to load.

Note:

Syntax
LINK load-module <NOUNLOAD>;

LINK Statement 1835



Required Argument
load-module

specifies the load module that contains your functions. You can add more LINK 
statements to include as many libraries as you need for your prototypes. 
Load-module can have the following forms, depending on your operating 
environment:

'c:\mylibs\xxx.dll';

'c:\mylibs\xxx';

'/users/me/mylibs/xxx';

Tip If the full pathname for a module is larger than 32 bytes, use the 
PROTOLIBS system option to specify the path. Then use the LINK 
statement to specify the module name.

Optional Argument
NOUNLOAD

IMPORTANT Starting in SAS 9.4M7, you can use the NOUNLOAD 
option to prevent the PROTO procedure from crashing due to runtime 
incompatibilities in certain libraries..

specifies that selected libraries remain loaded when the SAS session ends.

Details

Specifying Extensions and Functions
You do not need to specify your module's extension. SAS loads your module with 
the extension that is specific to your operating environment.

All functions must be declared externally in your load module so that SAS can find 
them. For most platforms, external declaration is the default behavior for the 
compiler. However, many C compilers do not export function names by default. The 
following examples show how to declare your functions for external loading for most 
PC compilers:

_declspec(dllexport) int myfunc(int, double);
_declspec(dllexport) int price2(int a, double foo);

The PROTOLIBS System Option

CAUTION
Security Issue Calling a third-party library to a valid path for a load library that is set by 
the LINK statement can cause a security issue.

1836 Chapter 51 / PROTO Procedure



Beginning with SAS 9.4M6, the SAS administrator at your site can use the 
PROTOLIBS system option to control the function of the LINK statement. The 
administrator can use the PROTOLIBS option to specify a list of valid paths where 
modules that are specified by the LINK statement can be loaded. The administrator 
can also use the PROTOLIBS option to disable the LINK statement.

The PROTOLIBS option is a restricted option. Only the SAS administrator at your 
site can specify a value for it. The default value of the PROTOLIBS option is NONE, 
which means that the LINK statement is disabled.

You can use the VALUE argument of PROC OPTIONS to find where you can 
register load modules.

For more information, see PROTOLIBS System Option.

MAPMISS Statement
Specifies alternative values, by type, to pass to functions if values are missing.

Syntax
MAPMISS <POINTER=pointer-value > <INT=integer-value > <DOUBLE=double-
value>
< LONG=long-value > <SHORT=short-value>;

Optional Arguments
POINTER=pointer-value

specifies the pointer value to pass to functions for pointer values that are 
missing.

Default null

INT=integer-value
specifies an integer value to pass to functions for integer values that are missing.

DOUBLE=double-value
specifies a double value to pass to functions for double values that are missing.

LONG=long-value
specifies a long value to pass to functions for long values that are missing.

SHORT=short-value
specifies a short value to pass to functions for short values that are missing.

Details
The MAPMISS statement is used to specify alternative values, by data type or 
pointer value. These values are passed to functions if values are missing. The 
values are specified as arguments in the MAPMISS statement.

MAPMISS Statement 1837

https://documentation.sas.com/?docsetId=biasag&docsetTarget=p05mnok26yjjepn1546hsrq0k7ru.htm&docsetVersion=9.4 


If you set POINTER=NULL, a null value pointer is passed to the functions for pointer 
variables that are missing. If you do not specify a mapping for a type that is used as 
an argument to a function, the function is not called when an argument of that type 
is missing.

MAPMISS values have no affect on arrays because array elements are not checked 
for missing values when they are passed as parameters to C functions.

FUNCTION-PROTOTYPE-N Statement
Registers function prototypes in the PROTO procedure.

Syntax
function-prototype-1 <function-prototype-n ...> return-type function-name 
(argument-type <argument-name> / <iotype>
<argument-label>, ...) <options>;

Required Arguments
return-type

specifies a C language type for the returned value.

Tip Return-type can be preceded by either the UNSIGNED or EXCELDATE 
modifiers. You need to use EXCELDATE if the return type is a Microsoft 
Excel date.

See “Supported C Return Types” on page 1826 

function-name
specifies the name of the function to be registered.

Tip Function names within a given package must be unique in the first 32 
characters.

argument-type
specifies the C language type for the function argument.

You must specify argument-type for each argument in the function’s argument 
list. The argument list must be enclosed in parentheses. If the argument is an 
array, then you must specify the argument name prefixed to square brackets that 
contain the array size (for example, double A[10]). If the size is not known or if 
you want to disable verification of the length, then use type*name instead (for 
example, double*A).

Tip Argument-type can be preceded by either the UNSIGNED, CONST, or 
EXCELDATE modifiers. You need to use EXCELDATE if the return type is 
a Microsoft Excel date.

See “Supported C Argument Types” on page 1827 

1838 Chapter 51 / PROTO Procedure



argument-name
specifies the name of the argument.

iotype
specifies the I/O type of the argument. Use I for input, O for output, and U for 
update.

Alias IO

Tips In the program code, use IOTYPE=I | O | U.

By default, all parameters that are pointers are assumed to be input type 
U. All non-pointer values are assumed to be input type I. This behavior 
parallels the C language parameter passing scheme.

See “Example: Splitter Function Example” on page 0  for an example of 
how iotype is used.

argument-label
specifies a description or label for the argument.

LABEL="text-string"
specifies a description or a label for the function. Enclose the text string in 
quotation marks.

Note The LABEL option can be used with the PROTO procedure.

KIND | GROUP=group-type
specifies the group that the function belongs to. The KIND= or GROUP= option 
allows for convenient grouping of functions in a package.

You can use any string (up to 40 characters) in quotation marks to group similar 
functions.

Note The KIND or GROUP option can be used with the PROTO procedure.

Tip The following special cases provided for Risk Dimensions do not require 
quotation marks: INPUT (Instrument Input), TRANS (Risk Factor 
Transformation), PRICING (Instrument Pricing), and PROJECT. The 
default is PRICING.

Usage: PROTO Procedure

Basic C Language Types
The SAS language supports two data types: character and numeric. These types 
correspond to an array of characters and a double (double-precision floating point) 
data type in the C programming language. When SAS variables are used as 
arguments to external C functions, they are converted (cast) into the proper types.

Usage: PROTO Procedure 1839



Working with Character Variables
You can use character variables for arguments that require a "char *" value only. 
The character string that is passed is a null string that is terminated at the current 
length of the string. The current length of the character string is the minimum of the 
allocated length of the string and the length of the last value that was stored in the 
string. The allocated length of the string (by default, 32 bytes) can be specified by 
using the LENGTH statement. Functions that return "char *" can return a null or 
zero-delimited string that is copied to the SAS variable. If the current length of the 
character string is less than the allocated length, the character string is padded with 
blanks.

In the following example, the allocated length of str is 10, but the current length is 5. 
When the string is null-terminated at the allocated length, "hello " is passed to the 
function xxx:

length str $ 10;
str = "hello";
call xxx(str);

To avoid the blank padding, use the SAS TRIM function on the parameter within the 
function call:

length str $ 10;
str = "hello";
call xxx(trim(str));

In this case, the value "hello" is passed to the function xxx.

Working with Numeric Variables
You can use numeric variables for an argument that requires a short, int, long, or 
double data type, as well as for pointers to those types. Numeric variables are 
converted to the required type automatically. If the conversion fails, then the function 
is not called and the output to the function is set to missing. If pointers to these 
types are requested, the address of the converted value is passed. On return from 
the call, the value is converted back to a double type and stored in the SAS 
variable. SAS scalar variables cannot be passed as arguments that require two or 
more levels of indirection. For example, a SAS variable cannot be passed as an 
argument that requires a cast to a "long **" type.

Working with Missing Values
SAS variables that contain missing values are converted according to how the 
function that is being called has mapped missing values when using the PROTO 
procedure. All variables that are returned from the function are checked for the 
mapped missing values and converted to SAS missing values.

1840 Chapter 51 / PROTO Procedure



For example, if an argument to a function is missing, and the argument is to be 
converted to an integer, and an integer was mapped to –99, then –99 is passed to 
the function. If the same function returns an integer with the value –99, then the 
variable that this value is returned to would have a value of missing.

Function Names
External functions and FCMP functions can have the same name as long as they 
are saved to different packages. When these packages are loaded, a warning 
message in the log identifies which package contains the default definition for a 
given function. To use a function definition from a package other than the default, 
call the function using package-name.function-name.

When you load multiple packages of external functions, all function names must be 
unique. If two or more external functions of the same name are loaded, the first 
function that is loaded will be used. Duplicate external functions are ignored. A 
warning message in the log indicates which package contains the function that will 
be used, and which package contained the discarded definition.

Interfacing with External C Functions
To make it easier to interface with external C functions, many PROTO-compatible 
procedures have been enhanced to support most of these C types.

In working with arrays, it is important to note that SAS arrays are passed to 
EXTERNC routines as single dimensional arrays. They will be read as single 
dimensional arrays when returning to an FCMP function.

The following example shows log output that is generated when you use arrays and 
the double ** variable type.

proc proto package=work.proto_ds.test;
   void idmat(double** a,int m,int n); 
   externc idmat;
   void idmat(double** a,int m,int n)
   {
      int i=0,j=0; 
      for(i=0;i<m;i++)
      {
         for(j=0;j<n;j++)
         {
          if(i==j)
             a[0][i*m+j]=1;
          else
             a[0][i*m+j]=0;
       }
    }
};
externcend;
run;

Usage: PROTO Procedure 1841



proc fcmp outlib=work.proto_ds.test inlib=work.proto_ds;
   subroutine sas_idmat(b[*,*]);
      outargs b;
      m=dim(b,1);
      n=dim(b,2);
      call idmat(b,m,n);
      put b=;
      put ' ';
   endsub;
quit;
run;

options cmplib=work.proto_ds;

data cmat;
   array ctmp[3,3] _temporary_;
   array c[3,3];
   output;
   call sas_idmat(ctmp);
   do i=1 to dim(c,1);
      do j=1 to dim(c,2);
         c[i,j]=ctmp[i,j];
      end;
   end;
   output;
   drop i j;
run;

SAS writes the following results to the log:

b[1, 1]=1 b[1, 2]=0 b[1, 3]=0 b[2, 1]=0 b[2, 2]=1 b[2, 3]=0 b[3, 1]=0 b[3, 2]=0 b[3, 
3]=1

There is no way to return and save a pointer to any type in a SAS variable. Pointers 
are always dereferenced, and their contents are converted and copied to SAS 
variables.

The EXTERNC statement is used to specify C variables in PROTO compatible 
procedures. The syntax of the EXTERNC statement has the following form:

EXTERNC DOUBLE | INT | LONG | SHORT | CHAR <[*][*]> var-1 <var-2 ... var-n>;

The following table (Table 51.100 on page 1843 ) shows how these variables are 
treated when they are positioned on the left side of an expression. The table shows 
the automatic casting that is performed for a short type on the right side of an 
assignment. (Explicit type conversions can be forced in any expression, with a unary 
operator called a cast.) The table lists all the allowed combinations of short types 
that are associated with SAS variables.

Note: A table for int, long, and double types can be created by substituting any of 
these types for "short" in this table.

If any of the pointers are null and require dereferencing, then the result is set to 
missing if there is a missing value set for the result variable. For more information, 
see “MAPMISS Statement” on page 1837.

1842 Chapter 51 / PROTO Procedure



Table 51.4 Automatic Type Casting for the short Data Type in an Assignment Statement

Type for Left Side of 
Assignment

Type for Right Side of 
Assignment

Cast 
Performed

short SAS numeric y = (short) x

short short y = x

short short * y = * x

short short ** y = ** x

short * SAS numeric * y = (short) x

short * short y = & x

short * short * y = x

short * short ** y = * x

short ** SAS numeric **y = (short) x

short ** short * y = & x

short ** short ** y = x

SAS numeric short y = (double) x

SAS numeric short * y = (double) * 
x

SAS numeric short ** y = (double) ** 
x

The following table shows how these variables are treated when they are passed as 
arguments to an external C function.

Table 51.5 Types That Are Allowed for External C Arguments

Function Prototype SAS Variable Type C Variable Type

short numeric short, short *, short **

short * numeric, array short, short *, short **

short ** array short *, short **

int numeric int, int *, int **

Usage: PROTO Procedure 1843



Function Prototype SAS Variable Type C Variable Type

int * numeric, array int, int *, int **

int ** array int *, int **

long numeric long, long *, long **

long * numeric, array long, long *, long **

long ** array long *, long **

double numeric double, double *, 
double **

double * numeric, array double, double *, 
double **

double ** array double *, double **

char * character char *, char **

char ** character char *, char **

struct * structure struct *, struct **

struct ** structure struct *, struct **

Note: Automatic conversion between two different C types is never performed.

Scope of Packages in PROC PROTO
PROC PROTO packages are loaded in the order that is specified in the CMPLIB= 
system option, and the contents are used globally. Packages that are loaded 
through a PROC statement option are considered local in scope. Local definitions 
are loaded last, and in all cases, local scope overrides global scope.

Definitions are loaded regardless of whether they have unique names or duplicate 
names. Multiple definitions of certain PROC PROTO elements (for example, 
enumeration names and function prototypes) can cause name conflicts and 
generate errors. To prevent name conflicts between PROC PROTO packages, 
ensure that elements such as enumerated types and function definitions have 
unique names.

The following example loads three PROC PROTO packages, and shows how the 
order in which typedef and #define statements override one another.

This part of the example loads the first two PROC PROTO packages:

1844 Chapter 51 / PROTO Procedure



proc proto package = work.p1.test1;
    typedef struct { int a; int b; } AB_t;
    #define NUM 1;
    int p1(void);
    externc p1;
        int p1(void)
        {
            return NUM;
        }
    externcend;
run;

proc proto package = work.p2.test2;
    typedef struct { int a; int b; } AB_t;
    #define NUM 2;
    int p2(void);
    externc p2;
        int p2(void)
        {
            return NUM;
        }
    externcend;
run;

options CMPLIB = (work.p1 work.p2);

proc fcmp;
   x = p1();
   put "Should be 2: " x=;
run;

The result from executing the programs above is 2, because the packages are 
loaded in order.

In the following example, PROC PROTO adds a third package and includes it in 
PROC FCMP locally, keeping the CMPLIB= system option set as above:

proc proto package = work.p3.test3;
    typedef struct { int a; int b; } AB_t;
    #define NUM 3;
    int p3(void);
    externc p3;
        int p3(void)
        {
            return NUM;
        }
    externcend;
run;

proc fcmp libname = work.p3;
   x = p1();
   put "Should be 3: " x=;
run;

In this example, the local definition of NUM in work.p3 is used instead of the global 
definitions that are loaded through work.p1 and work.p2.

Usage: PROTO Procedure 1845



C Helper Functions and CALL Routines

What Are C Helper Functions and CALL 
Routines?
Several helper functions and CALL routines are provided with the package to 
handle C-language constructs in PROC FCMP. Most C-language constructs must 
be defined in a catalog package that is created by PROC PROTO before the 
constructs can be referenced or used by PROC FCMP. The ISNULL function and 
the STRUCTINDEX and SETNULL CALL routines have been added to extend the 
SAS language to handle C-language constructs that do not naturally fit into the SAS 
language.

The following C helper functions and CALL routines are available:

Table 51.6 C Helper Functions and CALL Routines

C Helper Function or CALL Routine Description

“ISNULL C Helper Function” on page 1846 Determines whether a pointer 
element of a structure is null

“SETNULL C Helper CALL Routine” on page 
1847

Sets a pointer element of a structure 
to null

“STRUCTINDEX C Helper CALL Routine” on 
page 1847

Enables you to access each structure 
element in an array of structures

ISNULL C Helper Function
The ISNULL function determines whether a pointer element of a structure is NULL. 
The function has the following form:

double ISNULL (pointer-element);

Pointer-element refers to the pointer element.

In the following example, the LINKLIST structure and the GET_LIST function are 
defined by using PROC PROTO. The GET_LIST function is an external C routine 
that generates a linked list with as many elements as requested:

struct linklist{
   double value;
   struct linklist * next;

1846 Chapter 51 / PROTO Procedure



};

struct linklist * get_list(int);

The following example shows how to use the ISNULL helper function to loop over 
the linked list that is created by the GET_LIST function:

struct linklist list;

list = get_list(3);
put list.value=;

do while (^isnull(list.next));
   list = list.next;
   put list.value=;
end;
   

Example Code 51.1 Looping over a Linked List

LIST.value=0
LIST.value=1
LIST.value=2

SETNULL C Helper CALL Routine
The SETNULL CALL routine sets a pointer element of a structure to null. It has the 
following form:

CALL SETNULL(pointer-element);

Pointer-element is a pointer to a structure.

If you specify a variable that has a pointer value (a structure entry), then SETNULL 
sets the pointer to null:

call setnull(12.next);

The following example assumes that the same LINKLIST structure that is described 
in “ISNULL C Helper Function” on page 1846 is defined using PROC PROTO. The 
SETNULL CALL routine can be used to set the next element to null:

proc proto;
   struct linklist list;
   call setnull(list.next);
run;

STRUCTINDEX C Helper CALL Routine
The STRUCTINDEX CALL routine enables you to access each structure element in 
an array of structures. When a structure contains an array of structures, you can 
access each structure element of the array by using the STRUCTINDEX CALL 
routine. The STRUCTINDEX CALL routine has the following form:

CALL STRUCTINDEX(struct_array, index, struct_element);

Usage: PROTO Procedure 1847



Struct_array specifies an array; index is a 1–based index as used in SAS arrays; 
and struct_element points to an element in the array.

The following example consists of two parts. Copy and paste the two parts of the 
example into your SAS editor, and run them as one SAS program.

In the first part of this example, the following structures and function are defined 
using PROC PROTO:

options cmplib=(work.proto_ds work.fcmp_ds);
proc proto package=work.proto_ds.cfcns;
     struct POINT {
           short s;
           int i;
           long l;
           double d;
     };
     struct POINT_ARRAY {
           int length;
           struct POINT * p;
           char name[32];
     };
     struct POINT * struct_array( int );

     externc struct_array;
         struct POINT * struct_array( int num ) {
              return(malloc(sizeof(struct POINT) * num));
         }
     externcend;
run;

In the second part of this example, the PROC FCMP code segment shows how to 
use the STRUCTINDEX CALL routine to get and set each POINT structure element 
of an array called P in the POINT_ARRAY structure:

proc fcmp;
struct point_array pntarray;
struct point pnt;

   /* Call struct_array to allocate an array of 2 POINT structures. */
pntarray.p = struct_array(2);
pntarray.plen = 2;
pntarray.name = "My funny structure";

   /* Get each element using the STRUCTINDEX CALL routine and set 
values. */
do i = 1 to 2;
   call structindex(pntarray.p, i, pnt);
   put "Before setting the" i "element: " pnt=;
   pnt.s = 1;
   pnt.i = 2;
   pnt.l = 3;
   pnt.d = 4.5;
   put "After setting the" i "element: " pnt=;
end;

run;

1848 Chapter 51 / PROTO Procedure



Example Code 51.2 Results from the STRUCTINDEX CALL Routine

Before setting the 1 element: PNT {s=0, i=0, l=0, d=0}
After setting the 1 element: PNT {s=1, i=2, l=3, d=4.5}
Before setting the 2 element: PNT {s=0, i=0, l=0, d=0}
After setting the 2 element: PNT {s=1, i=2, l=3, d=4.5}

Example: Splitter Function Example
Features: INT statements

KIND= prototype argument
PROC FCMP

Details
This example shows how to use PROC PROTO to prototype two external C 
language functions called SPLIT and CASHFLOW. These functions are contained in 
the two shared libraries that are specified by the LINK statements.

Program
options nodate pageno=1 linesize=80 pagesize=40;

proc proto package =
sasuser.myfuncs.mathfun
           label = "package of math functions";
                                 

           link "link-library";
           link "link-library";

   int split(int x "number to split")
       label = "splitter function" kind=PRICING;

   int cashflow(double amt, double rate, int periods,
                double * flows / iotype=O)
       label = "cash flow function" kind=PRICING;

run;

proc fcmp libname=sasuser.myfuncs;
   array flows[20];
   a = split(32);
   put a;
   b = cashflow(1000, .07, 20, flows);
   put b;

Example: Splitter Function Example 1849



   put flows;
run; 

run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGNO= specifies the starting page number. 
LINESIZE= specifies the output line length. PAGESIZE= specifies the number of 
lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Specify the catalog entry where the function package information is saved. 
The catalog entry is a three-level name.

proc proto package =
sasuser.myfuncs.mathfun
           label = "package of math functions";
                                 

Specify the libraries that contain the SPLIT and CASHFLOW functions. You 
can add more LINK statements to include as many libraries as you need for your 
prototypes.

           link "link-library";
           link "link-library";

Prototype the SPLIT function. The INT statement prototypes the SPLIT function 
and assigns a label to the function.

   int split(int x "number to split")
       label = "splitter function" kind=PRICING;

Prototype the CASHFLOW function. The INT statement prototypes the 
CASHFLOW function and assigns a label to the function.

   int cashflow(double amt, double rate, int periods,
                double * flows / iotype=O)
       label = "cash flow function" kind=PRICING;

Execute the PROTO procedure. The RUN statement executes the PROTO 
procedure.

run;

Call the SPLIT and CASHFLOW functions. PROC FCMP calls the SPLIT and 
CASHFLOW functions. Output from PROC FCMP is created.

proc fcmp libname=sasuser.myfuncs;
   array flows[20];
   a = split(32);
   put a;
   b = cashflow(1000, .07, 20, flows);
   put b;
   put flows;
run; 

Execute the FCMP procedure. The RUN statement executes the FCMP 
procedure.

1850 Chapter 51 / PROTO Procedure



run;

Output: Prototyping Functions
Output 51.1 Results from Prototyping the SPLIT and CASHFLOW Functions

                                           The SAS System                     1  

                                         The FCMP Procedure

16
12
70 105 128.33333333 145.83333333 159.83333333 171.5 181.5 190.25 198.02777778
205.02777778
211.39141414 217.22474747 222.60936286 227.60936286 232.27602953 236.65102953
240.76867658
244.65756547 248.341776 251.841776      

Example: Splitter Function Example 1851



1852 Chapter 51 / PROTO Procedure



Chapter 52
PRTDEF Procedure

Overview: PRTDEF Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1853
What Does the PRTDEF Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1853

Syntax: PRTDEF Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1854
PROC PRTDEF Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1854

Usage: PRTDEF Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1856
Input Data Set Variables That Are Used To Create Printer Definitions . . . . . . . . 1856

Examples: PRTDEF Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1861
Example 1: Defining Multiple Printer Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 1861
Example 2: Creating a Ghostview Printer in SASUSER to Preview 

PostScript Printer Output in SASUSER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1863
Example 3: Creating a Single Printer Definition That Is Available to All Users . . 1865
Example 4: Adding, Modifying, and Deleting Printer Definitions . . . . . . . . . . . . . 1867
Example 5: Deleting a Single Printer Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 1869

Overview: PRTDEF Procedure

What Does the PRTDEF Procedure Do?
The PRTDEF procedure creates printer definitions in batch mode either for an 
individual user or for all SAS users at your site. Your system administrator can 
create printer definitions in the SAS registry and make these printers available to all 
SAS users at your site by using PROC PRTDEF with the USESASHELP option. An 
individual user can create personal printer definitions in the SAS registry by using 
PROC PRTDEF.

1853



See Also
Chapter 53, “PRTEXP Procedure,” on page 1871

Syntax: PRTDEF Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

PROC PRTDEF <options>;

Statement Task Example

PROC PRTDEF Create printer definitions in batch mode either 
for an individual user or for all SAS users at 
your site

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5

PROC PRTDEF Statement
Creates printer definitions in batch mode.

Examples: “Example 1: Defining Multiple Printer Definitions” on page 1861
“Example 2: Creating a Ghostview Printer in SASUSER to Preview PostScript Printer 
Output in SASUSER” on page 1863
“Example 3: Creating a Single Printer Definition That Is Available to All Users” on page 
1865
“Example 4: Adding, Modifying, and Deleting Printer Definitions” on page 1867
“Example 5: Deleting a Single Printer Definition” on page 1869

Syntax
PROC PRTDEF <options>;

Optional Arguments
DATA=SAS-data-set

specifies the SAS data set that contains the printer attributes.

Requirement Printer attributes variables that must be specified are DEST, 
DEVICE, MODEL, and NAME, except when the value of the 

1854 Chapter 52 / PRTDEF Procedure



variable OPCODE is DELETE. In that case, only the NAME 
variable is required.

See “Input Data Set Variables That Are Used To Create Printer 
Definitions” on page 1856

DELETE
specifies that the default operation is to delete the printer definitions from the 
registry.

Interaction If both DELETE and REPLACE are specified, then DELETE is the 
default operation.

Tip If the user-defined printer definition is deleted, then the 
administrator-defined printer can still appear if it exists in the 
Sashelp catalog.

Example “Example 5: Deleting a Single Printer Definition” on page 1869

FOREIGN
specifies that the registry entries are being created for export to a different host. 
As a consequence, tests of any host-dependent items, such as the TRANTAB, 
are skipped.

LIST
specifies that a list of printers that is created or replaced is written to the log.

Examples “Example 2: Creating a Ghostview Printer in SASUSER to Preview 
PostScript Printer Output in SASUSER” on page 1863

“Example 4: Adding, Modifying, and Deleting Printer Definitions” on 
page 1867

REPLACE
specifies that the default operation is to modify existing printer definitions. Any 
printer name that already exists is modified by using the information in the printer 
attributes data set. Any printer name that does not exist is added.

Interaction If both REPLACE and DELETE are specified, then a DELETE is 
performed.

Example “Example 2: Creating a Ghostview Printer in SASUSER to Preview 
PostScript Printer Output in SASUSER” on page 1863

USESASHELP
specifies that the printer definitions are to be placed in the Sashelp library, where 
they are available to all users. If the USESASHELP option is not specified, then 
the printer definitions are placed in the current Sasuser library, where they are 
available to the local user only.

Windows Specifics: You can create printer definitions with PROC PRTDEF in 
the Windows operating environment. However, because Universal Printing is 
turned off by default in Windows, these printer definitions do not appear in the 
Print window. If you want to use your printer definitions when Universal Printing 
is turned off, then either specify the printer definition as part of the 
PRINTERPATH system option or, from the Output Delivery System (ODS), issue 
the following code: 

ODS PRINTER SAS PRINTER=myprinter;

PROC PRTDEF Statement 1855



where myprinter is the name of your printer definition.

Restriction To use the USESASHELP option, you must have permission to 
write to the Sashelp catalog.

Example “Example 3: Creating a Single Printer Definition That Is Available to 
All Users” on page 1865

Usage: PRTDEF Procedure

Input Data Set Variables That Are Used To Create 
Printer Definitions

Summary of Valid Variables
To create your printer definitions, you must create a SAS data set whose variables 
contain the appropriate printer attributes. The following table lists and describes 
both the required and optional variables for this data set.

Table 52.1 Required and Optional Variable for Creating Printer Definition Records

Variable Name Variable Description

Required

DEST Destination

DEVICE Device

MODEL Prototype

NAME Printer name

Optional

BOTTOM Default bottom margin

CHARSET Default font character set

1856 Chapter 52 / PRTDEF Procedure



Variable Name Variable Description

DESC Description

FONTSIZE Point size of the default font

HOSTOPT Host options

LEFT Default left margin

LRECL Output buffer size

OPCODE Operation code

PAPERIN Paper source or input tray

PAPEROUT Paper destination or output tray

PAPERSIZ Paper size

PAPERTYP Paper type

PREVIEW Preview

PROTOCOL Protocol

RES Default printer resolution

RIGHT Default right margin

STYLE Default font style

TOP Default top margin

TRANTAB Translation table

TYPEFACE Default font

UNITS CM or IN units

VIEWER Viewer

WEIGHT Default font weight

Usage: PRTDEF Procedure 1857



Required Variables
To create or modify a printer, you must supply the NAME, MODEL, DEVICE, and 
DEST variables. All the other variables use default values from the printer prototype 
that is specified by the MODEL variable.

To delete a printer, specify only the required NAME variable.

The following variables are required in the input data set:

DEST
specifies the output destination for the printer.

Operating Environment Information: DEST is case sensitive for some 
devices.

Restriction DEST is limited to 1023 characters.

DEVICE
specifies the type of I/O device to use when sending output to the printer. Valid 
devices are listed in the Printer Definition wizard and in the SAS Registry Editor.

Restriction DEVICE is limited to 31 characters.

MODEL
specifies the printer prototype to use when defining the printer.

For a valid list of prototypes or model descriptions, you can look in the SAS 
Registry Editor under CORE\PRINTING\PROTOTYPES.

Restriction MODEL is limited to 127 characters.

Tip While in interactive mode, you can invoke the registry with the 
REGEDIT command.

NAME
specifies the printer definition name that is associated with the rest of the 
attributes in the printer definition.

The name is unique within a given registry. If a new printer definition contains a 
name that already exists, then the record is not processed unless the REPLACE 
option has been specified or unless the value of the OPCODE variable is 
Modify.

Restriction NAME is limited to 127 characters, must have at least one nonblank 
character, and cannot contain a backslash. Leading and trailing 
blanks are stripped from the name.

Optional Variables
The following variables are optional in the input data set:

1858 Chapter 52 / PRTDEF Procedure



BOTTOM
specifies the default bottom margin in the units that are specified by the UNITS 
variable.

CHARSET
specifies the default font character set.

Restriction The value must be one of the character set names in the typeface 
that is specified by the TYPEFACE variable.

DESC
specifies the description of the printer.

Default DESC defaults to the prototype that is used to create the printer.

Restriction The description can have a maximum of 1023 characters.

FONTSIZE
specifies the point size of the default font.

HOSTOPT
specifies any host options for the output destination. The host options are not 
case sensitive.

Restriction The host options can have a maximum of 1023 characters.

LEFT
specifies the default left margin in the units that are specified by the UNITS 
variable.

LRECL
specifies the buffer size or record length to use when sending output to the 
printer.

Default If LRECL is less than zero when modifying an existing printer, the 
printer's buffer size is reset to the size that is specified by the printer 
prototype.

OPCODE
is a character variable that specifies what action (Add, Delete, or Modify) to 
perform on the printer definition.

Add
creates a new printer definition in the registry. If the REPLACE option has 
been specified, then this operation will also modify an existing printer 
definition.

Delete
removes an existing printer definition from the registry.

Restriction This operation requires only the NAME variable to be defined. 
The other variables are ignored.

Modify
changes an existing printer definition in the registry or adds a new one.

Restriction OPTCODE is limited to eight characters.

Tip If a user modifies and saves new attributes on a printer in the 
SASHELP library, then these modifications are stored in the 
SASUSER library. Values that are specified by the user will override 

Usage: PRTDEF Procedure 1859



values that are set by the administrator, but they will not replace 
them.

PAPERIN
specifies the default paper source or input tray.

Restriction The value of PAPERIN must be one of the paper source names in 
the printer prototype that is specified by the MODEL variable.

PAPEROUT
specifies the default paper destination or output tray.

Restriction The value of PAPEROUT must be one of the paper destination 
names in the printer prototype that is specified by the MODEL 
variable.

PAPERSIZ
specifies the default paper source or input tray.

Restriction The value of PAPERSIZ must be one of the paper size names listed 
in the printer prototype that is specified by the MODEL variable.

PAPERTYP
specifies the default paper type.

Restriction The value of PAPERTYP must be one of the paper source names 
listed in the printer prototype that is specified by the MODEL 
variable.

PREVIEW
specifies the printer application to use for print preview.

Restriction PREVIEW is limited to 127 characters.

PROTOCOL
specifies the I/O protocol to use when sending output to the printer.

Operating Environment Information: On mainframe systems, the protocol 
describes how to convert the output to a format that can be processed by a 
protocol converter that connects the mainframe to an ASCII device.

Restriction PROTOCOL is limited to 31 characters.

RES
specifies the default printer resolution.

Restriction The value of RES must be one of the resolution values available to 
the printer prototype that is specified by the MODEL variable.

RIGHT
specifies the default right margin in the units that are specified by the UNITS 
variable.

STYLE
specifies the default font style.

Restriction The value of STYLE must be one of the styles available to the 
typeface that is specified by the TYPEFACE variable.

1860 Chapter 52 / PRTDEF Procedure



TOP
specifies the default top margin in the units that are specified by the UNITS 
variable.

TRANTAB
specifies which translation table to use when sending output to the printer.

Operating Environment Information: The translation table is needed when an 
EBCDIC host sends data to an ASCII device.

Restriction TRANTAB is limited to eight characters.

TYPEFACE
specifies the typeface of the default font.

Restriction The typeface must be one of the typeface names available to the 
printer prototype that is specified by the MODEL variable.

UNITS
specifies the units CM or IN that are used by margin variables.

VIEWER
specifies the host system command that is to be used during print previews. As a 
result, PROC PRTDEF causes a preview printer to be created.

Preview printers are specialized printers that are used to display printer output 
on the screen before printing.

Restriction VIEWER is limited to 127 characters.

Tip The values of the PREVIEW, PROTOCOL, DEST, and HOSTOPT 
variables are ignored when a value for VIEWER has been specified. 
Place %s where the input filename would normally be in the viewer 
command. %s can be used as many times as needed.

WEIGHT
specifies the default font weight.

Restriction The value must be one of the valid weights for the typeface that is 
specified by the TYPEFACE variable.

Examples: PRTDEF Procedure

Example 1: Defining Multiple Printer Definitions
Features: PROC PRTDEF statement options

DATA=

Example 1: Defining Multiple Printer Definitions 1861



Details
This example shows you how to set up various printers.

Program
data printers;
input name $ 1-14 model $ 16-42 device $ 46-53 dest $ 57-70;
datalines;
Myprinter      PostScript Level 1 (Color)    PRINTER   printer1
Laserjet       PCL 5 (DeltaRow)              PIPE      lp -dprinter5
Color LaserJet PostScript Level 2 (Color)    PIPE      lp -dprinter2
;

proc prtdef data=printers;
run;

Program Description
Create the PRINTERS data set. The INPUT statement contains the names of the 
four required variables. Each data line contains the information that is needed to 
produce a single printer definition.

data printers;
input name $ 1-14 model $ 16-42 device $ 46-53 dest $ 57-70;
datalines;
Myprinter      PostScript Level 1 (Color)    PRINTER   printer1
Laserjet       PCL 5 (DeltaRow)              PIPE      lp -dprinter5
Color LaserJet PostScript Level 2 (Color)    PIPE      lp -dprinter2
;

Specify the input data set that contains the printer attributes and create the 
printer definitions. PROC PRTDEF creates the printer definitions for the SAS 
registry, and the DATA= option specifies PRINTERS as the input data set that 
contains the printer attributes. 

proc prtdef data=printers;
run;

1862 Chapter 52 / PRTDEF Procedure



Log
Example Code 52.1 The SAS Log After Defining Printers

1    data printers;
2    input name $ 1-14 model $ 16-42 device $ 46-53 dest $ 57-70;
3    datalines;

NOTE: The data set WORK.PRINTERS has 3 observations and 4 variables.
NOTE: DATA statement used (Total process time):
      real time           0.03 seconds
      cpu time            0.03 seconds

7    ;
8    proc prtdef data=printers;
9    run;

NOTE: 3 printer definitions added to the registry.
NOTE: 0 printer definitions modified in the registry.
NOTE: 0 printer definitions deleted from the registry.
NOTE: PROCEDURE PRTDEF used (Total process time):
      real time           0.15 seconds
      cpu time            0.01 seconds

Example 2: Creating a Ghostview Printer in 
SASUSER to Preview PostScript Printer Output in 
SASUSER
Features: PROC PRTDEF statement options

DATA=
LIST
REPLACE

Details
This example creates a Ghostview printer definition in the Sasuser library for 
previewing PostScript output.

Program
data gsview;
   name = "Ghostview";
   desc = "Print Preview with Ghostview";
   model= "PostScript Level 2 (Color)";

Example 2: Creating a Ghostview Printer in SASUSER to Preview PostScript Printer 
Output in SASUSER 1863



   viewer = 'ghostview %s';
   device = "Dummy";
   dest = " ";
run;

proc prtdef data=gsview list replace;
run;

Program Description
Create the GSVIEW data set, and specify the printer name, printer description, 
printer prototype, and commands to be used for print preview. The GSVIEW 
data set contains the variables whose values contain the information that is needed 
to produce the printer definitions. The NAME variable specifies the printer name that 
will be associated with the rest of the attributes in the printer definition data record. 
The DESC variable specifies the description of the printer. The MODEL variable 
specifies the printer prototype to use when defining this printer. The VIEWER 
variable specifies the host system commands to be used for print preview. GSVIEW 
must be installed on your system and the value for VIEWER must include the path 
to find it. You must enclose the value in single quotation marks because of the %s. If 
you use double quotation marks, SAS will assume that %s is a macro variable. 
DEVICE and DEST are required variables, but no value is needed in this example. 
Therefore, a “dummy” or blank value should be assigned.

data gsview;
   name = "Ghostview";
   desc = "Print Preview with Ghostview";
   model= "PostScript Level 2 (Color)";
   viewer = 'ghostview %s';
   device = "Dummy";
   dest = " ";
run;

Specify the input data set that contains the printer attributes, create the 
printer definitions, write the printer definitions to the SAS log, and replace a 
printer definition in the SAS registry. The DATA= option specifies GSVIEW as the 
input data set that contains the printer attributes. PROC PRTDEF creates the printer 
definitions. The LIST option specifies that a list of printers that are created or 
replaced will be written to the SAS log. The REPLACE option specifies that a printer 
definition will replace a printer definition in the registry if the name of the printer 
definition matches a name already in the registry. If the printer definition names do 
not match, then the new printer definition is added to the registry. 

proc prtdef data=gsview list replace;
run;

1864 Chapter 52 / PRTDEF Procedure



Log
Example Code 52.2 The SAS Log After Defining a GhostView Printer

10   data gsview;
11   name = "Ghostview";
12   desc = "Print Preview with Ghostview";
13   model= "PostScript Level 2 (Color)";
14   viewer = 'ghostview %s';
15   device = "Dummy";
16   dest = " ";

NOTE: The data set WORK.GSVIEW has 1 observations and 6 variables.
NOTE: DATA statement used (Total process time):
      real time           0.00 seconds
      cpu time            0.00 seconds

17   proc prtdef data=gsview list replace;
18   run;

NOTE: Printer Ghostview created.
NOTE: 1 printer definitions added to the registry.
NOTE: 0 printer definitions modified in the registry.
NOTE: 0 printer definitions deleted from the registry.
NOTE: PROCEDURE PRTDEF used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds

Example 3: Creating a Single Printer Definition That 
Is Available to All Users
Features: PROC PRTDEF statement options

DATA=
USESASHELP

Restriction: To use the USESASHELP option, you must have permission to write to the Sashelp 
catalog.

Details
This example creates a definition for a Tektronix Phaser 780 printer with a 
Ghostview print previewer with the following specifications:

n bottom margin set to 1 inch

n font size set to 14 point

n paper size set to A4 

Example 3: Creating a Single Printer Definition That Is Available to All Users 1865



Program
data tek780;
   name = "Tek780";
   desc = "Test Lab Phaser 780P";
   model = "Tek Phaser 780 Plus";
   device = "PRINTER";
   dest = "testlab3";
   preview = "Ghostview";
   units = "cm";
   bottom = 2.5;
   fontsize = 14;
   papersiz = "ISO A4";
run;

proc prtdef data=tek780 usesashelp;
run;

Program Description
Create the TEK780 data set and supply appropriate information for the printer 
destination. The TEK780 data set contains the variables whose values contain the 
information that is needed to produce the printer definitions. In the example, 
assignment statements are used to assign these variables. The NAME variable 
specifies the printer name that is associated with the rest of the attributes in the 
printer definition data record. The DESC variable specifies the description of the 
printer. The MODEL variable specifies the printer prototype to use when defining 
this printer. The DEVICE variable specifies the type of I/O device to use when 
sending output to the printer. The DEST variable specifies the output destination for 
the printer. The PREVIEW variable specifies which printer is used for print preview. 
The UNITS variable specifies whether the margin variables are measured in 
centimeters or inches. The BOTTOM variable specifies the default bottom margin in 
the units that are specified by the UNITS variable. The FONTSIZE variable specifies 
the point size of the default font. The PAPERSIZ variable specifies the default paper 
size.

data tek780;
   name = "Tek780";
   desc = "Test Lab Phaser 780P";
   model = "Tek Phaser 780 Plus";
   device = "PRINTER";
   dest = "testlab3";
   preview = "Ghostview";
   units = "cm";
   bottom = 2.5;
   fontsize = 14;
   papersiz = "ISO A4";
run;

Create the TEK780 printer definition and make the definition available to all 
users. The DATA= option specifies TEK780 as the input data set. The 
USESASHELP option specifies that the printer definition will be available to all 
users.

proc prtdef data=tek780 usesashelp;

1866 Chapter 52 / PRTDEF Procedure



run;

Example 4: Adding, Modifying, and Deleting Printer 
Definitions
Features: PROC PRTDEF statement options

DATA=
LIST

Details
This example does the following:

n adds two printer definitions

n modifies a printer definition

n deletes two printer definitions

Program
data printers;
length name   $ 80
   model  $ 80
   device $ 8
   dest   $ 80
   opcode $ 3
   ;
input opcode $& name $& model $& device $& dest $&;
datalines;
add  Color PostScript   PostScript Level 2 (Color)       DISK    
sasprt.ps
mod  LaserJet 5         PCL 5 (DeltaRow)                 DISK    
sasprt.pcl
del  Gray Postscript    PostScript Level 1 (Gray Scale)  DISK    
sasprt.ps
del  test               PostScript Level 2 (Color)       DISK    
sasprt.ps
add  ColorPS            PostScript Level 2 (Color)       DISK    
sasprt.ps
;

proc prtdef data=printers replace list;
run;

Example 4: Adding, Modifying, and Deleting Printer Definitions 1867



Program Description
Create the PRINTERS data set and specify which actions to perform on the 
printer definitions. The PRINTERS data set contains the variables whose values 
contain the information that is needed to produce the printer definitions. The 
MODEL variable specifies the printer prototype to use when defining this printer. 
The DEVICE variable specifies the type of I/O device to use when sending output to 
the printer. The DEST variable specifies the output destination for the printer. The 
OPCODE variable specifies which action (add, delete, or modify) to perform on the 
printer definition. The first Add operation creates a new printer definition for Color 
PostScript in the SAS registry. The second Add operation creates a new printer 
definition for ColorPS in the SAS registry. The Mod operation modifies the existing 
printer definition for LaserJet 5 in the registry. The Del operation deletes the printer 
definitions for test from the registry. The & specifies that two or more blanks 
separate character values. This allows the name and model value to contain blanks.

data printers;
length name   $ 80
   model  $ 80
   device $ 8
   dest   $ 80
   opcode $ 3
   ;
input opcode $& name $& model $& device $& dest $&;
datalines;
add  Color PostScript   PostScript Level 2 (Color)       DISK    
sasprt.ps
mod  LaserJet 5         PCL 5 (DeltaRow)                 DISK    
sasprt.pcl
del  Gray Postscript    PostScript Level 1 (Gray Scale)  DISK    
sasprt.ps
del  test               PostScript Level 2 (Color)       DISK    
sasprt.ps
add  ColorPS            PostScript Level 2 (Color)       DISK    
sasprt.ps
;

Create multiple printer definitions and write them to the SAS log. The DATA= 
option specifies the input data set PRINTERS that contains the printer attributes. 
PROC PRTDEF creates five printer definitions, two of which have been deleted. The 
LIST option specifies that a list of printers that are created or replaced will be written 
to the log.

proc prtdef data=printers replace list;
run;

1868 Chapter 52 / PRTDEF Procedure



Log
Example Code 52.3 The SAS Log After Modifying and Deleting Printers

15   data printers;
16   length name   $ 80
17      model  $ 80
18      device $ 8
19      dest   $ 80
20      opcode $ 3
21      ;
22   input opcode $& name $& model $& device $& dest $&;
23   datalines;

NOTE: The data set WORK.PRINTERS has 5 observations and 5 variables.
NOTE: DATA statement used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds

29   ;
30   proc prtdef data=printers list replace;
31   run;

NOTE: Printer Color PostScript modified.
NOTE: Printer LaserJet 5 modified.
NOTE: Printer Gray Postscript deleted.
NOTE: Printer test deleted.
NOTE: Printer ColorPS modified.
NOTE: PROCEDURE PRTDEF used (Total process time):
      real time           0.04 seconds
      cpu time            0.03 seconds

Example 5: Deleting a Single Printer Definition
Features: PROC PRTDEF statement option

DELETE

Details
This example shows you how to delete a printer from the registry.

Program
   data deleteprt;
   name='printer1';
   run;

   proc prtdef data=deleteprt delete list;

Example 5: Deleting a Single Printer Definition 1869



   run;

Program Description
Create the DELETEPRT data set. The NAME variable contains the name of the 
printer to delete.

   data deleteprt;
   name='printer1';
   run;

Delete the printer definition from the registry and write the deleted printer to 
the log. The DATA= option specifies DELETEPRT as the input data set. PROC 
PRTDEF creates printer definitions for the SAS registry. DELETE specifies that the 
printer is to be deleted. LIST specifies to write the deleted printer to the log.

   proc prtdef data=deleteprt delete list;
   run;

Log
Example Code 52.4 The SAS Log After Deleting a Single Printer

45   data deleteprt;
46      name='printer1';
47      run;

NOTE: The data set WORK.DELETEPRT has 1 observations and 1 variables.
NOTE: DATA statement used (Total process time):
      real time           0.01 seconds
      cpu time            0.00 seconds

48      proc prtdef data=deleteprt delete list;
49      run;

NOTE: Printer printer1 deleted.
NOTE: 0 printer definitions added to the registry.
NOTE: 0 printer definitions modified in the registry.
NOTE: 1 printer definitions deleted from the registry.
NOTE: PROCEDURE PRTDEF used (Total process time):
      real time           0.00 seconds
      cpu time            0.00 seconds

1870 Chapter 52 / PRTDEF Procedure



Chapter 53
PRTEXP Procedure

Overview: PRTEXP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1871
What Does the PRTEXP Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1871

Syntax: PRTEXP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1872
PROC PRTEXP Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1872
EXCLUDE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1873
SELECT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1873

Examples: PRTEXP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1874
Example 1: Writing Attributes to the SAS Log . . . . . . . . . . . . . . . . . . . . . . . . . . . 1874
Example 2: Writing Attributes to a SAS Data Set . . . . . . . . . . . . . . . . . . . . . . . . . 1875

Overview: PRTEXP Procedure

What Does the PRTEXP Procedure Do?
The PRTEXP procedure enables you to replicate, modify, and create printer 
definitions from the SAS registry, either for an individual user or for all SAS users at 
your site. PROC PRTEXP then writes these attributes to the SAS log or to a SAS 
data set. You can specify that PROC PRTEXP search for these attributes in the 
SASHELP portion of the registry or the entire SAS registry.

If you write printer definitions to a SAS data set, you can later replicate and modify 
them. You can then use PROC PRTDEF to create the printer definitions in the SAS 
registry from your input data set. For a complete discussion of PROC PRTDEF and 
the variables and attributes that are used to create the printer definitions, see “Input 
Data Set Variables That Are Used To Create Printer Definitions” on page 1856. 

1871



See Also
Chapter 52, “PRTDEF Procedure,” on page 1853

Syntax: PRTEXP Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

Tip: If neither the SELECT nor the EXCLUDE statement is used, then all of the printers will 
be included in the output.

PROC PRTEXP <options>;
SELECT printer(s);
EXCLUDE printer(s)

Statement Task Example

PROC PRTEXP Obtain printer attributes from the SAS registry Ex. 1, Ex. 2

EXCLUDE Obtain printer attributes for all printers except 
for the specified printers

SELECT Obtain printer attributes for the specified 
printers

Ex. 1, Ex. 2

PROC PRTEXP Statement
Replicates, modifies, and creates printer definitions.

Examples: “Example 1: Writing Attributes to the SAS Log” on page 1874
“Example 2: Writing Attributes to a SAS Data Set” on page 1875

Syntax
PROC PRTEXP <options>;

Optional Arguments
USESASHELP

specifies that SAS search only the SASHELP portion of the registry for printer 
definitions.

1872 Chapter 53 / PRTEXP Procedure



Default The default is to search both the SASUSER and SASHELP portions of 
the registry for printer definitions.

OUT=SAS-data-set
specifies the SAS data set that contains the printer definitions.

The data set that is specified by the OUT=SAS-data-set option is the same type 
of data set that is specified by the DATA=SAS-data-set option in PROC PRTDEF 
to define each printer.

Default If OUT=SAS-data-set is not specified, then the data that is needed to 
define each printer is written to the SAS log.

EXCLUDE Statement
Names the printers whose information does not appear in output.

Syntax
EXCLUDE printer(s);

Required Argument
printer(s)

specifies one or more printers that you do not want the output to contain 
information about.

SELECT Statement
Names the printers whose information is contained in the output.

Examples: “Example 1: Writing Attributes to the SAS Log” on page 1874
“Example 2: Writing Attributes to a SAS Data Set” on page 1875

Syntax
SELECT printer(s);

SELECT Statement 1873



Required Argument
printer(s)

specifies one or more printers that you would like the output to contain 
information about.

Examples: PRTEXP Procedure

Example 1: Writing Attributes to the SAS Log
Features: PROC PRTEXP statement option

USESASHELP
SELECT statement

Details
This example shows you how to write the attributes that are used to define a printer 
to the SAS log.

Program
Specify the printer that you want information about, specify that only the 
SASHELP portion of the registry be searched, and write the information to the 
SAS log. The SELECT statement specifies that you want the attribute information 
that is used to define the printer PostScript to be included in the output. The 
USESASHELP option specifies that only the SASHELP registry is to be searched 
for PostScript's printer definitions. The data that is needed to define each printer is 
written to the SAS log because the OUT= option was not used to specify a SAS 
data set. 

proc prtexp usesashelp;
select postscript;
run;

1874 Chapter 53 / PRTEXP Procedure



Log
Example Code 53.1 The SAS Log After Extracting Printer Information from the SASHELP 

Portion of the Registry

379  proc prtexp usesashelp;
380  select postscript;
381  run;

NAME:     PostScript
MODEL:    PostScript Level 1 (Color)
DEVICE:   DISK
DEST:     sasprt.ps
HOSTOPT:
PROTOCOL:
TRANTAB:
DESC:     Generic PostScript Level 1 Printer
PREVIEW:  Adobe Reader
VIEWER:
PAPERSIZ:
PAPERTYP:
PAPERIN:
PAPEROUT:
RES:      300 DPI
TOP:      0.50
LEFT:     0.50
RIGHT:    0.50
BOTTOM:   0.50
UNITS:    IN
TYPEFACE: <MTmonospace>
WEIGHT:   Normal 
STYLE:    Regular 
CHARSET:  Western 
FONTSIZE: 8.00 
LRECL:    . 

Example 2: Writing Attributes to a SAS Data Set
Features: PROC PRTEXP statement option

OUT=
SELECT statement

Details
This example shows you how to create a SAS data set that contains the data that 
PROC PRTDEF would use to define the printers PCL4, PCL5, PCL5E, and PCLC.

Example 2: Writing Attributes to a SAS Data Set 1875



Program
Specify the printers that you want information about and create the PRDVTER 
data set. The SELECT statement specifies the printers PCL4, PCL5, PCL5E, and 
PCLC. The OUT= option creates the SAS data set PRDVTER, which contains the 
same attributes that are used by PROC PRTDEF to define the printers PCL4, PCL5, 
PCL5E, and PCLC. SAS will search both the SASUSER and SASHELP registries, 
because USESASHELP was not specified.

proc prtexp out=PRDVTER;
   select pcl4 pcl5 pcl5e pcl5c;
run;

proc print data=prdvter;
run;

Output
The following data set is a partial view of the Prdvter data set that contains 26 
variables and four observations.

Output 53.1 The Output Data Set for Prdvter

1876 Chapter 53 / PRTEXP Procedure



Chapter 54
PWENCODE Procedure

Overview: PWENCODE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1877
What Does the PWENCODE Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . 1877

Concepts: PWENCODE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1878
Using Encoded Passwords in SAS Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . 1878
Encoding versus Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1878
Encoding Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1879

Syntax: PWENCODE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1880
PROC PWENCODE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1880

Examples: PWENCODE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1882
Example 1: Encoding a Password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1882
Example 2: Using an Encoded Password in a SAS Program . . . . . . . . . . . . . . . 1883
Example 3: Saving an Encoded Password to the Paste Buffer . . . . . . . . . . . . . . 1885
Example 4: Specifying Method= SAS003 to Encode a Password . . . . . . . . . . . . 1886
Example 5: Specifying Method= SAS005 to Encode a Password . . . . . . . . . . . . 1887

Overview: PWENCODE Procedure

What Does the PWENCODE Procedure Do?
The PWENCODE procedure enables you to encode passwords. Encoding 
obfuscates the data. Unlike encryption, encoding is a reversible permutation of the 
data and uses no keys.

Encoded passwords can be used in place of plaintext passwords in SAS programs 
that access relational database management systems (RDBMSs) and various 
servers. Examples are SAS/CONNECT servers, SAS/SHARE servers, SAS 
Integrated Object Model (IOM) servers, SAS Metadata Servers, and more.

1877



Concepts: PWENCODE Procedure

Using Encoded Passwords in SAS Programs
When a password is encoded with PROC PWENCODE, the output string includes a 
tag that identifies the string as having been encoded. An example of a tag is 
{sas001}. The tag indicates the encoding method. SAS servers and SAS/ACCESS 
engines recognize the tag and decode the string before using it. Encoding a 
password enables you to write SAS programs without having to specify a password 
in plaintext.

Note:  PROC PWENCODE passwords can contain up to a maximum of 512 
characters, which include alphanumeric characters, spaces, and special characters. 
Data set passwords, however, must follow SAS naming rules. For information about 
SAS naming rules, see “Rules for Most SAS Names” in SAS Language Reference: 
Concepts.

The encoded password is never written to the SAS log in plain text. Instead, each 
character of the password is replaced by an X in the SAS log.

Encoding versus Encryption
Encoding techniques disguise passwords and the approach is intended to prevent 
casual, non-malicious viewing of passwords. With encoding, one character set is 
translated to another character set through some form of table lookup.

Encryption, by contrast, involves the transformation of data from one form to another 
through the use of mathematical operations and, usually, a "key" value. Encryption 
is generally more difficult to break than encoding. Several options for PROC 
PWENCODE designate encryption techniques that align with industry standards. 
These options support longer encryption keys (for example, 256-bit). Salting and 
multiple iterations are provided to the AES encryption algorithm to create passwords 
that are harder to break.

Encoding methods for PROC PWENCODE are now SAS001 – SAS005. Starting in 
SAS 9.4M5, PROC PWENCODE provides stronger password protection using the 
SAS005 method of encoding.

Password protection is an important part of your security strategy, but you should 
not rely only on password protection for all your data security needs; a determined 
and knowledgeable attacker can break passwords. Data should also be protected 
by other security controls such as file system permissions, other access control 
mechanisms, and encryption of data at rest and in transit.

1878 Chapter 54 / PWENCODE Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=p0v4w5zj1972man13kghfmmqec3s&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=p0v4w5zj1972man13kghfmmqec3s&locale=en


Encoding Methods
Starting in SAS 9.4M5,the SAS005 method for encoding passwords is added. When 
SAS005 is specified for PROC PWENCODE, a more secure 256-bit fixed key is 
generated. SAS005, like SAS004, uses a 256-bit fixed key plus a 64-bit random salt. 
However, it is hashed for additional iterations.

Table 54.1 Supported Encoding Methods

Encoding Method
Uses Data Encryption 
Algorithm

Encoded Password/key 
Description

sas001 None Uses base64 to encode 
passwords.

sas002, which can also 
be specified as sasenc

SASProprietary, which is 
included in SAS software.

Uses a 32-bit fixed key.

sas003 AES (Advanced Encryption 
Standard).

Uses a 256-bit fixed key 
plus a 16-bit random salt 
value.

sas004 AES (Advanced Encryption 
Standard).

Uses a 256-bit fixed key and 
a 64-bit random salt value.

sas005 AES (Advanced Encryption 
Standard).

Uses a 256-bit fixed key, a 
64-bit random salt value, 
and is hashed for additional 
iterations.

IMPORTANT Starting with SAS 9.4M8, SAS Foundation servers use the 
cryptographic libraries provided and installed on the operating system to 
provide encryption for data at rest and data in motion. With this change, SAS 
no longer provides the cryptographic libraries for SAS Foundation servers as 
part of the SAS Installation. AES encryption is supported using the operating 
system cryptographic libraries. Prior to SAS 9.4M8, AES encryption was 
supported as part of SAS/SECURE.

For more information, see “Cryptographic Library Support Starting with SAS 
9.4M8” in Encryption in SAS.

Note: The METHOD= option supports the SAS003, SAS004, and SAS005 values. 
Prior to SAS 9.4M8, you needed SAS/SECURE to support SAS003–SAS005. With 
SAS 9.4M8, SAS003-SAS005 are supported using the operating system’s 
cryptopgraphic libraries. SAS Proprietary encoding that supports SAS002 is 
available with all SAS software. For more information, see SAS/SECURE.

Concepts: PWENCODE Procedure 1879

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n18y1gz1edkpzln1wuwfckm2h3hb.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n18y1gz1edkpzln1wuwfckm2h3hb.htm&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=p0pguoi2rdzd4sn1jkzlr3redywg&locale=en


Syntax: PWENCODE Procedure
PROC PWENCODE IN='password' <OUT=fileref> <METHOD=encoding-method>;

Statement Task Example

PROC PWENCODE Encode a password Ex. 1, Ex. 2, 
Ex. 3, Ex. 4

PROC PWENCODE Statement
Encodes a password.

Examples: “Example 1: Encoding a Password” on page 1882
“Example 2: Using an Encoded Password in a SAS Program” on page 1883
“Example 3: Saving an Encoded Password to the Paste Buffer” on page 1885
“Example 4: Specifying Method= SAS003 to Encode a Password” on page 1886
“Example 5: Specifying Method= SAS005 to Encode a Password” on page 1887

Syntax
PROC PWENCODE IN='password' <OUT=fileref> <METHOD=encoding-method>;

Required Argument
IN='password'

specifies the password to encode. The password can contain up to a maximum 
of 512 characters, which include alphanumeric characters, spaces, and special 
characters.

Note:  Data set passwords must follow SAS naming rules. If the IN=password 
follows SAS naming rules, it can also be used for SAS data sets. For information 
about SAS naming rules, see “Rules for Most SAS Names” in SAS Language 
Reference: Concepts.

If the password contains embedded single or double quotation marks, use the 
standard SAS rules for quoting character constants. These rules can be found in 
the SAS Constants in Expressions chapter of SAS Language Reference: 
Concepts.

1880 Chapter 54 / PWENCODE Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=p0v4w5zj1972man13kghfmmqec3s&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&docsetTargetAnchor=p0v4w5zj1972man13kghfmmqec3s&locale=en


Note: Each character of the encoded password is replaced by an X when 
written to the SAS log.

See “Example 1: Encoding a Password” on page 1882

“Example 2: Using an Encoded Password in a SAS Program” on page 
1883

“Example 3: Saving an Encoded Password to the Paste Buffer” on page 
1885

Optional Arguments
OUT=fileref

specifies a fileref to which the output string is to be written. If the OUT= option is 
not specified, the output string is written to the SAS log.

Note: The global macro variable 

_PWENCODE

is set to the value that is written to the OUT= fileref or to the value that is 
displayed in the SAS log.

See “Example 2: Using an Encoded Password in a SAS Program” on page 
1883

METHOD=encoding-method
specifies the encoding method. Here are the supported values for encoding-
method.

n SAS001

n SAS002

n SAS003

n SAS004

n SAS005

The SAS003, SAS004, and SAS005 encoded passwords use a 256-bit fixed key 
plus a random salt value that is applied to the encoding method. Therefore, each 
time you use PROC PWENCODE to encode the same password, you get a 
different encoded password, because the salt values are random.

For more information about each of these encoding methods, see “Encoding 
Methods ” on page 1879.

Note: The METHOD= option supports the SAS003, SAS004, and SAS005 
values. Prior to SAS 9.4M8, you needed SAS/SECURE to provide support of 
SAS003-SAS005 encoding methogs. With SAS 9.4M8, SAS003-SAS005 are 
supported using the operating system’s cryptopgraphic libraries. SAS Proprietary 
encoding that supports SAS002 is available with all SAS software. For more 
information, see SAS/SECURE.

PROC PWENCODE Statement 1881

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=p0pguoi2rdzd4sn1jkzlr3redywg&locale=en


If the METHOD= option is omitted, the default encoding method is used. The 
default method is sas002 in most cases. SAS002 is also the default method used 
if you specify an invalid method.

When the FIPS 140-2 compliance option, -encryptfips, is specified, the encoding 
method defaults to sas003. For more information about FIPS, see “FIPS 140-2 
Standards Compliance” in Encryption in SAS.

Examples: PWENCODE Procedure

Example 1: Encoding a Password
Features: IN= argument

Details
This example shows a simple case of encoding a password and writing the encoded 
password to the SAS log.

Program
Encode the password.

proc pwencode in='my password';
run;

Log
Note that each character of the password is replaced by an X in the SAS log.

1882 Chapter 54 / PWENCODE Procedure

http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=n0pkwquwl0843kn1lroueqj54x45&locale=en
http://documentation.sas.com/?docsetId=secref&docsetVersion=9.4&docsetTarget=n0gzdro5ac3enzn18qbmaqy4liz3.htm&docsetTargetAnchor=n0pkwquwl0843kn1lroueqj54x45&locale=en


19   proc pwencode in=XXXXXXXXXXXXX;
20   run;

{SAS002}DBCC571245AD0B31433834F80BD2B99E16B3C969

NOTE: PROCEDURE PWENCODE used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds

Example 2: Using an Encoded Password in a SAS 
Program
Features: IN= argument

OUT= option

Details
This example illustrates the following:

n encoding a password and saving it to an external file

n reading the encoded password with a DATA step, storing it in a macro variable, 
and using it in a SAS/ACCESS LIBNAME statement

Program 1: Encoding the Password
filename pwfile
'external-filename';

proc pwencode in='mypass1' out=pwfile;
run;

Program Description
Declare a fileref.

filename pwfile
'external-filename';

Encode the password and write it to the external file. The OUT= option specifies 
which external fileref the encoded password is written to.

proc pwencode in='mypass1' out=pwfile;
run;

Example 2: Using an Encoded Password in a SAS Program 1883



Program 2: Using the Encoded Password
filename pwfile
'external-filename';

options symbolgen;

data _null_;
infile pwfile truncover;
input line :$50.;
call symputx('dbpass',line);
run;

libname x odbc dsn=SQLServer user=testuser password="&dbpass";

Program Description
Declare a fileref for the encoded-password file.

filename pwfile
'external-filename';

Set the SYMBOLGEN SAS system option. This step shows that the actual 
password cannot be revealed, even when the macro variable that contains the 
encoded password is resolved in the SAS log. This step is not required in order for 
the program to work properly.

options symbolgen;

Read the file and store the encoded password in a macro variable. The DATA 
step stores the encoded password in the macro variable DBPASS.

data _null_;
infile pwfile truncover;
input line :$50.;
call symputx('dbpass',line);
run;

Use the encoded password to access a DBMS. You must use double quotation 
marks (“ ”) so that the macro variable resolves properly.

libname x odbc dsn=SQLServer user=testuser password="&dbpass";

1884 Chapter 54 / PWENCODE Procedure



Log

1    filename pwfile 'external-filename';
2    options symbolgen;
3    data _null_;
4    infile pwfile truncover;
5    input line :$50.;
6    call symputx('dbpass',line);
7    run;

NOTE: The infile PWFILE is:
      Filename=external-filename
      RECFM=V,LRECL=256,File Size (bytes)=4,
      Last Modified=12Apr2012:13:23:49,
      Create Time=12Apr2012:13:23:39

NOTE: 1 record was read from the infile PWFILE.
      The minimum record length was 4.
      The maximum record length was 4.
NOTE: DATA statement used (Total process time):
      real time           0.57 seconds
      cpu time            0.04 seconds
8
9   libname x odbc
SYMBOLGEN:  Macro variable DBPASS resolves to {sas002}bXlwYXNzMQ==
9 !                dsn=SQLServer user=testuser password="&dbpass";
NOTE: Libref X was successfully assigned as follows:
      Engine:        ODBC
      Physical Name: SQLServer

Example 3: Saving an Encoded Password to the 
Paste Buffer
Features: IN= argument

OUT= option
FILENAME statement with CLIPBRD access method

DETAILS
This example saves an encoded password to the paste buffer. You can then paste 
the encoded password into another SAS program or into the password field of an 
authentication dialog box.

Program
filename clip clipbrd;

Example 3: Saving an Encoded Password to the Paste Buffer 1885



proc pwencode in='my password' out=clip;
run;

Program Description
Declare a fileref with the CLIPBRD access method. 

filename clip clipbrd;

Encode the password and save it to the paste buffer. The OUT= option saves 
the encoded password to the fileref that was declared in the previous statement.

proc pwencode in='my password' out=clip;
run;

Log
Note that each character of the password is replaced by an X in the SAS log.

24
25   filename clip clipbrd;
26     proc pwencode in=XXXXXXXXXXXXX out=clip;
27   run;

NOTE: PROCEDURE PWENCODE used (Total process time):
      real time           0.00 seconds
      cpu time            0.00 seconds

Example 4: Specifying Method= SAS003 to Encode 
a Password
Features: METHOD= argument

Details
This example shows a simple case of encoding a password using the sas003 
encoding method and writing the encoded password to the SAS log. SAS003 uses a 
16-bit salt to encode a password.

1886 Chapter 54 / PWENCODE Procedure



Program
Encode the password using SAS003. The encoded password is a 256-bit key with 
a 16 bit random salt.

proc pwencode in='mypassword' method=sas003;
run;

Log
Note that each character of the password is replaced by an X in the SAS log. 
SAS003 encoding uses AES encryption plus a 16-bit salt. Because SAS003 uses 
random salting, each time you run the following code, a different password is 
generated.

8   proc pwencode in=XXXXXXXXXXXXX method=sas003;
29   run;

{SAS003}4837B146585CED2C9FED14A3C946D68E4389

NOTE: PROCEDURE PWENCODE used (Total process time):
      real time           0.00 seconds
      cpu time            0.00 seconds

Example 5: Specifying Method= SAS005 to Encode 
a Password
Features: METHOD= argument

Details
This example shows a simple case of encoding a password using the sas005 
encoding method and writing the encoded password to the SAS log. SAS005 uses a 
256-bit fixed key that uses a 64-bit random salt to encode the password.

Program
Encode the password using SAS005.

proc pwencode in='mypassword' method=sas005;
run;

Example 5: Specifying Method= SAS005 to Encode a Password 1887



Log
Note that each character of the password is replaced by an X in the SAS log. 
SAS005 encoding uses AES encryption with a 256-bit fixed key and a 64-bit random 
salt value. SAS005 increases security for stored passwords by using the SHA-256 
hashing algorithm and is hashed for additional iterations. Because SAS005 uses 
random salting, each time you run the following code, a different password is 
generated.

230  proc pwencode in=XXXXXXXXXXXX method=sas005;
231  run;

{SAS005}ADD8AB7108595A7D1A69190D78CDFE6145C1EB849CC7A43D

NOTE: PROCEDURE PWENCODE used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds

1888 Chapter 54 / PWENCODE Procedure



Chapter 55
QDEVICE Procedure

Overview: QDEVICE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1889
What Does the QDEVICE Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1890

Concepts: QDEVICE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1890
Reports for Windows Operating Environments . . . . . . . . . . . . . . . . . . . . . . . . . . 1890

Syntax: QDEVICE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1891
PROC QDEVICE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1891
DEVICE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1895
PRINTER Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1896
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1897

Usage: QDEVICE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1908
Variables Common to All Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1908
Create a GENERAL Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1908
Create a FONT Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1912
Create a DEVOPTION Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1914
Create a LINESTYLE Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1918
Create a RECTANGLE Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1919
Create a SYMBOL Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1921

Examples: QDEVICE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1922
Example 1: Generate a Report for the Default Display Device . . . . . . . . . . . . . . 1922
Example 2: Generate a General Report for All Devices . . . . . . . . . . . . . . . . . . . . 1923
Example 3: Generate a Report for SAS/GRAPH Device Drivers 

and Universal Printers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1925
Example 4: Generate a Report for the Default Printer . . . . . . . . . . . . . . . . . . . . . 1926
Example 5: Generate a Font Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1928
Example 6: Generate a Device Option Report . . . . . . . . . . . . . . . . . . . . . . . . . . . 1932
Example 7: Specify a User Library and Catalog for a Report . . . . . . . . . . . . . . . 1934

1889



Overview: QDEVICE Procedure

What Does the QDEVICE Procedure Do?
The QDEVICE procedure produces reports about graphics devices and universal 
printers. You can use the information in these reports to determine the best device 
or printer to use for a specific application.

Six different reports are available. These reports summarize information such as 
color support, default output sizes, margin sizes, resolution, supported fonts, 
hardware symbols, hardware fill types, hardware line styles, and device options.

You can send the output of this procedure to the SAS log or to an output SAS data 
set.

Concepts: QDEVICE Procedure

Reports for Windows Operating Environments
By default, SAS starts on Windows using the NOUNIVERSALPRINT (NOUPRINT) 
system option in order to use Windows printing. The SYSPRINT= system option 
determines the default Windows printer. Because printers on Windows are 
associated with a SAS printer interface device, reports that you create for the default 
Windows printer have a device name of one of the following SAS printer interface 
devices:

n WINPRTC (color)

n WINPRTG (gray scale)

n WINPRTM (monochrome)

If SAS starts with Universal Printing active on Windows, the default printer report is 
for the default SAS universal printer and not a Windows printer.

See “Example 4: Generate a Report for the Default Printer” on page 1926 for 
example reports.

1890 Chapter 55 / QDEVICE Procedure



Syntax: QDEVICE Procedure
Default: If you do not specify a report to create, a printer, or a device, the procedure generates a 

GENERAL report for the default display device if you are running SAS using the 
windowing environment, or the default universal printer in other modes.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Note: You can specify more than one DEVICE, PRINTER, or VAR statement. Statements are 
processed in the order in which they are specified.

PROC QDEVICE
<REPORT=GENERAL | FONT | DEVOPTION | LINESTYLE | RECTANGLE | 
SYMBOL>
<OUT=SAS-data-set>
<CATALOG=catalog-name>
<DEVLOC=GDEVICEn | SASHELP | _ALL_ | libref>
<REGISTRY=SASHELP | SASUSER>
<SUPPORT=YES | NO | ALL>
<UNITS=IN | CM;>

DEVICE <device-name(s)> <_ALL_> <_HTML_> <_LISTING_> <_RTF_>;
PRINTER <printer-name(s)> <_ALL_> <_PCL_> <_PDF_> <_PRINTER_> 

<_PS_>;
VAR variable-1 <variable-2 …>;

Statement Task Example

PROC QDEVICE Specify an (optional) output data set, which 
report to generate, which locations to search, 
whether to list supported or non-supported 
features, and sizing information

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5, Ex. 6, 
Ex. 7

DEVICE Specify which SAS/GRAPH devices to 
generate a report for

Ex. 2, Ex. 7

PRINTER Specify which universal printers to generate a 
report for

Ex. 6, Ex. 3

VAR Specify the information (variables) to include in 
the generated reports

Ex. 5

PROC QDEVICE Statement
Controls the input data that is examined, the contents of a report, and the type of output to create.

PROC QDEVICE Statement 1891



Syntax
PROC QDEVICE
<REPORT=GENERAL | FONT | DEVOPTION | LINESTYLE | RECTANGLE | 
SYMBOL>
<OUT=SAS-data-set>
<CATALOG=catalog-name>
<DEVLOC=GDEVICEn | SASHELP | _ALL_ | libref>
<REGISTRY=SASHELP | SASUSER>
<SUPPORT=YES | NO | ALL>
<UNITS=IN | CM>;

Summary of Optional Arguments
CATALOG=catalog-name

specifies the name of a SAS device catalog to search for a device.
DEVLOC=GDEVICEn | SASHELP | _ALL_ | libref

specifies the library or libraries where the device catalog is located.
OUT=SAS-data-set

specifies an output SAS data set for the report.
REGISTRY=SASHELP | SASUSER

specifies which section of the SAS registry to search when querying a 
universal printer.

REPORT=DEVOPTION | FONT | GENERAL | LINESTYLE | RECTANGLE | 
SYMBOL

specifies the type of report that you want to generate.
SUPPORT=YES | NO | ALL

specifies whether to report only supported features, only unsupported 
features, or all features.

UNITS=IN | CM
specifies whether the values for the certain variables are reported in 
inches (IN) or centimeters (CM) in the GENERAL report.

Optional Arguments
CATALOG=catalog-name

specifies the name of a SAS device catalog to search for a device. 

Aliases C=

CAT=

Default DEVICES

Interaction The CATALOG= option works with the DEVLOC= option. When you 
specify the CATALOG= option, SAS looks in the library that is 
specified by the DEVLOC= option (for example, 
sashelp.mycatalog).

Example “Example 7: Specify a User Library and Catalog for a Report” on 
page 1934

1892 Chapter 55 / QDEVICE Procedure



DEVLOC=GDEVICEn | SASHELP | _ALL_ | libref
specifies the library or libraries where the device catalog is located. You can 
specify these libraries:

GDEVICEn
specifies to search one of the SAS/GRAPH device libraries for a device. n 
can be 0–9.

SASHELP
specifies to search the Sashelp library for a device.

_ALL_
specifies to search the libraries Gdevice0 – Gdevice9 and the Sashelp library, 
in this order, for a device. All occurrences of a device from any of these 
libraries are reported.

libref
specifies a valid SAS library to search.

Defaults If you do not specify the DEVLOC= option, libraries are searched in 
the following order:
1. Gdevice0–Gdevice9
2. Sashelp

The first occurrence of the specified device is reported unless you 
specify DEVLOC=_ALL_.

Interaction The DEVLOC= option works with the CATALOG= option. When you 
specify the CATALOG= option, SAS looks in the library that is 
specified by the DEVLOC= option (for example, 
sashelp.mycatalog).

Example “Example 7: Specify a User Library and Catalog for a Report” on 
page 1934

OUT=SAS-data-set
specifies an output SAS data set for the report.

Default SAS Log

REGISTRY=SASHELP | SASUSER
specifies which section of the SAS registry to search when querying a universal 
printer.

SASHELP
search the SASHELP section of the registry.

SASUSER
search the SASUSER section of the registry.

Alias REG

Default SASHELP and SASUSER

REPORT=DEVOPTION | FONT | GENERAL | LINESTYLE | RECTANGLE | 
SYMBOL

specifies the type of report that you want to generate. You can request only one 
type of report. See “Valid Variables for All Reports” on page 1898 for the 
descriptions of the variables that are included in each report.

PROC QDEVICE Statement 1893



DEVOPTION
produces a report of the hardware device options supported by the specified 
device.

Restriction This report is unavailable for universal printers.

FONT
produces a report of all system and device-resident fonts supported by the 
specified device or printer.

See See “SAS/GRAPH, System, and Device-Resident Fonts” in 
SAS/GRAPH: Reference for a description of font categories.

GENERAL
produces a report of general information about the specified device or printer. 
This report includes information such as destination, margin sizes, default 
font information, resolution, color information, and size by pixels. This is the 
default report.

LINESTYLE
produces a report of the hardware line styles supported by the specified 
device.

Restriction This report is unavailable for universal printers.

RECTANGLE
produces a report of the hardware fill types supported by the specified 
device.

Restriction This report is unavailable for universal printers.

SYMBOL
produces a report of the hardware symbols supported by the specified 
device.

Restriction This report is unavailable for universal printers.

Default GENERAL

See See “Valid Variables for All Reports” on page 1898 for the descriptions 
of the variables that are included in each report.

SUPPORT=YES | NO | ALL
specifies whether to report only supported features, only unsupported features, 
or all features. 

YES
reports only hardware features and options that are supported.

NO
reports only the hardware features and options that are not supported.

ALL
reports both supported and unsupported hardware features and options.

Default YES

Restriction This option applies only to devices when producing a DEVOPTION, 
LINESTYLE, RECTANGLE, or SYMBOL report.

1894 Chapter 55 / QDEVICE Procedure

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0rokthvurgqlfn18j2px8hrjt7x.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0rokthvurgqlfn18j2px8hrjt7x.htm&locale=en


UNITS=IN | CM
specifies whether the values for the certain variables are reported in inches (IN) 
or centimeters (CM) in the GENERAL report.

The HEIGHT, WIDTH, LEFT, LMIN, RIGHT, RMIN, BOTTOM, BMIN, TOP, TMIN, 
HRES, and VRES variables are reported in inches or centimeters. HRES and 
VRES values are reported as pixels-per-inch or pixels-per-centimeter.

Default IN

Restriction This option applies only when producing a GENERAL report.

DEVICE Statement
Specifies which SAS/GRAPH devices to generate a report for.

Requirement: You must specify at least one device name, _ALL_, _HTML_, _LISTING_, or _RTF_.

Syntax
DEVICE <device-name(s)> <_ALL_> <_HTML_> <_LISTING_> <_RTF_>;

Optional Arguments
device-name(s)

specifies the device for which you want to generate a report. Separate device 
names with a blank space. Enclose device names that contain spaces in 
quotation marks. You can use the wildcard characters * and ? to report all 
devices with similar names.

*
* represents any number of characters in that position of the device name.

Requirement Device names that contain wildcard characters must be 
enclosed in quotation marks.

Note You can specify the * and ? wildcard characters in the same 
device name.

Example 'svg*'

Example “Example 3: Generate a Report for SAS/GRAPH Device 
Drivers and Universal Printers” on page 1925

?
? represents one character in the device name. You can specify multiple 
consecutive ? characters in the device name.

Requirement Device names that contain wildcard characters must be 
enclosed in quotation marks.

DEVICE Statement 1895



Note You can specify the * and ? wildcard characters in the same 
device name.

Example 'tiff?300'

_ALL_
generates reports for all devices.

_HTML_
determines the default device that is used by the ODS HTML destination and 
generates a report for that device. The device is based on the default HTML 
version that is assigned in the ODS key of the SAS registry.

_LISTING_
determines the default device that is used by the ODS Listing destination and 
generates a report for that device. The default value is a host–specific display 
device.

_RTF_
determines the default device that is used by the ODS RTF destination and 
generates a report for that device.

PRINTER Statement
Specifies which universal printers to generate a report for.

Requirement: You must specify at least one printer name, _ALL_, _PCL_, _PDF_, _PRINTER_, or 
_PS_.

Syntax
PRINTER <printer-name(s)> <_ALL_> <_PCL_> <_PDF_> <_PRINTER_> <_PS_>;

Optional Arguments
printer-name(s)

specifies the universal printers for which you want to generate a report. If the 
printer name contains spaces, enclose the printer name in quotation marks. 
Separate printer names with a blank space. You can use the wildcard characters 
* and ? to report all printers with similar names.

*
indicates to report all printers that match any number of characters in the 
position of the * in the printer name.

Requirement Printer names that contain wildcard characters must be 
enclosed in quotation marks.

Note You can specify the * and ? wildcard characters in the same 
printer name.

Example 'pcl*' reports on the printers pcl4, pcl5, pcl5c, and pcl5e

1896 Chapter 55 / QDEVICE Procedure



?
indicates to report all printers that match the printer name, where the 
character in the ? position can be any character. You can use multiple ? 
characters in printer-name to represent the same number of characters in the 
same position in the printer name.

Requirement Printer names that contain wildcard characters must be 
enclosed in quotation marks.

Note You can specify the * and ? wildcard characters in the same 
printer name.

Example 'tiff?' reports on the printers tiffa and tiffk. It does not report on 
the printer tiff because the tiff printer is only four characters.

Example “Example 3: Generate a Report for SAS/GRAPH Device 
Drivers and Universal Printers” on page 1925

_ALL_
generates reports for all universal printers.

_PCL_
determines the default printer that is used by the ODS PCL destination and 
generates a report for that printer.

_PDF_
determines the default printer that is used by the ODS PDF destination and 
generates a report for that printer.

_PRINTER_
determines the default printer that is used by the ODS PRINTER destination and 
generates a report for that printer.

Windows 
specifics

By default, SAS uses Windows printing and not Universal Printing. 
When SAS uses Windows printing, the report that is generated 
when you specify the _PRINTER_ argument has information for the 
SAS printer interface device that is associated with the default 
Windows printer. The default Windows printer is specified by the 
SYSPRINT= system option. The SAS printer interface devices are 
WINPRTC (color), WINPRTG (gray scale), or WINPRTM 
(monochrome). The report displays the printer interface device in 
the Name field and the printer name in the Description field.

_PS_
determines the default printer that is used by the ODS PS destination and 
generates a report for that printer.

VAR Statement
Specifies which variables to include in a report. The order of the variables in the report is determined by the 
order in which they are specified in the VAR statement.

Default: If you do not specify a VAR statement, all of the variables for the report are included in a 
default order.

VAR Statement 1897



Tip: If you specify the VAR statement, you must specify at least one variable. Otherwise, the 
statement is ignored.

Syntax
VAR variable-1 <variable-2 …>;

Valid Variables for All Reports
DESC

displays the default description of the device or printer.

LOCATION
for the device entry that was found, displays the physical location of the 
Gdevice0-Gdevice9 library, the Sashelp library, or the library that is specified by 
the DEVLOC= option. For universal printers, this variable displays the SAS 
registry (SASHELP or SASUSER) where the printer was found.

NAME
displays the name of the device or printer.

TYPE
displays the type of device or printer. Here are the types of devices and printers:

n Graph Device

n Printer Interface Device

n Shortcut Device

n System Display

n System Metafile

n Universal Previewer

n Universal Printer

See “Device Categories and Modifying Default Output Attributes” in 
SAS/GRAPH: Reference

DEVOPTION Report Variables
For more information, see “Create a DEVOPTION Report” on page 1914.

BIT
displays the bit position in the DEVOPTS string for the corresponding device 
option.

See “DEVOPTS Device Parameter” in SAS/GRAPH: Reference

BITSTRING
displays the bit pattern of the corresponding device option.

See “DEVOPTS Device Parameter” in SAS/GRAPH: Reference

1898 Chapter 55 / QDEVICE Procedure

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n18aijrbx8bejln1tmll85geec1n.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n18aijrbx8bejln1tmll85geec1n.htm&locale=en


DESC
displays the default description of the device or printer.

LOCATION
for the device entry that was found, displays the physical location of the 
Gdevice0-Gdevice9 library, the Sashelp library, or the library that is specified by 
the DEVLOC= option.

NAME
displays the name of the device or printer.

ODESC
displays the descriptions of the hardware options in effect for the device.

OPTION
displays the names of the hardware options in effect for the device.

SUPPORT
displays the device options.

Interaction The value of the SUPPORT variable is affected by the SUPPORT= 
option in the PROC QDEVICE statement. If SUPPORT=YES, the 
report shows the supported device options. If SUPPORT=NO, the 
report shows device options that are not supported. If 
SUPPORT=ALL, the report shows all supported and non-supported 
device options.

TYPE
displays the type of device or printer.

Here are the types of devices and printers:

n Graph Device

n Printer Interface Device

n Shortcut Device

n System Display

n System Metafile

See “Device Categories and Modifying Default Output Attributes” in 
SAS/GRAPH: Reference

FONT Report Variables
For more information, see “Create a FONT Report” on page 1912.

ALIAS
reports an alternate name for a font that is registered by the FONTREG 
procedure.

DESC
displays the default description of the device or printer.

FONT
displays the name of the default font.

See “Default Fonts” in SAS/GRAPH: Reference

“Variable Labels in a FONT Report” on page 1913

VAR Statement 1899

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1oghag6ixnyt4n1csuhxansvwph.htm&locale=en


FSTYLE
displays the font style, such as Roman or Italic, for each font and font weight, in 
an output data set.

Restriction When the report output is directed to the SAS log, the FONT report 
displays only font family names, such as Courier, Helvetica, Times, 
and so on. The specific font style is not reported.

Note If the font name is acquired from a CHARREC list in a device entry, 
the style is not available. See “CHARREC Device Parameter” in 
SAS/GRAPH: Reference for more information.

See “Variable Labels in a FONT Report” on page 1913

FTYPE
displays the type of font, such as Printer Resident, System, or Software.

Note The values for the FTYPE variable in the output data set are Printer 
Resident, System, or Software. The value Software appears only in a 
FONT report for a SAS/GRAPH device that has hardware font support 
disabled.

FWEIGHT
displays the font weight, such as Normal or Bold, for each font and font style, in 
an output data set.

Restriction When the report output is directed to the SAS log, the FONT report 
displays only font family names, such as Courier, Helvetica, Times, 
and so on. The specific font weight is not reported.

Note If the font name is acquired from a CHARREC list in a device entry, 
the weight is not available. See “CHARREC Device Parameter” in 
SAS/GRAPH: Reference for more information.

FVERSION
specifies the font version.

Restriction When the report output is directed to the SAS log, the FONT report 
displays only font family names, such as Courier, Helvetica, Times, 
and so on. The specific font version is not reported.

LOCATION
for the device entry that was found, displays the physical location of the 
Gdevice0-Gdevice9 library, the Sashelp library, or the library that is specified by 
the DEVLOC= option. For universal printers, this variable displays the SAS 
registry (SASHELP or SASUSER) where the printer was found.

NAME
displays the name of the device or printer.

TYPE
displays the type of device or printer. Here are the types of devices and printers:

n Graph Device

n Printer Interface Device

n Shortcut Device

n System Display

1900 Chapter 55 / QDEVICE Procedure

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p1uquvuiazftlsn1iebxbtw0zwyl.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p1uquvuiazftlsn1iebxbtw0zwyl.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p1uquvuiazftlsn1iebxbtw0zwyl.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p1uquvuiazftlsn1iebxbtw0zwyl.htm&locale=en


n System Metafile

n Universal Previewer

n Universal Printer

See “Device Categories and Modifying Default Output Attributes” in 
SAS/GRAPH: Reference

GENERAL Report Variables
For more information, see “Create a GENERAL Report” on page 1908.

ALIAS
reports an alternate name for a font that is registered by the FONTREG 
procedure.

ANIMATION
specifies whether animation is active, enabled, disabled, or unsupported for a 
Universal Printer:

Active indicates that the graphs in the ODS HTML output are 
grouped together in the animation. Animate=Start and 
Animate=Stop are ignored.

Enabled indicates that animation is supported. Animate=Start and 
Animate=Stop must be specified to start and stop the 
animation.

Disabled indicates that animation is supported but has been disabled 
for the device or printer.

Unsupported indicates that animation is not supported for the device or 
printer.

BMIN
displays the minimum size of the bottom margin.

BOTTOM
displays the current size of bottom margin.

CLRSPACE
displays the type of color support (color space) such as RGB, RGBA, CMYK, 
HLS, and so on.

See “Color-Naming Schemes” in SAS/GRAPH: Reference

COLS
displays the number of horizontal columns in the output.

See “Cells” in SAS/GRAPH: Reference

COMPRESSION
indicates the condition under which compression is used. Compression can 
always be in effect, in effect only when specified by a compression option, or 
never used by the device or printer.

Here are the compression values on the report:

Always indicates that compression is always in effect.

VAR Statement 1901

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0edl20cvxxmm9n1i9ht3n21eict.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0ozsmwcdeem76n1p89pfxauucbq.htm&docsetTargetAnchor=p0py317mq4qp8nn1ihsh68m692ja&locale=en


Option indicates that compression is specified by the 
UPRINTCOMPRESSION system option or the COMPRESS= 
option in the ODS PRINTER statement.

Never specifies that compression is never used by the device or printer.

COMPMETHOD
indicates the compression method that is used if compression is supported by 
device or printer.

Note When Compression is Never and no compression is available, the 
Compression Method value does not appear in the SAS log.

DESC
displays the default description of the device or printer.

DEST
displays the default destination of the device or universal printer if the device or 
printer does not send output directly to a printer or a display device. If the device 
sends output directly to a printer or a display device, the value of DEST is blank.

A destination can have a blank value when output is going to a monitor, or on 
Windows, the output is going to a printer.

EMBEDDING
indicates whether font embedding is supported.

ALWAYS Font embedding is always in effect for the device or printer.

OPTION The FONTEMBEDDING system option controls whether font 
embedding is supported.

NEVER Font embedding is not supported.

FHEIGHT
displays the height, in the respective units, of the default font.

Note If the font name is acquired from a CHARREC list in a device entry, the 
height is not available. See “CHARREC Device Parameter” in 
SAS/GRAPH: Reference for more information.

FONT
displays the name of the default font.

See “Default Fonts” in SAS/GRAPH: Reference

FORMAT
displays the output format type (for example, EMF, EMF Plus, EMF Dual, 
PostScript, GIF, Host Display, and so on).

See “Commonly Used Devices” in SAS/GRAPH: Reference

FSTYLE
displays the style of the default font (for example, Roman, Regular, and so on).

Interaction The results of specifying the FSTYLE variable in a GENERAL report 
where the output is directed to the SAS log differs from the results 
that you get when you specify the FSTYLE variable for a FONTS 
report. In a GENERAL report, the font style is reported to the SAS 
log. In a FONT report, the SAS log report displays only the font 
family names. The specific font style is not reported.

1902 Chapter 55 / QDEVICE Procedure

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p1uquvuiazftlsn1iebxbtw0zwyl.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p1uquvuiazftlsn1iebxbtw0zwyl.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1oghag6ixnyt4n1csuhxansvwph.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p1ueh063o9oncin1kiez15aqy6rf.htm&locale=en


Note If the font name is acquired from a CHARREC list in a device entry, 
the style is not available. See “CHARREC Device Parameter” in 
SAS/GRAPH: Reference for more information.

FWEIGHT
displays the weight of the default font (for example, Normal, Medium, and so on).

Interaction The results of specifying the FWEIGHT variable in a GENERAL 
report where the output is directed to the SAS log differs from the 
results that you get when you specify the FWEIGHT variable for a 
FONTS report. In a GENERAL report, the font weight is reported to 
the SAS log. In a FONT report, the SAS log report displays only the 
font family names. The specific font weights are not reported.

Note If the font name is acquired from a CHARREC list in a device entry, 
the weight is not available. See “CHARREC Device Parameter” in 
SAS/GRAPH: Reference for more information.

FVERSION
specifies the version of the font.

HEIGHT
displays the default vertical height of output (in UNITS) sent to the device or 
printer.

HRES
displays the horizontal resolution (pixels per UNIT) of output sent to the device or 
printer. Horizontal resolution is calculated by the formula HRES=XPIXELS/WIDTH.

Interaction If either the HRES or VRES variables are specified in the VAR 
statement, the horizontal and vertical resolutions are displayed 
together in the SAS log using the label XxY Resolution. In an output 
data set, HRES and VRES are reported separately.

See “Using the XPIXELS=, XMAX=, YPIXELS=, and YMAX= Graphics 
Options to Set the Resolution for the Traditional Devices” in 
SAS/GRAPH: Reference

IOTYPE
displays the type of input/output used by the device or printer (for example, 
DISK, PRINTER, PIPE, GTERM, and so on).

See “FILENAME” in SAS Global Statements: Reference and “DEVTYPE 
Device Parameter” in SAS/GRAPH: Reference

LEFT
displays the size of the left margin of output.

LMIN
displays the minimum left margin.

LOCATION
for the device entry that was found, displays the physical location of the 
Gdevice0-Gdevice9 library, the Sashelp library, or the library that is specified by 
the DEVLOC= option. For universal printers, this variable displays the SAS 
registry (SASHELP or SASUSER) where the printer was found.

MAXCOLORS
displays the maximum number of colors that are supported by the device or 
printer.

VAR Statement 1903

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p1uquvuiazftlsn1iebxbtw0zwyl.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p1uquvuiazftlsn1iebxbtw0zwyl.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p1uquvuiazftlsn1iebxbtw0zwyl.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p1uquvuiazftlsn1iebxbtw0zwyl.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19kyqdfrtxqwcn10x79xxtv18xh.htm&docsetTargetAnchor=p0pnidugz9f0xmn17v08ud9ruoj4&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19kyqdfrtxqwcn10x79xxtv18xh.htm&docsetTargetAnchor=p0pnidugz9f0xmn17v08ud9ruoj4&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19kyqdfrtxqwcn10x79xxtv18xh.htm&docsetTargetAnchor=p0pnidugz9f0xmn17v08ud9ruoj4&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0u40cnfrmwzcln1ms1pz46odlh0.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0u40cnfrmwzcln1ms1pz46odlh0.htm&locale=en


See “Maximum Number of Colors Displayed on a Device” in SAS/GRAPH: 
Reference

MODULE
specifies the name of the device driver module.

NAME
displays the name of the device or printer.

PROTOTYPE
displays the prototype (model) that was used to define the universal printer.

See “What Is Universal Printing?” in SAS 9.4 Universal Printing

RIGHT
displays the size of the right margin.

RMIN
displays the minimum size of the right margin.

ROWS
displays the number of vertical rows in the output.

See “Cells” in SAS/GRAPH: Reference

TMIN
displays the minimum top margin of output.

TOP
displays the size of the top margin.

TYPE
displays the type of device or printer. Here are the types of devices and printers:

n Graph Device

n Printer Interface Device

n Shortcut Device

n System Display

n System Metafile

n Universal Previewer

n Universal Printer

See “Device Categories and Modifying Default Output Attributes” in 
SAS/GRAPH: Reference

UNITS
displays the units (IN for inches or CM for centimeters) in which sizes are 
displayed. In the SAS log, the value of UNITS appears respectively, as inches or 
centimeters. In an output data set, the value of UNITS appears as IN or CM.

Interaction If the VAR statement does not specify any variables for size, 
margins, or resolution, the SAS log shows the units that are used to 
measure size, margins or resolution. Here is an example:

 Name: EMF
Units: inches

1904 Chapter 55 / QDEVICE Procedure

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n089voiecrvtcfn1outxa6ta2l7x.htm&docsetTargetAnchor=p16hlp2atk1dpln16w20aj639slm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n089voiecrvtcfn1outxa6ta2l7x.htm&docsetTargetAnchor=p16hlp2atk1dpln16w20aj639slm&locale=en
http://documentation.sas.com/?docsetId=uprint&docsetVersion=3.5&docsetTarget=n0bq5rdk6l5wk9n1p6w9ilfia9vv.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0ozsmwcdeem76n1p89pfxauucbq.htm&docsetTargetAnchor=p0py317mq4qp8nn1ihsh68m692ja&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en


If the VAR statement specifies any variables for size, margins, or 
resolution, the SAS log shows the units with the value. Here is an 
example:

XxY Resolution: 96x96 pixels per inch

VISUAL
displays the visual color type (for example, Indexed Color, Direct Color, True 
Color, Monochrome, or Gray Scale).

VRES
displays the vertical resolution (pixels per UNIT) of output sent to the device or 
printer.

Vertical resolution is calculated by the formula VRES=YPIXELS/HEIGHT.

Interaction If either the HRES or VRES variables are specified in the VAR 
statement, the horizontal and vertical resolutions are displayed 
together in the SAS log using the label XxY Resolution. In an output 
data set, HRES and VRES are reported separately.

See “Using the XPIXELS=, XMAX=, YPIXELS=, and YMAX= Graphics 
Options to Set the Resolution for the Traditional Devices” in 
SAS/GRAPH: Reference

WIDTH
displays the width of output (in UNITS) sent to device or printer.

XPIXELS
displays the width of the output in pixels.

See “XPIXELS Device Parameter and Graphics Option” in SAS/GRAPH: 
Reference and “Using the XPIXELS=, XMAX=, YPIXELS=, and YMAX= 
Graphics Options to Set the Resolution for the Traditional Devices” in 
SAS/GRAPH: Reference

YPIXELS
displays the height of the output in pixels.

See “YPIXELS Device Parameter and Graphics Option” in SAS/GRAPH: 
Reference and “Using the XPIXELS=, XMAX=, YPIXELS=, and YMAX= 
Graphics Options to Set the Resolution for the Traditional Devices” in 
SAS/GRAPH: Reference

LINESTYLE Report Variables
For more information, see “Create a LINESTYLE Report” on page 1918.

DESC
displays the default description of the device or printer.

LINE
displays the line styles supported by the device or printer.

Interaction In a SAS log LINESTYLE report, the LINE and SUPPORT variables 
are reported together. If either the LINE variable or the SUPPORT 
variable is specified in the VAR statement, the line styles are 
reported using the Supported Line Styles or Unsupported Line 
Styles variable labels.

VAR Statement 1905

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19kyqdfrtxqwcn10x79xxtv18xh.htm&docsetTargetAnchor=p0pnidugz9f0xmn17v08ud9ruoj4&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19kyqdfrtxqwcn10x79xxtv18xh.htm&docsetTargetAnchor=p0pnidugz9f0xmn17v08ud9ruoj4&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19kyqdfrtxqwcn10x79xxtv18xh.htm&docsetTargetAnchor=p0pnidugz9f0xmn17v08ud9ruoj4&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n0mwck1ige61ksn1u0ino33kq7t5.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n0mwck1ige61ksn1u0ino33kq7t5.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19kyqdfrtxqwcn10x79xxtv18xh.htm&docsetTargetAnchor=p0pnidugz9f0xmn17v08ud9ruoj4&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19kyqdfrtxqwcn10x79xxtv18xh.htm&docsetTargetAnchor=p0pnidugz9f0xmn17v08ud9ruoj4&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19kyqdfrtxqwcn10x79xxtv18xh.htm&docsetTargetAnchor=p0pnidugz9f0xmn17v08ud9ruoj4&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0ksp3megb2h2qn15fci892vi0t2.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0ksp3megb2h2qn15fci892vi0t2.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19kyqdfrtxqwcn10x79xxtv18xh.htm&docsetTargetAnchor=p0pnidugz9f0xmn17v08ud9ruoj4&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19kyqdfrtxqwcn10x79xxtv18xh.htm&docsetTargetAnchor=p0pnidugz9f0xmn17v08ud9ruoj4&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n19kyqdfrtxqwcn10x79xxtv18xh.htm&docsetTargetAnchor=p0pnidugz9f0xmn17v08ud9ruoj4&locale=en


See “Line Types” in SAS/GRAPH: Reference

LOCATION
displays the physical location of the Gdevice0-Device9 or Sashelp library that 
contains the Devices catalog where the device entry was found or the library that 
is specified by the DEVLOC= option.

NAME
displays the name of the device.

SUPPORT
displays the device lines styles.

Interaction The value of the SUPPORT variable is affected by the SUPPORT= 
option in the PROC QDEVICE statement. If SUPPORT=YES, the 
report shows the supported line styles. If SUPPORT=NO, the report 
shows line styles that are not supported. If SUPPORT=ALL, the 
report shows all supported and non-supported line styles.

TYPE
displays the type of device or printer:

n Graph Device

n Printer Interface Device

n Shortcut Device

n System Display

n System Metafile

See “Device Categories and Modifying Default Output Attributes” in 
SAS/GRAPH: Reference

RECTANGLE Report Variables
For more information, see “Create a RECTANGLE Report” on page 1919.

DESC
displays the default description of the device or printer.

FILL
displays the hardware fill types that are supported by the device.

Interaction In a SAS log RECTANGLE report, the FILL and SUPPORT 
variables are reported together. If either the FILL variable or the 
SUPPORT variable is specified in the VAR statement, the fill names 
are reported using either the label Supported Hardware Fills or the 
label Unsupported Hardware Fills.

See “PATTERN Statement” in SAS/GRAPH: Reference

LOCATION
displays the physical location of the Gdevice0-Device9 or Sashelp library that 
contains the Devices catalog where the device entry was found or the library that 
is specified by the DEVLOC= option.

NAME
displays the name of the device.

1906 Chapter 55 / QDEVICE Procedure

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n0c0j84n1e2jz9n1bhkn41o3v0d6.htm&docsetTargetAnchor=p13m09p8zlb3p0n1xkaxu66s67jx&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p02daopdgx5yh4n1vmffk4ud4697.htm&locale=en


SUPPORT
displays the hardware fills.

Interaction The value of the SUPPORT variable is affected by the SUPPORT= 
option in the PROC QDEVICE statement. If SUPPORT=YES, the 
report shows the supported hardware fills. If SUPPORT=NO, the 
report shows hardware fills that are not supported. If 
SUPPORT=ALL, the report shows all supported and non-supported 
hardware fills.

TYPE
displays the type of device or printer.

Here is a list of types:

n Graph Device

n Printer Interface Device

n Shortcut Device

n System Display

n System Metafile

See “Device Categories and Modifying Default Output Attributes” in 
SAS/GRAPH: Reference

SYMBOL Report Variables
For more information, see “Create a SYMBOL Report” on page 1921.

DESC
displays the default description of the device or printer.

LOCATION
displays the physical location of the Gdevice0-Device9 or Sashelp library that 
contains the Devices catalog where the device entry was found or the library that 
is specified by the DEVLOC= option.

NAME
displays the name of the device.

SUPPORT
displays the device or printer symbols.

Interaction The value of the SUPPORT variable is affected by the SUPPORT= 
option in the PROC QDEVICE statement. If SUPPORT=YES, the 
report shows the supported symbols. If SUPPORT=NO, the report 
shows symbols that are not supported. If SUPPORT=ALL, the 
report shows all supported and non-supported symbols.

SYMBOL
specifies the name of hardware symbols.

Interaction In a SAS log SYMBOL report, if either the SYMBOL or SUPPORT 
variable is specified in the VAR statement, symbol names are 
reported using the Supported Hardware Symbols label or 
Unsupported Hardware Symbols label.

VAR Statement 1907

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en


See “SYMBOL, NOSYMBOL Device Parameters and Graphics Options” 
in SAS/GRAPH: Reference and “SYMBOLS Device Parameter” in 
SAS/GRAPH: Reference

TYPE
displays the type of device or printer.

Here is a list of types:

n Graph Device

n Printer Interface Device

n Shortcut Device

n System Display

n System Metafile

See “Device Categories and Modifying Default Output Attributes” in 
SAS/GRAPH: Reference

Usage: QDEVICE Procedure

Variables Common to All Reports
You can use the following variables in any of the reports:

n NAME

n DESC

n TYPE

n LOCATION

For a description of the variables, see “Valid Variables for All Reports” on page 
1898.

Create a GENERAL Report
The GENERAL report produces a report of general information about the specified 
device or printer. This information includes margin sizes, default font information, 
resolution, and color information.

1908 Chapter 55 / QDEVICE Procedure

http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1goq28h4bzcakn1hz3noe4wwcim.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1goq28h4bzcakn1hz3noe4wwcim.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0az2q6lsmvwyhn162ewf54is0xa.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=p0az2q6lsmvwyhn162ewf54is0xa.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en
http://documentation.sas.com/?docsetId=graphref&docsetVersion=9.4&docsetTarget=n1e1vv2dbf44drn13mmqmlnajyyp.htm&locale=en


About GENERAL Report Variables
For a description of the variables, see “GENERAL Report Variables” on page 1901.

The following table lists the variables that you can use in a GENERAL report as well 
as the labels for the variables that are used either in the SAS log or the output data 
set. If you do not specify the VAR statement, the variables appear in the order in 
which they appear in the table.

Variable SAS Log Label Output Data Set Label

NAME Name NAME OF DEVICE OR 
PRINTER

DESC Description DESCRIPTION OF 
DEVICE OR PRINTER

MODULE Module DRIVER MODULE

TYPE Type TYPE OF DEVICE OR 
PRINTER

LOCATION "Device Catalog" for a 
device

"Registry" for a printer

LOCATION OF DEVICE 
OR PRINTER DEFINITION

PROTOTYPE Prototype PRINTER PROTOTYPE

FONT Default Typeface FONT TYPEFACE 
DEFAULT

ALIAS Typeface Alias FONT TYPEFACE ALIAS

FSTYLE Font Style FONT STYLE DEFAULT

FWEIGHT Font Weight FONT WEIGHT DEFAULT

FHEIGHT Font Height FONT HEIGHT DEFAULT

FVERSION Font Version FONT VERSION

MAXCOLORS Maximum Colors MAXIMUM NUMBER OF 
SUPPORTED COLORS

VISUAL Visual Color TYPE OF VISUAL COLOR

CLRSPACE Color Support TYPE OF COLOR 
SUPPORT

Usage: QDEVICE Procedure 1909



Variable SAS Log Label Output Data Set Label

DEST Destination OUTPUT DESTINATION 
DEFAULT

IOTYPE I/O Type TYPE OF I/O DEFAULT

FORMAT Data Format OUTPUT DATA FORMAT

HEIGHT Height HEIGHT OF OUTPUT

WIDTH Width WIDTH OF OUTPUT

UNITS Units 1 UNITS FOR SIZE, 
MARGINS AND 
RESOLUTION

YPIXELS Ypixels VERTICAL PIXELS

XPIXELS Xpixels HORIZONTAL PIXELS

ROWS Rows (vpos) ROWS

COLS Columns (hpos) COLUMNS

LEFT Left Margin LEFT MARGIN

LMIN Minimum Left Margin MINIMUM LEFT MARGIN

RIGHT Right Margin RIGHT MARGIN

RMIN Minimum Right Margin MINIMUM RIGHT MARGIN

BOTTOM Bottom Margin BOTTOM MARGIN

BMIN Minimum Bottom Margin MINIMUM BOTTOM 
MARGIN

TOP Top Margin TOP MARGIN

TMIN Minimum Top Margin MINIMUM TOP MARGIN

HRES XxY Resolution HORIZONTAL PIXELS 
PER UNIT

VRES XxY Resolution VERTICAL PIXELS PER 
UNIT

COMPRESSION Compression Enabled COMPRESSION 
ENABLED

1910 Chapter 55 / QDEVICE Procedure



Variable SAS Log Label Output Data Set Label

COMPMETHOD Compression Method COMPRESSION METHOD

EMBEDDING Font Embedding FONT EMBEDDING 
SUPPORT

ANIMATION Animation ANIMATION SUPPORT

1 If the type of units is displayed with the value of a variable, such as 0 inches for the left margin, the 
Units label is not displayed in the output to the SAS log.

System Options That Affect the Value of 
Size Variables
For universal printers, the values of the HEIGHT, WIDTH, LEFT, RIGHT, BOTTOM, 
TOP, LMIN, RMIN, BMIN, and TMIN variables are affected by the settings of the 
PAPERSIZE, LEFTMARGIN, RIGHTMARGIN, BOTTOMMARGIN, and 
TOPMARGIN SAS system options. The default paper size is determined by the SAS 
locale (which affects the default size for universal printers). For SAS/GRAPH 
devices, these variable values are not affected by the system option settings.

For more information, see SAS System Options: Reference.

Example: GENERAL Report
The following QDEVICE procedure creates a GENERAL report for the SVG 
universal printer:

proc qdevice;
   printer svg;
run;

Here is the GENERAL report in the SAS log:

Usage: QDEVICE Procedure 1911

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


16   proc qdevice;
17   printer svg;
18    run;

                 Name: SVG
          Description: Scalable Vector Graphics 1.1
               Module: SASPDSVG
                 Type: Universal Printer
             Registry: SASHELP
            Prototype: SVG 1.1
     Default Typeface: Cumberland AMT
       Typeface Alias: Courier
           Font Style: Regular
          Font Weight: Normal
          Font Height: 8 points
         Font Version: Version 1.03
       Maximum Colors: 16777216
         Visual Color: Direct Color
        Color Support: RGBA
          Destination: sasprt.svg
             I/O Type: DISK
          Data Format: SVG
               Height: 6.25 inches
                Width: 8.33 inches
              Ypixels: 600
              Xpixels: 800
           Rows(vpos): 50
        Columns(hpos): 114
          Left Margin: 0 inches
  Minimum Left Margin: 0 inches
         Right Margin: 0 inches
 Minimum Right Margin: 0 inches
        Bottom Margin: 0 inches
Minimum Bottom Margin: 0 inches
           Top Margin: 0 inches
   Minimum Top Margin: 0 inches
       XxY Resolution: 96x96 pixels per inch
  Compression Enabled: Never
   Compression Method: Deflate
       Font Embedding: Option
            Animation: Enabled

Create a FONT Report
The FONT report produces a report of all system and device-resident fonts that are 
supported by the specified device or printer.

About FONT Report Variables
For a description of the variables, see “FONT Report Variables” on page 1899.

The following table lists the variables that you can use in a FONT report as well as 
the labels for the variables that are used either in the SAS log or the output data set. 
If you do not specify the VAR statement, the variables appear in the order in which 
they appear in the table.

1912 Chapter 55 / QDEVICE Procedure



Variable SAS Log Label Output Data Set Label

NAME Name NAME OF DEVICE OR PRINTER

DESC Description DESCRIPTION OF DEVICE OR 
PRINTER

TYPE Type TYPE OF DEVICE OR PRINTER

LOCATION "Device Catalog" for a device

"Registry" for a printer

LOCATION OF DEVICE OR 
PRINTER DEFINITION

FONT Depends on the font or type FONT TYPEFACE

ALIAS (alias: alias) to the right of the 
font name

FONT TYPEFACE ALIAS

FTYPE Depends on the type of font FONT TYPE

FSTYLE None FONT STYLE

FWEIGHT None FONT WEIGHT

FVERSION None FONT VERSION

Variable Labels in a FONT Report
When you specify the FONT, FTYPE, FSTYLE, or the FWEIGHT variables in a 
FONT report, the variable labels that appear in the SAS log vary. The variable labels 
in the output data set are always the same: FONT TYPEFACE DEFAULT, FONT 
TYPE, FONT STYLE DEFAULT, and FONT WEIGHT DEFAULT, respectively.

If the VAR statement specifies one or more of the variables FONT, FTYPE, 
FSTYLE, FWEIGHT, or FVERSION, the SAS log reports only the font type labels 
and the font family names. The font styles, weights, and versions are not reported to 
the SAS log. The font type label that appears is dependent on the font type. Some 
example labels are Supported Font Typefaces, Supported Resident Typefaces, 
Supported TrueType Typefaces, and Supported Type1 Typefaces.

Example: FONT Report
The following QDEVICE procedure creates a FONT report for the ACTIVEX 
graphics device:

proc qdevice report=font;
   device activex;
run;

Usage: QDEVICE Procedure 1913



Here is a partial FONT report in the SAS log:

41   proc qdevice report=font;
42   device activex;
43   run;

                    Name: ACTIVEX
             Description: ActiveX enabled GIF Driver
                    Type: Graph Device
          Device Catalog: your-font-catalog-path
Supported Font Typefaces: System (7x16) 8pt
                          System (9x20) 10pt
                          Terminal (8x12) 7pt
                          Terminal (4x6) 4pt
                          Terminal (5x12) 7pt
                          Terminal (6x8) 5pt
                          Terminal (7x12) 7pt
                          Terminal (10x18) 11pt
                          Terminal (12x16) 10pt
                          Fixedsys (8x15) 7pt
                          Fixedsys (10x20) 11pt
                          Modern
                          Roman
                          Script
                          Courier (8x13) 8pt

Create a DEVOPTION Report
The DEVOPTION report produces a report of the hardware device options that are 
supported by the specified device. This report is unavailable for universal printers.

About DEVOPTION Report Variables
For a description of the variables, see “DEVOPTION Report Variables” on page 
1898.

The following table lists the variables that you can use in a DEVOPTION report as 
well as the labels for the variables that are used either in the SAS log or the output 
data set. If you do not specify the VAR statement, the variables appear in the order 
in which they appear in the table.

Variable SAS Log Label Output Data Set Label

NAME Name NAME OF DEVICE OR PRINTER

DESC Description DESCRIPTION OF DEVICE OR PRINTER

TYPE Type TYPE OF DEVICE OR PRINTER

LOCATION Device Catalog LOCATION OF DEVICE OR PRINTER 
DEFINTION

1914 Chapter 55 / QDEVICE Procedure



Variable SAS Log Label Output Data Set Label

BIT Bit Position DEVICE OPTION BIT POSITON

BITSTRING Bit Pattern DEVICE OPTION BIT PATTERN

OPTION Device Option DEVICE OPTION NAME

ODESC Option Description DEVICE OPTION DESCRIPTION

SUPPORT Support DEVICE OPTION SUPPORT

Example: DEVOPTION Report
The following QDEVICE procedure creates a DEVOPTION report for the SASEMF 
graphics device, reporting supported options because the default for SUPPORT is 
YES:

proc qdevice report=devoption;
   device sasemf;
run;

Here is the report in the SAS log:

Usage: QDEVICE Procedure 1915



104  proc qdevice report=devoption;
105     device sasemf;
106  run;

NOTE: Writing HTML Body file: sashtml.htm
              Name: SASEMF
       Description: Enhanced Metafile Driver
              Type: Shortcut Device
    Device Catalog: your-sas-path\sashelp
       Bit Pattern: 8000000000000000
     Device Option: GDCIRCLEARC
Option Description: Hardware is capable of drawing circles
           Support: Yes

      Bit Position: 1
       Bit Pattern: 4000000000000000
     Device Option: GDPIEFILL
Option Description: Device has hardware pie-fill capability
           Support: Yes

      Bit Position: 3
       Bit Pattern: 1000000000000000
     Device Option: GDCRT
Option Description: Hardware is a CRT or the device acts like a CRT
           Support: Yes

      Bit Position: 5
       Bit Pattern: 0400000000000000
     Device Option: GDPOLYGONFILL
Option Description: Device has polygonfill capability
           Support: Yes

      Bit Position: 7
       Bit Pattern: 0100000000000000
     Device Option: GDRGB
Option Description: Hardware is capable of defining colors in one or more color 
spaces
           Support: Yes

      Bit Position: 8
       Bit Pattern: 0080000000000000
     Device Option: GDMBPOLY
Option Description: Hardware can draw polygons with multiple boundaries
           Support: Yes

      Bit Position: 9
       Bit Pattern: 0040000000000000
     Device Option: GDOPACITY
Option Description: Hardware is capable of supporting opacity
           Support: Yes

      Bit Position: 11
       Bit Pattern: 0010000000000000
     Device Option: GDLWIDTH
Option Description: Hardware can draw lines of varying widths
           Support: Yes

      Bit Position: 14
       Bit Pattern: 0002000000000000
     Device Option: GDHRDCHR
Option Description: Hardware characters are supported by the device
           Support: Yes

1916 Chapter 55 / QDEVICE Procedure



      Bit Position: 15
       Bit Pattern: 0001000000000000
     Device Option: GDXLIMIT
Option Description: There is no limit on max value allowed for x coordinate
           Support: Yes

      Bit Position: 16
       Bit Pattern: 0000800000000000
     Device Option: GDYLIMIT
Option Description: There is no limit on max value allowed for y coordinate
           Support: Yes

      Bit Position: 18
       Bit Pattern: 0000200000000000
     Device Option: GDTXJUSTIFY
Option Description: Hardware is capable of justifying proportional text
           Support: Yes

      Bit Position: 24
       Bit Pattern: 0000008000000000
     Device Option: GDUNICODE
Option Description: Device supports the use of the Unicode font attribute
           Support: Yes

      Bit Position: 25
       Bit Pattern: 0000004000000000
     Device Option: GDPOLYLINE
Option Description: Hardware is capable of supporting polylines
           Support: Yes

      Bit Position: 28
       Bit Pattern: 0000000800000000
     Device Option: GDTRUETYPE
Option Description: Device supports the use of TrueType fonts
           Support: Yes

      Bit Position: 36
       Bit Pattern: 0000000008000000
     Device Option: GDIMAGE
Option Description: Device is capable of drawing images
           Support: Yes

      Bit Position: 39
       Bit Pattern: 0000000001000000
     Device Option: GDIMGROTATE
Option Description: Device is incapable of doing image rotation
           Support: Yes

Usage: QDEVICE Procedure 1917



      Bit Position: 40
       Bit Pattern: 0000000000800000
     Device Option: GDTRUECOLOR
Option Description: Hardware is a 24-bit true color device
           Support: Yes

      Bit Position: 44
       Bit Pattern: 0000000000080000
     Device Option: GDTEXTCLIP
Option Description: Hardware will clip text at the device limits
           Support: Yes

      Bit Position: 50
       Bit Pattern: 0000000000002000
     Device Option: GDAUTOSIZE
Option Description: Autosize text to fit rows and columns
           Support: Yes

      Bit Position: 54
       Bit Pattern: 0000000000000200
     Device Option: GDPOLYOUTLINE
Option Description: Device draws polygon outlines
           Support: Yes

      Bit Position: 55
       Bit Pattern: 0000000000000100
     Device Option: GDPRINTERPATH
Option Description: Device temporarily sets printerpath to that of the device name
           Support: Yes

      Bit Position: 56
       Bit Pattern: 0000000000000080
     Device Option: GDOPTPASSTHRU
Option Description: PAPERSIZE option sets default value of PAPERSIZE goption
           Support: Yes

      Bit Position: 57
       Bit Pattern: 0000000000000040
     Device Option: GDPIEOUTLINE
Option Description: Driver draws pie slice outlines (empty pies)
           Support: Yes

Create a LINESTYLE Report
The LINESTYLE report produces a report of the hardware (dashed) line styles that 
are supported by the specified device.

About LINESTYLE Report Variables
For a description of the variables, see “LINESTYLE Report Variables” on page 
1905.

The following table lists the variables that you can use in a LINESTYLE report as 
well as the labels for the variables that are used either in the SAS log or the output 
data set. If you do not specify the VAR statement, the variables appear in the order 
in which they appear in the table.

1918 Chapter 55 / QDEVICE Procedure



Variable SAS Log Label Output Data Set Label

NAME Name NAME OF DEVICE OR PRINTER

DESC Description DESCRIPTION OF DEVICE OR PRINTER

TYPE Type TYPE OF DEVICE OR PRINTER

LOCATION Device Catalog LOCATION OF DEVICE OR PRINTER 
DEFINTION

LINE Supported Line Styles

Unsupported Line Styles

HARDWARE DASHED LINE NUMBER

SUPPORT Supported Line Styles

Unsupported Line Styles

HARDWARE DASHED LINE SUPPORT

Example: LINESTYLE Report
The following QDEVICE procedure creates a LINESTYLE report of the LJ5PS 
device, reporting the supported line styles because the default for SUPPORT is 
YES:

proc qdevice report=linestyle;
   device lj5ps;
run;

Here is the LINESTYLE report in the SAS log:

202  proc qdevice report=linestyle;
203     device lj5ps;
204  run;

                 Name: LJ5PS
          Description: LaserJet 5P -- 600 dpi -- PostScript
                 Type: Graph Device
       Device Catalog: your-sas-path\sashelp
Supported Line Styles: 1-44

Create a RECTANGLE Report
A RECTANGLE report produces a report of the hardware fill types that are 
supported by the specified device.

Usage: QDEVICE Procedure 1919



About RECTANGLE Report Variables
For a description of the variables, see “RECTANGLE Report Variables” on page 
1906.

The following table lists the variables that you can use in a RECTANGLE report as 
well as the labels for the variables that are used either in the SAS log or the output 
data set. If you do not specify the VAR statement, the variables appear in the order 
in which they appear in the table.

Variable SAS Log Label Output Data Set Label

NAME Name NAME OF DEVICE OR 
PRINTER

DESC Description DESCRIPTION OF 
DEVICE or PRINTER

TYPE Type TYPE OF DEVICE OR 
PRINTER

LOCATION Device Catalog LOCATION OF DEVICE 
OR PRINTER DEFINTION

FILL Supported Hardware Fills HARDWARE 
RECTANGLE FILL NAME

SUPPORT Supported Hardware Fills

Unsupported Hardware 
Fills

HARDWARE 
RECTANGLE FILL 
SUPPORT

Example: RECTANGLE Report
The following QDEVICE procedure creates a RECTANGLE report for the SASPRTG 
universal printer, reporting the supported hardware fills because the default for 
SUPPORT is YES.

proc qdevice report=rectangle;
   device sasprtg;
run;

Here is the RECTANGLE report in the SAS log:

1920 Chapter 55 / QDEVICE Procedure



205  proc qdevice report=rectangle;
206     device sasprtg;
207  run;

                    Name: SASPRTG
             Description: POSTSCRIPT LEVEL 1
                    Type: Printer Interface Device
          Device Catalog: your-sas-path\sashelp
Supported Hardware Fills: Empty,Solid

SASPRTG is a printer interface device. Because Universal Printing is active, 
SASPRTG interfaces with the default universal printer. For this reason, the report 
shows information about the PostScript Level 1 printer as a universal printer.

Create a SYMBOL Report
A SYMBOL report produces a report of the hardware symbols that are supported by 
the specified device.

About SYMBOL Report Variables
For a description of the variables, see “SYMBOL Report Variables” on page 1907.

The following table lists the variables that you can use in a SYMBOL report as well 
as the labels for the variables that are used either in the SAS log or the output data 
set. If you do not specify the VAR statement, the variables appear in the order in 
which they appear in the table.

Variable SAS Log Label Output Data Set Label

NAME Name NAME OF DEVICE OR PRINTER

DESC Description DESCRIPTION OF DEVICE OR PRINTER

TYPE Type TYPE OF DEVICE OR PRINTER

LOCATION Device Catalog LOCATION OF DEVICE OR PRINTER 
DEFINTION

SYMBOL Supported Hardware 
Symbols

Unsupported Hardware 
Symbols

HARDWARE SYMBOL NAME

SUPPORT Support DEVICE OPTION SUPPORT

Usage: QDEVICE Procedure 1921



Example: SYMBOL Report
The following QDEVICE procedure creates a SYMBOL report for the CGM device, 
reporting the supported hardware symbols because the default for SUPPORT is 
YES:

proc qdevice report=symbol;
   device cgm;
run;

Here is the SYMBOL report in the SAS log:

235  proc qdevice report=symbol;
236     device cgm;
237  run;

                      Name: CGM
               Description: CGM generator--binary output
                      Type: Graph Device
            Device Catalog: your-sas-path\sashelp
Supported Hardware Symbols: Plus,X,Star

Examples: QDEVICE Procedure

Example 1: Generate a Report for the Default 
Display Device
Features: PROC QDEVICE

Details
The following example creates a General report for the default display device. This 
example assumes that you are running in an interactive mode on Windows.

For the WIN device, the number of colors is controlled by your Windows display 
settings. The size is controlled by your monitor and resolution settings.

1922 Chapter 55 / QDEVICE Procedure



Program
proc qdevice;
run;

Log
If you do not specify the OUT= option, the QDEVICE procedure sends its output to 
the SAS log. The output for the Windows operating environment is shown below as 
it appears in the SAS log.

Example Code 55.1 The SAS Log After Running PROC QDEVICE

                 Name: WIN
          Description: Microsoft Windows Display
                 Type: System Display
       Device Catalog: your-device-catalog
     Default Typeface: Sasfont
           Font Style: Roman
          Font Weight: Normal
          Font Height: 7 points
       Maximum Colors: 2147483647
         Visual Color: True Color
        Color Support: RGB
             I/O Type: GTERM
          Data Format: Host Display
               Height: 5.75 inches
                Width: 9.25 inches
              Ypixels: 690
              Xpixels: 1110
           Rows(vpos): 46
        Columns(hpos): 111
          Left Margin: 0 inches
  Minimum Left Margin: 0 inches
         Right Margin: 0 inches
 Minimum Right Margin: 0 inches
        Bottom Margin: 0 inches
Minimum Bottom Margin: 0 inches
           Top Margin: 0 inches
   Minimum Top Margin: 0 inches
       XxY Resolution: 120x120 pixels per inch
  Compression Enabled: Never
       Font Embedding: Never
            Animation: Unsupported

Example 2: Generate a General Report for All 
Devices
Features: PROC QDEVICE statement option: OUT=

DEVICE statement

Example 2: Generate a General Report for All Devices 1923



Details
The following example creates a General report for all devices and writes the results 
to WORK.ALLDEVICES.

You can use the _ALL_ keyword to generate a report for all devices.

Program
proc qdevice out=allDevices;
   device _all_;
run;

Output
The following image shows a portion of the report as it appears in the Viewtable 
window.

Output 55.1 The Output Data Set Report for All Devices

1924 Chapter 55 / QDEVICE Procedure



Example 3: Generate a Report for SAS/GRAPH 
Device Drivers and Universal Printers
Features: PROC QDEVICE statement option: OUT=

DEVICE statement
PRINTER statement

Details
The following example creates a General report for all devices that end in EMF and 
the PDF and SVG? universal printers. The results are written to the 
WORK.MYREPORT data set. If you do not specify the REPORT= option, the 
QDEVICE procedure generates a General report.

Program
proc qdevice out=myreport;
  device '*emf';
  printer pdf 'svg?';
run;

Output
The following image shows a portion of the report as it appears in the Viewtable 
window.

Example 3: Generate a Report for SAS/GRAPH Device Drivers and Universal Printers
1925



Output 55.2 The Output Data Set Report for the EMF Device, and PDF and SVG Printers

Example 4: Generate a Report for the Default 
Printer
Features: PROC QDEVICE statement

PRINTER statement

Details
By default, printing in SAS under Windows is done by the default Windows printer 
and not by Universal Printing. Therefore, the results that you see for the QDEVICE 
procedure when you use the printer _PRINTER_ statement differ. Under Windows, 
where the NOUPRINT system option is the default, the report is based on the printer 
interface device that interfaces with the default Windows printer. Under UNIX, where 
the UPRINT system option is set, the report is based on the default SAS universal 
printer.

Because the REPORT= option is not specified, the QDEVICE procedure generates 
a General report. The OUT= option is not specified and the results are written to the 
SAS log. The _PRINTER_ keyword determines the default printer to report on and 
generates a report for that printer.

For more information, see these topics:

n “Printing” in SAS Companion for Windows 

n “UNIVERSALPRINT” in SAS Companion for Windows 

n “What Is Universal Printing?” in SAS 9.4 Universal Printing 

1926 Chapter 55 / QDEVICE Procedure

http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=p0dap2ctgxlr1zn13vxrvvee0nrv.htm&locale=en
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n1qvbs96exn1d8n19c9yjf28bu4p.htm&locale=en
http://documentation.sas.com/?docsetId=uprint&docsetVersion=3.5&docsetTarget=n0bq5rdk6l5wk9n1p6w9ilfia9vv.htm&locale=en


Program: Windows
proc qdevice;
  printer _PRINTER_;
run;

Log: Default Windows Printer Report
Example Code 55.2 The SAS Log Output Report for the Default Windows Printer

1    proc qdevice;
2       printer _PRINTER_;
3       run;

NOTE: The "\\wprt02nc0\clxmfpj21" printer will be used by default with the ODS 
PRINTER destination.

                 Name: WINPRTC
          Description: \\WPRT02NC0\CLXMFPJ21
               Module: SASGDDMX
                 Type: Printer Interface Device
       Device Catalog: your-sas-path\sashelp
     Default Typeface: SAS Monospace
           Font Style: Roman
          Font Weight: Normal
          Font Height: 10 points
         Font Version: mfgpctt-v4.4 Thu Sep 16 14:30:47 EDT 1999
       Maximum Colors: 2097152
         Visual Color: True Color
        Color Support: RGB
             I/O Type: PRINTER
          Data Format: Host Printer
               Height: 10.67 inches
                Width: 8.15 inches
              Ypixels: 6392
              Xpixels: 4892
           Rows(vpos): 55
        Columns(hpos): 97
          Left Margin: 0.18 inches
  Minimum Left Margin: 0.18 inches
         Right Margin: 0.17 inches
 Minimum Right Margin: 0.17 inches
        Bottom Margin: 0.18 inches
Minimum Bottom Margin: 0.18 inches
           Top Margin: 0.17 inches
   Minimum Top Margin: 0.17 inches
       XxY Resolution: 600x600 pixels per inch
  Compression Enabled: Never
       Font Embedding: Never
            Animation: Unsupported

Program: UNIX
proc qdevice;
   printer _PRINTER_;
run;

Example 4: Generate a Report for the Default Printer 1927



Log: Default Universal Printer Report 
under UNIX
Example Code 55.3 The SAS Log Output Report for the Default Universal Printer under 

UNIX

1    proc qdevice;
2     printer _PRINTER_;
3     run;

NOTE: The "PostScript Level 1" printer will be used by default with the ODS PRINTER 
destination.

                 Name: PostScript Level 1
          Description: Generic PostScript Level 1 Printer
               Module: SASPDPSL
                 Type: Universal Printer
             Registry: SASHELP
            Prototype: PostScript Level 1 (Color)
     Default Typeface: Cumberland AMT
       Typeface Alias: Courier
           Font Style: Regular
          Font Weight: Normal
          Font Height: 8 points
         Font Version: Version 1.03
       Maximum Colors: 16777216
         Visual Color: Direct Color
        Color Support: CMYK
          Destination: sasprt.ps
             I/O Type: DISK
          Data Format: PostScript
               Height: 10 inches
                Width: 7.5 inches
              Ypixels: 3000
              Xpixels: 2250
           Rows(vpos): 81
        Columns(hpos): 112
          Left Margin: 0.5 inches
  Minimum Left Margin: 0 inches
         Right Margin: 0.5 inches
 Minimum Right Margin: 0 inches
        Bottom Margin: 0.5 inches
Minimum Bottom Margin: 0 inches
           Top Margin: 0.5 inches
   Minimum Top Margin: 0 inches
       XxY Resolution: 300x300 pixels per inch
  Compression Enabled: Never
       Font Embedding: Option
            Animation: Unsupported

Example 5: Generate a Font Report
Features: PROC QDEVICE statement options

REPORT=
OUT=

PRINTER statement

1928 Chapter 55 / QDEVICE Procedure



Details
The first example generates a report of all the printer-resident and system fonts 
available for the printer. The results are written to the Work.Myfonts data set.

The second example is a SAS program that uses a macro, the DATA step, and the 
PRINT procedure to create a list of fonts for devices.

Program
proc qdevice report=font out=myfonts; 
  printer 'postscript level 2'; 
run;

Output
The following output shows the report as it appears in the Viewtable window.

Output 55.3 The Output Data Set for a Font Report

Program
/* Macro FONTLIST - Report fonts supported by a device */

%macro fontlist(type, name);

proc qdevice report=font out=fonts;
   &type &name;
   var font ftype fstyle fweight;
run;

data; 
   set fonts;
   drop ftype;
   length type $16;
   if ftype = "System"
     then do;
        if substr(font,2,3) = "ttf" then type = "TrueType";

Example 5: Generate a Font Report 1929



          else if substr(font,2,3) = "at1" then type = "Adobe Type1";
          else if substr(font,2,3) = "cff" then type = "Adobe CFF/
Type2";
          else if substr(font,2,3) = "pfr" then type = "Bitstream PFR";
          else type = "System";
        if type ^= "System" then font = substr(font,7,length(font)-6);
          else if substr(font,1,1) = "@" 
               then font = substr(font, 2,length(font)-1);
       end;
       else type = "Printer Resident";
run;

proc sort;
   by font;
run;

title "Fonts Supported by the %upcase(&name) &type";

proc print label;
   label fstyle="Style" fweight="Weight" font="Font" type="Type";
run;

%mend fontlist;

%fontlist(device, pcl5c)

Program Description
Create the macro fontlist. The %macro statement begins the macro. The input to 
the macro is the type, whether it is a device or printer, and the name of the device or 
printer.

/* Macro FONTLIST - Report fonts supported by a device */

%macro fontlist(type, name);

Create a data set, fonts, for the device. The macro input variables, type and 
name, are used to create a Font report using the QDEVICE procedure. The output 
is written to the data set fonts.

proc qdevice report=font out=fonts;
   &type &name;
   var font ftype fstyle fweight;
run;

Categorize the font type. Fonts can be a type System, TrueType, Adobe Type1, 
Adobe CFF/Type2, Bitstream PFR, or Printer Resident.

data; 
   set fonts;
   drop ftype;
   length type $16;
   if ftype = "System"
     then do;
        if substr(font,2,3) = "ttf" then type = "TrueType";

1930 Chapter 55 / QDEVICE Procedure



          else if substr(font,2,3) = "at1" then type = "Adobe Type1";
          else if substr(font,2,3) = "cff" then type = "Adobe CFF/
Type2";
          else if substr(font,2,3) = "pfr" then type = "Bitstream PFR";
          else type = "System";
        if type ^= "System" then font = substr(font,7,length(font)-6);
          else if substr(font,1,1) = "@" 
               then font = substr(font, 2,length(font)-1);
       end;
       else type = "Printer Resident";
run;

Sort the font data set by the font name.

proc sort;
   by font;
run;

Print the fonts for a device or printer.

title "Fonts Supported by the %upcase(&name) &type";

proc print label;
   label fstyle="Style" fweight="Weight" font="Font" type="Type";
run;

End the macro.

%mend fontlist;

Use the macro &fontlist to create and output data set for the PCL5c device.

%fontlist(device, pcl5c)

Example 5: Generate a Font Report 1931



Output
Output 55.4 A Partial View of the Fonts Supported by the PCL5c Device

Example 6: Generate a Device Option Report
Features: PROC QDEVICE statement options

REPORT=
SUPPORT=
OUT=

DEVICE statement

1932 Chapter 55 / QDEVICE Procedure



Details
The following example creates a Device Options (DEVOPTIONS) report for the 
PNG device. The report is written to an output data set.

Program
proc qdevice report=devoption support=all out=devop;
  device png;
run;

proc print data=devop;
   var bit bitstring option odesc;
   where Support="Yes";
   title "Supported PNG Device Options";
run;

Program Description
Report the options for the PNG device. The REPORT=DEVOPTION option 
specifies to create a device options report. SUPPORT=ALL specifies to report all 
device features. The option OUT=DEVOP creates the data set WORK.DEVOP. The 
DEVICE PNG statement specifies to report on the PNG device.

proc qdevice report=devoption support=all out=devop;
  device png;
run;

Print the device options report. Printing the WORK.DEVOP data set, the printed 
report shows the BIT, BITSTRING, OPTION, and ODESC variables for the device 
options where Support="Yes".

proc print data=devop;
   var bit bitstring option odesc;
   where Support="Yes";
   title "Supported PNG Device Options";
run;

Example 6: Generate a Device Option Report 1933



Output
Output 55.5 The Output Data Set for the PNG Device

Example 7: Specify a User Library and Catalog for a 
Report
Features: PROC QDEVICE statement options

CATALOG=

1934 Chapter 55 / QDEVICE Procedure



DEVLOC=
PRINTER statement

Details
This example creates a general report for a GIF printer in a user-specified library 
and catalog using the DEVLOC= and CATALOG= options in the PROC QDEVICES 
statement. The results are written to the SAS log.

Program
Assign the device library and catalog

libname devlib 'c:\em';
proc qdevice report=general devloc=devlib cat=mydevices;
   device gif;
run;

Example 7: Specify a User Library and Catalog for a Report 1935



Log
Example Code 55.4 The SAS Log Report for a Specific Device Library and Catalog

144  libname devlib 'c:\em';
NOTE: Libref DEVLIB was successfully assigned as follows:
      Engine:        V9
      Physical Name: C:\em
145  proc qdevice report=general devloc=devlib cat=mydevices;
146     device gif;
147  run;

                 Name: GIF
          Description: Graphics Interchange Format RGB Color/Alpha Blending
               Module: SASGDDMX
                 Type: Shortcut Device
       Device Catalog: C:\em
            Prototype: GIF
     Default Typeface: Cumberland AMT
       Typeface Alias: Courier
           Font Style: Regular
          Font Weight: Normal
          Font Height: 8 points
         Font Version: Version 1.03
       Maximum Colors: 16777216
         Visual Color: True Color
        Color Support: RGBA
          Destination: sasprt.gif
             I/O Type: DISK
          Data Format: GIF
               Height: 6.25 inches
                Width: 8.33 inches
              Ypixels: 600
              Xpixels: 800
           Rows(vpos): 50
        Columns(hpos): 114
          Left Margin: 0 inches
  Minimum Left Margin: 0 inches
         Right Margin: 0 inches
 Minimum Right Margin: 0 inches
        Bottom Margin: 0 inches
Minimum Bottom Margin: 0 inches
           Top Margin: 0 inches
   Minimum Top Margin: 0 inches
       XxY Resolution: 96x96 pixels per inch
  Compression Enabled: Always
   Compression Method: LZW
       Font Embedding: Never
            Animation: Enabled

1936 Chapter 55 / QDEVICE Procedure



Chapter 56
RANK Procedure

Overview: RANK Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1937
What Does the RANK Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1938
Ranking Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1938

Concepts: RANK Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1939
Computer Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1939
Statistical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1940
Treatment of Tied Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1940
In-Database Processing for PROC RANK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1941

Syntax: RANK Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1943
PROC RANK Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1944
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1948
RANKS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1950
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1950

Results: RANK Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1951
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1951
Output Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1951
Numeric Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1951

Examples: RANK Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1952
Example 1: Ranking Values of Multiple Variables . . . . . . . . . . . . . . . . . . . . . . . . 1952
Example 2: Ranking Values within BY Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 1954
Example 3: Partitioning Observations into Groups Based on Ranks . . . . . . . . . . 1957

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1960

1937



Overview: RANK Procedure

What Does the RANK Procedure Do?
The RANK procedure computes ranks for one or more numeric variables across the 
observations of a SAS data set and writes the ranks to a new SAS data set. PROC 
RANK by itself produces no printed output.

Ranking Data
The following output shows the results of ranking the values of one variable with a 
simple PROC RANK step. In this example, the new ranking variable shows the 
order of finish of five golfers over a four-day competition. The player with the lowest 
number of strokes finishes in first place. The following statements produce the 
output:

proc rank data=golf out=rankings;
   var strokes;
   ranks Finish;
run;

proc print data=rankings;
run;

Output 56.1 Assignment of the Lowest Rank Value to the Lowest Variable Value

                                 The SAS System                                1

                       Obs    Player    Strokes    Finish

                        1     Jack        279         2
                        2     Jerry       283         3
                        3     Mike        274         1
                        4     Randy       296         4
                        5     Tito        302         5

In the following output, the candidates for city council are ranked by district 
according to the number of votes that they received in the election. They are also 
ranked according to the number of years that they have served in office.

This example shows how PROC RANK can do the following tasks:

n reverse the order of the rankings so that the highest value receives the rank of 1, 
the next highest value receives the rank of 2, and so on

1938 Chapter 56 / RANK Procedure



n rank the observations separately by values of multiple variables

n rank the observations within BY groups

n handle tied values

For an explanation of the program that produces this report, see “Example 2: 
Ranking Values within BY Groups” on page 1954.

Output 56.2 Assignment of the Lowest Rank Value to the Highest Variable Value within Each BY Group

                        Results of City Council Election                       1

---------------------------------- District=1 ----------------------------------

                                                    Vote    Years
               Obs    Candidate    Vote    Years    Rank     Rank

                1     Cardella     1689      8        1       1
                2     Latham       1005      2        3       2
                3     Smith        1406      0        2       3
                4     Walker        846      0        4       3

                                     N = 4

---------------------------------- District=2 ----------------------------------

                                                     Vote    Years
              Obs    Candidate      Vote    Years    Rank     Rank

               5     Hinkley         912      0        3       3
               6     Kreitemeyer    1198      0        2       3
               7     Lundell        2447      6        1       1
               8     Thrash          912      2        3       2

                                     N = 4

Concepts: RANK Procedure

Computer Resources
For any variable that is being ranked, PROC RANK stores in memory the value of 
that variable for every observation.

Concepts: RANK Procedure 1939



Statistical Applications
Ranks are useful for investigating the distribution of values for a variable. The ranks 
divided by n or n+1 form values in the range 0 to 1, and these values estimate the 
cumulative distribution function. You can apply inverse cumulative distribution 
functions to these fractional ranks to obtain probability quantile scores. You can 
compare these scores to the original values to judge the fit to the distribution. For 
example, if a set of data has a normal distribution, the normal scores should be a 
linear function of the original values, and a plot of scores versus original values 
should be a straight line.

Many nonparametric methods are based on analyzing ranks of a variable:

n A two-sample t test applied to the ranks is equivalent to a Wilcoxon rank sum 
test using the t approximation for the significance level. If you apply the t test to 
the normal scores rather than to the ranks, the test is equivalent to the van der 
Waerden test. If you apply the t test to median scores (GROUPS=2), the test is 
equivalent to the median test.

n A one-way analysis of variance applied to ranks is equivalent to the Kruskal-
Wallis k-sample test; the F test generated by the parametric procedure applied to 
the ranks is often better than the X2 approximation used by Kruskal-Wallis. This 
test can be extended to other rank scores (Quade 1966).

n You can obtain a Friedman's two-way analysis for block designs by ranking 
within BY groups and then performing a main-effects analysis of variance on 
these ranks (Conover 1998).

n You can investigate regression relationships by using rank transformations with a 
method described by Iman and Conover (1979).

Treatment of Tied Values
When PROC RANK ranks values, if two or more values of an analysis variable that 
are within a BY group are equal, then tied values are present in the data. Because 
the values are indistinguishable and there is usually no further obvious information 
about which the ranks can reasonably be based, PROC RANK does not assign 
different ranks to the values. Tied values could be arbitrarily assigned different 
ranks. But in statistical applications such as nonparametric statistical tests using 
ranks, it is conventional to assign the same rank to tied values.

These statistical tests commonly assume that the data is from a continuous 
distribution, in which the probability of a tie is theoretically zero. In practice, whether 
because of inaccuracies in measurement, the finite accuracy of representation 
within a digital computer, or other reasons, tied values often occur. It is also 
conventional in these statistical tests to assign the average rank to a group of tied 
values. Assignment of the average rank is preferred because it preserves the sum 
of the ranks and therefore does not distort the estimate of the cumulative distribution 
function.

For applications within and outside of statistics, the RANK procedure provides the 
TIES= option to control the treatment of tied values. The default value for this option 

1940 Chapter 56 / RANK Procedure



depends on the specified ranking or scoring method, which you can specify with the 
options of the PROC RANK statement. For ranking and scoring methods, when 
TIES=LOW, TIES=HIGH, or TIES=MEAN, tied values are initially treated as if they 
are distinguishable. These methods all begin by sorting the values of the analysis 
variable within a BY group, and then assigning to each nonmissing value an ordinal 
number that indicates its position in the sequence.

Subsequently, for non-scoring methods, PROC RANK resolves tied values by 
selecting the minimum with TIES=LOW, selecting the maximum with TIES=HIGH, or 
calculating the average of the ordinals in a group of tied values with TIES=MEAN. 
PROC RANK then obtains the rank from this value through one or more further 
transformations such as scaling, translation, and truncation.

Scoring methods include normal and Savage scoring, which are requested by the 
NORMAL= and SAVAGE options. Non-scoring methods include ordinal ranking, the 
default, and those methods that are requested by the FRACTION, NPLUS1, 
GROUPS=, and PERCENT options. For the scoring methods NORMAL= and 
SAVAGE, PROC RANK obtains the probability quantile scores with the appropriate 
formulas as if no tied values were present within the data. PROC RANK then 
resolves tied values by selecting the minimum, selecting the maximum, or 
calculating the average of all scores within a tied group.

For all ranking and scoring methods, when TIES=DENSE, tied values are treated as 
indistinguishable, and each value within a tied group is assigned the same ordinal. 
As with the other TIES= resolution methods, all ranking and scoring methods begin 
by sorting the values of the analysis variable and then assigning ordinals. However, 
a group of tied values is treated as a single value. The ordinal assigned to the group 
differs by only +1 from the ordinal that is assigned to the value just prior to the 
group, if there is one. The ordinal differs by only -1 from the ordinal assigned to the 
value just after the group, if there is one. Therefore, the smallest ordinal within a BY 
group is 1, and the largest ordinal is the number of unique, nonmissing values in the 
BY group.

After the ordinals are assigned, PROC RANK calculates ranks and scores using the 
number of unique, nonmissing values instead of the number of nonmissing values 
for scaling. Because of its tendency to distort the cumulative distribution function 
estimate, dense ranking is not generally acceptable for use in nonparametric 
statistical tests.

Note that PROC RANK bases its computations on the internal numeric values of the 
analysis variables. The procedure does not format or round these values before 
analysis. When values differ in their internal representation, even slightly, PROC 
RANK does not treat them as tied values. If this is a concern for your data, then 
round the analysis variables by an appropriate amount before invoking PROC 
RANK. For information about the ROUND function, see “ROUND Function” in SAS 
Functions and CALL Routines: Reference.

In-Database Processing for PROC RANK
In-database processing has several advantages over processing within SAS. These 
advantages include increased security, reduced network traffic, and the potential for 
faster processing. Increased security is possible because sensitive data does not 
have to be extracted from the DBMS.

Faster processing is possible for the following reasons:

Concepts: RANK Procedure 1941

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0tj6cmga7p8qln1ejh6ebevm0c9.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p0tj6cmga7p8qln1ejh6ebevm0c9.htm&locale=en


n Data is manipulated locally, on the DBMS, using high-speed secondary storage 
devices instead of being transported across a relatively slow network connection.

n The DBMS might have more processing resources at its disposal.

n The DBMS might be capable of optimizing a query for execution in a highly 
parallel and scalable fashion.

In-database processing for PROC RANK supports the following database 
management systems:

n Amazon Redshift

n Aster

n DB2

n Google BigQuery

n Greenplum

n Hadoop

n HAWQ

n Impala

n Microsoft SQL Server

n Netezza

n Oracle

n PostgreSQL

n SAP HANA

n Snowflake

n Teradata

n Vertica

n Yellowbrick

Note: When using the Google BigQuery data source, columns in the BY statement 
in PROC RANK cannot be of data type FLOAT64 for in-database processing.

The presence of table statistics might affect the performance of the RANK 
procedure's in-database processing. If your DBMS is not configured to automatically 
generate table statistics, then manual generation of table statistics might be 
necessary to achieve acceptable in-database performance.

Note: For DB2, generation of table statistics (either automatic or manual) is highly 
recommended for all but the smallest input tables.

If the RANK procedure's input data set is a table or view that resides within a 
database from which rows would normally be retrieved with the SAS/ACCESS 
interface to a supported DBMS, then PROC RANK can perform much or all of its 
work within the DBMS. There are several other factors that determine whether such 
in-database processing can occur. In-database processing will not occur in the 
following circumstances:

n if the RENAME= data set option is specified on the input data set.

1942 Chapter 56 / RANK Procedure



n if a WHERE statement appears in the context of the RANK procedure or a 
WHERE= data set option is specified on the input data set, and the WHERE 
statement or option contains a reference to a SAS function that has no 
equivalent in the DBMS or a format that has not been installed for use by SAS 
within the DBMS.

n if any variable specified in a BY statement has an associated format. Formatted 
BY variables are not supported by PROC RANK for in-database processing.

n if a FORMAT statement appears within the procedure context and applies to a 
variable specified in a BY statement, then in-database processing cannot be 
performed. Formatted BY variables are not supported by RANK for in-database 
processing. With a DBMS, formats can be associated with variables only if a 
FORMAT or ATTRIB statement appears within the procedure context.

n The TIES=CONDENSE option is not supported for the RANK procedure's in-
database processing in an Oracle DBMS. If you use this option, it will prevent 
SQL generation and execution of in-database processing.

When PROC RANK can process data within the DBMS, it generates an SQL query. 
The structure of the SQL query that is generated during an in-database invocation 
of PROC RANK depends on several factors, including these:

n the target DBMS

n the ranking methods that are used

n the number of variables that are ranked

n the inclusion of BY and WHERE statements

n the PROC RANK options that are used, such as TIES= and DESCENDING

The SQL query expresses the required calculations and is submitted to the DBMS. 
The results of this query will either remain as a new table within the DBMS if the 
output of the RANK procedure is directed there, or it will be returned to SAS. The 
settings for the MSGLEVEL option and the SQLGENERATION option determine 
whether messages will be printed to the SAS log, which indicates whether in-
database processing was performed. Generated SQL can be examined by setting 
the SQL_IP_TRACE option or the SASTRACE= option. SQL_IP_TRACE shows the 
SQL that is generated by PROC RANK. For more information, see the SASTRACE= 
option in SAS/ACCESS for Relational Databases: Reference or the 
SQL_IP_TRACE option in SAS(R) Analytics Accelerator 1.3 for Teradata: Guide.

For more information about the settings for system options, library options, data set 
options, and statement options that affect in-database performance for SAS 
procedures, see the SQLGENERATION= LIBNAME Option and the 
SQLGENERATION= option in SAS/ACCESS for Relational Databases: Reference.

Syntax: RANK Procedure
Tips: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements with the RANK 

procedure. For more information, see “Statements with the Same Function in Multiple 
Procedures” on page 73.
You can also use any global statement. For a list, see “Global Statements” on page 24 
and “Dictionary of SAS Global Statements” in SAS Global Statements: Reference. 

Syntax: RANK Procedure 1943

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0e7kamd4b486zn10o4lcseg4qvd.htm&locale=en


For in-database processing to occur, your data must reside within a supported version of 
the DBMS that has been properly configured for SAS in-database processing. For more 
information, see “In-Database Processing for PROC RANK” on page 1941. 

PROC RANK <options>;
BY <DESCENDING> variable-1

<<DESCENDING> variable-2 …>
<NOTSORTED>;

VAR data-set-variables(s);
RANKS new-variables(s);

Statement Task Example

PROC RANK Compute the ranks for one or more numeric 
variables in a SAS data set and writes the 
ranks to a new SAS data set

Ex. 1, Ex. 2, 
Ex. 3

BY Calculate a separate set of ranks for each BY 
group

Ex. 2, Ex. 3

RANKS Identify a variable to which the ranks are 
assigned

Ex. 1, Ex. 2

VAR Specify the variables to rank Ex. 1, Ex. 2, 
Ex. 3

PROC RANK Statement
Computes the ranks for one or more numeric variables.

Restrictions: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.
Only one ranking method can be specified in a single PROC RANK step.

Examples: “Example 1: Ranking Values of Multiple Variables” on page 1952
“Example 2: Ranking Values within BY Groups” on page 1954
“Example 3: Partitioning Observations into Groups Based on Ranks” on page 1957

Syntax
PROC RANK <options>;

Summary of Optional Arguments
Compute fractional ranks

NPLUS1

1944 Chapter 56 / RANK Procedure



computes fractional ranks by dividing each rank by the denominator n+1.

Create an output data set
OUT=SAS-data-set

names the output data set.

Preserve values
PRESERVERAWBYVALUES

preserves raw values of all BY variables.

Reverse the order of the rankings
DESCENDING

reverses the direction of the ranks.

Specify how to rank tied values
TIES=HIGH | LOW | MEAN | DENSE

specifies how to compute normal scores or ranks for tied data values.

Specify the input data set
DATA=SAS-data-set

specifies the input SAS data set.

Specify the ranking method
FRACTION

computes fractional ranks by dividing each rank by the number of 
observations having nonmissing values of the ranking variable.

GROUPS=number-of-groups
assigns group values ranging from 0 to number-of-groups minus 1.

NORMAL=BLOM | TUKEY | VW
computes normal scores from the ranks.

PERCENT
calculates the percentage of observations with nonmissing values in the 
rank.

SAVAGE
computes Savage (or exponential) scores from the ranks.

Optional Arguments
DATA=SAS-data-set

specifies the input SAS data set. 

Restrictions You cannot use PROC RANK with an engine that supports 
concurrent access if another user is updating the data set at the 
same time.

For in-database processing to occur, the data set specification 
must refer to a table that resides on a supported DBMS.

See “Input Data Sets” on page 26

DESCENDING
reverses the direction of the ranks. With DESCENDING, the largest value 
receives a rank of 1, the next largest value receives a rank of 2, and so on. 
Otherwise, values are ranked from smallest to largest.

PROC RANK Statement 1945



See “Example 1: Ranking Values of Multiple Variables” on page 1952

“Example 2: Ranking Values within BY Groups” on page 1954

FRACTION
computes fractional ranks by dividing each rank by the number of observations 
having nonmissing values of the ranking variable.

Alias F

Interaction TIES=HIGH is the default with the FRACTION option. With 
TIES=HIGH, fractional ranks are considered values of a right-
continuous, empirical cumulative distribution function.

See NPLUS1 option

GROUPS=number-of-groups
assigns group values ranging from 0 to number-of-groups minus 1. Common 
specifications are GROUPS=100 for percentiles, GROUPS=10 for deciles, and 
GROUPS=4 for quartiles. For example, GROUPS=4 partitions the original values 
into four groups. The smallest values receive, by default, a quartile value of 0 
and the largest values receiving a quartile value of 3.

The formula for calculating group values is as follows:

FLOOR rank * k / n + 1

FLOOR is the FLOOR function, rank is the value's order rank, k is the value of 
GROUPS=, and n is the number of observations having nonmissing values of 
the ranking variable for TIES=LOW, TIES=MEAN, and TIES=HIGH. For 
TIES=DENSE, n is the number of observations that have unique nonmissing 
values.

If the number of observations is evenly divisible by the number of groups, each 
group has the same number of observations, provided there are no tied values at 
the boundaries of the groups. Grouping observations by a variable that has 
many tied values can result in unbalanced groups because PROC RANK always 
assigns observations with the same value to the same group.

Tip Use DESCENDING to reverse the order of the group values.

See “Example 3: Partitioning Observations into Groups Based on Ranks” on 
page 1957

NORMAL=BLOM | TUKEY | VW
computes normal scores from the ranks. The resulting variables appear normally 
distributed. n is the number of observations that have nonmissing values of the 
ranking variable for TIES=LOW, TIES=MEAN, and TIES=HIGH. For 
TIES=DENSE, n is the number of observations that have unique nonmissing 
values. The formulas are as follows:

BLOM
yi=Φ−1((ri−3/8)/(n+1/4))

TUKEY
yi=Φ−1((ri−1/3)/(n+1/3))

VW
yi=Φ−1((ri)/(n+1))

1946 Chapter 56 / RANK Procedure



In these formulas, Φ−1 is the inverse cumulative normal (PROBIT) function, ri is 
the rank of the ith observation, and n is the number of nonmissing observations 
for the ranking variable.

VW stands for van der Waerden. With NORMAL=VW, you can use the scores for 
a nonparametric location test. All three normal scores are approximations to the 
exact expected order statistics for the normal distribution (also called normal 
scores). The BLOM version appears to fit slightly better than the others (Blom 
1958; Tukey 1962).

Restriction Use of the NORMAL= option will prevent in-database processing.

Interaction If you specify the TIES= option, then PROC RANK computes the 
normal score from the ranks based on non-tied values and applies 
the TIES= specification to the resulting score.

NPLUS1
computes fractional ranks by dividing each rank by the denominator n+1, where 
n is the number of observations that have nonmissing values of the ranking 
variable for TIES=LOW, TIES=MEAN, and TIES=HIGH. For TIES=DENSE, n is 
the number of observations that have unique nonmissing values.

Aliases FN1

N1

Interaction TIES=HIGH is the default with the NPLUS1 option.

See FRACTION option

OUT=SAS-data-set
names the output data set. If SAS-data-set does not exist, PROC RANK creates 
it. If you omit OUT=, the data set is named using the DATAn naming convention.

Interaction When in-database processing is being performed and OUT= also 
refers to a supported DBMS table, and if both IN= and OUT= 
reference the same library, then all processing can occur on the 
DBMS with results directly populating the output table. In this case, 
no results will be returned to SAS.

PRESERVERAWBYVALUES
preserves raw values of all BY variables. when those variables are propagated 
to the output data set. If the PRESERVERAWBYVALUES option is not specified, 
and one BY variable is specified, then a representative value for each BY group 
is written to the output data set. If multiple BY variables are specified, then a 
representative set of values for each BY group is written to the output data set.

PERCENT
divides each rank by the number of observations that have nonmissing values of 
the variable and multiplies the result by 100 to get a percentage. n is the number 
of observations that have nonmissing values of the ranking variable for 
TIES=LOW, TIES=MEAN, and TIES=HIGH. For TIES=DENSE, n is the number 
of observations that have unique nonmissing values.

Alias P

Interaction TIES=HIGH is the default with the PERCENT option.

PROC RANK Statement 1947



Tip You can use PERCENT to calculate cumulative percentages, but 
you use GROUPS=100 to compute percentiles.

SAVAGE
computes Savage (or exponential) scores from the ranks by the following 
formula (Lehman 1998): 

yi = Σ
j = n − ri + 1

1
j − 1

Interaction If you specify the TIES= option, then PROC RANK computes the 
Savage score from the ranks based on non-tied values and applies 
the TIES= specification to the resulting score.

TIES=HIGH | LOW | MEAN | DENSE
specifies how to compute normal scores or ranks for tied data values. 

HIGH
assigns the largest of the corresponding ranks (or largest of the normal 
scores when NORMAL= is specified).

LOW
assigns the smallest of the corresponding ranks (or smallest of the normal 
scores when NORMAL= is specified).

MEAN
assigns the mean of the corresponding rank (or mean of the normal scores 
when NORMAL= is specified).

DENSE
computes scores and ranks by treating tied values as a single-order statistic. 
For the default method, ranks are consecutive integers that begin with the 
number one and end with the number of unique, nonmissing values of the 
variable that is being ranked. Tied values are assigned the same rank.

Note: CONDENSE is an alias for DENSE.

Default MEAN (unless the FRACTION option or PERCENT option is in 
effect).

Interaction If you specify the NORMAL= option, then the TIES= specification 
applies to the normal score, not to the rank that is used to compute 
the normal score.

See “Treatment of Tied Values” on page 1940

“Example 1: Ranking Values of Multiple Variables” on page 1952

“Example 2: Ranking Values within BY Groups” on page 1954

BY Statement
Produces a separate set of ranks for each BY group.

1948 Chapter 56 / RANK Procedure



Interactions: If the NOTSORTED option is specified in a BY statement, then in-database processing 
cannot be performed.
Application of a format to any BY variable of the input data set, using a FORMAT 
statement for example, will prevent in-database processing.

See: “BY” on page 74
“Example 3: Partitioning Observations into Groups Based on Ranks” on page 1957

Examples: “Example 2: Ranking Values within BY Groups” on page 1954
“Example 3: Partitioning Observations into Groups Based on Ranks” on page 1957

Syntax
BY <DESCENDING> variable-1

<<DESCENDING> variable-2 …>
<NOTSORTED>;

Required Argument
variable

specifies the variable that the procedure uses to form BY groups. You can 
specify more than one variable. If you do not use the NOTSORTED option in the 
BY statement, then the observations in the data set must either be sorted by all 
the variables that you specify or be indexed appropriately. Variables in a BY 
statement are called BY variables.

Note: When using the Google BigQuery data source, columns in the BY 
statement in PROC RANK cannot be of data type FLOAT64 for in-database 
processing.

Optional Arguments
DESCENDING

specifies that the observations are sorted in descending order by the variable 
that immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. The observations are grouped in another way, such as chronological 
order.

The requirement for ordering or indexing observations according to the values of 
BY variables is suspended for BY-group processing when you use the 
NOTSORTED option. In fact, the procedure does not use an index if you specify 
NOTSORTED. The procedure defines a BY group as a set of contiguous 
observations that have the same values for all BY variables. If observations with 
the same values for the BY variables are not contiguous, the procedure treats 
each contiguous set as a separate BY group.

If you are using a SAS/ACCESS engine, and you specify a BY statement, then 
the data is always returned in sorted order. If you specify the NOTSORTED 
option, then it is ignored and in-database processing is performed.

BY Statement 1949



RANKS Statement
Creates new variables for the rank values.

Default: If you omit the RANKS statement, the rank values replace the original variable values in 
the output data set.

Requirement: If you use the RANKS statement, you must also use the VAR statement.

Examples: “Example 1: Ranking Values of Multiple Variables” on page 1952
“Example 2: Ranking Values within BY Groups” on page 1954

Syntax
RANKS new-variables(s);

Required Argument
new-variable(s)

specifies one or more new variables that contain the ranks for the variable(s) 
listed in the VAR statement. The first variable listed in the RANKS statement 
contains the ranks for the first variable listed in the VAR statement. The second 
variable listed in the RANKS statement contains the ranks for the second 
variable listed in the VAR statement, and so on.

VAR Statement
Specifies the input variables.

Default: If you omit the VAR statement, PROC RANK computes ranks for all numeric variables in 
the input data set.

Examples: “Example 1: Ranking Values of Multiple Variables” on page 1952
“Example 2: Ranking Values within BY Groups” on page 1954
“Example 3: Partitioning Observations into Groups Based on Ranks” on page 1957

Syntax
VAR data-set-variables(s);

1950 Chapter 56 / RANK Procedure



Required Argument
data-set-variable(s)

specifies one or more variables for which ranks are computed.

Details

Using the VAR Statement with the RANKS 
Statement
The VAR statement is required when you use the RANKS statement. Using these 
statements together creates the ranking variables named in the RANKS statement 
that corresponds to the input variables specified in the VAR statement. If you omit 
the RANKS statement, the rank values replace the original values in the output data 
set.

Results: RANK Procedure

Missing Values
Missing values are not ranked and are left missing when ranks or rank scores 
replace the original values in the output data set.

Output Data Set
The RANK procedure creates a SAS data set containing the ranks or rank scores 
but does not create any printed output. You can use PROC PRINT, PROC REPORT, 
or another SAS reporting tool to print the output data set.

The output data set contains all the variables from the input data set plus the 
variables named in the RANKS statement. If you omit the RANKS statement, the 
rank values replace the original variable values in the output data set.

Numeric Precision
For in-database processing, the mathematical operations expressed by the RANK 
procedure in SQL, and the order in which they are performed, are essentially the 

Results: RANK Procedure 1951



same as those performed within SAS. However, in-database processing might result 
in small numerical differences when compared to results produced directly by SAS.

Examples: RANK Procedure

Example 1: Ranking Values of Multiple Variables
Features: PROC RANK statement options

DESCENDING
TIES=

RANKS statement
VAR statement
PRINT procedure

Details
This example performs the following actions:

n reverses the order of the ranks so that the highest value receives the rank of 1

n assigns the best possible rank to tied values

n creates ranking variables and prints them with the original variables

Program
options nodate pageno=1 linesize=80 pagesize=60;

data cake;
   input Name $ 1-10 Present 12-13 Taste 15-16;
   datalines;
Davis      77 84
Orlando    93 80
Ramey      68 72
Roe        68 75
Sanders    56 79
Simms      68 77
Strickland 82 79
;

proc rank data=cake out=order descending ties=low;

   var present taste;

1952 Chapter 56 / RANK Procedure



   ranks PresentRank TasteRank;
run;

proc print data=order;
   title "Rankings of Participants' Scores";
run;

Program Description
Set the SAS system options. The NODATE option specifies to omit the date and 
time at which the SAS job begins. The PAGENO= option specifies the page number 
for the next page of output that SAS produces. The LINESIZE= option specifies the 
line size. The PAGESIZE= option specifies the number of lines for a page of SAS 
output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the CAKE data set. This data set contains each participant's last name, 
score for presentation, and score for taste in a cake-baking contest.

data cake;
   input Name $ 1-10 Present 12-13 Taste 15-16;
   datalines;
Davis      77 84
Orlando    93 80
Ramey      68 72
Roe        68 75
Sanders    56 79
Simms      68 77
Strickland 82 79
;

Generate the ranks for the numeric variables in descending order and create 
the Order output data set. DESCENDING reverses the order of the ranks so that 
the high score receives the rank of 1. TIES=LOW gives tied values the best possible 
rank. OUT= creates the Order output data set.

proc rank data=cake out=order descending ties=low;

Create two new variables that contain ranks. The VAR statement specifies the 
variables to rank. The RANKS statement creates two new variables, PresentRank 
and TasteRank, that contain the ranks for the variables Present and Taste, 
respectively.

   var present taste;
   ranks PresentRank TasteRank;
run;

Print the data set. PROC PRINT prints the Order data set. The TITLE statement 
specifies a title.

proc print data=order;
   title "Rankings of Participants' Scores";
run;

Example 1: Ranking Values of Multiple Variables 1953



Output: Listing
Output 56.3 Rankings of Participants' Scores

                        Rankings of Participants' Scores                       1

                                                    Present    Taste
           Obs    Name          Present    Taste      Rank      Rank

            1     Davis            77        84        3         1
            2     Orlando          93        80        1         2
            3     Ramey            68        72        4         7
            4     Roe              68        75        4         6
            5     Sanders          56        79        7         3
            6     Simms            68        77        4         5
            7     Strickland       82        79        2         3

Example 2: Ranking Values within BY Groups
Features: PROC RANK statement options

DESCENDING
TIES=

BY statement
RANKS statement
VAR statement
PRINT procedure

Details
This example performs the following actions:

n ranks observations separately within BY groups

n reverses the order of the ranks so that the highest value receives the rank of 1

n assigns the best possible rank to tied values

n creates ranking variables and prints them with the original variables

Program
options nodate pageno=1 linesize=80 pagesize=60;

data elect;
   input Candidate $ 1-11 District 13 Vote 15-18 Years 20;
   datalines;

1954 Chapter 56 / RANK Procedure



Cardella    1 1689 8
Latham      1 1005 2
Smith       1 1406 0
Walker      1  846 0
Hinkley     2  912 0
Kreitemeyer 2 1198 0
Lundell     2 2447 6
Thrash      2  912 2
;

proc rank data=elect out=results ties=low descending;

   by district;

   var vote years;
   ranks VoteRank YearsRank;
run;

proc print data=results n;
   by district;
   title 'Results of City Council Election';
run; 

Program Description
Set the SAS system options. The NODATE option specifies to omit the date and 
time at which the SAS job begins. The PAGENO= option specifies the page number 
for the next page of output that SAS produces. The LINESIZE= option specifies the 
line size. The PAGESIZE= option specifies the number of lines for a page of SAS 
output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the Elect data set. This data set contains each candidate's last name, 
district number, vote total, and number of years' experience on the city council.

data elect;
   input Candidate $ 1-11 District 13 Vote 15-18 Years 20;
   datalines;
Cardella    1 1689 8
Latham      1 1005 2
Smith       1 1406 0
Walker      1  846 0
Hinkley     2  912 0
Kreitemeyer 2 1198 0
Lundell     2 2447 6
Thrash      2  912 2
;

Generate the ranks for the numeric variables in descending order and create 
the Results output data set. DESCENDING reverses the order of the ranks so that 
the highest vote total receives the rank of 1. TIES=LOW gives tied values the best 
possible rank. OUT= creates the Results output data set.

proc rank data=elect out=results ties=low descending;

Create a separate set of ranks for each BY group. The BY statement separates 
the rankings by values of District.

Example 2: Ranking Values within BY Groups 1955



   by district;

Create two new variables that contain ranks. The VAR statement specifies the 
variables to rank. The RANKS statement creates the new variables, VoteRank and 
YearsRank, that contain the ranks for the variables Vote and Years, respectively.

   var vote years;
   ranks VoteRank YearsRank;
run;

Print the data set. PROC PRINT prints the Results data set. The N option prints 
the number of observations in each BY group. The TITLE statement specifies a title.

proc print data=results n;
   by district;
   title 'Results of City Council Election';
run; 

Output: Listing
In the following output, Hinkley and Thrash tied with 912 votes in the second district. 
They both receive a rank of 3 because TIES=LOW.

Output 56.4 Results of City Council Election

                        Results of City Council Election                       1

---------------------------------- District=1 ----------------------------------

                                                    Vote    Years
               Obs    Candidate    Vote    Years    Rank     Rank

                1     Cardella     1689      8        1       1
                2     Latham       1005      2        3       2
                3     Smith        1406      0        2       3
                4     Walker        846      0        4       3

                                     N = 4

---------------------------------- District=2 ----------------------------------

                                                     Vote    Years
              Obs    Candidate      Vote    Years    Rank     Rank

               5     Hinkley         912      0        3       3
               6     Kreitemeyer    1198      0        2       3
               7     Lundell        2447      6        1       1
               8     Thrash          912      2        3       2

                                     N = 4

1956 Chapter 56 / RANK Procedure



Example 3: Partitioning Observations into Groups 
Based on Ranks
Features: PROC RANK statement option

GROUPS=
BY statement
VAR statement
PRINT procedure
SORT procedure

Details
This example performs the following actions:

n partitions observations into groups on the basis of values of two input variables

n groups observations separately within BY groups

n replaces the original variable values with the group values

Program
options nodate pageno=1 linesize=80 pagesize=60;

data swim;
   input Name $ 1-7 Gender $ 9 Back 11-14 Free 16-19;
   datalines;
Andrea  F 28.6 30.3
Carole  F 32.9 24.0
Clayton M 27.0 21.9
Curtis  M 29.0 22.6
Doug    M 27.3 22.4
Ellen   F 27.8 27.0
Jan     F 31.3 31.2
Jimmy   M 26.3 22.5
Karin   F 34.6 26.2
Mick    M 29.0 25.4
Richard M 29.7 30.2
Sam     M 27.2 24.1
Susan   F 35.1 36.1
;

proc sort data=swim out=pairs;
   by gender;
run;

proc rank data=pairs out=rankpair groups=3;

Example 3: Partitioning Observations into Groups Based on Ranks 1957



   by gender;

   var back free;
run;

proc print data=rankpair n;
   by gender;
   title 'Pairings of Swimmers for Backstroke and Freestyle';
run;

Program Description
Set the SAS system options. The NODATE option specifies to omit the date and 
time at which the SAS job began. The PAGENO= option specifies the page number 
for the next page of output that SAS produces. The LINESIZE= option specifies the 
line size. The PAGESIZE= option specifies the number of lines for a page of SAS 
output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the Swim data set. This data set contains swimmers' first names and their 
times, in seconds, for the backstroke and the freestyle. This example groups the 
swimmers into pairs, within male and female classes, based on times for both 
strokes so that every swimmer is paired with someone who has a similar time for 
each stroke.

data swim;
   input Name $ 1-7 Gender $ 9 Back 11-14 Free 16-19;
   datalines;
Andrea  F 28.6 30.3
Carole  F 32.9 24.0
Clayton M 27.0 21.9
Curtis  M 29.0 22.6
Doug    M 27.3 22.4
Ellen   F 27.8 27.0
Jan     F 31.3 31.2
Jimmy   M 26.3 22.5
Karin   F 34.6 26.2
Mick    M 29.0 25.4
Richard M 29.7 30.2
Sam     M 27.2 24.1
Susan   F 35.1 36.1
;

Sort the Swim data set and create the Pairs output data set. PROC SORT sorts 
the data set by Gender. This action is required to obtain a separate set of ranks for 
each group. OUT= creates the Pairs output data set.

proc sort data=swim out=pairs;
   by gender;
run;

Generate the ranks that are partitioned into three groups and create an output 
data set. GROUPS=3 assigns one of three possible group values (0,1,2) to each 
swimmer for each stroke. OUT= creates the Rankpair output data set.

proc rank data=pairs out=rankpair groups=3;

1958 Chapter 56 / RANK Procedure



Create a separate set of ranks for each BY group. The BY statement separates 
the rankings by Gender.

   by gender;

Replace the original values of the variables with the rank values. The VAR 
statement specifies that Back and Free are the variables to rank. With no RANKS 
statement, PROC RANK replaces the original variable values with the group values 
in the output data set.

   var back free;
run;

Print the data set. PROC PRINT prints the Rankpair data set. The N option prints 
the number of observations in each BY group. The TITLE statement specifies a title.

proc print data=rankpair n;
   by gender;
   title 'Pairings of Swimmers for Backstroke and Freestyle';
run;

Output: Listing
In the following output, the group values pair swimmers with similar times to work on 
each stroke. For example, Andrea and Ellen work together on the backstroke 
because they have the fastest times in the female class. The groups of male 
swimmers are unbalanced because there are seven male swimmers; for each 
stroke, one group has three swimmers.

Example 3: Partitioning Observations into Groups Based on Ranks 1959



Output 56.5 Pairings of Swimmers for Backstroke and Freestyle

               Pairings of Swimmers for Backstroke and Freestyle               1

----------------------------------- Gender=F -----------------------------------

                         Obs    Name      Back    Free

                           1    Andrea      0       1
                           2    Carole      1       0
                           3    Ellen       0       1
                           4    Jan         1       2
                           5    Karin       2       0
                           6    Susan       2       2

                                     N = 6

----------------------------------- Gender=M -----------------------------------

                         Obs    Name       Back    Free

                           7    Clayton      0       0
                           8    Curtis       2       1
                           9    Doug         1       0
                          10    Jimmy        0       1
                          11    Mick         2       2
                          12    Richard      2       2
                          13    Sam          1       1

                                     N = 7

References
Blom, G. 1958. Statistical Estimates and Transformed Beta Variables. New York, 

New York: John Wiley & Sons, Inc.

Conover, W.J. 1998. Practical Nonparametric Statistics, Third Edition. New York, 
New York: John Wiley & Sons, Inc.

Conover, W.J. and R.L. Iman. 1976. “On Some Alternative Procedures Using Ranks 
for the Analysis of Experimental Designs.” Communications in Statistics A5 (14): 
1348–1368.

Conover, W.J. and R.L. Iman. 1981. “Rank Transformations as a Bridge between 
Parametric and Nonparametric Statistics.” The American Statistician 35: 124–
129.

Iman, R.L. and W.J. Conover. 1979. “The Use of the Rank Transform in 
Regression.” Technometrics 21: 499–509.

Lehman, E.L. 1998. Nonparametrics: Statistical Methods Based on Ranks. Upper 
Saddle River, New Jersey: Prentice Hall.

Quade, D. 1966. “On Analysis of Variance for the K-Sample Problem.” Annals of 
Mathematical Statistics 37: 1747–1758.

1960 Chapter 56 / RANK Procedure



Tukey, John W. 1962. “The Future of Data Analysis.” Annals of Mathematical 
Statistics 33: 22.

Example 3: Partitioning Observations into Groups Based on Ranks 1961



1962 Chapter 56 / RANK Procedure



Chapter 57
REGISTRY Procedure

Overview: REGISTRY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1963
What Does the REGISTRY Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1963

Syntax: REGISTRY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1964
PROC REGISTRY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1964

Usage: REGISTRY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1970
Structure of a Registry File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1970
Specifying Key Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1970
Specifying Values for Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1971
Sample Registry Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1972

Examples: REGISTRY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1973
Example 1: Importing a File to the SAS Registry . . . . . . . . . . . . . . . . . . . . . . . . . 1973
Example 2: Listing and Exporting the Registry File . . . . . . . . . . . . . . . . . . . . . . . 1974
Example 3: Comparing the Registry to an External File . . . . . . . . . . . . . . . . . . . 1975
Example 4: Comparing Registry Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1977
Example 5: Specifying an Entire Key Sequence with the STARTAT= Option . . . 1978
Example 6: Displaying a List of Fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1979

Overview: REGISTRY Procedure

What Does the REGISTRY Procedure Do?
The REGISTRY procedure maintains the SAS registry. The registry consists of two 
parts. One part is stored in the Sashelp library, and the other part is stored in the 
Sasuser library.

The REGISTRY procedure enables you to do the following:

n Import registry files to populate the Sashelp and Sasuser registries.

n Export all or part of the registry to another file.

1963



n List the contents of the registry in the SAS log.

n Compare the contents of the registry to a file.

n Uninstall a registry file.

n Deliver detailed status information when a key or value will be overwritten or 
uninstalled.

n Clear out entries in the Sasuser registry.

n Validate that the registry exists.

n List diagnostic information.

For more information, see “The SAS Registry” in SAS Language Reference: 
Concepts.

Syntax: REGISTRY Procedure
PROC REGISTRY <options>;

Statement Task Example

PROC REGISTRY Manage registry files Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5, Ex. 6

PROC REGISTRY Statement
Maintains the SAS registry.

Examples: “Example 1: Importing a File to the SAS Registry” on page 1973
“Example 3: Comparing the Registry to an External File” on page 1975
“Example 2: Listing and Exporting the Registry File” on page 1974
“Example 4: Comparing Registry Files” on page 1977
“Example 5: Specifying an Entire Key Sequence with the STARTAT= Option” on page 
1978
“Example 6: Displaying a List of Fonts” on page 1979

Syntax
PROC REGISTRY <options>;

1964 Chapter 57 / REGISTRY Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0sir5mhlymb2en1glzzwsjo9jug.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0sir5mhlymb2en1glzzwsjo9jug.htm&locale=en


Summary of Optional Arguments
CLEARSASUSER

erases from the Sasuser registry the keys that were added by a user.
COMPAREREG1='libname.registry-name-1'

compares two registry files.
COMPAREREG2='libname.registry-name-2'

compares two registry files.
COMPARETO=file-specification 

compares the contents of a registry to a file.
DEBUGOFF

disables registry debugging.
DEBUGON

enables registry debugging.
EXPORT=file-specification

writes the contents of a registry to the specified file.
FOLLOWLINKS

follows links that are found when processing the LIST command.
FULLSTATUS

provides additional information in the SAS log about the results of the 
IMPORT= and UNINSTALL= options.

IMPORT=file-specification
imports the specified file to a registry.

KEYSONLY
limits the LIST, LISTUSER, LISTHELP, and LISTREG options output to 
display keys only.

LEVELS=n
limits the number of levels to display for the LIST, LISTUSER, LISTHELP, 
and LISTREG options.

LIST
writes the contents of the registry to the SAS log. This option is used with 
the STARTAT= option to list specific keys.

LISTHELP
writes the contents of the Sashelp portion of the registry to the SAS log.

LISTREG='libname.registry-name'
sends the contents of a registry to the log.

LISTUSER
writes the contents of the Sasuser portion of the registry to the SAS log.

STARTAT='key-name'
starts exporting or writing or comparing the contents of a registry at the 
specified key.

UNINSTALL=file-specification
deletes from the specified registry all the keys and values that are in the 
specified file.

UPCASE
uses uppercase for all incoming key names.

UPCASEALL
uses uppercase for all keys, names, and item values when you import a 
file.

USESASHELP

PROC REGISTRY Statement 1965



performs the specified operation on the Sashelp portion of the SAS 
registry.

Optional Arguments
CLEARSASUSER

erases from the Sasuser portion of the SAS registry the keys that were added by 
a user. 

COMPAREREG1='libname.registry-name-1'
specifies one of two registries to compare. The results appear in the SAS log. 

libname
is the name of the library in which the registry file resides.

registry-name-1
is the name of the first registry.

Requirement COMPAREREG1 must be used with COMPAREREG2.

Interaction To specify a single key and all of its subkeys, specify the 
STARTAT= option.

Example “Example 4: Comparing Registry Files” on page 1977

COMPAREREG2='libname.registry-name-2'
specifies the second of two registries to compare. The results appear in the SAS 
log. 

libname
is the name of the library in which the registry file resides.

registry-name-2
is the name of the second registry.

Requirement COMPAREREG2 must be used with COMPAREREG1.

Example “Example 4: Comparing Registry Files” on page 1977

COMPARETO=file-specification
compares the contents of a file that contains registry information to a registry. It 
returns information about keys and values that it finds in the file that are not in 
the registry. It reports the following items as differences: 

n keys that are defined in the external file but not in the registry

n value names for a given key that are in the external file but not in the registry

n differences in the content of like-named values in like-named keys

COMPARETO= does not report as differences any keys and values that are in 
the registry but not in the file because the registry could easily be composed of 
pieces from many different files.

File-specification is one of the following values:

'external-file'
is the path and name of an external file that contains the registry information.

fileref
is a fileref that has been assigned to an external file.

1966 Chapter 57 / REGISTRY Procedure



Requirement You must have previously associated the fileref with an 
external file in a FILENAME statement, a FILENAME function, 
the Explorer window, or an appropriate operating environment 
command.

Interaction By default, PROC REGISTRY compares file-specification to the 
Sasuser portion of the registry. To compare file-specification to the 
Sashelp portion of the registry, specify the option USESASHELP.

See Usage: REGISTRY Procedure on page 1970 for information about 
how to structure a file that contains registry information

Example “Example 3: Comparing the Registry to an External File” on page 
1975

DEBUGON
enables registry debugging by providing more descriptive log entries.

DEBUGOFF
disables registry debugging.

EXPORT=file-specification
writes the contents of a registry to the specified file, where file-specification is 
one of the following values:

'external-file'
is the name of an external file that contains the registry information.

fileref
is a fileref that has been assigned to an external file.

Requirement You must have previously associated the fileref with an 
external file in a FILENAME statement, a FILENAME function, 
the Explorer window, or an appropriate operating environment 
command.

If file-specification already exists, then PROC REGISTRY overwrites it. 
Otherwise, PROC REGISTRY creates the file.

Interactions By default, EXPORT= writes the Sasuser portion of the registry to 
the specified file. To write the Sashelp portion of the registry, 
specify the USESASHELP option. You must have Write permission 
to the Sashelp library to use USESASHELP.

To export a single key and all of its subkeys, specify the 
STARTAT= option.

Example “Example 2: Listing and Exporting the Registry File” on page 1974

FOLLOWLINKS
follows links that are found when processing the LIST option.

Normally the LIST option displays the values of the link items. If you use the 
FOLLOWLINKS option, the links are treated as keys, and items contained in the 
links are displayed.

FULLSTATUS
lists the keys, subkeys, and values that were added or deleted as a result of 
running the IMPORT= and UNINSTALL options.

PROC REGISTRY Statement 1967



IMPORT=file-specification
specifies the file to import into the SAS registry. PROC REGISTRY does not 
overwrite the existing registry. Instead, it updates the existing registry with the 
contents of the specified file. 

Note: The .sasxreg file extension is not required.

File-specification is one of the following values:

'external-file'
is the path and name of an external file that contains the registry information.

fileref
is a fileref that has been assigned to an external file.

Requirement You must have previously associated the fileref with an 
external file in a FILENAME statement, a FILENAME function, 
the Explorer window, or an appropriate operating environment 
command.

Interactions By default, IMPORT= imports the file to the Sasuser portion of the 
SAS registry. To import the file to the Sashelp portion of the 
registry, specify the USESASHELP option. You must have Write 
permission to Sashelp to use USESASHELP.

To obtain additional information in the SAS log as you import a file, 
use FULLSTATUS.

See Usage: REGISTRY Procedure on page 1970 for information about 
how to structure a file that contains registry information

Example “Example 1: Importing a File to the SAS Registry” on page 1973

KEYSONLY
limits the LIST, LISTUSER, LISTHELP, and LISTREG options output to display 
keys only.

LEVELS=n
limits the number of levels to display for the LIST, LISTUSER, LISTHELP, and 
LISTREG options.

Requirement LEVEL ≥ 1. LEVELS=0 behaves as if LEVELS was not specified.

LIST
writes the contents of the entire SAS registry to the SAS log.

Interaction To write a single key and all of its subkeys, use the STARTAT= 
option.

LISTHELP
writes the contents of the Sashelp portion of the registry to the SAS log.

Interaction To write a single key and all of its subkeys, use the STARTAT= 
option.

LISTREG='libname.registry-name'
lists the contents of the specified registry in the log.

1968 Chapter 57 / REGISTRY Procedure



libname
is the name of the library in which the registry file resides.

registry-name
is the name of the registry.

Here is an example:

proc registry listreg='sashelp.regstry';
run;

Interaction To list a single key and all of its subkeys, use the STARTAT= option.

LISTUSER
writes the contents of the Sasuser portion of the registry to the SAS log. 

Interaction To write a single key and all of its subkeys, use the STARTAT= 
option.

Example “Example 2: Listing and Exporting the Registry File” on page 1974

STARTAT='key-name'
exports or writes the contents of a single key and all of its subkeys. 

You must specify an entire key sequence if you want to start listing at any 
subkey under the root key.

Interaction Use STARTAT= with the EXPORT=, LIST, LISTHELP, LISTUSER, 
COMPAREREG1=, COMPAREREG2= and the LISTREG options.

Example “Example 4: Comparing Registry Files” on page 1977

UNINSTALL=file-specification
deletes from the specified registry all the keys and values that are in the 
specified file.

File-specification is one of the following values:

'external-file'
is the name of an external file that contains the keys and values to delete.

fileref
is a fileref that has been assigned to an external file. To assign a fileref, you 
can do the following:

n use the Explorer Window

n use the “FILENAME” in SAS Global Statements: Reference

Interactions By default, UNINSTALL deletes the keys and values from the 
Sasuser portion of the SAS registry. To delete the keys and values 
from the Sashelp portion of the registry, specify the USESASHELP 
option. You must have Write permission to Sashelp to use this 
option.

Use FULLSTATUS to obtain additional information in the SAS log 
as you uninstall a registry.

See Usage: REGISTRY Procedure on page 1970 for information about 
how to structure a file that contains registry information

PROC REGISTRY Statement 1969

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=p05r9vhhqbhfzun1qo9mw64s4700.htm&locale=en


UPCASE
uses uppercase for all incoming key names.

UPCASEALL
uses uppercase for all keys, names, and item values when you import a file.

USESASHELP
performs the specified operation on the Sashelp portion of the SAS registry. 

Interaction Use USESASHELP with the IMPORT=, EXPORT=, COMPARETO, 
or UNINSTALL option. To use USESASHELP with IMPORT= or 
UNINSTALL, you must have Write permission to Sashelp.

Usage: REGISTRY Procedure

Structure of a Registry File
You can create registry files with the SAS Registry Editor or with any text editor.

A registry file must have a particular structure. Each entry in the registry file consists 
of a key name, followed on the next line by one or more values. The key name 
identifies the key or subkey that you are defining. Any values that follow specify the 
names or data to associate with the key.

Specifying Key Names
Key names are entered on a single line between square brackets ([ and ]). To 
specify a subkey, enter multiple key names between the brackets, starting with the 
root key. Separate the names in a sequence of key names with a backslash (\). The 
length of a single key name or a sequence of key names cannot exceed 255 
characters (including the square brackets and the backslashes). Key names can 
contain any character except the backslash.

Examples of valid key name sequences follow. These sequences are typical of the 
SAS registry:

n [CORE\EXPLORER\MENUS\ENTRIES\CLASS] 

n [CORE\EXPLORER\NEWMEMBER\CATALOG] 

n [CORE\EXPLORER\NEWENTRY\CLASS] 

n [CORE\EXPLORER\ICONS\ENTRIES\LOG]

1970 Chapter 57 / REGISTRY Procedure



Specifying Values for Keys
Enter each value on the line that follows the key name that it is associated with. You 
can specify multiple values for each key, but each value must be on a separate line.

The general form of a value is:

value-name=value-content

A value-name can be an at sign (@), which indicates the default value name, or it 
can be any text string in double quotation marks. If the text string contains an 
ampersand (&), then the character (either uppercase or lowercase) that follows the 
ampersand is a shortcut for the value name. For more information, see “Sample 
Registry Entries” on page 1972.

The entire text string cannot contain more than 255 characters (including quotation 
marks and ampersands). It can contain any character except a backslash (\).

Value-content can be any of the following:

n the string double: followed by a numeric value. 

n a string. You can put any character inside the quotation marks, including nothing 
(""). 

Note: To include a backslash in the string that is enclosed in quotation marks, 
use two adjacent backslashes. To include a double quotation mark, use two 
adjacent double quotation marks.

n the string hex: followed by any number of hexadecimal characters, up to the 
255-character limit, separated by commas. If you extend the hexadecimal 
characters beyond a single line, then end the line with a backslash to indicate 
that the data continues on the next line. Hexadecimal values can also be 
referred to as "binary values" in the Registry Editor.

n the string dword: followed by an unsigned long hexadecimal value.

n the string int: followed by a signed long integer value.

n the string uint: followed by an unsigned long integer value.

The following display shows how the different types of values that are described 
above appear in the Registry Editor:

Figure 57.1 Types of Registry Values, Displayed in the Registry Editor

The following list contains a sample of valid registry values:

n a double value=double:2.4E-44

Usage: REGISTRY Procedure 1971



n a string="my data"

n binary data=hexadecimal: 01,00,76,63,62,6B

n dword=dword:00010203

n signed integer value=int:-123

n unsigned integer value (decimal)=dword:0001E240

Sample Registry Entries
Registry entries can vary in content and appearance, depending on their purpose.

The following display shows a registry entry that contains default PostScript printer 
settings:

Figure 57.2 Portion of a Registry Editor Showing Settings for a PostScript Printer

To see what the actual registry text file looks like, you can use PROC REGISTRY to 
write the contents of the registry key to the SAS log, using the LISTUSER and 
STARTAT= options.

The following example shows the syntax for sending a Sasuser registry entry to the 
log:

proc registry
     listuser
     startat='sasuser-registry-key-name';
run;

The following example shows a value for the STARTAT= option:

proc registry
     listuser
     startat='HKEY_SYSTEM_ROOT\CORE\PRINTING\PRINTERS\PostScript
\DEFAULT
SETTINGS';
run;

In the following example, the list of subkeys begins at the 
CORE\PRINTING\PRINTERS\PostScript\DEFAULT SETTINGS key.

1972 Chapter 57 / REGISTRY Procedure



Example Code 57.1 A Registry Entry for a PostScript Printer

NOTE: Contents of SASUSER REGISTRY starting at subkey [CORE\
PRINTING\PRINTERS\PostScript\DEFAULT SETTINGS key]

  Font Character Set="Western"
  Font Size=double:12
  Font Style="Regular"
  Font Typeface="Courier"
  Font Weight="Normal"
  Margin Bottom=double:0.5
  Margin Left=double:0.5
  Margin Right=double:0.5
  Margin Top=double:0.5
  Margin Units="IN"
  Paper Destination=""
  Paper Size="Letter"
  Paper Source=""
  Paper Type=""
  Resolution="300 DPI"

Examples: REGISTRY Procedure

Example 1: Importing a File to the SAS Registry
Features: IMPORT=

FILENAME statement

Details
This example imports a file into the Sasuser portion of the SAS registry. The 
following source file contains examples of valid key name sequences in a registry 
file:

[HKEY_USER_ROOT\AllGoodPeopleComeToTheAidOfTheirCountry]
 @="This is a string value"
  "Value2"=""
  "Value3"="C:\\This\\Is\\Another\\String\\Value"

Example 1: Importing a File to the SAS Registry 1973



Program
filename source 'external-file';

proc registry import=source;
run;

Program Description

Assign a fileref to a file that contains valid text for the registry. The FILENAME 
statement assigns the fileref SOURCE to the external file that contains the text to 
read into the registry.

filename source 'external-file';

Invoke PROC REGISTRY to import the file that contains input for the registry. 
PROC REGISTRY reads the input file that is identified by the fileref SOURCE. 
IMPORT= writes to the Sasuser portion of the SAS registry by default.

proc registry import=source;
run;

Log
Example Code 57.2 Results from Importing a File to the SAS Registry

Parsing REG file and loading the registry please wait....
Registry IMPORT is now complete.

Example 2: Listing and Exporting the Registry File
Features: EXPORT=

LISTUSER

Details
The registry file is usually very large. To export a portion of the registry, use the 
STARTAT= option.

This example lists the Sasuser portion of the SAS registry and exports it to an 
external file.

1974 Chapter 57 / REGISTRY Procedure



Program
proc registry
   listuser

   export='external-file';
run;

Program Description
Write the contents of the Sasuser portion of the registry to the SAS log. The 
LISTUSER option causes PROC REGISTRY to write the entire Sasuser portion of 
the registry to the log. 

proc registry
   listuser

Export the registry to the specified file. The EXPORT= option writes a copy of 
the Sasuser portion of the SAS registry to the external file.

   export='external-file';
run;

Log
Example Code 57.3 Results from Listing and Exporting a SAS Registry File

Starting to write out the registry file, please wait...
The export to file external-file is now complete.
Contents of SASUSER REGISTRY.
[  HKEY_USER_ROOT]
[    CORE]
[      EXPLORER]
[        CONFIGURATION]
        Initialized= "True"
[        FOLDERS]
[          UNXHOST1]
          Closed= "658"
          Icon= "658"
          Name= "Home Directory"
          Open= "658"
          Path= "~"

Example 3: Comparing the Registry to an External 
File
Features: COMPARETO= option

FILENAME statement

Example 3: Comparing the Registry to an External File 1975



Details
This example compares the Sasuser portion of the SAS registry to an external file. 
Comparisons such as this one are useful if you want to know the difference between 
a backup file that was saved with a .txt file extension and the current registry file.

To compare the Sashelp portion of the registry with an external file, specify the 
USESASHELP option.

This SAS log shows two differences between the Sasuser portion of the registry and 
the specified external file. In the registry, the value of "Initialized" is "True"; in the 
external file, it is "False". In the registry, the value of "Icon" is "658"; in the external 
file it is "343".

Program

filename testreg 'external-file';

proc registry
   compareto=testreg;
run;

Program Description

Assign a fileref to the external file that contains the text to compare to the 
registry. The FILENAME statement assigns the fileref TESTREG to the external 
file.

filename testreg 'external-file';

Compare the specified file to the Sasuser portion of the SAS registry. The 
COMPARETO option compares the contents of a file to a registry. It returns 
information about keys and values that it finds in the file that are not in the registry. 

proc registry
   compareto=testreg;
run;

1976 Chapter 57 / REGISTRY Procedure



Log
Example Code 57.4 Results from Comparing the Registry to an External File

Parsing REG file and comparing the registry please wait....
COMPARE DIFF: Value "Initialized" in
[HKEY_USER_ROOT\CORE\EXPLORER\CONFIGURATION]: REGISTRY TYPE=STRING, CURRENT
VALUE="True"
COMPARE DIFF: Value "Initialized" in
[HKEY_USER_ROOT\CORE\EXPLORER\CONFIGURATION]: FILE TYPE=STRING, FILE
VALUE="False"
COMPARE DIFF: Value "Icon" in
[HKEY_USER_ROOT\CORE\EXPLORER\FOLDERS\UNXHOST1]: REGISTRY TYPE=STRING,
CURRENT VALUE="658"
COMPARE DIFF: Value "Icon" in
[HKEY_USER_ROOT\CORE\EXPLORER\FOLDERS\UNXHOST1]: FILE TYPE=STRING, FILE
VALUE="343"
Registry COMPARE is now complete.
COMPARE: There were differences between the registry and the file.

Example 4: Comparing Registry Files
Features: COMPAREREG1= and COMPAREREG2= options

STARTAT= option

Details
This example uses the REGISTRY procedure options COMPAREREG1= and 
COMPAREREG2= to specify two registry files for comparison.

Program
libname proclib 'SAS-library';

proc registry comparereg1='sasuser.regstry'

   startat='CORE\EXPLORER'

   comparereg2='proclib.regstry';
run;  

Program Description

Declare the PROCLIB library. The PROCLIB library contains a registry file.

Example 4: Comparing Registry Files 1977



libname proclib 'SAS-library';

Start PROC REGISTRY and specify the first registry file to be used in the 
comparison.

proc registry comparereg1='sasuser.regstry'

Limit the comparison to the registry keys including and following the 
specified registry key. The STARTAT= option limits the scope of the comparison to 
the EXPLORER subkey under the CORE key. By default the comparison includes 
the entire contents of both registries.

   startat='CORE\EXPLORER'

Specify the second registry file to be used in the comparison.

   comparereg2='proclib.regstry';
run;  

Log
Example Code 57.5 Results from Comparing Two Registry Files

NOTE: Comparing registry SASUSER.REGSTRY to registry PROCLIB.REGSTRY
NOTE: Diff in Key (CORE\EXPLORER\MENUS\FILES\SAS) Item (1;&Open)
SASUSER.REGSTRY Type: String len  17 data PGM;INCLUDE '%s';
PROCLIB.REGSTRY Type: String len  15 data WHOSTEDIT '%s';

NOTE: Diff in Key (CORE\EXPLORER\MENUS\FILES\SAS) Item (3;&Submit)
SASUSER.REGSTRY Type: String len  23 data PGM;INCLUDE '%s';SUBMIT
PROCLIB.REGSTRY Type: String len  21 data WHOSTEDIT '%s';SUBMIT

NOTE: Diff in Key (CORE\EXPLORER\MENUS\FILES\SAS) Item (4;&Remote Submit)
SASUSER.REGSTRY Type: String len  35 data SIGNCHECK;PGM;INCLUDE '%s';RSUBMIT;
PROCLIB.REGSTRY Type: String len  33 data SIGNCHECK;WHOSTEDIT '%s';RSUBMIT;

NOTE: Diff in Key (CORE\EXPLORER\MENUS\FILES\SAS) Item (@)
SASUSER.REGSTRY Type: String len  17 data PGM;INCLUDE '%s';
PROCLIB.REGSTRY Type: String len  15 data WHOSTEDIT '%s';

NOTE: Item (2;Open with &Program Editor) in key
      (CORE\EXPLORER\MENUS\FILES\TXT) not found in registry PROCLIB.REGSTRY
NOTE: Diff in Key (CORE\EXPLORER\MENUS\FILES\TXT) Item (4;&Submit)
SASUSER.REGSTRY Type: String len  24 data PGM;INCLUDE '%s';SUBMIT;
PROCLIB.REGSTRY Type: String len  22 data WHOSTEDIT '%s';SUBMIT;

NOTE: Diff in Key (CORE\EXPLORER\MENUS\FILES\TXT) Item (5;&Remote Submit)
SASUSER.REGSTRY Type: String len  35 data SIGNCHECK;PGM;INCLUDE '%s';RSUBMIT;
PROCLIB.REGSTRY Type: String len  33 data SIGNCHECK;WHOSTEDIT '%s';RSUBMIT;

Example 5: Specifying an Entire Key Sequence with 
the STARTAT= Option
Features: EXPORT option

STARTAT= option

1978 Chapter 57 / REGISTRY Procedure



Details
The following example shows how to use the STARTAT= option. You must specify 
an entire key sequence if you want to start listing any subkey under the root key. 
The root key is optional.

Program
proc registry export = my-fileref
startat='core\explorer\icons';
run;

Example 6: Displaying a List of Fonts
Features: LISTHELP option

STARTAT option

Details
The following example writes a list of ODS fonts to the SAS log.

Program
proc registry clearsasuser; run;
proc registry listhelp startat='ods\fonts'; run;
proc registry clearsasuser; run;

Example 6: Displaying a List of Fonts 1979



Log
Example Code 57.6 Results from Displaying a List of Fonts from the SAS Registry

NOTE: Contents of SASHELP REGISTRY starting at subkey [ods\fonts]
[  ods\fonts]
  dings="Wingdings"
  monospace="Courier New"
  MTdings="Monotype Sorts"
  MTmonospace="Cumberland AMT"
  MTsans-serif="Albany AMT"
  MTsans-serif-unicode="Monotype Sans WT J"
  MTserif="Thorndale AMT"
  MTserif-unicode="Thorndale Duospace WT J"
  MTsymbol="Symbol MT"
  sans-serif="Arial"
  serif="Times New Roman"
  symbol="Symbol"
[    ja_JP]
    dings="Wingdings"
    monospace="MS Gothic"
    MTdings="Wingdings"
    MTmonospace="MS Gothic"
    MTsans-serif="MS PGothic"
    MTsans-serif-unicode="MS PGothic"
    MTserif="MS PMincho"
    MTserif-unicode="MS PMincho"
    MTsymbol="Symbol"
    sans-serif="MS PGothic"
    serif="MS PMincho"
    symbol="Symbol"
[    ko_KR]
    dings="Wingdings"
    monospace="GulimChe"
    MTdings="Wingdings"
    MTmonospace="GulimChe"
    MTsans-serif="Batang"
    MTsans-serif-unicode="Batang"
    MTserif="Gulim"
    MTserif-unicode="Gulim"
    MTsymbol="Symbol"
    sans-serif="Batang"
    serif="Gulim"
    symbol="Symbol"
[    th_TH]
    dings="Wingdings"
    monospace="Thorndale Duospace WT J"
    MTdings="Monotype Sorts"
    MTmonospace="Cumberland AMT"
    MTsans-serif="Monotype Sans WT J"
    MTsans-serif-unicode="Thorndale Duospace WT J"
    MTserif="Thorndale Duospace WT J"
    MTserif-unicode="Monotype Sans WT J"
    MTsymbol="Symbol MT"
    sans-serif="Angsana New"
    serif="Thorndale Duospace WT J"
    symbol="Symbol"

1980 Chapter 57 / REGISTRY Procedure



Chapter 58
REPORT Procedure

Overview: REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1981
What Does the REPORT Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1982
What Types of Reports Can PROC REPORT Produce? . . . . . . . . . . . . . . . . . . . 1983
What Do the Various Types of Reports Look Like? . . . . . . . . . . . . . . . . . . . . . . . 1983

Concepts: REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1987
Laying Out a Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1987
Using Compute Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1993
Using Break Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1999
Using Compound Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2000
ODS Destinations Supported by PROC REPORT . . . . . . . . . . . . . . . . . . . . . . . . 2002
Threaded Processing of Input DATA Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2002

Syntax: REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2003
PROC REPORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2004
BREAK Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2027
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2034
CALL DEFINE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2035
COLUMN Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2039
COMPUTE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2041
DEFINE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2045
ENDCOMP Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2059
FREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2059
LINE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2060
RBREAK Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2062
WEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2067

Usage: REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2068
Statistics That Are Available in PROC REPORT . . . . . . . . . . . . . . . . . . . . . . . . . 2068
Using ODS Styles with PROC REPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2069
Printing a Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2080
Storing and Reusing a Report Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2081
In-Database Processing for PROC REPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . 2081
CAS Processing for PROC REPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2082
Substituting BY Line Values in a Text String . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2084

Results: REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2084
How PROC REPORT Builds a Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2084

Examples: REPORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2096
Example 1: Selecting Variables and Creating a Summary Line for a Report . . . . 2096

1981



Example 2: Ordering the Rows in a Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2100
Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable . . 2103
Example 4: Displaying Multiple Statistics for One Variable . . . . . . . . . . . . . . . . . 2107
Example 5: Consolidating Multiple Observations into One Row of a Report . . . . 2109
Example 6: Creating a Column for Each Value of a Variable . . . . . . . . . . . . . . . . 2112
Example 7: Writing a Customized Summary on Each Page . . . . . . . . . . . . . . . . 2116
Example 8: Displaying a Calculated Percentage Column in a Report . . . . . . . . . 2120
Example 9: How PROC REPORT Handles Missing Values . . . . . . . . . . . . . . . . 2124
Example 10: Creating an Output Data Set and Storing Computed Variables . . . 2127
Example 11: Using a Format to Create Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 2131
Example 12: Using Multilabel Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2134
Example 13: Specifying Style Elements for ODS Output in Multiple Statements 2137
Example 14: Using the CELLWIDTH= Style Attribute with PROC REPORT . . . . 2144
Example 15: Using STYLE/MERGE in PROC REPORT CALL 

DEFINE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2147
Example 16: Using STYLE/REPLACE in PROC REPORT CALL 

DEFINE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2149

Overview: REPORT Procedure

What Does the REPORT Procedure Do?
The REPORT procedure combines features of the PRINT, MEANS, and TABULATE 
procedures with features of the DATA step in a single report-writing tool that can 
produce a variety of reports. You can use PROC REPORT in the following ways:

n in a nonwindowing environment. In this case, you submit a series of statements 
with the PROC REPORT statement, just as you do in other SAS procedure. You 
can submit these statements from the Program Editor (default is NOWINDOWS) 
in the PROC REPORT statement, or you can run SAS in batch, noninteractive, 
or interactive line mode. (See the information about “Ways to Run Your SAS 
Session ” in SAS Language Reference: Concepts.)

n in an interactive report window environment with a prompting facility that guides 
you as you build a report. For details, see “REPORT Procedure Windows” on 
page 2153.

n in an interactive report window environment without the prompting facility. For 
details, see “REPORT Procedure Windows” on page 2153.

n the ability to create accessible output tables. When the ACCESSIBLETABLE 
system option is specified, changes are made to the layout of some tables to 
make them accessible. You can use the ACCESSIBLECHECK system option to 
check if your tables are accessible. When the ACCESSIBLETABLE system 
option is used and the CAPTION= option is used with PROC REPORT, captions 
are visible in the output.

For more information about creating accessible tables with PROC REPORT, see 
“Overview of Table Accessibility ” in Creating Accessible SAS Output Using ODS 
and ODS Graphics . This feature applies to SAS 9.4M6 and later releases.

1982 Chapter 58 / REPORT Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0g70hayhqiteqn1m40cq3l7wxcw.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0g70hayhqiteqn1m40cq3l7wxcw.htm&locale=en
http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en
http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en


What Types of Reports Can PROC REPORT 
Produce?

A detail report contains one row for every observation selected for the report. Each 
of these rows is a report row, a detail report row. A summary report consolidates 
data so that each row represents multiple observations. Each of these rows is also 
called a detail row or a summary report row.

Both detail and summary reports can contain summary report lines (break lines) 
as well as report rows. A summary line summarizes numerical data for a set of detail 
rows or for all detail rows. PROC REPORT provides both default and customized 
summaries. (See “Using Break Lines” on page 1999.) 

This overview illustrates the types of reports that PROC REPORT can produce. The 
statements that create the data sets and formats used in these reports are in 
“Example 1: Selecting Variables and Creating a Summary Line for a Report” on 
page 2096. The formats are stored in a permanent SAS library. See the REPORT 
procedure examples for more reports and for the statements that create them.

What Do the Various Types of Reports Look Like?
The data set that these reports use contains one day's sales figures for eight stores 
in a chain of grocery stores.

A simple PROC REPORT step produces a report similar to one produced by a 
simple PROC PRINT step. Figure 58.61 on page 1984 illustrates the simplest type 
of report that you can produce with PROC REPORT. The statements that produce 
the report follow. The data set and formats that the program uses are created in 
“Example 1: Selecting Variables and Creating a Summary Line for a Report” on 
page 2096. Although the WHERE and FORMAT statements are not essential, here 
they limit the amount of output and make the values easier to understand.

libname proclib
'SAS-library';

options nodate pageno=1 linesize=64 pagesize=60
        fmtsearch=(proclib);

proc report data=grocery;
   where sector='se';
   format sector $sctrfmt. manager $mgrfmt.
          dept $deptfmt. sales dollar10.2;
run;

Overview: REPORT Procedure 1983



Figure 58.1 Simple Detail Report with a Detail Row for Each Observation

T h e S A S S y s t e m 1

S e c t o r Manager Depar tment S a l e s
S o u t h e a s t S m i t h P a p e r $ 5 0 . 0 0
S o u t h e a s t S m i t h M e a t / D a i r y $ 1 0 0 . 0 0
S o u t h e a s t S m i t h Canned $ 1 2 0 . 0 0
S o u t h e a s t S m i t h P roduce $ 8 0 . 0 0
S o u t h e a s t J o n e s P a p e r $ 4 0 . 0 0
S o u t h e a s t J o n e s M e a t / D a i r y $ 3 0 0 . 0 0
S o u t h e a s t J o n e s Canned $ 2 2 0 . 0 0
S o u t h e a s t J o n e s P roduce $ 7 0 . 0 0

Detail row

The report in the following figure uses the same observations as the above figure. 
However, the statements that produce this report

n order the rows by the values of Manager and Department.

n create a default summary line for each value of Manager.

n create a customized summary line for the whole report. A customized summary 
lets you control the content and appearance of the summary information, but you 
must write additional PROC REPORT statements to create one.

For an explanation of the program that produces this report, see “Example 2: 
Ordering the Rows in a Report” on page 2100. 

Figure 58.2 Ordered Detail Report with Default and Customized Summaries

Detail row

Customized summary
line for the whole report

Default summary
line for Manager

S a l e s f o r t h e S o u t h e a s t S e c t o r 1

Manager Depar tment S a l e s
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

J o n e s P a p e r $ 4 0 . 0 0
Canned $ 2 2 0 . 0 0
M e a t / D a i r y $ 3 0 0 . 0 0
P roduce $ 7 0 . 0 0

- - - - - - - - - - - - - -
J o n e s $ 6 3 0 . 0 0

S m i t h P a p e r $ 5 0 . 0 0
Canned $ 1 2 0 . 0 0
M e a t / D a i r y $ 1 0 0 . 0 0
P roduce $ 8 0 . 0 0

- - - - - - - - - - - - - -
S m i t h $ 3 5 0 . 0 0

T o t a l s a l e s f o r t h e s e s t o r e s w e r e : $ 9 8 0 . 0 0

The summary report in the following figure contains one row for each store in the 
northern sector. Each detail row represents four observations in the input data set, 
one observation for each department. Information about individual departments 
does not appear in this report. Instead, the value of Sales in each detail row is the 
sum of the values of Sales in all four departments. In addition to consolidating 
multiple observations into one row of the report, the statements that create this 
report

n customize the text of the column headings

n create default summary lines that total the sales for each sector of the city

1984 Chapter 58 / REPORT Procedure



n create a customized summary line that totals the sales for both sectors

For an explanation of the program that produces this report, see “Example 5: 
Consolidating Multiple Observations into One Row of a Report” on page 2109. 

Figure 58.3 Summary Report with Default and Customized Summaries

S a l e s F i g u r e s f o r N o r t h e r n S e c t o r s 1

S e c t o r Manager S a l e s
- - - - - - - - - - - - - - - - - - - - - - - - - -

N o r t h e a s t A l omar 7 8 6 . 0 0
Andrews 1 , 0 4 5 . 0 0

- - - - - - - - - -
$ 1 , 8 3 1 . 0 0

N o r t h w e s t Brown 5 9 8 . 0 0
P e l f r e y 7 4 6 . 0 0
R e v e i z 1 , 1 1 0 . 0 0

- - - - - - - - - -
$ 2 , 4 5 4 . 0 0

C o m b i n e d s a l e s f o r t h e n o r t h e r n s e c t o r s w e r e $ 4 , 2 8 5 . 0 0 .

Detail ro w

Customized summary
line for the whole report

Default summary
line for Sector

The summary report in the following figure is similar to the above figure. The major 
difference is that it also includes information for individual departments. Each 
selected value of Department forms a column in the report. In addition, the 
statements that create this report compute and display a variable that is not in the 
input data set

For an explanation of the program that produces this report, see “Example 6: 
Creating a Column for Each Value of a Variable” on page 2112. 

Figure 58.4 Summary Report with a Column for Each Value of a Variable

Computed variable

Customized summary lines
for the whole report

S a l e s F i g u r e s f o r P e r i s h a b l e s i n N o r t h e r n S e c t o r s 1

______Depar tment_______
S e c t o r Manager M e a t / D a i r y P r oduce P e r i s h a b l e

T o t a l
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

N o r t h e a s t A lomar $ 1 9 0 . 0 0 $ 8 6 . 0 0 $ 2 7 6 . 0 0

Andrews $ 3 0 0 . 0 0 $ 1 2 5 . 0 0 $ 4 2 5 . 0 0

N o r t h w e s t Brown $ 2 5 0 . 0 0 $ 7 3 . 0 0 $ 3 2 3 . 0 0

P e l f r e y $ 2 0 5 . 0 0 $ 7 6 . 0 0 $ 2 8 1 . 0 0

R e v e i z $ 6 0 0 . 0 0 $ 3 0 . 0 0 $ 6 3 0 . 0 0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
| C o m b i n e d s a l e s f o r m e a t a n d d a i r y : $ 1 , 5 4 5 . 0 0 |
| C o m b i n e d s a l e s f o r p r o d u c e : $ 3 9 0 . 0 0 |
| |
| C o m b i n e d s a l e s f o r a l l p e r i s h a b l e s : $ 1 , 9 3 5 . 0 0 |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Overview: REPORT Procedure 1985



The customized report in the following figure shows each manager's store on a 
separate page. Only the first two pages appear here. The statements that create 
this report create

n a customized heading for each page of the report

n a computed variable (Profit) that is not in the input data set

n a customized summary with text that is dependent on the total sales for that 
manager's store

For an explanation of the program that produces this report, see “Example 7: Writing 
a Customized Summary on Each Page” on page 2116. 

Figure 58.5 Customized Summary Report

S a l e s f o r I n d i v i d u a l S t o r e s 1

N o r t h e a s t S e c t o r
S t o r e m a n a g e d b y A l o m a r

Depar tment S a l e s P r o f i t
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Canne d $ 4 2 0 . 0 0 $ 1 6 8 . 0 0
M e a t / D a i r y $ 1 9 0 . 0 0 $ 4 7 . 5 0
P a p e r $ 9 0 . 0 0 $ 3 6 . 0 0
P roduce $ 8 6 . 0 0 $ 2 1 . 5 0

- - - - - - - - - - - - - - - - - -
$ 7 8 6 . 0 0 $ 1 9 6 . 5 0

S a l e s a r e i n t h e t a r g e t r e g i o n .

S a l e s f o r I n d i v i d u a l S t o r e s 2

N o r t h e a s t S e c t o r
S t o r e m a n a g e d b y A n d r e w s

Depar tment S a l e s P r o f i t
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Canned $ 4 2 0 . 0 0 $ 1 6 8 . 0 0
M e a t / D a i r y $ 3 0 0 . 0 0 $ 7 5 . 0 0
P a p e r $ 2 0 0 . 0 0 $ 8 0 . 0 0
P roduce $ 1 2 5 . 0 0 $ 3 1 . 2 5

- - - - - - - - - - - - - - - - - -
$ 1 , 0 4 5 . 0 0 $ 2 6 1 . 2 5

S a l e s e x c e e d e d g o a l !

Computed variable

Customized summary line
for Manager

Detail r ow

Default summary line
for Manager

Computed variable

Customized summary line
for Manager

Detail r ow

Default summary line
for Manager

The report in the following figure uses customized style elements to control things 
like font faces, font sizes, and justification, as well as the width of the border of the 
table and the width of the spacing between cells. This report was created by using 
the HTML destination of the Output Delivery System (ODS) and the STYLE= option 
in several statements in the procedure.

For an explanation of the program that produces this report, see “Example 13: 
Specifying Style Elements for ODS Output in Multiple Statements” on page 2137. 
For information about ODS, see “Output Delivery System” on page 72. 

1986 Chapter 58 / REPORT Procedure



Figure 58.6 HTML Output

Concepts: REPORT Procedure

Laying Out a Report

Planning the Layout
Report writing is simplified if you approach it with a clear understanding of what you 
want the report to look like. The most important thing to determine is the layout of 
the report. To design the layout, ask yourself the following types of questions:

n What do I want to display in each column of the report?

Concepts: REPORT Procedure 1987



n In what order do I want the columns to appear?

n Do I want to display a column for each value of a particular variable?

n Do I want a row for every observation in the report, or do I want to consolidate 
information for multiple observations into one row?

n In what order do I want the rows to appear?

When you understand the layout of the report, use the COLUMN and DEFINE 
statements in PROC REPORT to construct the layout.

The COLUMN statement lists the items that appear in the columns of the report, 
describes the arrangement of the columns, and defines headings that span multiple 
columns. A report item can be

n a data set variable

n a statistic calculated by the procedure

n a variable that you compute from other items in the report

Omit the COLUMN statement if you want to include all variables in the input data set 
in the same order as they occur in the data set.

The DEFINE statement defines the characteristics of an item in the report. These 
characteristics include how PROC REPORT uses the item in the report, the text of 
the column heading, and the format to use to display values.

Note: The DEFINE statement equates to the DEFINITION window if you are using 
the WINDOWS environment.

Usage of Variables in a Report
Much of a report's layout is determined by the usages that you specify for variables 
in the DEFINE statements. For data set variables, these usages are

DISPLAY ORDER ACROSS GROUP ANALYSIS

A report can contain variables that are not in the input data set. These variables 
must have a usage of COMPUTED.

Display Variables
A report that contains one or more display variables has a row for every observation 
in the input data set. Display variables do not affect the order of the rows in the 
report. If no order variables appear to the left of a display variable, then the order of 
the rows in the report reflects the order of the observations in the data set. By 
default, PROC REPORT treats all character variables as display variables. For an 
example, see “Example 1: Selecting Variables and Creating a Summary Line for a 
Report” on page 2096.

1988 Chapter 58 / REPORT Procedure



Order Variables
A report that contains one or more order variables has a row for every observation 
in the input data set. If no display variable appears to the left of an order variable, 
then PROC REPORT orders the detail rows according to the ascending, formatted 
values of the order variable. You can change the default order with ORDER= and 
DESCENDING in the DEFINE statement.

If the report contains multiple order variables, then PROC REPORT establishes the 
order of the detail rows by sorting these variables from left to right in the report. 
PROC REPORT does not repeat the value of an order variable from one row to the 
next if the value does not change, unless an order variable to its left changes 
values. For an example, see “Example 2: Ordering the Rows in a Report” on page 
2100. 

The order of observations is not inherently defined for DBMS tables. If you specify 
the ORDER=DATA option for input data in a DBMS table, the order of rows written 
to a database table from PROC REPORT is not likely to be preserved.

Group Variables
If a report contains one or more group variables, then PROC REPORT tries to 
consolidate into one row all observations from the data set that have a unique 
combination of formatted values for all group variables.

When PROC REPORT creates groups, it orders the detail rows by the ascending, 
formatted values of the group variable. You can change the default order with 
ORDER= and DESCENDING in the DEFINE statement or with the DEFINITION 
window.

If the report contains multiple group variables, then the REPORT procedure 
establishes the order of the detail rows by sorting these variables from left to right in 
the report. PROC REPORT does not repeat the values of a group variable from one 
row to the next if the value does not change, unless a group variable to its left 
changes values.

If you are familiar with procedures that use class variables, then you see that group 
variables are class variables that are used in the row dimension in PROC 
TABULATE.

Note: You cannot always create groups. PROC REPORT cannot consolidate 
observations into groups if the report contains any order variables or any display 
variables that do not have one or more statistics associated with them. (See the 
COLUMN statement on page 2039.) In the interactive report window environment, if 
PROC REPORT cannot immediately create groups, then the procedure changes all 
display and order variables to group variables so that it can create the group 
variable that you requested. In the nonwindowing (default) environment, it returns to 
the SAS log a message that explains why it could not create groups. Instead, it 
creates a detail report that displays group variables the same way as it displays 
order variables. Even when PROC REPORT creates a detail report, the variables 
that you define as group variables retain that usage in their definitions. 

Concepts: REPORT Procedure 1989



See “Example 5: Consolidating Multiple Observations into One Row of a Report” on 
page 2109.

Analysis Variables
An analysis variable is a numeric variable that is used to calculate a statistic for all 
the observations represented by a cell of the report. (Across variables, in 
combination with group variables or order variables, determine which observations a 
cell represents.) You associate a statistic with an analysis variable in the variable's 
definition or in the COLUMN statement. By default, PROC REPORT uses numeric 
variables as analysis variables that are used to calculate the Sum statistic.

The value of an analysis variable depends on where it appears in the report:

n In a detail report, the value of an analysis variable in a detail row is the value of 
the statistic associated with that variable calculated for a single observation. 
Calculating a statistic for a single observation is not practical. However, using the 
variable as an analysis variable enables you to create summary lines for sets of 
observations or for all observations.

n In a summary report, the value displayed for an analysis variable is the value of 
the statistic that you specify calculated for the set of observations represented by 
that cell of the report.

n In a summary line for any report, the value of an analysis variable is the value of 
the statistic that you specify calculated for all observations represented by that 
cell of the summary line.

For more information, see the “BREAK Statement” on page 2027 and “RBREAK 
Statement” on page 2062 statements.

For examples, refer to “Example 2: Ordering the Rows in a Report” on page 2100, 
“Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable” on 
page 2103, “Example 5: Consolidating Multiple Observations into One Row of a 
Report” on page 2109, and “Example 6: Creating a Column for Each Value of a 
Variable” on page 2112. 

Note: Be careful when you use SAS dates in reports that contain summary lines. 
SAS dates are numeric variables. Unless you explicitly define dates as some other 
type of variable (ORDER, GROUP, or DISPLAY), PROC REPORT summarizes 
them.

Across Variables
PROC REPORT creates a column for each value of an across variable. PROC 
REPORT orders the columns by the ascending, formatted values of the across 
variable. You can change the default order with ORDER= and DESCENDING in the 
DEFINE statement. If no other variable helps define the column, then PROC 
REPORT displays the N statistic (the number of observations in the input data set 
that belong to that cell of the report.) See the COLUMN statement on page 2039. 

1990 Chapter 58 / REPORT Procedure



Note: When a display variable and an across variable share a column, the report 
must also contain another variable that is not in the same column. When referring to 
columns created by an across variable, you must use the _cn_ syntax. 

If you are familiar with procedures that use class variables, then you see that across 
variables are like class variables that are used in the column dimension with PROC 
TABULATE. Generally, you use Across variables in conjunction with order or group 
variables. For an example, see “Example 6: Creating a Column for Each Value of a 
Variable” on page 2112.

Computed Variables
Computed variables are variables that you define for the report. They are not in the 
input data set, and PROC REPORT does not add them to the input data set. 
However, computed variables are included in an output data set if you create one.

You add a computed variable by

n including the computed variable in the COLUMN statement

n defining the variable's usage as COMPUTED in the DEFINE statement

n computing the value of the variable in a compute block associated with the 
variable

For examples, refer to “Example 6: Creating a Column for Each Value of a Variable” 
on page 2112, “Example 8: Displaying a Calculated Percentage Column in a 
Report” on page 2120, and “Example 10: Creating an Output Data Set and Storing 
Computed Variables” on page 2127.

Interactions of Position and Usage
The position and usage of each variable in the report determine the report's 
structure and content. PROC REPORT orders the rows of the report according to 
the formatted values of order and group variables, considered from left to right as 
specified in the COLUMN statement. Similarly, PROC REPORT orders columns for 
an across variable from left to right, according to the values of the variable.

Several items can collectively define the contents of a column in a report. For 
example, in the following figure, the values that appear in the third and fourth 
columns are collectively determined by Sales, an analysis variable, and by 
Department, an across variable. You create this type of report with the COLUMN 
statement or, in the interactive report window environment, by placing report items 
above or below each other. This arrangement is called stacking items in the report 
because each item generates a heading, and the headings are stacked one above 
the other.

options nodate pageno=1 fmtsearch=(proclib);
proc report data=grocery split='*';
   column sector manager department,sales perish;
   define sector / group format=$sctrfmt. 'Sector' '';
   define manager / group format=$mgrfmt. 'Manager* ';
   define department/ across format=$deptfmt. '_Department_';
   define sales / analysis sum format=dollar11.2 ' ';

Concepts: REPORT Procedure 1991



   define perish / computed format=dollar11.2 'Perishable Total';
   break after manager / skip;
   compute perish;
      perish=_c3_+_c4_;
   endcomp;
   title "Sales Figures for Perishables in Northern Sectors";
   where sector contains 'n' and (department='p1' or department='p2');
run;
title;

Figure 58.7 Stacking Department and Sales

S a l e s F i g u r e s f o r P e r i s h a b l e s i n N o r t h e r n S e c t o r s

______Depar tment_______
S e c t o r Manager M e a t / D a i r y P roduce P e r i s h a b l e

T o t a l
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

N o r t h e a s t A loma r $ 1 9 0 . 0 0 $ 8 6 . 0 0 $ 2 7 6 . 0 0

Andrews $ 3 0 0 . 0 0 $ 1 2 5 . 0 0 $ 4 2 5 . 0 0

N o r t h w e s t Brown $ 2 5 0 . 0 0 $ 7 3 . 0 0 $ 3 2 3 . 0 0

P e l f r e y $ 2 0 5 . 0 0 $ 7 6 . 0 0 $ 2 8 1 . 0 0

R e v e i z $ 6 0 0 . 0 0 $ 3 0 . 0 0 $ 6 3 0 . 0 0

When you use multiple items to define the contents of a column, at most one of the 
following can be in a column:

n a display variable with or without a statistic above or below it

n an analysis variable with or without a statistic above or below it

n an order variable

n a group variable

n a computed variable

More than one of these items in a column creates a conflict for PROC REPORT 
about which values to display.

The following table shows which report items can share a column.

Note: You cannot stack order variables with other report items.

Table 58.1 Report Items That Can Share Columns

Display Analysis Order Group
Compute

d Across Statistic

Display X* X

Analysis X X

Order

Group X

1992 Chapter 58 / REPORT Procedure



Display Analysis Order Group
Compute

d Across Statistic

Computed 
variable

X

Across X* X X X X

Statistic X X X

*When a display variable and an across variable share a column, the report must also contain another 
variable that is not in the same column.

When a column is defined by stacked report items, PROC REPORT formats the 
values in the column by using the format that is specified for the lowest report item 
in the stack that does not have an ACROSS usage.

The following items can stand alone in a column:

n display variable

n analysis variable

n order variable

n group variable

n computed variable

n across variable

n N statistic

Note: The values in a column that is occupied only by an across variable are 
frequency counts.

Using Compute Blocks

What Is a Compute Block?
A compute block is one or more programming statements that appear between a 
COMPUTE statement and an ENDCOMP statement. Between these two 
statements, you can use other SAS statements (assignment, CALL DEFINE, and 
LINE statements) that customize your output. PROC REPORT processes a data set 
by reading the variables in the order in which they appear from left to right in the 
COLUMN statement. The procedure builds the report one column and one row at a 
time, and COMPUTE statements are executed as the report is built.

You create a compute block with the COMPUTE statement. A COMPUTE statement 
can contain a number of arguments of the following types:

Concepts: REPORT Procedure 1993



report-item
A report item can be a data set variable, a statistic, or a computed variable.

location
Specifies at what point in the process the compute block executes in relation to 
the value for target. The location can be at the top or bottom of the report; before 
or after a set of observations.

target
Controls when the compute block executes. You can specify a target if you 
specify a location (BEFORE or AFTER) for the COMPUTE statement. A target 
can be a group or order variable or a _PAGE_ variable.

Note: When you use the COMPUTE statement, you do not have to use a 
corresponding BREAK or RBREAK statement. See “Using Break Lines” on page 
1999. Also see “Example 2: Ordering the Rows in a Report” on page 2100, which 
uses COMPUTE AFTER but does not use the RBREAK statement. Use these 
statements only when you want to implement one or more BREAK statement or 
RBREAK statement options. See “Example 7: Writing a Customized Summary on 
Each Page” on page 2116, which uses both COMPUTE AFTER MANAGER and 
BREAK AFTER MANAGER.)

For an in-depth look at Using a Compute Block, refer to The REPORT Procedure: A 
Primer for the Compute Block .

The Purpose of Compute Blocks
A compute block that is associated with a report item can perform the following 
tasks:

n define a variable that appears in a column of the report but is not in the input 
data set.

n define display attributes for a report item. (See “CALL DEFINE Statement” on 
page 2035.) 

n define or change the value for a report item, such as showing the word “Total” on 
a summary line.

A compute block that is associated with a location can write a customized summary.

In addition, all compute blocks can use most SAS language elements to perform 
calculations. (See “The Contents of Compute Blocks” on page 1994.) A PROC 
REPORT step can contain multiple compute blocks, but they cannot be nested.

The Contents of Compute Blocks
A compute block begins with a COMPUTE statement and ends with an ENDCOMP 
statement. Within a compute block, you can use these SAS language elements:

n %INCLUDE statement

n these DATA step statements: 

ARRAY END

1994 Chapter 58 / REPORT Procedure

http://support.sas.com/resources/papers/proceedings15/SAS1642-2015.pdf
http://support.sas.com/resources/papers/proceedings15/SAS1642-2015.pdf


array-reference IF-THEN/ELSE
assignment LENGTH
CALL RETURN
CONTINUE sum
DO (all forms) END

n comments

n null statements

n macro variables and macro invocations

n all DATA step functions

Within a compute block, you can also use these PROC REPORT features:

n Compute blocks for a customized summary can contain one or more LINE 
statements, which place customized text and formatted values in the summary. 
(See the “LINE Statement” on page 2060.)

n Compute blocks for a report item can contain one or more CALL DEFINE 
statements, which set attributes like color and format each time a value for the 
item is placed in the report. (See the “CALL DEFINE Statement” on page 2035.)

n Any compute block can reference the automatic variable _BREAK_. (See “The 
Automatic Variable _BREAK_” on page 2000.)

Four Ways to Reference Report Items in a 
Compute Block
A compute block can reference any report item that forms a column in the report 
(whether the column is visible). You reference report items in a compute block in 
one of four ways:

n by name.

n by a compound name that identifies both the variable and the name of the 
statistic that you calculate with it. A compound name has this form 

variable-name.statistic

n by an alias that you create in the COLUMN statement or in the DEFINITION 
window.

n by column number, in the form 

'_Cn_'

where n is the number of the column (from left to right) in the report.

Note: The only time a column number is necessary is when a COMPUTED 
variable is sharing a column with an ACROSS variable.

Note: Even though the columns that you define with NOPRINT and NOZERO 
do not appear in the report, you must count them when you are referencing 

Concepts: REPORT Procedure 1995



columns by number. See the discussion of “NOPRINT” on page 2054 and 
“NOZERO” on page 2054. 

Note:  Referencing variables that have missing values leads to missing values. If a 
compute block references a variable that has a missing value, then PROC REPORT 
displays that variable as a blank (for character variables) or as a period (for numeric 
variables).

The following table shows how to use each type of reference in a compute block.

Variable Type Referenced By Example

Group Name* Department

Order Name* Department

Computed Name* Department

Display Name* Department

Display sharing a column with 
a statistic

A compound name* Sales.sum

Analysis A compound name* Sales.mean

Any type sharing a column with 
an across variable

Column number ** '_c3_'

*If the variable has an alias, then you must reference it with the alias.

**Even if the variable has an alias, you must reference it by column number.

Refer to “Example 3: Using Aliases to Obtain Multiple Statistics for the Same 
Variable” on page 2103, which references analysis variables by their aliases; 
“Example 6: Creating a Column for Each Value of a Variable” on page 2112, which 
references variables by column number; and “Example 8: Displaying a Calculated 
Percentage Column in a Report” on page 2120, which references group variables 
and computed variables by name.

Compute Block Processing
In general, compute blocks are executed in the following order:

1 COMPUTE report-item;

2 COMPUTE BEFORE;

3 COMPUTE BEFORE target;

1996 Chapter 58 / REPORT Procedure



4 COMPUTE BEFORE _PAGE_;

5 COMPUTE AFTER;

6 COMPUTE AFTER target;

7 COMPUTE AFTER _PAGE_;

The COMPUTE statement's behavior is dependent on the arguments that you 
include. The following syntax and behavior explains the actions of the compute 
block based on specific arguments in the COMPUTE statement.

Note: PROC REPORT assigns values to the columns in a row of a report from left 
to right. Consequently, you cannot base the calculation of a computed variable on 
any variable that appears to its right in the report. For information about how PROC 
REPORT (in general) builds a report, see Results: REPORT Procedure on page 
2084. 

COMPUTE report-item;

When you include the report-item argument, the compute block executes on every 
observation when that particular column is processed. In general, this statement is 
used for a specific report-item column so that you can calculate a value, change a 
value, change a format, apply style attributes, or create a temporary variable.

COMPUTE BEFORE;

With this syntax, the compute block is executed before the first detail row. The block 
is executed only once. Overall summary values for the analysis variables are 
available in the compute block. In addition, values of temporary variables that are 
created in this block are available to other compute blocks. Values for group or order 
variables are not available in this block. Text that is generated by LINE statements 
appears below the headers and above the first detail row in the report. CALL 
DEFINE statements set attributes on rows that are created by an RBREAK 
BEFORE statement.

COMPUTE BEFORE target;

When you use this syntax, the compute block is executed when the value of the 
target variable changes. In this syntax:

n target specifies either a group variable or an order variable.

n BEFORE is a value for location. This value specifies that the compute block is 
executed at the top (or beginning) of the section for a specific value of target.

n The value of the target variable for this specific section of the report is available 
to the compute block.

n The values of temporary variables created in this block are available to other 
compute blocks.

n Summary values for this specific target value are available to the compute block.

n CALL DEFINE statements set attributes on rows that are created by a BREAK 
BEFORE target statement.

COMPUTE BEFORE _PAGE_;

The compute block is executed once for each page. The page break can be 
generated either by the destination to which you send the output or by using the 
following BREAK statement syntax:

BREAK <location> <break-var> /PAGE;

Concepts: REPORT Procedure 1997



Typically, this block outputs text by using a LINE statement. The text appears at the 
top of the page above the headers. However, it is still part of the table. Any variable 
that is listed in the LINE statement takes its value from the first detail row in the 
report.

COMPUTE AFTER;

The compute block is executed after the last detail row, and the block is executed 
only once (for each report). Overall summary values for the analysis variables are 
also available in the compute block. Values for group or order variables are not 
available in this block. Text that is generated by LINE statements appears after the 
last detail row in the report. This block is executed after each BY value if the PROC 
REPORT code contains a BY statement. CALL DEFINE statements set attributes on 
rows created by an RBREAK AFTER statement.

COMPUTE AFTER target;

With this syntax, the compute block is executed when the value of the target (break) 
variable changes. In this syntax:

n target specifies a variable that is defined as either a group variable or an order 
variable.

n AFTER is a value for location. This value specifies that the compute block is 
executed at the bottom (or end) of the section for a specific value of target.

n The value of the target variable for this specific section of the report is available 
to the compute block.

n Summary values for this specific target value are available to the compute block.

n CALL DEFINE statements set attributes on rows created by a BREAK AFTER 
target statement.

COMPUTE AFTER _PAGE_;

The compute block is executed once for each page. The page break can be 
generated either by the destination to which you send the output or by using the 
following BREAK statement syntax:

BREAK <location> <break-var> /PAGE;

Any variable that is listed in the LINE statement takes its value from the last detail 
row in the report. The text is placed at the end of the table, but it is still part of the 
table.

Note: The exact location of the text might change for each page, based on the 
amount of information that is output to each page. The text is placed on the last 
page of a table if it spans multiple pages.

1998 Chapter 58 / REPORT Procedure



Using Break Lines

What Are Break Lines?
Break lines are lines of text (including blanks) that appear at particular locations, 
called breaks, in a report. A report can contain multiple breaks. Generally, break 
lines are used to visually separate parts of a report, to summarize information, or 
both. They can occur in the following locations:

n at the beginning or end of a report

n at the top or bottom of each page

n between sets of observations (whenever the value of a group or order variable 
changes)

Break lines can contain the following items:

n text

n values calculated for either a set of rows or for the whole report

Creating Break Lines
There are two ways to create break lines. The first way is simpler. It produces a 
default summary. The second way is more flexible. It produces a customized 
summary and provides a way to slightly modify a default summary. Default 
summaries and customized summaries can appear at the same location in a report.

Default summaries are produced with the BREAK statement, the RBREAK 
statement. You can use default summaries to visually separate parts of the report, to 
summarize information for numeric variables, or both. Options provide some control 
over the appearance of the break lines, but if you choose to summarize numeric 
variables, then you have no control over the content and the placement of the 
summary information. (A break line that summarizes information is a summary line.)

Customized summaries are produced in a compute block. You can control both the 
appearance and content of a customized summary, but you must write the code to 
do so.

Order of Break Lines
You control the order of the lines in a customized summary. However, PROC 
REPORT controls the order of lines in a default summary and the placement of a 
customized summary relative to a default summary. When a default summary 
contains multiple break lines, the order in which the break lines appear is as follows:

Concepts: REPORT Procedure 1999



1 summary line

2 page break

For LISTING output, the order in which the break lines appear is as follows:

1 overlining or double overlining (in LISTING output only)

2 summary line

3 underlining or double underlining 

4 blank line (in LISTING output only)

5 page break

If you define a customized summary for the same location, then customized break 
lines appear after underlining or double underlining. This occurs only in LISTING 
output.

The Automatic Variable _BREAK_
PROC REPORT automatically creates a variable called _BREAK_. This variable 
contains the following:

n a blank if the current line is not part of a break

n the value of the break variable if the current line is part of a break between sets 
of observations

n the value _RBREAK_ if the current line is part of a break at the beginning or end of 
the report

n the value _PAGE_ if the current line is part of a break at the beginning or end of a 
page

Using Compound Names
When you use a statistic in a report, you generally refer to it in compute blocks by a 
compound name like Sales.sum. However, in different parts of the report, that same 
name has different meanings. Consider the report in the following output. The 
statements that create the output follow. The user-defined formats that are used are 
created by a PROC FORMAT step on page 2098.

libname proclib
'SAS-library';

options nodate pageno=1 fmtsearch=(proclib);
proc report data=grocery;
   column sector manager sales;
   define sector / group format=$sctrfmt.;
   define sales  / analysis sum
                   format=dollar9.2;
   define manager / group format=$mgrfmt.;
   break after sector / summarize;

2000 Chapter 58 / REPORT Procedure



   rbreak after / summarize;
   compute after;
      sector='Total:';
   endcomp;
run;

Example Code 58.1 Three Different Meanings of Sales.sum

                         The SAS System                       
1

                 Sector     Manager      Sales
                 Northeast  Alomar     $786.00     1

                            Andrews  $1,045.00
                 ---------           ---------
                 Northeast           $1,831.00     2

                 Northwest  Brown      $598.00
                            Pelfrey    $746.00
                            Reveiz   $1,110.00
                 ---------           ---------
                 Northwest           $2,454.00

                 Southeast  Jones      $630.00
                            Smith      $350.00
                 ---------           ---------
                 Southeast             $980.00

                 Southwest  Adams      $695.00
                            Taylor     $353.00
                 ---------           ---------
                 Southwest           $1,048.00

                 =========           =========
                 Total:              $6,313.00     3

                 =========           =========

Here Sales.sum has three different meanings:

1 In detail rows, the value is the sales for one manager's store in a sector of the 
city. For example, the first detail row of the report shows that the sales for the 
store that Alomar manages were $786.00.

2 In the group summary lines, the value is the sales for all the stores in one sector. 
For example, the first group summary line shows that sales for the Northeast 
sector were $1,831.00.

3 In the report summary line, the value $6,313.00 is the sales for all stores in the 
city.

Note: When you refer in a compute block to a statistic that has an alias, do not use 
a compound name. Generally, you must use the alias. However, if the statistic 
shares a column with an across variable, then you must reference it by column 
number. (See “Four Ways to Reference Report Items in a Compute Block” on page 
1995.) 

Concepts: REPORT Procedure 2001



ODS Destinations Supported by PROC REPORT
PROC REPORT supports all ODS destinations. For more information, see 
“Understanding ODS Destinations” in SAS Output Delivery System: User’s Guide .

The PROC REPORT STYLE= option supports all ODS destinations except LISTING 
and OUTPUT. For more information, see “Using ODS Styles with PROC REPORT” 
on page 2069.

PROC REPORT supports the ODS DOCUMENT procedure. The DOCUMENT 
destination enables you to restructure, navigate, and replay your data in different 
ways and to different destinations without rerunning your analysis or repeating your 
database query. The DOCUMENT destination makes your entire output stream 
available in "raw" form and accessible to you to customize. The output is kept in the 
original internal representation as a data component plus a table definition. For 
more information, see “DOCUMENT Procedure” in SAS Output Delivery System: 
Procedures Guide.

PROC REPORT supports the OUTPUT destination for SAS output data sets. 
Because ODS already knows the logical structure of the data and its native form, 
ODS can output a SAS data set that represents exactly the same resulting data set 
that the procedure worked with internally. For more information, see “ODS 
OUTPUT” in SAS Output Delivery System: User’s Guide.

Threaded Processing of Input DATA Sets
The THREAD option enables or disables parallel processing of the input data set. 
Threaded processing achieves a degree of parallelism in the processing operations. 
This parallelism is intended to reduce the real time to completion for a given 
operation and therefore limit the cost of additional CPU resources. For more 
information, see “Support for Parallel Processing” in SAS Language Reference: 
Concepts. 

The value of the SAS system option CPUCOUNT= affects the performance of the 
threaded sort. CPUCOUNT= suggests how many system CPUs are available for 
use by the threaded procedures.

For more information, see the “THREADS” in SAS System Options: Reference and 
the “CPUCOUNT=” in SAS System Options: Reference.

Calculated statistics can vary slightly, depending on the order in which observations 
are processed. Such variations are due to numerical errors that are introduced by 
floating–point arithmetic, the results of which should be considered approximate and 
not exact. The order of observation processing can be affected by nondeterministic 
effects of multithreaded or parallel processing. The order of processing can also be 
affected by inconsistent or nondeterministic ordering of observations that are 
produced by a data source, such as a DBMS that delivers query results through an 
ACCESS engine. For more information, see “Numerical Accuracy in SAS Software” 
in SAS Language Reference: Concepts and “Threading in Base SAS” in SAS 
Language Reference: Concepts.

2002 Chapter 58 / REPORT Procedure

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p1n357e2fq6kjkn1ijsu3w97lxl1.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n0lzw11swn9gm8n1g6rof0r360wr.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n0lzw11swn9gm8n1g6rof0r360wr.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0oxrbinw6fjuwn1x23qam6dntyd.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0oxrbinw6fjuwn1x23qam6dntyd.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0z5kinpzecv9nn1s45yam93tf6z.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0z5kinpzecv9nn1s45yam93tf6z.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0cvg7xpfvfyn4n1rnp64gu91poh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p14arc7flhenwqn1v1gipt9e49om.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0ji1unv6thm0dn1gp4t01a1u0g6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0ji1unv6thm0dn1gp4t01a1u0g6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0czb9vxe72693n1lom0qmns6zlj.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0czb9vxe72693n1lom0qmns6zlj.htm&locale=en


Syntax: REPORT Procedure
Restriction: PROC REPORT does not support VARCHAR data types.

Accessibility 
note:

Starting with SAS 9.4M6, you can use the ACCESSIBLECHECK and 
ACCESSIBLETABLE system options. ACCESSIBLETABLE changes the layout of some 
tables to make them accessible and adds visual captions to tables. 
ACCESSIBLECHECK checks to see if the table is accessible and outputs information to 
the SAS log. For more information, see “Overview of Table Accessibility ” in Creating 
Accessible SAS Output Using ODS and ODS Graphics .
Starting with SAS 9.4M6, you can use the ACCESSIBLETABLE system option along 
with the CAPTION= option and the CONTENTS= option to see visible captions for tables 
and visible changes in the Table of Contents using By directives.

Accessibility 
note:

Starting with SAS 9.4M6, you can use the ACCESSIBLETABLE system option along 
with the CAPTION= option and the CONTENTS= option to see visible captions for tables 
and visible changes in the Table of Contents using By directives.

Tips: Supports the Output Delivery System. For details, see “Output Delivery System: Basic 
Concepts” in SAS Output Delivery System: User’s Guide. 
You can use the ATTRIB, FORMAT, LABEL, and WHERE statements with the PROC 
SORT procedure. For more information, see “Statements with the Same Function in 
Multiple Procedures” on page 73.
For in-database processing to occur, your data must reside within a supported version of 
a DBMS that has been properly configured for SAS in-database processing. For more 
information, see “In-Database Processing for PROC REPORT” on page 2081. 

PROC REPORT<options>;
BREAK location break-variable </ options>
BY variable-1

<<DESCENDING> variable-2 …> <NOTSORTED>;
COLUMNcolumn-specification(s);

COMPUTE location <target>
</ STYLE=<style-override(s)> >;

LINE specification(s);
. . . select SAS language elements . . .
ENDCOMP;

COMPUTE report-item </ type-specification>;
CALL DEFINE (column-id ', < ' attribute-name', value>

| _ROW_, < 'attribute-name', value>);
. . . select SAS language elements . . .
ENDCOMP;

DEFINE report-item / <options>;
FREQ variable;
RBREAK location </ options>;
WEIGHT variable;

Syntax: REPORT Procedure 2003

http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en
http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0qzwimb5swq2jn15m15c81ugd2t.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0qzwimb5swq2jn15m15c81ugd2t.htm&locale=en


Statement Task Example

PROC REPORT Produce a summary or detail report Ex. 1, Ex. 2, 
Ex. 6, Ex. 4, 
Ex. 9, Ex. 
10, Ex. 13

BREAK Produce a default summary at a change in the 
value of a group or order variable

Ex. 2, Ex. 5, 
Ex. 6, Ex. 7

BY Create a separate report for each BY group

CALL DEFINE Set the value of an attribute for a particular 
column in the current row

Ex. 5, Ex. 
13

COLUMN Describe the arrangement of all columns and of 
headings that span more than one column

Ex. 1, Ex. 3, 
Ex. 6, Ex. 4, 
Ex. 8, Ex. 9

COMPUTE Specify one or more programming statements 
that PROC REPORT executes as it builds the 
report

Ex. 2, Ex. 3, 
Ex. 5, Ex. 6, 
Ex. 7, Ex. 8, 
Ex. 10, Ex. 
13

ENDCOMP Specify one or more programming statements 
that PROC REPORT executes as it builds the 
report

Ex. 2

DEFINE Describe how to use and display a report item Ex. 2, Ex. 3, 
Ex. 5, Ex. 6, 
Ex. 4, Ex. 7, 
Ex. 8, Ex. 
10, Ex. 10, 
Ex. 11, Ex. 
13

FREQ Treat observations as if they appear multiple 
times in the input data set

LINE Provide a subset of features of the PUT 
statement for writing customized summaries

Ex. 2, Ex. 3, 
Ex. 5, Ex. 6, 
Ex. 7

RBREAK Produce a default summary at the beginning or 
end of a report or at the beginning and end of 
each BY group

Ex. 1, Ex. 8

WEIGHT Specify weights for analysis variables in the 
statistical calculations

PROC REPORT Statement
Combines features of the PRINT, MEANS, and TABULATE procedures with features of the DATA step in a 
single report-writing tool that can produce a variety of reports.

2004 Chapter 58 / REPORT Procedure



Examples: “Example 1: Selecting Variables and Creating a Summary Line for a Report” on page 
2096
“Example 2: Ordering the Rows in a Report” on page 2100
“Example 6: Creating a Column for Each Value of a Variable” on page 2112
“Example 4: Displaying Multiple Statistics for One Variable” on page 2107
“Example 9: How PROC REPORT Handles Missing Values” on page 2124
“Example 10: Creating an Output Data Set and Storing Computed Variables” on page 
2127
“Example 13: Specifying Style Elements for ODS Output in Multiple Statements” on page 
2137
“Example 14: Using the CELLWIDTH= Style Attribute with PROC REPORT” on page 
2144

Syntax
PROC REPORT <options>;

Summary of Optional Arguments
CAPTION=text <#BYLINE> <#BYVAL> <#BYVAR>
DATA=SAS-data-set

specifies the input data set.
NOALIAS

uses a report that was created before compute blocks required aliases.
NOCENTER

See CENTER | NOCENTER.
NOCOMPLETECOLS

See COMPLETECOLS | NOCOMPLETECOLS.
NOCOMPLETEROWS

See COMPLETEROWS | NOCOMPLETEROWS.
NOTHREADS

See THREADS | NOTHREADS.
NOWINDOWS

See WINDOWS | NOWINDOWS.
OUT=SAS-data-set

specifies the output data set.
PCTLDEF=

See QNTLDEF=.
THREADS
NOTHREADS

overrides the SAS system option THREADS | NOTHREADS.
WINDOWS
NOWINDOWS 

selects the interactive report window or the nonwindowing environment.

Control classification levels

PROC REPORT Statement 2005



COMPLETECOLS
NOCOMPLETECOLS

creates all possible combinations of the across variable values.
COMPLETEROWS
NOCOMPLETEROWS

creates all possible combinations of the group variable values.

Control ODS output
CONTENTS='link-text' <#BYLINE> <#BYVAL> <#BYVAR>

specifies text for the table of contents entry for the output.
SPANROWS

specifies that a single cell occupies the column in all the rows for which 
the value is the same.

STYLE<(location(s))>=<style-override(s)>
specifies one or more style overrides to use for different parts of the 
report.

Control the interactive report window environment
COMMAND

displays command lines rather than menu bars in all REPORT windows.
HELP=libref.catalog

identifies the library and catalog containing user-defined help for the 
report.

PROMPT
opens the REPORT window and starts the PROMPT facility.

Control the layout of the report
BOX

uses formatting characters to add line-drawing characters to the report.
BYPAGENO=number

resets the page number between BY groups.
CENTER
NOCENTER 

specifies whether to center or left-justify the report and summary text.
COLWIDTH=column-width

specifies the default number of characters for columns containing 
computed variables or numeric data set variables.

FORMCHAR <(position(s))>='formatting-character(s)' 
defines the characters to use as line-drawing characters in the report.

LS=line-size
specifies the length of a line of the report.

MISSING
considers missing values as valid values for group, order, or across 
variables.

PANELS=number-of-panels
specifies the number of panels on each page of the report.

PS=page-size
specifies the number of lines in a page of the report. This option affects 
only the LISTING output.

PSPACE=space-between-panels
specifies the number of blank characters between panels.

2006 Chapter 58 / REPORT Procedure



SHOWALL
overrides options in the DEFINE statement that suppress the display of a 
column.

SPACING=space-between-columns
specifies the number of blank characters between columns.

WRAP
displays one value from each column of the report, on consecutive lines if 
necessary, before displaying another value from the first column.

Control the statistical analysis
EXCLNPWGT

excludes observations with nonpositive weight values from the analysis.
QMARKERS=number

specifies the sample size to use for the P2 quantile estimation method.
QMETHOD=OS | P2

specifies the quantile estimation method.
QNTLDEF=1 | 2 | 3 | 4 | 5

specifies the mathematical definition to calculate quantiles.
VARDEF=divisor

specifies the divisor to use in the calculation of variances.

Customize column headings
NAMED

writes name= in front of each value in the report, where name= is the 
column heading for the value.

NOHEADER
suppresses column headings.

SPLIT='character'
specifies the split character.

ODS Listing
HEADLINE

underlines all column headings and the spaces between them.
HEADSKIP

writes a blank line beneath all column headings.

Store and retrieve report definitions, PROC REPORT statements, and your report 
profile

LIST
writes to the SAS log the PROC REPORT code that creates the current 
report.

NOEXEC
suppresses the building of the report.

OUTREPT=libref.catalog.entry
stores in the specified catalog the report definition that is defined by the 
PROC REPORT step that you submit.

PROFILE=libref.catalog
identifies the report profile to use.

REPORT=libref.catalog.entry
specifies the report definition to use.

PROC REPORT Statement 2007



Optional Arguments
BOX

uses formatting characters to add line-drawing characters to the report. These 
characters 

n surround each page of the report

n separate column headings from the body of the report

n separate rows and columns from each other

n separate values in a summary line from other values in the same columns

n separate a customized summary from the rest of the report

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

Interaction You cannot use BOX if you use WRAP in the PROC REPORT 
statement or in the ROPTIONS window or if you use FLOW in any 
item definition.

See the discussion of “FORMCHAR <(position(s))>='formatting-
character(s)' ” on page 2012

BYPAGENO=number
If a BY statement is present, specifies the page number at the start of each BY 
group.

Range any positive integer greater than 0.

Restriction This option has no effect if a BY statement is not present.

Interaction The BYPAGENO= option also affects the ODS ESCAPECHAR 
THISPAGE function.

CAPTION=text <#BYLINE> <#BYVAL> <#BYVAR>
specifies a caption text string to add before each table. If no string is specified, 
the caption defaults to the text specified by the CONTENTS= option.

This option makes table captions both visual and accessible if the 
ACCESSIBLETABLE system option is specified.

If the NOACCESSIBLETABLE system option is specified, then no caption is 
displayed, however the caption text is still accessible.

Starting with SAS 9.4M6, these options are available if a BY statement is in 
effect:

#BYLINE
substitutes the entire BY line without leading or trailing blanks for #BYLINE in 
the text string. The BY line uses the format variable-name=value.

#BYVALn
#BYVAL(BY-variable-name)

substitutes the current value of the specified BY variable for #BYVAL in the 
text string.

Specify the variable with one of the following:

2008 Chapter 58 / REPORT Procedure



n
specifies a variable by its position in the BY statement. For example, 
#BYVAL2 specifies the second variable in the BY statement.

BY-variable-name
specifies a variable from the BY statement by its name. For example, 
#BYVAL(YEAR) specifies the BY variable, YEAR. Variable-name is not 
case sensitive.

#BYVARn
#BYVAR(BY-variable-name)

substitutes the name of the BY-variable or the label associated with the 
variable (whatever the BY line would normally display) for #BYVAR in the text 
string.

Specify the variable with one of the following:

n
specifies a variable by its position in the BY statement. For example, 
#BYVAR2 specifies the second variable in the BY statement.

BY-variable-name
specifies a variable from the BY statement by its name. For example, 
#BYVAR(SITES) specifies the BY variable, SITES. Variable-name is not 
case sensitive.

Restrictions The ACCESSIBLETABLE system option must be specified to 
enable captions.

The CAPTION= option is not valid in the LISTING destination.

Note This feature applies to SAS 9.4M6 and to later releases.

Tip You can use the PROC DOCUMENT OBBNOTE option to display 
or edit the caption.

See “Overview of Table Accessibility ” in Creating Accessible SAS 
Output Using ODS and ODS Graphics 

CENTER | NOCENTER
specifies whether to center or left-justify the report and summary text 
(customized break lines).

PROC REPORT honors the first of these centering specifications that it finds:

n the CENTER or NOCENTER option in the PROC REPORT statement or the 
CENTER toggle in the ROPTIONS window

n the CENTER or NOCENTER option stored in the report definition that is 
loaded with REPORT= in the PROC REPORT statement

n the SAS system option CENTER or NOCENTER

Interaction When CENTER is in effect, PROC REPORT ignores spacing that 
precedes the leftmost variable in the report.

COLWIDTH=column-width
specifies the default number of characters for columns containing computed 
variables or numeric data set variables. 

When setting the width for a column, PROC REPORT first looks at WIDTH= in 
the definition for that column. If WIDTH= is not present, then PROC REPORT 

PROC REPORT Statement 2009

http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en
http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en


uses a column width large enough to accommodate the format for the item. If no 
format is associated with the item, then the column width depends on variable 
types as shown in the following table.

Table 58.2 Using References in a Compute Block

Variable Resulting Column Width

Character variable in the input data 
set

Length of the variable

Numeric variable in the input data 
set

Value of the COLWIDTH= option

Computed variable (numeric or 
character)

Value of the COLWIDTH= option

For information about formats, see the discussion of “FORMAT=format” on page 
2052.

Default 9

Range 1 to the line size

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output. For the formatted ODS destinations, use the 
STYLE= option with the WIDTH=, CELLWIDTH=, or 
OUTPUTWIDTH= style attributes. Refer to “Style Attributes Tables” 
in SAS Output Delivery System: Advanced Topics for details. See 
how style attributes WIDTH= and CELLWIDTH= can be used with 
PROC REPORT in “Example 14: Using the CELLWIDTH= Style 
Attribute with PROC REPORT” on page 2144.

COMMAND
displays command lines rather than menu bars in all REPORT windows. 

After you have started PROC REPORT in the interactive report window 
environment, you can display the menu bars in the current window by issuing the 
COMMAND command. You can display the menu bars in all PROC REPORT 
windows by issuing the PMENU command. The PMENU command affects all the 
windows in your SAS session. Both of these commands are toggles.

You can store a setting of COMMAND in your report profile. PROC REPORT 
honors the first of these settings that it finds:

n the COMMAND option in the PROC REPORT statement

n the setting in your report profile

Restriction This option has no effect in the nonwindowing environment.

COMPLETECOLS | NOCOMPLETECOLS
creates all possible combinations for the values of the across variables even if 
one or more of the combinations do not occur within the input data set. 
Consequently, the column headings are the same for all logical pages of the 
report within a single BY group.

2010 Chapter 58 / REPORT Procedure

http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0otdo2g12obp3n0zmnghcn7p4vu.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0otdo2g12obp3n0zmnghcn7p4vu.htm&locale=en


Default COMPLETECOLS

Interaction The PRELOADFMT option in the DEFINE statement ensures that 
PROC REPORT uses all user-defined format ranges for the 
combinations of across variables, even when a frequency is zero.

COMPLETEROWS | NOCOMPLETEROWS
displays all possible combinations of the values of the group variables, even if 
one or more of the combinations do not occur in the input data set. 
Consequently, the row headings are the same for all logical pages of the report 
within a single BY group.

Default NOCOMPLETEROWS

Interaction The PRELOADFMT option in the DEFINE statement ensures that 
PROC REPORT uses all user-defined format ranges for the 
combinations of group variables, even when a frequency is zero.

CONTENTS='link-text' <#BYLINE> <#BYVAL> <#BYVAR>
specifies the text for the entries in the table of contents created by default or by 
options settings in ODS destinations that support the STYLE= option. 

Starting in SAS 9.4M6, if the ACCESSIBLETABLE system option is specified, 
you can use the By directives to create visual output in the Table of Contents.

Starting with SAS 9.4M6, these options are available if a BY statement is in 
effect:

#BYLINE
substitutes the entire BY line without leading or trailing blanks for #BYLINE in 
the text string. The BY line uses the format variable-name=value.

#BYVALn
#BYVAL(BY-variable-name)

substitutes the current value of the specified BY variable for #BYVAL in the 
text string.

Specify the variable with one of the following:

n
specifies a variable by its position in the BY statement. For example, 
#BYVAL2 specifies the second variable in the BY statement.

BY-variable-name
specifies a variable from the BY statement by its name. For example, 
#BYVAL(YEAR) specifies the BY variable, YEAR. Variable-name is not 
case sensitive.

#BYVARn
#BYVAR(BY-variable-name)

substitutes the name of the BY-variable or the label associated with the 
variable (whatever the BY line would normally display) for #BYVAR in the text 
string.

Specify the variable with one of the following:

n
specifies a variable by its position in the BY statement. For example, 
#BYVAR2 specifies the second variable in the BY statement.

PROC REPORT Statement 2011



BY-variable-name
specifies a variable from the BY statement by its name. For example, 
#BYVAR(SITES) specifies the BY variable, SITES. Variable-name is not 
case sensitive.

Restriction The ACCESSIBLETABLE system option must be specified to use 
the By Directives to create visible output text in the Table of 
Contents. You can use CONTENTS='link-text' without the 
ACCESSSIBLETABLE option.

Note The use of the By directives with the CONTENT= option applies to 
SAS 9.4M6 and to later releases.

Tip All ODS destinations except OUTPUT and LISTING support the 
STYLE= option.

See Creating Accessible Tables with the REPORT Procedure in 
Creating Accessible SAS Output Using ODS and ODS Graphics

DATA=SAS-data-set
specifies the input data set.

See “Input Data Sets” on page 26 

EXCLNPWGT
excludes observations with nonpositive weight values (zero or negative) from the 
analysis. By default, PROC REPORT treats observations with negative weights 
like observations with zero weights and counts them in the total number of 
observations.

Alias EXCLNPWGTS

Requirement You must use a WEIGHT statement.

See “WEIGHT Statement” on page 2067

FORMCHAR <(position(s))>='formatting-character(s)'
defines the characters to use as line-drawing characters in the report. 

position(s)
identifies the position of one or more characters in the SAS formatting-
character string. A space or a comma separates the positions.

Default Omitting (position(s)) is the same as specifying all 20 possible SAS 
formatting characters, in order.

Note PROC REPORT uses 12 of the 20 formatting characters that SAS 
provides. Table 58.107 on page 2013 shows the formatting 
characters that PROC REPORT uses. Figure 58.68 on page 2014
illustrates the use of some commonly used formatting character in 
the output from PROC REPORT.

formatting-character(s)
lists the characters to use for the specified positions. PROC REPORT 
assigns characters in formatting-character(s) to position(s), in the order in 
which they are listed. For example, the following option assigns the asterisk 
(*) to the third formatting character, the number sign (#) to the seventh 
character, and does not alter the remaining characters: formchar(3,7)='*#'

2012 Chapter 58 / REPORT Procedure

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=p020bbpsz2rhwrn114f3m932t0nw.htm


Table 58.3 Formatting Characters Used by PROC REPORT

Position Default Used to Draw

1 | Right and left borders and 
the vertical separators 
between columns

2 - Top and bottom borders 
and the horizontal 
separators between rows. 
Also, underlining and 
overlining in break lines 
as well as the underlining 
that the HEADLINE 
option draws

3 - Top character in the left 
border

4 - Top character in a line of 
characters that separates 
columns

5 - Top character in the right 
border

6 | Leftmost character in a 
row of horizontal 
separators

7 + Intersection of a column 
of vertical characters and 
a row of horizontal 
characters

8 | Rightmost character in a 
row of horizontal 
separators

9 - Bottom character in the 
left border

10 - Bottom character in a line 
of characters that 
separate columns

11 - Bottom character in the 
right border

13 = Double overlining and 
double underlining in 
break lines

PROC REPORT Statement 2013



Figure 58.8 Formatting Characters in PROC REPORT Output

Sales for Northern Sectors 1

Sector Manager Sales
------------------------------

Northeast Alomar 786.00
Andrews 1,045.00
----------
1,831.00
----------

Northwest Brown 598.00
Pelfrey 746.00
Reveiz 1,110.00
----------
2,454.00
----------

==========
4,285.00
==========

2

13

2

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

Interaction The SAS system option FORMCHAR= specifies the default 
formatting characters. The system option defines the entire string of 
formatting characters. The FORMCHAR= option in a procedure can 
redefine selected characters.

Tip You can use any character in formatting-characters, including 
hexadecimal characters. If you use hexadecimal characters, then 
you must put x after the closing quotation mark. For example, the 
following option assigns the hexadecimal character 2-D to the third 
formatting character, the hexadecimal character 7C to the seventh 
character, and does not alter the remaining characters: 
formchar(3,7)='2D7C'x

HEADLINE
underlines all column headings and the spaces between them at the top of each 
page of the report.

The HEADLINE option underlines with the second formatting character. (See the 
discussion of “FORMCHAR <(position(s))>='formatting-character(s)' ” on page 
2012.) 

Default hyphen (-)

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

Tip In LISTING output, you can underline column headings without 
underlining the spaces between them, by using two hyphens 
('--') as the last line of each column heading instead of using 
HEADLINE.

HEADSKIP
writes a blank line beneath all column headings (or beneath the underlining that 
the HEADLINE option writes) at the top of each page of the report.

2014 Chapter 58 / REPORT Procedure



Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

HELP=libref.catalog
identifies the library and catalog containing user-defined help for the report. This 
help can be in CBT or HELP catalog entries. You can write a CBT or HELP entry 
for each item in the report with the BUILD procedure in SAS/AF software. Store 
all such entries for a report in the same catalog.

Specify the entry name for help for a particular report item in the DEFINITION 
window for that report item or in a DEFINE statement.

Restriction This option works only in the Report Window.

LIST
writes to the SAS log the PROC REPORT code that creates the current report. 

This listing might differ in these ways from the statements that you submit:

n It shows some defaults that you might not have specified.

n It omits some statements that are not specific to the REPORT procedure, 
whether you submit them with the PROC REPORT step or had previously 
submitted them. These statements include 

BY FOOTNOTE FREQ TITLE WEIGHT WHERE

n It omits these PROC REPORT statement options: 

LIST
OUT=
OUTREPT=
PROFILE=
REPORT=
WINDOWS | NOWINDOWS

n It includes these style(<location>)= options:

CENTER SPACING
HEADER USAGE
LEFT WIDTH
RIGHT

Note: WIDTH and SPACING are LISTING only.

n It omits SAS system options.

n It resolves automatic macro variables.

Restriction The LIST option does not support styles by columns if you specify 
style(column)= in the DEFINE statement.

LS=line-size
specifies the length of a line of the report.

PROC REPORT honors the line size specifications that it finds in the following 
order of precedence:

PROC REPORT Statement 2015



n the LS= option in the PROC REPORT statement or LINESIZE= in the 
ROPTIONS window

n the LS= setting stored in the report definition loaded with REPORT= in the 
PROC REPORT statement

n the SAS system option LINESIZE=

Note: The PROC REPORT LS= option takes precedence over all other line size 
options.

Range 64-256 (integer)

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

MISSING
considers missing values as valid values for group, order, or across variables. 
Special missing values used to represent numeric values (the letters A through Z 
and the underscore (_) character) are each considered as a different value. A 
group for each missing value appears in the report. If you omit the MISSING 
option, then PROC REPORT does not include observations with a missing value 
for any group, order, or across variables in the report.

See The “Missing Values” in SAS Language Reference: Concepts.

Example “Example 9: How PROC REPORT Handles Missing Values” on page 
2124

NAMED
writes name= in front of each value in the report, where name is the column 
heading for the value.

Interaction When you use the NAMED option, PROC REPORT automatically 
uses the NOHEADER option.

Tip Use NAMED in conjunction with the WRAP option to produce a 
report that wraps all columns for a single row of the report onto 
consecutive lines rather than placing columns of a wide report on 
separate pages.

NOALIAS
lets you use a report that was created before compute blocks required aliases. If 
you use NOALIAS, then you cannot use aliases in compute blocks.

NOCENTER
See “CENTER|NOCENTER ” on page 2009.

NOCOMPLETECOLS
See “COMPLETECOLS|NOCOMPLETECOLS” on page 2010.

NOCOMPLETEROWS
See “COMPLETEROWS|NOCOMPLETEROWS” on page 2011. 

NOEXEC
suppresses the building of the report. Use NOEXEC with OUTREPT= to store a 
report definition in a catalog entry. Use NOEXEC with LIST and REPORT= to 
display a listing of the specified report definition.

2016 Chapter 58 / REPORT Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n1il1j711miuhrn1tp0pldybc6zq.htm&locale=en


Alias NOEXECUTE

NOHEADER
suppresses column headings, including headings that span multiple columns.

When you suppress the display of column headings in the interactive report 
window environment, you cannot select any report items.

NOTHREADS
See “THREADS|NOTHREADS” on page 2025. 

NOWINDOWS
See “WINDOWS|NOWINDOWS ” on page 2027. 

Alias NOWD

Default The default mode is now the nonwindowing environment. You no longer 
have to specify NOWINDOWS or NOWD.

OUT=SAS-data-set
names the output data set. If this data set does not exist, then PROC REPORT 
creates it. The data set contains one observation for each report row and one 
observation for each unique summary line. If you use both customized and 
default summaries at the same place in the report, then the output data set 
contains only one observation because the two summaries differ only in how 
they present the data. Information about customization (underlining, color, text, 
and so on) is not data and is not saved in the output data set.

The output data set contains one variable for each column of the report. PROC 
REPORT tries to use the name of the report item as the name of the 
corresponding variable in the output data set. However, it cannot perform this 
substitution if a data set variable is under or over an across variable or if a data 
set variable appears multiple times in the COLUMN statement without aliases. In 
these cases, the name of the variable is based on the column number (_C1_, 
_C2_, and so on).

Output data set variables that are derived from input data set variables retain the 
formats of their counterparts in the input data set. PROC REPORT derives labels 
for these variables from the corresponding column headings in the report unless 
the only item defining the column is an across variable. In that case, the 
variables have no label. If multiple items are stacked in a column, then the labels 
of the corresponding output data set variables come from the analysis variable in 
the column.

The output data set also contains a character variable named _BREAK_. If an 
observation in the output data set derives from a detail row in the report, then the 
value of _BREAK_ is missing or blank. If the observation derives from a 
summary line, then the value of _BREAK_ is the name of the break variable that 
is associated with the summary line, or _RBREAK_. If the observation derives from 
a COMPUTE BEFORE _PAGE_ or COMPUTE AFTER _PAGE_ statement, then 
the value of _BREAK_ is _PAGE_. Note, however, that for COMPUTE BEFORE 
_PAGE_ and COMPUTE AFTER _PAGE_, the _PAGE_ value is written only to 
the output data set; it is not available as a value of the automatic variable 
_BREAK_ during execution of the procedure.

Tip An output data set can be created by using an ODS OUTPUT 
statement. The data set created by ODS OUTPUT is the same as 
the one created by the OUT= option. Refer to the “ODS OUTPUT” in 
SAS Output Delivery System: User’s Guide. 

PROC REPORT Statement 2017

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0oxrbinw6fjuwn1x23qam6dntyd.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0oxrbinw6fjuwn1x23qam6dntyd.htm&locale=en


Examples “Example 10: Creating an Output Data Set and Storing Computed 
Variables” on page 2127

“Example 10: Creating an Output Data Set and Storing Computed 
Variables” on page 2127

OUTREPT=libref.catalog.entry
stores in the specified catalog entry the REPORT definition that is defined by the 
PROC REPORT step that you submit. PROC REPORT assigns the entry a type 
of REPT.

The stored report definition might differ in these ways from the statements that 
you submit:

n It omits some statements that are not specific to the REPORT procedure, 
whether you submit them with the PROC REPORT step or whether they are 
already in effect when you submit the step. These statements include 

BY TITLE
FOOTNOTE WEIGHT
FREQ WHERE

n It includes these PROC REPORT statement options. Others are omitted.

BOX NOHEADER
CENTER PAGESIZE
COLWIDTH PANELS
COMPLETECOLS PCTLDEF
COMPLETEROWS PSPACE
FORMCHAR QMARKERS
HEADLINE QMETHOD
HEADSKIP SHOWALL
HELP SPACING
LINESIZE SPLIT
MISSING VARDEF
NAMED WRAP

n It omits SAS system options.

n It resolves automatic macro variables.

PANELS=number-of-panels
specifies the number of panels on each page of the report. If the width of a report 
is less than half of the line size, then you can display the data in multiple sets of 
columns so that rows that would otherwise appear on multiple pages appear on 
the same page. Each set of columns is a panel. A familiar example of this type of 
report is a telephone book, which contains multiple panels of names and 
telephone numbers on a single page.

When PROC REPORT writes a multipanel report, it fills one panel before 
beginning the next.

The number of panels that fits on a page depends on the following:

n width of the panel

n space between panels

n line size

2018 Chapter 58 / REPORT Procedure



Default 1

Note This option affects only the LISTING output. It has no affect on other 
ODS output. However, the COLUMNS= option in the ODS PRINTER, 
ODS PDF, and ODS RTF statements produces similar results. For 
details, see the statements in SAS Output Delivery System: User’s 
Guide.

Tip If number-of-panels is larger than the number of panels that can fit on 
the page, then PROC REPORT creates as many panels as it can. Let 
PROC REPORT put your data in the maximum number of panels that 
can fit on the page by specifying a large number of panels (for example, 
99).

See For information about the space between panels and the line size, see 
the discussions of PSPACE= on page 2020 and the discussion of LS= 
on page 2015. 

PCTLDEF=
See QNTLDEF= on page 2021. 

PROFILE=libref.catalog
identifies the report profile to use. A report profile does the following:

n specifies the location of menus that define alternative menu bars and menus 
for the REPORT and COMPUTE windows

n sets defaults for WINDOWS, PROMPT, and COMMAND

PROC REPORT uses the entry REPORT.PROFILE in the catalog that you 
specify as your profile. If no such entry exists, or if you do not specify a profile, 
then PROC REPORT uses the entry REPORT.PROFILE in 
SASUSER.PROFILE. If you have no profile, then PROC REPORT uses default 
menus and the default settings of the options.

You create a profile from the PROFILE window while using PROC REPORT in 
an interactive report window environment. To create a profile:

n Invoke PROC REPORT with the WINDOWS option.

n Select Tools ð Report Profile.

n Fill in the fields to meet your needs.

n Select OK to exit the PROFILE window. When you exit the window, PROC 
REPORT stores the profile in SASUSER.PROFILE.REPORT.PROFILE. Use 
the CATALOG procedure or the Explorer window to copy the profile to 
another location.

Note: If, after opening the PROFILE window, you decide not to create a 
profile, then select CANCEL to close the window.

PROMPT
opens the REPORT window and starts the PROMPT facility. This facility guides 
you through creating a new report or adding more data set variables or statistics 
to an existing report.

If you start PROC REPORT with prompting, then the first window gives you a 
chance to limit the number of observations that are used during prompting. 
When you exit the prompter, PROC REPORT removes these limits:

PROC REPORT Statement 2019



n the PROMPT option in the PROC REPORT statement

n the setting in your report profile

If you omit PROMPT from the PROC REPORT statement, then the procedure 
uses the setting in your report profile, if you have one. If you do not have a report 
profile, then PROC REPORT does not use the prompt facility. For information 
about report profiles, see “PROFILE Window” on page 2170. 

Restriction When you use the PROMPT option, you open the REPORT 
window. When the REPORT window is open, you cannot send 
procedure output to any ODS destination.

Tip You can store a setting of PROMPT in your report profile. PROC 
REPORT honors the first of these settings that it finds.

PS=page-size
specifies the number of lines in a page of the report.

PROC REPORT honors the first of these page size specifications that it finds:

n the PS= option in the PROC REPORT statement

n the PS= setting in the report definition specified with REPORT= in the PROC 
REPORT statement

n the SAS system option PAGESIZE=

Range 15-32,767 (integer)

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

PSPACE=space-between-panels
specifies the number of blank characters between panels. PROC REPORT 
separates all panels in the report by the same number of blank characters. For 
each panel, the sum of its width and the number of blank characters separating it 
from the panel to its left cannot exceed the line size.

Default 4

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

QMARKERS=number
specifies the default number of markers to use for the P2 estimation method. The 
number of markers controls the size of fixed memory space.

Default The default value depends on which quantiles you request. For the 
median (P50), number is 7. For the quartiles (P25 and P75), number is 
25. For the quantiles P1, P5, P10, P90, P95, or P99, number is 105. If 
you request several quantiles, then PROC REPORT uses the largest 
default value of number.

Range any odd integer greater than 3

Tip Increase the number of markers above the default settings to improve 
the accuracy of the estimates; you can reduce the number of markers 
to conserve computing resources.

2020 Chapter 58 / REPORT Procedure



QMETHOD=OS | P2
specifies the method that PROC REPORT uses to process the input data when it 
computes quantiles. If the number of observations is less than or equal to the 
value of the QMARKERS= option, and the value of the QNTLDEF= option is 5, 
then both methods produce the same results. 

OS
uses order statistics. PROC UNIVARIATE uses this technique.

Note: This technique can be very memory intensive.

P2
uses the P2 method to approximate the quantile.

Default OS

Restriction When QMETHOD=P2, PROC REPORT does not compute MODE 
and weighted quantiles.

Tip When QMETHOD=P2, reliable estimates of some quantiles (P1, 
P5, P95, P99) might not be possible for some data sets such as 
data sets with heavily tailed or skewed distributions.

QNTLDEF=1 | 2 | 3 | 4 | 5
specifies the mathematical definition that the procedure uses to calculate 
quantiles when the value of the QMETHOD= option is OS. When 
QMETHOD=P2, you must use QNTLDEF=5.

Alias PCTLDEF=

Default 5

See “Quantile and Related Statistics” on page 2615

REPORT=libref.catalog.entry
specifies the report definition to use. PROC REPORT stores all report definitions 
as entries of type REPT in a SAS catalog.

Interaction If you use REPORT=, then you cannot use the COLUMN statement.

See “OUTREPT=libref.catalog.entry” on page 2018 

SHOWALL
overrides options in the DEFINE statement that suppress the display of a 
column.

See NOPRINT and NOZERO in “DEFINE Statement” on page 2045

SPACING=space-between-columns
specifies the number of blank characters between columns. For each column, 
the sum of its width and the blank characters between it and the column to its left 
cannot exceed the line size.

Default 2

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

PROC REPORT Statement 2021



Interactions PROC REPORT separates all columns in the report by the number 
of blank characters specified by SPACING= in the PROC REPORT 
statement unless you use SPACING= in the DEFINE statement to 
change the spacing to the left of a specific item.

When CENTER is in effect, PROC REPORT ignores spacing that 
precedes the leftmost variable in the report.

SPANROWS
specifies that when the value of a GROUP or ORDER column is the same in 
multiple rows, the value is displayed in a single cell that occupies that column in 
all the rows for which the value is the same. A box is essentially created for that 
part of the column, and no rows appear in that box. 

The SPANROWS option also allows GROUP and ORDER variables values to 
repeat when the values break across pages. Only the PDF, PS, and 
TAGSETS.RTF destinations support this part of the feature.

Notes The SPANROWS option has no effect on the Report Window, data sets, 
LISTING, or OUTPUT destinations.

When the LINE statement occurs at the bottom of a page, the GROUP 
and ORDER variables values do not repeat when the values break 
across RTF and TAGSETS.RTF pages.

Tip If a summary row appears in the middle of a set of rows that would 
otherwise be spanned by a single cell, the summary row introduces its 
own cell in that column. This action breaks the spanning cell into two 
cells even when the value of the GROUP or ORDER variable that comes 
after the summary row is unchanged.

SPLIT='character'
specifies the split character. PROC REPORT breaks column text when it 
reaches that character and continues the text on the next line. The split 
character itself is not part of the column heading or text value although each 
occurrence of the split character counts toward the 256-character maximum for a 
label. 

Default slash (/)

Restriction This option works only in the column heading on ODS destinations 
other than LISTING output.

Interaction The FLOW option in the DEFINE statement honors the split 
character.

STYLE<(location(s))>=<style-override(s)>
specifies one or more style overrides to use for different parts of the report. 

location(s)
identifies the part of the report that the STYLE= option affects. The following 
table shows what parts of a report are affected by values of location.

The valid and default values for location vary by what statement the STYLE= 
option appears in. The following table shows valid and default location values 
for each statement. To specify more than one value of location in the same 
STYLE= option, separate each value with a space.

2022 Chapter 58 / REPORT Procedure



Table 58.4 Locations and Default Style Elements for Each Statement in PROC 
REPORT

Statement

Valid 
Location 
Values

Default 
Location 
Value

Part of Report 
Affected

Default Style 
Element

PROC 
REPORT

COLUMN

HEADER | 
HDR

SUMMARY

REPORT

LINES

CALLDEF

REPORT Report as a whole Table

BREAK SUMMARY

LINES

SUMMARY Summary lines DataEmphasis

CALL 
DEFINE

CALLDEF CALLDEF Cells identified by 
a CALL DEFINE 
statement

Data

COMPUT
E

LINES LINES Lines generated 
by LINE 
statements

LineContent

DEFINE COLUMN

HEADER|
HDR

COLUMN

HEADER

Column cells

Column headings

COLUMN: Data

HEADER: Header

RBREAK SUMMARY

LINES

SUMMARY Summary lines

Lines generated 
by LINE 
statements

DataEmphasis

All names shown in the following table can be used in place of location(s) in 
the PROC statement. The DEFINE statement accepts column and header. 
The BREAK and RBREAK statement accept summary and lines.

PROC REPORT Statement 2023



Figure 58.9 PROC REPORT Locations and Corresponding Statements

Specifications in a PROC REPORT statement other than the PROC 
REPORT location override the same specification in the PROC REPORT 
statement. However, any style attributes that you specify in the PROC 
REPORT statement and do not override in another PROC REPORT 
statement are inherited. For example, if you specify a blue background and a 
white foreground for all column headings in the PROC REPORT statement, 
and you specify a gray background for the column headings of a variable in 
the PROC REPORT DEFINE statement, then the background for that 
particular column heading is gray, and the foreground is white (as specified in 
the PROC REPORT statement).

style-override
specifies one or more style attributes or style elements to override the default 
style element and attributes in a specific area of a report. You can specify a 
style override in two ways:

n Specify a style element. A style element is a collection of style attributes 
that apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that 
describes a single behavioral or visual aspect of a piece of output. This is 
the most specific method of changing the appearance of your output. 

Note: These style overrides take precedence over those specified in the 
PROC statement.

style-override has the following form:

style-element-name | [style-attribute-name-1=style-attribute-value-1
<style-attribute-name-2=style-attribute-value-2 …>]

Note: You can use braces ({ and }) instead of square brackets ([ and ]).

2024 Chapter 58 / REPORT Procedure



style-element-name
is the name of a style element that is part of an ODS style template. SAS 
provides some style templates. Users can create their own style 
templates with the TEMPLATE procedure. See SAS Output Delivery 
System: Procedures Guide

See For information about using styles with PROC REPORT, see “Using 
ODS Styles with PROC REPORT” on page 2069.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions ” on page 2076.

style-attribute-name
specifies the attribute to change. For a list of the commonly used style 
attributes that you can set with the STYLE= option in PROC PRINT, 
PROC TABULATE, and PROC REPORT, see Table 58.114 on page 2074.

See For information about using styles with PROC REPORT, see “Using 
ODS Styles with PROC REPORT” on page 2069.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions ” on page 2076.

style-attribute-value
specifies a value for the attribute. Each attribute has a different set of valid 
values. A SAS format can also be used as an attribute value for 
conditional formatting.

See For information about using styles with PROC REPORT, see “Using 
ODS Styles with PROC REPORT” on page 2069.

For information about using SAS formats as style attribute values, 
see “Using a Format to Assign a Style Attribute Value” on page 
2079.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions ” on page 2076.

Restriction All ODS destinations except OUTPUT and LISTING support the 
STYLE= option.

Tip FONT names that contain characters other than letters or 
underscores must be enclosed in quotation marks.

See “Style Elements and Style Attributes for Table Regions ” on page 
2076 for details.

Example “Example 13: Specifying Style Elements for ODS Output in Multiple 
Statements” on page 2137

THREADS | NOTHREADS
enables or disables parallel processing of the input data set. This option 
overrides the SAS system option THREADS | NOTHREADS unless the system 
option is restricted. (See Restriction.) See “Support for Parallel Processing” in 
SAS Language Reference: Concepts for more information.

PROC REPORT Statement 2025

http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0c5qpdczbofn4n1i6qfkew7p57h.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0z5kinpzecv9nn1s45yam93tf6z.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0z5kinpzecv9nn1s45yam93tf6z.htm&locale=en


Default value of SAS system option THREADS | NOTHREADS.

Restriction Your site administrator can create a restricted options table. A 
restricted options table specifies SAS system option values that are 
established at start-up and cannot be overridden. If the THREADS | 
NOTHREADS system option is listed in the restricted options table, 
any attempt to set these system options is ignored and a warning 
message is written to the SAS log.

Interaction PROC REPORT uses the value of the SAS system option 
THREADS except when a BY statement is specified or the value of 
the SAS system option CPUCOUNT is less than 2. You can specify 
the THREADS option in the PROC REPORT statement to force 
PROC REPORT to use parallel processing in these situations.

Note When threaded processing, also known as parallel processing, is in 
effect, observations might be returned in an unpredictable order. 
However, the observations are sorted correctly when a BY 
statement is specified.

VARDEF=divisor
specifies the divisor to use in the calculation of the variance and standard 
deviation. The following table shows the possible values for divisor and 
associated divisors.

Table 58.5 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF Degrees of freedom n − 1

N Number of observations n

WDF Sum of weights minus one (Σi wi) − 1

WEIGHT | 
WGT

Sum of weights Σi wi

The procedure computes the variance as CSS/divisor , where CSS is the 
corrected sums of squares and equals Σ xi − x 2 . When you weight the analysis 

variables, CSS equals Σ wi xi − xw
2 , where xw is the weighted mean.

Default DF

Requirement To compute the standard error of the mean and Student's t-test, 
use the default value of VARDEF=.

Tips When you use the WEIGHT statement and VARDEF=DF, the 
variance is an estimate of σ2 , where the variance of the ith 
observation is var xi = σ2/wi and wi is the weight for the ith 
observation. This yields an estimate of the variance of an 
observation with unit weight.

2026 Chapter 58 / REPORT Procedure



When you use the WEIGHT statement and VARDEF=WGT, the 
computed variance is asymptotically (for large n) an estimate of 
σ2/w , where w is the average weight. This yields an asymptotic 
estimate of the variance of an observation with average weight.

See “WEIGHT” on page 82 

WINDOWS | NOWINDOWS
selects an interactive report window or nonwindowing environment.

When you use WINDOWS, SAS opens the REPORT window for the interactive 
report interface, which enables you to modify a report repeatedly and to see the 
modifications immediately. When you use NOWINDOWS, PROC REPORT runs 
without the REPORT window and sends its output to the open output 
destinations.

Alias WD | NOWD

Default NOWD. You no longer have to specify NOWINDOWS or NOWD to 
work in the nonwindowing environment.

Restriction When you use the WINDOWS option, you can send the output only 
to a SAS data set or to a Printer destination.

See If you are using the WINDOWS environment, see information about 
the report profile in PROFILE= on page 2019. 

Example “Example 1: Selecting Variables and Creating a Summary Line for a 
Report” on page 2096

WRAP
displays one value from each column of the report, on consecutive lines if 
necessary, before displaying another value from the first column. By default, 
PROC REPORT displays only values for as many columns as it can fit on one 
page. It fills a page with values for these columns before starting to display 
values for the remaining columns on the next page.

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

Interaction When WRAP is in effect, PROC REPORT ignores PAGE in any 
item definitions.

Tip Typically, you use WRAP in conjunction with the NAMED option in 
order to avoid wrapping column headings.

BREAK Statement
Produces a default summary at a break (a change in the value of a group or order variable). The 
information in a summary applies to a set of observations. The observations share a unique combination of 
values for the break variable and all other group or order variables to the left of the break variable in the 
report.

Examples: “Example 2: Ordering the Rows in a Report” on page 2100

BREAK Statement 2027



“Example 5: Consolidating Multiple Observations into One Row of a Report” on page 
2109
“Example 6: Creating a Column for Each Value of a Variable” on page 2112
“Example 7: Writing a Customized Summary on Each Page” on page 2116

Syntax
BREAK location break-variable </ options>;

Summary of Optional Arguments
COLOR=color

specifies the color of the break lines in the REPORT window.
CONTENTS='link-text'

specifies the link text used in the table of contents.
DOL

double overlines each value.
DUL

double underlines each value.
OL

overlines each value.
PAGE

starts a new page after the last break line.
SKIP

writes a blank line for the last break line.
STYLE<location(s)>=<style-override>

specifies a style override to use for default summary lines, customized 
summary lines or both.

SUMMARIZE
writes a summary line in each group of break lines.

SUPPRESS
suppresses the printing of the value of the break variable in the summary 
line and of any underlining or overlining in the break lines in the column 
containing the break variable.

UL
underlines each value.

Required Arguments
location

controls the placement of the break lines and is either

AFTER
places the break lines immediately after the last row of each set of rows that 
have the same value for the break variable.

2028 Chapter 58 / REPORT Procedure



BEFORE
places the break lines immediately before the first row of each set of rows 
that have the same value for the break variable.

break-variable
is a group or order variable. The REPORT procedure writes break lines each 
time the value of this variable changes.

Optional Arguments
COLOR=color

specifies the color of the break lines in the REPORT window. The default color is 
the color of Foreground in the SASCOLOR window. You can use the following 
colors: 

Table 58.6 Colors Allowed for Break Lines

BLACK MAGENTA

BLUE ORANGE

BROWN PINK

CYAN RED

GRAY WHITE

GREEN YELLOW

Default The color of Foreground in the SASCOLOR window. (For more 
information, see the online Help for the SASCOLOR window.)

Restriction This option affects only output in the interactive report window 
environment.

Note Not all operating environments and devices support all colors, and 
on some operating systems and devices, one color might map to 
another color. For example, if the DEFINITION window displays the 
word BROWN in yellow characters, then selecting BROWN results 
in a yellow item.

CONTENTS='link-text'
specifies the text for the entries in the table of contents created by default or by 
options settings in ODS destinations that support the STYLE= option. If the 
PAGE= option and the CONTENTS= option with link-text is specified, PROC 
REPORT uses the value of link-text as a link for tables created in the table of 
contents. 

Default If the BREAK AFTER statement does not have a CONTENTS= 
option specified, but does have the PAGE option specified, then 
the default link text in the table of contents is “Table N” where N is 
an integer.

BREAK Statement 2029



Restriction If CONTENTS= is specified, but no PAGE option is specified, then 
PROC REPORT generates a warning message in the SAS log file.

Interactions If the DEFINE statement has a page option and there is a BREAK 
BEFORE statement with a PAGE option and the CONTENTS= 
option has a value other than empty quotation marks specified, 
then PROC REPORT adds a directory to the table of contents and 
puts links to the tables in that directory. For more information about 
this interaction, see the CONTENTS= option in the DEFINE 
statement on page 2045. 

If there is a BREAK BEFORE statement specified and a 
CONTENTS=' ' option and a PAGE= option specified, then PROC 
REPORT does not create a directory in the table of contents. 
Instead, PROC REPORT uses the CONTENTS= value from the 
DEFINE statement to create links to the table of contents. If there 
is no CONTENTS= option in the DEFINE statement, then PROC 
REPORT creates links using the default text described in the 
DEFINE statement. Refer to the DEFINE statement on page 2045
CONTENTS= option for an explanation of the default text 
information.

For RTF output, the CONTENTS= option has no effect on the RTF 
body file unless you turn on the CONTENTS=YES option in the 
ODS RTF statement. In that case, a Table of Contents page is 
inserted at the front of your RTF output file. Your CONTENTS= 
option text from PROC REPORT then shows up in this separate 
Table of Contents page.

Note If a BREAK BEFORE statement is present and the PAGE option is 
specified but no CONTENTS= option is specified, then the default 
link text is the location variable plus the value of the location 
variable. The location variable is associated with the BREAK 
variable. The value is the BREAK variable value. As shown in the 
following code, the value is rep and the location is before rep. 
break before rep / summarize page;

Tips If the CONTENTS= option is specified where the value is empty 
quotation marks, then no table link is created in the table of 
contents. An example of this code is CONTENTS=''

If there are multiple BREAK BEFORE statements, then the link text 
is the concatenation of all of the CONTENTS= values or of all the 
default values.

DOL
(for double overlining) uses the 13th formatting character to overline each value 

n that appears in the summary line

n that would appear in the summary line if you specified the SUMMARIZE 
option

Default equal sign (=)

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

2030 Chapter 58 / REPORT Procedure



Interaction If you specify both the OL and DOL options, then PROC REPORT 
honors only OL.

See The discussion of FORMCHAR= on page 2012. 

DUL
(for double underlining) uses the 13th formatting character to underline each 
value 

n that appears in the summary line

n that would appear in the summary line if you specified the SUMMARIZE 
option

Default equal sign (=)

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

Interaction If you specify both the UL and DUL options, then PROC REPORT 
honors only UL.

See The discussion of FORMCHAR= on page 2012. 

OL
(for overlining) uses the second formatting character to overline each value 

n that appears in the summary line

n that would appear in the summary line if you specified the SUMMARIZE 
option

Default hyphen (-)

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

Interaction If you specify both the OL and DOL options, then PROC REPORT 
honors only OL.

See The discussion of FORMCHAR= on page 2012. 

PAGE
in LISTING output, starts a new page. In the ODS destinations that support the 
STYLE= option, the PAGE option starts a new table. All ODS destinations except 
OUTPUT and LISTING support the STYLE= option.

Restriction In the OUTPUT destination, this option has no effect.

Interaction If you use PAGE in the BREAK statement and you create a break at 
the end of the report, then the summary for the whole report 
appears on a separate page.

Example “Example 7: Writing a Customized Summary on Each Page” on 
page 2116

SKIP
writes a blank line for the last break line.

BREAK Statement 2031



Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

STYLE<location(s)>=<style-override>
specifies the style override to use for default summary lines that are created with 
the BREAK statement. 

You can specify a style override in two ways:

n Specify a style element. A style element is a collection of style attributes that 
apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that describes 
a single behavioral or visual aspect of a piece of output. This is the most 
specific method of changing the appearance of your output. 

style-override has the following form:

style-element-name | [style-attribute-name-1=style-attribute-value-1
<style-attribute-name-2=style-attribute-value-2 …>]

Restriction All ODS destinations except OUTPUT and LISTING support the 
STYLE= option.

Tip FONT names that contain characters other than letters or 
underscores must be enclosed in quotation marks.

See “Style Elements and Style Attributes for Table Regions ” on page 
2076

SUMMARIZE
writes a summary line in each group of break lines. A summary line for a set of 
observations contains values for the following: 

n the break variable (which you can suppress with the SUPPRESS option)

n other group or order variables to the left of the break variable

n statistics

n analysis variables

n computed variables

The following table shows how PROC REPORT calculates the value for each 
type of report item in a summary line that is created by the BREAK statement:

Report Item Value

Break variable Current value of the variable (or a missing 
value if you use SUPPRESS)

A group or order variable to the 
left of the break variable

Current value of the variable

A group or order variable to the 
right of the break variable, or a 
display variable anywhere in the 
report

Missing*

2032 Chapter 58 / REPORT Procedure



Report Item Value

A statistic Value of the statistic over all observations in the 
set

An analysis variable Value of the statistic specified as the usage 
option in the item's definition. PROC REPORT 
calculates the value of the statistic over all 
observations in the set. The default usage is 
SUM.

A computed variable Results of the calculations based on the code in 
the corresponding compute block. (See 
“COMPUTE Statement” on page 2041.) 

* If you reference a variable with a missing value in a customized summary line, 
then PROC REPORT displays that variable as a blank (for character variables) or 
a period (for numeric variables).

Note: PROC REPORT cannot create groups in a report that contains order or 
display variables.

Accessibility 
note

If the SUPPRESS option and SUMMARIZE options are both 
specified, the summary row headers are not displayed and the 
table is not accessible.

Examples “Example 2: Ordering the Rows in a Report” on page 2100

“Example 5: Consolidating Multiple Observations into One Row 
of a Report” on page 2109

“Example 7: Writing a Customized Summary on Each Page” on 
page 2116

SUPPRESS
suppresses printing of 

n the value of the break variable in the summary line

n any underlining and overlining in the break lines in the column that contains 
the break variable

Interaction If you use SUPPRESS, then the value of the break variable is 
unavailable for use in customized break lines unless you assign 
a value to it in the compute block that is associated with the 
break. (See “COMPUTE Statement” on page 2041.) 

Accessibility 
note

If the SUPPRESS option and SUMMARIZE options are both 
specified, the summary row headers are not displayed and the 
table is not accessible.

Example “Example 5: Consolidating Multiple Observations into One Row 
of a Report” on page 2109

BREAK Statement 2033



UL
(for underlining) uses the second formatting character to underline each value 

n that appears in the summary line

n that would appear in the summary line if you specified the SUMMARIZE 
option

Default hyphen (-)

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

Interaction If you specify both the UL and DUL options, then PROC REPORT 
honors only UL.

See the discussion of FORMCHAR= on page 2012. 

Details

Order of Break Lines
When a default summary contains more than one break line, the following is the 
order in which the break lines appear:

1 overlining or double overlining (OL or DOL)

2 summary line (SUMMARIZE)

3 underlining or double underlining (UL or DUL)

4 skipped line (SKIP)

5 page break (PAGE)

Note:  If you define a customized summary for the break, then customized break 
lines appear after underlining or double underlining. For more information about 
customized break lines, see “COMPUTE Statement” on page 2041 and “LINE 
Statement” on page 2060. 

BY Statement
Creates a separate report on a separate page for each BY group.

Restriction: If you use the BY statement, then you must use the PROC REPORT statement in the 
nonwindowing environment (NOWINDOWS or NOWD option).

Interaction: If you use the RBREAK statement in a report that uses BY processing, then PROC 
REPORT creates a default summary for each BY group. In this case, you cannot 
summarize information for the whole report.

2034 Chapter 58 / REPORT Procedure



Tip: Using the BY statement does not make the FIRST. and LAST. variables available in 
compute blocks.

See: “BY” on page 74

Syntax
BY <DESCENDING> variable-1
<<DESCENDING> variable-2 …> <NOTSORTED>;

Required Argument
variable

specifies the variable that the procedure uses to form BY groups. You can 
specify more than one variable. If you do not use the NOTSORTED option in the 
BY statement, then the observations in the data set either must be sorted by all 
the variables that you specify or must be indexed appropriately. Variables in a 
BY statement are called BY variables.

Optional Arguments
DESCENDING

specifies that the data set is sorted in descending order by the variable that 
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. For example, the data are grouped in chronological order.

The requirement for ordering or indexing observations according to the values of 
BY variables is suspended for BY-group processing when you use the 
NOTSORTED option. In fact, the procedure does not use an index if you specify 
NOTSORTED. The procedure defines a BY group as a set of contiguous 
observations that have the same values for all BY variables. If observations with 
the same values for the BY variables are not contiguous, then the procedure 
treats each contiguous set as a separate BY group.

CALL DEFINE Statement
Sets the value of an attribute for a particular column in the current row. The CALL DEFINE statement is 
often used to write report definitions that other people use in an interactive report window environment. 
Only the FORMAT, URL, URLBP, and URLP attributes have an effect in the nonwindowing environment. In 
fact, URL, URLBP, and URLP are effective only in the nonwindowing environment. The STYLE= and URL 
attributes are effective only when you are using ODS to create output.

Restriction: Valid only in a compute block that is attached to a report item.

Tip: All ODS destinations except OUTPUT and LISTING support the STYLE= option.

Example: compute sales;
      if sales.sum>100 and _break_=' ' then

CALL DEFINE Statement 2035



          call define(_col_, "style",
                  "style=[backgroundcolor=yellow
                          fontfamily=helvetica
                          fontweight=bold]");
endcomp;

compute weight;
      if weight > 100.0 then
          call define(_row_, "style/merge", "style={font_weight=bold}");
endcomp;

Examples: “Example 5: Consolidating Multiple Observations into One Row of a Report” on page 
2109
“Example 13: Specifying Style Elements for ODS Output in Multiple Statements” on page 
2137
“Example 15: Using STYLE/MERGE in PROC REPORT CALL DEFINE Statement” on 
page 2147
“Example 16: Using STYLE/REPLACE in PROC REPORT CALL DEFINE Statement” on 
page 2149

Syntax
CALL DEFINE (column-id | _ROW_, ' attribute-name', value);

Required Arguments
column-id

specifies a column name or a column number (that is, the position of the column 
from the left edge of the report). A column ID can be one of the following:

n a character literal (in quotation marks) that is the column name

n a character expression that resolves to the column name

n a numeric literal that is the column number 

n a numeric expression that resolves to the column number

n a name of the form '_Cn_', where n is the column number

n the automatic variable _COL_, which identifies the column that contains the 
report item that the compute block is attached to

_ROW_
is an automatic variable that indicates the entire current row.

attribute-name
is the attribute to define. For attribute names, refer to Table 58.111 on page 
2037. 

Note: The attributes BLINK, HIGHLIGHT, and RVSVIDEO do not work on all 
devices.

value
sets the value for the attribute. For values for each attribute, refer to Table 58.111 
on page 2037. 

2036 Chapter 58 / REPORT Procedure



Table 58.7 Attribute Descriptions

Attribute Description Values Affects

BLINK Controls blinking of current value 1 turns blinking on; 0 
turns it off

Interactive report 
window environment

COLOR Controls the color of the current value 
in the REPORT window

'blue', 'red', 'pink', 
'green', 'cyan', 'yellow', 
'white', 'orange', 'black', 
'magenta', 'gray', 
'brown'

Interactive report 
window environment

COMMAND Specifies that a series of commands 
follows

A quoted string of SAS 
commands to submit to 
the command line

Interactive report 
window environment

FORMAT Specifies a format for the column A SAS format or a user-
defined format

Interactive report 
window and 
nonwindowing 
environments

HIGHLIGHT Controls highlighting of the current 
value

1 turns highlighting on; 
0 turns it off

Interactive report 
window environment

RVSVIDEO Controls display of the current value 1 turns reverse video 
on; 0 turns it off

Interactive report 
window environment

STYLE Specifies the style override of the 
column or row

an ODS style attribute All ODS 
destinations.

STYLE/
MERGE

Merge the style specified with the 
existing styles in the same row or 
column

an ODS style attribute All ODS 
destinations.

STYLE/
REPLACE

Replace the existing style in the row 
or column

an ODS style attribute All ODS 
destinations.

URL Makes the contents of each cell of the 
column a link to the specified Uniform 
Resource Locator (URL)

A quoted URL (either 
single or double 
quotation marks can be 
used)

ODS HTML, 
HTML5, RTF, PDF, 
PowerPoint, EPUB 
destinations

URLBP Makes the contents of each cell of the 
column a link. The link points to a 
Uniform Resource Locator that is a 
concatenation of

1 the string that is specified by the 
BASE= option in the ODS HTML 
statement

2 the string that is specified by the 
PATH= option in the ODS HTML 
statement

A quoted URL (either 
single or double 
quotation marks can be 
used)

ODS HTML and 
HTML5 destinations

CALL DEFINE Statement 2037



Attribute Description Values Affects

3 the value of the URLBP attribute
1

URLP Makes the contents of each cell of the 
column a link. The link points to a 
Uniform Resource Locator that is a 
concatenation of

1 the string that is specified by the 
PATH= option in the ODS HTML 
statement

2 the value of the URLP attribute

A quoted URL (either 
single or double 
quotation marks can be 
used)

ODS HTML and 
HTML5 destinations

1 For information about the BASE= and PATH= options, see the documentation for the ODS HTML Statement in SAS Output 
Delivery System: User’s Guide.

Details

Using Style Attributes with the CALL DEFINE 
Statement
The STYLE attribute specifies the style-override to use in the cells that are affected 
by the CALL DEFINE statement.

The STYLE= value functions like the STYLE= option in other statements in PROC 
REPORT. However, instead of acting as an option in a statement, it becomes the 
value for the STYLE attribute. For example, the following CALL DEFINE statement 
sets the background color to yellow and the font size to 7 for the specified column:

 call define(_col_, "style",
             "style=[backgroundcolor=yellow fontsize=7]");

For information about style precedence, see “Order of Precedence When Applying 
Style Attributes to Data Cells” on page 2078.

Restriction: All ODS destinations except OUTPUT and LISTING support the 
STYLE= option.

Interaction: If you set a style override for the CALLDEF location in the PROC 
REPORT statement and you want to use that exact style override in a CALL 
DEFINE statement, use an empty string as the value for the STYLE attribute, as 
shown here:

call define (_col_, "STYLE", "" );

Tip: FONT names that contain characters other than letters or underscores must be 
enclosed in quotation marks.

Featured in: “Example 13: Specifying Style Elements for ODS Output in Multiple 
Statements” on page 2137

2038 Chapter 58 / REPORT Procedure



Using STYLE/REPLACE and STYLE/MERGE Style 
Attributes
The STYLE/MERGE and STYLE/REPLACE attributes work only with styles 
specified by the CALL DEFINE statement. You cannot merge or replace a style that 
is specified by a STYLE(COLUMN)= option. A good time to use STYLE/REPLACE 
and STYLE/MERGE is when you have two or more COMPUTE blocks that have a 
CALL DEFINE statement, and these CALL DEFINE statements refer to the same 
cell.

STYLE= and STYLE/REPLACE attributes specify the style element to be used for 
ODS. If a style already exists for a cell or row, these STYLE attributes tell CALL 
DEFINE to replace the style specified by the STYLE= option. For an example 
program, see “Example 16: Using STYLE/REPLACE in PROC REPORT CALL 
DEFINE Statement” on page 2149. 

The STYLE/MERGE attribute tells CALL DEFINE to merge the style specified by the 
STYLE= value with the existing style attributes that are in the same cell or row. If 
there is no previously existing STYLE= value to merge, STYLE/MERGE acts the 
same as the STYLE or STYLE/REPLACE attributes. For an example program, see 
“Example 15: Using STYLE/MERGE in PROC REPORT CALL DEFINE Statement” 
on page 2147. 

COLUMN Statement
Describes the arrangement of all columns and of headings that span more than one column.

Restriction: You cannot use the COLUMN statement if you use REPORT= in the PROC REPORT 
statement.

Examples: “Example 1: Selecting Variables and Creating a Summary Line for a Report” on page 
2096
“Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable” on page 
2103
“Example 6: Creating a Column for Each Value of a Variable” on page 2112
“Example 4: Displaying Multiple Statistics for One Variable” on page 2107
“Example 8: Displaying a Calculated Percentage Column in a Report” on page 2120
“Example 9: How PROC REPORT Handles Missing Values” on page 2124

Syntax
COLUMN column-specification(s);

Required Argument
column-specification(s)

is one or more of the following:

n report-item(s)

n report-item-1, report-item-2 <. . . , report-item-n>

COLUMN Statement 2039



n ('header-1 ' < . . . 'header-n '> report-item(s) )

n report-item=name

where report-item is the name of a data set variable, a computed variable, or a 
statistic. See “Statistics That Are Available in PROC REPORT” on page 2068 for 
a list of available statistics.

report-item(s)
identifies items that each form a column in the report.

Examples “Example 1: Selecting Variables and Creating a Summary Line 
for a Report” on page 2096

“Example 9: How PROC REPORT Handles Missing Values” on 
page 2124

report-item-1, report-item-2 <. . . , report-item-n>
identifies report items that collectively determine the contents of the column 
or columns. These items are said to be stacked in the report because each 
item generates a heading, and the headings are stacked one above the 
other. The heading for the leftmost item is on top. If one of the items is an 
analysis variable, a computed variable, a group variable, or a statistic, then 
its values fill the cells in that part of the report. Otherwise, PROC REPORT 
fills the cells with frequency counts.

If you stack a statistic with an analysis variable, then the statistic that you 
name in the column statement overrides the statistic in the definition of the 
analysis variable. For example, the following PROC REPORT step produces 
a report that contains the minimum value of Sales for each sector:

proc report data=grocery;
column sector sales,min;
define sector/group;
define sales/analysis sum;
run;

If you stack a display variable under an across variable, then all the values of 
that display variable appear in the report.

Interaction A series of stacked report items can include only one analysis 
variable or statistic. If you include more than one analysis 
variable or statistic, then PROC REPORT returns an error 
because it cannot determine which values to put in the cells of 
the report.

Tip You can use parentheses to group report items whose headings 
should appear at the same level rather than stacked one above 
the other.

Examples “Example 6: Creating a Column for Each Value of a Variable” on 
page 2112

“Example 4: Displaying Multiple Statistics for One Variable” on 
page 2107

“Example 8: Displaying a Calculated Percentage Column in a 
Report” on page 2120

('header-1 ' <… 'header-n '> report-item(s))
creates one or more headings that span multiple columns.

2040 Chapter 58 / REPORT Procedure



header
is a string of characters that spans one or more columns in the report. 
PROC REPORT prints each heading on a separate line. You can use split 
characters in a heading to split one heading over multiple lines. See the 
discussion of SPLIT= on page 2022. 

In LISTING output, if the first and last characters of a heading are one of 
the following characters, then PROC REPORT uses that character to 
expand the heading to fill the space over the column or columns. Note 
that the <> and the >< must be paired. − = . _ * + <> ><

Similarly, if the first character of a heading is < and the last character is >, 
or vice versa, then PROC REPORT expands the heading to fill the space 
over the column by repeating the first character before the text of the 
heading and the last character after it.

Note: The use of expanding characters is supported only in LISTING 
destinations. Therefore, PROC REPORT simply removes the expanding 
characters when the output is directed to any other destination. Refer to 
“Understanding ODS Destinations” in SAS Output Delivery System: 
User’s Guide for more information.

report-item(s)
specifies the columns to span.

Example “Example 8: Displaying a Calculated Percentage Column in a 
Report” on page 2120

report-item=name
specifies an alias for a report item. You can use the same report item more 
than once in a COLUMN statement. However, you can use only one DEFINE 
statement for any given name. (The DEFINE statement designates 
characteristics such as formats and customized column headings. If you omit 
a DEFINE statement for an item, then the REPORT procedure uses 
defaults.) Assigning an alias in the COLUMN statement does not by itself 
alter the report. However, it does enable you to use separate DEFINE 
statements for each occurrence of a variable or statistic.

Note You cannot always use an alias. When you refer in a compute 
block to a report item that has an alias, you must use the alias. 
However, if the report item shares a column with an across 
variable, then you must reference the column by column number. 
(See “Four Ways to Reference Report Items in a Compute Block” 
on page 1995.) 

Example “Example 3: Using Aliases to Obtain Multiple Statistics for the 
Same Variable” on page 2103

COMPUTE Statement
Starts a compute block containing one or more programming statements that PROC REPORT executes as 
it builds the report.

COMPUTE Statement 2041

http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p1n357e2fq6kjkn1ijsu3w97lxl1.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p1n357e2fq6kjkn1ijsu3w97lxl1.htm&locale=en


Restriction: If you are sending a report to multiple ODS destinations or to an ODS document that is 
replayed later, avoid the use of non-deterministic functions in a COMPUTE block (for 
example, LAG, DIF, RANUNI, DATETIME, and so on). If you need to use data created 
by such functions in your report, call the functions in a DATA step and store the results in 
the data set before running PROC REPORT.

Interaction: An ENDCOMP statement must mark the end of the group of statements in the compute 
block.

Note: A compute block can be associated with a report item or with a location (at the top or 
bottom of a report; at the top or bottom of a page; before or after a set of observations). 
You create a compute block with the COMPUTE window or with the COMPUTE 
statement. One form of the COMPUTE statement associates the compute block with a 
report item. Another form associates the compute block with a location. For a list of the 
SAS language elements that you can use in compute blocks, see “The Contents of 
Compute Blocks” on page 1994. 

Tip: For information about how to use compute blocks, see The REPORT Procedure: A 
Primer for the Compute Block

Examples: “Example 2: Ordering the Rows in a Report” on page 2100
“Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable” on page 
2103
“Example 5: Consolidating Multiple Observations into One Row of a Report” on page 
2109
“Example 6: Creating a Column for Each Value of a Variable” on page 2112
“Example 7: Writing a Customized Summary on Each Page” on page 2116
“Example 8: Displaying a Calculated Percentage Column in a Report” on page 2120
“Example 10: Creating an Output Data Set and Storing Computed Variables” on page 
2127
“Example 13: Specifying Style Elements for ODS Output in Multiple Statements” on page 
2137

Syntax
COMPUTE location <target>

</ STYLE=<style-override(s) > >;
LINE specification(s);
. . . select SAS language elements . . .
ENDCOMP;

COMPUTE report-item </ type-specification>;
CALL DEFINE (column-id, 'attribute-name', value);
. . . select SAS language elements . . .
ENDCOMP;

Required Arguments
You must specify either a location or a report item in the COMPUTE statement.

location
determines where the compute block executes in relation to target.

2042 Chapter 58 / REPORT Procedure

http://support.sas.com/resources/papers/proceedings15/SAS1642-2015.pdf
http://support.sas.com/resources/papers/proceedings15/SAS1642-2015.pdf


AFTER
executes the compute block at a break in one of the following places:

n immediately after the last row of a set of rows that have the same value 
for the variable that you specify as target or, if there is a default summary 
on that variable, immediately after the creation of the preliminary 
summary line. (See Results: REPORT Procedure on page 2084.) 

n in LISTING output, near the bottom of each page, immediately before any 
footnotes, if you specify _PAGE_ as target.

n at the end of the report if you omit a target.

BEFORE
executes the compute block at a break in one of the following places:

n immediately before the first row of a set of rows that have the same value 
for the variable that you specify as target or, if there is a default summary 
on that variable, immediately after the creation of the preliminary 
summary line. (See Results: REPORT Procedure on page 2084.) 

n in LISTING output, near the top of each page, between any titles and the 
column headings, if you specify _PAGE_ as target.

n immediately before the first detail row if you omit a target.

Note If a report contains more columns than fit on a printed page, PROC 
REPORT generates an additional page or pages to contain the 
remaining columns. In this case, when you specify _PAGE_ as 
target, the COMPUTE block does NOT re-execute for each of these 
additional pages; the COMPUTE block re-executes only after all 
columns have been printed.

Examples “Example 3: Using Aliases to Obtain Multiple Statistics for the Same 
Variable” on page 2103

“Example 7: Writing a Customized Summary on Each Page” on page 
2116

report-item
specifies a data set variable, a computed variable, or a statistic to associate the 
compute block with. If you are working in the nonwindowing environment, then 
you must include the report item in the COLUMN statement. If the item is a 
computed variable, then you must include a DEFINE statement for it.

Note The position of a computed variable is important. PROC REPORT 
assigns values to the columns in a row of a report from left to right. 
Consequently, you cannot base the calculation of a computed 
variable on any variable that appears to its right in the report.

Examples “Example 5: Consolidating Multiple Observations into One Row of a 
Report” on page 2109

“Example 6: Creating a Column for Each Value of a Variable” on 
page 2112

COMPUTE Statement 2043



Optional Arguments
STYLE<(location(s))>=<style-override(s)>

specifies the style to use for the text that is created by any LINE statements in 
this compute block.

You can specify a style override in two ways:

n Specify a style element. A style element is a collection of style attributes that 
apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that describes 
a single behavioral or visual aspect of a piece of output. This is the most 
specific method of changing the appearance of your output. 

style-override has the following form:

style-element-name | [style-attribute-name-1=style-attribute-value-1
<style-attribute-name-2=style-attribute-value-2 …>]

Restriction All ODS destinations except OUTPUT and LISTING support the 
STYLE= option.

Tip FONT names that contain characters other than letters or 
underscores must be enclosed in quotation marks.

See “Style Elements and Style Attributes for Table Regions ” on page 
2076

Example “Example 13: Specifying Style Elements for ODS Output in Multiple 
Statements” on page 2137

target
controls when the compute block executes. If you specify a location (BEFORE or 
AFTER) for the COMPUTE statement, then you can also specify target, which 
can be one of the following:

break-variable
is a group or order variable.

When you specify a break variable, PROC REPORT executes the statements 
in the compute block each time the value of the break variable changes.

_PAGE_ </ justification>
in LISTING output destinations, causes the compute block to execute once 
for each page, either immediately after printing any titles or immediately 
before printing any footnotes. justification controls the placement of text and 
values. It can be one of the following:

CENTER
centers each line that the compute block writes.

LEFT
left-justifies each line that the compute block writes.

RIGHT
right-justifies each line that the compute block writes.

Default CENTER

Example “Example 7: Writing a Customized Summary on Each Page” on page 
2116

2044 Chapter 58 / REPORT Procedure



type-specification
specifies the type. (Optional) Also specifies the length of report-item. If the report 
item that is associated with a compute block is a computed variable, then PROC 
REPORT assumes that it is a numeric variable unless you use a type 
specification to specify that it is a character variable. A type specification has the 
form

CHARACTER <LENGTH=length>

where

CHARACTER
specifies that the computed variable is a character variable. If you do not 
specify a length, then the variable's length is 8.

Alias CHAR

Example “Example 8: Displaying a Calculated Percentage Column in a 
Report” on page 2120

LENGTH=length
specifies the length of a computed character variable.

Default 8

Range 1 to 200

Interaction If you specify a length, then you must use CHARACTER to 
indicate that the computed variable is a character variable.

Example “Example 8: Displaying a Calculated Percentage Column in a 
Report” on page 2120

DEFINE Statement
Describes how to use and display a report item.

Restriction: A weight cannot be applied to a report-item alias without also applying it to the report-
item. The WEIGHT= option must appear in the DEFINE statement for the report-item.

Accessibility 
note:

When the DEFINE statement includes an ORDER or GROUP option, the SPANROWS 
option must also be included in the PROC REPORT statement to generate an 
accessible table.

Tip: If you do not use a DEFINE statement, then PROC REPORT uses default 
characteristics.

Examples: “Example 2: Ordering the Rows in a Report” on page 2100
“Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable” on page 
2103
“Example 5: Consolidating Multiple Observations into One Row of a Report” on page 
2109
“Example 6: Creating a Column for Each Value of a Variable” on page 2112
“Example 4: Displaying Multiple Statistics for One Variable” on page 2107
“Example 7: Writing a Customized Summary on Each Page” on page 2116
“Example 8: Displaying a Calculated Percentage Column in a Report” on page 2120

DEFINE Statement 2045



“Example 10: Creating an Output Data Set and Storing Computed Variables” on page 
2127
“Example 11: Using a Format to Create Groups” on page 2131
“Example 13: Specifying Style Elements for ODS Output in Multiple Statements” on page 
2137
“Example 12: Using Multilabel Formats” on page 2134
“Example 14: Using the CELLWIDTH= Style Attribute with PROC REPORT” on page 
2144

Syntax
DEFINE report-item / <options>;

Summary of Optional Arguments
Control the placement of values and column headings

CENTER
centers the formatted values of the report item within the column width 
and center the column heading over the values.

COLOR=color
specifies the color in the REPORT window of the column heading and of 
the values of the item that you define.

column-header
defines the column heading for the report item.

LEFT
left-justifies the formatted values of the report item within the column width 
and left-justifies the column headings over the values.

RIGHT
right-justifies the formatted values of the report item within the column 
width and right-justifies the column headings over the values.

Customize the appearance of a report item
EXCLUSIVE

excludes all combinations of the item that are not found in the preloaded 
range of user-defined formats.

FORMAT=format
assigns a SAS or user-defined format to the item.

MISSING
considers missing values as valid values for the item.

MLF
enables PROC REPORT to use the format label or labels to create 
subgroup combinations that have multilabel formats.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
orders the values of a group, order, or across variable according to the 
specified order.

PRELOADFMT
specifies that all formats are preloaded for the item.

2046 Chapter 58 / REPORT Procedure



SPACING=horizontal-positions
for LISTING output, defines the number of blank characters to leave 
between the column being defined and the column immediately to its left.

statistic
associates a statistic with an analysis variable.

STYLE<(location(s))>=<style-overrides(s)> 
specifies a style element (for the Output Delivery System) for the report 
item.

WEIGHT=weight-variable
specifies a numeric variable whose values weight the value of the 
analysis variable.

WIDTH=column-width
defines the width of the column in which PROC REPORT displays the 
report item.

Specify how to use a report item
ACROSS

defines the item, which must be a data set variable, as an across variable.
ANALYSIS

defines the item, which must be a data set variable, as an analysis 
variable.

COMPUTED
defines the item as a computed variable.

DISPLAY
defines the item, which must be a data set variable, as a display variable.

GROUP
defines the item, which must be a data set variable, as a group variable.

ORDER
defines the item, which must be a data set variable, as an order variable.

Specify options for a report item
CONTENTS='link-text'

creates a link in the table of contents.
DESCENDING

reverses the order in which PROC REPORT displays rows or values of a 
group, order, or across variable.

FLOW
wraps the value of a character variable in its column.

ID
specifies that the item that you are defining is an ID variable.

NOPRINT
suppresses the display of the report item.

NOZERO
suppresses the display of the report item if its values are all zero or 
missing.

PAGE
inserts a page break just before printing the first column containing values 
of the report item.

DEFINE Statement 2047



Required Argument
report-item

specifies the name or alias (established in the COLUMN statement) of the data 
set variable, computed variable, or statistic to define. The following are types of 
names that can be used for report-item:

n a SAS identifier (determined by the VALIDVARNAME option)

n a name literal

n a numbered range list

n a name range list

n a special name list

n a name prefix list

n a statistic

Notes The names in variable range lists refer to variables in the input data set, 
not statistic names, or computed variable names. Use only one name for 
each DEFINE statement. That one name, however, can be a range list. 
Example syntax using a variable range list is: DEFINE Var1–Var3/ 
width=10 center “#Visit#Date”;

Do not specify a usage option in the definition of a statistic. The name of 
the statistic tells PROC REPORT how to use it.

See “Names in the SAS Language” in SAS Language Reference: Concepts, 
“SAS Variable Lists” in SAS Language Reference: Concepts, and 
“VALIDVARNAME=” in SAS System Options: Reference.

Optional Arguments
ACROSS

defines report-item, which must be a data set variable, as an across variable. 
(See “Across Variables” on page 1990.) 

Example “Example 6: Creating a Column for Each Value of a Variable” on page 
2112

ANALYSIS
defines report-item, which must be a data set variable, as an analysis variable. 
(See “Analysis Variables” on page 1990.) 

By default, PROC REPORT calculates the Sum statistic for an analysis variable. 
Specify an alternate statistic with the statistic option in the DEFINE statement.

Note: Naming a statistic in the DEFINE statement implies the ANALYSIS option, 
so you never need to specify ANALYSIS. However, specifying ANALYSIS can 
make your code easier for novice users to understand.

Note: Special missing values show up as missing values when they are defined 
as ANALYSIS variables.

2048 Chapter 58 / REPORT Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p18cdcs4v5wd2dn1q0x296d3qek6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0wphcpsfgx6o7n1sjtqzizp1n39.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p124dqdk8zoqu3n1r4nsfqu5vx52.htm&locale=en


Examples “Example 2: Ordering the Rows in a Report” on page 2100

“Example 3: Using Aliases to Obtain Multiple Statistics for the Same 
Variable” on page 2103

“Example 5: Consolidating Multiple Observations into One Row of a 
Report” on page 2109

CENTER
centers the formatted values of the report item within the column width and 
centers the column heading over the values. This option has no effect on the 
CENTER option in the PROC REPORT statement, which centers the report on 
the page.

Restriction This option affects the header and the data of LISTING output. In 
ODS output, only the data is affected by this option.

COLOR=color
specifies the color in the REPORT window of the column heading and of the 
values of the item that you are defining. You can use the following colors: 

BLACK MAGENTA

BLUE ORANGE

BROWN PINK

CYAN RED

GRAY WHITE

GREEN YELLOW

Note: Not all operating environments and devices support all colors, and in 
some operating environments and devices, one color might map to another 
color. For example, if the DEFINITION window displays the word BROWN in 
yellow characters, then selecting BROWN results in a yellow item.

Default The color of Foreground in the SASCOLOR window. (For more 
information, see the online Help for the SASCOLOR window.)

Restriction This option affects output in the interactive report window 
environment only.

column-header
defines the column heading for the report item. Enclose each heading in single 
or double quotation marks. When you specify multiple column headings, PROC 
REPORT uses a separate line for each one. The split character also splits a 
column heading over multiple lines. 

In LISTING output, if the first and last characters of a heading are one of the 
following characters, then PROC REPORT uses that character to expand the 
heading to fill the space over the column: :− = \_ .* +

DEFINE Statement 2049



Similarly, if the first character of a heading is < and the last character is >, or vice 
versa, then PROC REPORT expands the heading to fill the space over the 
column by repeating the first character before the text of the heading and the last 
character after it.

The following table shows the default variables and statistics:

Item Header

Variable without a label Variable name

Variable with a label Variable label

Statistic Statistic name

Tips If you want to use names when labels exist, then submit the following 
SAS statement before invoking PROC REPORT: options nolabel;

HEADLINE underlines all column headings and the spaces between 
them. In LISTING output, you can underline column headings without 
underlining the spaces between them, by using the special 
characters '--' as the last line of each column heading instead of 
using HEADLINE. (See “Example 5: Consolidating Multiple 
Observations into One Row of a Report” on page 2109.) 

See SPLIT= on page 2022

Examples “Example 3: Using Aliases to Obtain Multiple Statistics for the Same 
Variable” on page 2103

“Example 5: Consolidating Multiple Observations into One Row of a 
Report” on page 2109

“Example 6: Creating a Column for Each Value of a Variable” on 
page 2112

COMPUTED
defines the specified item as a computed variable. Computed variables are 
variables that you define for the report. They are not in the input data set, and 
PROC REPORT does not add them to the input data set.

In the interactive report window environment, you add a computed variable to a 
report from the COMPUTED VAR window.

In the nonwindowing environment, you add a computed variable as by

n including the computed variable in the COLUMN statement

n defining the variable's usage as COMPUTED in the DEFINE statement

n computing the value of the variable in a compute block associated with the 
variable

Examples “Example 6: Creating a Column for Each Value of a Variable” on 
page 2112

2050 Chapter 58 / REPORT Procedure



“Example 8: Displaying a Calculated Percentage Column in a 
Report” on page 2120

CONTENTS='link-text'
specifies the text for the entries in the table of contents created by default or by 
options settings in ODS destinations that support the STYLE= option. If the 
DEFINE statement has the PAGE= option and the CONTENTS= option specified 
with a link-text value assigned, then PROC REPORT adds a directory to the 
table of contents and uses the value of link-text as a link for tables created in the 
table of contents.

Default If the DEFINE statement has a PAGE option, but does not have a 
CONTENTS= option specified, then a directory is created with the 
directory text as COLA-COLB. COLA is the name or alias of the 
leftmost column and COLB is the name or alias of the rightmost 
column. If the table has only one column, then the directory text is 
the column name or alias.

Restriction If CONTENTS= is specified, but no PAGE option is specified, then 
PROC REPORT generates a warning message in the SAS log file.

Interactions If the DEFINE statement has a page option and there is a BREAK 
BEFORE statement with a PAGE option and the CONTENTS= 
option specified has a value other than empty quotation marks, 
then PROC REPORT adds a directory to the table of contents and 
puts links to the tables in that directory.

If the DEFINE statement has a PAGE option and there is a BREAK 
BEFORE statement with no PAGE option, then PROC REPORT 
does not create a directory in the table of contents. Instead, PROC 
REPORT uses the CONTENTS= value from the DEFINE 
statement to create links to the table of contents. If there is no 
CONTENTS= option in the DEFINE statement, then PROC 
REPORT creates links using the default text COLA–COLB. Refer 
to the Default explanation above.

If there is a BREAK BEFORE statement with a CONTENTS=' ' 
option specified and a PAGE option specified, then PROC 
REPORT does not create a directory in the table of contents. 
Instead, PROC REPORT uses the CONTENTS= value from the 
DEFINE statement to create links to the table of contents. If there 
is no CONTENTS= option in the DEFINE statement, then PROC 
REPORT creates links using the default text COLA–COLB. Refer 
to the Default explanation above.

Tips If the DEFINE statement specifies the CONTENTS= option where 
the value is empty quotation marks, then the directory to the table 
of contents is not added. An example of this code is as follows: 
CONTENTS=''

If there are multiple BREAK BEFORE statements, then the link text 
is the concatenation of all of the CONTENTS= values or of all the 
default values.

All ODS destinations except OUTPUT and LISTING support the 
STYLE= option.

DEFINE Statement 2051



DESCENDING
reverses the order in which PROC REPORT displays rows or values of a group, 
order, or across variable.

Tip By default, PROC REPORT orders group, order, and across variables by 
their formatted values. Use the ORDER= option in the DEFINE statement 
to specify an alternate sort order.

DISPLAY
defines report-item, which must be a data set variable, as a display variable. 
(See “Display Variables” on page 1988.) 

EXCLUSIVE
excludes from the report and the output data set all combinations of the group 
variables and the across variables that are not found in the preloaded range of 
user-defined formats.

Requirement You must specify the PRELOADFMT option in the DEFINE 
statement in order to preload the variable formats.

FLOW
wraps the value of a character variable in its column. The FLOW option honors 
the split character. If the text contains no split character, then PROC REPORT 
tries to split text at a blank.

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

FORMAT=format
assigns a SAS or user-defined format to the item. This format applies to report-
item as PROC REPORT displays it; the format does not alter the format 
associated with a variable in the data set. For data set variables, PROC 
REPORT honors the first of these formats that it finds: 

n the format that is assigned with FORMAT= in the DEFINE statement

n the format that is assigned in a FORMAT statement when you invoke PROC 
REPORT

n the format that is associated with the variable in the data set

If none of these formats is present, then PROC REPORT uses BESTw. for 
numeric variables and $w. for character variables. The value of w is the default 
column width. For character variables in the input data set, the default column 
width is the variable's length. For numeric variables in the input data set and for 
computed variables (both numeric and character), the default column width is the 
value specified by COLWIDTH= in the PROC REPORT statement or in the 
ROPTIONS window.

In the interactive report window environment, if you are unsure what format to 
use, then type a question mark (?) in the format field in the DEFINITION window 
to access the FORMATS window.

Alias F=

Examples “Example 2: Ordering the Rows in a Report” on page 2100

“Example 4: Displaying Multiple Statistics for One Variable” on page 
2107

2052 Chapter 58 / REPORT Procedure



GROUP
defines report-item, which must be a data set variable, as a group variable. (See 
“Group Variables” on page 1989.) 

Accessibility 
note

When the DEFINE statement includes an ORDER or GROUP 
option, the SPANROWS option must also be included in the 
PROC REPORT statement to generate an accessible table.

Examples “Example 5: Consolidating Multiple Observations into One Row 
of a Report” on page 2109

“Example 4: Displaying Multiple Statistics for One Variable” on 
page 2107

“Example 11: Using a Format to Create Groups” on page 2131

ID
specifies that the item that you are defining is an ID variable. An ID variable and 
all columns to its left appear at the left of every page of a report. ID ensures that 
you can identify each row of the report when the report contains more columns 
than fits on one page.

LEFT
left-justifies the formatted values of the report item within the column width and 
left-justifies the column headings over the values. If the format width is the same 
as the width of the column, then the LEFT option has no effect on the placement 
of values.

Restriction This option affects the header and the data of LISTING output. In 
ODS output, only the data is affected by this option.

MISSING
considers missing values as valid values for the report item. Special missing 
values that represent numeric values (the letters A through Z and the underscore 
(_) character) are each considered as a separate value.

Default If you omit the MISSING option, then PROC REPORT excludes from 
the report and the output data sets all observations that have a missing 
value for any group, order, or across variable.

MLF
enables PROC REPORT to use the format label or labels for a given range or for 
overlapping ranges to create subgroup combinations that use multilabel 
formatting. These multilabel formats are used only with group and across 
variables.

MLF is supported on all ODS destinations, the LISTING destination, data sets, 
and the REPORT WINDOW.

Note: PROC REPORT supports assigning a numeric variable that has a 
multilabel format to a character variable.

Requirement Use PROC FORMAT and the MULTILABEL option in the VALUE 
statement to create a multilabel format.

Tips The MLF option has no effect unless the variable is associated 
with a multilabel format. If there is no MULTILABEL format 
associated with the column, then an additional FORMAT 

DEFINE Statement 2053



statement or FORMAT= option in the DEFINE statement is 
needed to associate an existing format or informat with one or 
more variables. If MULTILABEL format is already associated with 
the column (using any regular method to associate a format with 
the variable), then no additional FORMAT statement or FORMAT= 
option is needed.

If the MLF option is omitted, PROC REPORT uses the primary 
format labels to determine the subgroup combinations. The 
primary format labels correspond to the first external format value.

See MULTILABEL option on page 1097 in the VALUE statement of the 
FORMAT procedure.

Example “Example 12: Using Multilabel Formats” on page 2134

NOPRINT
suppresses the display of the report item. Use this option 

n if you do not want to show the item in the report but you need to use its 
values to calculate other values that you use in the report.

n to establish the order of rows in the report.

n if you do not want to use the item as a column but want to have access to its 
values in summaries. (See “Example 7: Writing a Customized Summary on 
Each Page” on page 2116.) 

Interactions Even though the columns that you define with NOPRINT do not 
appear in the report, you must count them when you are 
referencing columns by number. (See “Four Ways to Reference 
Report Items in a Compute Block” on page 1995.) 

SHOWALL in the PROC REPORT statement or the ROPTIONS 
window overrides all occurrences of NOPRINT.

Examples “Example 3: Using Aliases to Obtain Multiple Statistics for the 
Same Variable” on page 2103

“Example 7: Writing a Customized Summary on Each Page” on 
page 2116

NOZERO
suppresses the display of the report item if its values are all zero or missing.

Interactions Even though the columns that you define with NOZERO do not 
appear in the report, you must count them when you are 
referencing columns by number. (See “Four Ways to Reference 
Report Items in a Compute Block” on page 1995.) 

SHOWALL in the PROC REPORT statement or in the ROPTIONS 
window overrides all occurrences of NOZERO.

ORDER
defines report-item, which must be a data set variable, as an order variable. (See 
“Order Variables” on page 1989.) 

2054 Chapter 58 / REPORT Procedure



Accessibility 
note

When the DEFINE statement includes an ORDER or GROUP 
option, the SPANROWS option must also be included in the 
PROC REPORT statement to generate an accessible table.

Example “Example 2: Ordering the Rows in a Report” on page 2100

ORDER=DATA | FORMATTED | FREQ | INTERNAL
orders the values of a group, order, or across variable according to the specified 
order, where 

DATA
orders values according to their order in the input data set.

Note If you specify the ORDER=DATA option for input data in a DBMS 
table, the order of rows written to a database table from PROC 
REPORT is not likely to be preserved.

FORMATTED
orders values by their formatted (external) values. If no format has been 
assigned to a class variable, then the default format, BEST12., is used.

FREQ
orders values by ascending frequency count.

INTERNAL
orders values by their unformatted values. This order depends on your 
operating environment. This sort sequence is particularly useful for displaying 
dates chronologically.

Specifying ORDER=INTERNAL usually, but not always, produces the same 
results as PROC SORT. For more information about ordering data, see 
“Controlling the Order of Data Values” on page 27.

Default FORMATTED

Interaction DESCENDING in the item's definition reverses the sort sequence 
for an item. By default, the order is ascending.

Note The default value for the ORDER= option in PROC REPORT is not 
the same as the default value in other SAS procedures. In other 
SAS procedures, the default is ORDER=INTERNAL. The default for 
the option in PROC REPORT might change in a future release to be 
consistent with other procedures. Therefore, in production jobs 
where it is important to order report items by their formatted values, 
specify ORDER=FORMATTED even though it is currently the 
default. Doing so ensures that PROC REPORT continues to 
produce the reports that you expect even if the default changes.

Example “Example 2: Ordering the Rows in a Report” on page 2100

PAGE
inserts a page break just before printing the first column containing values of the 
report item. 

Restriction This option has no affect on the OUTPUT destination.

Interaction PAGE is ignored if you use WRAP in the PROC REPORT 
statement or in the ROPTIONS window.

DEFINE Statement 2055



Tip In the listing destination, a PAGE option in the DEFINE statement 
causes PROC REPORT to print this column and all columns to its 
right on a new page. However, for nonlisting destinations, the page 
break does not occur until all the rows in the report have been 
printed. Therefore, PROC REPORT prints all the rows for all the 
columns to the left of the PAGE column and then starts over at the 
top of the report and prints the PAGE column and the columns to 
the right.

PRELOADFMT
specifies that the format is preloaded for the variable.

Restriction PRELOADFMT applies only to group and across variables.

Requirement PRELOADFMT has no effect unless you specify either 
EXCLUSIVE or ORDER=DATA and you assign a format to the 
variable.

Interactions To limit the report to the combination of formatted variable values 
that are present in the input data set, use the EXCLUSIVE option 
in the DEFINE statement.

To include all ranges and values of the user-defined formats in the 
output, use the COMPLETEROWS option in the PROC REPORT 
statement.

Notes If you do not specify NOCOMPLETECOLS when you define the 
across variables, then the report includes a column for every 
formatted variable. If you specify COMPLETEROWS when you 
define the group variables, then the report includes a row for 
every formatted value. Some combinations of rows and columns 
might not make sense when the report includes a column for 
every formatted value of the across variable and a row for every 
formatted value of the group variable.

When preloading a character format, there must be at least one 
representative raw value that produces the label. If a range does 
not have any raw values, the range is considered unreachable 
and an error is generated. For example, you cannot preload a 
multi-label character format with both Other= and Low-High 
ranges. Other is a special keyword that refers to values or ranges 
that remain after all labels have been defined. For character 
formats, missing values are included in the low range so that 
there are no raw values left to occupy the Other range.

Example “Example 12: Using Multilabel Formats” on page 2134

RIGHT
right-justifies the formatted values of the specified item within the column width 
and right-justifies the column headings over the values. If the format width is the 
same as the width of the column, then RIGHT has no effect on the placement of 
values.

Restriction This option affects the header and the data of LISTING output. In 
ODS output, only the data is affected by this option.

2056 Chapter 58 / REPORT Procedure



SPACING=horizontal-positions
defines the number of blank characters to leave between the column being 
defined and the column immediately to its left. For each column, the sum of its 
width and the blank characters between it and the column to its left cannot 
exceed the line size.

Default 2

Restriction This option has no effect on ODS destinations other than the 
LISTING destination.

Interactions When PROC REPORT's CENTER option is in effect, PROC 
REPORT ignores spacing that precedes the leftmost variable in 
the report.

SPACING= in an item's definition overrides the value of 
SPACING= in the PROC REPORT statement or in the ROPTIONS 
window.

statistic
associates a statistic with an analysis variable. You must associate a statistic 
with every analysis variable in its definition. PROC REPORT uses the statistic 
that you specify to calculate values for the analysis variable for the observations 
that are represented by each cell of the report. You cannot use statistic in the 
definition of any other type of variable.

See “Statistics That Are Available in PROC REPORT” on page 2068 for a list of 
available statistics.

Default SUM

Note PROC REPORT uses the name of the analysis variable as the 
default heading for the column. You can customize the column 
heading with the column-header option in the DEFINE statement.

Examples “Example 2: Ordering the Rows in a Report” on page 2100

“Example 3: Using Aliases to Obtain Multiple Statistics for the Same 
Variable” on page 2103

“Example 5: Consolidating Multiple Observations into One Row of a 
Report” on page 2109

STYLE<(location(s))>=<style-overrides(s)>
specifies the style element to use for column headings and for text inside cells 
for this report item. 

You can specify a style override in two ways:

n Specify a style element. A style element is a collection of style attributes that 
apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that describes 
a single behavioral or visual aspect of a piece of output. This is the most 
specific method of changing the appearance of your output. 

style-override has the following form:

style-element-name | [style-attribute-name-1=style-attribute-value-1
<style-attribute-name-2=style-attribute-value-2 …>]

DEFINE Statement 2057



Restriction All ODS destinations except OUTPUT and LISTING support the 
STYLE= option.

Tip FONT names that contain characters other than letters or 
underscores must be enclosed in quotation marks.

See “Style Elements and Style Attributes for Table Regions ” on page 
2076

Example “Example 13: Specifying Style Elements for ODS Output in Multiple 
Statements” on page 2137

WEIGHT=weight-variable
specifies a numeric variable whose values weight the values of the analysis 
variable that is specified in the DEFINE statement. The variable value does not 
have to be an integer. The following table describes how PROC REPORT treats 
various values of the WEIGHT variable. 

Weight 
Value PROC REPORT Response

0 Counts the observation in the total number of observations

Less than 
0

Converts the value to zero and counts the observation in the total 
number of observations

Missing Excludes the observation

To exclude observations that contain negative and zero weights from the 
analysis, use the EXCLNPWGT option in the PROC REPORT statement. Note 
that most SAS/STAT procedures, such as PROC GLM, exclude negative and 
zero weights by default.

Alias WGT=

Restrictions to compute weighted quantiles, use QMETHOD=OS in the PROC 
REPORT statement.

A weight cannot be applied to a report-item alias without also 
applying it to the report-item. The WEIGHT= option must appear in 
the DEFINE statement for the report-item.

Tips When you use the WEIGHT= option, consider which value of the 
VARDEF= option in the PROC REPORT statement is appropriate.

Use the WEIGHT= option in separate variable definitions in order 
to specify different weights for the variables.

WIDTH=column-width
defines the width of the column in which PROC REPORT displays report-item. 
This option affects only LISTING output.

For information about formats, see the discussion of “FORMAT=format” on page 
2052.

2058 Chapter 58 / REPORT Procedure



Default A column width that is just large enough to handle the format. If 
there is no format, then PROC REPORT uses the value of the 
COLWIDTH= option in the PROC REPORT statement.

Range 1 to the value of the SAS system option LINESIZE=

Restriction This option has no effect on ODS destinations other than LISTING 
output. For ODS destinations, use the STYLE= option with the 
WIDTH= style attribute or the CELLWIDTH= style attribute. Refer to 
“Style Attributes Tables” in SAS Output Delivery System: Advanced 
Topics for details. See how style attributes WIDTH= and 
CELLWIDTH= can be used with PROC REPORT in “Example 14: 
Using the CELLWIDTH= Style Attribute with PROC REPORT” on 
page 2144.

Interaction WIDTH= in an item definition overrides the value of COLWIDTH= in 
the PROC REPORT statement or the ROPTIONS window.

Tip When you stack items in the same column in a report, the width of 
the item that is at the bottom of the stack determines the width of 
the column.

ENDCOMP Statement
Marks the end of one or more programming statements that PROC REPORT executes as it builds the 
report.

Restriction: A COMPUTE statement must precede the ENDCOMP statement.

See: COMPUTE statement

Example: “Example 2: Ordering the Rows in a Report” on page 2100

Syntax
ENDCOMP;

FREQ Statement
Treats observations as if they appear multiple times in the input data set.

Tip: The effects of the FREQ and WEIGHT statements are similar except when calculating 
degrees of freedom.

See: For an example that uses the FREQ statement, see “Example” on page 80 

FREQ Statement 2059

http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0otdo2g12obp3n0zmnghcn7p4vu.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0otdo2g12obp3n0zmnghcn7p4vu.htm&locale=en


Syntax
FREQ variable;

Required Argument
variable

specifies a numeric variable whose value represents the frequency of the 
observation. If you use the FREQ statement, then the procedure assumes that 
each observation represents n observations, where n is the value of variable. If n 
is not an integer, then SAS truncates it. If n is less than 1 or is missing, then the 
procedure does not use that observation to calculate statistics.

Details

Frequency Information Is Not Saved
When you store a report definition, PROC REPORT does not store the FREQ 
statement.

LINE Statement
Provides a subset of the features of the PUT statement for writing customized summaries.

Restrictions: This statement is valid only in a compute block that is associated with a location in the 
report.
You cannot use the LINE statement in conditional statements (IF-THEN, IF-THEN/ELSE, 
and SELECT) because it is not executed until PROC REPORT has executed all other 
statements in the compute block.

Accessibility 
note:

Using the LINE statement causes an inaccessible table to be generated.

Examples: “Example 2: Ordering the Rows in a Report” on page 2100
“Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable” on page 
2103
“Example 5: Consolidating Multiple Observations into One Row of a Report” on page 
2109
“Example 6: Creating a Column for Each Value of a Variable” on page 2112
“Example 7: Writing a Customized Summary on Each Page” on page 2116

Syntax
LINE specification(s);

2060 Chapter 58 / REPORT Procedure



Required Argument
specification(s)

can have one of the following forms. You can mix different forms of specifications 
in one LINE statement.

item item-format
specifies the item to display and the format to use to display it, where

item
is the name of a data set variable, a computed variable, or a statistic in 
the report. For information about referencing report items, see “Four Ways 
to Reference Report Items in a Compute Block” on page 1995. 

item-format
is a SAS format or user-defined format. You must specify a format for 
each item.

Example “Example 2: Ordering the Rows in a Report” on page 2100

'character-string '
specifies a string of text to display. When the string is a blank and nothing 
else is in specification(s), PROC REPORT prints a blank line.

Note: A hexadecimal value (such as 'DF'x) that is specified within 
character-string is not resolved because it is specified within quotation marks. 
To resolve a hexadecimal value, use the %sysfunc(byte(num)) function, 
where num is the hexadecimal value. Be sure to enclose character-string in 
double quotation marks (" ") so that the macro function resolves.

Example “Example 2: Ordering the Rows in a Report” on page 2100

number-of-repetitions*'character-string '
specifies a character string and the number of times to repeat it.

Example “Example 3: Using Aliases to Obtain Multiple Statistics for the 
Same Variable” on page 2103

pointer-control
specifies the column in which PROC REPORT displays the next 
specification. You can use either of the following forms for pointer controls:

@column-number
specifies the number of the column in which to begin displaying the next 
item in the specification list.

+column-increment
specifies the number of columns to skip before beginning to display the 
next item in the specification list.

Both column-number and column-increment can be either a variable or a 
literal value.

Restriction The pointer controls are designed for LISTING output. They 
have no effect on other ODS destinations.

LINE Statement 2061



Details

Differences between the LINE and PUT Statements
The LINE statement does not support the following features of the PUT statement:

n automatic labeling signaled by an equal sign (=), also known as named output

n the _ALL_, _INFILE_, and _PAGE_ arguments and the OVERPRINT option

n grouping items and formats to apply one format to a list of items

n pointer control using expressions

n line pointer controls (# and /)

n trailing at signs (@ and @@)

n format modifiers

n array elements

RBREAK Statement
Produces a default summary at the beginning or end of a report or at the beginning or end of each BY 
group.

Examples: “Example 1: Selecting Variables and Creating a Summary Line for a Report” on page 
2096
“Example 8: Displaying a Calculated Percentage Column in a Report” on page 2120

Syntax
RBREAK location </ options>;

Summary of Optional Arguments
COLOR=color

specifies the color of the break lines in the REPORT window.
CONTENTS='link-text'

specifies the link text used in the table of contents.
DOL

double overlines each value.
DUL

double underlines each value.
OL

overlines each value.
PAGE

2062 Chapter 58 / REPORT Procedure



starts a new page after the last break line of a break located at the 
beginning of the report.

SKIP
writes a blank line for the last break line of a break located at the 
beginning of the report.

STYLE<(location(s))>=<style-overrides(s)>
specifies a style element (for the Output Delivery System) for default 
summary lines, customized summary lines, or both.

SUMMARIZE
includes a summary line as one of the break lines.

UL
underlines each value.

Required Argument
location

controls the placement of the break lines and is either of the following:

AFTER
places the break lines at the end of the report.

BEFORE
places the break lines at the beginning of the report.

Optional Arguments
COLOR=color

specifies the color of the break lines in the REPORT window. You can use the 
following colors: 

BLACK MAGENTA

BLUE ORANGE

BROWN PINK

CYAN RED

GRAY WHITE

GREEN YELLOW

Default The color of Foreground in the SASCOLOR window. (For more 
information, see the online Help for the SASCOLOR window.)

Restriction This option affects output in the interactive report window 
environment only.

Note Not all operating environments and devices support all colors, and 
in some operating environments and devices, one color might map 
to another color. For example, if the DEFINITION window displays 

RBREAK Statement 2063



the word BROWN in yellow characters, then selecting BROWN 
results in a yellow item.

CONTENTS='link-text'
specifies the text for the entries in the table of contents created by default or by 
options settings in ODS destinations that support the STYLE= option. Only the 
RBREAK BEFORE statement with the PAGE and SUMMARIZE options 
specified creates a table within the table of contents. If the CONTENTS= option 
plus the PAGE and SUMMARIZE options are specified, then PROC REPORT 
uses the value of link-text and places that text in the table of contents for the 
tables that are created. If the value of CONTENTS= is empty quotation marks, 
then no link is created in the table of contents.

Default If an RBREAK BEFORE statement is present and the PAGE and 
SUMMARIZE options are specified, but no CONTENTS= option is 
specified, then the default link text in the table of contents will show 
Summary.

Restriction If CONTENTS= is specified, but no PAGE option is specified, then 
PROC REPORT generates a warning message in the SAS log file. 
Only RBREAK BEFORE / with the SUMMARIZE and PAGE options 
specified can actually create a table in the table of contents.

Tips HTML output can now have additional anchor tags.

All ODS destinations except OUTPUT and LISTING support the 
STYLE= option.

DOL
(for double overlining) uses the 13th formatting character to overline each value 

n that appears in the summary line

n that would appear in the summary line if you specified the SUMMARIZE 
option

Default equal sign (=)

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

Interaction If you specify both the OL and DOL options, then PROC REPORT 
honors only OL.

See The discussion of FORMCHAR= on page 2012.

DUL
(for double underlining) uses the 13th formatting character to underline each 
value 

n that appears in the summary line

n that would appear in the summary line if you specified the SUMMARIZE 
option

Default equal sign (=)

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

2064 Chapter 58 / REPORT Procedure



Interaction If you specify both the UL and DUL options, then PROC REPORT 
honors only UL.

See The discussion of FORMCHAR= on page 2012.

OL
(for overlining) uses the second formatting character to overline each value 

n that appears in the summary line

n that would appear in the summary line if you specified the SUMMARIZE 
option

Default hyphen (-)

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

Interaction If you specify both the OL and DOL options, then PROC REPORT 
honors only OL.

See the discussion of FORMCHAR= on page 2012.

PAGE
starts a new page after the last break line of a break located at the beginning of 
the report. On RBREAK BEFORE, the PAGE option starts a new table.

Restriction This option has no affect on the OUTPUT destination.

SKIP
writes a blank line after the last break line of a break located at the beginning of 
the report.

Restriction This option has no effect on ODS destinations other than the 
LISTING destination.

STYLE<(location(s))>=<style-overrides(s)>
specifies the style element to use for default summary lines that are created with 
the RBREAK statement. 

Restriction All ODS destinations except OUTPUT and LISTING support the 
STYLE= option.

Tip FONT names that contain characters other than letters or 
underscores must be enclosed in quotation marks.

See “Style Elements and Style Attributes for Table Regions ” on page 
2076

SUMMARIZE
includes a summary line as one of the break lines. A summary line at the 
beginning or end of a report contains values for the following: 

n statistics

n analysis variables

n computed variables

The following table shows how PROC REPORT calculates the value for each 
type of report item in a summary line created by the RBREAK statement:

RBREAK Statement 2065



Report Item Resulting Value

Statistic Value of the statistic over all observations 
in the set

Analysis variable Value of the statistic specified as the usage 
option in the DEFINE statement. PROC 
REPORT calculates the value of the 
statistic over all observations in the set. 
The default usage is SUM.

Computed variable Results of the calculations based on the 
code in the corresponding compute block. 
(See “COMPUTE Statement” on page 
2041.) 

Examples “Example 1: Selecting Variables and Creating a Summary Line for a 
Report” on page 2096

“Example 8: Displaying a Calculated Percentage Column in a 
Report” on page 2120

UL
(for underlining) uses the second formatting character to underline each value 

n that appears in the summary line

n that would appear in the summary line if you specified the SUMMARIZE 
option.

Default hyphen (-)

Restriction This option affects only the LISTING output. It has no affect on 
other ODS output.

Interaction If you specify both the UL and DUL options, then PROC REPORT 
honors only UL.

See The discussion of FORMCHAR= on page 2012.

Details

Order of Break Lines
When a default summary contains more than one break line, the order in which the 
break lines appear is

1 overlining or double overlining (OL or DOL, LISTING output only)

2 summary line (SUMMARIZE)

3 underlining or double underlining (UL or DUL, LISTING output only)

2066 Chapter 58 / REPORT Procedure



4 skipped line (SKIP, LISTING output only)

5 page break (PAGE)

Note: If you define a customized summary for the break, then customized break 
lines appear after underlining or double underlining. For more information about 
customized break lines, see the COMPUTE statement on page 2041 and the LINE 
statement “LINE Statement” on page 2060. 

WEIGHT Statement
Specifies weights for analysis variables in the statistical calculations.

See: For information about calculating weighted statistics see “Calculating Weighted 
Statistics” on page 83. For an example that uses the WEIGHT statement, see “Weighted 
Statistics Example” on page 84. 

Syntax
WEIGHT variable;

Required Argument
variable

specifies a numeric variable whose values weight the values of the analysis 
variables. The value of the variable does not have to be an integer.

Table 58.8 Variable Values and How PROC REPORT Responds

Weight Value PROC REPORT Response

0 Counts the observation in the total 
number of observations

Less than 0 Converts the value to zero and counts 
the observation in the total number of 
observations

Missing Excludes the observation

Restriction PROC REPORT will not compute MODE when a weight variable is 
active. Instead, try using PROC UNIVARIATE when MODE needs 
to be computed and a weight variable is active.

Tip When you use the WEIGHT statement, consider which value of the 
VARDEF= option is appropriate. See VARDEF= on page 2026 and 

WEIGHT Statement 2067



the calculation of weighted statistics in “Keywords and Formulas” on 
page 2610 for more information.

Details

Weight Information Is Not Saved
When you store a report definition, PROC REPORT does not store the WEIGHT 
statement.

Usage: REPORT Procedure

Statistics That Are Available in PROC REPORT
Use the following keywords to specify statistic keywords in the KEYWORD or 
KEYLABEL statement.

Table 58.9 Statistics Available in PROC REPORT

Descriptive statistic keywords

CSS PCTSUM

CV RANGE

MAX STD

MEAN STDERR

MIN SUM

MODE SUMWGT

N USS

NMISS VAR

PCTN

Quantile statistic keywords

2068 Chapter 58 / REPORT Procedure



MEDIAN | P50 Q3 | P75

P1 P60

P5 P70

P10 P80

P20 P90

P30 P95

P40 P99

Q1 | P25 QRANGE

Hypothesis testing keyword

PRT | PROBT T

These statistics, the formulas that are used to calculate them, and their data 
requirements are discussed in “Keywords and Formulas” on page 2610. 

To compute standard error and the Student's t-test, you must use the default value 
of VARDEF=, which is DF.

Every statistic except N must be associated with a variable. You associate a statistic 
with a variable either by placing the statistic above or below a numeric display 
variable or by specifying the statistic as a usage option in the DEFINE statement or 
in the DEFINITION window for an analysis variable.

You can place N anywhere because it is the number of observations in the input 
data set that contribute to the value in a cell of the report. The value of N does not 
depend on a particular variable.

Note:  If you use the MISSING option in the PROC REPORT statement, then N 
includes observations with missing group, order, or across variables.

Using ODS Styles with PROC REPORT

Using Styles with Base SAS Procedures
Most Base SAS procedures that support ODS use one or more table templates to 
produce output objects. These table templates include templates for table elements: 
columns, headers, and footers. Each table element can specify the use of one or 
more style elements for various parts of the output. These style elements cannot be 

Usage: REPORT Procedure 2069



specified within the syntax of the procedure, but you can use customized styles for 
the ODS destinations that you use. For more information about customizing tables 
and styles, see “TEMPLATE Procedure: Creating a Style Template” in SAS Output 
Delivery System: Procedures Guide.

The Base SAS reporting procedures, PROC PRINT, PROC REPORT, and PROC 
TABULATE, enable you to quickly analyze your data and organize it into easy-to-
read tables. You can use the STYLE= option with these procedure statements to 
modify the appearance of your report. The STYLE= option enables you to make 
changes in sections of output without changing the default style for all of the output. 
You can customize specific sections of procedure output by specifying the STYLE= 
option in specific statements within the procedure.

The following program uses the STYLE= option to create the background colors in 
the PROC REPORT output below:

title "Height and Weight by Gender and Age";
proc report nowd data=sashelp.class
   style(header)=[background=white];
   col age (('Gender' sex),(weight height));
   define age / style(header)=[background=lightgreen];
   define sex / across style(header)=[background=yellow] ' ';
   define weight / style(header)=[background=orange];
   define height / style(header)=[background=tan];
run;

Output 58.1 Enhanced PROC REPORT Output

2070 Chapter 58 / REPORT Procedure

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p0cgtsocrm3ei3n1uqw9v4mbswkh.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p0cgtsocrm3ei3n1uqw9v4mbswkh.htm&locale=en


Styles, Style Elements, and Style 
Attributes

Understanding Styles, Style Elements, and Style 
Attributes
The appearance of SAS output is controlled by ODS style templates (ODS styles). 
ODS styles are produced from compiled STYLE templates written in PROC 
TEMPLATE style syntax. An ODS style template is a collection of style elements 
that provides specific visual attributes for your SAS output.

n A style element is a named collection of style attributes that apply to a particular 
part of the output. Each area of ODS output has a style element name that is 
associated with it. The style element name specifies where the style attributes 
are applied. For example, a style element might contain instructions for the 
presentation of column headings or for the presentation of the data inside the 
cells. Style elements might also specify default colors and fonts for output that 
uses the style.

n A style attribute is a visual property, such as color, font properties, and line 
characteristics, that is defined in ODS with a reserved name and value. Style 
attributes are collectively referenced by a style element within a style template. 
Each style attribute specifies a value for one aspect of the presentation. For 
example, the BACKGROUNDCOLOR= attribute specifies the color for the 
background of an HTML table or for a colored table in printed output. The 
FONTSTYLE= attribute specifies whether to use a Roman font or an italic font. 

Note: Because styles control the presentation of the data, they have no effect on 
output objects that go to the LISTING, DOCUMENT, or OUTPUT destination.

Available styles are in the SASHELP.TMPLMST item store. In SAS Enterprise 
Guide, the list of style sheets is shown by the Style Wizard. In batch mode or SAS 
Studio, you can display the list of available style templates by using the LIST 
statement in PROC TEMPLATE:

proc template;
   list styles / store=sashelp.tmplmst;
run;

For complete information about viewing ODS styles, see “Viewing ODS Styles 
Supplied by SAS” in SAS Output Delivery System: Advanced Topics.

By default, HTML 4 output uses the HTMLBlue style template and HTML 5 output 
uses the HTMLEncore style template. To help you become familiar with styles, style 
elements, and style attributes, look at the relationship between them.

You can use the SOURCE statement in PROC TEMPLATE to display the structure 
of a style template. The following code prints the structure of the HTMLBlue style 
template to the SAS log:

proc template;
   source styles.HTMLBlue; 

Usage: REPORT Procedure 2071

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n0o6exd0dndm4bn1wtgmaesohow2.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n00tlpqdpto39yn1lth6vmz80jr1.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n00tlpqdpto39yn1lth6vmz80jr1.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p196ilkbe71ravn1b549rrzxzyqv.htm&locale=en


run;

The following figure illustrates the structure of a style. The figure shows the 
relationship between the style, the style elements, and the style attributes.

Figure 58.10 Diagram of the HtmlBlue Style

2072 Chapter 58 / REPORT Procedure



The following list corresponds to the numbered items in the preceding figure:

1 Styles.HtmlBlue is the style. Styles describe how to display presentation aspects 
(color, font, font size, and so on) of the SAS output. A style determines the 
overall appearance of the ODS documents that use it. The default style for 
HTML output is HtmlBlue. Each style consists of style elements.

You can create new styles with the “DEFINE STYLE Statement” in SAS Output 
Delivery System: Procedures Guide. New styles can be created independently or 
from an existing style. You can use “PARENT= Statement” in SAS Output 
Delivery System: Procedures Guide to create a new style from an existing style. 
For complete documentation about ODS styles, see “Style Templates” in SAS 
Output Delivery System: Advanced Topics.

2 Header and Footer are examples of style elements. A style element is a 
collection of style attributes that apply to a particular part of the output for a SAS 
program. For example, a style element might contain instructions for the 
presentation of column headings or for the presentation of the data inside table 
cells. Style elements might also specify default colors and fonts for output that 
uses the style. Style elements exist inside styles and consist of one or more style 
attributes. Style elements can be user-defined or supplied by SAS. User-defined 
style elements can be created by the “STYLE Statement” in SAS Output Delivery 
System: Procedures Guide. 

Note: For a list of the default style elements used for HTML and markup 
languages and their inheritance, see “Style Elements” in SAS Output Delivery 
System: Advanced Topics. 

3 BORDERCOLOR=, BACKGROUNDCOLOR=, and COLOR= are examples of 
style attributes. Style attributes specify a value for one aspect of the area of the 
output that its style element applies to. For example, the COLOR= attribute 
specifies the value cx112277 for the font color. For a list of style attributes 
supplied by SAS, see “Style Attributes” in SAS Output Delivery System: 
Advanced Topics. 

Style attributes can be referenced with style references. See “style-reference” in 
SAS Output Delivery System: Advanced Topics for more information about style 
references.

The following table shows commonly used style attributes that you can set with the 
STYLE= option in PROC PRINT, PROC TABULATE, and PROC REPORT. Most of 
these attributes apply to parts of the table other than cells (for example, table 
borders and the lines between columns and rows). Note that not all attributes are 
valid in all destinations. For more information about these style attributes, their valid 
values, and their applicable destinations, see “Style Attributes Tables” in SAS 
Output Delivery System: Advanced Topics.

Usage: REPORT Procedure 2073

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n17x28hg8d4fjfn11t9cggpcumsx.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n17x28hg8d4fjfn11t9cggpcumsx.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1wicvcabwn684n1xvpgemmkxa19.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1wicvcabwn684n1xvpgemmkxa19.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0c5qpdczbofn4n1i6qfkew7p57h.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0c5qpdczbofn4n1i6qfkew7p57h.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1g9uebd55he4on1b213etlcn3jo.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1g9uebd55he4on1b213etlcn3jo.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=p0pm4ysu0fb68dn1d8uj78wcie6o.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=p0pm4ysu0fb68dn1d8uj78wcie6o.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n1b4339kviqrrcn1lt1lbm68e8xx.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n1b4339kviqrrcn1lt1lbm68e8xx.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=p0jrvtifiwse7qn1kgce32eg83dl.htm&docsetTargetAnchor=n1qhk2oq8dumgkn1q4izwr7dp46s&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=p0jrvtifiwse7qn1kgce32eg83dl.htm&docsetTargetAnchor=n1qhk2oq8dumgkn1q4izwr7dp46s&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0otdo2g12obp3n0zmnghcn7p4vu.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0otdo2g12obp3n0zmnghcn7p4vu.htm&locale=en


Table 58.10 Style Attributes for PROC REPORT, PROC TABULATE, and PROC PRINT

Attribute

PROC 
REPORT 

STATEMENT
REPORT 

Area

PROC 
REPORT 
Areas: 

CALLDEF
, 

COLUMN, 
HEADER, 

LINES, 
SUMMARY

PROC 
TABULATE 

STATEMENT
TABLE

PROC 
TABULATE 

STATEMENTS
VAR, 

CLASS, 
BOX, 

CLASSLEV, 
KEYWORD

PROC 
PRINT 
TABLE 

location

PROC 
PRINT: 

all 
locations 

other 
than 

TABLE

ASIS= X X X X

BACKGROUNDCOL
OR=

X X X X X X

BACKGROUNDIMAG
E=

X X X X X X

BORDERBOTTOMC
OLOR=

X X X

BORDERBOTTOMS
TYLE=

X X X X

BORDERBOTTOMWI
DTH=

X X X X

BORDERLEFTCOLO
R=

X X X

BORDERLEFTSTYL
E=

X X X X

BORDERLEFTWIDT
H=

X X X X

BORDERCOLOR= X X X X X

BORDERCOLORDA
RK=

X X X X X X

BORDERCOLORLIG
HT=

X X X X X X

BORDERRIGHTCOL
OR=

X X X

BORDERRIGHTSTY
LE=

X X X X

BORDERRIGHTWID
TH=

X X X X

2074 Chapter 58 / REPORT Procedure



Attribute

PROC 
REPORT 

STATEMENT
REPORT 

Area

PROC 
REPORT 
Areas: 

CALLDEF
, 

COLUMN, 
HEADER, 

LINES, 
SUMMARY

PROC 
TABULATE 

STATEMENT
TABLE

PROC 
TABULATE 

STATEMENTS
VAR, 

CLASS, 
BOX, 

CLASSLEV, 
KEYWORD

PROC 
PRINT 
TABLE 

location

PROC 
PRINT: 

all 
locations 

other 
than 

TABLE

BORDERTOPCOLO
R=

X X X

BORDERTOPSTYLE
=

X X X X

BORDERTOPWIDTH
=

X X X X

BORDERWIDTH= X X X X X X

CELLPADDING= X X X

CELLSPACING= X X X

CELLWIDTH= X X X X X

CLASS= X X X X X X

COLOR= X X X

FLYOVER= X X X X

FONT= X X X X X X

FONTFAMILY= X X X X X X

FONTSIZE= X X X X X X

FONTSTYLE= X X X X X X

FONTWEIGHT= X X X X X X

FONTWIDTH= X X X X X

FRAME= X X X

HEIGHT= X X X X X

HREFTARGET= X X X

HTMLSTYLE= X X X X X

NOBREAKSPACE=2 X X X X

OUTPUTWIDTH= X X X X X

Usage: REPORT Procedure 2075



Attribute

PROC 
REPORT 

STATEMENT
REPORT 

Area

PROC 
REPORT 
Areas: 

CALLDEF
, 

COLUMN, 
HEADER, 

LINES, 
SUMMARY

PROC 
TABULATE 

STATEMENT
TABLE

PROC 
TABULATE 

STATEMENTS
VAR, 

CLASS, 
BOX, 

CLASSLEV, 
KEYWORD

PROC 
PRINT 
TABLE 

location

PROC 
PRINT: 

all 
locations 

other 
than 

TABLE

POSTHTML=1 X X X X X X

POSTIMAGE= X X X X X X

POSTTEXT=1 X X X X X X

PREHTML=1 X X X X X X

PREIMAGE= X X X X X X

PRETEXT=1 X X X X X X

PROTECTSPECIALC
HARS=

X X X X

RULES= X X X

TAGATTR= X X X X X X

TEXTALIGN= X X X X X X

URL= X X X

VERTICALALIGN= X X X

WIDTH= X X X X X

1 When you use these attributes in this location, they affect only the text that is specified with the PRETEXT=, POSTTEXT=, 
PREHTML=, and POSTHTML= attributes. To alter the foreground color or the font for the text that appears in the table, you 
must set the corresponding attribute in a location that affects the cells rather than the table. For complete documentation 
about style attributes and their values, see “Style Attributes” in SAS Output Delivery System: Advanced Topics.

2 To help prevent unexpected wrapping of long text strings when using PROC REPORT with the ODS RTF destination, set 
NOBREAKSPACE=OFF in a location that affects the LINE statement. The NOBREAKSPACE=OFF attribute must be set in 
the PROC REPORT code either on the LINE statement or on the PROC REPORT statement where style(lines) is 
specified.

Style Elements and Style Attributes for 
Table Regions
The following table lists the default style elements and style attributes for various 
regions of PROC REPORT output. The locations in this table correspond to the 
locations in on page 2023. The table lists defaults for the most commonly used ODS 

2076 Chapter 58 / REPORT Procedure

http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n1b4339kviqrrcn1lt1lbm68e8xx.htm&locale=en


destinations: HTML, PDF, and RTF. Each destination has a default style template 
that is applied to all output that is written to the destination.

n The default style for HTML output is HTMLBlue.

n The default style for PRINTER output is Pearl.

n The default style for RTF output is RTF.

For complete documentation about the ODS destinations and their default styles, 
see “Style Templates” in SAS Output Delivery System: Advanced Topics.

Table 58.11 Default Style Elements and Style Attributes for Table Locations

Locations
Style 
Element

HTML Style 
Attributes PDF Style Attributes RTF Style Attributes

Header Header FONTFAMILY = "Arial, 
'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 2

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR = cx112277

BACKGROUNDCOLO
R = cxedf2f9

FONTFAMILY = 
"Arial, 'Albany AMT’"

FONTSIZE = 8pt

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR =cx000000

BACKGROUNDCOL
OR = cxffffff

BORDERWIDTH = 
NaN

FONTFAMILY 
="'Times New Roman', 
'Times Roman'"

FONTSIZE = 11pt

FONTWEIGHT = bold

FONTSTYLE = roman

COLOR =cx000000

BACKGROUNDCOLO
R = cxbbbbbb

Column Data FONTFAMILY = "Arial, 
'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 2

FONTWEIGHT = 
medium

FONTSTYLE = roman

BACKGROUNDCOLO
R = cxffffff

FONTFAMILY 
="’Albany AMT’, 
Albany"

FONTSIZE = 8pt

FONTWEIGHT = 
medium

FONTSTYLE = roman

COLOR = cx000000

BORDERWIDTH = 
NaN

COLOR = cx000000

FONTFAMILY 
="'Times New Roman', 
'Times Roman'"

FONTSIZE = 10pt

FONTWEIGHT = 
medium

FONTSTYLE = roman

COLOR = cx000000

Summary DataEmpha
sis

FONTFAMILY = "Arial, 
'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 2

FONTWEIGHT = 
medium

FONTSTYLE = roman

BACKGROUNDCOLO
R = cxffffff

FONTFAMILY 
="’Albany AMT’, 
Albany"

FONTSIZE = 8pt

FONTWEIGHT = 
medium

FONTSTYLE = roman

COLOR = cx000000

BORDERWIDTH = 
NaN

FONTFAMILY 
="'Times New Roman', 
'Times Roman'"

FONTSIZE = 10pt

FONTWEIGHT = 
medium

FONTSTYLE = italic

COLOR = cx000000

Usage: REPORT Procedure 2077

http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0c5qpdczbofn4n1i6qfkew7p57h.htm&locale=en


Order of Precedence When Applying Style 
Attributes to Data Cells
PROC REPORT determines the style attributes to apply to a particular cell from a 
default order of precedence. Each step in the order of precedence specifies more 
granularity.

For example, use the style precedence for non-summary rows shown below. First, 
for a particular cell, PROC REPORT uses the default style attributes. Next, for each 
cell in a column, PROC REPORT overrides the default style attributes. By step five, 
the previous styles that were applied are overwritten, but only for the cells specified 
by the column-id.

The following lists the style precedence for the summary rows and the non-summary 
rows.

Style precedence for non-summary rows.

1 PROC REPORT uses the default style attributes from the default style element 
(Data).

2 The STYLE (COLUMN)= option in the PROC REPORT statement overrides the 
default style attributes.

3 A STYLE (COLUMN)= option in the DEFINE statement applies to all of the cells 
in the column.

4 A row style that is specified by the _ROW_ argument in the CALL DEFINE 
statement applies to all of the cells in the row.

5 A style specified by the column-id _COL_ in the CALL DEFINE statement 
applies to all of the cells in the column.

Style precedence for summary rows.

1 PROC REPORT uses the default style attributes from the default style elements 
for summary rows (DataEmphasis).

2 The STYLE (SUMMARY)= option in the PROC REPORT statement overrides 
the default style attributes for the summary.

3 The style specified by the STYLE= option in the BREAK statement, applies to 
the summary cells.

4 The row style specified by a CALL DEFINE statement with the _ROW_ 
argument.

5 The style specified by a CALL DEFINE statement with the column-id _COL_, the 
column name, or the column number applies to all of the summary cells in the 
column.

2078 Chapter 58 / REPORT Procedure



Using a Format to Assign a Style Attribute 
Value
You can use a format to assign a style attribute value. For example, the following 
code assigns a red background color to cells in the Difference column for which the 
value is negative.

proc format;
value proffmt low-<0='red'
0-high='green';
run;

proc report data=sashelp.prdsale;
column country predict actual diff;
define country /group;
define diff /'Difference' computed format=dollar12.2 
   style(column)=[backgroundcolor=proffmt.];

compute diff;
diff = predict.sum - actual.sum;
endcomp;
run;

Controlling the Spacing between Rows
There is frequently a need to “shrink” a report to fit more rows on a page. Shrinking 
a report involves changing both the font size and the spacing between the rows. In 
order to give maximum flexibility to the programmer, ODS uses the font size that is 
specified for the REPORT location to calculate the spacing between the rows. 
Therefore, to shrink a table, change the font size for both the REPORT location and 
the COLUMN location. Here is an example:

proc report 
data=libref.data—set-name
            style(report)=[fontsize=8pt]
            style(column)=[font=(Arial, 8pt)];

Usage: REPORT Procedure 2079



Printing a Report

Printing with ODS
Printing reports with the Output Delivery System is much simpler and provides more 
attractive output than the older methods of printing that are documented here. For 
best results, use an output destination in the ODS printer family or RTF. For details 
about these destinations and on using the ODS statements, see SAS Output 
Delivery System: User’s Guide.

Printing from Noninteractive or Batch Mode
If you use noninteractive or batch mode, then SAS writes the output either to the 
display or to external files, depending on the operating environment and on the SAS 
options that you use. Refer to the SAS documentation for your operating 
environment for information about how these files are named and where they are 
stored.

You can print the output file directly or use PROC PRINTTO to redirect the output to 
another file. In either case, no form is used, but carriage-control characters are 
written if the destination is a print file.

Use operating environment commands to send the file to the printer.

Using PROC PRINTTO
PROC PRINTTO defines destinations for the SAS output and the SAS log. (See 
Chapter 49, “PRINTTO Procedure,” on page 1797.)

PROC PRINTTO does not use a form, but it does write carriage-control characters if 
you are writing to a print file.

Note: You need two PROC PRINTTO steps. The first PROC PRINTTO step 
precedes the PROC REPORT step. It redirects the output to a file. The second 
PROC PRINTTO step follows the PROC REPORT step. It reestablishes the default 
destination and frees the output file. You cannot print the file until PROC PRINTTO 
frees it.

2080 Chapter 58 / REPORT Procedure



Storing and Reusing a Report Definition
The OUTREPT= option in the PROC REPORT statement stores a report definition 
in the specified catalog entry.

Note: A report definition might differ from the SAS program that creates the report. 
See the discussion of OUTREPT= on page 2018. 

You can use a report definition to create an identically structured report for any SAS 
data set that contains variables with the same names as the ones that are used in 
the report definition. Use the REPORT= option in the PROC REPORT statement to 
load a report definition when you start PROC REPORT. For information, see 
“REPORT=libref.catalog.entry” on page 2021.

In-Database Processing for PROC REPORT
In-database processing has several advantages over processing within SAS. These 
advantages include increased security, reduced network traffic, and the potential for 
faster processing. Increased security is possible because sensitive data does not 
have to be extracted from the database management system (DBMS). Faster 
processing is possible because data is manipulated locally, on the DBMS, using 
high-speed secondary storage devices instead of being transported across a 
relatively slow network connection. The DBMS is used because it might have more 
processing resources at its disposal, and it might be capable of optimizing a query 
for execution in a highly parallel and scalable fashion.

When the DATA= input data set is stored as a table or view in a DBMS, the PROC 
REPORT procedure can use in-database processing to perform most of its work 
within the database. In-database processing can provide the advantages of faster 
processing and reduced data transfer between the database and SAS software.

In-database processing for PROC REPORT supports the following database 
management systems:

n Amazon Redshift

n Aster

n DB2

n Google BigQuery

n Greenplum

n Hadoop

n HAWQ

n Impala

n Microsoft SQL Server

n Netezza

n Oracle

Usage: REPORT Procedure 2081



n PostgreSQL

n SAP HANA

n Snowflake

n Teradata

n Vertica

n Yellowbrick

PROC REPORT performs in-database processing by using SQL implicit pass-
through. The procedure generates SQL queries that are based on the statements 
and the PROC REPORT options that are used as well as the output statistics that 
are specified in the procedure. The database executes these SQL queries and the 
results of the query are then transmitted to PROC REPORT. To examine the 
generated SQL, set the SASTRACE= option.

If the SAS format definitions have not been deployed in the database, the in-
database aggregation occurs on the raw values, and the relevant formats are 
applied by SAS as the results' set is merged into the PROC REPORT internal 
structures. For more information, see the section “Deploying and Using SAS 
Formats” in SAS/ACCESS for Relational Databases: Reference.

In-database processing will not occur if the PROC REPORT step contains variables 
with usage types DISPLAY or ORDER.

The following statistics are supported for in-database processing: N, NMISS, MIN, 
MAX, MEAN, RANGE, SUM, SUMWGT, CSS, USS, VAR, STD, STDERR, and CV.

Weighting for in-database processing is supported only for N, NMISS, MIN, MAX, 
RANGE, SUM, SUMWGT, and MEAN.

The SQLGENERATION system option or LIBNAME statement option controls 
whether and how in-database procedures are run inside the database. By default, 
the in-database procedures are run inside the database when possible. There are 
many data set options that prevent in-database processing. For a complete listing, 
refer to “In-Database Procedures” in SAS/ACCESS for Relational Databases: 
Reference.

For more information about in-database processing, see SAS/ACCESS for 
Relational Databases: Reference.

CAS Processing for PROC REPORT
If your input data set originates from SAS Cloud Analytic Services (CAS), some of 
the PROC REPORT analysis can be performed by the CAS server. Reports that 
require significant summarization of data can benefit from CAS processing. When 
run against a CAS table, PROC REPORT executes on the analytic server and uses 
the appropriate statistical actions. For an overview about how procedures run in 
CAS, see Chapter 5, “CAS Processing of Base Procedures,” on page 93.

The CAS LIBNAME statement option controls whether and how CAS procedures 
are run inside CAS. By default, the CAS procedures are run inside CAS when 
possible. However, there are many data set options that can prevent CAS 
processing.

When the DATA= input data set references an in-memory table or view in CAS, the 
REPORT procedure can use CAS actions to perform some of its work within the 

2082 Chapter 58 / REPORT Procedure

http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


server. To reference an in-memory table or view, you must specify the CAS engine 
LIBNAME statement and specify the CAS engine libref option IN= or DATA=. By 
default, PROC REPORT uses CAS processing whenever a CAS engine libref is 
specified on the input.

The following example shows how to run SAS 9.4 PROC REPORT that uses CAS 
processing. The LIBNAME statement assigns a CAS engine libref named mycas 
that you use to connect to the CAS session casauto.

option casport=10935 cashost="cloud.example.com";
cas casauto ;

libname mycas cas;
data mycas.cars;
   set sashelp.cars;
run;

proc report data=mycas.cars;
title;
column ('Horsepower by Make and Drivetrain as a Percent of All 
Horsepower'
origin drivetrain horsepower,(sum pctsum));
define origin / group;
define drivetrain / group;
define horsepower / '';
define sum / 'HP by Make and Drivetrain';
define pctsum / 'Percent of HP' format=percent6.;
rbreak after / summarize style=[font_style=italic];
run;

CAS processing does not occur if the PROC REPORT step contains variables with 
usage types DISPLAY or ORDER. If a DISPLAY or ORDER variable is found, all of 
the data is brought back to the client and PROC REPORT runs on the SAS client 
server.

The following statistics are supported for CAS processing:

CSS RANGE
CV STDERR
MAX SUM
MEAN SUMWGT
MIN STD
N USS
NMISS VAR

Note: Weighting for CAS processing is supported only for N, NMISS, MIN, MAX, 
RANGE, SUM, SUMWGT, and MEAN.

The computations and processing are done in CAS. However, the rendering of the 
final table is done by the SAS client.

For information about how to use the CAS LIBNAME statement, see “CAS 
LIBNAME Statement” in SAS Cloud Analytic Services: User’s Guide.

Usage: REPORT Procedure 2083

http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n14gqqdmdco6wzn17eb5v0o0p679.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n14gqqdmdco6wzn17eb5v0o0p679.htm&locale=en


Substituting BY Line Values in a Text String
Starting with SAS 9.4M6, #BYLINE, #BYVAR, and #BYVAL substitutions are 
available in the following options:

n The CONTENTS= option in the PROC REPORT statement.

n The CAPTION= option in the PROC REPORT statement

To use the #BYVAR and #BYVAL substitutions, insert the item in the text string at 
the position where you want the substitution text to appear. Both #BYVAR and 
#BYVAL specifications must be followed by a delimiting character. The character 
can be either a space or other non-alphanumeric character, such as a quotation 
mark. If no delimiting character is provided, then the specification is ignored and its 
text remains intact and is displayed with the rest of the string. To allow a #BYVAR or 
#BYVAL substitution to be followed immediately by other text, with no delimiter, use 
a trailing dot (as with macro variables). The trailing dot is not displayed in the 
resolved text. If you want a period to be displayed as the last character in the 
resolved text, use two dots after the #BYVAR or #BYVAL substitution.

The substitution for #BYVAR or #BYVAL does not occur in the following cases:

n if you use a #BYVAR or #BYVAL specification for a variable that is not named in 
the BY statement. For example, you might use #BYVAL2 when there is only one 
BY-variable or #BYVAL(ABC) when ABC is non-existent or is not a BY-variable.

n if there is no BY statement

Results: REPORT Procedure

How PROC REPORT Builds a Report

Sequence of Events
This section explains the general process of building a report. For examples that 
illustrate this process, see “Report-Building Examples” on page 2086. The sequence 
of events is the same whether you use programming statements or the interactive 
report window environment.

To understand the process of building a report, you must understand the difference 
between report variables and temporary variables. Report variables are variables 
that are specified in the COLUMN statement. A report variable can come from the 
input data set or can be computed (that is, the DEFINE statement for that variable 

2084 Chapter 58 / REPORT Procedure



specifies the COMPUTED option). A report variable might or might not appear in a 
compute block. Variables that appear only in one or more compute blocks are 
temporary variables. Temporary variables do not appear in the report and are not 
written to the output data set (if one is requested).

PROC REPORT initializes report variables to missing at the beginning of each row 
of the report. The value for a temporary variable is initialized to missing before 
PROC REPORT begins to construct the rows of the report, and it remains missing 
until you specifically assign a value to it. PROC REPORT retains the value of a 
temporary variable from the execution of one compute block to another.

PROC REPORT constructs a report as follows:

1 It consolidates the data by group, order, and across variables. It calculates all 
statistics for the report, the statistics for detail rows as well as the statistics for 
summary lines in breaks. Statistics include those statistics that are computed for 
analysis variables. PROC REPORT calculates statistics for summary lines 
whether they appear in the report.

2 It initializes all temporary variables to missing.

3 It begins constructing the rows of the report. 

a At the beginning of each row, it initializes all report variables to missing.

b It fills in values for report variables from left to right. 

n Values for computed variables come from executing the statements in the 
corresponding compute blocks.

n Values for all other variables come from the data set or the summary 
statistics that were computed at the beginning of the report-building 
process.

c Whenever it comes to a break, PROC REPORT first constructs the break 
lines that are created with the BREAK or RBREAK statement or with options 
in the BREAK window.

d If there is a compute block attached to the break, PROC REPORT then 
executes the statements in the compute block. See “Construction of 
Summary Lines” on page 2086 for details.

Note: You can also use statistics with PROC REPORT as follows.

n Use group statistics in compute blocks for a break before the group variable.

n Use statistics for the whole report in a compute block at the beginning of the 
report.

This document references these statistics with the appropriate compound name. 
For information about referencing report items in a compute block, see “Four 
Ways to Reference Report Items in a Compute Block” on page 1995. 

Note: You cannot use the LINE statement in conditional statements (IF-THEN, 
IF-THEN/ELSE, and SELECT) because it is not executed until PROC REPORT 
has executed all other statements in the compute block.

4 After each report row is completed, PROC REPORT sends the row to all of the 
ODS destinations that are currently open.

Results: REPORT Procedure 2085



Construction of Summary Lines
PROC REPORT constructs a summary line for a break if either of the following 
conditions is true:

n You summarize numeric variables in the break.

n You use a compute block at the break. (You can attach a compute block to a 
break without using a BREAK or RBREAK statement or without selecting any 
options in the BREAK window.)

For more information about using compute blocks, see “Using Compute Blocks” 
on page 1993 and “COMPUTE Statement” on page 2041. 

The summary line that PROC REPORT constructs at this point is preliminary. If no 
compute block is attached to the break, then the preliminary summary line becomes 
the final summary line. However, if a compute block is attached to the break, then 
the statements in the compute block can alter the values in the preliminary summary 
line.

PROC REPORT prints the summary line only if you summarize numeric variables in 
the break.

Report-Building Examples

Building a Report That Uses Groups and a Report 
Summary
The report in “Report with Groups and a Report Summary” on page 2087 contains 
five columns:

n Sector and Department are group variables.

n Sales is an analysis variable that is used to calculate the Sum statistic.

n Profit is a computed variable whose value is based on the value of Department.

n The N statistic indicates how many observations each row represents.

At the end of the report a break summarizes the statistics and computed variables in 
the report and assigns to Sector the value of TOTALS:.

The following statements produce “Report with Groups and a Report Summary” on 
page 2087. The user-defined formats that are used are created by a PROC 
FORMAT step on page 2097.

libname proclib
'SAS-library';

options nodate pageno=1 linesize=64
        pagesize=60 fmtsearch=(proclib);

ods html close;
ods listing;

2086 Chapter 58 / REPORT Procedure



proc report data=grocery headline headskip;
    column sector department sales Profit N ;
    define sector / group format=$sctrfmt.;
    define department   / group format=$deptfmt.;
    define sales  / analysis sum
                    format=dollar9.2;
    define profit / computed format=dollar9.2;

    compute before;
    totprof = 0;
    endcomp;

    compute profit;
    if sector ne ' ' or department ne ' ' then do;
       if department='np1' or department='np2'
          then profit=0.4*sales.sum;
       else profit=0.25*sales.sum;
       totprof = totprof + profit;
       end;
    else
       profit = totprof;
    endcomp;

    rbreak after / dol dul summarize;
    compute after;
       sector='TOTALS:';
    endcomp;

    where sector contains 'n';
    title 'Report for Northeast and Northwest Sectors';
  run;
ods listing close;

Example Code 58.2 Report with Groups and a Report Summary

           Report for Northeast and Northwest Sectors          1

     Sector     Department      Sales     Profit          N
     ------------------------------------------------------

     Northeast  Canned        $840.00    $336.00          2
                Meat/Dairy    $490.00    $122.50          2
                Paper         $290.00     $116.00         2
                Produce       $211.00     $52.75          2
     Northwest  Canned      $1,070.00    $428.00          3
                Meat/Dairy  $1,055.00    $263.75          3
                Paper         $150.00     $60.00          3
                Produce       $179.00     $44.75          3
     =========              =========  =========  =========
     TOTALS:                $4,285.00  $1,423.75         20
     =========              =========  =========  =========

A description of how PROC REPORT builds this report follows:

1 PROC REPORT starts building the report by consolidating the data (Sector and 
Department are group variables) and by calculating the statistics (Sales.sum and 
N) for each detail row and for the break at the end of the report.

Results: REPORT Procedure 2087



2 Now, PROC REPORT is ready to start building the first row of the report. This 
report does not contain a break at the beginning of the report or a break before 
any groups, so the first row of the report is a detail row. The procedure initializes 
all report variables to missing, as the following figure illustrates. Missing values 
for a character variable are represented by a blank, and missing values for a 
numeric variable are represented by a period.

Figure 58.11 First Detail Row with Values Initialized

Sector Department Sales Pr ofi t N

. . .

3 The following figure illustrates the construction of the first three columns of the 
row. PROC REPORT fills in values for the row from left to right. Values come 
from the statistics that were computed at the beginning of the report-building 
process. 

Figure 58.12 First Detail Row with Values Filled in from Left to Right

Sector Department Sales Pr ofi t N

Northeast . . .

Sector Department Sales Pr ofi t N

Northeast Canned . . .

Sector Department Sales Pr ofi t N

Northeast Canned $840.00 . .

4 The next column in the report contains the computed variable Profit. When it 
gets to this column, PROC REPORT executes the statements in the compute 
block that is attached to Profit. Nonperishable items (which have a value of np1 
or np2) return a profit of 40%; perishable items (which have a value of p1 or p2) 
return a profit of 25%. 

   if department='np1' or department='np2'
      then profit=0.4*sales.sum;
   else profit=0.25*sales.sum;

The row now looks like the following figure.

Note: The position of a computed variable is important. PROC REPORT 
assigns values to the columns in a row of a report from left to right. 
Consequently, you cannot base the calculation of a computed variable on any 
variable that appears to its right in the report.

2088 Chapter 58 / REPORT Procedure



Figure 58.13 A Computed Variable Added to the First Detail Row

Sector Department Sales Pr ofi t N

Northeast Canned $840.00 $336.00 .

5 The totprof variable is a temporary variable held in memory to keep a running 
total of the total profits. When each Sector and Department profits have been 
calculated, the value stored in variable totprof is then moved to Profit and 
reported in the TOTALS summary line.

totprof = totprof + profit;
       end;
    else
       profit = totprof;

6 Next, PROC REPORT fills in the value for the N statistic. The value comes from 
the statistics that are created at the beginning of the report-building process. The 
following figure illustrates the completed row. 

Figure 58.14 First Complete Detail Row

Sector Department Sales Pr ofi t N

Northeast Canned $840.00 $336.00 2

7 The procedure writes the completed row to the report.

8 PROC REPORT repeats steps 2, 3, 4, 5, and 6 for each detail row in the report.

9 At the break at the end of the report, PROC REPORT constructs the break lines 
described by the RBREAK statement. These lines include double underlining, 
double overlining, and a preliminary version of the summary line. The statistics 
for the summary line were calculated earlier. (See step 1.) The value for the 
computed variable is calculated when PROC REPORT reaches the appropriate 
column, just as it is in detail rows. PROC REPORT uses these values to create 
the preliminary version of the summary line. (See the following figure.) 

Figure 58.15 Preliminary Summary Line

Sector Department Sales NProfit

$4,285.00 $1,423.75 20

10 If no compute block is attached to the break, then the preliminary version of the 
summary line is the same as the final version. However, in this example, a 
compute block is attached to the break. Therefore, PROC REPORT now 
executes the statements in that compute block. In this case, the compute block 
contains one statement:

   sector='TOTALS:';

This statement replaces the value of Sector, which in the summary line is 
missing by default, with the word TOTALS:. After PROC REPORT executes the 
statement, it modifies the summary line to reflect this change to the value of 
Sector. The final version of the summary line appears in the following figure.

Results: REPORT Procedure 2089



Figure 58.16 Final Summary Line

NProfitSector Department Sales

$4,285.00TOTALS: $1,423.75 20

11 Finally, PROC REPORT writes all the break lines, with underlining, overlining, 
and the final summary line, to the report. See See “Report with Groups and a 
Report Summary” on page 2087.

Building a Report That Uses Temporary Variables
PROC REPORT initializes report variables to missing at the beginning of each row 
of the report. The value for a temporary variable is initialized to missing before 
PROC REPORT begins to construct the rows of the report, and it remains missing 
until you specifically assign a value to it. PROC REPORT retains the value of a 
temporary variable from the execution of one compute block to another.

Because all compute blocks share the current values of all variables, you can 
initialize temporary variables at a break at the beginning of the report or at a break 
before a break variable. This report initializes the temporary variable Sctrtot at a 
break before Sector.

Note: PROC REPORT creates a preliminary summary line for a break before it 
executes the corresponding compute block. If the summary line contains computed 
variables, then the computations are based on the values of the contributing 
variables in the preliminary summary line. If you want to recalculate computed 
variables based on values that you set in the compute block, then you must do so 
explicitly in the compute block. This report illustrates this technique. If no compute 
block is attached to a break, then the preliminary summary line becomes the final 
summary line.

The report in “Report with Temporary Variables” on page 2092 contains five 
columns:

n Sector and Department are group variables.

n Sales is an analysis variable that is used twice in this report: once to calculate 
the Sum statistic, and once to calculate the Pctsum statistic.

n Sctrpct is a computed variable whose values are based on the values of Sales 
and a temporary variable, Sctrtot, which is the total sales for a sector.

At the beginning of the report, a customized report summary tells what the sales for 
all stores are. At a break before each group of observations for a department, a 
default summary summarizes the data for that sector. At the end of each group a 
break inserts a blank line.

The following statements produce “Report with Temporary Variables” on page 2092. 
The user-defined formats that are used are created by a PROC FORMAT step on 
page 2097. 

Note: Calculations of the percentages do not multiply their results by 100 because 
PROC REPORT prints them with the PERCENT. format.

2090 Chapter 58 / REPORT Procedure



libname proclib
'SAS-library';

options nodate pageno=1 linesize=64
        pagesize=60 fmtsearch=(proclib);
ods html close;
ods listing;
proc report data=grocery noheader;
  column sector department sales
         Sctrpct sales=Salespct;

  define sector     / 'Sector' group
                       format=$sctrfmt.;
  define department / group format=$deptfmt.;
  define sales      / analysis sum
                      format=dollar9.2 ;
  define sctrpct    / computed
                      format=percent9.2 ;
  define salespct   / pctsum format=percent9.2;

  compute before;
     line ' ';
     line @16 'Total for all stores is '
          sales.sum dollar9.2;
     line ' ';
     line @29 'Sum of' @40 'Percent'
          @51 'Percent of';
     line @6 'Sector' @17 'Department'
          @29 'Sales'
          @40 'of Sector' @51 'All Stores';
     line @6 55*'=';
     line ' ';
  endcomp;

  break before sector / summarize ul;
  compute before sector;
     sctrtot=sales.sum;
     sctrpct=sales.sum/sctrtot;
  endcomp;

  compute sctrpct;
     sctrpct=sales.sum/sctrtot;
  endcomp;

  break after sector/skip;
  where sector contains 'n';
  title 'Report for Northeast and Northwest Sectors';
run;
ods listing close;

Results: REPORT Procedure 2091



Example Code 58.3 Report with Temporary Variables

           Report for Northeast and Northwest Sectors          1

               Total for all stores is $4,285.00

                            Sum of     Percent    Percent of
     Sector     Department  Sales      of Sector  All Stores
     =======================================================

     Northeast              $1,831.00   100.00%     42.73%
     ---------              ---------  ---------  ---------
     Northeast  Canned        $840.00    45.88%     19.60%
                Meat/Dairy    $490.00    26.76%     11.44%
                Paper         $290.00    15.84%      6.77%
                Produce       $211.00    11.52%      4.92%

     Northwest              $2,454.00   100.00%     57.27%
     ---------              ---------  ---------  ---------
     Northwest  Canned      $1,070.00    43.60%     24.97%
                Meat/Dairy  $1,055.00    42.99%     24.62%
                Paper         $150.00     6.11%      3.50%
                Produce       $179.00     7.29%      4.18%

A description of how PROC REPORT builds this report follows:

1 PROC REPORT starts building the report by consolidating the data (Sector and 
Department are group variables) and by calculating the statistics (Sales.sum and 
Sales.pctsum) for each detail row, for the break at the beginning of the report, for 
the breaks before each group, and for the breaks after each group.

2 PROC REPORT initializes the temporary variable, Sctrtot, to missing. (See the 
following figure.) 

Figure 58.17 Initialized Temporary Variables

3 Because this PROC REPORT step contains a COMPUTE BEFORE statement, 
the procedure constructs a preliminary summary line for the break at the 
beginning of the report. This preliminary summary line contains values for the 
statistics (Sales.sum and Sales.pctsum) and the computed variable (Sctrpct).

At this break, Sales.sum is the sales for all stores, and Sales.pctsum is the 
percentage those sales represent for all stores (100%). PROC REPORT takes 
the values for these statistics from the statistics that were computed at the 
beginning of the report-building process.

The value for Sctrpct comes from executing the statements in the corresponding 
compute block. Because the value of Sctrtot is missing, PROC REPORT cannot 
calculate a value for Sctrpct. Therefore, in the preliminary summary line (which is 
not printed in this case), this variable also has a missing value. (See the 
following figure.)

The statements in the COMPUTE BEFORE block do not alter any variables. 
Therefore, the final summary line is the same as the preliminary summary line.

2092 Chapter 58 / REPORT Procedure



Note: The COMPUTE BEFORE statement creates a break at the beginning of 
the report. You do not need to use an RBREAK statement. 

Figure 58.18 Preliminary and Final Summary Line for the Break at the Beginning of the 
Report

4 Because the program does not include an RBREAK statement with the 
SUMMARIZE option, PROC REPORT does not write the final summary line to 
the report. Instead, it uses LINE statements to write a customized summary that 
embeds the value of Sales.sum into a sentence and to write customized column 
headings. (The NOHEADER option in the PROC REPORT statement 
suppresses the default column headings, which would have appeared before the 
customized summary.)

5 Next, PROC REPORT constructs a preliminary summary line for the break 
before the first group of observations. (This break both uses the SUMMARIZE 
option in the BREAK statement with a compute block attached to it. Either of 
these conditions generates a summary line.) The preliminary summary line 
contains values for the break variable (Sector), the statistics (Sales.sum and 
Sales.pctsum), and the computed variable (Sctrpct). At this break, Sales.sum is 
the sales for one sector (the northeast sector). PROC REPORT takes the values 
for Sector, Sales.sum, and Sales.pctsum from the statistics that were computed 
at the beginning of the report-building process.

The value for Sctrpct comes from executing the statements in the corresponding 
compute blocks. Because the value of Sctrtot is still missing, PROC REPORT 
cannot calculate a value for Sctrpct. Therefore, in the preliminary summary line, 
Sctrpct has a missing value. (See the following figure.)

Figure 58.19 Preliminary Summary Line for the Break before the First Group of 
Observations

6 PROC REPORT creates the final version of the summary line by executing the 
statements in the COMPUTE BEFORE SECTOR compute block. These 
statements execute once each time the value of Sector changes. 

n The first statement assigns the value of Sales.sum, which in that part of the 
report represents total sales for one Sector, to the variable Sctrtot.

n The second statement completes the summary line by recalculating Sctrpct 
from the new value of Sctrtot. The following figure shows the final summary 
line.

Note: In this example, you must recalculate the value for Sctrpct in the final 
summary line. If you do not recalculate the value for Sctrpct, then it is missing 
because the value of Sctrtot is missing when the COMPUTE Sctrpct block 
executes.

Results: REPORT Procedure 2093



Figure 58.20 Final Summary Line for the Break before the First Group of Observations

7 Because the program contains a BREAK BEFORE statement with the 
SUMMARIZE option, PROC REPORT writes the final summary line to the report. 
The UL option in the BREAK statement underlines the summary line.

8 Now, PROC REPORT is ready to start building the first report row. It initializes all 
report variables to missing. Values for temporary variables do not change. The 
following figure illustrates the first detail row at this point. 

Figure 58.21 First Detail Row with Initialized Values

9 The following figure illustrates the construction of the first three columns of the 
row. PROC REPORT fills in values for the row from left to right. The values come 
from the statistics that were computed at the beginning of the report-building 
process. 

Figure 58.22 Filling in Values from Left to Right

10 The next column in the report contains the computed variable Sctrpct. When it 
gets to this column, PROC REPORT executes the statement in the compute 
block attached to Sctrpct. This statement calculates the percentage of the 
sector's total sales that this department accounts for.

   sctrpct=sales.sum/sctrtot;

The row now looks like the following figure.

Figure 58.23 First Detail Row with the First Computed Variable Added

2094 Chapter 58 / REPORT Procedure



11 The next column in the report contains the statistic Sales.pctsum. PROC 
REPORT gets this value from the statistics that are created at the beginning of 
the report-building process. The first detail row is now complete. (See the 
following figure.) 

Figure 58.24 First Complete Detail Row

12 PROC REPORT writes the detail row to the report. It repeats steps 8, 9, 10, 11, 
and 12 for each detail row in the group.

13 After writing the last detail row in the group to the report, PROC REPORT 
constructs the default group summary. Because no compute block is attached to 
this break and because the BREAK AFTER statement does not include the 
SUMMARIZE option, PROC REPORT does not construct a summary line. The 
only action at this break is that the SKIP option in the BREAK AFTER statement 
writes a blank line after the last detail row of the group.

14 Now the value of the break variable changes from Northeast to Northwest. 
PROC REPORT constructs a preliminary summary line for the break before this 
group of observations. As at the beginning of any row, PROC REPORT initializes 
all report variables to missing but retains the value of the temporary variable. 
Next, it completes the preliminary summary line with the appropriate values for 
the break variable (Sector), the statistics (Sales.sum and Sales.pctsum), and the 
computed variable (Sctrpct). At this break, Sales.sum is the sales for the 
Northwest sector. Because the COMPUTE BEFORE Sector block has not yet 
executed, the value of Sctrtot is still $1,831.00, the value for the Northeast 
sector. Thus, the value that PROC REPORT calculates for Sctrpct in this 
preliminary summary line is incorrect. (See the following figure.) The statements 
in the compute block for this break calculate the correct value. (See the following 
step.) 

Figure 58.25 Preliminary Summary Line for the Break before the Second Group of 
Observations

CAUTION
Synchronize values for computed variables in break lines to prevent 
incorrect results. If the PROC REPORT step does not recalculate Sctrpct in the 
compute block that is attached to the break, then the value in the final summary line 
is not synchronized with the other values in the summary line, and the report is 
incorrect.

15 PROC REPORT creates the final version of the summary line by executing the 
statements in the COMPUTE BEFORE Sector compute block. These statements 
execute once each time the value of Sector changes. 

n The first statement assigns the value of Sales.sum, which in that part of the 
report represents sales for the Northwest sector, to the variable Sctrtot.

Results: REPORT Procedure 2095



n The second statement completes the summary line by recalculating Sctrpct 
from the new, appropriate value of Sctrtot. The following figure shows the 
final summary line.

Figure 58.26 Final Summary Line for the Break before the Second Group of 
Observations

Because the program contains a BREAK BEFORE statement with the 
SUMMARIZE option, PROC REPORT writes the final summary line to the report. 
The UL option in the BREAK statement underlines the summary line.

16 Now, PROC REPORT is ready to start building the first row for this group of 
observations. It repeats steps 8 through 16 until it has processed all 
observations in the input data set (stopping with step 14 for the last group of 
observations).

Examples: REPORT Procedure

Example 1: Selecting Variables and Creating a 
Summary Line for a Report
Features: PROC REPORT statement options

COLUMN statement
RBREAK statement options

AFTER
STYLE=
SUMMARIZE

LIBNAME statement
PROC FORMAT statement
DATA step
OPTIONS statement
FORMAT statement
WHERE statement
TITLE statement

2096 Chapter 58 / REPORT Procedure



Details
This example uses a permanent data set and permanent formats to create a report 
that contains the following:

n one row for every observation

n a default summary for the whole report

Program
libname proclib 'SAS-library';

data grocery;
   input Sector $ Manager $ Department $ Sales @@;
   datalines;
se 1 np1 50    se 1 p1 100   se 1 np2 120   se 1 p2 80
se 2 np1 40    se 2 p1 300   se 2 np2 220   se 2 p2 70
nw 3 np1 60    nw 3 p1 600   nw 3 np2 420   nw 3 p2 30
nw 4 np1 45    nw 4 p1 250   nw 4 np2 230   nw 4 p2 73
nw 9 np1 45    nw 9 p1 205   nw 9 np2 420   nw 9 p2 76
sw 5 np1 53    sw 5 p1 130   sw 5 np2 120   sw 5 p2 50
sw 6 np1 40    sw 6 p1 350   sw 6 np2 225   sw 6 p2 80
ne 7 np1 90    ne 7 p1 190   ne 7 np2 420   ne 7 p2 86
ne 8 np1 200   ne 8 p1 300   ne 8 np2 420   ne 8 p2 125
;

proc format library=proclib;
   value $sctrfmt 'se' = 'Southeast'
                  'ne' = 'Northeast'
                  'nw' = 'Northwest'
                  'sw' = 'Southwest';

   value $mgrfmt '1' = 'Smith'   '2' = 'Jones'
                 '3' = 'Reveiz'  '4' = 'Brown'
                 '5' = 'Taylor'  '6' = 'Adams'
                 '7' = 'Alomar'  '8' = 'Andrews'
                 '9' = 'Pelfrey';

   value $deptfmt 'np1' = 'Paper'
                  'np2' = 'Canned'
                  'p1'  = 'Meat/Dairy'
                  'p2'  = 'Produce';
run;

options fmtsearch=(proclib);

proc report data=grocery;

   column manager department sales;

   rbreak after / summarize style=[font_weight=bold];

   where sector='se';

Example 1: Selecting Variables and Creating a Summary Line for a Report 2097



   format manager $mgrfmt. department $deptfmt.
          sales dollar11.2;

   title 'Sales for the Southeast Sector';
   title2 "for &sysdate";
run;

Program Description
Declare the PROCLIB library. The PROCLIB library is used to store user-created 
formats.

libname proclib 'SAS-library';

Create the GROCERY data set. GROCERY contains one day's sales figures for 
eight stores in the Grocery Mart chain. Each observation contains one day's sales 
data for one department in one store. 

data grocery;
   input Sector $ Manager $ Department $ Sales @@;
   datalines;
se 1 np1 50    se 1 p1 100   se 1 np2 120   se 1 p2 80
se 2 np1 40    se 2 p1 300   se 2 np2 220   se 2 p2 70
nw 3 np1 60    nw 3 p1 600   nw 3 np2 420   nw 3 p2 30
nw 4 np1 45    nw 4 p1 250   nw 4 np2 230   nw 4 p2 73
nw 9 np1 45    nw 9 p1 205   nw 9 np2 420   nw 9 p2 76
sw 5 np1 53    sw 5 p1 130   sw 5 np2 120   sw 5 p2 50
sw 6 np1 40    sw 6 p1 350   sw 6 np2 225   sw 6 p2 80
ne 7 np1 90    ne 7 p1 190   ne 7 np2 420   ne 7 p2 86
ne 8 np1 200   ne 8 p1 300   ne 8 np2 420   ne 8 p2 125
;

Create the $SCTRFMT., $MGRFMT., and $DEPTFMT. formats. PROC FORMAT 
creates permanent formats for Sector, Manager, and Department. The LIBRARY= 
option specifies a permanent storage location so that the formats are available in 
subsequent SAS sessions. These formats are used for examples throughout this 
section.

proc format library=proclib;
   value $sctrfmt 'se' = 'Southeast'
                  'ne' = 'Northeast'
                  'nw' = 'Northwest'
                  'sw' = 'Southwest';

   value $mgrfmt '1' = 'Smith'   '2' = 'Jones'
                 '3' = 'Reveiz'  '4' = 'Brown'
                 '5' = 'Taylor'  '6' = 'Adams'
                 '7' = 'Alomar'  '8' = 'Andrews'
                 '9' = 'Pelfrey';

   value $deptfmt 'np1' = 'Paper'
                  'np2' = 'Canned'
                  'p1'  = 'Meat/Dairy'
                  'p2'  = 'Produce';
run;

2098 Chapter 58 / REPORT Procedure



Specify the format search library. The SAS system option FMTSEARCH= adds 
the SAS library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Specify the report options. By default, REPORT procedure runs without the 
REPORT window and sends its output to the open output destinations.

proc report data=grocery;

Specify the report columns. The report contains a column for Manager, 
Department, and Sales. Because there is no DEFINE statement for any of these 
variables, PROC REPORT uses the character variables (Manager and Department) 
as display variables and the numeric variable (Sales) as an analysis variable that is 
used to calculate the sum statistic.

   column manager department sales;

Produce a report summary. The RBREAK statement produces a default summary 
at the end of the report. SUMMARIZE sums the value of Sales for all observations in 
the report. STYLE= is used to bold the summarized value.

   rbreak after / summarize style=[font_weight=bold];

Select the observations to process. The WHERE statement selects for the report 
only the observations for stores in the southeast sector.

   where sector='se';

Format the report columns. The FORMAT statement assigns formats to use in the 
report. You can use the FORMAT statement only with data set variables.

   format manager $mgrfmt. department $deptfmt.
          sales dollar11.2;

Specify the titles. SYSDATE is an automatic macro variable that returns the date 
on which the SAS job or SAS session began. The TITLE2 statement uses double 
rather than single quotation marks so that the macro variable resolves.

   title 'Sales for the Southeast Sector';
   title2 "for &sysdate";
run;

Example 1: Selecting Variables and Creating a Summary Line for a Report 2099



Output: HTML
Output 58.2 Selecting Variables and Creating a Summary Line for a Report

Example 2: Ordering the Rows in a Report
Features: PROC REPORT statement options

COLUMN statement
DEFINE statement options

ANALYSIS
FORMAT=
ORDER
ORDER=
SUM

BREAK statement options
AFTER
SUMMARIZE
STYLE=

LIBNAME statement
OPTIONS statement
WHERE statement
TITLE statement

Data set: GROCERY

Format: $MGRFMT

Format: $DEPTFMT

2100 Chapter 58 / REPORT Procedure



Details
This example does the following:

n arranges the rows alphabetically by the formatted values of Manager and the 
internal values of Department (so that sales for the two departments that sell 
nonperishable goods precede sales for the two departments that sell perishable 
goods)

n controls the default column width and the spacing between columns

n creates a default summary of Sales for each manager

n creates a customized summary of Sales for the whole report

Program
libname proclib 'SAS-library';

options fmtsearch=(proclib);

proc report data=grocery;

   column manager department sales;

   define manager / order order=formatted format=$mgrfmt.;
   define department / order order=internal format=$deptfmt.;

   define sales / analysis sum format=dollar7.2;

   break after manager / summarize
                         style=[font_style=italic];

   where sector='se';

   title 'Sales for the Southeast Sector';
 run;

Program Description
Declare the PROCLIB library. The PROCLIB library is used to store user-created 
formats.

libname proclib 'SAS-library';

Specify the format search library. The SAS system option FMTSEARCH= adds 
the SAS library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Specify the report options. By default, PROC REPORT runs without the REPORT 
window and sends its output to the open output destinations.

proc report data=grocery;

Example 2: Ordering the Rows in a Report 2101



Specify the report columns. The report contains a column for Manager, 
Department, and Sales.

   column manager department sales;

Define the sort order variables. The values of all variables with the ORDER option 
in the DEFINE statement determine the order of the rows in the report. In this report, 
PROC REPORT arranges the rows first by the value of Manager (because it is the 
first variable in the COLUMN statement) and then by the values of Department. 
ORDER= specifies the sort order for a variable. This report arranges the rows 
according to the formatted values of Manager and the internal values of Department 
(np1, np2, p1, and p2). FORMAT= specifies the formats to use in the report.

   define manager / order order=formatted format=$mgrfmt.;
   define department / order order=internal format=$deptfmt.;

Define the analysis variable. Sum calculates the sum statistic for all observations 
that are represented by the current row. In this report each row represents only one 
observation. Therefore, the Sum statistic is the same as the value of Sales for that 
observation in the input data set. Using Sales as an analysis variable in this report 
enables you to summarize the values for each group and at the end of the report.

   define sales / analysis sum format=dollar7.2;

Produce a report summary. This BREAK statement produces a default summary 
after the last row for each manager. PROC REPORT sums the values of Sales for 
each manager because Sales is an analysis variable that is used to calculate the 
Sum statistic. SKIP writes a blank line after the summary line.

   break after manager / summarize
                         style=[font_style=italic];

Select the observations to process. The WHERE statement selects for the report 
only the observations for stores in the southeast sector.

   where sector='se';

Specify the title.

   title 'Sales for the Southeast Sector';
 run;

2102 Chapter 58 / REPORT Procedure



Output: HTML
Output 58.3 Ordering the Rows in a Report

Example 3: Using Aliases to Obtain Multiple 
Statistics for the Same Variable
Features: PROC REPORT statement options

COLUMN statement
with aliases

COMPUTE statement arguments
AFTER

DEFINE statement options
ORDER=
ANALYSIS
SUM
FORMAT=
MAX
MIN
NOPRINT
customizing column headings

LINE statement
quoted text
variable values and formats
writing a blank line

LIBNAME statement
OPTIONS statement

Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable 2103



WHERE statement
TITLE statement
automatic macro variables

SYSDATE

Data set: GROCERY

Format: $MGRFMT

Format: $DEPTFMT

Details
The customized summary at the end of this report displays the minimum and 
maximum values of Sales over all departments for stores in the southeast sector. To 
determine these values, PROC REPORT needs the MIN and MAX statistic for Sales 
in every row of the report. However, to keep the report simple, the display of these 
statistics is suppressed.

Program
libname proclib 'SAS-library';

options fmtsearch=(proclib);

proc report data=grocery;

   column manager department sales
          sales=salesmin
          sales=salesmax;

   define manager / order
                    order=formatted
                    format=$mgrfmt.
                    'Manager';
   define department    / order
                    order=internal
                    format=$deptfmt.
                    'Department';

   define sales / analysis sum format=dollar7.2 'Sales';

   define salesmin / analysis min noprint;
   define salesmax / analysis max noprint;

compute after;
      line 'Departmental sales ranged from'
            salesmin dollar7.2  " " 'to' " " salesmax dollar7.2;         
   endcomp;

   where sector='se';

   title 'Sales for the Southeast Sector';
   title2 "for &sysdate";
run;

2104 Chapter 58 / REPORT Procedure



Program Description
Declare the PROCLIB library. The PROCLIB library is used to store user-created 
formats.

libname proclib 'SAS-library';

Specify the format search library. The SAS system option FMTSEARCH= adds 
the SAS library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Specify the report options. By default, PROC REPORT runs without the REPORT 
window and sends its output to the open output destinations.

proc report data=grocery;

Specify the report columns. The report contains columns for Manager and 
Department. It also contains three columns for Sales. The column specifications 
SALES=SALESMIN and SALES=SALESMAX create aliases for Sales. These 
aliases enable you to use a separate definition of Sales for each of the three 
columns.

   column manager department sales
          sales=salesmin
          sales=salesmax;

Define the sort order variables. The values of all variables with the ORDER option 
in the DEFINE statement determine the order of the rows in the report. In this report, 
PROC REPORT arranges the rows first by the value of Manager (because it is the 
first variable in the COLUMN statement) and then by the values of Department. The 
ORDER= option specifies the sort order for a variable. This report arranges the 
values of Manager by their formatted values and arranges the values of Department 
by their internal values (np1, np2, p1, and p2). FORMAT= specifies the formats to 
use in the report. Text in quotation marks specifies column headings.

   define manager / order
                    order=formatted
                    format=$mgrfmt.
                    'Manager';
   define department    / order
                    order=internal
                    format=$deptfmt.
                    'Department';

Define the analysis variable. The value of an analysis variable in any row of a 
report is the value of the statistic that is associated with it (in this case Sum), 
calculated for all observations that are represented by that row. In a detail report 
each row represents only one observation. Therefore, the Sum statistic is the same 
as the value of Sales for that observation in the input data set.

   define sales / analysis sum format=dollar7.2 'Sales';

Define additional analysis variables for use in the summary. These DEFINE 
statements use aliases from the COLUMN statement to create separate columns for 
the MIN and MAX statistics for the analysis variable Sales. NOPRINT suppresses 
the printing of these statistics. Although PROC REPORT does not print these values 
in columns, it has access to them so that it can print them in the summary.

   define salesmin / analysis min noprint;
   define salesmax / analysis max noprint;

Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable 2105



Produce a customized summary. This COMPUTE statement begins a compute 
block that executes at the end of the report. The line statement writes the text 
shown in the quotation marks, the value of Salesmin with the DOLLAR7.2 format, a 
space in quotation marks, the text in quotation marks “to”, a space, the value of 
Salesmax with the DOLLAR7.2 format. (Note that the program must reference the 
variables by their aliases.) The ENDCOMP statement ends the compute block.

compute after;
      line 'Departmental sales ranged from'
            salesmin dollar7.2  " " 'to' " " salesmax dollar7.2;         
   endcomp;

Select the observations to process. The WHERE statement selects for the report 
only the observations for stores in the southeast sector. 

   where sector='se';

Specify the titles. SYSDATE is an automatic macro variable that returns the date 
on which the SAS job or SAS session began. The TITLE2 statement uses double 
rather than single quotation marks so that the macro variable resolves.

   title 'Sales for the Southeast Sector';
   title2 "for &sysdate";
run;

Output: HTML
Output 58.4 Using Aliases to Obtain Multiple Statistics for the Same Variable

2106 Chapter 58 / REPORT Procedure



Example 4: Displaying Multiple Statistics for One 
Variable
Features: PROC REPORT statement options

COLUMN statement
specifying statistics for stacked variables

DEFINE statement options
FORMAT=
GROUP

LIBNAME statement
OPTIONS statement
TITLE statement

Data set: GROCERY

Format: $MGRFMT

Details
The report in this example displays six statistics for the sales for each manager's 
store.

Program
libname proclib 'SAS-library';

options fmtsearch=(proclib);

proc report data=grocery;

column sector manager (Sum Min Max Range Mean Std),sales;

   define manager / group format=$mgrfmt.;
   define sector / group format=$sctrfmt.;
   define sales / format=dollar11.2 ;

   title 'Sales Statistics for All Sectors';
run;

Program Description
Declare the PROCLIB library. The PROCLIB library is used to store user-created 
formats.

libname proclib 'SAS-library';

Example 4: Displaying Multiple Statistics for One Variable 2107



Specify the format search library. The SAS system option FMTSEARCH= adds 
the SAS library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Specify the report options.

proc report data=grocery;

Specify the report columns. This COLUMN statement creates a column for 
Sector, Manager, and each of the six statistics that are associated with Sales.

column sector manager (Sum Min Max Range Mean Std),sales;

Define the group variables and the analysis variable. In this report, Sector and 
Manager are group variables. Each detail row of the report consolidates the 
information for all observations with the same values of the group variables. 
FORMAT= specifies the formats to use in the report.

   define manager / group format=$mgrfmt.;
   define sector / group format=$sctrfmt.;
   define sales / format=dollar11.2 ;

Specify the title.

   title 'Sales Statistics for All Sectors';
run;

Output: HTML
Output 58.5 Displaying Multiple Statistics for One Variable

2108 Chapter 58 / REPORT Procedure



Example 5: Consolidating Multiple Observations 
into One Row of a Report
Features: PROC REPORT statement options

COLUMN statement
DEFINE statement options

ANALYSIS
GROUP
SUM
FORMAT=

BREAK statement options
AFTER
SUMMARIZE
SUPPRESS

CALL DEFINE statement
COMPUTE statement arguments

AFTER
CALL DEFINE statement
LINE statement

quoted text
variable values

LIBNAME statement
OPTIONS statement
TITLE statement
WHERE statement

Data set: GROCERY

Format: $MGRFMT

Format: $DEPTFMT

Details
This example creates a summary report that does the following:

n consolidates information for each combination of Sector and Manager into one 
row of the report

n contains default summaries of sales for each sector

n contains a customized summary of sales for all sectors

n uses one format for sales in detail rows and a different format in summary rows

n uses customized column headings

Example 5: Consolidating Multiple Observations into One Row of a Report 2109



Program
libname proclib 'SAS-library';

options fmtsearch=(proclib);

proc report data=grocery;

   column sector manager sales;

   define sector / group format=$sctrfmt.'Sector';
   define manager / group format=$mgrfmt.'Manager';
   define sales / analysis sum format=comma10.2 'Sales';

   break after sector / summarize
                        style=[font_style=italic]
                        suppress;

   compute after;
      line 'Combined sales for the northern sectors were '
            sales.sum dollar9.2 '.';
   endcomp;

   compute sales;
      if _break_ ne ' ' then
      call define(_col_,"format","dollar11.2");
   endcomp;

   where sector contains 'n';

   title 'Sales Figures for Northern Sectors';
run;

Program Description
Declare the PROCLIB library. The PROCLIB library is used to store user-created 
formats.

libname proclib 'SAS-library';

Specify the format search library. The SAS system option FMTSEARCH= adds 
the SAS library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Specify the report options. By default, PROC REPORT runs without the REPORT 
window and sends its output to the open output destinations.

proc report data=grocery;

Specify the report columns. The report contains columns for Sector, Manager, and 
Sales.

   column sector manager sales;

Define the group and analysis variables. In this report, Sector and Manager are 
group variables. Sales is an analysis variable that is used to calculate the Sum 
statistic. Each detail row represents a set of observations that have a unique 
combination of formatted values for all group variables. The value of Sales in each 
detail row is the sum of Sales for all observations in the group. FORMAT= specifies 

2110 Chapter 58 / REPORT Procedure



the format to use in the report. Text in quotation marks in a DEFINE statement 
specifies the column heading.

   define sector / group format=$sctrfmt.'Sector';
   define manager / group format=$mgrfmt.'Manager';
   define sales / analysis sum format=comma10.2 'Sales';

Produce a report summary. This BREAK statement produces a default summary 
after the last row for each sector. SUMMARIZE writes the value of Sales in the 
summary line. The summary value is for each sector. It sums all managers in the 
sector sales. SUPPRESS prevents PROC REPORT from displaying the value of 
Sector in the summary line. The summary lines are italicized.

   break after sector / summarize
                        style=[font_style=italic]
                        suppress;

Produce a customized summary. This compute block creates a customized 
summary at the end of the report. The LINE statement writes the quoted text and 
the value of Sales.sum (with a format of DOLLAR9.2) in the summary. An 
ENDCOMP statement must end the compute block.

   compute after;
      line 'Combined sales for the northern sectors were '
            sales.sum dollar9.2 '.';
   endcomp;

Specify a format for the summary rows. In detail rows, PROC REPORT displays 
the value of Sales with the format that is specified in its definition (COMMA10.2). 
The compute block specifies an alternate format to use in the current column on 
summary rows. Summary rows are identified as a value other than a blank for 
_BREAK_. 

   compute sales;
      if _break_ ne ' ' then
      call define(_col_,"format","dollar11.2");
   endcomp;

Select the observations to process. The WHERE statement selects for the report 
only the observations for stores in the northeast and northwest sectors. The TITLE 
statement specifies the title.

   where sector contains 'n';

Specify the title.

   title 'Sales Figures for Northern Sectors';
run;

Example 5: Consolidating Multiple Observations into One Row of a Report 2111



Output: HTML
Output 58.6 Consolidating Multiple Observations into One Row of a Report

Example 6: Creating a Column for Each Value of a 
Variable
Features: PROC REPORT statement options

SPLIT=
COLUMN statement

stacking variables
DEFINE statement options

GROUP
ACROSS
ANALYSIS
COMPUTED
SUM
FORMAT=

COMPUTE statement arguments
with a computed variable as report-item
AFTER

LINE statement
ENDCOMP statement
LIBNAME statement
OPTIONS statement
TITLE statement
WHERE statement

Data set: GROCERY

2112 Chapter 58 / REPORT Procedure



Format: $SCTRFMT

Format: $MGRFMT

Format: $DEPTFMT

Details
The report in this example does the following:

n consolidates multiple observations into one row

n contains a column for each value of Department that is selected for the report 
(the departments that sell perishable items)

n contains a variable that is not in the input data set

n uses customized column headings, some of which contain blanks

n uses variable values in a customized summary

Program
libname proclib 'SAS-library';

options fmtsearch=(proclib);

proc report data=grocery split='*';

   column sector manager department,sales perish;

   define sector / group format=$sctrfmt. 'Sector' '';
   define manager / group format=$mgrfmt. 'Manager* ';

   define department / across format=$deptfmt. 'Department';

   define sales / analysis sum format=dollar11.2 ' ';

   define perish / computed format=dollar11.2
                'Perishable*Total';

   compute perish;
      perish=sum(_c3_, _c4_);
   endcomp;

   compute after;
            line  'Combined sales for meat and dairy : '
            _c3_ dollar11.2 '';
      line  'Combined sales for produce : '
            _c4_ dollar11.2 '';
      line  'Combined sales for all perishables: '
            _c5_ dollar11.2 '';
         endcomp;

   where sector contains 'n'
         and (department='p1' or department='p2');

   title 'Sales Figures for Perishables in Northern Sectors';
run;

Example 6: Creating a Column for Each Value of a Variable 2113



Program Description
Declare the PROCLIB library. The PROCLIB library is used to store user-created 
formats.

libname proclib 'SAS-library';

Specify the format search library. The SAS system option FMTSEARCH= adds 
the SAS library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Specify the report options. By default, PROC REPORT runs without the REPORT 
window and sends its output to the open output destinations. SPLIT= defines the 
split character as an asterisk (*) because the default split character (/) is part of the 
name of a department.

proc report data=grocery split='*';

Specify the report columns. Department and Sales are separated by a comma in 
the COLUMN statement, so they collectively determine the contents of the column 
that they define. Each item generates a heading, but the heading for Sales is set to 
blank in its definition. Because Sales is an analysis variable, its values fill the cells 
that are created by these two variables.

   column sector manager department,sales perish;

   define sector / group format=$sctrfmt. 'Sector' '';
   define manager / group format=$mgrfmt. 'Manager* ';

Define the across variable. PROC REPORT creates a column and a column 
heading for each formatted value of the across variable Department. PROC 
REPORT orders the columns by these values. PROC REPORT also generates a 
column heading that spans all these columns. Quoted text in the DEFINE statement 
for Department customizes this heading.

   define department / across format=$deptfmt. 'Department';

Define the analysis variable. Sales is an analysis variable that is used to calculate 
the sum statistic. In each case, the value of Sales is the sum of Sales for all 
observations in one department in one group. (In this case, the value represents a 
single observation.)

   define sales / analysis sum format=dollar11.2 ' ';

Define the computed variable. The COMPUTED option indicates that PROC 
REPORT must compute values for Perish. You compute the variable's values in a 
compute block that is associated with Perish.

   define perish / computed format=dollar11.2
                'Perishable*Total';

Calculate values for the computed variable. This compute block computes the 
value of Perish from the values for the Meat/Dairy department and the Produce 
department. Because the variables Sales and Department collectively define these 
columns, there is no way to identify the values to PROC REPORT by name. 
Therefore, the assignment statement uses column numbers to unambiguously 
specify the values to use. Each time PROC REPORT needs a value for Perish, it 
sums the values in the third and fourth columns of that row of the report.

   compute perish;
      perish=sum(_c3_, _c4_);
   endcomp;

2114 Chapter 58 / REPORT Procedure



Produce a customized summary. This compute block creates a customized 
summary at the end of the report. LINE statements write the quoted text in the 
specified columns and the values of the variables _C3_, _C4_, and _C5_ with the 
DOLLAR11.2 format. 

   compute after;
            line  'Combined sales for meat and dairy : '
            _c3_ dollar11.2 '';
      line  'Combined sales for produce : '
            _c4_ dollar11.2 '';
      line  'Combined sales for all perishables: '
            _c5_ dollar11.2 '';
         endcomp;

   where sector contains 'n'
         and (department='p1' or department='p2');

Specify the title.

   title 'Sales Figures for Perishables in Northern Sectors';
run;

Output: HTML
Output 58.7 Creating a Column for Each Value of a Variable

Example 6: Creating a Column for Each Value of a Variable 2115



Example 7: Writing a Customized Summary on 
Each Page
Features: PROC REPORT statement options

COLUMN statement
DEFINE statement options

NOPRINT
GROUP
COMPUTED
ANALYSIS

COMPUTE statement arguments
BEFORE
AFTER
BEFORE _PAGE_
STYLE=
TEXT=

BREAK statement options
PAGE
SUMMARIZE
AFTER
STYLE=

LINE statement
LIBNAME statement
OPTIONS statement
TITLE statement

Data set: GROCERY

Format: $SCTRFMT

Format: $MGRFMT

Format: $DEPTFMT

Details
The report in this example displays a record of one day's sales for each store. The 
rows are arranged so that all the information about one store is together, and the 
information for each store begins on a new page. Some variables appear in 
columns. Others appear only in the page heading that identifies the sector and the 
store's manager.

The heading that appears at the top of each page is created with the _PAGE_ 
argument in the COMPUTE statement.

Profit is a computed variable based on the value of Sales and Department.

The text that appears at the bottom of the page depends on the total of Sales for the 
store. Only the first two pages of the report appear here.

2116 Chapter 58 / REPORT Procedure



Program
libname proclib 'SAS-library';

options fmtsearch=(proclib);

proc report data=grocery;

   title 'Sales for Individual Stores';

   column sector manager department sales Profit;

   define sector / group noprint;
   define manager / group noprint;
   define profit / computed format=dollar11.2;
   define sales / analysis sum format=dollar11.2;
   define department / group format=$deptfmt.;

   compute profit;
      if department='np1' or department='np2'
         then profit=0.4*sales.sum;
      else profit=0.25*sales.sum;
   endcomp;

    compute before _page_ / style={just=left};
      line sector $sctrfmt. ' Sector';
      line 'Store managed by ' manager $mgrfmt.;
         endcomp;

   break after manager / summarize style=[font_style=italic] page;

   compute after manager;

      length text $ 35;

      if sales.sum lt 500 then
         text='Sales are below the target region.';
      else if sales.sum ge 500 and sales.sum lt 1000 then
         text='Sales are in the target region.';
      else if sales.sum ge 1000 then
         text='Sales exceeded goal!';
      line text $35.;
   endcomp;
   run;

Program Description
Declare the PROCLIB library. The PROCLIB library is used to store user-created 
formats.

libname proclib 'SAS-library';

Specify the format search library. The SAS system option FMTSEARCH= adds 
the SAS library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Specify the report options. By default, PROC REPORT runs without the REPORT 
window and sends its output to the open output destinations. 

proc report data=grocery;

Example 7: Writing a Customized Summary on Each Page 2117



Specify the title.

   title 'Sales for Individual Stores';

Specify the report columns. The report contains a column for Sector, Manager, 
Department, Sales, and Profit, but the NOPRINT option suppresses the printing of 
the columns for Sector and Manager. The page heading (created later in the 
program) includes their values. To get these variable values into the page heading, 
Sector and Manager must be in the COLUMN statement.

   column sector manager department sales Profit;

Define the group, computed, and analysis variables. In this report, Sector, 
Manager, and Department are group variables. Each detail row of the report 
consolidates the information for all observations with the same values of the group 
variables. Profit is a computed variable whose values are calculated in the next 
section of the program. FORMAT= specifies the formats to use in the report.

   define sector / group noprint;
   define manager / group noprint;
   define profit / computed format=dollar11.2;
   define sales / analysis sum format=dollar11.2;
   define department / group format=$deptfmt.;

Calculate the computed variable. Profit is computed as a percentage of Sales. For 
nonperishable items, the profit is 40% of the sale price. For perishable items the 
profit is 25%. Notice that in the compute block, you must reference the variable 
Sales with a compound name (Sales.sum) that identifies both the variable and the 
statistic that you calculate with it.

   compute profit;
      if department='np1' or department='np2'
         then profit=0.4*sales.sum;
      else profit=0.25*sales.sum;
   endcomp;

Create a customized page heading. This compute block executes at the top of 
each page, after PROC REPORT writes the title. It writes the page heading for the 
current manager's store. The STYLE= option left-justifies the text in the LINE 
statements. The LINE statements write a variable value with the format specified 
immediately after the variable's name.

    compute before _page_ / style={just=left};
      line sector $sctrfmt. ' Sector';
      line 'Store managed by ' manager $mgrfmt.;
         endcomp;

Produce a report summary. This BREAK statement creates a default summary 
after the last row for each manager. SUMMARIZE writes the value of Sales (the only 
analysis or computed variable) in the summary line. The PAGE option starts a new 
page after each default summary so that the page heading that is created in the 
preceding compute block always pertains to the correct manager. The STYLE= 
option italicizes the summary information.

   break after manager / summarize style=[font_style=italic] page;

Produce a customized summary. This compute block places conditional text in a 
customized summary that appears after the last detail row for each manager.

   compute after manager;

Specify the length of the customized summary text. The LENGTH statement 
assigns a length of 35 to the temporary variable TEXT. In this particular case, the 

2118 Chapter 58 / REPORT Procedure



LENGTH statement is unnecessary because the longest version appears in the first 
IF/THEN statement. However, using the LENGTH statement ensures that even if the 
order of the conditional statements changes, TEXT is long enough to hold the 
longest version.

      length text $ 35;

Specify the conditional logic for the customized summary text. You cannot use 
the LINE statement in conditional statements (IF-THEN, IF-THEN/ELSE, and 
SELECT) because it does not take effect until PROC REPORT has executed all 
other statements in the compute block. These IF-THEN/ELSE statements assign a 
value to TEXT based on the value of Sales.sum in the summary row. A LINE 
statement writes that variable, whatever its value happens to be.

      if sales.sum lt 500 then
         text='Sales are below the target region.';
      else if sales.sum ge 500 and sales.sum lt 1000 then
         text='Sales are in the target region.';
      else if sales.sum ge 1000 then
         text='Sales exceeded goal!';
      line text $35.;
   endcomp;
   run;

Example 7: Writing a Customized Summary on Each Page 2119



Output: HTML
Output 58.8 Writing a Customized Summary on Each Page

Example 8: Displaying a Calculated Percentage 
Column in a Report
Features: PROC REPORT statement options

COLUMN statement arguments
PCTSUM
SUM

DEFINE statement options
COMPUTED

2120 Chapter 58 / REPORT Procedure



STYLE(COLUMN)=
GROUP

COMPUTE statement options
CHAR
LENGTH=

RBREAK statement options
SUMMARIZE
STYLE=

LIBNAME statement
OPTIONS statement
TITLE statement

Data set: GROCERY

Format: $MGRFMT

Format: $DEPTFMT

Details
The summary report in this example shows the total sales for each store and the 
percentage that these sales represent of sales for all stores. Each of these columns 
has its own heading. A single heading also spans all the columns.

The report includes a computed character variable, COMMENT, that flags stores 
with an unusually high percentage of sales.

Program
libname proclib 'SAS-library';

options fmtsearch=(proclib);

proc report data=grocery;
   title;

   column ('Individual Store Sales as a Percent of All Sales'
            sector manager sales,(sum pctsum) comment);

   define manager / group
                    format=$mgrfmt.;
   define sector / group
                   format=$sctrfmt.;
   define sales / format=dollar11.2
                  '';
   define sum / format=dollar9.2
                'Total Sales';

   define pctsum / 'Percent of Sales' format=percent6.;
   define comment / computed style(column)=[cellwidth=2.5in];

   compute comment / char length=40;

      if sales.pctsum gt .15 and _break_ = ' '

Example 8: Displaying a Calculated Percentage Column in a Report 2121



      then comment='Sales substantially above expectations.';
      else comment=' ';
   endcomp;

   rbreak after / summarize style=[font_style=italic];
run;

Program Description
Declare the PROCLIB library. The PROCLIB library is used to store user-created 
formats.

libname proclib 'SAS-library';

Specify the format search library. The SAS system option FMTSEARCH= adds 
the SAS library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Specify the report options. Specify the data set and other options. 

proc report data=grocery;
   title;

Specify the report columns. The COLUMN statement uses the text in quotation 
marks as a spanning heading. The heading spans all the columns in the report 
because they are all included in the pair of parentheses that contains the heading. 
The COLUMN statement associates two statistics with Sales: Sum and Pctsum. The 
Sum statistic sums the values of Sales for all observations that are included in a row 
of the report. The Pctsum statistic shows what percentage of Sales sum is for all 
observations in the report.

   column ('Individual Store Sales as a Percent of All Sales'
            sector manager sales,(sum pctsum) comment);

Define the group and analysis columns. In this report, Sector and Manager are 
group variables. Each detail row represents a set of observations that have a unique 
combination of formatted values for all group variables. Sales is, by default, an 
analysis variable that is used to calculate the Sum statistic. However, because 
statistics are associated with Sales in the column statement, those statistics 
override the default. FORMAT= specifies the formats to use in the report. Text 
between quotation marks specifies the column heading.

   define manager / group
                    format=$mgrfmt.;
   define sector / group
                   format=$sctrfmt.;
   define sales / format=dollar11.2
                  '';
   define sum / format=dollar9.2
                'Total Sales';

Define the percentage and computed columns. The DEFINE statement for 
Pctsum specifies a column heading and a format. The PERCENT. format presents 
the value of Pctsum as a percentage rather than a decimal. The DEFINE statement 
for COMMENT defines a computed variable and assigns it a column. 

   define pctsum / 'Percent of Sales' format=percent6.;
   define comment / computed style(column)=[cellwidth=2.5in];

2122 Chapter 58 / REPORT Procedure



Calculate the computed variable. Options in the COMPUTE statement define 
COMMENT as a character variable with a length of 40.

   compute comment / char length=40;

Specify the conditional logic for the computed variable. For every store where 
sales exceed 15% of the sales for all stores, the compute block creates a comment 
that says Sales substantially above expectations. Of course, on the summary 
row for the report, the value of Pctsum is 100. However, it is inappropriate to flag 
this row as having exceptional sales. The automatic variable _BREAK_ 
distinguishes detail rows from summary rows. In a detail row, the value of _BREAK_ 
is blank. The THEN statement executes only on detail rows where the value of 
Pctsum exceeds 0.15.

      if sales.pctsum gt .15 and _break_ = ' '
      then comment='Sales substantially above expectations.';
      else comment=' ';
   endcomp;

Produce the report summary. This RBREAK statement creates a default summary 
at the end of the report. SUMMARIZE writes the values of Sales.sum and 
Sales.pctsum in the summary line. STYLE= italicizes the summary line.

   rbreak after / summarize style=[font_style=italic];
run;

Output: HTML
Output 58.9 Calculating Percentages

Example 8: Displaying a Calculated Percentage Column in a Report 2123



Example 9: How PROC REPORT Handles Missing 
Values
Features: PROC REPORT statement options

MISSING
COLUMN statement

with the N statistic
DEFINE statement options

STYLE(COLUMN)=
GROUP

RBREAK statement options
AFTER
SUMMARIZE
STYLE=

LIBNAME statement
OPTIONS statement
TITLE statement

Format: $MGRFMT

Details
This example illustrates how PROC REPORT handles missing values for group (or 
order or across) variables with and without the MISSING option. The differences in 
the reports are apparent if you compare the values of N for each row and compare 
the totals in the default summary at the end of the report.

Program – Data Set with No Missing 
Values

libname proclib 'SAS-library';

options fmtsearch=(proclib);

data grocmiss;
   input Sector $ Manager $ Department $ Sales @@;
datalines;
se 1 np1 50    .  1 p1 100   se . np2 120   se 1 p2 80
se 2 np1 40    se 2 p1 300   se 2 np2 220   se 2 p2 70
nw 3 np1 60    nw 3 p1 600   .  3 np2 420   nw 3 p2 30
nw 4 np1 45    nw 4 p1 250   nw 4 np2 230   nw 4 p2 73
nw 9 np1 45    nw 9 p1 205   nw 9 np2 420   nw 9 p2 76
sw 5 np1 53    sw 5 p1 130   sw 5 np2 120   sw 5 p2 50
.  . np1 40    sw 6 p1 350   sw 6 np2 225   sw 6 p2 80

2124 Chapter 58 / REPORT Procedure



ne 7 np1 90    ne . p1 190   ne 7 np2 420   ne 7 p2 86
ne 8 np1 200   ne 8 p1 300   ne 8 np2 420   ne 8 p2 125
;

proc report data=grocmiss;

   column sector manager N sales;

   define sector / group format=$sctrfmt.;
   define manager / group format=$mgrfmt.;
   define sales / format=dollar9.2;

   rbreak after / summarize style=[fontstyle=italic];

   title 'Summary Report for All Sectors and Managers';
run;

Program Description
Declare the PROCLIB library. The PROCLIB library is used to store user-created 
formats.

libname proclib 'SAS-library';

Specify the format search library. The SAS system option FMTSEARCH= adds 
the SAS library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Create the GROCMISS data set. GROCMISS is identical to GROCERY except that 
it contains some observations with missing values for Sector, Manager, or both.

data grocmiss;
   input Sector $ Manager $ Department $ Sales @@;
datalines;
se 1 np1 50    .  1 p1 100   se . np2 120   se 1 p2 80
se 2 np1 40    se 2 p1 300   se 2 np2 220   se 2 p2 70
nw 3 np1 60    nw 3 p1 600   .  3 np2 420   nw 3 p2 30
nw 4 np1 45    nw 4 p1 250   nw 4 np2 230   nw 4 p2 73
nw 9 np1 45    nw 9 p1 205   nw 9 np2 420   nw 9 p2 76
sw 5 np1 53    sw 5 p1 130   sw 5 np2 120   sw 5 p2 50
.  . np1 40    sw 6 p1 350   sw 6 np2 225   sw 6 p2 80
ne 7 np1 90    ne . p1 190   ne 7 np2 420   ne 7 p2 86
ne 8 np1 200   ne 8 p1 300   ne 8 np2 420   ne 8 p2 125
;

Specify the report options. By default, PROC REPORT runs without the REPORT 
window and sends its output to the open output destinations. 

proc report data=grocmiss;

Specify the report columns. The report contains columns for Sector, Manager, the 
N statistic, and Sales.

   column sector manager N sales;

Define the group and analysis variables. In this report, Sector and Manager are 
group variables. Sales is, by default, an analysis variable that is used to calculate 
the Sum statistic. Each detail row represents a set of observations that have a 
unique combination of formatted values for all group variables. The value of Sales in 
each detail row is the sum of Sales for all observations in the group. In this PROC 

Example 9: How PROC REPORT Handles Missing Values 2125



REPORT step, the procedure does not include observations with a missing value for 
the group variable. FORMAT= specifies formats to use in the report.

   define sector / group format=$sctrfmt.;
   define manager / group format=$mgrfmt.;
   define sales / format=dollar9.2;

Produce a report summary. This RBREAK statement creates a default summary 
at the end of the report. SUMMARIZE writes the values of N and Sales.sum in the 
summary line. STYLE= italicizes the summary line. 

   rbreak after / summarize style=[fontstyle=italic];

Specify the title.

   title 'Summary Report for All Sectors and Managers';
run;

OUTPUT: HTML
Output 58.10 Output with No Missing Values

Program – Data Set with Missing Values
Include the missing values. The MISSING option in the second PROC REPORT 
step includes the observations with missing values for the group variable.

proc report data=grocmiss missing;
   column sector manager N sales;
   define sector / group format=$sctrfmt.;

2126 Chapter 58 / REPORT Procedure



   define manager / group format=$mgrfmt.;
   define sales / format=dollar9.2;
   rbreak after / summarize style=[fontstyle=italic];
run;

OUTPUT: HTML
Output 58.11 Output with Missing Values

Example 10: Creating an Output Data Set and 
Storing Computed Variables
Features: PROC REPORT statement options

OUT=
COLUMN
DEFINE statement options

GROUP

Example 10: Creating an Output Data Set and Storing Computed Variables 2127



COMPUTED
ANALYSIS
SUM

COMPUTE
Data set options

WHERE=
LIBNAME statement
OPTIONS statement
TITLE

Data set: GROCERY

Format: $MGRFMT

Details
This example uses WHERE processing as it builds an output data set. This 
technique enables you to do WHERE processing after you have consolidated 
multiple observations into a single row.

Note: This technique is needed because you cannot subset on the results of 
analysis variables. You cannot subset on a value calculated by PROC REPORT. 

The first PROC REPORT step creates a report in which each row represents all the 
observations from the input data set for a single manager. The second PROC 
REPORT step builds a report from the output data set.

Program to Create Output Data Set
libname proclib 'SAS-library';

options fmtsearch=(proclib);

proc report data=grocery
            out=profit( where=(sales gt 1000 and _break_='') );
   column manager sales manager_pct;

   define manager / group;
   define manager_pct / computed;
   compute before;
      total_sales = sales.sum;
   endcomp;
   compute manager_pct;
      manager_pct = sales.sum /total_sales;
   endcomp;
run;

2128 Chapter 58 / REPORT Procedure



Program Description
Declare the PROCLIB library. The PROCLIB library is used to store user-created 
formats.

libname proclib 'SAS-library';

Specify the format search library. The SAS system option FMTSEARCH= adds 
the SAS library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Specify the report options and columns. By default, PROC REPORT runs 
without the REPORT window and sends its output to the open output destinations. 
OUT= creates the output data set PROFIT. The output data set contains a variable 
for each column in the report (Manager, Sales, and the computed column 
manager_pct) as well as for the variable _BREAK_, which is not used in this 
example. Each observation in the data set represents a row of the report. Because 
Manager is a group variable and Sales is an analysis variable that is used to 
calculate the Sum statistic, each row in the report (and therefore each observation in 
the output data set) represents multiple observations from the input data set. In 
particular, each value of Sales in the output data set is the total of all values of Sales 
for that manager. The WHERE= data set option in the OUT= option filters those 
rows as PROC REPORT creates the output data set. Only those observations with 
sales that exceed $1,000 become observations in the output data set.

proc report data=grocery
            out=profit( where=(sales gt 1000 and _break_='') );
   column manager sales manager_pct;

Define the group and analysis variables and compute the values for the 
percent of sales. The overall sum is placed in a temporary variable, total_sales, 
and the values for the percent of sales is computed. 

   define manager / group;
   define manager_pct / computed;
   compute before;
      total_sales = sales.sum;
   endcomp;
   compute manager_pct;
      manager_pct = sales.sum /total_sales;
   endcomp;
run;

OUTPUT: HTML
Here is the data set created by PROC REPORT. It is used as the input set in the 
next PROC REPORT step.

Example 10: Creating an Output Data Set and Storing Computed Variables 2129



Output 58.12 The Output Data Set PROFIT

Program That Uses the Output Data Set
Specify the report options and columns, define the group and analysis 
columns, and specify the titles. DATA= specifies the output data set from the first 
PROC REPORT step as the input data set for this report. The TITLE statements 
specify a title for the report.

proc report data=profit;
   column manager sales manager_pct;
   define manager / group format=$mgrfmt.;
   define sales / analysis sum format=dollar11.2;
   define manager_pct /'Percent of Total Sales' format=percent8.2;
   title 'Managers with Daily Sales';
   title2 'of over';
   title3 'One Thousand Dollars';
run;

OUTPUT: HTML
Output 58.13 Report Based on the Output Data Set

2130 Chapter 58 / REPORT Procedure



Example 11: Using a Format to Create Groups
Features: PROC REPORT statement

DEFINE statement options
GROUP
ORDER
ACROSS
ANALYSIS
SUM
STYLE=

COMPUTE statement options
AFTER
STYLE=

LINE statement
FORMAT procedure
LIBNAME statement
OPTIONS statement
TITLE

Data set: GROCERY 

Format: $MGRFMT

Details
This example shows how to use formats to control the number of groups that PROC 
REPORT creates. The program creates a format for Department that classifies the 
four departments as one of two types: perishable or nonperishable. Consequently, 
when Department is an across variable, PROC REPORT creates only two columns 
instead of four. The column heading is the formatted value of the variable.

Program
libname proclib 'SAS-library';

options fmtsearch=(proclib);

proc format;
   value $perish 'p1','p2'='Perishable'
                'np1','np2'='Nonperishable';
run;

proc report data=grocery;
    

   column manager department,sales sales;

Example 11: Using a Format to Create Groups 2131



   define manager / group order=formatted
                    format=$mgrfmt.;
   define department / across order=formatted
                 format=$perish. '';

   define sales / analysis sum
                  format=dollar9.2 style=[cellwidth=13];

   compute after / style=[font_style=italic];
      line 'Total sales for these stores were: '
            sales.sum dollar9.2;
   endcomp;

title 'Sales Summary for All Stores';
run;

Program Description

Declare the PROCLIB library. The PROCLIB library is used to store user-created 
formats.

libname proclib 'SAS-library';

Specify the format search library. The SAS system option FMTSEARCH= adds 
the SAS library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Create the $PERISH. format. PROC FORMAT creates a format for Department. 
This variable has four different values in the data set, but the format has only two 
values.

proc format;
   value $perish 'p1','p2'='Perishable'
                'np1','np2'='Nonperishable';
run;

Specify the report options. By default, the REPORT procedure runs without the 
REPORT window and sends its output to the open output destinations. 

proc report data=grocery;
    

Specify the report columns. Department and Sales are separated by a comma in 
the COLUMN statement, so they collectively determine the contents of the column 
that they define. Because Sales is an analysis variable, its values fill the cells that 
are created by these two variables. The report also contains a column for Manager 
and a column for Sales by itself (which is the sales for all departments).

   column manager department,sales sales;

Define the group and across variables. Manager is a group variable. Each detail 
row of the report consolidates the information for all observations with the same 
value of Manager. Department is an across variable. PROC REPORT creates a 
column and a column heading for each formatted value of Department. 
ORDER=FORMATTED arranges the values of Manager and Department 
alphabetically according to their formatted values. FORMAT= specifies the formats 
to use. The empty quotation marks in the definition of Department specify a blank 
column heading, so no heading spans all the departments. However, PROC 

2132 Chapter 58 / REPORT Procedure



REPORT uses the formatted values of Department to create a column heading for 
each individual department.

   define manager / group order=formatted
                    format=$mgrfmt.;
   define department / across order=formatted
                 format=$perish. '';

Define the analysis variable. Sales is an analysis variable that is used to calculate 
the Sum statistic. Sales appears twice in the COLUMN statement, and the same 
definition applies to both occurrences. FORMAT= specifies the format to use in the 
report. STYLE= specifies the width of the column. Notice that the column headings 
for the columns that both Department and Sales create are a combination of the 
heading for Department and the (default) heading for Sales.

   define sales / analysis sum
                  format=dollar9.2 style=[cellwidth=13];

Produce a customized summary. This COMPUTE statement begins a compute 
block that produces a customized summary at the end of the report. The LINE 
statement places the quoted text and the value of Sales.sum (with the DOLLAR9.2 
format) in the summary. The STYLE= option italicizes the total sales. An ENDCOMP 
statement must end the compute block.

   compute after / style=[font_style=italic];
      line 'Total sales for these stores were: '
            sales.sum dollar9.2;
   endcomp;

Specify the title.

title 'Sales Summary for All Stores';
run;

Example 11: Using a Format to Create Groups 2133



Output: HTML
Output 58.14 Using a Format to Create Groups

Example 12: Using Multilabel Formats
Features: PROC REPORT statement

COLUMN statement
DEFINE statement options

FORMAT=
GROUP
MLF
ORDER=
PRELOADFMT
MEAN

FORMAT procedure option
MULTILABEL
NOTSORTED

LIBNAME statement
OPTIONS statement
TITLE statement
WHERE statement

2134 Chapter 58 / REPORT Procedure



Details
This example uses a multilabel format to create a report that does the following:

n shows how to specify a multilabel format in the VALUE statement of PROC 
FORMAT 

n shows how to activate multilabel format processing using the MLF option with 
the DEFINE statement

n shows how using NOTSORTED and PRELOADFMT use the sort order shown in 
PROC FORMAT.

Program
proc format;
  value agelfmt (multilabel notsorted)
     11='11'
     12='12'
     13='13'
     14='14'
     15='15'
     16='16'
     11-12='11 or 12'
     13-14='13 or 14'
     15-16='15 or 16'
     low-13='13 and below'
     14-high='14 and above' ;
run;

ods html file="example.html";

title "GROUP Variable with MLF Option";

proc report data=sashelp.class;

   col age ('Mean' height weight);

   define age / group mlf format=agelfmt. 'Age Group' order=data 
preloadfmt; 
   define height / mean format=6.2 'Height (in.)';
   define weight / mean format=6.2 'Weight (lbs.)';
run;

Program Description
Create the AGE1FMT. format. The FORMAT procedure creates a multilabel format 
for ages by using the MULTILABEL option. A multilabel format is one in which 
multiple labels can be assigned to the same value. Each value is represented in the 
table for each range in which it occurs. Use the NOTSORTED to ensure that the 
sort order is kept.

Example 12: Using Multilabel Formats 2135



proc format;
  value agelfmt (multilabel notsorted)
     11='11'
     12='12'
     13='13'
     14='14'
     15='15'
     16='16'
     11-12='11 or 12'
     13-14='13 or 14'
     15-16='15 or 16'
     low-13='13 and below'
     14-high='14 and above' ;
run;

Specify the ODS HTML output filename.

ods html file="example.html";

Specify a title.

title "GROUP Variable with MLF Option";

Specify the report options. By default, the REPORT procedure runs without the 
REPORT window and sends its output to the open output destination.

proc report data=sashelp.class;

Specify the report columns. The report contains a column for Age, Height, and 
Weight. The Mean of the Height and Weight are calculated.

   col age ('Mean' height weight);

Define the variables. AGE is a group variable. The AGE variable uses the MLF 
option to activate multilabel format processing. MLF should be used only with group 
and across variables. FORMAT= specifies that the multilabel format, AGE1FMT. is 
used. The ORDER=DATA option along with the NOTSORTED option on PROC 
FORMAT, keeps the desired sort order. Each detail row of the report consolidates 
the information for all observations with the same values of the group variables. The 
mean is calculated for the HEIGHT and WEIGHT column values. PRELOADFMT 
option specifies that the format is preloaded for the variable.

   define age / group mlf format=agelfmt. 'Age Group' order=data 
preloadfmt; 
   define height / mean format=6.2 'Height (in.)';
   define weight / mean format=6.2 'Weight (lbs.)';
run;

2136 Chapter 58 / REPORT Procedure



Output: HTML
Output 58.15 Using Multilabel Formats

Example 13: Specifying Style Elements for ODS 
Output in Multiple Statements
Features: PROC REPORT statement optionsSTYLE= option

STYLE=
DEFINE statement options

ORDER
STYLE=

BREAK statement options
AFTER
SUMMARIZE

COMPUTE statement options
AFTER
STYLE=

CALL DEFINE
STYLE=

LINE statement
FORMAT procedure
LIBNAME statement

Example 13: Specifying Style Elements for ODS Output in Multiple Statements 2137



OPTIONS statement
TITLE statement
WHERE statement
ODS PDF statement
ODS RTF statement

Data set: GROCERY

Format: $MGRFMT

Format: $DEPTFMT

Details
This example creates HTML, PDF, and RTF files and sets the style elements for 
each location in the report in the PROC REPORT statement. It then overrides some 
of these settings by specifying style elements in other statements. For more 
information, see “Style Elements and Style Attributes for Table Regions ” on page 
2076.

Program
libname proclib 'SAS-library';

options fmtsearch=(proclib);

ods pdf file='external-PDF-file';
ods rtf file='external-RTF-file';

proc report data=grocery

style(report)=[cellspacing=5 borderwidth=10 bordercolor=blue]

style(header)=[color=yellow
               fontstyle=italic fontsize=6]

style(column)=[color=moderate brown
               fontfamily=helvetica fontsize=4]

style(lines)=[color=white backgroundcolor=black
              fontstyle=italic fontweight=bold fontsize=5]

style(summary)=[color=cx3e3d73 backgroundcolor=cxaeadd9
                fontfamily=helvetica fontsize=3 textalign=r];

   column manager department sales;

   define manager / order
                    order=formatted
                    format=$mgrfmt.
                    'Manager'

                    style(header)=[color=white
                                   backgroundcolor=black];

   define department / order

2138 Chapter 58 / REPORT Procedure



                       order=internal
                       format=$deptfmt.
                       'Department'

                       style(column)=[fontstyle=italic];

   break after manager / summarize;

   compute after manager
           / style=[fontstyle=roman fontsize=3 fontweight=bold
             backgroundcolor=white color=black];

      line 'Subtotal for ' manager $mgrfmt. 'is '
            sales.sum dollar7.2 '.';
   endcomp;

   compute sales;
      if sales.sum>100 and _break_=' ' then
      call define(_col_, "style",
                  "style=[backgroundcolor=yellow
                          fontfamily=helvetica
                          fontweight=bold]");
   endcomp;

   compute after;
       line 'Total for all departments is: '
            sales.sum dollar7.2 '.';
   endcomp;

   where sector='se';

   title 'Sales for the Southeast Sector';
run;

ods pdf close;
ods rtf close;

Program Description
Declare the PROCLIB library. The PROCLIB library is used to store user-created 
formats.

libname proclib 'SAS-library';

Specify the format search library. The SAS system option FMTSEARCH= adds 
the SAS library PROCLIB to the search path that is used to locate formats.

options fmtsearch=(proclib);

Specify the ODS output filenames. By opening multiple ODS destinations, you 
can produce multiple output files in a single execution. HTML output is produced by 
default. The ODS PDF statement produces output in Portable Document Format 
(PDF). The ODS RTF statement produces output in Rich Text Format (RTF). The 
output from PROC REPORT goes to each of these files.

ods pdf file='external-PDF-file';
ods rtf file='external-RTF-file';

Specify the report options. By default, PROC REPORT runs without the REPORT 
window. In this case, SAS writes the output to the traditional procedure output, the 
HTML body file, and the RTF and PDF files.

Example 13: Specifying Style Elements for ODS Output in Multiple Statements 2139



proc report data=grocery

Specify the style attributes for the report. This STYLE= option sets the style 
element for the structural part of the report. Because no style element is specified, 
PROC REPORT uses all the style attributes of the default style element for this 
location except for the ones that are specified here.

style(report)=[cellspacing=5 borderwidth=10 bordercolor=blue]

Specify the style attributes for the column headings. This STYLE= option sets 
the style element for all column headings. Because no style element is specified, 
PROC REPORT uses all the style attributes of the default style element for this 
location except for the ones that are specified here.

style(header)=[color=yellow
               fontstyle=italic fontsize=6]

Specify the style attributes for the report columns. This STYLE= option sets the 
style element for all the cells in all the columns. Because no style element is 
specified, PROC REPORT uses all the style attributes of the default style element 
for this location except for the ones that are specified here. 

style(column)=[color=moderate brown
               fontfamily=helvetica fontsize=4]

Specify the style attributes for the compute block lines. This STYLE= option 
sets the style element for all the LINE statements in all compute blocks. Because no 
style element is specified, PROC REPORT uses all the style attributes of the default 
style element for this location except for the ones that are specified here.

style(lines)=[color=white backgroundcolor=black
              fontstyle=italic fontweight=bold fontsize=5]

Specify the style attributes for the report summaries. This STYLE= option sets 
the style element for all the default summary lines. Because no style element is 
specified, PROC REPORT uses all the style attributes of the default style element 
for this location except for the ones that are specified here. 

style(summary)=[color=cx3e3d73 backgroundcolor=cxaeadd9
                fontfamily=helvetica fontsize=3 textalign=r];

Specify the report columns. The report contains columns for Manager, 
Department, and Sales.

   column manager department sales;

Define the first sort order variable. In this report Manager is an order variable. 
PROC REPORT arranges the rows first by the value of Manager (because it is the 
first variable in the COLUMN statement). ORDER= specifies that values of Manager 
are arranged according to their formatted values. FORMAT= specifies the format to 
use for this variable. Text in quotation marks specifies the column headings. 

   define manager / order
                    order=formatted
                    format=$mgrfmt.
                    'Manager'

Specify the style attributes for the first sort order variable column heading. 
The STYLE= option sets the foreground and background colors of the column 
heading for the Manager column heading.

                    style(header)=[color=white
                                   backgroundcolor=black];

2140 Chapter 58 / REPORT Procedure



Define the second sort order variable. In this report Department is an order 
variable. PROC REPORT arranges the rows first by the value of Manager (because 
it is the first variable in the COLUMN statement), then by the value of Department. 
ORDER= specifies that values of Department are arranged according to their 
internal values. FORMAT= specifies the format to use for this variable. Text in 
quotation marks specifies the column heading. 

   define department / order
                       order=internal
                       format=$deptfmt.
                       'Department'

Specify the style attributes for the second sort order variable column. The 
STYLE= option sets the font of the cells in the column Department to italic. The style 
attributes for the cells match the ones that were established for the COLUMN 
location in the PROC REPORT statement. 

                       style(column)=[fontstyle=italic];

Produce a report summary. The BREAK statement produces a default summary 
after the last row for each manager. SUMMARIZE writes the values of Sales (the 
only analysis or computed variable in the report) in the summary line. PROC 
REPORT sums the values of Sales for each manager because Sales is an analysis 
variable that is used to calculate the Sum statistic.

   break after manager / summarize;

Produce a customized summary. The COMPUTE statement begins a compute 
block that produces a customized summary at the end of the report. This STYLE= 
option specifies the style element to use for the text that is created by the LINE 
statement in this compute block. This style element switches the foreground and 
background colors that were specified for the LINES location in the PROC REPORT 
statement. It also changes the font style, the font weight, and the font size.

   compute after manager
           / style=[fontstyle=roman fontsize=3 fontweight=bold
             backgroundcolor=white color=black];

Specify the text for the customized summary. The LINE statement places the 
quoted text and the values of Manager and Sales.sum (with the formats $MGRFMT. 
and DOLLAR7.2) in the summary. An ENDCOMP statement must end the compute 
block.

      line 'Subtotal for ' manager $mgrfmt. 'is '
            sales.sum dollar7.2 '.';
   endcomp;

Produce a customized background for the analysis column. This compute block 
specifies a background color and a bold font for all cells in the Sales column that 
contain values of 100 or greater and that are not summary lines.

   compute sales;
      if sales.sum>100 and _break_=' ' then
      call define(_col_, "style",
                  "style=[backgroundcolor=yellow
                          fontfamily=helvetica
                          fontweight=bold]");
   endcomp;

Produce a customized end-of-report summary. This COMPUTE statement 
begins a compute block that executes at the end of the report. The LINE statement 

Example 13: Specifying Style Elements for ODS Output in Multiple Statements 2141



writes the quoted text and the value of Sales.sum (with the DOLLAR7.2 format). An 
ENDCOMP statement must end the compute block.

   compute after;
       line 'Total for all departments is: '
            sales.sum dollar7.2 '.';
   endcomp;

Select the observations to process. The WHERE statement selects for the report 
only the observations for stores in the southeast sector.

   where sector='se';

Specify the title.

   title 'Sales for the Southeast Sector';
run;

Close the ODS destinations.

ods pdf close;
ods rtf close;

Output: HTML
Output 58.16 Style Elements for ODS HTML Output in Multiple Statements

2142 Chapter 58 / REPORT Procedure



Output: PDF
Output 58.17 Style Elements for ODS PDF Output in Multiple Statements

Example 13: Specifying Style Elements for ODS Output in Multiple Statements 2143



Output: RTF
Output 58.18  Style Elements for ODS RTF Output in Multiple Statements

Example 14: Using the CELLWIDTH= Style 
Attribute with PROC REPORT
Features: PROC REPORT statement options

STYLE=
COLUMN statement
DEFINE statement options

STYLE(COLUMN)=
TITLE statement

2144 Chapter 58 / REPORT Procedure



Details
This example uses PROC REPORT to create a table and uses ODS style attributes. 
This example

n sets the cell width of the total report

n defines the cell width for the columns in the ODS output. 

Note: CELLWIDTH= and WIDTH= are aliases.

Refer to “Style Attributes Tables” in SAS Output Delivery System: Advanced Topics 
for details.

Note: The DEFINE statement WIDTH= option changes the width only for tables 
output in LISTING output.

Program
proc report data=sashelp.class; 

   col name age sex;

   define name / style(column)=[cellwidth=1in];
define age / style(column)=[cellwidth=.5in];
define sex / style(column)=[cellwidth=.5in];

title "Using the CELLWIDTH= Style with PROC REPORT";
run;

Program Description
Specify the cell width for all the columns in the ODS output. By default, the 
REPORT procedure runs without the REPORT window and sends its output to the 
open output destination. ODS HTML is the output destination used as the default in 
this example. 

proc report data=sashelp.class; 

Specify the Columns to be used.

   col name age sex;

Define the column widths using the CELLWIDTH= style attribute. Define the 
dimensions of the NAME, AGE, and SEX column using the STYLE= option. 

   define name / style(column)=[cellwidth=1in];
define age / style(column)=[cellwidth=.5in];
define sex / style(column)=[cellwidth=.5in];

Example 14: Using the CELLWIDTH= Style Attribute with PROC REPORT 2145

http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0otdo2g12obp3n0zmnghcn7p4vu.htm&locale=en


Specify a table title. Provide a table name and run the SAS program.

title "Using the CELLWIDTH= Style with PROC REPORT";
run;

Output: HTML
Output 58.19 Using the CELLWIDTH= Style Attributes with PROC REPORT

2146 Chapter 58 / REPORT Procedure



Example 15: Using STYLE/MERGE in PROC 
REPORT CALL DEFINE Statement
Features: PROC REPORT statement

COLUMN statement
COMPUTE statement
CALL DEFINE statement options

STYLE
STYLE/MERGE

TITLE statement

Details
This example uses PROC REPORT to create a table that uses the STYLE/MERGE 
option in the CALL DEFINE statement.

Program
proc report data=sashelp.class; 

col name sex age height weight;

define name--weight / display;

   compute sex;
    if sex = 'M' then
        call define('name', "style", "style=[background=cyan]"); 
    endcomp;

   compute age;
    if age > 13 then
        call define('name', "style/merge", "style=[color=red]"); 
    endcomp;

title "Using STYLE/MERGE Style with PROC REPORT";
run;

Program Description
Specify the cell width for all the columns in the ODS output. By default, the 
REPORT procedure runs without the REPORT window and sends its output to the 
open output destination. ODS HTML is the output destination used as the default in 
this example. 

Example 15: Using STYLE/MERGE in PROC REPORT CALL DEFINE Statement
2147



proc report data=sashelp.class; 

Specify the Columns to be used.

col name sex age height weight;

Display all of the Columns.

define name--weight / display;

Apply style attributes. Apply the cyan color to the background of the names that 
are males. 

   compute sex;
    if sex = 'M' then
        call define('name', "style", "style=[background=cyan]"); 
    endcomp;

Merge style attributes. Apply the color red to the names that are over the age 13. 
That name color is merged with cells that have the cyan background color. 

   compute age;
    if age > 13 then
        call define('name', "style/merge", "style=[color=red]"); 
    endcomp;

Specify a table title. Provide a table name and run the SAS program.

title "Using STYLE/MERGE Style with PROC REPORT";
run;

2148 Chapter 58 / REPORT Procedure



Output: HTML
Output 58.20 Using STYLE/MERGE

Example 16: Using STYLE/REPLACE in PROC 
REPORT CALL DEFINE Statement
Features: PROC REPORT statement

COLUMN statement
COMPUTE statement
CALL DEFINE statement options

STYLE
STYLE/REPLACE

Example 16: Using STYLE/REPLACE in PROC REPORT CALL DEFINE Statement
2149



TITLE statement

Details
This example uses PROC REPORT to create a table that uses the STYLE/
REPLACE option in the CALL DEFINE statement.

Program
proc report data=sashelp.class; 

col name sex age height weight;

define name--weight / display;

   compute sex;
    if sex = 'M' then
        call define('name', "style", "style=[background=cyan]"); 
    endcomp;

   compute age;
    if age > 13 then
        call define('name', "style/replace", "style=[color=red]"); 
    endcomp;

title "Using STYLE/REPLACE";
run;

Program Description
Specify the cell width for all the columns in the ODS output. By default, the 
REPORT procedure runs without the REPORT window and sends its output to the 
open output destination. ODS HTML is the output destination used as the default in 
this example. 

proc report data=sashelp.class; 

Specify the Columns to be used.

col name sex age height weight;

Display all of the Columns.

define name--weight / display;

Apply style attributes. Apply the cyan color to the background of the names that 
are males. 

   compute sex;
    if sex = 'M' then
        call define('name', "style", "style=[background=cyan]"); 
    endcomp;

2150 Chapter 58 / REPORT Procedure



Replace style attributes. Apply the color red to the names that are over the age 
13. For the names that are over the age of 13, the red name color replaces the 
background color cyan. 

   compute age;
    if age > 13 then
        call define('name', "style/replace", "style=[color=red]"); 
    endcomp;

Specify a table title. Provide a table name and run the SAS program.

title "Using STYLE/REPLACE";
run;

Output: HTML
Output 58.21 Using STYLE/REPLACE

Example 16: Using STYLE/REPLACE in PROC REPORT CALL DEFINE Statement
2151



2152 Chapter 58 / REPORT Procedure



59
REPORT Procedure Windows

Overview of REPORT Procedure Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2153

Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2154
BREAK Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2154
COMPUTE Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2158
COMPUTED VAR Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2158
DATA COLUMNS Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2159
DATA SELECTION Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2159
DEFINITION Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2160
DISPLAY PAGE Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2166
EXPLORE Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2167
FORMATS Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2168
LOAD REPORT Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2169
MESSAGES Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2169
PROFILE Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2170
PROMPTER Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2170
REPORT Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2171
ROPTIONS Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2172
SAVE DATA SET Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2177
SAVE DEFINITION Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2178
SOURCE Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2179
STATISTICS Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2179
WHERE Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2180
WHERE ALSO Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2180

Overview of REPORT Procedure 
Windows

The interactive report window environment in PROC REPORT provides essentially 
the same functionality as the statements, with one major exception: you cannot use 
the Output Delivery System from the interactive report window environment.

2153



Dictionary

BREAK Window
Controls PROC REPORT's actions at a change in the value of a group or order variable or at the top or 
bottom of a report.

Details

Path
Edit ð Summarize information

After you select Summarize information, PROC REPORT offers you four choices 
for the location of the break:

n Before Item

n After Item

n At the top

n At the bottom

After you select a location, the BREAK window appears.

Note: To create a break before or after detail lines (when the value of a group or 
order variable changes), you must select a variable before you open the BREAK 
window.

2154 Chapter 59 / REPORT Procedure Windows



Description

Note: For information about changing the formatting characters that are used by 
the line drawing options in this window, see the discussion of “FORMCHAR 
<(position(s))>='formatting-character(s)' ” on page 2012 

Options
Overline summary

uses the second formatting character to overline each value

n that appears in the summary line

n that would appear in the summary line if you specified the SUMMARIZE 
option 

Default hyphen (-)

Interaction If you specify options to overline and to double overline, then PROC 
REPORT overlines.

Double overline summary
uses the 13th formatting character to overline each value

n that appears in the summary line

n that would appear in the summary line if you specified the SUMMARIZE 
option

Default equal sign (=)

Interaction If you specify options to overline and to double overline, then PROC 
REPORT overlines.

BREAK Window 2155



Underline summary
uses the second formatting character to underline each value

n that appears in the summary line

n that would appear in the summary line if you specified the SUMMARIZE 
option

Default hyphen (-)

Interaction If you specify options to underline and to double underline, then 
PROC REPORT underlines.

Double underline summary
uses the 13th formatting character to underline each value

n that appears in the summary line

n that would appear in the summary line if you specified the SUMMARIZE 
option

Default equal sign (=)

Interaction If you specify options to underline and to double underline, then 
PROC REPORT underlines.

Skip line after break
writes a blank line for the last break line.

This option has no effect if you use it in a break at the end of a report.

Page after break
starts a new page after the last break line. This option has no effect in a break at 
the end of a report.

Interaction If you use this option in a break on a variable and you create a 
break at the end of the report, then the summary for the whole 
report is on a separate page.

Summarize analysis columns
writes a summary line in each group of break lines. A summary line contains 
values for

n statistics

n analysis variables

n computed variables

A summary line between sets of observations also contains

n the break variable (which you can suppress with Suppress break value)

n other group or order variables to the left of the break variable.

The following table shows how PROC REPORT calculates the value for each 
type of report item in a summary line created by the BREAK window:

Report Item Resulting Value

The break variable The current value of the variable (or a missing 
value if you select suppress break value)

2156 Chapter 59 / REPORT Procedure Windows



Report Item Resulting Value

A group or order variable to the 
left of the break variable

The current value of the variable

A group or order variable to the 
right of the break variable, or a 
display variable anywhere in the 
report

Missing*

A statistic The value of the statistic over all observations 
in the set

An analysis variable The value of the statistic specified as the 
usage option in the item's definition. PROC 
REPORT calculates the value of the statistic 
over all observations in the set. The default 
usage is SUM.

A computed variable The results of the calculations based on the 
code in the corresponding compute block. 
(See the “COMPUTE Statement” on page 
2041 statement.) 

*If you reference a variable with a missing value in a customized summary line, 
then PROC REPORT displays that variable as a blank (for character variables) or 
a period (for numeric variables).

Suppress break value
suppresses printing of

n the value of the break variable in the summary line

n any underlining and overlining in the break lines in the column containing the 
break variable

If you select Suppress break value, then the value of the break variable is 
unavailable for use in customized break lines unless you assign it a value in the 
compute block that is associated with the break.

Color
From the list of colors, select the one to use in the REPORT window for the column 
heading and the values of the item that you are defining. The default is the color of 
Foreground in the SASCOLOR window. (For more information, see the online Help 
for the SASCOLOR window.)

Note: Not all operating environments and devices support all colors, and in some 
operating environments and devices, one color might map to another color. For 
example, if the DEFINITION window displays the word BROWN in yellow 
characters, then selecting BROWN results in a yellow item.

BREAK Window 2157



Buttons
Edit Program

opens the COMPUTE window and enables you to associate a compute block 
with a location in the report.

OK
applies the information in the BREAK window to the report and closes the 
window.

Cancel
closes the BREAK window without applying information to the report.

COMPUTE Window
Attaches a compute block to a report item or to a location in the report. Use the SAS Text Editor commands 
to manipulate text in this window.

Details

Path
From Edit Program in the COMPUTED VAR, DEFINITION, or BREAK window.

Description
For information about the SAS language features that you can use in the 
COMPUTE window, see “The Contents of Compute Blocks” on page 1994. 

COMPUTED VAR Window
Adds a variable that is not in the input data set to the report.

Details

Path
Select a column. Then select Edit ð Add Item ð Computed Column.

After you select Computed Column, PROC REPORT prompts you for the location 
of the computed column relative to the column that you have selected. After you 
select a location, the COMPUTED VAR window appears.

2158 Chapter 59 / REPORT Procedure Windows



Description
Enter the name of the variable at the prompt. If it is a character variable, then select 
the Character data check box and, if you want, enter a value in the Length field. 
The length can be any integer between 1 and 200. If you leave the field blank, then 
PROC REPORT assigns a length of 8 to the variable.

After you enter the name of the variable, select Edit Program to open the 
COMPUTE window. Use programming statements in the COMPUTE window to 
define the computed variable. After closing the COMPUTE and COMPUTED VAR 
windows, open the DEFINITION window to describe how to display the computed 
variable.

Note: The position of a computed variable is important. PROC REPORT assigns 
values to the columns in a row of a report from left to right. Consequently, you 
cannot base the calculation of a computed variable on any variable that appears to 
its right in the report.

DATA COLUMNS Window
Lists all variables in the input data set so that you can add one or more data set variables to the report.

Details

Path
Select a report item. Then select Edit ð Add Item ð Data Column.

After you select Data column, PROC REPORT prompts you for the location of the 
computed column relative to the column that you have selected. After you select a 
location, the DATA COLUMNS window appears.

Description
Select one or more variables to add to the report. When you select the first variable, 
it moves to the top of the list in the window. If you select multiple variables, then 
subsequent selections move to the bottom of the list of selected variables. An 
asterisk (*) identifies each selected variable. The order of selected variables from 
top to bottom determines their order in the report from left to right.

DATA SELECTION Window
Loads a data set into the current report definition.

DATA SELECTION Window 2159



Details

Path
File ð Open Data Set

Description
The first list box in the DATA SELECTION window lists all the librefs defined for your 
SAS session. The second one lists all the SAS data sets in the selected library.

Note: You must use data that is compatible with the current report definition. The 
data set that you load must contain variables whose names are the same as the 
variable names in the current report definition.

Buttons
OK

loads the selected data set into the current report definition.

Cancel
closes the DATA SELECTION window without loading new data.

DEFINITION Window
Displays the characteristics associated with an item in the report and lets you change them.

Details

Path
Select a report item. Then select Edit ð Define.

Note:  Alternatively, double-click on the selected item. (Not all operating 
environments support this method of opening the DEFINITION window.)

2160 Chapter 59 / REPORT Procedure Windows



Description

Usage
For an explanation of each type of usage, see “Laying Out a Report ” on page 1987. 

DISPLAY
defines the selected item as a display variable. DISPLAY is the default for 
character variables.

ORDER
defines the selected item as an order variable.

GROUP
defines the selected item as a group variable.

ACROSS
defines the selected item as an across variable.

ANALYSIS
defines the selected item as an analysis variable. You must specify a statistic 
(see the discussion of the Statistic= attribute on page 2162) for an analysis 
variable. ANALYSIS is the default for numeric variables.

COMPUTED
defines the selected item as a computed variable. Computed variables are 
variables that you define for the report. They are not in the input data set, and 
PROC REPORT does not add them to the input data set. However, computed 
variables are included in an output data set if you create one.

In the interactive report window environment, you add a computed variable to a 
report from the COMPUTED VAR window.

Attributes
Format=

assigns a SAS or user-defined format to the item. This format applies to the 
selected item as PROC REPORT displays it; the format does not alter the format 
that is associated with a variable in the data set. For data set variables, PROC 
REPORT honors the first of these formats that it finds:

n the format that is assigned with FORMAT= in the DEFINITION window

n the format that is assigned in a FORMAT statement when you start PROC 
REPORT

DEFINITION Window 2161



n the format that is associated with the variable in the data set

If none of these formats is present, then PROC REPORT uses BESTw. for 
numeric variables and $w. for character variables. The value of w is the default 
column width. For character variables in the input data set, the default column 
width is the variable's length. For numeric variables in the input data set and for 
computed variables (both numeric and character), the default column width is the 
value of the COLWIDTH= attribute in the ROPTIONS window.

If you are unsure what format to use, then type a question mark (?) in the format 
field in the DEFINITION window to access the FORMATS window.

Spacing=
defines the number of blank characters to leave between the column being 
defined and the column immediately to its left. For each column, the sum of its 
width and the blank characters between it and the column to its left cannot 
exceed the line size.

Default 2

Interactions When PROC REPORT's CENTER option is in effect, PROC 
REPORT ignores spacing that precedes the leftmost variable in 
the report.

SPACING= in an item definition overrides the value of SPACING= 
in the PROC REPORT statement or the ROPTIONS window.

Width=
defines the width of the column in which PROC REPORT displays the selected 
item.

Default A column width that is just large enough to handle the format. If there is 
no format, then PROC REPORT uses the value of COLWIDTH=.

Range 1 to the value of the SAS system option LINESIZE=

Note When you stack items in the same column in a report, the width of the 
item that is at the bottom of the stack determines the width of the 
column.

Statistic=
associates a statistic with an analysis variable. You must associate a statistic 
with every analysis variable in its definition. PROC REPORT uses the statistic 
that you specify to calculate values for the analysis variable for the observations 
represented by each cell of the report. You cannot use statistic in the definition of 
any other type of variable.

Note: PROC REPORT uses the name of the analysis variable as the default 
heading for the column. You can customize the column heading with the Header 
field of the DEFINITION window.

You can use the following values for statistic:

Descriptive statistic keywords

CSS PCTSUM

2162 Chapter 59 / REPORT Procedure Windows



CV RANGE

MAX STD

MEAN STDERR

MIN SUM

N SUMWGT

NMISS USS

PCTN VAR

Quantile statistic keywords

MEDIAN | P50 Q3 | P75

P1 P90

P5 P95

P10 P99

Q1 | P25 QRANGE

Hypothesis testing keyword

PRT|PROBT T

Explanations of the keywords, the formulas that are used to calculate them, and 
the data requirements are discussed in Appendix 1, “SAS Elementary Statistics 
Procedures,” on page 2609. 

Default SUM

Requirement To compute standard error and the Student's t-test you must use 
the default value of VARDEF=, which is DF.

See For definitions of these statistics, see “Keywords and Formulas” 
on page 2610. 

Order=
orders the values of a GROUP, ORDER, or ACROSS variable according to the 
specified order, where

DATA
orders values according to their order in the input data set.

FORMATTED
orders values by their formatted (external) values. By default, the order is 
ascending.

DEFINITION Window 2163



FREQ
orders values by ascending frequency count.

INTERNAL
orders values by their unformatted values, which yields the same order that 
PROC SORT would yield. This order is operating environment-dependent. 
This sort sequence is particularly useful for displaying dates chronologically.

Default FORMATTED

Interaction DESCENDING in the item's definition reverses the sort sequence 
for an item.

Note The default value for the ORDER= option in PROC REPORT is not 
the same as the default value in other SAS procedures. In other 
SAS procedures, the default is ORDER=INTERNAL. The default for 
the option in PROC REPORT might change in a future release to be 
consistent with other procedures. Therefore, in production jobs 
where it is important to order report items by their formatted values, 
specify ORDER=FORMATTED even though it is currently the 
default. Doing so ensures that PROC REPORT will continue to 
produce the reports that you expect even if the default changes.

Justify=
You can justify the placement of the column heading and of the values of the 
item that you are defining within a column in one of three ways:

LEFT
left-justifies the formatted values of the item that you are defining within the 
column width and left-justifies the column heading over the values. If the 
format width is the same as the width of the column, then LEFT has no effect 
on the placement of values.

RIGHT
right-justifies the formatted values of the item that you are defining within the 
column width and right-justifies the column heading over the values. If the 
format width is the same as the width of the column, then RIGHT has no 
effect on the placement of values.

CENTER
centers the formatted values of the item that you are defining within the 
column width and centers the column heading over the values. This option 
has no effect on the setting of the SAS system option CENTER.

When justifying values, PROC REPORT justifies the field width defined by 
the format of the item within the column. Thus, numbers are always aligned.

Data type=
shows you if the report item is numeric or character. You cannot change this 
field.

Item Help=
references a HELP or CBT entry that contains Help information for the selected 
item. Use PROC BUILD in SAS/AF software to create a HELP or CBT entry for a 
report item. All HELP and CBT entries for a report must be in the same catalog, 
and you must specify that catalog with the HELP= option in the PROC REPORT 
statement or from the User Help fields in the ROPTIONS window.

To access a Help entry from the report, select the item and issue the HELP 
command. PROC REPORT first searches for and displays an entry named 
entry-name.CBT. If no such entry exists, then PROC REPORT searches for 

2164 Chapter 59 / REPORT Procedure Windows



entry-name.HELP. If neither a CBT nor a HELP entry for the selected item exists, 
then the opening frame of the Help for PROC REPORT is displayed.

Alias=
By entering a name in the Alias field, you create an alias for the report item that 
you are defining. Aliases let you distinguish between different uses of the same 
report item. When you refer in a compute block to a report item that has an alias, 
you must use the alias. (See “Example 3: Using Aliases to Obtain Multiple 
Statistics for the Same Variable” on page 2103.) 

Options
NOPRINT

suppresses the display of the item that you are defining. Use this option

n if you do not want to show the item in the report but you need to use the 
values in it to calculate other values that you use in the report.

n to establish the order of rows in the report.

n if you do not want to use the item as a column but want to have access to its 
values in summaries. (See “Example 7: Writing a Customized Summary on 
Each Page” on page 2116.) 

Interactions Even though the columns that you define with NOPRINT do not 
appear in the report, you must count them when you are 
referencing columns by number. (See “Four Ways to Reference 
Report Items in a Compute Block” on page 1995 .)

SHOWALL in the PROC REPORT statement or the ROPTIONS 
window overrides all occurrences of NOPRINT.

NOZERO
suppresses the display of the item that you are defining if its values are all zero 
or missing.

Interactions Even though the columns that you define with NOZERO do not 
appear in the report, you must count them when you are 
referencing columns by number. (See “Four Ways to Reference 
Report Items in a Compute Block” on page 1995.) 

SHOWALL in the PROC REPORT statement or the ROPTIONS 
window overrides all occurrences of NOZERO.

DESCENDING
reverses the order in which PROC REPORT displays rows or values of a group, 
order, or across variable.

PAGE
inserts a page break just before printing the first column containing values of the 
selected item.

Interaction PAGE is ignored if you use WRAP in the PROC REPORT statement 
or in the ROPTIONS window.

FLOW
wraps the value of a character variable in its column. The FLOW option honors 
the split character. If the text contains no split character, then PROC REPORT 
tries to split text at a blank.

DEFINITION Window 2165



ID column
specifies that the item that you are defining is an ID variable. An ID variable and 
all columns to its left appear at the left of every page of a report. ID ensures that 
you can identify each row of the report when the report contains more columns 
than will fit on one page.

Color
From the list of colors, select the one to use in the REPORT window for the column 
heading and the values of the item that you are defining. The default is the color of 
Foreground in the SASCOLOR window. (For more information, see the online Help 
for the SASCOLOR window.)

Note: Not all operating environments and devices support all colors, and in some 
operating environments and devices, one color might map to another color. For 
example, if the DEFINITION window displays the word BROWN in yellow 
characters, then selecting BROWN results in a yellow item.

Buttons
Apply

applies the information in the open window to the report and keeps the window 
open.

Edit Program
opens the COMPUTE window and enables you to associate a compute block 
with the variable that you are defining.

OK
applies the information in the DEFINITION window to the report and closes the 
window.

Cancel
closes the DEFINITION window without applying changes made with APPLY.

DISPLAY PAGE Window
Displays a particular page of the report.

Details

Path
View ð Display Page

2166 Chapter 59 / REPORT Procedure Windows



Description
You can access the last page of the report by entering a large number for the page 
number. When you are on the last page of the report, PROC REPORT sends a note 
to the message line of the REPORT window.

EXPLORE Window
Lets you experiment with your data.

Restriction: You cannot open the EXPLORE window unless your report contains at least one group 
or order variable.

Details

Path
Edit ð Explore Data

Description
In the EXPLORE window, you can

n subset the data with list boxes

n suppress the display of a column with the Remove Column check box

n change the order of the columns with Rotate columns

Note: The results of your manipulations in the EXPLORE window appear in the 
REPORT window but are not saved in report definitions. 

Window Features
list boxes

The EXPLORE window contains three list boxes. These boxes contain the value 
All levels as well as actual values for the first three group or order variables in 
your report. The values reflect any WHERE clause processing that is in effect. 
For example, if you use a WHERE clause to subset the data so that it includes 
only the northeast and northwest sectors, then the only values that appear in the 
list box for Sector are All levels, Northeast, and Northwest. Selecting All 
levels in this case displays rows of the report for only the northeast and 
northwest sectors. To see data for all the sectors, you must clear the WHERE 
clause before you open the EXPLORE window.

Selecting values in the list boxes restricts the display in the REPORT window to 
the values that you select. If you select incompatible values, then PROC 
REPORT returns an error.

EXPLORE Window 2167



Remove Column
Above each list box in the EXPLORE window is a check box labeled Remove 
Column. Selecting this check box and applying the change removes the column 
from the REPORT window. You can easily restore the column by clearing the 
check box and applying that change.

Buttons
OK

applies the information in the EXPLORE window to the report and closes the 
window.

Apply
applies the information in the EXPLORE window to the report and keeps the 
window open.

Rotate columns
changes the order of the variables displayed in the list boxes. Each variable that 
can move one column to the left does; the leftmost variable moves to the third 
column.

Cancel
closes the EXPLORE window without applying changes made with APPLY.

FORMATS Window
Displays a list of formats and provides a sample of each one.

Details

Path
From the DEFINE window, type a question mark (?) in the Format field and select 
any of the Buttons except Cancel, or press Enter.

Description
When you select a format in the FORMATS window, a sample of that format 
appears in the Sample: field. Select the format that you want to use for the variable 
that you are defining.

Buttons
OK

writes the format that you have selected into the Format field in the DEFINITION 
window and closes the FORMATS window. To see the format in the report, select 
Apply in the DEFINITION window.

2168 Chapter 59 / REPORT Procedure Windows



Cancel
closes the FORMATS window without writing a format into the Format field.

LOAD REPORT Window
Loads a stored report definition.

Details

Path
File ð Open Report

Description
The first list box in the LOAD REPORT window lists all the librefs that are defined 
for your SAS session. The second list box lists all the catalogs that are in the 
selected library. The third list box lists descriptions of all the stored report definitions 
(entry types of REPT) that are in the selected catalog. If there is no description for 
an entry, then the list box contains the entry's name.

Buttons
OK

loads the current data into the selected report definition.

Cancel
closes the LOAD REPORT window without loading a new report definition.

Note:  Issuing the END command in the REPORT window returns you to the 
previous report definition (with the current data).

MESSAGES Window
Automatically opens to display notes, warnings, and errors returned by PROC REPORT.

Details
You must close the MESSAGES window by selecting OK before you can continue 
to use PROC REPORT.

MESSAGES Window 2169



PROFILE Window
Customizes some features of the PROC REPORT environment by creating a report profile.

Details

Path
Tools ð Report Profile

Description
The PROFILE window creates a report profile that

n specifies the SAS library, catalog, and entry that define alternative menus to use 
in the REPORT and COMPUTE windows. Use PROC PMENU to create catalog 
entries of type PMENU that define these menus. PMENU entries for both 
windows must be in the same catalog.

n sets defaults for WINDOWS, PROMPT, and COMMAND. PROC REPORT uses 
the default option whenever you start the procedure unless you specifically 
override the option in the PROC REPORT statement.

Specify the catalog that contains the profile to use with the PROFILE= option in the 
PROC REPORT statement. (See the discussion of “PROFILE=libref.catalog” on 
page 2019.) 

Buttons
OK

stores your profile in a file that is called 
SASUSER.PROFILE.REPORT.PROFILE.

Note: Use PROC CATALOG or the EXPLORER window to copy the profile to 
another location.

Cancel
closes the window without storing the profile.

PROMPTER Window
Prompts you for information as you add items to a report.

2170 Chapter 59 / REPORT Procedure Windows



Details

Path
Specify the PROMPT option when you start PROC REPORT or select PROMPT 
from the ROPTIONS window. The PROMPTER window appears the next time you 
add an item to the report.

Description
The prompter guides you through parts of the windows that are most commonly 
used to build a report. As the content of the PROMPTER window changes, the title 
of the window changes to the name of the window that you would use to perform a 
task if you were not using the prompter. The title change is to help you begin to 
associate the windows with their functions and to learn what window to use if you 
later decide to change something.

If you start PROC REPORT with prompting, then the first window gives you a 
chance to limit the number of observations that are used during prompting. When 
you exit the prompter, PROC REPORT removes the limit.

Buttons
OK

applies the information in the open window to the report and continues the 
prompting process.

Note: When you select OK from the last prompt window, PROC REPORT 
removes any limit on the number of observations that it is working with.

Apply
applies the information in the open window to the report and keeps the window 
open.

Backup
returns you to the previous PROMPTER window.

Exit Prompter
closes the PROMPTER window without applying any more changes to the 
report. If you have limited the number of observations to use during prompting, 
then PROC REPORT removes the limit.

REPORT Window
Is the surface on which the report appears.

REPORT Window 2171



Details

Path
Use WINDOWS or PROMPT in the PROC REPORT statement.

Description
You cannot write directly in any part of the REPORT window except column 
headings. To change other aspects of the report, you select a report item (for 
example, a column heading) as the target of the next command and issue the 
command. To select an item, use a mouse or cursor keys to position the cursor over 
it. Then click the mouse button or press Enter. To execute a command, make a 
selection from the menu bar at the top of the REPORT window. PROC REPORT 
displays the effect of a command immediately unless the DEFER option is on.

Note: Issuing the END command in the REPORT window returns you to the 
previous report definition with the current data. If there is no previous report 
definition, then END closes the REPORT window.

Note: In the REPORT window, there is no Save As option from the File menu to 
save your report to a file. Instead: 

1 From the REPORT window, select Save Data Set. In the dialog box, enter a SAS 
library and filename in which to save this data set.

2 From the Program Editor window, execute a PROC PRINT.

3 In the File menu, select Save As to save the generated output to a file.

ROPTIONS Window
Displays choices that control the layout and display of the entire report and identifies the SAS library and 
catalog containing CBT or HELP entries for items in the report.

Details

Path
Tools ð Options ð Report

2172 Chapter 59 / REPORT Procedure Windows



Description

Modes
DEFER

stores the information for changes and makes the changes all at once when you 
turn DEFER mode off or select View ð Refresh.

DEFER is particularly useful when you know that you need to make several 
changes to the report but do not want to see the intermediate reports.

By default, PROC REPORT redisplays the report in the REPORT window each 
time you redefine the report by adding or deleting an item, by changing 
information in the DEFINITION window, or by changing information in the 
BREAK window.

PROMPT
opens the PROMPTER window the next time you add an item to the report.

Options
CENTER

centers the report and summary text (customized break lines). If CENTER is not 
selected, then the report is left-justified.

PROC REPORT honors the first of these centering specifications that it finds:

n the CENTER or NOCENTER option in the PROC REPORT statement or the 
CENTER toggle in the ROPTIONS window

n the CENTER or NOCENTER option stored in the report definition loaded with 
REPORT= in the PROC REPORT statement

n the SAS system option CENTER or NOCENTER

When PROC REPORT's CENTER option is in effect, PROC REPORT ignores 
spacing that precedes the leftmost variable in the report.

ROPTIONS Window 2173



HEADLINE
underlines all column headings and the spaces between them at the top of each 
page of the report.

HEADLINE underlines with the second formatting character. (See the discussion 
of “FORMCHAR <(position(s))>='formatting-character(s)' ” on page 2012.) 

Default hyphen (-)

Tip In traditional (monospace) SAS output, you can underline column 
headings without underlining the spaces between them, by using '--' 
as the last line of each column heading instead of using HEADLINE.

HEADSKIP
writes a blank line beneath all column headings (or beneath the underlining that 
the HEADLINE option writes) at the top of each page of the report.

NAMED
writes name= in front of each value in the report, where name is the column 
heading for the value.

Interaction When you use NAMED, PROC REPORT automatically uses 
NOHEADER.

Tip Use NAMED in conjunction with WRAP to produce a report that 
wraps all columns for a single row of the report onto consecutive 
lines rather than placing columns of a wide report on separate 
pages.

NOHEADER
suppresses column headings, including headings that span multiple columns.

Once you suppress the display of column headings in the interactive report 
window environment, you cannot select any report items.

SHOWALL
overrides the parts of a definition that suppress the display of a column 
(NOPRINT and NOZERO). You define a report item with a DEFINE statement or 
in the DEFINITION window.

WRAP
displays one value from each column of the report, on consecutive lines if 
necessary, before displaying another value from the first column. By default, 
PROC REPORT displays values for only as many columns as it can fit on one 
page. It fills a page with values for these columns before starting to display 
values for the remaining columns on the next page.

Interaction When WRAP is in effect, PROC REPORT ignores PAGE in any item 
definitions.

Tip Typically, you use WRAP in conjunction with NAMED to avoid 
wrapping column headings.

BOX
uses formatting characters to add line-drawing characters to the report. These 
characters

n surround each page of the report

n separate column headings from the body of the report

n separate rows and columns from each other

2174 Chapter 59 / REPORT Procedure Windows



Interaction You cannot use BOX if you use WRAP in the PROC REPORT 
statement or ROPTIONS window or if you use FLOW in any item's 
definition.

See For information about formatting characters, see the discussion of 
“FORMCHAR <(position(s))>='formatting-character(s)' ” on page 
2012. 

MISSING
considers missing values as valid values for group, order, or across variables. 
Special missing values that are used to represent numeric values (the letters A 
through Z and the underscore (_) character) are each considered as a different 
value. A group for each missing value appears in the report. If you omit the 
MISSING option, then PROC REPORT does not include observations with a 
missing value for one or more group, order, or across variables in the report.

Attributes
LINESIZE=

specifies the line size for a report. PROC REPORT honors the first of these line-
size specifications that it finds:

n LS= in the PROC REPORT statement or LINESIZE= in the ROPTIONS 
window

n the LS= setting stored in the report definition loaded with REPORT= in the 
PROC REPORT statement

n the SAS system option LINESIZE=

Range 64-256 (integer)

Tip If the line size is greater than the width of the REPORT window, then 
use SAS interactive report window environment commands RIGHT and 
LEFT to display portions of the report that are not currently in the 
display.

PAGESIZE=
specifies the page size for a report. PROC REPORT honors the first of these 
page size specifications that it finds:

n PS= in the PROC REPORT statement or PAGESIZE= in the ROPTIONS 
window

n the PS= setting stored in the report definition loaded with REPORT= in the 
PROC REPORT statement

n the SAS system option PAGESIZE=

Range 15-32,767 (integer)

COLWIDTH=
specifies the default number of characters for columns containing computed 
variables or numeric data set variables.

When setting the width for a column, PROC REPORT first looks at WIDTH= in 
the definition for that column. If WIDTH= is not present, then PROC REPORT 
uses a column width large enough to accommodate the format for the item. (For 
information about formats, see the discussion of “Format=” on page 2161.) If no 

ROPTIONS Window 2175



format is associated with the item, then the column width depends on variable 
type:

Variable Resulting Column Width

Character variable in the input data set Length of the variable

Numeric variable in the input data set Value of the COLWIDTH= option

Computed variable (numeric or 
character)

Value of the COLWIDTH= option

Default 9

Range 1 to the line size

SPACING=space-between-columns
specifies the number of blank characters between columns. For each column, 
the sum of its width and the blank characters between it and the column to its left 
cannot exceed the line size.

Default 2

Interactions PROC REPORT separates all columns in the report by the number 
of blank characters specified by SPACING= in the PROC REPORT 
statement or the ROPTIONS window unless you use SPACING= in 
the definition of a particular item to change the spacing to the left 
of that item.

When CENTER is in effect, PROC REPORT ignores spacing that 
precedes the leftmost variable in the report.

SPLIT='character'
specifies the split character. PROC REPORT breaks a column heading when it 
reaches that character and continues the heading on the next line. The split 
character itself is not part of the column heading although each occurrence of 
the split character counts toward the 40-character maximum for a label.

Default slash (/)

Interaction The FLOW option in the DEFINE statement honors the split 
character.

Tip If you are typing over a heading (rather than entering one from the 
PROMPTER or DEFINITION window), then you do not see the 
effect of the split character until you refresh the screen by adding or 
deleting an item, by changing the contents of a DEFINITION or 
BREAK window, or by selectingView ð Refresh.

PANELS=number-of-panels
specifies the number of panels on each page of the report. If the width of a report 
is less than half of the line size, then you can display the data in multiple sets of 
columns so that rows that would otherwise appear on multiple pages appear on 
the same page. Each set of columns is a panel. A familiar example of this type of 

2176 Chapter 59 / REPORT Procedure Windows



report is a telephone book, which contains multiple panels of names and 
telephone numbers on a single page.

When PROC REPORT writes a multipanel report, it fills one panel before 
beginning the next.

The number of panels that fits on a page depends on the

n width of the panel

n space between panels

n line size

Default 1

Tip If number-of-panels is larger than the number of panels that can fit on 
the page, then PROC REPORT creates as many panels as it can. Let 
PROC REPORT put your data in the maximum number of panels that 
can fit on the page by specifying a large number of panels (for example, 
99).

See For information about specifying the space between panels see the 
discussion of PSPACE=. For information about setting the line size, see 
the discussion of “LINESIZE=” on page 2175.

PSPACE=space-between-panels
specifies the number of blank characters between panels. PROC REPORT 
separates all panels in the report by the same number of blank characters. For 
each panel, the sum of its width and the number of blank characters separating it 
from the panel to its left cannot exceed the line size.

Default 4

User Help
identifies the library and catalog containing user-defined Help for the report. This 
Help can be in CBT or HELP catalog entries. You can write a CBT or HELP entry 
for each item in the report with the BUILD procedure in SAS/AF software. You 
must store all such entries for a report in the same catalog.

Specify the entry name for Help for a particular report item in the DEFINITION 
window for that report item or in a DEFINE statement.

SAVE DATA SET Window
Lets you specify an output data set in which to store the data from the current report.

Details

Path
File ð Save Data Set

SAVE DATA SET Window 2177



Description
To specify an output data set, enter the name of the SAS library and the name of the 
data set (called member in the window) that you want to create in the Save Data Set 
window.

Buttons
OK

creates the output data set and closes the Save Data Set window.

Cancel
closes the Save Data Set window without creating an output data set.

SAVE DEFINITION Window
Saves a report definition for subsequent use with the same data set or with a similar data set.

Details

Path
File ð Save Report

Description
The SAVE DEFINITION window prompts you for the complete name of the catalog 
entry in which to store the definition of the current report and for an optional 
description of the report. This description shows up in the LOAD REPORT window 
and helps you select the appropriate report.

SAS stores the report definition as a catalog entry of type REPT. You can use a 
report definition to create an identically structured report for any SAS data set that 
contains variables with the same names as those variables that are used in the 
report definition.

Buttons
OK

creates the report definition and closes the SAVE DEFINITION window.

Cancel
closes the SAVE DEFINITION window without creating a report definition.

2178 Chapter 59 / REPORT Procedure Windows



SOURCE Window
Lists the PROC REPORT statements that build the current report.

Details

Path
Tools ð Report Statements

STATISTICS Window
Displays statistics that are available in PROC REPORT.

Details

Path
Edit ð Add item ð Statistic

After you select Statistic, PROC REPORT prompts you for the location of the 
statistic relative to the column that you have selected. After you select a location, 
the STATISTICS window appears.

Description
Select the statistics that you want to include in your report and close the window. 
When you select the first statistic, it moves to the top of the list in the window. If you 
select multiple statistics, then subsequent selections move to the bottom of the list 
of selected statistics. An asterisk (*) indicates each selected statistic. The order of 
selected statistics from top to bottom determines their order in the report from left to 
right.

Note: If you double-click on a statistic, then PROC REPORT immediately adds it to 
the report. The STATISTICS window remains open. 

To compute standard error and the Student's t test, you must use the default value 
of VARDEF=, which is DF.

STATISTICS Window 2179



To add all selected statistics to the report, select File ð Accept Selection. 
Selecting File ð Close closes the STATISTICS window without adding the selected 
statistics to the report.

WHERE Window
Selects observations from the data set that meet the conditions that you specify.

Details

Path
Subset ð Where

Description
Enter a where-expression in the Enter WHERE clause field. A where-expression is 
an arithmetic or logical expression that generally consists of a sequence of 
operands and operators. For information about constructing a where-expression, 
see the documentation of the “WHERE” in SAS DATA Step Statements: Reference. 

Note: You can clear all where-expressions by leaving the Enter WHERE clause 
field empty and by selecting OK.

Buttons
OK

applies the where-expression to the report and closes the WHERE window.

Cancel
closes the WHERE window without altering the report.

WHERE ALSO Window
Selects observations from the data set that meet the conditions that you specify and any other conditions 
that are already in effect.

2180 Chapter 59 / REPORT Procedure Windows

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en


Details

Path
Subset ð Where Also

Description
Enter a where-expression in the Enter where also clause field. A where-expression 
is an arithmetic or logical expression that generally consists of a sequence of 
operands and operators. For information about constructing a where-expression, 
see the documentation of the “WHERE” in SAS DATA Step Statements: Reference. 

Buttons
OK

adds the where-expression to any other where-expressions that are already in 
effect and applies them all to the report. It also closes the WHERE ALSO 
window.

Cancel
closes the WHERE ALSO window without altering the report.

WHERE ALSO Window 2181

http://documentation.sas.com/?docsetId=lestmtsref&docsetVersion=9.4&docsetTarget=n1xbr9r0s9veq0n137iftzxq4g7e.htm&locale=en


2182 Chapter 59 / REPORT Procedure Windows



Chapter 60
S3 Procedure

Overview: S3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2183
What Does the S3 Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2184

Concepts: S3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2184
Support for IMDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2184
PROC S3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2185
Defining Custom Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2186
Using Server-Side Encryption with AWS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 2188
Transfer Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2189

Syntax: S3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2189
PROC S3 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2190
BUCKET Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2193
COPY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2194
CREATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2195
DELETE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2195
DESTROY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2196
ENCKEY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2196
GET Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2198
GETACCEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2198
GETDIR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2199
INFO Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2200
LIST Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2200
MKDIR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2201
PUT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2201
PUTDIR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2202
REGION Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2203
RMDIR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2204

Examples: S3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2204
Example 1: Create a Bucket and Add a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2204
Example 2: Manage the Contents of a Bucket . . . . . . . . . . . . . . . . . . . . . . . . . . . 2206
Example 3: Manage Encryptions with S3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . 2207
Example 4: Define a Custom Region with PROC S3 . . . . . . . . . . . . . . . . . . . . . . 2211

2183



Overview: S3 Procedure

What Does the S3 Procedure Do?
Use the S3 procedure to perform object management for objects in Amazon S3. For 
example, you can create buckets and add files to S3. Common object types for use 
with SAS are files and directories.

Note:

The S3 procedure is not supported on z/OS platforms.

Before you can use the S3 procedure, you need an Amazon Web Service (AWS) 
key ID and secret. When using temporary credentials, you also need a security 
token. For more information, see the Amazon S3 documentation.

When the data that you add to or retrieve from S3 is larger than 5 MB, the 
procedure creates additional threads. These threads enable parallel processing for 
faster transfer speeds.

Concepts: S3 Procedure

Support for IMDS
Beginning in SAS 9.4M8, support has been added for EC2 Instance Metadata 
Service version 2 (IMDSv2). IMDSv1 continues to be supported. When deployed to 
Amazon EKS, SAS uses IMDS to obtain an IAM role that enables you to access S3 
resources.

SAS first attempts to use IMDSv2 to obtain a session token. If using IMDSv2 fails, 
then IMDSv1 is used.

Specify the following options in your Amazon environment:

n When you set http-tokens to required, you must use IMDSv2. If http-tokens is set 
to optional, then either IMDSv1 or IMDSv2 can be used.

n Set the http_put_response_hop_limit to 2 when you use IMDSv2.

2184 Chapter 60 / S3 Procedure

http://aws.amazon.com/documentation/s3/


PROC S3 Configuration

Overview of PROC S3 Configuration
The S3 procedure reads configuration and security information from configuration 
files, options in the PROC S3 statement, or from an Amazon EC2 instance role. 
When configuration files are used, these configuration files can be either AWS 
Command-Line Interface (CLI) configuration files or a local PROC S3 configuration 
file. PROC S3 reads both types of configuration files when it runs.

Options that are specified in AWS CLI configuration files override options that are 
specified in the PROC S3 configuration file. Options that you specify in the S3 
procedure override options that are set in configuration files.

AWS CLI Configuration Files
Unless you specify otherwise, PROC S3 reads AWS CLI configuration files from 
their default locations in your home directory and uses the default profile. The AWS 
CLI configuration files are called config and credentials. You can specify an 
alternative location for the config file with the AWSCONFIG= option. You can specify 
an alternative location for the credentials file with the AWSCREDENTIALS= option.

The config file contains multiple sets of options called profiles. Specify which 
configuration profile to use with the PROFILE= option in the PROC S3 statement.

PROC S3 Configuration File
You can create a local PROC S3 configuration file to use for connection options. 
The default PROC S3 configuration file is tks3.conf on Windows or .tks3.conf on 
UNIX. It is located in your home directory. If the local configuration file with the 
default name exists, the S3 procedure reads it automatically. If the PROC S3 
configuration file uses a different name or is in a different location, specify its name 
and path with the CONFIG= option in the PROC S3 statement.

Note: If an option is specified in the AWS CLI configuration file as well as in the 
local PROC S3 configuration file, then the value in the AWS CLI configuration file 
takes precedence.

The PROC S3 configuration file contains case-sensitive name-value pairs that you 
specify as name=value. Do not enclose values in quotation marks. The file can 
contain one or more sets of the following name-value pairs:

Concepts: S3 Procedure 2185



region
specifies the AWS region to connect to. See the Region argument for the list of 
valid region values.

keyId
specifies the AWS access key ID. This value is a 20-character, alphanumeric 
string.

secret
specifies the AWS secret access key. This value is a 40-character string.

Note: See “Securing the PROC S3 Configuration File” for information about 
restricting access to this information.

sessionToken
specifies the session token. Specify this value if you are using temporary AWS 
security credentials.

Note: See “Securing the PROC S3 Configuration File” for information about 
restricting access to this information.

ssl
specifies whether SSL or TLS should be used for connections. Specify true or 
yes to use SSL or TLS. Any other value deactivates SSL or TLS.

Here is a sample PROC S3 configuration file:

ssl=yes
keyID=AKFKI8OMEVIM3XJHKEUQ
secret=wb89GergI/3xejxudQugFj5Wi4iqlFJhGpLvYVv
region=usstd

Securing the PROC S3 Configuration File
Because the secret and sessionToken values are confidential, use your operating 
system to restrict access to the file. For example, in UNIX you might issue this 
command to restrict access to just yourself:

chmod 700 /u/$user/.tks3.conf

In Microsoft Windows, use the file properties to restrict access to the PROC S3 
configuration file. You can access the file properties by right-clicking the file, 
selecting Properties, and then selecting the Security tab.

Defining Custom Regions
You can define custom regions in addition to the predefined list of regions that is 
supplied with the S3 environment. One way to manage custom regions is by using 
the REGION statement with PROC S3. If you define custom regions with PROC S3, 
the region definition lasts for the duration of your SAS session. You need to redefine 
the region in subsequent SAS sessions.

2186 Chapter 60 / S3 Procedure



Note: Support for custom regions was added to PROC S3 for SAS Viya in a July 
2021 update to SAS Viya 3.5. Support for custom regions was added to PROC S3 
for SAS 9 in SAS 9.4M8.

Another way to manage custom regions is with the TKS3_CUSTOM_REGION 
environment variable. You can define this environment variable in the Autoexec file 
or by using SAS Environment Manager. In this way, the custom region definition is 
automatically used when you start a subsequent SAS session.

Here is the syntax to set the TKS3_CUSTOM_REGION environment variable:

TKS3_CUSTOM_REGION=<'>region-name<'>,HTTP-host,HTTP-port,SSL-HTTP-
port,SSLRequired,SSLAllowed

region-name
specifies the custom region name. Enclose the name in quotation marks if it 
contains spaces or special characters.

HTTP-host
specifies the host name of the server for the region.

HTTP-port
specifies the port number of the server when communicating without SSL. Use 0 
to use the default port number for the HTTP protocol.

SSL-HTTP-port
specifies the port number of the server when communicating with SSL. Use 0 to 
use the default port number for the HTTPS protocol.

SSLRequired
specifies whether all communications with the S3 environment must use SSL. 
Values are TRUE or FALSE.

SSLAllowed
specifies whether communications with the S3 environment can use SSL. Values 
are TRUE or FALSE.

Interaction This value is ignored if the SSLRequired value is TRUE.

Here is a sample setting for this environment variable that uses a BackBlaze B2 
server.

TKS3_CUSTOM_REGION=us-west-002,s3.us-west-002.backblazeb2.com,0,0,TRUE,TRUE

In Linux, define multiple regions by separating sets of values with a colon (:). In 
Windows, separate sets of values with a semicolon (;).

Concepts: S3 Procedure 2187



Using Server-Side Encryption with AWS Data

Manage Encryption Keys with the 
ENCKEY Statement
Use the ENCKEY statement to name and manage encryption keys. Use the ADD 
option to add a new name and encryption key. You can then call the named 
encryption key when you transfer data between the Amazon S3 environment and 
SAS using the GET, GETDIR, PUT, and PUTDIR statements. You can also request 
a list of currently registered encryption keys with the ENCKEY statement LIST 
option or delete a previously registered encryption key with the REMOVE option.

You can specify an encryption key in three forms: an Amazon Key Management 
Service (KMS) key, a customer-supplied server-side encryption key (SSE-C) key 
represented as a character string, or an SSE-C key represented by a hexadecimal 
value.

You can specify a KMS key from the Amazon S3 environment. This type of key 
works with AWS server-side encryption and is managed in the S3 environment as 
part of the IAM service.

For SSE-C encryption keys, you can specify the key as a 32-byte character string or 
as a 64-digit hexadecimal value. User-specified keys are then used by the S3 
environment to encrypt data using the AES256 encryption algorithm.

As a best practice, manage encryption keys in a separate SAS program. You can 
then use the %INCLUDE statement to read in your named encryptions and work 
with the encryption key names. For an example, see “Example 3: Manage 
Encryptions with S3 Data” on page 2207.

Use Encryption Keys with SAS/ACCESS
After you add an encryption key, you can use that key with SAS/ACCESS Interface 
to Amazon Redshift. In a LIBNAME statement, use the BL_ENCKEY= option to call 
an encryption key by the name that you assigned with the ENCKEY statement. This 
enables encryption during bulk loading or unloading between the Amazon Redshift 
environment and SAS. Alternatively, you can specify the BL_ENCKEY= data set 
option when referring to a specific Amazon Redshift data set, such as in a DATA 
step or in a call to PROC SQL.

Note: Only IAM:KMS keys are supported for SAS/ACCESS Interface to Amazon 
Redshift.

For more information, see “Encryption with Amazon Redshift” in SAS/ACCESS for 
Relational Databases: Reference.

2188 Chapter 60 / S3 Procedure

http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n14j2rj3551zp8n1pphe13ga9uum.htm&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n14j2rj3551zp8n1pphe13ga9uum.htm&locale=en


Transfer Acceleration
Transfer acceleration is a special mode that is used to load or write data. In this 
mode, an alternative host enables faster data transfer. For more information, see 
your AWS documentation.

The GET, GETDIR, PUT, and PUTDIR statements take advantage of this faster data 
transfer method when transfer acceleration is enabled.

Syntax: S3 Procedure
PROC S3 <options>;

BUCKET "bucket-name";
COPY <SRCKEY="key-name"> "source-s3-location" <ENCKEY="key-name"> 

"destination-s3-location";
CREATE "bucket-name";
DELETE "s3-location";
DESTROY "bucket-name";
ENCKEY <ADD> | <REPLACE> NAME="key-name" ID="key-ID"

<CONTEXT="key-context">;
GET <ENCKEY="key-name"> "s3-location" "local-file-path";
GETACCEL "bucket-name";
GETDIR <ENCKEY="key-name"> "s3-location" "local-path";
INFO <ENCKEY="key-name"> "s3-location";
LIST <OUT=libref.file><_SHORT_> "s3-location";
MKDIR "s3-location";
PUT <ENCKEY="key-name"> "local-path" "s3-location";
PUTDIR <ENCKEY="key-name"> "local-path" "s3-location";
REGION <ADD HOST="AWS-server" NAME="region-name" <PORT=port-

value> <REPLACE> <SSLALLOWED><SSLPORT=SSL-port> 
<SSLREQUIRED>> | <LIST> | <REMOVE NAME="region-name">;

RMDIR "s3-location";
RUN;

Statement Task Example

PROC S3 Specifies the connection parameters to S3. Ex. 1, Ex. 2, 
Ex. 3, Ex. 4

BUCKET Specifies whether to enable transfer 
acceleration for a bucket.

COPY Copies an S3 object to an S3 destination. Ex. 2, Ex. 3

Syntax: S3 Procedure 2189

http://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html


Statement Task Example

CREATE Creates an S3 bucket. Ex. 1

DELETE Deletes an S3 location or object. Ex. 2

DESTROY Deletes an S3 bucket.

ENCKEY Enables you to work with encryption keys. Ex. 3

GET Retrieves an S3 object. Ex. 3

GETACCEL Retrieves the transfer acceleration status for a 
bucket.

GETDIR Retrieves the contents of an S3 directory. Ex. 3

INFO Lists information about an S3 location or object.

LIST Lists the contents of an S3 location. Ex. 1

MKDIR Specifies a directory to create in an S3 location. Ex. 2

PUT Specifies a local object to write to an S3 
location.

Ex. 1, Ex. 3

PUTDIR Specifies a local directory to write to an S3 
location.

Ex. 3

REGION Enables you to add, list, or remove custom 
regions.

Ex. 4

RMDIR Deletes a directory from an S3 location.

PROC S3 Statement
Specifies the connection parameters for connecting to AWS S3.

Examples: “Example 1: Create a Bucket and Add a File” on page 2204
“Example 2: Manage the Contents of a Bucket” on page 2206
“Example 3: Manage Encryptions with S3 Data” on page 2207
“Example 4: Define a Custom Region with PROC S3” on page 2211

Syntax
PROC S3 <AWSCONFIG="AWS-CLI-file-path"> <CONFIG="local-configuration-file-
path"> <PROFILE="configuration-profile-name"> <AWSCREDENTIALS="AWS-
credentials-file-path"> <ROLENAME="IAM-role-name" | ROLEARN="IAM-role-
ARN> <KEYID="AWS-key-ID"> <SECRET="AWS-secret"> <SESSION="session-
token"> <SSL | NOSSL> <REGION=AWS-region>;

2190 Chapter 60 / S3 Procedure



Optional Arguments
AWSCONFIG="AWS-CLI-file-path"

specifies the path of the AWS CLI configuration file, called config. This file 
contains connection parameters to access AWS S3. If a value is specified in the 
AWS CLI configuration file and in the PROC S3 configuration file, the value in 
the AWS CLI file takes precedence.

Note: Support for this option was added in SAS 9.4M5.

AWSCREDENTIALS="AWS-credentials-file-path"
specifies the path of the AWS credentials file. This file contains the credentials 
that are used to access AWS S3.

Note: Support for this option was added in SAS Viya 3.4.

CONFIG="local-configuration-file-path"
specifies the path and filename of the PROC S3 configuration file that contains 
connection parameters to access AWS S3. If you specify this option, then the 
specified configuration file is read instead of the default PROC S3 configuration 
file in the default location.

The default PROC S3 configuration file is file .tks3.conf in your home directory in 
UNIX or file tks3.conf in your home directory in Windows. You do not need to 
specify the CONFIG= option if your configuration file is in the default location.

For more information, see “PROC S3 Configuration File” on page 2185.

KEYID="AWS-key-ID"
specifies the AWS access key ID. This value is a 20-character, alphanumeric 
string. A sample key ID value is AKIAIOSFODNN7EXAMPLE.

PROFILE="profile-name"
specifies the profile to use in the AWS CLI file config. Sets of options are 
grouped into profiles. If you do not specify the PROFILE= option, PROC S3 uses 
the default profile.

Note: Support for this option was added in SAS 9.4M5.

REGION=AWS-region
specifies the AWS region to connect to. Here are the valid region values.

You might need to activate a region for your account if it does not appear in your 
list of regions. See your AWS documentation for more information.

Table 60.1 PROC S3 Region Values

PROC S3 Region 
Value Description

Corresponding AWS 
S3 Region

afcapetown Africa (Cape Town) af-south-1

aphongkong Asia Pacific (Hong Kong) ap-east-1

apindia Asia Pacific (India) ap-south-1

PROC S3 Statement 2191



PROC S3 Region 
Value Description

Corresponding AWS 
S3 Region

aposaka1 Asia Pacific (Osaka) ap-northeast-3

apseoul Asia Pacific (Seoul) ap-northeast-2

apsingapore Asia Pacific (Singapore) ap-southeast-1

apsydney Asia Pacific (Sydney) ap-southeast-2

aptokyo Asia Pacific (Tokyo) ap-northeast-1

cacentral Canada (Central) ca-central-1

cnbeijing China (Beijing) cn-north-1

cnningxa China (Ningxia) cn-northwest-1

eufrankfurt EU (Frankfurt) eu-central-1

euireland EU (Ireland) eu-west-1

eulondon EU (London) eu-west-2

eumilan EU (Milan) eu-south-1

euparis EU (Paris) eu-west-3

eustockholm EU (Stockholm) eu-north-1

fips US Government Cloud (FIPS) us-gov-west-1

mebahrain Middle East (Bahrain) me-south-1

sa South America (Sao Paulo) sa-east-1

useast US East (Virginia) us-east-1

useastoh US East (Ohio) us-east-2

usgov US Government Cloud us-gov-west-1

uswest US West (Oregon) us-west-2

uswestca US West (California) us-west-1

1 Contact your AWS sales representative to get access to the Asia Pacific (Osaka) region.

2192 Chapter 60 / S3 Procedure



ROLENAME="IAM-role-name"
specifies an IAM role name that enables you to get access credentials to S3 via 
the AssumeRole IAM operation.

Interaction Specify either the ROLENAME= option or the ROLEARN= option. 
Do not specify both.

Note Support for this option was added in SAS 9.4M7.

Example proc s3 rolename="s3AccessRole" <additional-options>;

ROLEARN="IAM-role-ARN"
specifies an Amazon Resource Name (ARN) that identifies an IAM role. The 
associated IAM role enables you to get access credentials to S3 via the 
AssumeRole IAM operation.

Interaction Specify either the ROLEARN= option or the ROLENAME= option. 
Do not specify both.

Note Support for this option was added in SAS 9.4M7.

Example proc s3 rolearn="arn:aws:iam::123456789012:role/s3AccessRole" 
       <additional-options>;

SECRET="AWS-secret"
specifies the AWS secret access key. This value is a 40-character string. A 
sample secret access value is wJalrXUtnFEMI/K7MDENG/
bPxRfiCYEXAMPLEKEY.

SESSION="session-token"
specifies the AWS session token. Use this value if you are using temporary AWS 
security credentials.

For more information, see “PROC S3 Configuration” on page 2185.

Note Support for this option was added in the May 2021 update for SAS 9.4M7 
and SAS Viya 3.5.

SSL | NOSSL
SSL specifies that SSL or TLS should be enabled during data transfer. NOSSL 
specifies that SSL or TLS should be disabled during data transfer.

You can use the SSL value to override an ssl=no setting in the PROC S3 
configuration file. If there is no value specified for SSL in the PROC S3 
statement or in a PROC S3 configuration file, then SSL or TLS is used during 
data transfer by default.

Interaction: If you specify NOSSL in the PROC S3 statement, then enabling 
server-side encryption with the ENCKEY statement fails.

BUCKET Statement
Sets the acceleration transfer mode for the specified bucket.

Note: Support for this statement was added in SAS 9.4M5.

BUCKET Statement 2193



Syntax
BUCKET "bucket-name" ACCELERATE | NOACCELERATE;

Required Arguments
bucket-name

specifies the name of the S3 bucket for which you are setting transfer 
acceleration mode. For more information, see “Transfer Acceleration” on page 
2189.

ACCELERATE
enables transfer acceleration for the specified bucket.

NOACCELERATE
disables transfer acceleration for the specified bucket.

COPY Statement
Copies an object from an S3 source location to an S3 destination.

See: “Example 2: Manage the Contents of a Bucket” on page 2206

Syntax
COPY <SRCKEY="key-name"> "source-s3-location" <ENCKEY="key-name"> 
"destination-s3-location";

Required Arguments
source-s3-location

specifies the S3 location of the object to be copied. Fully qualify the S3 location 
from the bucket name to the object name.

destination-s3-location
specifies the S3 location to which an object should be copied. Fully qualify the 
S3 location from the bucket name to the object name.

Optional Arguments
ENCKEY="key-name"

specifies an encryption key name that identifies the encryption for the created 
object. The name must match an encryption key name that you specified in an 
ENCKEY statement.

The ENCKEY= option defaults to no encryption. You can use the value 
_DEFAULT_ to use the default encryption key. Your default encryption key is 
automatically created.

2194 Chapter 60 / S3 Procedure



SRCKEY="key-name"
specifies the encryption of the source object. The name must match an 
encryption key name that you specified in an ENCKEY statement.

Note: This value is not applied to the created object if the ENCKEY= option is 
not specified.

CREATE Statement
Creates a bucket.

See: “Example 1: Create a Bucket and Add a File” on page 2204

Syntax
CREATE "bucket-name";

Required Argument
bucket-name

specifies the name of the S3 bucket that you are creating. The name of the S3 
bucket that you create must be unique across S3.

DELETE Statement
Deletes an S3 location or object.

See: “Example 2: Manage the Contents of a Bucket” on page 2206

Syntax
DELETE "s3-location";

Required Argument
s3-location

specifies the S3 location that you are deleting. Fully qualify the S3 location from 
the bucket name to the object name.

DELETE Statement 2195



DESTROY Statement
Deletes an S3 bucket.

Syntax
DESTROY "bucket-name";

Required Argument
bucket-name

specifies the name of an S3 bucket that you are deleting. The bucket that you 
specify must exist in S3 and must be empty.

ENCKEY Statement
Specifies the encryption key for an S3 location.

Note: Support for this statement was added in SAS 9.4M6.

See: “Example 3: Manage Encryptions with S3 Data” on page 2207

Syntax
Form 1: ENCKEY ADD | REPLACE NAME="key-name"ID="key-ID" <CONTEXT="key-

context">;

Form 2: ENCKEY ADD | REPLACE NAME="key-name" KEY="key-string" 
<ALGORITHM="S3-encryption-algorithm"> <CONTEXT="key-context">;

Form 3: ENCKEY ADD | REPLACE NAME="key-name" HEXKEY="hexadecimal-value" 
<ALGORITHM="S3-encryption-algorithm"> <CONTEXT="key-context">;

Form 4: ENCKEY LIST <NAME="key-name">;

Form 5: ENCKEY REMOVE NAME="key-name";

Arguments
ADD

indicates that you are adding an encryption key.

Requirement: Specify the HEXKEY=, ID=, or KEY= options with ADD, depending 
on the type of key that you are using.

2196 Chapter 60 / S3 Procedure



ALGORITHM="S3-encryption-algorithm"
specifies the S3 encryption algorithm that is used in the S3 location.

The only value that is currently supported is AES256. This value is the default 
when you do not specify the ALGORITHM= option.

CONTEXT="key-context"
specifies the key context for the encryption key.

HEXKEY="hexadecimal-value"
specifies an encryption key in the form of a 64-digit hexadecimal value.

ID="key-ID"
specifies the key ID for the encryption key.

KEY="key-string"
specifies an encryption key as a 32-byte character string.

LIST
requests a list of defined encryption keys.

NAME="key-name"
specifies the encryption key name. This is a user-friendly name that you can use 
to refer to an encryption key. The value is case insensitive.

NAME= is required with the ADD, REPLACE, or REMOVE options. When used 
with the LIST option, NAME= is optional.

REMOVE
removes an encryption key from the list of defined keys.

Requirement: Specify the NAME= option with REMOVE.

REPLACE
specifies that the existing encryption key should be replaced. If not set, any 
attempt to redefine an encryption key fails.

Requirement: Specify the HEXKEY=, ID=, or KEY= options with REPLACE, 
depending on the type of key that you are using.

Details
The ENCKEY statement is used to support server-side encryption in an AWS S3 
environment.

n Use Form 1 of the ENCKEY statement to add or replace an IAM:KMS encryption 
key.

n Use Form 2 of the ENCKEY statement to add or replace an encryption key in the 
form of a string. The string must be 32 bytes long.

n Use Form 3 of the ENCKEY statement to add or replace an encryption key 
expressed as hexadecimal characters. Do not use the “0x” prefix when you 
specify the hexadecimal key string. The hexadecimal string should be 64 digits 
long.

n Use Form 4 of the ENCKEY statement to view the list of defined encryption keys.

n Use Form 5 of the ENCKEY statement to remove an encryption key.

ENCKEY Statement 2197



Note: If you specify the NOSSL option in the PROC S3 statement, then using 
encryption with the ENCKEY statement fails.

You must specify one of these options in the ENCKEY statement: ADD, LIST, 
REMOVE, or REPLACE.

Encryption keys are specified for the duration of your SAS session.

The encryption key _DEFAULT_ cannot be modified. The _DEFAULT_ encryption 
key is defined by the AWS environment.

For more information, see Protecting Data Using Server-Side Encryption in your 
AWS documentation.

GET Statement
Retrieves an S3 object.

Note: This statement uses transfer acceleration when it is available. For more information, see 
“Transfer Acceleration” on page 2189.

Syntax
GET <ENCKEY="key-name"> "s3-location" "local-file-path";

Required Arguments
s3-location

specifies the name of an S3 object to retrieve. Fully qualify the location from the 
bucket name to the object name.

local-file-path
specifies a local file in which to store the object. Examples are C:\public
\filename for Windows or /u/$USER/filename for UNIX.

Optional Argument
ENCKEY="key-name"

specifies an encryption key name that identifies the encryption to use during data 
retrieval. The name must match an encryption key name that you specified in an 
ENCKEY statement. The name must also correspond to the encryption key that 
was used when the object was created in the S3 environment. Otherwise, S3 
returns an error.

GETACCEL Statement
Retrieves the transfer acceleration status for a bucket.

2198 Chapter 60 / S3 Procedure

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html


Note: Support for this statement was added in SAS 9.4M5.

Syntax
GETACCEL "bucket-name";

Required Argument
bucket-name

specifies the name of an S3 bucket for which you want the transfer acceleration 
status. For more information, see “Transfer Acceleration” on page 2189.

GETDIR Statement
Retrieves the contents of an S3 directory.

Note: This statement uses transfer acceleration when it is available. For more information, see 
“Transfer Acceleration” on page 2189.

Syntax
GETDIR <ENCKEY="key-name"> "s3-location" "local-path";

Required Arguments
s3-location

specifies the name of an S3 directory to retrieve. Fully qualify the location from 
the bucket name to the directory.

local-path
specifies a directory that is local to the SAS client. Examples are C:\public for 
Windows or /u/$USER/ for UNIX.

Optional Argument
ENCKEY="key-name"

specifies an encryption key name that identifies the encryption to use during data 
retrieval. The name must match an encryption key name that you specified in an 
ENCKEY statement.

Note: Encryption fails if any files in the source location do not use the specified 
encryption key.

GETDIR Statement 2199



INFO Statement
Requests information in the SAS log about an S3 location.

Note: Information about a file includes the region, path, and the date and time at which the file 
was last modified.

Syntax
INFO <ENCKEY="key-name"> "s3-location";

Required Argument
s3-location

specifies a fully qualified path from the bucket name to the object name.

Optional Argument
ENCKEY="key-name"

specifies an encryption key name. The name must match an encryption key 
name that you specified in an ENCKEY statement.

Note: The ENCKEY= option is required if any objects in the S3 location are 
encrypted.

LIST Statement
Requests information in the SAS log about the contents of an S3 location.

Syntax
LIST <_SHORT_> "s3-location" <OUT=filename >;

Required Argument
s3-location

specifies a fully qualified path from the bucket name to the object name. The 
object that you specify is typically a container, such as a bucket or a directory.

2200 Chapter 60 / S3 Procedure



Optional Arguments
_SHORT_

specifies that you want a list of object names only.

OUT=filename
specifies an output file for the output of the LIST statement.

Provide the filename as libname.file or as a fileref.

Note Support for this option was added in SAS 9.4M7 and SAS Viya 3.5.

Example list "/myS3location" out=sasuser.list;

MKDIR Statement
Specifies a directory to create in an S3 location.

See: “Example 2: Manage the Contents of a Bucket” on page 2206

Syntax
MKDIR "s3-location";

Required Argument
s3-location

specifies a fully qualified path from the bucket name to the directory name that 
you want to create.

PUT Statement
Specifies a local object to write to an S3 location.

Note: This statement uses transfer acceleration when it is available. For more information, see 
“Transfer Acceleration” on page 2189.

Syntax
PUT <ENCKEY="key-name"> "local-path" "s3-location";

PUT Statement 2201



Required Arguments
local-path

specifies a file or directory that is local to the SAS client.

s3-location
specifies a location in S3. Fully qualify the path from the bucket name to the 
object name.

Optional Argument
ENCKEY="key-name"

specifies an encryption key name that identifies the encryption to use when 
storing data in S3. The name must match an encryption key name that you 
specified in an ENCKEY statement.

Example To specify your default encryption key:
put enckey=_default_ "/home/demouser/s3/foo.txt" "/mybucket/foo.txt";

PUTDIR Statement
Specifies a local directory to write to an S3 location.

Note: This statement uses transfer acceleration when it is available. For more information, see 
“Transfer Acceleration” on page 2189.

Syntax
PUTDIR <ENCKEY="key-name"> "local-path" "s3-location";

Required Arguments
local-path

specifies a directory that is local to the SAS client.

s3-location
specifies a location in S3. Fully qualify the path from the bucket name to the 
object name.

Optional Argument
ENCKEY="key-name"

specifies an encryption key name that identifies the encryption to use when 
writing to S3. The name must match an encryption key name that you specified 
in an ENCKEY statement.

Note: All files in the S3 location are encrypted with the specified encryption key.

2202 Chapter 60 / S3 Procedure



REGION Statement
Enables you to add, list, or remove custom regions.

Notes: Support for this statement in SAS Viya 3.5 starts in July 2021.
Support for this statement in SAS 9 starts in SAS 9.4M8.

See: “Example 4: Define a Custom Region with PROC S3” on page 2211

Syntax
Form 1: REGION ADD HOST="AWS-server" NAME="region-name" <PORT=port-value> 

<REPLACE> <SSLALLOWED><SSLPORT=SSL-port> <SSLREQUIRED> ;

Form 2: REGION LIST;

Form 3: REGION REMOVE NAME="region-name";

Arguments
ADD

specifies that you are adding a custom region for the S3 environment.

HOST="AWS-server"
specifies the server that PROC S3 connects to on AWS.

Note Support for the HOST= option was added in the August 2021 update 
for SAS Viya 3.5.

Example host="myhost.amazonaws.com"

LIST
requests a list of all defined S3 regions.

NAME="region-name"
specifies the name of the region that you are adding or removing.

PORT=port-value
specifies the HTTP port value to use to connect to S3 without SSL.

If you do not specify a port value, the default value is used.

REMOVE
specifies to remove the region that you identify with the NAME= option.

Restriction You cannot remove any of the predefined S3 regions. See the 
PROC S3 statement REGION= argument for the list of predefined 
region values.

REPLACE
indicates that a custom region should be added and should overwrite a region of 
the same name, if it exists.

REGION Statement 2203



Restriction You cannot replace any of the predefined regions for S3. See the 
REGION= argument for the list of predefined region values.

SSLALLOWED
indicates that SSL is allowed when communicating with the S3 environment.

Interaction This value is ignored if SSLREQUIRED is specified.

SSLPORT=SSL-port
specifies the HTTP port value to use to connect to S3 with SSL.

If you do not specify a port value, the default value is used.

SSLREQUIRED
indicates that all communications with the S3 environment must be made using 
SSL.

RMDIR Statement
Specifies a directory to delete from an S3 location.

Syntax
RMDIR "s3-location";

Required Argument
s3-location

specifies a directory in S3. Fully qualify the path from the bucket name to the 
directory name. The directory that you specify must be empty.

Examples: S3 Procedure

Example 1: Create a Bucket and Add a File
Features: PROC S3 statement, CONFIG= option

CREATE statement
PUT statement
LIST statement

2204 Chapter 60 / S3 Procedure



Details
This example uses the CREATE statement in PROC S3 to create a bucket in S3. 
Next, the example shows how to add a file to the bucket and then list the contents of 
the bucket.

Program
proc s3 config="/u/marti/.tks3.conf";

   create "/myBucket";

   put "/u/marti/project/licj.csv" "/myBucket/licj.csv";

   list "/myBucket";
run;

Program Description
Execute the PROC S3 statement and specify the location of the PROC S3 
configuration file. Connect to S3 with connection options that are contained in 
the .tks3.conf file in the specified directory.

proc s3 config="/u/marti/.tks3.conf";

Create a bucket in S3. Use the CREATE statement to create the bucket myBucket.

   create "/myBucket";

Store a copy of a local file in the new S3 bucket. Execute the PUT statement to 
copy the local file licj.csv into a file of the same name in the S3 bucket myBucket.

   put "/u/marti/project/licj.csv" "/myBucket/licj.csv";

List the contents of the S3 bucket. Use the LIST statement to see a list of the 
contents of myBucket.

   list "/myBucket";
run;

If the file licj.csv is the only file in the bucket, then the following message is printed 
to the SAS log.

Output 60.1 List of Bucket Contents

licj.csv    2791403 2015-06-05T19:27:35.000Z

Example 1: Create a Bucket and Add a File 2205



Example 2: Manage the Contents of a Bucket
Features: PROC S3 statement

MKDIR statement
COPY statement
DELETE statement

Details
This example shows how to create a directory in a bucket and how to copy and 
delete files.

Program
proc s3;

   mkdir "/myBucket/csv";

   copy "/myBucket/licj.csv" "/myBucket/csv/licj.csv";

   delete "/myBucket/licj.csv";
run;

Program Description
Connect to S3 using the default configuration file. Use the PROC S3 statement 
to connect to S3 with connection options that are specified in the .tks3.conf file in 
your home directory. This is the default configuration file location.

proc s3;

Create a new directory. Use the MKDIR statement to create a directory, csv, in the 
myBucket. A note is printed to the SAS log.

   mkdir "/myBucket/csv";

Copy a file into the new directory. Use the COPY statement to copy a file, licj.csv, 
from myBucket into the csv directory.

   copy "/myBucket/licj.csv" "/myBucket/csv/licj.csv";

Delete the original copy of the file. Use the DELETE statement to delete the 
original copy of the licj.csv file from myBucket. Only the copy of the file in /
myBucket/csv remains.

   delete "/myBucket/licj.csv";
run;

2206 Chapter 60 / S3 Procedure



Output 60.2 Managing Data in a Bucket

NOTE: Created directory /myBucket/csv.

NOTE: Deleted object /myBucket/licj.csv.

Example 3: Manage Encryptions with S3 Data
Features: PROC S3 statement

COPY statement
ENCKEY statement
GET statement
GETDIR statement
PUT statement
PUTDIR statement

Details
This example shows how to work with encryption keys. As a best practice, manage 
encryption keys in a separate SAS program that you include into another SAS 
program that interacts with the AWS environment. In this example, the program that 
manages encryption keys is called keys.sas. All encryptions use the default AES256 
encryption algorithm that is supported by the S3 environment.

PROGRAM: Keys.sas
/* keys.sas */
proc s3;

   /* IAM:KMS keys */
   enckey add name="foo" id="98v27390-1si1-8sc9-38k0-k893j354nw5g";
   enckey add name="bar" id="22f87852-0ak1-5xy2-01j1-l852g809gx4q";

   /* SSE-C keys (user-specified) as character string */
   enckey add name="foo2" key="ke-sj-eb-ok-qk-zi-nb-lu-fh-wi-zi";
   enckey add name="bar2" key="wl-tk-64-rk-i0-zn-wk-7c-s8-a8-jk";

   /* SSE-C (user-specified) keys as hex data */
   enckey replace name="foo2" 
      
hexkey="e1d2e3bb4a5f6079889706b3c4d1e2f999f2c3bb4c5f6079888706f6a4b3e2d
a";
   enckey replace name="bar2" 

Example 3: Manage Encryptions with S3 Data 2207



      
hexkey="989294020345689209375802937572839401092837467483920183758392019
2";

run;

Program Description
Add an IAM:KMS encryption key. Use the ENCKEY statement with the ADD 
option to add two encryption keys named foo and bar. You supply the ID= value that 
is defined by the IAM service in the AWS environment. Use the NAME= option to 
provide a user-friendly identifier for the encryption key.

/* keys.sas */
proc s3;

   /* IAM:KMS keys */
   enckey add name="foo" id="98v27390-1si1-8sc9-38k0-k893j354nw5g";
   enckey add name="bar" id="22f87852-0ak1-5xy2-01j1-l852g809gx4q";

Add an SSE-C key with a character string. You can use the ENCKEY statement 
and the ADD option to add a user-specified encryption key. Specify a 32-byte 
character string as the KEY= value and provide a user-friendly value for NAME=.

   /* SSE-C keys (user-specified) as character string */
   enckey add name="foo2" key="ke-sj-eb-ok-qk-zi-nb-lu-fh-wi-zi";
   enckey add name="bar2" key="wl-tk-64-rk-i0-zn-wk-7c-s8-a8-jk";

Replace existing encryption keys with a user-defined hexadecimal key. Use 
the REPLACE option with the NAME= option to identify an encryption key that you 
want to replace. You can specify an encryption key with a 64-digit hexadecimal 
value with the HEXKEY= option.

   /* SSE-C (user-specified) keys as hex data */
   enckey replace name="foo2" 
      
hexkey="e1d2e3bb4a5f6079889706b3c4d1e2f999f2c3bb4c5f6079888706f6a4b3e2d
a";
   enckey replace name="bar2" 
      
hexkey="989294020345689209375802937572839401092837467483920183758392019
2";

run;

2208 Chapter 60 / S3 Procedure



1          /* keys.sas */
2          proc s3;
3          /* IAM:KMS keys */
4          enckey add name="foo" id="98v27390-1si1-8sc9-38k0-k893j354nw5g";
5          enckey add name="bar" id="22f87852-0ak1-5xy2-01j1-l852g809gx4q";
6          /* user-defined keys as character string */
7          enckey add name="foo2" key="ke-sj-eb-ok-qk-zi-nb-lu-fh-wi-zi";
8          enckey add name="bar2" key="wl-tk-64-rk-i0-zn-wk-7c-s8-a8-jk";
9          /* user-defined keys as hex data */
10         enckey replace name="foo2"
11         
hexkey="e1d2e3bb4a5f6079889706b3c4d1e2f999f2c3bb4c5f6079888706f6a4b3e2da";
12         enckey replace name="bar2"
13         
hexkey="9892940203456892093758029375728394010928374674839201837583920192";
14         run;

NOTE:  Created the S3 encryption key "foo".
NOTE:  Created the S3 encryption key "bar".
NOTE:  Created the S3 encryption key "foo2".
NOTE:  Created the S3 encryption key "bar2".
NOTE:  The value for S3 encryption key "foo2" was redefined.
NOTE:  The value for S3 encryption key "bar2" was redefined.
NOTE: PROCEDURE S3 used (Total process time):
      real time           3.02 seconds
      cpu time            0.01 seconds
      

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414
NOTE: The SAS System used:
      real time           3.34 seconds
      cpu time            0.11 seconds

Program: S3data.sas
/* s3data.sas */
%include "keys.sas";

proc s3;
  enckey list;

  put enckey="foo" "/home/demouser/s3/foo.txt" "/mybucket/foo.txt";
  copy srckey="foo" "/mybucket/foo.txt" enckey="bar" "/mybucket/
bar.txt";
  get enckey="foo" "/mybucket/foo.txt" "/home/demouser/foo-get.txt";

  putdir enckey="foo2" "/home/demouser/s3" "/mybucket/enctest";

  getdir enckey="foo2" "/mybucket/enctest" "/home/demouser/enctest";

run;

Example 3: Manage Encryptions with S3 Data 2209



Program Description
In a separate program, s3data.sas, you can specify the encryptions to use while you 
work with data from an S3 environment.

Include encryption key definitions so that they are accessible to the 
s3data.sas program. Use the %INCLUDE statement to retrieve encryption key 
definitions and their associated names.

/* s3data.sas */
%include "keys.sas";

List available encryption keys. Use the LIST option with the ENCKEY statement 
to see the currently defined encryption keys.

proc s3;
  enckey list;

Manipulate the encryptions for files. The PUT statement uses the foo encryption 
key from keys.sas to encrypt the local foo.txt file that is copied to an S3 bucket 
called Mybucket. The COPY statement copies the foo.txt file in Mybucket to a file 
called bar.txt that is encrypted using the bar encryption key. The GET statement 
copies the file foo.txt from Mybucket to your local directory and renames the file foo-
get.txt. The file is encrypted using the foo encryption key.

  put enckey="foo" "/home/demouser/s3/foo.txt" "/mybucket/foo.txt";
  copy srckey="foo" "/mybucket/foo.txt" enckey="bar" "/mybucket/
bar.txt";
  get enckey="foo" "/mybucket/foo.txt" "/home/demouser/foo-get.txt";

Create a subdirectory in an S3 bucket and encrypt it. Use the PUTDIR 
statement to create a subdirectory, Enctest, in Mybucket. This location is a copy of 
your local directory /home/demouser/s3. The Enctest location is encrypted using the 
foo2 encryption key. In keys.sas, the foo2 encryption key is represented by a 
hexadecimal value, because that encryption key replaced the original encryption key 
for foo2.

  putdir enckey="foo2" "/home/demouser/s3" "/mybucket/enctest";

Create a decrypted local directory that is a copy of an encrypted S3 location. 
Use the GETDIR statement to create a decrypted copy of an S3 location, Enctest. 
The encryption key name is provided to enable decryption of the data. Data is 
encrypted by default during data transfer. The new local directory is /home/
demouser/enctest.

  getdir enckey="foo2" "/mybucket/enctest" "/home/demouser/enctest";

run;

2210 Chapter 60 / S3 Procedure



1          /* s3data.sas */
2          %include "keys.sas";

NOTE:  Created the S3 encryption key "foo".
NOTE:  Created the S3 encryption key "bar".
NOTE:  Created the S3 encryption key "foo2".
NOTE:  Created the S3 encryption key "bar2".
NOTE:  The value for S3 encryption key "foo2" was redefined.
NOTE:  The value for S3 encryption key "bar2" was redefined.
NOTE: PROCEDURE S3 used (Total process time):
      real time           3.02 seconds
      cpu time            0.01 seconds
      

17         proc s3;
18         enckey list;
19         put enckey="foo" "/home/demouser/foo.txt" "/mybucket/foo.txt";
20         copy srckey="foo" "/mybucket/foo.txt" enckey="bar" "/mybucket/bar.txt";
21         get enckey="foo" "/mybucket/foo.txt" "/home/demouser/foo-get.txt";
22         putdir enckey="foo2" "/home/demouser/s3" "/mybucket/enctest";
23         getdir enckey="foo2" "/mybucket/enctest" "/home/demouser";
24         run;

Defined S3 Encryption Keys
Name      Type       Details 
_DEFAULT_ KMS         
bar       KMS        22f87852-0ak1-5xy2-01j1-l852g809gx4q 
bar2      SSE-C      HEX AES256
foo       KMS        98v27390-1si1-8sc9-38k0-k893j354nw5g 
foo2      SSE-C      HEX AES256
NOTE: Writing directory /home/demouser/s3 to S3 path /mybucket/enctest
NOTE:  Put: /home/demouser/s3/s3data.sas -> /mybucket/enctest/s3data.sas
NOTE:  Put: /home/demouser/s3/foo.txt -> /mybucket/enctest/foo.txt
NOTE:  Put: /home/demouser/s3/keys.log -> /mybucket/enctest/keys.doc.log
NOTE:  Put: /home/demouser/s3/keys.sas -> /mybucket/enctest/keys.sas
NOTE: Writing contents of S3 path /mybucket/enctest to local path /home/demouser
NOTE: PROCEDURE S3 used (Total process time):
      real time           5.53 seconds
      cpu time            2.35 seconds
      

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414
NOTE: The SAS System used:
      real time           8.82 seconds
      cpu time            2.47 seconds
      

Example 4: Define a Custom Region with PROC S3
Features: REGION statement

Details
This example shows how to define a custom region using PROC S3.

Example 4: Define a Custom Region with PROC S3 2211



Program
proc s3;

   region add host="s3.us-west-004.backblazeb2.com"
      name="us-west-002"
      sslrequired replace;
run;

Program Description
Connect to S3 using the default configuration file. Use the PROC S3 statement 
to connect to S3 with connection options that are specified in the .tks3.conf file in 
your home directory. This is the default configuration file location.

proc s3;

Define a new custom region. Use the REGION statement to create a custom 
region, us-west-002. The SSLREQUIRED argument indicates that SSL is required 
when communicating with the S3 environment. The REPLACE argument specifies 
that if the custom region is already defined, then the definition should be 
overwritten.

   region add host="s3.us-west-004.backblazeb2.com"
      name="us-west-002"
      sslrequired replace;
run;

2212 Chapter 60 / S3 Procedure



Chapter 61
SCAPROC Procedure

Overview: SCAPROC Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2213
What Does the SCAPROC Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2213
Special Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2214

Concepts: SCAPROC Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2214
Handling Global Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2214

Syntax: SCAPROC Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2215
PROC SCAPROC Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2215
RECORD Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2216
WRITE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2217

Results: SCAPROC Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2217
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2217

Examples: SCAPROC Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2221
Example 1: Specifying a Record File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2221
Example 2: Specifying the Grid Job Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 2223

Overview: SCAPROC Procedure

What Does the SCAPROC Procedure Do?
The SCAPROC procedure implements the SAS Code Analyzer, which captures 
information about input, output, and the use of macro symbols from a SAS job while 
it is running. The SAS Code Analyzer can write this information and the information 
that is in the original SAS file to a file that you specify. The SCAPROC procedure 
can also generate a grid-enabled job that can concurrently run independent pieces 
of the job. You can issue the SCAPROC procedure on your operating system's 
command line or in SAS code in the SAS Editor window.

2213



The following command runs your SAS job with the SAS Code Analyzer from your 
operating system's command line:

 sas yourjob.sas -initstmt "proc scaproc;  record 'yourjob.txt' ; run;"

sas
is the command used at your site to start SAS.

yourjob.sas
is the name of the SAS job that you want to analyze.

yourjob.txt
is the name of the file that will contain a copy of your SAS code. The file will also 
contain the comments that are inserted to show input and output information, 
macro symbol usage, and other aspects of your job. For information about 
issuing PROC SCAPROC in SAS code, see the examples.

Special Considerations
Some tasks of grid-enabled jobs can have dependencies on previous tasks. PROC 
SCAPROC combines and reorders these tasks based on their dependencies to the 
preceding tasks. Combining the tasks and submitting them in the same work unit 
enables faster processing of the tasks. The NOOPTIMIZE argument of the GRID 
option disables the combining and reordering of tasks of grid-enabled jobs.

For the GRID statement to work, your site has to license SAS Grid Manager or 
SAS/CONNECT. SAS Grid Manager enables your generated grid job to run on a 
grid of distributed machines. SAS/CONNECT enables your generated grid job to run 
on parallel SAS sessions on one symmetric multiprocessing (SMP) machine.

Concepts: SCAPROC Procedure

Handling Global Statements
You can mark a set of statements that you want to submit to each remote session in 
the generated grid job. Include an /* SCAPROC GLOBAL BEGIN */ comment on the 
line before the set of statements, and include an /* SCAPROC GLOBAL END */ 
comment on the line after the statements. PROC SCAPROC submits the 
statements in the marked session to each of the remote sessions before any of the 
job’s steps are submitted.

In the following example, PROC SCAPROC submits the statements between the /* 
SCAPROC GLOBAL BEGIN */ and /* SCAPROC GLOBAL END */ comments with each 
of the PROC SUMMARY statements.

/* SCAPROC GLOBAL BEGIN */;
    libname one "SAS-library-1";

2214 Chapter 61 / SCAPROC Procedure



    libname two "SAS-library-1";
   %let year=2018;
/* SCAPROC GLOBAL END */;

Proc summary data=one.sales;
   where year=&year
   class month;
   var sales;
   output out=sasuser.sales;
run;
Proc summary data=two.expenses;
   where year=&year
   class month;
   var expenses;
   output out=sasuser.expenses;
run;

You can include any SAS statement that is valid with the generated grid job. You 
can use text that is all uppercase, all lowercase, or mixed case.

Syntax: SCAPROC Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

PROC SCAPROC;
RECORD filespec <ATTR> <OPENTIMES> <INTCON> <EXPANDMACROS>

<GRID filespec <RESOURCE "resource name"> <INHERITLIB> 
<NOOPTIMIZE> >;

WRITE;

Statement Task Example

PROC SCAPROC Implement the SAS Code Analyzer Ex. 1, Ex. 2

RECORD Specify a filename or a fileref to contain the 
output of the SAS Code Analyzer

Ex. 1, Ex. 2

WRITE Output information to the record file Ex. 1

PROC SCAPROC Statement
Specifies that SAS will run the SAS Code Analyzer with your SAS job.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Examples: “Example 1: Specifying a Record File” on page 2221

PROC SCAPROC Statement 2215



“Example 2: Specifying the Grid Job Generator” on page 2223

Syntax
PROC SCAPROC;

RECORD Statement
Specifies a filename or a fileref to contain the output of the SAS Code Analyzer.

Examples: “Example 1: Specifying a Record File” on page 2221
“Example 2: Specifying the Grid Job Generator” on page 2223

Syntax
RECORD filespec <ATTR> <OPENTIMES> <INTCON> <EXPANDMACROS>
<GRID filespec <RESOURCE "resource name"> <INHERITLIB> <NOOPTIMIZE> >;

Required Argument
filespec

specifies a physical filename in quotation marks, or a fileref, that indicates a file 
to contain the output of the SAS Code Analyzer. The output is the original SAS 
source and comments that contain information about the job. For more 
information about the output comments, see “Results” on page 2217. 

Optional Arguments
ATTR

writes additional information about the variables in the input data sets and views.

OPENTIMES
writes the open time, size, and physical filename of the input data sets.

INTCON
outputs information about table integrity constraints.

EXPANDMACROS
expands macro invocations into separate tasks.

GRID

filespec
specifies a physical filename in quotation marks, or a fileref, that points to a 
file that will contain the output of the Grid Job Generator.

RESOURCE “resource name”
specifies the resource to use in the grdsvs_enable function call. The default 
is SASApp.

2216 Chapter 61 / SCAPROC Procedure



INHERITLIB
adds INHERITLIB=(USER) to the SIGNON statements in the grid-enabled 
job. By default, the user library (if one is specified) is assigned in each remote 
session.

Note: INHERITLIB should be used only when the USER library is not 
globally accessible to all remote sessions.

NOOPTIMIZE
disables the combining and reordering of tasks for grid-enabled jobs.

WRITE Statement
Specifies output information to the record file.

Example: “Example 1: Specifying a Record File” on page 2221

Syntax
WRITE;

Without Arguments
The WRITE statement specifies that the SAS Code Analyzer writes information to 
the record file, if a file has been specified with the RECORD statement. The Grid 
Job Generator will also run at this time if it has been specified. Termination of SAS 
also causes the SAS Code Analyzer to write information to the specified record file.

Results: SCAPROC Procedure

Results
The following list contains explanations of the comments that the SAS Code 
Analyzer writes to the record file that you specify with PROC SCAPROC. The output 
comments are bounded by /* and */ comment tags in the record file. That format is 
represented here to enhance clarity when the user reads a record file.

/* JOBSPLIT: DATASET INPUT|OUTPUT|UPDATE SEQ|MULTI name */
specifies that a data set was opened for reading, writing, or updating.

Results: SCAPROC Procedure 2217



INPUT
specifies that SAS read the data set.

OUTPUT
specifies that SAS wrote the data set.

UPDATE
specifies that SAS updated the data set.

SEQ
specifies that SAS opened the data set for sequential access.

MULTI
specifies that SAS opened the data set for multipass access.

name
specifies the name of the data set.

/* JOBSPLIT: CATALOG INPUT|OUTPUT|UPDATE name */
specifies that a catalog was opened for reading, writing, or updating.

INPUT
specifies that SAS read the catalog.

OUTPUT
specifies that SAS wrote the catalog.

UPDATE
specifies that SAS updated the catalog.

name
specifies the name of the catalog.

/* JOBSPLIT: FILE INPUT|OUTPUT|UPDATE name */
specifies that an external file was opened for reading, writing, or updating.

INPUT
specifies that SAS read the file.

OUTPUT
specifies that SAS wrote the file.

UPDATE
specifies that SAS updated the file.

name
specifies the name of the file.

/* JOBSPLIT: ITEMSTOR INPUT|OUTPUT|UPDATE name */
specifies that an ITEMSTOR was opened for reading, writing, or updating.

INPUT
specifies that SAS read the ITEMSTOR.

OUTPUT
specifies that SAS wrote the ITEMSTOR.

UPDATE
specifies that SAS updated the ITEMSTOR.

name
specifies the name of the ITEMSTOR.

/* JOBSPLIT: OPENTIME name DATE:date PHYS:phys SIZE:size */
specifies that a data set was opened for input. SAS writes the OPENTIME and 
the SIZE of the file.

2218 Chapter 61 / SCAPROC Procedure



name
specifies the name of the data set.

DATE
specifies the date and time that the data set was opened. The value that is 
returned for DATE is not the creation time of the file.

PHYS
specifies the complete physical name of the data set that was opened.

SIZE
specifies the size of the data set in bytes.

/* JOBSPLIT: ATTR name INPUT|OUTPUT VARIABLE:variable name 
TYPE:CHARACTER|NUMERIC LENGTH:length LABEL:label FORMAT:format 
INFORMAT:informat */

specifies that when a data set is closed, SAS reopens it and writes the attributes 
of each variable. One ATTR line is produced for each variable.

name
specifies the name of the data set.

INPUT
specifies that SAS read the data set.

OUTPUT
specifies that SAS wrote the data set.

VARIABLE
specifies the name of the current variable.

TYPE
specifies whether the variable is character or numeric.

LENGTH
specifies the length of the variable in bytes.

LABEL
specifies the variable label if it has one.

FORMAT
specifies the variable format if it has one.

INFORMAT
specifies the variable informat if it has one.

/* JOBSPLIT: SYMBOL SET|GET name */
specifies that a macro symbol was accessed.

SET
specifies that SAS set the symbol. For example, SAS set the symbol sym1 in 
the following code: %let sym1=sym2

GET
specifies that SAS retrieved the symbol. For example, SAS retrieved the 
symbol sym in the following code: a="&sym"

name
specifies the name of the symbol.

/* JOBSPLIT: ELAPSED number */
specifies a number for you to use to determine the relative run times of tasks.

number
specifies a number for you to use to determine the relative run times of tasks.

Results: SCAPROC Procedure 2219



/* JOBSPLIT: USER useroption */
specifies that SAS uses the USER option with the grid job code to enable single-
level data set names to reside in the Work library.

useroption
specifies the value that is to be used while the code is running.

/* JOBSPLIT: _DATA_ */ 
specifies that SAS is to use the reserved data set name _DATA_.

/* JOBSPLIT: _LAST_ */ 
specifies that SAS is to use the reserved data set name _LAST_ .

/* JOBSPLIT: PROCNAME procname|DATASTEP */ 
specifies the name of the SAS procedure or DATA step for this step.

/* JOBSPLIT: LIBNAME <libname options> */
specifies the LIBNAME options that were provided in a LIBNAME statement or 
were set internally.

/* JOBSPLIT: SYSSCP <sysscp> */
specifies the value of the SYSSCP automatic macro variable when the SAS job 
was run.

/* JOBSPLIT: JOBSTARTTIME <datetime> */
records the date and time that a job started.

/* JOBSPLIT: JOBENDTIME <datetime> */
records the date and time that a job ended.

/* JOBSPLIT: TASKSTARTTIME <datetime> */
records the date and time that a task started.

/* JOBSPLIT: INTCON <table name> <INPUT | OUTPUT> NAME:<name> 
TYPE:<UNIQUE|CHECK|NOTNULL|PRIMARY|FOREIGN|REFERENTIAL> 
VARIABLES:<names> WHERE:<where clause> REFERENCE: ONDELETE: ONUPDATE: 
MESSAGE:<msg> MESSAGETYPE:<USER> */

table name
specifies the name of the table.

INPUT
specifies that the table was opened for input.

OUTPUT
specifies that the table was opened for output.

NAME
specifies the name of the integrity constraint.

TYPE
specifies the type of integrity constraint:

Table 61.1 Integrity Constraint for Each Type

Type Integrity Constraint

UNIQUE unique

CHECK check

NOTNULL not null

2220 Chapter 61 / SCAPROC Procedure



Type Integrity Constraint

PRIMARY primary key

FOREIGN foreign key

REFERENTIAL a FOREIGN integrity constraint in another table that references 
this table

VARIABLES
specifies the variables involved with this integrity constraint. Otherwise, it is 
empty.

WHERE
specifies the WHERE expression for CHECK integrity constraints. Otherwise, 
it is empty.

REFERENCE
specifies one of the following integrity constraints:

n For FOREIGN integrity constraints, it specifies the table the foreign key 
references.

n For REFERENTIAL integrity constraints, it specifies the table containing the 
foreign key.

n Otherwise, it is empty.

ONDELETE
specifies the ON DELETE referential action for FOREIGN and 
REFERENTIAL integrity constraints. Otherwise, it is empty.

ONUPDATE
specifies the ON UPDATE referential action for FOREIGN and 
REFERENTIAL integrity constraints. Otherwise, it is empty.

MESSAGE
specifies the text of the error message, if there is any.

MESSAGETYPE
specifies USER if MESSAGETYPE=USER was specified. Otherwise, it is 
empty.

Examples: SCAPROC Procedure

Example 1: Specifying a Record File
Features: RECORD statement

WRITE statement

Example 1: Specifying a Record File 2221



This example specifies the record file 'record.txt' and writes information from the 
SAS Code Analyzer to the file.

Program
proc scaproc; 
   record 'record.txt'; 
run;

data a; 
   do i = 1 to 100000; 
      j = cos(i); 
      output; 
   end; 
run;

proc print data=a(obs=25);
run;

proc means data=a;
run;

proc scaproc; 
   write; 
run;

2222 Chapter 61 / SCAPROC Procedure



Output
Output 61.1 Contents of the record.txt File

/* JOBSPLIT: DATASET OUTPUT SEQ WORK.A.DATA */
/* JOBSPLIT: LIBNAME WORK ENGINE V9 PHYS C:\DOCUME~1\userid\LOCALS~1\Temp\SAS
Temporary Files\_TD1252 */
/* JOBSPLIT: ELAPSED 3984  */
/* JOBSPLIT: PROCNAME DATASTEP */
/* JOBSPLIT: STEP SOURCE FOLLOWS */

data a;
    do i = 1 to 1000000;
        j = cos(i);
        output;
    end;
run;

/* JOBSPLIT: ITEMSTOR INPUT SASUSER.TEMPLAT */
/* JOBSPLIT: ITEMSTOR INPUT SASHELP.TMPLMST */
/* JOBSPLIT: DATASET INPUT SEQ WORK.A.DATA */
/* JOBSPLIT: LIBNAME WORK ENGINE V9 PHYS C:\DOCUME~1\userid\LOCALS~1\Temp\SAS
Temporary Files\_TD1252 */
/* JOBSPLIT: ELAPSED 5187  */
/* JOBSPLIT: PROCNAME PRINT */
/* JOBSPLIT: STEP SOURCE FOLLOWS */
proc print data=a(obs=25);
run;

/* JOBSPLIT: DATASET INPUT SEQ WORK.A.DATA */
/* JOBSPLIT: LIBNAME WORK ENGINE V9 PHYS C:\DOCUME~1\userid\LOCALS~1\Temp\SAS
Temporary Files\_TD1252 */
/* JOBSPLIT: FILE OUTPUT C:\winnt\profiles\userid\record.txt */
/* JOBSPLIT: SYMBOL GET SYSSUMTRACE */
/* JOBSPLIT: ELAPSED 2750  */
/* JOBSPLIT: PROCNAME MEANS */
/* JOBSPLIT: STEP SOURCE FOLLOWS */
proc means data=a;
run;

/* JOBSPLIT: END */

Example 2: Specifying the Grid Job Generator
Features: RECORD statement

GRID statement

Example 2: Specifying the Grid Job Generator 2223



Details
This example writes information from the SAS Code Analyzer to the file that is 
named 1.txt. The example code also runs the Grid Job Generator, and writes that 
information to the file that is named 1.grid. Notice that this example does not have 
an ending statement that contains this code:

proc scaproc; 
   write; 
run;

When SAS terminates, PROC SCAPROC automatically runs any pending RECORD 
or GRID statements.

For the GRID statement to work, your site has to license SAS Grid Manager or 
SAS/CONNECT. SAS Grid Manager enables your generated grid job to run on a 
grid of distributed machines. SAS/CONNECT enables your generated grid job to run 
on parallel SAS sessions on one symmetric multiprocessing (SMP) machine.

Program
proc scaproc; 
   record '1.txt' grid '1.grid'; 
run;

data a; 
   do i = 1 to 100000; 
      j = cos(i); 
      output; 
   end;
run; 

proc print data=a(obs=25);
run;

proc means data=a;
run;

2224 Chapter 61 / SCAPROC Procedure



Output
Output 61.2 Contents of the 1.txt File

/* JOBSPLIT: DATASET OUTPUT SEQ WORK.A.DATA */
/* JOBSPLIT: LIBNAME WORK ENGINE V9 PHYS C:\DOCUME~1\userid\LOCALS~1\Temp\SAS 
Temporary Files\_TD1252 */
/* JOBSPLIT: ELAPSED 375  */
/* JOBSPLIT: PROCNAME DATASTEP */
/* JOBSPLIT: STEP SOURCE FOLLOWS */

data a;
    do i = 1 to 1000000;
        j = cos(i);
        output;
    end;
run;

/* JOBSPLIT: DATASET INPUT SEQ WORK.A.DATA */
/* JOBSPLIT: LIBNAME WORK ENGINE V9 PHYS C:\DOCUME~1\userid\LOCALS~1\Temp\SAS 
Temporary Files\_TD1252 */
/* JOBSPLIT: ELAPSED 46  */
/* JOBSPLIT: PROCNAME PRINT */
/* JOBSPLIT: STEP SOURCE FOLLOWS */
proc print data=a(obs=25);
run;

/* JOBSPLIT: DATASET INPUT SEQ WORK.A.DATA */
/* JOBSPLIT: LIBNAME WORK ENGINE V9 PHYS C:\DOCUME~1\userid\LOCALS~1\Temp\SAS 
Temporary Files\_TD1252 */
/* JOBSPLIT: FILE OUTPUT C:\WINNT\Profiles\userid\1.txt */
/* JOBSPLIT: SYMBOL GET SYSSUMTRACE */
/* JOBSPLIT: ELAPSED 81453  */
/* JOBSPLIT: PROCNAME MEANS */
/* JOBSPLIT: STEP SOURCE FOLLOWS */
proc means data=a;
run;

/* JOBSPLIT: END */

Example 2: Specifying the Grid Job Generator 2225



2226 Chapter 61 / SCAPROC Procedure



Chapter 62
SCOREACCEL Procedure

Overview: SCOREACCEL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2227
What Does the SCOREACCEL Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . 2227

Concepts: SCOREACCEL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2228
Publishing Models to a Model Table on the CAS Server . . . . . . . . . . . . . . . . . . . 2228

Syntax: SCOREACCEL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2228
PROC SCOREACCEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2229
DELETEMODEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2230
PUBLISHMODEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2234
RUNMODEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2241

Examples: SCOREACCEL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2249
Example 1: Publishing, Running, and Deleting a DATA Step Model in CAS . . . . 2249
Example 2: Publishing, Running, and Deleting a DS2 Model in Teradata . . . . . . 2251
Example 3: Publishing and Running a DATA Step Model in 

Teradata Using a CASLIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2254
Example 4: Publishing and Running a Model in Hadoop . . . . . . . . . . . . . . . . . . . 2256
Example 5: Publishing and Running a Model in Hadoop (Hive) . . . . . . . . . . . . . 2257
Example 6: Running a Model in Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2258
Example 7: Running a Model in Spark by Using the Apache Livy 

REST Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2259

Overview: SCOREACCEL Procedure

What Does the SCOREACCEL Procedure Do?
PROC SCOREACCEL is an interactive procedure that provides an interface to the 
CAS server and external data sources for model publishing and scoring.

n Models are supported in the form of DATA step code, DS2 code, or analytic 
stores.

2227



n Model code can be published to a session-local or global CAS table and 
executed in CAS. Session-local means it is accessible only to the current CAS 
session that is executing PROC SCOREACCEL. Publishing to a global CAS 
table is supported in SAS Viya 3.5.

n Alternatively, models can be published to Teradata or Hadoop. After a model is 
published to an external data source, it can be executed there. Running a model 
invokes the SAS Embedded Process (EP). To operate in these environments, 
you need to license SAS In-Database Technologies for Hadoop (on SAS Viya) or 
SAS In-Database Technologies for Teradata (on SAS Viya).

n As of SAS Viya 3.4 and SAS 9.4M6, models can be removed from CAS and from 
external databases using the PROC SCOREACCEL DELETEMODEL statement.

n PROC SCOREACCEL calls CAS actions to complete the tasks. For more 
information about the actions, see “Using DS2 Actions to Publish, Run, and 
Delete Models in CAS” in SAS DS2 Programmer’s Guide.

n When publishing DATA step model code, PROC SCOREACCEL translates 
DATA step code into DS2 code on the SAS client.

Concepts: SCOREACCEL Procedure

Publishing Models to a Model Table on the CAS 
Server

Publishing a model to CAS involves adding or replacing a row in a model table. In 
order to publish a model to an existing model table, the model table must first be 
loaded on the CAS server. If the specified model table has been loaded on the CAS 
server, then the model table is updated. Otherwise, a new model table is created.

Prior to SAS Viya 3.5, a model could be published only to a model table local to the 
current CAS session. The local session table could then be promoted to global 
scope using the PUBLISHMODEL PROMOTETABLE= parameter.

Beginning in SAS Viya 3.5, a model can be published directly to a global model 
table in CAS. A model is published to a global model table in CAS when the 
PUBLISHMODEL PUBLISHGLOBAL= parameter is set to YES.

Syntax: SCOREACCEL Procedure
PROC SCOREACCEL session-name | session-uuid;

PUBLISHMODEL required-arguments <publish-model-options>;

2228 Chapter 62 / SCOREACCEL Procedure

http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=n1fwktk0l2xqt2n1v3oe5ixer0d1.htm&locale=en
http://documentation.sas.com/?docsetId=ds2pg&docsetVersion=9.4&docsetTarget=n1fwktk0l2xqt2n1v3oe5ixer0d1.htm&locale=en


RUNMODEL required-arguments <run-model-options>;
DELETEMODEL required-arguments <delete-model-options>;

Statement Task Example

PROC SCOREACCEL Publish, execute, and delete models in CAS or 
an external database

Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5, Ex. 6, 
Ex. 7

PUBLISHMODEL Publish models in CAS or an external database Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5, Ex. 7

RUNMODEL Run models in CAS or an external database Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5, Ex. 6, 
Ex. 7

DELETEMODEL Delete models from CAS or an external 
database

Ex. 1, Ex. 2

PROC SCOREACCEL Statement
Publishes, executes, or deletes a model in CAS or an external data source.

Examples: “Example 1: Publishing, Running, and Deleting a DATA Step Model in CAS” on page 
2249
“Example 2: Publishing, Running, and Deleting a DS2 Model in Teradata” on page 2251
“Example 3: Publishing and Running a DATA Step Model in Teradata Using a CASLIB” 
on page 2254
“Example 4: Publishing and Running a Model in Hadoop” on page 2256
“Example 5: Publishing and Running a Model in Hadoop (Hive)” on page 2257

Syntax
PROC SCOREACCEL SESSREF=session-name | SESSUUID="session-uuid";

Arguments
SESSREF=session-name | SESSUUID="session-uuid"

specifies the name of a CAS session or the universally unique identifier (UUID) 
of an existing CAS session to which you want to connect. If no option is 
specified, the automatic CAS session, CASAUTO, is used.

SESSREF=session-name
specifies the name of a CAS session to which you want to connect.

PROC SCOREACCEL Statement 2229



SESSUUID="session-uuid"
specifies the universally unique identifier (UUID) of an existing CAS session. 
You must obtain the SESSUUID from the existing session before you can 
specify it in this option. The engine connects to the session that is identified 
in the UUID.

DELETEMODEL Statement
Deletes a model from CAS or an external database.

Restriction: This statement is available as of SAS Viya 3.4 and SAS 9.4M6.

Examples: “Example 1: Publishing, Running, and Deleting a DATA Step Model in CAS” on page 
2249
“Example 2: Publishing, Running, and Deleting a DS2 Model in Teradata” on page 2251

Syntax
DELETEMODEL
MODELNAME="model-name" 
MODELTABLE="model-table" | "caslib.model-table" | "schema.model-table"
<delete-model-options>;

Required Arguments
MODELNAME="model-name"

specifies the name of the model to be deleted.

Alias MODEL=

Applies to CAS

Hadoop

Teradata

MODELTABLE="model-table" | "caslib.model-table" | "schema.model-table"
specifies the name of the table that contains the model to be deleted.

Applies to CAS

Teradata

Restriction This parameter is required when deleting a model from CAS or 
Teradata. It does not apply when deleting a model from Hadoop.

Requirement Deleting a model from CAS involves removing a row from a model 
table. In order to remove the model, the model table must first be 
loaded to the CAS server.

2230 Chapter 62 / SCOREACCEL Procedure



Note The model table can be specified as a one-part or a two-part 
name. When deleting a model from CAS, the first part of a two-
part name is interpreted as the name of the caslib that contains 
the model table. When deleting a model from Teradata, the first 
part of a two-part name is interpreted as the name of the 
database schema that contains the model table.

Delete Model Options
AUTHDOMAIN = "authentication-domain"

specifies the name of the authentication domain that contains the credentials 
(user name and password) that are used to access Teradata.

Applies to Teradata

CASLIB="caslib"
specifies the name of the caslib associated with the model table when deleting a 
model from CAS. When deleting models in Teradata or Hadoop, this is the name 
of the caslib whose associated data source is used to obtain options that are 
specific to the external database. This includes any user credentials that are 
specified in the data source definition.

Applies to CAS

Hadoop

Teradata

Requirement The caslib that is specified as the first part of a two-part model 
table name takes precedence over the caslib that is specified with 
the CASLIB option.

CLASSPATH="classpath"
specifies the class path used in the Hadoop call context. The class path can be a 
folder or individual JAR files. The Hadoop configuration folder must be included 
in the class path.

Applies to Hadoop

DATABASE="database-name"
specifies the name of the Teradata database.

Default "" (a zero-length string)

Applies to Teradata

Note This option provides the connection option that names the Teradata 
database to be accessed.

DELETEGLOBAL=YES | NO
specifies whether the model is deleted from a global model table in CAS. If 
DELETEGLOBAL=YES, then the model is deleted from the global model table. If 
DELETEGLOBAL=NO, then the model is deleted from the model table in the 
local CAS session, leaving the global table unaltered.

Default NO

DELETEMODEL Statement 2231



Applies to CAS

Restriction This option is available as of SAS Viya 3.5.

JOBMANAGEMENTURL="rest-url"
specifies the URL used to submit execution requests over a REST interface to 
services such as Apache Livy.

Alias RESTURL=

Applies to Hadoop

Restriction This option is available as of SAS Viya 3.5 (August 2021 release, or 
earlier if you apply a hot fix).

MODELDIR="model-directory"
specifies the root HDFS folder containing the model directory from which the 
model is to be deleted.

Applies to Hadoop

PASSWORD="password"
is the password for the user ID on the Hadoop or Teradata server.

Aliases PASS=

PASSWD=

PWD=

Applies to Hadoop

Teradata

PERSISTTABLE=YES | NO
specifies whether the updated model table, that results from deleting a model, 
should be saved to the caslib data source associated with the table.

Default NO

Applies to CAS

Requirement If the model table already exists in the caslib data source, you 
must also specify REPLACETABLE=YES to save the table.

See REPLACETABLE= option

PROMOTETABLE=YES | NO
specifies whether the updated model table, that results from deleting a model, 
should be promoted to global scope on the CAS server.

Default NO

Applies to CAS

REPLACETABLE=YES | NO
specifies whether to allow an existing model table, that results from deleting a 
model, to be replaced when the updated model table is saved to the caslib data 
source.

2232 Chapter 62 / SCOREACCEL Procedure



Default YES

Applies to CAS

Requirement You must also specify PERSISTTABLE=YES to save the model 
table to the caslib data source.

See PERSISTTABLE= option 

SCHEMA="schema-name"
specifies the name of the Teradata schema.

Applies to Teradata

Note This option provides the connection option that the Teradata 
database uses to qualify the Teradata tables.

SERVER="server"
specifies the name of the Teradata server.

Applies to Teradata

TARGET=CAS | HADOOP | TERADATA
specifies the target environment to which the model is to be deleted.

CAS
specifies to delete the model from a model table in CAS.

HADOOP
specifies to delete the model from the Hadoop server.

TERADATA
specifies to delete the model from a model table in the Teradata database.

Default CAS

Applies to CAS

Hadoop

Teradata

USERNAME='id'
is an authorized user ID on the Hadoop or Teradata server.

Aliases USER=

USERID=

UID=

Applies to Hadoop

Teradata

WEBHDFSURL="webhdfs-url"
specifies the URL used to access the Hadoop distributed file system through the 
REST API. 

Applies to Hadoop

DELETEMODEL Statement 2233



Restriction This option is available as of SAS Viya 3.5 (August 2021 release, or 
earlier if you apply a hot fix).

Note Use this argument when you delete, publish, or run a model in a 
platform that is configured to access the distributed file system 
through the REST API.

PUBLISHMODEL Statement
Publishes a model in CAS or an external database.

Examples: “Example 1: Publishing, Running, and Deleting a DATA Step Model in CAS” on page 
2249
“Example 2: Publishing, Running, and Deleting a DS2 Model in Teradata” on page 2251
“Example 3: Publishing and Running a DATA Step Model in Teradata Using a CASLIB” 
on page 2254
“Example 4: Publishing and Running a Model in Hadoop” on page 2256
“Example 5: Publishing and Running a Model in Hadoop (Hive)” on page 2257

Syntax
PUBLISHMODEL
MODELNAME ="model-name" 
MODELTABLE="model-table" | "caslib.model-table" | "schema.model-table"
PROGRAMFILE="file-path" | fileref 
< publish-model-options> ;

Required Arguments
MODELNAME="model-name"

specifies the name of the model to be published. 

Alias MODEL=

Applies to CAS

Hadoop

Teradata

MODELTABLE="model-table" | "caslib.model-table" | "schema.model-table"
specifies the name of the table to which the model is published.

Applies to CAS

Teradata

2234 Chapter 62 / SCOREACCEL Procedure



Interaction The caslib that is specified as the first part of a two-part model table 
name takes precedence over the caslib that is specified with the 
CASLIB option.

Notes The model table can be specified as a one-part or a two-part name. 
When you publish a model to CAS, the first part of a two-part name 
is interpreted as the name of the caslib that contains the model 
table. When you publish a model to Teradata, the first part of a two-
part name is interpreted as the name of the database schema that 
contains the model table.

Publishing a model to CAS involves adding or replacing a row in a 
model table. In order to publish a model to an existing model table, 
the model table must first be loaded onto the CAS server. If the 
specified model table has been loaded onto the CAS server, then 
the model table is updated. Otherwise, a new model table is 
created.

PROGRAMFILE="file-path" | fileref
specifies the file that contains the model program to be published. 

Applies to CAS

Hadoop

Teradata

Interaction This argument is not required if a single analytic store is provided 
using the STOREFILES or the STORETABLES option.

Publish Model Options
AUTHDOMAIN = "authentication-domain"

specifies the name of the authentication domain that contains the credentials 
(user name and password) that will be used to access the specified Teradata 
database.

Applies to Teradata

Restriction This option is available as of SAS Viya 3.4 and SAS 9.4M6.

CASLIB="caslib"
specifies name of the caslib in which the model table is created or to which the 
updated model table is written, when publishing a model to CAS. 

Applies to CAS

Hadoop

Teradata

Interaction The caslib that is specified as the first part of a two-part model table 
name takes precedence over the caslib that is specified with the 
CASLIB option.

Note When you publish a model to Teradata or Hadoop, this argument 
specifies the name of the caslib whose associated data source is 

PUBLISHMODEL Statement 2235



used to obtain options specific to the external database. This 
includes any user credentials that are specified in the data source 
definition.

CLASSPATH="class_path"
specifies the class path used in the Hadoop call. The class path must include the 
Hadoop configuration folder and it must also include either a folder containing 
the JAR files or the individual JAR files.

Applies to Hadoop

DATABASE="database-name"
specifies the name of the Teradata database.

Default "" (a zero-length string)

Applies to Teradata

Note This option provides the connection option that names the Teradata 
database to be accessed.

FORMATFILE=file-path | fileref
specifies the file that contains the user-defined format XML definition to be 
published.

Applies to CAS

Hadoop

Teradata

FORMATITEMSTOREFILE=file-path | fileref
specifies the file containing the format item store to be published. 

Applies to CAS

Hadoop

Teradata

Restriction This option is available as of SAS Viya 3.4 and SAS 9.4M6.

JOBMANAGEMENTURL="rest-url"
specifies the URL used to submit execution requests over a REST interface to 
services such as Apache Livy.

Alias RESTURL=

Applies to Hadoop

Restriction This option is available as of SAS Viya 3.5 (August 2021 release, or 
earlier if you apply a hot fix).

KEEPLIST=YES | NO
specifies whether to include a KEEP statement in the DS2 model program that 
was automatically generated from an analytic store model.

Default NO

2236 Chapter 62 / SCOREACCEL Procedure



Applies to CAS

Hadoop

Teradata

Restriction This option is available as of SAS Viya 3.4 and SAS 9.4M6.

Interaction KEEPLIST can be specified when the STOREFILES or the 
STORETABLES option contains a single analytic store model, and 
an accompanying DS2 model program is not specified.

MODELDIR="model-directory"
specifies the root HDFS folder where the model directory is created.

Applies to Hadoop

MODELNOTES="model-notes"
specifies the model notes to be written to the model table.

Applies to CAS

Teradata

MODELTYPE=DATASTEP | DS2
specifies the type of the input model program. 

DATASTEP
specifies that the input model program is DATA step code.

Alias DS

DS2
specifies that the input model program is DS2 code.

Default DS2

Applies to CAS

Hadoop

Teradata

Note The DATA step code is converted to DS2 code before being bundled 
into an item store.

MODELUUID="model-uuid"
specifies that the Model UUID is written to the model table.

Applies to CAS

Teradata

OUTDIR="work-directory"
specifies the local output directory that contains the program file that was 
converted from DATA step to DS2.

Applies to CAS

PUBLISHMODEL Statement 2237



Hadoop

Teradata

PASSWORD="password"
is the password for the user ID on the Hadoop or Teradata server.

Aliases PASS=

PASSWD=

PWD=

Applies to Hadoop

Teradata

PERSISTTABLE=YES | NO
specifies whether the updated model table should be saved to the caslib data 
source associated with the table.

Default NO

Applies to CAS

Requirement If the model table already exists in the caslib data source, you 
must also specify REPLACETABLE=YES to save the table.

See REPLACETABLE= option

PROMOTETABLE=YES | NO
specifies whether the updated model table should be promoted to global scope 
on the CAS server.

Default NO

Applies to CAS

PUBLISHGLOBAL=YES | NO
specifies whether the model is published to a global model table in CAS. If 
PUBLISHGLOBAL=YES, then the model is published to a global model table. If 
PUBLISHGLOBAL=NO, then the model is published to the model table in the 
local CAS session, leaving the global model table unaltered.

Default NO

Applies to CAS

Restriction This option is available as of SAS Viya 3.5.

REPLACEMODEL=YES | NO
specifies whether to allow an existing model in the model table to be replaced by 
the model being published.

Default YES

Applies to CAS

Hadoop

2238 Chapter 62 / SCOREACCEL Procedure



Teradata

REPLACETABLE=YES | NO
specifies whether to allow an existing model table to be replaced when the 
updated model table is saved to the caslib data source.

Default YES

Applies to CAS

Requirement You must also specify PERSISTTABLE=YES to save the model 
table to the caslib data source.

See PERSISTTABLE= option 

SCHEMA="schema-name"
specifies the name of the Teradata schema.

Applies to Teradata

Note This option provides the connection option that the Teradata 
database uses to qualify the Teradata tables.

SERVER="server-name"
specifies the name of the Teradata or Hive server.

Applies to Hadoop

Teradata

STOREFILES="file-path" <, "file-path"> | fileref <, fileref>
specifies a list of files, one for each analytic store to be published.

Alias STOREFILE=

Applies to CAS

Hadoop

Teradata

Interaction As of SAS Viya 3.4 and SAS 9.4M6, if a single analytic store model 
is specified without an accompanying DS2 program, the KEEPLIST 
option can also be specified.

Tip The list of files can be a mixture of file pathnames and file 
references.

STORETABLES= ("store-table-1" | "caslib.store-table-1" <, "store-table-n" | 
"caslib.store-table-n">

specifies one or more CAS blob table names that contain the analytic stores to 
be published. Each table must include a VARBINARY column named "_state_" 
that contains the analytic store blob. 

Applies to CAS

Hadoop

Teradata

PUBLISHMODEL Statement 2239



Restriction This option is available as of SAS Viya 3.4 and SAS 9.4M6.

Interaction If a single analytic store model is specified without an 
accompanying DS2 program, then the KEEPLIST option can also 
be specified.

TARGET=CAS | HADOOP | TERADATA
specifies the target environment to which the model is published.

CAS
specifies to publish to a model table in CAS.

HADOOP
specifies to publish to the Hadoop server.

TERADATA
specifies to publish to a model table in the Teradata database.

Default CAS

Applies to CAS

Hadoop

Teradata

USERNAME='ID'
is an authorized user ID on the Hadoop or Teradata server.

Aliases USER=

USERID=

UID=

Applies to Hadoop

Teradata

VARXMLFILE=file-path | fileref
specifies the file that contains the variable metadata XML to be used during 
translation of an input DATA step model program to DS2.

Alias XMLFILE=

Applies to CAS

Hadoop

Teradata

WEBHDFSURL="webhdfs-url"
specifies the URL used to access the Hadoop distributed file system through the 
REST API. 

Applies to Hadoop

Restriction This option is available as of SAS Viya 3.5 (August 2021 release, or 
earlier if you apply a hot fix).

2240 Chapter 62 / SCOREACCEL Procedure



Note Use this argument when you delete, publish, or run a model in a 
platform that is configured to access the distributed file system 
through the REST API.

RUNMODEL Statement
Runs a model in CAS or an external database.

Examples: “Example 1: Publishing, Running, and Deleting a DATA Step Model in CAS” on page 
2249
“Example 2: Publishing, Running, and Deleting a DS2 Model in Teradata” on page 2251
“Example 3: Publishing and Running a DATA Step Model in Teradata Using a CASLIB” 
on page 2254
“Example 4: Publishing and Running a Model in Hadoop” on page 2256
“Example 5: Publishing and Running a Model in Hadoop (Hive)” on page 2257

Syntax
RUNMODEL
MODELNAME ="model-name" 
MODELTABLE="model-table" | "caslib.model-table" | "schema.model-table"
<run-model-options>;

Required Arguments
MODELNAME="model-name"

specifies the name of the model to run.

Alias MODEL=

Applies to CAS

Hadoop

Teradata

MODELTABLE="model-table" | "caslib.model-table" | "schema.model-table"
specifies the name of the table that contains the model to run.

Applies to CAS

Teradata

Requirement The caslib that is specified as the first part of a two-part model 
table name takes precedence over the caslib that is specified with 
the CASLIB option.

Note The model table can be specified as a one-part or a two-part 
name. When running a model in CAS, the first part of a two-part 

RUNMODEL Statement 2241



name is interpreted as the name of the caslib that contains the 
model table. When running a model in Teradata, the first part of a 
two-part name is interpreted as the name of the database schema 
that contains the model table.

Run Model Options
AUTHDOMAIN = "authentication-domain"

specifies the name of the authentication domain that contains the credentials 
(user name and password) that will be used to access Teradata.

Applies to Teradata

Restriction This option is available as of SAS Viya 3.4 and SAS 9.4M6.

CASLIB="caslib"
specifies the name of the caslib associated with the model table, input table, and 
output table, when running a model in CAS. When running models in Teradata or 
Hadoop, the name of the caslib whose associated data source is used to obtain 
options that are specific to the external database. This includes any user 
credentials that are specified in the data source definition.

Applies to CAS

Hadoop

Teradata

Requirement The caslib that is specified as the first part of a two-part model 
table name takes precedence over the caslib that is specified with 
the CASLIB option.

CLASSPATH="class_path"
specifies the class path used in the Hadoop call context. The class path contains 
a folder or individual JAR files. The Hadoop configuration folder must be 
included in the class path if you are not specifying the CONFIGPATH option. If 
you are using Spark, Hadoop JAR files and Spark JAR files must be located in 
separate folders, and the Spark JAR folder must be specified as the last entry in 
the class path.

Applies to Hadoop

CONFIGPATH="configuration-path"
specifies a single folder where all the Hadoop and Spark configuration files 
reside. 

Applies to Hadoop

Restriction This option is available as of SAS Viya 3.4 and SAS 9.4M6.

Interactions This option is required if PLATFORM= is set to SPARK.

When the CONFIGPATH option is specified, the configuration 
folder does not need to be added to the CLASSPATH option.

2242 Chapter 62 / SCOREACCEL Procedure



CUSTOMJAR="file-path"
specifies the local JAR file that contains the user-provided custom reader. The 
custom JAR file is automatically copied to the Hadoop cluster during job 
submission.

Applies to Hadoop

DATABASE="database-name"
specifies the name of the Teradata database.

Default "" (a zero-length string)

Applies to Teradata

Note This option provides the connection option that names the Teradata 
database to be accessed.

DBMAXTEXT=number-of-bytes
specifies the maximum number of bytes to allocate for STRING data type 
columns. This option does not apply to CHAR or VARCHAR columns.

Default 32767

Range 1–32767

Applies to Hadoop

Restriction This option is available as of SAS Viya 3.4 and SAS 9.4M6.

EPOPTIONS="options-string"
specifies the options that are passed to the SAS_SCORE_EP stored procedure 
that invokes the SAS Embedded Process for Teradata. 

Applies to Teradata

Note The string specified by this parameter is passed directly to the 
SAS_SCORE_EP stored procedure via the stored procedure's 
OPTIONS parameter.

FORCEOVERWRITE=YES | NO
specifies whether to force deletion of the output data directory before running the 
Hadoop MapReduce job.

Applies to Hadoop

HIVEPORT=integer
specifies the Hive server port number.

Applies to Hadoop

INDATASET="input-dataset"
specifies the name of the Spark dataset passed as input to the SAS Embedded 
Process.

Applies to Hadoop

Restriction This option is available as of SAS Viya 3.5 (August 2021 release, 
or earlier if you apply a hot fix).

RUNMODEL Statement 2243



Requirement When running a model in Hadoop, either INDATASET, INHDMD, 
or INTABLE must be specified.

See INHDMD= option

INTABLE= option

INHDMD="file-path"
specifies the name of the input Hadoop metadata file on HDFS.

Applies to Hadoop

Requirement When running a model in Hadoop, either INDATASET, INHDMD, 
or INTABLE must be specified.

See INDATASET= option

INTABLE= option

INQUERY="sql-query"
specifies an SQL SELECT statement that defines the inputs to the SAS 
Embedded Process for Teradata.

Applies to Teradata

Requirement When running a model in Teradata, either INTABLE or INQUERY 
must be specified.

See INTABLE= option

INTABLE="input-table" | "caslib.input-table" | "schema.input-table"
specifies the name of the input table.

Alias INPUTTABLE=

Applies to CAS

Hadoop

Teradata

Requirement When running a model in Hadoop, either INDATASET, INHDMD, 
or INTABLE must be specified. When running a model in 
Teradata, either INTABLE or INQUERY must be specified.

Note The input table can be specified as a one-part or a two-part name. 
When running a model in CAS, the first part of a two-part name is 
interpreted as the name of the caslib that contains the input table. 
When running a model in Teradata, the first part of a two-part 
name is interpreted as the name of the database schema that 
contains the input table.

See INDATASET= option

INHDMD= option

INQUERY= option

2244 Chapter 62 / SCOREACCEL Procedure



JOBMANAGEMENTURL="rest-url"
specifies the URL used to submit execution requests over a REST interface to 
services such as Apache Livy.

Alias RESTURL=

Applies to Hadoop

Restriction This option is available as of SAS Viya 3.5 (August 2021 release, or 
earlier if you apply a hot fix).

KEEPLISTCOLUMNS="column-1 <column-2 … >"
KEEPLISTCOLUMNS=(column-1 <column-2 … >)
KEEPLISTCOLUMNS=("column-1" <"column-2" … >)

specifies the name of the column (or columns) to be kept by the DS2 program.

Alias KEEPLISTCOLS=

Applies to Hadoop

Interaction The parameters KEEPLISTFILE and KEEPLISTCOLUMNS are 
mutually exclusive.

KEEPLISTFILE="file-path"
specifies the name of the file that contains a list of columns to be kept by the 
DS2 program.

Applies to Hadoop

Interaction The parameters KEEPLISTFILE and KEEPLISTCOLUMNS are 
mutually exclusive.

MODELDIR="model-directory"
specifies the root HDFS folder where the model directory is created.

Applies to Hadoop

OUTDATASET="output-dataset"
specifies the name of the output Spark dataset to be created by the SAS 
Embedded Process.

Applies to Hadoop

Restriction This option is available as of SAS Viya 3.5 (August 2021 release, 
or earlier if you apply a hot fix).

Requirement When running a model in Hadoop, either OUTDATASET, 
OUTHDMD, or OUTTABLE must be specified.

See OUTHDMD= option

OUTTABLE= option

OUTHDMD="file-path"
specifies the name of the output Hadoop metadata file that is created by the SAS 
Embedded Process.

Applies to Hadoop

RUNMODEL Statement 2245



Requirement When running a model in Hadoop, either OUTDATASET, 
OUTHDMD, or OUTTABLE must be specified.

See OUTDATASET= option

OUTTABLE= option

OUTKEY=(column, …, column)
specifies the name of one or more columns used for the primary index of the 
output table that is created by the SAS Embedded Process for Teradata.

Applies to Teradata

OUTPUTFOLDER="directory-path"
specifies the name of the directory where the output files are stored. 

Applies to Hadoop

OUTPUTFORMATCLASS="class-name"
specifies the name of the output format class in dot notation that is used to write 
the output records.

Applies to Hadoop

OUTRECORDFORMAT=BINARY | DELIMITED
specifies the format of the output record that is produced by the SAS Embedded 
Process for Hadoop.

BINARY
specifies that the output record is binary.

DELIMITED
specifies that the output record is delimited.

Default DELIMITED

Applies to Hadoop

OUTSCHEMA="output-schema"
specifies the Hive output database schema name when running a model in 
Hadoop.

Applies to Hadoop

OUTTABLE="output-table" | "caslib.output-table" | "schema.output-table"
specifies the name of the output table.

Alias OUTPUTTABLE=

Applies to CAS

Hadoop

Teradata

Requirement When running a model in Hadoop, either OUTDATASET, 
OUTHDMD, or OUTTABLE must be specified.

Note The output table can be specified as a one-part or a two-part 
name. When running a model in CAS, the first part of a two-part 

2246 Chapter 62 / SCOREACCEL Procedure



name is interpreted as the name of the caslib that contains the 
output table. When running a model in Teradata, the first part of a 
two-part name is interpreted as the name of the database schema 
that contains the output table.

See OUTDATASET= option

OUTHDMD= option

OUTTABLEOPTIONS="options-string"
provides user-specified options that are appended to the Hive CREATE TABLE 
statement.

Applies to Hadoop

PASSWORD="password"
is the password for the user ID on the Hadoop or Teradata server.

Aliases PASS=

PASSWD=

PWD=

Applies to Hadoop

Teradata

PLATFORM=MAPRED | SPARK
specifies the platform where the Hadoop Embedded Process is to be executed.

MAPRED
specifies to run the model in MapReduce.

SPARK
specifies to run the model in Spark.

Interaction If PLATFORM is set to SPARK, you must specify the 
CONFIGPATH option.

Default MAPRED

Applies to Hadoop

Restriction This option is available as of SAS Viya 3.4 and SAS 9.4M6.

PROPERTIES="name1=value" <PROPERTIES="name2=value"> | 
PROPERTIES=("name=value"<, "name=value", …>)

specifies a Hadoop configuration property as a name-value pair. For multiple 
properties, specify multiple PROPERTIES arguments or specify a single 
argument containing a comma-separated list of name-value pairs enclosed in 
parentheses. Any Hadoop configuration property can be assigned using this 
option.

If multiple properties are required, then the PROPERTIES parameter can also be 
specified multiple times, once for each property.

Applies to Hadoop

RUNMODEL Statement 2247



Requirement If your output is to a Hive table and the Hive database folder is 
under an HDFS encrypted zone, you must set the SAS 
Embedded Process temporary folder to a location that is under 
the same encrypted zone. To do this, set the sas.ep.tempdir 
configuration property. Here is an example:

properties="sas.ep.tempdir=yourSASEPTemporaryFolder"

SCHEMA="schema-name"
specifies the name of the Teradata schema.

Applies to Teradata

Note This option provides the connection option that the Teradata 
database uses to qualify the Teradata tables.

SENDPROGRAM=YES | NO
specifies whether the model program source code should be sent back to the 
client and displayed for the user.

Applies to CAS

SERVER="server"
specifies the name of the Teradata or Hive server.

Applies to Hadoop

Teradata

TARGET=CAS | HADOOP | TERADATA
specifies the target environment to which the model is published.

CAS
specifies to publish to a model table in CAS.

HADOOP
specifies to publish to the Hadoop server.

TERADATA
specifies to publish to a model table in the Teradata database.

Default CAS

Applies to CAS

Hadoop

Teradata

TRACE
runs the SAS Embedded Process for Hadoop with traces on.

Applies to Hadoop

USERNAME='id'
is an authorized user ID on the Hadoop or Teradata server.

Aliases USER=

USERID=

2248 Chapter 62 / SCOREACCEL Procedure



UID=

Applies to Hadoop

Teradata

VERBOSE
specifies that the SAS Embedded Process for Hadoop provide additional logging 
information.

Applies to Hadoop

WEBHDFSURL="webhdfs-url"
specifies the URL used to access the Hadoop distributed file system through the 
REST API. 

Applies to Hadoop

Restriction This option is available as of SAS Viya 3.5 (August 2021 release, or 
earlier if you apply a hot fix).

Note Use this argument when you delete, publish, or run a model in a 
platform that is configured to access the distributed file system 
through the REST API.

Examples: SCOREACCEL Procedure

Example 1: Publishing, Running, and Deleting a 
DATA Step Model in CAS
Features: PROC SCOREACCEL statement

PUBLISHMODEL statement
RUNMODEL statement
DELETEMODEL statement
CASLIB LIBNAME statement

Details
In this PROC SCOREACCEL example, a DATA step model is published and run in 
CAS. The model is then deleted.

PROC SCOREACCEL translates DATA step code into DS2 code on the SAS client.

Example 1: Publishing, Running, and Deleting a DATA Step Model in CAS 2249



Program
cas mysess1;
libname mycaslib cas casref=mysess1;

proc delete data=mycaslib.model01_score_data; run;
libname eminput "/mydir/scoring/model01";
data mycaslib.model01_score_data; 
   set eminput.traindata; 
   id=_n_; run;
quit;

proc scoreaccel sessref=mysess1;
   publishmodel 
      modelname="model01" 
      modeltype=datastep
      modeltable="modeltable1"
      programfile="/mydir/scoring/model01/score.sas"
      xmlfile="/mydir/scoring/model01/score.xml"
      outdir="/user1/score/work/"
      modelnotes="Simple model01 test model"
      replacemodel=yes
      promotetable=no
      persisttable=no
      ;
quit;

proc delete data=mycaslib.model01out_data run;
proc scoreaccel sessref=mysess1;
   runModel
      modelname="model01" 
      modeltable="modeltable1"
      intable="model01_score_data"
      outtable="model01_out_data"
      ;
quit;

proc scoreaccel sessref=mysess1;
   deletemodel
      modelname="model01" 
      modeltable="modeltable1"
      ;
quit;

Program Description
Assign a CAS LIBNAME. The CAS LIBNAME is passed to the DATA step in PROC 
DELETE.

cas mysess1;
libname mycaslib cas casref=mysess1;

Create an input scoring table in CAS. The DELETE procedure removes an 
existing input scoring table.

proc delete data=mycaslib.model01_score_data; run;

2250 Chapter 62 / SCOREACCEL Procedure



libname eminput "/mydir/scoring/model01";
data mycaslib.model01_score_data; 
   set eminput.traindata; 
   id=_n_; run;
quit;

Publish a model in CAS. The DATA step model is converted to DS2 in this step 
and is published in CAS.

proc scoreaccel sessref=mysess1;
   publishmodel 
      modelname="model01" 
      modeltype=datastep
      modeltable="modeltable1"
      programfile="/mydir/scoring/model01/score.sas"
      xmlfile="/mydir/scoring/model01/score.xml"
      outdir="/user1/score/work/"
      modelnotes="Simple model01 test model"
      replacemodel=yes
      promotetable=no
      persisttable=no
      ;
quit;

Run the model in CAS. The DELETE procedure removes an existing CAS table 
before running the model.

proc delete data=mycaslib.model01out_data run;
proc scoreaccel sessref=mysess1;
   runModel
      modelname="model01" 
      modeltable="modeltable1"
      intable="model01_score_data"
      outtable="model01_out_data"
      ;
quit;

Delete the model from the model table in CAS. T

proc scoreaccel sessref=mysess1;
   deletemodel
      modelname="model01" 
      modeltable="modeltable1"
      ;
quit;

Example 2: Publishing, Running, and Deleting a 
DS2 Model in Teradata
Features: PROC SCOREACCEL statement

PUBLISHMODEL statement
RUNMODEL statement
DELETEMODEL statement

Example 2: Publishing, Running, and Deleting a DS2 Model in Teradata 2251



Details
This PROC SCOREACCEL example publishes and runs a DS2 Model in Teradata. 
PROC SCOREACCEL invokes the Model publishing or DS2 actions in CAS to 
delete a model, publish a model, or run a model.

Program
libname mytdlib teradata server=mytdserver user=model password=XXXXX 
   database=model;

proc delete data=mytdlib.model01_score_data; run;
libname eminput "/mydir/scoring/model01";
data mytdlib.model01_score_data; 
   set eminput.traindata; 
   id=_n_; run;
quit;

proc scoreaccel sessref=mysess1;
   publishmodel 
      target=teradata
      modelname="model01" 
      modeltype=DS2
      modeltable="modeltable1"
      programfile="/mydir/scoring/model01/score.ds2"
      modelnotes="Simple model01 test model"
      username="model"
      password="XXXXX"
      server="mytdserver"
      database="model"
      replacemodel=yes
   ;
quit;

proc scoreaccel sessref=mysess1;
   runmodel 
      target=teradata
      modelname="model01" 
      modeltable="modeltable1"
      intable="model01_score_data"
      outtable="model01_out_data"
      outkey="id"
      username="model"
      password="XXXXX"
      server="mytdserver"
      database="model"
      ;
   quit;

proc scoreaccel sessref=mysess1;
   deletemodel 
      target=teradata

2252 Chapter 62 / SCOREACCEL Procedure



      modelname="model01" 
      modeltable="modeltable1"
      authdomain="indb"
      server="mytdserver"
      database="model"
      ;
   quit;

Program Description
Create the Teradata LIBNAME reference. The Teradata libref is needed for PROC 
DELETE and the DATA step program.

libname mytdlib teradata server=mytdserver user=model password=XXXXX 
   database=model;

Create an input scoring table in CAS. The DELETE procedure removes an 
existing input scoring table.

proc delete data=mytdlib.model01_score_data; run;
libname eminput "/mydir/scoring/model01";
data mytdlib.model01_score_data; 
   set eminput.traindata; 
   id=_n_; run;
quit;

Publish a DS2 model to Teradata. The PROGRAMFILE statement contains the 
DS2 model. 

proc scoreaccel sessref=mysess1;
   publishmodel 
      target=teradata
      modelname="model01" 
      modeltype=DS2
      modeltable="modeltable1"
      programfile="/mydir/scoring/model01/score.ds2"
      modelnotes="Simple model01 test model"
      username="model"
      password="XXXXX"
      server="mytdserver"
      database="model"
      replacemodel=yes
   ;
quit;

Run the DS2 model in Teradata.

proc scoreaccel sessref=mysess1;
   runmodel 
      target=teradata
      modelname="model01" 
      modeltable="modeltable1"
      intable="model01_score_data"
      outtable="model01_out_data"
      outkey="id"
      username="model"
      password="XXXXX"

Example 2: Publishing, Running, and Deleting a DS2 Model in Teradata 2253



      server="mytdserver"
      database="model"
      ;
   quit;

Delete the model from the model table in Teradata.

proc scoreaccel sessref=mysess1;
   deletemodel 
      target=teradata
      modelname="model01" 
      modeltable="modeltable1"
      authdomain="indb"
      server="mytdserver"
      database="model"
      ;
   quit;

Example 3: Publishing and Running a DATA Step 
Model in Teradata Using a CASLIB
Features: PROC SCOREACCEL statement

PUBLISHMODEL statement
RUNMODEL statement
CASLIB LIBNAME statement
CAS procedure

Details
In this PROC SCOREACCEL example, a DATA step model is published and run in 
CAS. PROC SCOREACCEL translates DATA step code into DS2 code on the SAS 
client. Here, the user credentials and other database connection information is 
pulled from the specified CASLIB.

Program
libname mytdlib teradata server=mytdserver user=model password=XXXXX 
   database=model;

proc delete data=mytdlib.model01_score_data; run;

libname eminput "/mydir/scoring/model01";
data mytdlib.model01_score_data; 
   set eminput.traindata; 
   id=_n_; run;
quit;

2254 Chapter 62 / SCOREACCEL Procedure



proc cas;
   session mysess1;
   action addCaslib /
       caslib="tdlib1" 
       datasource={
       srcType="teradata", 
       dataTransferMode="parallel", 
       server="mytdserver", 
       username="model", 
       password="XXXXX", 
       database="model"
   };
run;

proc scoreaccel sessref=mysess1;
   publishmodel 
      target=teradata
      modelname="model01" 
      modeltype=datastep
      modeltable="modeltable1"
      programfile="/mydir/scoring/model01/score.sas"
      xmlfile="/mydir/scoring/model01/score.xml"
      outdir="/score/work/"
      modelnotes="Simple model01 test model"
      replacemodel=yes
      ;
   runmodel 
      target=teradata
      caslib="tdlib1"
      modelname="model01" 
      modeltable="modeltable1"
      intable="model01_score_data"
      outtable="model01_out_data"
      outkey="id"
      ;
   quit; 

Program Description
Create the Teradata connection options and LIBNAME reference.

libname mytdlib teradata server=mytdserver user=model password=XXXXX 
   database=model;

Create an input scoring table in Teradata. PROC DELETE removes an existing 
input scoring table.

proc delete data=mytdlib.model01_score_data; run;

libname eminput "/mydir/scoring/model01";
data mytdlib.model01_score_data; 
   set eminput.traindata; 
   id=_n_; run;
quit;

Example 3: Publishing and Running a DATA Step Model in Teradata Using a CASLIB
2255



Define a Teradata caslib. The addCaslib action adds a CAS library to the current 
mysess1 session.

proc cas;
   session mysess1;
   action addCaslib /
       caslib="tdlib1" 
       datasource={
       srcType="teradata", 
       dataTransferMode="parallel", 
       server="mytdserver", 
       username="model", 
       password="XXXXX", 
       database="model"
   };
run;

Publish and run the DATA step model in Teradata.

proc scoreaccel sessref=mysess1;
   publishmodel 
      target=teradata
      modelname="model01" 
      modeltype=datastep
      modeltable="modeltable1"
      programfile="/mydir/scoring/model01/score.sas"
      xmlfile="/mydir/scoring/model01/score.xml"
      outdir="/score/work/"
      modelnotes="Simple model01 test model"
      replacemodel=yes
      ;
   runmodel 
      target=teradata
      caslib="tdlib1"
      modelname="model01" 
      modeltable="modeltable1"
      intable="model01_score_data"
      outtable="model01_out_data"
      outkey="id"
      ;
   quit; 

Example 4: Publishing and Running a Model in 
Hadoop
Features: PROC SCOREACCEL statement

PUBLISHMODEL statement
RUNMODEL statement

2256 Chapter 62 / SCOREACCEL Procedure



Details
In this PROC SCOREACCEL example, a simple DS2 model is published and run in 
Hadoop.

Program
The CLASSPATH option specifies a link to the Hadoop cluster.

proc scoreaccel sessref=mysess1;
   publishmodel 
      target=hadoop
      modelname="simple01" 
      modeltype=DS2
      programfile="/score/simple/simple.ds2"
      username="test"
      password="XXXXX"
      modeldir="/data/model/dlm/ds2"
      classpath="/server/sdm/hadoopjars/cdh58/prod:
                 /server/sdm/hadoopcfg/cdh58/prod";
    ;
quit;
proc scoreaccel sessref=mysess1;
   runmodel 
      target=hadoop
      modelname="simple01"
      username="test"
      password="XXXXX"
      modeldir="/data/model/dlm/ds2"
      server="server1.com"
      inhdmd="/data/model/dlm/meta/simple01sashdmd"
      outhdmd="/data/model/dlm/meta/simple01_out.sashdmd"
      outputfolder="/data/model/dlm/temp/simple01"
      forceoverwrite=yes
      classpath="/server/sdm/hadoopjars/cdh58/prod:
                 /user1/server/sdm/hadoopcfg/cdh58/prod";
      ;
quit; 

Example 5: Publishing and Running a Model in 
Hadoop (Hive)
Features: PROC SCOREACCEL statement

PUBLISHMODEL statement
RUNMODEL statement

Example 5: Publishing and Running a Model in Hadoop (Hive) 2257



Details
In this PROC SCOREACCEL example, a simple DS2 model is published to Hadoop 
and executed there with Hive.

Program
The classpath statement specifies a link to the Hadoop cluster. The input and output 
tables, carsorc and carsout, already exist on the Hadoop cluster.

proc scoreaccel sessref=mysess1;
   publishmodel 
      target=hadoop
      modelname="simple01" 
      modeltype=DS2
      filelocation=local
      programfile="/user1/score/simple/simple.ds2"
      username="test"
      modeldir="/user/user1/cas/models"
      classpath="/server/sdm/hadoopjars/cdh58/prod:
                 /user1/server/sdm/hadoopcfg/cdh58/prod";
      ;
   runmodel 
      target=hadoop
      modelname="simple01" 
      username="test"
      modeldir="/user/user1/cas/models"
      server="server2.com"
      intable="carsorc"
      outtable="carsout"
      outtableoptions="stored as ORC"
      forceoverwrite=yes
      classpath="/server/sdm/hadoopjars/cdh58/prod:
                 /user1/server/sdm/hadoopcfg/cdh58/prod";
      ;
quit; 

Example 6: Running a Model in Spark
Features: PROC SCOREACCEL statement

RUNMODEL statement

2258 Chapter 62 / SCOREACCEL Procedure



Details
In this PROC SCOREACCEL example, a DS2 model is run in Spark with the SAS 
Embedded Process.

Program
To run in Spark, the cluster must have Spark installed and configured. When the 
Hadoop tracer script is run to collect JAR files, the spark folder is created along with 
the required Spark JAR files. During this process, the Spark configuration file is 
placed into the user’s configuration folder. To run the model in Spark, specify the 
PLATFORM=SPARK option in the RUNMODEL statement. To run the model, the 
folder containing the client-side Spark JAR files must be specified last in the 
CLASSPATH option. In this example, the input and output tables, carsorc and 
carsout, already exist on the Hadoop cluster.

proc scoreaccel sessref=mysess1;
runmodel
    target=hadoop
    modelname="cars"
    username="test"
    modeldir="/user1/cas/models"
    server="server2.com"
    intable="carsorc"
    outtable="carsout"
    forceoverwrite=yes
    classpath="/nfs/hadoop/jars"
    configpath="/nfs/hadoop/cfg"
    platform=SPARK
    ;
  quit;

Example 7: Running a Model in Spark by Using the 
Apache Livy REST Interface
Features: CASLIB statement

CAS procedure
PROC SCOREACCEL statement
PUBLISHMODEL statement
RUNMODEL statement

Example 7: Running a Model in Spark by Using the Apache Livy REST Interface 2259



Details
In this example, PROC SCOREACCEL publishes and runs a model in Spark. The 
request to run the model is submitted by using the Apache Livy REST service.

Create a CAS session, and assign a caslib to Spark. A best practice is to 
specify all the connection properties in the caslib, so that you do not have to 
remember which connection properties are required by the different actions 
and statements. 

cas mysess;

caslib myspark datasource=(srctype='spark',
       schema="model",
       username="myuser",
       password="mypwd",
       jobmanagementurl="https://nnnnn.cloud.company.com/cdp-proxy-api/
livy/", 
       server="cloud.company.com",
       hadoopJarPath="path-to-hadoop-jar-files",
       hadoopConfigDir="path-to-hadoop-configuration",
       dbmaxtext=512);

Start the SAS Embedded Process for Spark continuous session. Most 
customers choose to use a continuous session for better performance.

proc cas;
   sparkEmbeddedProcess.startSparkEP
   caslib="myspark";
run; 
quit;

Publish a model to Spark. 

proc scoreaccel sessref=mysess;
   publishmodel
      target=hadoop
      caslib="myspark"
      modelname="mymodel"
      programfile="/mydir/myscorefile.ds2"
      modeldir="/user/dir" 
      replacemodel=yes;
run;
quit;

Run the model in Spark. The INTABLE= option specifies the input Spark table 
that contains the data to run the model against.

proc scoreaccel sessref=mysess;
   runmodel 
      target=hadoop
      caslib="myspark"

2260 Chapter 62 / SCOREACCEL Procedure



      modelname="mymodel" 
      modeldir="/user/dir" 
      intable="mytable"
      outtable="mytable_out"
      forceoverwrite=yes;
run;
quit;

Example 7: Running a Model in Spark by Using the Apache Livy REST Interface 2261



2262 Chapter 62 / SCOREACCEL Procedure



Chapter 63
SOAP Procedure

Overview: SOAP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2263
What Does the SOAP Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2263

Concepts: SOAP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2264
Concepts: SOAP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2264

Syntax: SOAP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2265
PROC SOAP Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2265

Usage: SOAP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2269
Using PROC SOAP with Transport Layer Security (TLS) . . . . . . . . . . . . . . . . . . 2269
Methods of Calling SAS Registered Web Services . . . . . . . . . . . . . . . . . . . . . . . 2270
Calling a SAS Secured Service without Providing Credentials . . . . . . . . . . . . . . 2271
Specifying an Output Log File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2271

Examples: SOAP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2272
Example 1: Using a Proxy and PROC SOAP with a SOAPEnvelope Element . . 2272
Example 2: Using a Proxy and PROC SOAP without a SOAPEnvelope Element 2273
Example 3: Add Numbers Using Online Calculator . . . . . . . . . . . . . . . . . . . . . . . 2274

Overview: SOAP Procedure

What Does the SOAP Procedure Do?
The Simple Object Access Protocol (SOAP) procedure reads XML input from a file 
that has a fileref and writes XML output to another file that has a fileref. The 
message component, an XML document that corresponds to a service request, is 
part of the content of the fileref. It is defined in the IN option of PROC SOAP. The 
input XML is either a SOAPEnvelope element, or an element inside the 
SOAPEnvelope that is required to invoke the web service.

2263



For information about using PROC SOAP to invoke web services, see SAS BI Web 
Services: Developer’s Guide.

Concepts: SOAP Procedure

Concepts: SOAP Procedure
With PROC SOAP, you can include an optional SOAPEnvelope element in your 
XML file. Do this if you want to include custom information in the SOAPHeader 
element. A SOAP envelope wraps the message, which has an application-specific 
message vocabulary. The SOAPHeader content is added to the actual SAS 
registered web service request. This addition occurs because there could be 
additional SOAPHeader elements that were not included in the XML file that was 
passed to PROC SOAP. The XML code that is transmitted might not exactly match 
the XML code provided in this case.

Examples of additional elements that might be included are those for WS-Security 
or WS-Addressing. Web Services Security (WS-Security) is a specification that 
defines how security measures are implemented in web services to protect them 
from external attacks. It is a set of protocols that ensure security for SOAP-based 
messages by implementing the principles of confidentiality, integrity, and 
authentication. WS-Addressing is a standard for adding addressing information to 
SOAP messages. For more information, see Overview of Security for Web Services.

A request does not need to be contained in a SOAP envelope. An envelope is 
added if you do not specify an envelope. If an envelope is specified, it is 
incorporated into the envelope that is sent. A response is returned within an 
envelope only if the envelope property is set. The default behavior is to return only 
the contents of the envelope.

You can set the amount of time to wait for a response from the web service by using 
the CONFIGFILE option. The default time to wait is 60 seconds.

Requests must not include an encoding declaration even if the envelope is included. 
If the request is being read from a file, the file must be encoded in the same 
encoding as the session encoding. Requests are encoded as UTF-8 before being 
sent to the web service.

z/OS Specifics: Calling SAS registered services is not available in the z/OS 
operating environment. SAS registered web services require WS-Security with 
Password Digest, and Password Digest is not supported on z/OS.

2264 Chapter 63 / SOAP Procedure

http://documentation.sas.com/?docsetId=wbsvcdg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=wbsvcdg&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Syntax: SOAP Procedure
Restrictions: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.
When SAS is in a locked-down state, the SOAP procedure is not available. Your server 
administrator can re-enable this procedure so that it is accessible in the lockdown state. 
When the FILENAME URL access method is re-enabled by using the LOCKDOWN 
ENABLE_AMS = statement, the SOAP procedure is automatically re-enabled. For more 
information, see “SAS Processing Restrictions for Servers in a Locked-Down State” in 
SAS Programmer’s Guide: Essentials.

See: “LOCKDOWN Statement” in SAS Intelligence Platform: Application Server 
Administration Guide 
Locked-Down Servers

PROC SOAP options <properties>;

Statement Task Example

PROC SOAP Invoke a Web Service By Using a Proxy and 
Using PROC SOAP with a SOAPEnvelope 
Element

Ex. 1

Invoke a Web Service By Using a Proxy and 
Using PROC SOAP without a SOAPEnvelope 
Element

Ex. 2

Add numbers using Online Calculator Ex. 3

PROC SOAP Statement
Invokes a web service through Java Native Interface (JNI).

Syntax
PROC SOAP options <properties>;

Summary of Optional Arguments
CONFIGFILE

sets the time-out limit for web service calls.

PROC SOAP Statement 2265

http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=lepg&docsetVersion=9.4&docsetTarget=p0i4ll0x154tqbn13ogrdoqfk4cc.htm&locale=en
http://documentation.sas.com/?docsetId=biasag&docsetVersion=9.4&docsetTarget=n23000intelplatform00srvradm.htm&locale=en
http://documentation.sas.com/?docsetId=biasag&docsetVersion=9.4&docsetTarget=n23000intelplatform00srvradm.htm&locale=en
https://documentation.sas.com/?cdcId=bicdc&cdcVersion=9.4&docsetId=bisecag&docsetTarget=p0eo05w7u850lgn1n1i5vquf07vg.htm


DEBUG
specifies an output log file.

ENVFILE
specifies the location of the SAS environments file.

ENVIRONMENT
specifies that you use the environment that is defined in the SAS 
environments file.

MUSTUNDERSTAND
specifies the setting for the mustUnderstand attribute.

OUT=fileref 'your-output-file'
specifies a fileref for response output.

PROXYDOMAIN
specifies an HTTP proxy server domain.

PROXYHOST
specifies an HTTP proxy server host name.

PROXYPASSWORD
specifies an HTTP proxy server password.

PROXYPORT
specifies an HTTP proxy server port.

PROXYUSERNAME
specifies an HTTP proxy server user name.

SOAPACTION
specifies a SOAPAction element.

SRSURL
specifies the URL of the System Registry Service.

WEBAUTHDOMAIN
specifies user name and password retrieval from metadata.

WEBDOMAIN
specifies the domain or realm for a user name and password.

WEBPASSWORD
specifies a password for web service authentication.

WEBUSERNAME
specifies a user name for web service authentication.

WSSAUTHDOMAIN
specifies that the active connection to the SAS Metadata Server is used to 
retrieve credentials.

WSSPASSWORD
specifies a WS-Security password.

WSSUSERNAME
specifies a WS-Security user name.

Required Arguments
IN=fileref 'your-input-file'

specifies the fileref that is used to input XML data that contains a PROC SOAP 
request. 

The fileref might have SOAPEnvelope and SOAPHeader elements as part of its 
content, but they are not required unless you have specific header information to 
provide.

2266 Chapter 63 / SOAP Procedure



SERVICE
specifies the SAS registered web service that you want to call.

Tip If you use the SERVICE option, then do not use the URL option.

URL
specifies the URL of the web service endpoint.

Tip If you use the URL option, then do not use the SERVICE option.

Optional Arguments
CONFIGFILE

enables you to set the time-out limit for web service calls. The default time-out is 
60 seconds.

DEBUG
enables you to specify an output log file. The debug option turns on wire logging 
for httpclient and writes the output to the specified file. The value of this option is 
the path or filename to the desired output.

ENVFILE
specifies the location of the SAS environments file.

ENVIRONMENT
specifies to use the environment that is defined in the SAS environments file.

MUSTUNDERSTAND
specifies the setting for the mustUnderstand attribute in the PROC SOAP 
header. 

OUT=fileref 'your-output-file'
specifies the fileref where the PROC SOAP XML response output is written.

PROXYDOMAIN
specifies an HTTP proxy server domain. 

Tip This option is required only if your proxy server requires domain- or realm-
qualified credentials.

PROXYHOST
specifies an HTTP proxy server host name.

PROXYPASSWORD
specifies an HTTP proxy server password. Encodings that are produced by 
PROC PWENCODE are supported.

Tip This option is required only if your proxy server requires credentials.

PROXYPORT
specifies an HTTP proxy server port.

PROXYUSERNAME
specifies an HTTP proxy server user name. 

Tip This option is required only if your proxy server requires credentials.

SOAPACTION
specifies a SOAPAction element to invoke on the web service.

PROC SOAP Statement 2267



SRSURL
specifies the URL of the System Registry Service.

WEBAUTHDOMAIN
specifies that a user name and password be retrieved from metadata for the 
specified authentication domain.

WEBDOMAIN
specifies the domain or realm for the user name and password. 

WEBPASSWORD
specifies a password for basic web service authentication. Encodings that are 
produced by PROC PWENCODE are supported.

WEBUSERNAME
specifies a user name for basic web service authentication. 

WSSAUTHDOMAIN
specifies that the active connection to the SAS Metadata Server is used to 
retrieve credentials in the specified authentication domain.

If credentials are found, they are used as the credentials for a WS-Security 
UsernameToken.

WSSUSERNAME
specifies a WS-Security user name. If a value is set, then WS-Security is used 
and a UsernameToken is sent with the web service request for user 
authentication, security, and encryption.

WSSPASSWORD
specifies a WS-Security password that is the password for WSSUSERNAME. 
Encodings that are produced by PROC PWENCODE are supported.

Properties
ENVELOPE

specifies that a SOAP envelope is to be included in the response.

2268 Chapter 63 / SOAP Procedure



Usage: SOAP Procedure

Using PROC SOAP with Transport Layer Security 
(TLS)

TLS and Data Encryption
Transport Layer Security (TLS) enables web browsers and web servers to 
communicate over a secured connection by encrypting data. Both browsers and 
servers encrypt data before the data is transmitted. The receiving browser or server 
then decrypts the data before it is processed. Because PROC SOAP invokes a web 
service using the Java Native Interface, JREOPTIONS need to be specified either 
on the command line or in a configuration file to configure a TLS connection.

Note: All discussion of TLS is also applicable to the predecessor protocol, Secure 
Sockets Layer (SSL). 

When you require client authentication, TLS has a renegotiation feature that 
prevents unauthorized text from being added to the beginning or end of an 
encrypted data stream. This feature is specifically used by certificate-based client 
authentication. This feature disables TLS renegotiation in the Java Secure Sockets 
Extension (JSSE) by default. As a result, when you attempt to access a web 
resource that requires certificate-based client authentication through the interception 
proxy, the following Java TLS error message is generated:

(javax.net.ssl.SSLException): HelloRequest followed by 
an unexpected handshake message

However, it is still possible to enable the TLS renegotiation in Java by setting the 
following system property to true before the JSSE library is initialized.

sun.security.ssl.allowUnsafeRenegotiation

Making PROC SOAP Calls By Using the 
HTTPS Protocol
In order to make PROC SOAP calls using the HTTPS protocol, you must have a 
truststore that contains the certificates for the services that you trust. This truststore 

Usage: SOAP Procedure 2269



must be provided to the SAS session by setting Java system option 
Djavax.net.ssl.trustStore.

Clients must ensure that the CA that signed the certificate has been added to their 
truststore. You can provide the path to the truststore on the SAS command line or in 
a SAS configuration file using JREOPTIONS.

-jreoptions (-Djavax.net.ssl.trustStore=full-path-to-the-trust-store)

Note: As a best practice, anytime that you are using passwords in configuration 
files, use file system permissions that allow write only access by the owner of the 
SAS or SAS Viya deployment. By default, the owner is "sas".

Here is an example using the SAS command line. The example uses the Windows 
operating environment.

Note: Add the following entry on one line.

"C:\Program Files\SAS\SASFoundation\9.4\sas.exe" -CONFIG "C:\Program
Files\SAS\SASFoundation\9.4\nls\en\SASV9.CFG" -jreoptions 
(-Djavax.net.ssl.trustStore=C:\Documents and Settings\mydir\.keystore) 

Here is an example of how to specify the JREOPTIONS in the sasv9.cfg file.

Note: Add the system option and value on one line.

-JREOPTIONS (-Djavax.net.ssl.trustStore=
!SASHOME/../config/etc/SASSecurityCertificateFramework/
cacerts/trustedcerts.jks)

Methods of Calling SAS Registered Web Services
You can use two methods to call SAS registered web services. The first method 
requires that you know the URL of the Service Registry Service and the URL of the 
endpoint of the service that you are calling. You must set the URL of the Service 
Registry Service on the SRSURL option. The URL option indicates the endpoint of 
the service that you are calling.

The second method that is used to call SAS registered web services uses the SAS 
environments file to specify the endpoint of the service that you are calling. Using 
this method, you can indicate the location of the SAS environments file in one of two 
ways:

n use the ENVFILE option in PROC SOAP

n define the Java property env.definition.location in JREOPTIONS on the 
SAS command line or in the SAS configuration file

Use the following –JREOPTIONS syntax:

-jreoptions (-Denv.definition.location=http://your-SAS-environment.xml)

You must also specify the desired environment within that file using the 
ENVIRONMENT option, and specify the name of the service that you are calling 
using the SERVICE option.

2270 Chapter 63 / SOAP Procedure



In both cases, the WSUSERNAME and WSPASSWORD options are set to the user 
name and password that are required to contact the Security Token Service.

Calling a SAS Secured Service without Providing 
Credentials

You can use the SRSURL, ENVFILE, or ENVIRONMENT options to call a SAS 
secured service without having to supply a set of credentials. In this case, you do 
not need to use the WSSUSERNAME, WSSPASSWORD, or WSSAUTHDOMAIN 
options. This functionality eliminates the need to store user credentials in metadata 
and reduces the flow of credentials across the network. A connection to the 
metadata server is required. Credentials that are valid for a single use are 
generated for the user that is connected to the metadata server.

Specifying an Output Log File
The log file contains HTTP headers and data that are transmitted to and from 
servers when transmitting the HTTP request in PROC SOAP. You use the log file 
that is created with the DEBUG option to log debug output.

PROC SOAP uses log4j for logging requests and responses so that you can trace 
them. To create a log file that contains the request issued and the response 
received, create a file that has the following contents:

log4j.appender.FILE=org.apache.log4j.FileAppender
log4j.appender.FILE.File=wire.log
log4j.appender.FILE.layout=org.apache.log4j.PatternLayout
log4j.appender.FILE.layout.ConversionPattern =%d %5p [%c] %m%n 

log4j.logger.httpclient.wire=DEBUG, FILE

To turn on logging to see the SOAP request and response for an entire SAS 
session, you must restart SAS with the –jreoptions command line option. Enable 
logging by setting a Java system option using –jreoptions on the SAS command line 
or in a SAS configuration file. The following syntax shows how to set the system 
option:

-jreoptions (-Dlog4j.configuration=path-to-log4j-config-file)

The following example shows how to use the entry on the SAS command line. The 
example uses the Windows operating environment.

Note: Add entry on one line.

"C:\Program Files\SAS\SASFoundation\9.2\sas.exe" -CONFIG 
"C:\ProgramFiles\SAS\SASFoundation\9.2\nls\en\SASV9.CFG" 
-jreoptions(- Dlog4j.configuration=file:/c:/public/log4j.properties)

Using the configuration file and JREOPTIONS method described above turns on 
logging for the entire SAS session. To turn on httpclient.wire for an individual PROC 
SOAP call, use the DEBUG option.

Usage: SOAP Procedure 2271



You can use the DEBUG option to turn on wire logging for the duration of a PROC 
SOAP call. The value of the DEBUG option is the path or filename to the output file.

Examples: SOAP Procedure

Example 1: Using a Proxy and PROC SOAP with a 
SOAPEnvelope Element

Details
This example uses a proxy and a SOAPEnvelope element.

Program

filename REQUEST temp;
filename RESPONSE temp;
data _null_;
   file request;
   input;
   put _infile_;
   datalines4;

<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xmlns:xsd="http://www.w3.org/2001/XMLSchema"
         xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
         xmlns:soap="http://www.SoapClient.com/xml/SoapResponder.xsd">
<soapenv:Header/>
<soapenv:Body>
   <soap:Method1 
         soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/">
         <bstrParam1 xsi:type="xsd:string">apple</bstrParam1>
         <bstrParam2 xsi:type="xsd:string">zebra3</bstrParam2>
   </soap:Method1>
</soapenv:Body>
</soapenv:Envelope>
;;;;

run;

2272 Chapter 63 / SOAP Procedure



proc soap in= request
          out= response
          url="http://soapclient.com/xml/soapresponder.wsdl"
          soapaction="http://www.SoapClient.com/SoapObject"
          proxyhost="proxygw.unx.sas.com"
          proxyusername="soaptest"
          proxypassword="testpw"
          proxyport=80;
run;  

Example 2: Using a Proxy and PROC SOAP 
without a SOAPEnvelope Element

Details
This example uses a proxy and does not use a SOAPEnvelope element.

Program

filename REQUEST temp;
filename RESPONSE temp;
data _null_;
   file request;
   input;
   put _infile_;
   datalines4;

<soap:Method1 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xmlns:xsd="http://www.w3.org/2001/XMLSchema"
      xmlns:soap="http://www.SoapClient.com/xml/SoapResponder.xsd"
      encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
      <bstrParam1 xsi:type="xsd:string">apple</bstrParam1>
      <bstrParam2 xsi:type="xsd:string">zebra3</bstrParam2>             
</soap:Method1>
;;;;

run;

proc soap in=request
          out=response
          url="http://soapclient.com/xml/soapresponder.wsdl"
          soapaction="http://www.SoapClient.com/SoapObject"
          proxyhost="proxygw.unx.sas.com"
          proxyusername="soaptest"

Example 2: Using a Proxy and PROC SOAP without a SOAPEnvelope Element 2273



          proxypassword="testpw"
          proxyport=80;
run;  

Example 3: Add Numbers Using Online Calculator

Details
This example uses the DNEONLINE Calculator to add 7 and 4.

Program

/*Set up filename statements to create temporary REQUEST and RESPONSE 
*/ 
/* files. */
filename request temp;
filename response temp;

/*Create a soap request to submit to the URL (writing to filename*/
/* request above).*/
/* This request is specific to each application (ie url)in this case, 
*/
/* the calculator application in DNEONLINE requires two integers that 
*/
/* are added together. */
data _null_;
   file request;
   input;
   put _infile_;
   datalines4;
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/"
                  xmlns:tem="http://tempuri.org/">
   <soapenv:Header/>
   <soapenv:Body>
      <tem:Add>
         <tem:intA>7</tem:intA>
         <tem:intB>4</tem:intB>
      </tem:Add>
   </soapenv:Body>
</soapenv:Envelope>
;;;;

/*submit the request to the url:*/
/*a response is returned via OUT=*/
proc soap

2274 Chapter 63 / SOAP Procedure

http://www.dneonline.com/calculator.asmx


   in=request
   out=response
   url="http://www.dneonline.com/calculator.asmx"
   soapaction="http://tempuri.org/Add";
   run;

After running the program in SAS 9.4M6, the RESPONSE in the SAS log file shows 
the following result:

<AddResponse xmls="http://tempuri.org"><AddResult>11</AddResult></AddResponse>

Example 3: Add Numbers Using Online Calculator 2275



2276 Chapter 63 / SOAP Procedure



Chapter 64
SORT Procedure

Overview: SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2277
What Does the SORT Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2278
Sorting SAS Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2278

Concepts: SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2279
Threaded Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2279
Sorting Orders for Numeric Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2280
Sorting Orders for Character Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2281
Stored Sort Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2283
Presorted Input Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2283
Linguistic Sorting of Data Sets and ICU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2284
Force SAS to Sort Data Sets Using System Option SORTPGM . . . . . . . . . . . . . 2286

Syntax: SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2286
PROC SORT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2287
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2304
KEY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2305

Usage: SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2307
In-Database Processing: PROC SORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2307
SAS Cloud Analytic Services Processing for PROC SORT . . . . . . . . . . . . . . . . . 2309
Integrity Constraints: SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2310

Results: SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2310
Procedure Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2310
Output Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2310

Examples: SORT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2311
Example 1: Sorting by the Values of Multiple Variables . . . . . . . . . . . . . . . . . . . . 2311
Example 2: Sorting in Descending Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2314
Example 3: Maintaining the Relative Order of Observations in Each BY Group . 2316
Example 4: Retaining the First Observation of Each BY Group . . . . . . . . . . . . . . 2319
Example 5: Linguistic Sorting Using ALTERNATE_HANDLING= . . . . . . . . . . . . 2321
Example 6: Linguistic Sorting Using ALTERNATE_HANDLING= 

and STRENGTH= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2325
Example 7: Eliminate All Duplicate Observations Using NODUPKEY . . . . . . . . . 2327

2277



Overview: SORT Procedure

What Does the SORT Procedure Do?
The SORT procedure orders SAS data set observations by the values of one or 
more character or numeric variables. The SORT procedure either replaces the 
original data set or creates a new data set. PROC SORT produces only an output 
data set. For more information, see “Procedure Output” on page 2310. 

Note:  If extended attributes are defined on the input data set, PROC SORT 
propagates the extended attributes to the output data set. For information about 
extended attributes, see “Extended Attributes” on page 555.

Operating Environment Information: The sorting capabilities that are described in 
this chapter are available for all operating environments. In addition, if you use the 
HOST value of the SAS system option SORTPGM=, you might be able to use other 
sorting options that are available for your operating environment. For more 
information about other sorting capabilities, see the SAS documentation for your 
operating environment.

Sorting SAS Data Sets
In the following example, the original data set was in alphabetical order by last 
name. PROC SORT replaces the original data set with a data set that is sorted by 
employee identification number. The following log shows the results from running 
this PROC SORT step. Output 64.331 on page 2279 shows the results of the PROC 
PRINT step. The statements that produce the output follow:

proc sort data=employee;
   by idnumber;
run;

proc print data=employee;
run;

Example Code 64.1 SAS Log Generated by PROC SORT

NOTE: There were six observations read from the data set WORK.EMPLOYEE.
NOTE: The data set WORK.EMPLOYEE has six observations and three variables.
NOTE: PROCEDURE SORT used:
      real time           0.01 seconds
      cpu time            0.01 seconds

2278 Chapter 64 / SORT Procedure



Output 64.1 Observations Sorted by the Values of One Variable

                         The SAS System                        1

                 Obs    Name          IDnumber

                  1     Belloit         1988
                  2     Wesley          2092
                  3     Lemeux          4210
                  4     Arnsbarger      5466
                  5     Pierce          5779
                  6     Capshaw         7338

The following output shows the results of a more complicated sort by three 
variables. The businesses in this example are sorted by town, then by debt from 
highest amount to lowest amount, then by account number. For an explanation of 
the program that produces this output, see “Example 2: Sorting in Descending 
Order” on page 2314. 

Output 64.2 Observations Sorted by the Values of Three Variables

                        Customers with Past-Due Accounts                       1
                     Listed by Town, Amount, Account Number

                                                                  Account
      Obs    Company                   Town              Debt      Number

        1    Paul's Pizza              Apex              83.00      1019
        2    Peter's Auto Parts        Apex              65.79      7288
        3    Watson Tabor Travel       Apex              37.95      3131
        4    Tina's Pet Shop           Apex              37.95      5108
        5    Apex Catering             Apex              37.95      9923
        6    Deluxe Hardware           Garner           467.12      8941
        7    Boyd & Sons Accounting    Garner           312.49      4762
        8    World Wide Electronics    Garner           119.95      1122
        9    Elway Piano and Organ     Garner            65.79      5217
       10    Ice Cream Delight         Holly Springs    299.98      2310
       11    Tim's Burger Stand        Holly Springs    119.95      6335
       12    Strickland Industries     Morrisville      657.22      1675
       13    Pauline's Antiques        Morrisville      302.05      9112
       14    Bob's Beds                Morrisville      119.95      4998

Concepts: SORT Procedure

Threaded Sorting
The THREADS system option enables threaded sorting. Threaded sorting achieves 
a degree of parallelism in the sorting operations. This parallelism is intended to 

Concepts: SORT Procedure 2279



reduce the real time to completion for a given operation and therefore limit the cost 
of additional CPU resources. For more information, see “Support for Parallel 
Processing” in SAS Language Reference: Concepts. 

The multi-threaded SAS sort can also be invoked when you specify the THREADS 
option in the PROC SORT statement. The multi-threaded sort stores all temporary 
data in a single utility file within one of the locations that are specified by the 
UTILLOC= system option. The size of this utility file is proportional to the amount of 
data that is read from the input data set. A second utility file of the same size can be 
created in another of these locations when the amount of data that is read from the 
input data set is large or the amount of memory that is available to the SORT 
procedure is small. For more information, refer to “UTILLOC=” in SAS System 
Options: Reference.

Note: The TAGSORT option on page 2303 does not support threaded sorting.

The multi-threaded SAS sort can be invoked when the THREAD system option is 
specified and the value of the CPUCOUNT= system option is greater than 1. The 
value of the SAS system option CPUCOUNT= affects the performance of the 
threaded sort. CPUCOUNT= suggests how many system CPUs are available for 
use by the threaded procedures.

Calculated statistics can vary slightly, depending on the order in which observations 
are processed. Such variations are due to numerical errors that are introduced by 
floating–point arithmetic, the results of which should be considered approximate and 
not exact. The order of observation processing can be affected by nondeterministic 
effects of multithreaded or parallel processing. The order of processing can also be 
affected by inconsistent or nondeterministic ordering of observations that are 
produced by a data source, such as a DBMS that delivers query results through an 
ACCESS engine. For more information, see “Numerical Accuracy in SAS Software” 
in SAS Language Reference: Concepts and “Threading in Base SAS” in SAS 
Language Reference: Concepts.

For more information, see the “THREADS” in SAS System Options: Reference and 
the “CPUCOUNT=” in SAS System Options: Reference.

Sorting Orders for Numeric Variables
For numeric variables, the following is the smallest-to-largest comparison sequence:

1 SAS missing values (shown as a period or special missing value)

2 negative numeric values

3 zero

4 positive numeric values

2280 Chapter 64 / SORT Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0z5kinpzecv9nn1s45yam93tf6z.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0z5kinpzecv9nn1s45yam93tf6z.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1texr4rxo0ipyn1ovajj11raccx.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1texr4rxo0ipyn1ovajj11raccx.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0ji1unv6thm0dn1gp4t01a1u0g6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0ji1unv6thm0dn1gp4t01a1u0g6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0czb9vxe72693n1lom0qmns6zlj.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0czb9vxe72693n1lom0qmns6zlj.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0cvg7xpfvfyn4n1rnp64gu91poh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p14arc7flhenwqn1v1gipt9e49om.htm&locale=en


Sorting Orders for Character Variables

Default Collating Sequence
The order in which alphanumeric characters are sorted is known as the collating 
sequence. This sort order is determined by the session encoding.

By default, PROC SORT uses either the EBCDIC or the ASCII collating sequence 
when it compares character values, depending on the environment under which the 
procedure is running.

For more information about the various collating sequences and when they are 
used, see “Collating Sequence” in SAS National Language Support (NLS): 
Reference Guide.

Note:  ASCII and EBCDIC represent the family names of the session encodings. 
The sort order can be determined by referring to the encoding. 

EBCDIC Order
The z/OS operating environment uses the EBCDIC collating sequence.

The sorting order of the English-language EBCDIC sequence is consistent with the 
following sort order example.

Table 64.1 EBCDIC Sort Order Example

blank . < ( + | & ! $ * ) ; ¬ - / , % _ > ? : # @ ' = "

a b c d e f g h i j k l m n o p q r ~ s t u v w x y z

{ A B C D E F G H I } J K L M N O P Q R \S T

U V W X Y Z

0 1 2 3 4 5 6 7 8 9

The main features of the EBCDIC sequence are that lowercase letters are sorted 
before uppercase letters, and uppercase letters are sorted before digits. Note also 
that some special characters interrupt the alphabetic sequences. The blank is the 
smallest character that you can display.

Concepts: SORT Procedure 2281

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&locale=en


ASCII Order
The operating environments that use the ASCII collating sequence include the 
following:

n UNIX and its derivatives

n Windows

n OpenVMS

From the smallest to the largest character that you can display, the English-
language ASCII sequence is consistent with the order shown in the following table.

Table 64.2 ASCII Sort Order Example

blank ! " # $ % & ' ( ) * + , - . /0 1 2 3 4 5 6 7 8 9 : ; < = > ? @

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z[ \] ∘_

a b c d e f g h i j k l m n o p q r s t u v w x y z { } ~

The main features of the ASCII sequence are that digits are sorted before 
uppercase letters, and uppercase letters are sorted before lowercase letters. The 
blank is the smallest character that you can display.

Specifying Sorting Orders for Character 
Variables
The options ASCII, EBCDIC, DANISH, NATIONAL, SWEDISH, and REVERSE 
specify collating sequences that are stored in the HOST catalog.

If you want to provide your own collating sequences or change a collating sequence 
provided for you, then use the TRANTAB procedure to create or modify translation 
tables. When you create your own translation tables, they are stored in your 
PROFILE catalog, and they override any translation tables that have the same 
name in the HOST catalog. For complete details, see “TRANTAB Procedure” in SAS 
National Language Support (NLS): Reference Guide.

Note: System managers can modify the HOST catalog by copying newly created 
tables from the PROFILE catalog to the HOST catalog. Then all users can access 
the new or modified translation table.

Linguistic Collation sorts data according to rules of language. For detailed 
information about Linguistic Collation, see “Collating Sequence” in SAS National 
Language Support (NLS): Reference Guide.

2282 Chapter 64 / SORT Procedure

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p140vpknze29j0n1rbfs5fcxemu3.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p140vpknze29j0n1rbfs5fcxemu3.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&locale=en


Stored Sort Information
PROC SORT records the BY variables, collating sequence, and character set that it 
uses to sort the data set. This information is stored with the data set to help avoid 
unnecessary sorts.

Before PROC SORT sorts a data set, it checks the stored sort information. If you try 
to sort a data set how it is currently sorted, then PROC SORT does not perform the 
sort and writes a message to the log to that effect. To override this behavior, use the 
FORCE option. If you try to sort a data set the same way it is currently sorted and 
you specify an OUT= data set, then PROC SORT simply makes a copy of the 
DATA= data set.

To override the sort information that PROC SORT stores, use the _NULL_ value 
with the SORTEDBY= data set option. Refer to the “SORTEDBY= Data Set Option” 
in SAS Data Set Options: Reference.

If you want to change the sort information for an existing data set, then use the 
SORTEDBY= data set option in the MODIFY statement in the DATASETS 
procedure. For more information, see “MODIFY Statement” on page 628. 

To access the sort information that is stored with a data set, use the CONTENTS 
statement in PROC DATASETS. For more information, see “CONTENTS 
Statement” on page 589. 

The number of variables by which you can sort a data set with PROC SORT is 
limited only by available memory. The number of columns by which you can order 
the rows of a result set using PROC SQL, is also limited only by available memory. 
The sort indicator, whether stored in the metadata of a Base data set or represented 
in memory, is limited to 127 variables. For this reason, up to 127 variables can be 
stored in the sort indicator or listed on the SORTEDBY= data set option. If you are 
sorting by more than 127 variables, then only the first 127 are recorded in the sort 
indicator. If you sort the data set again by the entire list of BY variables, the data set 
is not recognized as being sorted, because the additional variables (beyond 127) 
are not found within the sort indicator. For a detailed explanation, refer to “What Is a 
Sort Indicator?” in SAS Language Reference: Concepts.

Presorted Input Data Sets
Specifying the “PRESORTED” on page 2301 option prevents SAS from sorting an 
already sorted data set. Before sorting, SAS checks the sequence of observations 
within the input data set to determine whether the observations are in order. Use the 
PRESORTED option when you know or strongly suspect that a data set is already in 
order according to the key variables specified in the BY statement. The sequence of 
observations within the data set is checked by reading the data set and comparing 
the BY variables of each observation read to the BY variables of the preceding 
observation. This process continues until either the entire data set has been read or 
an out-of-sequence observation is detected.

If the entire data set has been read and no out-of-sequence observations have been 
found, then one of two actions is taken. If no output data set has been specified, the 
sort order metadata of the input data set is updated to indicate that the sequence 

Concepts: SORT Procedure 2283

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1pnjylslu2ryrn1ra3a6ney2bzs.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1pnjylslu2ryrn1ra3a6ney2bzs.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0flzgu1cpvz16n1xvwchd0ogsut.htm&docsetTargetAnchor=p1d23120cnvtpvn1wvyk3egsbzla&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0flzgu1cpvz16n1xvwchd0ogsut.htm&docsetTargetAnchor=p1d23120cnvtpvn1wvyk3egsbzla&locale=en


has been verified. This verification notes that the data set is validly sorted according 
to the specified BY variables. Otherwise, the data set is considered sorted and 
either the input data set metadata is updated or, if OUT= has been specified, the 
data is copied to an output data set.

If observations within the data set are not in sequence, then the data set is sorted.

If the “NODUPKEY” on page 2298 option has been specified, then the sequence 
checking determines whether observations with duplicate keys are present in the 
data set. If observations with duplicate keys are found, then the data set is 
considered unsorted and a sort is performed. Otherwise, the data set is considered 
sorted and actions are taken where either the metadata of the input data set is 
updated or, if OUT= has been specified, data is copied to the output data set. The 
actions taken are described in more detail in the previous paragraphs.

If the metadata of the input data set indicates that the data is already sorted 
according to the key variables listed in the BY statement and the input data set has 
been validated, then neither sequence checking nor sorting is performed.

See “Sorted Data Sets” in SAS Language Reference: Concepts and interactions 
with the “SORTVALIDATE” in SAS System Options: Reference.

Linguistic Sorting of Data Sets and ICU
Linguistic collation sorts characters in a culturally sensitive manner according to 
rules that are associated with a language and locale. The rules and default collating 
sequence are based on the language specified in the current locale setting. The 
implementation is provided by the International Components for Unicode (ICU) 
library. It produces results that are largely compatible with the Unicode Collation 
Algorithms (UCA).

SAS provides ICU collation when the linguistic option (SORTSEQ=LINGUISTIC) is 
specified on the Base SAS procedure, PROC SORT. Starting in the third 
maintenance release of SAS 9.4, you can specify linguistic collation using the 
SORTSEQ= option in the SQL procedure and by specifying the 
SORTSEQ=LINGUISTIC system option.

Note: Only PROC SORT and PROC SQL are affected when the 
SORTSEQ=LINGUISTIC system option is specified.

When the SORTSEQ=LINGUISTIC option is specified, SAS relies on the ICU 
libraries as the reference implementation of the Unicode Collation Algorithm (UCA) 
and as a de facto standard.

In SAS 9.4, the ICU library incorporated by SAS and used by PROC SORT is ICU 
version 4.8.1. This ICU version uses locale data from version 2.0 of the Unicode 
Common Locale Data Repository (CLDR). For in-depth information about the UCA 
algorithm or the International Components for Unicode (ICU) library implementation, 
see Download the ICU 4.8 Release and find the CLDR 2.0 Release Note at CLDR 
Releases/Downloads.

In SAS Viya, the ICU library version incorporated by SAS and used by PROC SORT 
is ICU 56. This ICU version uses locale data from version 28 of the Unicode 
Common Locale Data Repository (CLDR). For in-depth information, see Download 
ICU 56 and CLDR 28 Release Note.

2284 Chapter 64 / SORT Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0flzgu1cpvz16n1xvwchd0ogsut.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0cdfgq2lsgve4n13cflndvlte98.htm&locale=en
https://icu.unicode.org/download/48
https://cldr.unicode.org/index/downloads
https://cldr.unicode.org/index/downloads
https://icu.unicode.org/download/56 
https://icu.unicode.org/download/56 
http://cldr.unicode.org/index/downloads/cldr-28


A change in the version of the ICU that is used by PROC SORT for linguistic 
collation, can affect the interpretation of data sets sorted by another version of SAS. 
If a data set is linguistically sorted by one or more character variables in one version 
of SAS, the data set is recognized as being sorted when accessed in another 
version of SAS if the two SAS versions use different versions of the ICU. Because 
collation rules can change between ICU versions, variations in the rules can cause 
the order of observations produced by PROC SORT to be different. If the ordering 
differences are ignored, unexpected results can be seen during processing.

When sorting linguistically, the ICU version used by SAS is recorded in the sort 
indicator that is stored in the data set header. The ICU version is examined when 
determining if a data set is considered sorted. A difference between the ICU version 
in use and the ICU version recorded in the sort indicator of a data set causes the 
SAS system to ignore the indicated sort order and assume that the data set is 
unsorted.

Note: The PROC CONTENTS output shows the ICU version in use. See “Example 
5: Linguistic Sorting Using ALTERNATE_HANDLING=” on page 2321.

If a sort indicator on a permanent data set is ignored, to facilitate processing, it can 
be desirable to reassert the order and reestablish the sort indicator on the data set. 
This can be done using PROC SORT with the PRESORTED option. Most often, 
because the order of observations within the data set has not been disturbed and is 
likely correct, the SORT procedure probably only needs to sequentially read the 
data set to reestablish the indicator instead of performing a complete sort. If the 
order of observations is not correct, then the SORT procedure reorders the 
observations as necessary.

For both the COPY and MIGRATE procedures, if the ICU version recorded on an 
input data set is different from the version in use by the SAS system, then the sort 
indicator on the input data set is ignored, the output data set is not marked as 
sorted, and a message is written to the SAS log. However, both procedures write 
observations to an output data set in the same order as they are read from the input. 
This order is preserved if a physical order is supported by the engine used for the 
OUT= destination library. For these reasons, when migrating to a new release of 
SAS, consider re-establishing the sort order of permanent data sets using PROC 
SORT with the PRESORTED option.

Additional information about how linguistic collation is used by SAS can be found in 
the following documents, as well as in the PROC SORT SORTSEQ=LINGUISTIC 
system option.

n See “SORTSEQ=sort-table | LINGUISTIC” in SAS SQL Procedure User’s Guide.

n See PROC SORT option“ LINGUISTIC<(collating-options )>” on page 2291.

n See “Specifying Linguistic Collation” in SAS National Language Support (NLS): 
Reference Guide.

n See Chapter 14, “CONTENTS Procedure,” on page 477.

n See Chapter 15, “COPY Procedure,” on page 509.

n See Chapter 41, “MIGRATE Procedure,” on page 1513

n See the Appendix 4, “ICU License,” on page 2733.

The following are SAS papers that provide detailed information about Linguistic 
Collation.

n Creating Order out of Character Chaos: Collation Capabilities of the SAS System

Concepts: SORT Procedure 2285

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=p12ohgh32ffm6un13s7l2d5p9c8y.htm&docsetTargetAnchor=p0i5z6z3vnmjd2n1abnsp9p3bc05&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&docsetTargetAnchor=p1w4isxrc430n0n130d0u0s0h6bl&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&docsetTargetAnchor=p1w4isxrc430n0n130d0u0s0h6bl&locale=en
http://www2.sas.com/proceedings/forum2007/297-2007.pdf


n Linguistic Collation: Everyone Can Get What They Expect

n Processing Multilingual Data with the SAS 9.2 Unicode Server 

n New Language Features in SAS 9.2 for the Global Enterprise 

Here is a list of third-party documentation that should be read for in-depth 
information about Linguistic Collation.

n See the Unicode Collation Algorithm (UCA) Specification.

n See the Collation section of the ICU User Guide

Force SAS to Sort Data Sets Using System Option 
SORTPGM

You can force data sets to be sorted by SAS by setting system option 
SORTPGM=SAS. This system option must be set prior to using PROC SORT. 
Setting system option SORTPGM=SAS ensures that your data set is sorted in the 
order in which SAS expects.

By default, SORTPGM defaults to BEST, what SAS determines is probably the best 
performance choice. When SORTPGM is set to BEST, sorting might be performed 
by the following:

n a system or third-party host sorting utility program, if one is installed and 
available.

n a DBMS if the input data resides in a database and a SAS/ACCESS engine is 
used to read it. 

To work properly, the host sort or DBMS and the SAS system must be configured for 
compatible operation. The host sort or the DBMS can be configured to order data 
differently from SAS. When the observations returned to SAS are not ordered as 
SAS expects, the SORTPGM= system option can be set to SAS to instruct SAS to 
sort the data in the order needed by SAS.

See “SORTPGM: Windows” in SAS Companion for Windows, “SORTPGM System 
Option: UNIX” in SAS Companion for UNIX Environments, , “SORTPGM= System 
Option: z/OS” in SAS Companion for z/OSand “In-Database Processing: PROC 
SORT” on page 2307.

Syntax: SORT Procedure
Requirement: BY statement

Notes: Some SAS statements and options are not supported when running in CAS and might 
result in an error when PROC SORT is deciding whether to run in CAS.
Some SAS statements and options are not supported when running in CAS but will not 
prevent operation in CAS. A note will be printed for such options when PROC SORT 
decides to run in CAS.

2286 Chapter 64 / SORT Procedure

https://support.sas.com/resources/papers/linguistic_collation.pdf 
https://support.sas.com/resources/papers/92unicodesrvr.pdf
http://support.sas.com/resources/papers/proceedings09/315-2009.pdf
http://www.unicode.org
https://unicode-org.github.io/icu/userguide/
http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=n13ydoqgm84cl5n126u373x8kb1a.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1fj4lvyfaxlxfn1iqm9r30cxa46.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1fj4lvyfaxlxfn1iqm9r30cxa46.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n0aco4m6g7zdgqn1qembzql56dl0.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=n0aco4m6g7zdgqn1qembzql56dl0.htm&locale=en


Most PROC SORT specific options do not have any effect and do not prevent running in 
CAS.

Tips: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements with the PROC 
SORT procedure. For more information, see “Statements with the Same Function in 
Multiple Procedures” on page 73.
For in-database processing to occur, your data must reside within a supported version of 
a DBMS that has been properly configured for SAS in-database processing. For more 
information, see “In-Database Processing: PROC SORT” on page 2307. 

See: “SORT Procedure: Windows” in SAS Companion for Windows, “SORT Procedure 
Statement: z/OS” in SAS Companion for z/OS, “SORT Procedure: UNIX” in SAS 
Companion for UNIX Environments.

PROC SORT <collating-sequence-option> <other options>;
BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …>;

KEY variable(s) </ option>;

Statement Task Example

PROC SORT Order SAS data set observations by the values 
of one or more character or numeric variables

Ex. 1, Ex. 3, 
Ex. 4

BY Specify the sorting variables Ex. 1, Ex. 2, 
Ex. 4

KEY Specify sorting keys and variables

PROC SORT Statement
Orders SAS data set observations by the values of one or more character or numeric variables.

Examples: “Example 1: Sorting by the Values of Multiple Variables” on page 2311
“Example 3: Maintaining the Relative Order of Observations in Each BY Group” on page 
2316
“Example 4: Retaining the First Observation of Each BY Group” on page 2319
“Example 7: Eliminate All Duplicate Observations Using NODUPKEY” on page 2327

Syntax
PROC SORT <collating-sequence-option> <other options>;

Summary of Optional Arguments
DATA= SAS-data-set

specifies the input data set.
DATECOPY

PROC SORT Statement 2287

http://documentation.sas.com/?docsetId=hostwin&docsetVersion=9.4&docsetTarget=chsortfstart.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p1uc72v16fpitun1mirsdqy1rfvm.htm&locale=en
http://documentation.sas.com/?docsetId=hosto390&docsetVersion=9.4&docsetTarget=p1uc72v16fpitun1mirsdqy1rfvm.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1svfqjvm6a2sfn1abq0g48bhymm.htm&locale=en
http://documentation.sas.com/?docsetId=hostunx&docsetVersion=9.4&docsetTarget=n1svfqjvm6a2sfn1abq0g48bhymm.htm&locale=en


sorts a SAS data set without changing the created and modified dates.
FORCE

forces redundant sorting.
OVERWRITE

deletes the input data set before the replacement output data set is 
populated.

PRESORTED
specifies whether the data set is likely already sorted.

SORTSIZE=memory-specification
specifies the available memory.

TAGSORT
reduces temporary disk usage.

Create output data sets
DUPOUT= SAS-data-set

specifies the output data set to which duplicate observations are written.
OUT= SAS-data-set

specifies the output data set.
UNIQUEOUT= SAS-data-set

specifies the output data set for eliminated observations.

Eliminate duplicate observations
NODUPKEY

deletes observations with duplicate BY values.

Eliminate unique observations
NOUNIQUEKEY

eliminates observations from the output data set that have a unique sort 
key.

Override SAS system option THREADS
NOTHREADS

prevents threaded sorting.
THREADS
NOTHREADS

enables or prevents the activation of threaded sorting.

Specify the collating sequence
ASCII

specifies ASCII.
DANISH

specifies Danish.
EBCDIC

specifies EBCDIC.
FINNISH

specifies Finnish.
NATIONAL

specifies a customized sequence.
NORWEGIAN

specifies Norwegian.
REVERSE

2288 Chapter 64 / SORT Procedure



reverses the collation order for character variables.
SORTSEQ= collating-sequence

specifies the collating sequence.
SWEDISH

specifies Swedish.

Specify the output order
EQUALS
NOEQUALS

specifies the relative order within BY groups.
NOEQUALS

does not maintain relative order within BY groups.

Collating-Sequence-Options
Operating Environment Information: For information about behavior specific to 
your operating environment for the DANISH, FINNISH, NORWEGIAN, or SWEDISH 
collating-sequence-option, see the SAS documentation for your operating 
environment.

You can specify only one collating-sequence-option and multiple other options in a PROC 
SORT step. The order of the two types of options does not matter and both types are not 
necessary in the same PROC SORT step.

ASCII
sorts character variables using the ASCII collating sequence. You need this 
option only when you want to achieve an ASCII ordering on a system where 
EBCDIC is the native collating sequence.

See “ASCII Order” on page 2282 

DANISH
sorts characters according to the Danish and Norwegian convention.

The Danish and Norwegian collating sequence is shown in Figure 64.87 on page 
2290. 

EBCDIC
sorts character variables using the EBCDIC collating sequence. You need this 
option only when you want to achieve an EBCDIC ordering on a system where 
ASCII is the native collating sequence.

See “EBCDIC Order” on page 2281

FINNISH
sorts characters according to the Finnish and Swedish convention. 

The Finnish and Swedish collating sequence is shown in Figure 64.87 on page 
2290. 

NATIONAL
sorts character variables using an alternate collating sequence, as defined by 
your installation, to reflect a country's National Use Differences. To use this 
option, your site must define a customized national sort sequence. Check with 
the SAS Installation Representative at your site to determine whether a 
customized national sort sequence is available.

PROC SORT Statement 2289



NORWEGIAN
sorts characters according to the Danish and Norwegian convention.

The Norwegian collating sequence is shown in Figure 64.87 on page 2290. 

REVERSE
sorts character variables using a collating sequence that is reversed from the 
normal collating sequence.

Operating Environment Information: For information about the normal 
collating sequence for your operating environment, see “EBCDIC Order” on page 
2281, “ASCII Order” on page 2282, and the SAS documentation for your 
operating environment.

Restriction Only one collating-sequence-option can be specified.

Interaction Using REVERSE with the DESCENDING option in the BY 
statement restores the sequence to the normal order.

See The “DESCENDING” on page 2305 option in the BY statement. The 
difference is that the DESCENDING option can be used with both 
character and numeric variables.

SWEDISH
sorts characters according to the Finnish and Swedish convention. 

The Finnish and Swedish collating sequence is shown in Figure 64.87 on page 
2290. 

SORTSEQ= collating-sequence
The collating-sequence can be one of the following: 

n collating-sequence-option on page 2290

n translation_table on page 2290

n encoding-value on page 2291

n LINGUISTIC on page 2291

For detailed information, refer to “Collating Sequence” in SAS National 
Language Support (NLS): Reference Guide.

Figure 64.1 National Collating Sequences of Alphanumeric Characters

Here are descriptions of the types of collating sequences:

collating-sequence-option
translation_table

specifies one of the PROC SORT statement collating-sequence-options 
(ASCII, DANISH, EBCDIC, FINNISH, NORWEGIAN, REVERSE, SWEDISH) 
or a translation table, which can be one that SAS provides or any user-
defined translation table. Translation tables provided by SAS are: ASCII, 

2290 Chapter 64 / SORT Procedure

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&locale=en


DANISH, EBCDIC, FINNISH, ITALIAN, NORWEGIAN, POLISH, REVERSE, 
SPANISH, and SWEDISH.

Restriction You can specify only one collating-sequence-option or one 
translation table for the SORTSEQ= option.

Interaction In-database processing will not occur when the SORTSEQ= 
option is specified.

Tip The SORTSEQ= collating-sequence options are specified 
without parenthesis and there are no arguments associated with 
them.

See For a more detailed description of each collating-sequence-
option, see “Collating-Sequence-Options” on page 2289. 

To see the Sorting Order of Character variables, see “EBCDIC 
Order” on page 2281, “ASCII Order” on page 2282, and Figure 
64.87 on page 2290 for all others. 

Example proc sort data=mydata SORTSEQ=ASCII;

Example For an example of using PROC TRANTAB and PROC SORT 
with SORTSEQ=, see “Using Different Translation Tables for 
Sorting” in SAS National Language Support (NLS): Reference 
Guide.

encoding-value
specifies an encoding value. The result is the same as a binary collation of 
the character data represented in the specified encoding. See the supported 
encoding value in the SAS National Language Support (NLS): Reference 
Guide.

Restriction PROC SORT is the only procedure or part of the SAS system 
that recognizes an encoding specified for the SORTSEQ= 
option.

Tip When the encoding value contains a character other than an 
alphanumeric character or underscore, the value needs to be 
enclosed in quotation marks.

See The list of the encodings that can be specified in the SAS 
National Language Support (NLS): Reference Guide.

LINGUISTIC<(collating-options )>
specifies linguistic collation, which sorts characters in a culturally sensitive 
manner according to rules that are associated with a language and locale. 
The rules and default collating-sequence options are based on the language 
that is specified in the current locale setting. The implementation is provided 
by the International Components for Unicode (ICU) library. It produces results 
that are largely compatible with the Unicode Collation Algorithms (UCA). For 
more information, see “ Linguistic Sorting of Data Sets and ICU” on page 
2284.

Note:  Only PROC SORT and PROC SQL are affected when the linguistic 
collation system option is specified.

PROC SORT Statement 2291

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n046eu7uvmvgv1n1ah87nlrjileg.htm&docsetTargetAnchor=n046eu7uvmvgv1n1ah87nlrjileg&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n046eu7uvmvgv1n1ah87nlrjileg.htm&docsetTargetAnchor=n046eu7uvmvgv1n1ah87nlrjileg&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n046eu7uvmvgv1n1ah87nlrjileg.htm&docsetTargetAnchor=n046eu7uvmvgv1n1ah87nlrjileg&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1r7pnb91iybs9n1hgvsj7q09srd.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=n1r7pnb91iybs9n1hgvsj7q09srd.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


The following are options that can be used when specifying 
SORTSEQ=LINGUISTIC. These options modify the linguistic collating 
sequence:

ALTERNATE_HANDLING=SHIFTED
controls the handling of variable characters like spaces, punctuation, and 
symbols. When this option is not specified (using the default value Non-
Ignorable), differences among these variable characters are of the same 
importance as differences among letters. If the ALTERNATE_HANDLING 
option is specified, these variable characters are of minor importance.

Default NON_IGNORABLE

Tip The SHIFTED value is often used in combination with 
STRENGTH= set to Quaternary. In such a case, spaces, 
punctuation, and symbols are considered when comparing 
strings, but only if all other aspects of the strings (base letters, 
accents, and case) are identical.

See “Example 5: Linguistic Sorting Using ALTERNATE_HANDLING=” 
on page 2321 and “Example 6: Linguistic Sorting Using 
ALTERNATE_HANDLING= and STRENGTH=” on page 2325.

CASE_FIRST=
specifies the order of uppercase and lowercase letters. This argument is 
valid for only TERTIARY, QUATERNARY, or IDENTICAL levels. The 
following table provides the values and information for the CASE_FIRST 
argument:

Table 64.3 Arguments for CASE_FIRST=

Value Description

UPPER Sorts uppercase letters first, then the lowercase letters.

LOWER Sorts lowercase letters first, then the uppercase letters.

COLLATION=
specifies character ordering. The following table lists the available 
COLLATION= values.

Note: If you do not select a collation value, then the user's locale-default 
collation is selected.

Table 64.4 Values for COLLATION=

Value Description

BIG5HAN Specifies Pinyin ordering for Latin and specifies bug5 
charset ordering for Chinese, Japanese, and Korean 
characters.

DIRECT Specifies a Hindi variant.

2292 Chapter 64 / SORT Procedure



Value Description

GB21312HAN Specifies Pinyin ordering for Latin and specifies 
gb2312han charset ordering for Chinese, Japanese, and 
Korean characters.

PHONEBOOK Specifies a telephone-book style for ordering of 
characters. Select PHONEBOOK only with the German 
language.

PINYIN Specifies an ordering for Chinese, Japanese, and 
Korean characters based on character-by-character 
transliteration into Pinyin. This ordering is typically used 
with simplified Chinese.

POSIX Portable Operating System Interface. This option 
specifies a “C” locale ordering of characters.

STROKE Specifies a nonalphabetic writing style ordering of 
characters. Select STROKE with Chinese, Japanese, 
Korean, or Vietnamese languages. This ordering is 
typically used with Traditional Chinese.

TRADITIONAL Specifies a traditional style for ordering of characters. 
For example, select TRADITIONAL with the Spanish 
Language.

LOCALE= locale_name
specifies the locale name in the form of a POSIX name (for example, 
ja_JP). For a list of locale and POSIX values supported by PROC SORT, 
see “LOCALE= Values for PAPERSIZE and DFLANG, Options” in SAS 
National Language Support (NLS): Reference Guide.

Restriction The following Locales are not supported by PROC SORT:
n Afrikaans_SouthAfrica, af_ZA
n Cornish_UnitedKingdom, 

kw_GB
n ManxGaelic_UnitedKingdom, 

gv_GB

NUMERIC_COLLATION=
orders integer values within the text by the numeric value instead of 
characters used to represent the numbers.

Table 64.5 Values for NUMERIC_COLLATION

Value Description

ON Order numbers by the numeric value. For example, "8 
Main St." would sort before "45 Main St.".

OFF Order numbers by the character value. For example, "45 
Main St." would sort before "8 Main St.".

PROC SORT Statement 2293

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0kcqbj7zsjq23n1lfyrcgtwiy5q.htm&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p0kcqbj7zsjq23n1lfyrcgtwiy5q.htm&locale=en


Default OFF

STRENGTH=
The value of strength is related to the collation level. There are five 
collation-level values. The following table provides information about the 
five levels. The default value for strength is related to the locale.

Table 64.6 Values for STRENGTH=

Value Type of Collation Description

PRIMARY or 1 PRIMARY specifies differences between 
base characters (for example, "a" < "b").

It is the strongest 
difference. For 
example, 
dictionaries are 
divided into 
different sections 
by base 
character.

SECONDARY 
or 2

Accents in the characters are considered 
secondary differences (for example, "as" < 
"às" < "at").

A secondary 
difference is 
ignored when 
there is a 
primary 
difference 
anywhere in the 
strings. Other 
differences 
between letters 
can also be 
considered 
secondary 
differences, 
depending on 
the language.

TERTIARY or 3 Upper and lowercase differences in 
characters are distinguished at the tertiary 
level (for example, "ao" < "Ao" < "aò"). For 
an example, see “Example 5: Linguistic 
Sorting Using ALTERNATE_HANDLING=” 
on page 2321.

A tertiary 
difference is 
ignored when 
there is a 
primary or 
secondary 
difference 
anywhere in the 
strings. Another 
example is the 
difference 
between large 
and small Kana.

QUATERNARY 
or 4

When punctuation is ignored at level 1-3, an 
additional level can be used to distinguish 
words with and without punctuation (for 
example, "a-b" < "ab" < "aB"). For an 

The quaternary 
level should be 
used if ignoring 
punctuation is 

2294 Chapter 64 / SORT Procedure



Value Type of Collation Description

example, see “Example 6: Linguistic Sorting 
Using ALTERNATE_HANDLING= and 
STRENGTH=” on page 2325.

required or when 
processing 
Japanese text. 
This difference is 
ignored when 
there is a 
primary, 
secondary, or 
tertiary 
difference.

IDENTICAL or 
5

When all other levels are equal, the identical 
level is used as a tiebreaker. The Unicode 
code point values of the Normalization Form 
D (NFD) form of each string are compared 
at this level, just in case there is no 
difference at levels 1-4.

This level should 
be used 
sparingly, 
because code-
point value 
differences 
between two 
strings rarely 
occur. For 
example, only 
Hebrew 
cantillation 
marks are 
distinguished at 
this level.

Alias LEVEL=

Alias UCA

Restrictions The SORTSEQ=LINGUISTIC option is available only on the 
PROC SORT SORTSEQ= option and is not available for the 
system option SORTSEQ.

Linguistic collation is not supported on platforms VMS on 
Itanium (VMI) or 64-bit Windows on Itanium (W64).

Interaction The ICU version can change in a new SAS release. The order 
of observations produced when sorting a data set linguistically, 
using one release of SAS, can be different from the order 
produced by another release if the two releases use different 
versions of the ICU. When migrating to a new release of SAS, 
consider re-establishing the sort order of permanent data sets 
using PROC SORT with the PRESORTED option. For more 
details, see “ Linguistic Sorting of Data Sets and ICU” on page 
2284.

Tips The CONTENTS procedure or CONTENTS statement output 
shows the ICU version number of a data set that is linguistically 
sorted.

PROC SORT Statement 2295



The collating-options must be enclosed in parentheses. More 
than one collating option can be specified.

When BY processing is performed on data sets that are sorted 
with linguistic collation, the NOBYSORTED system option 
might need to be specified in order for the data set to be 
treated properly. BY processing is performed differently than 
collating sequence processing.

See For ICU License Agreement, see Appendix 4, “ICU License,” 
on page 2733.

For more information, see “Specifying Linguistic Collation” in 
SAS National Language Support (NLS): Reference Guide. For 
more information, see “ Linguistic Sorting of Data Sets and 
ICU” on page 2284.

CAUTION
If you use a host sort utility to sort your data, then specifying a translation-
table-based collating sequence with the SORTSEQ= option might corrupt 
the character BY variables. For more information, see the PROC SORT 
documentation for your operating environment.

Interaction In-database processing does not occur when the SORTSEQ= 
option is specified.

Tip The SORTSEQ= collating-sequence options are specified without 
parenthesis and no arguments are associated with them. Here is an 
example of how to specify a collating sequence: proc sort 
data=mydata SORTSEQ=ASCII;

Other Options
Options can include one collating-sequence-option and multiple other options. The order of 
the two types of options does not matter and both types are not necessary in the same PROC 
SORT step.

DATA= SAS-data-set
identifies the input SAS data set.

Restrictions For in-database processing to occur, the data set must refer to a 
table residing on the DBMS.

SAS data set options DROP=, KEEP=, RENAME= are not 
supported in CAS. When these options are specfied on the data 
set, CAS operations will not occur.

Notes PROC SORT supports extended attributes by copying the 
attributes from the input data set to the output data set.

When options NODUPKEY or NOUNIKEY are specified and the 
DATA= option refers to a CAS table, and the OUT=, DUPOUT=, or 
UNIOUT= options refer to a CAS table, PROC SORT invokes the 

2296 Chapter 64 / SORT Procedure

http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&docsetTargetAnchor=p1w4isxrc430n0n130d0u0s0h6bl&locale=en
http://documentation.sas.com/?docsetId=nlsref&docsetVersion=9.4&docsetTarget=p1d7k16vtur7s4n1nbbaf8ro6sk7.htm&docsetTargetAnchor=p1w4isxrc430n0n130d0u0s0h6bl&locale=en


CAS deduplicate action on a CAS server. For more information, 
see the deduplicate Action .

See “Input Data Sets” on page 26 

SAS Data Set Options: Reference

DATECOPY
copies the SAS internal date and time at which the SAS data set was created 
and the date and time at which it was last modified before the sort to the 
resulting sorted data set. Note that the operating environment date and time are 
not preserved.

Restriction DATECOPY can be used only when the resulting data set uses the 
V8 or V9 engine.

Tip You can alter the file creation date and time with the DTC= option in 
the MODIFY statement in PROC DATASETS. For more information, 
see “MODIFY Statement” on page 628. 

DUPOUT= SAS-data-set
specifies the output data set to which duplicate observations are written. 

Interactions In-database processing does not occur when the DUPOUT= option 
is specified.

The DUPOUT= and UNIQUEOUT= options are not compatible and 
cannot be specified simultaneously.

Note When options NODUPKEY or NOUNIKEY are specified and the 
DATA= option refers to a CAS table, and the OUT=, DUPOUT=, or 
UNIOUT= options refer to a CAS table, PROC SORT invokes the 
CAS deduplicate action on a CAS server. For more information, 
see the deduplicate Action .

Tips The DUPOUT= option can be used only with the NODUPKEY 
option. It cannot be combined with the NOUNIQUEKEY option.

If the DUPOUT= data set name that is specified is the same as the 
INPUT data set name, SAS does not sort or overwrite the INPUT 
data set. Instead, SAS generates an error message. The FORCE 
option must be specified in order to overwrite the INPUT data set 
with the DUPOUT= data set of the same name.

See SAS Data Set Options: Reference

EQUALS | NOEQUALS
specifies the order of the observations in the output data set. For observations 
with identical BY-variable values, EQUALS maintains the relative order of the 
observations within the input data set in the output data set. NOEQUALS does 
not necessarily preserve this order in the output data set.

Default EQUALS

Interactions When you use NODUPKEY to remove observations in the output 
data set, the choice of EQUALS or NOEQUALS can affect which 
observations are removed.

PROC SORT Statement 2297

http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.5&docsetTarget=cas-deduplication-TblOfActions.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.5&docsetTarget=cas-deduplication-TblOfActions.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


The EQUALS | NOEQUALS procedure option overrides the default 
sort stability behavior that is established with the SORTEQUALS | 
NOSORTEQUALS system option.

The EQUALS option is supported by the threaded sort. However, 
I/O performance might be reduced when using the EQUALS option 
with the threaded sort because partitioned data sets are processed 
as if they consist of a single partition.

The NOEQUALS option is supported by the threaded sort. The 
order of observations within BY groups that are returned by the 
threaded sort might not be consistent between runs.

Tip Using NOEQUALS can save CPU time and memory.

FORCE
sorts and replaces an indexed data set when the OUT= option is not specified. 
Without the FORCE option, PROC SORT does not sort and replace an indexed 
data set because sorting destroys user-created indexes for the data set. When 
you specify FORCE, PROC SORT sorts and replaces the data set and destroys 
all user-created indexes for the data set. Indexes that were created or required 
by integrity constraints are preserved.

Restriction If you use PROC SORT with the FORCE option on data sets that 
were created with the Version 5 compatibility engine or with a 
sequential engine such as a tape format engine, you must also 
specify the OUT= option.

Tip PROC SORT checks for the sort indicator before it sorts a data set 
so that data is not sorted again unnecessarily. By default, PROC 
SORT does not sort a data set if the sort information matches the 
requested sort. You can use FORCE to override this behavior. You 
might need to use FORCE if SAS cannot verify the sort 
specification in the data set option SORTEDBY=. For more 
information about SORTEDBY= , see the chapter on SAS data set 
options in SAS Data Set Options: Reference.

NODUPKEY
checks for and eliminates observations with duplicate BY values. If you specify 
this option, PROC SORT compares all BY values for each observation to the 
ones for the previous observation that is written to the output data set. If an exact 
match is found, the observation is not written to the output data set.

Sorting causes observations that have equal BY variable values to be grouped 
together for output. Normally, PROC SORT writes all observations for each BY 
group that it assembles to the output data set. The NODUPKEY option instructs 
the SORT procedure to write only the first observation of each BY group to the 
output data set and to discard any additional observations that are contained 
within that BY group.

Several factors dictate whether an observation occurs first within a BY group that 
PROC SORT has assembled for output. These factors include the order in which 
observations are read from the input data set, the sort program being used, and 
whether stability is provided by the sorting algorithm.

When the SORT procedure’s input is a Base SAS engine data set and the 
sorting is done by SAS, then the order of observations within an output BY group 
is predictable. The order of the observations within the group is the same as the 
order in which they were written to the data set when it was created. Because 

2298 Chapter 64 / SORT Procedure

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=p1pnjylslu2ryrn1ra3a6ney2bzs.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


the Base SAS engine maintains observations in the order that they were written 
to the data set, they are read by PROC SORT in the same order. While 
processing, PROC SORT maintains the order of the observations because it 
uses a stable sorting algorithm. The stable sorting algorithm is used because the 
EQUALS option is set by default. Therefore, the observation that is selected by 
PROC SORT to be written to the output data set for a given BY group is the first 
observation in the data set having the BY variable values that define the group.

If the SORT procedure reads its input from an engine that does not provide a 
predictable observation order or an alternative sorting program (when a host sort 
performs the sort), the observations that are eliminated and the one that is 
written to the output data set might not be well defined. For example, 
determining which observations are kept and which observations are discarded 
might be unpredictable if data is being read into SAS from a DBMS that presents 
query results in a nondeterministic order due to parallel processing.

Operating Environment Information: If you use the VMS operating 
environment and are using the VMS host sort, the observation that is written to 
the output data set is not always the first observation of the BY group.

To ensure that each observation in the output data set is unique, you can use the 
NODUPKEY option with PROC SORT and sort by _ALL_ variables in the input 
data set. An observation in a data set is unique when no other observation in the 
data set has the same combination of variable values. See example program 
“Example 7: Eliminate All Duplicate Observations Using NODUPKEY” on page 
2327.

Note: If you drop one or more BY variables from the output data set when using 
NODUPKEY, you void (eliminate) the guarantee that each observation has a 
unique set of BY variable values. Similarly, when you use NODUPKEY and sort 
by _ALL_ variables to produce unique observations, if you drop one or more 
variables from the output data set, observations in the output data set are no 
longer guaranteed to be unique. 

Another way to ensure that observations in an output data set are unique is to 
use PROC SQL with the DISTINCT keyword. Here is a simple example using 
PROC SQL:

PROC SQL;
 CREATE TABLE DL (keep division league) AS SELECT DISTINCT * 
 FROM SASHELP.BASEBALL;
QUIT;

Interactions The Base SAS engine provides a consistent ordering where the 
first observation (the first observation that was written and stored) 
is generally the first one that is read by PROC SORT. The sorted 
data set contains only the first observation of each BY group that 
PROC SORT reads.

When you are removing observations with duplicate BY values 
with NODUPKEY, the choice of EQUALS or NOEQUALS can have 
an effect on which observations are removed. Use the EQUALS 
option (the default value) with the NODUPKEY option for 
consistent results in your output data sets.

In-database sorting occurs when the NODUPKEY option is 
specified and the system option SQLGENERATION= is assigned a 
DBMS and the system option SORTPGM=BEST.

PROC SORT Statement 2299



The options NODUPKEY and NOUNIQUEKEY are not compatible. 
If these options are specified together, an error is printed to the 
SAS log.

Note When options NODUPKEY or NOUNIKEY are specified and the 
DATA= option refers to a CAS table, and the OUT=, DUPOUT=, or 
UNIOUT= options refer to a CAS table, PROC SORT invokes the 
CAS deduplicate action on a CAS server. For more information, 
see the deduplicate Action .

Tip The DUPOUT= option can be used with the NODUPKEY option. 
However, it cannot be used with the NOUNIQUEKEY option.

Examples “Example 4: Retaining the First Observation of Each BY Group” on 
page 2319

“Example 7: Eliminate All Duplicate Observations Using 
NODUPKEY” on page 2327

NOEQUALS
See “EQUALS|NOEQUALS” on page 2297.

NOTHREADS
See “THREADS|NOTHREADS” on page 2303.

NOUNIQUEKEY
checks for and eliminates observations from the output data set that have a 
unique sort key. A sort key is unique when the observation containing the key is 
the only observation within a BY group. 

Note: Unlike NODUPKEY, which writes one observation of a BY group to the 
output data set and discards all other observations from the BY group, the 
NOUNIQUEKEY maintains BY group integrity. Either all observations of a BY 
group are written to the output data set when the BY group consists of two or 
more observations, or all observations of the BY group are discarded when the 
BY group consists of a single observation.

Alias NOUNIKEY | NOUNIKEYS | NOUNIQUEKEYS

Interaction Options NODUPKEY and NOUNIQUEKEY are not compatible. If 
NODUPKEY and NOUNIQUEKEY are specified together, an error is 
printed to the SAS log.

Note When options NODUPKEY or NOUNIKEY are specified and the 
DATA= option refers to a CAS table, and the OUT=, DUPOUT=, or 
UNIOUT= options refer to a CAS table, PROC SORT invokes the 
CAS deduplicate action on a CAS server. For more information, see 
the deduplicate Action .

Tip The UNIQUEOUT= option can be used with the NOUNIQUEKEY 
option. It cannot be combined with the NODUPKEY option.

See UNIQUEOUT= to direct the observations that have been eliminated 
to an output data set.

2300 Chapter 64 / SORT Procedure

http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.5&docsetTarget=cas-deduplication-TblOfActions.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.5&docsetTarget=cas-deduplication-TblOfActions.htm&locale=en


OUT= SAS-data-set
names the output data set. If SAS-data-set does not exist, then PROC SORT 
creates it.

CAUTION
Use care when you use PROC SORT without OUT=. Without the OUT= option, 
PROC SORT replaces the original data set with the sorted observations when the 
procedure executes without errors. 

Default Without OUT=, PROC SORT overwrites the original data set.

Note When options NODUPKEY or NOUNIKEY are specified and the 
DATA= option refers to a CAS table, and the OUT=, DUPOUT=, or 
UNIOUT= options refer to a CAS table, PROC SORT invokes the 
CAS deduplicate action on a CAS server. For more information, see 
the deduplicate Action .

Tips With in-database sorts, the output data set cannot refer to the input 
table on the DBMS.

You can use data set options with OUT=.

See SAS Data Set Options: Reference

Example “Example 1: Sorting by the Values of Multiple Variables” on page 2311

OVERWRITE
enables the input data set to be deleted before the replacement output data set 
of the same name is populated with observations. 

CAUTION
Use the OVERWRITE option only with a data set that is backed up or with a 
data set that you can reconstruct. Because the input data set is deleted, data is 
lost if a failure occurs while the output data set is being written. 

Restrictions If the OVERWRITE and OUT= options are specified and the OUT= 
data set name is not the same as the INPUT data set name, SAS 
does not overwrite the INPUT data set.

The OVERWRITE option has no effect if you also specify the 
TAGSORT option. You cannot overwrite the input data set 
because TAGSORT must reread the input data set while 
populating the output data set.

The OVERWRITE option is supported by the SAS sort and SAS 
threaded sort only. The option has no effect if you are using a host 
sort.

Tip Using the OVERWRITE option can reduce disk space 
requirements.

PRESORTED
before sorting, checks within the input data set to determine whether the 
sequence of observations is in order. Use the PRESORTED option when you 
know or strongly suspect that a data set is already in order according to the key 

PROC SORT Statement 2301

http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.5&docsetTarget=cas-deduplication-TblOfActions.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


variables that are specified in the BY statement. By specifying this option, you 
avoid the cost of sorting the data set. 

Interaction Sequence checking is not performed when the “FORCE” on page 
2298 option is specified.

Tips You can use the DATA step to import data, from external text files, in 
a sequence compatible with SAS processing and according to the 
sort order specified by the combination of SORT options and key 
variables listed in the BY statement. You can then specify the 
PRESORTED option if you know or highly suspect that the data is 
sorted accordingly.

Using the PRESORTED option with ACCESS engines and DBMS 
data is not recommended. These external databases are not 
guaranteed to return observations in sorted order unless an ORDER 
BY clause is specified in a query. Generally, physical ordering is not 
a concept that external databases use. Therefore, these databases 
are not guaranteed to return observations in the same order when 
executing a query multiple times. Physical order can be important 
for producing consistent, repeatable results when processing data. 
Without a repeatable data retrieval order, PROC SORT does not 
guarantee the return of observations in the same order from one 
PROC SORT execution to another, even when the “EQUALS|
NOEQUALS” on page 2297 option is used to request sort stability. 
Without a repeatable retrieval order, the detection and elimination of 
adjacent duplicate records by PROC SORT can also vary from one 
PROC SORT execution to another.

See System option “SORTVALIDATE” in SAS System Options: 
Reference.

SORTSIZE=memory-specification
specifies the maximum amount of memory that is available to PROC SORT. 
Valid values for memory-specification are as follows: 

MAX
specifies that all available memory can be used.

n
specifies the amount of memory in bytes, where n is a real number.

nK
specifies the amount of memory in kilobytes, where n is a real number.

nM
specifies the amount of memory in megabytes, where n is a real number.

nG
specifies the amount of memory in gigabytes, where n is a real number.

Specifying the SORTSIZE= option in the PROC SORT statement temporarily 
overrides the SAS system option. For more information, see “SORTSIZE=” in 
SAS System Options: Reference.

Operating Environment Information: Some system sort utilities might treat 
this option differently. Refer to the SAS documentation for your operating 
environment.

Alias SIZE=

2302 Chapter 64 / SORT Procedure

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0cdfgq2lsgve4n13cflndvlte98.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0cdfgq2lsgve4n13cflndvlte98.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0ipa8xt1ma3h7n1wqjqr99679pg.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0ipa8xt1ma3h7n1wqjqr99679pg.htm&locale=en


Default the value of the SAS system option SORTSIZE=

Tips Setting the SORTSIZE= option in the PROC SORT statement to MAX 
or 0, or not setting the SORTSIZE= option, limits the PROC SORT to 
the available physical memory based on the settings of the SAS system 
options REALMEMSIZE and MEMSIZE.

For information about the SAS system options REALMEMSIZE and 
MEMSIZE, see the SAS documentation for your operating environment.

TAGSORT
stores only the BY variables and the observation numbers in temporary files. The 
BY variables and the observation numbers are called tags. At the completion of 
the sorting process, PROC SORT uses the tags to retrieve records from the 
input data set in sorted order. 

Note: The utility file created is much smaller than it would be if the TAGSORT 
option were not specified. 

Restriction The TAGSORT option is not compatible with the OVERWRITE 
option.

Interaction The TAGSORT option is not supported by the threaded sort.

Tip When the total length of BY variables is small compared with the 
record length, TAGSORT reduces temporary disk usage 
considerably. However, processing time might be much higher.

THREADS | NOTHREADS
enables or prevents the activation of threaded sorting.

Default The value of the THREADS | NOTHREADS SAS system option. 
Note that the default can be overridden using the SORT procedure 
THREADS | NOTHREADS option.

Restrictions Your site administrator can create a restricted options table. A 
restricted options table specifies SAS system option values that 
are established at start-up and cannot be overridden. If the 
THREADS | NOTHREADS system option is listed in the restricted 
options table, any attempt to set these system options is ignored 
and a warning message is written to the SAS log.

If a failure occurs when adding the THREADS | NOTHREADS 
procedure option using the SPD engine, PROC SORT stops 
processing and writes a message to the SAS log.

Interactions The PROC SORT THREADS | NOTHREADS options override the 
SAS system THREADS | NOTHREADS options unless the system 
option is restricted. (See Restriction.) For more information, see 
“THREADS” in SAS System Options: Reference.

The THREADS system option is honored if PROC SORT 
determines that threaded processing is deemed to be beneficial. If 
the value of the SAS system option CPUCOUNT=1, then threaded 
processing is not beneficial. However, you can specify the PROC 
SORT THREADS option to force threaded processing when the 

PROC SORT Statement 2303

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0cvg7xpfvfyn4n1rnp64gu91poh.htm&locale=en


system option is set to NOTHREADS or when the system option is 
THREADS and the procedure option is NOTHREADS. This option 
combination prevents threaded processing and overrides the 
actions taken that are based on the system options. Note that 
when threaded sorting is in effect and NOEQUALS is specified, 
observations within BY groups might be returned in an 
unpredictable order.

If threaded SAS sort is being used, the UTILLOC= system option 
affects the placement of utility files. Thread-enabled SAS 
applications are able to create temporary files that can be 
accessed in parallel by separate threads. For more information, 
see “UTILLOC=” in SAS System Options: Reference.

The page size of the utility file used by PROC SORT is influenced 
by the new STRIPESIZE= system option. For more information, 
see “STRIPESIZE=” in SAS System Options: Reference.

The TAGSORT option is not supported by the threaded sort. 
Specifying the TAGSORT option prevents threaded processing.

See “Threaded Sorting” on page 2279 and “Support for Parallel 
Processing” in SAS Language Reference: Concepts.

UNIQUEOUT= SAS-data-set
specifies the output data set for observations eliminated by the NOUNIQUEKEY 
option.

Alias UNIOUT=

Interaction The DUPOUT= and UNIOUT= options are not compatible and 
cannot be specified simultaneously.

Note When options NODUPKEY or NOUNIKEY are specified and the 
DATA= option refers to a CAS table, and the OUT=, DUPOUT=, or 
UNIOUT= options refer to a CAS table, PROC SORT invokes the 
CAS deduplicate action on a CAS server. For more information, see 
the deduplicate Action .

Tip The UNIQUEOUT= option can be used with the NOUNIQUEKEY 
option. It cannot be combined with the NODUPKEY option.

See “NOUNIQUEKEY” on page 2300

SAS Data Set Options: Reference

BY Statement
Specifies the sorting variables.

Examples: “Example 1: Sorting by the Values of Multiple Variables” on page 2311
“Example 2: Sorting in Descending Order” on page 2314
“Example 4: Retaining the First Observation of Each BY Group” on page 2319

2304 Chapter 64 / SORT Procedure

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p1texr4rxo0ipyn1ovajj11raccx.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n0e4bdfj5qa5r4n1byty91t7wtiw.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0z5kinpzecv9nn1s45yam93tf6z.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0z5kinpzecv9nn1s45yam93tf6z.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.5&docsetTarget=cas-deduplication-TblOfActions.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Syntax
BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …>;

Required Argument
variable

specifies the variable by which PROC SORT sorts the observations. PROC 
SORT first arranges the data set by the values in ascending order, by default, of 
the first BY variable. PROC SORT then arranges any observations that have the 
same value of the first BY variable by the values of the second BY variable in 
ascending order. This sorting continues for every specified BY variable.

Tip When using the Google BigQuery data source, columns in the BY 
statement in PROC SORT cannot be of data type FLOAT64 for in-database 
processing.

Optional Argument
DESCENDING

reverses the sort order for the variable that immediately follows in the statement 
so that observations are sorted from the largest value to the smallest value. The 
DESCENDING keyword modifies the variable that follows it.

Tips In a PROC SORT BY statement, the DESCENDING keyword modifies 
the variable that follows it.

The THREADS SAS system option is the default as long as the 
PROC SORT THREADS | NOTHREADS option is unspecified.

Example “Example 2: Sorting in Descending Order” on page 2314

KEY Statement
Specifies sorting keys and variables. The KEY statement is an alternative to the BY statement. The KEY 
statement syntax allows for the future possibility of specifying different collation options for each KEY 
variable. Currently, the only options allowed are ASCENDING and DESCENDING.

Restriction: The BY statement cannot be used with the KEY statement.

Tip: Multiple KEY statements can be specified.

Syntax
KEY variable(s) </ option> ;

KEY Statement 2305



Required Argument
variable(s)

specifies the variable by which PROC SORT orders the observations. Multiple 
variables can be specified. Each of these variables must be separated by a 
space. A range of variables can also be specified. For example, the following 
code shows how to specify multiple variables and a range of variables:

 data sortKeys;
    input x1 x2 x3 x4 ;
 cards;
    7 8 9 8
    0 0 0 0
    1 2 3 4 ;
 run;
 proc sort data=sortKeys out=sortedOutput;
    key x1 x2-x4;
 run;

Multiple KEY statements can also be specified. The first sort key encountered 
from among all sort keys is considered the primary sort key. Sorting continues for 
every specified KEY statement and its variables. For example, the following code 
shows how to specify multiple KEY statements:

 proc sort data=sortKeys out=sortedOutput;
    key x2;
    key x3;
 run;

The following code example uses the BY statement to accomplish the same type 
of sort as the previous example:

 proc sort data=sortKeys out=sortedOutput;
    by x2 x3;
 run;

Optional Arguments
ASCENDING

sorts in ascending order the variable or variables that it follows. Observations are 
sorted from the smallest value to the largest value. The ASCENDING keyword 
modifies all the variables that precede it in the KEY statement.

Alias ASC

Default ASCENDING is the default sort order.

Tip In a PROC SORT KEY statement, the ASCENDING option modifies all 
the variables that it follows. The option must follow the /. In the 
following example, the x1 variable in the input data set is sorted in 
ascending order.

 proc sort data=sortVar out=sortedOutput;
    key x1 / ascending;
 run;

2306 Chapter 64 / SORT Procedure



DESCENDING
reverses the sort order for the variable that it follows in the statement so that 
observations are sorted from the largest value to the smallest value. The 
DESCENDING keyword modifies all the variables that it precedes in the KEY 
statement.

Alias DESC

Default ASCENDING (ASC) is the default sort order.

Tip In a PROC SORT KEY statement, the DESCENDING option modifies 
the variables that follows it. The option must follow the /. In the 
following example, the x1 and x2 variables in the input data set is 
sorted in descending order:

 proc sort data=sortVar out=sortedOutput;
    key x1 x2 / descending;
 run;

The following example uses the BY statement to accomplish the same 
type of sort as the previous example:

 proc sort data=sortVar out=sortedOutput;
    by descending x1 descending x2 ;
 run;

Usage: SORT Procedure

In-Database Processing: PROC SORT
In-database processing has several advantages over processing within SAS. These 
advantages include increased security, reduced network traffic, and the potential for 
faster processing. Increased security is possible because sensitive data does not 
have to be extracted from the DBMS. Faster processing is possible because data is 
manipulated locally, on the DBMS, using high-speed secondary storage devices 
instead of being transported across a relatively slow network connection, because 
the DBMS might have more processing resources at its disposal, and because the 
DBMS might be capable of optimizing a query for execution in a highly parallel and 
scalable fashion.

When the DATA= input data set is stored as a table or view in a database 
management system (DBMS), the PROC SORT procedure can use in-database 
processing to sort the data. In-database processing can provide the advantages of 
faster processing and reduced data transfer between the database and SAS 
software.

In-database processing for PROC SORT supports the following database 
management systems:

Usage: SORT Procedure 2307



n Amazon Redshift

n Aster

n DB2

n Google BigQuery

n Greenplum

n Hadoop

n HAWQ

n Impala

n Microsoft SQL Server

n Netezza

n Oracle

n PostgreSQL

n SAP HANA

n Snowflake

n Teradata

n Vertica

n Yellowbrick

Note: When using the Google BigQuery data source, columns in the BY statement 
in PROC SORT cannot be of data type FLOAT64 for in-database processing.

PROC SORT performs in-database processing using SQL explicit pass-through. 
The pass-through facility uses SAS/ACCESS to connect to a DBMS and to send 
statements directly to the DBMS for execution. This facility lets you use the SQL 
syntax of your DBMS. For details, see "Pass-Through Facility for Relational 
Databases" in SAS/ACCESS for Relational Databases: Reference.

In-database processing is used by PROC SORT when a combination of procedure 
and system options are properly set. When system option SORTPGM=BEST, 
system option SQLGENERATION= is set to cause in-database processing, and 
when the PROC SORT NODUPKEY option is specified, PROC SORT generates a 
DBMS SQL query that sorts the data. The sorted results can either remain as a new 
table within the DBMS or can be returned to SAS. To view the SQL queries 
generated, set the SASTRACE= option.

The SAS system option SORTPGM= can also be used without setting the 
SQLGENERATION option to instruct PROC SORT to use either the DBMS, SAS, or 
the HOST to perform the sort. If SORTPGM=BEST is specified, then either the 
DBMS, SAS, or HOST performs the sort. The observation ordering that is produced 
by PROC SORT depends on whether the DBMS or SAS performs the sorting.

If the DBMS performs the sort, then the configuration and characteristics of the 
DBMS sorting program affects the resulting data order. The DBMS configuration 
settings and characteristics that can affect data order include character collation, 
ordering of NULL values, and sort stability. Most database management systems do 
not guarantee sort stability, and the sort might be performed by the DBMS 
regardless of the state of the SORTEQUALS/NOSORTEQUALS system option and 
EQUALS/NOEQUALS procedure option.

2308 Chapter 64 / SORT Procedure

http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


If you set the SAS system option SORTPGM= to SAS, then unordered data is 
delivered from the DBMS to SAS and SAS performs the sorting. However, 
consistency in the delivery order of observations from a DBMS is not guaranteed. 
Therefore, even though SAS can perform a stable sort on the DBMS data, SAS 
cannot guarantee that the ordering of observations within output BY groups is the 
same from one PROC SORT execution to the next. To achieve consistency in the 
ordering of observations within BY groups, first populate a SAS data set with the 
DBMS data, and then use the EQUALS or SORTEQUALS option to perform a 
stable sort.

In-database processing is affected by the following circumstances:

n When PROC SORT options, SORTSEQ=, or DUPOUT=, are specified, no in-
database processing occurs.

n For in-database processing, the OUT= procedure option must be specified and 
the output data set cannot refer to the input table on the DBMS.

n LIBNAME options and data set options can also affect whether in-database 
processing occurs and what type of query is generated. See "In-Database 
Procedures" in SAS/ACCESS for Relational Databases: Reference for a 
complete list of these options. The user can also set OPTIONS MSGLEVEL=I in 
SAS to see which options prevent or affect in-database processing.

SAS Cloud Analytic Services Processing for PROC 
SORT

Starting in SAS Viya 3.5, PROC SORT supports the ability to run the duplicate 
detection and manipulation options (NODUPKEY, NOUNIKEY, DUPOUT=, 
UNIOUT=) in CAS. This functionality is provided to facilitate the migration of code 
for users of SAS Viya. PROC SORT provides the capability to eliminate duplicate 
entries in data sets when running in SAS 9. CAS also needs the ability to eliminate 
duplicate entries in data sets. This task is performed by using the deduplicate action 
available in SAS Viya 3.5.

When the input data set references the CAS view or an in-memory table, the SORT 
procedure uses the CAS deduplicate action to perform the equivalent functionality of 
the NODUPKEY or NOUNIKEY options of PROC SORT. When options NODUPKEY 
or NOUNIKEY are specified in the PROC SORT statement and input to PROC 
SORT is read by CAS, and all output from PROC SORT (including the optional 
DUPOUT= and UNIOUT= data sets) is written to a CAS table, PROC SORT invokes 
the CAS deduplicate action on the CAS server. Under these conditions, the action is 
invoked and the work is performed in CAS with no data moved into or out of the 
CAS server.

See the deduplicate Action for information about the CAS aAction.

For conceptual information about procedures that run in CAS, see Chapter 5, “CAS 
Processing of Base Procedures,” on page 93.

Usage: SORT Procedure 2309

http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.5&docsetTarget=cas-deduplication-TblOfActions.htm&locale=en


Integrity Constraints: SORT Procedure
Sorting the input data set and replacing it with the sorted data set preserves both 
referential and general integrity constraints, as well as any indexes that they might 
require. A sort that creates a new data set does not preserve any integrity 
constraints or indexes. For more information about implicit replacement, explicit 
replacement, and no replacement with and without the OUT= option, see “Output 
Data Set” on page 2310. For more information about integrity constraints, see the 
chapter on “SAS Data Files” in SAS Language Reference: Concepts.

Results: SORT Procedure

Procedure Output
PROC SORT produces only an output data set. To see the output data set, you can 
use PROC PRINT, PROC REPORT, or another of the many available methods of 
printing in SAS.

Output Data Set
Without the OUT= option, PROC SORT replaces the original data set with the 
sorted observations when the procedure executes without errors. When you specify 
the OUT= option using a new data set name, PROC SORT creates a new data set 
that contains the sorted observations.

Table 64.7 Data Set Replacement Options

Task Options

implicit replacement of input data set proc sort data=names;

explicit replacement of input data set proc sort data=names out=names;

no replacement of input data set proc sort data=names out=namesbyid;

With all three replacement options (implicit replacement, explicit replacement, and 
no replacement) there must be at least enough space in the output library for a copy 
of the original data set.

2310 Chapter 64 / SORT Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p16l2jcge5mokmn1uozzwoh5bff4.htm&locale=en


You can also sort compressed data sets. If you specify a compressed data set as 
the input data set and omit the OUT= option, then the input data set is sorted and 
remains compressed. If you specify an OUT= data set, then the resulting data set is 
compressed only if you choose a compression method with the COMPRESS= data 
set option. For more information, see “COMPRESS= Data Set Option” in SAS Data 
Set Options: Reference .

Also note that PROC SORT manipulates the uncompressed observation in memory 
and, if there is insufficient memory to complete the sort, stores the uncompressed 
data in a utility file. For these reasons, sorting compressed data sets might be 
intensive and require more storage than anticipated. Consider using the TAGSORT 
option when sorting compressed data sets.

Note: If the SAS system option NOREPLACE is in effect, then you cannot replace 
an original permanent data set with a sorted version. You must either use the OUT= 
option or specify the SAS system option REPLACE in an OPTIONS statement. The 
SAS system option NOREPLACE does not affect temporary SAS data sets.

Examples: SORT Procedure

Example 1: Sorting by the Values of Multiple 
Variables
Features: PROC SORT statement option

OUT=
BY statement
PROC PRINT

Details
This example does the following:

n sorts the observations by the values of two variables

n creates an output data set for the sorted observations

n prints the results

Example 1: Sorting by the Values of Multiple Variables 2311

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n014hy7167t2asn1j7qo99qv16wa.htm&locale=en
http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n014hy7167t2asn1j7qo99qv16wa.htm&locale=en


Program
data account;
   input Company $ 1-22 Debt 25-30 AccountNumber 33-36
         Town $ 39-51;
   datalines;
Paul's Pizza             83.00  1019  Apex
World Wide Electronics  119.95  1122  Garner
Strickland Industries   657.22  1675  Morrisville
Ice Cream Delight       299.98  2310  Holly Springs
Watson Tabor Travel      37.95  3131  Apex
Boyd & Sons Accounting  312.49  4762  Garner
Bob's Beds              119.95  4998  Morrisville
Tina's Pet Shop          37.95  5108  Apex
Elway Piano and Organ    65.79  5217  Garner
Tim's Burger Stand      119.95  6335  Holly Springs
Peter's Auto Parts       65.79  7288  Apex
Deluxe Hardware         467.12  8941  Garner
Pauline's Antiques      302.05  9112  Morrisville
Apex Catering            37.95  9923  Apex
;

proc sort data=account out=bytown;

   by town company;
run;

proc print data=bytown;

   var company town debt accountnumber;

   title  'Customers with Past-Due Accounts';
   title2 'Listed Alphabetically within Town';
run;

Program Description

Create the input data set ACCOUNT. ACCOUNT contains the name of each 
business that owes money, the amount of money that it owes on its account, the 
account number, and the town where the business is located.

data account;
   input Company $ 1-22 Debt 25-30 AccountNumber 33-36
         Town $ 39-51;
   datalines;
Paul's Pizza             83.00  1019  Apex
World Wide Electronics  119.95  1122  Garner
Strickland Industries   657.22  1675  Morrisville
Ice Cream Delight       299.98  2310  Holly Springs
Watson Tabor Travel      37.95  3131  Apex
Boyd & Sons Accounting  312.49  4762  Garner
Bob's Beds              119.95  4998  Morrisville
Tina's Pet Shop          37.95  5108  Apex
Elway Piano and Organ    65.79  5217  Garner
Tim's Burger Stand      119.95  6335  Holly Springs

2312 Chapter 64 / SORT Procedure



Peter's Auto Parts       65.79  7288  Apex
Deluxe Hardware         467.12  8941  Garner
Pauline's Antiques      302.05  9112  Morrisville
Apex Catering            37.95  9923  Apex
;

Create the output data set BYTOWN. OUT= creates a new data set for the sorted 
observations.

proc sort data=account out=bytown;

Sort by two variables. The BY statement specifies that the observations should be 
first ordered alphabetically by town and then by company.

   by town company;
run;

Print the output data set BYTOWN. PROC PRINT prints the data set BYTOWN.

proc print data=bytown;

Specify the variables to be printed. The VAR statement specifies the variables to 
be printed and their column order in the output.

   var company town debt accountnumber;

Specify the titles.

   title  'Customers with Past-Due Accounts';
   title2 'Listed Alphabetically within Town';
run;

Example 1: Sorting by the Values of Multiple Variables 2313



Output: HTML
Output 64.3 Sorting by the Values of Multiple Variables

Example 2: Sorting in Descending Order
Features: This example BY statement option

DESCENDING
PROC PRINT

Data set: Account 

Details
This example does the following:

n sorts the observations by the values of three variables

n sorts one of the variables in descending order

2314 Chapter 64 / SORT Procedure



n prints the results

Program
proc sort data=account out=sorted;

   by town descending debt accountnumber;
run;

proc print data=sorted;

   var company town debt accountnumber;

   title  'Customers with Past-Due Accounts';
   title2 'Listed by Town, Amount, Account Number';
run;

Program Description

Create the output data set SORTED. OUT= creates a new data set for the sorted 
observations.

proc sort data=account out=sorted;

Sort by three variables with one in descending order. The BY statement 
specifies that observations should be first ordered alphabetically by town, then by 
descending value of amount owed, then by ascending value of the account number.

   by town descending debt accountnumber;
run;

Print the output data set SORTED. PROC PRINT prints the data set SORTED.

proc print data=sorted;

Specify the variables to be printed. The VAR statement specifies the variables to 
be printed and their column order in the output.

   var company town debt accountnumber;

Specify the titles.

   title  'Customers with Past-Due Accounts';
   title2 'Listed by Town, Amount, Account Number';
run;

Output: HTML
Note that sorting last by AccountNumber puts the businesses in Apex with a debt of 
$37.95 in order of account number.

Example 2: Sorting in Descending Order 2315



Output 64.4 Sorting in Descending Order

Example 3: Maintaining the Relative Order of 
Observations in Each BY Group
Features: PROC SORT statement option

EQUALS | NOEQUALS
PROC PRINT

Details
This example does the following:

n sorts the observations by the value of the first variable

n maintains the relative order with the EQUALS option

n does not maintain the relative order with the NOEQUALS option

2316 Chapter 64 / SORT Procedure



Program
data insurance;
   input YearsWorked 1 InsuranceID 3-5;
   datalines;
5 421
5 336
1 209
1 564
3 711
3 343
4 212
4 616
;

proc sort data=insurance out=byyears1 equals;

   by yearsworked;
run;

proc print data=byyears1;

   var yearsworked insuranceid;

   title 'Sort with EQUALS';
run;

proc sort data=insurance out=byyears2 noequals;

   by yearsworked;
run;

proc print data=byyears2;

   var yearsworked insuranceid;

   title 'Sort with NOEQUALS';
run;

Program Description

Create the input data set INSURANCE. INSURANCE contains the number of 
years worked by all insured employees and their insurance IDs.

data insurance;
   input YearsWorked 1 InsuranceID 3-5;
   datalines;
5 421
5 336
1 209
1 564
3 711
3 343
4 212
4 616
;

Example 3: Maintaining the Relative Order of Observations in Each BY Group 2317



Create the output data set BYYEARS1 with the EQUALS option. OUT= creates 
a new data set for the sorted observations. The EQUALS option maintains the order 
of the observations relative to each other.

proc sort data=insurance out=byyears1 equals;

Sort by the first variable. The BY statement specifies that the observations should 
be ordered numerically by the number of years worked.

   by yearsworked;
run;

Print the output data set BYYEARS1. PROC PRINT prints the data set 
BYYEARS1.

proc print data=byyears1;

Specify the variables to be printed. The VAR statement specifies the variables to 
be printed and their column order in the output.

   var yearsworked insuranceid;

Specify the title.

   title 'Sort with EQUALS';
run;

Create the output data set BYYEARS2. OUT= creates a new data set for the 
sorted observations. The NOEQUALS option does not maintain the order of the 
observations relative to each other.

proc sort data=insurance out=byyears2 noequals;

Sort by the first variable. The BY statement specifies that the observations should 
be ordered numerically by the number of years worked.

   by yearsworked;
run;

Print the output data set BYYEARS2. PROC PRINT prints the data set 
BYYEARS2.

proc print data=byyears2;

Specify the variables to be printed. The VAR statement specifies the variables to 
be printed and their column order in the output.

   var yearsworked insuranceid;

Specify the title.

   title 'Sort with NOEQUALS';
run;

Output: HTML
Note that sorting with the EQUALS option versus sorting with the NOEQUALS 
option causes a different sort order for the observations where YearsWorked=3.

2318 Chapter 64 / SORT Procedure



Output 64.5 Sorting with the EQUALS Option

Output 64.6 Sorting with the NOEQUALS Option

Example 4: Retaining the First Observation of Each 
BY Group
Features: PROC SORT statement option

NODUPKEY
BY statement
PROC PRINT

Data set: Account 

Example 4: Retaining the First Observation of Each BY Group 2319



Note: The EQUALS option must be in effect to ensure that the first observation for each BY 
group is the one that is retained by the NODUPKEY option. The EQUALS option is the 
default. If the NOEQUALS option has been specified, then one observation for each BY 
group is retained by the NODUPKEY option, but not necessarily the first observation.

Details
For this example, we are assuming that the Base SAS engine is being used. The 
Base SAS engine provides a consistent ordering where the first observation (the 
first observation that was written and stored) is generally the first one that is read by 
PROC SORT. The sorted data set contains only the first observation of each BY 
group.

Sorting causes observations that have equal BY variable values to be grouped 
together for output. Normally, PROC SORT writes all observations for each BY 
group that it assembles to the output data set. The NODUPKEY option instructs the 
SORT procedure to write only the first observation of each BY group to the output 
data set and discard any additional observations contained within that BY group. 
The resulting report in this example contains one observation for each town where 
the businesses are located.

Program
proc sort data=account out=towns nodupkey;

   by town;
run;

proc print data=towns;

   var town company debt accountnumber;

   title 'Towns of Customers with Past-Due Accounts';
run;

Program Description

Create the output data set TOWNS but include only the first observation of 
each BY group. NODUPKEY writes only the first observation of each BY group to 
the new data set TOWNS. 

proc sort data=account out=towns nodupkey;

Sort by one variable. The BY statement specifies that observations should be 
ordered by town.

   by town;
run;

Print the output data set TOWNS. PROC PRINT prints the data set TOWNS.

2320 Chapter 64 / SORT Procedure



proc print data=towns;

Specify the variables to be printed. The VAR statement specifies the variables to 
be printed and their column order in the output.

   var town company debt accountnumber;

Specify the title.

   title 'Towns of Customers with Past-Due Accounts';
run;

Output: HTML
The output data set contains only four observations, one for each town in the input 
data set.

Output 64.7 Retaining the First Observation of Each BY Group

Example 5: Linguistic Sorting Using 
ALTERNATE_HANDLING=
Features: PROC SORT statement option

sortseq=linguistic
ALTERNATE_HANDLING=SHIFTED
STRENGTH=3

BY statement
VAR statement
PROC PRINT
PROC CONTENTS

Note: For more information about strengthening the linguistic sort of strings, see “Example 6: 
Linguistic Sorting Using ALTERNATE_HANDLING= and STRENGTH=” on page 2325.

Example 5: Linguistic Sorting Using ALTERNATE_HANDLING= 2321



Details
In this example, PROC SORT creates an output data set that contains only the first 
observation of each BY group. You have specified 
ALTERNATE_HANDLING=SHIFTED because you want "a-b" to sort close to "ab" 
and "aB". That is, you do not want "a-b" to appear somewhere far away from "ab" 
and "aB" by virtue of its hyphen.

Note: In this example, the default STRENGTH for this locale is 3.

Notice how "a-b" and "ab" are treated equivalently in the following example. To order 
them beyond the first three levels of comparison (alphabetic, diacritic, and case), 
you can use the fourth level of comparison and specify STRENGTH=4. “Example 6: 
Linguistic Sorting Using ALTERNATE_HANDLING= and STRENGTH=” on page 
2325 shows how to distinguish the strings further.

PROC CONTENTS shows a Sort Information section in the output. The ICU version 
is also shown in the sort information. In SAS 9.4, the ICU library incorporated by 
SAS and used by PROC SORT is ICU version 4.8.1. In SAS Viya, the ICU library 
version incorporated by SAS and used by PROC SORT is ICU 56.

Program
data a;
   length x $ 10;
   x='a-b'; output;
   x='ab'; output;
   x='a-b'; output;
   x='aB'; output;
run;

proc sort data=a sortseq=linguistic( ALTERNATE_HANDLING=SHIFTED );
   by x;
run;   

title1 "Linguistic Collation with ALTERNATE_HANDLING=SHIFTED";
proc print data=a;
run;

title1 "Linguistic Collation with ALTERNATE_HANDLING=SHIFTED and BY 
Processing";
proc print data=a;
   var x;
   by x;
run;

proc contents data=a;
run;

2322 Chapter 64 / SORT Procedure



Program Description

Create the data set.

data a;
   length x $ 10;
   x='a-b'; output;
   x='ab'; output;
   x='a-b'; output;
   x='aB'; output;
run;

Sort the data set using linguistic sorting. Use linguistic sorting and the 
ALTERNATE_HANDLING=SHIFTED option to sort the data set. Note that the 
default STRENGTH for this locale is 3. Also use the BY statement to order 
observations by x. 

proc sort data=a sortseq=linguistic( ALTERNATE_HANDLING=SHIFTED );
   by x;
run;   

Print data set A. The TITLE1 statement tells the PRINT procedure the title to use 
for the output. PROC PRINT then prints data set A.

title1 "Linguistic Collation with ALTERNATE_HANDLING=SHIFTED";
proc print data=a;
run;

Print data set A using By processing. The TITLE1 statement tells the PRINT 
procedure the title to use for the output. PROC PRINT then prints data set A using 
By processing.

title1 "Linguistic Collation with ALTERNATE_HANDLING=SHIFTED and BY 
Processing";
proc print data=a;
   var x;
   by x;
run;

Print the Sort Information when linguistic sorting is being used. The PROC 
CONTENTS output contains a Sort Information section when PROC SORT is used 
with linguistic collation. This sort information also includes the ICU version being 
used.

proc contents data=a;
run;

Output: HTML
The first PROC PRINT shows that the order of "a-b" and "ab" is not well defined. 
The second PROC PRINT uses BY processing to show that these values are 
considered equivalent. “Example 6: Linguistic Sorting Using 
ALTERNATE_HANDLING= and STRENGTH=” on page 2325 shows how to 
distinguish the strings more. 

Example 5: Linguistic Sorting Using ALTERNATE_HANDLING= 2323



Output 64.8 Linguistic Sorting Using the ALTERNATE_HANDLING Option

PROC CONTENTS prints out sort information when linguistic sorting is used. 
Information about the ICU version that is being used is also provided.

2324 Chapter 64 / SORT Procedure



Example 6: Linguistic Sorting Using 
ALTERNATE_HANDLING= and STRENGTH=
Features: PROC SORT statement option

sortseq=linguistic
ALTERNATE_HANDLING=SHIFTED
STRENGTH=4

BY statement
VAR statement
PROC PRINT

Details
In this example, PROC SORT creates an output data set that contains only the first 
observation of each BY group. In this example, 
ALTERNATE_HANDLING=SHIFTED is specified because you want "a-b" to sort 
close to "ab" and "aB" regardless of the hyphen.

Notice how "a-b" and "ab" are treated equivalently in the following example. 
However, if you want to further distinguish between them and have them appear in 
two separate BY groups, you must order the strings further. To order them beyond 
the first three levels of comparison (alphabetic, diacritic, and case), use the fourth 
level of comparison, STRENGTH=4.

Program
data a;
   length x $ 10;
   x='a-b'; output;
   x='ab'; output;
   x='a-b'; output;
   x='aB'; output;
run;

proc sort data=a sortseq=linguistic( ALTERNATE_HANDLING=SHIFTED 
STRENGTH=4);
   by x;
run;

title1 "Linguistic Collation with STRENGTH=4";
proc print data=a;
run;

Title1 "Linguistic Collation with STRENGTH=4 and BY Processing";
proc print data=a;
   var x;

Example 6: Linguistic Sorting Using ALTERNATE_HANDLING= and STRENGTH=
2325



   by x;
run;

Program Description

Create the data set.

data a;
   length x $ 10;
   x='a-b'; output;
   x='ab'; output;
   x='a-b'; output;
   x='aB'; output;
run;

Sort the data set using linguistic sorting. Use linguistic sorting and the 
ALTERNATE_HANDLING=SHIFTED option to sort the data set. Note that the 
default STRENGTH for this locale is 4. The BY statement specifies that 
observations should be ordered by x.

proc sort data=a sortseq=linguistic( ALTERNATE_HANDLING=SHIFTED 
STRENGTH=4);
   by x;
run;

Print the output data set A. The TITLE1 statement tells the PRINT procedure the 
title to use for the output. PROC PRINT then prints data set A.

title1 "Linguistic Collation with STRENGTH=4";
proc print data=a;
run;

Print the output data set A using By processing. The TITLE statement tells the 
PRINT procedure what title to use for this output. PROC PRINT then prints data set 
A using By processing.

Title1 "Linguistic Collation with STRENGTH=4 and BY Processing";
proc print data=a;
   var x;
   by x;
run;

Output: HTML
The first PROC PRINT shows that the order of "a-b" and "ab" is not well defined. 
Differentiate between the two by setting STRENGTH=4. The second PROC PRINT 
uses BY processing to show the order of precedence and how they are 
differentiated.

2326 Chapter 64 / SORT Procedure



Output 64.9 Linguistic Sorting Using the ALTERNATE_HANDLING and STRENGTH Options

Example 7: Eliminate All Duplicate Observations 
Using NODUPKEY
Features: PROC SORT statement option

NODUPKEY
OUT=

BY statement
PROC PRINT
KEEP= data set option

Example 7: Eliminate All Duplicate Observations Using NODUPKEY 2327



Details
In this example, PROC SORT with NODUPKEY creates an output data set that has 
no duplicate observations. Each of these observations is unique. There is only one 
observation in the output data set for a given set of variable values. The BY _ALL_ 
variable sorts by the kept variables (KEEP= option), DIVISION and LEAGUE.

Program
proc sort data=sashelp.baseball(keep=division league)out=DL NODUPKEY;

   by _ALL_;
run;

proc print data=DL;
title 'Baseball Leagues and Divisions';
run;

Program Description

Processing only the division and league variables from the input data set 
(KEEP=), create the DL output data set and remove all duplicate entries.

proc sort data=sashelp.baseball(keep=division league)out=DL NODUPKEY;

Sort by all variables.

   by _ALL_;
run;

Print the output data set DL.

proc print data=DL;
title 'Baseball Leagues and Divisions';
run;

Output: HTML
The output data set contains only four observations, one for each unique division 
and league in baseball. No duplicate entries for Division and League are kept.

2328 Chapter 64 / SORT Procedure



Output 64.10 Remove all Duplicate observations from a Data Set

Example 7: Eliminate All Duplicate Observations Using NODUPKEY 2329



2330 Chapter 64 / SORT Procedure



65
SQL Procedure

A Brief Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2331

Example: Using the SQL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2332

A Brief Overview
The SQL procedure is the Base SAS implementation of Structured Query 
Language. PROC SQL is part of Base SAS software, and you can use it with any 
SAS data set (table). Often, PROC SQL can be an alternative to other SAS 
procedures or the DATA step. You can use SAS language elements such as global 
statements, data set options, functions, informats, and formats with PROC SQL just 
as you can with other SAS procedures. PROC SQL enables you to perform the 
following tasks:

n generate reports

n generate summary statistics

n retrieve data from tables or views

n combine data from tables or views

n create tables, views, and indexes

n update the data values in PROC SQL tables

n update and retrieve data from database management system (DBMS) tables

n modify a PROC SQL table by adding, modifying, or dropping columns

For more information, see SAS SQL Procedure User’s Guide

2331

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


Example: Using the SQL Procedure
The following example selects all rows where Type="Sports" and the MSRP is 
greater than 100,000 from the Cars data set.

proc sql; 
   select * from sashelp.cars
      where Type='Sports' and MSRP>100000;
run;

Output 65.1 SQL Procedure Result

2332 Chapter 65 / SQL Procedure



Chapter 66
SQOOP Procedure

Overview: SQOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2333
What Does the SQOOP Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2333

Syntax: SQOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2334
PROC SQOOP Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2334

Usage: SQOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2337
General Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2337
Using Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2337
Requirements for Using the SQOOP Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 2337

Example: Importing from Teradata to HDFS Using an SQL Query . . . . . . . . . . . 2338

Overview: SQOOP Procedure

What Does the SQOOP Procedure Do?
You can use Apache Sqoop (pronounced scoop) to transfer data between Hadoop 
and relational database management systems (RDBMSs). You can use the SQOOP 
procedure to access Apache Sqoop from a SAS session to transfer data between a 
database and HDFS. It lets you submit Sqoop commands from within your SAS 
application to your Hadoop cluster.

Sqoop commands are passed to the cluster using the Apache Oozie Workflow 
Scheduler for Hadoop. PROC SQOOP defines an Oozie workflow for your Sqoop 
task, which is then submitted to an Oozie server using a RESTful API.

PROC SQOOP works similarly to the Apache Sqoop command-line interface (CLI). 
Using the same syntax, a user who has licensed SAS/ACCESS Interface to Hadoop 
can transfer data between a database and HDFS. The user can submit Sqoop CLI 
commands in the COMMAND statement for the SQOOP procedure. The procedure 

2333



provides feedback as to whether the job completed successfully and where to get 
more details from your Hadoop cluster if the Sqoop task failed.

Some Hadoop distributions support different versions of the Sqoop command. Refer 
to the documentation for your distribution for specific Sqoop command syntax.

For more information about Apache Sqoop, see the online documentation at http://
sqoop.apache.org and http://sqoop.apache.org/docs/1.4.5/index.html.

For Sqoop considerations and usage, refer to the Apache Sqoop Cookbook.

You can find more information about Oozie at http://oozie.apache.org.

Syntax: SQOOP Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

Requirements: To use this procedure requires a separate license to SAS/ACCESS Interface to Hadoop.
Specify the --username or --password options separately with the DBUSER= and 
DBPWD= options in the PROC SQOOP statement rather than in the Sqoop command.

Supports: Kerberos only on Linux

Notes: By default, the SQOOP procedure uses the hive-site.xml file to locate the Zookeeper 
service discovery. If the Zookeeper service discovery is not available, in the SQOOP 
procedure you can set a server name and port with the HIVE_SERVER= option or a 
JDBC URI with the HIVE_URI= option.
Support for HIVE_SERVER= and HIVE_URI= options was added in SAS Viya 3.5

See: SERVER= LIBNAME connection option, URI= LIBNAME connection option

Example: Importing from Teradata to HDFS Using an SQL Query

PROC SQOOP <sqoop-options>;

Statement Task Example

PROC SQOOP Allow access to Apache Sqoop for data transfer Ex. 1

PROC SQOOP Statement
Allows access to Apache Sqoop using options to allow data transfer between a database and HDFS.

Syntax
PROC SQOOP
COMMAND='command-to-sqoop'

2334 Chapter 66 / SQOOP Procedure

http://sqoop.apache.org
http://sqoop.apache.org
http://sqoop.apache.org/docs/1.4.5/index.html
http://oozie.apache.org
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n1h398otek0j00n1itib5k7ch738.htm&docsetTargetAnchor=n127pj83x8bru7n1flj82jb229pp&locale=en
http://documentation.sas.com/?docsetId=acreldb&docsetVersion=9.4&docsetTarget=n1h398otek0j00n1itib5k7ch738.htm&docsetTargetAnchor=n1ku3itzib5c8yn1qlrrmeocesou&locale=en


DBPWD='database-password'
DBUSER='database-user-name'
<DELETEWF>
HADOOPUSER='hadoop-user-name'
HADOOPPWD='hadoop-password'
<HIVE_SERVER='server-name-and-port'>
<HIVE_URI='JDBC-URI'>
<JOBTRACKER='job-tracker-URL'>
<NAMENODE='name-node-URL'>
OOZIEURL='oozie-URL'
<PASSWORDFILE='password-file'>
<WFHDFSPATH='Oozie-workflow-path'>;
run;

Required Arguments
COMMAND='command-to-sqoop'

specifies the Apache Sqoop command. Here is how you must specify the 
command:

SQOOP-command --option … --option

Restriction Do not use the sqoop invocation command.

Note The escape character, a forward slash (\), in $CONDITIONS is not 
required when you submit Sqoop commands using the SQOOP 
procedure.

Tip For more information about Apache Sqoop commands, see the 
online documentation at http://sqoop.apache.org.

DBPWD='database-password'
specifies the database password that is associated with the DBUSER option. 
Because this option is mutually exclusive with the PASSWORDFILE option, you 
must specifiy only one or the other.

DBUSER='database-user-name'
specifies the database user name to use for import or export.

HADOOPPWD='hadoop-password'
specifies the Hadoop password that is associated with the HADOOPUSER= 
option.

Restriction Do not provide this option when connecting to a cluster that is 
enabled for Kerberos.

HADOOPUSER='hadoop-user-name'
specifies the Hadoop user name to use for import or export.

Restriction Do not provide this option when connecting to a cluster that is 
enabled for Kerberos.

OOZIEURL='oozie-URL'
specifies the URL to the Oozie server.

PROC SQOOP Statement 2335

http://sqoop.apache.org


Optional Arguments
DELETEWF

specifies that, if an Oozie workflow file exists as specified by the location in 
WFHDFSPATH, it should be deleted. The SQOOP procedure then creates a new 
workflow file at that location.

HIVE_SERVER='server-name-and-port'
specifies the Hive server name that runs the Hive service and the port number to 
use to connect to the specified Hive service.

Restriction You can specify only one option at a time: HIVE_SERVER= or 
HIVE_URI=.

Requirements If the server name contains spaces or nonalphanumeric 
characters, you must enclose it in quotation marks.

This option is required when connecting to a Kerberized HDP 3.1 
cluster when the hive-site.xml file does not contain the 
Zookeeper service.

HIVE_URI=jdbc:hive2://HiveServerHost:HiveServerPort</
Schema:Property1=Value;...><PropertyN=Value;>

specifies the JDBC URI.

Restriction You can specify only one option at a time: HIVE_SERVER= or 
HIVE_URI=.

Requirement This option is required when connecting to a Kerberized HDP 3.1 
cluster when the hive-site.xml file does not contain the Zookeeper 
service.

Example jdbc:hive2://MyHiveServer:10000

JOBTRACKER='job-tracker-URL'
specifies the URL to the JobTracker or ResourceManager services.

Default SAS_HADOOP_CONFIG_PATH determines the value for this option if 
you do not specify one.

NAMENODE='name-node-URL'
specifies the URL to the NameNode services.

Default SAS_HADOOP_CONFIG_PATH determines the value for this option if 
you do not specify one.

PASSWORDFILE='password-file'
specifies the name of the file that is located in HDFS that contains the database 
password for import or export. This separate password file must exist before you 
can run this procedure, and care should be taken to keep this file secure.

WFHDFSPATH='Oozie-workflow-path-and-filename'
specifies the path and filename for where to upload the Oozie workflow, as 
shown below.

/user/myID/mydir/myfile.xml

Default A generated path is used if you do not provide a value.

2336 Chapter 66 / SQOOP Procedure



Tip You can use hdfs://server syntax, although it is not required.

Usage: SQOOP Procedure

General Usage
Because the Oracle JDBC Connector requires it, you must specify the value to be 
used for the --table option in Sqoop in uppercase letters. For details about case 
sensitivity for tables, see the documentation for your specific DBMS.

Connection strings should include the character set option that is appropriate for the 
data to be imported. For details, refer to your connector documentation.

Using Workflows
Workflows are created only when they are required. Some SQOOP jobs can use 
Oozie proxy submission, which generates no workflow file. Proxy submission is 
selected if you are running Oozie 4.1 or later and are not using a Hive table as the 
destination. The SAS log contains a note if PROC SQOOP uses proxy submission.

Requirements for Using the SQOOP Procedure
Here is what you need before you can begin using the SQOOP procedure.

What You Need PROC SQOOP Option Where to Find It

database connector COMMAND: Sqoop syntax 
requires a --connection 
option that is specific to 
your database.

Refer to the documentation 
for your Hadoop distribution.

database user ID DBUSER Contact your database 
administrator.

database password DBPWD

HDFS file that contains 
the database password

PASSWORDFILE Contact your database 
administrator and your 
Hadoop cluster administrator.

Usage: SQOOP Procedure 2337



What You Need PROC SQOOP Option Where to Find It

Hadoop user ID HADOOPUSER Contact your Hadoop cluster 
administrator.

Hadoop password HADOOPPWD

Oozie URL OOZIEURL

name node NAMENODE

Job Tracker (MR1) or 
Resource Manager 
(MR2)

JOBTRACKER

Oozie workflow output 
path

WFHDFSPATH Contact your Hadoop cluster 
administrator. Generally, the 
Oozie workflow can be 
written to your user directory 
in HDFS.

Sqoop Command COMMN Refer to the Sqoop 
documentation for your 
Hadoop distribution.

Example: Importing from Teradata to 
HDFS Using an SQL Query

In this example, DELETEWF is included to replace an existing workflow with a new 
workflow for this task.

Note: For proper default NAMENODE and JOBTRACKER port values for your 
environment, check the configuration for your particular distribution or refer to your 
Hadoop documentation.

proc sqoop dbuser='mydbusr1' dbpwd='mydbpwd1'
   hadoopuser='sashdpusr1' hadooppwd='sashdppwd1'
   oozieurl='http://myoozie-04:55000/oozie'
   namenode='hdfs://myoozie-04.unx.srvr.com:8020'
   jobtracker='myoozie-04.unx.srvr.com:8032'
   wfhdfspath='hdfs://myoozie-04.unx.srvr.com:8020/user/mydbusr1/
myworkflow.xml'
   deletewf
   command='import 
      --connection-manager 
com.cloudera.connector.teradata.TeradataManager

2338 Chapter 66 / SQOOP Procedure



      --connect jdbc:teradata://myconnecti/Database=sqoop
      --query "SELECT * FROM sales where ($CONDITIONS and I < 25)" -m 1
      --split-by i --delete-target-dir
      --target-dir /user/mydbusr1/sales2';
run;

Example: Importing from Teradata to HDFS Using an SQL Query 2339



2340 Chapter 66 / SQOOP Procedure



Chapter 67
STANDARD Procedure

Overview: STANDARD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2341
What Does the STANDARD Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2341
Standardizing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2342

Syntax: STANDARD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2344
PROC STANDARD Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2344
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2347
FREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2348
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2349
WEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2349

Usage: STANDARD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2351
Statistical Computations: STANDARD Procedure . . . . . . . . . . . . . . . . . . . . . . . . 2351

Results: STANDARD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2352
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2352
Output Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2352

Examples: STANDARD Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2352
Example 1: Standardizing to a Given Mean and Standard Deviation . . . . . . . . . 2352
Example 2: Standardizing BY Groups and Replacing Missing Values . . . . . . . . . 2355

Overview: STANDARD Procedure

What Does the STANDARD Procedure Do?
The STANDARD procedure standardizes variables in a SAS data set to a given 
mean and standard deviation, and it creates a new SAS data set containing the 
standardized values.

2341



Standardizing Data
The following output shows a simple standardization where the output data set 
contains standardized student exam scores. The statements that produce the output 
follow:

proc standard data=score mean=75 std=5
              out=stndtest;
run;

proc print data=stndtest;
run;

Output 67.1 Standardized Test Scores Using PROC STANDARD

                         The SAS System                        1

                  Obs    Student       Test1

                    1    Capalleti    80.5388
                    2    Dubose       64.3918
                    3    Engles       80.9143
                    4    Grant        68.8980
                    5    Krupski      75.2816
                    6    Lundsford    79.7877
                    7    McBane       73.4041
                    8    Mullen       78.6612
                    9    Nguyen       74.9061
                   10    Patel        71.9020
                   11    Si           73.4041
                   12    Tanaka       77.9102

The following output shows a more complex example that uses BY-group 
processing. PROC STANDARD computes Z scores separately for two BY groups by 
standardizing life-expectancy data to a mean of 0 and a standard deviation of 1. The 
data are 1950 and 1993 life expectancies at birth for 16 countries. The birth rates for 
each country, classified as stable or rapid, form the two BY groups. The statements 
that produce the analysis also do the following:

n print statistics for each variable to standardize

n replace missing values with the given mean

n calculate standardized values using a given mean and standard deviation

n print the data set with the standardized values

For an explanation of the program that produces this output, see “Example 2: 
Standardizing BY Groups and Replacing Missing Values” on page 2355.

2342 Chapter 67 / STANDARD Procedure



Output 67.2 Z Scores for Each BY Group Using PROC STANDARD

                Life Expectancies by Birth Rate                2

-------------------- PopulationRate=Stable ---------------------

                     The STANDARD Procedure

                                   Standard
     Name              Mean       Deviation               N
     Label

     Life50       67.400000        1.854724               5
     1950 life expectancy
     Life93       74.500000        4.888763               6
     1993 life expectancy

--------------------- PopulationRate=Rapid ---------------------

                                   Standard
     Name              Mean       Deviation               N
     Label

     Life50       42.000000        5.033223               8
     1950 life expectancy
     Life93       59.100000        8.225300              10
     1993 life expectancy

            Standardized Life Expectancies at Birth            3
                   by a Country's Birth Rate

      Population
         Rate       Country            Life50      Life93

        Stable      France            -0.21567     0.51138
        Stable      Germany            0.32350     0.10228
        Stable      Japan             -1.83316     0.92048
        Stable      Russia             0.00000    -1.94323
        Stable      United Kingdom     0.86266     0.30683
        Stable      United States      0.86266     0.10228
        Rapid       Bangladesh         0.00000    -0.74161
        Rapid       Brazil             1.78812     0.96045
        Rapid       China             -0.19868     1.32518
        Rapid       Egypt              0.00000     0.10942
        Rapid       Ethiopia          -1.78812    -1.59265
        Rapid       India             -0.59604    -0.01216
        Rapid       Indonesia         -0.79472    -0.01216
        Rapid       Mozambique         0.00000    -1.47107
        Rapid       Philippines        1.19208     0.59572
        Rapid       Turkey             0.39736     0.83888

Overview: STANDARD Procedure 2343



Syntax: STANDARD Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

Tip: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. For more 
information, see “Statements with the Same Function in Multiple Procedures” on page 
73.

PROC STANDARD <options>;
BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …> 

<NOTSORTED>;
FREQ variable;
VAR variable(s);
WEIGHT variable;

Statement Task Example

PROC STANDARD Standardize variables to a given mean and 
standard deviation

Ex. 1, Ex. 2

BY Calculate separate standardized values for 
each BY group

Ex. 2

FREQ Identify a variable whose values represent the 
frequency of each observation

VAR Select the variables to standardize and 
determine the order in which they appear in the 
printed output

Ex. 1

WEIGHT Identify a variable whose values weight each 
observation in the statistical calculations

PROC STANDARD Statement
Standardizes variables in a SAS data set to a given mean and standard deviation, and it creates a new 
SAS data set containing the standardized values.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Examples: “Example 2: Standardizing BY Groups and Replacing Missing Values” on page 2355
“Example 1: Standardizing to a Given Mean and Standard Deviation” on page 2352

2344 Chapter 67 / STANDARD Procedure



Syntax
PROC STANDARD <options>;

Summary of Optional Arguments
DATA=SAS-data-set

specifies the input data set.
EXCLNPWGT

excludes observations with nonpositive weights.
MEAN=mean-value

specifies the mean value.
OUT=SAS-data-set

specifies the output data set.
REPLACE

replace missing values with a variable mean or MEAN= value.
STD=std-value

specifies the standard deviation value.
VARDEF=divisor 

specifies the divisor for variance calculations.

Control printed output
NOPRINT

suppresses all printed output.
PRINT

prints statistics for each variable to standardize.

Preserve values
PRESERVERAWBYVALUES

preserves raw by values.

Without Arguments
If you do not specify MEAN=, REPLACE, or STD=, the output data set is an 
identical copy of the input data set.

Optional Arguments
DATA=SAS-data-set

specifies the input SAS data set.

Restriction You cannot use PROC STANDARD with an engine that supports 
concurrent access if another user is updating the data set at the 
same time.

See “Input Data Sets” on page 26 

PROC STANDARD Statement 2345



EXCLNPWGT
excludes observations with nonpositive weight values (zero or negative). The 
procedure does not use the observation to calculate the mean and standard 
deviation, but the observation is still standardized. By default, the procedure 
treats observations with negative weights like those with zero weights and 
counts them in the total number of observations.

Alias EXCLNPWGTS

MEAN=mean-value
standardizes variables to a mean of mean-value.

Default mean of the input values

Example “Example 1: Standardizing to a Given Mean and Standard Deviation” 
on page 2352

NOPRINT
suppresses the printing of the procedure output. NOPRINT is the default value.

OUT=SAS-data-set
specifies the output data set. If SAS-data-set does not exist, PROC STANDARD 
creates it. If you omit OUT=, the data set is named Datan, where n is the 
smallest integer that makes the name unique.

Default Datan

Example “Example 1: Standardizing to a Given Mean and Standard Deviation” 
on page 2352

PRESERVERAWBYVALUES
preserves raw by values. of all BY variables when those variables are 
propagated to the output data set.

PRINT
prints the original frequency, mean, and standard deviation for each variable to 
standardize.

Example “Example 2: Standardizing BY Groups and Replacing Missing Values” 
on page 2355

REPLACE
replaces missing values with the variable mean.

Interaction If you use MEAN=, PROC STANDARD replaces missing values with 
the given mean.

Example “Example 2: Standardizing BY Groups and Replacing Missing 
Values” on page 2355

STD=std-value
standardizes variables to a standard deviation of std-value.

Default standard deviation of the input values

Example “Example 1: Standardizing to a Given Mean and Standard Deviation” 
on page 2352

2346 Chapter 67 / STANDARD Procedure



VARDEF=divisor
specifies the divisor to use in the calculation of variances and standard deviation. 
The following table shows the possible values for divisor and the associated 
divisors. 

Table 67.1 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF Degrees of freedom n − 1

N Number of observations n

WDF Sum of weights minus one (Σi wi) − 1

WEIGHT|WGT Sum of weights Σi wi

The procedure computes the variance as CSS/divisor , where CSS is the 
corrected sums of squares and equals Σ xi − x 2 . When you weight the analysis 

variables, CSS equals Σ wi xi − xw
2 where xw is the weighted mean.

Default DF

Tips When you use the WEIGHT statement and VARDEF=DF, the variance 
is an estimate of σ2 , where the variance of the ith observation is 
var xi = σ2/wi and wi is the weight for the ith observation. This yields an 
estimate of the variance of an observation with unit weight.

When you use the WEIGHT statement and VARDEF=WGT, the 
computed variance is asymptotically (for large n) an estimate of σ2/w , 
where w is the average weight. This yields an asymptotic estimate of 
the variance of an observation with average weight.

See “WEIGHT” on page 82 

“Keywords and Formulas” on page 2610

BY Statement
Calculates standardized values separately for each BY group.

See: “BY” on page 74 

Example: “Example 2: Standardizing BY Groups and Replacing Missing Values” on page 2355

BY Statement 2347



Syntax
BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …> 
<NOTSORTED>;

Required Argument
variable

specifies the variable that the procedure uses to form BY groups. You can 
specify more than one variable. If you do not use the NOTSORTED option in the 
BY statement, then the observations in the data set must either be sorted by all 
the variables that you specify. Otherwise, they must be indexed appropriately. 
These variables are called BY variables.

Optional Arguments
DESCENDING

specifies that the data set is sorted in descending order by the variable that 
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. The data are grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of 
BY variables is suspended for BY-group processing when you use the 
NOTSORTED option. In fact, the procedure does not use an index if you specify 
NOTSORTED. The procedure defines a BY group as a set of contiguous 
observations that have the same values for all BY variables. If observations with 
the same values for the BY variables are not contiguous, the procedure treats 
each contiguous set as a separate BY group.

FREQ Statement
Specifies a numeric variable whose values represent the frequency of the observation.

Tip: The effects of the FREQ and WEIGHT statements are similar except when calculating 
degrees of freedom.

See: For an example that uses the FREQ statement, see “FREQ” on page 79 

Syntax
FREQ variable;

2348 Chapter 67 / STANDARD Procedure



Required Argument
variable

specifies a numeric variable whose value represents the frequency of the 
observation. If you use the FREQ statement, the procedure assumes that each 
observation represents n observations, where n is the value of variable. If n is 
not an integer, SAS truncates it. If n is less than 1 or is missing, the procedure 
does not use that observation to calculate statistics but the observation is still 
standardized.

The sum of the frequency variable represents the total number of observations.

VAR Statement
Specifies the variables to standardize and their order in the printed output.

Default: If you omit the VAR statement, PROC STANDARD standardizes all numeric variables 
not listed in the other statements.

Example: “Example 1: Standardizing to a Given Mean and Standard Deviation” on page 2352

Syntax
VAR variable(s);

Required Argument
variable(s)

identifies one or more variables to standardize.

WEIGHT Statement
Specifies weights for analysis variables in the statistical calculations.

See: For information about calculating weighted statistics and for an example that uses the 
WEIGHT statement, see “WEIGHT” on page 82. 

Syntax
WEIGHT variable;

WEIGHT Statement 2349



Required Argument
variable

specifies a numeric variable whose values weight the values of the analysis 
variables. The values of the variable do not have to be integers. The table below 
shows what the action will be based on the weight value.

Table 67.2 WEIGHT Statement Value and PROC STANDARD Action

Weight Value PROC STANDARD Action

0 Counts the observation in the total number of 
observations

Less than 0 Converts the weight value to zero and counts the 
observation in the total number of observations

Missing Excludes the observation from the calculation of mean 
and standard deviation

To exclude observations that contain negative and zero weights from the 
calculation of mean and standard deviation, use EXCLNPWGT. Note that most 
SAS/STAT procedures, such as PROC GLM, exclude negative and zero weights 
by default.

Tip When you use the WEIGHT statement, consider which value of the 
VARDEF= option is appropriate. For more information, see 
“VARDEF=divisor ” on page 2347 and the calculation of weighted statistics 
in “Keywords and Formulas” on page 2610.

Details
Note: Prior to Version 7 of SAS, the procedure did not exclude the observations 
with missing weights from the count of observations.

2350 Chapter 67 / STANDARD Procedure



Usage: STANDARD Procedure

Statistical Computations: STANDARD Procedure
Standardizing values removes the location and scale attributes from a set of data. 
The formula to compute standardized values is

xi′ =
S * xi − x

sx
+ M

where

xi′
is a new standardized value.

S
is the value of STD=.

M
is the value of MEAN=.

xi
is an observation's value.

x
is a variable's mean.

sx
is a variable's standard deviation.

PROC STANDARD calculates the mean ( x ) and standard deviation ( sx ) from the 
input data set. The resulting standardized variable has a mean of M and a standard 
deviation of S.

If the data are normally distributed, standardizing is also studentizing since the 
resulting data have a Student's t distribution.

Usage: STANDARD Procedure 2351



Results: STANDARD Procedure

Missing Values
By default, PROC STANDARD excludes missing values for the analysis variables 
from the standardization process, and the values remain missing in the output data 
set. When you specify the REPLACE option, the procedure replaces missing values 
with the variable's mean or the MEAN= value.

If the value of the WEIGHT variable or the FREQ variable is missing, then the 
procedure does not use the observation to calculate the mean and the standard 
deviation. However, the observation is standardized.

Output Data Set
PROC STANDARD always creates an output data set that stores the standardized 
values in the VAR statement variables, regardless of whether you specify the OUT= 
option. The output data set contains all the input data set variables, including those 
not standardized. PROC STANDARD does not print the output data set. Use PROC 
PRINT, PROC REPORT, or another SAS reporting tool to print the output data set.

Examples: STANDARD Procedure

Example 1: Standardizing to a Given Mean and 
Standard Deviation
Features: PROC STANDARD statement options

MEAN=
OUT=
STD=

VAR statement
PRINT procedure

2352 Chapter 67 / STANDARD Procedure



Details
This example does the following:

n standardizes two variables to a mean of 75 and a standard deviation of 5

n specifies the output data set

n combines standardized variables with original variables

n prints the output data set

Program
options nodate pageno=1 linesize=80 pagesize=60;

data score;
   length Student $ 9;
   input Student $ StudentNumber Section $
         Test1 Test2 Final @@;
   format studentnumber z4.;
   datalines;
Capalleti 0545 1 94 91 87  Dubose    1252 2 51 65 91
Engles    1167 1 95 97 97  Grant     1230 2 63 75 80
Krupski   2527 2 80 69 71  Lundsford 4860 1 92 40 86
McBane    0674 1 75 78 72  Mullen    6445 2 89 82 93
Nguyen    0886 1 79 76 80  Patel     9164 2 71 77 83
Si        4915 1 75 71 73  Tanaka    8534 2 87 73 76
;

proc standard data=score mean=75 std=5 out=stndtest;

   var test1 test2;
run;

proc sql;
   create table combined as
   select old.student, old.studentnumber,
          old.section,
          old.test1, new.test1 as StdTest1,
          old.test2, new.test2 as StdTest2,
          old.final
   from score as old, stndtest as new
   where old.student=new.student;

proc print data=combined noobs round;
   title 'Standardized Test Scores for a College Course';
run;

Example 1: Standardizing to a Given Mean and Standard Deviation 2353



Program Description
Set the SAS system options. The NODATE option specifies to omit the date and 
time at which the SAS job began. The PAGENO= option specifies the page number 
for the next page of output that SAS produces. The LINESIZE= option specifies the 
line size. The PAGESIZE= option specifies the number of lines for a page of SAS 
output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the Score data set. This data set contains test scores for students who took 
two tests and a final exam. The FORMAT statement assigns the Zw.d format to 
StudentNumber. This format pads right-justified output with 0s instead of blanks. 
The LENGTH statement specifies the number of bytes to use to store values of 
Student.

data score;
   length Student $ 9;
   input Student $ StudentNumber Section $
         Test1 Test2 Final @@;
   format studentnumber z4.;
   datalines;
Capalleti 0545 1 94 91 87  Dubose    1252 2 51 65 91
Engles    1167 1 95 97 97  Grant     1230 2 63 75 80
Krupski   2527 2 80 69 71  Lundsford 4860 1 92 40 86
McBane    0674 1 75 78 72  Mullen    6445 2 89 82 93
Nguyen    0886 1 79 76 80  Patel     9164 2 71 77 83
Si        4915 1 75 71 73  Tanaka    8534 2 87 73 76
;

Generate the standardized data and create the Stndtest output data set. PROC 
STANDARD uses a mean of 75 and a standard deviation of 5 to standardize the 
values. OUT= identifies Stndtest as the data set to contain the standardized values.

proc standard data=score mean=75 std=5 out=stndtest;

Specify the variables to standardize. The VAR statement specifies the variables 
to standardize and their order in the output.

   var test1 test2;
run;

Create a data set that combines the original values with the standardized 
values. PROC SQL joins Score and Stndtest to create the Combined data set 
(table) that contains standardized and original test scores for each student. Using 
AS to rename the standardized variables NEW.TEST1 to StdTest1 and NEW.TEST2 
to StdTest2 makes the variable names unique.

proc sql;
   create table combined as
   select old.student, old.studentnumber,
          old.section,
          old.test1, new.test1 as StdTest1,
          old.test2, new.test2 as StdTest2,
          old.final
   from score as old, stndtest as new
   where old.student=new.student;

Print the data set. PROC PRINT prints the Combined data set. ROUND rounds the 
standardized values to two decimal places. The TITLE statement specifies a title.

2354 Chapter 67 / STANDARD Procedure



proc print data=combined noobs round;
   title 'Standardized Test Scores for a College Course';
run;

Output: Listing
The following data set contains variables with both standardized and original values. 
StdTest1 and StdTest2 store the standardized test scores that PROC STANDARD 
computes.

Output 67.3 Standardized Test Scores for a College Course

                 Standardized Test Scores for a College Course                 1

               Student                         Std               Std
  Student      Number     Section    Test1    Test1    Test2    Test2    Final

  Capalleti     0545         1         94     80.54      91     80.86      87
  Dubose        1252         2         51     64.39      65     71.63      91
  Engles        1167         1         95     80.91      97     82.99      97
  Grant         1230         2         63     68.90      75     75.18      80
  Krupski       2527         2         80     75.28      69     73.05      71
  Lundsford     4860         1         92     79.79      40     62.75      86
  McBane        0674         1         75     73.40      78     76.24      72
  Mullen        6445         2         89     78.66      82     77.66      93
  Nguyen        0886         1         79     74.91      76     75.53      80
  Patel         9164         2         71     71.90      77     75.89      83
  Si            4915         1         75     73.40      71     73.76      73
  Tanaka        8534         2         87     77.91      73     74.47      76

Example 2: Standardizing BY Groups and 
Replacing Missing Values
Features: PROC STANDARD statement options

PRINT
REPLACE

BY statement
FORMAT procedure
PRINT procedure
SORT procedure

Details
This example does the following:

Example 2: Standardizing BY Groups and Replacing Missing Values 2355



n calculates Z scores separately for each BY group using a mean of 0 and 
standard deviation of 1

n replaces missing values with the given mean

n prints the mean and standard deviation for the variables to standardize

n prints the output data set

Program
options nodate pageno=1 linesize=80 pagesize=60;

proc format;
   value popfmt 1='Stable'
                2='Rapid';
run;

data lifexp;
   input PopulationRate Country $char14. Life50 Life93 @@;
   label life50='1950 life expectancy'
         life93='1993 life expectancy';
   datalines;
2 Bangladesh     .  53 2 Brazil         51 67
2 China          41 70 2 Egypt          42 60
2 Ethiopia       33 46 1 France         67 77
1 Germany        68 75 2 India          39 59
2 Indonesia      38 59 1 Japan          64 79
2 Mozambique      . 47 2 Philippines    48 64
1 Russia          . 65 2 Turkey         44 66
1 United Kingdom 69 76 1 United States  69 75
;

proc sort data=lifexp;
   by populationrate;
run;

proc standard data=lifexp mean=0 std=1 replace
              print out=zscore;

   by populationrate;

   format populationrate popfmt.;
   title1 'Life Expectancies by Birth Rate';
run;

proc print data=zscore noobs;
   title 'Standardized Life Expectancies at Birth';
   title2 'by a Country''s Birth Rate';
run;

Program Description
Set the SAS system options. The NODATE option specifies to omit the date and 
time at which the SAS job began. The PAGENO= option specifies the page number 
for the next page of output that SAS produces. The LINESIZE= option specifies the 

2356 Chapter 67 / STANDARD Procedure



line size. The PAGESIZE= option specifies the number of lines for a page of SAS 
output.

options nodate pageno=1 linesize=80 pagesize=60;

Assign a character string format to a numeric value. PROC FORMAT creates 
the format POPFMT to identify birth rates with a character value.

proc format;
   value popfmt 1='Stable'
                2='Rapid';
run;

Create the Lifeexp data set. Each observation in this data set contains information 
about 1950 and 1993 life expectancies at birth for 16 nations. The birth rate for each 
nation is classified as stable (1) or rapid (2). The nations with missing data obtained 
independent status after 1950. Data are from Vital Signs 1994: The Trends That Are 
Shaping Our Future, Lester R. Brown, Hal Kane, and David Malin Roodman, eds. 
Copyright © 1994 by Worldwatch Institute. Reprinted by permission of W.W. Norton 
& Company, Inc.

data lifexp;
   input PopulationRate Country $char14. Life50 Life93 @@;
   label life50='1950 life expectancy'
         life93='1993 life expectancy';
   datalines;
2 Bangladesh     .  53 2 Brazil         51 67
2 China          41 70 2 Egypt          42 60
2 Ethiopia       33 46 1 France         67 77
1 Germany        68 75 2 India          39 59
2 Indonesia      38 59 1 Japan          64 79
2 Mozambique      . 47 2 Philippines    48 64
1 Russia          . 65 2 Turkey         44 66
1 United Kingdom 69 76 1 United States  69 75
;

Sort the Lifeexp data set. PROC SORT sorts the observations by the birth rate.

proc sort data=lifexp;
   by populationrate;
run;

Generate the standardized data for all numeric variables and create the Z-
score output data set. PROC STANDARD standardizes all numeric variables to a 
mean of 1 and a standard deviation of 0. REPLACE replaces missing values. PRINT 
prints statistics.

proc standard data=lifexp mean=0 std=1 replace
              print out=zscore;

Create the standardized values for each BY group. The BY statement 
standardizes the values separately by birth rate.

   by populationrate;

Assign a format to a variable and specify a title for the report. The FORMAT 
statement assigns a format to PopulationRate. The output data set contains 
formatted values. The TITLE statement specifies a title.

   format populationrate popfmt.;
   title1 'Life Expectancies by Birth Rate';
run;

Example 2: Standardizing BY Groups and Replacing Missing Values 2357



Print the data set. PROC PRINT prints the ZSCORE data set with the standardized 
values. The TITLE statements specify two titles to be printed.

proc print data=zscore noobs;
   title 'Standardized Life Expectancies at Birth';
   title2 'by a Country''s Birth Rate';
run;

Output: Listing
PROC STANDARD prints the variable name, mean, standard deviation, input 
frequency, and label of each variable to standardize for each BY group. Life 
expectancies for Bangladesh, Mozambique, and Russia are no longer missing. The 
missing values are replaced with the given mean (0).

Output 67.4 Life Expectancies by Birth Rate

                        Life Expectancies by Birth Rate                        1

---------------------------- PopulationRate=Stable -----------------------------

                               Standard
 Name              Mean       Deviation               N    Label

 Life50       67.400000        1.854724               5    1950 life expectancy
 Life93       74.500000        4.888763               6    1993 life expectancy

----------------------------- PopulationRate=Rapid -----------------------------

                               Standard
 Name              Mean       Deviation               N    Label

 Life50       42.000000        5.033223               8    1950 life expectancy
 Life93       59.100000        8.225300              10    1993 life expectancy
                    Standardized Life Expectancies at Birth                    2
                           by a Country's Birth Rate

              Population
                 Rate       Country            Life50      Life93

                Stable      France            -0.21567     0.51138
                Stable      Germany            0.32350     0.10228
                Stable      Japan             -1.83316     0.92048
                Stable      Russia             0.00000    -1.94323
                Stable      United Kingdom     0.86266     0.30683
                Stable      United States      0.86266     0.10228
                Rapid       Bangladesh         0.00000    -0.74161
                Rapid       Brazil             1.78812     0.96045
                Rapid       China             -0.19868     1.32518
                Rapid       Egypt              0.00000     0.10942
                Rapid       Ethiopia          -1.78812    -1.59265
                Rapid       India             -0.59604    -0.01216
                Rapid       Indonesia         -0.79472    -0.01216
                Rapid       Mozambique         0.00000    -1.47107
                Rapid       Philippines        1.19208     0.59572
                Rapid       Turkey             0.39736     0.83888

2358 Chapter 67 / STANDARD Procedure



Chapter 68
STREAM Procedure

Overview: STREAM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2359
What Does the STREAM Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2359

Concepts: STREAM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2360
How Text and Macro Code Are Interpreted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2360
Tokenizer Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2361

Syntax: STREAM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2362
PROC STREAM Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2362

Usage: STREAM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2365
Using Macro-Based Code in the Input Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . 2365
Beginning an Input Stream with Brackets or Parentheses . . . . . . . . . . . . . . . . . . 2366
Executing SAS Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2366
Rich Text Format (RTF) File Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2367
Using the READFILE Keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2368
Using %INCLUDE to Include a File in PROC STREAM . . . . . . . . . . . . . . . . . . . 2369
Inserting a New Line into the Output Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2370
Ending the STREAM Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2370

Overview: STREAM Procedure

What Does the STREAM Procedure Do?
The STREAM procedure enables you to process an input stream that consists of 
arbitrary text that can contain SAS macro specifications. The macros are executed 
and expanded while the other text in the input stream is preserved. The text stream 
is not validated as SAS syntax. The output stream is sent to an external file that is 
referenced by a fileref and that can be defined to use any traditional SAS output 
destination.

2359



The STREAM procedure is valid in SAS Viya. Support for the STREAM procedure 
with SAS Viya was added in SAS 9.4M5.

Concepts: STREAM Procedure

How Text and Macro Code Are Interpreted
The following example uses a macro called %DOIT to produce an HTML stream 
that contains a table:

%macro doit(nrows,ncols);
<table>
%do i=1 %to &nrows;
<tr>
%do j=1 %to &ncols;
<td>&j</td>
%end;
</tr>
%end;
</table>
%mend doit;

If this macro is executed within a SAS code stream, then HTML output will be 
produced but the output will be syntactically invalid because it is not valid SAS 
syntax. However, if this macro is executed through PROC STREAM, the HTML 
output will instead be written to a file and not validated as SAS syntax. The following 
is an example:

proc stream outfile=myfile; begin
%doit(2,3)
;;;;

The following output is written to myfile:

<table> <tr> <td>1</td> <td>2</td> <td>3</td> </tr> <tr> <td>1</td> <td>2</td> <td>3</td> </tr> 
</table>

You can use the %INCLUDE statement in the input stream. The types of input files 
that you can use include HTML files, RTF files, or any other type of text-based file. 
Note that you would not likely use %INCLUDE to include actual SAS code except 
for macro definitions and invocations. Any actual SAS code beyond macros is not 
executed, but is treated like any other text.

Text that follows a % and that is recognized by a macro is executed. Examples 
include %LET, %INCLUDE, and %SYSFUNC. Any other macros, such as user-
defined macros, are also executed.

2360 Chapter 68 / STREAM Procedure



All macro variable references are resolved, but warnings are issued if the macro 
name is not recognized. Macro statements such as %PUT and %LIST send output 
to the log and do not produce tokens. You should avoid using these statements in 
an input stream, although they are allowed.

Tokenizer Limitations
The SAS tokenizer or word-scanner has a number of limitations that can be a 
problem for correctly processing syntax input streams other than SAS syntax input 
streams. These limitations are described in the following list.

n Input records that come from the %INCLUDE statement cannot exceed a record 
size of 32,767 bytes, which is the default value.

n The tokenizer does not provide accurate information about record size to PROC 
STREAM if the input record from %INCLUDE exceeds 32,767 bytes.

n %INCLUDE and %LET statements must begin on a statement boundary. That is, 
a semicolon must precede the statements, and the statements must end with a 
semicolon. Macro invocations do not have this requirement. 

n Macro statements are completely consumed and executed by the tokenizer, and 
PROC STREAM is not aware of them. For example, %let xyz=2; is completely 
consumed. This behavior also holds true for macro statements that are not 
global in scope, such as %IF and %GOTO. These macro statements are flagged 
as errors but PROC STREAM is not aware of the error. 

n Any token that starts with the letters a-z (uppercase or lowercase), or an 
underscore that is preceded by an &, is assessed by the macro processor to 
determine whether it is a macro variable to be resolved. If it is not a macro 
variable, a warning is issued. Currently, this warning cannot be suppressed.

n PL/I programming language comments (/* comment */) are typically completely 
absorbed by the tokenizer and are not seen by PROC STREAM. You can use 
the NOABSSCMT option in the PROC STREAM statement so that all text 
between and including the /* and */ are seen. This option is also needed if the 
input stream can contain occurrences of /* that are not enclosed in quotation 
marks. An example of this is /tmp/xyz/*, which is a UNIX wildcard specification. 

n No single token can exceed 32,767 characters.

n If the last token in a record is followed by a line feed that is preceded by an 
optional carriage return, and the first token in the next record begins in column 1, 
then the tokenizer introduces an artificial blank between these tokens. The blank 
allows for valid SAS syntax, because these tokens are not concatenated unless 
they are part of a string that is enclosed in quotation marks. For example, a 
record is 80 characters long. The string abc, preceded by a blank, is located in 
columns 78–80. In the next record, the string def , followed by a blank, appears 
in columns 1–3. In this case, PROC STREAM receives abc followed by def, 
which has a leading blank, even though a leading blank did not appear in the 
token stream. If, instead, ‘abc, preceded by a blank, appears in columns 77-80, 
and def’, followed by a blank, appears in columns 1-4, then PROC STREAM 
receives ‘abcdef’. 

n Non-printable characters (except for carriage return (CR) and line feed (LF)) 
cannot be properly tokenized. 

n The input stream cannot be a binary stream such as a PDF or a JPG file. 

Concepts: STREAM Procedure 2361



n The normal behavior for the tokenizer is to provide a string, either with single or 
double quotation marks, as a single token. This is a problem if text, such as don't 
do this, is not enclosed in quotation marks, or if text has an escape sequence, as 
in don''t do this. The QUOTING= option can be used to allow for quotation marks 
to be treated like any other special character, such a hyphen or a slash.

n A single macro variable can expand into no more than 64,000 characters. 
However, there is no limit to what a macro can return as model text, apart from 
resource limitations such as memory and disk space.

Syntax: STREAM Procedure
PROC STREAM OUTFILE=fileref <options>; BEGIN
text-1
<text-n>
;;;;

Statement Task

PROC STREAM Process an input stream that consists of arbitrary text 
that can contain SAS macro specifications

PROC STREAM Statement
Enables you to process an input stream that consists of arbitrary text that can contain SAS macro 
specifications.

Syntax
PROC STREAM OUTFILE= fileref <options>; BEGIN
text-1
<text-n>
;;;;

Summary of Optional Arguments
MOD

Specifies that the output file is appended to instead of being overwritten.
NOABSSCMT

Specifies whether comments are written to the output stream.
PRESCOL

2362 Chapter 68 / STREAM Procedure



Indicates that an attempt is made to preserve the columns of the original 
input file.

QUOTING=SINGLE | DOUBLE | BOTH
Specifies how quotation marks are handled.

RESETDELIM='label'
Indicates a special marker token.

Required Arguments
OUTFILE=fileref

specifies the file where all tokens are written.

The LRECL specification for the fileref is used. If no LRECL is given, then the 
default value for the global LRECL= option, which is 32,767 bytes, is used. 
Unless you use the PRESCOL option, all tokens are streamed out with the 
proper number of intervening blanks between tokens. No token is broken 
between records. Also, no stream of tokens is broken between records unless 
there is at least one blank within them. For example, <table>X</table> will not be 
broken between records, but <table> X </table> can be broken where you see 
the blanks (before and after the X).

text
specifies the SAS statements or macros to use with PROC STREAM.

Optional Arguments
MOD

specifies that the output file is appended to instead of being overwritten.

NOABSSCMT
specifies whether comments are written to the output stream.

If PL/I programming language style comments appear (/* comments */), all text 
between the comment characters (/* and */) appears in the output stream. If this 
option is omitted, the PL/I-style comments do not appear in the output stream. 
Note that if NOABSSCMT is set, it is strongly suggested that QUOTING= also be 
set, because single quotation marks (such as in the word don't) can commonly 
appear in comments.

PRESCOL
indicates that an attempt is made to preserve the columns of the original input 
file.

Using this option is not as successful if there is macro substitution or if the record 
size exceeds 32,767 bytes. In this case, macro expansion might affect column 
location.

The PRESCOL option improves the validity of RTF files that are included with 
the %INCLUDE macro.

QUOTING=SINGLE | DOUBLE | BOTH
specifies how quotation marks are handled.

SINGLE
specifies that single quotation marks are treated like any other character. If 
you use the SINGLE option and macro references occur within single 
quotation marks, such as '&hello', the macro references are expanded.

PROC STREAM Statement 2363



DOUBLE
specifies that double quotation marks are treated like any other character.

BOTH
specifies that both SINGLE and DOUBLE options are used.

RESETDELIM='label'
indicates a special marker token.

This option is used when there is a need for statements to be expanded, such as 
the %INCLUDE and %LET statements. These statements must begin on a 
statement boundary. If your syntax does not allow for a statement boundary, then 
the given label, followed by a semicolon, can be introduced in the input stream to 
satisfy the tokenizer requirements. The label and semicolon are not sent to the 
output file.

In the following example, %INCLUDE is not preceded by a semicolon, and the 
code is not correct:

x y %include myfile; z

However, if you use the RESETDELIM= option, the expansion occurs as 
expected:

resetdelim=’mylabel’
x y mylabel;
%include myfile; z

Mylabel; is not seen in the output file.

Mylabel must be a valid SAS name, that is, it must begin with a letter or 
underscore, and all subsequent characters must be letters, underscores, or 
digits. The length of mylabel must not exceed 32 characters.

The specification and usage is not case-sensitive. There is no default value for 
RESETDELIM=.

PROC STREAM checks for the existence of a macro variable called 
&STREAMDELIM. If that macro variable exists, it is used as is. If it does not 
exist, PROC STREAM verifies whether the RESETDELIM= option was given. If 
this is the case, the macro variable &STREAMDELIM is set to the value of the 
RESETDELIM= option. If the RESETDELIM= option is not given, PROC 
STREAM constructs a unique value for the &STREAMDELIM macro variable 
based on the current datetime value.

With this consideration, you can add &STREAMDELIM into the input for PROC 
STREAM. When this macro variable is seen, it is assumed that optional 
keywords will follow. A closing semicolon is then expected. All tokens from the 
&STREAMDELIM value up to and including the semicolon are not emitted to the 
output stream, but are instead special control information items for PROC 
STREAM.

If you need to provide a %INCLUDE statement in your input, but a semicolon 
does not precede it, then you must add the following statement before the 
%INCLUDE statement:

&STREAMDELIM;

This statement forces a semicolon to be seen by the tokenizer, but it is absorbed 
by PROC STREAM.

The following optional keywords can follow &STREAMDELIM:

NEWLINE
specifies that a new line is emitted to the output file.

2364 Chapter 68 / STREAM Procedure



READFILE filename
specifies that the given filename is opened, and its contents are read as is 
and written to the output file. There is no macro expansion of the contents of 
this file, and new lines are preserved. This differs from %INCLUDE, where 
macro expansion occurs and new lines are ignored. For an example of how 
to use the READFILE keyword, see “Using the READFILE Keyword” on page 
2368.

Usage: STREAM Procedure

Using Macro-Based Code in the Input Stream
Any macro-based code in the input stream is expanded, as shown in this example:

%let abc=123;
proc stream outfile=out; begin
<title>Run &abc</title>
<table>
<tr> <td>1<td>2</tr>
<tr> <td>3<td>4</tr>
</table>
;;;;

The output file contains the following results:

<title>Run 123</title> <table> <tr> <td>1<td>2</tr> <tr> <td>3<td>4</tr> </table>

Note that there are no line breaks, but blanks are preserved, and a blank is inserted 
for each line break.

The fact that the occurrence of % and & in the input stream are not enclosed in 
quotation marks and are not escape sequences can cause problems. For example, 
&amp; appears in HTML streams as an escape sequence for an ampersand. If you 
have a macro variable called &AMP, then its value is substituted for &amp. If this 
type of macro variable is not present, then SAS issues a warning. You can avoid 
these problems by using the & as an escape character, as in %STR(&), as the 
following example shows:

<title>A %str(&)amp; B</title>

The following output is written to the output stream:

<title>A &amp; B</title>

Likewise, for %, any occurrence that is not to be misinterpreted by a macro should 
appear as %STR(%), as the following example shows:

<a href="www.sas.com/x%str(%20y)">the link</a>

The following output is written to the output stream:

Usage: STREAM Procedure 2365



<a href="www.sas.com/x%20y">the link</a>

If the escape sequence for %STR occurs within single quotation marks, then either 
use the QUOTING= option, or use the escape sequence with a single quotation 
mark, %STR(%').

Beginning an Input Stream with Brackets or 
Parentheses

When you start your input stream with brackets or parentheses, specifically {, [, or (, 
this causes the BEGIN keyword to be treated as a name. This is true even when the 
first input character is on the line after BEGIN in your code. For example, the 
following code would treat BEGIN as a name rather than as the keyword that 
identifies the start of an input stream:

filename dheader "c:\temp\dheader.txt";
proc stream outfile=dheader; begin
[SAS version 9.4]
;;;;

To prevent this, use the &STREAMDELIM; statement. You can always use the 
&STREAMDELIM; statement after BEGIN to indicate the beginning of any input 
stream.

When you include this statement, the starting point of the input stream is interpreted 
correctly:

filename dheader "c:\temp\dheader.txt"
proc stream outfile=dheader; begin &streamdelim;
[SAS version 9.4]
;;;;

Executing SAS Code
As described in a previous section, any SAS code that is encountered is not 
executed. The tokens are streamed out like any other tokens. An exception to this 
occurs when the %SYSFUNC or %SYSCALL macro functions are encountered. 
These macro functions do execute the specified function, as shown in the following 
example:

%let abc=%sysfunc(getoption(obs)); 
&abc

This statement causes the GETOPTION function to be called, which obtains the 
value of the OBS option. GETOPTION returns the value as a character string to be 
placed into the ABC macro variable. That value is then written to the output stream.

It is possible to execute a stream of SAS code by using the DOSUB function in 
%SYSFUNC. The DOSUB function is provided a fileref, and all of the SAS code 
within that file is executed.

In this example, the fileref MYCODE points to the following SAS code:

filename myhtml "c:\temp\temp.txt"; 

2366 Chapter 68 / STREAM Procedure



data _null_;
   file myhtml;
   put '<table>';
   put '<tr><td>1</td></tr>';
   put '<tr><td>2</td></tr>';
   put '</table>';
run;

If you then execute the following STREAM procedure, you can see that PROC 
STREAM uses mycode as an argument to DOSUB in the %SYSFUNC function:

filename myhtml "c:\temp\temp.txt";
filename new "c:\temp\new.html";

proc stream outfile=new; begin
%let abc=%sysfunc(dosub(mycode));
%include myhtml;
;;;;

The output stream contains the following results:

<table><tr><td>1</td></tr><tr><td>2</td></tr></table>

Note: The DOSUB function is similar to the DOSUBL function, but DOSUB is 
passed a fileref for a file that contains SAS code. DOSUBL is passed a text string 
and executes the value as SAS code. For more information, see “DOSUBL 
Function” in SAS Functions and CALL Routines: Reference.

Rich Text Format (RTF) File Output
You can use Microsoft Word to input data and create RTF output. If you enter Today 
is &sysdate.. and My name is &name.., Microsoft Word saves the data as an 
RTF file called Mytest.rtf. This file is approximately 30K in size, and contains a large 
amount of markup data. A section of that data contains the actual text that was 
entered, as seen here:

\fs20\lang1033\langfe1033\cgrid\langnp1033\langfenp1033 {\rtlch\fcs1 \af0 \ltrch\fcs0 
\insrsid8922096 
Today is &sysdate.. }{\rtlch\fcs1 \af0 \ltrch\fcs0 \insrsid14092174 
\par }{\rtlch\fcs1 \af0 \ltrch\fcs0 \insrsid8922096 
\par My name is &name.. 
\par 

Note that the text as entered has macro substitutions.

When you execute this SAS program, a new RTF file is created called Newrtf.rtf. 
The difference in this output file is that the macro substitutions have taken place, but 
the markup language remains intact:

%let name=John; 
filename oldrtf 'mytest.rtf' recfm=v lrecl=32767; 
filename newrtf 'newrtf.rtf' recfm=v lrecl=32767; 
proc stream outfile=newrtf quoting=both asis; begin

Usage: STREAM Procedure 2367

http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p09dcftd1xxg1kn1brnjyc0q93yk.htm&locale=en
http://documentation.sas.com/?docsetId=lefunctionsref&docsetVersion=9.4&docsetTarget=p09dcftd1xxg1kn1brnjyc0q93yk.htm&locale=en


&streamdelim;
%include oldrtf; 
;;;;

Then when the Newrtf.rtf file is read by Microsoft Word, this is what is displayed:

Today is 30NOV12. 

My name is John.

Using the READFILE Keyword
In HTML, the <PRE> ... </PRE> tags encapsulate a stream of text that has been 
pre-formatted, and is displayed as is, honoring new lines and spacing. You can read 
the contents of a file and have it preserved as is by using the READFILE keyword. 
The READFILE keyword follows the &STREAMDELIM macro variable:

filename fixed temp; 
data _null_; file fixed; 
     input; put _infile_; 
     datalines4; 
This is the first line of fixed text.
This is another line to be fixed.
This is the last line of fixed text.
;;;;

%macro doit(nrows,ncols);
<table>
%do i=1 %to &nrows;
<tr>
%do j=1 %to &ncols;
<td>&j</td>
%end;
</tr>
%end;
%mend;

filename new temp; 
proc stream outfile=new; begin
<PRE>
&streamdelim readfile fixed;
</PRE>
%doit(2,3)
;;;;

data _null_; infile new; input; put _infile_; run;
filename fixed temp; 
data _null_; file fixed; 
     input; put _infile_; 
     datalines4; 
This is the first line of fixed text.
This is another line to be fixed.
This is the last line of fixed text.

2368 Chapter 68 / STREAM Procedure



;;;;

%macro doit(nrows,ncols);
<table>
%do i=1 %to &nrows;
<tr>
%do j=1 %to &ncols;
<td>&j</td>
%end;
</tr>
%end;
%mend;

filename new temp; 
proc stream outfile=new; begin
<PRE>
&streamdelim readfile fixed;
</PRE>
%doit(2,3)
;;;;

data _null_; infile new; input; put _infile_; run;

This is the resulting file:

<PRE>
This is the first line of fixed text.
This is another line to be fixed.
This is the last line of fixed text.
</PRE> <table> <tr> <td>1</td> <td>2</td> <td>3</dt> </tr> 
<tr> <td>1</td> <td>2</td> <td>3</dt> </tr> </table>

Using %INCLUDE to Include a File in PROC 
STREAM

To stream complex HTML and Javascript code, you can create the code in a 
separate file. Then use the %INCLUDE statement to include the file in your 
program.

The following example shows this approach.

filename temp1 temp;

data _null_;
   infile datalines;
   file temp1;
   input;
   l=length(_infile_);
   put @1 _infile_ $varying200. l;
   datalines4;
<table>
<tr>
<td>abc</td><td>def</td>

Usage: STREAM Procedure 2369



</tr>
<tr>
<td>ghi</td><td>jkl</td>
</tr>
</table>
;;;;

filename myfile "c:\temp\test1.html";

proc stream outfile=myfile prescol resetdelim='label'; begin
<html>
<h2>Test Example</h2>
label;
%include temp1;
</html>
;;;;

Inserting a New Line into the Output Stream
To insert a new line into the output stream, add the keyword NEWLINE after the 
delimiter and before the semicolon, as shown in the following example:

proc stream outfile=abc resetdelim='mylabel'; begin
my item here;
mylabel newline;
my next item here
;;;;

This example produces the following output:

my item here;
my next item here

There is no other way to ensure a predictable new line.

Ending the STREAM Procedure
The end of the PROC STREAM step is indicated by four semicolons with no blanks 
between them, written as the last line of the procedure. If the last item in the input 
stream ends with a semicolon, use the label that is specified in RESETDELIM=, 
followed by a semicolon, immediately after the last item.

The following example is not coded correctly because the semicolon after here is 
not recognized:

proc stream outfile=abc; begin 
my item here;
;;;;

The following example is coded correctly:

proc stream outfile=abc resetdelim='mylabel'; begin 
my item here;

2370 Chapter 68 / STREAM Procedure



mylabel;
;;;;

RESETDELIM= is used in this example because it recognizes the semicolon after 
here.

Usage: STREAM Procedure 2371



2372 Chapter 68 / STREAM Procedure



Chapter 69
SUMMARY Procedure

Overview: SUMMARY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2373
What Does the SUMMARY Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2373

Syntax: SUMMARY Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2374
PROC SUMMARY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2375
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2375

Overview: SUMMARY Procedure

What Does the SUMMARY Procedure Do?
The SUMMARY procedure provides data summarization tools that compute 
descriptive statistics for variables across all observations or within groups of 
observations. The SUMMARY procedure is very similar to the MEANS procedure; 
for full syntax details, see Chapter 40, “MEANS Procedure,” on page 1419. Except 
for the differences that are discussed here, all the PROC MEANS information also 
applies to PROC SUMMARY.

PROC SUMMARY can be used in SAS Cloud Analytic Services (CAS). Running 
PROC SUMMARY with CAS actions has several advantages over processing within 
SAS. See Chapter 40, “MEANS Procedure,” on page 1419 for information about 
running PROC MEANS and PROC SUMMARY in CAS.

Calculated statistics can vary slightly, depending on the order in which observations 
are processed. Such variations are due to numerical errors that are introduced by 
floating–point arithmetic, the results of which should be considered approximate and 
not exact. The order of observation processing can be affected by nondeterministic 
effects of multithreaded or parallel processing. The order of processing can also be 
affected by inconsistent or nondeterministic ordering of observations that are 
produced by a data source, such as a DBMS that delivers query results through an 
ACCESS engine. For more information, see “Numerical Accuracy in SAS Software” 

2373

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0ji1unv6thm0dn1gp4t01a1u0g6.htm&locale=en


in SAS Language Reference: Concepts and “Threading in Base SAS” in SAS 
Language Reference: Concepts.

Syntax: SUMMARY Procedure
Tips: Supports the Output Delivery System. For details, see “Output Delivery System: Basic 

Concepts” in SAS Output Delivery System: User’s Guide. 
You can use the ATTRIB, FORMAT, LABEL, and WHERE statements.
Full syntax descriptions are in “Syntax” on page 1430. 

PROC SUMMARY <options> <statistic-keyword(s)>;
BY <DESCENDING> variable-1<<DESCENDING> variable-2 …>

<NOTSORTED>;
CLASS variable(s) </ options>;
FREQ variable;
ID variable(s);
OUTPUT <OUT=SAS-data-set> <output-statistic-specification(s)>

<id-group-specification(s)> <maximum-id-specification(s)>
<minimum-id-specification(s)> </ options> ;

TYPES request(s);
VAR variable(s) </ WEIGHT=weight-variable>;
WAYS list;
WEIGHT variable;

Statement Task

PROC SUMMARY Compute descriptive statistics for variables across all 
observations or within groups of observations

BY Calculate separate statistics for each BY group

CLASS Identify variables whose values define subgroups for the 
analysis

FREQ Identify a variable whose values represent the frequency 
of each observation

ID Include additional identification variables in the output 
data set

OUTPUT Create an output data set that contains specified 
statistics and identification variables

TYPES Identify specific combinations of class variables to use to 
subdivide the data

VAR Identify the analysis variables and their order in the 
results

2374 Chapter 69 / SUMMARY Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0ji1unv6thm0dn1gp4t01a1u0g6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0czb9vxe72693n1lom0qmns6zlj.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0czb9vxe72693n1lom0qmns6zlj.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0qzwimb5swq2jn15m15c81ugd2t.htm&locale=en
http://documentation.sas.com/?docsetId=odsug&docsetVersion=9.4&docsetTarget=p0qzwimb5swq2jn15m15c81ugd2t.htm&locale=en


Statement Task

WAYS Specify the number of ways to make unique 
combinations of class variables

WEIGHT Identify a variable whose values weight each observation 
in the statistical calculations

PROC SUMMARY Statement
Computes descriptive statistics for variables across all observations or within groups of observations.

See: For full syntax details, see “PROC MEANS Statement” on page 1432.

Details
PRINT | NOPRINT

specifies whether PROC SUMMARY displays the descriptive statistics. By 
default, PROC SUMMARY does not display output, but PROC MEANS does 
display output.

Default NOPRINT

VAR Statement
Identifies the analysis variables and their order in the results.

Default: If you omit the VAR statement, then PROC SUMMARY produces a simple count of 
observations, whereas PROC MEANS tries to analyze all the numeric variables that are 
not listed in the other statements.

Interaction: If you specify statistics in the PROC SUMMARY statement and the VAR statement is 
omitted or if a numeric variable is not associated with a statistic in the OUTPUT 
statement , then PROC SUMMARY stops processing and an error message is written to 
the SAS log.

Note: See the VAR Statement in PROC MEANS for a full description of the VAR statement.

See: For complete syntax, see “VAR Statement” on page 1461.

VAR Statement 2375



2376 Chapter 69 / SUMMARY Procedure



Chapter 70
TABULATE Procedure

Overview: TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2377
What Does the TABULATE Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2378
Simple Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2379
Complex Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2379
PROC TABULATE and the Output Delivery System . . . . . . . . . . . . . . . . . . . . . . 2380

Concepts: TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2381
Terminology: TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2381
Threaded Processing of Input DATA Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2384

Syntax: TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2385
PROC TABULATE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2386
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2398
CLASS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2399
CLASSLEV Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2406
FREQ Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2408
KEYLABEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2409
KEYWORD Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2409
TABLE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2412
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2426
WEIGHT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2429

Usage: TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2430
Statistics That Are Available in PROC TABULATE . . . . . . . . . . . . . . . . . . . . . . . 2430
Formatting Class Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2432
Formatting Values in Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2432
Calculating Percentages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2433
Using ODS Styles with PROC TABULATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2437
SAS Cloud Analytic Services Processing for PROC TABULATE . . . . . . . . . . . . . 2449
In-Database Processing for PROC TABULATE . . . . . . . . . . . . . . . . . . . . . . . . . . 2450
Substituting BY Line Values in a Text String . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2452

Results: TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2453
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2453
Understanding the Order of Headings with ORDER=DATA . . . . . . . . . . . . . . . . . 2462
Portability of ODS Output with PROC TABULATE . . . . . . . . . . . . . . . . . . . . . . . . 2464

Examples: TABULATE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2464
Example 1: Creating a Basic Two-Dimensional Table . . . . . . . . . . . . . . . . . . . . . 2464
Example 2: Specifying Class Variable Combinations to Appear in a Table . . . . . 2467
Example 3: Using Preloaded Formats with Class Variables . . . . . . . . . . . . . . . . 2470

2377



Example 4: Using Multilabel Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2474
Example 5: Customizing Row and Column Headings . . . . . . . . . . . . . . . . . . . . . 2478
Example 6: Summarizing Information with the Universal Class Variable ALL . . . 2480
Example 7: Eliminating Row Headings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2482
Example 8: Indenting Row Headings and Eliminating Horizontal Separators . . . 2485
Example 9: Creating Multipage Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2487
Example 10: Reporting on Multiple-Response Survey Data . . . . . . . . . . . . . . . . 2490
Example 11: Reporting on Multiple-Choice Survey Data . . . . . . . . . . . . . . . . . . . 2495
Example 12: Calculating Various Percentage Statistics . . . . . . . . . . . . . . . . . . . . 2501
Example 13: Using Denominator Definitions to Display Basic 

Frequency Counts and Percentages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2505
Example 14: Specifying Style Overrides for ODS Output . . . . . . . . . . . . . . . . . . 2520
Example 15: Style Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2525
Example 16: Using the NOCELLMERGE Option . . . . . . . . . . . . . . . . . . . . . . . . . 2529

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2532

Overview: TABULATE Procedure

What Does the TABULATE Procedure Do?
The TABULATE procedure displays descriptive statistics in tabular format, using 
some or all of the variables in a data set. You can create a variety of tables ranging 
from simple to highly customized.

PROC TABULATE computes many of the same statistics that are computed by 
other descriptive statistical procedures such as MEANS, FREQ, and REPORT. 
PROC TABULATE provides the following features:

n simple but powerful methods to create tabular reports

n flexibility in classifying the values of variables and establishing hierarchical 
relationships between the variables

n mechanisms for labeling and formatting variables and procedure-generated 
statistics

n the ability to create accessible output tables when used with the 
ACCESSIBLETABLE system option. PROC TABULATE also provides the ability 
to add captions to tables.

For more information about creating accessible tables with PROC TABULATE, 
see “Overview of Table Accessibility ” in Creating Accessible SAS Output Using 
ODS and ODS Graphics . This feature applies to SAS 9.4M6 and to later 
releases.

2378 Chapter 70 / TABULATE Procedure

http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en
http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en


Simple Tables
The following output shows a simple table that was produced by PROC TABULATE. 
The data set “ENERGY” on page 2696 contains data on expenditures of energy by 
two types of customers, residential and business, in individual states in the 
Northeast (1) and West (4) regions of the United States. The table sums 
expenditures for states within a geographic division. The RTS option provides 
enough space to display the column headings without hyphenating them.

proc tabulate data=energy;
   class region division type;
   var expenditures;
   table region*division, type*expenditures /
         rts=20;
run;

Output 70.1 Simple Table Produced by PROC TABULATE

Complex Tables
The following output is a more complicated table using the same data set that was 
used to create Output 70.346 on page 2379. The statements that create this report 
do the following:

n customize column and row headings

n apply a format to all table cells

n sum expenditures for residential and business customers

n compute subtotals for each division

n compute totals for all regions

Overview: TABULATE Procedure 2379



For an explanation of the program that produces this report, see “Example 6: 
Summarizing Information with the Universal Class Variable ALL” on page 2480.

Output 70.2 Complex Table Produced by PROC TABULATE

PROC TABULATE and the Output Delivery System
The following output shows a table that is created in Hypertext Markup Language 
(HTML). You can use the Output Delivery System with PROC TABULATE to create 
customized output in HTML, Rich Text Format (RTF), Portable Document Format 
(PDF), and other output formats. For an explanation of the program that produces 
this table, see “Example 14: Specifying Style Overrides for ODS Output” on page 
2520.

2380 Chapter 70 / TABULATE Procedure



Output 70.3 HTML Table Produced by PROC TABULATE

Concepts: TABULATE Procedure

Terminology: TABULATE Procedure
The following figures illustrate some of the terms that are commonly used in 
discussions of PROC TABULATE.

Concepts: TABULATE Procedure 2381



Figure 70.1 Parts of a PROC TABULATE Table

Column headings Column

CellRow Row headings

                The SAS System                   1

------------------------------------------------

|                      |         Type          |

|                      |-----------------------|

|                      |Residential|  Business |

|                      | Customers | Customers |

|----------------------+-----------+-----------|

|Region    |Division   |           |           |

|----------+-----------|           |           |

|Northeast |New England|     $7,477|    $5,129 |

|          |-----------+-----------+-----------|

|          |Middle     |           |           |

|          |Atlantic   |    $19,379|   $15,078 |

|----------+-----------+-----------+-----------|

|West      |Mountain   |     $5,476|    $4,729 |

|          |-----------+-----------+-----------|

|          |Pacific    |    $13,959|   $12,619 |

------------------------------------------------

2382 Chapter 70 / TABULATE Procedure



Figure 70.2 PROC TABULATE Table Dimensions

The SAS System
Year :2000

1

The SAS System
Year :2001

2

The SAS System
Year :2002

3

column dimension

row
 dim

ension

page
dimension

In addition, the following terms frequently appear in discussions of PROC 
TABULATE:

category
the combination of unique values of class variables. The TABULATE procedure 
creates a separate category for each unique combination of values that exists in 
the observations of the data set. Each category that is created by PROC 
TABULATE is represented by one or more cells in the table where the pages, 
rows, and columns that describe the category intersect.

The table in Figure 70.88 on page 2382 contains three class variables: Region, 
Division, and Type. These class variables form the eight categories listed in the 
following table. (For convenience, the categories are described in terms of their 
formatted values.)

Concepts: TABULATE Procedure 2383



Table 70.1 Categories Created from Three Class Variables

Region Division Type

Northeast New England Residential Customers

Northeast New England Business Customers

Northeast Middle Atlantic Residential Customers

Northeast Middle Atlantic Business Customers

West Mountain Residential Customers

West Mountain Business Customers

West Pacific Residential Customers

West Pacific Business Customers

continuation message
the text that appears below the table if it spans multiple physical pages.

nested variable
a variable whose values appear in the table with each value of another variable.

In Figure 70.88 on page 2382, Division is nested under Region.

page dimension text
the text that appears above the table if the table has a page dimension. 
However, if you specify BOX=_PAGE_ in the TABLE statement, then the text that 
would appear above the table appears in the box. In Figure 70.89 on page 2383, 
the word Year:, followed by the value, is the page dimension text.

Page dimension text has a style. The default style is Beforecaption. For more 
information about using styles, see “Using ODS Styles with PROC TABULATE” 
on page 2437.

subtable
the group of cells that is produced by crossing a single element from each 
dimension of the TABLE statement when one or more dimensions contain 
concatenated elements.

Figure 70.88 on page 2382 contains no subtables. For an illustration of a table 
that consists of multiple subtables, see “Example 13: Using Denominator 
Definitions to Display Basic Frequency Counts and Percentages” on page 2505.

Threaded Processing of Input DATA Sets
The THREADED option enables or disables parallel processing of the input data 
set. Threaded processing achieves a degree of parallelism in the processing 
operations. This parallelism is intended to reduce the real time to completion for a 
given operation and therefore limit the cost of additional CPU resources. For more 

2384 Chapter 70 / TABULATE Procedure



information, see “Support for Parallel Processing” in SAS Language Reference: 
Concepts. 

The value of the SAS system option CPUCOUNT= affects the performance of the 
threaded sort. CPUCOUNT= suggests how many system CPUs are available for 
use by the threaded procedures.

For more information, see the “THREADS” in SAS System Options: Reference and 
the “CPUCOUNT=” in SAS System Options: Reference.

Calculated statistics can vary slightly, depending on the order in which observations 
are processed. Such variations are due to numerical errors that are introduced by 
floating–point arithmetic, the results of which should be considered approximate and 
not exact. The order of observation processing can be affected by nondeterministic 
effects of multithreaded or parallel processing. The order of processing can also be 
affected by inconsistent or nondeterministic ordering of observations that are 
produced by a data source, such as a DBMS that delivers query results through an 
ACCESS engine. For more information, see “Numerical Accuracy in SAS Software” 
in SAS Language Reference: Concepts and “Threading in Base SAS” in SAS 
Language Reference: Concepts.

Syntax: TABULATE Procedure
Requirements: At least one TABLE statement is required in a PROC TABULATE procedure step.

Depending on the variables that appear in the TABLE statement, a CLASS statement, a 
VAR statement, or both are required.

Accessibility 
note:

Starting with SAS 9.4M6, you can use the ACCESSIBLECHECK and 
ACCESSIBLETABLE system options to check for and create accessible tables. For 
information about creating accessible PROC TABULATE tables, see “Overview of Table 
Accessibility ” in Creating Accessible SAS Output Using ODS and ODS Graphics. in 
Creating Accessible SAS Output Using ODS and ODS Graphics.

Tips: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements with the PROC 
TABULATE procedure. For more information, see “Statements with the Same Function in 
Multiple Procedures” on page 73.
For in-database processing to occur, your data must reside within a supported version of 
a DBMS that has been properly configured for SAS in-database processing. For more 
information, see “In-Database Processing for PROC TABULATE” on page 2450. 

PROC TABULATE <options> <STYLE=style-override(s)>;
BY <DESCENDING> variable-1

<<DESCENDING> variable-2 ...> <NOTSORTED>;
CLASS variable(s) </ options> <STYLE=style-override(s) >;
CLASSLEV variable(s) </ STYLE=style-override(s)>;
FREQ variable;
KEYLABEL keyword-1='description-1' <keyword-2='description-2' ...>;
KEYWORD keyword(s) </ STYLE=style-override(s)>;
TABLE <<page-expression,> row-expression,>

column-expression </ table-options>;
VAR analysis-variable(s) </ options> <STYLE=style-override(s)>;
WEIGHT variable;

Syntax: TABULATE Procedure 2385

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0z5kinpzecv9nn1s45yam93tf6z.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0z5kinpzecv9nn1s45yam93tf6z.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p0cvg7xpfvfyn4n1rnp64gu91poh.htm&locale=en
http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=p14arc7flhenwqn1v1gipt9e49om.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0ji1unv6thm0dn1gp4t01a1u0g6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0ji1unv6thm0dn1gp4t01a1u0g6.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0czb9vxe72693n1lom0qmns6zlj.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0czb9vxe72693n1lom0qmns6zlj.htm&locale=en
http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en
http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en


Statement Task Example

PROC TABULATE Display descriptive statistics in tabular format Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 6, Ex. 8, 
Ex. 12, Ex. 
14, Ex. 15

BY Create a separate table for each BY group

CLASS Identify variables in the input data set as class 
variables

Ex. 3, Ex. 4

CLASSLEV Specify a style for class variable level value 
headings

Ex. 14, Ex. 
15

FREQ Identify a variable in the input data set whose 
values represent the frequency of each 
observation

KEYLABEL Specify a label for a keyword

KEYWORD Specify a style for keyword headings Ex. 14

TABLE Describe the table to create Ex. 1, Ex. 3, 
Ex. 4, Ex. 5, 
Ex. 6, Ex. 7, 
Ex. 8, Ex. 9, 
Ex. 10, Ex. 
11, Ex. 12, 
Ex. 13, Ex. 
14, Ex. 15

VAR Identify variables in the input data set as 
analysis variables

Ex. 14

WEIGHT Identify a variable in the input data set whose 
values weight each observation in the statistical 
calculations

PROC TABULATE Statement
Displays descriptive statistics in tabular format.

Syntax
PROC TABULATE <options>;

2386 Chapter 70 / TABULATE Procedure



Summary of Optional Arguments
CONTENTS=link-text <#BYLINE> <#BYVAL> < #BYVAR>

specifies the text for the entries in the table of contents.
DATA=SAS-data-set

specifies the input data set.
NOTHREADS

disables parallel processing of the input data set.
OUT=SAS-data-set

specifies the output data set.
THREADS 
NOTHREADS

overrides the SAS system option THREADS | NOTHREADS.
TRAP

enables floating point exception recovery.

Control the statistical analysis
ALPHA=value

specifies the confidence level for the confidence limits.
EXCLNPWGT

excludes observations with nonpositive weights.
QMARKERS=number

specifies the sample size to use for the P2 quantile estimation method.
QMETHOD=OS | P2

specifies the quantile estimation method.
QNTLDEF=1 | 2 | 3 | 4 | 5

specifies the mathematical definition to calculate quantiles.
VARDEF=divisor 

specifies the variance divisor.

Customize the appearance of the table
FORMAT=format-name

specifies a default format for each cell in the table.
FORMCHAR <(position(s))>='formatting-character(s)' 

defines the characters to use to construct the table outlines and dividers.
NOSEPS

eliminates horizontal separator lines from the row titles and the body of 
the table.

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
orders the values of a class variable according to the specified order.

STYLE=style-override(s)
specifies one or more style overrides to use for specific areas of the table.

Identify categories of data that are of interest
CLASSDATA=SAS-data-set

specifies a secondary data set that contains the combinations of values of 
class variables to include in tables and output data sets.

EXCLUSIVE
excludes from tables and output data sets all combinations of class 
variable values that are not in the CLASSDATA= data set.

PROC TABULATE Statement 2387



MISSING
considers missing values as valid values for class variables.

Optional Arguments
ALPHA=value

specifies the confidence level to compute the confidence limits for the mean. The 
percentage for the confidence limits is (1–value)×100. For example, ALPHA=.05 
results in a 95% confidence limit.

Default .05

Range 0-1

Interaction To compute confidence limits specify the statistic-keyword LCLM or 
UCLM.

CLASSDATA=SAS-data-set
specifies a data set that contains the combinations of values of the class 
variables that must be present in the output. Any combination of values of the 
class variables appear in each table or output data set and have a frequency of 
zero if they meet the following criteria:

1 occur in the CLASSDATA= data set

2 but not in the input data set

Restriction The CLASSDATA= data set must contain all class variables. Their 
data type and format must match the corresponding class variables 
in the input data set.

Interaction If you use the EXCLUSIVE option, then PROC TABULATE excludes 
any observations in the input data set whose combinations of 
values of class variables are not in the CLASSDATA= data set.

Tip Use the CLASSDATA= data set to filter or supplement the input 
data set.

Example “Example 2: Specifying Class Variable Combinations to Appear in a 
Table” on page 2467

CONTENTS=link-text <#BYLINE> <#BYVAL> < #BYVAR>
specifies the text for the entries in the table of contents created by default or by 
options settings in ODS destinations that support the STYLE= option.

Starting with SAS 9.4M6, these options are available if a BY statement is in 
effect:

#BYLINE
substitutes the entire BY line without leading or trailing blanks for #BYLINE in 
the text string. The BY line uses the format variable-name=value.

#BYVALn
#BYVAL(BY-variable-name)

substitutes the current value of the specified BY variable for #BYVAL in the 
text string.

Specify the variable with one of the following:

2388 Chapter 70 / TABULATE Procedure



n
specifies a variable by its position in the BY statement. For example, 
#BYVAL2 specifies the second variable in the BY statement.

BY-variable-name
specifies a variable from the BY statement by its name. For example, 
#BYVAL(YEAR) specifies the BY variable, YEAR. Variable-name is not 
case sensitive.

#BYVARn
#BYVAR(BY-variable-name)

substitutes the name of the BY-variable or the label associated with the 
variable (whatever the BY line would normally display) for #BYVAR in the text 
string.

Specify the variable with one of the following:

n
specifies a variable by its position in the BY statement. For example, 
#BYVAR2 specifies the second variable in the BY statement.

BY-variable-name
specifies a variable from the BY statement by its name. For example, 
#BYVAR(SITES) specifies the BY variable, SITES. Variable-name is not 
case sensitive.

See “Substituting BY Line Values in a Text String” on page 2452

DATA=SAS-data-set
specifies the input data set.

See “Input Data Sets” on page 26

EXCLNPWGT
excludes observations with nonpositive weight values (zero or negative) from the 
analysis. By default, PROC TABULATE treats observations with negative 
weights like observations with zero weights and counts them in the total number 
of observations.

Alias EXCLNPWGTS

See “WEIGHT=weight-variable” on page 2428 and “WEIGHT Statement” on 
page 2429

EXCLUSIVE
excludes from the tables and the output data sets all combinations of the class 
variable that are not found in the CLASSDATA= data set.

Requirement If a CLASSDATA= data set is not specified, then the EXCLUSIVE 
option is ignored.

Example “Example 2: Specifying Class Variable Combinations to Appear in 
a Table” on page 2467

FORMAT=format-name
specifies a default format for the value in each table cell. You can use any SAS 
or user-defined format.

Alias F=

PROC TABULATE Statement 2389



Default If you omit FORMAT=, then PROC TABULATE uses BEST12.2 as 
the default format.

Interaction Formats that are specified in a TABLE statement override the format 
that is specified with FORMAT=.

Tip The FORMAT= option is especially useful for controlling the number 
of print positions that are used to print a table.

Examples “Example 1: Creating a Basic Two-Dimensional Table” on page 
2464

“Example 6: Summarizing Information with the Universal Class 
Variable ALL” on page 2480

FORMCHAR <(position(s))>='formatting-character(s)'
defines the characters to use for constructing the table outlines and dividers.

position(s)
identifies the position of one or more characters in the SAS formatting-
character string. A space or a comma separates the positions.

Default Omitting position(s) is the same as specifying all 20 possible SAS 
formatting characters, in order.

formatting-character(s)
lists the characters to use for the specified positions.

PROC TABULATE assigns characters in formatting-character(s) to 
position(s), in the order in which they are listed. For example, the following 
option assigns the asterisk (*) to the third formatting character, the number 
sign (#) to the seventh character, and does not alter the remaining 
characters:

formchar(3,7)='*#'

PROC TABULATE uses 11 of the 20 formatting characters that SAS provides. 
Table 70.128 on page 2390 shows the formatting characters that PROC 
TABULATE uses. Figure 70.90 on page 2391 illustrates the use of each 
formatting character in the output from PROC TABULATE.

Table 70.2 Formatting Characters Used by PROC TABULATE

Position Default Used to Draw

1 | Right and left borders and the vertical 
separators between columns

2 - Top and bottom borders and the horizontal 
separators between rows

3 - Top character in the left border

4 - Top character in a line of characters that 
separate columns

5 - Top character in the right border

2390 Chapter 70 / TABULATE Procedure



Position Default Used to Draw

6 | Leftmost character in a row of horizontal 
separators

7 + Intersection of a column of vertical characters 
and a row of horizontal characters

8 | Rightmost character in a row of horizontal 
separators

9 - Bottom character in the left border

10 - Bottom character in a line of characters that 
separate columns

11 - Bottom character in the right border

Figure 70.3 Formatting Characters in PROC TABULATE Output

------------------------------------
| | Expend |
| |----------|
| | Sum |
|-----------------------+----------|
|Region |Division | |
|-----------+-----------| |
|Northeast |New England| $12,606|
| |-----------+----------|
| |Middle | |
| |Atlantic | $34,457|
|-----------+-----------+----------|
|West |Mountain | $10,205|
| |-----------+----------|
| |Pacific | $26,578|
------------------------------------

3 2

4

5

7

8

11109

6

1

Restriction The FORMCHAR= option affects only the traditional SAS 
monospace output destination.

Interaction The SAS system option FORMCHAR= specifies the default 
formatting characters. The system option defines the entire string of 
formatting characters. The FORMCHAR= option in a procedure can 
redefine selected characters.

Tips You can use any character in formatting-characters, including 
hexadecimal characters. If you use hexadecimal characters, then 
you must put x after the closing quotation mark. For example, the 
following option assigns the hexadecimal character 2-D to the third 
formatting character, assigns the hexadecimal character 7C to the 
seventh character, and does not alter the remaining characters:
formchar(3,7)='2D7C'x

Specifying all blanks for formatting-character(s) produces tables 
with no outlines or dividers.

PROC TABULATE Statement 2391



formchar(1,2,3,4,5,6,7,8,9,10,11)          ='           '

(11 blanks)

See For more examples using formatting output, see PROC TABULATE 
by Example, Second Edition.

For information about which hexadecimal codes to use for which 
characters, consult the documentation for your hardware.

MISSING
considers missing values as valid values to create the combinations of class 
variables. Special missing values that are used to represent numeric values (the 
letters A through Z and the underscore (_) character) are each considered as a 
separate value. A heading for each missing value appears in the table.

Default If you omit MISSING, then PROC TABULATE does not include 
observations with a missing value for any class variable in the report.

See “Including Observations with Missing Class Variables” on page 2457

“Creating Special Missing Values” in SAS Language Reference: 
Concepts for a discussion of missing values that have special meaning.

NOSEPS
eliminates horizontal separator lines from the row titles and the body of the table. 
Horizontal separator lines remain between nested column headings.

Restriction The NOSEPS option affects only the traditional SAS monospace 
output destination.

Tip If you want to replace the separator lines with blanks rather than 
remove them, then use option “FORMCHAR 
<(position(s))>='formatting-character(s)' ” on page 2390.

Example “Example 8: Indenting Row Headings and Eliminating Horizontal 
Separators” on page 2485

NOTHREADS
disables parallel processing of the input data set. See “THREADS |
NOTHREADS” on page 2397.

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the sort order to create the unique combinations of the values of the 
class variables, which form the headings of the table, according to the specified 
order.

DATA
orders values according to their order in the input data set.

Interaction If you use PRELOADFMT in the CLASS statement, then the 
order for the values of each class variable matches the order 
that PROC FORMAT uses to store the values of the associated 
user-defined format. If you use the CLASSDATA= option, then 
PROC TABULATE uses the order of the unique values of each 
class variable in the CLASSDATA= data set to order the output 
levels. If you use both options, then PROC TABULATE first uses 
the user-defined formats to order the output. If you omit 
EXCLUSIVE, then PROC TABULATE appends after the user-
defined format and the CLASSDATA= values the unique values 

2392 Chapter 70 / TABULATE Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1xr9fm7y8kek5n1hpj008tnu1a1.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1xr9fm7y8kek5n1hpj008tnu1a1.htm&locale=en


of the class variables in the input data set in the same order in 
which they are encountered.

Tips By default, PROC FORMAT stores a format definition in sorted 
order. Use the NOTSORTED option to store the values or 
ranges of a user-defined format in the order in which you define 
them.

When you are using in-database procedures with the 
ORDER=DATA option, the results can vary. DBMS tables have 
no inherent order for the rows. The order of rows written to a 
database table from a SAS procedure is not likely to be 
preserved.

FORMATTED
orders values by their ascending formatted values. If no format has been 
assigned to a numeric class variable, then the default format, BEST12., is 
used. This order depends on your operating environment.

Aliases FMT

EXTERNAL

FREQ
orders values by descending frequency count.

Interaction Use the ASCENDING option in the CLASS statement to order 
values by ascending frequency count.

UNFORMATTED
orders values by their unformatted values. This order depends on your 
operating environment. This sort sequence is particularly useful for displaying 
dates chronologically.

Specifying ORDER=UNFORMATTED usually, but not always, produces the 
same results as PROC SORT. For more information about ordering data, see 
“Controlling the Order of Data Values” on page 27.

Aliases UNFMT

INTERNAL

Default UNFORMATTED

Interaction If you use the PRELOADFMT option in the CLASS statement, then 
PROC TABULATE orders the levels by the order of the values in the 
user-defined format.

Example “Understanding the Order of Headings with ORDER=DATA” on 
page 2462

OUT=SAS-data-set
names the output data set. If SAS-data-set does not exist, then PROC 
TABULATE creates it.

The number of observations in the output data set depends on the number of 
categories of data that are used in the tables and the number of subtables that 
are generated. The output data set contains these variables (in the following 
order):

PROC TABULATE Statement 2393



by 
variables

variables that are listed in the BY statement.

class 
variables

variables that are listed in the CLASS statement.

_TYPE_ a character variable that shows which combination of class 
variables produced the summary statistics in that observation. 
Each position in _TYPE_ represents one variable in the 
CLASS statement. If that variable is in the category that 
produced the statistic, then the position contains a 1. 
Otherwise, the position contains a 0. In simple PROC 
TABULATE steps that do not use the universal class variable 
ALL, all values of _TYPE_ contain only 1s because the only 
categories that are being considered involve all class 
variables. If you use the variable ALL, then your tables will 
contain data for categories that do not include all the class 
variables, and positions of _TYPE_ will, therefore, include 
both 1s and 0s.

_PAGE_ The logical page that contains the observation.

_TABLE_ The number of the table that contains the observation.

statistics statistics that are calculated for each observation in the data 
set.

Example “Example 3: Using Preloaded Formats with Class Variables” on page 
2470

QMARKERS=number
specifies the default number of markers to use for the P2 quantile estimation 
method. The number of markers controls the size of fixed memory space.

Default The default value depends on which quantiles you request. For the 
median (P50), number is 7. For the quartiles (P25 and P75), number is 
25. For the quantiles P1, P5, P10, P90, P95, or P99, number is 105. If 
you request several quantiles, then PROC TABULATE uses the largest 
default value of number.

Range any odd integer greater than 3

Tip Increase the number of markers above the default settings to improve 
the accuracy of the estimates; reduce the number of markers to 
conserve memory and computing time.

See “Quantiles” on page 1466

QMETHOD=OS | P2
specifies the method PROC TABULATE uses to process the input data when it 
computes quantiles. If the number of observations is less than or equal to the 
QMARKERS= value and QNTLDEF=5, then both methods produce the same 
results.

OS
uses order statistics. PROC UNIVARIATE uses this technique.

Note: This technique can be very memory-intensive.

2394 Chapter 70 / TABULATE Procedure



P2
uses the P2 method to approximate the quantile.

Alias HIST

Default OS

Restriction When QMETHOD=P2, PROC TABULATE will not compute MODE 
or weighted quantiles.

Tip When QMETHOD=P2, reliable estimates of some quantiles (P1, 
P5, P95, P99) might not be possible for some types of data.

See “Quantiles” on page 1466

QNTLDEF=1 | 2 | 3 | 4 | 5
specifies the mathematical definition that the procedure uses to calculate 
quantiles when QMETHOD=OS is specified. When QMETHOD=P2, you must 
use QNTLDEF=5.

Alias PCTLDEF=

Default 5

See “Quantile and Related Statistics” on page 2615

STYLE=style-override(s)
specifies one or more style overrides to use for the data cells of a table. For 
example, the following statement specifies that the background color for data 
cells is red:

proc tabulate data=one style=[backgroundcolor=red];

style-override
specifies one or more style attributes or style elements to override the default 
style element and attributes in a specific area of a report.

You can specify a style override in three ways:

n Specify a style element. A style element is a collection of style attributes 
that apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that 
describes a single behavioral or visual aspect of a piece of output. This is 
the most specific method of changing the appearance of your output. 

n Specify the PARENT value. The PARENT value specifies that the data 
cell use the style element of its parent heading.

style-override has the following form:

PARENT | style-element-name | [style-attribute-name-1=style-attribute-
value-1

<style-attribute-name-2=style-attribute-value-2 …>]

<PARENT>
specifies that the data cell use the style element of its parent heading.

The parent style element of a data cell is one of the following:

n the style element of the leaf heading above the column that contains the 
data cell, if the table specifies no row dimension, or if the table specifies 
the style element in the column dimension expression

PROC TABULATE Statement 2395



n the style element of the leaf heading above the row that contains the cell, 
if the table specifies the style element in the row dimension expression

n the Beforecaption style element, if the table specifies the style element in 
the page dimension expression

n undefined, otherwise

Note: In this usage, the angle brackets around the word PARENT are 
required. Braces or square brackets cannot be substituted in the syntax.

Note: The parent of a heading (not applicable to STYLE= in the PROC 
TABULATE statement) is the heading under which the current heading is 
nested.

style-attribute-name
specifies the attribute to change.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

style-attribute-value
specifies a value for the attribute. Each attribute has a different set of valid 
values. A SAS format can also be used as an attribute value for 
conditional formatting.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For information about using SAS formats as style attribute values, 
see “Using a Format to Assign a Style Attribute” on page 2448.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

style-element-name
is the name of a style element that is part of an ODS style template.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

Alias S=

Tips The STYLE= option can be used in other statements, or in dimension 
expressions, to specify style elements for other parts of a table.

2396 Chapter 70 / TABULATE Procedure



To specify a style element for data cells with missing values, use 
STYLE= in the TABLE statement MISSTEXT= option.

You can use braces ({ and }) instead of square brackets ([ and ]).

See For information about using styles with PROC TABULATE, see “Using 
ODS Styles with PROC TABULATE” on page 2437.

Example “Example 14: Specifying Style Overrides for ODS Output” on page 
2520

THREADS | NOTHREADS
enables or disables parallel processing of the input data set. This option 
overrides the SAS system option THREADS | NOTHREADS unless the system 
option is restricted. (For more information, see “Support for Parallel Processing” 
in SAS Language Reference: Concepts.)

Default value of SAS system option THREADS | NOTHREADS.

Restriction Your site administrator can create a restricted options table. A 
restricted options table specifies SAS system option values that are 
established at start-up and cannot be overridden. If the THREADS | 
NOTHREADS system option is listed in the restricted options table, 
any attempt to set these system options is ignored and a warning 
message is written to the SAS log.

Interaction PROC TABULATE uses the value of the SAS system option 
THREADS except when a BY statement is specified or the value of 
the SAS system option CPUCOUNT is less than 2. In those cases, 
you can specify the THREADS option in the PROC TABULATE 
statement to force PROC TABULATE to use parallel processing. 
When multi-threaded processing, also known as parallel 
processing, is in effect, observations might be returned in an 
unpredictable order. However, the observations are sorted correctly 
if a BY statement is specified.

TRAP
enables floating point exception (FPE) recovery during data processing beyond 
the recovery that is provided by normal SAS FPE handling. Note that without the 
TRAP option, normal SAS FPE handling is still in effect so that PROC 
TABULATE terminates in the case of math exceptions.

VARDEF=divisor
specifies the divisor to use in the calculation of the variance and standard 
deviation. The following table shows the possible values for divisor and the 
associated divisors.

Table 70.3 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF Degrees of freedom n − 1

N Number of observations n

WDF Sum of weights minus one (Σi wi) − 1

PROC TABULATE Statement 2397

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0z5kinpzecv9nn1s45yam93tf6z.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=n0z5kinpzecv9nn1s45yam93tf6z.htm&locale=en


Value Divisor Formula for Divisor

WEIGHT | 
WGT

Sum of weights Σi wi

The procedure computes the variance as CSS/divisor, where CSS is the corrected 
sums of squares and equals Σ xi − x 2. When you weight the analysis variables, 

CSS equals Σ wi xi − xw
2 where xw is the weighted mean.

Default DF

Requirement To compute standard error of the mean, use the default value of 
VARDEF=.

Tips When you use the WEIGHT statement and VARDEF=DF, the 
variance is an estimate of σ2, where the variance of the ith 
observation is var xi = σ2/wi, and wi is the weight for the ith 
observation. This yields an estimate of the variance of an 
observation with unit weight.

When you use the WEIGHT statement and VARDEF=WGT, the 
computed variance is asymptotically (for large n) an estimate of 
σ2/w, where w is the average weight. This yields an asymptotic 
estimate of the variance of an observation with average weight.

See “Weighted Statistics Example” on page 84

BY Statement
Creates a separate table for each BY group.

Accessibility 
note:

When BY statements are specified, default labels for the BY group tables are displayed 
in the table of contents in PDF and RTF output, the contents file in HTML output, the 
trace record created by the ODS TRACE statement, and the entry list created by the 
LIST statement in PROC DOCUMENT. The labels are based on the values of the BY 
variable. For an example of creating a table with default BY group labels, see “Overview 
of Table Accessibility ” in Creating Accessible SAS Output Using ODS and ODS 
Graphics .

See: “BY” on page 74

Syntax
BY <DESCENDING> variable-1
<<DESCENDING> variable-2 ...> <NOTSORTED>;

2398 Chapter 70 / TABULATE Procedure

http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en
http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en
http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en


Required Argument
variable

You can specify more than one variable. If you do not use the NOTSORTED 
option in the BY statement, then the observations in the data set must either be 
sorted by all the variables that you specify, or they must be indexed 
appropriately. Variables in a BY statement are called BY variables.

Optional Arguments
DESCENDING

specifies that the observations are sorted in descending order by the variable 
that immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. For example, the observations are grouped in chronological order.

The requirement for ordering or indexing observations according to the values of 
BY variables is suspended for BY-group processing when you use the 
NOTSORTED option. In fact, the procedure does not use an index if you specify 
NOTSORTED. The procedure defines a BY group as a set of contiguous 
observations that have the same values for all BY variables. If observations with 
the same values for the BY variables are not contiguous, then the procedure 
treats each contiguous set as a separate BY group.

CLASS Statement
Identifies class variables for the table. Class variables determine the categories that PROC TABULATE 
uses to calculate statistics.

Note: CLASS statements without options use the internal default or the value specified by an 
option in the PROC TABULATE statement. For example, in the following code, variables 
c and d would use the internal default. If an ORDER= option had been specified in the 
PROC TABULATE statement, then variables c and d would use the value specified by 
the ORDER= option in the PROC TABULATE statement.

class a b / order=data;
class c d; 

Tips: You can use multiple CLASS statements.
Some CLASS statement options are also available in the PROC TABULATE statement. 
They affect all CLASS variables rather than just the ones that you specify in a CLASS 
statement.

Examples: “Example 3: Using Preloaded Formats with Class Variables” on page 2470
“Example 4: Using Multilabel Formats” on page 2474

Syntax
CLASS variable(s) </ options>;

CLASS Statement 2399



Summary of Optional Arguments
ASCENDING

specifies to sort the class variable values in ascending order.
DESCENDING

specifies to sort the class variable values in descending order.
EXCLUSIVE

excludes from tables and output data sets all combinations of class 
variables that are not found in the preloaded range of user-defined 
formats.

GROUPINTERNAL
specifies not to apply formats to the class variables when PROC 
TABULATE groups the values to create combinations of class variables.

MISSING
considers missing values as valid class variable levels. Special missing 
values that represent numeric values (the letters A through Z and the 
underscore (_) character) are each considered as a separate value.

MLF
enables PROC TABULATE to use the format label or labels for a given 
range or overlapping ranges to create subgroup combinations when a 
multilabel format is assigned to a class variable.

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the order to group the levels of the class variables in the output.

PRELOADFMT
specifies that all formats are preloaded for the class variables.

STYLE=style-override
specifies one or more style overrides to use for page dimension text and 
class variable name headings.

Required Argument
variable(s)

specifies one or more variables that the procedure uses to group the data. 
Variables in a CLASS statement are referred to as class variables. Class 
variables can be numeric or character. Class variables can have continuous 
values, but they typically have a few discrete values that define the 
classifications of the variable. You do not have to sort the data by class 
variables.

Interaction If a variable name and a statistic name are the same, enclose the 
statistic name in single or double quotation marks.

Optional Arguments
ASCENDING

specifies to sort the class variable values in ascending order.

Alias ASCEND

Interaction PROC TABULATE issues a warning message if you specify both 
ASCENDING and DESCENDING and ignores both options.

2400 Chapter 70 / TABULATE Procedure



DESCENDING
specifies to sort the class variable values in descending order.

Alias DESCEND

Default ASCENDING

Interaction PROC TABULATE issues a warning message if you specify both 
ASCENDING and DESCENDING and ignores both options.

EXCLUSIVE
excludes from tables and output data sets all combinations of class variables 
that are not found in the preloaded range of user-defined formats.

Requirement You must specify the PRELOADFMT option in the CLASS 
statement to preload the class variable formats.

Example “Example 3: Using Preloaded Formats with Class Variables” on 
page 2470

GROUPINTERNAL
specifies not to apply formats to the class variables when PROC TABULATE 
groups the values to create combinations of class variables.

Interactions If you specify the PRELOADFMT option in the CLASS statement, 
then PROC TABULATE ignores the GROUPINTERNAL option and 
uses the formatted values.

If you specify the ORDER=FORMATTED option, then PROC 
TABULATE ignores the GROUPINTERNAL option and uses the 
formatted values.

Tip The GROUPINTERNAL option saves computer resources when 
the class variables contain discrete numeric values.

MISSING
considers missing values as valid class variable levels. Special missing values 
that represent numeric values (the letters A through Z and the underscore (_) 
character) are each considered as a separate value.

Default If you omit the MISSING option, then PROC TABULATE excludes the 
observations with any missing CLASS variable values from tables and 
output data sets.

See “Creating Special Missing Values” in SAS Language Reference: 
Concepts for a discussion of missing values with special meanings.

MLF
enables PROC TABULATE to use the format label or labels for a given range or 
overlapping ranges to create subgroup combinations when a multilabel format is 
assigned to a class variable.

Note: When the formatted values overlap, one internal class variable value 
maps to more than one class variable subgroup combination. Therefore, the sum 
of the N statistics for all subgroups is greater than the number of observations in 
the data set (the overall N statistic).

CLASS Statement 2401

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1xr9fm7y8kek5n1hpj008tnu1a1.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p1xr9fm7y8kek5n1hpj008tnu1a1.htm&locale=en


Requirement You must use PROC FORMAT and the MULTILABEL option in the 
VALUE statement to create a multilabel format.

Interactions Using MLF with ORDER=FREQ might not produce the order that 
you expect for the formatted values.

When you specify MLF, the formatted values of the class variable 
become internal values. Therefore, specifying 
ORDER=FORMATTED produces the same results as specifying 
ORDER=UNFORMATTED.

Tip If you omit MLF, then PROC TABULATE uses the primary format 
labels, which correspond to the first external format value, to 
determine the subgroup combinations.

See “MULTILABEL” on page 1097 in the VALUE statement of the 
FORMAT procedure.

Example “Example 4: Using Multilabel Formats” on page 2474

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the order to group the levels of the class variables in the output.

DATA
orders values according to their order in the input data set.

Interaction If you use PRELOADFMT, then the order for the values of each 
class variable matches the order that PROC FORMAT uses to 
store the values of the associated user-defined format. If you 
use the CLASSDATA= option in the PROC statement, then 
PROC TABULATE uses the order of the unique values of each 
class variable in the CLASSDATA= data set to order the output 
levels. If you use both options, then PROC TABULATE first uses 
the user-defined formats to order the output. If you omit 
EXCLUSIVE in the PROC statement, then PROC TABULATE 
places, in the order in which they are encountered, the unique 
values of the class variables that are in the input data set after 
the user-defined format and the CLASSDATA= values.

Tip By default, PROC FORMAT stores a format definition in sorted 
order. Use the NOTSORTED option to store the values or 
ranges of a user-defined format in the order in which you define 
them.

FORMATTED
orders values by their ascending formatted values. This order depends on 
your operating environment.

Aliases FMT

EXTERNAL

FREQ
orders values by descending frequency count.

Interaction Use the ASCENDING option to order values by ascending 
frequency count.

2402 Chapter 70 / TABULATE Procedure



UNFORMATTED
orders values by their unformatted values. This order depends on your 
operating environment. This sort sequence is particularly useful for displaying 
dates chronologically.

Specifying ORDER=UNFORMATTED usually, but not always, produces the 
same results as PROC SORT. For more information about ordering data, see 
“Controlling the Order of Data Values” on page 27.

Aliases UNFMT

INTERNAL

Default UNFORMATTED

Interaction If you use the PRELOADFMT option in the CLASS statement, then 
PROC TABULATE orders the levels by the order of the values in the 
user-defined format.

Tip By default, all orders except FREQ are ascending. For descending 
orders, use the DESCENDING option.

Example “Understanding the Order of Headings with ORDER=DATA” on 
page 2462

PRELOADFMT
specifies that all formats are preloaded for the class variables. 

Requirement PRELOADFMT has no effect unless you specify EXCLUSIVE, 
ORDER=DATA, or PRINTMISS and you assign formats to the 
class variables. If you specify PRELOADFMT without also 
specifying EXCLUSIVE, ORDER=DATA, or PRINTMISS, then 
SAS writes a warning message to the SAS log.

Interactions To limit PROC TABULATE output to the combinations of formatted 
class variable values present in the input data set, use the 
EXCLUSIVE option in the CLASS statement.

To include all ranges and values of the user-defined formats in the 
output, use the PRINTMISS option in the TABLE statement. Use 
care when you use PRELOADFMT with PRINTMISS. This feature 
creates all possible combinations of formatted class variables. 
Some of these combinations might not make sense.

Note When preloading a character format, there must be at least one 
representative raw value that produces the label. If a range does 
not have any raw values, the range is considered unreachable 
and an error is generated. For example, you cannot preload a 
multi-label character format with both Other= and Low-High 
ranges. Other is a special keyword that refers to values or ranges 
that remain after all labels have been defined. For character 
formats, missing values are included in the low range so that 
there are no raw values left to occupy the Other range.

Example “Example 3: Using Preloaded Formats with Class Variables” on 
page 2470

CLASS Statement 2403



STYLE=style-override
specifies one or more style overrides to use for page dimension text and class 
variable name headings. For example, the following statement specifies that the 
background color for page dimension text and class variable name headings is 
light green:

class region division prodtype / style=[background=lightgreen];  

style-override
specifies one or more style attributes or style elements to override the default 
style element and attributes in a specific area of a report.

You can specify a style override in three ways:

n Specify a style element. A style element is a collection of style attributes 
that apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that 
describes a single behavioral or visual aspect of a piece of output. This is 
the most specific method of changing the appearance of your output. 

n Specify the PARENT value. The PARENT value specifies that the data 
cell use the style element of its parent heading.

style-override has the following form:

PARENT | style-element-name | [style-attribute-name-1=style-attribute-
value-1

<style-attribute-name-2=style-attribute-value-2 …>]

<PARENT>
specifies that the data cell use the style element of its parent heading.

The parent style element of a data cell is one of the following:

n the style element of the leaf heading above the column that contains the 
data cell, if the table specifies no row dimension, or if the table specifies 
the style element in the column dimension expression

n the style element of the leaf heading above the row that contains the cell, 
if the table specifies the style element in the row dimension expression

n the Beforecaption style element, if the table specifies the style element in 
the page dimension expression

n undefined, otherwise

Note: In this usage, the angle brackets around the word PARENT are 
required. Braces or square brackets cannot be substituted in the syntax.

Note: The parent of a heading (not applicable to STYLE= in the PROC 
TABULATE statement) is the heading under which the current heading is 
nested.

style-attribute-name
specifies the attribute to change.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

2404 Chapter 70 / TABULATE Procedure



For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

style-attribute-value
specifies a value for the attribute. Each attribute has a different set of valid 
values. A SAS format can also be used as an attribute value for 
conditional formatting.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For information about using SAS formats as style attribute values, 
see “Using a Format to Assign a Style Attribute” on page 2448.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

style-element-name
is the name of a style element that is part of an ODS style template.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

Alias S=

Tips To override a style element that is specified for page dimension text in 
the CLASS statement, you can specify a style element in the TABLE 
statement page dimension expression.

To override a style element that is specified for a class variable name 
heading in the CLASS statement, you can specify a style element in 
the related TABLE statement dimension expression.

If a page dimension expression contains multiple nested elements, 
then the Beforecaption style element is the style element of the first 
element in the nesting.

The use of STYLE= in the CLASS statement differs slightly from its 
use in the PROC TABULATE statement. In the CLASS statement, 
inheritance is different for rows and columns. For rows, the parent 
heading is located to the left of the current heading. For columns, the 
parent heading is located above the current heading.

See For information about using styles with PROC TABULATE, see “Using 
ODS Styles with PROC TABULATE” on page 2437.

Example “Example 14: Specifying Style Overrides for ODS Output” on page 
2520

CLASS Statement 2405



Details

How PROC TABULATE Handles Missing Values for 
Class Variables
By default, if an observation contains a missing value for any class variable, then 
PROC TABULATE excludes that observation from all tables that it creates. CLASS 
statements apply to all TABLE statements in the PROC TABULATE step. Therefore, 
if you define a variable as a class variable, then PROC TABULATE omits 
observations that have missing values for that variable from every table even if the 
variable does not appear in the TABLE statement for one or more tables.

If you specify the MISSING option in the PROC TABULATE statement, then the 
procedure considers missing values as valid levels for all class variables. If you 
specify the MISSING option in a CLASS statement, then PROC TABULATE 
considers missing values as valid levels for the class variables that are specified in 
that CLASS statement.

CLASSLEV Statement
Specifies a style element for class variable level value headings.

Examples: “Example 14: Specifying Style Overrides for ODS Output” on page 2520
“Example 15: Style Precedence” on page 2525

Syntax
CLASSLEV variable(s) </ STYLE=style-override(s)>;

Required Argument
variable(s)

specifies one or more class variables from the CLASS statement for which you 
want to specify a style element.

Optional Argument
STYLE=style-override

specifies one or more style overrides for class variable level value headings. For 
example, the following statement specifies that the background color for class 
variable level name headings is yellow:

classlev region division prodtype  / style=[background=yellow]; 

style-override
specifies one or more style attributes or style elements to override the default 
style element and attributes in a specific area of a report.

2406 Chapter 70 / TABULATE Procedure



You can specify a style override in three ways:

n Specify a style element. A style element is a collection of style attributes 
that apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that 
describes a single behavioral or visual aspect of a piece of output. This is 
the most specific method of changing the appearance of your output. 

n Specify the PARENT value. The PARENT value specifies that the data 
cell use the style element of its parent heading.

style-override has the following form:

PARENT | style-element-name | [style-attribute-name-1=style-attribute-
value-1

<style-attribute-name-2=style-attribute-value-2 …>]

<PARENT>
specifies that the data cell use the style element of its parent heading.

The parent style element of a data cell is one of the following:

n the style element of the leaf heading above the column that contains the 
data cell, if the table specifies no row dimension, or if the table specifies 
the style element in the column dimension expression

n the style element of the leaf heading above the row that contains the cell, 
if the table specifies the style element in the row dimension expression

n the Beforecaption style element, if the table specifies the style element in 
the page dimension expression

n undefined, otherwise

Note: In this usage, the angle brackets around the word PARENT are 
required. Braces or square brackets cannot be substituted in the syntax.

Note: The parent of a heading (not applicable to STYLE= in the PROC 
TABULATE statement) is the heading under which the current heading is 
nested.

style-attribute-name
specifies the attribute to change.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

style-attribute-value
specifies a value for the attribute. Each attribute has a different set of valid 
values. A SAS format can also be used as an attribute value for 
conditional formatting.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

CLASSLEV Statement 2407



For information about using SAS formats as style attribute values, 
see “Using a Format to Assign a Style Attribute” on page 2448.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

style-element-name
is the name of a style element that is part of an ODS style template.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

Alias S=

Tips The use of STYLE= in the CLASSLEV statement differs slightly from 
its use in the PROC TABULATE statement. In the CLASSLEV 
statement, inheritance is different for rows and columns. For rows, the 
parent heading is located to the left of the current heading. For 
columns, the parent heading is located above the current heading.

To override a style element that is specified in the CLASSLEV 
statement, you can specify a style element in the related TABLE 
statement dimension expression.

You can use braces ({ and }) instead of square brackets ([ and ]).

See For information about using styles with PROC TABULATE, see “Using 
ODS Styles with PROC TABULATE” on page 2437.

Example “Example 14: Specifying Style Overrides for ODS Output” on page 
2520

FREQ Statement
Specifies a numeric variable that contains the frequency of each observation.

Tip: The effects of the FREQ and WEIGHT statements are similar except when calculating 
degrees of freedom.

Example: “FREQ” on page 79

Syntax
FREQ variable;

2408 Chapter 70 / TABULATE Procedure



Required Argument
variable

specifies a numeric variable whose value represents the frequency of the 
observation.

If you use the FREQ statement, then the procedure assumes that each 
observation represents n observations, where n is the value of variable. If n is 
not an integer, then SAS truncates it. If n is less than 1 or is missing, then the 
procedure does not use that observation to calculate statistics.

The sum of the frequency variable represents the total number of observations.

KEYLABEL Statement
Labels a keyword for the duration of the PROC TABULATE step. PROC TABULATE uses the label 
anywhere that the specified keyword would otherwise appear.

Syntax
KEYLABEL keyword-1='description-1' <keyword-2='description-2' ...>;

Required Arguments
keyword

specifies a statistic keyword.

keyword can be one of the keywords for statistics that is discussed in “Statistics 
That Are Available in PROC TABULATE” on page 2430 or is the universal class 
variable ALL. (See “Elements That You Can Use in a Dimension Expression” on 
page 2422.)

description
specifies the keyword label.

Length 256 characters

Restriction Each keyword can have only one label in a particular PROC 
TABULATE step. If you request multiple labels for the same 
keyword, then PROC TABULATE uses the last one that is 
specified in the step.

Requirement You must enclose description in quotation marks

KEYWORD Statement
Specifies a style element for keyword headings.

KEYWORD Statement 2409



Example: “Example 14: Specifying Style Overrides for ODS Output” on page 2520

Syntax
KEYWORD keyword(s) </ STYLE=style-override(s)>;

Required Argument
keyword

specifies the keyword statistic.

keyword can be one of the keywords for statistics that is discussed in “Statistics 
That Are Available in PROC TABULATE” on page 2430 or is the universal class 
variable ALL. (See “Elements That You Can Use in a Dimension Expression” on 
page 2422.)

Optional Argument
STYLE=style-override

specifies one or more style overrides for the keyword headings.

For example, the following statement specifies that the background color for 
keyword headings is linen:

keyword all sum / style=[background=linen];

style-override
specifies one or more style attributes or style elements to override the default 
style element and attributes in a specific area of a report.

You can specify a style override in three ways:

n Specify a style element. A style element is a collection of style attributes 
that apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that 
describes a single behavioral or visual aspect of a piece of output. This is 
the most specific method of changing the appearance of your output. 

n Specify the PARENT value. The PARENT value specifies that the data 
cell use the style element of its parent heading.

style-override has the following form:

PARENT | style-element-name | [style-attribute-name-1=style-attribute-
value-1

<style-attribute-name-2=style-attribute-value-2 …>]

<PARENT>
specifies that the data cell use the style element of its parent heading.

The parent style element of a data cell is one of the following:

n the style element of the leaf heading above the column that contains the 
data cell, if the table specifies no row dimension, or if the table specifies 
the style element in the column dimension expression

2410 Chapter 70 / TABULATE Procedure



n the style element of the leaf heading above the row that contains the cell, 
if the table specifies the style element in the row dimension expression

n the Beforecaption style element, if the table specifies the style element in 
the page dimension expression

n undefined, otherwise

Note: In this usage, the angle brackets around the word PARENT are 
required. Braces or square brackets cannot be substituted in the syntax.

Note: The parent of a heading (not applicable to STYLE= in the PROC 
TABULATE statement) is the heading under which the current heading is 
nested.

style-attribute-name
specifies the attribute to change.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

style-attribute-value
specifies a value for the attribute. Each attribute has a different set of valid 
values. A SAS format can also be used as an attribute value for 
conditional formatting.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For information about using SAS formats as style attribute values, 
see “Using a Format to Assign a Style Attribute” on page 2448.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

style-element-name
is the name of a style element that is part of an ODS style template.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

Alias S=

Tips The use of STYLE= in the KEYWORD statement differs slightly from 
its use in the PROC TABULATE statement. In the KEYWORD 
statement, inheritance is different for rows and columns. For rows, the 

KEYWORD Statement 2411



parent heading is located to the left of the current heading. For 
columns, the parent heading is located above the current heading.

To override a style element that is specified in the KEYWORD 
statement, you can specify a style element in the related TABLE 
statement dimension expression.

See For information about using styles with PROC TABULATE, see “Using 
ODS Styles with PROC TABULATE” on page 2437.

Example “Example 14: Specifying Style Overrides for ODS Output” on page 
2520

TABLE Statement
Describes a table to be printed.

Requirement: All variables in the TABLE statement must appear in either the VAR statement or the 
CLASS statement.

Tips: To create several tables use multiple TABLE statements.
Use of variable name list shortcuts is now supported within the TABLE statement. For 
more information, see “Shortcuts for Specifying Lists of Variable Names” on page 62.

Syntax
TABLE <<page-expression,> row-expression,>
column-expression </ table-options>;

Summary of Optional Arguments
BOX={<label=value> <STYLE=style-override(s)>}

specifies text and a style override for the empty box above the row titles.
BOX=value

specifies text for the empty box above the row titles.
CAPTION= text<#BYLINE> <#BYVAL><#BYVAR>

specifies a caption text string to add before each table.
CONDENSE

prints as many complete logical pages as possible on a single printed 
page or, if possible, prints multiple pages of tables that are too wide to fit 
on a page one below the other on a single page, instead of on separate 
pages.

CONTENTS=link-text <#BYLINE> <#BYVAL> <#BYVAR>
enables you to name the link in the HTML table of contents that points to 
the ODS output of the table that is produced by using the TABLE 
statement.

FORMAT_PRECEDENCE=PAGE | ROW | COLUMN

2412 Chapter 70 / TABULATE Procedure



specifies whether the format that is specified for the page dimension 
(PAGE), row dimension (ROW), or column dimension (COLUMN) is 
applied to the contents of the table cells.

FUZZ=number
supplies a numeric value against which analysis variable values and table 
cell values other than frequency counts are compared to eliminate trivial 
values (absolute values less than the FUZZ= value) from computation and 
printing.

INDENT=number-of-spaces
specifies the number of spaces to indent nested row headings, and 
suppresses the row headings for class variables.

MISSTEXT='text'
supplies up to 256 characters of text to be printed for table cells that 
contain missing values.

MISSTEXT={<label='text'> <STYLE=style-override(s)>}
supplies up to 256 characters of text to be printed and specifies a style 
override for table cells that contain missing values.

NOCELLMERGE
specifies that data cells are not merged with other data cells in the table.

NOCONTINUED
suppresses the continuation message, continued, that is displayed at the 
bottom of tables that span multiple pages.

page-expression
defines the pages in a table.

PRINTMISS
prints all values that occur for a class variable each time headings for that 
variable are printed, even if there are no data for some of the cells that 
these headings create.

ROW=CONSTANT | FLOAT
specifies whether all title elements in a row crossing are allotted space 
even when they are blank.

row-expression
defines the rows in the table.

RTSPACE=number
specifies the number of print positions to allot to all of the headings in the 
row dimension, including spaces that are used to print outlining characters 
for the row headings.

STYLE_PRECEDENCE=PAGE | ROW | COLUMN
specifies whether the style that is specified for the page dimension 
(PAGE), row dimension (ROW), or column dimension (COLUMN or COL) 
is applied to the contents of the table cells.

STYLE=style-override
specifies one or more style overrides to use for parts of the table other 
than table cells.

Required Argument
column-expression

defines the columns in the table. For information about constructing dimension 
expressions, see “Details” on page 2422.

TABLE Statement 2413



Restriction A column dimension is the last dimension in a TABLE statement. A 
row dimension or a row dimension and a page dimension can 
precede a column dimension.

Optional Arguments
page-expression

defines the pages in a table. For information about constructing dimension 
expressions, see “Details” on page 2422.

Restrictions A page dimension is the first dimension in a table statement. 
Both a row dimension and a column dimension must follow a 
page dimension.

If the ACCESSIBLETABLE=ON system option is specified and 
the TABULATE table has page dimension text, then that text is 
the accessible caption. Otherwise use the CAPTION=/ 
CONTENTS= text.

Accessibility 
note

Starting with SAS 9.4M6, you can use the ACCESSIBLECHECK 
and ACCESSIBLETABLE system options to check for and create 
accessible tables. For information about creating accessible 
PROC TABULATE tables, see “Overview of Table Accessibility ” 
in Creating Accessible SAS Output Using ODS and ODS 
Graphics . If the ACCESSIBLETABLE=ON system option is 
specified and the TABULATE table has page dimension text, 
then that text is the accessible caption.

Example “Example 9: Creating Multipage Tables” on page 2487

row-expression
defines the rows in the table. For information about constructing dimension 
expressions, see “Details” on page 2422.

Restriction A row dimension is the next to last dimension in a table statement. 
A column dimension must follow a row dimension. A page 
dimension can precede a row dimension.

Table Options
BOX=value

specifies text for the empty box above the row titles.

Value can be one of the following:

_PAGE_
writes the page-dimension text in the box. If the page-dimension text does 
not fit, then it is placed in its default position above the box, and the box 
remains empty.

BOX={<label=value> <STYLE=style-override(s)>}
specifies text and a style override for the empty box above the row titles.

Value can be one of the following:

2414 Chapter 70 / TABULATE Procedure

http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en
http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en
http://documentation.sas.com/?docsetId=odsacoutput&docsetVersion=9.4&docsetTarget=p1jbl8qk07mnf5n19iq2ht85ki24.htm&locale=en


_PAGE_
writes the page-dimension text in the box. If the page-dimension text does 
not fit, then it is placed in its default position above the box, and the box 
remains empty.

'string'
writes the quoted string in the box. Any string that does not fit in the box is 
truncated.

variable
writes the name (or label, if the variable has one) of a variable in the box. Any 
name or label that does not fit in the box is truncated.

For details about the arguments of the STYLE= option and how it is used, 
see STYLE= on page 2420 in the TABLE statement.

Examples “Example 9: Creating Multipage Tables” on page 2487

“Example 14: Specifying Style Overrides for ODS Output” on page 
2520

CAPTION= text<#BYLINE> <#BYVAL><#BYVAR>
specifies a caption text string to add before each table. If no string is specified, 
then the caption defaults to the text specified by the CONTENTS= option in the 
TABLE statement. 

This option makes table captions both visual and accessible if the 
ACCESSIBLETABLE system option is specified.

If the NOACCESSIBLETABLE system option is specified, then no caption is 
displayed, however the caption text is still accessible.

Starting with SAS 9.4M6, these options are available if a BY statement is in 
effect:

#BYLINE
substitutes the entire BY line without leading or trailing blanks for #BYLINE in 
the text string. The BY line uses the format variable-name=value.

#BYVALn
#BYVAL(BY-variable-name)

substitutes the current value of the specified BY variable for #BYVAL in the 
text string.

Specify the variable with one of the following:

n
specifies a variable by its position in the BY statement. For example, 
#BYVAL2 specifies the second variable in the BY statement.

BY-variable-name
specifies a variable from the BY statement by its name. For example, 
#BYVAL(YEAR) specifies the BY variable, YEAR. Variable-name is not 
case sensitive.

#BYVARn
#BYVAR(BY-variable-name)

substitutes the name of the BY-variable or the label associated with the 
variable (whatever the BY line would normally display) for #BYVAR in the text 
string.

Specify the variable with one of the following:

TABLE Statement 2415



n
specifies a variable by its position in the BY statement. For example, 
#BYVAR2 specifies the second variable in the BY statement.

BY-variable-name
specifies a variable from the BY statement by its name. For example, 
#BYVAR(SITES) specifies the BY variable, SITES. Variable-name is not 
case sensitive.

Restrictions The ACCESSIBLETABLE system option must be specified to 
enable captions.

The CAPTION= option is not valid in the LISTING destination.

Note This feature applies to SAS 9.4M6 and to later releases.

Tip You can use the PROC DOCUMENT OBBNOTE option to display 
or edit the caption.

See Creating Accessible Tables with the TABULATE Procedure in 
Creating Accessible SAS Output Using ODS and ODS Graphics

CONDENSE
prints as many complete logical pages as possible on a single printed page or, if 
possible, prints multiple pages of tables that are too wide to fit on a page one 
below the other on a single page, instead of on separate pages. A logical page is 
all the rows and columns that fall within one of the following:

n a page-dimension category (with no BY-group processing)

n a BY group with no page dimension

n a page-dimension category within a single BY group

Restriction The CONDENSE option has no effect on the pages that are 
generated by the BY statement. The first table for a BY group 
always begins on a new page.

Example “Example 9: Creating Multipage Tables” on page 2487

CONTENTS=link-text <#BYLINE> <#BYVAL> <#BYVAR>
enables you to name the link in the HTML table of contents that points to the 
ODS output of the table that is produced by using the TABLE statement.

Starting with SAS 9.4M6, these options are available if a BY statement is in 
effect:

#BYLINE
substitutes the entire BY line without leading or trailing blanks for #BYLINE in 
the text string. The BY line uses the format variable-name=value.

#BYVALn
#BYVAL(BY-variable-name)

substitutes the current value of the specified BY variable for #BYVAL in the 
text string.

Specify the variable with one of the following:

n
specifies a variable by its position in the BY statement. For example, 
#BYVAL2 specifies the second variable in the BY statement.

2416 Chapter 70 / TABULATE Procedure

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=n1q4twepm1i6mun14uozl4wlpjwv.htm


BY-variable-name
specifies a variable from the BY statement by its name. For example, 
#BYVAL(YEAR) specifies the BY variable, YEAR. Variable-name is not 
case sensitive.

#BYVARn
#BYVAR(BY-variable-name)

substitutes the name of the BY-variable or the label associated with the 
variable (whatever the BY line would normally display) for #BYVAR in the text 
string.

Specify the variable with one of the following:

n
specifies a variable by its position in the BY statement. For example, 
#BYVAR2 specifies the second variable in the BY statement.

BY-variable-name
specifies a variable from the BY statement by its name. For example, 
#BYVAR(SITES) specifies the BY variable, SITES. Variable-name is not 
case sensitive.

See “Substituting BY Line Values in a Text String” on page 2452

Creating Accessible Tables with the TABULATE Procedure in Creating 
Accessible SAS Output Using ODS and ODS Graphics

FORMAT_PRECEDENCE=PAGE | ROW | COLUMN
specifies whether the format that is specified for the page dimension (PAGE), 
row dimension (ROW), or column dimension (COLUMN) is applied to the 
contents of the table cells.

PAGE
specifies that the format that is specified for the page dimension is applied to 
the contents of the table cells.

ROW
specifies that the format that is specified for the row dimension is applied to 
the contents of the table cells.

COLUMN
specifies that the format that is specified for the column dimension is applied 
to the contents of the table cells.

Alias COL

Default COLUMN

FUZZ=number
supplies a numeric value against which analysis variable values and table cell 
values other than frequency counts are compared to eliminate trivial values 
(absolute values less than the FUZZ= value) from computation and printing. A 
number whose absolute value is less than the FUZZ= value is treated as zero in 
computations and printing. The default value is the smallest representable 
floating-point number on the computer that you are using.

INDENT=number-of-spaces
specifies the number of spaces to indent nested row headings, and suppresses 
the row headings for class variables.

TABLE Statement 2417

http://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=odsacoutput&docsetTarget=n1q4twepm1i6mun14uozl4wlpjwv.htm


Restriction In the HTML, RTF, and Printer destinations, the INDENT= option 
suppresses the row headings for class variables but does not indent 
nested row headings.

Tip When there are no crossings in the row dimension, there is nothing 
to indent, so the value of number-of-spaces has no effect. However, 
in such cases INDENT= still suppresses the row headings for class 
variables.

See “Example 8: Indenting Row Headings and Eliminating Horizontal 
Separators” on page 2485 (with crossings) “Example 9: Creating 
Multipage Tables” on page 2487 (without crossings) 

MISSTEXT='text'
supplies up to 256 characters of text to be printed for table cells that contain 
missing values.

MISSTEXT={<label='text'> <STYLE=style-override(s)>}
supplies up to 256 characters of text to be printed and specifies a style override 
for table cells that contain missing values. For details about the arguments of the 
STYLE= option and how it is used, see STYLE= on page 2420 in the TABLE 
statement.

Interaction A style element that is specified in a dimension expression 
overrides a style element that is specified in the MISSTEXT= option 
for any given cells.

Examples “Providing Text for Cells That Contain Missing Values” on page 
2460

“Example 14: Specifying Style Overrides for ODS Output” on page 
2520

NOCELLMERGE
specifies that data cells are not merged with other data cells in the table. 

Note: The NOCELLMERGE option works with the ODS formatted destinations. 
These include the ODS MARKUP family, ODS RTF, and the ODS PRINTER 
family destinations.

Restriction The NOCELLMERGE option does not work with the traditional 
monospace output.

Interactions If you specify ROW=FLOAT or INDENT=0, PROC TABULATE 
produces single unmerged data rows. The NOCELLMERGE option 
is then ignored because there are no rows that need to be merged.

If the NOCELLMERGE option is in effect, the style of the empty 
data cells will be the default style of the data cell. The style of the 
empty data cells might not be the same style as the style of the 
formatted data cells.

Example “Example 16: Using the NOCELLMERGE Option” on page 2529

2418 Chapter 70 / TABULATE Procedure



NOCONTINUED
suppresses the continuation message, continued, that is displayed at the 
bottom of tables that span multiple pages. The text is rendered with the 
AFTERCAPTION style element.

Note: Because HTML browsers do not break pages, NOCONTINUED has no 
effect on the HTML destination.

PRINTMISS
prints all values that occur for a class variable each time headings for that 
variable are printed, even if there are no data for some of the cells that these 
headings create. Consequently, PRINTMISS creates row and column headings 
that are the same for all logical pages of the table, within a single BY group.

Default If you omit the PRINTMISS option, then PROC TABULATE 
suppresses a row or column for which there are no data, unless you 
use the CLASSDATA= option in the PROC TABULATE statement.

Restriction If an entire logical page contains only missing values, then that 
page is not printed regardless of the PRINTMISS option.

See “CLASSDATA=SAS-data-set” on page 2388

Example “Providing Headings for All Categories” on page 2459

ROW=CONSTANT | FLOAT
specifies whether all title elements in a row crossing are allotted space even 
when they are blank. 

CONSTANT
allots space to all row titles even if the title has been blanked out. (For 
example, N=' '.)

Alias CONST

FLOAT
divides the row title space equally among the nonblank row titles in the 
crossing.

Default CONSTANT

Example “Example 7: Eliminating Row Headings” on page 2482

RTSPACE=number
specifies the number of print positions to allot to all of the headings in the row 
dimension, including spaces that are used to print outlining characters for the 
row headings. PROC TABULATE divides this space equally among all levels of 
row headings.

Alias RTS=

Default one-fourth of the value of the SAS system option LINESIZE=

Restriction The RTSPACE= option affects only the traditional SAS monospace 
output destination.

TABLE Statement 2419



Interaction By default, PROC TABULATE allots space to row titles that are 
blank. Use ROW=FLOAT in the TABLE statement to divide the 
space among only nonblank titles.

See For more examples of controlling the space for row titles, see 
PROC TABULATE by Example, Second Edition.

Example “Example 1: Creating a Basic Two-Dimensional Table” on page 
2464

STYLE=style-override
specifies one or more style overrides to use for parts of the table other than table 
cells. For example, the following statement specifies that the background color 
for missing values is red and the background color the box is orange:

table (region all)*(division all),
         (prodtype all)*(actual*f=dollar10.) /
         misstext=[label='Missing' style=[background=red]] 
         box=[label='Region by Division and Type'  style=[backgroundcolor=orange]]; 

style-override
specifies one or more style attributes or style elements to override the default 
style element and attributes in a specific area of a report.

You can specify a style override in three ways:

n Specify a style element. A style element is a collection of style attributes 
that apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that 
describes a single behavioral or visual aspect of a piece of output. This is 
the most specific method of changing the appearance of your output. 

n Specify the PARENT value. The PARENT value specifies that the data 
cell use the style element of its parent heading.

style-override has the following form:

PARENT | style-element-name | [style-attribute-name-1=style-attribute-
value-1

<style-attribute-name-2=style-attribute-value-2 …>]

<PARENT>
specifies that the data cell use the style element of its parent heading.

The parent style element of a data cell is one of the following:

n the style element of the leaf heading above the column that contains the 
data cell, if the table specifies no row dimension, or if the table specifies 
the style element in the column dimension expression

n the style element of the leaf heading above the row that contains the cell, 
if the table specifies the style element in the row dimension expression

n the Beforecaption style element, if the table specifies the style element in 
the page dimension expression

n undefined, otherwise

Note: In this usage, the angle brackets around the word PARENT are 
required. Braces or square brackets cannot be substituted in the syntax.

2420 Chapter 70 / TABULATE Procedure



Note: The parent of a heading (not applicable to STYLE= in the PROC 
TABULATE statement) is the heading under which the current heading is 
nested.

style-attribute-name
specifies the attribute to change.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

style-attribute-value
specifies a value for the attribute. Each attribute has a different set of valid 
values. A SAS format can also be used as an attribute value for 
conditional formatting.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For information about using SAS formats as style attribute values, 
see “Using a Format to Assign a Style Attribute” on page 2448.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

style-element-name
is the name of a style element that is part of an ODS style template.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

Alias S=

Tips To override a style element specification that is made as an option in 
the TABLE statement, specify STYLE= in a dimension expression of 
the TABLE statement.

You can use braces ({ and }) instead of square brackets ([ and ]).

See For information about using styles with PROC TABULATE, see “Using 
ODS Styles with PROC TABULATE” on page 2437.

Example “Example 14: Specifying Style Overrides for ODS Output” on page 
2520

STYLE_PRECEDENCE=PAGE | ROW | COLUMN
specifies whether the style that is specified for the page dimension (PAGE), row 
dimension (ROW), or column dimension (COLUMN or COL) is applied to the 
contents of the table cells.

TABLE Statement 2421



PAGE
specifies that the style that is specified for the page dimension is applied to 
the contents of the table cells.

ROW
specifies that the style that is specified for the row dimension is applied to the 
contents of the table cells.

COLUMN
specifies that the style that is specified for the column dimension is applied to 
the contents of the table cells.

Alias COL

Default COLUMN

Example “Example 15: Style Precedence” on page 2525

Details

What Are Dimension Expressions?
A dimension expression defines the content and appearance of a dimension (the 
columns, rows, or pages in the table) by specifying the combination of variables, 
variable values, and statistics that make up that dimension. A TABLE statement 
consists of from one to three dimension expressions separated by commas. Options 
can follow the dimension expressions.

If all three dimensions are specified, then the leftmost dimension expression defines 
pages, the middle dimension expression defines rows, and the rightmost dimension 
expression defines columns. If two dimensions are specified, then the left dimension 
expression defines rows, and the right dimension expression defines columns. If a 
single dimension is specified, then the dimension expression defines columns.

A dimension expression consists of one or more elements and operators.

Elements That You Can Use in a Dimension 
Expression
analysis variables

(See the VAR statement on page 2426.)

class variables
(See the CLASS statement on page 2399.)

the universal class variable ALL
summarizes all of the categories for class variables in the same parenthetical 
group or dimension (if the variable ALL is not contained in a parenthetical group).

Note: If the input data set contains a variable named ALL, then enclose the 
name of the universal class variable in quotation marks.

2422 Chapter 70 / TABULATE Procedure



Examples “Example 6: Summarizing Information with the Universal Class 
Variable ALL” on page 2480

“Example 9: Creating Multipage Tables” on page 2487

“Example 13: Using Denominator Definitions to Display Basic 
Frequency Counts and Percentages” on page 2505

keywords for statistics
See “Statistics That Are Available in PROC TABULATE” on page 2430 for a list 
of available statistics. Use the asterisk (*) operator to associate a statistic 
keyword with a variable. The N statistic (number of nonmissing values) can be 
specified in a dimension expression without associating it with a variable.

Default For analysis variables, the default statistic is SUM. Otherwise, the 
default statistic is N.

Restriction Statistic keywords other than N must be associated with an analysis 
variable.

Interaction Statistical keywords should be enclosed by single or double 
quotation marks to ensure that the keyword element is treated as a 
statistical keyword and not treated as a variable. By default, SAS 
treats these keywords as variables.

Example n
Region*n
Sales*max

Examples “Example 10: Reporting on Multiple-Response Survey Data” on 
page 2490

“Example 13: Using Denominator Definitions to Display Basic 
Frequency Counts and Percentages” on page 2505

format modifiers
define how to format values in cells. Use the asterisk (*) operator to associate a 
format modifier with the element (an analysis variable or a statistic) that 
produces the cells that you want to format. Format modifiers have the form

f=format

Tip Format modifiers have no effect on CLASS variables.

See For more information about specifying formats in tables, see 
“Formatting Values in Tables” on page 2432.

Example Sales*f=dollar8.2

Example “Example 6: Summarizing Information with the Universal Class 
Variable ALL” on page 2480

labels
temporarily replace the names of variables and statistics. Labels affect only the 
variable or statistic that immediately precedes the label. Labels have the form

statistic-keyword-or-variable-name='label-text'

TABLE Statement 2423



Tip PROC TABULATE eliminates the space for blank column headings 
from a table but by default does not eliminate the space for blank row 
headings unless all row headings are blank. Use ROW=FLOAT in 
the TABLE statement to remove the space for blank row headings.

Example Region='Geographical Region'
Sales*max='Largest Sale'

Examples “Example 5: Customizing Row and Column Headings” on page 2478

“Example 7: Eliminating Row Headings” on page 2482

style specifications
specify style elements and style attributes for page dimension text, headings, or 
data cells. For details, see “ Specifying Style Attributes and Style Elements in 
Dimension Expressions” on page 2425.

Operators That You Can Use in a Dimension 
Expression
asterisk *

creates categories from the combination of values of the class variables and 
constructs the appropriate headings for the dimension. If one of the elements is 
an analysis variable, then the statistics for the analysis variable are calculated for 
the categories that are created by the class variables. This process is called 
crossing.

Example Region*Division
Quarter*Sales*f=dollar8.2

Example “Example 1: Creating a Basic Two-Dimensional Table” on page 2464

(blank)
places the output for each element immediately after the output for the preceding 
element. This process is called concatenation.

Example n Region*Sales ALL

Example “Example 6: Summarizing Information with the Universal Class 
Variable ALL” on page 2480

parentheses ()
group elements and associate an operator with each concatenated element in 
the group.

Example Division*(Sales*max Sales*min)
(Region ALL)*Sales

Example “Example 6: Summarizing Information with the Universal Class 
Variable ALL” on page 2480

angle brackets <>
specify denominator definitions, which determine the value of the denominator in 
the calculation of a percentage. For a discussion of how to construct 
denominator definitions, see “Calculating Percentages ” on page 2433.

2424 Chapter 70 / TABULATE Procedure



Examples “Example 10: Reporting on Multiple-Response Survey Data” on page 
2490

“Example 13: Using Denominator Definitions to Display Basic 
Frequency Counts and Percentages” on page 2505

Specifying Style Attributes and Style Elements in 
Dimension Expressions
You can specify one or more style elements or style attributes in a dimension 
expression to control the appearance of non-LISTING output. You can modify the 
appearance of the following areas:

n analysis variable name headings

n class variable name headings

n class variable level value headings

n data cells

n keyword headings

n page dimension text

Specifying a style attribute or style element in a dimension expression is useful 
when you want to override a style attribute or style element that you have specified 
in another statement, such as the PROC TABULATE, CLASS, CLASSLEV, 
KEYWORD, TABLE, or VAR statements.

The syntax for specifying style elements and style attributes in a dimension 
expression is

[STYLE<(CLASSLEV)>=<style-element-name | PARENT>
[style-attribute-name-1=style-attribute-value-1< style-attribute-name-2=style-
attribute-value-2 ...>]]

These are some examples of style attributes in dimension expressions:

n

dept={label='Department'
      style=[color=red]}, N

n dept*[style=MyDataStyle], N

n dept*[format=12.2 style=MyDataStyle], N 

Note: When used in a dimension expression, the STYLE= option must be enclosed 
within square brackets ([ and ]) or braces ({ and }).

(CLASSLEV)
assigns a style element to a class variable level value heading. For example, the 
following TABLE statement specifies that the level value heading for the class 
variable, DEPT, has a foreground color of yellow:

table dept=[style(classlev)=
            [color=yellow]]*sales;

TABLE Statement 2425



Note: The CLASSLEV option is used only in dimension expressions.

For an example that shows how to specify style elements within dimension 
expressions, see “Example 14: Specifying Style Overrides for ODS Output” on page 
2520. For information about using styles with PROC TABULATE, see “Using ODS 
Styles with PROC TABULATE” on page 2437.

VAR Statement
Identifies numeric variables to use as analysis variables.

Alias: VARIABLES

Tip: You can use multiple VAR statements.

Example: “Example 14: Specifying Style Overrides for ODS Output” on page 2520

Syntax
VAR analysis-variable(s) </ options>;

Required Argument
analysis-variable(s);

identifies the analysis variables in the table. Analysis variables are numeric 
variables for which PROC TABULATE calculates statistics. The values of an 
analysis variable can be continuous or discrete.

If an observation contains a missing value for an analysis variable, then PROC 
TABULATE omits that value from calculations of all statistics except N (the 
number of observations with nonmissing variable values) and NMISS (the 
number of observations with missing variable values). For example, the missing 
value does not increase the SUM, and it is not counted when you are calculating 
statistics such as the MEAN.

Interaction If a variable name and a statistic name are the same, enclose the 
statistic name in single or double quotation marks.

Optional Arguments
STYLE=style-override(s)

specifies one or more style overrides for analysis variable name headings. For 
example, the following statement specifies that the background color for analysis 
variable name headings is tan:

var actual  / style=[background=tan]; 

style-override
specifies one or more style attributes or style elements to override the default 
style element and attributes in a specific area of a report.

2426 Chapter 70 / TABULATE Procedure



You can specify a style override in three ways:

n Specify a style element. A style element is a collection of style attributes 
that apply to a particular part of the output for a SAS program. 

n Specify a style attribute. A style attribute is a name-value pair that 
describes a single behavioral or visual aspect of a piece of output. This is 
the most specific method of changing the appearance of your output. 

n Specify the PARENT value. The PARENT value specifies that the data 
cell use the style element of its parent heading.

style-override has the following form:

PARENT | style-element-name | [style-attribute-name-1=style-attribute-
value-1

<style-attribute-name-2=style-attribute-value-2 …>]

<PARENT>
specifies that the data cell use the style element of its parent heading.

The parent style element of a data cell is one of the following:

n the style element of the leaf heading above the column that contains the 
data cell, if the table specifies no row dimension, or if the table specifies 
the style element in the column dimension expression

n the style element of the leaf heading above the row that contains the cell, 
if the table specifies the style element in the row dimension expression

n the Beforecaption style element, if the table specifies the style element in 
the page dimension expression

n undefined, otherwise

Note: In this usage, the angle brackets around the word PARENT are 
required. Braces or square brackets cannot be substituted in the syntax.

Note: The parent of a heading (not applicable to STYLE= in the PROC 
TABULATE statement) is the heading under which the current heading is 
nested.

style-attribute-name
specifies the attribute to change.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

style-attribute-value
specifies a value for the attribute. Each attribute has a different set of valid 
values. A SAS format can also be used as an attribute value for 
conditional formatting.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

VAR Statement 2427



For information about using SAS formats as style attribute values, 
see “Using a Format to Assign a Style Attribute” on page 2448.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

style-element-name
is the name of a style element that is part of an ODS style template.

See For information about using styles with PROC TABULATE, see 
“Using ODS Styles with PROC TABULATE” on page 2437.

For a table of default style attributes and style elements for each 
ODS destination, see “Style Elements and Style Attributes for Table 
Regions” on page 2444.

Alias S=

Tips To override a style element that is specified in the VAR statement, you 
can specify a style element in the related TABLE statement dimension 
expression.

The use of STYLE= in the VAR statement differs slightly from its use 
in the PROC TABULATE statement. In the VAR statement, inheritance 
is different for rows and columns. For rows, the parent heading is 
located to the left of the current heading. For columns, the parent 
heading is located above the current heading.

See For information about using styles with PROC TABULATE, see “Using 
ODS Styles with PROC TABULATE” on page 2437.

Example “Example 14: Specifying Style Overrides for ODS Output” on page 
2520

WEIGHT=weight-variable
specifies a numeric variable whose values weight the values of the variables that 
are specified in the VAR statement. The variable does not have to be an integer. 
If the value of the weight variable is

Weight Value PROC TABULATE Response

0 Counts the observation in the total number of observations

Less than 0 Converts the value to zero and counts the observation in 
the total number of observations

Missing Excludes the observation

To exclude observations that contain negative and zero weights from the 
analysis, use EXCLNPWGT. Note that most SAS/STAT procedures, such as 
PROC GLM, exclude negative and zero weights by default.

2428 Chapter 70 / TABULATE Procedure



Restriction To compute weighted quantiles, use QMETHOD=OS in the PROC 
statement.

Note Prior to Version 7 of SAS, the procedure did not exclude the 
observations with missing weights from the count of observations.

Tips When you use the WEIGHT= option, consider which value of the 
VARDEF= option is appropriate. See the discussion of 
“VARDEF=divisor ” on page 2397. 

Use the WEIGHT option in multiple VAR statements to specify 
different weights for the analysis variables.

WEIGHT Statement
Specifies weights for analysis variables in the statistical calculations.

See: For information about calculating weighted statistics and for an example that uses the 
WEIGHT statement, see “Calculating Weighted Statistics” on page 83.

Syntax
WEIGHT variable;

Required Argument
variable

specifies a numeric variable whose values weight the values of the analysis 
variables. The values of the variable do not have to be integers. PROC 
TABULATE responds to weight values in accordance with the following table.

Weight Value PROC TABULATE Response

0 Counts the observation in the total number of 
observations

Less than 0 Converts the value to zero and counts the 
observation in the total number of observations

Missing Excludes the observation

To exclude observations that contain negative and zero weights from the 
analysis, use EXCLNPWGT. Note that most SAS/STAT procedures, such as 
PROC GLM, exclude negative and zero weights by default.

WEIGHT Statement 2429



Note: Prior to Version 7 of SAS, the procedure did not exclude the observations 
with missing weights from the count of observations.

Restrictions To compute weighted quantiles, use QMETHOD=OS in the PROC 
statement.

PROC TABULATE will not compute MODE when a weight variable 
is active. Instead, try using PROC UNIVARIATE when MODE 
needs to be computed and a weight variable is active.

Interaction If you use the WEIGHT= option in a VAR statement to specify a 
weight variable, then PROC TABULATE uses this variable instead 
to weight those VAR statement variables.

Tip When you use the WEIGHT statement, consider which value of 
the VARDEF= option is appropriate. See the discussion of 
“VARDEF=divisor ” on page 2397 and the calculation of weighted 
statistics in the “Keywords and Formulas” on page 2610 section of 
this document.

Usage: TABULATE Procedure

Statistics That Are Available in PROC TABULATE
Use the following keywords to request statistics in the TABLE statement or to 
specify statistic keywords in the KEYWORD or KEYLABEL statement.

Note: If a variable name (class or analysis) and a statistic name are the same, then 
enclose the statistic name in single quotation marks (for example, 'MAX').

Descriptive statistic keywords

COLPCTN PCTSUM

COLPCTSUM RANGE

CSS REPPCTN

CV REPPCTSUM

KURTOSIS | KURT ROWPCTN

2430 Chapter 70 / TABULATE Procedure



LCLM ROWPCTSUM

MAX SKEWNESS | SKEW

MEAN STDDEV | STD

MIN STDERR

MODE SUM

N SUMWGT

NMISS UCLM

PAGEPCTN USS

PAGEPCTSUM VAR

PCTN

Quantile statistic keywords

MEDIAN | P50 Q3 | P75

P1 P70

P5 P80

P10 P90

P20 P95

P30 P99

P40

P60

Q1|P25 QRANGE

Hypothesis testing keywords

PROBT | PRT T

These statistics, the formulas that are used to calculate them, and their data 
requirements are discussed in the “Keywords and Formulas” on page 2610 section 
of this document.

To compute standard error of the mean (STDERR) or Student's t-test, you must use 
the default value of the VARDEF= option, which is DF. The VARDEF= option is 
specified in the PROC TABULATE statement.

Usage: TABULATE Procedure 2431



To compute weighted quantiles, you must use QMETHOD=OS in the PROC 
TABULATE statement.

Use both LCLM and UCLM to compute a two-sided confidence limit for the mean. 
Use only LCLM or UCLM to compute a one-sided confidence limit. Use the ALPHA= 
option in the PROC TABULATE statement to specify a confidence level.

Formatting Class Variables
Use the FORMAT statement to assign a format to a class variable for the duration of 
a PROC TABULATE step. When you assign a format to a class variable, PROC 
TABULATE uses the formatted values to create categories, and it uses the 
formatted values in headings. If you do not specify a format for a class variable, and 
the variable does not have any other format assigned to it, then the default format, 
BEST12., is used, unless the GROUPINTERNAL option is specified.

User-defined formats are particularly useful for grouping values into fewer 
categories. For example, if you have a class variable, Age, with values that range 
from 1 to 99, then you could create a user-defined format that groups the ages so 
that your tables contain a manageable number of categories. The following PROC 
FORMAT step creates a format that condenses all possible values of age into six 
groups of values.

proc format;
   value agefmt  0-29='Under 30'
                30-39='30-39'
                40-49='40-49'
                50-59='50-59'
                60-69='60-69'
                other='70 or over';
run;

For information about creating user-defined formats, see Chapter 30, “FORMAT 
Procedure,” on page 1049.

By default, PROC TABULATE includes in a table only those formats for which the 
frequency count is not zero and for which values are not missing. To include missing 
values for all class variables in the output, use the MISSING option in the PROC 
TABULATE statement, and to include missing values for selected class variables, 
use the MISSING option in a CLASS statement. To include formats for which the 
frequency count is zero, use the PRELOADFMT option in a CLASS statement and 
the PRINTMISS option in the TABLE statement, or use the CLASSDATA= option in 
the PROC TABULATE statement.

Formatting Values in Tables
The formats for data in table cells serve two purposes. They determine how PROC 
TABULATE displays the values, and they determine the width of the columns. The 
default format for values in table cells is 12.2. You can modify the format for printing 
values in table cells by doing the following:

n changing the default format with the FORMAT= option in the PROC TABULATE 
statement

2432 Chapter 70 / TABULATE Procedure



n crossing elements in the TABLE statement with the F= format modifier

Note: You cannot modify the format for printing values in table cells by using the 
FORMAT or the ATTRIB statement. If you use these statements, the analysis 
variable formats that they contain will be ignored.

PROC TABULATE determines the format to use for a particular cell from the 
following default order of precedence for formats:

1 If no other formats are specified, then PROC TABULATE uses the default format 
(12.2).

2 The FORMAT= option in the PROC TABULATE statement changes the default 
format. If no format modifiers affect a cell, then PROC TABULATE uses this 
format for the value in that cell.

3 A format modifier in the page dimension applies to the values in all the table cells 
on the logical page unless you specify another format modifier for a cell in the 
row or column dimension.

4 A format modifier in the row dimension applies to the values in all the table cells 
in the row unless you specify another format modifier for a cell in the column 
dimension.

5 A format modifier in the column dimension applies to the values in all the table 
cells in the column.

You can change this order of precedence by using the FORMAT_PRECEDENCE= 
option in the TABLE statement. For more information, see “TABLE Statement” on 
page 2412. For example, if you specify FORMAT_PRECEDENCE=ROW and 
specify a format modifier in the row dimension, then that format overrides all other 
specified formats for the table cells.

Calculating Percentages

Calculating the Percentage of the Value in 
a Single Table Cell
The following statistics print the percentage of the value in a single table cell in 
relation to the total of the values in a group of cells. No denominator definitions are 
required. However, an analysis variable can be used as a denominator definition for 
percentage sum statistics.

n REPPCTN and REPPCTSUM statistics—print the percentage of the value in a 
single table cell in relation to the total of the values in the report.

n COLPCTN and COLPCTSUM statistics—print the percentage of the value in a 
single table cell in relation to the total of the values in the column.

n ROWPCTN and ROWPCTSUM statistics—print the percentage of the value in a 
single table cell in relation to the total of the values in the row.

Usage: TABULATE Procedure 2433



n PAGEPCTN and PAGEPCTSUM statistics—print the percentage of the value in 
a single table cell in relation to the total of the values in the page.

These statistics calculate the most commonly used percentages. See “Example 12: 
Calculating Various Percentage Statistics” on page 2501 for an example.

Using PCTN and PCTSUM
PCTN and PCTSUM statistics can be used to calculate these same percentages. 
They enable you to manually define denominators. PCTN and PCTSUM statistics 
print the percentage of the value in a single table cell in relation to the value (used in 
the denominator of the calculation of the percentage) in another table cell or to the 
total of the values in a group of cells. By default, PROC TABULATE summarizes the 
values in all N cells (for PCTN) or all SUM cells (for PCTSUM) and uses the 
summarized value for the denominator. You can control the value that PROC 
TABULATE uses for the denominator with a denominator definition.

You place a denominator definition in angle brackets (< and >) next to the PCTN or 
PCTSUM statistic. The denominator definition specifies which categories to sum for 
the denominator.

This section illustrates how to specify denominator definitions in a simple table. 
“Example 13: Using Denominator Definitions to Display Basic Frequency Counts 
and Percentages” on page 2505 illustrates how to specify denominator definitions in 
a table that consists of multiple subtables. For more examples of denominator 
definitions, see PROC TABULATE by Example, Second Edition.

Specifying a Denominator for the PCTN 
Statistic
The following PROC TABULATE step calculates the N statistic and three different 
versions of PCTN using the data set “ENERGY” on page 2696.

proc tabulate data=energy;
   class division type;
   table division*
           (n='Number of customers'
            pctn<type>='% of row' 1

            pctn<division>='% of column'  2

            pctn='% of all customers'), 3

          type/rts=50;
   title 'Number of Users in Each Division';
run;

The TABLE statement creates a row for each value of Division and a column for 
each value of Type. Within each row, the TABLE statement nests four statistics: N 
and three different calculations of PCTN. (See the following figure.) Each 
occurrence of PCTN uses a different denominator definition.

2434 Chapter 70 / TABULATE Procedure



Figure 70.4 Three Different Uses of the PCTN Statistic with Frequency Counts Highlighted

1 <type> sums the frequency counts for all occurrences of Type within the same 
value of Division. Thus, for Division=1, the denominator is 6 + 6, or 12.

2 <division> sums the frequency counts for all occurrences of Division within the 
same value of Type. Thus, for Type=1, the denominator is 6 + 3 + 8 + 5, or 22.

3 The third use of PCTN has no denominator definition. Omitting a denominator 
definition is the same as including all class variables in the denominator 
definition. Thus, for all cells, the denominator is 6 + 3 + 8 + 5 + 6 + 3 + 8 + 5, or 
44.

Specifying a Denominator for the PCTSUM 
Statistic
The following PROC TABULATE step sums expenditures for each combination of 
Type and Division and calculates three different versions of PCTSUM.

proc tabulate data=energy format=8.2;
   class division type;
   var expenditures;
   table division*
           (sum='Expenditures'*f=dollar10.2
            pctsum<type>='% of row' 1

            pctsum<division>='% of column' 2

            pctsum='% of all customers'), 3

         type*expenditures/rts=40;
   title 'Expenditures in Each Division';
run;

Usage: TABULATE Procedure 2435



The TABLE statement creates a row for each value of Division and a column for 
each value of Type. Because Type is crossed with Expenditures, the value in each 
cell is the sum of the values of Expenditures for all observations that contribute to 
the cell. Within each row, the TABLE statement nests four statistics: SUM and three 
different calculations of PCTSUM. (See the following figure.) Each occurrence of 
PCTSUM uses a different denominator definition.

Figure 70.5 Three Different Uses of the PCTSUM Statistic with Sums Highlighted

1 <type> sums the values of Expenditures for all occurrences of Type within the 
same value of Division. Thus, for Division=1, the denominator is $7,477 + 
$5,129.

2 <division> sums the frequency counts for all occurrences of Division within the 
same value of Type. Thus, for Type=1, the denominator is $7,477 + $19,379 + 
$5,476 + $13,959.

3 The third use of PCTN has no denominator definition. Omitting a denominator 
definition is the same as including all class variables in the denominator 
definition. Thus, for all cells, the denominator is $7,477 + $19,379 + $5,476 + 
$13,959 + $5,129 + $15,078 + $4,729 + $12,619.

2436 Chapter 70 / TABULATE Procedure



Using ODS Styles with PROC TABULATE

Using Styles with Base SAS Procedures
Most Base SAS procedures that support ODS use one or more table templates to 
produce output objects. These table templates include templates for table elements: 
columns, headers, and footers. Each table element can specify the use of one or 
more style elements for various parts of the output. These style elements cannot be 
specified within the syntax of the procedure, but you can use customized styles for 
the ODS destinations that you use. For more information about customizing tables 
and styles, see “TEMPLATE Procedure: Creating a Style Template” in SAS Output 
Delivery System: Procedures Guide.

The Base SAS reporting procedures, PROC PRINT, PROC REPORT, and PROC 
TABULATE, enable you to quickly analyze your data and organize it into easy-to-
read tables. You can use the STYLE= option with these procedure statements to 
modify the appearance of your report. The STYLE= option enables you to make 
changes in sections of output without changing the default style for all of the output. 
You can customize specific sections of procedure output by specifying the STYLE= 
option in specific statements within the procedure.

The following program uses the STYLE= option to create the colors in the PROC 
TABULATE output below:

proc sort data=sashelp.prdsale out=prdsale;
    by Country;
run;

proc tabulate data=prdsale;   
   class region division prodtype / style=[background=lightgreen];   
   classlev region division prodtype  / style=[background=yellow];   
   var actual  / style=[background=tan];   
   keyword all sum / style=[background=linen color=blue];
   keylabel all='Total';   
   table (region all)*(division all),
         (prodtype all)*(actual*f=dollar10.) /
         box=[label='Region by Division and Type' 
style=[backgroundcolor=orange]]; 
 
title 'Actual Product Sales';
title2 '(millions of dollars)';
run;

Usage: TABULATE Procedure 2437

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p0cgtsocrm3ei3n1uqw9v4mbswkh.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p0cgtsocrm3ei3n1uqw9v4mbswkh.htm&locale=en


Output 70.4 Enhanced PROC TABULATE Output

Styles, Style Elements, and Style 
Attributes

Understanding Styles, Style Elements, and Style 
Attributes
The appearance of SAS output is controlled by ODS style templates (ODS styles). 
ODS styles are produced from compiled STYLE templates written in PROC 
TEMPLATE style syntax. An ODS style template is a collection of style elements 
that provides specific visual attributes for your SAS output.

n A style element is a named collection of style attributes that apply to a particular 
part of the output. Each area of ODS output has a style element name that is 
associated with it. The style element name specifies where the style attributes 
are applied. For example, a style element might contain instructions for the 
presentation of column headings or for the presentation of the data inside the 
cells. Style elements might also specify default colors and fonts for output that 
uses the style.

2438 Chapter 70 / TABULATE Procedure



n A style attribute is a visual property, such as color, font properties, and line 
characteristics, that is defined in ODS with a reserved name and value. Style 
attributes are collectively referenced by a style element within a style template. 
Each style attribute specifies a value for one aspect of the presentation. For 
example, the BACKGROUNDCOLOR= attribute specifies the color for the 
background of an HTML table or for a colored table in printed output. The 
FONTSTYLE= attribute specifies whether to use a Roman font or an italic font. 

Note: Because styles control the presentation of the data, they have no effect on 
output objects that go to the LISTING, DOCUMENT, or OUTPUT destination.

Available styles are in the SASHELP.TMPLMST item store. In SAS Enterprise 
Guide, the list of style sheets is shown by the Style Wizard. In batch mode or SAS 
Studio, you can display the list of available style templates by using the LIST 
statement in PROC TEMPLATE:

proc template;
   list styles / store=sashelp.tmplmst;
run;

For complete information about viewing ODS styles, see “Viewing ODS Styles 
Supplied by SAS” in SAS Output Delivery System: Advanced Topics.

By default, HTML 4 output uses the HTMLBlue style template and HTML 5 output 
uses the HTMLEncore style template. To help you become familiar with styles, style 
elements, and style attributes, look at the relationship between them.

You can use the SOURCE statement in PROC TEMPLATE to display the structure 
of a style template. The following code prints the structure of the HTMLBlue style 
template to the SAS log:

proc template;
   source styles.HTMLBlue; 
run;

The following figure illustrates the structure of a style. The figure shows the 
relationship between the style, the style elements, and the style attributes.

Usage: TABULATE Procedure 2439

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n0o6exd0dndm4bn1wtgmaesohow2.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n00tlpqdpto39yn1lth6vmz80jr1.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n00tlpqdpto39yn1lth6vmz80jr1.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p196ilkbe71ravn1b549rrzxzyqv.htm&locale=en


Figure 70.6 Diagram of the HtmlBlue Style

The following list corresponds to the numbered items in the preceding figure:

1 Styles.HtmlBlue is the style. Styles describe how to display presentation aspects 
(color, font, font size, and so on) of the SAS output. A style determines the 
overall appearance of the ODS documents that use it. The default style for 
HTML output is HtmlBlue. Each style consists of style elements.

2440 Chapter 70 / TABULATE Procedure



You can create new styles with the “DEFINE STYLE Statement” in SAS Output 
Delivery System: Procedures Guide. New styles can be created independently or 
from an existing style. You can use “PARENT= Statement” in SAS Output 
Delivery System: Procedures Guide to create a new style from an existing style. 
For complete documentation about ODS styles, see “Style Templates” in SAS 
Output Delivery System: Advanced Topics.

2 Header and Footer are examples of style elements. A style element is a 
collection of style attributes that apply to a particular part of the output for a SAS 
program. For example, a style element might contain instructions for the 
presentation of column headings or for the presentation of the data inside table 
cells. Style elements might also specify default colors and fonts for output that 
uses the style. Style elements exist inside styles and consist of one or more style 
attributes. Style elements can be user-defined or supplied by SAS. User-defined 
style elements can be created by the “STYLE Statement” in SAS Output Delivery 
System: Procedures Guide. 

Note: For a list of the default style elements used for HTML and markup 
languages and their inheritance, see “Style Elements” in SAS Output Delivery 
System: Advanced Topics. 

3 BORDERCOLOR=, BACKGROUNDCOLOR=, and COLOR= are examples of 
style attributes. Style attributes specify a value for one aspect of the area of the 
output that its style element applies to. For example, the COLOR= attribute 
specifies the value cx112277 for the font color. For a list of style attributes 
supplied by SAS, see “Style Attributes” in SAS Output Delivery System: 
Advanced Topics. 

Style attributes can be referenced with style references. See “style-reference” in 
SAS Output Delivery System: Advanced Topics for more information about style 
references.

The following table shows commonly used style attributes that you can set with the 
STYLE= option in PROC PRINT, PROC TABULATE, and PROC REPORT. Most of 
these attributes apply to parts of the table other than cells (for example, table 
borders and the lines between columns and rows). Note that not all attributes are 
valid in all destinations. For more information about these style attributes, their valid 
values, and their applicable destinations, see “Style Attributes Tables” in SAS 
Output Delivery System: Advanced Topics.

Table 70.4 Style Attributes for PROC REPORT, PROC TABULATE, and PROC PRINT

Attribute

PROC 
REPORT 

STATEMENT
REPORT 

Area

PROC 
REPORT 
Areas: 

CALLDEF
, 

COLUMN, 
HEADER, 

LINES, 
SUMMARY

PROC 
TABULATE 

STATEMENT
TABLE

PROC 
TABULATE 

STATEMENTS
VAR, 

CLASS, 
BOX, 

CLASSLEV, 
KEYWORD

PROC 
PRINT 
TABLE 

location

PROC 
PRINT: 

all 
locations 

other 
than 

TABLE

ASIS= X X X X

BACKGROUNDCOL
OR=

X X X X X X

Usage: TABULATE Procedure 2441

http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n17x28hg8d4fjfn11t9cggpcumsx.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=n17x28hg8d4fjfn11t9cggpcumsx.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1wicvcabwn684n1xvpgemmkxa19.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1wicvcabwn684n1xvpgemmkxa19.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0c5qpdczbofn4n1i6qfkew7p57h.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0c5qpdczbofn4n1i6qfkew7p57h.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1g9uebd55he4on1b213etlcn3jo.htm&locale=en
http://documentation.sas.com/?docsetId=odsproc&docsetVersion=9.4&docsetTarget=p1g9uebd55he4on1b213etlcn3jo.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=p0pm4ysu0fb68dn1d8uj78wcie6o.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=p0pm4ysu0fb68dn1d8uj78wcie6o.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n1b4339kviqrrcn1lt1lbm68e8xx.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n1b4339kviqrrcn1lt1lbm68e8xx.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=p0jrvtifiwse7qn1kgce32eg83dl.htm&docsetTargetAnchor=n1qhk2oq8dumgkn1q4izwr7dp46s&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=p0jrvtifiwse7qn1kgce32eg83dl.htm&docsetTargetAnchor=n1qhk2oq8dumgkn1q4izwr7dp46s&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0otdo2g12obp3n0zmnghcn7p4vu.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0otdo2g12obp3n0zmnghcn7p4vu.htm&locale=en


Attribute

PROC 
REPORT 

STATEMENT
REPORT 

Area

PROC 
REPORT 
Areas: 

CALLDEF
, 

COLUMN, 
HEADER, 

LINES, 
SUMMARY

PROC 
TABULATE 

STATEMENT
TABLE

PROC 
TABULATE 

STATEMENTS
VAR, 

CLASS, 
BOX, 

CLASSLEV, 
KEYWORD

PROC 
PRINT 
TABLE 

location

PROC 
PRINT: 

all 
locations 

other 
than 

TABLE

BACKGROUNDIMAG
E=

X X X X X X

BORDERBOTTOMC
OLOR=

X X X

BORDERBOTTOMS
TYLE=

X X X X

BORDERBOTTOMWI
DTH=

X X X X

BORDERLEFTCOLO
R=

X X X

BORDERLEFTSTYL
E=

X X X X

BORDERLEFTWIDT
H=

X X X X

BORDERCOLOR= X X X X X

BORDERCOLORDA
RK=

X X X X X X

BORDERCOLORLIG
HT=

X X X X X X

BORDERRIGHTCOL
OR=

X X X

BORDERRIGHTSTY
LE=

X X X X

BORDERRIGHTWID
TH=

X X X X

BORDERTOPCOLO
R=

X X X

BORDERTOPSTYLE
=

X X X X

BORDERTOPWIDTH
=

X X X X

2442 Chapter 70 / TABULATE Procedure



Attribute

PROC 
REPORT 

STATEMENT
REPORT 

Area

PROC 
REPORT 
Areas: 

CALLDEF
, 

COLUMN, 
HEADER, 

LINES, 
SUMMARY

PROC 
TABULATE 

STATEMENT
TABLE

PROC 
TABULATE 

STATEMENTS
VAR, 

CLASS, 
BOX, 

CLASSLEV, 
KEYWORD

PROC 
PRINT 
TABLE 

location

PROC 
PRINT: 

all 
locations 

other 
than 

TABLE

BORDERWIDTH= X X X X X X

CELLPADDING= X X X

CELLSPACING= X X X

CELLWIDTH= X X X X X

CLASS= X X X X X X

COLOR= X X X

FLYOVER= X X X X

FONT= X X X X X X

FONTFAMILY= X X X X X X

FONTSIZE= X X X X X X

FONTSTYLE= X X X X X X

FONTWEIGHT= X X X X X X

FONTWIDTH= X X X X X

FRAME= X X X

HEIGHT= X X X X X

HREFTARGET= X X X

HTMLSTYLE= X X X X X

NOBREAKSPACE=2 X X X X

OUTPUTWIDTH= X X X X X

POSTHTML=1 X X X X X X

POSTIMAGE= X X X X X X

POSTTEXT=1 X X X X X X

PREHTML=1 X X X X X X

Usage: TABULATE Procedure 2443



Attribute

PROC 
REPORT 

STATEMENT
REPORT 

Area

PROC 
REPORT 
Areas: 

CALLDEF
, 

COLUMN, 
HEADER, 

LINES, 
SUMMARY

PROC 
TABULATE 

STATEMENT
TABLE

PROC 
TABULATE 

STATEMENTS
VAR, 

CLASS, 
BOX, 

CLASSLEV, 
KEYWORD

PROC 
PRINT 
TABLE 

location

PROC 
PRINT: 

all 
locations 

other 
than 

TABLE

PREIMAGE= X X X X X X

PRETEXT=1 X X X X X X

PROTECTSPECIALC
HARS=

X X X X

RULES= X X X

TAGATTR= X X X X X X

TEXTALIGN= X X X X X X

URL= X X X

VERTICALALIGN= X X X

WIDTH= X X X X X

1 When you use these attributes in this location, they affect only the text that is specified with the PRETEXT=, POSTTEXT=, 
PREHTML=, and POSTHTML= attributes. To alter the foreground color or the font for the text that appears in the table, you 
must set the corresponding attribute in a location that affects the cells rather than the table. For complete documentation 
about style attributes and their values, see “Style Attributes” in SAS Output Delivery System: Advanced Topics.

2 To help prevent unexpected wrapping of long text strings when using PROC REPORT with the ODS RTF destination, set 
NOBREAKSPACE=OFF in a location that affects the LINE statement. The NOBREAKSPACE=OFF attribute must be set in 
the PROC REPORT code either on the LINE statement or on the PROC REPORT statement where style(lines) is 
specified.

Style Elements and Style Attributes for 
Table Regions
The following table lists the default style elements and style attributes for various 
regions of a PROC TABULATE table. The table lists defaults for the most commonly 
used ODS destinations: HTML, PDF, and RTF. Each destination has a default style 
template that is applied to all output that is written to the destination.

n The default style for HTML output is HTMLBlue.

n The default style for PRINTER output is Pearl.

n The default style for RTF output is RTF.

For complete documentation about the ODS destinations and their default styles, 
see “Style Templates” in SAS Output Delivery System: Advanced Topics.

2444 Chapter 70 / TABULATE Procedure

http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n1b4339kviqrrcn1lt1lbm68e8xx.htm&locale=en
http://documentation.sas.com/?docsetId=odsadvug&docsetVersion=9.4&docsetTarget=n0c5qpdczbofn4n1i6qfkew7p57h.htm&locale=en


Table 70.5 Default Style Elements and Style Attributes for Table Regions

Region
Style 
Element

HTML Style 
Attributes PDF Style Attributes RTF Style Attributes

Column 
headings and 
Box

Header FONTFAMILY = 
"Arial, 'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 2

FONTWEIGHT = bold

FONTSTYLE = 
roman

COLOR = cx112277

BACKGROUNDCOL
OR = cxedf2f9

FONTFAMILY = 
"Arial, 'Albany AMT’"

FONTSIZE = 8pt

FONTWEIGHT = 
bold

FONTSTYLE = 
roman

COLOR =cx000000

BACKGROUNDCOL
OR = cxffffff

BORDERWIDTH = 
NaN

FONTFAMILY 
="'Times New 
Roman', 'Times 
Roman'"

FONTSIZE = 11pt

FONTWEIGHT = bold

FONTSTYLE = 
roman

COLOR =cx000000

BACKGROUNDCOL
OR = cxbbbbbb

Page 
dimension text

Beforecaptio
n

FONTFAMILY = 
"Arial, 'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 2

FONTWEIGHT = bold

FONTSTYLE = 
roman

COLOR = cx112277

BACKGROUNDCOL
OR = cxfafbfe

FONTFAMILY = 
"Arial, 'Albany AMT’"

FONTSIZE = 8pt

FONTWEIGHT = 
bold

FONTSTYLE = 
roman

COLOR =cx000000

BACKGROUNDCOL
OR = cxffffff

FONTFAMILY 
="'Times New 
Roman', 'Times 
Roman'"

FONTSIZE = 11pt

FONTWEIGHT = bold

FONTSTYLE = 
roman

COLOR =cx000000

Row headings Rowheader FONTFAMILY = 
"Arial, 'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 2

FONTWEIGHT = bold

FONTSTYLE = 
roman

COLOR = cx112277

BACKGROUNDCOL
OR = cxedf2f9

FONTFAMILY = 
"Arial, 'Albany AMT’"

FONTSIZE = 8pt

FONTWEIGHT = 
bold

FONTSTYLE = 
roman

COLOR =cx000000

BACKGROUNDCOL
OR = cxffffff

BORDERWIDTH = 
NaN

FONTFAMILY 
="'Times New 
Roman', 'Times 
Roman'"

FONTSIZE = 11pt

FONTWEIGHT = bold

FONTSTYLE = 
roman

COLOR =cx000000

BACKGROUNDCOL
OR = cxbbbbbb

Data cells Data FONTFAMILY = 
"Arial, 'Albany AMT', 
Helvetica, Helv"

FONTSIZE = 2

FONTWEIGHT = 
medium

FONTFAMILY 
="’Albany AMT’, 
Albany"

FONTSIZE = 8pt

FONTWEIGHT = 
medium

FONTFAMILY 
="'Times New 
Roman', 'Times 
Roman'"

FONTSIZE = 10pt

Usage: TABULATE Procedure 2445



Region
Style 
Element

HTML Style 
Attributes PDF Style Attributes RTF Style Attributes

FONTSTYLE = 
roman

BACKGROUNDCOL
OR = cxffffff

FONTSTYLE = 
roman

COLOR = cx000000

BORDERWIDTH = 
NaN

COLOR = cx000000

FONTWEIGHT = 
medium

FONTSTYLE = 
roman

COLOR = cx000000

Using the STYLE= Option with PROC 
TABULATE Statements
PROC TABULATE style overrides are applied to a table based on the statements 
that create the table. With the STYLE= option, you can make changes to either the 
style element or style attributes that control the appearance of an area of the output 
by specifying the STYLE= option in the statement that controls the area that you 
want to modify. The following table shows the areas of a table that can be modified 
and their corresponding statements.

Specifications in the TABLE statement override the same specification in the PROC 
TABULATE, CLASS, CLASSLEV, VAR, and KEYWORD statements. This enables 
you to have different style behavior with multiple TABLE statements. However, any 
style attributes that you specify in the PROC TABULATE statement and that you do 
not override in the TABLE statement are inherited. For example, if you specify a 
blue background and a white foreground for all data cells in the PROC TABULATE 
statement, and you specify a gray background for the data cells of a particular 
crossing in the TABLE statement, then the background for those data cells is gray, 
and the foreground is white (as specified in the PROC TABULATE statement).

Detailed information about the STYLE= option is provided in the documentation for 
individual statements.

Table 70.6 Using the STYLE= Option in PROC TABULATE

Area To Be Modified STYLE Option To Use

Data cells PROC TABULATE statement or dimension expression(s) 
(p. 2386)

Page dimension text and class variable name 
headings

“CLASS Statement” (p. 2399)

Class level value headings “CLASSLEV Statement” (p. 2406)

Keyword headings “KEYWORD Statement” (p. 2409)

Table borders, rules, and other parts that are not 
specified elsewhere

“TABLE Statement” (p. 2412)

2446 Chapter 70 / TABULATE Procedure



Area To Be Modified STYLE Option To Use

Box text BOX= option of the TABLE statement (p. 2412)

Missing values MISSTEXT= option of the TABLE statement (p. 2412)

Analysis variable name headings “VAR Statement” (p. 2426)

Figure 70.7 PROC TABULATE Areas and Corresponding Statements

Applying Style Attributes to Table Cells
PROC TABULATE determines the style attributes to use for a particular cell from the 
following default order of precedence for styles:

1 If no other style attributes are specified, then PROC TABULATE uses the default 
style attributes from the default style (Data).

2 The STYLE= option in the PROC TABULATE statement changes the default 
style attributes. If no other STYLE= option specifications affect a cell, then 
PROC TABULATE uses these style attributes for that cell.

3 A STYLE= option that is specified in the page dimension applies to all the table 
cells on the logical page unless you specify another STYLE= option for a cell in 
the row or column dimension.

4 A STYLE= option that is specified in the row dimension applies to all the table 
cells in the row unless you specify another STYLE= option for a cell in the 
column dimension.

5 A STYLE= option that is specified in the column dimension applies to all the 
table cells in the column.

Usage: TABULATE Procedure 2447



You can change this order of precedence by using the STYLE_PRECEDENCE= 
option in the TABLE statement on page 2421. For example, if you specify 
STYLE_PRECEDENCE=ROW and specify a STYLE= option in the row dimension, 
then those style attribute values override all others that are specified for the table 
cells.

Using a Format to Assign a Style Attribute
You can use a format to assign a style attribute value to any cell whose content is 
determined by values of a class or analysis variable. For example, the following 
code assigns a red background to cells whose values are less than 10,000, a yellow 
background to cells whose values are at least 10,000 but less than 20,000, and a 
green background to cells whose values are at least 20,000:

proc format;
   value expfmt low-<10000='red'
                      10000-<20000='yellow'
                      20000-high='green';
run;

ods html body='external-HTML-file';
proc tabulate data=energy style=[backgroundcolor=expfmt.];
   class region division type;
   var expenditures;
   table (region all)*(division all),
           type*expenditures;
run;
ods html close;

Specifying Style Attributes and Style 
Elements in Dimension Expressions
You can specify one or more style elements or style attributes in a dimension 
expression to control the appearance of non-LISTING output. You can modify the 
appearance of the following areas:

n analysis variable name headings

n class variable name headings

n class variable level value headings

n data cells

n keyword headings

n page dimension text

Specifying a style attribute or style element in a dimension expression is useful 
when you want to override a style attribute or style element that you have specified 
in another statement, such as the PROC TABULATE, CLASS, CLASSLEV, 
KEYWORD, TABLE, or VAR statements.

2448 Chapter 70 / TABULATE Procedure



The syntax for specifying style elements and style attributes in a dimension 
expression is

[STYLE<(CLASSLEV)>=<style-element-name | PARENT>
[style-attribute-name-1=style-attribute-value-1< style-attribute-name-2=style-
attribute-value-2 ...>]]

These are some examples of style attributes in dimension expressions:

n

dept={label='Department'
      style=[color=red]}, N

n dept*[style=MyDataStyle], N

n dept*[format=12.2 style=MyDataStyle], N 

Note: When used in a dimension expression, the STYLE= option must be enclosed 
within square brackets ([ and ]) or braces ({ and }).

(CLASSLEV)
assigns a style element to a class variable level value heading. For example, the 
following TABLE statement specifies that the level value heading for the class 
variable, DEPT, has a foreground color of yellow:

table dept=[style(classlev)=
            [color=yellow]]*sales;

Note: The CLASSLEV option is used only in dimension expressions.

For an example that shows how to specify style elements within dimension 
expressions, see “Example 14: Specifying Style Overrides for ODS Output” on page 
2520. For information about using styles with PROC TABULATE, see “Using ODS 
Styles with PROC TABULATE” on page 2437.

SAS Cloud Analytic Services Processing for PROC 
TABULATE

If your input data set originates from SAS Cloud Analytic Services (CAS), some of 
the PROC TABULATE analysis can be performed by the CAS server. Reports that 
require significant summarization of data can benefit from CAS processing. Running 
PROC TABULATE with CAS actions has several advantages over processing within 
SAS. These advantages include reduced network traffic, and the potential for faster 
processing. Faster processing is possible because in-memory tables are 
manipulated locally on the server instead of being transferred across a relatively 
slow network connection. CAS is used because it might have more processing 
resources at its disposal.

When the DATA= input data set references an in-memory table or view in CAS, the 
TABULATE procedure can use CAS actions to perform a significant portion of its 
work within the server. To reference an in-memory table or view, you must specify 
the CAS engine LIBNAME statement and use the CAS engine libref with the input 
table name.

Usage: TABULATE Procedure 2449



By default, PROC TABULATE uses CAS processing whenever a CAS engine libref 
is specified on the input table name.

In the following example, the LIBNAME statement assigns a CAS engine libref 
named mycas that you use to connect to the CAS session casauto.

option casport=5570 cashost="cloud.example.com";
cas casauto ;
libname mycas cas;
data mycas.class;
   set sashelp.class;
run;
   
proc tabulate data=mycas.class;
   class sex age;
   var height weight;
   table sex,age*(height weight)*(sum mean);
run;

The following statistics are supported for CAS processing:

CSS RANGE
CV STDERR
LCLM SUM
MAX SUMWGT
MEAN STD
MIN UCLM
N USS
NMISS VAR

When SAS format definitions reside in CAS, formatting of class variables occurs in 
CAS. If the SAS format definitions do not reside on the CAS server, the CAS 
aggregation occurs on the raw values, and the relevant formats are applied by SAS 
as the results set is merged into the PROC TABULATE internal structure. User-
defined formats that are created in SAS must be copied into CAS for them to work 
as expected. It is a best practice to keep formats consistent between SAS and CAS. 
For complete documentation about using user-defined formats with CAS, see SAS 
Cloud Analytic Services: User-Defined Formats.

For information about how to use the CAS LIBNAME statement, see “CAS 
LIBNAME Statement” in SAS Cloud Analytic Services: User’s Guide. For more 
information about how procedures work with CAS processing, see Chapter 5, “CAS 
Processing of Base Procedures,” on page 93.

In-Database Processing for PROC TABULATE
In-database processing has several advantages over processing within SAS. These 
advantages include increased security, reduced network traffic, and the potential for 
faster processing. Increased security is possible because sensitive data does not 
have to be extracted from the database management system (DBMS). Faster 
processing is possible because data is manipulated locally, on the DBMS, using 
high-speed secondary storage devices instead of being transported across a 
relatively slow network connection, because the DBMS might have more processing 

2450 Chapter 70 / TABULATE Procedure

http://documentation.sas.com/?docsetId=casformats&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casformats&docsetVersion=3.5&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n14gqqdmdco6wzn17eb5v0o0p679.htm&locale=en
http://documentation.sas.com/?docsetId=casref&docsetVersion=3.5&docsetTarget=n14gqqdmdco6wzn17eb5v0o0p679.htm&locale=en


resources at its disposal, and because the DBMS might be capable of optimizing a 
query for execution in a highly parallel and scalable fashion.

When the DATA= input data set is stored as a table or view in a DBMS, the PROC 
TABULATE procedure can use in-database processing to perform most of its work 
within the database. In-database processing can provide the advantages of faster 
processing and reduced data transfer between the database and SAS software.

PROC TABULATE performs in-database processing by using SQL implicit pass-
through. The procedure generates SQL queries that are based on the classifications 
and the statistics that you specify in the TABLE statement. The database executes 
these SQL queries to construct initial summary tables, which are then transmitted to 
PROC TABULATE.

If class variables are specified, the procedure creates an SQL GROUP BY clause 
that represents the n-way type. Only the n-way class tree is generated on the 
DBMS. The result set that is created when the aggregation query executes in the 
database is read by SAS into the internal PROC TABULATE data structure.

When SAS format definitions have been deployed in the database, formatting of 
class variables occurs in the database. If the SAS format definitions have not been 
deployed in the database, the in-database aggregation occurs on the raw values, 
and the relevant formats are applied by SAS as the results' set is merged into the 
PROC TABULATE internal structures. Multi-label formatting is always done by SAS 
using the initially aggregated result set that is returned by the database.

The following statistics are supported for in-database processing:

CSS RANGE
CV STDERR
LCLM SUM
MAX SUMWGT
MEAN STD
MIN UCLM
N USS
NMISS VAR

The SQLGENERATION system option or LIBNAME statement option controls 
whether and how in-database procedures are run inside the database. By default, 
the in-database procedures are run inside the database when possible. There are 
many data set options that will prevent in-database processing. For a complete 
listing, see “In-Database Procedures” in SAS/ACCESS for Relational Databases: 
Reference.

PROC TABULATE is supported by the following databases:

n Amazon Redshift

n Aster

n DB2

n Google BigQuery

n Greenplum

n Hadoop

n HAWQ

n IMPALA

n Microsoft SQL Server

Usage: TABULATE Procedure 2451



n Netezza

n Oracle

n PostgreSQL

n SAP HANA

n Snowflake

n Teradata

n Vertica

n Yellowbrick

Substituting BY Line Values in a Text String
Starting with SAS 9.4M6, #BYLINE, #BYVAR, and #BYVAL substitutions are 
available in the following options:

n The CONTENTS= option in the TABLE statement and the PROC TABULATE 
statement.

n The CAPTION= option in the TABLE statement

To use the #BYVAR and #BYVAL substitutions, insert the item in the text string at 
the position where you want the substitution text to appear. Both #BYVAR and 
#BYVAL specifications must be followed by a delimiting character. The character 
can be either a space or other non-alphanumeric character, such as a quotation 
mark. If no delimiting character is provided, then the specification is ignored and its 
text remains intact and is displayed with the rest of the string. To allow a #BYVAR or 
#BYVAL substitution to be followed immediately by other text, with no delimiter, use 
a trailing dot (as with macro variables). The trailing dot is not displayed in the 
resolved text. If you want a period to be displayed as the last character in the 
resolved text, use two dots after the #BYVAR or #BYVAL substitution.

The substitution for #BYVAR or #BYVAL does not occur in the following cases:

n if you use a #BYVAR or #BYVAL specification for a variable that is not named in 
the BY statement. For example, you might use #BYVAL2 when there is only one 
BY-variable or #BYVAL(ABC) when ABC is non-existent or is not a BY-variable.

n if there is no BY statement

2452 Chapter 70 / TABULATE Procedure



Results: TABULATE Procedure

Missing Values

How PROC TABULATE Treats Missing 
Values
How a missing value for a variable in the input data set affects your output depends 
on how you use the variable in the PROC TABULATE step. The following table 
summarizes how the procedure treats missing values.

Table 70.7 Summary of How PROC TABULATE Treats Missing Values

Condition PROC TABULATE Default To Override Default

An observation contains a 
missing value for an analysis 
variable

Excludes that observation from 
the calculation of statistics 
(except N and NMISS) for that 
particular variable

No alternative

An observation contains a 
missing value for a class variable

Excludes that observation from 
the table1

Use MISSING in the PROC 
TABULATE statement, or 
MISSING in the CLASS 
statement

There are no data for a category Does not show the category in 
the table

Use PRINTMISS in the TABLE 
statement, or use CLASSDATA= 
in the PROC TABULATE 
statement

Every observation that 
contributes to a table cell 
contains a missing value for an 
analysis variable

Displays a missing value for any 
statistics (except N and NMISS) 
in that cell

Use MISSTEXT= in the TABLE 
statement

1. The CLASS statement applies to all TABLE statements in a PROC TABULATE step. Therefore, if you define a variable as 
a class variable, PROC TABULATE omits observations that have missing values for that variable even if you do not use 
the variable in a TABLE statement.

Results: TABULATE Procedure 2453



Condition PROC TABULATE Default To Override Default

There are no data for a formatted 
value

Does not display that formatted 
value in the table

Use PRELOADFMT in the 
CLASS statement with 
PRINTMISS in the TABLE 
statement, or use CLASSDATA= 
in the PROC TABULATE 
statement, or add dummy 
observations to the input data set 
so that it contains data for each 
formatted value

A FREQ variable value is 
missing or is less than 1

Does not use that observation to 
calculate statistics

No alternative

A WEIGHT variable value is 
missing or 0

Uses a value of 0 No alternative

This section presents a series of PROC TABULATE steps that illustrate how PROC 
TABULATE treats missing values. The following program creates the data set and 
formats that are used in this section and prints the data set. The data set 
COMPREV contains no missing values. (See the output below.)

proc format;
   value cntryfmt 1='United States'
                  2='Japan';
   value compfmt  1='Supercomputer'
                  2='Mainframe'
                  3='Midrange'
                  4='Workstation'
                  5='Personal Computer'
                  6='Laptop';
run;

data comprev;
   input Country Computer Rev90 Rev91 Rev92;
   datalines;
1 1 788.8 877.6 944.9
1 2 12538.1 9855.6 8527.9
1 3 9815.8 6340.3 8680.3
1 4 3147.2 3474.1 3722.4
1 5 18660.9 18428.0 23531.1
2 1 469.9 495.6 448.4
2 2 5697.6 6242.4 5382.3
2 3 5392.1 5668.3 4845.9
2 4 1511.6 1875.5 1924.5
2 5 4746.0 4600.8 4363.7
;

proc print data=comprev noobs;
   format country cntryfmt. computer compfmt.;
   title 'The Data Set COMPREV';
run;

2454 Chapter 70 / TABULATE Procedure



Output 70.5 The Data Set COMPREV

No Missing Values
The following PROC TABULATE step produces the following output:

proc tabulate data=comprev;
   class country computer;
   var rev90 rev91 rev92;
   table computer*country,rev90 rev91 rev92 /
         rts=32;
   format country cntryfmt. computer compfmt.;
   title 'Revenues from Computer Sales';
   title2 'for 1990 to 1992';
run;

Because the data set contains no missing values, the table includes all 
observations. All headings and cells contain nonmissing values.

Results: TABULATE Procedure 2455



Output 70.6 Computer Sales Data: No Missing Values

A Missing Class Variable
The next program copies COMPREV and alters the data so that the eighth 
observation has a missing value for Computer. Except for specifying this new data 
set, the program that produces the output “Computer Sales Data: Midrange, Japan, 
Deleted” below, is the same as the program that produces the output “Computer 
Sales Data: No Missing Values”, above. PROC TABULATE ignores observations 
with missing values for a class variable.

data compmiss;
   set comprev;
   if _n_=8 then computer=.;
run;

proc tabulate data=compmiss;
   class country computer;
   var rev90 rev91 rev92;
   table computer*country,rev90 rev91 rev92 /
         rts=32;
   format country cntryfmt. computer compfmt.;
   title 'Revenues from Computer Sales';
   title2 'for 1990 to 1992';
run;

The observation with a missing value for Computer was the category Midrange, 
Japan. This category no longer exists. By default, PROC TABULATE ignores 
observations with missing values for a class variable, so this table contains one less 
row than the output “Computer Sales Data: No Missing Values”.

2456 Chapter 70 / TABULATE Procedure



Output 70.7 Computer Sales Data: Midrange, Japan, Deleted

Including Observations with Missing Class 
Variables
This program adds the MISSING option to the previous program. MISSING is 
available either in the PROC TABULATE statement or in the CLASS statement. If 
you want MISSING to apply only to selected class variables, but not to others, then 
specify MISSING in a separate CLASS statement with the selected variables. The 
MISSING option includes observations with missing values of a class variable in the 
report. (See the following output.)

proc tabulate data=compmiss missing;
   class country computer;
   var rev90 rev91 rev92;
   table computer*country,rev90 rev91 rev92 /
         rts=32;
   format country cntryfmt. computer compfmt.;
   title 'Revenues from Computer Sales';
   title2 'for 1990 to 1992';
run;

This table includes a category with missing values of Computer. This category 
makes up the first row of data in the table.

Results: TABULATE Procedure 2457



Output 70.8 Computer Sales Data: Missing Values for Computer

Formatting Headings for Observations with 
Missing Class Variables
By default, as shown in the output “Computer Sales Data: Missing Values for 
Computer”, PROC TABULATE displays missing values of a class variable as one of 
the standard SAS characters for missing values (a period, a blank, an underscore, 
or one of the letters A through Z). If you want to display something else instead, 
then you must assign a format to the class variable that has missing values, as 
shown in the following program. (See the following output.)

proc format;
   value misscomp 1='Supercomputer'
                  2='Mainframe'
                  3='Midrange'
                  4='Workstation'
                  5='Personal Computer'
                  6='Laptop'
                  .='No type given';
run;

proc tabulate data=compmiss missing;
   class country computer;
   var rev90 rev91 rev92;
   table computer*country,rev90 rev91 rev92 /
         rts=32;
   format country cntryfmt. computer misscomp.;
   title 'Revenues for Computer Sales';
   title2 'for 1990 to 1992';
run;

2458 Chapter 70 / TABULATE Procedure



In this table, the missing value appears as the text that the MISSCOMP. format 
specifies.

Output 70.9 Computer Sales Data: Text Supplied for Missing Computer Value

Providing Headings for All Categories
By default, PROC TABULATE evaluates each page that it prints and omits columns 
and rows for categories that do not exist. For example, “Computer Sales Data: Text 
Supplied for Missing Computer Value ” does not include a row for No type given 
and for United States or for Midrange and for Japan because there are no data in 
these categories. If you want the table to represent all possible categories, then use 
the PRINTMISS option in the TABLE statement, as shown in the following program. 
(See the following output.)

proc tabulate data=compmiss missing;
   class country computer;
   var rev90 rev91 rev92;
   table computer*country,rev90 rev91 rev92 /
         rts=32 printmiss;
   format country cntryfmt. computer misscomp.;
   title 'Revenues for Computer Sales';
   title2 'for 1990 to 1992';
run;

This table contains a row for the category No type given, United States and the 
category Midrange, Japan. Because there are no data in these categories, the 
values for the statistics are all missing.

Results: TABULATE Procedure 2459



Output 70.10 Computer Sales Data: Missing Statistics Values

Providing Text for Cells That Contain 
Missing Values
If some observations in a category contain missing values for analysis variables, 
then PROC TABULATE does not use those observations to calculate statistics 
(except N and NMISS). However, if each observation in a category contains a 
missing value, then PROC TABULATE displays a missing value for the value of the 
statistic. To replace missing values for analysis variables with text, use the 
MISSTEXT= option in the TABLE statement to specify the text to use, as shown in 
the following program. (See the following output.)

proc tabulate data=compmiss missing;
   class country computer;
   var rev90 rev91 rev92;
   table computer*country,rev90 rev91 rev92 /
         rts=32 printmiss misstext='NO DATA!';
   format country cntryfmt. computer misscomp.;
   title 'Revenues for Computer Sales';
   title2 'for 1990 to 1992';
run;

This table replaces the period normally used to display missing values with the text 
of the MISSTEXT= option.

2460 Chapter 70 / TABULATE Procedure



Output 70.11 Computer Sales Data: Text Supplied for Missing Statistics Values

Providing Headings for All Values of a 
Format
PROC TABULATE prints headings only for values that appear in the input data set. 
For example, the format COMPFMT. provides for six possible values of Computer. 
Only five of these values occur in the data set COMPREV. The data set contains no 
data for laptop computers.

If you want to include headings for all possible values of Computer (perhaps to 
make it easier to compare the output with tables that are created later when you do 
have data for laptops), then you have three different ways to create such a table:

n Use the PRELOADFMT option in the CLASS statement with the PRINTMISS 
option in the TABLE statement. See “Example 3: Using Preloaded Formats with 
Class Variables” on page 2470 for another example that uses PRELOADFMT.

n Use the CLASSDATA= option in the PROC TABULATE statement. See 
“Example 2: Specifying Class Variable Combinations to Appear in a Table” on 
page 2467 for an example that uses the CLASSDATA= option.

n Add dummy values to the input data set so that each value that the format 
handles appears at least once in the data set.

The following program adds the PRELOADFMT option to a CLASS statement that 
contains the relevant variable.

The results are shown in the following output.

Results: TABULATE Procedure 2461



proc tabulate data=compmiss missing;
   class country;
   class computer / preloadfmt;
   var rev90 rev91 rev92;
   table computer*country,rev90 rev91 rev92 /
         rts=32 printmiss misstext='NO DATA!';
   format country cntryfmt. computer compfmt.;
   title 'Revenues for Computer Sales';
   title2 'for 1990 to 1992';
run;

This table contains a heading for each possible value of Computer.

Output 70.12 Computer Sales Data: All Possible Computer Values Included

Understanding the Order of Headings with 
ORDER=DATA

The ORDER= option applies to all class variables. Occasionally, you want to order 
the headings for different variables differently. One method for reordering the 
headings is to group the data as you want them to appear and to specify 
ORDER=DATA.

2462 Chapter 70 / TABULATE Procedure



For this technique to work, the first value of the first class variable must occur in the 
data with all possible values of all the other class variables. If this criterion is not 
met, then the order of the headings might surprise you.

The following program creates a simple data set in which the observations are 
ordered first by the values of Animal, then by the values of Food. The ORDER= 
option in the PROC TABULATE statement orders the heading for the class variables 
by the order of their appearance in the data set. (See the following output.) Although 
bones is the first value for Food in the group of observations where Animal=dog, all 
other values for Food appear before bones in the data set because bones never 
appears when Animal=cat. Therefore, the heading for bones in the table in the 
following output is not in alphabetical order.

In other words, PROC TABULATE maintains for subsequent categories the order 
that was established by earlier categories. If you want to re-establish the order of 
Food for each value of Animal, then use BY-group processing. PROC TABULATE 
creates a separate table for each BY group, so that the ordering can differ from one 
BY group to the next.

data foodpref;
   input Animal $ Food $;
   datalines;
cat fish
cat meat
cat milk
dog bones
dog fish
dog meat
;

proc tabulate data=foodpref format=9.
              order=data;
   class animal food;
   table animal*food;
run;

Output 70.13 Ordering the Headings of Class Variables

Results: TABULATE Procedure 2463



Portability of ODS Output with PROC TABULATE
Under certain circumstances, using PROC TABULATE with the Output Delivery 
System produces files that are not portable. If the SAS system option FORMCHAR= 
in your SAS session uses nonstandard line-drawing characters, then the output 
might include strange characters instead of lines in operating environments in which 
the SAS Monospace font is not installed. To avoid this problem, specify the following 
OPTIONS statement before executing PROC TABULATE:

options formchar="|----|+|---+=|-/\<>*";

Examples: TABULATE Procedure

Example 1: Creating a Basic Two-Dimensional 
Table
Features: CLASS statement

PROC TABULATE statement options
DATA=
FORMAT=

TABLE statement options
crossing (*) operator
RTS=

VAR statement
DATA step
FORMAT procedure
FORMAT statement
TITLE statement

Data set: ENERGY

Details
The following example program does the following:

n creates a category for each type of user (residential or business) in each division 
of each region

n applies the same format to all cells in the table

2464 Chapter 70 / TABULATE Procedure



n applies a format to each class variable

n extends the space for row headings

Program
data energy;
   length State $2;
   input Region Division state $ Type Expenditures;
   datalines;
1 1 ME 1 708
1 1 ME 2 379

 ... more data lines ...

4 4 HI 1 273
4 4 HI 2 298
;

proc format;
   value regfmt 1='Northeast'
                2='South'
                3='Midwest'
                4='West';
   value divfmt 1='New England'
                2='Middle Atlantic'
                3='Mountain'
                4='Pacific';
   value usetype 1='Residential Customers'
                 2='Business Customers';
run;

proc tabulate data=energy format=dollar12.;

   class region division type;
   

   var expenditures;

   table region*division,
         type*expenditures

          / rts=25;

   format region regfmt. division divfmt. type usetype.;

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

Program Description

Create the ENERGY data set. ENERGY contains data on expenditures of energy 
for business and residential customers in individual states in the Northeast and 
West regions of the United States. A DATA step on page 2696 creates the data set. 

Example 1: Creating a Basic Two-Dimensional Table 2465



data energy;
   length State $2;
   input Region Division state $ Type Expenditures;
   datalines;
1 1 ME 1 708
1 1 ME 2 379

 ... more data lines ...

4 4 HI 1 273
4 4 HI 2 298
;

Create the REGFMT., DIVFMT., and USETYPE. formats. PROC FORMAT creates 
formats for Region, Division, and Type.

proc format;
   value regfmt 1='Northeast'
                2='South'
                3='Midwest'
                4='West';
   value divfmt 1='New England'
                2='Middle Atlantic'
                3='Mountain'
                4='Pacific';
   value usetype 1='Residential Customers'
                 2='Business Customers';
run;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the 
default format for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement separates the 
analysis by values of Region, Division, and Type.

   class region division type;
   

Specify the analysis variable. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Expenditures variable.

   var expenditures;

Define the table rows and columns. The TABLE statement creates a row for each 
formatted value of Region. Nested within each row are rows for each formatted 
value of Division. The TABLE statement also creates a column for each formatted 
value of Type. Each cell that is created by these rows and columns contains the 
sum of the analysis variable Expenditures for all observations that contribute to that 
cell.

   table region*division,
         type*expenditures

Specify the row title space. RTS= provides 25 characters per line for row 
headings.

          / rts=25;

Format the output. The FORMAT statement assigns formats to the variables 
Region, Division, and Type.

2466 Chapter 70 / TABULATE Procedure



   format region regfmt. division divfmt. type usetype.;

Specify the titles.

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

Output
Output 70.14 Basic Two-Dimensional Table

Example 2: Specifying Class Variable Combinations 
to Appear in a Table
Features: CLASS statement

PROC TABULATE Statement options
DATA=
CLASSDATA=
EXCLUSIVE
FORMAT=

TABLE statement options
crossing (*) operator
RTS=

VAR statement
DATA step
FORMAT statement
TITLE statement

Data set: ENERGY

Example 2: Specifying Class Variable Combinations to Appear in a Table 2467



Details
This example does the following:

n uses the CLASSDATA= option to specify combinations of class variables to 
appear in a table.

n uses the EXCLUSIVE option to restrict the output to only the combinations 
specified in the CLASSDATA= data set. Without the EXCLUSIVE option, the 
output would be the same as in “Example 1: Creating a Basic Two-Dimensional 
Table” on page 2464.

Program
data classes;
   input region division type;
   datalines;
1 1 1
1 1 2
4 4 1
4 4 2
;

proc tabulate data=energy format=dollar12.
              classdata=classes exclusive;
 

   class region division type;

   var expenditures;

   table region*division,
          type*expenditures

        / rts=25;

   format region regfmt. division divfmt. type usetype.;

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

Program Description
Create the CLASSES data set. CLASSES contains the combinations of class 
variable values that PROC TABULATE uses to create the table.

data classes;
   input region division type;
   datalines;
1 1 1
1 1 2

2468 Chapter 70 / TABULATE Procedure



4 4 1
4 4 2
;

Specify the table options. CLASSDATA= and EXCLUSIVE restrict the class level 
combinations to those that are specified in the CLASSES data set.

proc tabulate data=energy format=dollar12.
              classdata=classes exclusive;
 

Specify subgroups for the analysis. The CLASS statement separates the 
analysis by values of Region, Division, and Type.

   class region division type;

Specify the analysis variable. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Expenditures variable.

   var expenditures;

Define the table rows and columns. The TABLE statement creates a row for each 
formatted value of Region. Nested within each row are rows for each formatted 
value of Division. The TABLE statement also creates a column for each formatted 
value of Type. Each cell that is created by these rows and columns contains the 
sum of the analysis variable Expenditures for all observations that contribute to that 
cell.

   table region*division,
          type*expenditures

Specify the row title space. RTS= provides 25 characters per line for row 
headings.

        / rts=25;

Format the output. The FORMAT statement assigns formats to the variables 
Region, Division, and Type.

   format region regfmt. division divfmt. type usetype.;

Specify the titles.

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

Example 2: Specifying Class Variable Combinations to Appear in a Table 2469



Output
Output 70.15 Energy Expenditures for Each Region

Example 3: Using Preloaded Formats with Class 
Variables
Features: CLASS statement options

EXCLUSIVE
PRELOADFMT

PROC TABULATE statement options
DATA=
FORMAT=
OUT=

TABLE statement options
crossing (*) operator
PRINTMISS
RTS

VAR statement
FORMAT statement
PRINT procedure
TITLE statement

Data set: ENERGY

Details
This example does the following:

2470 Chapter 70 / TABULATE Procedure



n creates a table that includes all possible combinations of formatted class variable 
values (PRELOADFMT with PRINTMISS), even if those combinations have a 
zero frequency and even if they do not make sense

n uses only the preloaded range of user-defined formats as the levels of class 
variables (PRELOADFMT with EXCLUSIVE)

n writes the output to an output data set, and prints that data set

Program
proc tabulate data=energy format=dollar12.;

   class region division type / preloadfmt;

   var expenditures;

   table region*division,
         type*expenditures / rts=25 printmiss;

   format region regfmt. division divfmt. type usetype.;

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

proc tabulate data=energy format=dollar12. out=tabdata;

   class region division type / preloadfmt exclusive;

   var expenditures;

   table region*division,
         type*expenditures / rts=25;

   format region regfmt. division divfmt. type usetype.;

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

proc print data=tabdata;
run;

Program Description
Specify the table options. The FORMAT= option specifies DOLLAR12. as the 
default format for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement separates the 
analysis by values of Region, Division, and Type. PRELOADFMT specifies that 
PROC TABULATE use the preloaded values of the user-defined formats for the 
class variables.

   class region division type / preloadfmt;

Specify the analysis variable. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Expenditures variable.

Example 3: Using Preloaded Formats with Class Variables 2471



   var expenditures;

Define the table rows and columns, and specify row and column options. 
PRINTMISS specifies that all possible combinations of user-defined formats be 
used as the levels of the class variables.

   table region*division,
         type*expenditures / rts=25 printmiss;

Format the output. The FORMAT statement assigns formats to the variables 
Region, Division, and Type.

   format region regfmt. division divfmt. type usetype.;

Specify the titles.

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

Specify the table options and the output data set. The OUT= option specifies the 
name of the output data set to which PROC TABULATE writes the data.

proc tabulate data=energy format=dollar12. out=tabdata;

Specify subgroups for the analysis. The EXCLUSIVE option, when used with 
PRELOADFMT, uses only the preloaded range of user-defined formats as the levels 
of class variables.

   class region division type / preloadfmt exclusive;

Specify the analysis variable. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Expenditures variable.

   var expenditures;

Define the table rows and columns, and specify row and column options. The 
PRINTMISS option is not specified in this case. If it were, then it would override the 
EXCLUSIVE option in the CLASS statement.

   table region*division,
         type*expenditures / rts=25;

Format the output. The FORMAT statement assigns formats to the variables 
Region, Division, and Type.

   format region regfmt. division divfmt. type usetype.;

Specify the titles.

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

Print the output data set WORK.TABDATA.

proc print data=tabdata;
run;

Output
This output, created with the PRELOADFMT and PRINTMISS options, contains all 
possible combinations of preloaded user-defined formats for the class variable 

2472 Chapter 70 / TABULATE Procedure



values. It includes combinations with zero frequencies, and combinations that make 
no sense, such as Northeast and Pacific.

Output 70.16 Energy Expenditures for Each Region

This output, created with the PRELOADFMT and EXCLUSIVE options, contains 
only those combinations of preloaded user-defined formats for the class variable 
values that appear in the input data set. This output is identical to the output from 
“Example 1: Creating a Basic Two-Dimensional Table” on page 2464.

Example 3: Using Preloaded Formats with Class Variables 2473



Output 70.17 Energy Expenditures for Each Region

This output shows the output data set TABDATA, which was created by the OUT= 
option in the PROC TABULATE statement. TABDATA contains the data that is 
created by having the PRELOADFMT and EXCLUSIVE options specified.

Output 70.18 Energy Expenditures for Each Region

Example 4: Using Multilabel Formats
Features: CLASS statement options

MLF
PROC TABULATE statement options

DATA=
FORMAT=

TABLE statement
ALL class variable

2474 Chapter 70 / TABULATE Procedure



concatenation (blank) operator
crossing (*) operator
grouping elements (parentheses) operator
label
variable list

VAR statement
DATA step
FORMAT procedure
FORMAT statement
TITLE statement

Data set: CARSURVEY

Details
This example does the following:

n shows how to specify a multilabel format in the VALUE statement of PROC 
FORMAT

n shows how to activate multilabel format processing using the MLF option with 
the CLASS statement

n demonstrates the behavior of the N statistic when multilabel format processing is 
activated

Program
data carsurvey;
   input Rater Age Progressa Remark Jupiter Dynamo;
   datalines;
1   38  94  98  84  80
2   49  96  84  80  77
3   16  64  78  76  73
4   27  89  73  90  92

 ... more data lines ...

77   61  92  88  77  85
78   24  87  88  88  91
79   18  54  50  62  74
80   62  90  91  90  86
;

proc format;
   value agefmt (multilabel notsorted)
         15 - 29 = 'Below 30 years'
         30 - 50 = 'Between 30 and 50'
       51 - high = 'Over 50 years'
         15 - 19 = '15 to 19'
         20 - 25 = '20 to 25'

Example 4: Using Multilabel Formats 2475



         25 - 39 = '25 to 39'
         40 - 55 = '40 to 55'
       56 - high = '56 and above';
run;

proc tabulate data=carsurvey format=10.;

   class age / mlf;

   var progressa remark jupiter dynamo;

   table age all, n all='Potential Car Names'*(progressa remark
      jupiter dynamo)*mean;
   

   title1 "Rating Four Potential Car Names";
   title2 "Rating Scale 0-100 (100 is the highest rating)";

   format age agefmt.;
run;

Program Description

Create the CARSURVEY data set. CARSURVEY contains data from a survey that 
was distributed by a car manufacturer to a focus group of potential customers who 
were brought together to evaluate new car names. Each observation in the data set 
contains an identification number, the participant's age, and the participant's ratings 
of four car names. A DATA step creates the data set.

data carsurvey;
   input Rater Age Progressa Remark Jupiter Dynamo;
   datalines;
1   38  94  98  84  80
2   49  96  84  80  77
3   16  64  78  76  73
4   27  89  73  90  92

 ... more data lines ...

77   61  92  88  77  85
78   24  87  88  88  91
79   18  54  50  62  74
80   62  90  91  90  86
;

Create the AGEFMT. format. The FORMAT procedure creates a multilabel format 
for ages by using the “MULTILABEL” on page 1097. A multilabel format is one in 
which multiple labels can be assigned to the same value, in this case because of 
overlapping ranges. Each value is represented in the table for each range in which it 
occurs. The NOTSORTED option stores the ranges in the order in which they are 
defined.

proc format;
   value agefmt (multilabel notsorted)
         15 - 29 = 'Below 30 years'
         30 - 50 = 'Between 30 and 50'
       51 - high = 'Over 50 years'
         15 - 19 = '15 to 19'

2476 Chapter 70 / TABULATE Procedure



         20 - 25 = '20 to 25'
         25 - 39 = '25 to 39'
         40 - 55 = '40 to 55'
       56 - high = '56 and above';
run;

Specify the table options. The FORMAT= option specifies up to 10 digits as the 
default format for the value in each table cell.

proc tabulate data=carsurvey format=10.;

Specify subgroups for the analysis. The CLASS statement identifies Age as the 
class variable and uses the MLF option to activate multilabel format processing.

   class age / mlf;

Specify the analysis variables. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Progressa, Remark, Jupiter, and Dynamo 
variables.

   var progressa remark jupiter dynamo;

Define the table rows and columns. The row dimension of the TABLE statement 
creates a row for each formatted value of Age. Multilabel formatting allows an 
observation to be included in multiple rows or age categories. The row dimension 
uses the ALL class variable to summarize information for all rows. The column 
dimension uses the N statistic to calculate the number of observations for each age 
group. Notice that the result of the N statistic crossed with the ALL class variable in 
the row dimension is the total number of observations instead of the sum of the N 
statistics for the rows. The column dimension uses the ALL class variable at the 
beginning of a crossing to assign a label, Potential Car Names. The four nested 
columns calculate the mean ratings of the car names for each age group.

   table age all, n all='Potential Car Names'*(progressa remark
      jupiter dynamo)*mean;
   

Specify the titles.

   title1 "Rating Four Potential Car Names";
   title2 "Rating Scale 0-100 (100 is the highest rating)";

Format the output. The FORMAT statement assigns the user-defined format 
AGEFMT. to Age for this analysis.

   format age agefmt.;
run;

Example 4: Using Multilabel Formats 2477



Output
Output 70.19 Rating Four Potential Car Names

Example 5: Customizing Row and Column 
Headings
Features: CLASS statement

PROC TABULATE statement options
DATA=
FORMAT=

TABLE statement options
crossing (*) operator
labels
RTS=

VAR statement
FORMAT statement
TITLE statement

Data set: ENERGY

Format: REGFMT.

Format: DIVFMT.

Format: USETYPE.

2478 Chapter 70 / TABULATE Procedure



Details
This example shows how to customize row and column headings. A label specifies 
text for a heading. A blank label creates a blank heading. PROC TABULATE 
removes the space for blank column headings from the table.

Program
proc tabulate data=energy format=dollar12.;

   class region division type;

   var expenditures;

   table region*division,
        type='Customer Base'*expenditures=' '*sum=' '

         / rts=25;

   format region regfmt. division divfmt. type usetype.;

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

Program Description
Specify the table options. The FORMAT= option specifies DOLLAR12. as the 
default format for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement identifies Region, 
Division, and Type as class variables.

   class region division type;

Specify the analysis variable. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Expenditures variable.

   var expenditures;

Define the table rows and columns. The TABLE statement creates a row for each 
formatted value of Region. Nested within each row are rows for each formatted 
value of Division. The TABLE statement also creates a column for each formatted 
value of Type. Each cell that is created by these rows and columns contains the 
sum of the analysis variable Expenditures for all observations that contribute to that 
cell. Text in quotation marks specifies headings for the corresponding variable or 
statistic. Although Sum is the default statistic, it is specified here so that you can 
specify a blank for its heading.

   table region*division,
        type='Customer Base'*expenditures=' '*sum=' '

Example 5: Customizing Row and Column Headings 2479



Specify the row title space. RTS= provides 25 characters per line for row 
headings.

         / rts=25;

Format the output. The FORMAT statement assigns formats to Region, Division, 
and Type.

   format region regfmt. division divfmt. type usetype.;

Specify the titles.

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

Output
The heading for Type contains text that is specified in the TABLE statement. The 
TABLE statement eliminated the headings for Expenditures and Sum.

Output 70.20 Energy Expenditures for Each Region

Example 6: Summarizing Information with the 
Universal Class Variable ALL
Features: CLASS statement

PROC TABULATE statement options
DATA=
FORMAT=

TABLE statement
ALL class variable
concatenation (blank operator)
format modifiers
grouping elements (parentheses operator)
RTS=

2480 Chapter 70 / TABULATE Procedure



VAR statement
FORMAT statement
TITLE statement

Data set: ENERGY

Format: REGFMT.

Format: DIVFMT.

Format: USETYPE.

Details
This example shows how to use the universal class variable ALL to summarize 
information from multiple categories.

Program
proc tabulate data=energy format=comma12.;

   class region division type;

   var expenditures;

   table region*(division all='Subtotal')
      all='Total for All Regions'*f=dollar12.,

      type='Customer Base'*expenditures=' '*sum=' '
         all='All Customers'*expenditures=' '*sum=' '

      / rts=25;

   format region regfmt. division divfmt. type usetype.;

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

Program Description
Specify the table options. The FORMAT= option specifies COMMA12. as the 
default format for the value in each table cell.

proc tabulate data=energy format=comma12.;

Specify subgroups for the analysis. The CLASS statement identifies Region, 
Division, and Type as class variables.

   class region division type;

Specify the analysis variable. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Expenditures variable.

Example 6: Summarizing Information with the Universal Class Variable ALL 2481



   var expenditures;

   table region*(division all='Subtotal')
      all='Total for All Regions'*f=dollar12.,

      type='Customer Base'*expenditures=' '*sum=' '
         all='All Customers'*expenditures=' '*sum=' '

Specify the row title space. RTS= provides 25 characters per line for row 
headings.

      / rts=25;

Format the output. The FORMAT statement assigns formats to the variables 
Region, Division, and Type.

   format region regfmt. division divfmt. type usetype.;

Specify the titles.

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

Output
The universal class variable ALL provides subtotals and totals in this table.

Output 70.21 Energy Expenditures for Each Region

Example 7: Eliminating Row Headings
Features: CLASS statement

PROC TABULATE statement options

2482 Chapter 70 / TABULATE Procedure



DATA=
FORMAT=

TABLE statement options
crossing (*) operator
labels
ROW=FLOAT
RTS=

VAR statement
FORMAT statement
TITLE statement

Data set: ENERGY

Format: REGFMT.

Format: DIVFMT.

Format: USETYPE.

Details
This example shows how to eliminate blank row headings from a table. To do so, 
you must both provide blank labels for the row headings and specify ROW=FLOAT 
in the TABLE statement.

Program
proc tabulate data=energy format=dollar12.;

   class region division type;

   var expenditures;

   table region*division*expenditures=' '*sum=' ',

         type='Customer Base'

         / rts=25 row=float;

   format region regfmt. division divfmt. type usetype.;

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

Program Description
Specify the table options. The FORMAT= option specifies DOLLAR12. as the 
default format for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Example 7: Eliminating Row Headings 2483



Specify subgroups for the analysis. The CLASS statement identifies Region, 
Division, and Type as class variables.

   class region division type;

Specify the analysis variable. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Expenditures variable.

   var expenditures;

Define the table rows. The row dimension of the TABLE statement creates a row 
for each formatted value of Region. Nested within these rows is a row for each 
formatted value of Division. The analysis variable Expenditures and the Sum 
statistic are also included in the row dimension, so PROC TABULATE creates row 
headings for them as well. The text in quotation marks specifies the headings for the 
corresponding variable or statistic. Although Sum is the default statistic, it is 
specified here so that you can specify a blank for its heading.

   table region*division*expenditures=' '*sum=' ',

Define the table columns. The column dimension of the TABLE statement creates 
a column for each formatted value of Type.

         type='Customer Base'

Specify the row title space and eliminate blank row headings. RTS= provides 
25 characters per line for row headings. ROW=FLOAT eliminates blank row 
headings.

         / rts=25 row=float;

Format the output. The FORMAT statement assigns formats to the variables 
Region, Division, and Type.

   format region regfmt. division divfmt. type usetype.;

Specify the titles.

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

Output
Compare this table with the output in “Example 5: Customizing Row and Column 
Headings” on page 2478. The two tables are identical, but the program that creates 
this table uses Expenditures and Sum in the row dimension. PROC TABULATE 
automatically eliminates blank headings from the column dimension, whereas you 
must specify ROW=FLOAT to eliminate blank headings from the row dimension.

2484 Chapter 70 / TABULATE Procedure



Output 70.22 Energy Expenditures for Each Region

Example 8: Indenting Row Headings and 
Eliminating Horizontal Separators
Features: CLASS statement

PROC TABULATE statement options
DATA=
FORMAT=
NOSEPS

TABLE statement options
crossing (*) operator
labels
INDENT=
RTS=

VAR statement
FORMAT statement
ODS LISTING statement
ODS LISTING CLOSE statement
OPTIONS statement
TITLE statement

Data set: ENERGY

Format: REGFMT.

Format: DIVFMT.

Format: USETYPE.

Details
This example shows how to condense the structure of a table by doing the following:

Example 8: Indenting Row Headings and Eliminating Horizontal Separators 2485



n removing row headings for class variables

n indenting nested rows underneath parent rows instead of placing them next to 
each other

n eliminating horizontal separator lines from the row titles and the body of the table

Program
options nodate nonumber;
ods listing;

proc tabulate data=energy format=dollar12. noseps;

   class region division type;

   var expenditures;

    table region*division,
          type='Customer Base'*expenditures=' '*sum=' '

         / rts=25 indent=4;

   format region regfmt. division divfmt. type usetype.;

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

ods listing close;

Program Description
Open the LISTING destination. The INDENT argument does not indent nested row 
headings for HTML output. The output will be captured as a listing with page 
numbering and date turned off.

options nodate nonumber;
ods listing;

Specify the table options. The FORMAT= option specifies DOLLAR12. as the 
default format for the value in each table cell. NOSEPS eliminates horizontal 
separator lines from row titles and from the body of the table.

proc tabulate data=energy format=dollar12. noseps;

Specify subgroups for the analysis. The CLASS statement identifies Region, 
Division, and Type as class variables.

   class region division type;

Specify the analysis variable. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Expenditures variable.

   var expenditures;

Define the table rows and columns. The TABLE statement creates a row for each 
formatted value of Region. Nested within each row are rows for each formatted 
value of Division. The TABLE statement also creates a column for each formatted 
value of Type. Each cell that is created by these rows and columns contains the 

2486 Chapter 70 / TABULATE Procedure



sum of the analysis variable Expenditures for all observations that contribute to that 
cell. Text in quotation marks in all dimensions specifies headings for the 
corresponding variable or statistic. Although Sum is the default statistic, it is 
specified here so that you can specify a blank for its heading.

    table region*division,
          type='Customer Base'*expenditures=' '*sum=' '

Specify the row title space and indention value. RTS= provides 25 characters 
per line for row headings. INDENT= removes row headings for class variables, 
places values for Division beneath values for Region rather than beside them, and 
indents values for Division four spaces.

         / rts=25 indent=4;

Format the output. The FORMAT statement assigns formats to the variables 
Region, Division, and Type.

   format region regfmt. division divfmt. type usetype.;

Specify the titles.

   title 'Energy Expenditures for Each Region';
   title2 '(millions of dollars)';
run;

Close the LISTING destination.

ods listing close;

Output
NOSEPS removes the separator lines from the row titles and the body of the table. 
INDENT= eliminates the row headings for Region and Division and indents values 
for Division underneath values for Region.

Output 70.23 Energy Expenditures for Each Region

Example 9: Creating Multipage Tables
Features: CLASS statement

PROC TABULATE statement options

Example 9: Creating Multipage Tables 2487



DATA=
FORMAT=

TABLE statement options
ALL class variable
BOX=
CONDENSE
INDENT=
page expression
RTS=

VAR statement
FORMAT statement
TITLE statement

Data set: ENERGY 

Format: REGFMT.

Format: DIVFMT.

Format: USETYPE.

Details
This example creates a separate table for each region and one table for all regions. 
By default, PROC TABULATE creates each table on a separate page, but the 
CONDENSE option places them all on the same page.

Program
proc tabulate data=energy format=dollar12.;

   class region division type;

   var expenditures;

   table region='Region: ' all='All Regions',

   division all='All Divisions',

         type='Customer Base'*expenditures=' '*sum=' '

         / rts=25 box=_page_ condense indent=1;

   format region regfmt. division divfmt. type usetype.;

   title 'Energy Expenditures for Each Region and All Regions';
   title2 '(millions of dollars)';
run;

2488 Chapter 70 / TABULATE Procedure



Program Description
Specify the table options. The FORMAT= option specifies DOLLAR12. as the 
default format for the value in each table cell.

proc tabulate data=energy format=dollar12.;

Specify subgroups for the analysis. The CLASS statement identifies Region, 
Division, and Type as class variables.

   class region division type;

Specify the analysis variable. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Expenditures variable.

   var expenditures;

Define the table pages. The page dimension of the TABLE statement creates one 
table for each formatted value of Region and one table for all regions. Text in 
quotation marks provides the heading for each page.

   table region='Region: ' all='All Regions',

Define the table rows. The row dimension creates a row for each formatted value 
of Division and a row for all divisions. Text in quotation marks provides the row 
headings.

   division all='All Divisions',

Define the table columns. The column dimension of the TABLE statement creates 
a column for each formatted value of Type. Each cell that is created by these pages, 
rows, and columns contains the sum of the analysis variable Expenditures for all 
observations that contribute to that cell. Text in quotation marks specifies headings 
for the corresponding variable or statistic. Although Sum is the default statistic, it is 
specified here so that you can specify a blank for its heading.

         type='Customer Base'*expenditures=' '*sum=' '

Specify additional table options. RTS= provides 25 characters per line for row 
headings. BOX= places the page heading inside the box above the row headings. 
CONDENSE places as many tables as possible on one physical page. INDENT= 
eliminates the row heading for Division. (Because there is no nesting in the row 
dimension, there is nothing to indent.)

         / rts=25 box=_page_ condense indent=1;

Format the output. The FORMAT statement assigns formats to the variables 
Region, Division, and Type.

   format region regfmt. division divfmt. type usetype.;

Specify the titles.

   title 'Energy Expenditures for Each Region and All Regions';
   title2 '(millions of dollars)';
run;

Example 9: Creating Multipage Tables 2489



Output
Output 70.24 Energy Expenditures for Each Region and All Regions

Example 10: Reporting on Multiple-Response 
Survey Data
Features: PROC TABULATE statement options

DATA=
TABLE statement

denominator definition (angle bracket operators)
N statistic
PCTN statistic
variable list

VAR statement
DATA step

2490 Chapter 70 / TABULATE Procedure



FORMAT procedure
FOOTNOTE statement
OPTIONS statement options

FORMDLIM=
NONUMBER

SYMPUT routine
TITLE statement

Data set: CUSTOMER_RESPONSE

Details
The two tables in this example show the following:

n which factors most influenced customers' decisions to buy products

n where customers heard of the company

The reports appear on one physical page with only one page number. By default, 
they would appear on separate pages.

In addition to showing how to create these tables, this example shows how to do the 
following:

n use a DATA step to count the number of observations in a data set

n store that value in a macro variable

n access that value later in the SAS session

The following figure shows the survey form that is used to collect data.

Figure 70.8 Completed Survey Form

Example 10: Reporting on Multiple-Response Survey Data 2491



Program
data customer_response;
   input Customer Factor1-Factor4 Source1-Source3
         Quality1-Quality3;
   datalines;
1 . . 1 1 1 1 . 1 . .
2 1 1 . 1 1 1 . 1 1 .
3 . . 1 1 1 1 . . . .

. . . more data lines . . .

119 . . . 1 . . . 1 . .
120 1 1 . 1 . . . . 1 .
;

data _null_;
   if 0 then set customer_response nobs=count;
   call symput('num',left(put(count,4.)));
   stop;
run;

proc format;
   picture pctfmt low-high='009.9 %';
run;

proc tabulate data=customer_response;

   var factor1-factor4 customer;

   table factor1='Cost'
         factor2='Performance'
         factor3='Reliability'
         factor4='Sales Staff',
         (n='Count'*f=7. pctn<customer>='Percent'*f=pctfmt9.) ;

   title 'Customer Survey Results: Spring 1996';
   title3 'Factors Influencing the Decision to Buy';
run;

proc tabulate
data=customer_response;

   var source1-source3 customer;

   table source1='TV/Radio'
         source2='Newspaper'
         source3='Word of Mouth',
         (n='Count'*f=7. pctn<customer>='Percent'*f=pctfmt9.) ;

   title 'Source of Company Name';
   footnote "Number of Respondents: &num";
run;

options formdlim='' number;

Program Description

2492 Chapter 70 / TABULATE Procedure



Create the CUSTOMER_RESPONSE data set. CUSTOMER_RESPONSE 
contains data from a customer survey. Each observation in the data set contains 
information about factors that influence one respondent's decisions to buy products. 
A DATA step on page 2690 creates the data set. Using missing values rather than 
0s is crucial for calculating frequency counts in PROC TABULATE.

data customer_response;
   input Customer Factor1-Factor4 Source1-Source3
         Quality1-Quality3;
   datalines;
1 . . 1 1 1 1 . 1 . .
2 1 1 . 1 1 1 . 1 1 .
3 . . 1 1 1 1 . . . .

. . . more data lines . . .

119 . . . 1 . . . 1 . .
120 1 1 . 1 . . . . 1 .
;

Store the number of observations in a macro variable. The SET statement reads 
the descriptor portion of CUSTOMER_RESPONSE at compile time and stores the 
number of observations (the number of respondents) in COUNT. The SYMPUT 
routine stores the value of COUNT in the macro variable NUM. This variable is 
available for use by other procedures and DATA steps for the remainder of the SAS 
session. The IF 0 condition, which is always false, ensures that the SET statement, 
which reads the observations, never executes. (Reading observations is 
unnecessary.) The STOP statement ensures that the DATA step executes only 
once.

data _null_;
   if 0 then set customer_response nobs=count;
   call symput('num',left(put(count,4.)));
   stop;
run;

Create the PCTFMT. format. The FORMAT procedure creates a format for 
percentages. The PCTFMT. format writes all values with at least one digit to the left 
of the decimal point and with one digit to the right of the decimal point. A blank and 
a percent sign follow the digits.

proc format;
   picture pctfmt low-high='009.9 %';
run;

Create the report and use the default table options.

proc tabulate data=customer_response;

Specify the analysis variables. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Factor1, Factor2, Factor3, Factor4, and 
Customer variables. The variable Customer must be listed because it is used to 
calculate the Percent column that is defined in the TABLE statement.

   var factor1-factor4 customer;

Define the table rows and columns. The TABLE statement creates a row for each 
factor, a column for frequency counts, and a column for the percentages. Text in 
quotation marks supplies headings for the corresponding row or column. The format 
modifiers F=7. and F=PCTFMT9. provide formats for values in the associated cells 
and extend the column widths to accommodate the column headings.

Example 10: Reporting on Multiple-Response Survey Data 2493



   table factor1='Cost'
         factor2='Performance'
         factor3='Reliability'
         factor4='Sales Staff',
         (n='Count'*f=7. pctn<customer>='Percent'*f=pctfmt9.) ;

Specify the titles.

   title 'Customer Survey Results: Spring 1996';
   title3 'Factors Influencing the Decision to Buy';
run;

Create the report and use the default table options.

proc tabulate
data=customer_response;

Specify the analysis variables. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Source1, Source2, Source3, and Customer 
variables. The variable Customer must be in the variable list because it appears in 
the denominator definition.

   var source1-source3 customer;

Define the table rows and columns. The TABLE statement creates a row for each 
source of the company name, a column for frequency counts, and a column for the 
percentages. Text in quotation marks supplies a heading for the corresponding row 
or column.

   table source1='TV/Radio'
         source2='Newspaper'
         source3='Word of Mouth',
         (n='Count'*f=7. pctn<customer>='Percent'*f=pctfmt9.) ;

Specify the title and footnote. The macro variable NUM resolves to the number of 
respondents. The FOOTNOTE statement uses double rather than single quotation 
marks so that the macro variable will resolve.

   title 'Source of Company Name';
   footnote "Number of Respondents: &num";
run;

Reset the SAS system options. The FORMDLIM= option resets the page delimiter 
to a page eject. The NUMBER option resumes the display of page numbers on 
subsequent pages.

options formdlim='' number;

2494 Chapter 70 / TABULATE Procedure



Output
Output 70.25 Customer Survey Results: Spring 1996

Example 11: Reporting on Multiple-Choice Survey 
Data
Features: CLASS statement

PROC TABULATE statement options
DATA=
FORMAT=

TABLE statement
N statistic

DATA step
FORMAT procedure
FORMAT statement
TRANSPOSE procedure
Data set options

RENAME=
TITLE statement

Data set: RADIO

Example 11: Reporting on Multiple-Choice Survey Data 2495



Details
This report of listener preferences shows how many listeners select each type of 
programming during each of seven time periods on a typical weekday. The data was 
collected by a survey, and the results were stored in a SAS data set. Although this 
data set contains all the information needed for this report, the information is not 
arranged in a way that PROC TABULATE can use.

To make this crosstabulation of time of day and choice of radio programming, you 
must have a data set that contains a variable for time of day and a variable for 
programming preference. PROC TRANSPOSE reshapes the data into a new data 
set that contains these variables. Once the data are in the appropriate form, PROC 
TABULATE creates the report.

The following figure shows the survey form that is used to collect data.

Figure 70.9 Completed Survey Form

2496 Chapter 70 / TABULATE Procedure



An external file on page 2719 contains the raw data for the survey. Several lines 
from that file appear here.

967 32 f 5 3 5
7 5 5 5 7 0 0 0 8 7 0 0 8 0
781 30 f 2 3 5
5 0 0 0 5 0 0 0 4 7 5 0 0 0
859 39 f 1 0 5
1 0 0 0 1 0 0 0 0 0 0 0 0 0

 ... more data lines ...

859 32 m .25 .25 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0

Program
data radio;
   infile 'input-file' missover;

   input /(Time1-Time7) ($1. +1);
   listener=_n_;
run;

proc format;
   value $timefmt 'Time1'='6-9 a.m.'
                  'Time2'='9 a.m. to noon'
                  'Time3'='noon to 1 p.m.'
                  'Time4'='1-4 p.m.'
                  'Time5'='4-6 p.m.'
                  'Time6'='6-10 p.m.'
                  'Time7'='10 p.m. to 2 a.m.'
                    other='*** Data Entry Error ***';
   value $pgmfmt      '0'="Don't Listen"
                  '1','2'='Rock and Top 40'
                      '3'='Country'
              '4','5','6'='Jazz, Classical, and Easy Listening'
                      '7'='News/ Information /Talk'
                      '8'='Other'
                    other='*** Data Entry Error ***';
run;

proc transpose data=radio
               out=radio_transposed(rename=(col1=Choice))
               name=Timespan;
   by listener;
   var time1-time7;
run;

proc tabulate data=radio_transposed format=12.;

format timespan $timefmt. choice $pgmfmt.;

   class timespan choice;

   table timespan='Time of Day',
         choice='Choice of Radio Program'*n='Number of Listeners';

Example 11: Reporting on Multiple-Choice Survey Data 2497



   title 'Listening Preferences on Weekdays';
run;

Program Description

Create the RADIO data set and specify the input file. RADIO contains data from 
a survey of 336 listeners. The data set contains information about listeners and their 
preferences in radio programming. The INFILE statement specifies the external file 
that contains the data. MISSOVER prevents the input pointer from going to the next 
record if it fails to find values in the current line for all variables that are listed in the 
INPUT statement.

data radio;
   infile 'input-file' missover;

   input /(Time1-Time7) ($1. +1);
   listener=_n_;
run;

Create the $TIMEFMT. and $PGMFMT. formats. PROC FORMAT creates formats 
for the time of day and the choice of programming.

proc format;
   value $timefmt 'Time1'='6-9 a.m.'
                  'Time2'='9 a.m. to noon'
                  'Time3'='noon to 1 p.m.'
                  'Time4'='1-4 p.m.'
                  'Time5'='4-6 p.m.'
                  'Time6'='6-10 p.m.'
                  'Time7'='10 p.m. to 2 a.m.'
                    other='*** Data Entry Error ***';
   value $pgmfmt      '0'="Don't Listen"
                  '1','2'='Rock and Top 40'
                      '3'='Country'
              '4','5','6'='Jazz, Classical, and Easy Listening'
                      '7'='News/ Information /Talk'
                      '8'='Other'
                    other='*** Data Entry Error ***';
run;

Reshape the data by transposing the RADIO data set. PROC TRANSPOSE 
creates RADIO_TRANSPOSED. This data set contains the variable Listener from 
the original data set. It also contains two transposed variables: Timespan and 
Choice. Timespan contains the names of the variables (Time1-Time7) from the input 
data set that are transposed to form observations in the output data set. Choice 
contains the values of these variables. (See “Details” on page 2499 for a complete 
explanation of the PROC TRANSPOSE step.)

proc transpose data=radio
               out=radio_transposed(rename=(col1=Choice))
               name=Timespan;
   by listener;
   var time1-time7;
run;

Create the report and specify the table options. The FORMAT= option specifies 
the default format for the values in each table cell.

2498 Chapter 70 / TABULATE Procedure



proc tabulate data=radio_transposed format=12.;

Format the transposed variables. The FORMAT statement permanently 
associates these formats with the variables in the output data set.

format timespan $timefmt. choice $pgmfmt.;

Specify subgroups for the analysis. The CLASS statement identifies Timespan 
and Choice as class variables.

   class timespan choice;

Define the table rows and columns. The TABLE statement creates a row for each 
formatted value of Timespan and a column for each formatted value of Choice. In 
each column are values for the N statistic. Text in quotation marks supplies 
headings for the corresponding rows or columns.

   table timespan='Time of Day',
         choice='Choice of Radio Program'*n='Number of Listeners';

Specify the title.

   title 'Listening Preferences on Weekdays';
run;

Output
Output 70.26 Listening Preferences on Weekdays

Details

Reshape the Data
The original input data set has all the information that you need to make the 
crosstabular report, but PROC TABULATE cannot use the information in that form. 
PROC TRANSPOSE rearranges the data so that each observation in the new data 

Example 11: Reporting on Multiple-Choice Survey Data 2499



set contains the variable Listener, a variable for time of day, and a variable for 
programming preference. The following figure illustrates the transposition. PROC 
TABULATE uses this new data set to create the crosstabular report.

PROC TRANSPOSE restructures data so that values that were stored in one 
observation are written to one variable. You can specify which variables you want to 
transpose.

When you transpose with BY processing, as this example does, you create from 
each BY group one observation for each variable that you transpose. In this 
example, Listener is the BY variable. Each observation in the input data set is a BY 
group because the value of Listener is unique for each observation.

This example transposes seven variables, Time1 through Time7. Therefore, the 
output data set has seven observations from each BY group (each observation) in 
the input data set.

Figure 70.10 Transposing Two Observations

Ti me1 Ti me2 Ti me3 Ti me4 Ti me5 Ti me6 Ti me7

7 5 5 5 7 0 0

5 0 0 0 5 0 0

Listener

1

2

Listener

1

1

1

1

1

1

1

2

2

2

2

2

2

2

_NAME_

Ti me1

Ti me2

Ti me3

Ti me4

Ti me5

Ti me6

Ti me7

Ti me1

Ti me2

Ti me3

Ti me4

Ti me5

Ti me6

Ti me7

COL1

7

7

5

5

7

0

0

5

0

0

0

5

0

0

Ê The BY variable is not
transposed. All th e
ob serva tions crea ted from the
same BY group contain th e
same value of Listener .

Ë _NAME_ contains the name
of the variable in the input
data set that was transposed
to create the current
observation in the output
data set.

Ì COL1 contains the values of
Ti me1 –Time7.

ÊË Ì

Input Data Set

Output Data Set

2500 Chapter 70 / TABULATE Procedure



Understanding the PROC TRANSPOSE 
Step
Here is a detailed explanation of the PROC TRANSPOSE step that reshapes the 
data:

proc transpose data=radio   1

               out=radio_transposed(rename=(col1=Choice))   2

               name=Timespan;   3

   by listener;   4

   var time1-time7;    5

   format timespan $timefmt. choice $pgmfmt.;   6

run;

1 The DATA= option specifies the input data set.

2 The OUT= option specifies the output data set. The RENAME= data set option 
renames the transposed variable from COL1 (the default name) to Choice.

3 The NAME= option specifies the name for the variable in the output data set that 
contains the name of the variable that is being transposed to create the current 
observation. By default, the name of this variable is _NAME_.

4 The BY statement identifies Listener as the BY variable.

5 The VAR statement identifies Time1 through Time7 as the variables to 
transpose.

6 The FORMAT statement assigns formats to Timespan and Choice. The PROC 
TABULATE step that creates the report does not need to format Timespan and 
Choice because the formats are stored with these variables.

Example 12: Calculating Various Percentage 
Statistics
Features: CLASS statement

PROC TABULATE statement options
FORMAT=

TABLE statement options
ALL class variable
COLPCTSUM statistic
concatenation (blank) operator
crossing (*) operator
format modifiers
grouping elements (parentheses) operator
labels
REPPCTSUM statistic
ROWPCTSUM statistic
variable list

Example 12: Calculating Various Percentage Statistics 2501



ROW=FLOAT
RTS=

VAR statement
DATA step
FORMAT procedure
TITLE statement

Details
This example shows how to use three percentage sum statistics: COLPCTSUM, 
REPPCTSUM, and ROWPCTSUM.

Program
data fundrais;
   length name $ 8 classrm $ 1;
   input @1 team $ @8 classrm $ @10 name $
         @19 pencils @23 tablets;
   sales=pencils + tablets;
   datalines;
BLUE   A ANN       4   8
RED    A MARY      5  10
GREEN  A JOHN      6   4
RED    A BOB       2   3
BLUE   B FRED      6   8
GREEN  B LOUISE   12   2
BLUE   B ANNETTE   .   9
RED    B HENRY     8  10
GREEN  A ANDREW    3   5
RED    A SAMUEL   12  10
BLUE   A LINDA     7  12
GREEN  A SARA      4   .
BLUE   B MARTIN    9  13
RED    B MATTHEW   7   6
GREEN  B BETH     15  10
RED    B LAURA     4   3
;

proc format;
   picture pctfmt low-high='009 %';
run;

title "Fundraiser Sales";

proc tabulate format=7.;

   class team classrm;

   var sales;

   table (team all),

2502 Chapter 70 / TABULATE Procedure



         classrm='Classroom'*sales=' '*(sum
         colpctsum*f=pctfmt9.
         rowpctsum*f=pctfmt9.
         reppctsum*f=pctfmt9.)
         all*sales*sum=' '

         /rts=20;
run;

Program Description
Create the FUNDRAIS data set. FUNDRAIS contains data on student sales during 
a school fund-raiser. A DATA step creates the data set.

data fundrais;
   length name $ 8 classrm $ 1;
   input @1 team $ @8 classrm $ @10 name $
         @19 pencils @23 tablets;
   sales=pencils + tablets;
   datalines;
BLUE   A ANN       4   8
RED    A MARY      5  10
GREEN  A JOHN      6   4
RED    A BOB       2   3
BLUE   B FRED      6   8
GREEN  B LOUISE   12   2
BLUE   B ANNETTE   .   9
RED    B HENRY     8  10
GREEN  A ANDREW    3   5
RED    A SAMUEL   12  10
BLUE   A LINDA     7  12
GREEN  A SARA      4   .
BLUE   B MARTIN    9  13
RED    B MATTHEW   7   6
GREEN  B BETH     15  10
RED    B LAURA     4   3
;

Create the PCTFMT. format. The FORMAT procedure creates a format for 
percentages. The PCTFMT. format writes all values with at least one digit, a blank, 
and a percent sign. 

proc format;
   picture pctfmt low-high='009 %';
run;

Specify the title.

title "Fundraiser Sales";

Create the report and specify the table options. The FORMAT= option specifies 
up to seven digits as the default format for the value in each table cell.

proc tabulate format=7.;

Specify subgroups for the analysis. The CLASS statement identifies Team and 
Classrm as class variables.

   class team classrm;

Example 12: Calculating Various Percentage Statistics 2503



Specify the analysis variable. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Sales variable.

   var sales;

Define the table rows. The row dimension of the TABLE statement creates a row 
for each formatted value of Team. The last row of the report summarizes sales for all 
teams.

   table (team all),

Define the table columns. The column dimension of the TABLE statement creates 
a column for each formatted value of Classrm. Crossed within each value of 
Classrm is the analysis variable (sales) with a blank label. Nested within each 
column are columns that summarize sales for the class. The first nested column, 
labeled sum, is the sum of sales for the row for the classroom. The second nested 
column, labeled ColPctSum, is the percentage of the sum of sales for the row for the 
classroom in relation to the sum of sales for all teams in the classroom. The third 
nested column, labeled RowPctSum, is the percentage of the sum of sales for the row 
for the classroom in relation to the sum of sales for the row for all classrooms. The 
fourth nested column, labeled RepPctSum, is the percentage of the sum of sales for 
the row for the classroom in relation to the sum of sales for all teams for all 
classrooms. The last column of the report summarizes sales for the row for all 
classrooms.

         classrm='Classroom'*sales=' '*(sum
         colpctsum*f=pctfmt9.
         rowpctsum*f=pctfmt9.
         reppctsum*f=pctfmt9.)
         all*sales*sum=' '

Specify the row title space and eliminate blank row headings. RTS= provides 
20 characters per line for row headings.

         /rts=20;
run;

Output
Output 70.27 Fundraiser Sales

2504 Chapter 70 / TABULATE Procedure



Details
Here are the percentage sum statistic calculations used to produce the output for 
the Blue Team in Classroom A:

n COLPCTSUM=31/91*100=34%

n ROWPCTSUM=31/67*100=46%

n REPPCTSUM=31/204*100=15%

Similar calculations were used to produce the output for the remaining teams and 
classrooms.

Example 13: Using Denominator Definitions to 
Display Basic Frequency Counts and Percentages
Features: CLASS statement

PROC TABULATE statement options
DATA=
FORMAT=

TABLE statement options
ALL class variable
denominator definitions (angle bracket operators)
N statistic
PCTN statistic
RTS=

DATA step
FORMAT procedure
FORMAT statement
TITLE statement

Details
Crosstabulation tables (also called contingency tables or stub-and-banner reports) 
show combined frequency distributions for two or more variables. This table shows 
frequency counts for females and males within each of four job classes. The table 
also shows the percentage that each frequency count represents the following:

n the total women and men in that job class (row percentage)

n the total for that gender in all job classes (column percentage)

n the total for all employees

Example 13: Using Denominator Definitions to Display Basic Frequency Counts and 
Percentages 2505



Program
data jobclass;
   input Gender Occupation @@;
   datalines;
1 1  1 1  1 1  1 1  1 1  1 1  1 1
1 2  1 2  1 2  1 2  1 2  1 2  1 2
1 3  1 3  1 3  1 3  1 3  1 3  1 3
1 1  1 1  1 1  1 2  1 2  1 2  1 2
1 2  1 2  1 3  1 3  1 4  1 4  1 4
1 4  1 4  1 4  1 1  1 1  1 1  1 1
1 1  1 2  1 2  1 2  1 2  1 2  1 2
1 2  1 3  1 3  1 3  1 3  1 4  1 4
1 4  1 4  1 4  1 1  1 3  2 1  2 1
2 1  2 1  2 1  2 1  2 1  2 2  2 2
2 2  2 2  2 2  2 3  2 3  2 3  2 4
2 4  2 4  2 4  2 4  2 4  2 1  2 3
2 3  2 3  2 3  2 3  2 4  2 4  2 4
2 4  2 4  2 1  2 1  2 1  2 1  2 1
2 2  2 2  2 2  2 2  2 2  2 2  2 2
2 3  2 3  2 4  2 4  2 4  2 1  2 1
2 1  2 1  2 1  2 2  2 2  2 2  2 3
2 3  2 3  2 3  2 4
;

proc format;
   value gendfmt 1='Female'
                 2='Male'
             other='*** Data Entry Error ***';
   value occupfmt 1='Technical'
                  2='Manager/Supervisor'
                  3='Clerical'
                  4='Administrative'
              other='*** Data Entry Error ***';
run;

proc tabulate data=jobclass format=8.2;

   class gender occupation;

    table (occupation='Job Class' all='All Jobs')
              *(n='Number of employees'*f=9.
              pctn<gender all>='Percent of row total'
              pctn<occupation all>='Percent of column total'
              pctn='Percent of total'),

    gender='Gender' all='All Employees'/ rts=50;

   format gender gendfmt. occupation occupfmt.;

   title 'Gender Distribution';
   title2 'within Job Classes';
run;

2506 Chapter 70 / TABULATE Procedure



Program Description
Create the JOBCLASS data set. JOBCLASS contains encoded information about 
the gender and job class of employees at a fictitious company.

data jobclass;
   input Gender Occupation @@;
   datalines;
1 1  1 1  1 1  1 1  1 1  1 1  1 1
1 2  1 2  1 2  1 2  1 2  1 2  1 2
1 3  1 3  1 3  1 3  1 3  1 3  1 3
1 1  1 1  1 1  1 2  1 2  1 2  1 2
1 2  1 2  1 3  1 3  1 4  1 4  1 4
1 4  1 4  1 4  1 1  1 1  1 1  1 1
1 1  1 2  1 2  1 2  1 2  1 2  1 2
1 2  1 3  1 3  1 3  1 3  1 4  1 4
1 4  1 4  1 4  1 1  1 3  2 1  2 1
2 1  2 1  2 1  2 1  2 1  2 2  2 2
2 2  2 2  2 2  2 3  2 3  2 3  2 4
2 4  2 4  2 4  2 4  2 4  2 1  2 3
2 3  2 3  2 3  2 3  2 4  2 4  2 4
2 4  2 4  2 1  2 1  2 1  2 1  2 1
2 2  2 2  2 2  2 2  2 2  2 2  2 2
2 3  2 3  2 4  2 4  2 4  2 1  2 1
2 1  2 1  2 1  2 2  2 2  2 2  2 3
2 3  2 3  2 3  2 4
;

Create the GENDFMT. and OCCUPFMT. formats. PROC FORMAT creates 
formats for the variables Gender and Occupation.

proc format;
   value gendfmt 1='Female'
                 2='Male'
             other='*** Data Entry Error ***';
   value occupfmt 1='Technical'
                  2='Manager/Supervisor'
                  3='Clerical'
                  4='Administrative'
              other='*** Data Entry Error ***';
run;

Create the report and specify the table options. The FORMAT= option specifies 
the 8.2 format as the default format for the value in each table cell.

proc tabulate data=jobclass format=8.2;

Specify subgroups for the analysis. The CLASS statement identifies Gender and 
Occupation as class variables.

   class gender occupation;

    table (occupation='Job Class' all='All Jobs')
              *(n='Number of employees'*f=9.
              pctn<gender all>='Percent of row total'
              pctn<occupation all>='Percent of column total'
              pctn='Percent of total'),

Define the table columns and specify the amount of space for row headings. 
The column dimension creates a column for each formatted value of Gender and for 

Example 13: Using Denominator Definitions to Display Basic Frequency Counts and 
Percentages 2507



all employees. Text in quotation marks supplies the heading for the corresponding 
column. The RTS= option provides 50 characters per line for row headings.

    gender='Gender' all='All Employees'/ rts=50;

Format the output. The FORMAT statement assigns formats to the variables 
Gender and Occupation.

   format gender gendfmt. occupation occupfmt.;

Specify the titles.

   title 'Gender Distribution';
   title2 'within Job Classes';
run;

2508 Chapter 70 / TABULATE Procedure



Output
Output 70.28 Gender Distribution within Job Classes

Details

Overview
The part of the TABLE statement that defines the rows of the table uses the PCTN 
statistic to calculate three different percentages.

Example 13: Using Denominator Definitions to Display Basic Frequency Counts and 
Percentages 2509



In all calculations of PCTN, the numerator is N, the frequency count for one cell of 
the table. The denominator for each occurrence of PCTN is determined by the 
denominator definition. The denominator definition appears in angle brackets after 
the keyword PCTN. It is a list of one or more expressions. The list tells PROC 
TABULATE which frequency counts to sum for the denominator.

Analyzing the Structure of the Table
Taking a close look at the structure of the table helps you understand how PROC 
TABULATE uses the denominator definitions. The following simplified version of the 
TABLE statement clarifies the basic structure of the table:

table occupation='Job Class' all='All Jobs',
      gender='Gender' all='All Employees';

The table is a concatenation of four subtables. In this report, each subtable is a 
crossing of one class variable in the row dimension and one class variable in the 
column dimension. Each crossing establishes one or more categories. A category is 
a combination of unique values of class variables, such as female, technical or 
all, clerical

The following table describes each subtable:

Table 70.8 Contents of Subtables

Class Variables Contributing to 
the Subtable

Description of Frequency 
Counts

Number of 
Categorie
s

Occupation and Gender Number of females in each job or 
number of males in each job

8

All and Gender Number of females or number of 
males

2

Occupation and All Number of people in each job 4

All and All Number of people in all jobs 1

The following figure highlights these subtables and the frequency counts for each 
category.

2510 Chapter 70 / TABULATE Procedure



Figure 70.11 Illustration of the Four Subtables

Occupation and Gender

Occupatio n
and Al l

All and Gender
Al l
and Al l

----------------------------------------------------------------------
| | Gender |
| |-------------------|
| | Female | Male |
|------------------------------------------------+---------+---------+
|Job Class | | | |
|-----------------------+------------------------| | |
|Technical |Number of employees | 16| 18|
| |------------------------+---------+---------+
| |Percent of row total | 47.06| 52.94|
| |------------------------+---------+---------+
| |Percent of column total | 26.23| 29.03|
| |------------------------+---------+---------+
| |Percent of total | 13.01| 14.63|
|-----------------------+------------------------+---------+---------+
|Manager/Supervisor |Number of employees | 20| 15|
| |------------------------+---------+---------+
| |Percent of row total | 57.14| 42.86|
| |------------------------+---------+---------+
| |Percent of column total | 32.79| 24.19|
| |------------------------+---------+---------+
| |Percent of total | 16.26| 12.20|
|-----------------------+------------------------+---------+---------+
|Clerical |Number of employees | 14| 14|
| |------------------------+---------+---------+
| |Percent of row total | 50.00| 50.50|
| |------------------------+---------+---------+
| |Percent of column total | 22.95| 22.58|
| |------------------------+---------+---------+
| |Percent of total | 11.38| 11.38|
|-----------------------+------------------------+---------+---------+
|Administrative |Number of employees | 11| 15|
| |------------------------+---------+---------+
| |Percent of row total | 42.31| 57.69|
| |------------------------+---------+---------+
| |Percent of column total | 18.03| 24.19|
| |------------------------+---------+---------+
| |Percent of total | 8.94| 12.20|
|-----------------------+------------------------+---------+---------+

-----------
| |
| All |
|Employees|
+---------|
| |
| |
| 34|
+---------|
| 100.00|
+---------|
| 27.64|
+---------|
| 27.64|
+---------|
| 35|
+---------|
| 100.00|
+---------|
| 28.46|
+---------|
| 28.46|
+---------|
| 28|
+---------|
| 100.00|
+---------|
| 22.76|
+---------|
| 22.76|
+---------|
| 26|
+---------|
| 100.00|
+---------|
| 21.14|
+---------|
| 21.14|
+---------|

|-----------------------+------------------------+---------+---------+
|All Jobs |Number of employees | 61| 62|
| |------------------------+---------+---------+
| |Percent of row total | 49.59| 50.41|
| |------------------------+---------+---------+
| |Percent of column total | 100.00| 100.00|
| |------------------------+---------+---------+
| |Percent of total | 49.59| 50.41|
----------------------------------------------------------------------

+---------|
| 123|
+---------|
| 100.00|
+---------|
| 100.00|
+---------|
| 100.00|
-----------

Interpreting Denominator Definitions
The following fragment of the TABLE statement defines the denominator definitions 
for this report. The PCTN keyword and the denominator definitions are highlighted.

table (occupation='Job Class' all='All Jobs')
            *(n='Number of employees'*f=5.
              pctn<gender all>='Row percent'
              pctn<occupation all>='Column percent'
              pctn='Percent of total'),

Each use of PCTN nests a row of statistics within each value of Occupation and All. 
Each denominator definition tells PROC TABULATE which frequency counts to sum 
for the denominators in that row. This section explains how PROC TABULATE 
interprets these denominator definitions.

Example 13: Using Denominator Definitions to Display Basic Frequency Counts and 
Percentages 2511



Row Percentages
The part of the TABLE statement that calculates the row percentages and that 
labels the row is

   pctn<gender all>='Row percent'

Consider how PROC TABULATE interprets this denominator definition for each 
subtable.

Output 70.29 Subtable 1: Occupation and Gender

PROC TABULATE looks at the first element in the denominator definition, Gender, 
and asks whether Gender contributes to the subtable. Because Gender does 
contribute to the subtable, PROC TABULATE uses it as the denominator definition. 
This denominator definition tells PROC TABULATE to sum the frequency counts for 
all occurrences of Gender within the same value of Occupation.

For example, the denominator for the category female, technical is the sum of all 
frequency counts for all categories in this subtable for which the value of Occupation 

2512 Chapter 70 / TABULATE Procedure



is technical. There are two such categories: female, technical and male, 
technical. The corresponding frequency counts are 16 and 18. Therefore, the 
denominator for this category is 16+18, or 34.

Output 70.30 Subtable 2: All and Gender

PROC TABULATE looks at the first element in the denominator definition, Gender, 
and asks whether Gender contributes to the subtable. Because Gender does 
contribute to the subtable, PROC TABULATE uses it as the denominator definition. 
This denominator definition tells PROC TABULATE to sum the frequency counts for 
all occurrences of Gender in the subtable.

For example, the denominator for the category all, female is the sum of the 
frequency counts for all, female and all, male. The corresponding frequency 
counts are 61 and 62. Therefore, the denominator for cells in this subtable is 61+62, 
or 123.

Example 13: Using Denominator Definitions to Display Basic Frequency Counts and 
Percentages 2513



Output 70.31 Subtable 3: Occupation and All

PROC TABULATE looks at the first element in the denominator definition, Gender, 
and asks whether Gender contributes to the subtable. Because Gender does not 
contribute to the subtable, PROC TABULATE looks at the next element in the 
denominator definition, which is All. The variable All does contribute to this subtable, 
so PROC TABULATE uses it as the denominator definition. All is a reserved class 
variable with only one category. Therefore, this denominator definition tells PROC 
TABULATE to use the frequency count of All as the denominator.

For example, the denominator for the category clerical, all is the frequency 
count for that category, 28.

Note: In these table cells, because the numerator and the denominator are the 
same, the row percentages in this subtable are all 100.

2514 Chapter 70 / TABULATE Procedure



Output 70.32 Subtable 4: All and All

PROC TABULATE looks at the first element in the denominator definition, Gender, 
and asks whether Gender contributes to the subtable. Because Gender does not 
contribute to the subtable, PROC TABULATE looks at the next element in the 
denominator definition, which is All. The variable All does contribute to this subtable, 
so PROC TABULATE uses it as the denominator definition. All is a reserved class 
variable with only one category. Therefore, this denominator definition tells PROC 
TABULATE to use the frequency count of All as the denominator.

There is only one category in this subtable: all, all. The denominator for this 
category is 123.

Note: In this table cell, because the numerator and denominator are the same, the 
row percentage in this subtable is 100.

Example 13: Using Denominator Definitions to Display Basic Frequency Counts and 
Percentages 2515



Column Percentages
The part of the TABLE statement that calculates the column percentages and labels 
the row is

   pctn<occupation all>='Column percent'

Consider how PROC TABULATE interprets this denominator definition for each 
subtable.

Output 70.33 Subtable 1: Occupation and Gender

PROC TABULATE looks at the first element in the denominator definition, 
Occupation, and asks whether Occupation contributes to the subtable. Because 
Occupation does contribute to the subtable, PROC TABULATE uses it as the 
denominator definition. This denominator definition tells PROC TABULATE to sum 
the frequency counts for all occurrences of Occupation within the same value of 
Gender.

2516 Chapter 70 / TABULATE Procedure



For example, the denominator for the category manager/supervisor, male is the 
sum of all frequency counts for all categories in this subtable for which the value of 
Gender is male. There are four such categories: technical, male; manager/
supervisor, male; clerical, male; and administrative, male. The 
corresponding frequency counts are 18, 15, 14, and 15. Therefore, the denominator 
for this category is 18+15+14+15, or 62.

Output 70.34 Subtable 2: All and Gender

PROC TABULATE looks at the first element in the denominator definition, 
Occupation, and asks whether Occupation contributes to the subtable. Because 
Occupation does not contribute to the subtable, PROC TABULATE looks at the next 
element in the denominator definition, which is All. Because the variable All does 
contribute to this subtable, PROC TABULATE uses it as the denominator definition. 
All is a reserved class variable with only one category. Therefore, this denominator 
definition tells PROC TABULATE to use the frequency count for All as the 
denominator.

For example, the denominator for the category all, female is the frequency count 
for that category, 61.

Example 13: Using Denominator Definitions to Display Basic Frequency Counts and 
Percentages 2517



Note: In these table cells, because the numerator and denominator are the same, 
the column percentages in this subtable are all 100.

Output 70.35 Subtable 3: Occupation and All

PROC TABULATE looks at the first element in the denominator definition, 
Occupation, and asks whether Occupation contributes to the subtable. Because 
Occupation does contribute to the subtable, PROC TABULATE uses it as the 
denominator definition. This denominator definition tells PROC TABULATE to sum 
the frequency counts for all occurrences of Occupation in the subtable.

For example, the denominator for the category technical, all is the sum of the 
frequency counts for technical, all; manager/supervisor, all; clerical, all; 
and administrative, all. The corresponding frequency counts are 34, 35, 28, 
and 26. Therefore, the denominator for this category is 34+35+28+26, or 123.

2518 Chapter 70 / TABULATE Procedure



Output 70.36 Subtable 4: All and All

PROC TABULATE looks at the first element in the denominator definition, 
Occupation, and asks whether Occupation contributes to the subtable. Because 
Occupation does not contribute to the subtable, PROC TABULATE looks at the next 
element in the denominator definition, which is All. Because the variable All does 
contribute to this subtable, PROC TABULATE uses it as the denominator definition. 
All is a reserved class variable with only one category. Therefore, this denominator 
definition tells PROC TABULATE to use the frequency count of All as the 
denominator.

There is only one category in this subtable: all, all. The frequency count for this 
category is 123.

Note: In this calculation, because the numerator and denominator are the same, 
the column percentage in this subtable is 100.

Example 13: Using Denominator Definitions to Display Basic Frequency Counts and 
Percentages 2519



Total Percentages
The part of the TABLE statement that calculates the total percentages and labels 
the row is:

pctn='Total percent'

If you do not specify a denominator definition, then PROC TABULATE obtains the 
denominator for a cell by totaling all the frequency counts in the subtable. The 
following table summarizes the process for all subtables in this example.

Table 70.9 Denominators for Total Percentages

Class Variables 
Contributing to the 
Subtable Frequency Counts Total

Occupant and Gender 16, 18, 20, 15 14, 14, 11, 
15

123

Occupant and All 34, 35, 28, 26 123

Gender and All 61, 62 123

All and All 123 123

Consequently, the denominator for total percentages is always 123.

Example 14: Specifying Style Overrides for ODS 
Output
Features: CLASS statement option

STYLE=
CLASSLEV statement option

STYLE=
KEYLABEL statement
KEYWORD statement option

STYLE=
PROC TABULATE statement options

DATA=
STYLE=

TABLE statement options
STYLE=
MISSTEXT=
BOX=

ODS HTML statement

2520 Chapter 70 / TABULATE Procedure



ODS HTML CLOSE statement
ODS PDF statement
ODS PDF CLOSE statement
ODS RTF statement
ODS RTF CLOSE statement
OPTIONS statement
TITLE statement

Data set: ENERGY

Format: REGFMT.

Format: DIVFMT.

Format: USETYPE.

Details
This example creates HTML, RTF, and PDF files and specifies style overrides for 
various table regions.

Program
options nodate pageno=1;

proc sort data=energy;
   by region;
run;

ods html5 path='path' body='filename.htm';
ods pdf file='filename.pdf' contents=yes;
ods rtf file='filename.rtf' contents=yes;

proc tabulate data=energy style=[fontweight=bold];

by region;

   class region division type / style=[textalign=center];

   classlev region division type / style=[textalign=left];

   var expenditures / style=[fontsize=3];

   keyword all sum / style=[fontwidth=wide];
   keylabel all="Total";

   table (region all)*(division all*[style=[backgroundcolor=yellow]]),
         (type all)*(expenditures*f=dollar10.) /
         style=[bordercolor=blue]

         misstext=[label="Missing" style=[fontweight=light]]

         box=[label="Region by Division by Type"
            style=[fontstyle=italic]];

   format region regfmt. division divfmt. type usetype.;

Example 14: Specifying Style Overrides for ODS Output 2521



   title 'Energy Expenditures';
   title2 '(millions of dollars)';
run;

ods _all_ close;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 

options nodate pageno=1;

Sort the data set.

proc sort data=energy;
   by region;
run;

Specify the ODS output filenames. By opening multiple ODS destinations, you 
can produce multiple output files in a single execution. The ODS HTML5 statement 
produces output that is written in HTML 5.0. The ODS PDF statement produces 
output in Portable Document Format (PDF). The ODS RTF statement produces 
output in Rich Text Format (RTF). The output from PROC TABULATE goes to each 
of these files.

In the ODS PDF and ODS RTF statements, the CONTENTS= option creates a table 
of contents.

ods html5 path='path' body='filename.htm';
ods pdf file='filename.pdf' contents=yes;
ods rtf file='filename.rtf' contents=yes;

Customize the data cells. The STYLE= option in the PROC TABULATE statement 
specifies the style override for the data cells of the table.

proc tabulate data=energy style=[fontweight=bold];

Specify the BY-group. When BY statements are specified, labels for the BY group 
tables are displayed in the table of contents. The labels are based on the values of 
the BY variable.

by region;

Customize the class variable name headings. The STYLE= option in the CLASS 
statement specifies the style override for the class variable name headings.

   class region division type / style=[textalign=center];

Customize the class variable value headings. The STYLE= option in the 
CLASSLEV statement specifies the style override for the class variable level value 
headings.

   classlev region division type / style=[textalign=left];

Customize the analysis variable name headings. The STYLE= option in the VAR 
statement specifies a style element for the variable name headings.

   var expenditures / style=[fontsize=3];

Specify the style attributes for keywords, and label the “all” keyword. The 
STYLE= option in the KEYWORD statement specifies a style element for keywords. 
The KEYLABEL statement assigns a label to the keyword.

2522 Chapter 70 / TABULATE Procedure



   keyword all sum / style=[fontwidth=wide];
   keylabel all="Total";

Define and customize the table rows and columns. The STYLE= option in the 
dimension expression overrides any other STYLE= specifications in PROC 
TABULATE that specify overrides for table cells. The STYLE= option after the slash 
(/) specifies style overrides for parts of the table other than table cells.

   table (region all)*(division all*[style=[backgroundcolor=yellow]]),
         (type all)*(expenditures*f=dollar10.) /
         style=[bordercolor=blue]

Customize missing values. The STYLE= option in the MISSTEXT option of the 
TABLE statement specifies a style element to use for the text in table cells that 
contain missing values.

         misstext=[label="Missing" style=[fontweight=light]]

Customize the box above the row titles. The STYLE= option in the BOX option of 
the TABLE statement specifies a style override for text in the box above the row 
titles.

         box=[label="Region by Division by Type"
            style=[fontstyle=italic]];

Format the class variable values.

   format region regfmt. division divfmt. type usetype.;

Specify the titles.

   title 'Energy Expenditures';
   title2 '(millions of dollars)';
run;

Close all of the ODS destinations.

ods _all_ close;

Example 14: Specifying Style Overrides for ODS Output 2523



Output
Output 70.37 HTML Output

Output 70.38 PDF Output

2524 Chapter 70 / TABULATE Procedure



Output 70.39 RTF Output

Example 15: Style Precedence
Features: CLASS statement0

CLASSLEV statement option
STYLE=

KEYLABEL statement
LABEL statement
PROC TABULATE statement options

DATA=
FORMAT=

TABLE statement
crossing (*) operator
STYLE=
STYLE_PRECEDENCE= option

VAR statement
ODS HTML statement
FORMAT procedure
FORMAT statement
TITLE statement

Data set: SALES

Example 15: Style Precedence 2525



Details
This example does the following:

n creates a category for each sales type, retail or wholesale, in each region

n applies the dollar format to all cells in the table

n applies an italic font style for each region and sales type

n applies a style (background = red, yellow, or orange) color based on the 
STYLE_PRECEDENCE = option

n generates ODS HTML output

Program
proc format;
      value $saletypefmt 'R'='Retail'
                        'W'='WholeSale';
run;

ods html file="stylePrecedence.html";

title "Style Precedence";
title2 "First Table: no precedence, Orange";
title3 "Second Table: style_precedence=page, Yello";

proc tabulate data=sales format=dollar10.;

class product region saletype;
   

classlev region saletype / style={font_style=italic};
   

var netsales;

label netsales="Net Sales";
   

keylabel all="Total";
   

table product *{style={background=#edf8b1}},
region*{style={background=yellow}},
saletype*{style={background=orange}};

table product *{style={background=#edf8b1}},
region*{style={background=yellow}},
saletype*{style={background=orange}} / style_precedence=page;

format saletype $saletypefmt.;
   

run;
   

2526 Chapter 70 / TABULATE Procedure



Program Description
Create the SALETYPEFMT. formats. PROC FORMAT creates formats for 
SALETYPE.

proc format;
      value $saletypefmt 'R'='Retail'
                        'W'='WholeSale';
run;

Specify the ODS output filename. The ODS HTML statement produces output that 
is written in HTML.

ods html file="stylePrecedence.html";

Specify the titles of the tables to be produced. Two tables will be generated. The 
First Table will show no style precedence whereas the Second Table will show that 
the color that takes precedence is based on what is specified by the 
STYLE_PRECEDENCE option.

title "Style Precedence";
title2 "First Table: no precedence, Orange";
title3 "Second Table: style_precedence=page, Yello";

Specify the table options. The FORMAT= option specifies DOLLAR10. as the 
default format for the value in each table cell.

proc tabulate data=sales format=dollar10.;

Specify subgroups for the analysis. The CLASS statement separates the 
analysis by values of Product, Region, and SaleType.

class product region saletype;
   

Specify styles for the subgroups. The CLASSLEV statement specifies a style for 
the Region and Saletype elements.

classlev region saletype / style={font_style=italic};
   

Specify the analysis variable. The VAR statement specifies that PROC 
TABULATE calculate statistics on the Netsales variable.

var netsales;

Specify labels. The LABEL statement renames the Netsales variable to Net Sales.

label netsales="Net Sales";
   

Specify Keylabel. The KEYLABEL statement labels the universal class variable 
ALL to Total.

keylabel all="Total";
   

Define the table rows and columns. The TABLE statement creates a table per 
product per page. In this example, there is one product, A100. The TABLE 
statement also creates a row for each formatted value of Region and creates a 
column for each formatted value of SaleType. Each cell that is created by these 
rows and columns contains the sum of the analysis variable Net Sales for all 
observations that contribute to that cell. The STYLE= option in the dimension 
expression overrides any other STYLE= specifications in PROC TABULATE that 

Example 15: Style Precedence 2527



specify attributes for the table cells. In this first table, the column expression is the 
default and the style associated with column takes precedence. Therefore, orange 
will be the default color of the background.

table product *{style={background=#edf8b1}},
region*{style={background=yellow}},
saletype*{style={background=orange}};

Define the table rows and columns using the STYLE_PRECEDENCE option. 
The TABLE statement creates a table per product per page, A100. The TABLE 
statement also creates a row for each formatted value of Region and creates a 
column for each formatted value of SaleType. Each cell that is created by these 
rows and columns contains the sum of the analysis variable Net Sales for all 
observations that contribute to that cell. The STYLE= option in the dimension 
expression overrides any other STYLE= specifications in PROC TABULATE that 
specify attributes for the table cells. In this second table, the 
STYLE_PRECEDENCE option is specified on the page expression. Therefore, the 
style that applies to the background is red.

table product *{style={background=#edf8b1}},
region*{style={background=yellow}},
saletype*{style={background=orange}} / style_precedence=page;

Format the output. The FORMAT statement assigns formats to the SaleType 
variable.

format saletype $saletypefmt.;
   

Run the program.

run;
   

Output
Output 70.40 Table with No Style Precedence

2528 Chapter 70 / TABULATE Procedure



Output 70.41 Table Style Precedence

Example 16: Using the NOCELLMERGE Option
Features: CLASS statement

PROC TABULATE statement options
DATA=
STYLE=

CLASS statement
TABLE statement

crossing (*) operator
STYLE= option
NOCELLMERGE= option

ODS HTML statement
ODS HTML CLOSE statement
TITLE statement

Details
This example does the following:

n creates a table with merged cells style behavior

n creates a second table without merged cells 

n shows how cells styles are affected when empty data cells and the formatted 
data cells use different styles

Example 16: Using the NOCELLMERGE Option 2529



Program
ods html file="tabstyle.html";

proc tabulate data=sashelp.class style={background=#edf8b1};

class sex age;
   

table sex*{style={background=#7fcdbb}} all, age;

title 'Data Cell Styles in Merged Cells';

run;
   

proc tabulate data=sashelp.class style={background=#edf8b1};

class sex age;
   

table sex*{style={background=#7fcdbb}} all, age/nocellmerge;

title1 'Data Cell Styles with NOCELLMERGE Option';

run;
   

ODS html close;
ods html;

Program Description
Specify the ODS output filename. The ODS HTML statement produces output that 
is written in HTML.

ods html file="tabstyle.html";

Specify the PROC TABULATE options. The STYLE= option sets the background 
color for the cells in the table to red.

proc tabulate data=sashelp.class style={background=#edf8b1};

Specify subgroups. The CLASS statement separates the data by sex and age.

class sex age;
   

Define the table rows and columns. The TABLE statement creates a table. The 
STYLE= option in the dimension expression overrides the STYLE= setting from the 
PROC TABULATE statement for table cells attributes.

table sex*{style={background=#7fcdbb}} all, age;

Specify the title of the table to be produced. This table shows how changing the 
style color affects the merged cells.

title 'Data Cell Styles in Merged Cells';

Run the program.

run;
   

2530 Chapter 70 / TABULATE Procedure



Specify the PROC TABULATE options. The STYLE= option sets the background 
color for the cells in the table to red.

proc tabulate data=sashelp.class style={background=#edf8b1};

Specify subgroups. The CLASS statement separates the data by sex and age.

class sex age;
   

Define the table rows and columns. The TABLE statement creates a table. The 
STYLE= option in the dimension expression overrides the STYLE= setting from the 
PROC TABULATE statement, but only for the formatted data cells.

table sex*{style={background=#7fcdbb}} all, age/nocellmerge;

Specify the title of the table to be produced. This table shows how changing the 
style color affects the formatted cells that are not merged.

title1 'Data Cell Styles with NOCELLMERGE Option';

Run the program.

run;
   

Close the ODS HTML output destination.

ODS html close;
ods html;

Output
Output 70.42 Data Cell Styles in Merged Cells

Example 16: Using the NOCELLMERGE Option 2531



Output 70.43 Data Cell Styles in Unmerged Cells

References
Jain, Raj and Imrich Chlamtac. 1985. “The P² Algorithm for Dynamic Calculation of 

Quantiles and Histograms without Storing Observations.” Communications of the 
Association of Computing Machinery 28 (10): 1076–1085.

2532 Chapter 70 / TABULATE Procedure



Chapter 71
TIMEPLOT Procedure

Overview: TIMEPLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2533
What Does the TIMEPLOT Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2533

Syntax: TIMEPLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2536
PROC TIMEPLOT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2537
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2538
CLASS Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2539
ID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2540
PLOT Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2541

Results: TIMEPLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2546
Data Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2546
Procedure Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2547
ODS Table Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2548
Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2548

Examples: TIMEPLOT Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2549
Example 1: Plotting a Single Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2549
Example 2: Customizing an Axis and a Plotting Symbol . . . . . . . . . . . . . . . . . . . 2551
Example 3: Using a Variable for a Plotting Symbol . . . . . . . . . . . . . . . . . . . . . . . 2554
Example 4: Superimposing Two Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2557
Example 5: Showing Multiple Observations on One Line of a Plot . . . . . . . . . . . 2559

Overview: TIMEPLOT Procedure

What Does the TIMEPLOT Procedure Do?
The TIMEPLOT procedure plots one or more variables over time intervals. A listing 
of variable values accompanies the plot. Although the plot and the listing are similar 
to the ones produced by the PLOT and PRINT procedures, PROC TIMEPLOT 
output has these distinctive features:

2533



n The vertical axis always represents the sequence of observations in the data set. 
Thus, if the observations are in order of date or time, then the vertical axis 
represents the passage of time.

n The horizontal axis represents the values of the variable that you are examining. 
Like PROC PLOT, PROC TIMEPLOT can overlay multiple plots on one set of 
axes so that each line of the plot can contain values for more than one variable.

n A plot produced by PROC TIMEPLOT can occupy more than one page.

n Each observation appears sequentially on a separate line of the plot; PROC 
TIMEPLOT does not hide observations as PROC PLOT sometimes does.

n The listing of the plotted values can include variables that do not appear in the 
plot.

The following output illustrates a simple report that you can produce with PROC 
TIMEPLOT. This report shows sales of refrigerators for two sales representatives 
during the first six weeks of the year. The statements that produce the output follow. 
A DATA step in “Example 1: Plotting a Single Variable” on page 2549 creates the 
data set Sales.

title 'The SAS System';
options source;

options linesize=64 pagesize=60 nodate
        pageno=1;

proc timeplot data=sales;
   plot icebox;
   id month week;
   title 'Weekly Sales of Refrigerators';
   title2 'for the';
   title3 'First Six Weeks of the Year';
run;

2534 Chapter 71 / TIMEPLOT Procedure



Output 71.1 Simple Report Created with PROC TIMEPLOT

The following output is a more complicated report of the same data set that is used 
to create Output 71.389 on page 2535. The statements that create this report do the 
following:

n create one plot for the sale of refrigerators and one for the sale of stoves

n plot sales for both sales representatives on the same line

n identify points on the plots by the first letter of the sales representative's last 
name

n control the size of the horizontal axis

n control formats and labels

For an explanation of the program that produces this report, see “Example 5: 
Showing Multiple Observations on One Line of a Plot” on page 2559.

Overview: TIMEPLOT Procedure 2535



Output 71.2 More Complex Report Created with PROC TIMEPLOT

Syntax: TIMEPLOT Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

Requirement: At least one PLOT statement is required.

Tip: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements with PROC 
TIMEPLOT.

PROC TIMEPLOT <options>;
BY <DESCENDING> variable-1 <<DESCENDING> variable-2 …> 

<NOTSORTED>;
CLASS variable(s);
ID variable(s);
PLOT plot-request(s) </options>;

2536 Chapter 71 / TIMEPLOT Procedure



Statement Task Example

PROC TIMEPLOT Request that the plots be produced Ex. 4

BY Produce a separate plot for each BY group

CLASS Group data according to the values of the class 
variables

Ex. 5

ID Print in the listing the values of the variables 
that you identify

Ex. 1, Ex. 2, 
Ex. 3

PLOT Specify the plots to produce Ex. 1, Ex. 2, 
Ex. 3, Ex. 4, 
Ex. 5

PROC TIMEPLOT Statement
Requests that the plots be produced.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Example: “Example 4: Superimposing Two Plots” on page 2557

Syntax
PROC TIMEPLOT <options>;

Optional Arguments
DATA=SAS-data-set

identifies the input data set.

ENCRYPTKEY=key-value
specifies the key value needed for plotting an AES-encrypted data set. If the 
input data set was created with ENCRYPT=AES, then you must specify the 
ENCRYPTKEY= value to plot its data. For example, if a data set named 
secretPlot is created using the DATA statement.

data secretPlot(encrypt=AES encryptkey=Ib007)

Then, you must specify the following PROC statement to plot the data in 
secretPlot:

proc timeplot data=secretPlot(encryptkey=Ib007);

See “ENCRYPTKEY= Data Set Option” in SAS Data Set Options: Reference 
for more information about the ENCRYPTKEY= data set option.

MAXDEC=number
specifies the maximum number of decimal places to be printed in the listing.

PROC TIMEPLOT Statement 2537

http://documentation.sas.com/?docsetId=ledsoptsref&docsetVersion=9.4&docsetTarget=n0yzx049gh8pn3n1v7yrzagard3a.htm&locale=en


Default 2

Range 0-12

Interaction A decimal specification in a format overrides a MAXDEC= 
specification.

Example “Example 4: Superimposing Two Plots” on page 2557

SPLIT='split-character'
specifies a split character, which controls line breaks in column headings. It also 
specifies that labels be used as column headings. PROC TIMEPLOT breaks a 
column heading when it reaches the split character and continues the heading 
on the next line. Unless the split character is a blank, it is not part of the column 
heading. Each occurrence of the split character counts toward the 256-character 
maximum for a label.

Alias S=

Default blank (' ')

Note Column headings can occupy up to three lines. If the column label can 
be split into more lines than this fixed number, then the split character is 
used only as a recommendation on how to split the label.

UNIFORM
uniformly scales the horizontal axis across all BY groups. By default, PROC 
TIMEPLOT separately determines the scale of the axis for each BY group.

Interaction UNIFORM also affects the calculation of means for reference lines. 
For more information, see “REF=reference-value(s) ” on page 2545.

BY Statement
Produces a separate plot for each BY group.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

See: “BY” on page 74 

Syntax
BY <DESCENDING> variable-1 
<<DESCENDING> variable-2 …>
<NOTSORTED>;

2538 Chapter 71 / TIMEPLOT Procedure



Required Argument
variable

specifies the variable that the procedure uses to form BY groups. You can 
specify more than one variable. Unless you use the NOTSORTED option in the 
BY statement, the data must either be sorted by variables or indexed. These 
variables are called BY variables.

Optional Arguments
DESCENDING

specifies that the data set is sorted in descending order by the variable that 
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. The data is grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of 
BY variables is suspended for BY-group processing when you use the 
NOTSORTED option. In fact, the procedure does not use an index if you specify 
NOTSORTED. The procedure defines a BY group as a set of contiguous 
observations that have the same values for all BY variables. If observations that 
have the same values for the BY variables are not contiguous, then the 
procedure treats each contiguous set as a separate BY group.

CLASS Statement
Groups data according to the values of the class variables.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Tip: PROC TIMEPLOT uses the formatted values of the CLASS variables to form classes. 
Thus, if a format groups the values, then the procedure uses those groups.

Example: “Example 5: Showing Multiple Observations on One Line of a Plot” on page 2559

Syntax
CLASS variable(s);

Required Argument
variable(s)

specifies one or more variables that the procedure uses to group the data. 
Variables in a CLASS statement are called class variables. Class variables can 
be numeric or character. Class variables can have continuous values, but they 
typically have a few discrete values that define the classifications of the variable. 
You do not have to sort the data by class variables.

CLASS Statement 2539



The values of the class variables appear in the listing. PROC TIMEPLOT prints 
and plots one line each time the combination of values of the class variables 
changes. Therefore, the output typically is more meaningful if you sort or group 
the data according to values of the class variables.

Details

Using Multiple CLASS Statements
You can use any number of CLASS statements. If you use more than one CLASS 
statement, then PROC TIMEPLOT simply concatenates all variables from all of the 
CLASS statements. The following form of the CLASS statement includes three 
variables:

CLASS variable-1 variable-2 variable-3;

It has the same effect as this form:

CLASS variable-1;
CLASS variable-2;
CLASS variable-3;

Using a Symbol Variable
Normally, you use the CLASS statement with a symbol variable. In this case, the 
listing of the plot variable contains a column for each value of the symbol variable. 
Each row of the plot contains a point for each value of the symbol variable. The 
plotting symbol is the first character of the formatted value of the symbol variable. 
But, if more than one observation within a class has the same symbol value, then 
PROC TIMEPLOT plots and prints only the first occurrence of that symbol. SAS 
prints a warning in the log describing this behavior.

For more information about plotting symbols and the CLASS statement, see plot 
requests on page 2542.

ID Statement
Prints in the listing the values of the variables that you identify.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Examples: “Example 1: Plotting a Single Variable” on page 2549
“Example 2: Customizing an Axis and a Plotting Symbol” on page 2551
“Example 3: Using a Variable for a Plotting Symbol” on page 2554

2540 Chapter 71 / TIMEPLOT Procedure



Syntax
ID variable(s);

Required Argument
variable(s)

identifies one or more ID variables to be printed in the listing.

PLOT Statement
Specifies the plots to produce.

Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 
Analytics.

Tip: Each PLOT statement produces a separate plot.

Examples: “Example 1: Plotting a Single Variable” on page 2549
“Example 2: Customizing an Axis and a Plotting Symbol” on page 2551
“Example 3: Using a Variable for a Plotting Symbol” on page 2554
“Example 4: Superimposing Two Plots” on page 2557
“Example 5: Showing Multiple Observations on One Line of a Plot” on page 2559

Syntax
PLOT plot-request(s) </options>;

Summary of Optional Arguments
Control the appearance of the plot

HILOC
connects the leftmost plotting symbol to the rightmost plotting symbol with 
a line of hyphens (-).

JOINREF
connects the leftmost and rightmost symbols on each line of the plot with 
a line of hyphens (-) regardless of whether the symbols are reference 
symbols or plotting symbols.

NOSYMNAME
suppresses the name of the symbol variable in column headings when 
you use a CLASS statement.

NPP
suppresses the listing of the values of the variables that appear in the 
PLOT statement.

POS=print-positions-for-plot

PLOT Statement 2541



specifies the number of print positions to use for the horizontal axis.

Create and customize a reference line
REF=reference-value(s) 

draws lines on the plot that are perpendicular to the specified values on 
the horizontal axis.

REFCHAR='character' 
specifies the character for drawing reference lines.

Customize the axis
AXIS=axis-specification

specifies the range of values to plot on the horizontal axis, as well as the 
interval represented by each print position on the horizontal axis.

REVERSE
orders the values on the horizontal axis with the largest value in the 
leftmost position.

Display multiple plots on the same set of axes
OVERLAY

plots all requests in one PLOT statement on one set of axes.
OVPCHAR='character'

specifies the character to be printed if multiple plotting symbols coincide.

Required Argument
plot-request(s)

specifies the variable or variables to plot. (Optional) Also specifies the plotting 
symbol to use. By default, each plot request produces a separate plot.

You can mix different forms of requests in one PLOT statement. For an example 
of mixing forms, see “Example 4: Superimposing Two Plots” on page 2557. 

variable(s)
identifies one or more numeric variables to plot. PROC TIMEPLOT uses the 
first character of the variable name as the plotting symbol.

Example “Example 1: Plotting a Single Variable” on page 2549

(variable(s))='plotting-symbol'
identifies one or more numeric variables to plot and specifies the plotting 
symbol to use for all variables in the list. You can omit the parentheses if you 
use only one variable.

Example “Example 2: Customizing an Axis and a Plotting Symbol” on page 
2551

(variable(s))=symbol-variable
identifies one or more numeric variables to plot and specifies a symbol 
variable. PROC TIMEPLOT uses the first nonblank character of the formatted 
value of the symbol variable as the plotting symbol for all variables in the list. 
The plotting symbol changes from one observation to the next if the value of 
the symbol variable changes. You can omit the parentheses if you use only 
one variable.

Example “Example 3: Using a Variable for a Plotting Symbol” on page 2554

2542 Chapter 71 / TIMEPLOT Procedure



Optional Arguments
AXIS=axis-specification

specifies the range of values to plot on the horizontal axis, as well as the interval 
represented by each print position on the axis. PROC TIMEPLOT labels the first 
and last ends of the axis, if space permits. 

For numeric values, axis-specification can be one of the following or a 
combination of both:

n< …n>

n TO n <BY increment>

The values must be in either ascending or descending order. Use a negative 
value for increment to specify descending order. The specified values are 
spaced evenly along the horizontal axis even if the values are not uniformly 
distributed. Numeric values can be specified in the following ways:

Table 71.1 Specifying AXIS= Values

Specification Comments

axis=1 2 10 Values are 1, 2, and 10.

axis=10 to 100 by 5 Values appear in increments of 
5, starting at 10 and ending at 
100.

axis=12 10 to 100 by 5 A combination of the two 
previous forms of specification.

For axis variables that contain datetime values, axis-specification is either an 
explicit list of values or a starting value and an ending value with an increment 
specified:

'date-time-value'i < …'date-time-value'i>

'date-time-value'i TO 'date-time-value'i
<BY increment>

'date-time-value'i
any SAS date, time, or datetime value described for the SAS functions 
INTCK and INTNX. The suffix i is one of the following:

D date

T time

DT datetime

increment
one of the valid arguments for the INTCK or INTNX functions. For dates, 
increment can be one of the following:

n DAY

n WEEK

n MONTH

PLOT Statement 2543



n QTR

n YEAR

For datetimes, increment can be one of the following:

n DTDAY

n DTWEEK

n DTMONTH

n DTQTR

n DTYEAR

For times, increment can be one of the following:

n HOUR

n MINUTE

n SECOND

The following statement is an example of using the day increment:

axis='01JAN95'd to '01JAN96'd by month 
axis='01JAN95'd to '01JAN96'd by qtr

For descriptions of individual intervals, see SAS Language Reference: 
Concepts.

Note: You must use a FORMAT statement to print the tick-mark values in an 
understandable form.

Interaction The value of POS= (see “POS=print-positions-for-plot” on page 
2545) overrides an interval set with AXIS=.

Tip It is possible for your data to be out of range and fall outside the 
axis area of the plot. When this happens, PROC TIMEPLOT places 
angle brackets, (< ) or (>), on the sides of the plot to indicate that 
there is data not being represented.

Example “Example 2: Customizing an Axis and a Plotting Symbol” on page 
2551

HILOC
connects the leftmost plotting symbol to the rightmost plotting symbol with a line 
of hyphens (-).

Interaction If you specify JOINREF, then PROC TIMEPLOT ignores HILOC.

JOINREF
connects the leftmost and rightmost symbols on each line of the plot with a line 
of hyphens (-), regardless of whether the symbols are reference symbols or 
plotting symbols. However, if a line contains only reference symbols, then PROC 
TIMEPLOT does not connect the symbols.

Example “Example 3: Using a Variable for a Plotting Symbol” on page 2554

2544 Chapter 71 / TIMEPLOT Procedure

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en
http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=titlepage.htm&locale=en


NOSYMNAME
suppresses the name of the symbol variable in column headings when you use a 
CLASS statement. If you use NOSYMNAME, then only the value of the symbol 
variable appears in the column heading.

Example “Example 5: Showing Multiple Observations on One Line of a Plot” on 
page 2559

NPP
suppresses the listing of the values of the variables that appear in the PLOT 
statement.

Example “Example 3: Using a Variable for a Plotting Symbol” on page 2554

OVERLAY
plots all requests in one PLOT statement on one set of axes. Otherwise, PROC 
TIMEPLOT produces a separate plot for each plot request.

Example “Example 4: Superimposing Two Plots” on page 2557

OVPCHAR='character'
specifies the character to be printed if multiple plotting symbols coincide. If a 
plotting symbol and a character in a reference line coincide, then PROC 
TIMEPLOT prints the plotting symbol.

Default at sign (@)

Example “Example 5: Showing Multiple Observations on One Line of a Plot” on 
page 2559

POS=print-positions-for-plot
specifies the number of print positions to use for the horizontal axis.

Default If you omit both POS= and AXIS=, then PROC TIMEPLOT initially 
assumes that POS=20. However, if space permits, then this value 
increases so that the plot fills the available space.

Interaction If you specify POS=0 and AXIS=, then the plot fills the available 
space. POS= overrides an interval set with AXIS= . See the 
discussion of “AXIS=axis-specification” on page 2543.

See “Page Layout” on page 2547

Example “Example 1: Plotting a Single Variable” on page 2549

REF=reference-value(s)
draws lines on the plot that are perpendicular to the specified values on the 
horizontal axis. The values for reference-value(s) can be constants, or you can 
use the form 

MEAN(variable(s))

If you use this form of REF=, then PROC TIMEPLOT evaluates the mean for 
each variable that you list and draws a reference line for each mean.

Interactions If you use the UNIFORM option in the PROC TIMEPLOT 
statement, then the procedure calculates the mean values for the 
variables over all observations for all BY groups. If you do not use 

PLOT Statement 2545



UNIFORM, then the procedure calculates the mean for each 
variable for each BY group.

If a plotting symbol and a reference character coincide, then PROC 
TIMEPLOT prints the plotting symbol.

Examples “Example 3: Using a Variable for a Plotting Symbol” on page 2554

“Example 4: Superimposing Two Plots” on page 2557

REFCHAR='character'
specifies the character for drawing reference lines.

Default vertical bar (|)

Interaction If you are using the JOINREF or HILOC option, then do not specify 
a value for REFCHAR= that is the same as a plotting symbol. If you 
do this, then PROC TIMEPLOT will interpret the plotting symbols as 
reference characters and will not connect the symbols as you 
expect.

Example “Example 3: Using a Variable for a Plotting Symbol” on page 2554

REVERSE
orders the values on the horizontal axis with the largest value in the leftmost 
position.

Example “Example 4: Superimposing Two Plots” on page 2557

Results: TIMEPLOT Procedure

Data Considerations
The input data set usually contains a date variable to use as either a class or ID 
variable. Although PROC TIMEPLOT does not require an input data set sorted by 
date, the output is usually more meaningful if the observations are in chronological 
order. In addition, if you use a CLASS statement, then the output is more meaningful 
if the input data set groups observations according to combinations of class variable 
values. For more information, see “CLASS Statement” on page 2539.

2546 Chapter 71 / TIMEPLOT Procedure



Procedure Output

Page Layout
For each plot request, PROC TIMEPLOT prints a listing and a plot. PROC 
TIMEPLOT determines the arrangement of the page as follows:

n If you use POS=, then the procedure does the following:

o determines the size of the plot from the POS= value

o determines the space for the listing from the width of the columns of printed 
values, equally spaced and with a maximum of five positions between 
columns

o centers the output on the page

n If you omit POS=, then the procedure does the following:

o determines the width of the plot from the value of the AXIS= option

o expands the listing to fill the rest of the page

If there is not enough space to print the listing and the plot, then PROC TIMEPLOT 
produces no output and writes the following error message to the SAS log:

ERROR:  Too many variables/symbol values
        to print.

The error does not affect other plot requests.

Contents of the Listing
The listing in the output contains different information depending on whether you 
use a CLASS statement. If you do not use a CLASS statement, then PROC 
TIMEPLOT prints (and plots) each observation on a separate line. For an example 
of the output without the CLASS statement, see “Example 1: Plotting a Single 
Variable” on page 2549. 

If you do use a CLASS statement, then the form of the output varies depending on 
whether you specify a symbol variable. For more information about using a symbol 
variable with the CLASS statement, see “Using a Symbol Variable” on page 2540. 

Results: TIMEPLOT Procedure 2547



ODS Table Names
The TIMEPLOT procedure assigns a name to each table that it creates. You can 
use these names to reference the table when using the Output Delivery System 
(ODS) to select tables and create output data sets. For more information, see SAS 
Output Delivery System: User’s Guide.

Table 71.2 ODS Tables Produced by the TIMEPLOT Procedure

Table Name Description
Conditions When Table 
Is Generated

Plot A single plot If you do not specify the 
OVERLAY option

OverlaidPlot Two or more plots on a 
single set of axes

If you specify the 
OVERLAY option

Missing Values
Four types of variables can appear in the listing from PROC TIMEPLOT:

n plot variables

n ID variables

n class variables

n symbol variables (as part of some column headings)

Plot variables and symbol variables can also appear in the plot.

Observations with missing values of a class variable form a class of observations.

In the listing, missing values appear as a period ( . ), a blank, or a special missing 
value (the letters A through Z and the underscore ( _ ) character).

In the plot, PROC TIMEPLOT handles different variables in different ways:

n An observation or class of observations with a missing value does not appear in 
the plot.

n If you use a symbol variable, then PROC TIMEPLOT uses a period ( . ) as the 
symbol variable on the plot for all observations that have a missing value for the 
symbol variable. For more information about using symbol variables, see plot 
requests on page 2542.

2548 Chapter 71 / TIMEPLOT Procedure



Examples: TIMEPLOT Procedure

Example 1: Plotting a Single Variable
Features: PROC TIMEPLOT statement options

DATA=
ID statement
PLOT statement
PLOT statement option

POS=
DATA step

Details
This example demonstrates the following tasks:

n uses a DATA step to create the data set Sales

n uses a single PLOT statement to plot sales of refrigerators

n specifies the number of print positions to use for the horizontal axis of the plot

n provides context for the points in the plot by printing in the listing the values of 
two variables that are not in the plot

Program
options formchar="|----|+|---+=|-/\<>*";

data sales;
   input Month Week Seller $ Icebox Stove;
   datalines;
1 1 Kreitz   3450.94 1312.61
1 1 LeGrange 2520.04  728.13
1 2 Kreitz   3240.67  222.35
1 2 LeGrange 2675.42  184.24
1 3 Kreitz   3160.45 2263.33
1 3 LeGrange 2805.35  267.35
1 4 Kreitz   3400.24 1787.45
1 4 LeGrange 2870.61  274.51
2 1 Kreitz   3550.43 2910.37

Example 1: Plotting a Single Variable 2549



2 1 LeGrange 2730.09  397.98
2 2 Kreitz   3385.74  819.69
2 2 LeGrange 2670.93 2242.24
;

proc timeplot data=sales;
   plot icebox / pos=50;

   id month week;

   title 'Weekly Sales of Iceboxes';
   title2 'for the';
   title3 'First Six Weeks of the Year';
run;

Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available. 

options formchar="|----|+|---+=|-/\<>*";

Create the Sales data set. Sales contains weekly information about the sales of 
refrigerators and stoves by two sales representatives. 

data sales;
   input Month Week Seller $ Icebox Stove;
   datalines;
1 1 Kreitz   3450.94 1312.61
1 1 LeGrange 2520.04  728.13
1 2 Kreitz   3240.67  222.35
1 2 LeGrange 2675.42  184.24
1 3 Kreitz   3160.45 2263.33
1 3 LeGrange 2805.35  267.35
1 4 Kreitz   3400.24 1787.45
1 4 LeGrange 2870.61  274.51
2 1 Kreitz   3550.43 2910.37
2 1 LeGrange 2730.09  397.98
2 2 Kreitz   3385.74  819.69
2 2 LeGrange 2670.93 2242.24
;

Plot sales of refrigerators. The plot variable, Icebox, appears in both the listing 
and the output. POS= provides 50 print positions for the horizontal axis.

proc timeplot data=sales;
   plot icebox / pos=50;

Label the rows in the plot listing. The values of the ID variables, Month and 
Week, are used to uniquely identify each row of the listing section of the plot.

   id month week;

Specify the titles. 

   title 'Weekly Sales of Iceboxes';
   title2 'for the';
   title3 'First Six Weeks of the Year';
run;

2550 Chapter 71 / TIMEPLOT Procedure



Output
The column headings in the listing are the variables' names. The plot uses the 
default plotting symbol, which is the first character of the plot variable's name.

Output 71.3 Plot for a Single Variable

Example 2: Customizing an Axis and a Plotting 
Symbol
Features: PROC PLOT statement option

AXIS=
ID statement
PLOT statement
LABEL statement
PROC FORMAT
LIBNAME statement
FMTSEARCH= system option

Data set: Sales

Example 2: Customizing an Axis and a Plotting Symbol 2551



Details
This example demonstrates the following tasks:

n specifies the character to use as the plotting symbol

n specifies the minimum and maximum values for the horizontal axis as well as the 
interval represented by each print position

n provides context for the points in the plot by printing in the listing the values of 
two variables that are not in the plot

n uses a variable's label as a column heading in the listing

n creates and uses a permanent format

Program
libname proclib  'SAS-library';

options formchar="|----|+|---+=|-/\<>*";

proc format library=proclib;
   value monthfmt 1='January'
                  2='February';
run;

proc timeplot data=sales;
   plot icebox='R' / axis=2500 to 3600 by 25;

   id month week;

   label icebox='Refrigerator';

   format month monthfmt.;

title 'Weekly Refrigerator Sales';
title2 'for the First Six Weeks of the Year';
run;

Program Description
Declare the PROCLIB SAS library. 

libname proclib  'SAS-library';

Set the SAS system options. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available. 

options formchar="|----|+|---+=|-/\<>*";

Create a format for the Month variable. PROC FORMAT creates a permanent 
format for Month. The LIBRARY= option specifies a permanent storage location so 

2552 Chapter 71 / TIMEPLOT Procedure



that the formats are available in subsequent SAS sessions. This format is used for 
examples throughout this chapter.

proc format library=proclib;
   value monthfmt 1='January'
                  2='February';
run;

Plot sales of refrigerators. The plot variable, Icebox, appears in both the listing 
and the output. The plotting symbol is 'R'. AXIS= sets the minimum value of the axis 
to 2500 and the maximum value to 3600. BY 25 specifies that each print position on 
the axis represents 25 units (in this case, dollars).

proc timeplot data=sales;
   plot icebox='R' / axis=2500 to 3600 by 25;

Label the rows in the listing. The values of the ID variables, Month and Week, are 
used to uniquely identify each row of the listing.

   id month week;

Apply a label to the sales column in the listing. The LABEL statement associates 
a label with the variable Icebox for the duration of the PROC TIMEPLOT step. 
PROC TIMEPLOT uses the label as the column heading in the listing.

   label icebox='Refrigerator';

Apply the MONTHFMT. format to the Month variable. The FORMAT statement 
assigns a format to use for Month in the report.

   format month monthfmt.;

Specify the titles. 

title 'Weekly Refrigerator Sales';
title2 'for the First Six Weeks of the Year';
run;

Output
There are three column headings in the listing: the variables Month and Week, 
which have no labels, and the label Refrigerator, which is the label for the variable 
Icebox. The plotting symbol is R, which represents the variable label Refrigerator).

Example 2: Customizing an Axis and a Plotting Symbol 2553



Output 71.4 Plot with Customized Axis and Plotting Symbol

Example 3: Using a Variable for a Plotting Symbol
Features: ID statement

PLOT statement
PLOT statement options

JOINREF
NPP
REF=
REFCHAR=

Data set: Sales

Format: MONTHFMT.

Details
This example demonstrates the following:

n specifies a variable to use as the plotting symbol to distinguish between points 
for each of two sales representatives

n suppresses the printing of the values of the plot variable in the listing

n draws a reference line to a specified value on the axis and specifies the 
character to use to draw the line

n connects the leftmost and rightmost symbols on each line of the plot

2554 Chapter 71 / TIMEPLOT Procedure



Program
libname proclib
'SAS-library';

options formchar="|----|+|---+=|-/\<>*" fmtsearch=(proclib);

proc timeplot data=sales;
   plot stove=seller /

                       npp

                       ref=1500 refchar=':'

                       joinref

                       axis=100 to 3000 by 50;

   id month week;

   format month monthfmt.;

   title 'Weekly Sales of Stoves';
   title2 'Compared to Target Sales of $1500';
   title3 'K for Kreitz; L for LeGrange';
run;

Program Description
Declare the PROCLIB SAS library. 

libname proclib
'SAS-library';

Set the SAS system options. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available. FMTSEARCH= adds the SAS library PROCLIB 
to the search path that is used to locate formats.

options formchar="|----|+|---+=|-/\<>*" fmtsearch=(proclib);

Plot sales of stoves. The PLOT statement specifies both the plotting variable, 
Stove, and a symbol variable, Seller. The plotting symbol is the first letter of the 
formatted value of the Seller (in this case, L or K).

proc timeplot data=sales;
   plot stove=seller /

Suppress the appearance of the plotting variable in the listing. The values of 
the Stove variable will not appear in the listing.

                       npp

Create a reference line on the plot. REF= and REFCHAR= draw a line of colons 
at the sales target of $1500.

                       ref=1500 refchar=':'

Draw a line between the symbols on each line of the plot. In this plot, JOINREF 
connects each plotting symbol to the reference line.

                       joinref

Example 3: Using a Variable for a Plotting Symbol 2555



Customize the horizontal axis. AXIS= sets the minimum value of the horizontal 
axis to 100 and the maximum value to 3000. BY 50 specifies that each print position 
on the axis represents 50 units (in this case, dollars).

                       axis=100 to 3000 by 50;

Label the rows in the listing. The values of the ID variables, Month and Week, are 
used to identify each row of the listing.

   id month week;

Apply the MONTHFMT. format to the Month variable. The FORMAT statement 
assigns a format to use for Month in the report.

   format month monthfmt.;

Specify the titles. 

   title 'Weekly Sales of Stoves';
   title2 'Compared to Target Sales of $1500';
   title3 'K for Kreitz; L for LeGrange';
run;

Output
The plot uses the first letter of the value of Seller as the plotting symbol.

Output 71.5 Plot with Variable for Plotting Symbol

2556 Chapter 71 / TIMEPLOT Procedure



Example 4: Superimposing Two Plots
Features: PROC TIMEPLOT statement option

MAXDEC=
PLOT statement
PLOT statement options

OVERLAY
REF=MEAN(variable(s))
REVERSE

Data set: Sales

Details
This example demonstrates the following:

n superimposes two plots on one set of axes

n specifies a variable to use as the plotting symbol for one plot and a character to 
use as the plotting symbol for the other plot

n draws a reference line to the mean value of each of the two variables plotted

n reverses the labeling of the axis so that the largest value is at the far left of the 
plot

Program
options formchar="|----|+|---+=|-/\<>*";

proc timeplot data=sales maxdec=0;

   plot stove=seller icebox='R' /

          overlay

            ref=mean(stove icebox)

                                 
reverse;

   label icebox='Refrigerators';

   title 'Weekly Sales of Stoves and Refrigerators';
   title2 'for the';
   title3 'First Six Weeks of the Year';
run;

Example 4: Superimposing Two Plots 2557



Program Description
Set the FORMCHAR option. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available. 

options formchar="|----|+|---+=|-/\<>*";

Specify the number of decimal places to display. MAXDEC= specifies the 
number of decimal places to display in the listing.

proc timeplot data=sales maxdec=0;

Plot sales of both stoves and refrigerators. The PLOT statement requests two 
plots. One plot uses the first letter of the formatted value of Seller to plot the values 
of Stove. The other uses the letter R (to match the label Refrigerators) to plot the 
value of Icebox.

   plot stove=seller icebox='R' /

Print both plots on the same set of axes. 

          overlay

Create two reference lines on the plot. REF= draws two reference lines: one 
perpendicular to the mean of Stove, the other perpendicular to the mean of Icebox.

            ref=mean(stove icebox)

Order the values on the horizontal axis from largest to smallest. 

                                 
reverse;

Apply a label to the sales column in the listing. The LABEL statement associates 
a label with the variable Icebox for the duration of the PROC TIMEPLOT step. 
PROC TIMEPLOT uses the label as the column heading in the listing.

   label icebox='Refrigerators';

Specify the titles. 

   title 'Weekly Sales of Stoves and Refrigerators';
   title2 'for the';
   title3 'First Six Weeks of the Year';
run;

Output
The column heading for the variable Icebox in the listing is the variable's label 
(Refrigerators). One plot uses the first letter of the value of Seller as the plotting 
symbol. The other plot uses the letter R.

2558 Chapter 71 / TIMEPLOT Procedure



Output 71.6 Two Plots Superimposed Using Different Plotting Symbols

Example 5: Showing Multiple Observations on One 
Line of a Plot
Features: CLASS statement

PLOT statement
PLOT statement options

NOSYMNAME
OVPCHAR=
POS=

Data set: Sales

Format: MONTHFMT.

Details
This example demonstrates the following tasks:

n groups observations for the same month and week so that sales for the two 
sales representatives appear on the same line of the plot

n specifies a variable to use as the plotting symbol

n suppresses the name of the plotting variable in one plot

Example 5: Showing Multiple Observations on One Line of a Plot 2559



n specifies a size for the plots so that they both occupy the same amount of space

Program
libname proclib
'SAS-library';

options formchar="|----|+|---+=|-/\<>*" fmtsearch=(proclib);

proc timeplot data=sales;
   class month week;

   plot stove=seller  / pos=25 ovpchar='!';
   plot icebox=seller / pos=25 ovpchar='!' nosymname;

   format stove icebox dollar10.2 month monthfmt.;

   title 'Weekly Appliance Sales for the First Quarter';
run;

Program Description
Declare the PROCLIB SAS library. 

libname proclib
'SAS-library';

Set the SAS system options. Setting FORMCHAR to this exact string renders 
better HTML output when it is viewed outside of the SAS environment where SAS 
Monospace fonts are not available. FMTSEARCH= adds the SAS library PROCLIB 
to the search path that is used to locate formats.

options formchar="|----|+|---+=|-/\<>*" fmtsearch=(proclib);

Specify subgroups for the analysis. The CLASS statement groups all 
observations with the same values of Month and Week into one line in the output. 
Using the CLASS statement with a symbol variable produces in the listing one 
column of the plot variable for each value of the symbol variable.

proc timeplot data=sales;
   class month week;

Plot sales of stoves and refrigerators. Each PLOT statement produces a 
separate plot. The plotting symbol is the first character of the formatted value of the 
symbol variable: K for Kreitz; L for LeGrange. POS= specifies that each plot uses 25 
print positions for the horizontal axis. OVPCHAR= designates the exclamation point 
as the plotting symbol when the plotting symbols coincide. NOSYMNAME 
suppresses the name of the symbol variable Seller from the second listing.

   plot stove=seller  / pos=25 ovpchar='!';
   plot icebox=seller / pos=25 ovpchar='!' nosymname;

Apply formats to values in the listing. The FORMAT statement assigns formats to 
use for Stove, Icebox, and Month in the report. The TITLE statement specifies a 
title.

   format stove icebox dollar10.2 month monthfmt.;

2560 Chapter 71 / TIMEPLOT Procedure



Specify the title. 

   title 'Weekly Appliance Sales for the First Quarter';
run;

Output
Output 71.7 Weekly Icebox Sales by Seller

Output 71.8 Weekly Stove Sales by Seller

Example 5: Showing Multiple Observations on One Line of a Plot 2561



2562 Chapter 71 / TIMEPLOT Procedure



Chapter 72
TRANSPOSE Procedure

Overview: TRANSPOSE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2563
What Does the TRANSPOSE Procedure Do? . . . . . . . . . . . . . . . . . . . . . . . . . . . 2564
What Types of Transpositions Can PROC TRANSPOSE Perform? . . . . . . . . . . 2564
In-Database Processing for PROC TRANSPOSE . . . . . . . . . . . . . . . . . . . . . . . . 2566
CAS Processing for PROC TRANSPOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2568

Syntax: TRANSPOSE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2568
PROC TRANSPOSE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2569
BY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2571
COPY Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2573
ID Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2574
IDLABEL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2576
VAR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2577

Results: TRANSPOSE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2577
Output Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2577
Output Data Set Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2578
Attributes of Transposed Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2578
Names of Transposed Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2579

Examples: TRANSPOSE Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2579
Example 1: Performing a Simple Transposition . . . . . . . . . . . . . . . . . . . . . . . . . . 2579
Example 2: Naming Transposed Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2581
Example 3: Labeling Transposed Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2582
Example 4: Transposing BY Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2585
Example 5: Naming Transposed Variables When the ID Variable 

Has Duplicate Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2587
Example 6: Transposing Data for Statistical Analysis . . . . . . . . . . . . . . . . . . . . . 2589

2563



Overview: TRANSPOSE Procedure

What Does the TRANSPOSE Procedure Do?
The TRANSPOSE procedure creates an output data set by restructuring the values 
in a SAS data set, transposing selected variables into observations. The 
TRANSPOSE procedure can often eliminate the need to write a lengthy DATA step 
to achieve the same result. Further, the output data set can be used in subsequent 
DATA or PROC steps for analysis, reporting, or further data manipulation.

PROC TRANSPOSE does not produce printed output. To print the output data set 
from the PROC TRANSPOSE step, use PROC PRINT, PROC REPORT, or another 
SAS reporting tool.

To create a transposed variable, the procedure transposes the values of an 
observation in the input data set into values of a variable in the output data set.

What Types of Transpositions Can PROC 
TRANSPOSE Perform?

Simple Transposition
The following example illustrates a simple transposition. In the input data set, each 
variable represents the scores from one tester. In the output data set, each 
observation now represents the scores from one tester. Each value of _NAME_ is 
the name of a variable in the input data set that the procedure transposed. Thus, the 
value of _NAME_ identifies the source of each observation in the output data set. 
For example, the values in the first observation in the output data set come from the 
values of the variable Tester1 in the input data set. The statements that produce the 
output follow.

proc print data=proclib.product noobs;
   title 'The Input Data Set';
run;

proc transpose data=proclib.product
               out=proclib.product_transposed;
run;

proc print data=proclib.product_transposed noobs;

2564 Chapter 72 / TRANSPOSE Procedure



   title 'The Output Data Set';
run;

Output 72.1 A Simple Transposition

                               The Input Data Set                              1

                    Tester1    Tester2    Tester3    Tester4

                       22         25         21         21
                       15         19         18         17
                       17         19         19         19
                       20         19         16         19
                       14         15         13         13
                       15         17         18         19
                       10         11          9         10
                       22         24         23         21

                              The Output Data Set                              2

    _NAME_     COL1    COL2    COL3    COL4    COL5    COL6    COL7    COL8

    Tester1     22      15      17      20      14      15      10      22
    Tester2     25      19      19      19      15      17      11      24
    Tester3     21      18      19      16      13      18       9      23
    Tester4     21      17      19      19      13      19      10      21

Complex Transposition Using BY Groups
The next example, which uses BY groups, is more complex. The input data set 
represents measurements of the weight and length of fish at two lakes. The 
statements that create the output data set do the following:

n transpose only the variables that contain the length measurements

n create six BY groups, one for each lake and date

n use a data set option to name the transposed variable

Overview: TRANSPOSE Procedure 2565



Output 72.2 A Transposition with BY Groups

                                Input Data Set                                1

     L
     o                     L      W      L      W      L      W      L      W
     c                     e      e      e      e      e      e      e      e
     a                     n      i      n      i      n      i      n      i
     t               D     g      g      g      g      g      g      g      g
     i               a     t      h      t      h      t      h      t      h
     o               t     h      t      h      t      h      t      h      t
     n               e     1      1      2      2      3      3      4      4

 Cole Pond     02JUN95    31    0.25    32    0.30    32    0.25    33    0.30
 Cole Pond     03JUL95    33    0.32    34    0.41    37    0.48    32    0.28
 Cole Pond     04AUG95    29    0.23    30    0.25    34    0.47    32    0.30
 Eagle Lake    02JUN95    32    0.35    32    0.25    33    0.30     .     .
 Eagle Lake    03JUL95    30    0.20    36    0.45     .     .       .     .
 Eagle Lake    04AUG95    33    0.30    33    0.28    34    0.42     .    
.

                  Fish Length Data for Each Location and Date                  2

                 Location        Date    _NAME_     Measurement

                Cole Pond     02JUN95    Length1         31
                Cole Pond     02JUN95    Length2         32
                Cole Pond     02JUN95    Length3         32
                Cole Pond     02JUN95    Length4         33
                Cole Pond     03JUL95    Length1         33
                Cole Pond     03JUL95    Length2         34
                Cole Pond     03JUL95    Length3         37
                Cole Pond     03JUL95    Length4         32
                Cole Pond     04AUG95    Length1         29
                Cole Pond     04AUG95    Length2         30
                Cole Pond     04AUG95    Length3         34
                Cole Pond     04AUG95    Length4         32
                Eagle Lake    02JUN95    Length1         32
                Eagle Lake    02JUN95    Length2         32
                Eagle Lake    02JUN95    Length3         33
                Eagle Lake    02JUN95    Length4          .
                Eagle Lake    03JUL95    Length1         30
                Eagle Lake    03JUL95    Length2         36
                Eagle Lake    03JUL95    Length3          .
                Eagle Lake    03JUL95    Length4          .
                Eagle Lake    04AUG95    Length1         33
                Eagle Lake    04AUG95    Length2         33
                Eagle Lake    04AUG95    Length3         34
                Eagle Lake    04AUG95    Length4          .

For a complete explanation of the SAS program that produces these results, see 
“Example 4: Transposing BY Groups” on page 2585.

In-Database Processing for PROC TRANSPOSE
In-database processing has several advantages over processing within SAS. These 
advantages include increased security, reduced network traffic, and the potential for 

2566 Chapter 72 / TRANSPOSE Procedure



faster processing. Increased security is possible because sensitive data does not 
have to be extracted from the data source. Faster processing is possible because 
data is manipulated locally, on the data source, using high-speed secondary storage 
devices instead of being transported across a relatively slow network connection. 
The data source is used because it might have more processing resources at its 
disposal, and it might be capable of optimizing a query for execution in a highly 
parallel and scalable fashion.

Note: In-database processing of PROC TRANSPOSE is not supported in SAS 
Viya.

When the DATA= input table is stored as a table or view in a database, PROC 
TRANSPOSE can use in-database processing to perform most of its work within the 
database. In-database processing can provide the advantages of faster processing 
and reduced data transfer between the database and SAS software.

In-database processing for PROC TRANSPOSE supports the following data 
providers:

n Hadoop

n Teradata

Note: A valid license for SAS Code Accelerator for Hadoop or SAS Code 
Accelerator for Teradata is required.

The TRANSPOSE procedure performs a dynamic transformation of the data in 
which the characteristics of the output table, specifically the number and names of 
the variables, as well as their types, are determined from the variable values, as well 
as the characteristics of the input table. This dynamic behavior is achieved by a two-
pass process in which rows of the input table are examined to determine the 
characteristics of the output table, during the first pass, and in which the work of 
transposing the data is performed during the second pass. Parallel operation within 
the massively parallel processing (MPP) database speeds up both the first and 
second pass. The MPP performs a set of coordinated computations in parallel with 
the use of a large number of processors or separate computers. In the first pass, 
rows are examined in parallel and in place, according to the manner in which they 
are already partitioned across the nodes of a cluster. In the second pass, rows are 
repartitioned to form BY groups that are then processed independently and in 
parallel.

Both the first and second passes of the in-database processing are performed by 
executing a DS2 program within the SAS Embedded Process that resides within the 
nodes of the cluster. The DBMS provides the SAS Embedded Process with the 
ability to read data from and write data to tables. The SAS Embedded Process 
provides an execution context for the DS2 program. Because the two passes of 
work are expressed in the DS2 language, columns of the tables are cast to variables 
that have DS2 data types. Data type support within DS2 is more extensive than that 
provided by the traditional SAS system so, when executing inside the database, the 
ability of the TRANSPOSE procedure to preserve data types and value of input data 
within the transposed output data is enhanced.

The SQLGENERATION system option or LIBNAME statement option controls 
whether and how in-database procedures are run inside the database. PROC 
TRANSPOSE runs inside the database when you specify INDB=YES. There are 
many programming considerations that can prevent in-database processing. For a 

Overview: TRANSPOSE Procedure 2567



complete listing, see “Procedure Considerations and Limitations” in SAS In-
Database Products: User's Guide.

CAS Processing for PROC TRANSPOSE
If your input originates from SAS Cloud Analytic Services (CAS) and your output is 
directed back to the CAS server, then the transposition might be performed entirely 
on the server. Running PROC TRANSPOSE with CAS actions has several 
advantages over processing within SAS. These advantages include reduced 
network traffic, and the potential for faster processing. Faster processing is possible 
because in-memory tables are manipulated locally on the server instead of being 
transferred across a relatively slow network connection. CAS is used because it 
might have more processing resources at its disposal.

See the “Transpose Action Set” in SAS Viya: System Programming Guide for 
information about the Transpose action that runs in CAS.

When the DATA= input data set references an in-memory table or view in CAS, the 
TRANSPOSE procedure can use CAS actions to perform all of its work within the 
server.

The CAS LIBNAME statement option controls whether and how CAS procedures 
are run inside CAS. By default, the CAS procedures are run inside CAS when 
possible. There are many data set options that prevent CAS processing.

CAS is the analytic server and associated cloud services in SAS Viya. The CAS 
LIBNAME engine can connect a SAS 9.4 session to an existing SAS Cloud Analytic 
Services session through the CAS session name or the CAS session UUID. The 
libref then becomes your handle to communicate from SAS with the specific 
session. See The Future of Transpose for more information about PROC 
TRANSPOSE and examples.

For conceptual information about procedures that run in CAS, see Chapter 5, “CAS 
Processing of Base Procedures,” on page 93.

Syntax: TRANSPOSE Procedure
Restriction: If the DATA= and OUT= options point to CAS, the transpose is performed within CAS by 

invoking the CAS TRANSPOSE action.

Tips: Does not support the Output Delivery System
For in-database processing to occur, your data must reside within a supported version of 
a DBMS that has been properly configured for SAS in-database processing. For more 
information, see “In-Database Processing for PROC TRANSPOSE ” on page 2566.
You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. For more 
information, see “Statements with the Same Function in Multiple Procedures” on page 
73. You can also use any global statement. For a list, see “Dictionary of SAS Global 
Statements” in SAS Global Statements: Reference.

PROC TRANSPOSE <DATA=input-data-set> <DELIMITER=delimiter> 
<LABEL=label>

2568 Chapter 72 / TRANSPOSE Procedure

http://documentation.sas.com/?docsetId=caspg&docsetVersion=3.5&docsetTarget=cas-transpose-TblOfActions.htm&locale=en
http://support.sas.com/resources/papers/proceedings17/SAS0701-2017.pdf
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0e7kamd4b486zn10o4lcseg4qvd.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0e7kamd4b486zn10o4lcseg4qvd.htm&locale=en


<LET> <NAME=name> <OUT=output-data-set> <PREFIX=prefix> 
<SUFFIX=suffix>;

BY <DESCENDING> variable-1
<<DESCENDING> variable-2 …>
<NOTSORTED>;

COPY variable(s);
ID variable;

IDLABEL variable;
VAR variable(s);

Statement Task Example

PROC TRANSPOSE Create an output data set by restructuring the 
values in a SAS data set, transposing selected 
variables into observations

Ex. 1, Ex. 2, 
Ex. 3, Ex. 5

BY Transpose each BY group Ex. 4

COPY Copy variables directly without transposing 
them

Ex. 6

ID Specify a variable whose values name the 
transposed variables

Ex. 2

IDLABEL Create labels for the transposed variables Ex. 3

VAR List the variables to transpose Ex. 4, Ex. 6

PROC TRANSPOSE Statement
Creates an output data set by restructuring the values in a SAS data set, transposing selected variables 
into observations.

Tip: You can use data set options with the DATA= and OUT= options. For more information, 
see Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 
73. You can also use any global statement. For a list, see “Dictionary of SAS Global 
Statements” in SAS Global Statements: Reference.

Examples: “Example 1: Performing a Simple Transposition” on page 2579
“Example 2: Naming Transposed Variables” on page 2581
“Example 3: Labeling Transposed Variables” on page 2582
“Example 4: Transposing BY Groups” on page 2585
“Example 5: Naming Transposed Variables When the ID Variable Has Duplicate Values” 
on page 2587
“Example 6: Transposing Data for Statistical Analysis” on page 2589

PROC TRANSPOSE Statement 2569

http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0e7kamd4b486zn10o4lcseg4qvd.htm&locale=en
http://documentation.sas.com/?docsetId=lestmtsglobal&docsetVersion=9.4&docsetTarget=n0e7kamd4b486zn10o4lcseg4qvd.htm&locale=en


Syntax
PROC TRANSPOSE <DATA=input-data-set> <DELIMITER=delimiter> <INDB=YES|
NO><LABEL=label> <LET> <NAME=name> <OUT=output-data-set> 
<PREFIX=prefix> <SUFFIX=suffix>;

Optional Arguments
DATA= input-data-set

names the SAS data set to transpose.

Default most recently created SAS data set

DELIMITER= delimiter
specifies a delimiter to use in constructing names for transposed variables in the 
output data set. If specified, the delimiter is inserted between variable values if 
more than one variable has been specified in the ID statement.

Alias DELIM=

Tip You can use name literals (n-literals) for the value of DELIMITER. Name 
literals are helpful when specifying typographical or foreign characters, 
especially when VALIDVARNAME=ANY.

See “ID Statement” on page 2574

INDB=YES | NO
specifies if in-database processing is active.

YES
specifies that INDB is active.

Default YES

NO
specifies that INDB is not active.

LABEL= label
specifies a name for the variable in the output data set that contains the label of 
the variable that is being transposed to create the current observation.

Default _LABEL_

Tip You can use name literals (n-literals) for the value of LABEL. Name 
literals are helpful when specifying typographical or foreign characters, 
especially when VALIDVARNAME=ANY.

LET
allows duplicate values of an ID variable. PROC TRANSPOSE transposes the 
observation that contains the last occurrence of a particular ID value within the 
data set or BY group.

See “Example 5: Naming Transposed Variables When the ID Variable Has 
Duplicate Values” on page 2587

2570 Chapter 72 / TRANSPOSE Procedure



NAME= name
specifies the name for the variable in the output data set that contains the name 
of the variable that is being transposed to create the current observation.

Default _NAME_

See “Example 2: Naming Transposed Variables” on page 2581

OUT= output-data-set
names the output data set. If output-data-set does not exist, then PROC 
TRANSPOSE creates it by using the DATAn naming convention.

Default DATAn

See “Example 1: Performing a Simple Transposition” on page 2579

PREFIX= prefix
specifies a prefix to use in constructing names for transposed variables in the 
output data set. For example, if PREFIX=VAR, then the names of the variables 
are VAR1, VAR2, …,VARn.

Interaction When you use PREFIX= with an ID statement, the variable name 
begins with the prefix value followed by the ID value.

Tip You can use name literals (n-literals) for the value of PREFIX. Name 
literals are helpful when specifying typographical or foreign 
characters, especially when VALIDVARNAME=ANY.

See “Example 2: Naming Transposed Variables” on page 2581

SUFFIX= suffix
specifies a suffix to use in constructing names for transposed variables in the 
output data set.

Interaction When you use SUFFIX= with an ID statement, the value is 
appended to the ID value.

Tip You can use name literals (n-literals) for the value of SUFFIX. Name 
literals are helpful when specifying typographical or foreign 
characters, especially when VALIDVARNAME=ANY.

BY Statement
Defines BY groups.

Restriction: Do not use PROC TRANSPOSE with a BY statement or an ID statement if another user 
is updating the data set at the same time.

Example: “Example 4: Transposing BY Groups” on page 2585

BY Statement 2571



Syntax
BY <DESCENDING> variable-1
<<DESCENDING> variable-1 …>
<NOTSORTED>;

Required Argument
variable

specifies the variable that PROC TRANSPOSE uses to form BY groups. You can 
specify more than one variable. If you do not use the NOTSORTED option in the 
BY statement, then either the observations must be sorted by all the variables 
that you specify, or they must be indexed appropriately. Variables in a BY 
statement are called BY variables.

Optional Arguments
DESCENDING

specifies that the data set is sorted in descending order by the variable that 
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric 
order. The data is grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of 
BY variables is suspended for BY-group processing when you use the 
NOTSORTED option. The procedure does not use an index if you specify 
NOTSORTED. The procedure defines a BY group as a set of contiguous 
observations that have the same values for all BY variables. If observations with 
the same values for the BY variables are not contiguous, then the procedure 
treats each contiguous set as a separate BY group.

The NOBYSORTED system option disables observation sequence checking 
system-wide and applies to all procedures and BY statements. See the 
“BYSORTED” in SAS System Options: Reference.

Details
The following figure shows what happens when you transpose a data set with BY 
groups. TYPE is the BY variable, and SOLD, NOTSOLD, REPAIRED, and JUNKED 
are the variables to transpose.

2572 Chapter 72 / TRANSPOSE Procedure

http://documentation.sas.com/?docsetId=lesysoptsref&docsetVersion=9.4&docsetTarget=n1nys0tu3s8iftn15s4fbp99ilc0.htm&locale=en


Figure 72.1 Transposition with BY Groups

TYPE MONTH SOLD NOTSOLD REPAIRED JUNKED

sedan
sedan
sports
sports
trucks
trucks

jan
feb
jan
feb
jan
feb

SOLD
NOTSOLD
REPAIRED
JUNKED
SOLD
NOTSOLD
REPAIRED
JUNKED
SOLD
NOTSOLD
REPAIRED
JUNKED

26
28
16
19
29
35

6
9
6
7
1
3

41
48
15
20
20
22

4
2
0
1
3
4

26
6

41
4

16
6

15
0

29
1

20
3

28
9

48
2

19
7

20
1

35
3

22
4

sedan
sedan
sedan
sedan
sports
sports
sports
sports
trucks
trucks
trucks
trucks

TYPE _NAME_ COL1 COL2

input
data set

output
data set

n The number of observations in the output data set (12) is the number of BY 
groups (3) multiplied by the number of variables that are transposed (4).

n The BY variable is not transposed.

n _NAME_ contains the name of the variable in the input data set that was 
transposed to create the current observation in the output data set. You can use 
the NAME= option to specify another name for the _NAME_ variable.

n The maximum number of observations in any BY group in the input data set is 
two. Therefore, the output data set contains two variables, COL1 and COL2. 
COL1 and COL2 contain the values of SOLD, NOTSOLD, REPAIRED, and 
JUNKED.

Note:  If a BY group in the input data set has more observations than other BY 
groups, then PROC TRANSPOSE assigns missing values in the output data set to 
the variables that have no corresponding input observations.

COPY Statement
Copies variables directly from the input data set to the output data set without transposing them.

Example: “Example 6: Transposing Data for Statistical Analysis” on page 2589

COPY Statement 2573



Syntax
COPY variable(s);

Required Argument
variable(s)

names one or more variables that the COPY statement copies directly from the 
input data set to the output data set without transposing them.

Details
Because the COPY statement copies variables directly to the output data set, the 
number of observations in the output data set is equal to the number of 
observations in the input data set.

The procedure pads the output data set with missing values if the number of 
observations in the input data set is not equal to the number of variables that it 
transposes.

ID Statement
Specifies one or more variables in the input data set whose nonmissing formatted values name the 
transposed variables in the output data set. When a variable name is being formed in the transposed 
(output) data set, the formatted values of all listed ID variables are concatenated in the same order that the 
variables are listed in the ID statement. The PREFIX=, DELIMITER=, and SUFFIX= options can be used to 
modify the formed variable name. The PREFIX= option specifies a common character or character string to 
appear at the beginning of the formed variable names. The DELIMITER= option specifies a common 
character or character string to be inserted between the values of the ID variables. The SUFFIX= option 
specifies a common character or character string to be appended to the end of each formed variable name.

Restriction: You cannot use PROC TRANSPOSE with an ID statement or a BY statement with an 
engine that supports concurrent access if another user is updating the data set at the 
same time.

Tip: If the value of any ID variable is missing, then PROC TRANSPOSE writes a warning 
message to the log. The procedure does not transpose observations that have a missing 
value for any ID variable.

Example: “Example 2: Naming Transposed Variables” on page 2581

Syntax
ID variable(s);

2574 Chapter 72 / TRANSPOSE Procedure



Required Argument
variable(s)

names one or more variables whose formatted values are used to form the 
names of the variables in the output data set.

Details

Duplicate Output Data Set Variable Names
A variable name formed from the input data set ID variable values, combined with 
the PREFIX, DELIMITER, and SUFFIX option values, should be unique within the 
output data set. An output data set variable name that occurs more than once 
indicates that two or more observations from the input data set are transposed to a 
single variable in the output data set and the result is data loss. This situation occurs 
when, in the case of a single ID variable, duplicate formatted values occur within the 
input data set or, if you use a BY statement, within a BY group. Similarly, this 
situation occurs in the case of multiple ID variables when the combination of 
formatted values of the ID variables occurs more than once within the input data set 
or BY group. To prevent data loss, if duplicate output data set variable names are 
formed, PROC TRANSPOSE issues an error message about duplicate ID values 
and stop processing. However, if the LET option is specified in the PROC 
TRANSPOSE statement then the procedure issues a warning message and 
continue processing, transposing the observation containing the last occurrence of 
the duplicate formatted variable values.

Note: The character substitutions and truncation required to ensure that the 
variable name formed from the ID variables is a valid SAS variable name, according 
to the VALIDVARNAME option setting, can result in duplicate output data set 
variable names even though the formatted value of the ID variable or combination of 
ID variables is unique within the input data set.

Making Variable Names Out of Numeric Values
When you use a numeric variable as an ID variable, PROC TRANSPOSE changes 
the formatted ID value into a valid SAS name.

SAS variable names cannot begin with a number unless you have set 
VALIDVARNAME=ANY. When the first character of the formatted value is numeric, 
the procedure prefixes an underscore to the value, this action truncates the last 
character of a 32-character value. Remaining invalid characters are replaced by 
underscores. The procedure truncates to 32 characters any ID value that is longer 
than 32 characters when the procedure uses that value to name a transposed 
variable.

If the formatted value looks like a numeric constant, then PROC TRANSPOSE 
changes the characters +, −, and . to P, N, and D, respectively. If the formatted 
value has characters that are not numeric, then PROC TRANSPOSE changes the 
characters +, −, and . to underscores.

ID Statement 2575



Note: If the value of the VALIDVARNAME system option is V6, then PROC 
TRANSPOSE truncates transposed variable names to 8 characters.

Making Variable Names Out of Multiple ID Variables
When you specify a single ID variable, in forming an output data set variable name, 
the formatted values of the variable are made to conform with the SAS variable 
naming conventions imposed by the VALIDVARNAME option. The name formed by 
combining the ID variable values with the value of the PREFIX and SUFFIX options 
are also made to conform with the SAS variable naming convention. For both the 
formatted ID variable values and their combination with the PREFIX and SUFFIX 
options, invalid characters are replaced with underscores or, if the name appears to 
be a numeric constant, an underscore is used as a prefix and the characters +, -, 
and . are changed to P, N, and D. The resulting name is truncated to the maximum 
name length allowed by the VALIDVARNAME option setting. When you specify 
multiple ID variables, conformance to the SAS variable naming convention is 
imposed on the components of the variable name, using the formatted value of each 
ID variable, and also on the name composed from the ID variable values and the 
PREFIX, DELIMITER, and SUFFIX options. The resulting name is truncated to a 
length appropriate for the VALIDVARNAME option setting.

IDLABEL Statement
Creates labels for the transposed variables.

Restriction: Must appear after an ID statement.

Example: “Example 3: Labeling Transposed Variables” on page 2582

Syntax
IDLABEL variable;

Required Argument
variable

names the variable whose values the procedure uses to label the variables that 
the ID statement names. variable can be character or numeric.

Note: To see the effect of the IDLABEL statement, print the output data set with 
the PRINT procedure by using the LABEL option. You can also print the contents 
of the output data set by using the CONTENTS statement in the DATASETS 
procedure.

2576 Chapter 72 / TRANSPOSE Procedure



VAR Statement
Lists the variables to transpose.

Note: Add the special SAS variable list name _CHARACTER_ to the VAR statement to include 
all character variables in the transposition. See Special SAS Name Lists.

Examples: “Example 4: Transposing BY Groups” on page 2585
“Example 6: Transposing Data for Statistical Analysis” on page 2589

Syntax
VAR variable(s);

Required Argument
variable(s)

names one or more variables to transpose.

Details
n If you omit the VAR statement, then the TRANSPOSE procedure transposes all 

numeric variables in the input data set that are not listed in another statement.

n You must list character variables in a VAR statement if you want to transpose 
them. 

Note: If the procedure is transposing any character variable, then all transposed 
variables are character variables.

Results: TRANSPOSE Procedure

Output Data Set
The TRANSPOSE procedure always produces an output data set, regardless of 
whether you specify the OUT= option in the PROC TRANSPOSE statement. PROC 

Results: TRANSPOSE Procedure 2577

http://documentation.sas.com/?docsetId=lrcon&docsetVersion=9.4&docsetTarget=p0wphcpsfgx6o7n1sjtqzizp1n39.htm&locale=en


TRANSPOSE does not print the output data set. Use PROC PRINT, PROC 
REPORT, or some other SAS reporting tool to print the output data set.

Output Data Set Variables
The output data set contains the following variables:

n variables that result from transposing the values of each variable into an 
observation.

n a variable that PROC TRANSPOSE creates to identify the source of the values 
in each observation in the output data set. This variable is a character variable 
whose values are the names of the variables that are transposed from the input 
data set. By default, PROC TRANSPOSE names this variable _NAME_. To 
override the default name, use the NAME= option. The label for the _NAME_ 
variable is NAME OF FORMER VARIABLE.

n variables that PROC TRANSPOSE copies from the input data set when you use 
either the BY or COPY statement. These variables have the same names and 
values as they do in the input data set. These variables also have the same 
attributes (for example: type, length, label, informat, and format).

n a character variable whose values are the variable labels of the variables that 
are being transposed (if any of the variables that the procedure is transposing 
have labels). Specify the name of the variable by using the LABEL= option. The 
default is _LABEL_.

Note: If the value of the LABEL= option or the NAME= option is the same as a 
variable that appears in a BY or COPY statement, then the output data set does 
not contain a variable whose values are the names or labels of the transposed 
variables.

Attributes of Transposed Variables

n All transposed variables are the same type and length.

n If all variables that the procedure is transposing are numeric, then the 
transposed variables are numeric. Thus, if the numeric variable has a character 
string as a formatted value, then its unformatted numeric value is transposed.

n If any variable that the procedure is transposing is character, then all transposed 
variables are character. If you are transposing a numeric variable that has a 
character string as a formatted value, then the formatted value is transposed.

n The length of the transposed variables is equal to the length of the longest 
variable that is being transposed.

2578 Chapter 72 / TRANSPOSE Procedure



Names of Transposed Variables
PROC TRANSPOSE uses the following rules to name transposed variables:

1 An ID statement specifies a variable or variables in the input data set whose 
formatted values become names for the transposed variables. If multiple ID 
variables are specified, the name of the transposed variable is the concatenation 
of the values of the ID variables. If the DELMITER= option is specified, its value 
is inserted between the formatted values of the ID variables when the names of 
the transposed variables are formed.

2 The PREFIX= option specifies a prefix to use in constructing the names of 
transposed variables. The SUFFIX= option also specifies a suffix to append to 
the names of the transposed variables.

3 If you do not use an ID statement, PREFIX= option, or the SUFFIX= option, then 
PROC TRANSPOSE looks for an input variable called _NAME_ to get the 
names of the transposed variables.

4 If you do not use an ID statement or the PREFIX= option, and if the input data 
set does not contain a variable named _NAME_, then PROC TRANSPOSE 
assigns the names COL1, COL2, …, COLn to the transposed variables.

Examples: TRANSPOSE Procedure

Example 1: Performing a Simple Transposition
Features: PROC TRANSPOSE statement option

OUT=

This example performs a default transposition and uses no subordinate statements.

Program
options nodate pageno=1 linesize=80 pagesize=40;

data score;
   input Student $9. +1 StudentID $ Section $ Test1 Test2 Final;
   datalines;
Capalleti 0545 1  94 91 87
Dubose    1252 2  51 65 91

Example 1: Performing a Simple Transposition 2579



Engles    1167 1  95 97 97
Grant     1230 2  63 75 80
Krupski   2527 2  80 76 71
Lundsford 4860 1  92 40 86
McBane    0674 1  75 78 72
;

proc transpose data=score out=score_transposed;
run;

proc print data=score_transposed noobs;
    title 'Student Test Scores in Variables';
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create the SCORE data set. Set SCORE contains students' names, their 
identification numbers, and their grades on two tests and a final exam.

data score;
   input Student $9. +1 StudentID $ Section $ Test1 Test2 Final;
   datalines;
Capalleti 0545 1  94 91 87
Dubose    1252 2  51 65 91
Engles    1167 1  95 97 97
Grant     1230 2  63 75 80
Krupski   2527 2  80 76 71
Lundsford 4860 1  92 40 86
McBane    0674 1  75 78 72
;

Transpose the data set. PROC TRANSPOSE transposes only the numeric 
variables, Test1, Test2, and Final, because no VAR statement appears and none of 
the numeric variables appear in another statement. OUT= puts the result of the 
transposition in the data set SCORE_TRANSPOSED.

proc transpose data=score out=score_transposed;
run;

Print the SCORE_TRANSPOSED data set. The NOOBS option suppresses the 
printing of observation numbers

proc print data=score_transposed noobs;
    title 'Student Test Scores in Variables';
run;

2580 Chapter 72 / TRANSPOSE Procedure



Output
In the output data set SCORE_TRANSPOSED, the variables COL1 through COL7 
contain the individual scores for the students. Each observation contains all the 
scores for one test. The variable _NAME_ contains the names of the variables from 
the input data set that were transposed.

Output 72.3 Student Test Scores in Variables

Example 2: Naming Transposed Variables
Features: PROC TRANSPOSE statement options

NAME=
PREFIX=

ID statement

Data set: SCORE

This example uses the values of a variable and a user-supplied value to name 
transposed variables.

Program
options nodate pageno=1 linesize=80 pagesize=40;

proc transpose data=score out=idnumber name=Test
     prefix=sn;
    id studentid;
run;

proc print data=idnumber noobs;
   title 'Student Test Scores';
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 

Example 2: Naming Transposed Variables 2581



LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Transpose the data set. PROC TRANSPOSE transposes only the numeric 
variables, Test1, Test2, and Final, because no VAR statement appears. OUT= puts 
the result of the transposition in the IDNUMBER data set. NAME= specifies Test as 
the name for the variable that contains the names of the variables in the input data 
set that the procedure transposes. The procedure names the transposed variables 
by using the value from PREFIX=, sn, and the value of the ID variable StudentID.

proc transpose data=score out=idnumber name=Test
     prefix=sn;
    id studentid;
run;

Print the IDNUMBER data set. The NOOBS option suppresses the printing of 
observation numbers.

proc print data=idnumber noobs;
   title 'Student Test Scores';
run;

Output
The following data set is the output data set, IDNUMBER.

Output 72.4 Student Test Scores

Example 3: Labeling Transposed Variables
Features: PROC TRANSPOSE statement option

PREFIX=
IDLABEL statement

Data set: SCORE

This example uses the values of the variable in the IDLABEL statement to label 
transposed variables.

2582 Chapter 72 / TRANSPOSE Procedure



Program 1
options nodate pageno=1 linesize=80 pagesize=40;

proc transpose data=score out=idlabel name=Test
     prefix=sn;
   id studentid;

     idlabel student;
run;

  proc print data=idlabel label noobs;
     title 'Student Test Scores';
  run;

proc contents data=idlabel;
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Transpose the data set. PROC TRANSPOSE transposes only the numeric 
variables, Test1, Test2, and Final, because no VAR statement appears. OUT= puts 
the result of the transposition in the IDLABEL data set. NAME= specifies Test as the 
name for the variable that contains the names of the variables in the input data set 
that the procedure transposes. The procedure names the transposed variables by 
using the value from PREFIX=, sn, and the value of the ID variable StudentID.

proc transpose data=score out=idlabel name=Test
     prefix=sn;
   id studentid;

Assign labels to the output variables. PROC TRANSPOSE uses the values of 
the variable Student to label the transposed variables. The procedure provides the 
following as the label for the _NAME_ variable:NAME OF FORMER VARIABLE

     idlabel student;
run;

Print the IDLABEL data set. The LABEL option causes PROC PRINT to print 
variable labels for column headings. The NOOBS option suppresses the printing of 
observation numbers.

  proc print data=idlabel label noobs;
     title 'Student Test Scores';
  run;

Display the IDLABEL variable names and label. PROC CONTENTS displays the 
variable names and labels.

proc contents data=idlabel;
run;

Example 3: Labeling Transposed Variables 2583



Output 1
This data set is the output data set, IDLABEL.

Output 72.5 Student Test Scores, IDLABEL

Program 2
Display the variable and label names. PROC CONTENTS displays the variable 
names and the labels used in the first program.

proc contents data=idlabel;
run;

Output 2
In the following output, PROC CONTENTS displays the variables and labels.

Output 72.6 The Contents Procedure

2584 Chapter 72 / TRANSPOSE Procedure



Example 4: Transposing BY Groups
Features: BY statement

VAR statement
Data set option

RENAME=

This example illustrates transposing BY groups and selecting variables to 
transpose.

Program
options nodate pageno=1 linesize=80 pagesize=40;
data fishdata;
   infile datalines missover;
   input Location & $10. Date date7.
         Length1 Weight1 Length2 Weight2 Length3 Weight3
         Length4 Weight4;
   format date date7.;
   datalines;
Cole Pond   2JUN95 31 .25 32 .3  32 .25 33 .3
Cole Pond   3JUL95 33 .32 34 .41 37 .48 32 .28
Cole Pond   4AUG95 29 .23 30 .25 34 .47 32 .3
Eagle Lake  2JUN95 32 .35 32 .25 33 .30
Eagle Lake  3JUL95 30 .20 36 .45
Eagle Lake  4AUG95 33 .30 33 .28 34 .42
;

proc transpose data=fishdata
     out=fishlength(rename=(col1=Measurement));

   var length1-length4;

   by location date;
run;

proc print data=fishlength noobs;
   title 'Fish Length Data for Each Location and Date';
run;

Program Description
Create the FISHDATA data set and set the SAS system options. The data in 
FISHDATA represents length and weight measurements of fish that were caught at 
two ponds on three separate days. The raw data is sorted by Location and Date. 
The NODATE option suppresses the display of the date and time in the output. 
PAGENO= specifies the starting page number. LINESIZE= specifies the output line 
length, and PAGESIZE= specifies the number of lines on an output page.

Example 4: Transposing BY Groups 2585



options nodate pageno=1 linesize=80 pagesize=40;
data fishdata;
   infile datalines missover;
   input Location & $10. Date date7.
         Length1 Weight1 Length2 Weight2 Length3 Weight3
         Length4 Weight4;
   format date date7.;
   datalines;
Cole Pond   2JUN95 31 .25 32 .3  32 .25 33 .3
Cole Pond   3JUL95 33 .32 34 .41 37 .48 32 .28
Cole Pond   4AUG95 29 .23 30 .25 34 .47 32 .3
Eagle Lake  2JUN95 32 .35 32 .25 33 .30
Eagle Lake  3JUL95 30 .20 36 .45
Eagle Lake  4AUG95 33 .30 33 .28 34 .42
;

Transpose the data set. OUT= puts the result of the transposition in the 
FISHLENGTH data set. RENAME= renames COL1 in the output data set to 
Measurement.

proc transpose data=fishdata
     out=fishlength(rename=(col1=Measurement));

Specify the variables to transpose. The VAR statement limits the variables that 
PROC TRANSPOSE transposes.

   var length1-length4;

Organize the output data set into BY groups. The BY statement creates BY 
groups for each unique combination of values of Location and Date. The procedure 
does not transpose the BY variables.

   by location date;
run;

Print the FISHLENGTH data set. The NOOBS option suppresses the printing of 
observation numbers.

proc print data=fishlength noobs;
   title 'Fish Length Data for Each Location and Date';
run;

Output
The following data set is the output data set, FISHLENGTH. For each BY group in 
the original data set, PROC TRANSPOSE creates four observations, one for each 
variable that it is transposing. Missing values appear for the variable Measurement 
(renamed from COL1) when the variables that are being transposed have no value 
in the input data set for that BY group. Several observations have a missing value 
for Measurement. For example, in the last observation, a missing value appears 
because the input data contained no value for Length4 on 04AUG95 at Eagle Lake.

2586 Chapter 72 / TRANSPOSE Procedure



Output 72.7 Fish Length Data

Example 5: Naming Transposed Variables When 
the ID Variable Has Duplicate Values
Features: PROC TRANSPOSE statement option

LET

This example shows how to use values of a variable (ID) to name transposed 
variables even when the ID variable has duplicate values.

Example 5: Naming Transposed Variables When the ID Variable Has Duplicate Values
2587



Program
options nodate pageno=1 linesize=64 pagesize=40;

data stocks;
    input Company $14. Date $ Time $ Price;
    datalines;
Horizon Kites jun11 opening 29
Horizon Kites jun11 noon    27
Horizon Kites jun11 closing 27
Horizon Kites jun12 opening 27
Horizon Kites jun12 noon    28
Horizon Kites jun12 closing 30
SkyHi Kites   jun11 opening 43
SkyHi Kites   jun11 noon    43
SkyHi Kites   jun11 closing 44
SkyHi Kites   jun12 opening 44
SkyHi Kites   jun12 noon    45
SkyHi Kites   jun12 closing 45
;

proc transpose data=stocks out=close let;

   by company;

   id date;
 run;

proc print data=close noobs;
   title 'Closing Prices for Horizon Kites and SkyHi Kites';
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=40;

Create the STOCKS data set. STOCKS contains stock prices for two competing 
kite manufacturers. The prices are recorded for two days, three times a day: at 
opening, at noon, and at closing. Notice that the input data set contains duplicate 
values for the Date variable.

data stocks;
    input Company $14. Date $ Time $ Price;
    datalines;
Horizon Kites jun11 opening 29
Horizon Kites jun11 noon    27
Horizon Kites jun11 closing 27
Horizon Kites jun12 opening 27
Horizon Kites jun12 noon    28
Horizon Kites jun12 closing 30
SkyHi Kites   jun11 opening 43
SkyHi Kites   jun11 noon    43

2588 Chapter 72 / TRANSPOSE Procedure



SkyHi Kites   jun11 closing 44
SkyHi Kites   jun12 opening 44
SkyHi Kites   jun12 noon    45
SkyHi Kites   jun12 closing 45
;

Transpose the data set. LET transposes only the last observation for each BY 
group. PROC TRANSPOSE transposes only the Price variable. OUT= puts the 
result of the transposition in the CLOSE data set.

proc transpose data=stocks out=close let;

Organize the output data set into BY groups. The BY statement creates two BY 
groups, one for each company.

   by company;

Name the transposed variables. The values of Date are used as names for the 
transposed variables.

   id date;
 run;

Print the CLOSE data set. The NOOBS option suppresses the printing of 
observation numbers..

proc print data=close noobs;
   title 'Closing Prices for Horizon Kites and SkyHi Kites';
run;

Output
The following data set is the output data set, CLOSE.

Output 72.8 Closing Prices

Example 6: Transposing Data for Statistical 
Analysis
Features: COPY statement

VAR statement

This example arranges data to make it suitable for either a multivariate or a 
univariate repeated-measures analysis.

Example 6: Transposing Data for Statistical Analysis 2589



The data is from Chapter 8, “Repeated-Measures Analysis of Variance,” in SAS 
System for Linear Models, Third Edition.

Program 1
options nodate pageno=1 linesize=80 pagesize=40;

data weights;
   input Program $ s1-s7;
   datalines;
CONT  85 85 86 85 87 86 87
CONT  80 79 79 78 78 79 78
CONT  78 77 77 77 76 76 77
CONT  84 84 85 84 83 84 85
CONT  80 81 80 80 79 79 80
RI    79 79 79 80 80 78 80
RI    83 83 85 85 86 87 87
RI    81 83 82 82 83 83 82
RI    81 81 81 82 82 83 81
RI    80 81 82 82 82 84 86
WI    84 85 84 83 83 83 84
WI    74 75 75 76 75 76 76
WI    83 84 82 81 83 83 82
WI    86 87 87 87 87 87 86
WI    82 83 84 85 84 85 86
;

data split;
   set weights;
   array s{7} s1-s7;
   Subject + 1;
   do Time=1 to 7;
      Strength=s{time};
      output;
   end;
   drop s1-s7;
run;

proc print data=split(obs=15) noobs;
   title 'SPLIT Data Set';
   title2 'First 15 Observations Only';
run;

Program Description
Set the SAS system options. The NODATE option suppresses the display of the 
date and time in the output. PAGENO= specifies the starting page number. 
LINESIZE= specifies the output line length, and PAGESIZE= specifies the number 
of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

2590 Chapter 72 / TRANSPOSE Procedure



Create the WEIGHTS data set. The data in WEIGHTS represents the results of an 
exercise therapy study of three weight-lifting programs: CONT is a control group, RI 
is a program in which the number of repetitions is increased, and WI is a program in 
which the weight is increased.

data weights;
   input Program $ s1-s7;
   datalines;
CONT  85 85 86 85 87 86 87
CONT  80 79 79 78 78 79 78
CONT  78 77 77 77 76 76 77
CONT  84 84 85 84 83 84 85
CONT  80 81 80 80 79 79 80
RI    79 79 79 80 80 78 80
RI    83 83 85 85 86 87 87
RI    81 83 82 82 83 83 82
RI    81 81 81 82 82 83 81
RI    80 81 82 82 82 84 86
WI    84 85 84 83 83 83 84
WI    74 75 75 76 75 76 76
WI    83 84 82 81 83 83 82
WI    86 87 87 87 87 87 86
WI    82 83 84 85 84 85 86
;

Create the SPLIT data set. This DATA step rearranges WEIGHTS to create the 
data set SPLIT. The DATA step transposes the strength values and creates two new 
variables: Time and Subject. SPLIT contains one observation for each repeated 
measure. SPLIT can be used in a PROC GLM step for a univariate repeated-
measures analysis.

data split;
   set weights;
   array s{7} s1-s7;
   Subject + 1;
   do Time=1 to 7;
      Strength=s{time};
      output;
   end;
   drop s1-s7;
run;

Print the SPLIT data set. The NOOBS options suppresses the printing of 
observation numbers. The OBS= data set option limits the printing to the first 15 
observations. SPLIT has 105 observations.

proc print data=split(obs=15) noobs;
   title 'SPLIT Data Set';
   title2 'First 15 Observations Only';
run;

Example 6: Transposing Data for Statistical Analysis 2591



Output 1
Output 72.9 Split Data Set

Program 2
options nodate pageno=1 linesize=80 pagesize=40;

proc transpose data=split out=totsplit prefix=Str;

   by program subject;
   copy time strength;

   var strength;
run;

proc print data=totsplit(obs=15) noobs;
   title  'TOTSPLIT Data Set';
   title2 'First 15 Observations Only';
run;

Program Description
Set the SAS system options.

options nodate pageno=1 linesize=80 pagesize=40;

2592 Chapter 72 / TRANSPOSE Procedure



Transpose the SPLIT data set. PROC TRANSPOSE transposes SPLIT to create 
TOTSPLIT. The TOTSPLIT data set contains the same variables as SPLIT and a 
variable for each strength measurement (Str1-Str7). TOTSPLIT can be used for 
either a multivariate repeated-measures analysis or a univariate repeated-measures 
analysis.

proc transpose data=split out=totsplit prefix=Str;

Organize the output data set into BY groups, and populate each BY group 
with untransposed values. The variables in the BY and COPY statements are not 
transposed. TOTSPLIT contains the variables Program, Subject, Time, and Strength 
with the same values that are in SPLIT. The BY statement creates the first 
observation in each BY group, which contains the transposed values of Strength. 
The COPY statement creates the other observations in each BY group by copying 
the values of Time and Strength without transposing them.

   by program subject;
   copy time strength;

Specify the variable to transpose. The VAR statement specifies the Strength 
variable as the only variable to be transposed.

   var strength;
run;

Print the TOTSPLIT data set. The NOOBS options suppresses the printing of 
observation numbers. The OBS= data set option limits the printing to the first 15 
observations. SPLIT has 105 observations.

proc print data=totsplit(obs=15) noobs;
   title  'TOTSPLIT Data Set';
   title2 'First 15 Observations Only';
run;

Output 2
In the following output, the variables in TOTSPLIT with missing values are used only 
in a multivariate repeated-measures analysis. The missing values do not preclude 
this data set from being used in a repeated-measures analysis because the MODEL 
statement in PROC GLM ignores observations with missing values.

Example 6: Transposing Data for Statistical Analysis 2593



Output 72.10 TOTSPLIT Data Set

2594 Chapter 72 / TRANSPOSE Procedure



Chapter 73
XSL Procedure

Overview: XSL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2595
What Does the Extensible Style Sheet Language (XSL) Procedure Do? . . . . . . 2595
Understanding XSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2596

Syntax: XSL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2596
PROC XSL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2596
PARAMETER Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2598

Examples: XSL Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2598
Example 1: Transforming an XML Document into Another XML Document . . . . 2598
Example 2: Passing a Character String Parameter Value to the 

XSL Style Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2600
Example 3: Passing a Numeric Parameter Value to the XSL Style Sheet . . . . . . 2603

Overview: XSL Procedure

What Does the Extensible Style Sheet Language 
(XSL) Procedure Do?

The XSL procedure transforms an XML document into another format, such as 
HTML, text, or another XML document type. PROC XSL reads an input XML 
document, transforms it by using an XSL style sheet, and then writes the output.

To transform the XML document, PROC XSL uses the Saxon-EE version 9.3 
software application from Saxonica, which is a collection of tools for processing XML 
documents. The XSLT processor implements the XSLT 2.0 standard. For 
information about Saxon, see the website About Saxon.

2595

http://www.saxonica.com/documentation9.3/about/intro.xml


Understanding XSL
XSL is a family of transformation languages that enables you to describe how to 
convert files that are encoded in XML. The languages include the following:

n XSL Transformations (XSLT) for transforming an XML document

n XML Path Language (XPath), which is used by XSLT, for selecting parts of an 
XML document

For information about XSLT standards, see the website XSL Transformations 
(XSLT) Version 2.0.

Syntax: XSL Procedure
Restriction: This procedure is not available in SAS Viya orders that include only SAS Visual 

Analytics.

PROC XSL IN=fileref | 'external-file' OUT=fileref | 'external-file' XSL=fileref | 
'external-file';

PARAMETER 'parameter'='value';

Statement Task Example

PROC XSL Transform an XML document Ex. 1, Ex. 2, 
Ex. 3

PARAMETER Pass a parameter to the XSL style sheet to set 
a value

Ex. 2, Ex. 3

PROC XSL Statement
Transforms an XML document.

Example: “Example 1: Transforming an XML Document into Another XML Document” on page 
2598

Syntax
PROC XSL IN=fileref | 'external-file' OUT=fileref | 'external-file' XSL=fileref | 
'external-file';

2596 Chapter 73 / XSL Procedure

http://www.w3.org/TR/xslt20
http://www.w3.org/TR/xslt20


Required Arguments
IN=fileref | 'external-file'

specifies the input file. The file must be a well-formed XML document.

fileref
specifies the SAS fileref that is assigned to the input XML document. To 
assign a fileref, use the FILENAME statement.

'external-file'
is the physical location of the input XML document. Include the complete 
pathname and the filename. Enclose the physical name in single or double 
quotation marks. The maximum length is 200 characters.

Interaction When the LOCKDOWN option or NOXCMD option is set on a 
session, any operating system commands that are specified in the 
XSL file fail with an ERROR.

Example “Example 1: Transforming an XML Document into Another XML 
Document” on page 2598

OUT=fileref | 'external-file'
specifies the output file.

fileref
specifies the SAS fileref that is assigned to the output file. To assign a fileref, 
use the FILENAME statement.

'external-file'
is the physical location of the output file. Include the complete pathname and 
the filename. Enclose the physical name in single or double quotation marks. 
The maximum length is 200 characters.

Example “Example 1: Transforming an XML Document into Another XML 
Document” on page 2598

XSL=fileref | 'external-file'
specifies the XSL style sheet to transform the XML document. The XSL style 
sheet is a file that describes how to transform the XML document by using the 
XSLT language. The XSL style sheet must be a well-formed XML document.

fileref
specifies the SAS fileref that is assigned to the XSL style sheet. To assign a 
fileref, use the FILENAME statement.

'external-file'
is the physical location of the XSL style sheet. Include the complete 
pathname and the filename. Enclose the physical name in single or double 
quotation marks. The maximum length is 200 characters.

Alias XSLT=

Example “Example 1: Transforming an XML Document into Another XML 
Document” on page 2598

PROC XSL Statement 2597



PARAMETER Statement
Changes instances of a parameter in an XSL style sheet to a specified value.

Examples: “Example 2: Passing a Character String Parameter Value to the XSL Style Sheet” on 
page 2600
“Example 3: Passing a Numeric Parameter Value to the XSL Style Sheet” on page 2603

Syntax
PARAMETER 'parameter’=’value';

Required Argument
'parameter'='value'

specifies the parameter name and a value to be passed to the XSL style sheet. 
PROC XSL changes instances of the parameter in the style sheet to the 
specified value. The specified parameter must exist in the XSL style sheet. 
Enclose the parameter name in single or double quotation marks. The specified 
value can be a character string or a numeric value. Enclose the value in single or 
double quotation marks if the value is a character string.

Examples: XSL Procedure

Example 1: Transforming an XML Document into 
Another XML Document
Features: PROC XSL statement

Details
The following PROC XSL example transforms an XML document into another XML 
document.

2598 Chapter 73 / XSL Procedure



This is the input XML document named XMLInput.xml, which contains data about 
vehicles. Each second-level repeating element describes a particular car, with the 
nested elements that contain information about the model and year. The make 
information is an attribute on the second-level repeating element.

<?xml version="1.0" ?>
<vehicles>
  <car make="Ford">
    <model>Mustang</model>
    <year>1965</year>
  </car>
  <car make="Chevrolet">
    <model>Nova</model>
    <year>1967</year>
  </car>
</vehicles>

This is the XSL style sheet named XSLTransform.xsl that describes how to 
transform the XML. The conversion creates <root> as the root-enclosing element 
and <model> as the second-level repeating element. Each <model> element in the 
output XML document will include the values from the <car> element and the make= 
attribute from the input XML document.

<?xml version="1.0" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="xml" indent="yes"/> 
 
<xsl:template match="/vehicles">
       <root> <xsl:apply-templates select="car"/> </root>
</xsl:template>
 
<xsl:template match="car">
    <model make="{@make}">
       <xsl:value-of select="model" />
    </model>
</xsl:template>
 
</xsl:stylesheet>

Program
Execute the PROC XSL statement. The PROC XSL statement specifies the input 
XML document, the XSL style sheet, and the output XML document.

proc xsl
   in='C:\XmlInput.xml'
   xsl='C:\XslTransform.xsl'
   out='C:\XmlOutput.xml';
run;

Example 1: Transforming an XML Document into Another XML Document 2599



Output: Transforming an XML Document 
into Another XML Document
Output 73.1 PROC XSL Output of Transformed XML Document

<?xml version="1.0" encoding="UTF-8"?>
<root>
<model make="Ford">Mustang</model>
<model make="Chevrolet">Nova</model>
</root>

Example 2: Passing a Character String Parameter 
Value to the XSL Style Sheet
Features: PROC XSL statement

PARAMETER statement

Details
This example shows how to use PROC XSL to pass a character string value to a 
parameter in an XSL style sheet. A parameter, which is a named variable in the 
style sheet for which you can set a value, is an easy way to customize generated 
output.

This is the XSL style sheet named Format.xsl. The XSL style sheet extracts 
elements and attributes from an input XML document to generate HTML output. The 
style sheet contains the declared parameter DateVar.

<?xml version="1.0" encoding="UTF-8"?>
  <xsl:stylesheet version="1.0"
     xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
    <xsl:param name="DateVar"/>
    <xsl:template match="TABLE"> 
     <html>
     <head/>
     <body>
     <h2><xsl:value-of select="$DateVar"/></h2>
     <table border="1" rules="all">
     <tr>
        <td>Name</td>
        <td>Sex</td>
        <td>Age</td>
        <td>Height</td>
        <td>Weight</td>
     </tr>     

2600 Chapter 73 / XSL Procedure



     <xsl:apply-templates/>
     </table>
     </body>
    </html>
    </xsl:template>
    <xsl:template match="CLASS">
     <tr>
         <td><xsl:value-of select="Name"/></td>
         <td><xsl:value-of select="Sex"/></td>
         <td><xsl:value-of select="Age"/></td>
         <td><xsl:value-of select="Height"/></td>
         <td><xsl:value-of select="Weight"/></td>
     </tr>
    </xsl:template> 
   </xsl:stylesheet>

The input XML document named Class.xml contains classroom data.

<?xml version="1.0" encoding="windows-1252" ?>
<TABLE>
   <CLASS>
      <Name> Alfred </Name>
      <Sex> M </Sex>
      <Age> 14 </Age>
      <Height> 69 </Height>
      <Weight> 112.5 </Weight>
   </CLASS>
   <CLASS>
      <Name> Alice </Name>
      <Sex> F </Sex>
      <Age> 13 </Age>
      <Height> 56.5 </Height>
      <Weight> 84 </Weight>
   </CLASS>
   <CLASS>
      <Name> Barbara </Name>
      <Sex> F </Sex>
      <Age> 13 </Age>
      <Height> 65.3 </Height>
      <Weight> 98 </Weight>
   </CLASS>
   .
   .
   .
   <CLASS>
      <Name> Thomas </Name>
      <Sex> M </Sex>
      <Age> 11 </Age>
      <Height> 57.5 </Height>
      <Weight> 85 </Weight>
   </CLASS>
   <CLASS>
      <Name> William </Name>
      <Sex> M </Sex>
      <Age> 15 </Age>
      <Height> 66.5 </Height>
      <Weight> 112 </Weight>

Example 2: Passing a Character String Parameter Value to the XSL Style Sheet 2601



   </CLASS>
</TABLE>

Program

proc xsl
   in='C:\XSL\Class.xml'
   xsl='C:\XSL\Format.xsl'
   out='C:\XSL\Class.html';

   parameter 'DateVar'="Report Date: &sysdate";
run;

Program Description
Execute the PROC XSL statement. The PROC XSL statement specifies the input 
XML document, the XSL style sheet, and the output HTML file.

proc xsl
   in='C:\XSL\Class.xml'
   xsl='C:\XSL\Format.xsl'
   out='C:\XSL\Class.html';

Pass the parameter value to the XSL style sheet. The PARAMETER statement 
passes a character string value for the parameter DateVar to the XSL style sheet. 
Note that because the value includes a macro variable reference, the value must be 
in double quotation marks.

   parameter 'DateVar'="Report Date: &sysdate";
run;

2602 Chapter 73 / XSL Procedure



Output: Passing a Character String 
Parameter Value to the XSL Style Sheet
Output 73.2 PROC XSL Output Class.html

Example 3: Passing a Numeric Parameter Value to 
the XSL Style Sheet
Features: PROC XSL statement

PARAMETER statement

Example 3: Passing a Numeric Parameter Value to the XSL Style Sheet 2603



Details
This example shows how to use PROC XSL to pass a numeric value to a parameter 
in an XSL style sheet.

This is the XSL style sheet named Discount.xsl. The XSL style sheet extracts 
elements and attributes from an input XML document to generate XML output. The 
style sheet contains the declared parameter DiscountPct. PROC XSL passes in a 
numeric value to the parameter, and a discount amount is calculated.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
  <xsl:output method="xml" indent="yes" />
  <xsl:param name="DiscountPct" />

  <xsl:template match="table">
    <xsl:copy>
      <xsl:apply-templates select="product" />
    </xsl:copy>
  </xsl:template>

  <xsl:template match="product">
    <xsl:copy>
      <xsl:copy-of select="category|type|size|gender|price" />
      <discount>
        <xsl:value-of select="$DiscountPct" />
      </discount>
      <discountAmount>
        <xsl:value-of select="(price * $DiscountPct)" />
      </discountAmount>
      <xsl:copy-of select="in_stock|ship_type" />
    </xsl:copy>
  </xsl:template>

</xsl:stylesheet>

The input XML document named Product.xml contains product data:

<?xml version="1.0"?>
<table>
 <product> 
   <category>shoe</category>
   <type>Nike Air</type>
   <size>12</size>
   <gender>male</gender>
   <price>99</price>
   <in_stock>yes</in_stock>
   <ship_type>overnight</ship_type>
 </product>
</table>

2604 Chapter 73 / XSL Procedure



Program
proc xsl
   in='C:\XSL\Product.xml'
   xsl='C:\XSL\Discount.xsl'
   out='C:\XSL\Calculated.xml';

   parameter 'DiscountPct'=.20;
run;

Program Description
Execute the PROC XSL statement. The PROC XSL statement specifies the input 
XML document, the XSL style sheet, and the output XML document.

proc xsl
   in='C:\XSL\Product.xml'
   xsl='C:\XSL\Discount.xsl'
   out='C:\XSL\Calculated.xml';

Pass the parameter to the XSL style sheet. The PARAMETER statement passes 
a numeric value for the parameter DiscountPct to the XSL style sheet. The output 
XML document will contain the discount value and a calculated discount amount.

   parameter 'DiscountPct'=.20;
run;

Output: Passing a Numeric Parameter 
Value to the XSL Style Sheet
Output 73.3 PROC XSL Output Calculated.xml

<?xml version="1.0" encoding="UTF-8"?>
<table>
   <product>
      <category>shoe</category>
      <type>Nike Air</type>
      <size>12</size>
      <gender>male</gender>
      <price>99</price>
      <discount>0.2</discount>
      <discountAmount>19.8</discountAmount>
      <in_stock>yes</in_stock>
      <ship_type>overnight</ship_type>
   </product>
</table>

Example 3: Passing a Numeric Parameter Value to the XSL Style Sheet 2605



2606 Chapter 73 / XSL Procedure



PART 3

Appendixes

Appendix 1
SAS Elementary Statistics Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2609

Appendix 2
Operating Environment-Specific Procedures . . . . . . . . . . . . . . . . . . . . . .  2651

Appendix 3
Raw Data and DATA Steps for Base SAS Procedures . . . . . . . . . . . . . . .  2653

Appendix 4
ICU License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2733

2607



2608



Appendix 1
SAS Elementary Statistics 
Procedures

Overview of SAS Elementary Statistics Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 2609

Keywords and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2610
Simple Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2610
Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2613
Quantile and Related Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2615
Hypothesis Testing Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2617
Confidence Limits for the Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2617
Using Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2618
Data Requirements for Summarization Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 2618

Statistical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2619
Populations and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2619
Samples and Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2620
Measures of Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2620
Percentiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2621
Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2621
Measures of Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2626
Measures of Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2627
The Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2628
Sampling Distribution of the Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2632
Testing Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2644

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2649

Overview of SAS Elementary Statistics 
Procedures

This appendix provides a brief description of some of the statistical concepts 
necessary for you to interpret the output of Base SAS procedures for elementary 

2609



statistics. In addition, this appendix lists statistical notation, formulas, and standard 
keywords used for common statistics in Base SAS procedures. Brief examples 
illustrate the statistical concepts.

Table A1.1 on page 2611 lists the most common statistics and the procedures that 
compute them.

Keywords and Formulas

Simple Statistics
The Base SAS procedures use a standardized set of keywords to refer to statistics. 
You specify these keywords in SAS statements to request the statistics to be 
displayed or stored in an output data set.

In the following notation, summation is over observations that contain nonmissing 
values of the analyzed variable and, except where shown, over nonmissing weights 
and frequencies of one or more:

xi
is the nonmissing value of the analyzed variable for observation i.

f i
is the frequency that is associated with xi if you use a FREQ statement. If you 
omit the FREQ statement, then f i = 1  for all i.

wi
is the weight that is associated with xi if you use a WEIGHT statement. The base 
procedures automatically exclude the values of xi with missing weights from the 
analysis.

By default, the base procedures treat a negative weight as if it is equal to zero. 
However, if you use the EXCLNPWGT option in the PROC statement, then the 
procedure also excludes those values of xi with nonpositive weights. Note that 
most SAS/STAT procedures, such as PROC TTEST and PROC GLM, exclude 
values with nonpositive weights by default.

If you omit the WEIGHT statement, then wi = 1  for all i.

n
is the number of nonmissing values of xi , Σ f i . If you use the EXCLNPWGT 
option and the WEIGHT statement, then n is the number of nonmissing values 
with positive weights.

x
is the mean

Σ wixi/ Σ wi

s2

is the variance

2610 Appendix 1 / SAS Elementary Statistics Procedures



1
d Σ wi xi − x 2

where d is the variance divisor (the VARDEF= option) that you specify in the 
PROC statement. Valid values are as follows:

When VARDEF= d equals

N n

DF n − 1

WEIGHT Σ wi

WDF Σ wi − 1

The default is DF.

zi
is the standardized variable

xi − x /s

The standard keywords and formulas for each statistic follow. Some formulas use 
keywords to designate the corresponding statistic.

Table A66.1 The Most Common Simple Statistics

Statistic

PROC 
MEANS and 
SUMMARY

PROC 
UNIVARIATE

PROC 
TABULATE

PROC 
REPORT

PROC 
CORR

PROC 
SQL

Number of missing 
values

X X X X X

Number of nonmissing 
values

X X X X X X

Number of observations X X X

Sum of weights X X X X X X

Mean X X X X X X

Sum X X X X X X

Extreme values X X

Minimum X X X X X X

Maximum X X X X X X

Range X X X X X

Keywords and Formulas 2611



Statistic

PROC 
MEANS and 
SUMMARY

PROC 
UNIVARIATE

PROC 
TABULATE

PROC 
REPORT

PROC 
CORR

PROC 
SQL

Uncorrected sum of 
squares

X X X X X X

Corrected sum of 
squares

X X X X X X

Variance X X X X X X

Covariance X

Standard deviation X X X X X X

Standard error of the 
mean

X X X X X

Coefficient of variation X X X X X

Skewness X X X

Kurtosis X X X

Confidence Limits

of the mean X X X

of the variance X

of quantiles X

Median X X X X X

Mode X X X X

Percentiles/Deciles/
Quartiles

X X X X

t test

for mean=0 X X X X X

for mean= μ0 X

Nonparametric tests for 
location

X

Tests for normality X

Correlation coefficients X

Cronbach's alpha X

2612 Appendix 1 / SAS Elementary Statistics Procedures



Descriptive Statistics
The keywords for descriptive statistics are

CSS
is the sum of squares corrected for the mean, computed as

Σ wi xi − x 2

CV
is the percent coefficient of variation, computed as

100s /x

KURTOSIS | KURT
is the kurtosis, which measures heaviness of tails. When VARDEF=DF, the 
kurtosis is computed as

c4n Σ zi
4 − 3 n − 1 2

n − 2 n − 3

where c4n is n n + 1
n − 1 n − 2 n − 3  . The weighted kurtosis is computed as

= c4n Σ xi − x /σi
4 − 3 n − 1 2

n − 2 n − 3

= c4n Σ wi
2 xi − x /σ 4 − 3 n − 1 2

n − 2 n − 3

When VARDEF=N, the kurtosis is computed as

= 1
n Σ zi

4 − 3

and the weighted kurtosis is computed as

= 1
n Σ xi − x /σi

4 − 3

= 1
n Σ wi

2 xi − x /σ 4 − 3

where σi
2 is σ2/wi . The formula is invariant under the transformation 

wi* = zwi, z > 0 . When you use VARDEF=WDF or VARDEF=WEIGHT, the 
kurtosis is set to missing.

Note: PROC MEANS and PROC TABULATE do not compute weighted kurtosis.

MAX
is the maximum value of xi .

MEAN
is the arithmetic mean x .

MIN
is the minimum value of xi .

Keywords and Formulas 2613



MODE
is the most frequent value of xi .

Note: When QMETHOD=P2, PROC REPORT, PROC MEANS, and PROC 
TABULATE do not compute MODE.

N
is the number of xi values that are not missing. Observations with f i less than 
one and wi equal to missing or wi ≤ 0 (when you use the EXCLNPWGT option) 
are excluded from the analysis and are not included in the calculation of N.

NMISS
is the number of xi values that are missing. Observations with f i less than one 
and wi equal to missing or wi ≤ 0 (when you use the EXCLNPWGT option) are 
excluded from the analysis and are not included in the calculation of NMISS.

NOBS
is the total number of observations and is calculated as the sum of N and 
NMISS. However, if you use the WEIGHT statement, then NOBS is calculated as 
the sum of N, NMISS, and the number of observations excluded because of 
missing or nonpositive weights.

RANGE
is the range and is calculated as the difference between maximum value and 
minimum value.

SKEWNESS | SKEW
is skewness, which measures the tendency of the deviations to be larger in one 
direction than in the other. When VARDEF=DF, the skewness is computed as

c3n Σ zi
3

where c3n is n
n − 1 n − 2  . The weighted skewness is computed as

= c3n Σ xi − x /σ j
3

= c3n Σ wi
3/2 xi − x /σ 3

When VARDEF=N, the skewness is computed as

= 1
n Σ zi

3

and the weighted skewness is computed as

= 1
n Σ xi − x /σ j

3

= 1
n Σ wi

3/2 xi − x /σ 3

The formula is invariant under the transformation wi* = zwi, z > 0 . When you use 
VARDEF=WDF or VARDEF=WEIGHT, the skewness is set to missing.

Note: PROC MEANS and PROC TABULATE do not compute weighted 
skewness.

2614 Appendix 1 / SAS Elementary Statistics Procedures



STDDEV | STD
is the standard deviation s and is computed as the square root of the variance, 
s2 .

STDERR | STDMEAN
is the standard error of the mean, computed as

s/ Σ wi

when VARDEF=DF, which is the default. Otherwise, STDERR is set to missing.

SUM
is the sum, computed as

Σ wixi

SUMWGT
is the sum of the weights, W , computed as

Σ wi

USS
is the uncorrected sum of squares, computed as

Σ wixi
2

VAR
is the variance s2 .

Quantile and Related Statistics
The keywords for quantiles and related statistics are

MEDIAN
is the middle value.

P1
is the 1st percentile.

P5
is the 5th percentile.

P10
is the 10th percentile.

P90
is the 90th percentile.

P95
is the 95th percentile.

P99
is the 99th percentile.

Q1
is the lower quartile (25th percentile).

Q3
is the upper quartile (75th percentile).

Keywords and Formulas 2615



QRANGE
is interquartile range and is calculated as

Q3 − Q1

You use the QNTLDEF= option (PCTLDEF= in PROC UNIVARIATE) to specify the 
method that the procedure uses to compute percentiles. Let n be the number of 
nonmissing values for a variable, and let x1, x2, …, xn represent the ordered values of 
the variable such that x1 is the smallest value, x2 is next smallest value, and xn is the 
largest value. For the tth percentile between 0 and 1, let p = t /100 . Then specify j
as the integer part of np and g as the fractional part of np or n + 1 p , so that

np = j + g when QNTLDEF = 1, 2, 3, or 5
n + 1 p = j + g when QNTLDEF = 4

Here, QNTLDEF= specifies the method that the procedure uses to compute the tth 
percentile, as shown in the table that follows.

When you use the WEIGHT statement, the tth percentile is computed as

y =

1
2 xi + xi + 1 if Σ

j = 1

i
wj = pW

xi + 1 if Σ
j = 1

i
wj < pW < Σ

j = 1

i + 1
wj

where wj is the weight associated with xi and W = Σ
i = 1

n
wi is the sum of the weights. 

When the observations have identical weights, the weighted percentiles are the 
same as the unweighted percentiles with QNTLDEF=5.

Table A66.2 Methods for Computing Quantile Statistics

QNTLDEF
= Description Formula

1 weighted average at xnp y = 1 − g x j + gx j + 1

where xo is taken to be x1

2 observation numbered closest to np y = xi if g ≠ 1
2

y = x j if g = 1
2  and j is 

even

y = x j + 1 if g = 1
2  and j is 

odd

where i is the integer part of np + 1
2

3 empirical distribution function y = x j if g = 0

2616 Appendix 1 / SAS Elementary Statistics Procedures



QNTLDEF
= Description Formula

y = x j + 1 if g > 0

4 weighted average aimed at x n + 1 p y = 1 − g x j + gx j + 1

where xn + 1 is taken to be xn

5 empirical distribution function with 
averaging

y = 1
2 x j + x j + 1 if g = 0

y = x j + 1 if g > 0

Hypothesis Testing Statistics
The keywords for hypothesis testing statistics are

T
is the Student's t statistic to test the null hypothesis that the population mean is 
equal to μ0 and is calculated as

x − μ0
s/ Σ wi

By default, μ0 is equal to zero. You can use the MU0= option in the PROC 
UNIVARIATE statement to specify μ0 . You must use VARDEF=DF, which is the 
default variance divisor, otherwise T is set to missing.

By default, when you use a WEIGHT statement, the procedure counts the xi
values with nonpositive weights in the degrees of freedom. Use the 
EXCLNPWGT option in the PROC statement to exclude values with nonpositive 
weights. Most SAS/STAT procedures, such as PROC TTEST and PROC GLM 
automatically exclude values with nonpositive weights.

PROBT | PRT
is the two-tailed p-value for Student's t statistic, T, with n − 1 degrees of freedom. 
This value is the probability under the null hypothesis of obtaining a more 
extreme value of T than is observed in this sample.

Confidence Limits for the Mean
The keywords for confidence limits are

CLM
is the two-sided confidence limit for the mean. A two-sided 100 1 − α  percent 
confidence interval for the mean has upper and lower limits

Keywords and Formulas 2617



x ± t 1 − α/2; n − 1
s

Σ wi

where s is 1
n − 1 Σ xi − x 2 , t 1 − α/2; n − 1  is the ( 1 − α/2 ) critical value of the 

Student's t statistics with n − 1 degrees of freedom, and α is the value of the 
ALPHA= option which by default is 0.05. Unless you use VARDEF=DF, which is 
the default variance divisor, CLM is set to missing.

LCLM
is the one-sided confidence limit below the mean. The one-sided 100 1 − α
percent confidence interval for the mean has the lower limit

x − t 1 − α; n − 1
s

Σ wi

Unless you use VARDEF=DF, which is the default variance divisor, LCLM is set 
to missing.

UCLM
is the one-sided confidence limit above the mean. The one-sided 100 1 − α
percent confidence interval for the mean has the upper limit

x + t 1 − α; n − 1
s

Σ wi

Unless you use VARDEF=DF, which is the default variance divisor, UCLM is set 
to missing.

Using Weights
For more information about using weights and an example, see “WEIGHT” on page 
82.

Data Requirements for Summarization Procedures
Here are the minimal data requirements to compute unweighted statistics and do 
not describe recommended sample sizes. Statistics are reported as missing if 
VARDEF=DF (the default) and the following requirements are not met:

n N and NMISS are computed regardless of the number of missing or nonmissing 
observations.

n SUM, MEAN, MAX, MIN, RANGE, USS, and CSS require at least one 
nonmissing observation.

n VAR, STD, STDERR, CV, T, PRT, and PROBT require at least two nonmissing 
observations.

n SKEWNESS requires at least three nonmissing observations.

n KURTOSIS requires at least four nonmissing observations.

n SKEWNESS, KURTOSIS, T, PROBT, and PRT require that STD is greater than 
zero.

2618 Appendix 1 / SAS Elementary Statistics Procedures



n CV requires that MEAN is not equal to zero.

n CLM, LCLM, UCLM, STDERR, T, PRT, and PROBT require that VARDEF=DF.

Statistical Background

Populations and Parameters
Usually, there is a clearly defined set of elements in which you are interested. This 
set of elements is called the universe, and a set of values associated with these 
elements is called a population of values. The statistical term population has nothing 
to do with people. A statistical population is a collection of values, not a collection of 
people. For example, a universe is all the students at a particular school, and there 
could be two populations of interest: one of height values and one of weight values. 
Or, a universe is the set of all widgets manufactured by a particular company, and 
the population of values could be the length of time each widget is used before it 
fails.

A population of values can be described in terms of its cumulative distribution 
function, which gives the proportion of the population less than or equal to each 
possible value. A discrete population can also be described by a probability 
function, which gives the proportion of the population equal to each possible value. 
A continuous population can often be described by a density function, which is the 
derivative of the cumulative distribution function. A density function can be 
approximated by a histogram that gives the proportion of the population lying within 
each of a series of intervals of values. A probability density function is like a 
histogram with an infinite number of infinitely small intervals.

In technical literature, when the term distribution is used without qualification, it 
generally refers to the cumulative distribution function. In informal writing, 
distribution sometimes means the density function instead. Often the word 
distribution is used simply to refer to an abstract population of values rather than 
some concrete population. Thus, the statistical literature refers to many types of 
abstract distributions, such as normal distributions, exponential distributions, 
Cauchy distributions, and so on. When a phrase such as normal distribution is used, 
it frequently does not matter whether the cumulative distribution function or the 
density function is intended.

It might be expedient to describe a population in terms of a few measures that 
summarize interesting features of the distribution. One such measure, computed 
from the population values, is called a parameter. Many different parameters can be 
specified to measure different aspects of a distribution.

The most commonly used parameter is the (arithmetic) mean. If the population 
contains a finite number of values, then the population mean is computed as the 
sum of all the values in the population divided by the number of elements in the 
population. For an infinite population, the concept of the mean is similar but requires 
more complicated mathematics.

E(x) denotes the mean of a population of values symbolized by x, such as height, 
where E stands for expected value. You can also consider expected values of 

Statistical Background 2619



derived functions of the original values. For example, if x represents height, then 
E x2  is the expected value of height squared, that is, the mean value of the 
population obtained by squaring every value in the population of heights.

Samples and Statistics
It is often impossible to measure all of the values in a population. A collection of 
measured values is called a sample. A mathematical function of a sample of values 
is called a statistic. A statistic is to a sample as a parameter is to a population. It is 
customary to denote statistics by Roman letters and parameters by Greek letters. 
For example, the population mean is often written as μ, whereas the sample mean 
is written as x . The field of statistics is largely concerned with the study of the 
behavior of sample statistics.

Samples can be selected in a variety of ways. Most SAS procedures assume that 
the data constitute a simple random sample, which means that the sample was 
selected in such a way that all possible samples were equally likely to be selected.

Statistics from a sample can be used to make inferences, or reasonable guesses, 
about the parameters of a population. For example, if you take a random sample of 
30 students from the high school, then the mean height for those 30 students is a 
reasonable guess, or estimate, of the mean height of all the students in the high 
school. Other statistics, such as the standard error, can provide information about 
how good an estimate is likely to be.

For any population parameter, several statistics can estimate it. Often, however, 
there is one particular statistic that is customarily used to estimate a given 
parameter. For example, the sample mean is the usual estimator of the population 
mean. In the case of the mean, the formulas for the parameter and the statistic are 
the same. In other cases, the formula for a parameter might be different from that of 
the most commonly used estimator. The most commonly used estimator is not 
necessarily the best estimator in all applications.

Measures of Location

Overview of Measures of Location
Measures of location include the mean, the median, and the mode. These measures 
describe the center of a distribution. In the definitions that follow, notice that if the 
entire sample changes by adding a fixed amount to each observation, then these 
measures of location are shifted by the same fixed amount.

The Mean
The population mean μ = E x  is usually estimated by the sample mean x .

2620 Appendix 1 / SAS Elementary Statistics Procedures



The Median
The population median is the central value, lying above and below half of the 
population values. The sample median is the middle value when the data are 
arranged in ascending or descending order. For an even number of observations, 
the midpoint between the two middle values is usually reported as the median.

The Mode
The mode is the value at which the density of the population is at a maximum. Some 
densities have more than one local maximum (peak) and are said to be multimodal. 
The sample mode is the value that occurs most often in the sample. By default, 
PROC UNIVARIATE reports the lowest such value if there is a tie for the most-often-
occurring sample value. PROC UNIVARIATE lists all possible modes when you 
specify the MODES option in the PROC statement. If the population is continuous, 
then all sample values occur once, and the sample mode has little use.

Percentiles
Percentiles, including quantiles, quartiles, and the median, are useful for a detailed 
study of a distribution. For a set of measurements arranged in order of magnitude, 
the pth percentile is the value that has p percent of the measurements below it and 
(100−p) percent above it. The median is the 50th percentile. Because it might not be 
possible to divide your data so that you get exactly the desired percentile, the 
UNIVARIATE procedure uses a more precise definition.

The upper quartile of a distribution is the value below which 75% of the 
measurements fall (the 75th percentile). Twenty-five percent of the measurements 
fall below the lower quartile value.

Quantiles
In the following example, SAS artificially generates the data with a pseudorandom 
number function. The UNIVARIATE procedure computes a variety of quantiles and 
measures of location and writes the values to a SAS data set. A DATA step then 
uses the SYMPUT routine to assign the values of the statistics to macro variables. 
The macro %FORMGEN uses these macro variables to produce value labels for the 
FORMAT procedure. PROC CHART uses the resulting format to display the values 
of the statistics on a histogram.

options nodate pageno=1 linesize=80 pagesize=52;

title 'Example of Quantiles and Measures of Location';

data random;

Statistical Background 2621



   drop n;
   do n=1 to 1000;
      X=floor(exp(rannor(314159)*.8+1.8));
      output;
   end;
run;

proc univariate data=random nextrobs=0;
   var x;
   output out=location
          mean=Mean mode=Mode median=Median
          q1=Q1 q3=Q3 p5=P5 p10=P10 p90=P90 p95=P95
          max=Max;
run;

proc print data=location noobs;
run;

data _null_;
   set location;
   call symput('MEAN',round(mean,1));
   call symput('MODE',mode);
   call symput('MEDIAN',round(median,1));
   call symput('Q1',round(q1,1));
   call symput('Q3',round(q3,1));
   call symput('P5',round(p5,1));
   call symput('P10',round(p10,1));
   call symput('P90',round(p90,1));
   call symput('P95',round(p95,1));
   call symput('MAX',min(50,max));
run;

%macro formgen;
%do i=1 %to &max;
   %let value=&i;
   %if &i=&p5     %then %let value=&value  P5;
   %if &i=&p10    %then %let value=&value  P10;
   %if &i=&q1     %then %let value=&value  Q1;
   %if &i=&mode   %then %let value=&value  Mode;
   %if &i=&median %then %let value=&value  Median;
   %if &i=&mean   %then %let value=&value  Mean;
   %if &i=&q3     %then %let value=&value  Q3;
   %if &i=&p90    %then %let value=&value  P90;
   %if &i=&p95    %then %let value=&value  P95;
   %if &i=&max    %then %let value=>=&value;
   &i="&value"
%end;
%mend;

proc format print;
   value stat %formgen;
run;
options pagesize=42 linesize=80;

proc chart data=random;
   vbar x / midpoints=1 to &max by 1;
   format x stat.;

2622 Appendix 1 / SAS Elementary Statistics Procedures



   footnote  'P5  =  5TH PERCENTILE';
   footnote2 'P10 = 10TH PERCENTILE';
   footnote3 'P90 = 90TH PERCENTILE';
   footnote4 'P95 = 95TH PERCENTILE';
   footnote5 'Q1  =  1ST QUARTILE  ';
   footnote6 'Q3  =  3RD QUARTILE  ';
run;

Statistical Background 2623



2624 Appendix 1 / SAS Elementary Statistics Procedures



Statistical Background 2625



Measures of Variability

Overview of Measures of Variability
Another group of statistics is important in studying the distribution of a population. 
These statistics measure the variability, also called the spread, of values. In the 
definitions given in the sections that follow, notice that if the entire sample is 
changed by the addition of a fixed amount to each observation, then the values of 
these statistics are unchanged. If each observation in the sample is multiplied by a 
constant, however, then the values of these statistics are appropriately rescaled.

The Range
The sample range is the difference between the largest and smallest values in the 
sample. For many populations, at least in statistical theory, the range is infinite, so 
the sample range might not tell you much about the population. The sample range 
tends to increase as the sample size increases. If all sample values are multiplied 
by a constant, then the sample range is multiplied by the same constant.

The Interquartile Range
The interquartile range is the difference between the upper and lower quartiles. If all 
sample values are multiplied by a constant, then the sample interquartile range is 
multiplied by the same constant.

The Variance
The population variance, usually denoted by σ2 , is the expected value of the 
squared difference of the values from the population mean:

σ2 = E x − μ 2

The sample variance is denoted by s2 . The difference between a value and the 
mean is called a deviation from the mean. Thus, the variance approximates the 
mean of the squared deviations.

When all the values lie close to the mean, the variance is small but never less than 
zero. When values are more scattered, the variance is larger. If all sample values 
are multiplied by a constant, then the sample variance is multiplied by the square of 
the constant.

2626 Appendix 1 / SAS Elementary Statistics Procedures



Sometimes values other than n − 1 are used in the denominator. The VARDEF= 
option controls what divisor the procedure uses.

The Standard Deviation
The standard deviation is the square root of the variance, or root-mean-square 
deviation from the mean, in either a population or a sample. The usual symbols are 
σ for the population and s for a sample. The standard deviation is expressed in the 
same units as the observations, rather than in squared units. If all sample values are 
multiplied by a constant, then the sample standard deviation is multiplied by the 
same constant.

Coefficient of Variation
The coefficient of variation is a unitless measure of relative variability. It is defined 
as the ratio of the standard deviation to the mean expressed as a percentage. The 
coefficient of variation is meaningful only if the variable is measured on a ratio scale. 
If all sample values are multiplied by a constant, then the sample coefficient of 
variation remains unchanged.

Measures of Shape

Skewness
The variance is a measure of the overall size of the deviations from the mean. Since 
the formula for the variance squares the deviations, both positive and negative 
deviations contribute to the variance in the same way. In many distributions, positive 
deviations might tend to be larger in magnitude than negative deviations, or vice 
versa. Skewness is a measure of the tendency of the deviations to be larger in one 
direction than in the other. For example, the data in the last example are skewed to 
the right.

Population skewness is defined as

E x − μ 3/σ3

Because the deviations are cubed rather than squared, the signs of the deviations 
are maintained. Cubing the deviations also emphasizes the effects of large 
deviations. The formula includes a divisor of σ3 to remove the effect of scale, so 
multiplying all values by a constant does not change the skewness. Skewness can 
thus be interpreted as a tendency for one tail of the population to be heavier than 
the other. Skewness can be positive or negative and is unbounded.

Statistical Background 2627



Kurtosis
The heaviness of the tails of a distribution affects the behavior of many statistics. 
Therefore, it is useful to have a measure of tail heaviness. One such measure is 
kurtosis. The population kurtosis is usually defined as

E x − μ 4

σ4 − 3

Note: Some statisticians omit the subtraction of 3.

Because the deviations are raised to the fourth power, positive and negative 
deviations make the same contribution, and large deviations are strongly 
emphasized. Because of the divisor σ4 , multiplying each value by a constant has no 
effect on kurtosis.

Population kurtosis must lie between −2 and +∞ , inclusive. If M3 represents 
population skewness and M4 represents population kurtosis, then

M4 > M3
2 − 2

Statistical literature sometimes reports that kurtosis measures the peakedness of a 
density. However, heavy tails have much more influence on kurtosis than does the 
shape of the distribution near the mean (Kaplansky 1945; Ali 1974; Johnson, et al. 
1980).

Sample skewness and kurtosis are rather unreliable estimators of the corresponding 
parameters in small samples. They are better estimators when your sample is very 
large. However, large values of skewness or kurtosis might merit attention even in 
small samples because such values indicate that statistical methods that are based 
on normality assumptions might be inappropriate.

The Normal Distribution
One especially important family of theoretical distributions is the normal or Gaussian 
distribution. A normal distribution is a smooth symmetric function often referred to as 
"bell-shaped." Its skewness and kurtosis are both zero. A normal distribution can be 
completely specified by only two parameters: the mean and the standard deviation. 
Approximately 68% of the values in a normal population are within one standard 
deviation of the population mean; approximately 95% of the values are within two 
standard deviations of the mean; and about 99.7% are within three standard 
deviations. Use of the term normal to describe this particular type of distribution 
does not imply that other types of distributions are necessarily abnormal or 
pathological.

Many statistical methods are designed under the assumption that the population 
being sampled is normally distributed. Nevertheless, most real-life populations do 
not have normal distributions. Before using any statistical method based on 
normality assumptions, you should consult the statistical literature to find out how 

2628 Appendix 1 / SAS Elementary Statistics Procedures



sensitive the method is to nonnormality and, if necessary, check your sample for 
evidence of nonnormality.

In the following example, SAS generates a sample from a normal distribution with a 
mean of 50 and a standard deviation of 10. The UNIVARIATE procedure performs 
tests for location and normality. Because the data are from a normal distribution, all 
p-values from the tests for normality are greater than 0.15. The CHART procedure 
displays a histogram of the observations. The shape of the histogram is a bell-like, 
normal density.

options nodate pageno=1 linesize=80 pagesize=52;

title '10000 Obs Sample from a Normal Distribution';
title2 'with Mean=50 and Standard Deviation=10';

data normaldat;
   drop n;
   do n=1 to 10000;
      X=10*rannor(53124)+50;
      output;
   end;
run;

proc univariate data=normaldat nextrobs=0 normal
                          mu0=50 loccount;
   var x;
run;

proc format;
   picture msd
      20='20 3*Std' (noedit)
      30='30 2*Std' (noedit)
      40='40 1*Std' (noedit)
      50='50 Mean ' (noedit)
      60='60 1*Std' (noedit)
      70='70 2*Std' (noedit)
      80='80 3*Std' (noedit)
   other=' ';
run;
options linesize=80 pagesize=42;

proc chart;
   vbar x / midpoints=20 to 80 by 2;
   format x msd.;
run;

Statistical Background 2629



2630 Appendix 1 / SAS Elementary Statistics Procedures



Statistical Background 2631



Sampling Distribution of the Mean
If you repeatedly draw samples of size n from a population and compute the mean 
of each sample, then the sample means themselves have a distribution. Consider a 
new population consisting of the means of all the samples that could possibly be 
drawn from the original population. The distribution of this new population is called a 
sampling distribution.

It can be proven mathematically that if the original population has mean μ and 
standard deviation σ, then the sampling distribution of the mean also has mean μ, 
but its standard deviation is σ / n . The standard deviation of the sampling 

2632 Appendix 1 / SAS Elementary Statistics Procedures



distribution of the mean is called the standard error of the mean. The standard error 
of the mean provides an indication of the accuracy of a sample mean as an 
estimator of the population mean.

If the original population has a normal distribution, then the sampling distribution of 
the mean is also normal. If the original distribution is not normal but does not have 
excessively long tails, then the sampling distribution of the mean can be 
approximated by a normal distribution for large sample sizes.

The following example consists of three separate programs that show how the 
sampling distribution of the mean can be approximated by a normal distribution as 
the sample size increases. The first DATA step uses the RANEXP function to create 
a sample of 1000 observations from an exponential distribution. The theoretical 
population mean is 1.00, and the sample mean is 1.01, to two decimal places. The 
population standard deviation is 1.00; the sample standard deviation is 1.04.

The following example is an example of a nonnormal distribution. The population 
skewness is 2.00, which is close to the sample skewness of 1.97. The population 
kurtosis is 6.00, but the sample kurtosis is only 4.80.

options nodate pageno=1 linesize=80 pagesize=42;

title '1000 Observation Sample';
title2 'from an Exponential Distribution';

data expodat;
   drop n;
   do n=1 to 1000;
      X=ranexp(18746363);
      output;
   end;
run;
proc format;
    value axisfmt
      .05='0.05'
      .55='0.55'
     1.05='1.05'
     1.55='1.55'
     2.05='2.05'
     2.55='2.55'
     3.05='3.05'
     3.55='3.55'
     4.05='4.05'
     4.55='4.55'
     5.05='5.05'
     5.55='5.55'
     other=' ';
run;

proc chart data=expodat ;
   vbar x / axis=300
            midpoints=0.05 to 5.55 by .1;
   format x axisfmt.;
run;

options pagesize=64;

proc univariate data=expodat noextrobs=0 normal
                mu0=1;

Statistical Background 2633



   var x;
run;

2634 Appendix 1 / SAS Elementary Statistics Procedures



Statistical Background 2635



The next DATA step generates 1000 different samples from the same exponential 
distribution. Each sample contains ten observations. The MEANS procedure 
computes the mean of each sample. In the data set that is created by PROC 
MEANS, each observation represents the mean of a sample of ten observations 
from an exponential distribution. Thus, the data set is a sample from the sampling 
distribution of the mean for an exponential population.

PROC UNIVARIATE displays statistics for this sample of means. Notice that the 
mean of the sample of means is .99, almost the same as the mean of the original 
population. Theoretically, the standard deviation of the sampling distribution is 
σ / n = 1.00/ 10 = .32 , whereas the standard deviation of this sample from the 
sampling distribution is .30. The skewness (.55) and kurtosis (-.006) are closer to 
zero in the sample from the sampling distribution than in the original sample from 
the exponential distribution because the sampling distribution is closer to a normal 
distribution than is the original exponential distribution. The CHART procedure 
displays a histogram of the 1000-sample means. The shape of the histogram is 
much closer to a bell-like, normal density, but it is still distinctly lopsided.

options nodate pageno=1 linesize=80 pagesize=48;

title '1000 Sample Means with 10 Obs per Sample';
title2 'Drawn from an Exponential Distribution';

data samp10;
   drop n;
   do Sample=1 to 1000;
      do n=1 to 10;
         X=ranexp(433879);
         output;
      end;
   end;

proc means data=samp10 noprint;

2636 Appendix 1 / SAS Elementary Statistics Procedures



   output out=mean10 mean=Mean;
   var x;
   by sample;
run;

proc format;
     value axisfmt
       .05='0.05'
       .55='0.55'
      1.05='1.05'
      1.55='1.55'
      2.05='2.05'
      other=' ';
 run;

proc chart data=mean10;
   vbar mean/axis=300
             midpoints=0.05 to 2.05 by .1;
   format mean axisfmt.;
run;

options pagesize=64;
proc univariate data=mean10 nextrobs=0 normal
                mu0=1;
   var mean;
run;

Statistical Background 2637



2638 Appendix 1 / SAS Elementary Statistics Procedures



Statistical Background 2639



In the following DATA step, the size of each sample from the exponential distribution 
is increased to 50. The standard deviation of the sampling distribution is smaller 
than in the previous example because the size of each sample is larger. Also, the 
sampling distribution is even closer to a normal distribution, as can be seen from the 
histogram and the skewness.

options nodate pageno=1 linesize=80 pagesize=48;

title '1000 Sample Means with 50 Obs per Sample';
title2 'Drawn from an Exponential Distribution';

data samp50;
   drop n;
   do sample=1 to 1000;
      do n=1 to 50;
         X=ranexp(72437213);
         output;
      end;
   end;

proc means data=samp50 noprint;
   output out=mean50 mean=Mean;
   var x;
   by sample;
run;

proc format;
   value axisfmt
       .05='0.05'
       .55='0.55'
      1.05='1.05'
      1.55='1.55'
      2.05='2.05'
      2.55='2.55'

2640 Appendix 1 / SAS Elementary Statistics Procedures



      other=' ';
run;

proc chart data=mean50;
   vbar mean / axis=300
               midpoints=0.05 to 2.55 by .1;
   format mean axisfmt.;
run;

options pagesize=64;

proc univariate data=mean50 nextrobs=0 normal
                mu0=1;
   var mean;
run;

Statistical Background 2641



2642 Appendix 1 / SAS Elementary Statistics Procedures



Statistical Background 2643



Testing Hypotheses

Defining a Hypothesis
The purpose of the statistical methods that have been discussed so far is to 
estimate a population parameter by means of a sample statistic. Another class of 
statistical methods is used for testing hypotheses about population parameters or 
for measuring the amount of evidence against a hypothesis.

Consider the universe of students in a college. Let the variable X be the number of 
pounds by which a student's weight deviates from the ideal weight for a person of 
the same sex, height, and build. You want to find out whether the population of 
students is, on the average, underweight or overweight. To this end, you have taken 
a random sample of X values from nine students, with results as given in the 
following DATA step:

title 'Deviations from Normal Weight';

data x;
   input X @@;
   datalines;
-7 -2 1 3 6 10 15 21 30
;

You can define several hypotheses of interest. One hypothesis is that, on the 
average, the students are of exactly ideal weight. If μ represents the population 
mean of the X values, then you can write this hypothesis, called the null hypothesis, 

2644 Appendix 1 / SAS Elementary Statistics Procedures



as H0: μ = 0 . The other two hypotheses, called alternative hypotheses, are that the 
students are underweight on the average, H1: μ < 0 , and that the students are 
overweight on the average, H2: μ > 0 .

The null hypothesis is so called because it corresponds in many situations to the 
assumption of “no effect” or “no difference.” However, this interpretation is not 
appropriate for all testing problems. The null hypothesis is like a straw man that can 
be toppled by statistical evidence. You decide between the alternative hypotheses 
according to which way the straw man falls.

A naive way to approach this problem would be to look at the sample mean x and 
decide among the three hypotheses according to the following rule:

n If x < 0 , then decide on H1: μ < 0 .

n If x = 0 , then decide on H0: μ = 0 .

n If x > 0 , then decide on H2: μ > 0 .

The trouble with this approach is that there might be a high probability of making an 
incorrect decision. If H0 is true, then you are nearly certain to make a wrong decision 
because the chances of x being exactly zero are almost nil. If μ is slightly less than 
zero, so that H1 is true, then there might be nearly a 50% chance that x will be 
greater than zero in repeated sampling, so the chances of incorrectly choosing H2 

would also be nearly 50%. Thus, you have a high probability of making an error if x
is near zero. In such cases, there is not enough evidence to make a confident 
decision, so the best response might be to reserve judgment until you can obtain 
more evidence.

The question is, how far from zero must x be for you to be able to make a confident 
decision? The answer can be obtained by considering the sampling distribution of 
x . If X has an approximately normal distribution, then x has an approximately 
normal sampling distribution. The mean of the sampling distribution of x is μ. 
Assume temporarily that σ, the standard deviation of X, is known to be 12. Then the 
standard error of x for samples of nine observations is σ / n = 12/ 9 = 4 .

You know that about 95% of the values from a normal distribution are within two 
standard deviations of the mean, so about 95% of the possible samples of nine X 
values have a sample mean x between 0 − 2 4  and 0 + 2 4  , or between −8 and 8. 
Consider the chances of making an error with the following decision rule:

n If x < − 8 , then decide on H1: μ < 0 .

n If −8 ≤ x ≤ 8 , then reserve judgment.

n If x > 8 , then decide on H2: μ > 0 .

If H0 is true, then in about 95% of the possible samples x will be between the critical 
values −8 and 8, so you will reserve judgment. In these cases the statistical 
evidence is not strong enough to fell the straw man. In the other 5% of the samples, 
you will make an error. In 2.5% of the samples, you will incorrectly choose H1; in 
2.5%, you will incorrectly choose H2.

The price that you pay for controlling the chances of making an error is the 
necessity of reserving judgment when there is not sufficient statistical evidence to 
reject the null hypothesis.

Statistical Background 2645



Significance and Power
The probability of rejecting the null hypothesis, if it is true, is called the Type I error 
rate of the statistical test and is typically denoted as α . In this example, an x value 
less than −8 or greater than 8 is said to be statistically significant at the 5% level. 
You can adjust the type I error rate according to your needs by choosing different 
critical values. For example, critical values of −4 and 4 would produce a significance 
level of about 32%, and −12 and 12 would give a type I error rate of about 0.3%.

The decision rule is a two-tailed test because the alternative hypotheses allow for 
population means either smaller or larger than the value specified in the null 
hypothesis. If you were interested only in the possibility of the students being 
overweight on the average, then you could use a one-tailed test:

n If x ≤ 8 , then reserve judgment.

n If x > 8 , then decide on H2: μ > 0 .

For this one-tailed test, the type I error rate is 2.5%, half that of the two-tailed test.

The probability of rejecting the null hypothesis, if it is false, is called the power of the 
statistical test and is typically denoted as 1 − β . β is called the Type II error rate, 
which is the probability of not rejecting a false null hypothesis. The power depends 
on the true value of the parameter. In the example, assume that the population 
mean is 4. The power for detecting H2 is the probability of getting a sample mean 
greater than 8. The critical value 8 is one standard error higher than the population 
mean 4. The chance of getting a value at least one standard deviation greater than 
the mean from a normal distribution is about 16%, so the power for detecting the 
alternative hypothesis H2 is about 16%. If the population mean were 8, then the 
power for H2 would be 50%, whereas a population mean of 12 would yield a power 
of about 84%.

The smaller the type I error rate is, the less the chance of making an incorrect 
decision, but the higher the chance of having to reserve judgment. In choosing a 
type I error rate, you should consider the resulting power for various alternatives of 
interest.

Student's t Distribution
In practice, you usually cannot use any decision rule that uses a critical value based 
on σ because you do not usually know the value of σ. However, you can use s as an 
estimate of σ. Consider the following statistic:

t =
x − μ0
s/ n

This t statistic is the difference between the sample mean and the hypothesized 
mean μ0 divided by the estimated standard error of the mean.

If the null hypothesis is true and the population is normally distributed, then the t 
statistic has what is called a Student's t distribution with n − 1 degrees of freedom. 
This distribution looks very similar to a normal distribution, but the tails of the 
Student's t distribution are heavier. As the sample size gets larger, the sample 

2646 Appendix 1 / SAS Elementary Statistics Procedures



standard deviation becomes a better estimator of the population standard deviation, 
and the t distribution gets closer to a normal distribution.

You can base a decision rule on the t statistic:

n If t < − 2.3 , then decide on H1: μ < 0 .

n If −2.3 ≤ t ≤ 2.3 , then reserve judgment.

n If t > 2.3 , then decide on H0: μ > 0 .

The value 2.3 was obtained from a table of Student's t distribution to give a type I 
error rate of 5% for 8 (that is, 9 − 1 = 8 ) degrees of freedom. Most common 
statistics texts contain a table of Student's t distribution. If you do not have a 
statistics text handy, then you can use the DATA step and the TINV function to print 
any values from the t distribution.

By default, PROC UNIVARIATE computes a t statistic for the null hypothesis that 
μ0 = 0 , along with related statistics. Use the MU0= option in the PROC statement to 
specify another value for the null hypothesis.

This example uses the data on deviations from normal weight, which consist of nine 
observations. First, PROC MEANS computes the t statistic for the null hypothesis 
that μ = 0 . Then, the TINV function in a DATA step computes the value of Student's 
t distribution for a two-tailed test at the 5% level of significance and eight degrees of 
freedom.

data devnorm;
   title 'Deviations from Normal Weight';
   input X @@;
   datalines;
-7 -2 1 3 6 10 15 21 30
;

proc means data=devnorm maxdec=3 n mean
           std stderr t probt;
run;

title 'Student''s t Critical Value';

data _null_;
   file print;
   t=tinv(.975,8);
   put t 5.3;
run;

Statistical Background 2647



      
          Deviations from Normal Weight                 1
                      The MEANS Procedure

                     Analysis Variable : X

 N          Mean       Std Dev     Std Error  t Value  Pr > |t|
 --------------------------------------------------------------
 9         8.556        11.759         3.920     2.18    0.0606
 --------------------------------------------------------------

                   Student's t Critical Value                  2
2.306

In the current example, the value of the t statistic is 2.18, which is less than the 
critical t value of 2.3 (for a 5% significance level and eight degrees of freedom). 
Thus, at a 5% significance level, you must reserve judgment. If you had chosen to 
use a 10% significance level, then the critical value of the t distribution would have 
been 1.86 and you could have rejected the null hypothesis. The sample size is so 
small, however, that the validity of your conclusion depends strongly on how close 
the distribution of the population is to a normal distribution.

Probability Values
Another way to report the results of a statistical test is to compute a probability value 
or p-value. A p-value gives the probability in repeated sampling of obtaining a 
statistic as far in the directions specified by the alternative hypothesis as is the value 
actually observed. A two-tailed p-value for a t statistic is the probability of obtaining 
an absolute t value that is greater than the observed absolute t value. A one-tailed 
p-value for a t statistic for the alternative hypothesis μ > μ0 is the probability of 
obtaining a t value greater than the observed t value. Once the p-value is computed, 
you can perform a hypothesis test by comparing the p-value with the desired 
significance level. If the p-value is less than or equal to the type I error rate of the 
test, then the null hypothesis can be rejected. The two-tailed p-value, labeled Pr > 
|t| in the PROC MEANS output, is .0606, so the null hypothesis could be rejected 
at the 10% significance level but not at the 5% level.

A p-value is a measure of the strength of the evidence against the null hypothesis. 
The smaller the p-value, the stronger the evidence for rejecting the null hypothesis.

Note: For a more thorough discussion, consult an introductory statistics textbook 
such as Mendenhall and Beaver (1998); Ott and Mendenhall (1994); or Snedecor 
and Cochran (1989).

2648 Appendix 1 / SAS Elementary Statistics Procedures



References
Ali, M. M. 1974. “Stochastic Ordering and Kurtosis Measure.” Journal of the 

American Statistical Association 69: 543–545.

Johnson, M. E., G. L. Tietjen, and R. J. Beckman. 1980. “A New Family of 
Probability Distributions with Applications to Monte Carlo Studies.” Journal of the 
American Statistical Association 75: 276-279.

Kaplansky, I. 1945. “A Common Error Concerning Kurtosis.” Journal of the American 
Statistical Association, 40: 259-263.

Mendenhall, W. and R. Beaver. 1998. Introduction to Probability and Statistics. 10th 
ed. Belmont, CA: Wadsworth Publishing Company.

Ott, R. and W. Mendenhall. 1994. Understanding Statistics. 6th ed. North Scituate, 
MA: Duxbury Press.

Schlotzhauer, S. D. and R. C. Littell. 1997. SAS System for Elementary Statistical 
Analysis. Second ed. Cary, NC: SAS Institute Inc.

Snedecor, G. W. and W. C. Cochran. 1989. Statistical Methods. 8th ed. Ames, IA: 
Iowa State University Press.

Statistical Background 2649



2650 Appendix 1 / SAS Elementary Statistics Procedures



Appendix 2
Operating Environment-Specific 
Procedures

Descriptions of Operating Environment-Specific Procedures . . . . . . . . . . . . . . . . . 2651

Descriptions of Operating Environment-
Specific Procedures

The following table gives a brief description and the relevant releases for some 
common operating environment-specific procedures. All of these procedures are 
described in more detail in operating environment-companion documentation.

Table A67.1 Host-Specific Procedures

Procedure Description Releases

CONVERT Converts BMDP, OSIRIS, and SPSS system files to SAS 
data sets.

All

C16PORT Converts a 16-bit SAS library or catalog that was created 
in Release 6.08 to a transport file. You can then convert 
to a 32-bit format for use in the current release of SAS by 
using the CIMPORT procedure.

6.10 - 6.12

FSDEVICE Creates, copies, modifies, deletes, or renames device 
descriptions in a catalog.

All

PDS Lists, deletes, or renames the members of a partitioned 
data set.

6.09E

2651



Procedure Description Releases

PDSCOPY Copies partitioned data sets from disk to disk, disk to 
tape, tape to tape, or tape to disk.

6.09E

RELEASE Releases unused space at the end of a disk data set. 6.09E

SOURCE Provides an easy way to back up and process source 
library data sets.

6.09E

TAPECOPY Copies an entire tape volume, or files from one or more 
tape volumes, to one output tape volume.

6.09E

TAPELABEL Writes the label information of an IBM standard-labeled 
tape volume to the SAS procedure output file.

6.09E

2652 Appendix 2 / Operating Environment-Specific Procedures



Appendix 3
Raw Data and DATA Steps for 
Base SAS Procedures

Overview of Raw Data and DATA Steps for Base SAS Procedures . . . . . . . . . . . . 2654

CARSURVEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2655

CENSUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2656

CHARITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2657

CONTROL Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2659
Contents of the CONTROL Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2659
CONTROL.ALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2660
CONTROL.BODYFAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2661
CONTROL.CONFOUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2662
CONTROL.CORONARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2662
CONTROL.DRUG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2663
CONTROL.DRUG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2663
CONTROL.DRUG3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2664
CONTROL.DRUG4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2664
CONTROL.DRUG5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2664
CONTROL.GROUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2665
CONTROL.MLSCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2670
CONTROL.NAMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2671
CONTROL.OXYGEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2671
CONTROL.PERSONL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2672
CONTROL.PHARM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2678
CONTROL.POINTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2678
CONTROL.PRENAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2678
CONTROL.RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2681
CONTROL.SLEEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2682
CONTROL.SYNDROME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2684
CONTROL.TENSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2685
CONTROL.TEST2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2685
CONTROL.TRAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2686
CONTROL.VISION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2686
CONTROL.WEIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2686
CONTROL.WGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2688

2653



CUSTOMER_RESPONSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2690

DJIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2692

EDUCATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2693

EMPDATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2694

ENERGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2696

EXP Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2697
EXP.RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2697
EXP.SUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2698

EXPREV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2698

GROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2700

MATCH_11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2701

PROCLIB.DELAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2703

PROCLIB.EMP95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2704

PROCLIB.EMP96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2705

PROCLIB.INTERNAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2706

PROCLIB.LAKES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2706

PROCLIB.MARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2707

PROCLIB.PAYLIST2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2708

PROCLIB.PAYROLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2708

PROCLIB.PAYROLL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2711

PROCLIB.SCHEDULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2712

PROCLIB.STAFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2715

PROCLIB.STAFF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2718

PROCLIB.SUPERV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2718

RADIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2719

SALES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2731

Overview of Raw Data and DATA Steps 
for Base SAS Procedures

The following raw data examples and DATA step examples are for use with the 
Base SAS Procedures.

The programs for examples in this document generally show you how to create the 
data sets that are used. Some examples show only partial data. For these 
examples, the complete data is shown in this appendix.

2654 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



CARSURVEY

data carsurvey;
   input Rater Age Progressa Remark Jupiter Dynamo;
   datalines;
1   38  94  98  84  80
2   49  96  84  80  77
3   16  64  78  76  73
4   27  89  73  90  92
5   50  93  79  84  34
6   57  92  89  75  89
7   21  88  90  89  91
8   39  88  87  76  64
9   26  77  94  93  47
10  17  68  72  85  79
11  38  94  93  84  70
12  29  78  97  74  33
13  41  89  83  75  82
14  37  54  98  70  83
15  52  92  85  88  78
16  23  85  89  89  95
17  61  92  88  77  85
18  24  87  88  88  87
19  18  54  50  62  74
20  62  90  91  90  86
21  49  94  98  84  80
22  16  96  84  80  77
23  27  64  78  76  73
24  50  89  73  90  92
25  57  93  79  84  34
26  21  92  86  75  93
27  39  88  97  89  91
28  26  88  87  76  64
29  17  77  94  93  47
30  38  68  72  85  79
31  29  94  93  84  70
32  41  78  97  74  33
33  37  89  83  75  82
34  52  54  98  70  83
35  23  92  85  88  78
36  61  85  93  89  66
37  24  92  88  77  85
38  18  87  88  88  87
39  62  54  50  62  74
40  38  90  91  90  86
41  57  94  98  84  80
42  16  96  84  80  77
43  19  64  78  76  73
44  59  89  73  90  92

CARSURVEY 2655



45  57  93  79  84  34
46  21  92  86  75  90
47  39  88  97  89  91
48  26  88  87  76  64
49  17  77  94  93  47
50  56  68  72  85  79
51  29  94  93  84  70
52  41  78  97  74  33
53  37  89  83  75  82
54  52  54  98  70  83
55  17  92  85  88  78
56  61  85  93  89  66
57  24  92  85  77  85
58  18  87  88  88  87
59  62  54  50  62  74
60  38  90  91  90  86
61  38  94  98  84  80
62  49  96  84  80  77
63  16  64  78  76  73
64  27  89  73  90  92
65  50  93  79  84  34
66  57  92  89  75  89
67  21  88  93  89  91
68  39  88  87  76  64
69  26  77  94  93  47
70  17  68  72  85  79
71  38  94  93  84  70
72  29  78  97  74  33
73  41  89  83  75  82
74  37  54  98  70  83
75  52  92  85  88  78
76  23  85  93  89  88
77  61  92  88  77  85
78  24  87  88  88  91
79  18  54  50  62  74
80  62  90  91  90  86
;

CENSUS
data census;
   input Density CrimeRate State $ 14-27 PostalCode $ 29-30;
   datalines;
263.3 4575.3 Ohio           OH
62.1 7017.1  Washington     WA
103.4 5161.9 South Carolina SC
53.4 3438.6  Mississippi    MS
180.0 8503.2 Florida        FL
80.8 2190.7  West Virginia  WV
428.7 5477.6 Maryland       MD
71.2 4707.5  Missouri       MO
43.9 4245.2  Arkansas       AR

2656 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



7.3 6371.4   Nevada         NV
264.3 3163.2 Pennsylvania   PA
11.5 4156.3  Idaho          ID
44.1 6025.6  Oklahoma       OK
51.2 4615.8  Minnesota      MN
55.2 4271.2  Vermont        VT
27.4 6969.9  Oregon         OR
205.3 5416.5 Illinois       IL
94.1 5792.0  Georgia        GA
9.1 2678.0   South Dakota   SD
9.4 2833.0   North Dakota   ND
102.4 3371.7 New Hampshire  NH
54.3 7722.4  Texas          TX
76.6 4451.4  Alabama        AL
307.6 4938.8 Delaware       DE
151.4 6506.4 California     CA
111.6 4665.6 Tennessee      TN
120.4 4649.9 North Carolina NC
;

CHARITY
data Charity;
   input School $ 1-7 Year 9-12 Name $ 14-20 MoneyRaised 22-26
         HoursVolunteered 28-29;
   datalines;
Monroe  2016 Allison 31.65 19
Monroe  2016 Barry   23.76 16
Monroe  2016 Candace 21.11  5
Monroe  2016 Danny    6.89 23
Monroe  2016 Edward  53.76 31
Monroe  2016 Fiona   48.55 13
Monroe  2016 Gert    24.00 16
Monroe  2016 Harold  27.55 17
Monroe  2016 Ima     15.98  9
Monroe  2016 Jack    20.00 23
Monroe  2016 Katie   22.11  2
Monroe  2016 Lisa    18.34 17
Monroe  2016 Tonya   55.16 40
Monroe  2016 Max     26.77 34
Monroe  2016 Ned     28.43 22
Monroe  2016 Opal    32.66 14
Monroe  2017 Patsy   18.33 18
Monroe  2017 Quentin 16.89 15
Monroe  2017 Randall 12.98 17
Monroe  2017 Sam     15.88  5
Monroe  2017 Tyra    21.88 23
Monroe  2017 Myrtle  47.33 26
Monroe  2017 Frank   41.11 22
Monroe  2017 Cameron 65.44 14
Monroe  2017 Vern    17.89 11

CHARITY 2657



Monroe  2017 Wendell 23.00 10
Monroe  2017 Bob     26.88  6
Monroe  2017 Leah    28.99 23
Monroe  2018 Becky   30.33 26
Monroe  2018 Sally   35.75 27
Monroe  2018 Edgar   27.11 12
Monroe  2018 Dawson  17.24 16
Monroe  2018 Lou      5.12 16
Monroe  2018 Damien  18.74 17
Monroe  2018 Mona    27.43  7
Monroe  2018 Della   56.78 15
Monroe  2018 Monique 29.88 19
Monroe  2018 Carl    31.12 25
Monroe  2018 Reba    35.16 22
Monroe  2018 Dax     27.65 23
Monroe  2018 Gary    23.11 15
Monroe  2018 Suzie   26.65 11
Monroe  2018 Benito  47.44 18
Monroe  2018 Thomas  21.99 23
Monroe  2018 Annie   24.99 27
Monroe  2018 Paul    27.98 22
Monroe  2018 Alex    24.00 16
Monroe  2018 Lauren  15.00 17
Monroe  2018 Julia   12.98 15
Monroe  2018 Keith   11.89 19
Monroe  2018 Jackie  26.88 22
Monroe  2018 Pablo   13.98 28
Monroe  2018 L.T.    56.87 33
Monroe  2018 Willard 78.65 24
Monroe  2018 Kathy   32.88 11
Monroe  2018 Abby    35.88 10
Kennedy 2016 Arturo  34.98 14
Kennedy 2016 Grace   27.55 25
Kennedy 2016 Winston 23.88 22
Kennedy 2016 Vince   12.88 21
Kennedy 2016 Claude  15.62  5
Kennedy 2016 Mary    28.99 34
Kennedy 2016 Abner   25.89 22
Kennedy 2016 Jay     35.89 35
Kennedy 2016 Alicia  28.77 26
Kennedy 2016 Freddy  29.00 27
Kennedy 2016 Eloise  31.67 25
Kennedy 2016 Jenny   43.89 22
Kennedy 2016 Thelma  52.63 21
Kennedy 2016 Tina    19.67 21
Kennedy 2016 Eric    24.89 12
Kennedy 2016 Bubba   37.88 12
Kennedy 2016 G.L.    25.89 21
Kennedy 2016 Bert    28.89 21
Kennedy 2017 Clay    26.44 21
Kennedy 2017 Leeann  27.17 17
Kennedy 2017 Georgia 38.90 11
Kennedy 2017 Bill    42.23 25
Kennedy 2017 Holly   18.67 27
Kennedy 2017 Benny   19.09 25
Kennedy 2017 Cammie  28.77 28

2658 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



Kennedy 2017 Amy     27.08 31
Kennedy 2017 Doris   22.22 24
Kennedy 2017 Robbie  19.80 24
Kennedy 2017 Ted     27.07 25
Kennedy 2017 Sarah   24.44 12
Kennedy 2017 Megan   28.89 11
Kennedy 2017 Jeff    31.11 12
Kennedy 2017 Taz     30.55 11
Kennedy 2017 George  27.56 11
Kennedy 2017 Heather 38.67 15
Kennedy 2018 Nancy   29.90 26
Kennedy 2018 Rusty   30.55 28
Kennedy 2018 Mimi    37.67 22
Kennedy 2018 J.C.    23.33 27
Kennedy 2018 Clark   27.90 25
Kennedy 2018 Rudy    27.78 23
Kennedy 2018 Samuel  34.44 18
Kennedy 2018 Forrest 28.89 26
Kennedy 2018 Luther  72.22 24
Kennedy 2018 Trey     6.78 18
Kennedy 2018 Albert  23.33 19
Kennedy 2018 Che-Min 26.66 33
Kennedy 2018 Preston 32.22 23
Kennedy 2018 Larry   40.00 26
Kennedy 2018 Anton   35.99 28
Kennedy 2018 Sid     27.45 25
Kennedy 2018 Will    28.88 21
Kennedy 2018 Morty   34.44 25
;

CONTROL Library

Contents of the CONTROL Library
Here are the contents of the CONTROL library that is used in the DATASETS 
procedure section.

                                           Directory

       Libref         CONTROL
       Engine         V9
       Physical Name  \myfiles\control
       File Name      \myfiles\control

              Member   Obs, Entries                            File
 #  Name      Type      or Indexes   Vars  Label               Size  Last Modified

 1  A1        CATALOG       23                                62464 04Jan18:14:20:12

CONTROL Library 2659



 2  A2        CATALOG        1                                17408 04Jan18:14:20:12
 3  ALL       DATA          23        17                      13312 04Jan18:14:20:12
 4  BODYFAT   DATA           1         2                       5120 04Jan18:14:20:12
 5  CONFOUND  DATA           8         4                       5120 04Jan18:14:20:12
 6  CORONARY  DATA          39         4                       5120 04Jan18:14:20:12
 7  DRUG1     DATA           6         2   JAN18 Data          5120 04Jan18:14:20:12
 8  DRUG2     DATA          13         2   MAY18 Data          5120 04Jan18:14:20:12
 9  DRUG3     DATA          11         2   JUL17 Data          5120 04Jan18:14:20:12
10  DRUG4     DATA           7         2   JAN17 Data          5120 04Jan18:14:20:12
11  DRUG5     DATA           1         2   JUL17 Data          5120 04Jan18:14:20:12
12  ETEST1    CATALOG        1                                17408 04Jan18:14:20:16
13  ETEST2    CATALOG        1                                17408 04Jan18:14:20:16
14  ETEST3    CATALOG        1                                17408 04Jan18:14:20:16
15  ETEST4    CATALOG        1                                17408 04Jan18:14:20:16
16  ETEST5    CATALOG        1                                17408 04Jan18:14:20:16
17  ETESTS    CATALOG        1                                17408 04Jan18:14:20:16
18  FORMATS   CATALOG        6                                17408 04Jan18:14:20:16
19  GROUP     DATA         148        11                      25600 04Jan18:14:20:16
20  MLSCL     DATA          32         4   Multiple            5120 04Jan18:14:20:16
                                           Sclerosis Data
21  NAMES     DATA           7         4                       5120 04Jan11:14:20:16
22  OXYGEN    DATA          31         7                       9216 04Jan18:14:20:16
23  PERSONL   DATA         148        11                      25600 04Jan18:14:20:16
24  PHARM     DATA           6         3   Sugar Study         5120 04Jan18:14:20:16
25  POINTS    DATA           6         6                       5120 04Jan18:14:20:16
26  PRENAT    DATA         149         6                      17408 04Jan18:14:20:16
27  RESULTS   DATA          10         5                       5120 04Jan18:14:20:16
28  SLEEP     DATA         108         6                       9216 04Jan18:14:20:16
29  SYNDROME  DATA          46         8                       9216 04Jan18:14:20:16
30  TENSION   DATA           4         3                       5120 04Jan18:14:20:16
31  TEST2     DATA          15         5                       5120 04Jan18:14:20:16
32  TRAIN     DATA           7         2                       5120 04Jan18:14:20:16
33  VISION    DATA          16         3                       5120 04Jan18:14:20:16
34  WEIGHT    DATA          83        13   California         13312 04Jan18:14:20:16
                                           Results
35  WGHT      DATA          83        13   California         13312 04Jan18:14:20:16
                                           Results
16

CONTROL.ALL
Here are the raw data and DATA steps for all the data files in the CONTROL library.

data control.all;
    input FMTNAME $8. START $9. END $8. LABEL $20. MIN best4. MAX best4.
         DEFAULT best4. LENGTH best4. FUZZ best8. PREFIX $2. MULT best8.
         FILL $1. NOEDIT best4.  TYPE $2. SEXCL $2. EEXCL $2. HLO $7. ;
    label FMTNAME='Format name'
          START='Starting value for format'
          END='Ending value for format'
          LABEL='Format value label'
          MIN='Minimum length'
          MAX='Maximum length'

2660 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



          DEFAULT='Default length'
          LENGTH='Format length'
          FUZZ='Fuzz value'
          PREFIX='Prefix characters'
          MULT='Multiplier'
          FILL='Fill character'
          NOEDIT='Is picture string noedit?'
          TYPE='Type of format'
          SEXCL='Start exclusion'
          EEXCL='End exclusion'
          HLO='Additional information';
    datalines;
BENEFIT       LOW    7304         WORDDATE20.   1 40  20  20   1E-12      0.00   0 N N 
N     LF
BENEFIT      7305    HIGH  ** Not Eligible **   1 40  20  20   1E-12      0.00   0 N N N
DOLLARS       LOW    HIGH             000,000   1 40   7   7   1E-12 $    1.96   0 P N 
N     LH
NOZEROS       LOW    0.01                 999   1 40   5   5   1E-12 . 1000.00   0 P N 
Y     L
NOZEROS      0.01     0.1                  99   1 40   5   5   1E-12 .  100.00   0 P N Y
NOZEROS       0.1       1               0.000   1 40   5   5   1E-12 . 1000.00   0 P N Y
NOZEROS         1    HIGH               0.000   1 40   5   5   1E-12   1000.00   0 P N 
N     H
BRIT          BR1     BR1          Birmingham   1 40  14  14       0      0.00   0 C N N
BRIT          BR2     BR2            Plymouth   1 40  14  14       0      0.00   0 C N N
BRIT          BR3     BR3                York   1 40  14  14       0      0.00   0 C N N
BRIT     *OTHER****OTHER*      INCORRECT CODE   1 40  14  14       0      0.00   0 C N 
N     0
SKILL           A      D~              Test A   1 40   6   6       0      0.00   0 C N N
SKILL           E      M~              Test B   1 40   6   6       0      0.00   0 C N N
SKILL           N      Z~              Test C   1 40   6   6       0      0.00   0 C N N
SKILL           a      d~              Test A   1 40   6   6       0      0.00   0 C N N
SKILL           e      m~              Test B   1 40   6   6       0      0.00   0 C N N
SKILL           n      z~              Test C   1 40   6   6       0      0.00   0 C N N
EVAL            0       4              _SAME_   1 40   1   1       0      0.00   0 I N 
N     I
EVAL            C       C                   1   1 40   1   1       0      0.00   0 I N N
EVAL            E       E                   2   1 40   1   1       0      0.00   0 I N N
EVAL            N       N                   0   1 40   1   1       0      0.00   0 I N N
EVAL            O       O                   4   1 40   1   1       0      0.00   0 I N N
EVAL            S       S                   3   1 40   1   1       0      0.00   0 I N N
;
run;

CONTROL.BODYFAT
data control.bodyfat;
    input NAME $  AGE $;
    datalines;
jeff    44
;
run;

CONTROL Library 2661



CONTROL.CONFOUND
data control.confound;
    input SMOKING $8.  STATUS $8.  CANCER $8.  WT;
    datalines;
Yes     Single  Yes     34
Yes     Single  No      120
Yes     Married Yes     7
Yes     Married No      30
Yes     Single  Yes     2
Yes     Single  No      30
Yes     Married Yes     6
Yes     Married No      145
;
run;

CONTROL.CORONARY
data control.coronary;
    input SEX  ECG AGE CA;
    datalines;
0       0       28      0
0       0       34      0
0       0       38      0
0       0       41      0
0       0       44      0
0       0       45      1
0       0       46      0
0       0       47      0
0       0       50      0
0       0       51      0
0       0       51      0
0       0       53      0
0       0       55      1
0       0       59      0
0       0       60      1
0       0       32      1
0       0       33      0
0       0       35      0
0       0       39      0
0       0       40      0
0       0       46      0
0       0       48      1
0       0       49      0
0       0       49      0
0       0       52      0
0       0       53      1
0       0       54      1
0       0       55      0

2662 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



0       0       57      1
0       0       46      1
0       0       48      0
0       0       57      1
0       0       60      1
0       0       30      0
0       0       34      0
0       0       36      1
0       0       38      1
0       0       39      0
0       0       42      0
;
run;

CONTROL.DRUG1
data control.drug1 (label='JAN2018 DATA');
    input CHAR $8.  NUM;
    datalines;
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
;
run;

CONTROL.DRUG2
 data control.drug2 (label='MAY2018 DATA');
    input CHAR $8.  NUM;
    datalines;
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
;
run;

CONTROL Library 2663



CONTROL.DRUG3
data control.drug3 (label='JUL2017 DATA');
    input CHAR $8.  NUM;
    datalines;
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
;
run;

CONTROL.DRUG4
data control.drug4 (label='JAN2017 DATA');
    input CHAR $8.  NUM;
    datalines;
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
junk    0
;
run;

CONTROL.DRUG5
data control.drug5 (label='JUL2017 DATA');
    input CHAR $8.  NUM;
    datalines;
junk    0
;
run;

2664 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



CONTROL.GROUP
data control.group;
    input IDNUM $ 1-4 LNAME $ 5-18 FNAME $ 19-32 CITY $ 33-47 STATE $
          48-50 SEX $ 52-53 JOBCODE $ 54-57 SALARY comma8. BIRTH
          HIRED date9. HPHONE $ 86-97;
    format salary comma8.;
    format hired date9.;
    informat hired date9.;
    datalines;
1919 ADAMS         GERALD        STAMFORD       CT M TA2   34,377    11212 04JUN2007 
203/781-1255
1653 AHMAD         AZEEM         BRIDGEPORT     CT F ME2   35,109     9054 09AUG2010 
203/675-7715
1400 ALVAREZ       GLORIA        NEW YORK       NY M ME1   29,770    10170 16OCT2010 
212/586-0808
1350 ARTHUR        BARBARA       NEW YORK       NY F FA3   32,887     9374 29JUL2010 
718/383-1549
1401 AVERY         JERRY         PATERSON       NJ M TA3   38,823     3999 17NOV2005 
201/732-8787
1499 BAREFOOT      JOSEPH        PRINCETON      NJ M ME3   43,026     5229 07JUN2010 
201/812-5665
1101 BASQUEZ       RICHARDO      NEW YORK       NY M SCP   18,724     8192 01OCT2010 
212/586-8060
1333 BEAULIEU      ARMANDO       NEW YORK       NY M TA2   32,616     7759 10FEB2011 
718/384-2849
1402 BLALOCK       RALPH         NEW YORK       NY M TA2   32,615     8417 02DEC2010 
718/384-2849
1479 BOSTIC        MARIE         NEW YORK       NY F TA3   38,786    10583 05OCT2007 
718/384-8816
1403 BOWDEN        EARL          BRIDGEPORT     CT M ME1   28,073    10620 21DEC2016 
203/675-3434
1739 BOYCE         JONATHAN      NEW YORK       NY M PT1   66,518     9125 27JAN2011 
212/587-1247
1658 BRADLEY       JEREMY        NEW YORK       NY M SCP   17,944     9959 29FEB2012 
212/587-3622
1428 BRADY         CHRISTINE     STAMFORD       CT F PT1   68,768     7399 16NOV2011 
203/781-1212
1782 BROWN         JASON         STAMFORD       CT M ME2   35,346     7643 22FEB2012 
203/781-0019
1244 BRYANT        LEONARD       NEW YORK       NY M ME2   36,926     8643 17JAN2008 
718/383-3334
1383 BURNETTE      THOMAS        NEW YORK       NY M BCK   25,824    10251 20OCT2009 
718/384-3569
1574 CAHILL        MARSHALL      NEW YORK       NY M FA2   28,573     7422 20DEC2012 
718/383-2338
1789 CANALES       VIVIANA       NEW YORK       NY M SCP   18,327     6232 11APR2008 
212/587-9000
1404 CARTER        DONALD        NEW YORK       NY M PT2   91,377     4803 01JAN2010 
718/384-2946
1437 CARTER        DOROTHY       BRIDGEPORT     CT F FA3   33,105     7568 31AUG2004 
203/675-4117

CONTROL Library 2665



1639 CARTER        KAREN         STAMFORD       CT F TA3   40,261     6386 28JAN2014 
203/781-8839
1269 CASTON        FRANKLIN      STAMFORD       CT M NA1   41,691     4506 28NOV2012 
203/781-3335
1065 CHAPMAN       NEIL          NEW YORK       NY M ME2   35,091     1486 07JAN2007 
718/384-5618
1876 CHIN          JACK          NEW YORK       NY M TA3   39,676     6714 27APR2015 
212/588-5634
1037 CHOW          JANE          STAMFORD       CT F TA1   28,559     8866 13SEP2012 
203/781-8868
1129 COOK          BRENDA        NEW YORK       NY F ME2   34,930     8012 17AUG2011 
718/383-2313
1988 COOPER        ANTHONY       NEW YORK       NY M FA3   32,218     7273 18SEP2004 
212/587-1228
1405 DAVIDSON      JASON         PATERSON       NJ M SCP   18,057     9560 26JAN2012 
201/732-2323
1430 DEAN          SANDRA        BRIDGEPORT     CT F TA2   32,926     8094 27APR2017 
203/675-1647
1983 DEAN          SHARON        NEW YORK       NY F FA3   33,420      789 30APR2005 
718/384-1647
1134 DELGADO       MARIA         STAMFORD       CT F TA2   33,463    10656 21DEC2016 
203/781-1528
1118 DENNIS        ROGER         NEW YORK       NY M PT3  111,380     1476 18DEC2000 
718/383-1122
1438 DESAI         AAKASH        STAMFORD       CT F TA3   39,224     9205 18NOV2007 
203/781-2229
1125 DUNLAP        DONNA         NEW YORK       NY F FA2   28,889    10539 11DEC2007 
718/383-2094
1475 EATON         ALICIA        NEW YORK       NY F FA2   27,788     8019 13JUL2010 
718/383-2828
1117 EDGERTON      JOSHUA        NEW YORK       NY M TA3   39,772     8556 13AUG2012 
212/588-1239
1935 FERNANDEZ     KATRINA       BRIDGEPORT     CT F NA2   51,082     5200 16OCT2011 
203/675-2962
1124 FIELDS        DIANA         WHITE PLAINS   NY F FA1   23,178     6765 01OCT2010 
914/455-2998
1422 FLETCHER      MARIE         PRINCETON      NJ F FA1   22,455     8921 06APR2011 
201/812-0902
1616 FLOWERS       ANNETTE       NEW YORK       NY F TA2   34,138    11017 04JUN2013 
718/384-3329
1406 FOSTER        GERALD        BRIDGEPORT     CT M ME2   35,186     7737 17FEB2007 
203/675-6363
1120 GARCIA        JACK          NEW YORK       NY M ME1   28,620    11942 07OCT2013 
718/384-4930
1094 GOMEZ         ALAN          BRIDGEPORT     CT M FA1   22,269    11049 17APR2011 
203/675-7181
1389 GORDON        LEVI          NEW YORK       NY M BCK   25,029     7135 18AUG2010 
718/384-9326
1905 GRAHAM        ALVIN         NEW YORK       NY M PT1   65,112    11794 29MAY2012 
212/586-8815
1407 GRANT         DANIEL        MT. VERNON     NY M PT1   68,097    10674 18MAR2010 
914/468-1616
1114 GREEN         JANICE        NEW YORK       NY F TA2   32,929    10853 27JUN2007 
212/588-1092
1410 HARRIS        CHARLES       STAMFORD       CT M PT2   84,686     9984 07NOV2006 
203/781-0937

2666 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



1439 HARRISON      FELICIA       BRIDGEPORT     CT F PT1   70,737     8831 10SEP2010 
203/675-4987
1409 HARTFORD      RAYMOND       STAMFORD       CT M ME3   41,552     3761 22OCT2001 
203/781-9697
1408 HENDERSON     WILLIAM       PRINCETON      NJ M TA2   34,139     7393 14OCT2007 
201/812-4789
1121 HERNANDEZ     MICHAEL       NEW YORK       NY M ME1   29,113     7939 07DEC2011 
718/384-3313
1991 HOLMES        GABRIEL       BRIDGEPORT     CT F TA1   27,646     8162 12DEC2012 
203/675-0007
1102 HOLMES        SHANE         WHITE PLAINS   NY M TA2   34,543     7213 15APR2011 
914/455-0976
1356 HOLMES        SHAWN         NEW YORK       NY M ME2   36,870     6478 22FEB2003 
212/586-8411
1545 HUNTER        CLYDE         STAMFORD       CT M PT1   66,131     7163 29MAY2010 
203/781-1119
1292 HUNTER        HELEN         BRIDGEPORT     CT F ME2   36,692     9067 02JUL2009 
203/675-4830
1440 JACKSON       LAURA         STAMFORD       CT F ME2   35,758     8305 09APR2011 
203/781-0088
1368 JEPSEN        RONALD        STAMFORD       CT M FA2   27,809     7832 03NOV2014 
203/781-8413
1369 JOHNSON       ANTHONY       NEW YORK       NY M TA2   33,706     8032 13MAR2017 
212/587-5385
1411 JOHNSON       JACKSON       PATERSON       NJ M FA2   27,266     7817 01DEC2017 
201/732-3678
1113 JONES         LESLIE        NEW YORK       NY F FA1   22,368    10241 17OCT2011 
718/383-3003
1704 JOSHI         ABHAY         NEW YORK       NY M BCK   25,466     9738 28JUN2007 
718/384-0049
1900 KING          WILLIAM       NEW YORK       NY M ME2   35,106     8180 27OCT2007 
718/383-3698
1126 KOSTECKA      NICHOLAS      NEW YORK       NY F TA3   40,900     8548 21NOV2010 
212/586-1229
1677 KRAMER        JACKSON       BRIDGEPORT     CT M BCK   26,008     8709 27MAR2009 
203/675-7432
1441 LAWRENCE      KATHY         PRINCETON      NJ F FA2   27,159    10915 23MAR2011 
201/812-3337
1421 LEE           RUSSELL       MT. VERNON     NY M TA2   33,156     6947 28FEB2010 
914/468-9143
1119 LI            JEFF          NEW YORK       NY M TA1   26,925     8206 06SEP2008 
212/586-2344
1834 LONG          RUSSELL       NEW YORK       NY M BCK   26,897     8074 02JUL2012 
718/384-0040
1777 LUFKIN        ROY           NEW YORK       NY M PT3  109,631     4283 21JUN2001 
718/383-4413
1663 MAHANNAHS     SHANTHA       NEW YORK       NY M BCK   26,453     9872 11AUG2011 
212/587-7742
1106 MARSHBURN     JASPER        STAMFORD       CT M PT2   89,633     6519 16AUG2004 
203/781-1457
1103 MCDANIEL      RONDA         NEW YORK       NY F FA1   23,739    10273 23JUL2012 
212/586-0013
1477 MEYERS        PRESTON       BRIDGEPORT     CT M FA2   28,567     8846 07MAR2008 
203/675-8125
1476 MONROE        JOYCE         STAMFORD       CT F TA2   34,804     7890 17MAR2017 
203/781-2837

CONTROL Library 2667



1379 MORGAN        ALFRED        STAMFORD       CT M ME3   42,265     8515 10JUN2004 
203/781-2216
1104 MORGAN        CHRISTOPHER   NEW YORK       NY M SCP   17,947     8515 10JUN2011 
718/383-9740
1009 MORGAN        GEORGE        NEW YORK       NY M TA1   28,881     7000 26MAR2012 
212/586-7753
1412 MURPHEY       JOHN          PRINCETON      NJ M ME1   27,800     6013 05DEC2011 
201/812-4414
1115 MURPHY        ALICE         NEW YORK       NY F FA3   32,700     7539 28FEB2010 
718/384-1982
1128 NELSON        FELICIA       BRIDGEPORT     CT F TA2   32,778     9274 20OCT2010 
203/675-1166
1442 NEWKIRK       SANDRA        PRINCETON      NJ F PT2   84,537     9744 12APR2008 
201/812-3331
1417 NEWKIRK       WILLIAM       PATERSON       NJ M NA2   52,271     8944 07MAR2009 
201/732-6611
1478 NEWTON        JAMES         NEW YORK       NY M PT2   84,204     7160 24OCT2010 
212/587-5549
1673 NICHOLLS      HENRY         STAMFORD       CT M BCK   25,478     7362 15JUL2011 
203/781-7770
1839 NORRIS        DIANE         NEW YORK       NY F NA1   43,434     7638 03JUL2013 
718/384-1767
1347 O'NEAL        BRYAN         NEW YORK       NY M TA3   40,080    10125 06SEP2014 
718/384-0230
1423 OSWALD        LESLIE        MT. VERNON     NY F ME2   35,774    10361 19AUG2010 
914/468-9171
1200 OVERMAN       MICHELLE      STAMFORD       CT F ME1   27,817     7680 14AUG2012 
203/781-1835
1970 PAPI          PAOLO         NEW YORK       NY F FA1   22,616     9034 12MAR2011 
718/383-3895
1521 PAPIA         ISMAEL        NEW YORK       NY M ME3   41,527     8502 13JUL2008 
212/587-7603
1354 PAPIA         FRANCISCO     WHITE PLAINS   NY F SCP   18,336     7819 16JUN2012 
914/455-2337
1424 PATTERSON     RENEE         NEW YORK       NY F FA2   28,979     7155 11DEC2009 
212/587-8991
1132 PEARCE        CAROL         NEW YORK       NY F FA1   22,414     4533 22OCT2003 
718/384-1986
1845 PEARSON       JAMES         NEW YORK       NY M BCK   25,997     7263 22MAR2000 
718/384-2311
1556 PENNINGTON    MICHAEL       NEW YORK       NY M PT1   71,350     8939 11DEC2011 
718/383-5681
1413 PETERS        RANDALL       PRINCETON      NJ M FA2   27,436     5737 02JAN2010 
201/812-2478
1123 PETERSON      SUZANNE       NEW YORK       NY F TA1   28,407     8339 05DEC2012 
718/383-0077
1907 PHELPS        WILLIAM       STAMFORD       CT M TA2   33,330     7624 06JUL2007 
203/781-1118
1436 PORTER        SUSAN         NEW YORK       NY F TA2   34,476     8928 12MAR2007 
718/383-5777
1385 RAYNOR        MILTON        BRIDGEPORT     CT M ME3   43,901     8051 01APR2016 
203/675-2846
1432 REED          MARILYN       MT. VERNON     NY F ME2   35,328     7977 10FEB2015 
914/468-5454
1111 RHODES        JEREMY        PRINCETON      NJ M NA1   40,587     7977 31OCT2012 
201/812-1837

2668 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



1116 RICHARDS      CASEY         NEW YORK       NY F FA1   22,863     7210 21MAR2011 
212/587-1224
1352 RIVERS        SIMON         NEW YORK       NY M NA2   53,799     7641 16OCT2006 
718/383-3345
1555 RODRIGUEZ     JULIA         BRIDGEPORT     CT F FA2   27,500     6649 04JUL2012 
203/675-2401
1038 RODRIGUEZ     MARIA         BRIDGEPORT     CT F TA1   26,534    10905 23NOV2011 
203/675-2048
1420 ROUSE         JEREMY        PATERSON       NJ M ME3   43,072     9181 22JUL2017 
201/732-9834
1561 SANDERS       RAYMOND       NEW YORK       NY M TA2   34,515     8734 07OCT2007 
212/588-6615
1434 SANDERSON     EDITH         STAMFORD       CT F FA2   28,623     8227 28OCT2010 
203/781-1333
1414 SARKAR        ABHEEK        BRIDGEPORT     CT M FA1   23,645     8118 12APR2012 
203/675-1715
1112 SAYERS        RANDY         NEW YORK       NY M TA1   26,906     9099 07DEC2012 
718/384-4895
1390 SMART         JONATHAN      NEW YORK       NY M FA2   27,762     9181 23JUN2011 
718/383-1141
1332 STEPHENSON    ADAM          BRIDGEPORT     CT M NA1   42,179     7565 04JUN2011 
203/675-1497
1890 STEPHENSON    ROBERT        NEW YORK       NY M PT2   85,897     7871 25NOV2017 
718/384-9874
1429 THOMPSON      ALICE         STAMFORD       CT F TA1   27,940     7363 07AUG2012 
203/781-3857
1107 THOMPSON      WAYNE         NEW YORK       NY M PT2   89,978     5273 10FEB2009 
718/384-3785
1908 TRENTON       MELISSA       NEW YORK       NY F TA2   32,996     7283 23APR2010 
212/586-6262
1830 TRIPP         KATHY         BRIDGEPORT     CT F PT2   84,472     6356 29JAN2013 
203/675-2479
1882 TUCKER        ALAN          NEW YORK       NY M ME3   41,539     6400 21NOV2008 
718/384-0216
1050 TUTTLE        THOMAS        WHITE PLAINS   NY M ME2   35,168     8595 24AUG2016 
914/455-2119
1425 UNDERWOOD     JENNY         STAMFORD       CT F FA1   23,980     8032 28FEB2013 
203/781-0978
1928 UPCHURCH      LARRY         WHITE PLAINS   NY M PT2   89,859     5372 13JUL2010 
914/455-5009
1480 UPDIKE        THERESA       NEW YORK       NY F TA3   39,584     6455 25MAR2001 
212/587-8729
1100 VANDEUSEN     RICHARD       NEW YORK       NY M BCK   25,005     7640 07MAY2008 
212/586-2531
1995 VARNER        ELIZABETH     NEW YORK       NY F ME1   28,811     8636 19SEP2013 
718/384-7113
1135 VEGA          ANNA          NEW YORK       NY F FA2   27,322     7568 31MAR2010 
718/384-5913
1415 VEGA          FRANKLIN      NEW YORK       NY M FA2   28,279     6642 12FEB2008 
718/384-2823
1076 VENTER        RANDALL       NEW YORK       NY M PT1   66,559     5765 03OCT2011 
718/383-2321
1426 VICK          THERESA       PRINCETON      NJ F TA2   32,992     9835 25JUN2010 
201/812-2424
1564 WALTERS       ANNE          NEW YORK       NY F SCP   18,834     8137 01JUL2012 
212/587-3257

CONTROL Library 2669



1221 WALTERS       DIANE         NEW YORK       NY F FA2   27,897     10126 04OCT2011 
718/384-1918
1133 WANG          CHIN          NEW YORK       NY M TA1   27,702     9690 12FEB2012 
212/587-1956
1435 WARD          ELAINE        NEW YORK       NY F TA3   38,809     7071 08FEB2010 
718/383-4987
1418 WATSON        BERNARD       NEW YORK       NY M ME1   28,006     6297 06JAN2012 
718/383-1298
1017 WELCH         DARIUS        NEW YORK       NY M TA3   40,859     6571 16OCT2011 
212/586-5535
1443 WELLS         AGNES         STAMFORD       CT F NA1   42,275    10548 29AUG2011 
203/781-5546
1131 WELLS         NADINE        NEW YORK       NY F TA2   32,576     8030 19APR2011 
718/383-1045
1427 WHALEY        CAROLYN       MT. VERNON     NY F TA2   34,047    11261 30JAN2010 
914/468-4528
1036 WONG          LESLIE        NEW YORK       NY F TA3   39,393     9270 23OCT2004 
212/587-2570
1130 WOOD          DEBORAH       NEW YORK       NY F FA1   23,917     7806 05JUN2012 
212/587-0013
1127 WOOD          SANDRA        NEW YORK       NY F TA2   33,012     9079 07DEC2006 
212/587-2881
1433 YANCEY        ROBIN         PRINCETON      NJ F FA3   32,983     9685 17JAN2007 
201/812-1874
1431 YOUNG         DEBORAH       STAMFORD       CT F FA3   33,231     8926 05APR2008 
203/781-2987
1122 YOUNG         JOANN         NEW YORK       NY F FA2   27,957     8521 27NOV2008 
718/384-2021
1105 YOUNG         LAWRENCE      NEW YORK       NY M ME2   34,806     8095 13AUG2010 
718/384-0008
;
run;

CONTROL.MLSCL
data control.mlscl (label='Multiple Sclerosis Data');
    input GROUP OBS1 OBS2 WT;
    datalines;
      1        4       4     10
      1        4       1      3
      1        4       2      7
      1        4       3      3
      1        1       4      1
      1        1       1     38
      1        1       2      5
      1        1       3      0
      1        2       4      0
      1        2       1     33
      1        2       2     11
      1        2       3      3
      1        3       4      6
      1        3       1     10
      1        3       2     14

2670 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



      1        3       3      5
      2        4       1      1
      2        4       2      2
      2        4       3      4
      2        4       4     14
      2        3       1      2
      2        3       2     13
      2        3       3      3
      2        3       4      4
      2        2       1      3
      2        2       2     11
      2        2       3      4
      2        2       4      0
      2        1       1      5
      2        1       2      3
      2        1       3      0
      2        1       4      0
;
run;

CONTROL.NAMES
data control.names;
    input LABEL $ 1-16 START $ 17-24 FMTNAME $ 31-35 TYPE $ 41-41;
    datalines;
Capalleti, Jimmy    2355      bonus     C
Chen, Len           5889      bonus     C
Davis, Brad         3878      bonus     C
Leung, Brenda       4409      bonus     C
Patel, Mary         2398      bonus     C
Smith, Robert       5862      bonus     C
Zook, Carla         7385      bonus     C
;
run;

CONTROL.OXYGEN
data control.oxygen;
    input AGE WEIGHT RUNTIME RSTPULSE RUNPULSE MAXPULSE OXYGEN;
    datalines;
44     89.47     11.37        62          178         182      44.609
40     75.07     10.07        62          185         185      45.313
44     85.84      8.65        45          156         168      54.297
42     68.15      8.17        40          166         172      59.571
38     89.02      9.22        55          178         180      49.874
47     77.45     11.63        58          176         176      44.811
40     75.98     11.95        70          176         180      45.681
43     81.19     10.85        64          162         170      49.091
44     81.42     13.08        63          174         176      39.442

CONTROL Library 2671



38     81.87      8.63        48          170         186      60.055
44     73.03     10.13        45          168         168      50.541
45     87.66     14.03        56          186         192      37.388
45     66.45     11.12        51          176         176      44.754
47     79.15     10.60        47          162         164      47.273
54     83.12     10.33        50          166         170      51.855
49     81.42      8.95        44          180         185      49.156
51     69.63     10.95        57          168         172      40.836
51     77.91     10.00        48          162         168      46.672
48     91.63     10.25        48          162         164      46.774
49     73.37     10.08        76          168         168      50.388
57     73.37     12.63        58          174         176      39.407
54     79.38     11.17        62          156         165      46.080
52     76.32      9.63        48          164         166      45.441
50     70.87      8.92        48          146         155      54.625
51     67.25     11.08        48          172         172      45.118
54     91.63     12.88        44          168         172      39.203
51     73.71     10.47        59          186         188      45.790
57     59.08      9.93        49          148         155      50.545
49     76.32      9.40        56          186         188      48.673
48     61.24     11.50        52          170         176      47.920
52     82.78     10.50        53          170         172      47.467
;
run;

CONTROL.PERSONL
data control.personl;
    input IDNUM $ 1-4 LNAME $ 4-18 FNAME $ 19-33 CITY $ 32-46 STATE $ 47-48
          SEX $ 50-50 JOBCODE $ 52-54 SALARY BIRTH date. @63
          HIRED date9. @73 HPHONE $ 84-99;
    format birth date9.;
    informat birth date.;
    format hired date9.;
    informat hired date.;
    datalines;
1919 ADAMS         GERALD         STAMFORD       CT M TA2  34376 12SEP1990 04JUN2007  
203/781-1255
1653 AHMAD         AZEEM          BRIDGEPORT     CT F ME2  35108 15OCT1984 09AUG2010  
203/675-7715
1400 ALVAREZ       GLORIA         NEW YORK       NY M ME1  29769 05NOV1987 16OCT2010  
212/586-0808
1350 ARTHUR        BARBARA        NEW YORK       NY F FA3  32886 31AUG1985 29JUL2010  
718/383-1549
1401 AVERY         JERRY          PATERSON       NJ M TA3  38822 13DEC1970 17NOV2005  
201/732-8787
1499 BAREFOOT      JOSEPH         PRINCETON      NJ M ME3  43025 26APR1974 07JUN2010  
201/812-5665
1101 BASQUEZ       RICHARDO       NEW YORK       NY M SCP  18723 06JUN1982 01OCT2010  
212/586-8060
1333 BEAULIEU      ARMANDO        STAMFORD       CT M PT2  88606 30MAR1981 10FEB2011  
203/781-1777

2672 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



1402 BLALOCK       RALPH          NEW YORK       NY M TA2  32615 17JAN1983 02DEC2010  
718/384-2849
1479 BOSTIC        MARIE          NEW YORK       NY F TA3  38785 22DEC1988 05OCT2007  
718/384-8816
1403 BOWDEN        EARL           BRIDGEPORT     CT M ME1  28072 28JAN1989 21DEC2016  
203/675-3434
1739 BOYCE         JONATHAN       NEW YORK       NY M PT1  66517 25DEC1984 27JAN2011  
212/587-1247
1658 BRADLEY       JEREMY         NEW YORK       NY M SCP  17943 08APR1987 29FEB2012  
212/587-3622
1428 BRADY         CHRISTINE      STAMFORD       CT F PT1  68767 04APR1980 16NOV2011  
203/781-1212
1782 BROWN         JASON          STAMFORD       CT M ME2  35345 04DEC1980 22FEB2012  
203/781-0019
1244 BRYANT        LEONARD        NEW YORK       NY M ME2  36925 31AUG1983 17JAN2008  
718/383-3334
1383 BURNETTE      THOMAS         NEW YORK       NY M BCK  25824 25JAN1985 20OCT2009  
718/384-3569
1574 CAHILL        MARSHALL       NEW YORK       NY M FA2  28572 27APR1980 20DEC2012  
718/383-2338
1789 CANALES       VIVIANA        NEW YORK       NY M SCP  18326 23JAN1977 11APR2008  
212/587-9000
1404 CARTER        DONALD         NEW YORK       NY M PT2  91376 24FEB1973 01JAN2010  
718/384-2946
1437 CARTER        DOROTHY        BRIDGEPORT     CT F FA3  33104 20SEP1980 31AUG2004  
203/675-4117
1639 CARTER        KAREN          STAMFORD       CT F TA3  40260 26JUN1977 28JAN2014  
203/781-8839
1269 CASTON        FRANKLIN       STAMFORD       CT M NA1  41690 03MAY1972 28NOV2012  
203/781-3335
1065 CHAPMAN       NEIL           NEW YORK       NY M ME2  35090 26JAN1977 07JAN2007  
718/384-5618
1876 CHIN          JACK           NEW YORK       NY M TA3  39675 20MAY1978 27APR2015  
212/588-5634
1037 CHOW          JANE           STAMFORD       CT F TA1  28558 10APR1984 13SEP2012  
203/781-8868
1129 COOK          BRENDA         NEW YORK       NY F ME2  34929 08DEC1981 17AUG2011  
718/383-2313
1988 COOPER        ANTHONY        NEW YORK       NY M FA3  32217 30NOV1979 18SEP2004  
212/587-1228
1405 DAVIDSON      JASON          PATERSON       NJ M SCP  18056 05MAR1986 26JAN2012  
201/732-2323
1430 DEAN          SANDRA         BRIDGEPORT     CT F TA2  32925 28FEB1982 27APR2017  
203/675-1647
1983 DEAN          SHARON         NEW YORK       NY F FA3  33419 28FEB1962 30APR2005  
718/384-1647
1134 DELGADO       MARIA          STAMFORD       CT F TA2  33462 05MAR1989 21DEC2016  
203/781-1528
1118 DENNIS        ROGER          NEW YORK       NY M PT3 111379 16JAN1964 18DEC2000  
718/383-1122
1438 DESAI         AAKASH         STAMFORD       CT F TA3  39223 15MAR1985 18NOV2007  
203/781-2229
1125 DUNLAP        DONNA          NEW YORK       NY F FA2  28888 08NOV1988 11DEC2007  
718/383-2094
1475 EATON         ALICIA         NEW YORK       NY F FA2  27787 15DEC1981 13JUL2010  
718/383-2828

CONTROL Library 2673



1117 EDGERTON      JOSHUA         NEW YORK       NY M TA3  39771 05JUN1983 13AUG2012  
212/588-1239
1935 FERNANDEZ     KATRINA        BRIDGEPORT     CT F NA2  51081 28MAR1974 16OCT2011  
203/675-2962
1124 FIELDS        DIANA          WHITE PLAINS   NY F FA1  23177 10JUL1978 01OCT2010  
914/455-2998
1422 FLETCHER      MARIE          PRINCETON      NJ F FA1  22454 04JUN1984 06APR2011  
201/812-0902
1616 FLOWERS       ANNETTE        NEW YORK       NY F TA2  34137 01MAR1990 04JUN2013  
718/384-3329
1406 FOSTER        GERALD         BRIDGEPORT     CT M ME2  35185 08MAR1981 17FEB2007  
203/675-6363
1120 GARCIA        JACK           NEW YORK       NY M ME1  28619 11SEP1992 07OCT2013  
718/384-4930
1094 GOMEZ         ALAN           BRIDGEPORT     CT M FA1  22268 02APR1990 17APR2011  
203/675-7181
1389 GORDON        LEVI           NEW YORK       NY M BCK  25028 15JUL1979 18AUG2010  
718/384-9326
1905 GRAHAM        ALVIN          NEW YORK       NY M PT1  65111 16APR1992 29MAY2012  
212/586-8815
1407 GRANT         DANIEL         MT. VERNON     NY M PT1  68096 23MAR1989 18MAR2010  
914/468-1616
1114 GREEN         JANICE         NEW YORK       NY F TA2  32928 18SEP1989 27JUN2007  
212/588-1092
1410 HARRIS        CHARLES        STAMFORD       CT M PT2  84685 03MAY1987 07NOV2006  
203/781-0937
1439 HARRISON      FELICIA        BRIDGEPORT     CT F PT1  70736 06MAR1984 10SEP2010  
203/675-4987
1409 HARTFORD      RAYMOND        STAMFORD       CT M ME3  41551 19APR1970 22OCT2001  
203/781-9697
1408 HENDERSON     WILLIAM        PRINCETON      NJ M TA2  34138 29MAR1980 14OCT2007  
201/812-4789
1121 HERNANDEZ     MICHAEL        NEW YORK       NY M ME1  29112 26SEP1981 07DEC2011  
718/384-3313
1991 HOLMES        GABRIEL        BRIDGEPORT     CT F TA1  27645 07MAY1982 12DEC2012  
203/675-0007
1102 HOLMES        SHANE          WHITE PLAINS   NY M TA2  34542 01OCT1979 15APR2011  
914/455-0976
1356 HOLMES        SHAWN          NEW YORK       NY M ME2  36869 26SEP1977 22FEB2003  
212/586-8411
1545 HUNTER        CLYDE          STAMFORD       CT M PT1  66130 12AUG1979 29MAY2010  
203/781-1119
1292 HUNTER        HELEN          BRIDGEPORT     CT F ME2  36691 28OCT1984 02JUL2009  
203/675-4830
1440 JACKSON       LAURA          STAMFORD       CT F ME2  35757 27SEP1982 09APR2011  
203/781-0088
1368 JEPSEN        RONALD         STAMFORD       CT M FA2  27808 11JUN1981 03NOV2014  
203/781-8413
1369 JOHNSON       ANTHONY        NEW YORK       NY M TA2  33705 28DEC1981 13MAR2017  
212/587-5385
1411 JOHNSON       JACKSON        PATERSON       NJ M FA2  27265 27MAY1981 01DEC2017  
201/732-3678
1113 JONES         LESLIE         NEW YORK       NY F FA1  22367 15JAN1988 17OCT2011  
718/383-3003
1704 JOSHI         ABHAY          NEW YORK       NY M BCK  25465 30AUG1986 28JUN2007  
718/384-0049

2674 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



1900 KING          WILLIAM        NEW YORK       NY M ME2  35105 25MAY1982 27OCT2007  
718/383-3698
1126 KOSTECKA      NICHOLAS       NEW YORK       NY F TA3  40899 28MAY1983 21NOV2010  
212/586-1229
1677 KRAMER        JACKSON        BRIDGEPORT     CT M BCK  26007 05NOV1983 27MAR2009  
203/675-7432
1441 LAWRENCE      KATHY          PRINCETON      NJ F FA2  27158 19NOV1989 23MAR2011  
201/812-3337
1421 LEE           RUSSELL        MT. VERNON     NY M TA2  33155 08JAN1979 28FEB2010  
914/468-9143
1119 LI            JEFF           NEW YORK       NY M TA1  26924 20JUN1982 06SEP2008  
212/586-2344
1834 LONG          RUSSELL        NEW YORK       NY M BCK  26896 08FEB1982 02JUL2012  
718/384-0040
1777 LUFKIN        ROY            NEW YORK       NY M PT3 109630 23SEP1971 21JUN2001  
718/383-4413
1663 MAHANNAHS     SHANTHA        NEW YORK       NY M BCK  26452 11JAN1987 11AUG2011  
212/587-7742
1106 MARSHBURN     JASPER         STAMFORD       CT M PT2  89632 06NOV1977 16AUG2004  
203/781-1457
1103 MCDANIEL      RONDA          NEW YORK       NY F FA1  23738 16FEB1988 23JUL2012  
212/586-0013
1477 MEYERS        PRESTON        BRIDGEPORT     CT M FA2  28566 21MAR1984 07MAR2008  
203/675-8125
1476 MONROE        JOYCE          STAMFORD       CT F TA2  34803 30MAY1986 17MAR2017  
203/781-2837
1379 MORGAN        ALFRED         STAMFORD       CT M ME3  42264 08AUG1981 10JUN2004  
203/781-2216
1104 MORGAN        CHRISTOPHER    NEW YORK       NY M SCP  17946 25APR1983 10JUN2011  
718/383-9740
1009 MORGAN        GEORGE         NEW YORK       NY M TA1  28880 02MAR1979 26MAR2012  
212/586-7753
1412 MURPHEY       JOHN           PRINCETON      NJ M ME1  27799 18JUN1976 05DEC2011  
201/812-4414
1115 MURPHY        ALICE          NEW YORK       NY F FA3  32699 22AUG1980 28FEB2010  
718/384-1982
1128 NELSON        FELICIA        BRIDGEPORT     CT F TA2  32777 23MAY1985 20OCT2010  
203/675-1166
1442 NEWKIRK       SANDRA         PRINCETON      NJ F PT2  84536 05SEP1986 12APR2008  
201/812-3331
1417 NEWKIRK       WILLIAM        PATERSON       NJ M NA2  52270 27JUN1984 07MAR2009  
201/732-6611
1478 NEWTON        JAMES          NEW YORK       NY M PT2  84203 09AUG1979 24OCT2010  
212/587-5549
1673 NICHOLLS      HENRY          STAMFORD       CT M BCK  25477 27FEB1980 15JUL2011  
203/781-7770
1839 NORRIS        DIANE          NEW YORK       NY F NA1  44433 29NOV1980 03JUL2013  
718/384-1767
1347 O'NEAL        BRYAN          NEW YORK       NY M TA3  40079 21SEP1987 06SEP2014  
718/384-0230
1423 OSWALD        LESLIE         MT. VERNON     NY F ME2  35773 14MAY1988 19AUG2010  
914/468-9171
1200 OVERMAN       MICHELLE       STAMFORD       CT F ME1  27816 10JAN1981 14AUG2012  
203/781-1835
1970 PAPI          PAOLO          NEW YORK       NY F FA1  22615 25SEP1984 12MAR2011  
718/383-3895

CONTROL Library 2675



1521 PAPIA         ISMAEL         NEW YORK       NY M ME3  41526 12APR1983 13JUL2008  
212/587-7603
1354 PAPIA         FRANCISCO      WHITE PLAINS   NY F SCP  18335 29MAY1981 16JUN2012  
914/455-2337
1424 PATTERSON     RENEE          NEW YORK       NY F FA2  28978 04AUG1979 11DEC2009  
212/587-8991
1132 PEARCE        CAROL          NEW YORK       NY F FA1  22413 30MAY1972 22OCT2003  
718/384-1986
1845 PEARSON       JAMES          NEW YORK       NY M BCK  25996 20NOV1979 22MAR2000  
718/384-2311
1556 PENNINGTON    MICHAEL        NEW YORK       NY M PT1  71349 22JUN1984 11DEC2011  
718/383-5681
1413 PETERS        RANDALL        PRINCETON      NJ M FA2  27435 16SEP1975 02JAN2010  
201/812-2478
1123 PETERSON      SUZANNE        NEW YORK       NY F TA1  28407 31OCT1982 05DEC2012  
718/383-0077
1907 PHELPS        WILLIAM        STAMFORD       CT M TA2  33329 15NOV1980 06JUL2007  
203/781-1118
1436 PORTER        SUSAN          NEW YORK       NY F TA2  34475 11JUN1984 12MAR2007  
718/383-5777
1385 RAYNOR        MILTON         BRIDGEPORT     CT M ME3  43900 16JAN1982 01APR2016  
203/675-2846
1432 REED          MARILYN        MT. VERNON     NY F ME2  35327 03NOV1981 10FEB2015  
914/468-5454
1111 RHODES        JEREMY         PRINCETON      NJ M NA1  40586 14JUL1983 31OCT2012  
201/812-1837
1116 RICHARDS      CASEY          NEW YORK       NY F FA1  22862 28SEP1979 21MAR2011  
212/587-1224
1352 RIVERS        SIMON          NEW YORK       NY M NA2  53798 02DEC1980 16OCT2006  
718/383-3345
1555 RODRIGUEZ     JULIA          BRIDGEPORT     CT F FA2  27499 16MAR1978 04JUL2012  
203/675-2401
1038 RODRIGUEZ     MARIA          BRIDGEPORT     CT F TA1  26533 09NOV1989 23NOV2011  
203/675-2048
1420 ROUSE         JEREMY         PATERSON       NJ M ME3  43071 19FEB1985 22JUL2017  
201/732-9834
1561 SANDERS       RAYMOND        NEW YORK       NY M TA2  34514 30NOV1983 07OCT2007  
212/588-6615
1434 SANDERSON     EDITH          STAMFORD       CT F FA2  28622 11JUL1982 28OCT2010  
203/781-1333
1414 SARKAR        ABHEEK         BRIDGEPORT     CT M FA1  23644 24MAR1982 12APR2012  
203/675-1715
1112 SAYERS        RANDY          NEW YORK       NY M TA1  26905 29NOV1984 07DEC2012  
718/384-4895
1390 SMART         JONATHAN       NEW YORK       NY M FA2  27761 19FEB1985 23JUN2011  
718/383-1141
1332 STEPHENSON    ADAM           BRIDGEPORT     CT M NA1  42178 17SEP1980 04JUN2011  
203/675-1497
1890 STEPHENSON    ROBERT         NEW YORK       NY M PT2  85896 20JUL1981 25NOV2017  
718/384-9874
1429 THOMPSON      ALICE          STAMFORD       CT F TA1  27939 28FEB1980 07AUG2012  
203/781-3857
1107 THOMPSON      WAYNE          NEW YORK       NY M PT2  89977 09JUN1974 10FEB2009  
718/384-3785
1908 TRENTON       MELISSA        NEW YORK       NY F TA2  32995 10DEC1979 23APR2010  
212/586-6262

2676 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



1830 TRIPP         KATHY          BRIDGEPORT     CT F PT2  84471 27MAY1977 29JAN2013  
203/675-2479
1882 TUCKER        ALAN           NEW YORK       NY M ME3  41538 10JUL1977 21NOV2008  
718/384-0216
1050 TUTTLE        THOMAS         WHITE PLAINS   NY M ME2  35167 14JUL1983 24AUG2016  
914/455-2119
1425 UNDERWOOD     JENNY          STAMFORD       CT F FA1  23979 28DEC1981 28FEB2013  
203/781-0978
1928 UPCHURCH      LARRY          WHITE PLAINS   NY M PT2  89858 16SEP1974 13JUL2010  
914/455-5009
1480 UPDIKE        THERESA        NEW YORK       NY F TA3  39583 03SEP1977 25MAR2001  
212/587-8729
1100 VANDEUSEN     RICHARD        NEW YORK       NY M BCK  25004 01DEC1980 07MAY2008  
212/586-2531
1995 VARNER        ELIZABETH      NEW YORK       NY F ME1  28810 24AUG1983 19SEP2013  
718/384-7113
1135 VEGA          ANNA           NEW YORK       NY F FA2  27321 20SEP1980 31MAR2010  
718/384-5913
1415 VEGA          FRANKLIN       NEW YORK       NY M FA2  28278 09MAR1978 12FEB2008  
718/384-2823
1076 VENTER        RANDALL        NEW YORK       NY M PT1  66558 14OCT1975 03OCT2011  
718/383-2321
1426 VICK          THERESA        PRINCETON      NJ F TA2  32991 05DEC1986 25JUN2010  
201/812-2424
1564 WALTERS       ANNE           NEW YORK       NY F SCP  18833 12APR1982 01JUL2012  
212/587-3257
1221 WALTERS       DIANE          NEW YORK       NY F FA2  27896 22SEP1987 04OCT2011  
718/384-1918
1133 WANG          CHIN           NEW YORK       NY M TA1  27701 13JUL1986 12FEB2012  
212/587-1956
1435 WARD          ELAINE         NEW YORK       NY F TA3  38808 12MAY1979 08FEB2010  
718/383-4987
1418 WATSON        BERNARD        NEW YORK       NY M ME1  28005 29MAR1977 06JAN2012  
718/383-1298
1017 WELCH         DARIUS         NEW YORK       NY M TA3  40858 28DEC1977 16OCT2011  
212/586-5535
1443 WELLS         AGNES          STAMFORD       CT F NA1  42274 17NOV1988 29AUG2011  
203/781-5546
1131 WELLS         NADINE         NEW YORK       NY F TA2  32575 26DEC1981 19APR2011  
718/383-1045
1427 WHALEY        CAROLYN        MT. VERNON     NY F TA2  34046 31OCT1990 30JAN2010  
914/468-4528
1036 WONG          LESLIE         NEW YORK       NY F TA3  39392 19MAY1985 23OCT2004  
212/587-2570
1130 WOOD          DEBORAH        NEW YORK       NY F FA1  23916 16MAY1981 05JUN2012  
212/587-0013
1127 WOOD          SANDRA         NEW YORK       NY F TA2  33011 09NOV1984 07DEC2006  
212/587-2881
1433 YANCEY        ROBIN          PRINCETON      NJ F FA3  32982 08JUL1986 17JAN2007  
201/812-1874
1431 YOUNG         DEBORAH        STAMFORD       CT F FA3  33230 09JUN1984 05APR2008  
203/781-2987
1122 YOUNG         JOANN          NEW YORK       NY F FA2  27956 01MAY1983 27NOV2008  
718/384-2021
1105 YOUNG         LAWRENCE       NEW YORK       NY M ME2  34805 01MAR1982 13AUG2010  
718/384-0008

CONTROL Library 2677



;
run;

CONTROL.PHARM
data control.pharm (label='Sugar Study');
    input DRUG $8. RESPONSE $8. WT ;
    datalines;
      A cured   14
      A uncured 22
      B cured   24
      B uncured 19
      C cured   17
      C uncured 13
;
run;

CONTROL.POINTS
data control.points;
    input EMPID $8. Q1 Q2 Q3 Q4 TOTPTS;
    datalines;
2355           3       4       4       3       14
5889           2       2       2       2       8
3878           1       2       2       2       7
4409           0       1       1       1       3
2398           2       2       1       1       6
5862           1       1       1       2       5
;
run;

CONTROL.PRENAT
data control.prenat;
    input IDNUM $ 1-4 LNAME $ 6-20  FNAME $ 22-36 CITY $ 39-53
          STATE $ 55-56 HPHONE $ 58-69;
    datalines;
1919 ADAMS           GERALD           STAMFORD        CT 203/781-1255
1653 ALIBRANDI       MARIA            BRIDGEPORT      CT 203/675-7715
1400 ALHERTANI       ABDULLAH         NEW YORK        NY 212/586-0808
1350 ALVAREZ         MERCEDES         NEW YORK        NY 718/383-1549
1401 ALVAREZ         CARLOS           PATERSON        NJ 201/732-8787
1499 BAREFOOT        JOSEPH           PRINCETON       NJ 201/812-5665
1101 BAUCOM          WALTER           NEW YORK        NY 212/586-8060
1333 BANADYGA        JUSTIN           STAMFORD        CT 203/781-1777
1402 BLALOCK         RALPH            NEW YORK        NY 718/384-2849

2678 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



1479 BALLETTI        MARIE            NEW YORK        NY 718/384-8816
1403 BOWDEN          EARL             BRIDGEPORT      CT 203/675-3434
1739 BRANCACCIO      JOSEPH           NEW YORK        NY 212/587-1247
1658 BREUHAUS        JEREMY           NEW YORK        NY 212/587-3622
1428 BRADY           CHRISTINE        STAMFORD        CT 203/781-1212
1782 BREWCZAK        JAKOB            STAMFORD        CT 203/781-0019
1244 BUCCI           ANTHONY          NEW YORK        NY 718/383-3334
1383 BURNETTE        THOMAS           NEW YORK        NY 718/384-3569
1574 CAHILL          MARSHALL         NEW YORK        NY 718/383-2338
1789 CARAWAY         DAVIS            NEW YORK        NY 212/587-9000
1404 COHEN           LEE              NEW YORK        NY 718/384-2946
1437 CARTER          DOROTHY          BRIDGEPORT      CT 203/675-4117
1639 CARTER-COHEN    KAREN            STAMFORD        CT 203/781-8839
1269 CASTON          FRANKLIN         STAMFORD        CT 203/781-3335
1065 COPAS           FREDERICO        NEW YORK        NY 718/384-5618
1876 CHIN            JACK             NEW YORK        NY 212/588-5634
1037 CHOW            JANE             STAMFORD        CT 203/781-8868
1129 COUNIHAN        BRENDA           NEW YORK        NY 718/383-2313
1988 COOPER          ANTHONY          NEW YORK        NY 212/587-1228
1405 DACKO           JASON            PATERSON        NJ 201/732-2323
1430 DABROWSKI       SANDRA           BRIDGEPORT      CT 203/675-1647
1983 DEAN            SHARON           NEW YORK        NY 718/384-1647
1134 DELGADO         MARIA            STAMFORD        CT 203/781-1528
1118 DENNIS          ROGER            NEW YORK        NY 718/383-1122
1438 DABBOUSSI       KAMILLA          STAMFORD        CT 203/781-2229
1125 DUNLAP          DONNA            NEW YORK        NY 718/383-2094
1475 ELGES           MARGARETE        NEW YORK        NY 718/383-2828
1117 EDGERTON        JOSHUA           NEW YORK        NY 212/588-1239
1935 FERNANDEZ       KATRINA          BRIDGEPORT      CT 203/675-2962
1124 FIELDS          DIANA            WHITE PLAINS    NY 914/455-2998
1422 FUJIHARA        KYOKO            PRINCETON       NJ 201/812-0902
1616 FUENTAS         CARLA            NEW YORK        NY 718/384-3329
1406 FOSTER          GERALD           BRIDGEPORT      CT 203/675-6363
1120 GARCIA          JACK             NEW YORK        NY 718/384-4930
1094 GOMEZ           ALAN             BRIDGEPORT      CT 203/675-7181
1389 GOLDSTEIN       LEVI             NEW YORK        NY 718/384-9326
1905 GRAHAM          ALVIN            NEW YORK        NY 212/586-8815
1407 GREGORSKI       DANIEL           MT. VERNON      NY 914/468-1616
1114 GREENWALD       JANICE           NEW YORK        NY 212/588-1092
1410 HARRIS          CHARLES          STAMFORD        CT 203/781-0937
1439 HASENHAUER      CHRISTINA        BRIDGEPORT      CT 203/675-4987
1409 HAVELKA         RAYMOND          STAMFORD        CT 203/781-9697
1408 HENDERSON       WILLIAM          PRINCETON       NJ 201/812-4789
1121 HERNANDEZ       ROBERTO          NEW YORK        NY 718/384-3313
1991 HOWARD          GRETCHEN         BRIDGEPORT      CT 203/675-0007
1102 HERMANN         JOACHIM          WHITE PLAINS    NY 914/455-0976
1356 HOWARD          MICHAEL          NEW YORK        NY 212/586-8411
1545 HERRERO         CLYDE            STAMFORD        CT 203/781-1119
1292 HUNTER          HELEN            BRIDGEPORT      CT 203/675-4830
1440 JACKSON         LAURA            STAMFORD        CT 203/781-0088
1368 JEPSEN          RONALD           STAMFORD        CT 203/781-8413
1369 JONSON          ANTHONY          NEW YORK        NY 212/587-5385
1411 JOHNSEN         JACK             PATERSON        NJ 201/732-3678
1113 JOHNSON         LESLIE           NEW YORK        NY 718/383-3003
1704 JONES           NATHAN           NEW YORK        NY 718/384-0049
1900 KING            WILLIAM          NEW YORK        NY 718/383-3698

CONTROL Library 2679



1126 KIMANI          ANNE             NEW YORK        NY 212/586-1229
1677 KRAMER          JACKSON          BRIDGEPORT      CT 203/675-7432
1441 LAWRENCE        KATHY            PRINCETON       NJ 201/812-3337
1421 LEE             RUSSELL          MT. VERNON      NY 914/468-9143
1119 LI              JEFF             NEW YORK        NY 212/586-2344
1834 LEBLANC         RUSSELL          NEW YORK        NY 718/384-0040
1777 LUFKIN          ROY              NEW YORK        NY 718/383-4413
1663 MARKS           JOHN             NEW YORK        NY 212/587-7742
1106 MARSHBURN       JASPER           STAMFORD        CT 203/781-1457
1103 MCDANIEL        RONDA            NEW YORK        NY 212/586-0013
1477 MEYERS          PRESTON          BRIDGEPORT      CT 203/675-8125
1476 MONROE          JOYCE            STAMFORD        CT 203/781-2837
1379 MORGAN          ALFRED           STAMFORD        CT 203/781-2216
1104 MORGAN          CHRISTOPHER      NEW YORK        NY 718/383-9740
1009 MORGAN          GEORGE           NEW YORK        NY 212/586-7753
1412 MURPHEY         JOHN             PRINCETON       NJ 201/812-4414
1115 MURPHY          ALICE            NEW YORK        NY 718/384-1982
1128 NELSON          FELICIA          BRIDGEPORT      CT 203/675-1166
1442 NEWKIRK         SANDRA           PRINCETON       NJ 201/812-3331
1417 NEWKIRK         WILLIAM          PATERSON        NJ 201/732-6611
1478 NEWTON          JAMES            NEW YORK        NY 212/587-5549
1673 NICHOLLS        HENRY            STAMFORD        CT 203/781-7770
1839 NORRIS          DIANE            NEW YORK        NY 718/384-1767
1347 O'NEAL          BRYAN            NEW YORK        NY 718/384-0230
1423 OSWALD          LESLIE           MT. VERNON      NY 914/468-9171
1200 OVERMAN         MICHELLE         STAMFORD        CT 203/781-1835
1970 PARKER          ANNE             NEW YORK        NY 718/383-3895
1521 PARKER          JAY              NEW YORK        NY 212/587-7603
1354 PARKER          MARY             WHITE PLAINS    NY 914/455-2337
1424 PATTERSON       RENEE            NEW YORK        NY 212/587-8991
1132 PEARCE          CAROL            NEW YORK        NY 718/384-1986
1845 PEARSON         JAMES            NEW YORK        NY 718/384-2311
1556 PENNINGTON      MICHAEL          NEW YORK        NY 718/383-5681
1413 PETERS          RANDALL          PRINCETON       NJ 201/812-2478
1123 PETERSON        SUZANNE          NEW YORK        NY 718/383-0077
1907 PHELPS          WILLIAM          STAMFORD        CT 203/781-1118
1436 PORTER          SUSAN            NEW YORK        NY 718/383-5777
1385 RAYNOR          MILTON           BRIDGEPORT      CT 203/675-2846
1432 REED            MARILYN          MT. VERNON      NY 914/468-5454
1111 RHODES          JEREMY           PRINCETON       NJ 201/812-1837
1116 RICHARDS        CASEY            NEW YORK        NY 212/587-1224
1352 RIVERS          SIMON            NEW YORK        NY 718/383-3345
1555 RODRIGUEZ       JULIA            BRIDGEPORT      CT 203/675-2401
1038 RODRIGUEZ       MARIA            BRIDGEPORT      CT 203/675-2048
1420 ROUSE           JEREMY           PATERSON        NJ 201/732-9834
1561 SANDERS         RAYMOND          NEW YORK        NY 212/588-6615
1434 SANDERSON       EDITH            STAMFORD        CT 203/781-1333
1414 SANDERSON       NATHAN           BRIDGEPORT      CT 203/675-1715
1112 SANYERS         RANDY            NEW YORK        NY 718/384-4895
1390 SMART           JONATHAN         NEW YORK        NY 718/383-1141
1332 STEPHENSON      ADAM             BRIDGEPORT      CT 203/675-1497
1890 STEPHENSON      ROBERT           NEW YORK        NY 718/384-9874
1429 THOMPSON        ALICE            STAMFORD        CT 203/781-3857
1107 THOMPSON        WAYNE            NEW YORK        NY 718/384-3785
1908 TRENTON         MELISSA          NEW YORK        NY 212/586-6262
1830 TRIPP           KATHY            BRIDGEPORT      CT 203/675-2479

2680 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



1882 TUCKER          ALAN             NEW YORK        NY 718/384-0216
1050 TUTTLE          THOMAS           WHITE PLAINS    NY 914/455-2119
1425 UNDERWOOD       JENNY            STAMFORD        CT 203/781-0978
1928 UPCHURCH        LARRY            WHITE PLAINS    NY 914/455-5009
1480 UPDIKE          THERESA          NEW YORK        NY 212/587-8729
1100 VANDEUSEN       RICHARD          NEW YORK        NY 212/586-2531
1995 VARNER          ELIZABETH        NEW YORK        NY 718/384-7113
1135 VEGA            ANNA             NEW YORK        NY 718/384-5913
1415 VEGA            FRANKLIN         NEW YORK        NY 718/384-2823
1076 VENTER          RANDALL          NEW YORK        NY 718/383-2321
1426 VICK            THERESA          PRINCETON       NJ 201/812-2424
1564 WALTERS         ANNE             NEW YORK        NY 212/587-3257
1221 WALTERS         DIANE            NEW YORK        NY 718/384-1918
1133 WANG            CHIN             NEW YORK        NY 212/587-1956
1435 WARD            ELAINE           NEW YORK        NY 718/383-4987
1418 WATSON          BERNARD          NEW YORK        NY 718/383-1298
1017 WELCH           DARIUS           NEW YORK        NY 212/586-5535
1443 WELLS           AGNES            STAMFORD        CT 203/781-5546
1131 WELLS           NADINE           NEW YORK        NY 718/383-1045
1427 WHALEY          CAROLYN          MT. VERNON      NY 914/468-4528
1036 WONG            LESLIE           NEW YORK        NY 212/587-2570
1130 WOOD            DEBORAH          NEW YORK        NY 212/587-0013
1127 WOOD            SANDRA           NEW YORK        NY 212/587-2881
1433 YANCEY          ROBIN            PRINCETON       NJ 201/812-1874
1431 YOUNG           DEBORAH          STAMFORD        CT 203/781-2987
1122 YOUNG           JOANN            NEW YORK        NY 718/384-2021
1105 YOUNG           LAWRENCE         NEW YORK        NY 718/384-0008

;
run;

CONTROL.RESULTS
data control.results;
    input ID    TREAT $8.   INITWT    WT3MOS    AGE;
    datalines;
       1   Other  166.28  146.98     35
       2   Other  214.42  210.22     54
       3   Other  172.46  159.42     33
       5   Other  175.41  160.66     37
       6   Other  173.13  169.40     20
       7   Other  181.25  170.94     30
      10   Other  239.83  214.48     48
      11   Other  175.32  162.66     51
      12   Other  227.01  211.06     29
      13   Other  274.82  251.82     31
;
run;

CONTROL Library 2681



CONTROL.SLEEP
data control.sleep;
    input  GROUP TIME  SOL  WASO FNA TST;
    datalines;
    1.00    1.00   38.69   48.43     0      0
    2.36  424.50    0.00    0.00     0      0
    1.00    2.00   15.83    9.67     0      0
    2.16  500.30    0.00    0.00     0      0
    1.00    1.00   93.04   87.10     0      0
    1.86  302.40    0.00    0.00     0      0
    1.00    2.00   65.00   16.67     0      0
    1.50  305.00    0.00    0.00     0      0
    1.00    1.00   19.82   74.38     0      0
    2.00  359.20    0.00    0.00     0      0
    1.00    2.00   13.75   13.90     0      0
    1.40  378.13    0.00    0.00     0      0
    1.00    1.00   47.35   60.52     0      0
    2.89  248.10    0.00    0.00     0      0
    1.00    2.00   72.14   86.07     0      0
    4.14  308.50    0.00    0.00     0      0
    1.00    1.00   99.65  151.79     0      0
    3.86  263.93    0.00    0.00     0      0
    1.00    2.00   65.35  118.33     0      0
    2.71  374.17    0.00    0.00     0      0
    1.00    1.00   47.15  105.36     0      0
    2.50  254.60    0.00    0.00     0      0
    1.00    2.00   66.00   92.60     0      0
    2.20  297.40    0.00    0.00     0      0
    1.00    1.00   30.84   84.97     0      0
    3.24  242.90    0.00    0.00     0      0
    1.00    2.00    7.86   23.86     0      0
    1.28  340.70    0.00    0.00     0      0
    1.00    1.00  117.41   36.93     0      0
    1.00  204.20    0.00    0.00     0      0
    1.00    2.00   50.42   24.86     0      0
    1.85  231.00    0.00    0.00     0      0
    1.00    1.00    6.50   41.15     0      0
    2.67  308.00    0.00    0.00     0      0
    1.00    2.00    2.00    0.00     0      0
    0.00  454.40    0.00    0.00     0      0
    2.00    1.00   54.29   84.93     0      0
    3.43  394.70    0.00    0.00     0      0
    2.00    2.00   13.57   48.00     0      0
    1.00  405.00    0.00    0.00     0      0
    2.00    1.00    4.43   58.43     0      0
    2.89  375.70    0.00    0.00     0      0
    2.00    2.00    5.00   49.28     0      0
    3.57  423.60    0.00    0.00     0      0
    2.00    1.00   32.50   38.43     0      0
    4.57  357.20    0.00    0.00     0      0
    2.00    2.00   17.14   33.14     0      0

2682 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



    3.57  315.70    0.00    0.00     0      0
    2.00    1.00   33.57   83.43     0      0
    4.36  282.50    0.00    0.00     0      0
    2.00    2.00   22.85   37.86     0      0
    2.42  288.57    0.00    0.00     0      0
    2.00    1.00   53.21  120.00     0      0
    3.50  366.80    0.00    0.00     0      0
    2.00    2.00   29.00   97.40     0      0
    2.80  388.00    0.00    0.00     0      0
    2.00    1.00   56.79   67.73     0      0
    3.19  326.00    0.00    0.00     0      0
    2.00    2.00   52.50   64.16     0      0
    4.00   45.80    0.00    0.00     0      0
    2.00    1.00   23.50   35.19     0      0
    6.60  416.80    0.00    0.00     0      0
    2.00    2.00   25.71   38.43     0      0
    8.50  446.30    0.00    0.00     0      0
    2.00    1.00   43.00   95.59     0      0
    1.75  288.90    0.00    0.00     0      0
    2.00    2.00   45.00   85.71     0      0
    1.43  272.10    0.00    0.00     0      0
    3.00    1.00   24.70   67.17     0      0
    3.90  399.90    0.00    0.00     0      0
    3.00    2.00    3.86   22.50     0      0
    3.00  425.14    0.00    0.00     0      0
    3.00    1.00   70.72   80.43     0      0
    3.00  286.30    0.00    0.00     0      0
    3.00    2.00   22.50  139.33     0      0
    3.50  283.50    0.00    0.00     0      0
    3.00    1.00   48.23   40.57     0      0
    1.65  407.20    0.00    0.00     0      0
    3.00    2.00   30.00   38.00     0      0
    1.57  372.90    0.00    0.00     0      0
    3.00    1.00   43.93   34.57     0      0
    1.29  393.40    0.00    0.00     0      0
    3.00    2.00   30.71   58.43     0      0
    2.28  348.60    0.00    0.00     0      0
    3.00    1.00   95.00   35.22     0      0
    2.06  409.90    0.00    0.00     0      0
    3.00    2.00   66.43   68.57     0      0
    2.14  345.60    0.00    0.00     0      0
    3.00    1.00   18.93   86.43     0      0
    5.36  349.50    0.00    0.00     0      0
    3.00    2.00   17.50  116.50     0      0
    5.00  337.70    0.00    0.00     0      0
    3.00    1.00  125.00   69.15     0      0
    2.00  242.50    0.00    0.00     0      0
    3.00    2.00   60.00   81.43     0      0
    1.57  304.30    0.00    0.00     0      0
    3.00    1.00   38.57   68.61     0      0
    3.64  394.50    0.00    0.00     0      0
    3.00    2.00   18.33   19.83     0      0
    2.00  448.83    0.00    0.00     0      0
    3.00    1.00   43.00  121.72     0      0
    2.63  247.80    0.00    0.00     0      0
    3.00    2.00   40.00   98.83     0      0

CONTROL Library 2683



    1.86  199.67    0.00    0.00     0      0
    3.00    1.00   11.61   70.36     0      0
    2.86  348.40    0.00    0.00     0      0
    3.00    2.00   20.43   70.57     0      0
    3.14  335.40    0.00    0.00     0      0
 ;
run;

CONTROL.SYNDROME
data control.syndrome;
    input FLIGHT $ 1-3 @10 DATE DATE7.  @22 DEPART TIME5. ORIG $ 31-33
          DEST $ 39-41 MILES  BOARDED  CAPACITY;
    format date DATE7.;
    format depart TIME5.;
    informat date DATE7.;
    informat depart TIME5.;
    datalines;
114      01MAR18     7:10     LGA     LAX      2475      172         210
202      01MAR18    10:43     LGA     ORD       740      151         210
219      01MAR18     9:31     LGA     LON      3442      198         250
622      01MAR18    12:19     LGA     FRA      3857      207         250
132      01MAR18    15:35     LGA     YYZ       366      115         178
271      01MAR18    13:17     LGA     PAR      3635      138         250
302      01MAR18    20:22     LGA     WAS       229      105         180
114      02MAR18     7:10     LGA     LAX      2475      119         210
202      02MAR18    10:43     LGA     ORD       740      120         210
219      02MAR18     9:31     LGA     LON      3442      147         250
622      02MAR18    12:19     LGA     FRA      3857      176         250
132      02MAR18    15:35     LGA     YYZ       366      106         178
302      02MAR18    20:22     LGA     WAS       229       78         180
271      02MAR18    13:17     LGA     PAR      3635      104         250
114      03MAR18     7:10     LGA     LAX      2475      197         210
202      03MAR18    10:43     LGA     ORD       740      118         210
219      03MAR18     9:31     LGA     LON      3442      197         250
622      03MAR18    12:19     LGA     FRA      3857      180         250
132      03MAR18    15:35     LGA     YYZ       366       75         178
271      03MAR18    13:17     LGA     PAR      3635      147         250
302      03MAR18    20:22     LGA     WAS       229      123         180
114      04MAR18     7:10     LGA     LAX      2475      178         210
202      04MAR18    10:43     LGA     ORD       740      148         210
219      04MAR18     9:31     LGA     LON      3442      232         250
622      04MAR18    12:19     LGA     FRA      3857      137         250
132      04MAR18    15:35     LGA     YYZ       366      117         178
271      04MAR18    13:17     LGA     PAR      3635      146         250
302      04MAR18    20:22     LGA     WAS       229      115         180
114      05MAR18     7:10     LGA     LAX      2475      117         210
202      05MAR18    10:43     LGA     ORD       740      104         210
219      05MAR18     9:31     LGA     LON      3442      160         250
622      05MAR18    12:19     LGA     FRA      3857      185         250
132      05MAR18    15:35     LGA     YYZ       366      157         178
271      05MAR18    13:17     LGA     PAR      3635      177         250
114      06MAR18     7:10     LGA     LAX      2475      128         210

2684 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



202      06MAR18    10:43     LGA     ORD       740      115         210
219      06MAR18     9:31     LGA     LON      3442      163         250
132      06MAR18    15:35     LGA     YYZ       366      150         178
302      06MAR18    20:22     LGA     WAS       229       66         180
114      07MAR18     7:10     LGA     LAX      2475      160         210
202      07MAR18    10:43     LGA     ORD       740      175         210
219      07MAR18     9:31     LGA     LON      3442      241         250
622      07MAR18    12:19     LGA     FRA      3857      210         250
132      07MAR18    15:35     LGA     YYZ       366      164         178
271      07MAR18    13:17     LGA     PAR      3635      155         250
302      07MAR18    20:22     LGA     WAS       229      135         180
;
run;
  

CONTROL.TENSION
data control.tension;
    input TENSION $8.  CHD $8.  COUNT ;
    datalines;
yes      yes       97
yes      no       307
no       yes      200
no       no      1409
;
run;

CONTROL.TEST2
data control.test2;
    input STD1 $ TEST1 $  STD2 $   TEST2 $    WT;
    datalines ;
neg      neg     neg      neg     509
neg      neg     neg      pos       4
neg      neg     pos      neg      17
neg      neg     pos      pos       3
neg      pos     neg      neg      13
neg      pos     neg      pos       8
neg      pos     pos      pos       8
pos      neg     neg      neg      14
pos      neg     neg      pos       1
pos      neg     pos      neg      17
pos      neg     pos      pos       9
pos      pos     neg      neg       7
pos      pos     neg      pos       4
pos      pos     pos      neg       9
pos      pos     pos      pos     170
;
run;

CONTROL Library 2685



  

CONTROL.TRAIN
data control.train;
    input NAME $ 1-16 IDNUM $ 17-24;
    datalines;
Capalleti, Jimmy    2355
Chen, Len           5889
Davis, Brad         3878
Leung, Brenda       4409
Patel, Mary         2398
Smith, Robert       5862
Zook, Carla         7385
;
run;

CONTROL.VISION
data control.vision;
    input RIGHT LEFT COUNT;
    datalines;
      1        1    1520
      1        2     266
      1        3     124
      1        4      66
      2        1     234
      2        2    1512
      2        3     432
      2        4      78
      3        1     117
      3        2     362
      3        3    1772
      3        4     205
      4        1      36
      4        2      82
      4        3     179
      4        4     492
;
run;

CONTROL.WEIGHT
data control.weight (label='California Results');
    input ID TREAT $8.  IBW INITWT WT3MOS WT6MOS WT9MOS AGE MMPI1 MMPI2
          MMPI3 MMPI4 MMPI5;

2686 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



    datalines;
  1  Other    149  166.28  146.98  138.26     .       35    62     68     67    55     67
  2  Other    137  214.42  210.22     .    213.87     54    57     56     59    57     47
  3  Other    138  172.46  159.42  146.01  143.84     33    54     69     63    87     34
  5  Other    122  175.41  160.66  154.30     .       37    56     67     64    71     32
  6  Other    134  173.13  169.40  176.12     .       20    42     51     63    71     45
  7  Other    160  181.25  170.94     .       .       30    72     58     70    71     80
  9  Other    152  212.83  179.93  169.74  164.47  49100    65     87     71    74      4
 10  Other    145  239.83  214.48  208.28     .       48    56     51     56    53     53
 11  Other    158  175.32  162.66  161.39     .       51    66     60     71    62     84
 12  Other    174  227.01  211.06  202.87  205.17     29    77     70     69    65     64
 13  Other    137  274.82  251.82  248.18     .       31    66     82     66    69     55
 15  Other    152  168.75  156.58  154.61  156.58     42    52     58     65    67     51
 16  Other    162  187.81  172.07     .       .       40    57     68     67    67     74
 17  Other    123  226.63     .    219.72     .       21    58     49     59    74     70
 18  Other    146  176.03  160.27  160.27     .       41    48     55     49    68     43
 19  Other    166  190.96  159.04     .       .       32    53     52     51    62     71
 21  Other    148  165.54     .    166.22     .       48    57     60     65    74     55
 22  Other    125  193.60  184.00     .       .       28    64     67     70    69     54
 24  Other    152  267.43  230.26  206.09     .       30    48     45     55    50     41
 25  Other    151  193.38  185.43     .       .       33    54     99     67    75     74
 26  Other    134  252.61  227.61  217.72  223.88     31    62     51     70    57     39
 27  Other    140  193.93  191.43  196.43     .       25    54     65     66    55     55
 29  Other    119  182.77     .       .       .       38    66     63     64    60     41
 30  Other    134  189.93  172.39  175.37     .       35    70     92     73    98     39
 31  Other    138  190.22  181.88  178.99  181.16     36    56     69     61    62     34
 32  Other    134  182.09  169.40  163.81  163.81     34    42     65     54    55     41
 34  Other    133  200.00  189.47     .       .       24    52     61     64    62     39
 35  Other    149  221.81  216.11     .       .       46    66     52     69    71     61
 36  Other    133  241.35  247.37     .       .       34    50     65     57    74     47
 37  Other    134  223.13  217.91     .       .       33    64     63     63    60     41
 38  Other    140  235.36  228.57  210.71     .       50    56     61     70    74     39
 39  Other    125  178.60  178.40     .       .       39    50     73     58    58     32
 40  Other    143  243.01  226.57  210.49     .       38    64     66     70    54     46
 41  Other    134  282.65  239.55     .       .       26    66     65     75    74     53
 44  Other    139  282.37  258.99  238.13  241.01     43    66     69     68    65     39
 45  Other    134  216.04  182.09     .       .       39    50     55     59    67     43
 46  Other    115  190.00  171.30     .       .       36    64     59     58    58     44
 47  Other    134  175.19  167.16     .       .       43    57     48     52    71     47
 48  Other    118  179.87     .       .       .       37    52     57     45    50     30
 50  Other    137  173.54  166.97  164.60     .       32    54     76     63    69     25
 51  Other    125  180.60  162.40  152.00  157.60     32    50     56     64    53     53
 52  Other    155  235.32  225.16  210.32  208.39     35    62     64     55    60     51
 53  Other    143  183.39  169.23     .       .       38    64     57     72    81     61
 54  Other    131  212.60  208.40  211.45     .       27    50     67     53    74     47
 63  Surgery  146  219.18  167.12  139.73  119.18     35    58     53     67    48     55
 65  Surgery  123  192.68  155.28  127.64  115.45     31    52     74     54    64     32
 66  Surgery  134  199.25  173.88  161.19  144.03     38    68     64     70    77     30
 71  Surgery  139  209.35  172.66  156.83  138.13     39    66     56     66    71     42
 77  Surgery  137  179.56  150.36  132.12  123.36     29    46     49     42    47     49
 80  Surgery  170  138.24  121.76  100.00     .       31    56     57     64    64     39
 81  Surgery  129  206.98  173.64  132.56  121.71     28    42     78     52    62     41
 84  Surgery  143  220.28  178.32     .       .       29    58     67     54    46     59
 85  Surgery  152  189.47  156.58  140.79  140.79     34    75     73     62    74     51
 86  Surgery  210  157.14  138.57  121.90  109.05     30    88     75     73    69     65
 92  Surgery  139  203.60  169.78  143.88     .       38    62     59     68    60     49

CONTROL Library 2687



 93  Surgery  151  171.52  150.33  123.18  109.27     42    72     69     59    53     47
 95  Surgery  134  207.46  155.22     .       .       41    51     52     56    63     57
 96  Surgery  138  201.45  172.46  172.46  155.07     55    57     49     57    67     37
 97  Surgery  128  209.38  182.81  162.50  153.91     34    68     88     73    74      .
101  Surgery  166  185.54  146.39  139.76  132.53     42    82     80     89    79     51
102  Surgery  127  218.11  173.23  152.76  137.80     39    76     80     70    74     45
107  Surgery  128  227.34  192.97  184.38  170.31     49    50     51     59    50     55
110  Surgery  143  251.75  207.69  183.22  165.03     42    48     84     52    76     38
111  Surgery  152  197.37  164.47  148.68  132.89     56    90     70     86    76     70
112  Surgery  140  202.14  156.43  137.86     .       31    48     51     50    41     41
116  Surgery  139  273.38  235.25  194.24     .       31    58     55     66    81     45
117  Surgery  125  192.00  156.80  140.00  127.20     42    58     44     63    53     51
120  Surgery  119  277.31  231.93  208.40  192.44     31    60     69     59    95     34
122  Surgery  138  165.22  130.43  119.57     .       44    66     67     70    62     34
125  Surgery  152  257.89  200.00  182.89  134.21     39    47     84     53    88     74
126  Surgery  138  170.29  142.75     .       .       39    64     64     66    65     46
132  Surgery  149  208.05  173.83     .    126.85     34    82     57     75    65     45
133  Surgery  136  230.15  205.15  190.44  180.88     39    52     71     52    65     30
134  Surgery  168  177.98  140.48  119.64     .       45    70     77     62    67     69
137  Surgery  138  188.41  164.49  152.90  135.51     39    58     61     57    60     46
138  Surgery  141  268.09  220.57  185.82     .       32    52     59     66    74     53
158  Surgery  130  220.00  190.77  173.85     .       27    68     73     66    58     43
223  Surgery  157  220.38  185.35  152.23  138.85     43    78     76     70    57     53
266  Surgery  135  184.44  148.15  123.70     .       41    56     55     59    64     49
269  Surgery  155  201.29  151.61  140.65     .       57    82     84     86    77     73
293  Surgery  160  163.75  130.63     .       .       47    52     67     47    64     76
295  Surgery  128  211.72  172.66  151.56  137.50     45    93     65     80    60     41
298  Surgery  140  243.57  195.00     .    166.43     40    63     62     62    76     52
;
run; 

CONTROL.WGHT
data control.wght (label='California Results');
    input ID TREAT $8.  IBW INITWT WT3MOS WT6MOS WT9MOS AGE MMPI1 MMPI2
          MMPI3 MMPI4 MMPI5;
    datalines;
  1  Other    149  166.28  146.98  138.26     .       35    62     68     67    55     67
  2  Other    137  214.42  210.22     .    213.87     54    57     56     59    57     47
  3  Other    138  172.46  159.42  146.01  143.84     33    54     69     63    87     34
  5  Other    122  175.41  160.66  154.30     .       37    56     67     64    71     32
  6  Other    134  173.13  169.40  176.12     .       20    42     51     63    71     45
  7  Other    160  181.25  170.94     .       .       30    72     58     70    71     80
  9  Other    152  212.83  179.93  169.74  164.47  49100    65     87     71    74      4
 10  Other    145  239.83  214.48  208.28     .       48    56     51     56    53     53
 11  Other    158  175.32  162.66  161.39     .       51    66     60     71    62     84
 12  Other    174  227.01  211.06  202.87  205.17     29    77     70     69    65     64
 13  Other    137  274.82  251.82  248.18     .       31    66     82     66    69     55
 15  Other    152  168.75  156.58  154.61  156.58     42    52     58     65    67     51
 16  Other    162  187.81  172.07     .       .       40    57     68     67    67     74
 17  Other    123  226.63     .    219.72     .       21    58     49     59    74     70
 18  Other    146  176.03  160.27  160.27     .       41    48     55     49    68     43
 19  Other    166  190.96  159.04     .       .       32    53     52     51    62     71

2688 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



 21  Other    148  165.54     .    166.22     .       48    57     60     65    74     55
 22  Other    125  193.60  184.00     .       .       28    64     67     70    69     54
 24  Other    152  267.43  230.26  206.09     .       30    48     45     55    50     41
 25  Other    151  193.38  185.43     .       .       33    54     99     67    75     74
 26  Other    134  252.61  227.61  217.72  223.88     31    62     51     70    57     39
 27  Other    140  193.93  191.43  196.43     .       25    54     65     66    55     55
 29  Other    119  182.77     .       .       .       38    66     63     64    60     41
 30  Other    134  189.93  172.39  175.37     .       35    70     92     73    98     39
 31  Other    138  190.22  181.88  178.99  181.16     36    56     69     61    62     34
 32  Other    134  182.09  169.40  163.81  163.81     34    42     65     54    55     41
 34  Other    133  200.00  189.47     .       .       24    52     61     64    62     39
 35  Other    149  221.81  216.11     .       .       46    66     52     69    71     61
 36  Other    133  241.35  247.37     .       .       34    50     65     57    74     47
 37  Other    134  223.13  217.91     .       .       33    64     63     63    60     41
 38  Other    140  235.36  228.57  210.71     .       50    56     61     70    74     39
 39  Other    125  178.60  178.40     .       .       39    50     73     58    58     32
 40  Other    143  243.01  226.57  210.49     .       38    64     66     70    54     46
 41  Other    134  282.65  239.55     .       .       26    66     65     75    74     53
 44  Other    139  282.37  258.99  238.13  241.01     43    66     69     68    65     39
 45  Other    134  216.04  182.09     .       .       39    50     55     59    67     43
 46  Other    115  190.00  171.30     .       .       36    64     59     58    58     44
 47  Other    134  175.19  167.16     .       .       43    57     48     52    71     47
 48  Other    118  179.87     .       .       .       37    52     57     45    50     30
 50  Other    137  173.54  166.97  164.60     .       32    54     76     63    69     25
 51  Other    125  180.60  162.40  152.00  157.60     32    50     56     64    53     53
 52  Other    155  235.32  225.16  210.32  208.39     35    62     64     55    60     51
 53  Other    143  183.39  169.23     .       .       38    64     57     72    81     61
 54  Other    131  212.60  208.40  211.45     .       27    50     67     53    74     47
 63  Surgery  146  219.18  167.12  139.73  119.18     35    58     53     67    48     55
 65  Surgery  123  192.68  155.28  127.64  115.45     31    52     74     54    64     32
 66  Surgery  134  199.25  173.88  161.19  144.03     38    68     64     70    77     30
 71  Surgery  139  209.35  172.66  156.83  138.13     39    66     56     66    71     42
 77  Surgery  137  179.56  150.36  132.12  123.36     29    46     49     42    47     49
 80  Surgery  170  138.24  121.76  100.00     .       31    56     57     64    64     39
 81  Surgery  129  206.98  173.64  132.56  121.71     28    42     78     52    62     41
 84  Surgery  143  220.28  178.32     .       .       29    58     67     54    46     59
 85  Surgery  152  189.47  156.58  140.79  140.79     34    75     73     62    74     51
 86  Surgery  210  157.14  138.57  121.90  109.05     30    88     75     73    69     65
 92  Surgery  139  203.60  169.78  143.88     .       38    62     59     68    60     49
 93  Surgery  151  171.52  150.33  123.18  109.27     42    72     69     59    53     47
 95  Surgery  134  207.46  155.22     .       .       41    51     52     56    63     57
 96  Surgery  138  201.45  172.46  172.46  155.07     55    57     49     57    67     37
 97  Surgery  128  209.38  182.81  162.50  153.91     34    68     88     73    74      .
101  Surgery  166  185.54  146.39  139.76  132.53     42    82     80     89    79     51
102  Surgery  127  218.11  173.23  152.76  137.80     39    76     80     70    74     45
107  Surgery  128  227.34  192.97  184.38  170.31     49    50     51     59    50     55
110  Surgery  143  251.75  207.69  183.22  165.03     42    48     84     52    76     38
111  Surgery  152  197.37  164.47  148.68  132.89     56    90     70     86    76     70
112  Surgery  140  202.14  156.43  137.86     .       31    48     51     50    41     41
116  Surgery  139  273.38  235.25  194.24     .       31    58     55     66    81     45
117  Surgery  125  192.00  156.80  140.00  127.20     42    58     44     63    53     51
120  Surgery  119  277.31  231.93  208.40  192.44     31    60     69     59    95     34
122  Surgery  138  165.22  130.43  119.57     .       44    66     67     70    62     34
125  Surgery  152  257.89  200.00  182.89  134.21     39    47     84     53    88     74
126  Surgery  138  170.29  142.75     .       .       39    64     64     66    65     46
132  Surgery  149  208.05  173.83     .    126.85     34    82     57     75    65     45

CONTROL Library 2689



133  Surgery  136  230.15  205.15  190.44  180.88     39    52     71     52    65     30
134  Surgery  168  177.98  140.48  119.64     .       45    70     77     62    67     69
137  Surgery  138  188.41  164.49  152.90  135.51     39    58     61     57    60     46
138  Surgery  141  268.09  220.57  185.82     .       32    52     59     66    74     53
158  Surgery  130  220.00  190.77  173.85     .       27    68     73     66    58     43
223  Surgery  157  220.38  185.35  152.23  138.85     43    78     76     70    57     53
266  Surgery  135  184.44  148.15  123.70     .       41    56     55     59    64     49
269  Surgery  155  201.29  151.61  140.65     .       57    82     84     86    77     73
293  Surgery  160  163.75  130.63     .       .       47    52     67     47    64     76
295  Surgery  128  211.72  172.66  151.56  137.50     45    93     65     80    60     41
298  Surgery  140  243.57  195.00     .    166.43     40    63     62     62    76     52
;
run;

CUSTOMER_RESPONSE
data customer_response;
   input Customer Factor1-Factor4 Source1-Source3
        Quality1-Quality3;
   datalines;
1 . . 1 1 1 1 . 1 . .
2 1 1 . 1 1 1 . 1 1 .
3 . . 1 1 1 1 . . . .
4 1 1 . 1 . 1 . . . 1
5 . 1 . 1 1 . . . . 1
6 . 1 . 1 1 . . . . .
7 . 1 . 1 1 . . 1 . .
8 1 . . 1 1 1 . 1 1 .
9 1 1 . 1 1 . . . . 1
10 1 . . 1 1 1 . 1 1 .
11 1 1 1 1 . 1 . 1 1 1
12 1 1 . 1 1 1 . . . .
13 1 1 . 1 . 1 . 1 1 .
14 1 1 . 1 1 1 . . . .
15 1 1 . 1 . 1 . 1 1 1
16 1 . . 1 1 . . 1 . .
17 1 1 . 1 1 1 . . 1 .
18 1 1 . 1 1 1 1 . . 1
19 . 1 . 1 1 1 1 . 1 .
20 1 . . 1 1 1 . 1 1 1
21 . . . 1 1 1 . 1 . .
22 . . . 1 1 1 . 1 1 .
23 1 . . 1 . . . . . 1
24 . 1 . 1 1 . . 1 . 1
25 1 1 . 1 1 . . . 1 1
26 1 1 . 1 1 . . 1 . .
27 1 . . 1 1 . . . 1 .
28 1 1 . 1 . . . 1 1 1
29 1 . . 1 1 1 . 1 . 1
30 1 . 1 1 1 . . 1 1 .
31 . . . 1 1 . . 1 1 .

2690 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



32 1 1 1 1 1 . . 1 1 1
33 1 . . 1 1 . . 1 . 1
34 . . 1 1 . . . 1 1 .
35 1 1 1 1 1 . 1 1 . .
36 1 1 1 1 . 1 . 1 . .
37 1 1 . 1 . . . 1 . .
38 . . . 1 1 1 . 1 . .
39 1 1 . 1 1 . . 1 . 1
40 1 . . 1 . . 1 1 . 1
41 1 . . 1 1 1 1 1 . 1
42 1 1 1 1 . . 1 1 . .
43 1 . . 1 1 1 . 1 . .
44 1 . 1 1 . 1 . 1 . 1
45 . . . 1 . . 1 . . 1
46 . . . 1 1 . . . 1 .
47 1 1 . 1 . . 1 1 . .
48 1 . 1 1 1 . 1 1 . .
49 . . 1 1 1 1 . 1 . 1
50 . 1 . 1 1 . . 1 1 .
51 1 . 1 1 1 1 . . . .
52 1 1 1 1 1 1 . 1 . .
53 . 1 1 1 . 1 . 1 1 1
54 1 . . 1 1 . . 1 1 .
55 1 1 . 1 1 1 . 1 . .
56 1 . . 1 1 . . 1 1 .
57 1 1 . 1 1 . 1 . . 1
58 . 1 . 1 . 1 . . 1 1
59 1 1 1 1 . . 1 1 1 .
60 . 1 1 1 1 1 . . 1 1
61 1 1 1 1 1 1 . 1 . .
62 1 1 . 1 1 . . 1 1 .
63 . . . 1 . . . 1 1 1
64 1 . . 1 1 1 . 1 . .
65 1 . . 1 1 1 . 1 . .
66 1 . . 1 1 1 1 1 1 .
67 1 1 . 1 1 1 . 1 1 .
68 1 1 . 1 1 1 . 1 1 .
69 1 1 . 1 1 . 1 . . .
70 . . . 1 1 1 . 1 . .
71 1 . . 1 1 . 1 . . 1
72 1 . 1 1 1 1 . . 1 .
73 1 1 . 1 . 1 . 1 1 .
74 1 1 1 1 1 1 . 1 . .
75 . 1 . 1 1 1 . . 1 .
76 1 1 . 1 1 1 . 1 1 1
77 . . . 1 1 1 . . . .
78 1 1 1 1 1 1 . 1 1 .
79 1 . . 1 1 1 . 1 1 .
80 1 1 1 1 1 . 1 1 . 1
81 1 1 . 1 1 1 1 1 1 .
82 . . . 1 1 1 1 . . .
83 1 1 . 1 1 1 . 1 1 .
84 1 . . 1 1 . . 1 1 .
85 . . . 1 . 1 . 1 . .
86 1 . . 1 1 1 . 1 1 1
87 1 1 . 1 1 1 . 1 . .

CUSTOMER_RESPONSE 2691



88 . . . 1 . 1 . . . .
89 1 . . 1 . 1 . . 1 1
90 1 1 . 1 1 1 . 1 . 1
91 . . . 1 1 . . . 1 .
92 1 . . 1 1 1 . 1 1 .
93 1 . . 1 1 . . 1 1 .
94 1 . . 1 1 1 1 1 . .
95 1 . . 1 . 1 1 1 1 .
96 1 . 1 1 1 1 . . 1 .
97 1 1 . 1 1 . . . 1 .
98 1 . 1 1 1 1 1 1 . .
99 1 1 . 1 1 1 1 1 1 .
100 1 . 1 1 1 . . . 1 1
101 1 . 1 1 1 1 . . . .
102 1 . . 1 1 . 1 1 . .
103 1 1 . 1 1 1 . 1 . .
104 . . . 1 1 1 . 1 1 1
105 1 . 1 1 1 . . 1 . 1
106 1 1 1 1 1 1 1 1 1 1
107 1 1 1 1 . . . 1 . 1
108 1 . . 1 . 1 1 1 . .
109 . 1 . 1 1 . . 1 1 .
110 1 . . 1 . . . . . .
111 1 . . 1 1 1 . 1 1 .
112 1 1 . 1 1 1 . . . 1
113 1 1 . 1 1 . 1 1 1 .
114 1 1 . 1 1 . . . . .
115 1 1 . 1 1 . . 1 . .
116 . 1 . 1 1 1 1 1 . .
117 . 1 . 1 1 1 . . . .
118 . 1 1 1 1 . . 1 1 .
119 . . . 1 . . . 1 . .
120 1 1 . 1 . . . . 1 .
;

DJIA
data djia;
      input Year HighDate date9. High LowDate date9. Low;
      format highdate lowdate date9.;
      datalines;
1968 03DEC1968   985.21 21MAR1968   825.13
1969 14MAY1969   968.85 17DEC1969   769.93
1970 29DEC1970   842.00 06MAY1970   631.16
1971 28APR1971   950.82 23NOV1971   797.97
1972 11DEC1972  1036.27 26JAN1972   889.15
1973 11JAN1973  1051.70 05DEC1973   788.31
1974 13MAR1974   891.66 06DEC1974   577.60
1975 15JUL1975   881.81 02JAN1975   632.04
1976 21SEP1976  1014.79 02JAN1976   858.71
1977 03JAN1977   999.75 02NOV1977   800.85

2692 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



1978 08SEP1978   907.74 28FEB1978   742.12
1979 05OCT1979   897.61 07NOV1979   796.67
1980 20NOV1980  1000.17 21APR1980   759.13
1981 27APR1981  1024.05 25SEP1981   824.01
1982 27DEC1982  1070.55 12AUG1982   776.92
1983 29NOV1983  1287.20 03JAN1983  1027.04
1984 06JAN1984  1286.64 24JUL1984  1086.57
1985 16DEC1985  1553.10 04JAN1985  1184.96
1986 02DEC1986  1955.57 22JAN1986  1502.29
1987 25AUG1987  2722.42 19OCT1987  1738.74
1988 21OCT1988  2183.50 20JAN1988  1879.14
1989 09OCT1989  2791.41 03JAN1989  2144.64
1990 16JUL1990  2999.75 11OCT1990  2365.10
1991 31DEC1991  3168.83 09JAN1991  2470.30
1992 01JUN1992  3413.21 09OCT1992  3136.58
1993 29DEC1993  3794.33 20JAN1993  3241.95
1994 31JAN1994  3978.36 04APR1994  3593.35
1995 13DEC1995  5216.47 30JAN1995  3832.08
1996 27DEC1996  6560.90 10JAN1996  5032.94
1997 06AUG1997  8259.30 11APR1997  6391.69
1998 23NOV1998  9374.27 31AUG1998  7539.06
1999 31DEC1999 11497.12 22JAN1999  9120.67
2000 14JAN2000 11722.98 07MAR2000  9796.04
2001 21MAY2001 11337.92 21SEP2001  8235.81
2002 19MAR2002 10635.25 09OCT2002  7286.27
2003 31DEC2003 10453.92 11MAR2003  7524.06
2004 28DEC2004 10854.54 25OCT2004  9749.99
2005 04MAR2005 10940.55 20APR2005 10012.36
2006 27DEC2006 12510.57 20JAN2006 10667.39
2007 09OCT2007 14164.53 05MAR2007 12050.41
2008 02MAY2008 13058.20 10OCT2008  8451.19
2009 24DEC2009 10520.10 09MAR2009  6507.O4
2010 31DEC2010 11577.51 02JUL2010  9686.48
2011 29APR2011 12810.54 23SEP2011 10771.48
2012 05OCT2012 13610.15 01JUN2012 12118.57
2013 31DEC2013 16576.66 04JAN2013 13435.21
2014 05DEC2014 17958.79 11APR2014 16026.75
2015 15MAY2015 18272.56 04SEP2015 16102.38
2016 23DEC2016 19993.81 12FEB2015 15973.84
2017 22DEC2017 24754.06 06JAN2017 19963.80
;

EDUCATION
data education;
   input State $14. +1 Code $ DropoutRate Expenditures MathScore Region $;
   label dropoutrate='Dropout Percentage - 2017'
          expenditures='Expenditure Per Pupil - 2017'
            mathscore='8th Grade Math Exam - 2018';
   datalines;
Alabama        AL 22.3 3197 252 SE

EDUCATION 2693



Alaska         AK 35.8 7716 .   W
Arizona        AZ 31.2 3902 259 W
Arkansas       AR 11.5 3273 256 SE
California     CA 32.7 4121 256 W
Colorado       CO 24.7 4408 267 W
Connecticut    CT 16.8 6857 270 NE
Delaware       DE 28.5 5422 261 NE
Florida        FL 38.5 4563 255 SE
Georgia        GA 27.9 3852 258 SE
Hawaii         HI 18.3 4121 251 W
Idaho          ID 21.8 2838 272 W
Illinois       IL 21.5 4906 260 MW
Indiana        IN 13.8 4284 267 MW
Iowa           IA 13.6 4285 278 MW
Kansas         KS 17.9 4443 .   MW
Kentucky       KY 32.7 3347 256 SE
Louisiana      LA 43.1 3317 246 SE
Maine          ME 22.5 4744 .   NE
Maryland       MD 26.0 5758 260 NE
Massachusetts  MA 28.0 5979 .   NE
Michigan       MI 29.3 5116 264 MW
Minnesota      MN 11.4 4755 276 MW
Mississippi    MS 39.9 2874 .   SE
Missouri       MO 26.5 4263 .   MW
Montana        MT 15.0 4293 280 W
Nebraska       NE 13.9 4360 276 MW
Nevada         NV 28.1 3791 .   W
New Hampshire  NH 25.9 4807 273 NE
New Jersey     NE 20.4 7549 269 NE
New Mexico     NM 28.5 3473 256 W
New York       NY 35.0 .    261 NE
North Carolina NC 31.2 3874 250 SE
North Dakota   ND 12.1 3952 281 MW
Ohio           OH 24.4 4649 264 MW
;

EMPDATA
data empdata;
input IdNumber $ 1-4 LastName $ 8-18 FirstName $ 19-28
      City $ 29-41 State $ 42-43 
      Gender $ 45 JobCode $ 49-51 Salary 55-60 @63 Birth date9.
      @73 Hired date9. HomePhone $ 85-98;
format birth hired date9.;
datalines;
1919   Adams      Gerald    Stamford     CT M   TA2   34376   12SEP1990   04JUN2007   
203/781-1255
1653   Ahmad      Azeem     Bridgeport   CT F   ME2   35108   15OCT1984   09AUG2010   
203/675-7715
1400   Alvarez    Gloria    New York     NY M   ME1   29769   05NOV1987   16OCT2010   
212/586-0808

2694 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



1350   Arthur     Barbara   New York     NY F   FA3   32886   31AUG1985   29JUL2010   
718/383-1549
1401   Avery      Jerry     Paterson     NJ M   TA3   38822   13DEC1970   17NOV2005   
201/732-8787
1499   Barefoot   Joseph    Princeton    NJ M   ME3   43025   26APR1974   07JUN2010   
201/812-5665
1101   Basquez    Richardo  New York     NY M   SCP   18723   06JUN1982   01OCT2010   
212/586-8060
1333   Beaulieu   Armando   Stamford     CT M   PT2   88606   30MAR1983   10FEB2011   
203/781-1777
1402   Blalock    Ralph     New York     NY M   TA2   32615   17JAN1983   02DEC2010   
718/384-2849
1479   Bostic     Marie     New York     NY F   TA3   38785   22DEC1988   05OCT2007   
718/384-8816
1403   Bowden     Earl      Bridgeport   CT M   ME1   28072   28JAN1989   21DEC2016   
203/675-3434
1739   Boyce      Jonathan  New York     NY M   PT1   66517   25DEC1984   27JAN2011   
212/587-1247
1658   Bradley    Jeremy    New York     NY M   SCP   17943   08APR1987   29FEB2012   
212/587-3622
1428   Brady      Christine Stamford     CT F   PT1   68767   04APR1980   16NOV2011   
203/781-1212
1782   Brown      Jason     Stamford     CT M   ME2   35345   04DEC1980   22FEB2012   
203/781-0019
1244   Bryant     Leonard   New York     NY M   ME2   36925   31AUG1983   17JAN2008   
718/383-3334
1383   Burnette   Thomas    New York     NY M   BCK   25823   25JAN1985   20OCT2009   
718/384-3569
1574   Cahill     Marshall  New York     NY M   FA2   28572   27APR1980   20DEC2012   
718/383-2338
1789   Canales    Viviana   New York     NY M   SCP   18326   23JAN1977   11APR2008   
212/587-9000
1404   Carter     Donald    New York     NY M   PT2   91376   24FEB1973   01JAN2010   
718/384-2946
1437   Carter     Dorothy   Bridgeport   CT F   A3    33104   20SEP1980   31AUG2004   
203/675-4117
1639   Carter     Karen     Stamford     CT F   A3    40260   26JUN1977   28JAN2014   
203/781-8839
1269   Caston     Franklin  Stamford     CT M   NA1   41690   03MAY1972   28NOV2012   
203/781-3335
1065   Chapman    Neil      New York     NY M   ME2   35090   26JAN1977   07JAN2007   
718/384-5618
1876   Chin       Jack      New York     NY M   TA3   39675   20MAY1978   27APR2015   
212/588-5634
1037   Chow       Jane      Stamford     CT F   TA1   28558   10APR1984   13SEP2012   
203/781-8868
1129   Cook       Brenda    New York     NY F   ME2   34929   08DEC1981   17AUG2011   
718/383-2313
1988   Cooper     Anthony   New York     NY M   FA3   32217   30NOV1979   18SEP2004   
212/587-1228
1405   Davidson   Jason     Paterson     NJ M   SCP   18056   05MAR1986   26JAN2012   
201/732-2323
1430   Dean       Sandra    Bridgeport   CT F   TA2   32925   28FEB1982   27APR2017   
203/675-1647
1983   Dean       Sharon    New York     NY F   FA3   33419   28FEB1962   30APR2005   
718/384-1647

EMPDATA 2695



1134   Delgado    Maria     Stamford     CT F   TA2   33462   05MAR1989   21DEC2016   
203/781-1528
1118   Dennis     Roger     New York     NY M   PT3   111379  16JAN1964   18DEC2000   
718/383-1122
1438   Desai      Aakash    Stamford     CT F   TA3   39223   15MAR1985   18NOV2007   
203/781-2229
1125   Dunlap     Donna     New York     NY F   FA2   28888   08NOV1988   11DEC2007   
718/383-2094
1475   Eaton      Alicia    New York     NY F   FA2   27787   15DEC1981   13JUL2010   
718/383-2828
1117   Edgerton   Joshua    New York     NY M   TA3   39771   05JUN1983   13AUG2012   
212/588-1239
1935   Fernandez  Katrina   Bridgeport   CT F   NA2   51081   28MAR1974   16OCT2011   
203/675-2962
1124   Fields     Diana     White Plains NY F   FA1   23177   10JUL1978   01OCT2010   
914/455-2998
1422   Fletcher   Marie     Princeton    NJ F   FA1   22454   04JUN1984   06APR2011  
201/812-0902
1616   Flowers    Annette   New York     NY F   TA2   34137   01MAR1990   04JUN2013   
718/384-3329
1406   Foster     Gerald    Bridgeport   CT M   ME2   35185   08MAR1981   17FEB2007   
203/675-6363
1120   Garcia     Jack      New York     NY M   ME1   28619   11SEP1992   07OCT2013   
718/384-4930
1094   Gomez      Alan      Bridgeport   CT M   FA1   22268   02APR1990   17APR2011   
203/675-7181
1389   Gordon     Levi      New York     NY M   BCK   25028   15JUL1979   18AUG2010   
718/384-9326
1905   Graham     Alvin     New York     NY M   PT1   65111   16APR1992   29MAY2012   
212/586-8815
1407   Grant      Daniel    Mt. Vernon   NY M   PT1   68096   23MAR1989   18MAR2010   
914/468-1616
1114   Green      Janice    New York     NY F   TA2   32928   18SEP1989   27JUN2007   
212/588-1092
;

ENERGY
data energy;
   length State $2;
   input Region Division state $ Type Expenditures;
   datalines;
1 1 ME 1 708
1 1 ME 2 379
1 1 NH 1 597
1 1 NH 2 301
1 1 VT 1 353
1 1 VT 2 188
1 1 MA 1 3264
1 1 MA 2 2498
1 1 RI 1 531

2696 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



1 1 RI 2 358
1 1 CT 1 2024
1 1 CT 2 1405
1 2 NY 1 8786
1 2 NY 2 7825
1 2 NJ 1 4115
1 2 NJ 2 3558
1 2 PA 1 6478
1 2 PA 2 3695
4 3 MT 1 322
4 3 MT 2 232
4 3 ID 1 392
4 3 ID 2 298
4 3 WY 1 194
4 3 WY 2 184
4 3 CO 1 1215
4 3 CO 2 1173
4 3 NM 1 545
4 3 NM 2 578
4 3 AZ 1 1694
4 3 AZ 2 1448
4 3 UT 1 621
4 3 UT 2 438
4 3 NV 1 493
4 3 NV 2 378
4 4 WA 1 1680
4 4 WA 2 1122
4 4 OR 1 1014
4 4 OR 2 756
4 4 CA 1 10643
4 4 CA 2 10114
4 4 AK 1 349
4 4 AK 2 329
4 4 HI 1 273
4 4 HI 2 298
;

EXP Library

EXP.RESULTS
The following sections are the raw data and DATA steps for the EXP library.

options ps=40 ls=64 nodate pageno=1;

LIBNAME exp 'library-name';

data exp.results;

EXP Library 2697



   set exp.wght(firstobs=1 obs=11 keep=id treat initwt wt3mos
       age);
   if age>100 then delete;
run;
proc print data=exp.results noobs;
    title 'The RESULTS Data Set';
run;
proc datasets library=exp;

data exp.results;
    input id  treat $  initwt  wt3mos age;
    datalines;
 1    Other      166.28    146.98     35
 2    Other      214.42    210.22     54
 3    Other      172.46    159.42     33
 5    Other      175.41    160.66     37
 6    Other      173.13    169.40     20
 7    Other      181.25    170.94     30
10    Other      239.83    214.48     48
11    Other      175.32    162.66     51
12    Other      227.01    211.06     29
13    Other      274.82    251.82     31
;
run;

EXP.SUR
data exp.sur;
    input id  treat $  initwt  wt3mos  wt6mos  age;
    datalines;
14    surgery    203.60    169.78    143.88     38
17    surgery    171.52    150.33    123.18     42
18    surgery    207.46    155.22       .       41
;
run;

EXPREV
ods html close;
data exprev;
input Country $ 1-24 Emp_ID $ 25-32 Order_Date $  Ship_Date $  Sale_Type $ 67-75 
Quantity Price Cost;

datalines;
Antarctica              99999999     1/1/18      1/7/18            Internet    2     
92.60     20.70

2698 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



Puerto Rico             99999999     1/1/18      1/5/18            Catalog    14    
51.20      12.10
Virgin Islands (U.S.)   99999999     1/1/18      1/4/18            In Store   25    
31.10      15.65
Aruba                   99999999     1/1/18      1/4/18            Catalog    30    
123.70     59.00
Bahamas                 99999999     1/1/18      1/4/18            Catalog     8    
113.40     28.45
Bermuda                 99999999     1/1/18      1/4/18            Catalog     7    
41.00      9.25
Belize                  120458       1/2/18      1/2/18            In Store    2    
146.40     36.70
British Virgin Islands  99999999     1/2/18      1/5/18            Catalog    11    
40.20      20.20
Canada                  99999999     1/2/18      1/5/18            Catalog    100   
11.80      5.00
Cayman Islands          120454       1/2/18      1/2/18            In Store   20    
71.00      32.30
Costa Rica              99999999     1/2/18      1/6/18            Internet   31    
53.00      26.60
Cuba                    121044       1/2/18      1/2/18            Internet   12    
42.40      19.35
Dominican Republic      121040       1/2/18      1/2/18            Internet   13    
48.00      23.95
El Salvador             99999999     1/2/18      1/6/18            Catalog    21    
266.40     66.70
Guatemala               120931       1/2/18      1/2/18            In Store   13    
144.40     65.70
Haiti                   121059       1/2/18      1/2/18            Internet    5    
47.90      23.45
Honduras                120455       1/2/18      1/2/18            Internet   20    
66.40      30.25
Jamaica                 99999999     1/2/18      1/4/18            In Store   23    
169.80     38.70
Mexico                  120127       1/2/18      1/2/18            In Store   30    
211.80     33.65
Montserrat              120127       1/2/18      1/2/18            In Store   19    
184.20     36.90
Nicaragua               120932       1/2/18      1/2/18            Internet   16    
122.00     28.75
Panama                  99999999     1/2/18      1/6/18            Internet   20    
88.20      38.40
Saint Kitts/Nevis       99999999     1/2/18      1/6/18            Internet   20    
41.40      18.00
St. Helena              120360       1/2/18      1/2/18            Internet   19    
94.70      47.45
St. Pierre/Miquelon     120842       1/2/18      1/6/18            Internet   16    
103.80     47.25
Turks/Caicos Islands    120372       1/2/18      1/2/18            Internet   10    
57.70      28.95
United States           120372       1/2/18      1/2/18            Internet   20    
88.20      38.40
Anguilla                99999999     1/2/18      1/6/18            In Store   15    
233.50     22.25
Antigua/Barbuda         120458       1/2/18      1/2/18            In Store   31    
99.60      45.35

EXPREV 2699



Argentina               99999999     1/2/18      1/6/18            In Store   42    
408.80     87.15
Barbados                99999999     1/2/18      1/6/18            In Store   26    
94.80      42.60
Bolivia                 120127       1/2/18      1/2/18            In Store   26    
66.00      16.60
Brazil                  120127       1/2/18      1/2/18            Catalog    12    
73.40      18.45
Chile                   120447       1/2/18      1/2/18            In Store   20    
19.10      8.75
Colombia                121059       1/2/18      1/2/18            Internet   28    
361.40     90.45
Dominica                121043       1/2/18      1/2/18            Internet   35    
121.30     57.80
Ecuador                 121042       1/2/18      1/2/18            In Store   11    
100.90     50.55
Falkland Islands        120932       1/2/18      1/2/18            In Store   15    
61.40      30.80
French Guiana           120935       1/2/18      1/2/18            Catalog    15    
96.40      43.85
Grenada                 120931       1/2/18      1/2/18            Catalog    19    
56.30      25.05
Guadeloupe              120445       1/2/18      1/2/18            Internet   21    
231.60     48.70
Guyana                  120455       1/2/18      1/2/18            In Store   25    
132.80     30.25
Martinique              120841       1/2/18      1/3/18            In Store   16    
56.30      31.05
Netherlands Antilles    99999999     1/2/18      1/6/18            In Store   31    
41.80      19.45
Paraguay                120603       1/2/18      1/2/18            Catalog    17    
117.60     58.90
Peru                    120845       1/2/18      1/2/18            Catalog    12    
93.80      41.75
St. Lucia               120845       1/2/18      1/2/18            Internet   19    
64.30      28.65
Suriname                120538       1/3/18      1/3/18            Internet   22    
110.80     29.35
;
run;

GROC
data groc;
   input Region $9. Manager $ Department $ Sales;
   datalines;
Southeast    Hayes       Paper       250
Southeast    Hayes       Produce     100
Southeast    Hayes       Canned      120
Southeast    Hayes       Meat         80
Southeast    Michaels    Paper        40

2700 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



Southeast    Michaels    Produce     300
Southeast    Michaels    Canned      220
Southeast    Michaels    Meat         70
Northwest    Jeffreys    Paper        60
Northwest    Jeffreys    Produce     600
Northwest    Jeffreys    Canned      420
Northwest    Jeffreys    Meat         30
Northwest    Duncan      Paper        45
Northwest    Duncan      Produce     250
Northwest    Duncan      Canned      230
Northwest    Duncan      Meat         73
Northwest    Aikmann     Paper        45
Northwest    Aikmann     Produce     205
Northwest    Aikmann     Canned      420
Northwest    Aikmann     Meat         76
Southwest    Royster     Paper        53
Southwest    Royster     Produce     130
Southwest    Royster     Canned      120
Southwest    Royster     Meat         50
Southwest    Patel       Paper        40
Southwest    Patel       Produce     350
Southwest    Patel       Canned      225
Southwest    Patel       Meat         80
Northeast    Rice        Paper        90
Northeast    Rice        Produce      90
Northeast    Rice        Canned      420
Northeast    Rice        Meat         86
Northeast    Fuller      Paper       200
Northeast    Fuller      Produce     300
Northeast    Fuller      Canned      420
Northeast    Fuller      Meat        125
;

MATCH_11
data match_11;
   input Pair Low Age Lwt Race Smoke Ptd Ht UI @@;
   select(race);
      when (1) do;
         race1=0;
         race2=0;
      end;
      when (2) do;
         race1=1;
         race2=0;
      end;
      when (3) do;
         race1=0;
         race2=1;
      end;
   end;

MATCH_11 2701



   datalines;
1  0 14 135 1 0 0 0 0     1  1 14 101 3 1 1 0 0
2  0 15  98 2 0 0 0 0     2  1 15 115 3 0 0 0 1
3  0 16  95 3 0 0 0 0     3  1 16 130 3 0 0 0 0
4  0 17 103 3 0 0 0 0     4  1 17 130 3 1 1 0 1
5  0 17 122 1 1 0 0 0     5  1 17 110 1 1 0 0 0
6  0 17 113 2 0 0 0 0     6  1 17 120 1 1 0 0 0
7  0 17 113 2 0 0 0 0     7  1 17 120 2 0 0 0 0
8  0 17 119 3 0 0 0 0     8  1 17 142 2 0 0 1 0
9  0 18 100 1 1 0 0 0     9  1 18 148 3 0 0 0 0
10 0 18  90 1 1 0 0 1     10 1 18 110 2 1 1 0 0
11 0 19 150 3 0 0 0 0     11 1 19  91 1 1 1 0 1
12 0 19 115 3 0 0 0 0     12 1 19 102 1 0 0 0 0
13 0 19 235 1 1 0 1 0     13 1 19 112 1 1 0 0 1
14 0 20 120 3 0 0 0 1     14 1 20 150 1 1 0 0 0
15 0 20 103 3 0 0 0 0     15 1 20 125 3 0 0 0 1
16 0 20 169 3 0 1 0 1     16 1 20 120 2 1 0 0 0
17 0 20 141 1 0 1 0 1     17 1 20  80 3 1 0 0 1
18 0 20 121 2 1 0 0 0     18 1 20 109 3 0 0 0 0
19 0 20 127 3 0 0 0 0     19 1 20 121 1 1 1 0 1
20 0 20 120 3 0 0 0 0     20 1 20 122 2 1 0 0 0
21 0 20 158 1 0 0 0 0     21 1 20 105 3 0 0 0 0
22 0 21 108 1 1 0 0 1     22 1 21 165 1 1 0 1 0
23 0 21 124 3 0 0 0 0     23 1 21 200 2 0 0 0 0
24 0 21 185 2 1 0 0 0     24 1 21 103 3 0 0 0 0
25 0 21 160 1 0 0 0 0     25 1 21 100 3 0 1 0 0
26 0 21 115 1 0 0 0 0     26 1 21 130 1 1 0 1 0
27 0 22  95 3 0 0 1 0     27 1 22 130 1 1 0 0 0
28 0 22 158 2 0 1 0 0     28 1 22 130 1 1 1 0 1
29 0 23 130 2 0 0 0 0     29 1 23  97 3 0 0 0 1
30 0 23 128 3 0 0 0 0     30 1 23 187 2 1 0 0 0
31 0 23 119 3 0 0 0 0     31 1 23 120 3 0 0 0 0
32 0 23 115 3 1 0 0 0     32 1 23 110 1 1 1 0 0
33 0 23 190 1 0 0 0 0     33 1 23  94 3 1 0 0 0
34 0 24  90 1 1 1 0 0     34 1 24 128 2 0 1 0 0
35 0 24 115 1 0 0 0 0     35 1 24 132 3 0 0 1 0
36 0 24 110 3 0 0 0 0     36 1 24 155 1 1 1 0 0
37 0 24 115 3 0 0 0 0     37 1 24 138 1 0 0 0 0
38 0 24 110 3 0 1 0 0     38 1 24 105 2 1 0 0 0
39 0 25 118 1 1 0 0 0     39 1 25 105 3 0 1 1 0
40 0 25 120 3 0 0 0 1     40 1 25  85 3 0 0 0 1
41 0 25 155 1 0 0 0 0     41 1 25 115 3 0 0 0 0
42 0 25 125 2 0 0 0 0     42 1 25  92 1 1 0 0 0
43 0 25 140 1 0 0 0 0     43 1 25  89 3 0 1 0 0
44 0 25 241 2 0 0 1 0     44 1 25 105 3 0 1 0 0
45 0 26 113 1 1 0 0 0     45 1 26 117 1 1 1 0 0
46 0 26 168 2 1 0 0 0     46 1 26  96 3 0 0 0 0
47 0 26 133 3 1 1 0 0     47 1 26 154 3 0 1 1 0
48 0 26 160 3 0 0 0 0     48 1 26 190 1 1 0 0 0
49 0 27 124 1 1 0 0 0     49 1 27 130 2 0 0 0 1
50 0 28 120 3 0 0 0 0     50 1 28 120 3 1 1 0 1
51 0 28 130 3 0 0 0 0     51 1 28  95 1 1 0 0 0
52 0 29 135 1 0 0 0 0     52 1 29 130 1 0 0 0 1
53 0 30  95 1 1 0 0 0     53 1 30 142 1 1 1 0 0
54 0 31 215 1 1 0 0 0     54 1 31 102 1 1 1 0 0
55 0 32 121 3 0 0 0 0     55 1 32 105 1 1 0 0 0

2702 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



56 0 34 170 1 0 1 0 0     56 1 34 187 2 1 0 1 0
;

PROCLIB.DELAY
data proclib.delay;
   input flight $3. +5 date date7. +2 orig $3. +3 dest $3. +3
         delaycat $15. +2 destype $15. +8 delay;
   informat date date7.;
   format date date7.;
   datalines;
114     01MAR18  LGA   LAX   1-10 Minutes     Domestic                8
202     01MAR18  LGA   ORD   No Delay         Domestic               -5
219     01MAR18  LGA   LON   11+ Minutes      International          18
622     01MAR18  LGA   FRA   No Delay         International          -5
132     01MAR18  LGA   YYZ   11+ Minutes      International          14
271     01MAR18  LGA   PAR   1-10 Minutes     International           5
302     01MAR18  LGA   WAS   No Delay         Domestic               -2
114     02MAR18  LGA   LAX   No Delay         Domestic                0
202     02MAR18  LGA   ORD   1-10 Minutes     Domestic                5
219     02MAR18  LGA   LON   11+ Minutes      International          18
622     02MAR18  LGA   FRA   No Delay         International           0
132     02MAR18  LGA   YYZ   1-10 Minutes     International           5
271     02MAR18  LGA   PAR   1-10 Minutes     International           4
302     02MAR18  LGA   WAS   No Delay         Domestic                0
114     03MAR18  LGA   LAX   No Delay         Domestic               -1
202     03MAR18  LGA   ORD   No Delay         Domestic               -1
219     03MAR18  LGA   LON   1-10 Minutes     International           4
622     03MAR18  LGA   FRA   No Delay         International          -2
132     03MAR18  LGA   YYZ   1-10 Minutes     International           6
271     03MAR18  LGA   PAR   1-10 Minutes     International           2
302     03MAR18  LGA   WAS   1-10 Minutes     Domestic                5
114     04MAR18  LGA   LAX   11+ Minutes      Domestic               15
202     04MAR18  LGA   ORD   No Delay         Domestic               -5
219     04MAR18  LGA   LON   1-10 Minutes     International           3
622     04MAR18  LGA   FRA   11+ Minutes      International          30
132     04MAR18  LGA   YYZ   No Delay         International          -5
271     04MAR18  LGA   PAR   1-10 Minutes     International           5
302     04MAR18  LGA   WAS   1-10 Minutes     Domestic                7
114     05MAR18  LGA   LAX   No Delay         Domestic               -2
202     05MAR18  LGA   ORD   1-10 Minutes     Domestic                2
219     05MAR18  LGA   LON   1-10 Minutes     International           3
622     05MAR18  LGA   FRA   No Delay         International          -6
132     05MAR18  LGA   YYZ   1-10 Minutes     International           3
271     05MAR18  LGA   PAR   1-10 Minutes     International           5
114     06MAR18  LGA   LAX   No Delay         Domestic               -1
202     06MAR18  LGA   ORD   No Delay         Domestic               -3
219     06MAR18  LGA   LON   11+ Minutes      International          27
132     06MAR18  LGA   YYZ   1-10 Minutes     International           7
302     06MAR18  LGA   WAS   1-10 Minutes     Domestic                1
114     07MAR18  LGA   LAX   No Delay         Domestic               -1

PROCLIB.DELAY 2703



202     07MAR18  LGA   ORD   No Delay         Domestic               -2
219     07MAR18  LGA   LON   11+ Minutes      International          15
622     07MAR18  LGA   FRA   11+ Minutes      International          21
132     07MAR18  LGA   YYZ   No Delay         International          -2
271     07MAR18  LGA   PAR   1-10 Minutes     International           4
302     07MAR18  LGA   WAS   No Delay         Domestic                0
;

PROCLIB.EMP95
data proclib.emp95;
   input #1 idnum $4. @6 name $15.
         #2 address $42.
         #3 salary 6.;
   datalines;
2388 James Schmidt
100 Apt. C Blount St. SW Raleigh NC 27693
92100
2457 Fred Williams
99 West Lane  Garner NC 27509
33190
2776 Robert Jones
12988 Wellington Farms Ave. Cary NC 27512
29025
8699 Jerry Capalleti
222 West L St. Oxford NC 27587
39985
2100 Lanny Engles
293 Manning Pl. Raleigh NC 27606
30998
9857 Kathy Krupski
1000 Taft Ave. Morrisville NC 27508
38756
0987 Dolly Lunford
2344 Persimmons Branch  Apex NC 27505
44010
3286 Hoa Nguyen
2818 Long St. Cary NC 27513
87734
6579 Bryan Samosky
3887 Charles Ave. Garner NC 27508
50234
3888 Kim Siu
5662 Magnolia Blvd Southeast Cary NC 27513
77558
;

2704 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



PROCLIB.EMP96
data proclib.emp96;
   input #1 idnum $4. @6 name $15.
         #2 address $42.
         #3 salary 6.;
   datalines;
2388 James Schmidt
100 Apt. C Blount St. SW Raleigh NC 27693
92100
2457 Fred Williams
99 West Lane  Garner NC 27509
33190
2776 Robert Jones
12988 Wellington Farms Ave. Cary NC 27511
29025
8699 Jerry Capalleti
222 West L St. Oxford NC 27587
39985
3278 Mary Cravens
211 N. Cypress St. Cary NC 27512
35362
2100 Lanny Engles
293 Manning Pl. Raleigh NC 27606
30998
9857 Kathy Krupski
100 Taft Ave. Morrisville NC 27508
40456
0987 Dolly Lunford
2344 Persimmons Branch Trail Apex NC 27505
45110
3286 Hoa Nguyen
2818 Long St. Cary NC 27513
89834
6579 Bryan Samosky
3887 Charles Ave. Garner NC 27508
50234
3888 Kim Siu
5662 Magnolia Blvd Southwest Cary NC 27513
79958
6544 Roger Monday
3004 Crepe Myrtle Court Raleigh NC 27604
47007
;

PROCLIB.EMP96 2705



PROCLIB.INTERNAT
data proclib.internat;
   input flight $3.  +5 date date7. +2 dest $3. +8 boarded;
   informat date date7.;
   format date date7.;
   datalines;
219     01MAR18  LON        198
622     01MAR18  FRA        207
132     01MAR18  YYZ        115
271     01MAR18  PAR        138
219     02MAR18  LON        147
622     02MAR18  FRA        176
132     02MAR18  YYZ        106
271     02MAR18  PAR        172
219     03MAR18  LON        197
622     03MAR18  FRA        180
132     03MAR18  YYZ         75
271     03MAR18  PAR        147
219     04MAR18  LON        232
622     04MAR18  FRA        137
132     04MAR18  YYZ        117
271     04MAR18  PAR        146
219     05MAR18  LON        160
622     05MAR18  FRA        185
132     05MAR18  YYZ        157
271     05MAR18  PAR        177
219     06MAR18  LON        163
132     06MAR18  YYZ        150
219     07MAR18  LON        241
622     07MAR18  FRA        210
132     07MAR18  YYZ        164
271     07MAR18  PAR        155
;

PROCLIB.LAKES
data proclib.lakes;
    input region $ 1-2 lake $ 5-13 pol_a1 pol_a2 pol_b1-pol_b4;
    datalines;
NE  Carr       0.24     0.99     0.95     0.36     0.44     0.67
NE  Duraleigh  0.34     0.01     0.48     0.58     0.12     0.56
NE  Charlie    0.40     0.48     0.29     0.56     0.52     0.95
NE  Farmer     0.60     0.65     0.25     0.20     0.30     0.64
NW  Canyon     0.63     0.44     0.20     0.98     0.19     0.01

2706 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



NW  Morris     0.85     0.95     0.80     0.67     0.32     0.81
NW  Golf       0.69     0.37     0.08     0.72     0.71     0.32
NW  Falls      0.01     0.02     0.59     0.58     0.67     0.02
SE  Pleasant   0.16     0.96     0.71     0.35     0.35     0.48
SE  Juliette   0.82     0.35     0.09     0.03     0.59     0.90
SE  Massey     1.01     0.77     0.45     0.32     0.55     0.66
SE  Delta      0.84     1.05     0.90     0.09     0.64     0.03
SW  Alumni     0.45     0.32     0.45     0.44     0.55     0.12
SW  New Dam    0.80     0.70     0.31     0.98     1.00     0.22
SW  Border     0.51     0.04     0.55     0.35     0.45     0.78
SW  Red        0.22     0.09     0.02     0.10     0.32     0.01
;

PROCLIB.MARCH
data proclib.march;
   input flight $3. +5 date date7. +3 depart time5. +2 orig $3.
         +3 dest $3.  +7 miles +6 boarded +6 capacity;
   format date date7. depart time5.;
   informat date date7. depart time5.;
   datalines;
114     01MAR18    7:10  LGA   LAX       2475       172       210
202     01MAR18   10:43  LGA   ORD        740       151       210
219     01MAR18    9:31  LGA   LON       3442       198       250
622     01MAR18   12:19  LGA   FRA       3857       207       250
132     01MAR18   15:35  LGA   YYZ        366       115       178
271     01MAR18   13:17  LGA   PAR       3635       138       250
302     01MAR18   20:22  LGA   WAS        229       105       180
114     02MAR18    7:10  LGA   LAX       2475       119       210
202     02MAR18   10:43  LGA   ORD        740       120       210
219     02MAR18    9:31  LGA   LON       3442       147       250
622     02MAR18   12:19  LGA   FRA       3857       176       250
132     02MAR18   15:35  LGA   YYZ        366       106       178
302     02MAR18   20:22  LGA   WAS        229        78       180
271     02MAR18   13:17  LGA   PAR       3635       104       250
114     03MAR18    7:10  LGA   LAX       2475       197       210
202     03MAR18   10:43  LGA   ORD        740       118       210
219     03MAR18    9:31  LGA   LON       3442       197       250
622     03MAR18   12:19  LGA   FRA       3857       180       250
132     03MAR18   15:35  LGA   YYZ        366        75       178
271     03MAR18   13:17  LGA   PAR       3635       147       250
302     03MAR18   20:22  LGA   WAS        229       123       180
114     04MAR18    7:10  LGA   LAX       2475       178       210
202     04MAR18   10:43  LGA   ORD        740       148       210
219     04MAR18    9:31  LGA   LON       3442       232       250
622     04MAR18   12:19  LGA   FRA       3857       137       250
132     04MAR18   15:35  LGA   YYZ        366       117       178
271     04MAR18   13:17  LGA   PAR       3635       146       250
302     04MAR18   20:22  LGA   WAS        229       115       180
114     05MAR18    7:10  LGA   LAX       2475       117       210
202     05MAR18   10:43  LGA   ORD        740       104       210

PROCLIB.MARCH 2707



219     05MAR18    9:31  LGA   LON       3442       160       250
622     05MAR18   12:19  LGA   FRA       3857       185       250
132     05MAR18   15:35  LGA   YYZ        366       157       178
271     05MAR18   13:17  LGA   PAR       3635       177       250
114     06MAR18    7:10  LGA   LAX       2475       128       210
202     06MAR18   10:43  LGA   ORD        740       115       210
219     06MAR18    9:31  LGA   LON       3442       163       250
132     06MAR18   15:35  LGA   YYZ        366       150       178
302     06MAR18   20:22  LGA   WAS        229        66       180
114     07MAR18    7:10  LGA   LAX       2475       160       210
202     07MAR18   10:43  LGA   ORD        740       175       210
219     07MAR18    9:31  LGA   LON       3442       241       250
622     07MAR18   12:19  LGA   FRA       3857       210       250
132     07MAR18   15:35  LGA   YYZ        366       164       178
271     07MAR18   13:17  LGA   PAR       3635       155       250
302     07MAR18   20:22  LGA   WAS        229       135       180
;

PROCLIB.PAYLIST2
proc sql;
   create table proclib.paylist2
       (IdNum char(4),
        Gender char(1),
        Jobcode char(3),
        Salary num,
        Birth num informat=date9.
                  format=date9.,
        Hired num informat=date9.
                  format=date9.);

insert into proclib.paylist2
values('1919','M','TA2',34376,'12SEP1990'd,'04JUN2007'd)
values('1653','F','ME2',31896,'15OCT1984'd,'09AUG2010'd)
values('1350','F','FA3',36886,'31AUG1985'd,'29JUL2010'd)
values('1401','M','TA3',38822,'13DEC1970'd,'17NOV2005'd)
values('1499','M','ME1',23025,'26APR1974'd,'07JUN2010'd);

title 'PROCLIB.PAYLIST2 Table';
select * from proclib.paylist2;

PROCLIB.PAYROLL
This data set (table) is updated in “Updating Data in a PROC SQL Table” in SAS 
SQL Procedure User’s Guide, and its updated data is used in subsequent 
examples.

2708 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures

http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n1hz0uhw57yye2n16m5r103jjpjj.htm&docsetTargetAnchor=n1hz0uhw57yye2n16m5r103jjpjj&locale=en
http://documentation.sas.com/?docsetId=sqlproc&docsetVersion=9.4&docsetTarget=n1hz0uhw57yye2n16m5r103jjpjj.htm&docsetTargetAnchor=n1hz0uhw57yye2n16m5r103jjpjj&locale=en


data proclib.payroll;
   input IdNumber $4. +3 Gender $1. +4 Jobcode $3. +8 Salary 6.
         +2 Birth date9. +2 Hired date9.;
   informat birth date9. hired date9.;
   format birth date9. hired date9.;
   datalines;
1919   M    TA2         34376  12SEP1990  04JUN2007
1653   F    ME2         35108  15OCT1984  09AUG2010
1400   M    ME1         29769  05NOV1987  16OCT2010
1350   F    FA3         32886  31AUG1985  29JUL2010
1401   M    TA3         38822  13DEC1970  17NOV2005
1499   M    ME3         43025  26APR1974  07JUN2010
1101   M    SCP         18723  06JUN1982  01OCT2010
1333   M    PT2         88606  30MAR1981  10FEB2011
1402   M    TA2         32615  17JAN1983  02DEC2010
1479   F    TA3         38785  22DEC1988  05OCT2007
1403   M    ME1         28072  28JAN1989  21DEC2016
1739   M    PT1         66517  25DEC1984  27JAN2011
1658   M    SCP         17943  08APR1987  29FEB2012
1428   F    PT1         68767  04APR1980  16NOV2011
1782   M    ME2         35345  04DEC1980  22FEB2012
1244   M    ME2         36925  31AUG1983  17JAN2008
1383   M    BCK         25823  25JAN1985  20OCT2009
1574   M    FA2         28572  27APR1980  20DEC2012
1789   M    SCP         18326  23JAN1977  11APR2008
1404   M    PT2         91376  24FEB1973  01JAN2010
1437   F    FA3         33104  20SEP1980  31AUG2004
1639   F    TA3         40260  26JUN1977  28JAN2014
1269   M    NA1         41690  03MAY1972  28NOV2012
1065   M    ME2         35090  26JAN1977  07JAN2007
1876   M    TA3         39675  20MAY1978  27APR2015
1037   F    TA1         28558  10APR1984  13SEP2012
1129   F    ME2         34929  08DEC1981  17AUG2011
1988   M    FA3         32217  30NOV1979  18SEP2004
1405   M    SCP         18056  05MAR1986  26JAN2012
1430   F    TA2         32925  28FEB1982  27APR2017
1983   F    FA3         33419  28FEB1962  30APR2005
1134   F    TA2         33462  05MAR1989  21DEC2016
1118   M    PT3        111379  16JAN1964  18DEC2000
1438   F    TA3         39223  15MAR1985  18NOV2007
1125   F    FA2         28888  08NOV1988  11DEC2007
1475   F    FA2         27787  15DEC1981  13JUL2010
1117   M    TA3         39771  05JUN1983  13AUG2012
1935   F    NA2         51081  28MAR1974  16OCT2011
1124   F    FA1         23177  10JUL1978  01OCT2010
1422   F    FA1         22454  04JUN1984  06APR2011
1616   F    TA2         34137  01MAR1990  04JUN2013
1406   M    ME2         35185  08MAR1981  17FEB2007
1120   M    ME1         28619  11SEP1992  07OCT2013
1094   M    FA1         22268  02APR1990  17APR2011
1389   M    BCK         25028  15JUL1979  18AUG2010
1905   M    PT1         65111  16APR1992  29MAY2012
1407   M    PT1         68096  23MAR1989  18MAR2010
1114   F    TA2         32928  18SEP1989  27JUN2007
1410   M    PT2         84685  03MAY1987  07NOV2006
1439   F    PT1         70736  06MAR1984  10SEP2010

PROCLIB.PAYROLL 2709



1409   M    ME3         41551  19APR1970  22OCT2001
1408   M    TA2         34138  29MAR1980  14OCT2007
1121   M    ME1         29112  26SEP1981  07DEC2011
1991   F    TA1         27645  07MAY1982  12DEC2012
1102   M    TA2         34542  01OCT1979  15APR2011
1356   M    ME2         36869  26SEP1977  22FEB2003
1545   M    PT1         66130  12AUG1979  29MAY2010
1292   F    ME2         36691  28OCT1984  02JUL2009
1440   F    ME2         35757  27SEP1982  09APR2011
1368   M    FA2         27808  11JUN1981  03NOV2014
1369   M    TA2         33705  28DEC1981  13MAR2017
1411   M    FA2         27265  27MAY1981  01DEC2017
1113   F    FA1         22367  15JAN1988  17OCT2011
1704   M    BCK         25465  30AUG1986  28JUN2007
1900   M    ME2         35105  25MAY1982  27OCT2007
1126   F    TA3         40899  28MAY1983  21NOV2010
1677   M    BCK         26007  05NOV1983  27MAR2009
1441   F    FA2         27158  19NOV1989  23MAR2011
1421   M    TA2         33155  08JAN1979  28FEB2010
1119   M    TA1         26924  20JUN1982  06SEP2008
1834   M    BCK         26896  08FEB1982  02JUL2012
1777   M    PT3        109630  23SEP1971  21JUN2001
1663   M    BCK         26452  11JAN1987  11AUG2011
1106   M    PT2         89632  06NOV1977  16AUG2004
1103   F    FA1         23738  16FEB1988  23JUL2012
1477   M    FA2         28566  21MAR1984  07MAR2008
1476   F    TA2         34803  30MAY1986  17MAR2017
1379   M    ME3         42264  08AUG1981  10JUN2004
1104   M    SCP         17946  25APR1983  10JUN2011
1009   M    TA1         28880  02MAR1979  26MAR2012
1412   M    ME1         27799  18JUN1976  05DEC2011
1115   F    FA3         32699  22AUG1980  28FEB2010
1128   F    TA2         32777  23MAY1985  20OCT2010
1442   F    PT2         84536  05SEP1986  12APR2008
1417   M    NA2         52270  27JUN1984  07MAR2009
1478   M    PT2         84203  09AUG1979  24OCT2010
1673   M    BCK         25477  27FEB1980  15JUL2011
1839   F    NA1         43433  29NOV1980  03JUL2013
1347   M    TA3         40079  21SEP1987  06SEP2014
1423   F    ME2         35773  14MAY1988  19AUG2010
1200   F    ME1         27816  10JAN1981  14AUG2012
1970   F    FA1         22615  25SEP1984  12MAR2011
1521   M    ME3         41526  12APR1983  13JUL2008
1354   F    SCP         18335  29MAY1981  16JUN2012
1424   F    FA2         28978  04AUG1979  11DEC2009
1132   F    FA1         22413  30MAY1972  22OCT2003
1845   M    BCK         25996  20NOV1979  22MAR2000
1556   M    PT1         71349  22JUN1984  11DEC2011
1413   M    FA2         27435  16SEP1975  02JAN2010
1123   F    TA1         28407  31OCT1982  05DEC2012
1907   M    TA2         33329  15NOV1980  06JUL2007
1436   F    TA2         34475  11JUN1984  12MAR2007
1385   M    ME3         43900  16JAN1982  01APR2016
1432   F    ME2         35327  03NOV1981  10FEB2015
1111   M    NA1         40586  14JUL1983  31OCT2012
1116   F    FA1         22862  28SEP1979  21MAR2011

2710 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



1352   M    NA2         53798  02DEC1980  16OCT2006
1555   F    FA2         27499  16MAR1978  04JUL2012
1038   F    TA1         26533  09NOV1989  23NOV2011
1420   M    ME3         43071  19FEB1985  22JUL2017
1561   M    TA2         34514  30NOV1983  07OCT2007
1434   F    FA2         28622  11JUL1982  28OCT2010
1414   M    FA1         23644  24MAR1982  12APR2012
1112   M    TA1         26905  29NOV1984  07DEC2012
1390   M    FA2         27761  19FEB1985  23JUN2011
1332   M    NA1         42178  17SEP1980  04JUN2011
1890   M    PT2         91908  20JUL1981  25NOV2017
1429   F    TA1         27939  28FEB1980  07AUG2012
1107   M    PT2         89977  09JUN1974  10FEB2009
1908   F    TA2         32995  10DEC1979  23APR2010
1830   F    PT2         84471  27MAY1977  29JAN2013
1882   M    ME3         41538  10JUL1977  21NOV2008
1050   M    ME2         35167  14JUL1983  24AUG2016
1425   F    FA1         23979  28DEC1981  28FEB2013
1928   M    PT2         89858  16SEP1974  13JUL2010
1480   F    TA3         39583  03SEP1977  25MAR2001
1100   M    BCK         25004  01DEC1980  07MAY2008
1995   F    ME1         28810  24AUG1983  19SEP2013
1135   F    FA2         27321  20SEP1980  31MAR2010
1415   M    FA2         28278  09MAR1978  12FEB2008
1076   M    PT1         66558  14OCT1975  03OCT2011
1426   F    TA2         32991  05DEC1986  25JUN2010
1564   F    SCP         18833  12APR1982  01JUL2012
1221   F    FA2         27896  22SEP1987  04OCT2011
1133   M    TA1         27701  13JUL1986  12FEB2012
1435   F    TA3         38808  12MAY1979  08FEB2010
1418   M    ME1         28005  29MAR1977  06JAN2012
1017   M    TA3         40858  28DEC1977  16OCT2011
1443   F    NA1         42274  17NOV1988  29AUG2011
1131   F    TA2         32575  26DEC1981  19APR2011
1427   F    TA2         34046  31OCT1990  30JAN2010
1036   F    TA3         39392  19MAY1985  23OCT2004
1130   F    FA1         23916  16MAY1981  05JUN2012
1127   F    TA2         33011  09NOV1984  07DEC2006
1433   F    FA3         32982  08JUL1986  17JAN2007
1431   F    FA3         33230  09JUN1984  05APR2008
1122   F    FA2         27956  01MAY1983  27NOV2008
1105   M    ME2         34805  01MAR1982  13AUG2010
;

PROCLIB.PAYROLL2
data proclib.payroll2;
   input idnum $4. +3 gender $1. +4 jobcode $3. +9 salary 5.
         +2 birth date9. +2 hired date9.;
   informat birth date9. hired date9.;
   format birth date9. hired date9.;

PROCLIB.PAYROLL2 2711



   datalines;
1639   F    TA3         42260  26JUN1977  28JAN2004
1065   M    ME3         38090  26JAN1964  07JAN2007
1561   M    TA3         36514  30NOV1983  07OCT2007
1221   F    FA3         29896  22SEP1987  04OCT2011
1447   F    FA1         22123  07AUG1982  29OCT2002
1998   M    SCP         23100  10SEP1970  02NOV2012
1036   F    TA3         42465  19MAY1965  23OCT2004
1106   M    PT3         94039  06NOV1957  16AUG2004
1129   F    ME3         36758  08DEC1961  17AUG2011
1350   F    FA3         36098  31AUG1985  29JUL2010
1369   M    TA3         36598  28DEC1961  13MAR2007
1076   M    PT1         69742  14OCT1955  03OCT2011
;

PROCLIB.SCHEDULE
data proclib.schedule;
   input flight $3. +5 date date7. +2 dest $3. +3 idnum $4.;
   format date date7.;
   informat date date7.;
   datalines;
132     01MAR18  YYZ   1739
132     01MAR18  YYZ   1478
132     01MAR18  YYZ   1130
132     01MAR18  YYZ   1390
132     01MAR18  YYZ   1983
132     01MAR18  YYZ   1111
219     01MAR18  LON   1407
219     01MAR18  LON   1777
219     01MAR18  LON   1103
219     01MAR18  LON   1125
219     01MAR18  LON   1350
219     01MAR18  LON   1332
271     01MAR18  PAR   1439
271     01MAR18  PAR   1442
271     01MAR18  PAR   1132
271     01MAR18  PAR   1411
271     01MAR18  PAR   1988
271     01MAR18  PAR   1443
622     01MAR18  FRA   1545
622     01MAR18  FRA   1890
622     01MAR18  FRA   1116
622     01MAR18  FRA   1221
622     01MAR18  FRA   1433
622     01MAR18  FRA   1352
132     02MAR18  YYZ   1556
132     02MAR18  YYZ   1478
132     02MAR18  YYZ   1113
132     02MAR18  YYZ   1411
132     02MAR18  YYZ   1574

2712 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



132     02MAR18  YYZ   1111
219     02MAR18  LON   1407
219     02MAR18  LON   1118
219     02MAR18  LON   1132
219     02MAR18  LON   1135
219     02MAR18  LON   1441
219     02MAR18  LON   1332
271     02MAR18  PAR   1739
271     02MAR18  PAR   1442
271     02MAR18  PAR   1103
271     02MAR18  PAR   1413
271     02MAR18  PAR   1115
271     02MAR18  PAR   1443
622     02MAR18  FRA   1439
622     02MAR18  FRA   1890
622     02MAR18  FRA   1124
622     02MAR18  FRA   1368
622     02MAR18  FRA   1477
622     02MAR18  FRA   1352
132     03MAR18  YYZ   1739
132     03MAR18  YYZ   1928
132     03MAR18  YYZ   1425
132     03MAR18  YYZ   1135
132     03MAR18  YYZ   1437
132     03MAR18  YYZ   1111
219     03MAR18  LON   1428
219     03MAR18  LON   1442
219     03MAR18  LON   1130
219     03MAR18  LON   1411
219     03MAR18  LON   1115
219     03MAR18  LON   1332
271     03MAR18  PAR   1905
271     03MAR18  PAR   1118
271     03MAR18  PAR   1970
271     03MAR18  PAR   1125
271     03MAR18  PAR   1983
271     03MAR18  PAR   1443
622     03MAR18  FRA   1545
622     03MAR18  FRA   1830
622     03MAR18  FRA   1414
622     03MAR18  FRA   1368
622     03MAR18  FRA   1431
622     03MAR18  FRA   1352
132     04MAR18  YYZ   1428
132     04MAR18  YYZ   1118
132     04MAR18  YYZ   1103
132     04MAR18  YYZ   1390
132     04MAR18  YYZ   1350
132     04MAR18  YYZ   1111
219     04MAR18  LON   1739
219     04MAR18  LON   1478
219     04MAR18  LON   1130
219     04MAR18  LON   1125
219     04MAR18  LON   1983
219     04MAR18  LON   1332
271     04MAR18  PAR   1407

PROCLIB.SCHEDULE 2713



271     04MAR18  PAR   1410
271     04MAR18  PAR   1094
271     04MAR18  PAR   1411
271     04MAR18  PAR   1115
271     04MAR18  PAR   1443
622     04MAR18  FRA   1545
622     04MAR18  FRA   1890
622     04MAR18  FRA   1116
622     04MAR18  FRA   1221
622     04MAR18  FRA   1433
622     04MAR18  FRA   1352
132     05MAR18  YYZ   1556
132     05MAR18  YYZ   1890
132     05MAR18  YYZ   1113
132     05MAR18  YYZ   1475
132     05MAR18  YYZ   1431
132     05MAR18  YYZ   1111
219     05MAR18  LON   1428
219     05MAR18  LON   1442
219     05MAR18  LON   1422
219     05MAR18  LON   1413
219     05MAR18  LON   1574
219     05MAR18  LON   1332
271     05MAR18  PAR   1739
271     05MAR18  PAR   1928
271     05MAR18  PAR   1103
271     05MAR18  PAR   1477
271     05MAR18  PAR   1433
271     05MAR18  PAR   1443
622     05MAR18  FRA   1545
622     05MAR18  FRA   1830
622     05MAR18  FRA   1970
622     05MAR18  FRA   1441
622     05MAR18  FRA   1350
622     05MAR18  FRA   1352
132     06MAR18  YYZ   1333
132     06MAR18  YYZ   1890
132     06MAR18  YYZ   1414
132     06MAR18  YYZ   1475
132     06MAR18  YYZ   1437
132     06MAR18  YYZ   1111
219     06MAR18  LON   1106
219     06MAR18  LON   1118
219     06MAR18  LON   1425
219     06MAR18  LON   1434
219     06MAR18  LON   1555
219     06MAR18  LON   1332
132     07MAR18  YYZ   1407
132     07MAR18  YYZ   1118
132     07MAR18  YYZ   1094
132     07MAR18  YYZ   1555
132     07MAR18  YYZ   1350
132     07MAR18  YYZ   1111
219     07MAR18  LON   1905
219     07MAR18  LON   1478
219     07MAR18  LON   1124

2714 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



219     07MAR18  LON   1434
219     07MAR18  LON   1983
219     07MAR18  LON   1332
271     07MAR18  PAR   1410
271     07MAR18  PAR   1777
271     07MAR18  PAR   1103
271     07MAR18  PAR   1574
271     07MAR18  PAR   1115
271     07MAR18  PAR   1443
622     07MAR18  FRA   1107
622     07MAR18  FRA   1890
622     07MAR18  FRA   1425
622     07MAR18  FRA   1475
622     07MAR18  FRA   1433
622     07MAR18  FRA   1352
;

PROCLIB.STAFF
data proclib.staff;
   input idnum $4. +3 lname $15. +2 fname $15. +2 city $15. +2
         state $2. +5 hphone $12.;
   datalines;
1919   ADAMS            GERALD           STAMFORD         CT     203/781-1255
1653   ALIBRANDI        MARIA            BRIDGEPORT       CT     203/675-7715
1400   ALHERTANI        ABDULLAH         NEW YORK         NY     212/586-0808
1350   ALVAREZ          MERCEDES         NEW YORK         NY     718/383-1549
1401   ALVAREZ          CARLOS           PATERSON         NJ     201/732-8787
1499   BAREFOOT         JOSEPH           PRINCETON        NJ     201/812-5665
1101   BAUCOM           WALTER           NEW YORK         NY     212/586-8060
1333   BANADYGA         JUSTIN           STAMFORD         CT     203/781-1777
1402   BLALOCK          RALPH            NEW YORK         NY     718/384-2849
1479   BALLETTI         MARIE            NEW YORK         NY     718/384-8816
1403   BOWDEN           EARL             BRIDGEPORT       CT     203/675-3434
1739   BRANCACCIO       JOSEPH           NEW YORK         NY     212/587-1247
1658   BREUHAUS         JEREMY           NEW YORK         NY     212/587-3622
1428   BRADY            CHRISTINE        STAMFORD         CT     203/781-1212
1782   BREWCZAK         JAKOB            STAMFORD         CT     203/781-0019
1244   BUCCI            ANTHONY          NEW YORK         NY     718/383-3334
1383   BURNETTE         THOMAS           NEW YORK         NY     718/384-3569
1574   CAHILL           MARSHALL         NEW YORK         NY     718/383-2338
1789   CARAWAY          DAVIS            NEW YORK         NY     212/587-9000
1404   COHEN            LEE              NEW YORK         NY     718/384-2946
1437   CARTER           DOROTHY          BRIDGEPORT       CT     203/675-4117
1639   CARTER-COHEN     KAREN            STAMFORD         CT     203/781-8839
1269   CASTON           FRANKLIN         STAMFORD         CT     203/781-3335
1065   COPAS            FREDERICO        NEW YORK         NY     718/384-5618
1876   CHIN             JACK             NEW YORK         NY     212/588-5634
1037   CHOW             JANE             STAMFORD         CT     203/781-8868
1129   COUNIHAN         BRENDA           NEW YORK         NY     718/383-2313
1988   COOPER           ANTHONY          NEW YORK         NY     212/587-1228

PROCLIB.STAFF 2715



1405   DACKO            JASON            PATERSON         NJ     201/732-2323
1430   DABROWSKI        SANDRA           BRIDGEPORT       CT     203/675-1647
1983   DEAN             SHARON           NEW YORK         NY     718/384-1647
1134   DELGADO          MARIA            STAMFORD         CT     203/781-1528
1118   DENNIS           ROGER            NEW YORK         NY     718/383-1122
1438   DABBOUSSI        KAMILLA          STAMFORD         CT     203/781-2229
1125   DUNLAP           DONNA            NEW YORK         NY     718/383-2094
1475   ELGES            MARGARETE        NEW YORK         NY     718/383-2828
1117   EDGERTON         JOSHUA           NEW YORK         NY     212/588-1239
1935   FERNANDEZ        KATRINA          BRIDGEPORT       CT     203/675-2962
1124   FIELDS           DIANA            WHITE PLAINS     NY     914/455-2998
1422   FUJIHARA         KYOKO            PRINCETON        NJ     201/812-0902
1616   FUENTAS          CARLA            NEW YORK         NY     718/384-3329
1406   FOSTER           GERALD           BRIDGEPORT       CT     203/675-6363
1120   GARCIA           JACK             NEW YORK         NY     718/384-4930
1094   GOMEZ            ALAN             BRIDGEPORT       CT     203/675-7181
1389   GOLDSTEIN        LEVI             NEW YORK         NY     718/384-9326
1905   GRAHAM           ALVIN            NEW YORK         NY     212/586-8815
1407   GREGORSKI        DANIEL           MT. VERNON       NY     914/468-1616
1114   GREENWALD        JANICE           NEW YORK         NY     212/588-1092
1410   HARRIS           CHARLES          STAMFORD         CT     203/781-0937
1439   HASENHAUER       CHRISTINA        BRIDGEPORT       CT     203/675-4987
1409   HAVELKA          RAYMOND          STAMFORD         CT     203/781-9697
1408   HENDERSON        WILLIAM          PRINCETON        NJ     201/812-4789
1121   HERNANDEZ        ROBERTO          NEW YORK         NY     718/384-3313
1991   HOWARD           GRETCHEN         BRIDGEPORT       CT     203/675-0007
1102   HERMANN          JOACHIM          WHITE PLAINS     NY     914/455-0976
1356   HOWARD           MICHAEL          NEW YORK         NY     212/586-8411
1545   HERRERO          CLYDE            STAMFORD         CT     203/781-1119
1292   HUNTER           HELEN            BRIDGEPORT       CT     203/675-4830
1440   JACKSON          LAURA            STAMFORD         CT     203/781-0088
1368   JEPSEN           RONALD           STAMFORD         CT     203/781-8413
1369   JONSON           ANTHONY          NEW YORK         NY     212/587-5385
1411   JOHNSEN          JACK             PATERSON         NJ     201/732-3678
1113   JOHNSON          LESLIE           NEW YORK         NY     718/383-3003
1704   JONES            NATHAN           NEW YORK         NY     718/384-0049
1900   KING             WILLIAM          NEW YORK         NY     718/383-3698
1126   KIMANI           ANNE             NEW YORK         NY     212/586-1229
1677   KRAMER           JACKSON          BRIDGEPORT       CT     203/675-7432
1441   LAWRENCE         KATHY            PRINCETON        NJ     201/812-3337
1421   LEE              RUSSELL          MT. VERNON       NY     914/468-9143
1119   LI               JEFF             NEW YORK         NY     212/586-2344
1834   LEBLANC          RUSSELL          NEW YORK         NY     718/384-0040
1777   LUFKIN           ROY              NEW YORK         NY     718/383-4413
1663   MARKS            JOHN             NEW YORK         NY     212/587-7742
1106   MARSHBURN        JASPER           STAMFORD         CT     203/781-1457
1103   MCDANIEL         RONDA            NEW YORK         NY     212/586-0013
1477   MEYERS           PRESTON          BRIDGEPORT       CT     203/675-8125
1476   MONROE           JOYCE            STAMFORD         CT     203/781-2837
1379   MORGAN           ALFRED           STAMFORD         CT     203/781-2216
1104   MORGAN           CHRISTOPHER      NEW YORK         NY     718/383-9740
1009   MORGAN           GEORGE           NEW YORK         NY     212/586-7753
1412   MURPHEY          JOHN             PRINCETON        NJ     201/812-4414
1115   MURPHY           ALICE            NEW YORK         NY     718/384-1982
1128   NELSON           FELICIA          BRIDGEPORT       CT     203/675-1166
1442   NEWKIRK          SANDRA           PRINCETON        NJ     201/812-3331

2716 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



1417   NEWKIRK          WILLIAM          PATERSON         NJ     201/732-6611
1478   NEWTON           JAMES            NEW YORK         NY     212/587-5549
1673   NICHOLLS         HENRY            STAMFORD         CT     203/781-7770
1839   NORRIS           DIANE            NEW YORK         NY     718/384-1767
1347   O'NEAL           BRYAN            NEW YORK         NY     718/384-0230
1423   OSWALD           LESLIE           MT. VERNON       NY     914/468-9171
1200   OVERMAN          MICHELLE         STAMFORD         CT     203/781-1835
1970   PARKER           ANNE             NEW YORK         NY     718/383-3895
1521   PARKER           JAY              NEW YORK         NY     212/587-7603
1354   PARKER           MARY             WHITE PLAINS     NY     914/455-2337
1424   PATTERSON        RENEE            NEW YORK         NY     212/587-8991
1132   PEARCE           CAROL            NEW YORK         NY     718/384-1986
1845   PEARSON          JAMES            NEW YORK         NY     718/384-2311
1556   PENNINGTON       MICHAEL          NEW YORK         NY     718/383-5681
1413   PETERS           RANDALL          PRINCETON        NJ     201/812-2478
1123   PETERSON         SUZANNE          NEW YORK         NY     718/383-0077
1907   PHELPS           WILLIAM          STAMFORD         CT     203/781-1118
1436   PORTER           SUSAN            NEW YORK         NY     718/383-5777
1385   RAYNOR           MILTON           BRIDGEPORT       CT     203/675-2846
1432   REED             MARILYN          MT. VERNON       NY     914/468-5454
1111   RHODES           JEREMY           PRINCETON        NJ     201/812-1837
1116   RICHARDS         CASEY            NEW YORK         NY     212/587-1224
1352   RIVERS           SIMON            NEW YORK         NY     718/383-3345
1555   RODRIGUEZ        JULIA            BRIDGEPORT       CT     203/675-2401
1038   RODRIGUEZ        MARIA            BRIDGEPORT       CT     203/675-2048
1420   ROUSE            JEREMY           PATERSON         NJ     201/732-9834
1561   SANDERS          RAYMOND          NEW YORK         NY     212/588-6615
1434   SANDERSON        EDITH            STAMFORD         CT     203/781-1333
1414   SANDERSON        NATHAN           BRIDGEPORT       CT     203/675-1715
1112   SANYERS          RANDY            NEW YORK         NY     718/384-4895
1390   SMART            JONATHAN         NEW YORK         NY     718/383-1141
1332   STEPHENSON       ADAM             BRIDGEPORT       CT     203/675-1497
1890   STEPHENSON       ROBERT           NEW YORK         NY     718/384-9874
1429   THOMPSON         ALICE            STAMFORD         CT     203/781-3857
1107   THOMPSON         WAYNE            NEW YORK         NY     718/384-3785
1908   TRENTON          MELISSA          NEW YORK         NY     212/586-6262
1830   TRIPP            KATHY            BRIDGEPORT       CT     203/675-2479
1882   TUCKER           ALAN             NEW YORK         NY     718/384-0216
1050   TUTTLE           THOMAS           WHITE PLAINS     NY     914/455-2119
1425   UNDERWOOD        JENNY            STAMFORD         CT     203/781-0978
1928   UPCHURCH         LARRY            WHITE PLAINS     NY     914/455-5009
1480   UPDIKE           THERESA          NEW YORK         NY     212/587-8729
1100   VANDEUSEN        RICHARD          NEW YORK         NY     212/586-2531
1995   VARNER           ELIZABETH        NEW YORK         NY     718/384-7113
1135   VEGA             ANNA             NEW YORK         NY     718/384-5913
1415   VEGA             FRANKLIN         NEW YORK         NY     718/384-2823
1076   VENTER           RANDALL          NEW YORK         NY     718/383-2321
1426   VICK             THERESA          PRINCETON        NJ     201/812-2424
1564   WALTERS          ANNE             NEW YORK         NY     212/587-3257
1221   WALTERS          DIANE            NEW YORK         NY     718/384-1918
1133   WANG             CHIN             NEW YORK         NY     212/587-1956
1435   WARD             ELAINE           NEW YORK         NY     718/383-4987
1418   WATSON           BERNARD          NEW YORK         NY     718/383-1298
1017   WELCH            DARIUS           NEW YORK         NY     212/586-5535
1443   WELLS            AGNES            STAMFORD         CT     203/781-5546
1131   WELLS            NADINE           NEW YORK         NY     718/383-1045

PROCLIB.STAFF 2717



1427   WHALEY           CAROLYN          MT. VERNON       NY     914/468-4528
1036   WONG             LESLIE           NEW YORK         NY     212/587-2570
1130   WOOD             DEBORAH          NEW YORK         NY     212/587-0013
1127   WOOD             SANDRA           NEW YORK         NY     212/587-2881
1433   YANCEY           ROBIN            PRINCETON        NJ     201/812-1874
1431   YOUNG            DEBORAH          STAMFORD         CT     203/781-2987
1122   YOUNG            JOANN            NEW YORK         NY     718/384-2021
1105   YOUNG            LAWRENCE         NEW YORK         NY     718/384-0008
;

PROCLIB.STAFF2
data proclib.staff;
   input Name & $16. IdNumber $ Salary
         Site $ HireDate date9.;
   format hiredate date9.;
   datalines;
Capalleti, Jimmy  2355 21163 BR1 30JAN2009
Chen, Len         5889 20976 BR1 18JUN2006
Davis, Brad       3878 19571 BR2 20MAR2004
Leung, Brenda     4409 34321 BR2 18SEP2014
Martinez, Maria   3985 49056 US2 10JAN2013
Orfali, Philip    0740 50092 US2 16FEB2003
Patel, Mary       2398 35182 BR3 02FEB2010
Smith, Robert     5162 40100 BR5 15APR2006
Sorrell, Joseph   4421 38760 US1 19JUN2011
Zook, Carla       7385 22988 BR3 18DEC2010
;

PROCLIB.SUPERV
data proclib.superv;
   input supid $4. +8 state $2. +5  jobcat  $2.;
   label supid='Supervisor Id' jobcat='Job Category';
   datalines;
1677        CT     BC
1834        NY     BC
1431        CT     FA
1433        NJ     FA
1983        NY     FA
1385        CT     ME
1420        NJ     ME
1882        NY     ME
1935        CT     NA
1417        NJ     NA
1352        NY     NA

2718 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



1106        CT     PT
1442        NJ     PT
1118        NY     PT
1405        NJ     SC
1564        NY     SC
1639        CT     TA
1401        NJ     TA
1126        NY     TA
;

RADIO
This DATA step uses an INFILE statement to read data that is stored in an external 
file.

data radio;
   infile 'input-file' missover;
   input /(time1-time7) ($1. +1);
   listener=_n_;
run;

Here is the data that is stored in the external file:

967 32 f 5 3 5
7 5 5 5 7 0 0 0 8 7 0 0 8 0
781 30 f 2 3 5
5 0 0 0 5 0 0 0 4 7 5 0 0 0
859 39 f 1 0 5
1 0 0 0 1 0 0 0 0 0 0 0 0 0
859 40 f 6 1 5
7 5 0 5 7 0 0 0 0 0 0 5 0 0
467 37 m 2 3 1
1 5 5 5 5 4 4 8 8 0 0 0 0 0
220 35 f 3 1 7
7 0 0 0 7 0 0 0 7 0 0 0 0 0
833 42 m 2 2 4
7 0 0 0 7 5 4 7 4 0 1 4 4 0
967 39 f .5 1 7
7 0 0 0 7 7 0 0 0 0 0 0 8 0
677 28 m .5 .5 7
7 0 0 0 0 0 0 0 0 0 0 0 0 0
833 28 f 3 4 1
1 0 0 0 0 1 1 1 1 0 0 0 1 1
677 24 f 3 1 2
2 0 0 0 0 0 0 2 0 8 8 0 0 0
688 32 m 5 2 4
5 5 0 4 8 0 0 5 0 8 0 0 0 0
542 38 f 6 8 5
5 0 0 5 5 5 0 5 5 5 5 5 5 0
677 27 m 6 1 1
1 1 0 4 4 0 0 1 4 0 0 0 0 0
779 37 f 2.5 4 7
7 0 0 0 7 7 0 7 7 4 4 7 8 0

RADIO 2719



362 31 f 1 2 2
8 0 0 0 8 0 0 0 0 0 8 8 0 0
859 29 m 10 3 4
4 4 0 2 2 0 0 4 0 0 0 4 4 0
467 24 m 5 8 1
7 1 1 1 7 1 1 0 1 7 1 1 1 1
851 34 m 1 2 8
0 0 0 0 8 0 0 0 4 0 0 0 8 0
859 23 f 1 1 8
8 0 0 0 8 0 0 0 0 0 0 0 0 8
781 34 f 9 3 1
2 1 0 1 4 4 4 0 1 1 1 1 4 4
851 40 f 2 4 5
5 0 0 0 5 0 0 5 0 0 5 5 0 0
783 34 m 3 2 4
7 0 0 0 7 4 4 0 0 4 4 0 0 0
848 29 f 4 1.5 7
7 4 4 1 7 0 0 0 7 0 0 7 0 0
851 28 f 1 2 2
2 0 2 0 2 0 0 0 0 2 2 2 0 0
856 42 f 1.5 1 2
2 0 0 0 0 0 0 2 0 0 0 0 0 0
859 29 m .5 .5 5
5 0 0 0 1 0 0 0 0 0 8 8 5 0
833 29 m 1 3 2
2 0 0 0 2 2 0 0 4 2 0 2 0 0
859 23 f 10 3 1
1 5 0 8 8 1 4 0 1 1 1 1 1 4
781 37 f .5 2 7
7 0 0 0 1 0 0 0 1 7 0 1 0 0
833 31 f 5 4 1
1 0 0 0 1 0 0 0 4 0 4 0 0 0
942 23 f 4 2 1
1 0 0 0 1 0 1 0 1 1 0 0 0 0
848 33 f 5 4 1
1 1 0 1 1 0 0 0 1 1 1 0 0 0
222 33 f 2 0 1
1 0 0 0 1 0 0 0 0 0 0 0 0 0
851 45 f .5 1 8
8 0 0 0 8 0 0 0 0 0 8 0 0 0
848 27 f 2 4 1
1 0 0 0 1 1 0 0 4 1 1 1 1 1
781 38 m 2 2 1
5 0 0 0 1 0 0 0 0 0 1 1 0 0
222 27 f 3 1 2
2 0 2 0 2 2 0 0 2 0 0 0 0 0
467 34 f 2 2 1
1 0 0 0 0 1 0 1 0 0 0 0 1 0
833 27 f 8 8 1
7 0 1 0 7 4 0 0 1 1 1 4 1 0
677 49 f 1.5 0 8
8 0 8 0 8 0 0 0 0 0 0 0 0 0
849 43 m 1 4 1
1 0 0 0 4 0 0 0 4 0 1 0 0 0
467 28 m 2 1 7
7 0 0 0 7 0 0 7 0 0 1 0 0 0

2720 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



732 29 f 1 0 2
2 0 0 0 2 0 0 0 0 0 0 0 0 0
851 31 m 2 2 2
2 5 0 6 0 0 8 0 2 2 8 2 0 0
779 42 f 8 2 2
7 2 0 2 7 0 0 0 0 0 0 0 2 0
493 40 m 1 3 3
3 0 0 0 5 3 0 5 5 0 0 0 1 1
859 30 m 1 0 7
7 0 0 0 7 0 0 0 0 0 0 0 0 0
833 36 m 4 2 5
7 5 0 5 0 5 0 0 7 0 0 0 5 0
467 30 f 1 4 1
0 0 0 0 1 0 6 0 0 1 1 1 0 6
859 32 f 3 5 2
2 2 2 2 2 2 6 6 2 2 2 2 2 6
851 43 f 8 1 5
7 5 5 5 0 0 0 4 0 0 0 0 0 0
848 29 f 3 5 1
7 0 0 0 7 1 0 0 1 1 1 1 1 0
833 25 f 2 4 5
7 0 0 0 5 7 0 0 7 5 0 0 5 0
783 33 f 8 3 8
8 0 8 0 7 0 0 0 8 0 5 4 0 5
222 26 f 10 2 1
1 1 0 1 1 0 0 0 3 1 1 0 0 0
222 23 f 3 2 2
2 2 2 2 7 0 0 2 2 0 0 0 0 0
859 50 f 1 5 4
7 0 0 0 7 0 0 5 4 4 4 7 0 0
833 26 f 3 2 1
1 0 0 1 1 0 0 5 5 0 1 0 0 0
467 29 m 7 2 1
1 1 1 1 1 0 0 1 1 1 0 0 0 0
859 35 m .5 2 2
7 0 0 0 2 0 0 7 5 0 0 4 0 0
833 33 f 3 3 6
7 0 0 0 6 8 0 8 0 0 0 8 6 0
221 36 f .5 1 5
0 7 0 0 0 7 0 0 7 0 0 7 7 0
220 32 f 2 4 5
5 0 5 0 5 5 5 0 5 5 5 5 5 5
684 19 f 2 4 2
0 2 0 2 0 0 0 0 0 2 2 0 0 0
493 55 f 1 0 5
5 0 0 5 0 0 0 0 7 0 0 0 0 0
221 27 m 1 1 7
7 0 0 0 0 0 0 0 5 0 0 0 5 0
684 19 f 0 .5 1
7 0 0 0 0 1 1 0 0 0 0 0 1 1
493 38 f .5 .5 5
0 8 0 0 5 0 0 0 5 0 0 0 0 0
221 26 f .5 2 1
0 1 0 0 0 1 0 0 5 5 5 1 0 0
684 18 m 1 .5 1
0 2 0 0 0 0 1 0 0 0 0 1 1 0

RADIO 2721



684 19 m 1 1 1
0 0 0 1 1 0 0 0 0 0 1 0 0 0
221 29 m .5 .5 5
0 0 0 0 0 5 5 0 0 0 0 0 5 5
683 18 f 2 4 8
0 0 0 0 8 0 0 0 8 8 8 0 0 0
966 23 f 1 2 1
1 5 5 5 1 0 0 0 0 1 0 0 1 0
493 25 f 3 5 7
7 0 0 0 7 2 0 0 7 0 2 7 7 0
683 18 f .5 .5 2
1 0 0 0 0 0 5 0 0 1 0 0 0 1
382 21 f 3 1 8
0 8 0 0 5 8 8 0 0 8 8 0 0 0
683 18 f 4 6 2
2 0 0 0 2 2 2 0 2 0 2 2 2 0
684 19 m .5 2 1
0 0 0 0 1 1 0 0 0 1 1 1 1 5
684 19 m 1.5 3.5 2
2 0 0 0 2 0 0 0 0 0 2 5 0 0
221 23 f 1 5 1
7 5 1 5 1 3 1 7 5 1 5 1 3 1
684 18 f 2 3 1
2 0 0 1 1 1 1 7 2 0 1 1 1 1
683 19 f 3 5 2
2 0 0 2 0 6 1 0 1 1 2 2 6 1
683 19 f 3 5 1
2 0 0 2 0 6 1 0 1 1 2 0 2 1
221 35 m 3 5 5
7 5 0 1 7 0 0 5 5 5 0 0 0 0
221 43 f 1 4 5
1 0 0 0 5 0 0 5 5 0 0 0 0 0
493 32 f 2 1 6
0 0 0 6 0 0 0 0 0 0 0 0 4 0
221 24 f 4 5 2
2 0 5 0 0 2 4 4 4 5 0 0 2 2
684 19 f 2 3 2
0 5 5 2 5 0 1 0 5 5 2 2 2 2
221 19 f 3 3 8
0 1 1 8 8 8 4 0 5 4 1 8 8 4
221 29 m 1 1 5
5 5 5 5 5 5 5 5 5 5 5 5 5 5
221 21 m 1 1 1
1 0 0 0 0 0 5 1 0 0 0 0 0 5
683 20 f 1 2 2
0 0 0 0 2 0 0 0 2 0 0 0 0 0
493 54 f 1 1 5
7 0 0 5 0 0 0 0 0 0 5 0 0 0
493 45 m 4 6 5
7 0 0 0 7 5 0 0 5 5 5 5 5 5
850 44 m 2.5 1.5 7
7 0 7 0 4 7 5 0 5 4 3 0 0 4
220 33 m 5 3 5
1 5 0 5 1 0 0 0 0 0 0 0 5 5
684 20 f 1.5 3 1
1 0 0 0 1 0 1 0 1 0 0 1 1 0

2722 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



966 63 m 3 5 3
5 4 7 5 4 5 0 5 0 0 5 5 4 0
683 21 f 4 6 1
0 1 0 1 1 1 1 0 1 1 1 1 1 1
493 23 f 5 2 5
7 5 0 4 0 0 0 0 1 1 1 1 1 0
493 32 f 8 8 5
7 5 0 0 7 0 5 5 5 0 0 7 5 5
942 33 f 7 2 5
0 5 5 4 7 0 0 0 0 0 0 7 8 0
493 34 f .5 1 5
5 0 0 0 5 0 0 0 0 0 6 0 0 0
382 40 f 2 2 5
5 0 0 0 5 0 0 5 0 0 5 0 0 0
362 27 f 0 3 8
0 0 0 0 0 0 0 0 0 0 0 0 8 0
542 36 f 3 3 7
7 0 0 0 7 1 0 0 0 7 1 1 0 0
966 39 f 3 6 5
7 0 0 0 7 5 0 0 7 0 5 0 5 0
849 32 m 1 .5 7
7 0 0 0 5 0 0 0 7 4 4 5 7 0
677 52 f 3 2 3
7 0 0 0 0 7 0 0 0 7 0 0 3 0
222 25 m 2 4 1
1 0 0 0 1 0 0 0 1 0 1 0 0 0
732 42 f 3 2 7
7 0 0 0 1 7 5 5 7 0 0 3 4 0
467 26 f 4 4 1
7 0 1 0 7 1 0 0 7 7 4 7 0 0
467 38 m 2.5 0 1
1 0 0 0 1 0 0 0 0 0 0 0 0 0
382 37 f 1.5 .5 7
7 0 0 0 7 0 0 0 3 0 0 0 3 0
856 45 f 3 3 7
7 0 0 0 7 5 0 0 7 7 4 0 0 0
677 33 m 3 2 7
7 0 0 4 7 0 0 0 7 0 0 0 0 0
490 27 f .5 1 2
2 0 0 0 2 0 0 0 2 0 2 0 0 0
362 27 f 1.5 2 2
2 0 0 0 1 0 4 0 1 0 0 0 4 4
783 25 f 2 1 1
1 0 0 0 1 7 0 0 0 0 1 1 1 0
546 30 f 8 3 1
1 1 1 1 1 0 0 1 0 5 5 0 0 0
677 30 f 2 0 1
1 0 0 0 0 1 0 0 0 0 0 0 0 1
221 35 f 2 2 1
1 0 0 0 1 0 1 0 1 1 1 0 0 0
966 32 f 6 1 7
7 1 1 1 7 4 0 1 7 1 8 8 4 0
222 28 f 1 5 4
7 0 0 0 4 0 0 4 4 4 4 0 0 0
467 29 f 5 3 4
4 5 5 5 1 4 4 5 1 1 1 1 4 4

RADIO 2723



467 32 m 3 4 1
1 0 1 0 4 0 0 0 4 0 0 0 1 0
966 30 m 1.5 1 7
7 0 0 0 7 5 0 7 0 0 0 0 5 0
967 38 m 14 4 7
7 7 7 7 7 0 4 8 0 0 0 0 4 0
490 28 m 8 1 1
7 1 1 1 1 0 0 7 0 0 8 0 0 0
833 30 f .5 1 6
6 0 0 0 6 0 0 0 0 6 0 0 6 0
851 40 m 1 0 7
7 5 5 5 7 0 0 0 0 0 0 0 0 0
859 27 f 2 5 2
6 0 0 0 2 0 0 0 0 0 0 2 2 2
851 22 f 3 5 2
7 0 2 0 2 2 0 0 2 0 8 0 2 0
967 38 f 1 1.5 7
7 0 0 0 7 5 0 7 4 0 0 7 5 0
856 34 f 1.5 1 1
0 1 0 0 0 1 0 0 4 0 0 0 0 0
222 33 m .1 .1 7
7 0 0 0 7 0 0 0 0 0 7 0 0 0
856 22 m .50 .25 1
0 1 0 0 1 0 0 0 0 0 0 0 0 0
677 30 f 2 2 4
1 0 4 0 4 0 0 0 4 0 0 0 0 0
859 25 m 2 3 7
0 0 0 0 0 7 0 0 7 0 2 0 0 1
833 35 m 2 6 7
7 0 0 0 7 1 1 0 4 7 4 7 1 1
677 35 m 10 4 1
1 1 1 1 1 8 6 8 1 0 0 8 8 8
848 29 f 5 3 8
8 0 0 0 8 8 0 0 0 8 8 8 0 0
688 26 m 3 1 1
1 1 7 1 1 7 0 0 0 8 8 0 0 0
490 41 m 2 2 5
5 0 0 0 0 0 5 5 0 0 0 0 0 5
493 35 m 4 4 7
7 5 0 5 7 0 0 7 7 7 7 0 0 0
677 27 m 15 11 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
848 27 f 3 5 1
1 1 0 0 1 1 0 0 1 1 1 1 0 0
362 30 f 1 0 1
1 0 0 0 7 5 0 0 0 0 0 0 0 0
783 29 f 1 1 4
4 0 0 0 4 0 0 0 4 0 0 0 4 0
467 39 f .5 2 4
7 0 4 0 4 4 0 0 4 4 4 4 4 4
677 27 m 2 2 7
7 0 0 0 7 0 0 7 7 0 0 7 0 0
221 23 f 2.5 1 1
1 0 0 0 1 0 0 0 0 0 0 0 0 0
677 29 f 1 1 7
0 0 0 0 7 0 0 0 7 0 0 0 0 0

2724 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



783 32 m 1 2 5
4 5 5 5 4 2 0 0 0 0 3 2 2 0
833 25 f 1 0 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0
859 24 f 7 3 7
1 0 0 0 1 0 0 0 0 1 0 0 1 0
677 29 m 2 2 8
0 8 8 0 8 0 0 0 8 8 8 0 0 0
688 31 m 8 2 5
7 5 5 5 5 7 0 0 7 7 0 0 0 0
856 31 m 9 4 1
1 1 1 1 1 0 0 0 0 0 0 0 1 0
856 44 f 1 0 6
6 0 0 0 6 0 0 0 0 0 0 0 0 0
677 37 f 3 3 1
0 0 1 0 0 0 0 0 4 4 0 0 0 0
859 27 m 2 .5 2
2 2 2 2 2 2 2 2 0 0 0 0 0 2
781 30 f 10 4 2
2 0 0 0 2 0 2 0 0 0 0 0 0 2
362 27 m 12 4 3
3 1 1 1 1 3 3 3 0 0 0 0 3 0
362 33 f 2 4 1
1 0 0 0 7 0 0 7 1 1 1 1 1 0
222 26 f 8 1 1
1 1 1 1 0 0 0 1 0 0 0 0 0 0
779 37 f 6 3 1
1 1 1 1 1 0 0 1 1 0 0 0 1 0
467 32 f 1 1 2
2 0 0 0 0 0 0 0 2 0 0 2 0 0
859 23 m 1 1 1
1 0 0 0 1 1 0 1 0 0 0 0 1 1
781 33 f 1 .5 6
6 0 0 0 6 0 0 0 0 0 0 0 0 0
779 28 m 5 2 1
1 1 1 1 1 0 0 0 0 7 7 1 1 0
677 28 m 3 1 5
7 5 5 5 5 6 0 0 6 6 6 6 6 0
677 25 f 9 2 5
1 5 5 5 5 1 1 0 1 1 1 1 1 1
848 30 f 6 2 8
8 0 0 0 2 7 0 0 0 0 2 0 2 0
546 36 f 4 6 4
7 0 0 0 4 4 0 5 5 5 5 2 4 4
222 30 f 2 3 2
2 2 0 0 2 0 0 0 2 0 2 2 0 0
383 32 m 4 1 2
2 0 0 0 2 0 0 2 0 0 0 0 0 0
851 43 f 8 1 6
4 6 0 6 4 0 0 0 0 0 0 0 0 0
222 27 f 1 3 1
1 1 0 1 1 1 0 0 1 0 0 0 4 0
833 22 f 1.5 2 1
1 0 0 0 1 1 0 0 1 1 1 0 0 0
467 29 f 2 1 8
8 0 8 0 8 0 0 0 0 0 8 0 0 0

RADIO 2725



856 28 f 2 3 1
1 0 0 0 1 0 0 0 1 0 0 1 0 0
580 31 f 2.5 2.5 6
6 6 6 6 6 6 6 6 1 1 1 1 6 6
688 39 f 8 8 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3
677 37 f 1.5 .5 1
6 1 1 1 6 6 0 0 1 1 6 6 6 0
859 38 m 3 6 3
7 0 0 0 7 3 0 0 3 0 3 0 0 0
677 25 f 7 1 1
0 1 1 1 2 0 0 0 1 2 1 1 1 0
848 36 f 7 1 1
0 1 0 1 1 0 0 0 0 0 0 1 1 0
781 31 f 2 4 1
1 0 0 0 1 1 0 1 1 1 1 1 0 0
781 40 f 2 2 8
8 0 0 8 8 0 0 0 0 0 8 8 0 0
677 25 f 3 5 1
1 6 1 6 6 3 0 0 2 2 1 1 1 1
779 33 f 3 2 1
1 0 1 0 0 0 1 0 1 0 0 0 1 0
677 25 m 7 1.5 1
1 1 0 1 1 0 0 0 0 0 1 0 0 0
362 35 f .5 0 1
1 0 0 0 1 0 0 0 0 0 0 0 0 0
677 41 f 6 2 7
7 7 0 7 7 0 0 0 0 0 8 0 0 0
677 24 m 5 1 5
1 5 0 5 0 0 0 0 1 0 0 0 0 0
833 29 f .5 0 6
6 0 0 0 6 0 0 0 0 0 0 0 0 0
362 30 f 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 0 0
850 26 f 6 12 6
6 0 0 0 2 2 2 6 6 6 0 0 6 6
467 25 f 2 3 1
1 0 0 6 1 1 0 0 0 0 1 1 1 1
967 29 f 1 2 7
7 0 0 0 7 0 0 7 7 0 0 0 0 0
833 31 f 1 1 7
7 0 7 0 7 3 0 0 3 3 0 0 0 0
859 40 f 7 1 5
1 5 0 5 5 1 0 0 1 0 0 0 0 0
848 31 m 1 2 1
1 0 0 0 1 1 0 0 4 4 1 4 0 0
222 32 f 2 3 3
3 0 0 0 0 7 0 0 3 0 8 0 0 0
783 33 f 2 0 4
7 0 0 0 7 0 0 0 4 0 4 0 0 0
856 28 f 8 4 2
0 2 0 2 2 0 0 0 2 0 2 0 4 0
781 30 f 3 5 1
1 1 1 1 1 1 0 0 1 1 1 1 1 0
850 25 f 6 3 1
7 5 0 5 7 1 0 0 7 0 1 0 1 0

2726 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



580 33 f 2.5 4 2
2 0 0 0 2 0 0 0 0 0 8 8 0 0
677 38 f 3 3 1
1 0 0 0 1 0 1 1 1 0 1 0 0 4
677 26 f 2 2 1
1 0 1 0 1 0 0 0 1 1 1 0 0 0
467 52 f 3 2 2
2 6 6 6 6 2 0 0 2 2 2 2 0 0
542 31 f 1 3 1
1 0 1 0 1 0 0 0 1 1 1 1 1 0
859 50 f 9 3 6
6 6 6 6 6 6 6 6 6 3 3 3 6 6
779 26 f 1 2 1
7 0 1 0 1 1 4 1 4 1 1 1 4 4
779 36 m 1.5 2 4
1 4 0 4 4 0 0 4 4 4 4 0 0 0
222 31 f 0 3 7
1 0 0 0 7 0 0 0 0 0 0 0 0 0
362 27 f 1 1 1
1 0 1 0 1 4 0 4 4 1 0 4 4 0
967 32 f 3 2 7
7 0 0 0 7 0 0 0 1 0 0 1 0 0
362 29 f 10 2 2
2 2 2 2 2 2 2 2 2 2 2 7 0 0
677 27 f 3 4 1
0 5 1 1 0 5 0 0 0 1 1 1 0 0
546 32 m 5 .5 8
8 0 0 0 8 0 0 0 8 0 0 0 0 0
688 38 m 2 3 2
2 0 0 0 2 0 0 0 2 0 0 0 1 0
362 28 f 1 1 1
1 0 0 0 1 1 0 4 0 0 0 0 4 0
851 32 f .5 2 4
5 0 0 0 4 0 0 0 0 0 0 0 2 0
967 43 f 2 2 1
1 0 0 0 1 0 0 1 7 0 0 0 1 0
467 44 f 10 4 6
7 6 0 6 6 0 6 0 0 0 0 0 0 6
467 23 f 5 3 1
0 2 1 2 1 0 0 0 1 1 1 1 1 1
783 30 f 1 .5 1
1 0 0 0 1 0 0 0 0 0 0 7 0 0
677 29 f 3 1 2
2 2 2 2 2 0 0 0 0 0 0 0 0 0
859 26 f 9.5 1.5 2
2 2 2 2 2 0 0 2 2 0 0 0 0 0
222 28 f 3 0 2
2 0 0 0 2 0 0 0 0 0 2 0 0 0
966 37 m 2 1 1
7 1 1 1 7 0 0 0 7 0 0 0 0 0
859 31 f 10 10 1
0 1 1 1 1 0 0 0 1 1 0 0 1 0
781 27 f 2 1 2
2 0 0 0 1 0 0 0 4 0 0 0 0 0
677 31 f .5 .5 6
7 0 0 0 0 0 0 0 6 0 0 0 0 0

RADIO 2727



848 28 f 5 1 2
2 2 0 2 0 0 0 0 2 0 0 0 0 0
781 24 f 3 3 6
1 6 6 6 1 6 0 0 0 0 1 0 1 1
856 27 f 1.5 1 6
2 6 6 6 2 5 0 2 0 0 5 2 0 0
382 30 m 1 2 7
7 0 0 0 7 0 4 7 0 0 0 7 4 4
848 25 f 9 3 1
7 1 1 5 1 0 0 0 1 1 1 1 1 0
382 30 m 1 2 4
7 0 0 0 7 0 4 7 0 0 0 7 4 4
688 40 m 2 3 1
1 0 0 0 1 3 1 0 5 0 4 4 7 1
856 40 f .5 5 5
3 0 0 0 3 0 0 0 0 0 5 5 0 0
966 25 f 2 .5 2
1 0 0 0 2 6 0 0 4 0 0 0 0 0
859 30 f 2 4 2
2 0 0 0 0 2 0 0 0 0 2 0 0 0
849 29 m 10 1 5
7 5 5 5 7 5 5 0 0 0 0 0 7 0
781 28 m 1.5 3 4
1 0 0 0 1 4 4 0 4 4 1 1 4 0
467 35 f 4 2 6
7 6 7 6 6 7 6 7 7 7 7 7 7 6
222 32 f 10 5 1
1 1 0 1 1 0 0 1 1 1 0 0 1 0
677 32 f 1 0 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0
222 54 f 21 4 3
5 0 0 0 7 0 0 7 0 0 0 0 0 0
677 30 m 4 6 1
7 0 0 0 0 1 1 1 7 1 1 0 8 1
683 29 f 1 2 8
8 0 0 0 8 0 0 0 0 8 8 0 0 0
467 38 m 3 5 1
1 0 0 0 1 0 0 1 1 0 0 0 0 0
781 29 f 2 3 8
8 0 0 0 8 8 0 0 8 8 0 8 8 0
781 30 f 1 0 5
5 0 0 0 0 5 0 0 0 0 0 0 0 0
783 40 f 1.5 3 1
1 0 0 0 1 4 0 0 1 1 1 0 0 0
851 30 f 1 1 6
6 0 0 0 6 0 0 0 6 0 0 6 0 0
851 40 f 1 1 5
5 0 0 0 5 0 0 0 0 1 0 0 0 0
779 40 f 1 0 2
2 0 0 0 2 0 0 0 0 0 0 0 0 0
467 37 f 4 8 1
1 0 0 0 1 0 3 0 3 1 1 1 0 0
859 37 f 4 3 3
0 3 7 0 0 7 0 0 0 7 8 3 7 0
781 26 f 4 1 2
2 2 0 2 1 0 0 0 2 0 0 0 0 0

2728 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



859 23 f 8 3 3
3 2 0 2 3 0 0 0 1 0 0 3 0 0
967 31 f .5 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0
851 38 m 4 2 5
7 5 0 5 4 0 4 7 7 0 4 0 8 0
467 30 m 2 1 2
2 2 0 2 0 0 0 0 2 0 2 0 0 0
848 33 f 2 2 7
7 0 0 0 0 7 0 7 7 0 0 0 7 0
688 35 f 5 8 3
2 2 2 2 2 0 0 3 3 3 3 3 0 0
467 27 f 2 3 1
1 0 1 0 0 1 0 0 1 1 1 0 0 0
783 42 f 3 1 1
1 0 0 0 1 0 0 0 1 0 1 1 0 0
687 40 m 1.5 2 1
7 0 0 0 1 1 0 0 1 0 7 0 1 0
779 30 f 4 8 7
7 0 0 0 7 0 6 7 4 2 2 0 0 6
222 34 f 9 0 8
8 2 0 2 8 0 0 0 0 0 0 0 0 0
467 28 m 3 1 2
2 0 0 0 2 2 0 0 0 2 2 0 0 0
222 28 f 8 4 2
1 2 1 2 2 0 0 1 2 2 0 0 2 0
542 35 m 2 3 2
6 0 7 0 7 0 7 0 0 0 2 2 0 0
677 31 m 12 4 3
7 3 0 3 3 4 0 0 4 4 4 0 0 0
783 45 f 1.5 2 6
6 0 0 0 6 0 0 6 6 0 0 0 0 0
942 34 f 1 .5 4
4 0 0 0 1 0 0 0 0 0 2 0 0 0
222 30 f 8 4 1
1 1 1 1 1 0 0 0 1 1 0 0 0 0
967 38 f 1.5 2 7
7 0 0 0 7 0 0 7 1 1 1 1 0 0
783 37 f 2 1 1
6 6 1 1 6 6 0 0 6 1 1 1 6 0
467 31 f 1.5 2 2
2 0 7 0 7 0 0 7 7 0 0 0 7 0
859 48 f 3 0 7
7 0 0 0 0 0 0 0 0 7 0 0 0 0
490 35 f 1 1 7
7 0 0 0 7 0 0 0 0 0 0 0 8 0
222 27 f 3 2 3
8 0 0 0 3 8 0 3 3 0 0 0 0 0
382 36 m 3 2 4
7 0 5 4 7 4 4 0 7 7 4 7 0 4
859 37 f 1 1 2
7 0 0 0 0 2 0 2 2 0 0 0 0 2
856 29 f 3 1 1
1 0 0 0 1 1 1 1 0 0 1 1 0 1
542 32 m 3 3 7
7 0 0 0 0 7 7 7 0 0 0 0 7 7

RADIO 2729



783 31 m 1 1 1
1 0 0 0 1 0 0 0 1 1 1 0 0 0
833 35 m 1 1 1
5 4 1 5 1 0 0 1 1 0 0 0 0 0
782 38 m 30 8 5
7 5 5 5 5 0 0 4 4 4 4 4 0 0
222 33 m 3 3 1
1 1 1 1 1 1 1 1 4 1 1 1 1 1
467 24 f 2 4 1
0 0 1 0 1 0 0 0 1 1 1 0 0 0
467 34 f 1 1 1
1 0 0 0 1 0 0 1 1 0 0 0 0 0
781 53 f 2 1 5
5 0 0 0 5 5 0 0 0 0 5 5 5 0
222 30 m 2 5 3
6 3 3 3 6 0 0 0 3 3 3 3 0 0
688 26 f 2 2 1
1 0 0 0 1 0 0 0 1 0 1 1 0 0
222 29 m 8 5 1
1 6 0 6 1 0 0 1 1 1 1 0 0 0
783 33 m 1 2 7
7 0 0 0 7 0 0 0 7 0 0 0 7 0
781 39 m 1.5 2.5 2
2 0 2 0 2 0 0 0 2 2 2 0 0 0
850 22 f 2 1 1
1 0 0 0 1 1 1 0 5 0 0 1 0 0
493 36 f 1 0 5
0 0 0 0 7 0 0 0 0 0 0 0 0 0
967 46 f 2 4 7
7 5 0 5 7 0 0 0 4 7 4 0 0 0
856 41 m 2 2 4
7 4 0 0 7 4 0 4 0 0 0 7 0 0
546 25 m 5 5 8
8 8 0 0 0 0 0 0 0 0 0 0 0 0
222 27 f 4 4 3
2 2 2 3 7 7 0 2 2 2 3 3 3 0
688 23 m 9 3 3
3 3 3 3 3 7 0 0 3 0 0 0 0 0
849 26 m .5 .5 8
8 0 0 0 8 0 0 0 0 8 0 0 0 0
783 29 f 3 3 1
1 0 0 0 4 0 0 4 1 0 1 0 0 0
856 34 f 1.5 2 1
7 0 0 0 7 0 0 7 4 0 0 7 0 0
966 33 m 3 5 4
7 0 0 0 7 4 5 0 7 0 0 7 4 4
493 34 f 2 5 1
1 0 0 0 1 0 0 0 7 0 1 1 8 0
467 29 m 2 4 2
2 0 0 0 2 0 0 2 2 2 2 2 2 2
677 28 f 1 4 1
1 1 1 1 1 0 0 0 1 0 1 0 0 0
781 27 m 2 2 1
1 0 1 0 4 2 4 0 2 2 1 0 1 4
467 24 m 4 4 1
7 1 0 1 1 1 0 7 1 0 0 0 0 0

2730 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



859 26 m 5 5 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
848 27 m 7 2 5
7 5 0 5 4 5 0 0 0 7 4 4 0 4
677 25 f 1 2 8
8 0 0 0 0 5 0 0 8 0 0 0 2 0
222 26 f 3.5 0 2
2 0 0 0 2 0 0 0 0 0 0 0 0 0
833 32 m 1 2 1
1 0 0 0 1 0 0 0 5 0 1 0 0 0
781 28 m 2 .5 7
7 0 0 0 7 0 0 0 4 0 0 0 0 0
783 28 f 1 1 1
1 0 0 0 1 0 0 0 0 0 1 1 0 0
222 28 f 5 5 2
2 6 6 2 2 0 0 0 2 2 0 0 2 2
851 33 m 4 5 3
1 0 0 0 7 3 0 3 3 3 3 3 7 5
859 39 m 2 1 1
1 0 0 0 1 0 0 0 0 0 0 1 0 0
848 45 m 2 2 7
7 0 0 0 7 0 0 0 7 0 0 0 0 0
467 37 m 2 2 7
7 0 0 0 0 7 0 0 0 7 0 0 7 0
859 32 m .25 .25 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0

SALES
data sales;
   input Region $ CitySize $ Population Product $ SaleType $ Units NetSales;
   cards;
NC S 25000 A100 R 150 3750.00
NC M  125000 A100 R 350 8650.00
NC L 837000 A100 R 800 20000.00
NC S 25000 A100 W 150 3000.00
NC M 125000 A100 W 350 7000.00
NC M 625000 A100 W 750 15000.00
TX M 227000 A100 W 350 7250.00
TX L 5000 A100 W 750 5000.00
;

SALES 2731



2732 Appendix 3 / Raw Data and DATA Steps for Base SAS Procedures



Appendix 4
ICU License

ICU Licence: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 . . . . . . . . . . . . . . . . . . . . . 2733

Third-Party Software Licenses: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 . . 2734
1. Unicode Data Files and Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2734
2. Chinese/Japanese Word Break Dictionary Data (cjdict.txt) . . . . . . . . . . . . . . . . . . 2735
3. Lao Word Break Dictionary Data (laodict.txt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2738
4. Burmese Word Break Dictionary Data (burmesedict.txt) . . . . . . . . . . . . . . . . . . . . 2739
3. Time Zone Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2740

Unicode, Inc. License Agreement - Data Files and Software: ICU 58 and Later 2740

ICU Licence: ICU 1.8.1–ICU 57 and 
ICU4J 1.3.1–ICU4J 57

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2015 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this 
software and associated documentation files (the "Software"), to deal in the 
Software without restriction, including without limitation the rights to use, copy, 
modify, merge, publish, distribute, and/or sell copies of the Software, and to permit 
persons to whom the Software is furnished to do so, provided that the above 
copyright notice(s) and this permission notice appear in all copies of the Software 
and that both the above copyright notice(s) and this permission notice appear in 
supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES 
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE 
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE 
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL 

2733



DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF 
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, 
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used 
in advertising or otherwise to promote the sale, use or other dealings in this 
Software without prior written authorization of the copyright holder.

___________________________________________________________________
__

All trademarks and registered trademarks mentioned herein are the property of their 
respective owners.

___________________________________________________________________
__

Third-Party Software Licenses: ICU 
1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57

This section contains third-party software notices and/or additional terms for 
licensed third-party software components included within ICU libraries

1. Unicode Data Files and Software
COPYRIGHT AND PERMISSION NOTICE

Copyright © 1991-2015 Unicode, Inc. All rights reserved. Distributed under the 
Terms of Use in http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining a copy of the 
Unicode data files and any associated documentation (the "Data Files") or Unicode 
software and any associated documentation (the "Software") to deal in the Data 
Files or Software without restriction, including without limitation the rights to use, 
copy, modify, merge, publish, distribute, and/or sell copies of the Data Files or 
Software, and to permit persons to whom the Data Files or Software are furnished to 
do so, provided that (a) the above copyright notice(s) and this permission notice 
appear with all copies of the Data Files or Software, (b) both the above copyright 
notice(s) and this permission notice appear in associated documentation, and (c) 
there is clear notice in each modified Data File or in the Software as well as in the 
documentation associated with the Data File(s) or Software that the data or software 
has been modified.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT 
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT 
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN 
THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR 
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING 

2734 Appendix 4 / ICU License

http://www.unicode.org/copyright.html


FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF 
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE DATA FILES 
OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used 
in advertising or otherwise to promote the sale, use or other dealings in these Data 
Files or Software without prior written authorization of the copyright holder.

2. Chinese/Japanese Word Break Dictionary Data 
(cjdict.txt)
 #  The Google Chrome software developed by Google is licensed under
 #  the BSD license. Other software included in this distribution is provided
 #  under other licenses, as set forth below.
 #    
 #    The BSD License
 #    http://opensource.org/licenses/bsd-license.php
 #    Copyright (C) 2006-2008, Google Inc.
 #    
 #    All rights reserved.
 #    
 #    Redistribution and use in source and binary forms, with or without
 #  modification, are permitted provided that the following conditions are met:
 #    
 #    Redistributions of source code must retain the above copyright notice, this
 #  list of conditions and the following disclaimer.
 #    Redistributions in binary form must reproduce the above copyright notice,
 #  this list of conditions and the following disclaimer in the documentation
 #  and/or other materials provided with the distribution.
 #    Neither the name of Google Inc. nor the names of its contributors may be 
 #  used to endorse or promote products derived from this software without
 #  specific prior written permission.
 #     
 #    
 #  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
 #  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
 #  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
 #  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
 #  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
 #  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
 #  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 #  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 #  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 #  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 #  THE POSSIBILITY OF SUCH DAMAGE.
 #    
 #    
 #    The word list in cjdict.txt are generated by combining three word lists
 #  listed below with further processing for compound word breaking. The 
 #  frequency is generated with an iterative training against Google 
 #  web corpora.
 #    

Third-Party Software Licenses: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 2735



 #    * Libtabe (Chinese)
 #      - https://sourceforge.net/project/?group_id=1519
 #      - Its license terms and conditions are shown below.
 #    
 #    * IPADIC (Japanese)
 #      - http://chasen.aist-nara.ac.jp/chasen/distribution.html
 #      - Its license terms and conditions are shown below.
 #    
 #    ---------COPYING.libtabe ---- BEGIN--------------------
 #    
 #    /*
 #     * Copyrighy (c) 1999 TaBE Project.
 #     * Copyright (c) 1999 Pai-Hsiang Hsiao.
 #     * All rights reserved.
 #     *
 #     * Redistribution and use in source and binary forms, with or without
 #     * modification, are permitted provided that the following conditions
 #     * are met:
 #     *
 #     * . Redistributions of source code must retain the above copyright
 #     *   notice, this list of conditions and the following disclaimer.
 #     * . Redistributions in binary form must reproduce the above copyright
 #     *   notice, this list of conditions and the following disclaimer in
 #     *   the documentation and/or other materials provided with the
 #     *   distribution.
 #     * . Neither the name of the TaBE Project nor the names of its
 #     *   contributors may be used to endorse or promote products derived
 #     *   from this software without specific prior written permission.
 #     *
 #     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 #     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 #     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 #     * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 #     * REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 #     * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 #     * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 #     * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 #     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 #     * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 #     * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 #     * OF THE POSSIBILITY OF SUCH DAMAGE.
 #     */
 #    
 #    /*
 #     * Copyright (c) 1999 Computer Systems and Communication Lab,
 #     *                    Institute of Information Science, Academia Sinica.
 #     * All rights reserved.
 #     *
 #     * Redistribution and use in source and binary forms, with or without
 #     * modification, are permitted provided that the following conditions
 #     * are met:
 #     *
 #     * . Redistributions of source code must retain the above copyright
 #     *   notice, this list of conditions and the following disclaimer.
 #     * . Redistributions in binary form must reproduce the above copyright
 #     *   notice, this list of conditions and the following disclaimer in

2736 Appendix 4 / ICU License



 #     *   the documentation and/or other materials provided with the
 #     *   distribution.
 #     * . Neither the name of the Computer Systems and Communication Lab
 #     *   nor the names of its contributors may be used to endorse or
 #     *   promote products derived from this software without specific
 #     *   prior written permission.
 #     *
 #     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 #     * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 #     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 #     * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 #     * REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 #     * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 #     * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 #     * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 #     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 #     * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 #     * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 #     * OF THE POSSIBILITY OF SUCH DAMAGE.
 #     */
 #    
 #    Copyright 1996 Chih-Hao Tsai @ Beckman Institute, University of Illinois
 #    c-tsai4@uiuc.edu  http://casper.beckman.uiuc.edu/~c-tsai4
 #    
 #    ---------------COPYING.libtabe-----END------------------------------------
 #    
 #    
 #    ---------------COPYING.ipadic-----BEGIN------------------------------------
 #    
 #    Copyright 2000, 2001, 2002, 2003 Nara Institute of Science
 #    and Technology.  All Rights Reserved.
 #    
 #    Use, reproduction, and distribution of this software is permitted.
 #    Any copy of this software, whether in its original form or modified,
 #    must include both the above copyright notice and the following
 #    paragraphs.
 #    
 #    Nara Institute of Science and Technology (NAIST),
 #    the copyright holders, disclaims all warranties with regard to this
 #    software, including all implied warranties of merchantability and
 #    fitness, in no event shall NAIST be liable for
 #    any special, indirect or consequential damages or any damages
 #    whatsoever resulting from loss of use, data or profits, whether in an
 #    action of contract, negligence or other tortuous action, arising out
 #    of or in connection with the use or performance of this software.
 #    
 #    A large portion of the dictionary entries
 #    originate from ICOT Free Software.  The following conditions for ICOT
 #    Free Software applies to the current dictionary as well.
 #    
 #    Each User may also freely distribute the Program, whether in its
 #    original form or modified, to any third party or parties, PROVIDED
 #    that the provisions of Section 3 ("NO WARRANTY") will ALWAYS appear
 #    on, or be attached to, the Program, which is distributed substantially
 #    in the same form as set out herein and that such intended
 #    distribution, if actually made, will neither violate or otherwise

Third-Party Software Licenses: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 2737



 #    contravene any of the laws and regulations of the countries having
 #    jurisdiction over the User or the intended distribution itself.
 #    
 #    NO WARRANTY
 #    
 #    The program was produced on an experimental basis in the course of the
 #    research and development conducted during the project and is provided
 #    to users as so produced on an experimental basis.  Accordingly, the
 #    program is provided without any warranty whatsoever, whether express,
 #    implied, statutory or otherwise.  The term "warranty" used herein
 #    includes, but is not limited to, any warranty of the quality,
 #    performance, merchantability and fitness for a particular purpose of
 #    the program and the nonexistence of any infringement or violation of
 #    any right of any third party.
 #    
 #    Each user of the program will agree and understand, and be deemed to
 #    have agreed and understood, that there is no warranty whatsoever for
 #    the program and, accordingly, the entire risk arising from or
 #    otherwise connected with the program is assumed by the user.
 #    
 #    Therefore, neither ICOT, the copyright holder, or any other
 #    organization that participated in or was otherwise related to the
 #    development of the program and their respective officials, directors,
 #    officers and other employees shall be held liable for any and all
 #    damages, including, without limitation, general, special, incidental
 #    and consequential damages, arising out of or otherwise in connection
 #    with the use or inability to use the program or any product, material
 #    or result produced or otherwise obtained by using the program,
 #    regardless of whether they have been advised of, or otherwise had
 #    knowledge of, the possibility of such damages at any time during the
 #    project or thereafter.  Each user will be deemed to have agreed to the
 #    foregoing by his or her commencement of use of the program.  The term
 #    "use" as used herein includes, but is not limited to, the use,
 #    modification, copying and distribution of the program and the
 #    production of secondary products from the program.
 #    
 #    In the case where the program, whether in its original form or
 #    modified, was distributed or delivered to or received by a user from
 #    any person, organization or entity other than ICOT, unless it makes or
 #    grants independently of ICOT any specific warranty to the user in
 #    writing, such person, organization or entity, will also be exempted
 #    from and not be held liable to the user for any such damages as noted
 #    above as far as the program is concerned.
 #    
 #    ---------------COPYING.ipadic-----END------------------------------------

3. Lao Word Break Dictionary Data (laodict.txt)
 #    Copyright (c) 2013 International Business Machines Corporation
 #    and others. All Rights Reserved.
 #
 #    Project:    http://code.google.com/p/lao-dictionary/
 #    Dictionary: http://lao-dictionary.googlecode.com/git/Lao-Dictionary.txt

2738 Appendix 4 / ICU License



 #    License:    http://lao-dictionary.googlecode.com/git/Lao-Dictionary-LICENSE.txt
 #                (copied below)
 #
 #    This file is derived from the above dictionary, with slight modifications.
 #    --------------------------------------------------------------------------------
 #    Copyright (C) 2013 Brian Eugene Wilson, Robert Martin Campbell.
 #    All rights reserved.
 #
 #    Redistribution and use in source and binary forms, with or without modification,
 #    are permitted provided that the following conditions are met:
 #
 #        Redistributions of source code must retain the above copyright notice, this
 #        list of conditions and the following disclaimer. Redistributions in binary
 #        form must reproduce the above copyright notice, this list of conditions and
 #        the following disclaimer in the documentation and/or other materials
 #        provided with the distribution.
 #
 #    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 #    ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 #    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 #    DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 #    ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 #    (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 #    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 #    ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 #    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 #    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 #    --------------------------------------------------------------------------------

4. Burmese Word Break Dictionary Data 
(burmesedict.txt)
 #    Copyright (c) 2014 International Business Machines Corporation
 #    and others. All Rights Reserved.
 #
 #    This list is part of a project hosted at:
 #       github.com/kanyawtech/myanmar-karen-word-lists
 #     
 #    --------------------------------------------------------------------------------
 #    Copyright (C) 2013 LeRoy Benjamin Sharon
 #    All rights reserved.
 #
 #    Redistribution and use in source and binary forms, with or without
 #    modification, are permitted provided that the following conditions
 # are met: Redistributions of source code must retain the above
 #    copyright notice, this list of conditions and the following
 #    disclaimer.  Redistributions in binary form must reproduce the
 # above copyright notice, this list of conditions and the following
 #    disclaimer in the documentation and/or other materials provided
 # with the distribution
 # 
 #        Neither the name Myanmar Karen Word Lists, nor the names of its

Third-Party Software Licenses: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J 57 2739



 #        contributors may be used to endorse or promote products derived
 #        from this software without specific prior written permission.
 #
 #    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 #    ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 #    WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 #    DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 #    ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 #    (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 #    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 #    ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 #    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 #    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 #    --------------------------------------------------------------------------------

3. Time Zone Database
ICU uses the public domain data and code derived from Time Zone Database for its 
time zone support. The ownership of the TZ database is explained in BCP 175: 
Procedure for Maintaining the Time Zone Database section 7.

7.  Database Ownership

   The TZ database itself is not an IETF Contribution or an IETF
   document.  Rather it is a pre-existing and regularly updated work
   that is in the public domain, and is intended to remain in the 
public
   domain.  Therefore, BCPs 78 [RFC5378] and 79 [RFC3979] do not apply
   to the TZ Database or contributions that individuals make to it.
   Should any claims be made and substantiated against the TZ Database,
   the organization that is providing the IANA Considerations defined 
in
   this RFC, under the memorandum of understanding with the IETF,
   currently ICANN, may act in accordance with all competent court
   orders.  No ownership claims will be made by ICANN or the IETF Trust
   on the database or the code.  Any person making a contribution to 
the
   database or code waives all rights to future claims in that
   contribution or in the TZ Database.

Unicode, Inc. License Agreement - Data 
Files and Software: ICU 58 and Later

See Terms of Use for definitions of Unicode Inc.'s Data Files and Software.

NOTICE TO USER: Carefully read the following legal agreement. BY 
DOWNLOADING, INSTALLING, COPYING OR OTHERWISE USING UNICODE 

2740 Appendix 4 / ICU License

http://www.iana.org/time-zones
https://datatracker.ietf.org/doc/html/rfc6557
https://datatracker.ietf.org/doc/html/rfc6557
https://www.unicode.org/copyright.html


INC.'S DATA FILES ("DATA FILES"), AND/OR SOFTWARE ("SOFTWARE"), YOU 
UNEQUIVOCALLY ACCEPT, AND AGREE TO BE BOUND BY, ALL OF THE 
TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE, DO 
NOT DOWNLOAD, INSTALL, COPY, DISTRIBUTE OR USE THE DATA FILES OR 
SOFTWARE.

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1991-2019 Unicode, Inc. All rights reserved. Distributed under the 
Terms of Use in http://www.unicode.org/copyright.html.

Permission is hereby granted, free of charge, to any person obtaining a copy of the 
Unicode data files and any associated documentation (the "Data Files") or Unicode 
software and any associated documentation (the "Software") to deal in the Data 
Files or Software without restriction, including without limitation the rights to use, 
copy, modify, merge, publish, distribute, and/or sell copies of the Data Files or 
Software, and to permit persons to whom the Data Files or Software are furnished to 
do so, provided that (a) the above copyright notice(s) and this permission notice 
appear with all copies of the Data Files or Software, or (b) this copyright and 
permission notice appear in associated Documentation.

THE DATA FILES AND SOFTWARE ARE PROVIDED "AS IS", WITHOUT 
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT 
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A 
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN 
THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR 
CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING 
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF 
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE DATA FILES 
OR SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used 
in advertising or otherwise to promote the sale, use or other dealings in these Data 
Files or Software without prior written authorization of the copyright holder.

Unicode, Inc. License Agreement - Data Files and Software: ICU 58 and Later 2741

https://www.unicode.org/copyright.html


2742 Appendix 4 / ICU License


	Contents
	Syntax Conventions for the SAS Language
	Overview of Syntax Conventions for the SAS Language 
	Syntax Components 
	Style Conventions 
	Special Characters
	References to SAS Libraries and External Files 

	What's New in Base SAS 9.4 Procedures
	Overview
	New Base SAS Procedures
	The AUTHLIB Procedure
	The DELETE Procedure
	The DS2 Procedure
	The DSTODS2 Procedure
	The FEDSQL Procedure
	The FMTC2ITM Procedure
	The HDMD Procedure
	The JSON Procedure
	The LUA Procedure
	The PRESENV Procedure
	The PRODUCT_STATUS Procedure
	The S3 Procedure
	The SCOREACCEL Procedure
	The SQOOP Procedure
	The STREAM Procedure

	Enhanced Base SAS Procedures
	The APPEND Procedure
	The CIMPORT Procedure
	The CONTENTS Procedure
	The COPY Procedure
	The CPORT Procedure
	The DATASETS Procedure
	The EXPORT Procedure
	The FCMP Procedure
	The FMTC2ITM Procedure
	The FONTREG Procedure
	The FORMAT Procedure
	The HADOOP Procedure
	The HDMD Procedure
	The HTTP Procedure
	The IMPORT Procedure
	The MEANS Procedure
	The MIGRATE Procedure
	The OPTIONS Procedure
	The PRINT Procedure
	The PRINTTO Procedure
	The PROTO Procedure
	The PWENCODE Procedure
	The QDEVICE Procedure
	The REPORT Procedure
	The SOAP Procedure
	The SORT Procedure
	The SQOOP Procedure
	The SUMMARY Procedure
	The TABULATE Procedure
	The TRANSPOSE Procedure
	The XSL Procedure

	Software Enhancements
	Documentation Enhancements

	Concepts
	Choosing the Right Procedure
	Functional Categories of Base SAS Procedures  
	Report Writing
	Statistics
	Utilities

	Report-Writing Procedures
	Statistical Procedures
	Available Statistical Procedures
	Efficiency Issues
	Quantiles
	Computing Statistics for Groups of Observations

	Additional Information about the Statistical Procedures

	Utility Procedures
	Brief Descriptions of Base SAS Procedures

	Fundamental Concepts for Using Base SAS Procedures
	Language Concepts
	Temporary and Permanent SAS Data Sets
	Naming SAS Data Sets
	USER Library

	SAS System Options
	Data Set Options
	Global Statements
	AES Encryption

	Procedure Concepts
	Input Data Sets
	Threaded Processing for Base SAS Procedures
	Controlling the Order of Data Values
	Ordering of Data Values
	Data Ordered by the Operating Environment
	Order Data Using the BY Statement
	Order Data Using a Single Classification Variable
	Order Data Using Multiple Classification Variables
	Order Data Using Formats: Procedure Default Behavior
	Order Data Using Formats: Using the Lowest Actual Value
	Order Data Using Formats: Missing Values
	Order Data Using Formats: BY Variables
	Order Data Using the ORDER= Option
	Order Data Using the ORDER= INTERNAL Option
	Order Data Using the ORDER= FORMATTED Option
	Order Data Using the ORDER= DATA Option
	Order Data Using the ORDER= FREQ Option

	RUN-Group Processing
	Creating Titles That Contain BY-Group Information  
	BY-Group Processing
	Suppressing the Default BY Line
	Inserting BY-Group Information into a Title
	Example: Inserting a Value from Each BY Variable into the Title
	Example: Inserting the Name of a BY Variable into a Title
	Example: Inserting the Complete BY Line into a Title
	Error Processing of BY-Group Specifications

	Shortcuts for Specifying Lists of Variable Names
	Formatted Values
	Using Formatted Values
	Example: Printing the Formatted Values for a Data Set
	Example: Grouping or Classifying Formatted Data
	Example: Temporarily Associating a Format with a Variable
	Example: Temporarily Dissociating a Format from a Variable
	Formats and BY-Group Processing
	Formats and Error Checking

	Processing All the Data Sets in a Library
	Operating Environment-Specific Procedures
	Statistic Descriptions
	Computational Requirements for Statistics

	Output Delivery System

	Statements with the Same Function in Multiple Procedures
	Statements with the Same Function in Multiple Procedures
	Overview

	Statements
	BY
	Overview of the BY Statement
	Required Arguments
	Optional Arguments
	BY-Group Processing
	Formatting BY-Variable Values
	BY Variables That Have Different Lengths in Two Data Sets
	Base SAS Procedures That Support the BY Statement
	Example

	FREQ
	Overview of the FREQ Statement
	Required Arguments
	Procedures That Support the FREQ Statement
	Example

	QUIT
	Overview of the QUIT Statement
	Procedures That Support the QUIT Statement

	WEIGHT
	Overview of the WEIGHT Statement
	Required Arguments
	Procedures That Support the WEIGHT Statement
	Calculating Weighted Statistics
	Weighted Statistics Example

	WHERE
	Overview of the WHERE Statement
	Required Arguments
	Procedures That Support the WHERE Statement
	Details
	Example



	In-Database Processing of Base Procedures
	Base Procedures That Are Enhanced for In-Database Processing

	CAS Processing of Base Procedures
	About CAS Processing
	Procedures That Use CAS Actions
	When CAS Processing Cannot Be Used
	BY-Group Processing
	Filtering Observations
	Related Documents

	Base SAS Procedures Documented in Other Publications
	Base SAS Procedures Documented in Other Publications


	Procedures
	APPEND Procedure
	Overview: APPEND Procedure
	What Does the APPEND Procedure Do?

	Syntax: APPEND Procedure
	Usage: APPEND Procedure
	Using the APPEND Procedure

	Examples: APPEND Procedure
	Example 1: Concatenating Two SAS Data Sets
	Details
	Example 2: Concatenating a CAS Table to a SAS Data Set
	Details
	Example 3: Getting Sort Indicator Information
	Details


	AUTHLIB Procedure
	Overview: AUTHLIB Procedure
	What Does the AUTHLIB Procedure Do?

	Concepts: AUTHLIB Procedure
	Metadata-Bound Library
	Using Metadata-Bound Library Passwords
	Setting and Modifying Metadata-Bound Library Passwords
	Encrypted Data Set Considerations
	Setting and Modifying Metadata-Bound Library Encryption Options
	Retaining and Purging Metadata-Bound Library Credentials
	Requiring Encryption for Metadata-Bound Data Sets
	Data Sets in a Metadata-Bound Library That Are Not Bound to
Secured Table Objects

	Syntax: AUTHLIB Procedure
	PROC AUTHLIB Statement
	CREATE Statement
	MODIFY Statement
	PURGE Statement
	REMOVE Statement
	REPAIR Statement
	REPORT Statement
	TABLES Statement

	Usage: AUTHLIB Procedure
	Requirements for Using the AUTHLIB Statements
	Copy-In-Place Operation

	Results: AUTHLIB Procedure
	Results: AUTHLIB Procedure

	Examples: AUTHLIB Procedure
	Example 1: Binding a Physical Library That Contains Unprotected Data Sets
	Details
	Example 2: Binding a Physical Library That Contains Password-Protected
Data Sets
	Details
	Example 3: Binding a Library When Existing Data Sets Are Protected with
the Same Passwords
	Details
	Example 4: Binding a Library When Existing Data Sets Are Protected with
Different Passwords
	Details
	Example 5: Changing Passwords on Data Sets
	Details
	Example 6: Changing Metadata-Bound Library Passwords
	Details
	Example 7: Using the REMOVE Statement
	Details
	Example 8: Using the REPORT Statement
	Details
	Example 9: Using the TABLES Statement
	Details
	Example 10: Binding a Library When Existing Data Sets Are SAS Proprietary
Encrypted
	Details
	Example 11: Binding a Library When Existing Data Sets Are AES-Encrypted
	Details
	Example 12: Binding a Library with an Optional Recorded Encryption Key
When Existing AES-Encrypted Data Sets Have Different Encryption Keys 
	Details
	Example 13: Binding a Library with Required AES Encryption When Existing
Data Sets Are Encrypted with the Same Encryption Key
	Details
	Example 14: Changing the Encryption Key on a Metadata-Bound Library That
Requires AES Encryption
	Details
	Example 15: Binding a Library with Existing Data Sets That Are AES-Encrypted
with Different Encryption Keys
	Details
	Example 16: Changing a Metadata-Bound Library to Require AES Encryption
When Existing Data Sets Are Encrypted with Different Encryption Keys
	Details
	Example 17: Using the REMOVE Statement on a Metadata-Bound Library with
Required AES Encryption
	Details
	Example 18: Resetting Credentials on Imported SecuredLibrary Objects
	Details


	CALENDAR Procedure
	Overview: CALENDAR Procedure
	What Does the CALENDAR Procedure Do?
	What Types of Calendars Can PROC CALENDAR Produce?
	Simple Schedule Calendar
	Advanced Schedule Calendar
	Simple Summary Calendar
	Advanced Scheduling and Project Management Tasks

	Concepts: CALENDAR Procedure
	Types of Calendars
	Schedule Calendar
	Definition
	Required Statements
	Examples

	Summary Calendar
	Definition
	Required Statements
	Multiple Events on a Single Day
	Examples

	The Default Calendars
	Description
	When You Unexpectedly Produce a Default Calendar
	Examples

	Calendars and Multiple Calendars
	Definitions
	Advantages of Creating Multiple Calendars
	How to Identify Multiple Calendars
	Using Holidays or Calendar Data Sets with Multiple Calendars
	Types of Reports That Contain Multiple Calendars
	How to Identify Calendars with the CALID Statement and the
Special Variable _CAL_
	When You Use Holidays or Calendar Data Sets
	Examples

	Input Data Sets
	Activities Data Set 
	Purpose
	Requirements and Restrictions
	Structure
	Multiple Activities per Day in Summary Calendars
	Examples

	Holidays Data Set 
	Purpose
	Structure
	No Sorting Needed
	Using SAS Date versus SAS Datetime Values
	Create a Generic Holidays Data Set
	Holidays and Nonwork Periods
	Examples

	Calendar Data Set 
	Purpose
	Structure
	Using Default Work Shifts Instead of a Workdays Data Set
	Examples

	Workdays Data Set 
	Purpose
	Use Default Work Shifts or Create Your Own?
	Structure
	How Missing Values Are Treated
	Examples

	Missing Values in Input Data Sets

	Syntax: CALENDAR Procedure
	PROC CALENDAR Statement
	BY Statement
	CALID Statement
	DUR Statement
	FIN Statement
	HOLIDUR Statement
	HOLIFIN Statement
	HOLISTART Statement
	HOLIVAR Statement
	MEAN Statement
	OUTDUR Statement
	OUTFIN Statement
	OUTSTART Statement
	START Statement
	SUM Statement
	VAR Statement

	Results: CALENDAR Procedure
	What Affects the Quantity of PROC CALENDAR Output
	How Size Affects the Format of PROC CALENDAR Output
	What Affects the Lines That Show Activity Duration
	Customizing the Calendar Appearance
	Portability of ODS Output with PROC CALENDAR

	Examples: CALENDAR Procedure
	Example 1: Schedule Calendar with Holidays: 5-Day Default
	Details
	Example 2: Schedule Calendar Containing Multiple Calendars
	Details
	Example 3: Multiple Schedule Calendars with Atypical Work Shifts (Separated
Output)
	Details
	Producing Different Output for Multiple Calendars
	Example 4: Multiple Schedule Calendars with Atypical Work Shifts (Combined
and Mixed Output)
	Details
	Example 5:  Schedule Calendar, Blank or with Holidays
	Details
	Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks
	Details
	Program Description
	Automating Your Scheduling Task with SAS/OR Software
	See Also

	Example 7: Summary Calendar with MEAN Values by Observation
	Details
	Example 8: Multiple Summary Calendars with Atypical Work Shifts (Separated
Output)
	Details
	Producing Different Output for Multiple Calendars


	CATALOG Procedure
	Overview: CATALOG Procedure
	What Does the CATALOG Procedure Do?

	Concepts: CATALOG Procedure
	Concepts: CATALOG Procedure

	Syntax: CATALOG Procedure
	PROC CATALOG Statement
	CHANGE Statement
	CONTENTS Statement
	COPY Statement
	DELETE Statement
	EXCHANGE Statement
	EXCLUDE Statement
	MODIFY Statement
	SAVE Statement
	SELECT Statement

	Usage: CATALOG Procedure
	Interactive Processing with RUN Groups 
	Definition
	How to End a PROC CATALOG Step
	Error Handling and RUN Groups

	Specifying an Entry Type
	Four Ways to Supply an Entry Type
	Advantages of Using the ENTRYTYPE= Option
	Avoid a Common Error
	The ENTRYTYPE= Option

	Catalog Concatenation
	About Catalog Concatenation
	Restrictions


	Results: CATALOG Procedure
	Results: CATALOG Procedure

	Examples: CATALOG Procedure
	Example 1: Copying, Deleting, and Moving Catalog Entries from Multiple
Catalogs
	Details
	Example 2: Displaying Contents, Changing Names, and Changing a Description
	Details
	Example 3: Using the FORCE Option with the KILL Option
	Details


	CHART Procedure
	Overview: CHART Procedure
	What Does the CHART Procedure Do?
	What Types of Charts Can PROC CHART Create?
	Bar Charts
	Block Charts
	Pie Charts
	Star Charts

	Concepts: CHART Procedure
	Concepts: CHART Procedure

	Syntax: CHART Procedure
	PROC CHART Statement
	BLOCK Statement
	BY Statement
	HBAR Statement
	PIE Statement
	STAR Statement
	VBAR Statement

	Results: CHART Procedure
	Missing Values
	ODS Table Names
	Portability of ODS Output with PROC CHART

	Examples: CHART Procedure
	Example 1: Producing a Simple Frequency Count
	Details
	Example 2: Producing a Percentage Bar Chart
	Details
	Example 3: Subdividing the Bars into Categories
	Details
	Example 4: Producing Side-by-Side Bar Charts
	Details
	Example 5: Producing a Horizontal Bar Chart for a Subset of the Data
	Details
	Example 6: Producing Block Charts for BY Groups
	Details

	References

	CIMPORT Procedure
	Overview: CIMPORT Procedure
	What Does the CIMPORT Procedure Do?
	Process for Creating and Reading a Transport File
	Converting Data to UTF-8 for Loading into CAS

	Syntax: CIMPORT Procedure
	PROC CIMPORT Statement
	EXCLUDE Statement
	SELECT Statement

	Usage: CIMPORT Procedure
	CIMPORT Problems: Importing Transport Files
	About Transport Files and Encodings
	Problems with Transport Files Created Using a SAS Release Prior
to 9.2
	Overview: SAS Releases Prior to 9.2
	Error: Transport File Encoding Is Unknown: Use the ISFILEUTF8=
Option
	Warning: Transport File Encoding Is Unknown

	Problems with Transport Files Created Using SAS Versions 9.2
and Later
	Overview
	Error: Target Session Uses UTF-8: Transport File Is Not UTF-8
	Error: Target Session Does Not Use UTF-8: Transport File Is
UTF-8
	Warning: Target Session Does Not Use UTF-8: Transport File
Is Not UTF-8

	Problems with Loss of Numeric Precision


	Examples: CIMPORT Procedure
	Example 1: Importing an Entire Library
	Details
	Example 2: Importing Individual Catalog Entries
	Details
	Example 3: Importing a Single Indexed SAS Data Set
	Details
	Example 4: Using PROC CIMPORT to Import a French Data Set into a UTF-8
SAS Session
	Details


	COMPARE Procedure
	Overview: COMPARE Procedure
	What Does the COMPARE Procedure Do?
	What Information Does PROC COMPARE Provide?

	Concepts: COMPARE Procedure
	Comparisons Using PROC COMPARE
	A Comparison by Position of Observations
	A Comparison with an ID Variable
	The Equality Criterion
	Using the CRITERION= Option
	Definition of Difference and Percent Difference

	How PROC COMPARE Handles Variable Formats

	Syntax: COMPARE Procedure
	PROC COMPARE Statement
	BY Statement
	ID Statement
	VAR Statement
	WITH Statement

	Usage: COMPARE Procedure
	Customizing PROC COMPARE Output

	Results: COMPARE Procedure
	Results Reporting
	SAS Log
	Macro Return Codes (SYSINFO)
	Procedure Output
	Procedure Output Overview
	Data Set Summary
	Variables Summary
	Observation Summary
	Values Comparison Summary
	Value Comparison Results
	Table of Summary Statistics
	Comparison Results for Observations (Using the TRANSPOSE Option)

	ODS Table Names
	Output Data Set (OUT=)
	Output Statistics Data Set (OUTSTATS=)

	Examples: COMPARE Procedure
	Example 1: Producing a Complete Report of the Differences
	Details
	Example 2: Comparing Variables in Different Data Sets
	Details
	Example 3: Comparing a Variable Multiple Times
	Details
	Example 4: Comparing Variables That Are in the Same Data Set
	Details
	Example 5: Comparing Observations with an ID Variable
	Details
	Example 6: Comparing Values of Observations Using an Output Data Set (OUT=)
	Details
	Example 7: Creating an Output Data Set of Statistics (OUTSTATS=)
	Details


	CONTENTS Procedure
	Overview: CONTENTS Procedure
	What Does the CONTENTS Procedure Do?

	Concepts: CONTENTS Procedure
	Concepts: CONTENTS Procedure

	Syntax: CONTENTS Procedure
	PROC CONTENTS Statement

	Usage: CONTENTS Procedure
	Using PROC CONTENTS

	Examples: CONTENTS Procedure
	Example 1: Describing a SAS Data Set
	Details
	Example 2: Using the DIRECTORY Option
	Details
	Example 3: Using the DIRECTORY and DETAILS Options
	Details
	Example 4: Using the ORDER= Option
	Details


	COPY Procedure
	Overview: COPY Procedure
	What Does the COPY Procedure Do?

	Syntax: COPY Procedure
	Usage: COPY Procedure
	CAS Processing for PROC COPY
	Using CLONE | NOCLONE on a CAS Table
	Compressing Output CAS Tables
	Using the COPY Procedure
	Copying Select Files from a Large Directory of Files
	Transporting SAS Data Sets between Hosts
	Copying AES-Encrypted Data Files
	Compressing Output Data Files


	Examples: COPY Procedure
	Example 1: Copying SAS Data Sets between Hosts
	Details
	Example 2: Converting SAS Data Sets Encodings
	Details
	Example 3: Using PROC COPY to Migrate from a 32-bit to a 64-bit Machine
	Details
	Example 4: Copy a SAS Data Set to a CAS Table
	Details


	CPORT Procedure
	Overview: CPORT Procedure
	What Does the CPORT Procedure Do?
	Process for Creating and Reading a Transport File

	Syntax: CPORT Procedure
	PROC CPORT Statement
	EXCLUDE Statement
	SELECT Statement
	TRANTAB Statement

	Usage: CPORT Procedure
	READ= Data Set Option in the PROC CPORT Statement 
	CPORT Problems: Creating Transport Files
	About Transport Files and Encodings
	Data Control Blocks Characteristics
	Loss of Numeric Precision


	Examples: CPORT Procedure
	Example 1: Exporting Multiple Catalogs
	Details
	Example 2: Exporting Individual Catalog Entries
	Details
	Example 3: Exporting a Single SAS Data Set
	Details
	Example 4: Applying a Translation Table
	Details
	Example 5: Exporting Entries Based on Modification Date
	Details


	DATASETS Procedure
	Overview: DATASETS Procedure
	Managing Data Sets Using the DATASETS Procedure
	Notes

	Concepts: DATASETS Procedure
	Procedure Execution
	Execution of Statements
	RUN-Group Processing
	Error Handling
	Password Errors
	Forcing a RUN Group with Errors to Execute
	Ending the Procedure

	Extended Attributes
	Contents of a Library at the Directory Level
	CONTENTS Statement with VARCHAR
	Differences in the DATASETS Procedure Output When Using SAS/ACCESS
LIBNAME Engines
	CAS Processing for the DATASETS Procedure
	PROC DATASETS and the Output Delivery System (ODS)

	Syntax: DATASETS Procedure
	PROC DATASETS Statement
	AGE Statement
	APPEND Statement
	ATTRIB Statement
	AUDIT Statement
	CHANGE Statement
	CONTENTS Statement
	COPY Statement
	DELETE Statement
	EXCHANGE Statement
	EXCLUDE Statement
	FORMAT Statement
	IC CREATE Statement
	IC DELETE Statement
	IC REACTIVATE Statement
	INDEX CENTILES Statement
	INDEX CREATE Statement
	INDEX DELETE Statement
	INFORMAT Statement
	INITIATE Statement
	LABEL Statement
	LOG  Statement
	MODIFY Statement
	REBUILD Statement
	RENAME Statement
	REPAIR Statement
	RESUME Statement
	SAVE Statement
	SELECT Statement
	SUSPEND Statement
	TERMINATE Statement
	USER_VAR Statement
	XATTR ADD Statement
	XATTR DELETE Statement
	XATTR OPTIONS Statement
	XATTR REMOVE Statement
	XATTR SET Statement
	XATTR UPDATE Statement

	Usage: DATASETS Procedure
	Using Passwords with the DATASETS Procedure
	Restricting Processing for Generation Data Sets
	Restricting Member Types for Processing
	In the PROC DATASETS Statement
	In Subordinate Statements
	Member Types

	Sample PROC DATASETS Output

	Results: DATASETS Procedure
	Directory Listing to the SAS Log
	Directory Listing as SAS Output
	Procedure Output
	The CONTENTS Statement
	The Health Library Contents
	Data Set Attributes
	Engine and Operating Environment-Dependent Information
	Alphabetic List of Variables and Attributes
	Alphabetic List of Indexes and Attributes
	Sort Information

	PROC DATASETS and the Output Delivery System (ODS)
	ODS Table Names
	Output Data Sets
	The CONTENTS Statement
	The OUT= Data Set
	The OUT2= Data Set


	Examples: DATASETS Procedure
	Example 1: Removing All Labels and Formats in a Data Set
	Details
	Example 2: Manipulating SAS Files
	Details
	Example 3: Saving SAS Files from Deletion
	Details
	Example 4: Modifying SAS Data Sets
	Details
	Example 5: Describing a SAS Data Set
	Details
	Example 6: Concatenating Two SAS Data Sets
	Details
	Example 7: Aging SAS Data Sets
	Details
	Example 8: Initiating an Audit File
	Details
	Example 9: Extended Attributes


	DATEKEYS Procedure
	Overview: DATEKEYS Procedure
	Overview: The DATEKEYS Procedure

	Concepts: DATEKEYS Procedure
	Concepts: The DATEKEYS Procedure

	Syntax: DATEKEYS Procedure
	PROC DATEKEYS Statement
	BY Statement
	DATEKEYCALENDAR Statement
	DATEKEYDATA Statement
	DATEKEYDEF Statement
	DATEKEYDSOPT Statement
	DATEKEYKEY Statement
	DATEKEYPERIODS Statement
	ID Statement
	VAR Statement

	Usage: DATEKEYS Procedure
	Using the DATEKEYS Procedure
	Functional Summary of the DATEKEYS Procedure
	Datekey Definitions
	Details of the Timing Value List Specification
	Details of Modifying Timing Values Using Options
	Details of Identifying Active Intervals Based on Timing Values
and Options

	Using the DATEKEYKEY Statement
	Creating New Datekeys from Existing Datekey Definitions
	Modifying or Cloning a User-Defined Datekey
	SAS Datekey Keywords

	Details for the ID Statement
	Data Set Output
	Creating Data Set Output
	Identifying Variables in the DATEKEYCALENDAR OUT= Data Set
	Identifying Variables in the DATEKEYDATA OUT= Data Set
	Identifying Variables in the DATEKEYPERIODS OUT= Data Set

	Listing the Datekeys By Using the LIST Option
	Creating a Data Set of BY Statement Variables
	Written Output

	Examples: DATEKEYS Procedure
	Example 1: Methods for Constructing a Datekeys Definition Data Set
	Details
	Example 2: Using User-Defined SAS Datekey Keywords Directly in Other SAS
Procedures
	Details
	Example 3: Obtaining a Calendar Variable By Using the DATEKEYS Procedure
	Details
	Example 4: Filtering Data Sets By Using the DATEKEYDSOPT Statement
	Details

	References

	DELETE Procedure
	Overview: DELETE Procedure
	What Does the DELETE Procedure Do?

	Concepts: DELETE Procedure
	Concepts: DELETE Procedure

	Syntax: DELETE Procedure
	PROC DELETE Statement

	Examples: DELETE Procedure
	Example 1: Deleting Several SAS Data Sets
	Details
	Example 2: Deleting the Base Version and All Historical Versions
	Details
	Example 3: Deleting the Base Version and Renaming the Youngest Historical
Version to the Base Version
	Details
	Example 4: Deleting a Version with an Absolute Number
	Details
	Example 5: Deleting All Historical Versions and Leaving the Base Version
	Details
	Example 6: Using the MEMTYPE= Option
	Details
	Example 7: Using the ENCRYPTKEY= Option
	Details
	Example 8: Using the ALTER= Option
	Details
	Example 9: Using the DATA= List Feature
	Example 10: Using the LIBRARY= Option
	Details
	Example 11: Using the LIBRARY= Option and List Feature
	Details


	DISPLAY Procedure
	Overview: DISPLAY Procedure
	What Does the DISPLAY Procedure Do?

	Syntax: DISPLAY Procedure
	PROC DISPLAY Statement

	Usage: DISPLAY Procedure
	Using the DISPLAY Procedure

	Example: Executing a SAS/AF Application
	Details


	DS2 Procedure
	Overview: DS2 Procedure
	What Does the DS2 Procedure Do?

	Concepts: DS2 Procedure
	Benefits of the DS2 Language
	Data Source Support

	Syntax: DS2 Procedure
	PROC DS2 Statement
	RUN CANCEL Statement

	Usage: DS2 Procedure
	Data Source Connection
	Understanding the Default Data Source Connection
	About the LIBS= Procedure Option
	Connecting to the CAS Server

	Using PROC DS2 in SAS Cloud Analytic Services
	RUN-Group Processing
	Applying DS2 Table Options
	Using Macro Variables in a Literal String
	DS2 Automatic Variables
	Passwords
	Encryption
	DS2 Data Type Support for SAS Data Sets
	DS2 Data Type Support for CAS Tables

	Examples: DS2 Procedure
	Example 1: Introducing DS2 Code
	Details
	Example 2: Creating a SAS Data Set
	Details
	Example 3: Terminating the Current Step in Line Prompt Mode
	Details
	Example 4: Routing Data to Tables Based on Values
	Details
	Example 5: Run a DS2 Program in CAS
	Details


	DSTODS2 Procedure
	Overview: DSTODS2 Procedure
	What Does the DSTODS2 Procedure Do?

	Concepts: DSTODS2 Procedure
	Input and Output Files
	Supported and Unsupported Syntax
	Overview
	Supported Syntax
	Unsupported Syntax

	Considerations and Limitations with PROC DSTODS2

	Syntax: DSTODS2 Procedure
	PROC DSTODS2 Statement

	Examples: DSTODS2 Procedure
	Example 1: Data Input
	Details
	Example 2: PUT Statement with Line Specifiers
	Details
	Example 3: Arrays
	Details


	EXPORT Procedure
	Overview: EXPORT Procedure
	What Does the EXPORT Procedure Do?
	Format Catalog Encodings in SAS Viya
	Support for the VARCHAR Data Type

	Syntax: EXPORT Procedure
	PROC EXPORT Statement
	DBENCODING Statement
	DELIMITER Statement
	FMTLIB Statement
	META Statement
	PUTNAMES Statement

	Examples: EXPORT Procedure
	Example 1: Exporting to a Delimited External Data Source
	Details
	Example 2: Exporting a Subset of Observations to a CSV File
	Details
	Example 3: Exporting to a Tab Delimited File with the PUTNAMES= Statement
	Details


	FCMP Procedure
	Overview: FCMP Procedure
	What Does the FCMP Procedure Do?

	Concepts: FCMP Procedure
	Creating Functions and Subroutines
	Creating Functions and Subroutines: An Example
	Writing Your Own Functions
	Advantages of Writing Your Own Functions and CALL Routines
	Writing a User-Defined Function
	Using Library Options
	Declaring Functions
	Declaring CALL Routines
	Writing Program Statements

	Using Functions as Formats
	Using DATA Step Statements with PROC FCMP

	Syntax: FCMP Procedure
	PROC FCMP Statement
	ABORT Statement
	ARRAY Statement
	ATTRIB Statement
	DELETEFUNC Statement
	DELETESUBR Statement
	FUNCTION Statement
	LABEL Statement
	LISTFUNC Statement
	LISTSUBR Statement
	OUTARGS Statement
	STATIC Statement
	STRUCT Statement
	SUBROUTINE Statement

	Usage: FCMP Procedure
	PROC FCMP and DATA Step Differences
	Overview of PROC FCMP and DATA Step Differences
	Differences between PROC FCMP and the DATA Step
	ABORT Statement
	Arrays
	Data Set Input and Output
	DATA Step Debugger
	DO Statement
	File Input and Output
	IF Expressions
	PUT Statement
	WHEN and OTHERWISE Statements

	Additional Features in PROC FCMP
	PROC REPORT and Compute Blocks
	The FCmp Function Editor
	Computing Implicit Values of a Function
	PROC FCMP and Microsoft Excel


	Working with Arrays
	Passing Arrays
	Resizing Arrays

	Using Macros with PROC FCMP Routines
	Variable Scope in PROC FCMP Routines
	The Concept of Variable Scope
	When Local Variables in Different Routines Have the Same Name

	Recursion
	Directory Traversal
	Overview of Directory Traversal
	Directory Traversal Example
	Opening and Closing a Directory
	Gathering Filenames
	Calling DIR_ENTRIES from a DATA Step


	Identifying the Location of Compiled Functions and Subroutines:
The CMPLIB= System Option
	Overview of the CMPLIB= System Option
	Syntax of the CMPLIB= System Option
	Example 1: Setting the CMPLIB= System Option
	Example 2: Compiling and Using Functions
	Example 3: Identifying the Data Set Name from Where SAS Loaded
a Function

	Using PROC FCMP Component Objects
	Hash Object and Hash Iterator Object
	Dictionaries

	PROC FCMP and ASTORE
	What is an Analytic Store?
	What is a State?
	What is Scoring?
	What Does PROC ASTORE Do?
	Example: Using ASTORE in PROC FCMP
	The SETOPTION Method

	Using Python Functions in PROC FCMP

	Examples: FCMP Procedure
	Example 1: Creating a Function and Calling the Function from a DATA Step
	Details
	Example 2: Creating and Saving Functions with PROC FCMP
	Details
	Example 3: Using Numeric Data in the FUNCTION Statement
	Details
	Example 4: Using Character Data with the FUNCTION Statement
	Details
	Example 5: Using Variable Arguments with an Array
	Details
	Example 6: Using the SUBROUTINE Statement with a CALL Statement
	Details
	Example 7: Using Graph Template Language (GTL) with User-Defined Functions
	Details
	Example 8: Standardizing Each Row of a Data Set
	Details

	References

	FCMP Special Functions and Call Routines
	Overview of Special Functions and CALL Routines
	Functions and CALL Routines by Category
	Dictionary
	CALL ADDMATRIX Routine
	CALL CHOL Routine
	CALL DET Routine
	CALL DYNAMIC_ARRAY Routine
	CALL ELEMMULT Routine
	CALL EXPMATRIX Routine
	CALL FILLMATRIX Routine
	CALL IDENTITY Routine
	CALL INV Routine
	CALL MULT Routine
	CALL POWER Routine
	CALL SETNULL Routine
	CALL STRUCTINDEX Routine
	CALL SUBTRACTMATRIX Routine
	CALL TRANSPOSE Routine
	CALL ZEROMATRIX Routine
	INVCDF Function
	ISNULL Function
	LIMMOMENT Function
	READ_ARRAY Function
	RUN_MACRO Function
	RUN_SASFILE Function
	SOLVE Function
	WRITE_ARRAY Function


	FCmp Function Editor
	Introduction to the FCmp Function Editor
	Open the FCmp Function Editor
	Working with Existing Functions
	Open a Function
	Opening Multiple Functions
	Move a Function
	Close a Function
	Duplicate a Function
	Rename a Function
	Delete a Function

	Creating a New Function
	Displaying New Libraries in the FCmp Function Editor
	Viewing the Log Window, Function Browser, and Data Explorer
	Log Window
	Tabs and Buttons in the Log Window
	Function Browser
	Data Explorer

	Using Functions in Your DATA Step Program

	FEDSQL Procedure
	Overview: FEDSQL Procedure
	What Does the FEDSQL Procedure Do?

	Concepts: FEDSQL Procedure
	Benefits of FedSQL
	Data Source Support

	Syntax: FEDSQL Procedure
	PROC FEDSQL Statement
	QUIT Statement

	Usage: FEDSQL Procedure
	Data Source Connection
	Understanding the Default Data Source Connection
	About the LIBS= Procedure Option
	Connecting to the CAS Server

	Using FedSQL in a SAS Library
	Using FedSQL in SAS Cloud Analytic Services
	Applying FedSQL Table Options
	Macro Variables
	Using Macro Variables in a Literal String
	Using Macro Variables Set by the Procedure

	Passwords
	Encryption
	FedSQL Data Type Support for SAS Data Sets
	FedSQL Data Type Support for CAS Tables

	Examples: FEDSQL Procedure
	Example 1: Creating a SAS Data Set
	Details
	Example 2: Joining Tables from Multiple SAS Libraries
	Details
	Example 3: Querying Data Using a Correlated Subquery
	Details
	Example 4: Creating and Using a DBMS Index to Perform a Join
	Details
	Example 5: Using a DS2 Package in an Expression
	Details
	Example 6: Querying Data in CAS
	Details
	Example 7: Explicitly Loading and Joining Tables in CAS
	Details
	Example 8: Joining Tables from Multiple CAS Libraries
	Details


	FMTC2ITM Procedure
	Overview: FMTC2ITM Procedure
	What Does the FMTC2ITM Procedure Do?

	Syntax: FMTC2ITM Procedure
	PROC FMTC2ITM Statement
	SELECT Statement

	Example: Migrate Formats to a CAS Session
	Details


	FONTREG Procedure
	Overview: FONTREG Procedure
	What Does the FONTREG Procedure Do?

	Concepts: FONTREG Procedure
	Supported Font Types and Font Naming Conventions
	Registering Fonts with PROC FONTREG
	Removing Fonts from the SAS Registry
	Using a Fileref with PROC FONTREG
	Font Aliases and Locales

	Syntax: FONTREG Procedure
	PROC FONTREG Statement
	FONTFILE Statement
	FONTPATH Statement
	REMOVE Statement
	TRUETYPE Statement
	TYPE1 Statement
	OPENTYPE Statement

	Examples: FONTREG Procedure
	Example 1: Adding a Single Font File
	Details
	Example 2: Adding All Font Files from Multiple Directories
	Details
	Example 3: Replacing Existing TrueType Font Files from a Directory
	Details


	FORMAT Procedure
	Overview: FORMAT Procedure
	What Does the FORMAT Procedure Do?
	Format Encodings in SAS Viya
	What Are Formats and Informats?
	How Are Formats and Informats Associated with a Variable?

	Concepts: FORMAT Procedure
	Associating Informats and Formats with Variables   
	Methods of Associating Informats and Formats with Variables
	Differences between the FORMAT Statement and PROC FORMAT
	Assigning Formats and Informats to a Variable

	Storing Informats and Formats  
	Format Catalogs
	Temporary Informats and Formats
	Permanent Informats and Formats
	Accessing Permanent Informats and Formats
	Missing Informats and Formats

	Printing Informats and Formats
	Using Formats in a CAS Session
	A Binary Search Determines the User-Defined Format or Informat
for a Value

	Syntax: FORMAT Procedure
	PROC FORMAT Statement
	EXCLUDE Statement
	INVALUE Statement
	PICTURE Statement
	SELECT Statement
	VALUE Statement

	Usage: FORMAT Procedure
	Specifying Values or Ranges
	Using a Function to Format Values
	Viewing a Format Definition Using SAS Explorer

	Results: FORMAT Procedure
	Output Control Data Set
	Input Control Data Set
	Procedure Output

	Examples: FORMAT Procedure
	Example 1: Create a Format Library in a CAS Session
	Details
	Example 2: Create the Example Data Set
	Details
	Example 3: Creating a Picture Format
	Details
	Example 4: Creating a Picture Format for Large Dollar Amounts
	Details
	Example 5: Filling a Picture Format
	Details
	Example 6: Create a Date or Time Format with Directives
	Details
	Example 7: Change the 24–Hour Clock to 00:00:01–24:00:00
	Details
	Example 8: Creating a Format for Character Values
	Details
	Example 9: Creating a Format for Missing and Nonmissing Variable Values
	Details
	Example 10: Creating an Informat Using Perl Regular Expressions
	Details
	Example 11: Writing a Format for Dates Using a Standard SAS Format and
a Color Background
	Details
	Example 12: Converting Raw Character Data to Numeric Values
	Details
	Example 13: Creating a Format from a CNTLIN= Data Set
	Details
	Example 14: Creating an Informat from a CNTLIN= Data Set
	Details
	Example 15: Printing the Description of Informats and Formats
	Details
	Example 16:  Retrieving a Permanent Format
	Example 17: Writing Ranges for Character Strings
	Example 18: Creating a Format in a non-English Language
	Details
	Example 19: Creating a Locale-Specific Format Catalog
	Details
	Example 20: Creating a Function to Use as a Format
	Details
	Example 21: Using a Format to Create a Drill-down Table
	Details


	FSLIST Procedure
	Overview: FSLIST Procedure
	What Does the FSLIST Procedure Do?

	Syntax: FSLIST Procedure
	PROC FSLIST Statement

	Usage: FSLIST Procedure
	FSLIST Command
	Syntax
	Without Arguments
	Optional Arguments

	Using the FSLIST Window
	Overview of the FSLIST Window
	FSLIST Window Commands
	Global Commands
	Scrolling Commands
	Searching Commands
	Display Commands
	Other Commands




	GROOVY Procedure
	Overview: GROOVY Procedure
	What Does the GROOVY Procedure Do?
	Special Considerations

	Syntax: GROOVY Procedure
	PROC GROOVY Statement
	ADD Statement
	EVALUATE Statement
	EXECUTE Statement
	SUBMIT Statement
	ENDSUBMIT Statement
	CLEAR Statement

	Usage: GROOVY Procedure
	Special Variables
	BINDING
	ARGS
	EXPORTS
	SHELL


	Examples: GROOVY Procedure
	Example 1: Define Classes
	Example 2: Pass a Macro Variable to PROC GROOVY


	HADOOP Procedure
	Overview: HADOOP Procedure
	What Does the HADOOP Procedure Do?

	Syntax: HADOOP Procedure
	PROC HADOOP Statement
	HDFS Statement
	MAPREDUCE Statement
	PIG Statement
	PROPERTIES Statement

	Usage: HADOOP Procedure
	Submitting Hadoop Distributed File System Commands
	Submitting MapReduce Programs
	Submitting Pig Language Code
	Submitting Configuration Properties

	Examples: HADOOP Procedure
	Example 1: Submitting HDFS Commands
	Details
	Example 2: Submitting HDFS Commands with Wildcard Characters
	Details
	Example 3: Submitting a MapReduce Program
	Details
	Example 4: Submitting Pig Language Code
	Details
	Example 5: Submitting Configuration Properties
	Details


	HDMD Procedure
	Overview: HDMD Procedure
	What Does the HDMD Procedure Do?
	File Readers

	Concepts: HDMD Procedure
	Accessing Data Independently from Hive
	Working with Hive 3.0
	Overview
	Managed and External Tables
	Managed Tables and Transactional Support
	Transactional, Managed, and PROC HDMD
	Creating External, Non-Transactional Tables with SAS
	Summary


	Syntax: HDMD Procedure
	PROC HDMD Statement
	COLUMN Statement

	Examples: HDMD Procedure
	Example 1: Create Hadoop Metadata from a Delimited File
	Example 2: Define Metadata for a Delimited File
	Example 3: Define Metadata for a Delimited File with Column Headings
	Example 4: Extract Columns from Binary Data
	Example 5: Extract Columns from MVS Binary Data
	Example 6: Extract Columns from a Binary File with Chinese Encoding
	Example 7: Extract Columns from XML Data
	Example 8: Use the DESCRIBE Option
	Example 9: Define a Custom Reader and Use a Data File


	HTTP Procedure
	Overview: HTTP Procedure
	What Does the HTTP Procedure Do?

	Syntax: HTTP Procedure
	PROC HTTP Statement
	DEBUG Statement
	HEADERS Statement
	SSLPARMS Statement

	Usage: HTTP Procedure
	Using Hypertext Transfer Protocol Secure (HTTPS) 
	HTTP Security: TLS and Data Encryption
	Using HTTPS with PROC HTTP

	Using Authentication Other Than Basic
	Wire Logging
	Using Encodings with PROC HTTP
	Using the FORM and QUERY Options with PROC HTTP
	Using the MULTI Option
	Using HEADERS= to Send Chunked Data
	PROC HTTP Response Status Macro Variables
	Macro Variables for Setting Global Values 

	Examples: HTTP Procedure
	Example 1: A Simple GET Request
	Details
	Example 2: A Simple POST Request
	Details
	Example 3: Specify a Proxy In the HTTP Request
	Details
	Example 4: Specifying Input Data as a String
	Details
	Example 5: Specify A Proxy In a Macro Variable
	Details
	Example 6: A POST That Captures the Response Headers
	Details
	Example 7: A GET That Specifies HEADEROUT_OVERWRITE
	Details
	Example 8: A GET That Uses the HEADERS Statement
	Details
	Example 9: A Nonstandard Method
	Details
	Example 10: A Request That Specifies an Authentication Type
	Details
	Example 11: A PUT That Specifies EXPECT_100_CONTINUE
	Details
	Example 12: Create A Program That Captures Status Response Values
	Details
	Example 13: Use the DEBUG Statement with the LEVEL= Option
	Details
	Example 14: Specify Local Options for Two-Way Encryption in Windows
	Details
	Example 15: Specify Local Options for Two-Way Encryption in UNIX
	Details


	IMPORT Procedure
	Overview: IMPORT Procedure
	What Does the IMPORT Procedure Do?
	Format Catalog Encodings in SAS Viya
	Support for the VARCHAR Data Type
	External File Interface (EFI) Macro Variables

	Syntax: IMPORT Procedure
	PROC IMPORT Statement
	DATAROW Statement
	DBENCODING Statement
	DELIMITER Statement
	FMTLIB Statement
	GETNAMES Statement
	GUESSINGROWS Statement
	META Statement

	Examples: IMPORT Procedure
	Example 1: Importing a Delimited File
	Details
	Example 2: Importing a Specific Delimited File Using a Fileref
	Details
	Example 3: Importing a Tab-Delimited File
	Details
	Example 4: Importing a Comma-Delimited File with a CSV Extension
	Details


	JAVAINFO Procedure
	Overview: JAVAINFO Procedure
	What Does the JAVAINFO Procedure Do?

	Syntax: JAVAINFO Procedure
	PROC JAVAINFO Statement


	JSON Procedure
	Overview: JSON Procedure
	What Does the JSON Procedure Do?

	Concepts: JSON Procedure
	JSON Output File Containers
	Structure of the JSON Output File
	JSON Containers
	Creating Object Containers
	Creating Array Containers
	Nesting Containers

	Missing Values
	Scanning Input Strings
	JSON Output File Encoding

	Syntax: JSON Procedure
	PROC JSON Statement
	EXPORT Statement
	WRITE VALUES Statement
	WRITE OPEN Statement
	WRITE CLOSE Statement

	Usage: JSON Procedure
	Exporting Data
	Writing Values to a JSON Output File
	Controlling JSON Output with Options
	PROC JSON Video

	Examples: JSON Procedure
	Example 1: Exporting a JSON File Using Default Options
	Details
	Example 2: Exporting Data to a Top-Level JSON Array Container
	Details
	Example 3: Suppressing SAS Variable Names in Observation Data When Using
the EXPORT Statement
	Details
	Example 4: Writing JSON Output without Exporting a SAS Data Set
	Details
	Example 5: Writing Values and Exporting Data in the Same Program
	Details
	Example 6: Writing Values and Controlling Containers in Exported Data
	Details
	Example 7: Applying SAS Formats to the Resulting Output
	Details
	Example 8: Exporting Multiple SAS Data Sets to a JSON File
	Details


	LUA Procedure
	Overview: LUA Procedure
	What Does the LUA Procedure Do?

	Concepts: LUA Procedure
	Specifying the Input Location for Lua Scripts
	Using the LUAPATH Fileref
	Using the LUA_PATH Environment Variable with Special Characters

	Running External Lua Files
	Calling CAS Actions with PROC LUA
	Requirements to Connect to the CAS Server
	Functions That Interact with the CAS Server
	Support for VARCHAR Data with PROC LUA

	Calling Standard SAS Functions within Lua Statements
	Submitting SAS Code within Lua Statements
	Functions That Submit SAS Code
	About Lua Variable Substitution within SAS Statements

	Scope for PROC LUA
	How PROC LUA Interprets Math.Huge
	How Lua Interprets Boolean Values
	Data Set Functions for the LUA Procedure
	Processing Data Set Observations
	Functions That Process Observations
	Sequence to Add an Observation
	Out of Scope Warning

	System Functions for the LUA Procedure
	About Lua Libraries
	Lua Libraries and SAS Extensions to Lua
	Restrictions to the Lua IO Library

	Table Functions for PROC LUA
	Functions That Manipulate Strings
	Object Syntax within Lua Statements
	Calling PROC FCMP Functions within Lua Statements
	Using the FULLSTIMER Option with PROC LUA

	Syntax: LUA Procedure
	PROC LUA Statement
	SUBMIT Statement
	ENDSUBMIT Statement

	Usage: LUA Procedure
	Submitting Lua Statements within a SAS Program
	Opening a SAS Data Set within Lua Code

	Examples: LUA Procedure
	Example 1: Create a Sample Data Set
	Example 2: Specifying Input from an External Lua Script
	Details
	Example 3: Loading a SAS Data Set and Viewing the Resulting Lua Table
	Details
	Example 4: Writing a SAS Data Set from a Lua Table
	Details
	Example 5: Using Table Functions
	Details
	Example 6: Using String Functions
	Details
	Example 7: Adding an Observation to a Lua Table
	Details
	Example 8: Using SAS Macro Variable Values within Lua Statements
	Details
	Example 9: Submitting SAS Code with Lua Variable Substitutions
	Details
	Example 10: Using an Iterator Function for a Small Table
	Details
	Example 11: Using Iterator Functions for a Large Table
	Details
	Example 12: Defining and Adding Variables to a Data Set
	Details
	Example 13: Connecting to the CAS Server
	Details
	Example 14: Running PROC FCMP Functions
	Details


	MEANS Procedure
	Overview: MEANS Procedure
	What Does the MEANS Procedure Do?
	What Types of Output Does PROC MEANS Produce?
	PROC MEANS Default Output
	PROC MEANS Customized Output
	PROC MEANS and the ODS OUTPUT Statement

	Concepts: MEANS Procedure
	Using Class Variables 
	Using TYPES and WAYS Statements
	Ordering the Class Values

	Computational Resources
	In-Database Processing for PROC MEANS
	Threaded Processing of Input DATA Sets
	CAS Processing for PROC MEANS

	Syntax: MEANS Procedure
	PROC MEANS Statement
	BY Statement
	CLASS Statement
	FREQ Statement
	ID Statement
	OUTPUT Statement
	TYPES Statement
	VAR Statement
	WAYS Statement
	WEIGHT Statement

	Usage: MEANS Procedure
	Computation of Moment Statistics
	Confidence Limits
	Student's t Test
	Quantiles

	Results: MEANS Procedure
	Missing Values
	Column Width for the Output
	The N Obs Statistic
	Output Data Set

	Examples: MEANS Procedure
	Example 1: Computing Specific Descriptive Statistics
	Details
	Example 2: Computing Descriptive Statistics with Class Variables
	Details
	Example 3: Using the BY Statement with Class Variables
	Details
	Example 4: Using a CLASSDATA= Data Set with Class Variables
	Details
	Example 5: Using Multilabel Value Formats with Class Variables
	Details
	Example 6: Using Preloaded Formats with Class Variables
	Details
	Example 7: Computing a Confidence Limit for the Mean
	Details
	Example 8: Computing Output Statistics
	Details
	Example 9: Computing Different Output Statistics for Several Variables
	Details
	Example 10: Computing Output Statistics with Missing Class Variable Values
	Details
	Example 11: Identifying an Extreme Value with the Output Statistics
	Details
	Example 12: Identifying the Top Three Extreme Values with the Output Statistics
	Details
	Example 13: Using the STACKODSOUTPUT Option to Control Data

	References

	MIGRATE Procedure
	Overview: MIGRATE Procedure
	What Does the MIGRATE Procedure Do?

	Concepts: MIGRATE Procedure
	Data Sets
	Views
	Catalogs
	MDDBs
	Items Stores
	Not Supported

	Syntax: MIGRATE Procedure
	PROC MIGRATE Statement

	Usage: MIGRATE Procedure
	Migrating a Data Set with Audit Trails, Generations, Indexes,
or Integrity Constraints
	Migrating a SAS Data Set with NODUPKEY Sort Indicator
	Migrating a SAS 6 Library
	Migrating Files with Short Extensions on PC Operating Environments
	Overview
	SAS®9 Compatibility with Short-Extension
Files

	Using a SAS/CONNECT or SAS/SHARE Server
	When to Use a SAS/CONNECT or SAS/SHARE Server
	When to Specify the Server in the IN= Option or in the SLIBREF=
Option
	Requirements for the SAS/CONNECT or SAS/SHARE Server
	Restrictions for the SLIBREF= Option

	Additional Steps for Unsupported Catalogs or Libraries
	When to Use Additional Steps
	Process
	Process for a Formats Catalog When Encoding Is Not Compatible


	Examples: MIGRATE Procedure
	Example 1: Migrating from a SAS®9 Release by Using
            SAS/CONNECT
	Details
	Example 2: Migrating with Direct Access and No Incompatible Catalogs
	Details
	Example 3: Migrating with Incompatible Catalogs When the SLIBREF= Option Is Required
	Details


	OPTIONS Procedure
	Overview: OPTIONS Procedure
	What Does the OPTIONS Procedure Do?

	Syntax: OPTIONS Procedure
	PROC OPTIONS Statement

	Usage: OPTIONS Procedure
	Display a List of System Options
	Display Information about One or More Options
	Display Information about System Option Groups
	Display Restricted Options
	Display Options That Can Be Saved

	Results: OPTIONS Procedure
	View PROC OPTIONS Output in the SAS Log

	Examples: OPTIONS Procedure
	Example 1: Producing the Short Form of the Options Listing
	Details
	Example 2: Displaying the Setting of a Single Option
	Details
	Example 3: Displaying Expanded Path Environment Variables
	Details
	Example 4: List the Options That Can Be Specified by the INSERT and APPEND
Options
	Details


	OPTLOAD Procedure
	Overview: OPTLOAD Procedure
	What Does the OPTLOAD Procedure Do?

	Syntax: OPTLOAD Procedure
	PROC OPTLOAD Statement

	Example: Load a Data Set of Saved System Options
	Details


	OPTSAVE Procedure
	Overview: OPTSAVE Procedure
	What Does the OPTSAVE Procedure Do?

	Syntax: OPTSAVE Procedure
	PROC OPTSAVE Statement

	Usage: OPTSAVE Procedure
	Determine If a Single Option Can Be Saved
	Create a List of Options That Can Be Saved

	Example: Saving System Options in a Data Set
	Details


	PLOT Procedure
	Overview: PLOT Procedure
	What Does the PLOT Procedure Do?

	Concepts: PLOT Procedure
	RUN Groups
	Labels and Plot Points
	Pointer Symbols
	Understanding Penalties
	Changing Penalties
	Collision States
	Reference Lines
	Hidden Label Characters
	Overlaid Label Plots
	Computational Resources Used for Label Plots
	Time
	Memory


	Syntax: PLOT Procedure
	PROC PLOT Statement
	BY Statement
	PLOT Statement

	Usage: PLOT Procedure
	Generating Data with Program Statements
	Specifying Variable Lists in Plot Requests
	Specifying Combinations of Variables
	Using the PENALTIES= Option

	Results: PLOT Procedure
	Scale of the Axes
	Printed Output
	ODS Table Names
	Portability of ODS Output with PROC PLOT
	Missing Values
	Hidden Observations

	Examples: PLOT Procedure
	Example 1: Specifying a Plotting Symbol
	Details
	Example 2: Controlling the Horizontal Axis and Adding a Reference Line
	Details
	Example 3: Overlaying Two Plots
	Details
	Example 4: Producing Multiple Plots per Page
	Details
	Example 5: Plotting Data on a Logarithmic Scale
	Details
	Example 6: Plotting Date Values on an Axis
	Details
	Example 7: Producing a Contour Plot
	Details
	Example 8: Plotting BY Groups
	Details
	Example 9: Adding Labels to a Plot
	Details
	Example 10: Excluding Observations That Have Missing Values
	Details
	Example 11: Adjusting Labels on a Plot with the PLACEMENT= Option
	Details
	Example 12: Adjusting Labeling on a Plot with a Macro
	Details
	Example 13: Changing a Default Penalty
	Details


	PMENU Procedure
	Overview: PMENU Procedure
	What Does the PMENU Procedure Do?
	SAS Menus

	Concepts: PMENU Procedure
	Procedure Execution
	Initiating the Procedure
	Ending the Procedure

	Steps for Building and Using PMENU Catalog Entries
	Templates for Coding PROC PMENU Steps

	Syntax: PMENU Procedure
	PROC PMENU Statement
	CHECKBOX Statement
	DIALOG Statement
	ITEM Statement
	MENU Statement
	RADIOBOX Statement
	RBUTTON Statement
	SELECTION Statement
	SEPARATOR Statement
	SUBMENU Statement
	TEXT Statement

	Examples: PMENU Procedure
	Example 1: Building a Menu Bar for an FSEDIT Application
	Details
	Associating a Menu Bar with an FSEDIT Session
	Example 2: Collecting User Input in a Dialog Box
	Details
	Associating a Menu Bar with an FSEDIT Window
	Example 3: Creating a Dialog Box to Search Multiple Variables
	Details
	Details
	Associating a Menu Bar with an FSEDIT Session
	How the WBUILD Macro Works 

	Example 4: Creating Menus for a DATA Step Window Application
	Details
	Other Examples
	Associating a Menu with a Window
	Using a Data Entry Program
	Printing a Program

	Example 5: Associating Menus with a FRAME Application
	Details
	Steps to Associate Menus with a FRAME


	PRESENV Procedure
	Overview: PRESENV Procedure
	What Does the PRESENV Procedure Do?

	Concepts: PRESENV Procedure
	Global Statements That Can Be Saved

	Syntax: PRESENV Procedure
	PROC PRESENV Statement

	Usage: PRESENV Procedure
	Executing PROC PRESENV
	Restoring the Environment in a Subsequent Job

	Examples: PRESENV Procedure
	Example 1: Preserve a SAS Environment
	Details
	Example 2: Restore a SAS Environment
	Details


	PRINT Procedure
	Overview: PRINT Procedure
	What Does the PRINT Procedure Do?
	A Simple Report
	Customized Report

	Syntax: PRINT Procedure
	PROC PRINT Statement
	BY Statement
	ID Statement
	PAGEBY Statement
	SUM Statement
	SUMBY Statement
	VAR Statement

	Usage: PRINT Procedure
	Use ODS Styles with PROC PRINT
	Using Styles with Base SAS Procedures
	Styles, Style Elements, and Style Attributes
	 Understanding Styles, Style Elements, and Style Attributes 

	Default Style Elements and Style Attributes for Table Regions

	Error Processing in the PRINT Procedure Output

	Results: PRINT Procedure
	About PROC PRINT Output
	Page Layout for HTML, the Default ODS Destination
	Page Layout  for Limited Page Sizes
	Observations
	Column Headings
	Column Width


	Examples: PRINT Procedure
	Example 1: Print a CAS Table
	Details
	Example 2: Selecting Variables to Print
	Details
	Example 3: Customizing Text in Column Headings
	Details
	Example 4: Creating Separate Sections of a Report for Groups of Observations
	Details
	Example 5: Summing Numeric Variables with One BY Group
	Details
	Example 6: Summing Numeric Variables with Multiple BY Variables
	Details
	Example 7: Limiting the Number of Sums in a Report
	Details
	Example 8: Controlling the Layout of a Report with Many Variables
	Details
	Example 9: Creating a Customized Layout with BY Groups and ID Variables
	Details
	Example 10: Printing All the Data Sets in a SAS Library
	Details


	PRINTTO Procedure
	Overview: PRINTTO Procedure
	What Does the PRINTTO Procedure Do?

	Syntax: PRINTTO Procedure
	PROC PRINTTO Statement

	Usage: PRINTTO Procedure
	Set Page Numbers Using SAS System Options
	Route SAS Log or Procedure Output Directly to a Printer
	PROC PRINTTO and the LISTING Destination
	Restore the Previous SAS Log or LISTING Output File Location

	Examples: PRINTTO Procedure
	Example 1: Routing to External Files
	Details
	Example 2: Routing to SAS Catalog Entries
	Details
	Example 3: Using Procedure Output as an Input File
	Details
	Example 4: Routing to a Printer
	Details


	PRODUCT_STATUS Procedure
	Overview: PRODUCT_STATUS Procedure
	What Does the PRODUCT_STATUS Procedure Do?
	Special Considerations

	Syntax: PRODUCT_STATUS Procedure
	PROC PRODUCT_STATUS Statement

	Example: Results from PROC PRODUCT_STATUS

	PROTO Procedure
	Overview: PROTO Procedure
	What Does the PROTO Procedure Do?

	Concepts: PROTO Procedure
	Registering Function Prototypes
	Supported C Return Types
	Supported C Argument Types
	C Structures in SAS 
	Basic Concepts
	Declaring and Referencing Structures in SAS
	Structure Example
	Enumerations in SAS
	Enumerated Types Example
	C-Source Code in SAS
	Limitations for C Language Specifications


	Syntax: PROTO Procedure
	PROC PROTO Statement
	LINK Statement
	MAPMISS Statement
	FUNCTION-PROTOTYPE-N Statement

	Usage: PROTO Procedure
	Basic C Language Types
	Working with Character Variables
	Working with Numeric Variables
	Working with Missing Values
	Function Names
	Interfacing with External C Functions
	Scope of Packages in PROC PROTO
	C Helper Functions and CALL Routines 
	What Are C Helper Functions and CALL Routines?
	ISNULL C Helper Function
	SETNULL C Helper CALL Routine
	STRUCTINDEX C Helper CALL Routine


	Example: Splitter Function Example
	Details


	PRTDEF Procedure
	Overview: PRTDEF Procedure
	What Does the PRTDEF Procedure Do?

	Syntax: PRTDEF Procedure
	PROC PRTDEF Statement

	Usage: PRTDEF Procedure
	Input Data Set Variables That Are Used To Create Printer Definitions
	Summary of Valid Variables
	Required Variables
	Optional Variables


	Examples: PRTDEF Procedure
	Example 1: Defining Multiple Printer Definitions
	Details
	Example 2: Creating a Ghostview Printer in SASUSER to Preview PostScript
Printer Output in SASUSER
	Details
	Example 3: Creating a Single Printer Definition That Is Available to All
Users
	Details
	Example 4: Adding, Modifying, and Deleting Printer Definitions
	Details
	Example 5: Deleting a Single Printer Definition
	Details


	PRTEXP Procedure
	Overview: PRTEXP Procedure
	What Does the PRTEXP Procedure Do?

	Syntax: PRTEXP Procedure
	PROC PRTEXP Statement
	EXCLUDE Statement
	SELECT Statement

	Examples: PRTEXP Procedure
	Example 1: Writing Attributes to the SAS Log
	Details
	Example 2: Writing Attributes to a SAS Data Set
	Details


	PWENCODE Procedure
	Overview: PWENCODE Procedure
	What Does the PWENCODE Procedure Do?

	Concepts: PWENCODE Procedure
	Using Encoded Passwords in SAS Programs
	Encoding versus Encryption
	Encoding Methods 

	Syntax: PWENCODE Procedure
	PROC PWENCODE Statement

	Examples: PWENCODE Procedure
	Example 1: Encoding a Password
	Details
	Example 2: Using an Encoded Password in a SAS Program
	Details
	Example 3: Saving an Encoded Password to the Paste Buffer
	DETAILS
	Example 4: Specifying Method= SAS003 to Encode a Password
	Details
	Example 5: Specifying Method= SAS005 to Encode a Password
	Details


	QDEVICE Procedure
	Overview: QDEVICE Procedure
	What Does the QDEVICE Procedure Do?

	Concepts: QDEVICE Procedure
	Reports for Windows Operating Environments

	Syntax: QDEVICE Procedure
	PROC QDEVICE Statement
	DEVICE Statement
	PRINTER Statement
	VAR Statement

	Usage: QDEVICE Procedure
	Variables Common to All Reports
	Create a GENERAL Report
	 About GENERAL Report Variables
	System Options That Affect the Value of Size Variables
	Example: GENERAL Report

	Create a FONT Report
	About FONT Report Variables
	Variable Labels in a FONT Report
	Example: FONT Report

	Create a DEVOPTION Report
	About DEVOPTION Report Variables
	Example: DEVOPTION Report

	Create a LINESTYLE Report
	About LINESTYLE Report Variables
	Example: LINESTYLE Report

	Create a RECTANGLE Report
	About RECTANGLE Report Variables
	Example: RECTANGLE Report

	Create a SYMBOL Report
	About SYMBOL Report Variables
	Example: SYMBOL Report


	Examples: QDEVICE Procedure
	Example 1: Generate a Report for the Default Display Device
	Details
	Example 2: Generate a General Report for All Devices
	Details
	Example 3: Generate a Report for SAS/GRAPH Device Drivers and Universal
Printers
	Details
	Example 4: Generate a Report for the Default Printer
	Details
	Example 5: Generate a Font Report
	Details
	Example 6: Generate a Device Option Report
	Details
	Example 7: Specify a User Library and Catalog for a Report
	Details


	RANK Procedure
	Overview: RANK Procedure
	What Does the RANK Procedure Do?
	Ranking Data

	Concepts: RANK Procedure
	Computer Resources
	Statistical Applications
	Treatment of Tied Values
	In-Database Processing for PROC RANK

	Syntax: RANK Procedure
	PROC RANK Statement
	BY Statement
	RANKS Statement
	VAR Statement

	Results: RANK Procedure
	Missing Values
	Output Data Set
	Numeric Precision

	Examples: RANK Procedure
	Example 1: Ranking Values of Multiple Variables
	Details
	Example 2: Ranking Values within BY Groups
	Details
	Example 3: Partitioning Observations into Groups Based on Ranks
	Details

	References

	REGISTRY Procedure
	Overview: REGISTRY Procedure
	What Does the REGISTRY Procedure Do?

	Syntax: REGISTRY Procedure
	PROC REGISTRY Statement

	Usage: REGISTRY Procedure
	Structure of a Registry File
	Specifying Key Names
	Specifying Values for Keys
	Sample Registry Entries

	Examples: REGISTRY Procedure
	Example 1: Importing a File to the SAS Registry
	Details
	Example 2: Listing and Exporting the Registry File
	Details
	Example 3: Comparing the Registry to an External File
	Details
	Example 4: Comparing Registry Files
	Details
	Example 5: Specifying an Entire Key Sequence with the STARTAT= Option
	Details
	Example 6: Displaying a List of Fonts
	Details


	REPORT Procedure
	Overview: REPORT Procedure
	What Does the REPORT Procedure Do?
	What Types of Reports Can PROC REPORT Produce?
	What Do the Various Types of Reports Look Like?

	Concepts: REPORT Procedure
	Laying Out a Report  
	Planning the Layout
	Usage of Variables in a Report
	Display Variables
	Order Variables
	Group Variables
	Analysis Variables
	Across Variables
	Computed Variables
	Interactions of Position and Usage

	Using Compute Blocks
	What Is a Compute Block?
	The Purpose of Compute Blocks
	The Contents of Compute Blocks
	Four Ways to Reference Report Items in a Compute Block
	Compute Block Processing

	Using Break Lines
	What Are Break Lines?
	Creating Break Lines
	Order of Break Lines
	The Automatic Variable _BREAK_

	Using Compound Names
	ODS Destinations Supported by PROC REPORT
	Threaded Processing of Input DATA Sets

	Syntax: REPORT Procedure
	PROC REPORT Statement
	BREAK Statement
	BY Statement
	CALL DEFINE Statement
	COLUMN Statement
	COMPUTE Statement
	DEFINE Statement
	ENDCOMP Statement
	FREQ Statement
	LINE Statement
	RBREAK Statement
	WEIGHT Statement

	Usage: REPORT Procedure
	Statistics That Are Available in PROC REPORT
	Using ODS Styles with PROC REPORT
	Using Styles with Base SAS Procedures
	Styles, Style Elements, and Style Attributes
	 Understanding Styles, Style Elements, and Style Attributes 

	Style Elements and Style Attributes for Table Regions 
	Order of Precedence When Applying Style Attributes to Data
Cells
	Using a Format to Assign a Style Attribute Value
	Controlling the Spacing between Rows

	Printing a Report
	Printing with ODS 
	Printing from Noninteractive or Batch Mode
	Using PROC PRINTTO 

	Storing and Reusing a Report Definition
	In-Database Processing for PROC REPORT
	CAS Processing for PROC REPORT
	Substituting BY Line Values in a Text String

	Results: REPORT Procedure
	How PROC REPORT Builds a Report
	Sequence of Events
	Construction of Summary Lines
	Report-Building Examples
	Building a Report That Uses Groups and a Report Summary
	Building a Report That Uses Temporary Variables



	Examples: REPORT Procedure
	Example 1: Selecting Variables and Creating a Summary Line for a Report
	Details
	Example 2: Ordering the Rows in a Report
	Details
	Example 3: Using Aliases to Obtain Multiple Statistics for the Same Variable
	Details
	Example 4: Displaying Multiple Statistics for One Variable
	Details
	Example 5: Consolidating Multiple Observations into One Row of a Report
	Details
	Example 6: Creating a Column for Each Value of a Variable
	Details
	Example 7: Writing a Customized Summary on Each Page
	Details
	Example 8: Displaying a Calculated Percentage Column in a Report
	Details
	Example 9: How PROC REPORT Handles Missing Values
	Details
	Example 10: Creating an Output Data Set and Storing Computed Variables
	Details
	Example 11: Using a Format to Create Groups
	Details
	Example 12: Using Multilabel Formats
	Details
	Example 13: Specifying Style Elements for ODS Output in Multiple Statements
	Details
	Example 14: Using the CELLWIDTH= Style Attribute with PROC REPORT
	Details
	Example 15: Using STYLE/MERGE in PROC REPORT CALL DEFINE Statement
	Details
	Example 16: Using STYLE/REPLACE in PROC REPORT CALL DEFINE Statement
	Details


	REPORT Procedure Windows
	Overview of REPORT Procedure Windows
	Dictionary
	BREAK Window
	COMPUTE Window
	COMPUTED VAR Window
	DATA COLUMNS Window
	DATA SELECTION Window
	DEFINITION Window
	DISPLAY PAGE Window
	EXPLORE Window
	FORMATS Window
	LOAD REPORT Window
	MESSAGES Window
	PROFILE Window
	PROMPTER Window
	REPORT Window
	ROPTIONS Window
	SAVE DATA SET Window
	SAVE DEFINITION Window
	SOURCE Window
	STATISTICS Window
	WHERE Window
	WHERE ALSO Window


	S3 Procedure
	Overview: S3 Procedure
	What Does the S3 Procedure Do?

	Concepts: S3 Procedure
	Support for IMDS
	PROC S3 Configuration
	Overview of PROC S3 Configuration
	AWS CLI Configuration Files
	PROC S3 Configuration File
	Securing the PROC S3 Configuration File

	Defining Custom Regions
	Using Server-Side Encryption with AWS Data
	Manage Encryption Keys with the ENCKEY Statement
	Use Encryption Keys with SAS/ACCESS

	Transfer Acceleration

	Syntax: S3 Procedure
	PROC S3 Statement
	BUCKET Statement
	COPY Statement
	CREATE Statement
	DELETE Statement
	DESTROY Statement
	ENCKEY Statement
	GET Statement
	GETACCEL Statement
	GETDIR Statement
	INFO Statement
	LIST Statement
	MKDIR Statement
	PUT Statement
	PUTDIR Statement
	REGION Statement
	RMDIR Statement

	Examples: S3 Procedure
	Example 1: Create a Bucket and Add a File
	Details
	Example 2: Manage the Contents of a Bucket
	Details
	Example 3: Manage Encryptions with S3 Data
	Details
	Example 4: Define a Custom Region with PROC S3
	Details


	SCAPROC Procedure
	Overview: SCAPROC Procedure
	What Does the SCAPROC Procedure Do?
	Special Considerations

	Concepts: SCAPROC Procedure
	Handling Global Statements

	Syntax: SCAPROC Procedure
	PROC SCAPROC Statement
	RECORD Statement
	WRITE Statement

	Results: SCAPROC Procedure
	Results

	Examples: SCAPROC Procedure
	Example 1: Specifying a Record File
	Example 2: Specifying the Grid Job Generator
	Details


	SCOREACCEL Procedure
	Overview: SCOREACCEL Procedure
	What Does the SCOREACCEL Procedure Do?

	Concepts: SCOREACCEL Procedure
	Publishing Models to a Model Table on the CAS Server

	Syntax: SCOREACCEL Procedure
	PROC SCOREACCEL Statement
	DELETEMODEL Statement
	PUBLISHMODEL Statement
	RUNMODEL Statement

	Examples: SCOREACCEL Procedure
	Example 1: Publishing, Running, and Deleting a DATA Step Model in CAS
	Details
	Example 2: Publishing, Running, and Deleting a DS2 Model in Teradata
	Details
	Example 3: Publishing and Running a DATA Step Model in Teradata Using
a CASLIB
	Details
	Example 4: Publishing and Running a Model in Hadoop
	Details
	Example 5: Publishing and Running a  Model in Hadoop (Hive)
	Details
	Example 6: Running a  Model in Spark
	Details
	Example 7: Running a Model in Spark by Using the Apache Livy REST Interface
	Details


	SOAP Procedure
	Overview: SOAP Procedure
	What Does the SOAP Procedure Do?

	Concepts: SOAP Procedure
	Concepts: SOAP Procedure

	Syntax: SOAP Procedure
	PROC SOAP Statement

	Usage: SOAP Procedure
	Using PROC SOAP with Transport Layer Security (TLS) 
	TLS and Data Encryption
	Making PROC SOAP Calls By Using the HTTPS Protocol

	Methods of Calling SAS Registered Web Services
	Calling a SAS Secured Service without Providing Credentials
	Specifying an Output Log File

	Examples: SOAP Procedure
	Example 1: Using a Proxy and PROC SOAP with a SOAPEnvelope Element
	Details
	Example 2: Using a Proxy and PROC SOAP without a SOAPEnvelope Element
	Details
	Example 3: Add Numbers Using Online Calculator
	Details


	SORT Procedure
	Overview: SORT Procedure
	What Does the SORT Procedure Do?
	Sorting SAS Data Sets

	Concepts: SORT Procedure
	Threaded Sorting
	Sorting Orders for Numeric Variables
	Sorting Orders for Character Variables   
	Default Collating Sequence
	EBCDIC Order
	ASCII Order
	Specifying Sorting Orders for Character Variables

	Stored Sort Information
	Presorted Input Data Sets
	 Linguistic Sorting of Data Sets and ICU
	Force SAS to Sort Data Sets Using System Option SORTPGM

	Syntax: SORT Procedure
	PROC SORT Statement
	BY  Statement
	KEY Statement

	Usage: SORT Procedure
	In-Database Processing: PROC SORT
	SAS Cloud Analytic Services Processing for PROC SORT
	Integrity Constraints: SORT Procedure

	Results: SORT Procedure
	Procedure Output
	Output Data Set

	Examples: SORT Procedure
	Example 1: Sorting by the Values of Multiple Variables
	Details
	Example 2: Sorting in Descending Order
	Details
	Example 3: Maintaining the Relative Order of Observations in Each BY Group
	Details
	Example 4: Retaining the First Observation of Each BY Group
	Details
	Example 5: Linguistic Sorting Using ALTERNATE_HANDLING=
	Details
	Example 6: Linguistic Sorting Using ALTERNATE_HANDLING= and STRENGTH=
	Details
	Example 7: Eliminate All Duplicate Observations Using NODUPKEY
	Details


	SQL Procedure
	A Brief Overview
	Example: Using the SQL Procedure

	SQOOP Procedure
	Overview: SQOOP Procedure
	What Does the SQOOP Procedure Do?

	Syntax: SQOOP Procedure
	PROC SQOOP Statement

	Usage: SQOOP Procedure
	General Usage
	Using Workflows
	Requirements for Using the SQOOP Procedure

	Example: Importing from Teradata to HDFS Using an SQL Query

	STANDARD Procedure
	Overview: STANDARD Procedure
	What Does the STANDARD Procedure Do?
	Standardizing Data

	Syntax: STANDARD Procedure
	PROC STANDARD Statement
	BY Statement
	FREQ Statement
	VAR Statement
	WEIGHT Statement

	Usage: STANDARD Procedure
	Statistical Computations: STANDARD Procedure

	Results: STANDARD Procedure
	Missing Values
	Output Data Set

	Examples: STANDARD Procedure
	Example 1: Standardizing to a Given Mean and Standard Deviation
	Details
	Example 2: Standardizing BY Groups and Replacing Missing Values
	Details


	STREAM Procedure
	Overview: STREAM Procedure
	What Does the STREAM Procedure Do?

	Concepts: STREAM Procedure
	How Text and Macro Code Are Interpreted
	Tokenizer Limitations

	Syntax: STREAM Procedure
	PROC STREAM Statement

	Usage: STREAM Procedure
	Using Macro-Based Code in the Input Stream
	Beginning an Input Stream with Brackets or Parentheses
	Executing SAS Code
	Rich Text Format (RTF) File Output
	Using the READFILE Keyword
	Using %INCLUDE to Include a File in PROC STREAM
	Inserting a New Line into the Output Stream
	Ending the STREAM Procedure


	SUMMARY Procedure
	Overview: SUMMARY Procedure
	What Does the SUMMARY Procedure Do?

	Syntax: SUMMARY Procedure
	PROC SUMMARY Statement
	VAR Statement


	TABULATE Procedure
	Overview: TABULATE Procedure
	What Does the TABULATE Procedure Do?
	Simple Tables
	Complex Tables
	PROC TABULATE and the Output Delivery System

	Concepts: TABULATE Procedure
	Terminology: TABULATE Procedure
	Threaded Processing of Input DATA Sets

	Syntax: TABULATE Procedure
	PROC TABULATE Statement
	BY Statement
	CLASS Statement
	CLASSLEV Statement
	FREQ Statement
	KEYLABEL Statement
	KEYWORD Statement
	TABLE Statement
	VAR Statement
	WEIGHT Statement

	Usage: TABULATE Procedure
	Statistics That Are Available in PROC TABULATE
	Formatting Class Variables
	Formatting Values in Tables
	Calculating Percentages 
	Calculating the Percentage of the Value in a Single Table Cell
	Using PCTN and PCTSUM
	Specifying a Denominator for the PCTN Statistic
	Specifying a Denominator for the PCTSUM Statistic

	Using ODS Styles with PROC TABULATE
	Using Styles with Base SAS Procedures
	Styles, Style Elements, and Style Attributes
	 Understanding Styles, Style Elements, and Style Attributes 

	Style Elements and Style Attributes for Table Regions
	Using the STYLE= Option with PROC TABULATE Statements
	Applying Style Attributes to Table Cells
	Using a Format to Assign a Style Attribute
	 Specifying Style Attributes and Style Elements in Dimension
Expressions

	SAS Cloud Analytic Services
Processing for PROC TABULATE
	In-Database Processing for PROC TABULATE
	Substituting BY Line Values in a Text String

	Results: TABULATE Procedure
	Missing Values 
	How PROC TABULATE Treats Missing Values
	No Missing Values
	A Missing Class Variable
	Including Observations with Missing Class Variables
	Formatting Headings for Observations with Missing Class Variables
	Providing Headings for All Categories
	Providing Text for Cells That Contain Missing Values
	Providing Headings for All Values of a Format

	Understanding the Order of Headings with ORDER=DATA
	Portability of ODS Output with PROC TABULATE

	Examples: TABULATE Procedure
	Example 1: Creating a Basic Two-Dimensional Table
	Details
	Example 2: Specifying Class Variable Combinations to Appear in a Table
	Details
	Example 3: Using Preloaded Formats with Class Variables
	Details
	Example 4: Using Multilabel Formats
	Details
	Example 5: Customizing Row and Column Headings
	Details
	Example 6: Summarizing Information with the Universal Class Variable ALL
	Details
	Example 7: Eliminating Row Headings
	Details
	Example 8: Indenting Row Headings and Eliminating Horizontal Separators
	Details
	Example 9: Creating Multipage Tables
	Details
	Example 10: Reporting on Multiple-Response Survey Data
	Details
	Example 11: Reporting on Multiple-Choice Survey Data
	Details
	Details
	Reshape the Data
	Understanding the PROC TRANSPOSE Step

	Example 12: Calculating Various Percentage Statistics
	Details
	Details
	Example 13: Using Denominator Definitions to Display Basic Frequency Counts
and Percentages
	Details
	Details
	Overview
	Analyzing the Structure of the Table
	Interpreting Denominator Definitions
	Row Percentages
	Column Percentages
	Total Percentages

	Example 14: Specifying Style Overrides for ODS Output
	Details
	Example 15: Style Precedence
	Details
	Example 16: Using the NOCELLMERGE Option
	Details

	References

	TIMEPLOT Procedure
	Overview: TIMEPLOT Procedure
	What Does the TIMEPLOT Procedure Do?

	Syntax: TIMEPLOT Procedure
	PROC TIMEPLOT Statement
	BY Statement
	CLASS Statement
	ID Statement
	PLOT Statement

	Results: TIMEPLOT Procedure
	Data Considerations
	Procedure Output
	Page Layout
	Contents of the Listing

	ODS Table Names
	Missing Values

	Examples: TIMEPLOT Procedure
	Example 1: Plotting a Single Variable
	Details
	Example 2: Customizing an Axis and a Plotting Symbol
	Details
	Example 3: Using a Variable for a Plotting Symbol
	Details
	Example 4: Superimposing Two Plots
	Details
	Example 5: Showing Multiple Observations on One Line of a Plot
	Details


	TRANSPOSE Procedure
	Overview: TRANSPOSE Procedure
	What Does the TRANSPOSE Procedure Do?
	What Types of Transpositions Can PROC TRANSPOSE Perform?
	Simple Transposition
	Complex Transposition Using BY Groups
	In-Database Processing for PROC TRANSPOSE 
	CAS Processing for PROC TRANSPOSE

	Syntax: TRANSPOSE Procedure
	PROC TRANSPOSE Statement
	BY Statement
	COPY Statement
	ID Statement
	IDLABEL Statement
	VAR Statement

	Results: TRANSPOSE Procedure
	Output Data Set
	Output Data Set Variables
	Attributes of Transposed Variables
	Names of Transposed Variables

	Examples: TRANSPOSE Procedure
	Example 1: Performing a Simple Transposition
	Example 2: Naming Transposed Variables
	Example 3: Labeling Transposed Variables
	Example 4: Transposing BY Groups
	Example 5: Naming Transposed Variables When the ID Variable Has Duplicate
Values
	Example 6: Transposing Data for Statistical Analysis


	XSL Procedure
	Overview: XSL Procedure
	What Does the Extensible Style Sheet Language (XSL) Procedure
Do?
	Understanding XSL

	Syntax: XSL Procedure
	PROC XSL Statement
	PARAMETER Statement

	Examples: XSL Procedure
	Example 1: Transforming an XML Document into Another XML Document
	Details
	Example 2: Passing a Character String Parameter Value to the XSL Style
Sheet
	Details
	Example 3: Passing a Numeric Parameter Value to the XSL Style Sheet
	Details



	Appendixes
	SAS Elementary Statistics Procedures
	Overview of SAS Elementary Statistics Procedures
	Keywords and Formulas
	Simple Statistics
	Descriptive Statistics
	Quantile and Related Statistics
	Hypothesis Testing Statistics
	Confidence Limits for the Mean
	Using Weights
	Data Requirements for Summarization Procedures

	Statistical Background
	Populations and Parameters
	Samples and Statistics
	Measures of Location
	Overview of Measures of Location
	The Mean
	The Median
	The Mode

	Percentiles
	Quantiles
	Measures of Variability
	Overview of Measures of Variability
	The Range
	The Interquartile Range
	The Variance
	The Standard Deviation
	Coefficient of Variation

	Measures of Shape 
	Skewness
	Kurtosis

	The Normal Distribution
	Sampling Distribution of the Mean
	Testing Hypotheses
	Defining a Hypothesis
	Significance and Power
	Student's t Distribution
	Probability Values


	References

	Operating Environment-Specific Procedures
	Descriptions of Operating Environment-Specific Procedures

	Raw Data and DATA Steps for Base SAS Procedures
	Overview of Raw Data and DATA Steps for Base SAS Procedures
	CARSURVEY
	CENSUS
	CHARITY
	CONTROL Library
	Contents of the CONTROL Library
	CONTROL.ALL
	CONTROL.BODYFAT
	CONTROL.CONFOUND
	CONTROL.CORONARY
	CONTROL.DRUG1
	CONTROL.DRUG2
	CONTROL.DRUG3
	CONTROL.DRUG4
	CONTROL.DRUG5
	CONTROL.GROUP
	CONTROL.MLSCL
	CONTROL.NAMES
	CONTROL.OXYGEN
	CONTROL.PERSONL
	CONTROL.PHARM
	CONTROL.POINTS
	CONTROL.PRENAT
	CONTROL.RESULTS
	CONTROL.SLEEP
	CONTROL.SYNDROME
	CONTROL.TENSION
	CONTROL.TEST2
	CONTROL.TRAIN
	CONTROL.VISION
	CONTROL.WEIGHT
	CONTROL.WGHT

	CUSTOMER_RESPONSE
	DJIA
	EDUCATION
	EMPDATA
	ENERGY
	EXP Library
	EXP.RESULTS
	EXP.SUR

	EXPREV
	GROC
	MATCH_11
	PROCLIB.DELAY
	PROCLIB.EMP95
	PROCLIB.EMP96
	PROCLIB.INTERNAT
	PROCLIB.LAKES
	PROCLIB.MARCH
	PROCLIB.PAYLIST2
	PROCLIB.PAYROLL
	PROCLIB.PAYROLL2
	PROCLIB.SCHEDULE
	PROCLIB.STAFF
	PROCLIB.STAFF2
	PROCLIB.SUPERV
	RADIO
	SALES

	ICU License
	ICU Licence: ICU 1.8.1–ICU 57 and ICU4J 1.3.1–ICU4J
57
	Third-Party Software Licenses: ICU 1.8.1–ICU 57 and
ICU4J 1.3.1–ICU4J 57
	1. Unicode Data Files and Software
	2. Chinese/Japanese Word Break Dictionary Data (cjdict.txt)
	3. Lao Word Break Dictionary Data (laodict.txt)
	4. Burmese Word Break Dictionary Data (burmesedict.txt)
	3. Time Zone Database

	Unicode, Inc. License Agreement - Data Files and Software:
ICU 58 and Later



